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PREFACE

Itis intended that this book provide the student with a clear and thorough
presentation of the theory and application of the principles of mechanics
of materials. To achieve this objective, over the years this work has been
shaped by the comments and suggestions of hundreds of reviewers in the
teaching profession, as well as many of the author’s students. The tenth
edition has been significantly enhanced from the previous edition, and it
is hoped that both the instructor and student will benefit greatly from
these improvements.

NEW TO THIS EDITION

e Updated Material. Many topics in the book have been re-written in
order to further enhance clarity and to be more succinct. Also, some of
the artwork has been enlarged and improved throughout the book to
support these changes.

e New Layout Design. Additional design features have been added to this
edition to provide a better display of the material. Almost all the topics
are presented on a one or two page spread so that page turning is
minimized.

¢ Improved Preliminary and Fundamental Problems. These problems sets
are located just after each group of example problems. They offer students
basic applications of the concepts covered in each section, and they help
provide the chance to develop their problem-solving skills before
attempting to solve any of the standard problems that follow. The problems
sets may be considered as extended examples, since in this edition their
complete solutions are given in the back of the book. Additionally, when
assigned, these problems offer students an excellent means of preparing
for exams, and they can be used at a later time as a review when studying
for various engineering exams.

e New Photos. The relevance of knowing the subject matter is reflected
by the real-world application of the additional new or updated photos
placed throughout the book. These photos generally are used to explain
how the principles apply to real-world situations and how materials
behave under load.



PREFACE

e New Problems. New problems involving applications to many different
fields of engineering have been added in this edition.

e New Review Problems. Updated review problems have been placed at
the end of each chapter so that instructors can assign them as additional
preparation for exams.

HALLMARK ELEMENTS

The contents of each chapter are
organized into well-defined sections that contain an explanation of
specific topics, illustrative example problems, and a set of homework
problems. The topics within each section are placed into subgroups
defined by titles. The purpose of this is to present a structured method for
introducing each new definition or concept and to make the book
convenient for later reference and review.

Each chapter begins with a full-page illustration
that indicates a broad-range application of the material within the chapter.
The “Chapter Objectives” are then provided to give a general overview
of the material that will be covered.

Found after many of the sections of the
book, this unique feature provides the student with a logical and orderly
method to follow when applying the theory. The example problems are
solved using this outlined method in order to clarify its numerical
application. It is to be understood, however, that once the relevant
principles have been mastered and enough confidence and judgment have
been obtained, the student can then develop his or her own procedures
for solving problems.

This feature provides a review or summary of the
most important concepts in a section and highlights the most significant
points that should be realized when applying the theory to solve problems.

All the example problems are presented in a
concise manner and in a style that is easy to understand.

Apart from of the preliminary, fundamental,
and conceptual problems, there are numerous standard problems in the
book that depict realistic situations encountered in engineering practice.
It is hoped that this realism will both stimulate the student’s interest in
the subject and provide a means for developing the skill to reduce any
such problem from its physical description to a model or a symbolic
representation to which principles may be applied. Furthermore, in any
set, an attempt has been made to arrange the problems in order of
increasing difficulty. The answers to all but every fourth problem are
listed in the back of the book. To alert the user to a problem without a



reported answer, an asterisk (*) is placed before the problem number.
Answers are reported to three significant figures, even though the data
for material properties may be known with less accuracy. Although this
might appear to be a poor practice, it is done simply to be consistent,
and to allow the student a better chance to validate his or her solution.

Appendices. The appendices of the book provide a source for review
and a listing of tabular data. Appendix A provides information on the
centroid and the moment of inertia of an area. Appendices B and C list
tabular data for structural shapes, and the deflection and slopes of various
types of beams and shafts.

Accuracy Checking. The Tenth Edition has undergone a rigorous
Triple Accuracy Checking review. In addition to the author’s review of all
art pieces and pages, the text was checked by the following individuals:

¢ Scott Hendricks, Virginia Polytechnic University

e Karim Nohra, University of South Florida

e Kurt Norlin, Bittner Development Group

¢ Kai Beng Yap, Engineering Consultant

The SI edition was checked by three additional reviewers.

Realistic Diagrams and Photographs. Realistic diagrams with
vectors have been used to demonstrate real-world applications. In
addition, many photographs are used throughout the book to enhance
conceptual understanding and to explain how the principles of mechanics
of materials apply to real-world situations.

452 CHAPTER 8 COMBINED LOADINGS

8-31. The drillis jammed in the wall and is subjected to the 8-35. The block is subjected to the eccentric load shown.

torque and force shown. Determine the state of stress at
point A on the cross section of the drill bit at section a-a.

#8-32. The drill is jammed in the wall and is subjected to
the torque and force shown. Determine the state of stress at

point B on the cross section of the drill bit at section a—a.

400 mm

150N

Section a-a
Probs. 8-31/32
8-33. Determine the state of stress at point A when the

beam is subjected to the cable force of 4 kN. Indicate the
result as a differential volume element.

Determine the normal stress developed at points A and B.
Neglect the weight of the block.

#8-36. The block is subjected to the eccentric load shown.
Sketch the normal-stress distribution acting over the cross
section at section a—a. Neglect the weight of the block.

150 kN

Probs. 8-35/36

8-37. If the 75-kg man stands in the position shown,
determine the state of stress at point A on the cross section

PREFACE

<« lllustrations with
Vectors

Most of the diagrams
throughout the book are in
full-color art, and many
photorealistic illustrations

with vectors have been added.
These provide a strong
connection to the 3-D nature of
engineering. This also helps the
student to visualize and be
aware of the concepts behind
the question.
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Once the beam has been selected, the shear formula can then be used
to be sure the allowable shear stress is not exceeded, 7., = Vo/n.
Often this Tequirement will not present a problem; however, if the beam
is “short” and supports large concentrated loads, the shear-stress
limitation may dictate the size of the beam.

Steel Sections. Most manufactured Steel beams are produced by
rolling a hot ingot of stee] until the desired shape is formed, These
so-called rolled shapes have properties that are tabulated in the
American TInstitute of Steel Construction (AISC) manual, A
representative listing of different cross sections taken from this manual is
given in Appendix B, Here the wide-flange shapes are designated by
their depth and mass Per unit length; for example, W46( x 68 indicates
awide-flange cross section (W) having a depth of 459 mm and a mass per
unit length of 68 kg/m, Fig, 114, For any given selection, the mass per
unit length, dimensions, Cross-sectional area, moment of inertia, and
section modulus are reported. Also included js the radius of gyration, r,
which is a geometric property related to the section’s buckling strength.
This will be discussed in Chapter 13.

PRISMATIC Beam Design

Typical profile view of a stee]
wide-flange beam

15.4 mm
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PREFACE

Video Solutions. Aninvaluable resource in and out of the classroom,
these complete solution walkthroughs of representative problems and
applications from each chapter offer fully worked solutions, self-paced
instruction, and 24/7 accessibility via the companion Website. Lecturers
and students can harness this resource to gain independent exposure to a
wide range of examples by applying formulae to actual structures.
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CONTENTS

The subject matter is organized into 14 chapters. Chapter 1 begins with a
review of the important concepts of statics, followed by a formal definition
of both normal and shear stress, and a discussion of normal stress in axially
loaded members and average shear stress caused by direct shear.

In Chapter 2 normal and shear strain are defined, and in Chapter 3 a
discussion of some of the important mechanical properties of materials is
given. Separate treatments of axial load, torsion, and bending are presented
in Chapters 4, 5, and 6, respectively. In each of these chapters, both linear-
elastic and plastic behavior of the material covered in the previous chapters,
where the state of stress results from combined loadings. In Chapter 9 the
concepts for transforming multiaxial states of stress are presented. In a
similar manner, Chapter 10 discusses the methods for strain transformation,
including the application of various theories of failure. Chapter 11 provides
a means for a further summary and review of previous material by covering
design applications of beams and shafts. In Chapter 12 various methods for
computing deflections of beams and shafts are covered. Also included is a
discussion for finding the reactions on these members if they are statically
indeterminate. Chapter 13 provides a discussion of column buckling, and
lastly, in Chapter 14 the problem of impact and the application of various
energy methods for computing deflections are considered.

Sections of the book that contain more advanced material are indicated
by a star (*). Time permitting, some of these topics may be included in
the course. Furthermore, this material provides a suitable reference for
basic principles when it is covered in other courses, and it can be used as
a basis for assigning special projects.

Some instructors prefer to cover
stress and strain transformations first, before discussing specific applications
of axial load, torsion, bending, and shear. One possible method for doing this
would be first to cover stress and its transformation, Chapter 1 and Chapter 9,
followed by strain and its transformation, Chapter 2 and the first part of
Chapter 10.The discussion and example problems in these later chapters have
been styled so that this is possible. Also, the problem sets have been subdivided
so that this material can be covered without prior knowledge of the intervening
chapters. Chapters 3 through 8 can then be covered with no loss in continuity.

ACKNOWLEDGMENTS

Over the years, this text has been shaped by the suggestions and comments
of many of my colleagues in the teaching profession. Their encouragement
and willingness to provide constructive criticism are very much appreciated
and it is hoped that they will accept this anonymous recognition. A note
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Express your answer to three significant figures and include appropriate units.
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The distance between the horizontal centroidal axis of area A’ and the neutral axis of the
beam’s cross section is half the distance between the top of the shaft and the neutral axis.
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RESOURCES FOR INSTRUCTORS

e MasteringEngineering. This online Tutorial Homework program allows
you to integrate dynamic homework with automatic grading and adaptive
tutoring. MasteringEngineering allows you to easily track the performance
of your entire class on an assignment-by-assignment basis, or the detailed
work of an individual student.

e Instructor’s Solutions Manual. An instructor’s solutions manual was
prepared by the author. The manual includes homework assignment lists
and was also checked as part of the accuracy checking program. The
Instructor Solutions Manual is available at www.pearsonglobaleditions.com.

¢ Presentation Resources. All art from the text is available in PowerPoint
slide and JPEG format. These files are available for download at www
.pearsonglobaleditions.com. If you are in need of a login and password for
this site, please contact your local Pearson representative.

e Video Solutions. Developed primarily by Professor Edward Berger,
Purdue University, video solutions located on the companion Website
offer step-by-step solution walkthroughs of representative homework
problems from each section of the text. Make efficient use of class time
and office hours by showing students the complete and concise problem
solving approaches that they can access anytime and view at their own
pace.The videos are designed to be a flexible resource to be used however
each instructor and student prefers. A valuable tutorial resource, the
videos are also helpful for student self-evaluation as students can pause
the videos to check their understanding and work alongside the video.

RESOURCES FOR STUDENTS

e Mastering Engineering. Tutorial homework problems emulate the
instructor’s office-hour environment, guiding students through engineering
concepts with self-paced individualized coaching. These in-depth tutorial
homework problems are designed to coach students with feedback specific
to their errors and optional hints that break problems down into simpler steps.

e Companion Website—The companion Website, located at
www.pearsonglobaleditions.com/hibbeler, includes opportunities for
practice and review, including access to video solutions offering complete,
step-by-step solution walkthroughs of representative homework problems
from various sections of the text.
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CHAPTER 7]

(© alexskopje/Fotolia)

The bolts used for the connections of this steel framework are subjected to stress.
In this chapter we will discuss how engineers design these connections and their
fasteners.




S TRESS

. CHAPTER OBJECTIVES

B In this chapter we will review some of the important principles of
statics and show how they are used to determine the internal
resultant loadings in a body. Afterwards the concepts of normal and
shear stress will be introduced, and specific applications of the
analysis and design of members subjected to an axial load or direct
shear will be discussed.

1.1 INTRODUCTION

Mechanics of materials is a branch of mechanics that studies the internal
effects of stress and strain in a solid body. Stress is associated with the
strength of the material from which the body is made, while strain is a
measure of the deformation of the body. A thorough understanding of
the fundamentals of this subject is of vital importance for the design of
any machine or structure, because many of the formulas and rules
of design cited in engineering codes are based upon the principles of
this subject.

21
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CHAPTER 1

STRESS

Historical Development. The origin of mechanics of materials
dates back to the beginning of the seventeenth century, when Galileo
Galilei performed experiments to study the effects of loads on rods and
beams made of various materials. However, it was not until the beginning
of the nineteenth century when experimental methods for testing
materials were vastly improved. At that time many experimental and
theoretical studies in this subject were undertaken, primarily in France,
by such notables as Saint-Venant, Poisson, Lamé, and Navier.

Through the years, after many fundamental problems had been solved,
it became necessary to use advanced mathematical and computer
techniques to solve more complex problems. As a result, mechanics of
materials has expanded into other areas of mechanics, such as the theory
of elasticity and the theory of plasticity.

1.2 EQUILIBRIUM OF A DEFORMABLE
BODY

Since statics plays an important role in both the development and
application of mechanics of materials, it is very important to have a good
grasp of its fundamentals. For this reason we will now review some of the
main principles of statics that will be used throughout the text.

Loads. A body can be subjected to both surface loads and body
forces. Surface loads that act on a small area of contact are reported by
concentrated forces, while distributed loadings act over a larger surface
area of the body. When the loading is coplanar, as in Fig. 1-1a, then a
resultant force Fy of a distributed loading is equal to the area under the
distributed loading diagram, and this resultant acts through the geometric
center or centroid of this area.

Fp=400N 700N

200 N/m I l

\«1 m»‘«l qu kal 5 ma‘

Fig. 1-1
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A body force is developed when one body exerts a force on another
body without direct physical contact between the bodies. Examples
include the effects caused by the earth’s gravitation or its
electromagnetic field. Although these forces affect all the particles
composing the body, they are normally represented by a single
concentrated force acting on the body. In the case of gravitation, this
force is called the weight W of the body and acts through the body’s
center of gravity.

Support Reactions.  For bodies subjected to coplanar force systems,
the supports most commonly encountered are shown in Table 1-1. As a
general rule, if the support prevents translation in a given direction,
then a force must be developed on the member in that direction.
Likewise, if rotation is prevented, a couple moment must be exerted on
the member. For example, the roller support only prevents translation
perpendicular or normal to the surface. Hence, the roller exerts a normal
force F on the member at its point of contact. Since the member can
freely rotate about the roller, a couple moment cannot be developed on
the member.

Many machine elements are pin connected
in order to enable free rotation at their
connections. These supports exert a force
on a member, but no moment.

TABLE 1-1

Type of connection Reaction Type of connection Reaction
0 / 0 ”‘ / Fy
s
Fv 5
Cable One unknown: F External pin Two unknowns: F,, F,
F,
— //; F,
-k
Roller One unknown: F Internal pin Two unknowns: Fy, F,
M A\ F
F,
% /1: —— 4_(_?
¥/g
Smooth support One unknown: F Fixed support Three unknowns: Fy, F,, M
J== F == F"*@:
F F,
Journal bearing One unknown: F Thrust bearing Two unknowns: F,, F,
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In order to design the members of this
building frame, it is first necessary to find
the internal loadings at various points

along their length.
Fr =400 N 700N
200 N/m
feret IESTIR
= 2
e lm—t1m »‘«1 mJH 15m —

(a)

400N 700N

Equations of Equilibrium. Equilibrium of a body requires
both a balance of forces, to prevent the body from translating or
having accelerated motion along a straight or curved path, and a
balance of moments, to prevent the body from rotating. These
conditions are expressed mathematically as the equations of
equilibrium:

SF=0

SMp =0 (1-1)

Here, 3 F represents the sum of all the forces acting on the body, and
%M, is the sum of the moments of all the forces about any point O
either on or off the body.

If an x, y, z coordinate system is established with the origin at point O,
the force and moment vectors can be resolved into components along
each coordinate axis, and the above two equations can be written in
scalar form as six equations, namely,

SF,=0 3E=0 3F =0

SM,=0 3M,=0 3IM,=0 (1-2)

Often in engineering practice the loading on a body can be represented
as a system of coplanar forces in the x—y plane. In this case equilibrium of
the body can be specified with only three scalar equilibrium equations,
that is,

SF =0
SF, =0 (1-3)
2M0=0

Successful application of the equations of equilibrium must include all
the known and unknown forces that act on the body, and the best way
to account for these loadings is to draw the body’s free-body diagram
before applying the equations of equilibrium. For example, the free-body
diagram of the beam in Fig. 1-1a is shown in Fig. 1-1b. Here each force
is identified by its magnitude and direction, and the body’s dimensions
are included in order to sum the moments of the forces.
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Fy MRO

Fr

section

F,

(a) (b) (©

Fig. 1-2

Internal Resultant Loadings. In mechanics of materials,
statics is primarily used to determine the resultant loadings that act
within a body. This is done using the method of sections. For example,
consider the body shown in Fig. 1-2a, which is held in equilibrium by
the four external forces.* In order to obtain the internal loadings
acting on a specific region within the body, it is necessary to pass an
imaginary section or “cut” through the region where the internal
loadings are to be determined. The two parts of the body are then
separated, and a free-body diagram of one of the parts is drawn. When
this is done, there will be a distribution of internal force acting on the
“exposed” area of the section, Fig. 1-2b. These forces actually
represent the effects of the material of the top section of the body
acting on the bottom section.

Although the exact distribution of this internal loading may be
unknown, its resultants Fr and Mg , Fig. 1-2¢, are determined by applying
the equations of equilibrium to the segment shown in Fig. 1-2c. Here
these loadings act at point O; however, this point is often chosen at the
centroid of the sectioned area.

*The body’s weight is not shown, since it is assumed to be quite small, and therefore
negligible compared with the other loads.
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The weight of this sign and the wind
loadings acting on it will cause normal and
shear forces and bending and torsional
moments in the supporting column.

Torsional
Moment
Mg, T
Mo 4
@ F I — ~_Normal
R Y N
1 \Fr
! !
0 1 !
Bending ' }
Moment 'V
Shear
Force

FZ Fl — Fz
(c) (d)
Fig. 1-2 (cont.)

Three Dimensions. For later application of the formulas for
mechanics of materials, we will consider the components of Fz and My,
acting both normal and tangent to the sectioned area, Fig. 1-2d. Four
different types of resultant loadings can then be defined as follows:

Normal force, N. This force acts perpendicular to the area. It is
developed whenever the external loads tend to push or pull on the two
segments of the body.

Shear force, V. The shear force lies in the plane of the area, and it is
developed when the external loads tend to cause the two segments of
the body to slide over one another.

Torsional moment or torque, T. This effect is developed when the
external loads tend to twist one segment of the body with respect to the
other about an axis perpendicular to the area.

Bending moment, M. The bending moment is caused by the
external loads that tend to bend the body about an axis lying within the
plane of the area.

Notice that graphical representation of a moment or torque is shown in
three dimensions as a vector (arrow) with an associated curl around it. By
the right-hand rule, the thumb gives the arrowhead sense of this vector
and the fingers or curl indicate the tendency for rotation (twisting or
bending).
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F section
: Fs Y Shear
F, Force
A\%
M, Bending
Moment
Oe > —x
Normal
F, F; Force
(a) (b)
Fig. 1-3

Coplanar Loadings. If the body is subjected to a coplanar system of
forces, Fig. 1-3a, then only normal-force, shear-force, and bending-
moment components will exist at the section, Fig. 1-3b. If we use the x, y,
z coordinate axes, as shown on the left segment, then N can be obtained
by applying 2 F, = 0, and V can be obtained from X F, = 0. Finally, the
bending moment M can be determined by summing moments about
point O (the z axis), XMy = 0, in order to eliminate the moments caused
by the unknowns N and V.

B /VPORTANT POINTS

® Mechanics of materials is a study of the relationship between
the external loads applied to a body and the stress and strain
caused by the internal loads within the body.

® External forces can be applied to a body as distributed or
concentrated surface loadings, or as body forces that act
throughout the volume of the body.

® Linear distributed loadings produce a resultant force having a
magnitude equal to the area under the load diagram, and
having a location that passes through the centroid of this area.

® A support produces a force in a particular direction on its
attached member if it prevents translation of the member in
that direction, and it produces a couple moment on the member
if it prevents rotation.

® The equations of equilibrium XF = 0 and M = 0 must be
satisfied in order to prevent a body from translating with
accelerated motion and from rotating.

® The method of sections is used to determine the internal
resultant loadings acting on the surface of a sectioned body. In
general, these resultants consist of a normal force, shear force,
torsional moment, and bending moment.
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B PROCEDURE FOR ANALYSIS

The resultant internal loadings at a point located on the section of a
body can be obtained using the method of sections. This requires the
following steps.

Support Reactions.

® When the body is sectioned, decide which segment of the body
is to be considered. If the segment has a support or connection
to another body, then before the body is sectioned, it will be
necessary to determine the reactions acting on the chosen
segment. To do this, draw the free-body diagram of the entire
body and then apply the necessary equations of equilibrium to
obtain these reactions.

Free-Body Diagram.

® Keep all external distributed loadings, couple moments,
torques, and forces in their exact locations, before passing the
section through the body at the point where the resultant
internal loadings are to be determined.

® Draw a free-body diagram of one of the “cut” segments and
indicate the unknown resultants N, V, M, and T at the section.
These resultants are normally placed at the point representing
the geometric center or centroid of the sectioned area.

® [f the member is subjected to a coplanar system of forces, only
N, V, and M act at the centroid.

® Establish the x, y, z coordinate axes with origin at the centroid
and show the resultant internal loadings acting along the axes.

Equations of Equilibrium.

® Moments should be summed at the section, about each of the
coordinate axes where the resultants act. Doing this eliminates the
unknown forces N and V and allows a direct solution for M and T.

® [f the solution of the equilibrium equations yields a negative
value for a resultant, the directional sense of the resultant is
opposite to that shown on the free-body diagram.

The following examples illustrate this procedure numerically and also
provide a review of some of the important principles of statics.
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EXAMPLE 1.1

Determine the resultant internal loadings acting on the cross section at C of
the cantilevered beam shown in Fig. 1-4a.

300 N/m

24 m 1

SOLUTION

Support Reactions. The support reactions at A do not have to be
determined if segment CB is considered.

Free-Body Diagram. The free-body diagram of segment CB is shown
in Fig. 1-4b. It is important to keep the distributed loading on the segment
until after the section is made. Only then should this loading be replaced
by a single resultant force. Notice that the intensity of the distributed
loading at C is found by proportion, ie., from Fig. 1-4aq,
w/24m = (300 N/m)/3.6 m, w = 200 N/m. The magnitude of the
resultant of the distributed load is equal to the area under the loading
curve (triangle) and acts through the centroid of this area. Thus,
F = (200 N/m)(2.4 m) = 240 N, which acts }(2.4 m) = 0.8 m from C
as shown in Fig. 1-4b.

Equations of Equilibrium. Applying the equations of equilibrium we

have
£ 3F =0 —Nc =0
Nec=0 Ans.
+13F, = 0; Ve —240N =0
Ve = 240N Ans.
(M- = 0; —Mc — (240N)(0.8 m) = 0
Mc = —192N-m Ans.

The negative sign indicates that M acts in the opposite direction to
that shown on the free-body diagram. Try solving this problem using
segment AC, by first checking the support reactions at A, which are given
in Fig. 1-4c.

100 N/m{] =
S40N |

i

(©)
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500(9.81) N

2452.5N
(©)

Fig. 1-5

The 500-kg engine is suspended from the crane boom in Fig. 1-5a.
Determine the resultant internal loadings acting on the cross section of
the boom at point E.

SOLUTION

Support Reactions. We will consider segment AE of the boom, so we
must first determine the pin reactions at A. Since member CD is a
two-force member, it acts like a cable, and therefore exerts a force Fp
having a known direction. The free-body diagram of the boom is shown
in Fig. 1-5b. Applying the equations of equilibrium,

(+3M, = 0; Fep(2)(2m) — [500(9.81) N](3m) = 0

Fep = 122625 N

ESF = 0; A, — (122625N)(3) =0
A, = 9810 N

+13F, = 0; —A, + (122625 N)(2) — 500(9.81)) N = 0
A, = 24525 N

Free-Body Diagram. The free-body diagram of segment AFE is shown
in Fig. 1-5c¢.

Equations of Equilibrium.

X 3F, = 0; Ng + 9810 N =0

Ng = —9810 N = —9.81 kN Ans.
+13F = 0; —Vy — 24525 N =0

Vp = —2452.5 N = —2.45 kN Ans.
(+3Mg = 0; Mg + (2452.5N)(1m) = 0

Mg = —24525 N-m = —2.45 kN-m Ans.
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EXAMPLE 1.3

Determine the resultant internal loadings acting on the cross section at G of
the beam shown in Fig. 1-6a. Each joint is pin connected.

/)

) - Fye = 6200 N
1500 N
1.5m

E, = 6200N

} e TEy=24OON
‘ -
| -
-
3m

+ §(3m):2m»

%(3 m)(600 N /m) = 900 N
(a) (b)
Fig. 1-6

SOLUTION

Support Reactions. Here we will consider segment AG. The free-body B
diagram of the entire structure is shown in Fig. 1-6b. Verify the calculated /SD==— 6200 N
reactions at £ and C. In particular, note that BC is a two-force member ot |
since only two forces act on it. For this reason the force at C must act / 4
along BC, which is horizontal as shown. Fyy = 770N
Since BA and BD are also two-force members, the free-body diagram Fpp = 4650 N
of joint B is shown in Fig. 1-6¢. Again, verify the magnitudes of forces Fpy4 (c)
and FBD‘

Free-Body Diagram. Using the result for Fp,, the free-body diagram 1500 N 7750 N
of segment AG is shown in Fig. 1-6d.

Equations of Equilibrium. 4 _) Ng
M
5H3F =0, (7750N)(}) + Ng=0 Ng= —6200N Ans, Fim v e
+13F,=0; —1500N + (7750N)(2) - Vs =0
Vg = 3150N

(+3Mg =0; Mg — (7750 N)(2)(1m) + (1500 N)(1m) = 0
Mg = 3150N -m

Ans.

Ans.
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Determine the resultant internal loadings acting on the cross section at B of
the pipe shown in Fig. 1-7a. End A is subjected to a vertical force of 50 N, a
horizontal force of 30 N, and a couple moment of 70 N - m. Neglect the
pipe’s mass.

SOLUTION

The problem can be solved by considering segment AB, so we do not need
to calculate the support reactions at C.

Free-Body Diagram. The free-body diagram of segment AB is shown in
Fig. 1-7b, where the x, y, z axes are established at B. The resultant force and
moment components at the section are assumed to act in the positive
coordinate directions and to pass through the centroid of the cross-sectional
area at B.

Equations of Equilibrium. Applying the six scalar equations of
equilibrium, we have*

SF, = 0; (Fg), =0 Ans.
2F, =0; (Fg)y + 30N =0 (Fg)y = —30N Ans.
2F, = 0; (Fg), —=S0N =10 (Fp), = 50N Ans.

S(Mg), =0;  (Mg), + 70N-m — (50 N)(0.5m) = 0

(Mp), = —45N-m Ans.
%(Mp), = 0; (Mp), + (SON)(1.25m) = 0

(Mg), = —62.5N-m Ans.
S(Mg), =0,  (Mg), + (30N)(1.25) = 0 Ans.

(Mg), = —37.5N-m

NOTE: What do the negative signs for (F),, (Mp),, (Mg),, and (Mp),
indicate? The normal force Ny = |(Fz),| = 30N, whereas the shear
force is Vz = V(0)*> + (50)> = 50 N. Also, the torsional moment
is Tz = |(Mp)y| = 625N-m, and the bending moment is M, =

V(45)* + (37.5)> = 58.6 N-m.

*The magnitude of each moment about the x, y, or z axis is equal to the magnitude of
each force times the perpendicular distance from the axis to the line of action of the force.
The direction of each moment is determined using the right-hand rule, with positive
moments (thumb) directed along the positive coordinate axes.
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It is suggested that you test yourself on the solutions to these examples, by covering them over and then trying

to think about which equilibrium equations must be used and how they are applied in order to determine the
unknowns. Then before solving any of the problems, build your skills by first trying to solve the Preliminary
Problems, which actually require little or no calculations, and then do some of the Fundamental Problems given
on the following pages. The solutions and answers to all these problems are given in the back of the book. Doing
this throughout the book will help immensely in understanding how to apply the theory, and thereby develop [
your problem-solving skills.

. PRELIMINARY PROBLEMS

P1-1. Ineach case, explain how to find the resultant internal

loading acting on the cross section at point A. Draw all

necessary free-body diagrams, and indicate the relevant B
equations of equilibrium. Do not calculate values. The lettered

dimensions, angles, and loads are assumed to be known.
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. FUNDAMENTAL PROBLEMS

F1-1. Determine the resultant internal normal force,
shear force, and bending moment at point C in the beam.

10 kN

60 kN-m

A—= B==
‘472 m%Ll m*‘«l mJ%2 m%‘

Prob. F1-1

F1-2. Determine the resultant internal normal force,
shear force, and bending moment at point C in the beam.

100N/m 200 N/m

Prob. F1-2

I'1-3. Determine the resultant internal normal force,
shear force, and bending moment at point C in the beam.

20 kN/m

LZm 2m 1

Prob. F1-3

I'1-4. Determine the resultant internal normal force,
shear force, and bending moment at point C in the beam.

10 kN/m

Prob. F1-4

F1-5. Determine the internal normal force, shear force,
and bending moment at point C in the beam.

5 kN/m

F1-6. Determine the resultant internal normal force,
shear force, and bending moment at point C in the beam.

32 ma}-*Z m4<—2 m—

Prob. F1-6




. PROBLEMS

1.2 EQuILBRIUM OF A DEFORMABLE BODY 35

1-1. A force of 80 N is supported by the bracket as shown.
Determine the resultant internal loadings acting on the
section through point A.

Prob. 1-1

1-2. Determine the resultant internal loadings on the cross
section at point D.

1-3. Determine the resultant internal loadings at cross
sections at points £ and F on the assembly.

C

Im

e

F 2 m

1.25 kN/m

WH”"U.

05m 0.5m 0.5m

Probs. 1-2/3

*1-4. The shaft is supported by a smooth thrust bearing

at A and a smooth journal bearing at B. Determine the

resultant internal loadings acting on the cross section at C.
600 N/m

1.5m

A B D

= !
= C —

Im-~lm-«~Im-~—15m—15m

T

900 N
Prob. 1-4

1-5. Determine the resultant internal loadings in the
beam at cross sections through points D and E. Point E is
just to the right of the 15-kN load.

15 kN

25 kN/m

L—zm ‘ 2m ‘ 1.5m 1.5m

Prob. 1-5

1-6. The shaft is supported by a smooth thrust bearing
at B and a journal bearing at C. Determine the resultant
internal loadings acting on the cross section at E.

Prob. 1-6

1-7. Determine the resultant internal normal and shear
force in the member at (a) section a-a and (b) section b-b,
each of which passes through point A. The 2000-N load is
applied along the centroidal axis of the member.

a b
7
2000 N €———

Ij 4

/ \

A
Prob. 1-7

—> 2000 N

a
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*1-8. The floor crane is used to lift a 600-kg concrete pipe.
Determine the resultant internal loadings acting on the cross
section at G.

1-9. The floor crane is used to lift a 600-kg concrete pipe.
Determine the resultant internal loadings acting on the cross
section at H.

Probs. 1-8/9

1-10. The beam supports the distributed load shown.
Determine the resultant internal loadings acting on the cross
section at point C. Assume the reactions at the supports A
and B are vertical.

1-11. The beam supports the distributed load shown.
Determine the resultant internal loadings acting on the cross
section at point D. Assume the reactions at the supports A
and B are vertical.

4 kN/m

Probs. 1-10/11

*1-12. The blade of the hacksaw is subjected to a pretension
force of F=100 N. Determine the resultant internal loadings
acting on section a—a that passes through point D.

1-13. The blade of the hacksaw is subjected to a pretension
force of F=100 N. Determine the resultant internal loadings
acting on section b-b that passes through point D.

Probs. 1-12/13

1-14. The boom DF of the jib crane and the column DE
have a uniform weight of 750 N/m. If the hoist and load
weigh 1500 N, determine the resultant internal loadings in
the crane on cross sections through points A, B and C.

D °B A | F
\ 24 m 0.9 m
1500 N

2.1 m

Al

Prob. 1-14
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1-15. The metal stud punch is subjected to a force of 120 N on 1-18. Determine the resultant internal loadings acting on
the handle. Determine the magnitude of the reactive force at the cross section through point B of the signpost. The post is
the pin A and in the short link BC. Also, determine the resultant fixed to the ground and a uniform pressure of 500 N/m? acts
internal loadings acting on the cross section at point D. perpendicular to the face of the sign.

*]-16. Determine the resultant internal loadings acting on
the cross section at point E of the handle arm, and on the cross
section of the short link BC.

120N

Probs. 1-15/16

Prob. 1-18

1-17. The forged steel clamp exerts a force of F = 900N
on the wooden block. Determine the resultant internal
loadings acting on section a—a passing through point A.

1-19. Determine the resultant internal loadings acting on
the cross section at point C in the beam. The load D has a
mass of 300 kg and is being hoisted by the motor M with
constant velocity.

*1-20. Determine the resultant internal loadings acting on
the cross section at point E. The load D has a mass of 300 kg

and is being hoisted by the motor M with constant velocity.

2m 2m i 2m
‘ 0.1 m
D D @
E —2>— C A
.
Im—-—15m
D

Prob. 1-17 Probs. 1-19/20
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1-21. Determine the resultant internal loading on the cross
section through point C of the pliers. There is a pin at A, and
the jaws at B are smooth.

1-22. Determine the resultant internal loading on the cross
section through point D of the pliers.

Probs. 1-21/22

1-23. The shaft is supported at its ends by two bearings
A and B and is subjected to the forces applied to the pulleys
fixed to the shaft. Determine the resultant internal loadings
acting on the cross section at point C. The 400-N forces act
in the —z direction and the 200-N and 80-N forces act in the
+y direction. The journal bearings at A and B exert only
y and z components of force on the shaft.

Prob. 1-23

*1-24. The force 400 N acts on the gear tooth. Determine
the resultant internal loadings on the root of the tooth, i.e.,
at the centroid point A of section a—a.

Prob. 1-24

1-25. The shaft is supported at its ends by two bearings
A and B and is subjected to the forces applied to the pulleys
fixed to the shaft. Determine the resultant internal loadings
acting on the cross section at point D. The 400-N forces act
in the —z direction and the 200-N and 80-N forces act in the
+y direction. The journal bearings at A and B exert only y
and z components of force on the shaft.

Prob. 1-25



1-26. The serving tray 7 used on an airplane is supported on
each side by an arm. The tray is pin connected to the arm at A4,
and at B there is a smooth pin. (The pin can move within the
slot in the arms to permit folding the tray against the front
passenger seat when not in use.) Determine the resultant
internal loadings acting on the cross section of the arm through
point C when the tray arm supports the loads shown.

12N
9N
15 mm —| ~100 mm=}—150 mm
A
B \ q
60° T
500 mm
Ve
C
Mc
Ne
Prob. 1-26

1-27. The pipe has a mass of 12 kg/m. If it is fixed to the
wall at A, determine the resultant internal loadings acting on
the cross section at B.

300N

400 N

Prob. 1-27
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*1-28 The brace and drill bit is used to drill a hole at O. If
the drill bit jams when the brace is subjected to the forces
shown, determine the resultant internal loadings acting on
the cross section of the drill bit at A.

E=150N

Prob. 1-28

1-29. The curved rod AD of radius r has a weight per
length of w. If it lies in the horizontal plane, determine the
resultant internal loadings acting on the cross section at
point B. Hint: The distance from the centroid C of segment
AB to point O is CO =0.9745r.

Prob. 1-29

1-30. A differential element taken from a curved bar is
shown in the figure. Show that dN/d6 = V, dV/d® = —N,
dM/d0 = —T,and dT/do = M.

M+ dM T+dT
/
V+dv /Q
X AN + dN
u V.
)
N, ;\ do
/
)
i
Prob. 1-30
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Fr

F, F,

Fig. 1-8

F, F,

1.3 STRESS

It was stated in Section 1.2 that the force and moment acting at a specified
point O on the sectioned area of the body, Fig. 1-8, represents the
resultant effects of the distribution of loading that acts over the sectioned
area, Fig. 1-9a. Obtaining this distribution is of primary importance in
mechanics of materials. To solve this problem it is first necessary to
establish the concept of stress.

We begin by considering the sectioned area to be subdivided into
small areas, such as AA shown in Fig. 1-9a. As we reduce AA to a
smaller and smaller size, we will make two assumptions regarding the
properties of the material. We will consider the material to be
continuous, that is, to consist of a continuum or uniform distribution of
matter having no voids. Also, the material must be cohesive, meaning
that all portions of it are connected together, without having breaks,
cracks, or separations. A typical finite yet very small force AF, acting on
AA, is shown in Fig. 1-9a. This force, like all the others, will have a
unique direction, but to compare it with all the other forces, we will
replace it by its three components, namely, AF,, AF,, and AF,. As AA
approaches zero, so do AF and its components; however, the quotient
of the force and area will approach a finite limit. This quotient is called
stress, and it describes the intensity of the internal force acting on a
specific plane (area) passing through a point.

Txy

Fy

(b) (©)
Fig. 1-9



The intensity of the force acting normal to AA is
referred to as the normal stress, o (sigma). Since AF, is normal to the
area then

AR,
% = aa (1-4)

If the normal force or stress “pulls” on AA as shown in Fig. 1-9a, it is
tensile stress, whereas if it “pushes” on AA it is compressive stress.

The intensity of force acting tangent to AA is called
the shear stress, T (tau). Here we have two shear stress components,

. AF,
Tor = A0 A

o (1-5)

7, = lim —
D AA—0AA

The subscript notation z specifies the orientation of the area AA,
Fig. 1-10, and x and y indicate the axes along which each shear stress acts.

If the body is further sectioned by
planes parallel to the x—z plane, Fig. 1-9b, and the y—z plane, Fig. 1-9¢, we
can then “cut out” a cubic volume element of material that represents
the state of stress acting around a chosen point in the body. This state of
stress is then characterized by three components acting on each face of
the element, Fig. 1-11.

Since stress represents a force per unit area, in the International
Standard or SI system, the magnitudes of both normal and shear stress
are specified in the basic units of newtons per square meter (N /m?). This
combination of units is called a pascal (1 Pa = 1 N/m?), and because it is
rather small, prefixes such as kilo- (10°), symbolized by k, mega- (10°),
symbolized by M, or giga- (10°), symbolized by G, are used in engineering
to represent larger, more realistic values of stress.*

*Sometimes stress is expressed in units of N/ mm?, where 1 mm = 107> m. However, in
the SI system, prefixes are not allowed in the denominator of a fraction, and therefore it
is better to use the equivalent 1 N/mm? = 1 MN/m’? = 1 MPa.

1.3 STRESS 41

Fig. 1-11
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1.4 AVERAGE NORMAL STRESS IN AN
AXIALLY LOADED BAR

We will now determine the average stress distribution acting over the
cross-sectional area of an axially loaded bar such as the one shown in
Fig. 1-12a. Specifically, the cross section is the section taken perpendicular
to the longitudinal axis of the bar, and since the bar is prismatic all cross
sections are the same throughout its length. Provided the material of the
bar is both homogeneous and isotropic, that is, it has the same physical
and mechanical properties throughout its volume, and it has the same
properties in all directions, then when the load P is applied to the bar
through the centroid of its cross-sectional area, the bar will deform
uniformly throughout the central region of its length, Fig. 1-12b.

Realize that many engineering materials may be approximated as
being both homogeneous and isotropic. Steel, for example, contains
thousands of randomly oriented crystals in each cubic millimeter of its
volume, and since most objects made of this material have a physical size
that is very much larger than a single crystal, the above assumption
regarding the material’s composition is quite realistic.

Note that anisotropic materials,such as wood, have different properties
in different directions; and although this is the case, if the grains of wood
are oriented along the bar’s axis (as for instance in a typical wood board),
then the bar will also deform uniformly when subjected to the axial load P.

Average Normal Stress Distribution. If we pass a section
through the bar, and separate it into two parts, then equilibrium requires the
resultant normal force N at the section to be equal to P, Fig. 1-12¢. And
because the material undergoes a uniform deformation, it is necessary that
the cross section be subjected to a constant normal stress distribution.

P

Region of N=P

uniform

deformation Internal force
of bar

Cross-sectional
area

External force

i
|
;

Fig. 1-12
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As a result, each small area AA on the cross section is subjected to a
force AN = o AA, Fig. 1-12d, and the sum of these forces acting over
the entire cross-sectional area must be equivalent to the internal resultant
force P at the section. If we let AA — dA and therefore AN — dN, then,
recognizing o is constant, we have

+1 Fg, = 3F; /dN:/crdA
A

N=cA

(1-6)

==

Here
o = average normal stress at any point on the cross-sectional area

N = internal resultant normal force, which acts through the centroid of the
cross-sectional area. N is determined using the method of sections
and the equations of equilibrium, where for this case N = P.

A = cross-sectional area of the bar where o is determined

Equilibrium.  The stress distribution in Fig. 1-12 indicates that only
a normal stress exists on any small volume element of material located at
each point on the cross section. Thus, if we consider vertical equilibrium
of an element of material and then apply the equation of force
equilibrium to its free-body diagram, Fig. 1-13,

SFE, = 0; o(AA) — 0'(AA) = 0
o=o'
oAA
ag
b b
l |
Ay
o'AA
Stress on element Free-body diagram

Fig. 1-13

Fig. 1-12 (cont.)



44 CHAPTER 1 STRESS

This steel tie rod is used as a hanger to
suspend a portion of a staircase. As a
result it is subjected to tensile stress.

z

b
<
i I ?

f
i |

Tension Compression

Fig. 1-14

In other words, the normal stress components on the element must be
equal in magnitude but opposite in direction. Under this condition
the material is subjected to uniaxial stress, and this analysis applies
to members subjected to either tension or compression, as shown in
Fig. 1-14.

Although we have developed this analysis for prismatic bars, this
assumption can be relaxed somewhat to include bars that have a slight
taper. For example, it can be shown, using the more exact analysis of the
theory of elasticity, that for a tapered bar of rectangular cross section,
where the angle between two adjacent sides is 15°, the average normal
stress, as calculated by o = N/A, is only 2.2% less than its value found
from the theory of elasticity.

Maximum Average Normal Stress. For our analysis, both the
internal force N and the cross-sectional area A were constant along the
longitudinal axis of the bar, and as a result the normal stress ¢ = N/A is
also constant throughout the bar’s length. Occasionally, however, the bar
may be subjected to several external axial loads, or a change in its
cross-sectional area may occur. As a result, the normal stress within the
bar may be different from one section to the next, and, if the maximum
average normal stress is to be determined, then it becomes important
to find the location where the ratio N/A is a maximum.
Example 1.5 illustrates the procedure. Once the internal loading
throughout the bar is known, the maximum ratio N/A can then be
identified.
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B \VPORTANT POINTS

® When a body subjected to external loads is sectioned, there is a
distribution of force acting over the sectioned area which holds
each segment of the body in equilibrium. The intensity of this
internal force at a point in the body is referred to as stress.

® Stress is the limiting value of force per unit area, as the area
approaches zero. For this definition, the material is considered to
be continuous and cohesive.

® The magnitude of the stress components at a point depends upon
the type of loading acting on the body, and the orientation of the
element at the point.

® When a prismatic bar is made of homogeneous and isotropic
material, and is subjected to an axial force acting through the
centroid of the cross-sectional area, then the center region of the
bar will deform uniformly. As a result, the material will be
subjected only to normal stress. This stress is uniform or averaged
over the cross-sectional area.

- PROCEDURE FOR ANALYSIS

The equation o = N/A gives the average normal stress on the
cross-sectional area of a member when the section is subjected to an
internal resultant normal force N. Application of this equation
requires the following steps.

Internal Loading.

® Section the member perpendicular to its longitudinal axis at
the point where the normal stress is to be determined, and
draw the free-body diagram of one of the segments. Apply the
force equation of equilibrium to obtain the internal axial force
N at the section.

Average Normal Stress.

® Determine the member’s cross-sectional area at the section
and calculate the average normal stress ¢ = N/A.

® Jtissuggested that o be shown acting on a small volume element
of the material located at a point on the section where stress is
calculated. To do this, first draw o on the face of the element
coincident with the sectioned area A. Here o acts in the same
direction as the internal force N since all the normal stresses on
the cross section develop this resultant. The normal stress o on
the opposite face of the element acts in the opposite direction.
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CHAPTER 1 STRESS

1.5

f 30 kN
JEE_’
85.7 MPa

(d)

Fig. 1-15

The bar in Fig. 1-15a has a constant width of 35 mm and a thickness of
10 mm. Determine the maximum average normal stress in the bar when it is
subjected to the loading shown.

A B 9kN C 4kN D
12kN @ & @4— I— 22 kN
- r é;::;@;.:_—»
! 9KN '
35 mm SN
(a)
12 kN@@—»NAB = 12kN
9 kN
12 kN<—@ i ——> Ny =30kN
= 9 kN
H&N 4kN
12 kN<—@ Il | —> Np =22kN
_ 9 kN 4 kN
N (kN) (b)
30 4 I
22 7|
12
X
()
SOLUTION

Internal Loading. By inspection, the internal axial forces in regions
AB, BC, and CD are all constant yet have different magnitudes. Using
the method of sections, these loadings are shown on the free-body
diagrams of the left segments shown in Fig. 1-15b.* The normal force
diagram, which represents these results graphically, is shown in
Fig. 1-15¢. The largest loading is in region BC, where Ngc = 30 kN.
Since the cross-sectional area of the bar is constant, the largest average
normal stress also occurs within this region of the bar.

Average Normal Stress. Applying Eq. 1-6, we have

Npc 30(10°) N
A (0.035m)(0.010 m)

= 85.7 MPa Ans.

Opc —

The stress distribution acting on an arbitrary cross section of the bar
within region BC is shown in Fig. 1-15d.

*Show that you get these same results using the right segments.
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EXAMPLE 1.6

The 80-kg lamp is supported by two rods AB and BC as shown in
Fig. 1-16a. If AB has a diameter of 10 mm and BC has a diameter of 8 mm,
determine the average normal stress in each rod.

80(9.81) = 784.8 N

b
Fig. 1-16 ®

SOLUTION

Internal Loading. We must first determine the axial force in each rod.
A free-body diagram of the lamp is shown in Fig. 1-16b. Applying the
equations of force equilibrium,

HKIF=0; Fpe(2) — Fgacos60° =0
+13F, = 0;  Fgc(3) + Fpasin60° — 784.8N = 0
Fge = 3952N,  Fgy = 6324N

By Newton’s third law of action, equal but opposite reaction, these forces
subject the rods to tension throughout their length.

Average Normal Stress. Applying Eq. 1-6,

F, .
Be _ 3B2N 4 o0 ipa Ans, 805MPa

P8¢ T Ape  m(0.004 m)?

F 632.4 N
opy = 24 = S = 8.05MPa Ans.
Ags  m(0.005m)

8.05 MPa

The average normal stress distribution acting over a cross section of
rod AB is shown in Fig. 1-16¢, and at a point on this cross section, an
element of material is stressed as shown in Fig. 1-16d. (d) )

632.4N
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1.7

STRESS

The casting shown in Fig. 1-17a is made of steel having a density of
7850 kg/m>. Determine the average compressive stress acting at points A
and B.

Wst

800 mm

61.6 kKN /m?
(b) ()

Fig. 1-17
SOLUTION

Internal Loading. A free-body diagram of the top segment of the
casting where the section passes through points A and B is shown in
Fig. 1-17b. The weight of this segment is determined from W = y V.
Thus the internal axial force P at the section is

+13F, = 0; P—W,=0
P — (7850 kg/m?) (9.81 m/s?)(0.8 m)[7(0.2 m)?] = 0
P = 7.7417(10°)N

Average Compressive Stress. The cross-sectional area at the section
is A = (0.2 m)?, and so the average compressive stress becomes

P _ TIMTAC)N 61.61 (10°)N/m?> = 61.6 kKN/m* A
=—=———""—=0L m” = 61. m ns.
77 A (0.2 m)?

NOTE: The stress shown on the volume element of material in Fig. 1-17¢
is representative of the conditions at either point A or B. Notice that this
stress acts upward on the bottom or shaded face of the element since
this face forms part of the bottom surface area of the section, and on this
surface, the resultant internal force P is pushing upward.
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EXAMPLE 1.8

Member AC shown in Fig. 1-18a is subjected to a vertical force of 3 kIN.
Determine the position x of this force so that the average compressive stress
at the smooth support C is equal to the average tensile stress in the tie
rod AB.The rod has a cross-sectional area of 400 mm? and the contact area

at Cis 650 mm?’.
—
B
Fup 3 kN
X —
A
200 mm

Fc
(a) (b)
Fig. 1-18

SOLUTION

Internal Loading. The forces at A and C can be related by considering
the free-body diagram of member AC, Fig. 1-18b. There are three
unknowns, namely, F,pz, F¢, and x. To solve we will work in units of
newtons and millimeters.

+13EF = 0; Fup + Fc —3000N =0 (1)
(+2M, = 0; —(3000 N)(x) + F-(200mm) =0 2)
Average Normal Stress. A necessary third equation can be written

that requires the tensile stress in the bar AB and the compressive stress at
C to be equivalent, i.e.,

R Y: S 76
o = —
400 mm> 650 mm?

FC = 1625FAB

Substituting this into Eq. 1, solving for F,p, then solving for Fg,
we obtain
FAB = 1143 N

Fc=1857TN
The position of the applied load is determined from Eq. 2,

x = 124 mm Ans.
As required, 0 < x < 200 mm.
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The pin A used to connect the
linkage of this tractor is subjected to
double shear because shearing
stresses occur on the surface of the
pin at B and C. See Fig. 1-21c.

1.5 AVERAGE SHEAR STRESS

Shear stress has been defined in Section 1.3 as the stress component that
acts in the plane of the sectioned area. To show how this stress can develop,
consider the effect of applying a force F to the bar in Fig. 1-19a. If F is
large enough, it can cause the material of the bar to deform and fail along
the planes identified by AB and CD. A free-body diagram of the
unsupported center segment of the bar, Fig. 1-19b, indicates that the shear
force V = F/2 must be applied at each section to hold the segment in
equilibrium. The average shear stress distributed over each sectioned area
that develops this shear force is defined by

(1-7)

Tavg — Z

Here
Tavg = average shear stress at the section, which is assumed to be
the same at each point on the section

V = internal resultant shear force on the section determined
from the equations of equilibrium

A = area of the section

The distribution of average shear stress acting over the sections is
shown in Fig. 1-19¢. Notice that 7,,, is in the same direction as 'V, since
the shear stress must create associated forces, all of which contribute to
the internal resultant force V.

The loading case discussed here is an example of simple or direct
shear, since the shear is caused by the direct action of the applied load F.
This type of shear often occurs in various types of simple connections
that use bolts, pins, welding material, etc. In all these cases, however,
application of Eq.1-7 is only approximate. A more precise investigation
of the shear-stress distribution over the section often reveals that
much larger shear stresses occur in the material than those predicted
by this equation. Although this may be the case, application of Eq. 1-7
is generally acceptable for many problems involving the design or
analysis of small elements. For example, engineering codes allow its
use for determining the size or cross section of fasteners such as bolts,
and for obtaining the bonding strength of glued joints subjected to
shear loadings.



r Section plane

(a)

Fig. 1-20

Shear Stress Equilibrium. Let us consider the block in
Fig. 1-20a, which has been sectioned and is subjected to the internal
shear force V. A volume element taken at a point located on its surface
will be subjected to a direct shear stress 7., as shown in Fig. 1-20b.
However, force and moment equilibrium of this element will also require
shear stress to be developed on three other sides of the element. To show
this, it is first necessary to draw the free-body diagram of the element,
Fig. 1-20c. Then force equilibrium in the y direction requires
force

stress area

M
Ty (Ax Ay) — 7, Ax Ay =0

Ty = Toy
In a similar manner, force equilibrium in the z direction yields 7,, = 7/..
Finally, taking moments about the x axis,

moment
force arm

stress area

1
XM, =0 —7y(Ax Ay) Az + 7, (Ax Az) Ay =0

Tzy = Tyz
In other words,
Ty = Toy = Typ = Ty = T

and so, all four shear stresses must have equal magnitude and be directed
either toward or away from each other at opposite edges of the element,
Fig. 1-20d. This is referred to as the complementary property of shear,
and the element in this case is subjected to pure shear.
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r Section plane

(®)

Az

/

Free-body diagram

Pure shear

(d)
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B \PORTANT POINTS

® [If two parts are thin or small when joined together, the applied
loads may cause shearing of the material with negligible
bending. If this is the case, it is generally assumed that an
average shear stress acts over the cross-sectional area.

® When shear stress 7 acts on a plane, then equilibrium of a
volume element of material at a point on the plane requires
associated shear stress of the same magnitude act on the three
other sides of the element.

- PROCEDURE FOR ANALYSIS

The equation 7,,, = V/A is used to determine the average shear
stress in the material. Application requires the following steps.

Internal Shear.

® Section the member at the point where the average shear stress
is to be determined.

® Draw the necessary free-body diagram, and calculate the
internal shear force V acting at the section that is necessary to
hold the part in equilibrium.

Average Shear Stress.

® Determine the sectioned area A, and then calculate the
average shear stress 7,,, = V/A.

® Itissuggested that 7,,, be shown on a small volume element of
material located at a point on the section where it is determined.
To do this, first draw 7,,, on the face of the element, coincident
with the sectioned area A. This stress acts in the same direction
as V. The shear stresses acting on the three adjacent planes can
then be drawn in their appropriate directions following the
scheme shown in Fig. 1-20d.




EXAMPLE 1.9

Determine the average shear stress in the 20-mm-diameter pin at A
and the 30-mm-diameter pin at B that support the beam in Fig. 1-21a.

SOLUTION

Internal Loadings. The forces on the pins can be obtained by
considering the equilibrium of the beam, Fig. 1-21b.

(+2M, = 0;
FB(:)(6 m) —30kN(2m) =0  Fg = 12.5kN

HSE =0, (125 kN)@) — A, =0 A, = 7.50 kN

4
+13E, = 0; Ay+(12.5kN)<5>—3OkN=O A, =20 kN

Thus, the resultant force acting on pin A is

Fy = VA + A = V(150 kN)*> + (20 kN)? = 21.36 kN

The pin at A is supported by two fixed “leaves” and so the
free-body diagram of the center segment of the pin shown in
Fig. 1-21c¢ has two shearing surfaces between the beam and each
leaf. Since the force of the beam (21.36 kN) acting on the pin is
supported by shear force on each of two surfaces, it is called double
shear. Thus,
Vi = £ _ 2L30KN 10.68 kN

2 2
In Fig. 1-21a, note that pin B is subjected to single shear, which occurs
on the section between the cable and beam, Fig. 1-21d. For this pin
segment,

Average Shear Stress.

vV, 10.68(10°) N

(Ta)ag = 5 = = 34.0 MPa Ans.
A4 70,02 m)?
4
V, 12.5(10°) N
(78) avg = — 125(10) N _ 17.7 MPa Ans.

As %(0.03 m)?2

1.5

AVERAGE SHEAR STRESS

A

Fg=125kN

(d)

Fig. 1-21
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EXAMPLE

1.10

6 kN

If the wood joint in Fig. 1-22a has a thickness of 150 mm, determine the
average shear stress along shear planes a—a and b-b of the connected
member. For each plane, represent the state of stress on an element of the
material.

—_—
6 kN
-—
———— _3kN
(! -
01m  0.125m 7,=200kPa = %
a
(a) (©)
m— 3kN
W —EE
— P a—
7, =160 kPa v,

(b) (d)

Fig. 1-22
SOLUTION
Internal Loadings. Referring to the free-body diagram of the member,
Fig. 1-22b,
KX3FE=0 6kKN-F-F=0 F=3kN

Now consider the equilibrium of segments cut across shear planes a—a
and b-b, shown in Figs. 1-22¢ and 1-22d.

& SF = 0; V,—3kN =0 V, = 3kN
K 3E =0 3kN -V, =0 V, = 3kN
Average Shear Stress.

_Ye_ 300N 200 kP A
() = 4 = 01 m) (05 m) a "

Vi 3(10°) N

=== = 160 kP Ans.

(%)ave = 4= (0125 m) (0.15 m) a "

The state of stress on elements located on sections a—a and b—b is shown
in Figs. 1-22¢ and 1-22d, respectively.
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EXAMPLE 1.11

The inclined member in Fig. 1-23a is subjected to a compressive force of
3000 N. Determine the average compressive stress along the smooth areas
of contact defined by AB and BC, and the average shear stress along
the horizontal plane defined by DB.
3000 N
;ﬁ
. 3

(a) Fig. 1-23
SOLUTION

Internal Loadings. The free-body diagram of the inclined member is
shown in Fig. 1-23b. The compressive forces acting on the areas of contact are

S3F, =0,  Fu — (3000N)(2) =0 Fu5 = 1800N
+13F,=0;  Fgc— (3000N)(2) =0 Fgc = 2400 N
Also, from the free-body diagram of the top segment ABD of the bottom

member, Fig. 1-23¢, the shear force acting on the sectioned horizontal
plane DB is

L3F =0, V = 1800N

Average Stress. The average compressive stresses along the horizontal
and vertical planes of the inclined member are

Fup 1800 N

- = — 1.80(10°)N/m? = 1.80 MPa  Ans.

AT Agp (0025 m)(0.04 m) A a  Ans
Fpc 2400 N

- = = 120(10°)N/m? = 120 MPa  Ans.
TBC T Ape  (0.05 m)(0.04 m) e a  Ans

These stress distributions are shown in Fig. 1-234.
The average shear stress acting on the horizontal plane defined by DB is
1800 N
T. =
& (0.075 m)(0.04 m)

This stress is shown uniformly distributed over the sectioned area in
Fig. 1-23e.

= 0.600(10°)N/m? = 0.600 MPa  Ans.
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. PRELIMINARY PROBLEMS

P1-2. In each case, determine the largest internal shear
force resisted by the bolt. Include all necessary free-body
diagrams.

| Fﬁ_H_SkN

[ —> 6kN
L_-_D—>21<N
(a)
A 6 kN
| F—> 10kN
[«—41KkN
I | €«——8 kN
L—!_)—>201<N

(b)
Prob. P1-2

P1-3. Determine the largest internal normal force in the bar.

F
| D C B A
10 kN
5 kN 2 kN 6 kN
Prob. P1-3

P1-4. Determine the internal normal force at section A if
the rod is subjected to the external uniformally distributed
loading along its length of 8 KN /m.

| 4 8 kN/m

I 2m 1 3m 1

Prob. P1-4

P1-5. The lever is held to the fixed shaft using the pin AB.
If the couple is applied to the lever, determine the shear
force in the pin between the pin and the lever.

ﬁ'@
A 10 mm
20N 20N
Prob. P1-5

P1-6. The single-V butt joint transmits the force of 5 kN
from one bar to the other. Determine the resultant normal and
shear force components on the face of the weld, section AB.

SkN

A

Prob. P1-6
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. FUNDAMENTAL PROBLEMS

[1-7. The uniform beam is supported by two rods AB and F1-10. If the 600-kN force acts through the centroid of
CD that have cross-sectional areas of 10 mm? and 15 mm?, the cross section, determine the location y of the centroid
respectively. Determine the intensity w of the distributed and the average normal stress on the cross section. Also,
load so that the average normal stress in each rod does not sketch the normal stress distribution over the cross section.
exceed 300 kPa.

Prob. F1-7 Prob. F1-10

F1-8. Determine the average normal stress on the cross
section. Sketch the normal stress distribution over the

Cross section. F1-11. Determine the average normal stress developed at

points A, B, and C. The diameter of each segment is

300 kN indicated in the figure.
10 mm
5 mm l 5 mm
| |
300N A T9OONT—SOON fc 200N

Prob. F1-11

Prob. F1-8 I1-12.  Determine the average normal stress in rod AB if the

load h. f 50 kg. The diameter of rod AB is 8 mm.
[1-9.  Determine the average normal stress developed on cadliasamasso & Hhe dlameter oo 186 mm

the cross section. Sketch the normal stress distribution over
the cross section.

Prob. F1-9 Prob. F1-12
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. PROBLEMS

1-31. The bar has a cross-sectional area A and is subjected
to the axial load P. Determine the average normal and
average shear stresses acting over the shaded section, which
is oriented at 6 from the horizontal. Plot the variation of
these stresses as a function of 6 (0 = 6 = 90°).

N_f 7' A_w

A
Prob. 1-31

*1-32. The built-up shaft consists of a pipe AB and solid
rod BC.The pipe has an inner diameter of 20 mm and outer
diameter of 28 mm. The rod has a diameter of 12 mm.
Determine the average normal stress at points D and E and
represent the stress on a volume element located at each of
these points.

A B 6kN
4kN —~—— C
—>(] B ( e N > 3 kN
D 6kN E
Prob. 1-32

1-33. The triangular blocks are glued along each side of
the joint. A C-clamp placed between two of the blocks is
used to draw the joint tight. If the glue can withstand a
maximum average shear stress of 800 kPa, determine the
maximum allowable clamping force F.

1-34. The triangular blocks are glued along each side of
the joint. A C-clamp placed between two of the blocks is
used to draw the joint tight. If the clamping force is
F = 900 N, determine the average shear stress developed
in the glued shear plane.

Probs. 1-33/34

1-35. Determine the largest intensity w of the uniform
loading that can be applied to the frame without causing
either the average normal stress or the average shear stress
at section b-b to exceed o = 15 MPa and 7 = 16 MPa,
respectively. Member CB has a square cross section of
30 mm on each side.

B
w
b b
3m
C ) A Je
| n |
Prob. 1-35

*1-36. The supporting wheel on a scaffold is held in place
on the leg using a 4-mm-diameter pin. If the wheel is
subjected to a normal force of 3 kN, determine the average
shear stress in the pin. Assume the pin only supports the
vertical 3-kN load.

3kN

Prob. 1-36



1-37. If P = 5 kN, determine the average shear stress in
the pins at A, B, and C. All pins are in double shear, and
each has a diameter of 18 mm.

1-38. Determine the maximum magnitude P of the loads
the beam can support if the average shear stress in each pin
is not to exceed 80 MPa. All pins are in double shear, and
each has a diameter of 18 mm.

6P

1.5m 2 m 1.5m 3

)
<
] e

Probs. 1-37/38

1-39. Determine the average normal stress in each of the
20-mm-diameter bars of the truss. Set P =40 kN.

*1-40. If the average normal stress in each of the 20-mm-
diameter bars is not allowed to exceed 150 MPa, determine
the maximum force P that can be applied to joint C.

1-41. Determine the maximum average shear stress in pin
A of the truss. A horizontal force of P =40 kN is applied to
joint C. Each pin has a diameter of 25 mm and is subjected
to double shear.

¢ p

1

1.5m

b Y

| 2m |

Probs. 1-39/40/41

1-42. The pedestal has a triangular cross section as shown.
If it is subjected to a compressive force of 2250 N, specify
the x and y coordinates for the location of point P(x, y),
where the load must be applied on the cross section, so that
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the average normal stress is uniform. Compute the stress
and sketch its distribution acting on the cross section at a
location removed from the point of load application.

2250 N

Prob. 1-42

1-43. The plate has a width of 0.5 m. If the stress distribution
at the support varies as shown, determine the force P applied
to the plate and the distance d to where it is applied.

4 m
IP

d

o = (15x'2) MPa—" 30 MPa

Prob. 1-43

*1-44. The joint is subjected to the axial member force of
27 kN. Determine the average normal stress acting on
sections AB and BC. Assume the member is smooth and is
40 mm thick.

27 kN

Prob. 1-44
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1-45. The plastic block is subjected to an axial compressive
force of 600 N. Assuming that the caps at the top and bottom
distribute the load uniformly throughout the block,
determine the average normal and average shear stress
acting along section a—a.

600 N

30°

Vs v

50 mm 50 mm

600 N

Prob. 1-45

1-46. The column is made of concrete having a density
of 2.30 Mg/m>. At its top B it is subjected to an axial
compressive force of 15 kN. Determine the average normal
stress in the column as a function of the distance z measured
from its base.

z
15 kN
BA%}/SO mm
4m
.
x /\J\\ y
Prob. 1-46

1-47. If P =15 kN, determine the average shear stress in
the pins at A, B, and C. All pins are in double shear, and
each has a diameter of 18 mm.

i P 4P 4P 2P

0.5m 0.5m

T g 1m»"<f1.5 m*"kl.S m—
c; I I 1 1l
B :

&

Prob. 1-47

*1-48. The driver of the sports car applies his rear brakes
and causes the tires to slip. If the normal force on each rear
tire is 1800 N and the coefficient of kinetic friction between
the tires and the pavement is w, = 0.5, determine the
average shear stress developed by the friction force on the
tires. Assume the rubber of the tires is flexible and each tire
is filled with an air pressure of 225 kPa.

1800 N

Prob. 1-48

1-49. The beam is supported by two rods AB and CD that
have cross-sectional areas of 12 mm? and 8 mm?2, respectively.
If d =1 m, determine the average normal stress in each rod.

1-50. The beam is supported by two rods AB and CD that
have cross-sectional areas of 12 mm? and 8 mm?, respectively.
Determine the position d of the 6-kN load so that the average
normal stress in each rod is the same.

2wl
B D

6 kN

Probs. 1-49/50



1-51. The uniform bar, having a cross-sectional area of A
and mass per unit length of m, is pinned at its center. If it is
rotating in the horizontal plane at a constant angular rate of
w, determine the average normal stress in the bar as a
function of x.

e

Prob. 1-51

*]1-52. The two members used in the construction of an
aircraft fuselage are joined together using a 30° fish-mouth
weld. Determine the average normal and average shear
stress on the plane of each weld. Assume each inclined
plane supports a horizontal force of 2 kN.

3725 mm 30
4KN <—| 25 rmgi 4 kN
25mm|
30°
Prob. 1-52

1-53. The pier is made of material having a specific weight vy.
If it has a square cross section, determine its width w
as a function of z so that the average normal stress in the
pier remains constant. The pier supports a constant load P
at its top where its width is wy.

Prob. 1-53
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1-54. The 2-Mg concrete pipe has a center of mass at
point G. If it is suspended from cables AB and AC,
determine the average normal stress in the cables. The
diameters of AB and AC are 12 mm and 10 mm, respectively.

1-55. The 2-Mg concrete pipe has a center of mass at point
G. If it is suspended from cables AB and AC, determine the
diameter of cable AB so that the average normal stress in
this cable is the same as in the 10-mm-diameter cable AC.

Probs. 1-54/55

#*1-56. Rods AB and BC have diameters of 4 mm
and 6 mm, respectively. If the 3 kN force is applied to the
ring at B, determine the angle 6 so that the average normal
stress in each rod is equivalent. What is this stress?

3kN

Prob. 1-56
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1-57. The bar has a cross-sectional area of 400(10-%) m?. If it
is subjected to a triangular axial distributed loading along its
length which is 0 at x =0 and 9 kN/m at x = 1.5 m, and to
two concentrated loads as shown, determine the average
normal stress in the bar as a function of x for 0 = x < 0.6 m.

function of x for 0.6 m < x = 1.5 m.

8 kN
> —> —> —>/—> —> —> 4N
> —

Probs. 1-57/58

1-59. The two steel members are joined together using a
30° scarf weld. Determine the average normal and average

shear stress resisted in the plane of the weld.

15 kN

30° 71720 mm

40 mm —-

15 kN

Prob. 1-59

1-58. The bar has a cross-sectional area of 400(107%) m?. If
it is subjected to a uniform axial distributed loading along
its length of 9 kN/m, and to two concentrated loads as
shown, determine the average normal stress in the bar as a

#1-60. The bar has a cross-sectional area of 400(107°) m?.
If it is subjected to a uniform axial distributed loading along
its length and to two concentrated loads, determine the
average normal stress in the bar as a function of x for
0<x=05m.

1-61. The bar has a cross-sectional area of 400(107%) m?. If
it is subjected to a uniform axial distributed loading along
its length and to two concentrated loads, determine the
average normal stress in the bar as a function of x for
05m <x=125m.

Probs. 1-60/61

1-62. The prismatic bar has a cross-sectional area A. If it is
subjected to a distributed axial loading that increases
linearly from w = 0 at x =0 to w = w, at x = a, and then
decreases linearly to w =0 at x = 2a, determine the average
normal stress in the bar as a function of x for 0 = x < a.

1-63. The prismatic bar has a cross-sectional area A. If it is
subjected to a distributed axial loading that increases
linearly from w = 0 at x =0 to w = w, at x = a, and then
decreases linearly to w =0 at x = 2a, determine the average
normal stress in the bar as a function of x fora < x = 2a.

Wo
- —» —p —P — — —p >

> > —> —>——>—> —> —> >

——

a \ a \

Probs. 1-62/63



*1-64. Determine the greatest constant angular velocity w
of the flywheel so that the average normal stress in its rim
does not exceed o = 15 MPa. Assume the rim is a thin ring
having a thickness of 3 mm, width of 20 mm, and a mass of
30 kg/m. Rotation occurs in the horizontal plane. Neglect
the effect of the spokes in the analysis. Hint: Consider a
free-body diagram of a semicircular segment of the ring.
The center of mass for this segment is located at 7 = 2r /7
from the center.

Prob. 1-64

1-65. Determine the largest load P that can be applied to
the frame without causing either the average normal stress
or the average shear stress at section a—a to exceed
o = 150 MPa and 7 = 60 MPa, respectively. Member CB
has a square cross section of 25 mm on each side.

Prob. 1-65
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1-66. The bars of the truss each have a cross-sectional
area of 780 mm?. Determine the average normal stress in
each member due to the loading P = 40 kN. State whether
the stress is tensile or compressive.

1-67. The bars of the truss each have a cross-sectional
area of 780 mm?. If the maximum average normal stress in
any bar is not to exceed 140 MPa, determine the maximum
magnitude P of the loads that can be applied to the truss.

Probs. 1-66/67

*1-68. The radius of the pedestal is defined by
= (0.5¢-098") m, where y is in meters. If the material has a
density of 2.5 Mg/m?3, determine the average normal stress
at the support.

‘

0.5m

Prob. 1-68
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1.6 ALLOWABLE STRESS DESIGN

To ensure the safety of a structural or mechanical member, it is necessary
to restrict the applied load to one that is less than the load the member
can fully support. There are many reasons for doing this.

e The intended measurements of a structure or machine may not be
exact,due to errors in fabrication or in the assembly of its component
parts.

e Unknown vibrations, impact, or accidental loadings can occur that
may not be accounted for in the design.

e Atmospheric corrosion, decay, or weathering tend to cause materials
to deteriorate during service.

e Some materials, such as wood, concrete, or fiber-reinforced
composites, can show high variability in mechanical properties.

One method of specifying the allowable load for a member is to use a
number called the factor of safety (F.S.). It is a ratio of the failure load
Fi,; to the allowable load Fjjoy,

Cranes are often supported using
bearing pads to give them stability. Care

must be taken not to crush the

supporting surface, due to the large Bl

bearing stress developed between the FS. = — (1-8)
pad and the surface. Faniow

Here F; is found from experimental testing of the material.

If the load applied to the member is linearly related to the stress
developed within the member, as in the case of ¢ = N/A and
Tavg = V/A, then we can also express the factor of safety as a ratio of the
failure stress o,y (OT T1451) to the allowable stress oy (OF Taow)- Here the
area A will cancel, and so,

Otail
FS. = — 1-9
Tallow ( )
or
F.S. = —mil (1-10)

Tallow
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Specific values of E.S. depend on the types of materials to be used
and the intended purpose of the structure or machine, while accounting
for the previously mentioned uncertainties. For example, the F.S. used
in the design of aircraft or space vehicle components may be close to 1
in order to reduce the weight of the vehicle. Or, in the case of a nuclear
power plant, the factor of safety for some of its components may be as
high as 3 due to uncertainties in loading or material behavior. Whatever
the case, the factor of safety or the allowable stress for a specific case
can be found in design codes and engineering handbooks. Design that
is based on an allowable stress limit is called allowable stress design
(ASD). Using this method will ensure a balance between both public
and environmental safety on the one hand and economic considerations
on the other.

Simple Connections. By making simplifying assumptions
regarding the behavior of the material, the equations o = N/A and
Tavg = V//A can often be used to analyze or design a simple connection
or mechanical element. For example, if a member is subjected to normal
force at a section, its required area at the section is determined from

N

Tallow

A:

(1-11)
or if the section is subjected to an average shear force, then the required
area at the section is

|4

Tallow

A

= (1-12)

Three examples of where the above equations apply are shown in
Fig. 1-24.The first figure shows the normal stress acting on the bottom of
a base plate. This compressive stress caused by one surface that bears
against another is often called bearing stress.

The area of the bolt for this lap joint
is determined from the shear stress,
which is largest between the plates.

65

(Op)atiow |

Assumed uniform |
normal stress
distribution
P
A=
(Ub)allow

The area of the column base plate B is determined
from the allowable bearing stress for the concrete.

The embedded length / of this rod in concrete
can be determined using the allowable shear
stress of the bonding glue.

Assumed uniform

shear stress
Tallow
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1.7 LIMIT STATE DESIGN

We have stated in the previous section that a properly designed member
must account for the uncertainties resulting from the variability of both the
material’s properties and the applied loading. Each of these uncertainties can
be investigated using statistics and probability theory, and so in structural
engineering there has been an increasing trend to separate load uncertainty
from material uncertainty.* This method of design is called limit state design
(LSD), or more specifically,in the United States it is called load and resistance
Jactor design (LRFD). We will now discuss how this method is applied.

Various types of loads R can act on a structure or
structural member, and each can be multiplied by a load factor
v (gamma) that accounts for its variability. The loads include dead load,
which is the fixed weight of the structure, and live loads, which involve
people or vehicles that move about. Other types of live loads include
wind, earthquake, and snow loads. The dead load D is multiplied by a
relatively small factor such as y,, = 1.2, since it can be determined with
greater certainty than, for example, the live load L caused by people,
which can have a load factor of y; = 1.6.

Building codes often require a structure to be designed to support various
combinations of the loads, and when applied in combination, each type of
load will have a unique load factor. For example, the load factor of one load
combination of dead (D), live (L), and snow () loads gives a total load R of

R =12D + 1.6L + 058

The load factors for this combined loading reflect the probability that R will
occur for all the events stated. In this equation, notice that the load factor
vs = 0.5 is small, because of the low probability that a maximum snow
load will occur simultaneously with the maximum dead and live loads.

Resistance factors ¢ (phi) are determined
from the probability of material failure as it relates to the material’s
quality and the consistency of its strength. These factors will differ for
different types of materials. For example, concrete has smaller factors
than steel, because engineers have more confidence about the behavior
of steel under load than they do about concrete. A typical resistance
factor ¢ = 0.9 is used for a steel member in tension.

* ASD combines these uncertainties by using the factor of safety or defining the allowable stress.



Design Criteria.  Once the load and resistance factors y and ¢ have
been specified using a code, then proper design of a structural member
requires that its predicted strength, ¢P,, be greater than the predicted
load it is intended to support. Thus, the LRFD criterion can be stated as

¢P, = 2y R; (1-13)

Here P, is the nominal strength of the member, meaning the load, when
applied to the member, causes it either to fail (ultimate load), or deform
to a state where it is no longer serviceable. In summary then, the
resistance factor ¢ reduces the nominal strength of the member and
requires it to be equal to or greater than the applied load or combination
of loads calculated using the load factors vy.

B VPORTANT POINT

® Design of a member for strength is based on selecting either
an allowable stress or a factor of safety that will enable it to
safely support its intended load (ASD), or using load and
resistance factors to modify the strength of the material and
the load, respectively (LRFD).

B PROCEDURE FOR ANALYSIS

When solving problems using the average normal and average shear
stress equations, careful consideration should first be given to finding
the section over which the critical stress is acting. Once this section
is determined, the member must then be designed to have a sufficient
cross-sectional area at the section to resist the stress that acts on it.
This area is determined using the following steps.

Internal Loading.

® Section the member through the area and draw a free-body
diagram of a segment of the member. The internal resultant
force at the section is then determined using the equations of
equilibrium.

Required Area.

® Provided either the allowable stress or the load and resistance
factors are known or can be determined, then the required
area needed to sustain the calculated load or factored load at
the section is determined from A = N/ogor A = V/7.
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Appropriate factors of safety must be
considered when designing cranes and cables
used to transfer heavy loads.



68 CHAPTER 1 STRESS

EXAMPLE 1.12

The control arm is subjected to the loading shown in Fig. 1-25a. Determine
to the nearest 5 mm the required diameter of the steel pin at A and C if the
factor of safety for shear is F.S. = 1.5 and the failure shear stress for
the steel is 7¢,; = 82.5 MPa.

F
b & s
::ﬁF 200 mm
200 mm l 4
P /' . P
\\@C %{’L\a O Q) ©
o\ N 75 mmy 50 mm 25 KN
75 mmy S0mm ! 25 kN C, 15kN
15kN (b)
@ Fig. 1-25
15kN SOLUTION
Internal Shear Force. A free-body diagram of the arm is shown in
15 kN ) e
AL Fig. 1-25b. For equilibrium we have
© (+3Mc=0; F45(0.2m) — (15 kN)(0.075 m) — (25 kN) (2) (0.125m) =0
FAB = 15kN
S HSF =0,  -I15kN—-C, + (25kN)(}) =0 ¢, =5kN
+13F,=0; C,—15kN— (25kN)(2) =0  C, = 30kN
15.205 kN i . C .
15,205 kKN The pin at C resists the resultant force at C, which is
Pinat C Fe = V(5kN)? + (30 kN)? = 30.41 kN
d
& Allowable Shear Stress. We have
o 82.5 MP
FS. = w5228 55MPa
Tallow Tallow

Pin at A. This pin is subjected to single shear, Fig. 1-25¢, so that

v d 2 15(10%)N
2 55(10% N /m
Usedy, = 20 mm Ans.

Pin at C. Since the pin is subjected to double shear, a shear force of
15.205 kN acts over its cross-sectional area between the arm and each
supporting leaf for the pin, Fig. 1-25d. We have

|4 (dc)2 15.205(10°)N
s Mo =2

2 55(10°) N /m?

Use d¢c = 20 mm Ans.

A:

b
Tallow

A= dc = 0.01876 m = 18.76 mm

Tallow



EXAMPLE 1.13

The suspender rod is supported at its end by a fixed-connected circular disk
as shown in Fig. 1-26a. If the rod passes through a 40-mm-diameter hole,
determine the minimum required diameter of the rod and the minimum
thickness of the disk needed to support the 20-kN load. The allowable
normal stress for the rod is oy, = 60 MPa, and the allowable shear stress
for the disk is 7,0, = 35 MPa.

—»‘ 40 mm ‘<—

A Tallow

Fig. 1-26

SOLUTION

Diameter of Rod. By inspection, the axial force in the rod is 20 kN.
Thus the required cross-sectional area of the rod is

20(10°) N
A = N : zdz _ (6 ) .
Tallow 4 60(10 ) N/m
so that
d = 0.0206 m = 20.6 mm Ans.

Thickness of Disk. As shown on the free-body diagram in Fig. 1-26b,
the material at the sectioned area of the disk must resist shear stress
to prevent movement of the disk through the hole. If this shear stress
is assumed to be uniformly distributed over the sectioned area, then,
since V = 20 kN, we have

% 20(10°) N
A= ;o 2m(0.02m) (1) = s
Tallow 35(10 )N/m

t =4.55(1073)m = 4.55 mm Ans.

1.7 LimiT STATE DESIGN
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EXAMPLE 1.14

Determine the largest load P that can be applied to the bars of the
lap joint shown in Fig. 1-27a. The bolt has a diameter of 10 mm and an
/P allowable shear stress of 80 MPa. Each plate has an allowable tensile

stress of 50 MPa, an allowable bearing stress of 80 MPa, and an allowable
shear stress of 30 MPa.

50 mm

SOLUTION

To solve the problem we will determine P for each possible failure
condition; then we will choose the smallest value of P. Why?

@ Failure of Plate in Tension. If the plate fails in tension, it will do so at

its smallest cross section, Fig. 1-27b.

N r
(aiow)e = 43 SOAYN/m™ = ) (0,015 m)

P =30kN

Failure of Plate by Bearing. A free-body diagram of the top plate,
Failure of plate in tension Fig. 1-27¢, shows that the bolt will exert a complicated distribution of
(b) stress on the plate along the curved central area of contact with the bolt.*
To simplify the analysis for small connections having pins or bolts such as
this, design codes allow the projected area of the bolt to be used when
calculating the bearing stress. Therefore,

‘=) =

Actual stress
distribution

_N, ON/m? = -
(@aow)s = 75 800N /m™ = o (0.015 m)

Assumed uniform
stress distribution

P =12kN
P

Failure of plate in bearing caused by bolt

(©

Fig. 1-27
*The material strength of a bolt or pin is generally greater than that of the plate material,
so bearing failure of the member is of greater concern.



v=pP
Failure of bolt by shear
(e)

Failure of Plate by Shear. There is the possibility for the bolt to tear
through the plate along the section shown on the free-body diagram in
Fig. 1-27d. Here the shear is V= P/2, and so

v - P2
(Fanowly = 3 3010 N/m? = 0015 m)

P = 18 kN

Failure of Bolt by Shear. The bolt can fail in shear along the plane
between the plates. The free-body diagram in Fig. 1-27¢ indicates that
V =P, so that

1% P

aow)s = 3 80(10°) N/m? = —————

(Tatow)s = 4 (10 N/m = 51005 m)?
P = 628kN

Comparing the above results, the largest allowable load for the
connections depends upon the bolt shear. Therefore,

P = 6.28 kN » Ans.

Failure of plate by shear
(d)

Fig. 1-27 (cont.)

1.7 LimiT STATE DESIGN
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The 400-kg uniform bar A B shown in Fig. 1-28a is supported by a steel rod
AC and a roller at B. If it supports a live distributed loading of 3 kN /m,
determine the required diameter of the rod. The failure stress for the steel
is 03, = 345 MPa. Use the LRFD method, where the resistance factor for
tension is ¢ = 0.9 and the load factors for the dead and live loads are
vp = 1.2 and y; = 1.6, respectively.

EERaEE =
A ‘ A B
‘ ~5 B R 1m—4
! A 1 4‘.;09 KN Fs
(a) (b)
Fig. 1-28

SOLUTION

Factored Loads. Here the dead load is the bar’s weight
D = 400(9.81) N = 3.924 kN. Therefore, the factored dead load is
1.2D = 4.709 kN. The live load resultant is L = (3kN/m)(2m) = 6kN,
so that the factored live load is 1.6 = 9.60 kN.

From the free-body diagram of the bar, Fig. 1-28b, the factored load in
the rod can now be determined.

(+3SMg = 0;  9.60 kN(1m) + 4.709 kN(1m) — Fyc(2m) = 0

Area. The nominal strength of the rod is determined from P, = o, A,
and since the nominal strength is defined by the resistance factor ¢ = 0.9,
we require

dP, = Fyc;  0.9[345(10° N/m?] A e = 7.154(10°) N
Aqe = 23.04(107%) m? = 23.04 mm? = %dﬁc

dAC = 542 mm Ans.
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. FUNDAMENTAL PROBLEMS

I1-13. Rods AC and BC are used to suspend the 200-kg F1-15. Determine the maximum average shear stress
mass. If each rod is made of a material for which the average developed in each 12-mm-diameter bolt.

normal stress cannot exceed 150 MPa, determine the

minimum required diameter of each rod to the nearest mm.

10 kN

=

SkN

Prob. F1-15

Prob. F1-13

["1-14.  The frame supports the loading shown. The pin at
A has a diameter of 50 mm. If it is subjected to double shear,

determine the average shear stress in the pin. 1-16. If each of the three nails has a diameter of 4 mm and

can withstand an average shear stress of 60 MPa, determine
the maximum allowable force P that can be applied to
the board.

Prob. F1-14 Prob. F1-16
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F1-17. The strut is glued to the horizontal member at I'1-19. If the eyebolt is made of a material having a yield
surface AB. If the strut has a thickness of 25 mm and the glue stress of oy = 250 MPa, determine the minimum required
can withstand an average shear stress of 600 kPa, determine diameter d of its shank. Apply a factor of safety F.S. = 1.5
the maximum force P that can be applied to the strut. against yielding.

Prob. F1-19

Prob. F1-17

F1-18. Determine the maximum average shear stress

developed in the 30-mm-diameter pin.
[1-20. If the bar assembly is made of a material having a

yield stress of oy = 350 MPa, determine the minimum
required dimensions /; and 4, to the nearest mm. Apply a
factor of safety F.S. = 1.5 against yielding. Each bar has a
thickness of 12 mm.

30 kN

5KN ),
«— M 150 kN

3

A

——
40KN C B KN

Prob. F1-18 Prob. F1-20



F1-21. Determine the maximum force P that can be
applied to the rod if it is made of material having a yield
stress of oy = 250 MPa. Consider the possibility that failure
occurs in the rod and at section a—a. Apply a factor of safety
of F.S. = 2 against yielding.

50 mm

; n
120 I;lgi 160 mm

Section a-a

Prob. F1-21

F1-22. The pin is made of a material having a failure shear
stress of 7,; = 100 MPa. Determine the minimum required
diameter of the pin to the nearest mm. Apply a factor of
safety of F.S. = 2.5 against shear failure.

T |
0 —

=

Prob. F1-22
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F1-23.  If the bolt head and the supporting bracket are made
of the same material having a failure shear stress of
Trail = 120 MPa, determine the maximum allowable force P
that can be applied to the bolt so that it does not pull
through the plate. Apply a factor of safety of F.S. = 2.5
against shear failure.

Prob. F1-23

I'1-24.  Six nails are used to hold the hanger at A against
the column. Determine the minimum required diameter of
each nail to the nearest 1 mm if it is made of material having
Tran = 112 MPa. Apply a factor of safety of F.S. = 2 against
shear failure.

5kN/m

3m

Prob. F1-24
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. PROBLEMS

1-69. The tension member is fastened together using two
bolts, one on each side of the member as shown. Each bolt
has a diameter of 7.5 mm. Determine the maximum load P
that can be applied to the member if the allowable shear
stress for the bolts is 7,5,y = 84 MPa. and the allowable
average normal stress is ooy = 140 MPa.

Prob. 1-69

1-70. Member B is subjected to a compressive force of
4 kN. If A and B are both made of wood and are 10 mm
thick, determine to the nearest multiples of 5 mm the
smallest dimension /4 of the horizontal segment so that it
does not fail in shear. The allowable shear stress for the
segment is T, 0w = 2.1 MPa.

Prob. 1-70

1-71. The lever is attached to the shaft A using a key that
has a width d and length of 25 mm. If the shaft is fixed and a
vertical force of 200 N is applied perpendicular to the
handle, determine the dimension d if the allowable shear
stress for the key is 7,0 = 35 MPa.

Prob. 1-71

*1-72. The lapbelt assembly is to be subjected to a force of
800 N. Determine (a) the required thickness ¢ of the belt
if the allowable tensile stress for the material is
(0))alow = 10 MPa (b) the required lap length d, if the glue
can sustain an allowable shear stress of (7yow)g = 0.75 MPa,
and (c) the required diameter d, of the pin if the allowable
shear stress for the pin is (7yow), = 30 MPa.

Prob. 1-72



1-73. The cotter is used to hold the two rods together.
Determine the smallest thickness ¢ of the cotter and the
smallest diameter d of the rods. All parts are made of steel
for which the failure normal stress is op,; = S00MPa and
the failure shear stress is 7,; = 375MPa. Use a factor of
safety of (F.S.), = 2.50 in tension and (F.S.); = 1.75 in
shear.

Prob. 1-73

1-74. The truss is used to support the loading shown
Determine the required cross-sectional area of member BC
if the allowable normal strees is oy, = 165 MPa.

Prob. 1-74
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1-75. If the allowable tensile stress for wires AB and AC
iS Oyow = 200 MPa, determine the required diameter of
each wire if the applied load is P = 6 kN.

*]1-76. If the allowable tensile stress for wires AB and AC
iS Ouow = 180 MPa, and wire AB has a diameter of 5 mm
and AC has a diameter of 6 mm, determine the greatest
force P that can be applied to the chain.

Probs. 1-75/76

1-77. The spring mechanism is used as a shock absorber
for a load applied to the drawbar AB. Determine the force
in each spring when the 50-kN force is applied. Each spring
is originally unstretched and the drawbar slides along the
smooth guide posts CG and EF. The ends of all springs are
attached to their respective members. Also, what is
the required diameter of the shank of bolts CG and EF if
the allowable stress for the bolts is o), = 150 MPa?

k = 80 kN/m

50 kN

Prob. 1-77

1
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1-78. The soft-ride suspension system of the mountain
bike is pinned at C and supported by the shock absorber
BD. If it is designed to support a load P = 1500 N,
determine the required minimum diameter of pins B and C.
Use a factor of safety of 2 against failure. The pins are made
of material having a failure shear stress of m,; = 150 MPa,
and each pin is subjected to double shear.

1-79. The soft-ride suspension system of the mountain bike
is pinned at C and supported by the shock absorber BD. If it is
designed to support a load of P = 1500 N, determine the
factor of safety of pins B and C against failure if they are made
of a material having a shear failure stress of 7,; = 150 MPa.
Pin B has a diameter of 75 mm, and pin C has a diameter of
6.5 mm. Both pins are subjected to double shear.

p 100 mm

300 mm

Probs. 1-78/79

*1-80. Determine the required diameter of the pins at
A and B if the allowable shear stress for the material is
Talow — 100 MPa. Both pins are subjected to double shear.

4 2kN/m
I B
| A

J 3m

s

HNe

Prob. 1-80

1-81. The steel pipe is supported on the circular base
plate and concrete pedestal. If the thickness of the pipe
is t = 5 mm and the base plate has a radius of 150 mm,
determine the factors of safety against failure of the steel
and concrete. The applied force is 500 kN, and the normal
failure stresses for steel and concrete are (o) = 350 MPa
and (0 gi)con = 25 MPa, respectively.

Prob. 1-81

1-82. The steel swivel bushing in the elevator control of
an airplane is held in place using a nut and washer as shown
in Fig. (a). Failure of the washer A can cause the push rod to
separate as shown in Fig. (b). If the average shear stress is
Tovg = 145 MPa, determine the force F that must be applied
to the bushing that will cause this to happen. The washer is
1.5 mm thick.

el ([
A

(b)

Prob. 1-82
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1-83. Determine the required minimum thickness ¢ of 1-85. The hanger is supported using the rectangular pin.
member AB and edge distance b of the frame if P = 40 kN Determine the magnitude of the allowable suspended load
and the factor of safety against failure is 2. The wood has a P if the allowable bearing stress is (03,).10w = 220 MPa, the
normal failure stress of oy,; = 42 MPa, and shear failure allowable tensile stress is (0;)aow = 150 MPa, and the

stress of 7,; = 10.5 MPa. allowable shear stress is 7, = 130 MPa. Take t = 6 mm,
a = 5mm and b = 25 mm.

37.5 mm
Prob. 1-83 Prob. 1-85
*]1-84. Determine the maximum allowable load P that can 1-86. The hanger is supported using the rectangular pin.
be safely supported by the frame if = 30mm and Determine the required thickness ¢ of the hanger, and
b =90 mm. The wood has a normal failure stress of dimensions a and b if the suspended load is P = 60 kN. The
Otait = 42 MPa, and shear failure stress of 7,; = 10.5 MPa. allowable tensile stress is (0;)a10w = 150 MPa, the allowable
Use a factor of safety against failure of 2. bearing stress iS (0p)aow = 290 MPa, and the allowable

shear stress is 7,0 = 125 MPa.

37.5 mm

Prob. 1-84 Prob. 1-86
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1-87. The assembly is used to support the distributed
loading of w = 10 kN /m. Determine the factor of safety with
respect to yielding for the steel rod BC and the pins at A and
B if the yield stress for the steel in tension is oy = 250 MPa
and in shear 7y = 125 MPa.The rod has a diameter of 13 mm,
and the pins each have a diameter of 10 mm.

*1-88. If the allowable shear stress for each of the
10-mm-diameter steel pins at A, B, and C is 7, = 90 MPa,
and the allowable normal stress for the 13-mm-diameter rod
iS Ouow = 150 MPa, determine the largest intensity w of
the uniform distributed load that can be suspended from
the beam.

Probs. 1-87/88

1-89. The compound wooden beam is connected together
by a bolt at B. Assuming that the connections at A, B, C,
and D exert only vertical forces on the beam, determine the
required diameter of the bolt at B and the required outer
diameter of its washers if the allowable tensile stress for the
bolt is (07)a10w = 150 MPa and the allowable bearing
stress for the wood is (03, ) aiow = 28 MPa. Assume that the
hole in the washers has the same diameter as the bolt.

3 kN 1.5kN
~—2m—}—2m—F1.5 m*‘*l.S mifl.S m*l*l.S m*‘

=—— — 1]

-

Prob. 1-89

1-90. The two aluminum rods support the vertical force
of P = 20 kN. Determine their required diameters if the
allowable tensile stress for the aluminum is o,,,, = 150 MPa.

Prob. 1-90

1-91. The two aluminum rods AB and AC have diameters
of 10 mm and 8 mm, respectively. Determine the largest
vertical force P that can be supported. The allowable tensile
stress for the aluminum is oy, = 150 MPa.

Prob. 1-91



*1-92. The assembly consists of three disks A, B, and C
that are used to support the load of 140 kN. Determine the
smallest diameter d; of the top disk, the largest diameter d,
of the opening, and the largest diameter d; of the hole
in the bottom disk. The allowable bearing stress for the
material 18 (03)a0w = 350 MPa and allowable shear stress is
Tallow — 125 MPa.

Prob. 1-92

1-93. The aluminum bracket A is used to support the
centrally applied load of 40 kN. If it has a constant thickness
of 12 mm, determine the smallest height / in order to prevent
a shear failure. The failure shear stress is 7,; = 160 MPa.
Use a factor of safety for shear of F.S. = 2.5.

3t

—

40 kN

Prob. 1-93
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1-94. The rods AB and CD are made of steel. Determine
their smallest diameter so that they can support the dead
loads shown. The beam is assumed to be pin connected at A
and C. Use the LRFD method, where the resistance factor
for steel in tension is ¢ = 0.9, and the dead load factor is
vp = 1.4.The failure stress is op,;; = 345 MPa.

s e R

_—;“--' S et _ql,_‘
B 5D
6 kKN
5kN
4 kN
\i
A c
<2 m—~2m—r—3m—~—3m—-~

Prob. 1-94

1-95. If the allowable bearing stress for the material
under the supports at A and B is (0p)aiow = 1.5 MPa,
determine the size of square bearing plates A’ and B’
required to support the load. Dimension the plates to the
nearest mm. The reactions at the supports are vertical. Take
P = 100 kN.

*1-96. If the allowable bearing stress for the material
under the supports at A and B is (0p)a0w = 1.5 MPa,
determine the maximum load P that can be applied to the
beam. The bearing plates A’ and B’ have square cross
sections of 150 mm X 150 mm and 250 mm X 250 mm,
respectively.

40 kN/m lP

15m—

3m l 1.5 m—

Probs. 1-95/96
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. CHAPTER REVIEW

The internal loadings in a body consist of SE =0 Torsional

a normal force, shear force, bending * NMeone
moment, and torsional moment. They XF, =0 T
represent the resultants of both a normal B f\

and shear stress distribution that act over 2 =0 C" Normal
the cross section. To obtain these SM, =0 Force
resultants, use the method of sections

and the equations of equilibrium. M, =0 Bending M“Q’

Moment

SM, =0

If a bar is made from homogeneous =
. . . .. . N €— o =N
isotropic material and it is subjected to a —

series of external axial loads that pass
through the centroid of the cross section,
then a uniform normal stress distribution
will act over the cross section. This N
average normal stress can be determined a ‘_O_' 7=
from o = N/A, where N is the internal
axial load at the section.

>z

The average shear stress can be
determined using 7,,, = V//A, where V' is
the shear force acting on the cross section. _
This formula is often used to find the Tave =
average shear stress in fasteners or in
parts used for connections.

)<

Tavg = %

The ASD method of design of any simple
connection requires that the average
stress along any cross section not exceed
an allowable stress of oyow OT Tallow-
These values are reported in codes and  ORil Thil
are considered safe on the basis of FS. = -
experiments or through experience.
Sometimes a factor of safety is reported
provided the failure stress is known.

Tallow Tallow

The LRFD method of design is used for
the design of structural members. It
modifies the load and the strength of the P, = 2R,
material separately, using load and
resistance factors.
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. CONCEPTUAL PROBLEMS

Cl1-1. Hurricane winds have caused the failure of this
highway sign. Assuming the wind creates a uniform pressure
on the sign of 2 kPa, use reasonable dimensions for the sign
and determine the resultant shear and moment at each of

the two connections where the failure occurred.

C1-1

C1-2. High-heel shoes can often do damage to soft wood
or linoleum floors. Using a reasonable weight and
dimensions for the heel of a regular shoe and a high-heel
shoe, determine the bearing stress under each heel if the
weight is transferred down only to the heel of one shoe.

C1-2

C1-3. Here is an example of the single shear failure of a
bolt. Using appropriate free-body diagrams, explain why
the bolt failed along the section between the plates, and not
along some intermediate section such as a—a.

C1-3

C1-4. The vertical load on the hook is 5 kN. Draw the
appropriate free-body diagrams and determine the maximum
average shear force on the pins at A, B, and C. Note that due
to symmetry four wheels are used to support the loading on
the railing.
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. REVIEW PROBLEMS

R1-1. The circular punch B exerts a force of 2 kN on the
top of the plate A. Determine the average shear stress in the
plate due to this loading.

2 kN
B
~—4 mm
2 mm
Prob. R1-1

R1-2. Determine the required thickness of member BC
and the diameter of the pins at A and B to the nearest mm
if the allowable normal stress for member BC is
Taow — 200 MPa and the allowable shear stress for the pins
is Tallow — 70 MPa.

40 mm

B 24 m

g
Q\:b

30 kN/m

Prob. R1-2

R1-3. The long bolt passes through the 30-mm-thick plate.
If the force in the bolt shank is 8 kN, determine the average
normal stress in the shank, the average shear stress along
the cylindrical area of the plate defined by the section lines
a-a, and the average shear stress in the bolt head along the
cylindrical area defined by the section lines b—b.

Prob. R1-3

*R1-4. The beam AB is pin supported at A and supported
by a cable BC. A separate cable CG is used to hold up the
frame. If AB weighs 2.0 kN/m and the column FC has a
weight of 3.0 kN/m, determine the resultant internal
loadings acting on cross sections located at points D and E.
Neglect the thickness of both the beam and column in the
calculation.

Prob. R1-4
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R1-5. Determine the average punching shear stress the R1-7. The yoke-and-rod connection is subjected to a
circular shaft creates in the metal plate through section AC tensile force of 5 kN. Determine the average normal stress
and BD. Also, what is the average bearing stress developed in each rod and the average shear stress in the pin A

on the surface of the plate under the shaft? between the members.

40 mm

30 mm

120 mm

Prob. R1-5 S5kN
Prob. R1-7

R1-6. The 150 mm by 150 mm block of aluminum supports
a compressive load of 6 kN. Determine the average normal
and shear stress acting on the plane through section a-a.
Show the results on a differential volume element located
on the plane.

*R1-8. The cable has a specific weight y (weight/volume)
and cross-sectional area A. Assuming the sag s is small, so
that the cable’s length is approximately L and its weight can
be distributed uniformly along the horizontal axis, determine
the average normal stress in the cable at its lowest point C.

L) | L2

Prob. R1-6 Prob. R1-8
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Noticeable deformation occurred in this chain link just before excessive stress
caused it to fracture.




STRAIN

. CHAPTER OBJECTIVES

B In engineering the deformation of a body is specified using the
concepts of normal and shear strain. In this chapter we will define
these quantities and show how they can be determined for
various types of problems.

2.1 DEFORMATION

Whenever a force is applied to a body, it will tend to change the body’s
shape and size. These changes are referred to as deformation, and they
may be highly visible or practically unnoticeable. For example, a rubber
band will undergo a very large deformation when stretched, whereas only
slight deformations of structural members occur when a building is
occupied. Deformation of a body can also occur when the temperature of
the body is changed. A typical example is the thermal expansion or
contraction of a roof caused by the weather.

In a general sense, the deformation will not be uniform throughout the
body, and so the change in geometry of any line segment within the body
may vary substantially along its length. Hence, to study deformation, we
will consider line segments that are very short and located in the
neighborhood of a point. Realize, however, that the deformation will also
depend on the orientation of the line segment at the point. For example,
as shown in the adjacent photos, a line segment may elongate if it is
oriented in one direction, whereas it may contract if it is oriented in
another direction.

Note the before and after positions of three
different line segments on this rubber
membrane which is subjected to tension. The
vertical line is lengthened, the horizontal line
is shortened, and the inclined line changes its
length and rotates.

87
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P

As

Undeformed body

r—]

—
As'

Deformed body

Fig. 2-2

2.2 STRAIN

In order to describe the deformation of a body by changes in the lengths
of line segments and changes in the angles between them, we will develop
the concept of strain. Strain is actually measured by experiment, and once
the strain is obtained, it will be shown in the next chapter how it can be
related to the stress acting within the body.

e ——

| |
P ‘ P
|

| L

Fig. 2-1

If an axial load P is applied to the bar in Fig. 2-1, it
will change the bar’s length L to a length L. We will define the average
normal strain e (epsilon) of the bar as the change in its length
8 (delta) = L — L divided by its original length, that is

L—- L,

eavg = LO (2_1)

The normal strain at a point in a body of arbitrary shape is defined in a
similar manner. For example, consider the very small line segment As
located at the point, Fig. 2-2. After deformation it becomes As’, and the
change in its length is therefore As’ — As. As As — 0, in the limit the
normal strain at the point is therefore

e = lim A —As (2-2)
As—0 As

In both cases € (or €,,,) is a change in length per unit length, and it is pos-
itive when the initial line elongates, and negative when the line contracts.

As shown, normal strain is a dimensionless quantity, since it is a
ratio of two lengths. However, it is sometimes stated in terms of a ratio of
length units. If the SI system is used, where the basic unit for length is the
meter (m), then since e is generally very small, for most engineering
applications, measurements of strain will be in micrometers per meter
(um/m), where 1um = 10°m. For experimental work, strain is
sometimes expressed as a percent. For example, a normal strain of 480(10°)
can be reported as 480 wm/m, or 0.0480%. Or one can state the strain as
simply 480 w (480 “micros”).
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v
—
s
Bt g
Undeformed body Deformed body
(@)
4
Y ™
o ‘i\oT
2 3
0
Positive shear strain y Negative shear strain vy
©
Fig. 2-3

Shear Strain.  Deformations not only cause line segments to elongate
or contract, but they also cause them to change direction. If we select two
line segments that are originally perpendicular to one another, then the
change in angle that occurs between them is referred to as shear strain. This
angle is denoted by y (gamma) and is always measured in radians (rad),
which are dimensionless. For example, consider the two perpendicular line
segments at a point in the block shown in Fig. 2-3a. If an applied loading
causes the block to deform as shown in Fig. 2-3b, so that the angle between

the line segments becomes 6, then the shear strain at the point becomes m
2
T
vy=—-—20 (2-3) Az m
2 2
m Ax
2 Ay
Notice that if 6 is smaller than 7 /2, Fig. 2-3c, then the shear strain is
.. e .. . Undeformed
positive, whereas if 6 is larger than 7 /2, then the shear strain is negative. element
. . . L b
Cartesian Strain Components.  We can generalize our definitions ®)
of normal and shear strain and consider the undeformed element at a @ )
point in a body, Fig. 2-4a. Since the element’s dimensions are very small, 72
its deformed shape will become a parallelepiped, Fig. 2-4b. Here the
normal strains change the sides of the element to (1 + e)Az
m
1+ e)Ax (1 +e)dy (1 +e)Az oG =)
. , ™ ) (1 + €)Ax
which produces a change in the volume of the element. And the shear 2 7Y (1 +e)hy
strain changes the angles between the sides of the element to D
eformed
m w m element
E — Yxy 5 ~ Vyz E — VYxz (c)

which produces a change in the shape of the element. Fig. 24
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Small Strain Analysis.  Most engineering design involves applications
for which only small deformations are allowed. In this text, therefore, we will
assume that the deformations that take place within a body are almost
infinitesimal. For example, the normal strains occurring within the material
are very small compared to 1, so that € << 1. This assumption has wide
practical application in engineering, and it is often referred to as a small
strain analysis. It can also be used when a change in angle, A6, is small, so
that sin A@ = A6,cos A6 = 1,and tan A6 = AS6.

The rubber bearing support under this
concrete bridge girder is subjected to
both normal and shear strain. The
normal strain is caused by the weight
and bridge loads on the girder, and the
shear strain is caused by the horizontal
movement of the girder due to
temperature changes.

B VPORTANT POINTS

® T.oads will cause all material bodies to deform and, as a result,
points in a body will undergo displacements or changes in
position.

® Normal strain is a measure per unit length of the elongation or
contraction of a small line segment in the body, whereas shear
strain is a measure of the change in angle that occurs between
two small line segments that are originally perpendicular to one
another.

® The state of strain at a point is characterized by six strain
components: three normal strains €,, €, €, and three shear strains
Yays Yyz» Viz- These components all depend upon the original
orientation of the line segments and their location in the body.

® Strain is the geometrical quantity that is measured using
experimental techniques. Once obtained, the stress in the body
can then be determined from material property relations, as
discussed in the next chapter.

® Most engineering materials undergo very small deformations,
and so the normal strain € << 1.This assumption of “small strain
analysis” allows the calculations for normal strain to be simplified,
since first-order approximations can be made about its size.




EXAMPLE 2.1

Determine the average normal strains in the two wires in Fig. 2-5 if the ring
at Amovesto A'.

3m 3m
B [
C
4m
Al
_:‘ A 20 mm
P 10 mm
Fig. 2-5

SOLUTION

Geometry. The original length of each wire is

LAB:LAC: \/(3111)2"1‘ (4m)2=5m

The final lengths are

Lyg=VE@m—00lm) + (4m + 0.02m)? = 501004 m

Lyc=V(@m+00lm)+ (4m + 0.02m)’ = 5.02200 m

Average Normal Strain.

_ LA’B - LAB _ 5.01004m — 5
€AB = LAB B Sm

T = 201(10%) m/m  Ans.

LA’C - LAC _ 5.02200m — 5
LAC Sm

€4C == 4.40(10°) m/m  Ans.

2.2

STRAIN
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EXAMPLE 2.2

When force P is applied to the rigid lever arm ABC in Fig. 2-6a, the arm
rotates counterclockwise about pin A through an angle of 0.05°. Determine
the normal strain in wire BD.

D SOLUTION |

P 300 5 . c g
mm Geometry. The orientation of the lever arm after it rotates about point A
is shown in Fig. 2-6b. From the geometry of this figure,

400
o = tan1(300 22) = 53.1301°

Then
¢ =90° — a + 0.05° = 90° — 53.1301° + 0.05° = 36.92°

For triangle ABD the Pythagorean theorem gives

L,p = V(300 mm)? + (400 mm)? = 500 mm

Using this result and applying the law of cosines to triangle AB'D,

Lgp = \/L,Zw + Lip — 2(Lap) (Lap) cos ¢
= V(500 mm)? + (400 mm)? — 2(500 mm) (400 mm) cos 36.92°
= 300.3491 mm

Normal Strain.

c LB’D B LBD
BD —
LBD

(b) _300.3491 mm — 300 mm
300 mm

= 0.00116 mm/mm Ans.

SOLUTION II

Since the strain is small, this same result can be obtained by approximating
the elongation of wire BD as A Lgp,shown in Fig. 2-6b. Here,

0.05°

180° > (7 rad)} (400 mm) = 0.3491 mm

ALBD = OLAB = |:<
Therefore,

ALgp 03491 mm
= = = 0.0011 Ans.
€3D Lon 300 mm 0.00116 mm/mm ns.




EXAMPLE 2.3

The plate shown in Fig. 2-7a is fixed connected along AB and held in
the horizontal guides at its top and bottom, AD and BC. If its right side
CD is given a uniform horizontal displacement of 2 mm, determine (a)
the average normal strain along the diagonal AC, and (b) the shear
strain at E relative to the x, y axes.

SOLUTION

Part (a). When the plate is deformed, the diagonal AC becomes
AC', Fig. 2-7b. The lengths of diagonals AC and AC’ can be found
from the Pythagorean theorem. We have

AC =V (0150m)% + (0.150m)? = 021213 m

AC' = V(0150 m)2 + (0.152m)2 = 021355 m
Therefore the average normal strain along AC is

o AC' — AC _ 021355m — 021213 m
€AC) avg AC 021213 m

= 0.00669 mm/mm Ans.

Part (b). To find the shear strain at E relative to the x and y axes,
which are 90° apart, it is necessary to find the change in the angle at
E. After deformation, Fig. 2-7b,

. <0> _ 76 mm
an 2 75 mm

)(90.7590) = 1.58404 rad

5 r
6 = 90.759 ( TG

Applying Eq. 2-3, the shear strain at E is therefore the change in the

angle AED,

Yy = g — 1.58404 rad = —0.0132 rad Ans.

The negative sign indicates that the once 90° angle becomes larger.

NOTE: If the x and y axes were horizontal and vertical at point E, then
the 90° angle between these axes would not change due to the

deformation, and so y,, = 0 at point E.

75 mm p

>
—i——i
s~

2.2 STRAIN 93

} 150 mm } ‘P 2 mm

(a)

‘&76 mm —+—76 mm »‘
A D'
Vi

N ‘ e
N e
).
N7

e \\
Ve
7 FIOEN
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. PRELIMINARY PROBLEMS

P2-1. A loading causes the member to deform into the
dashed shape. Explain how to determine the normal strains
ecp and €453. The displacement A and the lettered
dimensions are known.

Prob. P2-1

P2-2. A loading causes the member to deform into the
dashed shape. Explain how to determine the normal strains
ecp and €45. The displacement A and the lettered
dimensions are known.

N

|
]a

l 2L L—

Prob. P2-2

P2-3. A loading causes the wires to elongate into the
dashed shape. Explain how to determine the normal strain
e, p in wire AB. The displacement A and the distances
between all lettered points are known.

Prob. P2-3

P2-4. A loading causes the block to deform into the
dashed shape. Explain how to determine the strains €4,
€40> €c> (Ya)yy The angles and distances between all
lettered points are known.

y
B C
7 B
/ /
g /
/ /
4 /
/ /
4 /
/\e )
A D *
Prob. P2-4

P2-5. A loading causes the block to deform into the
dashed shape. Explain how to determine the strains (y4)yy.
(vB)xy- The angles and distances between all lettered points
are known.

02 I S

:
|
|
|
|
|
|

T ——_ 1400 A

-

Prob. P2-5
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. FUNDAMENTAL PROBLEMS

[2-1. When force P is applied to the rigid arm ABC,
point B displaces vertically downward through a distance of
0.2 mm. Determine the normal strain in wire CD.

Prob. F2-1

12-2. If the force P causes the rigid arm ABC to rotate
clockwise about pin A through an angle of 0.02°, determine
the normal strain in wires BD and CE.

600 mm

600 mm

Prob. F2-2
F2-3.  The rectangular plate is deformed into the shape of a
parallelogram shown by the dashed line. Determine the average
shear strain at corner A with respect to the x and y axes.

y
2 mm
D[ C

==

| 1
! |

400 mm | | |

|
B
I
Al T T - 4mmx
<f300mm—i

Prob. F2-3

F2-4. The triangular plate is deformed into the shape
shown by the dashed line. Determine the normal strain
along edge BC and the average shear strain at corner A
with respect to the x and y axes.

y
S mm
. 400 <=
| mm ‘ .
Il ‘_B‘ I3mm
300mm 7

Prob. F2—-4

I2-5. The square plate is deformed into the shape shown
by the dashed line. Determine the average normal strain
along diagonal AC and the shear strain at point E with
respect to the x and y axes.

}-NA— 300 mm —B+i‘
3 mm

Prob. F2-5
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. PROBLEMS

2-1. An air-filled rubber ball has a diameter of 150 mm. If
the air pressure within it is increased until the ball’s
diameter becomes 175 mm, determine the average normal
strain in the rubber.

2-2. A thin strip of rubber has an unstretched length of
375 mm. If it is stretched around a pipe having an outer
diameter of 125 mm, determine the average normal strain in
the strip.

2-3. If the load P on the beam causes the end C to be
displaced 10 mm downward, determine the normal strain in
wires CE and BD.

| 3m | 2m |

Prob. 2-3

*2-4. The force applied at the handle of the rigid lever
causes the lever to rotate clockwise about the pin B through
an angle of 2°. Determine the average normal strain in each
wire. The wires are unstretched when the lever is in the
horizontal position.

200

Prob. 24

2-5. The pin-connected rigid rods AB and BC are inclined
at 6 = 30° when they are unloaded. When the force P is
applied 6 becomes 30.2°. Determine the average normal
strain in wire AC.

Prob. 2-5

2-6. The wire AB is unstretched when 0 = 45°. If a load is
applied to the bar AC, which causes 6 to become 47°,
determine the normal strain in the wire.

2-7. If a horizontal load applied to the bar AC causes point
A to be displaced to the right by an amount AL, determine
the normal strain in the wire AB. Originally, 6 = 45°.

Probs. 2—-6/7



*2-8. Therectangular plate is subjected to the deformation
shown by the dashed line. Determine the average shear
strain vy, in the plate.

2-9. The square deforms into the position shown by the
dashed lines. Determine the shear strain at each of its
corners, A, B, C, and D, relative to the x, y axes. Side D'B’
remains horizontal.
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2-10. Part of a control linkage for an airplane consists of a
rigid member CB and a flexible cable AB. If a force is
applied to the end B of the member and causes it to rotate
by 6 = 0.5°, determine the normal strain in the cable.
Originally the cable is unstretched.

mm

600 mm

Prob. 2-10

2-11. Part of a control linkage for an airplane consists of a
rigid member CB and a flexible cable AB. If a force is
applied to the end B of the member and causes a normal
strain in the cable of 0.004 mm/mm, determine the
displacement of point B. Originally the cable is unstretched.

o
2N

800 mm

Prob. 2-11
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*2-16. The nylon cord has an original length L and is tied
to a bolt at A and a roller at B. If a force P is applied to the

. . . roller, determine the normal strain in the cord when the
2-13. ]?ete'rmme the shear strain v, at corners Dand Cit roller is at C, and at D. If the cord is originally unstrained
the plastic distorts as shown by the dashed lines. when it is at C, determine the normal strain € when the
roller moves to D. Show that if the displacements A and A

are small,then e, = €p — €.

*2-12. Determine the shear strain v, at corners A and B
if the plastic distorts as shown by the dashed lines.

y
Ap
—Ac—
P
z
B C D
; /
/ /
X / /
Iy
I
I
Probs. 2-12/13 s
|/
|/
|/
/
A
2-14. The material distorts into the dashed position
shown. Determine the average normal strains €,, €, and the
Prob. 2-16

shear strain v,, at A, and the average normal strain along
line BE.

2-15. The material distorts into the dashed position
shown. Determine the average normal strains along the

diagonals AD and CF.
2-17. A thin wire, lying along the x axis, is strained such
that each point on the wire is displaced Ax = kx? along the
Yy x axis. If k is constant, what is the normal strain at any
point P along the wire?
15 mm

[ol
T
|
|
[

|
|
|

200 mm

|
| P

| 50 mm

¢ I
* X

 A—150mm—F

Probs. 2-14/15

Prob. 2-17



2-18. The block is deformed into the position shown by
the dashed lines. Determine the average normal strain along

line AB.

15 mm

110 mm 100 mm

Prob. 2-18
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*2-20. The guy wire AB of a building frame is originally
unstretched. Due to an earthquake, the two columns of the
frame tilt § = 2°. Determine the approximate normal strain
in the wire when the frame is in this position. Assume the
columns are rigid and rotate about their lower supports.

Yoo i

4m \
rﬁ]——ﬂﬁ

Prob. 2-20

2-19. Nylon strips are fused to glass plates. When
moderately heated the nylon will become soft while the
glass stays approximately rigid. Determine the average
shear strain in the nylon due to the load P when the

assembly deforms as indicated.

s T | —r
5 mmﬁi\ \
3mm | | |
5 mm \ \

3 mm7

Prob. 2-19

2-21. The rectangular plate is deformed into the shape
shown by the dashed lines. Determine the average normal
strain along diagonal AC, and the average shear strain at

corner A relative to the x, y axes.

y
6 mm
400 mm i
2 R 2 mm L
mm ‘,#,#,~'~’* _ I’T6mm
1D C I’
| |
i I
300 mm |! |
| ;
' | 2mm
__________ | ¥
A B [
400 mm ~3 mm
Prob. 2-21
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2-26. If the unstretched length of the bowstring is
8875 mm, determine the average normal strain in the string

2-22. The corners B and D of the square plate are given
when it is stretched to the position shown.

the displacements indicated. Determine the shear strains at

A and B.
y
450 mm
A
T 16 mm
D
B X 450 mm
3mm —| < 2ol |
/ 3mm 16 mm
Prob. 2-26
16 mm 16 mm
Prob. 2-22 2-27. The triangular plate is fixed at its base, and its apex A
is given a horizontal displacement of 5 mm. Determine the
shear strain, y,,, at A.
) ] ) #2-28. The triangular plate is fixed at its base, and its apex A
2-23. Determine the shear strain v, at corners A and B if is given a horizontal displacement of 5 mm. Determine the
the plate distorts as shown by the dashed lines. average normal strain e, along the x axis.
2-29. The triangular plate is fixed at its base, and its apex A

*2-24. Determine the shear strain y,, at corners D and C
is given a horizontal displacement of 5 mm. Determine the

if the plate distorts as shown by the dashed lines.
average normal strain €, along the x' axis.

2-25. Determine the average normal strain that occurs
along the diagonals AC and DB.

| 5 mm
e ]
dmmi | T » ,/ [4 m
CIH |
l’ I|
1 1
300 mm |} i
" :
1 J
L, BEE— i 2mm .
D
———400 mm ————
3 mm
Probs. 2-27/28/29

Probs. 2-23/24/25



2-30. The rubber band AB has an unstretched length of 1
m. If it is fixed at B and attached to the surface at point A’,
determine the average normal strain in the band. The surface
is defined by the function y = (x?) m, where x is in meters.

A

F—1m—
Prob. 2-30

2-31. The rectangular plate is deformed into the shape
shown by the dashed lines. Determine the average normal
strain along diagonal BD, and the average shear strain at

corner B relative to the x, y axes.

y
6 mm
400 mm
2 mm 2 mm L
- - == |
I -~ ITGmm
1D C"
| |
i |
300 mm ! |
,‘ |
I
' | 2mm
__________ | ) ]
A B [
400 mm 3 mm

Prob. 2-31
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*2-32. The nonuniform loading causes a normal strain in
. T
the shaft that can be expressed as €, = k sin zx , where

k is a constant. Determine the displacement of the center C
and the average normal strain in the entire rod.

Prob. 2-32

2-33. The fiber AB has a length L and orientation 6. If its
ends A and B undergo very small displacements ©, and vy
respectively, determine the normal strain in the fiber when

it is in position A’ B'.

Prob. 2-33

2-34. If the normal strain is defined in reference to the
final length As’, that is,
. lim (As’ - As)
€ = _—
As'— 0 As’

instead of in reference to the original length, Eq. 2-2, show
that the difference in these strains is represented as a

second-order term, namely,e — €' = €e€’.
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Horizontal ground displacements caused by an earthquake produced fracture of
this concrete column. The material properties of the steel and concrete must

be determined so that engineers can properly design the column to resist the
loadings that caused this failure.




MECHANICAL
PROPERTIES OF
MATERIALS

. CHAPTER OBJECTIVES

B Having discussed the basic concepts of stress and strain, in this
chapter we will show how stress can be related to strain by using
experimental methods to determine the stress—strain diagram for
a specific material. Other mechanical properties and tests that
are relevant to our study of mechanics of materials also will
be discussed.

3.1 THE TENSION AND COMPRESSION
TEST

The strength of a material depends on its ability to sustain a load without
undue deformation or failure. This strength is inherent in the material
itself and must be determined by experiment. One of the most important
tests to perform in this regard is the tension or compression test. Once
this test is performed, we can then determine the relationship between
the average normal stress and average normal strain in many engineering
materials such as metals, ceramics, polymers, and composites.
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dy =13 mm

Typical steel specimen with attached strain
gage

movable
upper T
crosshead\E,\
i

tension |
specimen

Fig. 3-2

To perform a tension or compression test, a specimen of the material
is made into a “standard” shape and size, Fig. 3-1. As shown it has a
constant circular cross section with enlarged ends, so that when tested,
failure will occur somewhere within the central region of the
specimen. Before testing, two small punch marks are sometimes placed
along the specimen’s uniform length. Measurements are taken of both
the specimen’s initial cross-sectional area, Ay, and the gage-length
distance L, between the punch marks. For example, when a metal
specimen is used in a tension test, it generally has an initial diameter
of dy = 13 mm and a gage length of Ly = 51 mm, Fig. 3-1. A testing
machine like the one shown in Fig. 3-2 is then used to stretch the
specimen at a very slow, constant rate until it fails. The machine is
designed to read the load required to maintain this uniform stretching.

At frequent intervals, data is recorded of the applied load P. Also, the
elongation 6 = L — L, between the punch marks on the specimen may
be measured, using either a caliper or a mechanical or optical device
called an extensometer. Rather than taking this measurement and then
calculating the strain, it is also possible to read the normal strain directly
on the specimen by using an electrical-resistance strain gage, which
looks like the one shown in Fig. 3-3. As shown in the adjacent photo, the
gage is cemented to the specimen along its length, so that it becomes an
integral part of the specimen. When the specimen is strained in the
direction of the gage, both the wire and specimen will experience the
same deformation or strain. By measuring the change in the electrical
resistance of the wire, the gage may then be calibrated to directly read
the normal strain in the specimen.

motor
and load
controls

Electrical-resistance
strain gage

Fig. 3-3
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3.2 THE STRESS-STRAIN DIAGRAM

Once the stress and strain data from the test are known, then the results
can be plotted to produce a curve called the stress—strain diagram. This
diagram is very useful since it applies to a specimen of the material made
of any size. There are two ways in which the stress—strain diagram is
normally described.

Conventional Stress-Strain Diagram. The nominal or
engineering stress is determined by dividing the applied load P by the
specimen’s original cross-sectional area A. This calculation assumes that
the stress is constant over the cross section and throughout the gage
length. We have

g =— (3-1)

Likewise, the nominal or engineering strain is found directly from the
strain gage reading, or by dividing the change in the specimen’s gage
length, 6, by the specimen’s original gage length L. Thus,

g == (3-2)

When these values of o and € are plotted, where the vertical axis is the
stress and the horizontal axis is the strain, the resulting curve is called a
conventional stress—strain diagram. A typical example of this curve is
shown in Fig. 3-4. Realize, however, that two stress—strain diagrams for a
particular material will be quite similar, but will never be exactly the
same. This is because the results actually depend upon such variables as
the material’s composition, microscopic imperfections, the way the
specimen is manufactured, the rate of loading, and the temperature
during the time of the test.

From the curve in Fig. 3-4, we can identify four different regions in
which the material behaves in a unique way, depending on the amount of
strain induced in the material.

Elastic Behavior. The initial region of the curve, indicated in light
orange, is referred to as the elastic region. Here the curve is a straight line
up to the point where the stress reaches the proportional limit, o,
When the stress slightly exceeds this value, the curve bends until the
stress reaches an elastic limit. For most materials, these points are very
close, and therefore it becomes rather difficult to distinguish their exact
values. What makes the elastic region unique, however, is that after
reaching oy, if the load is removed, the specimen will recover its original
shape. In other words, no damage will be done to the material.

true fracture stress

fracture
stress

proportional limit

elastic [imit
ield stres:

elastic |yielding strain necking
region hardening
elastic plastic behavior

Ibehavior

Conventional and true stress—strain diagram
for ductile material (steel) (not to scale)

Fig. 3-4
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Because the curve is a straight line up to o, any increase in stress will
cause a proportional increase in strain. This fact was discovered in 1676
by Robert Hooke, using springs, and is known as Hooke’s law. It is

expressed mathematically as
o

Here E represents the constant of proportionality, which is called the
modulus of elasticity or Young’s modulus, named after Thomas Young,
who published an account of it in 1807

As noted in Fig. 3-4, the modulus of elasticity represents the slope of
the straight line portion of the curve. Since strain is dimensionless, from
Eq. 3-3, E will have the same units as stress, such as pascals (Pa),
megapascals (MPa), or gigapascals (GPa).

a
, true fracture stress
g
ultimate|
Tu stress fracture
o proportional limit stress
f elastic limit
oy yield stres
(Tp[
E
" €
elastic |yielding strain necking
region hardening
elastic plastic behavior
lbehavior

Conventional and true stress—strain diagram
for ductile material (steel) (not to scale)

Fig. 3-4 (Repeated)

Yielding. A slight increase in stress above the elastic limit will result in
a breakdown of the material and cause it to deform permanently. This
behavior is called yielding, and it is indicated by the rectangular dark
orange region in Fig. 3—4. The stress that causes yielding is called the yield
stress or yield point, oy, and the deformation that occurs is called plastic
deformation. Although not shown in Fig. 3-4, for low-carbon steels or
those that are hot rolled, the yield point is often distinguished by two
values. The upper yield point occurs first, followed by a sudden decrease in
load-carrying capacity to a lower yield point. Once the yield point is
reached, then as shown in Fig. 3—4, the specimen will continue to elongate
(strain) without any increase in load. When the material behaves in this
manner, it is often referred to as being perfectly plastic.
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Strain Hardening. When yielding has ended, any load causing an
increase in stress will be supported by the specimen, resulting in a curve
that rises continuously but becomes flatter until it reaches a maximum
stress referred to as the ultimate stress, o,. The rise in the curve in this
manner is called strain hardening, and it is identified in Fig. 3-4 as the
region in light green.

Necking. Up to the ultimate stress, as the specimen elongates, its
cross-sectional area will decrease in a fairly uniform manner over the
specimen’s entire gage length. However, just after reaching the ultimate
stress, the cross-sectional area will then begin to decrease in a localized
region of the specimen, and so it is here where the stress begins to
increase. As a result, a constriction or “neck” tends to form with further
elongation, Fig. 3-5a. This region of the curve due to necking is indicated
in dark green in Fig. 3—4. Here the stress—strain diagram tends to curve
downward until the specimen breaks at the fracture stress, oy, Fig. 3-5b.

Instead of always using the original
cross-sectional area Ay and specimen length L to calculate the (engineering)
stress and strain, we could have used the actual cross-sectional area A and
specimen length L at the instant the load is measured. The values of stress
and strain found from these measurements are called true stress and
true strain, and a plot of their values is called the true stress—strain diagram.
When this diagram is plotted, it has a form shown by the upper blue curve
in Fig. 3-4. Note that the conventional and true o—e diagrams are practically
coincident when the strain is small. The differences begin to appear in the
strain-hardening range, where the magnitude of strain becomes more
significant. From the conventional o—e diagram, the specimen appears to
support a decreasing stress (or load), since Ay is constant, o = N/A,. In
fact, the true o—e diagram shows the area A within the necking region is
always decreasing until fracture, o f, and so the material actually sustains
increasing stress,since 0 = N/A.

Although there is this divergence between these two diagrams, we can
neglect this effect since most engineering design is done only within the
elastic range. This will generally restrict the deformation of the material to
very small values, and when the load is removed the material will restore
itself to its original shape. The conventional stress—strain diagram can be
used in the elastic region because the true strain up to the elastic limit is
small enough, so that the error in using the engineering values of o and € is
very small (about 0.1%) compared with their true values.

S

Necking Failure of a
ductile material

(@) (b)
Fig. 3-5

Typical necking pattern
which has occurred on this
steel specimen just before
fracture.

This steel specimen clearly shows the necking
that occurred just before the specimen failed.
This resulted in the formation of a “cup-cone”
shape at the fracture location, which is
characteristic of ductile materials.
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o (MPa)

MECHANICAL PROPERTIES OF MATERIALS

Steel. A typical conventional stress—strain diagram for a mild steel
specimen is shown in Fig. 3-6. In order to enhance the details, the elastic
region of the curve has been shown in green using an exaggerated strain
scale, also shown in green. Following this curve, as the load (stress) is
increased, the proportional limit is reached at o,; = 241 MPa, where
€, = 0.0012 mm/mm. When the load is further increased, the stress
reaches an upper yield point of (oy), = 262 MPa, followed by a drop in
stress to a lower yield point of (oy); = 248 MPa. The end of yielding
occurs at a strain of ey = 0.030 mm/mm, which is 25 times greater than
the strain at the proportional limit! Continuing, the specimen undergoes
strain hardening until it reaches the ultimate stress of g, = 435 MPa; then
it begins to neck down until fracture occurs, at oy = 324 MPa. By
comparison, the strain at failure, €, = 0.380 mm/mm, is 317 times greater
than €,,!

Since a;,; =241 MPa and €,, = 0.0012 mm /mm, we can determine the
modulus of elasticity. From Hooke’s law, it is

o 241(10°) Pa
€y 0.0012 mm/mm

= 200 GPa

Although steel alloys have different carbon contents, most grades of
steel, from the softest rolled steel to the hardest tool steel, have about
this same modulus of elasticity, as shown in Fig. 3-7

o (MPa)
o, =435
400 - 1200 1 spring steel
350 (1% carbon)
B 1100 |
o= 32U 0T 1000 -
(oy), = 262 J 900
PRI N N
(oy), = 248ti[ — o 800 L hard steel
o, = 241700 (0.6% carbon)
P 700 heat treated
150 600 -
machine steel
100 500 - (0.6% carbon)
50 400 1 structural steel
300 - (0.2% carbon)
I I I I I € (mm/mm) 200 - SOftDSteel
/0.050 0.10 0.20 0.30 0.40 (0.1% carbon)
ey =0.030 0.001 0.002 0003/ 0.004 100 -
€y = 0.0012 €= 0.380 ‘ ‘ ‘ ‘ ‘ « (cam/imm)
Stress—strain diagram for mild steel 0.002 0.004 0.006 0.008 0.01
Fig. 3-6 Fig. 3-7
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3.3 STRESS-STRAIN BEHAVIOR OF
DUCTILE AND BRITTLE MATERIALS

Materials can be classified as either being ductile or brittle, depending on
their stress—strain characteristics.

Any material that can be subjected to large
strains before it fractures is called a ductile material. Mild steel, as
discussed previously, is a typical example. Engineers often choose ductile
materials for design because these materials are capable of absorbing
shock or energy, and if they become overloaded, they will usually exhibit
large deformation before failing.

One way to specify the ductility of a material is to report its percent
elongation or percent reduction in area at the time of fracture. The
percent elongation is the specimen’s fracture strain expressed as a
percent. Thus, if the specimen’s original gage length is L and its length at
fracture is Ly, then

L
Percent elongation = %(100%) (3-4)
0

For example, as in Fig. 3-6, since €; = 0.380, this value would be 38% for
a mild steel specimen.

The percent reduction in area is another way to specify ductility. It is
defined within the region of necking as follows:

Ay
Percent reduction of area = Tf (100%) (3-5)

Here A, is the specimen’s original cross-sectional area and Ay is the area
of the neck at fracture. Mild steel has a typical value of 60%.

Besides steel, other metals such as brass, molybdenum, and zinc may
also exhibit ductile stress—strain characteristics similar to steel, whereby
they undergo elastic stress—strain behavior, yielding at constant stress,
strain hardening, and finally necking until fracture. In most metals and
some plastics, however, constant yielding will not occur beyond the
elastic range. One metal where this is the case is aluminum, Fig. 3-8.
Actually, this metal often does not have a well-defined yield point, and
consequently it is standard practice to define a yield strength using a
graphical procedure called the offset method. Normally for structural
design a 0.2% strain (0.002 mm/mm) is chosen, and from this point on
the € axis a line parallel to the initial straight line portion of the stress—
strain diagram is drawn. The point where this line intersects the curve
defines the yield strength. From the graph, the yield strength is
Oys = 352 MPa.

109

o (MPa)

400
350
300
250
200
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100
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[F—— 0.005 0.010
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Yield strength for an aluminum alloy

Fig. 3-8
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o (MPa)
200

100
—0.06 —0.05 —0.04 —0.03 —0.02 —0.01 A
T T T T T T L € (mm/mm)
0.01
—100

2 4 6 8
o—e diagram for natural rubber

Fig. 3-9

Concrete used for structural purposes
must be tested in compression to be
sure it reaches its ultimate design
stress after curing for 30 days.

L € (mm/mm
m (mm/mm) o

—300
—400
—500
—600
=700
—800

o—e diagram for gray cast iron

Fig. 3-10

Realize that the yield strength is not a physical property of the material,
since it is a stress that causes a specified permanent strain in the material.
In this text, however, we will assume that the yield strength, yield point,
elastic limit, and proportional limit all coincide unless otherwise stated.
An exception would be natural rubber, which in fact does not even have
a proportional limit, since stress and strain are not linearly related.
Instead, as shown in Fig. 3-9, this material, which is known as a polymer,
exhibits nonlinear elastic behavior.

Wood is a material that is often moderately ductile, and as a result it is
usually designed to respond only to elastic loadings. The strength
characteristics of wood vary greatly from one species to another, and for
each species they depend on the moisture content, age, and the size and
arrangement of knots in the wood. Since wood is a fibrous material, its
tensile or compressive characteristics parallel to its grain will differ
greatly from these characteristics perpendicular to its grain. Specifically,
wood splits easily when it is loaded in tension perpendicular to its grain,
and consequently tensile loads are almost always intended to be applied
parallel to the grain of wood members.
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o (MPa)
10
(gt)max = 2‘76
—0.0025 —0.0015 —0.0005 o ‘
T T T € (mm/mm)
0 0.0005
4 —10
ﬂiﬁﬁﬁmﬁi b L ﬁmﬁm 41 —20
‘- 17300 = 345
Tension failure of Compression causes -1 —40
a brittle material material to bulge out
(a) (b) o —e diagram for typical concrete mix

Fig. 3-11 Fig. 3-12

Brittle Materials. Materials that exhibit little or no yielding
before failure are referred to as brittle materials. Gray cast iron is an
example, having a stress-strain diagram in tension as shown by the
curve AB in Fig. 3-10. Here fracture at oy = 152 MPa occurred due to a
microscopic crack, which then spread rapidly across the specimen,
causing complete fracture. Since the appearance of initial cracks in a
specimen is quite random, brittle materials do not have a well-defined
tensile fracture stress. Instead the average fracture stress from a set of
observed tests is generally reported. A typical failed specimen is shown
in Fig. 3-11a.

Compared with their behavior in tension, brittle materials exhibit a
much higher resistance to axial compression, as evidenced by segment
AC of the gray cast iron curve in Fig. 3-10. For this case any cracks or
imperfections in the specimen tend to close up, and as the load increases
the material will generally bulge or become barrel shaped as the strains
become larger, Fig. 3-11b.

Like gray cast iron, concrete is classified as a brittle material, and it
also has a low strength capacity in tension. The characteristics of its
stress—strain diagram depend primarily on the mix of concrete (water,
sand, gravel, and cement) and the time and temperature of curing.
A typical example of a “complete” stress—strain diagram for concrete is
given in Fig. 3-12. By inspection, its maximum compressive strength is
about 12.5 times greater than its tensile strength, (o) pn.c = 34.5 MPa
versus (0;) max = 2.76 MPa. For this reason, concrete is almost always
reinforced with steel bars or rods whenever it is designed to support
tensile loads.

It can generally be stated that most materials exhibit both ductile and
brittle behavior. For example, steel has brittle behavior when it contains
a high carbon content, and it is ductile when the carbon content is
reduced. Also, at low temperatures materials become harder and more
brittle, whereas when the temperature rises they become softer and more
ductile. This effect is shown in Fig. 313 for a methacrylate plastic.

Steel rapidly loses its strength when
heated. For this reason engineers often
require main structural members to be
insulated in case of fire.

40°C

70°C

I I I I I I € (mm/mm)
0.01 0.02 0.03 0.04 0.05 0.06

o—e diagrams for a methacrylate plastic

Fig. 3-13
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Stiffness. The modulus of elasticity is a mechanical property that
indicates the stiffness of a material. Materials that are very stiff, such as
steel, have large values of E (Eyq = 200 GPa), whereas spongy materials
such as vulcanized rubber have low values (£, =0.69 MPa). Values of E for
commonly used engineering materials are often tabulated in engineering
codes and reference books. Representative values are also listed in the back
of the book.

The modulus of elasticity is one of the most important mechanical
properties used in the development of equations presented in this text. It
must always be remembered, though, that E, through the application of
Hooke’s law, Eq. 3-3, can be used only if a material has linear elastic
behavior. Also, if the stress in the material is greater than the proportional
limit, the stress—strain diagram ceases to be a straight line, and so Hooke’s
law is no longer valid.

Strain Hardening. If a specimen of ductile material, such as steel,
is loaded into the plastic region and then unloaded, elastic strain is
recovered as the material returns to its equilibrium state. The plastic
strain remains, however, and as a result the material will be subjected to
a permanent set. For example, a wire when bent (plastically) will spring
back a little (elastically) when the load is removed; however, it will not
fully return to its original position. This behavior is illustrated on the
stress—strain diagram shown in Fig. 3-14a. Here the specimen is loaded
beyond its yield point A to point A’. Since interatomic forces have to be
overcome to elongate the specimen elastically, then these same forces
pull the atoms back together when the load is removed, Fig. 3—14a.
Consequently, the modulus of elasticity, £, is the same, and therefore the
slope of line O’A’ is the same as line OA. With the load removed, the
permanent setis OO'.

If the load is reapplied, the atoms in the material will again be displaced
until yielding occurs at or near the stress A’, and the stress—strain
diagram continues along the same path as before, Fig. 3-14b. Although
this new stress—strain diagram, defined by O’'A’B, now has a higher yield
point (A'),a consequence of strain hardening, it also has less ductility, or
a smaller plastic region, than when it was in its original state.

This pin was made of a hardened steel
alloy, that is, one having a high carbon
content. It failed due to brittle fracture.
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As amaterial is deformed by an external load, the load will do external work,
which in turn will be stored in the material as internal energy. This energy is
related to the strains in the material, and so it is referred to as strain energy.
To show how to calculate strain energy, consider a small volume element of
material taken from a tension test specimen, Fig. 3-15. It is subjected to the
uniaxial stress o-. This stress develops a force AF = o0 AA = o(Ax Ay)on
the top and bottom faces of the element, which causes the element to
undergo a vertical displacement e Az, Fig. 3-15b. By definition, work is
determined by the product of a force and displacement in the direction of
the force. Here the force is increased uniformly from zero to its final
magnitude AF when the displacement € Az occurs, and so during the
displacement the work done on the element by the force is equal to the
average force magnitude (AF/2) times the displacement e Az. The
conservation of energy requires this “external work” on the element to
be equivalent to the “internal work” or strain energy stored in the element,
assuming that no energy is lost in the form of heat. Consequently, the strain
energyis AU = (3AF) € Az = (3 o Ax Ay) e Az Since the volume of the
elementis AV = Ax Ay Az,then AU = Joe AV.

For engineering applications, it is often convenient to specify the strain
energy per unit volume of material. This is called the strain energy
density, and it can be expressed as

AU 1

u=——=_0¢€ 3-6
AV 2 (3-6)
Finally, if the material behavior is linear elastic, then Hooke’s law
applies, o = Ee, and therefore we can express the elastic strain energy
density in terms of the uniaxial stress o as

_10'2

u = Ef (3—7)

When the stress in a material reaches the
proportional limit, the strain energy density, as calculated by Eq. 3-6
or 3-7,is referred to as the modulus of resilience. 1t is

2
1 1 Opi
Uy = 5O €p = 5 (3-8)

Here u, is equivalent to the shaded triangular area under the elastic
region of the stress—strain diagram, Fig. 3-16a. Physically the modulus of
resilience represents the largest amount of strain energy per unit volume
the material can absorb without causing any permanent damage to the
material. Certainly this property becomes important when designing
bumpers or shock absorbers.
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Fig. 3-15

(Tp[

EP[
Modulus of resilience u,

(a)
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T Another important property of a material
is its modulus of toughness, u,. This quantity represents the entire area under
the stress—strain diagram, Fig. 3-16b, and therefore it indicates the maximum
amount of strain energy per unit volume the material can absorb just before
it fractures. Certainly this becomes important when designing members that
may be accidentally overloaded. By alloying metals, engineers can change

u
7 their resilience and toughness. For example, by changing the percentage of
carbon in steel, the resulting stress—strain diagrams in Fig. 3-17 show how its
resilience and toughness can be changed.
Modulus of toughness u, ) - /MPUR TANT PU/N TS
(®)
Fig. 3-16 (cont.) ® A conventional stress—strain diagram is important in engineering
” since it provides a means for obtaining data about a material’s
hard steel tensile or compressive strength without regard for the material’s
(0.6% carbon) physical size or shape.
highest strength . . . . L
structural steel C Engzneermg stress and strain are calculated using the original
(0.2% carbon) cross-sectional area and gage length of the specimen.
toughest . . . . .
oughes ® A ductile material,such as mild steel, has four distinct behaviors
ng{ "S/te:;rbon) as it is loaded. They are elastic behavior, yielding, strain
most ductile hardening, and necking.
® A material is linear elastic if the stress is proportional to the strain
. within the elastic region. This behavior is described by Hooke’s law,
o = Ee,where the modulus of elasticity E is the slope of the line.
Fig. 3-17

® Important points on the stress—strain diagram are the proportional
limit, elastic limit, yield stress, ultimate stress, and fracture stress.

® The ductility of a material can be specified by the specimen’s
percent elongation or the percent reduction in area.

® [famaterial does not have a distinct yield point, a yield strength
can be specified using a graphical procedure such as the offset
method.

® PBrittle materials, such as gray cast iron, have very little or no
yielding and so they can fracture suddenly.

® Strain hardening is used to establish a higher yield point for a
material. This is done by straining the material beyond the
elastic limit, then releasing the load. The modulus of elasticity
remains the same; however, the material’s ductility decreases.

® Strain energy is energy stored in a material due to its
deformation. This energy per unit volume is called strain
energy density. If it is measured up to the proportional limit, it
is referred to as the modulus of resilience, and if it is measured
up to the point of fracture, it is called the modulus of toughness.
It can be determined from the area under the o—e diagram.

This nylon specimen exhibits a high degree
of toughness as noted by the large amount
of necking that has occurred just before
fracture.




EXAMPLE 3.1

A tension test for a steel alloy results in the stress—strain diagram shown
in Fig. 3-18. Calculate the modulus of elasticity and the yield strength
based on a 0.2% offset. Identify on the graph the ultimate stress and the
fracture stress.

o(MPa)

800
o, = 745\

700 [ _— —
o,= 621
I 600 c

50F A &
1= 469 55 i

345 e
300 s

E E
200 i

100 | v
, €=0.23

| | | P | | | | | | E(mm/mm)
O 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

| 0.0008 | 00016 | 0.0024
00004 0.0012  0.0020
0.002¢

0.2%
Fig. 3-18

SOLUTION

Modulus of Elasticity. We must calculate the slope of the initial straight-
line portion of the graph. Using the magnified curve and scale shown in
blue, this line extends from point O to an estimated point A, which has
coordinates of approximately (0.0016 mm/mm, 345 MPa). Therefore,

345 MPa

=_=»a Ans.
E = 0.0016 mm/mm _ 210 6F2 "

Note that the equation of line OA is thus o = [216(10%)e] MPa.

Yield Strength. For a 0.2% offset, we begin at a strain of 0.2% or
0.0020 mm/mm and graphically extend a (dashed) line parallel to OA until
it intersects the o —e curve at A'. The yield strength is approximately

oys = 469 MPa Ans.

Ultimate Stress. This is defined by the peak of the o—e graph, point B
in Fig. 3-18.

g, = 745 MPa Ans.

Fracture Stress. When the specimen is strained to its maximum of
€; = 0.23mm/mm, it fractures at point C. Thus,

oy = 621 MPa Ans.

3.4
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EXAMPLE 3.2

The stress—strain diagram for an aluminum alloy that is used for making
aircraft parts is shown in Fig. 3-19. If a specimen of this material is
stressed to o = 600 MPa, determine the permanent set that remains in
the specimen when the load is released. Also, find the modulus of
resilience both before and after the load application.

o (MPa)
750
B
600 - F
oy =450 —fA
parallel
300
150 |-
G C D
L L L L € (mm,/mm
O| /001 | 0.02) 003 0.04 L)
ey=0.006]  0.023
HGOC*»

Fig. 3-19

SOLUTION

Permanent Strain. When the specimen is subjected to the load, it
strain hardens until point B is reached on the o—e diagram. The strain at
this point is approximately 0.023 mm/mm. When the load is released, the
material behaves by following the straight line BC, which is parallel
to line OA. Since both of these lines have the same slope, the strain at
point C can be determined analytically. The slope of line OA is the
modulus of elasticity, i.e.,
450 MPa

E= 0.006 mm/mm = 75.0GPa



From triangle CBD, we require

600(10°) Pa
CD

CD = 0.008 mm/mm

_BD

E=—
CcD’

75.0(10%) Pa =

This strain represents the amount of recovered elastic strain. The
permanent set or strain, €, is thus

€oc = 0.023 mm/mm — 0.008 mm/mm

= 0.0150 mm/mm Ans.

NOTE: If gage marks on the specimen were originally 50 mm apart, then
after the load 1is released these marks will be 50mm +
(0.0150) (50 mm ) = 50.75 mm apart.

Modulus of Resilience. Applying Eq. 3-8, the areas under OAG and
CBD in Fig. 3-19 are*

1 1
(4 )inial = 5 Op1 €51 = 5 (450 MPa) (0.006 mm/mm )
= 1.35MJ/m’ Ans.
1 1
() tnal = 5 1 €1 = 5(600 MPa) (0.008 mm /mm)
= 240 MJ/m? Ans.

NOTE: By comparison, the effect of strain hardening the material has
caused an increase in the modulus of resilience; however, note that
the modulus of toughness for the material has decreased, since the
area under the original curve, OABF, is larger than the area under
curve CBF.

*Work in the SI system of units is measured in joules, where 1J = 1 N-m.
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EXAMPLE 3.3

MECHANICAL PROPERTIES OF MATERIALS

20 mm

The aluminum rod, shown in Fig. 3-20a, has a circular cross section and is
subjected to an axial load of 10 kN. If a portion of the stress—strain
diagram is shown in Fig. 3-20b, determine the approximate elongation of
the rod when the load is applied. Take E, = 70 GPa.

o (MPa)

60
S50
O'y:40’

15 mm 30
B | ¢ 20

56.59

10 kN < ‘

egc = 0.045

600 mm

(a)

; » 10 kKN 10
‘H 400 mm# o 0.02 0.04 0.06

(®)

Fig. 3-20

SOLUTION

In order to find the elongation of the rod, we must first obtain the strain.
This is done by calculating the stress, then using the stress—strain diagram.
The normal stress within each segment is

N _ 10(10°) N

=2 = — 31.83 MP

TAB T 4 T (001 m)? :
N 10(10°) N

T = = % = 56.59 MPa
A 7(0.0075m)

From the stress—strain diagram, the material in segment AB is strained
elastically since o435 < oy = 40 MPa. Using Hooke’s law,

oap _ 31.83( 10%) Pa
E, 70(10%) Pa

€A = = 0.0004547 mm/mm

The material within segment BC is strained plastically, since
ogc > oy = 40 MPa. From the graph, for opc = 56.59 MPa,
egc ~ 0.045 mm/mm.The approximate elongation of the rod is therefore

8§ = el = 0.0004547 (600 mm) + 0.0450 (400 mm )
= 183 mm Ans.
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. FUNDAMENTAL PROBLEMS

['3-1. Define a homogeneous material.

I'3-2. Indicate the points on the stress-strain diagram
which represent the proportional limit and the ultimate
stress.

Prob. F3-2

I'3-3.  Define the modulus of elasticity E.

F3-4. At room temperature, mild steel is a ductile
material. True or false?

I'3-5. Engineering stress and strain are calculated using
the actual cross-sectional area and length of the specimen.
True or false?

['3-6. As the temperature increases the modulus of
elasticity will increase. True or false?

1'3-7. A 100-mm-long rod has a diameter of 15 mm. If an
axial tensile load of 100 kN is applied, determine its change
in length. Assume linear elastic behavior with £ = 200 GPa.

I'3-8. A bar has a length of 200 mm and cross-sectional
area of 7500 mm?. Determine the modulus of elasticity of the
material if it is subjected to an axial tensile load of 50 kN and
stretches 0.075 mm. The material has linear-elastic behavior.

13-9. A 10-mm-diameter rod has a modulus of elasticity
of E = 100 GPa. If it is 4 m long and subjected to an axial
tensile load of 6 kN, determine its elongation. Assume linear
elastic behavior.

F3-10. The material for the 50-mm-long specimen has the
stress—strain diagram shown. If P = 100 kN, determine the
elongation of the specimen.

I3-11. The material for the 50-mm-long specimen has the
stress—strain diagram shown. If P = 150 kN is applied and
then released, determine the permanent elongation of the
specimen.

P
o (MPa) 20 mm
500 P
450
1 € (mm/mm
0.00225 0.03 (mm/mm)

Prob. F3-10/11

F3-12. If the elongation of wire BC is 0.2 mm after the
force P is applied, determine the magnitude of P. The wire
is A-36 steel and has a diameter of 3 mm.

Prob. F3-12
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. PROBLEMS

MECHANICAL PROPERTIES OF MATERIALS

3-1. A tension test was performed on a steel specimen having
an original diameter of 12.5 mm and gauge length of 50 mm.
The data is listed in the table. Plot the stress—strain diagram
and determine approximately the modulus of elasticity, the
yield stress, the ultimate stress, and the rupture stress. Use a
scale of 25mm = 140 MPa and 25mm = 0.05 mm/mm.
Redraw the elastic region, using the same stress scale but a
strain scale of 25 mm = 0.001 mm/mm.

Load (kN) [Elongation (mm)
0 0
7.0 0.0125
21.0 0.0375
36.0 0.0625
50.0 0.0875
53.0 0.125
53.0 0.2
54.0 0.5
75.0 1.0
90.0 2.5
97.0 7.0
87.8 10.0
83.3 11.5
Prob. 3-1

3-2. Data taken from a stress—strain test for a ceramic are
given in the table. The curve is linear between the origin and
the first point. Plot the diagram, and determine the modulus
of elasticity and the modulus of resilience.

3-3. Data taken from a stress-strain test for a ceramic are
given in the table. The curve is linear between the origin and the
first point. Plot the diagram, and determine approximately the
modulus of toughness. The rupture stress is o, = 373.8 MPa.

o (MPa) | e (mm/mm)
0 0
232.4 0.0006
318.5 0.0010
345.8 0.0014
360.5 0.0018
373.8 0.0022

Probs. 3-2/3

*3—4. The stress—strain diagram for a metal alloy having an
original diameter of 12 mm and a gauge length of 50 mm is
given in the figure. Determine approximately the modulus of
elasticity for the material, the load on the specimen that causes
yielding, and the ultimate load the specimen will support.

o (MPa)
600

500

400

300 —— e

/|

200
/{
100 /

€ (mm/mm)

0 004 008 012 0.16 020 024 0.28
0 0.0005 0.0010.0015 0.002 0.0025 0.003 0.0035

Prob. 3-4

3-5. The stress-strain diagram for a steel alloy having an
original diameter of 12 mm and a gauge length of 50 mm is
given in the figure. If the specimen is loaded until it is
stressed to 500 MPa, determine the approximate amount of
elastic recovery and the increase in the gauge length after it
is unloaded.

o (MPa)
600

500

400

300 —— —

200 /

/{
100 /

€ (mm/mm)

0 004 008 0.12 0.16 020 024 0.28
0 0.0005 0.0010.0015 0.002 0.0025 0.003 0.0035

Prob. 3-5



3-6. The stress—strain diagram for a steel alloy having an
original diameter of 12 mm and a gauge length of 50 mm is
given in the figure. Determine approximately the modulus
of resilience and the modulus of toughness for the material.

o (MPa)

600

500 // ]

400

300 — o—

200 /

/{
100 /

€ (mm/mm)

0.04 008 0.12 0.16 020 024 0.28
0 0.0005 0.0010.0015 0.002 0.0025 0.003 0.0035

Prob. 3-6

3-7. A specimen is originally 300 mm long, has a diameter
of 12 mm, and is subjected to a force of 2.5 kN. When the
force is increased from 2.5 kN to 9 kN, the specimen
elongates 0.225 mm. Determine the modulus of elasticity
for the material if it remains linear elastic.

*3-8. The strut is supported by a pin at C and an A-36
steel guy wire AB. If the wire has a diameter of 5 mm,
determine how much it stretches when the distributed load
acts on the strut.

N3
A
L 60°
3.4 kN/m
D) ~1,
i |
[ 2.7m |
Prob. 3-8
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3-9. The o—e diagram for elastic fibers that make up
human skin and muscle is shown. Determine the modulus
of elasticity of the fibers and estimate their modulus of
toughness and modulus of resilience.

o (MPa)

0.385

0.077

1 1
1 2225

Prob. 3-9

€ (mm/mm)

3-10. A structural member in a nuclear reactor is made of
a zirconium alloy. If an axial load of 20 kN is to be supported
by the member, determine its required cross-sectional area.
Use a factor of safety of 3 relative to yielding. What is the
load on the member if it is 1 m long and its elongation is
0.5 mm? E,, = 100 GPa, oy = 400 MPa. The material has
elastic behavior.

3-11. A tension test was performed on an aluminum
2014-T6 alloy specimen. The resulting stress—strain diagram
is shown in the figure. Estimate (a) the proportional limit,
(b) the modulus of elasticity, and (c) the yield strength
based on a 0.2% strain offset method.

*3-12. A tension test was performed on an aluminum
2014-T6 alloy specimen. The resulting stress—strain diagram
is shown in the figure. Estimate (a) the modulus of resilience;
and (b) modulus of toughness.

o (MPa)

490
420
350 /
280 /
210 /

140 I

70/

(mm/mm)

0 0.02 0.04 0.06 0.08 0.10

Probs. 3-10/11/12
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3-13. A bar having a length of 125 mm and cross-sectional
area of 4375 mm? is subjected to an axial force of 40 kN. If
the bar stretches 0.05 mm, determine the modulus of
elasticity of the material. The material has linear-elastic
behavior.

} 125 mm |
Prob. 3-13

3-14. The rigid pipe is supported by a pin at A and an A-36
steel guy wire BD. If the wire has a diameter of 6.5 mm,
determine how much it stretches when a load of P = 3 kN
acts on the pipe.

3-15. The rigid pipe is supported by a pin at A and an A-36
guy wire BD.If the wire has a diameter of 6.5 mm, determine
the load P if the end C is displaced 1.675 mm downward.

i3

1.2m P

B | A D
S > |c

| 0.9 m | 0.9 m 1

Probs. 3-14/15

*3-16. Direct tension indicators are sometimes used
instead of torque wrenches to ensure that a bolt has a
prescribed tension when used for connections. If a nut on
the bolt is tightened so that the six 3-mm high heads of the
indicator are strained 0.1 mm/mm, and leave a contact area
on each head of 1.5 mm?, determine the tension in the bolt
shank. The material has the stress—strain diagram shown.

o (MPa)

600

450

€ (mm/mm
0.0015 0.3 (mm/mm)

Prob. 3-16

MECHANICAL PROPERTIES OF MATERIALS

3-17. The stress-strain diagram for a polyester resin is
given in the figure. If the rigid beam is supported by a strut
AB and post CD, both made from this material, and
subjected to a load of P = 80 kN, determine the angle of
tilt of the beam when the load is applied. The diameter of
the strut is 40 mm and the diameter of the post is 80 mm.

3-18. The stress—strain diagram for a polyester resin is
given in the figure. If the rigid beam is supported by a strut
AB and post CD made from this material, determine the
largest load P that can be applied to the beam before it
ruptures. The diameter of the strut is 12 mm and the
diameter of the post is 40 mm.

o (MPa)

100 -
95

8oL compression

70+
60
50+
40+ tension
322

20+

C

S :
0.75m '0.75 m ‘ D 0'? m L € (mm/mm)

0 L L L
— 0 001 0.02 0.03 0.04

Probs. 3-17/18

3-19. The stress—strain diagram for a bone is shown, and
can be described by the equation e = 0.45(107°%) o +
0.36(107'2) o3, where & is in kPa. Determine the yield
strength assuming a 0.3% offset.

~

t

€ =0.45(10"%0 + 0.36(10"'?)0?
¥

P

Prob. 3-19



*3-20. The stress—strain diagram for a bone is shown and
can be described by the equation e = 0.45(107°%) o +
0.36(107'2) o3, where o is in kPa. Determine the modulus
of toughness and the amount of elongation of a 200-mm-long
region just before it fractures if failure occurs at
€ = 0.12 mm/mm.

TP

€ =0.45(10"%0 + 0.36(107?)0?
.

P

Prob. 3-20

3-21. The two bars are made of polystyrene, which has the
stress—strain diagram shown. If the cross-sectional area of
bar AB is 975 mm? and BC is 2600 mm?, determine the
largest force P that can be supported before any member
ruptures. Assume that buckling does not occur.

3-22. The two bars are made of polystyrene, which has the
stress—strain diagram shown. Determine the cross-sectional
area of each bar so that the bars rupture simultaneously
when the load P = 13.5 kN. Assume that buckling does not
occur.

P

‘ 12m

175 |---- === mmmmmmmmmm oo
140

105 - .
compression

35 H ptension

- - - L — € (mm/mm)
0 0.20 0.40 0.60 0.80

Probs. 3-21/22
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3-23. The stress-strain diagram for many metal alloys can
be described analytically using the Ramberg-Osgood three
parameter equation € = o/E + ko", where E, k, and n are
determined from measurements taken from the diagram.
Using the stress—strain diagram shown in the figure, take
E = 210 GPa and determine the other two parameters k and
n and thereby obtain an analytical expression for the curve.

o (MPa)

560

420

\

280

140

€ (107%)

01 02 03 04 05

Prob. 3-23

*3-24. The o—e diagram for a collagen fiber bundle from
which a human tendon is composed is shown. If a segment
of the Achilles tendon at A has a length of 165 mm and an
approximate cross-sectional area of 145 mm?, determine its
elongation if the foot supports a load of 625 N, which causes
a tension in the tendon of 1718.75 N.

o (MPa)

31.50
26.25
21.00 /

15.75
10.50 /
525 / 625N

€ (mm/mm)

0.05 0.10

Prob. 3-24
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When the rubber block is
compressed (negative strain), its
sides will expand (positive strain).
The ratio of these strains remains
constant.

3.5 POISSON’S RATIO

When a deformable body is subjected to a force, not only does it elongate
but it also contracts laterally. For example, consider the bar in Fig. 3-21
that has an original radius r and length L, and is subjected to the tensile
force P. This force elongates the bar by an amount &, and its radius
contracts by an amount §'. The strains in the longitudinal or axial direction
and in the lateral or radial direction become

€long — z and €lat — 7

In the early 1800s, the French scientist S. D. Poisson realized that within
the elastic range the ratio of these strains is a constant, since the
displacements 6 and 6’ are proportional to the same applied force. This
ratio is referred to as Poisson’s ratio,v (nu), and it has a numerical value
that is unique for any material that is both homogeneous and isotropic.
Stated mathematically it is

p = — (3-9)

€long

The negative sign is included here since longitudinal elongation (positive
strain) causes lateral contraction (negative strain), and vice versa. Keep
in mind that these strains are caused only by the single axial or
longitudinal force P;i.e., no force acts in a lateral direction in order to
strain the material in this direction.

Poisson’s ratio is a dimensionless quantity, and it will be shown in
Sec. 10.6 that its maximum possible value is 0.5, so that 0 = » = 0.5. For
most nonporous solids it has a value that is generally between 0.25 and
0.355. Typical values for common engineering materials are listed in the
back of the book.

Original Shape

Tension

Fig. 3-21



3.5 PoIsSON’s RATIO

EXAMPLE 3.4

A bar made of A-36 steel has the dimensions shown in Fig. 3-22. If an
axial force of P =80 kN is applied to the bar, determine the change in its
length and the change in the dimensions of its cross section. The material
behaves elastically.

P =80 kN
>
- 1
50 mm
15m \ i 7
\ P =80kN
\
100 mm \ 7
Fig. 3-22
SOLUTION
The normal stress in the bar is
N 80 ( 103) N

_ N _ _ 6
%= 4T (0am)(005m) 1000107 Pa

From the table given in the back of the book for A-36 steel £, = 200 GPa,
and so the strain in the z direction is

o,  16.0(10°) Pa 80(10°5) mm/
= = = mm/mm
T E, T 200(10°) Pa

The axial elongation of the bar is therefore
8, =€ L,=[80(10°)](1.5m) = 120 um Ans.

Using Eq. 3-9, where vy = 0.32 as found in the back of the book, the
lateral contraction strains in both the x and y directions are

€, =€, = —vye, = —032[80(107°°)] = —25.6 um/m
Thus the changes in the dimensions of the cross section are
8, =€ L, = —[256(10°)](0.1m) = —2.56 um Ans.

o, = ¢ L,

—[25.6(107%)](0.05m) = —1.28 um Ans.
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Fig. 3-24
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3.6 THE SHEAR STRESS-STRAIN
DIAGRAM

In Sec. 1.5 it was shown that when a small element of material is subjected
to pure shear, equilibrium requires that equal shear stresses must be
developed on four faces of the element, Fig. 3-23a. Furthermore, if the
material is homogeneous and isotropic, then this shear stress will distort
the element uniformly, Fig. 3-23b, producing shear strain.

In order to study the behavior of a material subjected to pure shear,
engineers use a specimen in the shape of a thin tube and subject it to a
torsional loading. If measurements are made of the applied torque and
the resulting angle of twist, then by the methods to be explained in
Chapter 5, the data can be used to determine the shear stress and shear
strain within the tube and thereby produce a shear stress—strain diagram
such as shown in Fig. 3-24. Like the tension test, this material when
subjected to shear will exhibit linear elastic behavior and it will have a
defined proportional limit 7,,. Also, strain hardening will occur until an
ultimate shear stress T, is reached. And finally, the material will begin to
lose its shear strength until it reaches a point where it fractures, ;.

For most engineering materials, like the one just described, the elastic
behavior is linear, and so Hooke’s law for shear can be written as

T = Gy (3-10)

Here G is called the shear modulus of elasticity or the modulus of
rigidity. Its value represents the slope of the line on the r—y diagram,
thatis, G = 7,,/7,;. Units of measurement for G will be the same as those
for 7 (Pa), since vy is measured in radians, a dimensionless quantity.
Typical values for common engineering materials are listed in the back
of the book.

Later it will be shown in Sec. 10.6 that the three material constants,
E, v,and G can all be related by the equation

E
G= 2(1 + ) (-11)

Therefore, if E and G are known, the value of v can then be determined
from this equation rather than through experimental measurement.
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EXAMPLE 3.5

A specimen of titanium alloy is tested in torsion and the shear stress— 7 (MPa)
strain diagram is shown in Fig. 3-25a. Determine the shear modulus
G, the proportional limit, and the ultimate shear stress. Also,determine
the maximum distance d that the top of a block of this material, shown 001 =360
in Fig. 3-25b, could be displaced horizontally if the material behaves 404

elastically when acted upon by a shear force V. What is the magnitude 300|

600 . =504

of V necessary to cause this displacement? 200 F

100
SOLUTION Oyr=008  yo=05a 075 "V
Shear Modulus. This value represents the slope of the straight- (a)

line portion OA of the 7—vy diagram. The coordinates of point A are
(0.008 rad, 360 MPa). Thus,

_ 360MPa s B 100 mm
= 0.008tad 45(10°) MPa = 45 GPa Ans.

The equation of line OA is therefore 7 = Gy = [45(10°)y] MPa, Somm | %
which is Hooke’s law for shear.

Proportional Limit. By inspection, the graph ceases to be linear at
point A. Thus,

(b)
Fig. 3-25

7,1 = 360 MPa Ans.

Ultimate Stress. This value represents the maximum shear stress,
point B. From the graph,

7, = 504 MPa Ans.

Maximum Elastic Displacement and Shear Force. Since the
maximum elastic shear strain is 0.008 rad, a very small angle, the top of
the block in Fig. 3-25b will be displaced horizontally:

tan(0.008 rad) =~ 0.008 rad = 0 mm
d = 0.4mm Ans.

The corresponding average shear stress in the block is 7,, = 360 MPa.
Thus, the shear force V needed to cause the displacement is

_v 6 2 _ 14
Tave T g0 3600107 N/m™ = 6 575m) (0.1 m)

V = 2700 kN Ans.
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EXAMPLE 3.6

An aluminum specimen shown in Fig. 3-26 has a diameter of d; = 25 mm
and a gage length of L, = 250 mm. If a force of 165 kN elongates the
gage length 1.20 mm, determine the modulus of elasticity. Also,determine
by how much the force causes the diameter of the specimen to contract.
Take G, = 26 GPa and oy = 440 MPa.

SOLUTION

Modulus of Elasticity. The average normal stress in the specimen is

N 165(10°) N
o=—= 5 = 336.1 MPa
A (w/4)(0.025m)

and the average normal strain is

1) 1.20 mm

Since o < gy = 440 MPa, the material behaves elastically. The modulus
of elasticity is therefore

o 336.1(10°) Pa
165 kN E, = ; = W = 70.0 GPa Ans.

Fig. 3-26
Contraction of Diameter. First we will determine Poisson’s ratio for
the material using Eq. 3-11.

E
G= 2(1 +v)
26 Gpa — 100 GPa
2(1 +v)

v = 0.347

Since €jopy = 0.00480 mm/mm, then by Eq. 3-9,

y = — St
€long
€lat
0.347 =
0.00480 mm/mm

€, = —0.00166 mm/mm

The contraction of the diameter is therefore

8" = (0.00166) (25 mm
= 0.0416 mm Ans.
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*3.7 FAILURE OF MATERIALS DUE TO
CREEP AND FATIGUE

The mechanical properties of a material have up to this point been
discussed only for a static or slowly applied load at constant temperature.
In some cases, however, a member may have to be used in an environment
for which loadings must be sustained over long periods of time at elevated
temperatures, or in other cases, the loading may be repeated or cycled. We
will not cover these effects in this book, although we will briefly mention
how one determines a material’s strength for these conditions, since in
some cases they must be considered for design.

Creep. When a material has to support a load for a very long period
of time, it may continue to deform until a sudden fracture occurs or its
usefulness is impaired. This time-dependent permanent deformation is
known as creep. Normally creep is considered when metals and ceramics
are used for structural members or mechanical parts that are subjected
to high temperatures. For some materials, however, such as polymers and
composite materials—including wood or concrete—temperature is not an
important factor, and yet creep can occur strictly from long-term load
application. As a typical example, consider the fact that a rubber band
will not return to its original shape after being released from a stretched
position in which it was held for a very long period of time.

For practical purposes, when creep becomes important, a member is
usually designed to resist a specified creep strain for a given period of
time. An important mechanical property that is used in this regard is
called the creep strength. This value represents the highest stress the
material can withstand during a specified time without exceeding an
allowable creep strain. The creep strength will vary with temperature,
and for design, a temperature, duration of loading, and allowable creep
strain must all be specified. For example, a creep strain of 0.1% per year
has been suggested for steel used for bolts and piping.

Several methods exist for determining the allowable creep strength
for a particular material. One of the simplest involves testing several
specimens simultaneously at a constant temperature, but with each
subjected to a different axial stress. By measuring the length of time
needed to produce the allowable creep strain for each specimen, a
curve of stress versus time can be established. Normally these tests are
run to a maximum of 1000 hours. An example of the results for stainless
steel at a temperature of 650°C and prescribed creep strain of 1% is
shown in Fig. 3-27 As noted, this material has a yield strength of
276 MPa at room temperature (0.2% offset) and the creep strength at
1000 h is found to be approximately o, = 138 MPa.

129

The long-term application of the cable loading
on this pole has caused the pole to deform

due to creep.

& (MPa)
300

250
200 -
o, =138150

100
50

0

I
200

I I I I
400 600 800 1000

o—t diagram for stainless steel
at 650°C and creep strain at 1%

Fig. 3-27

t(h)
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The design of members used for amusement
park rides requires careful consideration of
cyclic loadings that can cause fatigue.

Engineers must account for possible fatigue

failure of the moving parts
oil-pumping rig.

of this

For longer periods of time, extrapolations from the curves must be
made. To do this usually requires a certain amount of experience with
creep behavior, and some supplementary knowledge about the creep
properties of the material. Once the material’s creep strength has been
determined, however, a factor of safety is applied to obtain an appropriate
allowable stress for design.

Fatigue. When a metal is subjected to repeated cycles of stress or
strain, it causes its internal structure to break down, ultimately leading to
fracture. This behavior is called fatigue, and it is usually responsible for a
large percentage of failures in connecting rods and crankshafts of engines;
steam or gas turbine blades; connections or supports for bridges, railroad
wheels, and axles; and other parts subjected to cyclic loading. In all
these cases, fracture will occur at a stress that is less than the material’s
yield stress.

The nature of this failure apparently results from the fact that there are
microscopic imperfections, usually on the surface of the member, where
the localized stress becomes much greater than the average stress acting
over the cross section. As this higher stress is cycled, it leads to the
formation of minute cracks. Occurrence of these cracks causes a further
increase of stress at their tips, which in turn causes a further extension of
the cracks into the material as the stress continues to be cycled.
Eventually the cross-sectional area of the member is reduced to the point
where the load can no longer be sustained, and as a result sudden fracture
occurs. The material, even though known to be ductile, behaves as if it
were brittle.

In order to specify a safe strength for a metallic material under
repeated loading, it is necessary to determine a limit below which no
evidence of failure can be detected after applying a load for a specified
number of cycles. This limiting stress is called the endurance or fatigue
limir. Using a testing machine for this purpose, a series of specimens are
each subjected to a specified stress and cycled to failure. The results are
plotted as a graph representing the stress S (or o) on the vertical axis and
the number of cycles-to-failure N on the horizontal axis. This graph is
called an S-N diagram or stress—cycle diagram, and most often the
values of N are plotted on a logarithmic scale since they are generally
quite large.

Examples of S—N diagrams for two common engineering metals are
shown in Fig. 3-28. The endurance limit is usually identified as the stress
for which the S—N graph becomes horizontal or asymptotic. As noted, it
has a well-defined value of (S,)s = 186 MPa for steel. For aluminum,
however, the endurance limit is not well defined, and so here it may be
specified as the stress having a limit of, say, 500 million cycles,
(Se/)ar = 131 MPa. Once a particular value is obtained, it is often
assumed that for any stress below this value the fatigue life will be
infinite, and therefore the number of cycles to failure is no longer given
consideration.
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300
aluminum
250 |

200 steel

(Sel)sl = 186v
150

Se)a=131
100

50

0 | | |
0.1 1 10 100 5001000

S-N diagram for steel and aluminum alloys
(N axis has a logarithmic scale)

N(10%)

Fig. 3-28

B VPORTANT POINTS

® Poisson’s ratio,v,is aratio of the lateral strain of a homogeneous
and isotropic material to its longitudinal strain. Generally
these strains are of opposite signs, that is, if one is an elongation,
the other will be a contraction.

® The shear stress—strain diagram is a plot of the shear stress versus
the shear strain. If the material is homogeneous and isotropic,
and is also linear elastic, the slope of the straight line within the
elastic region is called the modulus of rigidity or the shear
modulus, G.

® There is a mathematical relationship between G, E, and v.

® Creep is the time-dependent deformation of a material for which
stress and/or temperature play an important role. Members are
designed to resist the effects of creep based on their material
creep strength, which is the largest initial stress a material can
withstand during a specified time without exceeding a specified
creep strain.

® Fatigue occurs in metals when the stress or strain is cycled. This
phenomenon causes brittle fracture of the material. Members
are designed to resist fatigue by ensuring that the stress in the
member does not exceed its endurance or fatigue limit. This
value is determined from an S-N diagram as the maximum
stress the material can resist when subjected to a specified
number of cycles of loading.
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. FUNDAMENTAL PROBLEMS
A 20-mm-wide block is firmly bonded to rigid

F3-13. A 100-mm-long rod has a diameter of 15 mm. If an F3-15.
axial tensile load of 10 kN is applied to it, determine the plates at its top and bottom. When the force P is applied the
change in its diameter. E = 70 GPa, v = 0.35. block deforms into the shape shown by the dashed line.
Determine the magnitude of P. The block’s material has a

modulus of rigidity of G =26 GPa. Assume that the material

does not yield and use small angle analysis.

0.5 mm [~ P
____________ — i
I

I
I

150 mm | )
I
i ]
I
|

10 kN

10 kN
Prob. F3-15

Prob. F3-13

F3-16. A 20-mm-wide block is bonded to rigid plates at its
top and bottom. When the force P is applied the block
deforms into the shape shown by the dashed line. If
a=3mm and P is released, determine the permanent shear

[73-14. A solid circular rod that is 600 mm long and 20 mm
in diameter is subjected to an axial force of P =50 kN. The strain in the block.

elongation of the rod is 6 = 1.40 mm, and its diameter
becomes d’' = 19.9837 mm. Determine the modulus of
elasticity and the modulus of rigidity of the material. 7 (MPa)
Assume that the material does not yield.
130
rad
0.005 ¥ (rad)

P =50kN

Prob. F3-14 Prob. F3-16
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. PROBLEMS

3-25. The acrylic plastic rod is 200 mm long and 15 mm in
diameter. If an axial load of 300 N is applied to it, determine
the change in its length and the change in its diameter.
E, =270 GPa,v, = 0.4.

<~—(
300N ‘

‘ 200 mm |

Prob. 3-25

3-26. The plug has a diameter of 30 mm and fits within a
rigid sleeve having an inner diameter of 32 mm. Both the
plug and the sleeve are 50 mm long. Determine the axial
pressure p that must be applied to the top of the plug to
cause it to contact the sides of the sleeve. Also, how far must
the plug be compressed downward in order to do this? The
plug is made from a material for which E =5 MPa, v = 0.45.

Prob. 3-26

3-27. The elastic portion of the stress—strain diagram for
an aluminum alloy is shown in the figure. The specimen
from which it was obtained has an original diameter of
12.7 mm and a gage length of 50.8 mm. When the applied
load on the specimen is 50 kN, the diameter is 12.67494 mm.
Determine Poisson's ratio for the material.

*3-28. The elastic portion of the stress—strain diagram for
an aluminum alloy is shown in the figure. The specimen from
which it was obtained has an original diameter of 12.7 mm
and a gage length of 50.8 mm. If a load of P =60 kN is applied
to the specimen, determine its new diameter and length. Take
r=0.35.

o (MPa)

490

0007 € (mm/mm)

Probs. 3-27/28

3-29. The brake pads for a bicycle tire are made of rubber.
If a frictional force of 50 N is applied to each side of the
tires, determine the average shear strain in the rubber. Each
pad has cross-sectional dimensions of 20 mm and 50 mm.
G,=0.20 MPa.

Prob. 3-29
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3-30. The lap joint is connected together using a 30 mm
diameter bolt. If the bolt is made from a material having a
shear stress—strain diagram that is approximated as shown,
determine the shear strain developed in the shear plane of
the bolt when P = 340 kN.

3-31. The lap joint is connected together using a 30 mm
diameter bolt. If the bolt is made from a material having a
shear stress-strain diagram that is approximated as shown,
determine the permanent shear strain in the shear plane of
the bolt when the applied force P = 680 kN is removed.

P
2
R P
-
L
2
7(MPa)
525
350
v (rad)

0.005 0.05
Probs. 3-30/31

*3-32. A shear spring is made by bonding the rubber
annulus to a rigid fixed ring and a plug. When an axial load
P is placed on the plug, show that the slope at point y in the
rubber is dy/dr = —tan y = —tan(P/(2whGr)). For small
angles we can write dy/dr = —P/(2whGr). Integrate this
expression and evaluate the constant of integration using
the condition that y = 0 at r = r,. From the result compute
the deflection y = 6 of the plug.

Prob. 3-32

3-33. The support consists of three rigid plates, which are
connected together using two symmetrically placed rubber
pads. If a vertical force of 5 Nis applied to plate A, determine
the approximate vertical displacement of this plate due to
shear strains in the rubber. Each pad has cross-sectional
dimensions of 30 mm and 20 mm. G, = 0.20 MPa

SN

Prob. 3-33

3-34. A shear spring is made from two blocks of rubber,
each having a height 4, width b, and thickness a. The blocks
are bonded to three plates as shown. If the plates are rigid
and the shear modulus of the rubber is G, determine the
displacement of plate A when the vertical load P is applied.
Assume that the displacement is small so that
6 =atanvy = ay.

Prob. 3-34
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strain on the horizontal axis.

One of the most important tests for material strength is the tension test. The results, found from
stretching a specimen of known size, are plotted as normal stress on the vertical axis and normal

Many engineering materials exhibit
initial linear elastic behavior, whereby
stress is proportional to strain, defined by
Hooke’s law, 0 = Ee. Here E, called the
modulus of elasticity, is the slope of this
straight line on the stress—strain diagram.

o = Ee

ductile material

When the material is stressed beyond
the yield point, permanent deformation
will occur. In particular, steel has a
region of yielding, whereby the material
will exhibit an increase in strain with no
increase in stress. The region of strain
hardening causes further yielding of the
material with a corresponding increase
in stress. Finally, at the ultimate stress, a
localized region on the specimen will
begin to constrict, forming a neck. It is
after this that the fracture occurs.

proportional limit

fracture
stress

reduction in the cross-sectional area.

elastic |yielding strain necking
region hardening
elastic plastic behavior
Ibehavior
Ductile materials, such as most metals,
exhibit both elastic and plastic behavior. Ly — L
. . e P 1 ion = —— (100%
Wood is moderately ductile. Ductility is ercent elongation = Lo ( o)
usually specified by the percent Ay — A
elongation to failure or by the percent Percent reduction of area = (100% )

0
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Brittle materials exhibit little or no
yielding before failure. Cast iron,
concrete, and glass are typical examples.

The yield point of a material at A can be
increased by strain hardening. This is
accomplished by applying a load that
causes the stress to be greater than the
yield stress, then releasing the load. The
larger stress A" becomes the new yield
point for the material.

o
brittle material
g
elastic plastic
region region

‘)

load
o

E /mload

’
permanent, elastic |
" set " recovery

When a load is applied to a member, the
deformations cause strain energy to be
stored in the material. The strain energy
per unit volume, or strain energy density,
is equivalent to the area under the
stress—strain curve. This area up to the
yield point is called the modulus of
resilience. The entire area under the
stress—strain diagram is called the
modulus of toughness.

a

—u,

Epl

Modulus of resilience u,

— U,

Modulus of toughness u,
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Poisson’s ratio v is a dimensionless
material property that relates the lateral
strain to the longitudinal strain. Its range
of valuesis 0 = v = 0.5.

_ €lat

€long

Tension

Shear stress—strain diagrams can also be
established for a material. Within the
elastic region, 7 = Gy, where G is the
shear modulus, found from the slope of
the line. The value of v can be obtained
from the relationship that exists between
G, E,and v.

2(1 +v)

When materials are in service for long
periods of time, considerations of creep
become important. Creep is the time
rate of deformation, which occurs at
high stress and/or high temperature.
Design requires that the stress in the
material not exceed an allowable stress
which is based on the material’s creep
strength.

Fatigue can occur when the material
undergoes a large number of cycles of
loading. This effect will cause
microscopic cracks to form, leading to a
brittle failure. To prevent fatigue, the
stress in the material must not exceed a
specified endurance or fatigue limit.
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MECHANICAL PROPERTIES OF MATERIALS

R3-1. The elastic portion of the tension stress—strain
diagram for an aluminum alloy is shown in the figure. The
specimen used for the test has a gauge length of 50 mm and
a diameter of 12.5 mm. When the applied load is 45 kN, the
new diameter of the specimen is 12.4780 mm. Compute the
shear modulus G, for the aluminum.

R3-2. The elastic portion of the tension stress—strain
diagram for an aluminum alloy is shown in the figure. The
specimen used for the test has a gauge length of 50 mm and
a diameter of 12.5 mm. If the applied load is 40 kN,
determine the new diameter of the specimen. The shear
modulus is G, = 27 GPa.

-

o (MPa)

-

350 ——

€ (mm/mm)

0.00480

Prob. R3-1/2

R3-3. The rigid beam rests in the horizontal position on
two 2014-T6 aluminum cylinders having the unloaded
lengths shown. If each cylinder has a diameter of 30 mm,
determine the placement x of the applied 80-kN load so
that the beam remains horizontal. What is the new diameter
of cylinder A after the load is applied? v, = 0.35.

80 kN
—

A B

1
220 mm| 2}0 mm
|

I 3m

Prob. R3-3

*R3-4. When the two forces are placed on the beam, the
diameter of the A-36 steel rod BC decreases from 40 mm to
39.99 mm. Determine the magnitude of each force P.

R3-5. If P = 150 kN, determine the elastic elongation of
rod BC and the decrease in its diameter. Rod BC is made
of A-36 streel and has a diameter of 40 mm.

0.75m

Prob. R3-4/5

R3-6. The head H is connected to the cylinder of a
compressor using six steel bolts. If the clamping force in
each bolt is 4 kN, determine the normal strain in the bolts.
Each bolt has a diameter of 5 mm. If oy = 280 MPa and
E,, = 200 GPa, what is the strain in each bolt when the nut
is unscrewed so that the clamping force is released?

Prob. R3-6



R3-7. The stress—strain diagram for polyethylene, which is
used to sheath coaxial cables, is determined from testing a
specimen that has a gauge length of 250 mm. If a load P on
the specimen develops a strain of e = 0.024 mm/mm,
determine the approximate length of the specimen,
measured between the gauge points, when the load is
removed. Assume the specimen recovers elastically.

o (MPa)

35

21 T

14

P

0 € (mm/mm)
0 0.008 0.016 0.024 0.032 0.040 0.048

Prob. R3-7

*R3-8. The solid rod, of radius r, with two rigid caps
attached to its ends is subjected to an axial force P. If the
rod is made from a material having a modulus of elasticity E
and Poisson’s ratio v, determine the change in volume of the
material.
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R3-9. The 8-mm-diameter bolt is made of an aluminum
alloy. It fits through a magnesium sleeve that has an inner
diameter of 12 mm and an outer diameter of 20 mm. If the
original lengths of the bolt and sleeve are 80 mm and
50 mm, respectively, determine the strains in the sleeve and
the bolt if the nut on the bolt is tightened so that the tension
in the bolt is 8 kN. Assume the material at A is rigid.
E, = 70 GPa, E,, = 45 GPa.

Prob. R3-9

R3-10. An acetal polymer block is fixed to the rigid plates
at its top and bottom surfaces. If the top plate displaces
2 mm horizontally when it is subjected to a horizontal force
P =2 kN, determine the shear modulus of the polymer. The
width of the block is 100 mm. Assume that the polymer is
linearly elastic and use small angle analysis.

Prob. R3-8

Prob. R3-10
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The string of drill pipe stacked on this oil rig will be subjected to large axial
deformations when it is placed in the hole.




AXIAL LOA

. CHAPTER OBJECTIVES

m In this chapter we will discuss how to determine the deformation
of an axially loaded member, and we will also develop a method
for finding the support reactions when these reactions cannot be
determined strictly from the equations of equilibrium. An analysis
of the effects of thermal stress, stress concentrations, inelastic
deformations, and residual stress will also be discussed.

4.1 SAINT-VENANT'S PRINCIPLE

In the previous chapters, we have developed the concept of stress as a
means of measuring the force distribution within a body and strain as a
means of measuring a body’s deformation. We have also shown that the
mathematical relationship between stress and strain depends on the type
of material from which the body is made. In particular, if the material
behaves in a linear elastic manner, then Hooke’s law applies, and there is
a proportional relationship between stress and strain.

Using this idea, consider the manner in which a rectangular bar will
deform elastically when the bar is subjected to the force P applied along
its centroidal axis, Fig. 4-1a. The once horizontal and vertical grid lines
drawn on the bar become distorted, and localized deformation occurs at
each end. Throughout the midsection of the bar, the lines remain
horizontal and vertical.

141
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Notice how the lines on this rubber
membrane distort after it is stretched. The
localized distortions at the grips smooth
out as stated by Saint-Venant’s principle.

P
p— Load distorts lines
. oa located near load
a—H1T1T14 a
b—e b b
c c

7

—— Lines located away
from the load and support
remain straight

Load distorts lines
located near support

(a)
Fig. 4-1

If the material remains elastic, then the strains caused by this
deformation are directly related to the stress in the bar through Hooke’s
law,o = Ee. As aresult,a profile of the variation of the stress distribution
acting at sections a—a, b—b, and c—c, will look like that shown in Fig. 4-1b.
By comparison, the stress tends to reach a uniform value at section c—c,
which is sufficiently removed from the end since the localized
deformation caused by P vanishes. The minimum distance from the bar’s
end where this occurs can be determined using a mathematical analysis
based on the theory of elasticity. It has been found that this distance
should at least be equal to the largest dimension of the loaded cross
section. Hence, section c—c should be located at a distance at least equal
to the width (not the thickness) of the bar.*

In the same way, the stress distribution at the support in Fig. 4-1a will
also even out and become uniform over the cross section located the
same distance away from the support.

The fact that the localized stress and deformation behave in this manner
is referred to as Saint-Venant’s principle, since it was first noticed by the
French scientist Barré de Saint-Venant in 1855. Essentially it states that
the stress and strain produced at points in a body sufficiently removed
from the region of external load application will be the same as the stress
and strain produced by any other applied external loading that has the
same statically equivalent resultant and is applied to the body within the
same region. For example, if two symmetrically applied forces P/2 act on
the bar, Fig. 4-1c, the stress distribution at section c—c will be uniform and
therefore equivalent to o,,, = P/A as in Fig. 4-1c.

*When section c—c is so located, the theory of elasticity predicts the maximum stress to
be ooy = 1.02 gy,
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section a—a section b—b section c—c

(b)

Fig. 4-1 (cont.)

4.2 ELASTIC DEFORMATION OF AN
AXIALLY LOADED MEMBER

Using Hooke’s law and the definitions of stress and strain, we will now
develop an equation that can be used to determine the elastic displacement
of a member subjected to axial loads. To generalize the development,
consider the bar shown in Fig. 4-2a, which has a cross-sectional area that
gradually varies along its length L, and is made of a material that has a
variable stiffness or modulus of elasticity. The bar is subjected to
concentrated loads at its ends and a variable external load distributed
along its length. This distributed load could, for example, represent the
weight of the bar if it is in the vertical position, or friction forces acting on
the bar’s surface.

Here we wish to find the relative displacement 6 (delta) of one end of
the bar with respect to the other end as caused by the loading. We will
neglect the localized deformations that occur at points of concentrated
loading and where the cross section suddenly changes. From Saint-
Venant’s principle, these effects occur within small regions of the bar’s
length and will therefore have only a slight effect on the final result. For
the most part, the bar will deform uniformly, so the normal stress will be
uniformly distributed over the cross section.

o=
o=

1

o

i

section ¢—c

(©)

The vertical displacement of the rod at the
top floor B only depends upon the force in
the rod along length AB. However, the
displacement at the bottom floor C depends
upon the force in the rod along its entire
length, ABC.
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Using the method of sections, a differential element (or wafer) of length
dx and cross-sectional area A(x) is isolated from the bar at the arbitrary
position x, where the modulus of elasticity is E(x). The free-body diagram
of this element is shown in Fig. 4-2b. The resultant internal axial force will
be a function of x since the external distributed loading will cause it to
vary along the length of the bar. This load, N(x), will deform the element
into the shape indicated by the dashed outline, and therefore the
displacement of one end of the element with respect to the other end
becomes dé. The stress and strain in the element are therefore

i
N(x) 4—|}{—>N(x)

|
- ds

a1

(®)

Fig. 4-2 (Repeated)

Provided the stress does not exceed the proportional limit, we can apply
Hooke’s law;i.e.,c = E(x)e, and so

N(x) ds

A(x) E(x)(dx>
_ N(x)dx
- AW@E®)

For the entire length L of the bar, we must integrate this expression to
find &. This yields

5= L N(x)dx (4-1)
o AX)E()
Here
6 = displacement of one point on the bar relative to the other

point
L = original length of bar
N (x) = internal axial force at the section, located a distance x from
one end
A(x) = cross-sectional area of the bar expressed as a function of x
E(x) = modulus of elasticity for the material expressed as a function of x

In many cases
the bar will have a constant cross-sectional area A; and the material will
be homogeneous, so E is constant. Furthermore, if a constant external
force is applied at each end, Fig. 4-3a, then the internal force N
throughout the length of the bar is also constant. As a result, Eq. 4-1
when integrated becomes

NL

5=——
AE

(+2)
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(@)
Fig. 4-3

If the bar is subjected to several different axial forces along its length,
or the cross-sectional area or modulus of elasticity changes abruptly
from one region of the bar to the next, as in Fig. 4-3b, then the above
equation can be applied to each segment of the bar where these quantities
remain constant. The displacement of one end of the bar with respect to
the other is then found from the algebraic addition of the relative
displacements of the ends of each segment. For this general case,

=3 == (4-3)

When applying Egs. 4-1 through 4-3, it is best
to use a consistent sign convention for the internal axial force and the
displacement of the bar. To do so, we will consider both the force and
displacement to be positive if they cause tension and elongation, Fig. 4—4;
whereas a negative force and displacement will cause compression and
contraction.

B /VPORTANT POINTS

® Saint-Venant’s principle states that both the localized
deformation and stress which occur within the regions of load
application or at the supports tend to “even out” at a distance
sufficiently removed from these regions.

® The displacement of one end of an axially loaded member
relative to the other end is determined by relating the applied
internal load to the stress using ¢ = N/A and relating the
displacement to the strain using € = d&/dx. Finally these two
equations are combined using Hooke’s law, o = Ee, which
yields Eq. 4-1.

® Since Hooke’s law has been used in the development of the
displacement equation, it is important that no internal load
causes yielding of the material, and that the material behaves
in a linear elastic manner.

— 2 +N

N

+8
+N  _

-

+6

Fig. 4-4
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- PROCEDURE FOR ANALYSIS

The relative displacement between any two points A and B on an
axially loaded member can be determined by applying Eq. 4-1 (or
Eq.4-2). Application requires the following steps.

Internal Force.

® Use the method of sections to determine the internal axial
force N within the member.

® [f this force varies along the member’s length due to an external
distributed loading, a section should be made at the arbitrary
location x from one end of the member, and the internal force
represented as a function of x,i.e., N(x).

® [f several constant external forces act on the member, the
internal force in each segment of the member between any two
external forces must be determined.

® For any segment, an internal tensile force is positive and an
internal compressive force is negative. For convenience, the
results of the internal loading throughout the member can be
shown graphically by constructing the normal-force diagram.

Displacement.

® When the member’s cross-sectional area varies along its length,
the area must be expressed as a function of its position x, i.e.,
A(x).

® [f the cross-sectional area, the modulus of elasticity, or the
internal loading suddenly changes, then Eq. 4-2 should be
applied to each segment for which these quantities are
constant.

® When substituting the data into Eqgs. 4-1 through 4-3, be sure to
account for the proper sign of the internal force N. Tensile forces
are positive and compressive forces are negative. Also, use a
consistent set of units. For any segment, if the result is a positive
numerical quantity, it indicates elongation; if it is negative, it
indicates a contraction.
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EXAMPLE 4.1

The uniform A-36 steel bar in Fig. 4-5a has a diameter of 50 mm and is
subjected to the loading shown. Determine the displacement at D,
and the displacement of point B relative to C.

70 kN

Nep = T0kN —

Nge = 30kN A0 kN 70 kKN

_>g-—>}<—

80 kN 40 kN

— 70 kN
A B C D Npc = 50kN 80kN  40kN .
2m 1 1m 1 15m 1 - —_— — -~
(a) (b)
Fig. 4-5
SOLUTION

Internal Forces. The internal forces within the bar are determined
using the method of sections and horizontal equilibrium. The results
are shown on the free-body diagrams in Fig. 4-5b. The normal-force
diagram in Fig. 4-5¢ shows the variation of these forces along the bar.

Displacement. From the table in the back of the book, for A-36
steel, £ = 200 GPa. Using the established sign convention, the

displacement of the end of the bar is therefore N (kN)
s - L _ [-70(10%) N](1.5 m) “
P AE  7(0.025 m)2[200(10%) N/m?] _30 2|I 3 45 (m)
-70 I |
[—30(10°) N](1 m) . [50(10°) N](2 m) ©

m(0.025 m)?[200(10°) N/m?  7(0.025 m)*[200(10°) N /m?]

8p = —89.1(107°) mm Ans.

This negative result indicates that point D moves to the left.

The displacement of B relative to C, 8/c, is caused only by the internal
load within region BC. Thus,

s _NL_  [730(10°) Nj(1m)
BICT AE T m(0.025 m)’[200(10°) N /]

= —76.4(10*) mm Ans.

Here the negative result indicates that B will move towards C.
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EXAMPLE 4.2

The assembly shown in Fig. 4-6a consists of an aluminum tube AB having a
cross-sectional area of 400 mm?. A steel rod having a diameter of 10 mm is
attached to a rigid collar and passes through the tube. If a tensile load of
80 kN is applied to the rod, determine the displacement of the end C of the
rod. Take E, = 200 GPa, E, = 70 GPa.

N, = 80kN
80 kN —> «—

600 mm
(a)

—> 80 kN

Npc = 80kN

(b)
Fig. 4-6

SOLUTION

Internal Force. The free-body diagrams of the tube and rod segments
in Fig. 4-6b show that the rod is subjected to a tension of 80 kN, and the
tube is subjected to a compression of 80 kN.

Displacement. We will first determine the displacement of C with
respect to B. Working in units of newtons and meters, we have

NL [+80(10%) N (0.6 m)

Sopg = = = = +0.003056 m —
/BT AE ~ (0.005 m)*[200 (10°) N/m’] m

The positive sign indicates that C moves fo the right relative to B, since
the bar elongates.
The displacement of B with respect to the fixed end A is

_NL _ [—80(10%) N](0.4 m)

AE  [400 mm3(10~%) m?/mm?][70(10°) N/m?]
= —0.001143 m = 0.001143 m —

op

Here the negative sign indicates that the tube shortens, and so B moves
to the right relative to A.

Since both displacements are to the right, the displacement of C
relative to the fixed end A is therefore

(5) Sc =g + 8¢ = 0001143 m + 0.003056 m
= 0.00420 m = 420 mm — Ans.
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EXAMPLE 4.3

Rigid beam AB rests on the two short posts shown in Fig. 4-7a. AC is made
of steel and has a diameter of 20 mm, and BD is made of aluminum and has
a diameter of 40 mm. Determine the displacement of point F on AB if a
vertical load of 90 kN is applied over this point. Take Ey = 200 GPa,
E,; = 70 GPa.

SOLUTION

Internal Force. The compressive forces acting at the top of each post
are determined from the equilibrium of member AB, Fig. 4-7b. These (a)
forces are equal to the internal forces in each post, Fig. 4-7c.

Displacement. The displacement of the top of each post is SN
| 200 mm :
400 mm
Post AC: .‘ v ‘
NacL —60(10%) N](0.300 m T 4
5y = Naclac | COAPINIOIOm) __ 0o kN
AacEs  m(0.010 m)*[200(10%) N /m’] 60 kKN (b)
= 0.286 mm |
60 kN .
Post BD: l
NgpL —30(10% N](0.300 m
5y = NopLop __ [CRACINIQ00m) oo
AppEy  m(0.020 m)[70(10%) N /m?]
= 0.102 mm | T *
NAC:60kN NBD:30kN

A diagram showing the centerline displacements at A, B, and F on the
beam is shown in Fig. 4-7d. By proportion of the blue shaded triangle, ©
the displacement of point F is therefore

400
8 = 0.102 mm + (0.184 mm)( mm) = 0.225 mm | Ans.
600 mm
600 mm
0.102 mm A F‘ 400 mm E
it 0.102 mm
O
0.184 mm
0.286 mm

(d)
Fig. 4-7
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EXAMPLE 4.4

y

A member is made of a material that has a specific weight of y = 6 kN/m®
and modulus of elasticity of 9 GPa. If it is in the form of a cone having the
dimensions shown in Fig. 4-8a, determine how far its end is displaced due to
gravity when it is suspended in the vertical position.

SOLUTION

Internal Force. The internal axial force varies along the member, since

it is dependent on the weight W(y) of a segment of the member below

any section, Fig. 4-8b. Hence, to calculate the displacement, we must use

Eq. 4-1. At the section located a distance y from the cone’s free end, the

radius x of the cone as a function of y is determined by proportion;i.e.,
X 0.3m

;z Am x = 0.1y

The volume of a cone having a base of radius x and height y is

1 0.01
V=g = ”(3 )

Since W = vV, the internal force at the section becomes

y® = 0.01047y*

+13F, = 0; N(y) = 6(10°)(0.01047y) = 62.83y°

Displacement. The area of the cross section is also a function of
position y, Fig. 4-8b. We have

A(y) = mx? = 0.03142y?

Applying Eq.4-1 between the limits of y = 0 and y = 3 m yields

_ ["Noyay [P (62.83)°) dy
o= /0 AW E /0 (0.03142y?) 9(10°)
3

_ -9
222.2(10 )/0 y dy

=1(10%) m =1 um Ans.

NOTE: This is indeed a very small amount.
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. PRELIMINARY PROBLEMS

P4-1. In each case, determine the internal normal force P4-4. The rod is subjected to an external axial force of
between lettered points on the bar. Draw all necessary 800 N and a uniform distributed load of 100 N/m along its
free-body diagrams. length. Determine the internal normal force in the rod as a

function of x.

A B C D E
—_— < —> | «<—700N
100N 200N 400 N
()
A B C D
600 N —>| D — ® A 100 N/m
== 400N 300N P g ———— Y| (BN
(b) P4-1 5 —
m P4-4

P4-2. Determine the internal normal force between
lettered points on the cable and rod. Draw all necessary
free-body diagrams.

P4-5. The rigid beam supports the load of 60 kN.
400 _ 500 _________ Determine the displacement at B. Take £ = 60 GPa, and
Apc=2(1073) m?,

P4-2

P4-3. The post weighs 8 kN/m. Determine the internal
normal force in the post as a function of x.

60 kKN
TZ m-~—4 m—*‘

?;H‘ :>

P4-3 P4-5
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. FUNDAMENTAL PROBLEMS

F4-1. The 20-mm-diameter A-36 steel rod is subjected to
the axial forces shown. Determine the displacement of
end C with respect to the fixed support at A.

600 mm ——— 400 mm —|
| 50kN
1 -« ! 40 kKN
A B s
B sokn €
Prob. F4-1

F4-2. Segments AB and CD of the assembly are solid
circular rods, and segment BC is a tube. If the assembly is
made of 6061-T6 aluminum, determine the displacement of
end D with respect to end A.

20 mm 20 mm
‘0 5w
10kN_ 5
A — D
10 kN
| 20 kN
10kN T la Y 15kN
400 mm 400mm ' 400 mm |
30 mm@ ]40 mm
Section a-a

Prob. F4-2

4-3. The 30-mm-diameter A992 steel rod is subjected to
the loading shown. Determine the displacement of end C.

h SZH/ 30 kN
7 90 kKN
x 4 l
A B N C
30 kN
<400 mm —— 600 mm |
Prob. F4-3

Fd-4, If the 20-mm-diameter rod is made of A-36 steel
and the stiffness of the spring is K = 50 MN/m, determine
the displacement of end A when the 60-kN force is applied.

400

400

Prob. F4-4

F4-5. The 20-mm-diameter 2014-T6 aluminum rod is
subjected to the uniform distributed axial load. Determine
the displacement of end A.

30 kN/m

900 mm

Prob. F4-5

I'4-6. The 20-mm-diameter 2014-T6 aluminum rod is
subjected to the triangular distributed axial load. Determine
the displacement of end A.

45 kN/m

Al e ——— —— «——

900 mm

Prob. F4-6



4.2 ELASTIC DEFORMATION OF AN AXIALLY LOADED MEMBER 153

. PROBLEMS

4-1. The A992 steel rod is subjected to the loading shown.
If the cross-sectional area of the rod is 60 mm?, determine the
displacement of B and A, Neglect the size of the couplings at
B, C,and D.

0.75m
llc
|
60° 60°
1.50 m
330 kN 330 kN
B
5, = 5 B
3 3
- 1 0.5? m
2kN IA 2kN
S kN
Prob. 4-1

4-2. The copper shaft is subjected to the axial loads shown.
Determine the displacement of end A with respect to end D
if the diameters of each segment are dyzp = 20mm,
dgc = 25mm, and d¢p = 12mm. Take E,, = 126 GPa.

~2m — 3.75m < 2.5m—
kN | 2235KN ‘ ‘ 9kN o7 kN
A2SKNB cokn P
Prob. 4-2

4-3. The composite shaft, consisting of aluminum, copper,
and steel sections, is subjected to the loading shown.
Determine the displacement of end A with respect to end D
and the normal stress in each section. The cross-sectional
area and modulus of elasticity for each section are shown in
the figure. Neglect the size of the collars at B and C.

*4-4. Determine the displacement of B with respect to C
of the composite shaft in Prob. 4-3.

Aluminum
E, =70 GPa
Ayup =58 mm?

Copper Steel
E. = 126 GPa E, = 200 GPa
Ape =77 mm? Acp =39 mm?

16 kN 8 kN
9 kN Ff— < 7kN
<
A | —— D
BET6kN € 8kN
450 mm —=300 mm*L 400 mm—
Probs. 4-3/4

4-5. The 2014-T6 aluminium rod has a diameter of 30 mm
and supports the load shown. Determine the displacement
of end A with respect to end E. Neglect the size of the
couplings.

ASkN ﬁ ,§| ,L-)| E

I]H— =R} =
4kNT 6kNT Tsz

! 4m ~—2m-—p—2m-—~—2m-—
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4-6. The A992 steel drill shaft of an oil well extends 3600
m into the ground. Assuming that the pipe used to drill the
well is suspended freely from the derrick at A, determine
the maximum average normal stress in each pipe segment
and the elongation of its end D with respect to the fixed end
at A. The shaft consists of three different sizes of pipe, AB,
BC, and CD, each having the length, weight per unit length,
and cross-sectional area indicated.

4

A
AAB: 1600 l’IlIl’l2 1500 m
wyup= 50 N/m

B
ABC: 1125 mm2
wac=40 Nim 400
ACD: 800 mm2 o 600 m
Wep= 30 N/m D (]

Prob. 4-6

4-7. The truss is made of three A-36 steel members, each
having a cross-sectional area of 400 mm?. Determine the
horizontal displacement of the roller at C when P =8 kN.

*4-8. The truss is made of three A-36 steel members, each
having a cross-sectional area of 400 mm? Determine
the magnitude P required to displace the roller to the
right 0.2 mm.

| 0.8 m

Probs. 4-7/8

4-9. The assembly consists of two 10-mm diameter red
brass C83400 copper rods AB and CD, a 15-mm diameter
304 stainless steel rod EF, and a rigid bar G. If P =5 kN,
determine the horizontal displacement of end F of rod EF.

4-10. The assembly consists of two 10-mm diameter red
brass C83400 copper rods AB and CD, a 15-mm diameter
304 stainless steel rod EF, and a rigid bar G. If the horizontal
displacement of end F of rod EF is 0.45 mm, determine the
magnitude of P.

l— 300 mm — 450 mm
A B P
ﬁi —
E 5 4p
F
ﬁi -~
C D'
Probs. 4-9/10

4-11. The load is supported by the four 304 stainless steel
wires that are connected to the rigid members AB and DC.
Determine the vertical displacement of the 2.5-kN load if
the members were originally horizontal when the load was
applied. Each wire has a cross-sectional area of 16 mm?,

*4-12. The load is supported by the four 304 stainless steel
wires that are connected to the rigid members AB and DC.
Determine the angle of tilt of each member after the 2.5 kN
load is applied. The members were originally horizontal,
and each wire has a cross-sectional area of 16 mm?.

0.9 m

H
DI - | C
| towf 06 m—

} 09m

Probs. 4-11/12
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4-13. A spring-supported pipe hanger consists of two *4-16. The ship is pushed through the water using an A-36

springs which are originally unstretched and have a stiffness steel propeller shaft that is 8 m long, measured from the
of k = 60kN/m, three 304 stainless steel rods, AB and CD, propeller to the thrust bearing D at the engine. If it has an
which have a diameter of 5 mm, and EF, which has a outer diameter of 400 mm and a wall thickness of 50 mm,
diameter of 12 mm, and a rigid beam GH. If the pipe and determine the amount of axial contraction of the shaft when
the fluid it carries have a total weight of 4 kN, determine the the propeller exerts a force on the shaft of 5 kN. The
displacement of the pipe when it is attached to the support. bearings at B and C are journal bearings.

4-14. A spring-supported pipe hanger consists of two
springs, which are originally unstretched and have a stiffness
of k = 60kN/m, three 304 stainless steel rods, AB and CD,
which have a diameter of 5 mm, and EF, which has a
diameter of 12 mm, and a rigid beam GH. If the pipe is
displaced 82 mm when it is filled with fluid, determine the
weight of the fluid.

Prob. 4-16

0.25m 0.25 m

Probs. 4-13/14

4-17. The bar has a length L and cross-sectional area A.
Determine its elongation due to the force P and its own

weight.The material has a specific weight y (weight /volume)
4-15. The steel bar has the original dimensions shown in and a modulus of elasticity E.

the figure. If it is subjected to an axial load of 50 kN,
determine the change in its length and its new cross-sectional
dimensions at section a-a. Eg; = 200 GPa, vy = 0.29.

Prob. 4-15 Prob. 4-17
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4-18. The assembly consists of three titanium (Ti-6A1-4V)
rods and a rigid bar AC. The cross-sectional area of each rod
is given in the figure. If a force of 30 kN is applied to the ring
F, determine the horizontal displacement of point F.

4-19. The assembly consists of three titanium (Ti-6A1-4V)
rods and a rigid bar AC.The cross-sectional area of each rod
is given in the figure. If a force of 30 kN is applied to the ring
F, determine the angle of tilt of bar AC.

D 12m C

ACD = 600 l'l'll'l'l2 T

E 10‘3 e 30 kN

A,z = 900 mm? .l
1.8m A

e \
o
W
=]
hS
&
I
5
S
2
EI\)

Probs. 4-18/19

*4-20. The pipe is stuck in the ground so that when it is
pulled upward the frictional force along its length varies
linearly from zero at B to fi,,, (force/length) at C. Determine
the initial force P required to pull the pipe out and the
pipe’s elongation just before it starts to slip. The pipe has a
length L, cross-sectional area A, and the material from
which it is made has a modulus of elasticity E.

| S

———— ——— e e e —

i

fmax C

Prob. 4-20

4-21. The post is made of Douglas fir and has a diameter of
100 mm. If it is subjected to the load of 20 kN and the soil
provides a frictional resistance distributed around the post
that is triangular along its sides; that is, it varies from w = 0
aty = Otow = 12kN/mat y = 2 m, determine the force F
at its bottom needed for equilibrium. Also, what is the
displacement of the top of the post A with respect to its
bottom B? Neglect the weight of the post.

4-22. The post is made of Douglas fir and has a diameter
of 100 mm. If it is subjected to the load of 20 kN and the soil
provides a frictional resistance that is distributed along
its length and varies linearly from w = 4 kN/m at y = 0
to w =12kN/m at y = 2 m, determine the force F at its
bottom needed for equilibrium. Also, what is the displacement
of the top of the post A with respect to its bottom B? Neglect
the weight of the post.

'T I
2m 1
i
i p—12kN/m
AT ALY SR R AR A
F
Probs. 4-21/22

4-23. The rigid bar is supported by the pin-connected rod
CB that has a cross-sectional area of 14 mm? and is made
from 6061-T6 aluminum. Determine the vertical deflection
of the bar at D when the distributed load is applied.

FC
& 300 N/m
1.5m N
B \\
9 X9 D
B b A B
1 2 m l 2m l

Prob. 4-23
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*4-24. The weight of the kentledge exerts an axial force of
P = 1500kN on the 300-mm diameter high-strength
concrete bore pile. If the distribution of the resisting skin
friction developed from the interaction between the soil
and the surface of the pile is approximated as shown,
determine the resisting bearing force F for equilibrium.
Take py = 180kN/m. Also, find the corresponding elastic
shortening of the pile. Neglect the weight of the pile.

12m

\
T)ﬂ-» —»—»—»—»—» :

Prob. 4-24

4-25. Determine the elongation of the aluminum strap
when it is subjected to an axial force of 30 kN. E,; =70 GPa.

15mm 0 Tm 6/mm 15 mm

] | 7
30kN | L | | 30kN

800
250 mm' mm '250 mm'

Prob. 4-25

4-26. The ball is truncated at its ends and is used to
support the bearing load P. If the modulus of elasticity for
the material is £, determine the decrease in the ball’s height
when the load is applied.

Prob. 4-26

4-27. The linkage is made of two pin-connected A-36 steel
members, each having a cross-sectional area of 1000 mm?. If
a vertical force of P = 250kN is applied to point A,
determine its vertical displacement at A.

*4-28. The linkage is made of two pin-connected A-36
steel members, each having a cross-sectional area of 1000
mm?. Determine the magnitude of the force P needed to
displace point A 0.625 mm downward.

[-0.45 m~}-0.45 m~|

Probs. 4-27/28

4-29. The bar has a cross-sectional area of 1800 mm?, and
E = 250GPa. Determine the displacement of its end A
when it is subjected to the distributed loading.

X

| w=1500x""N/m

e

15m |

Prob. 4-29

4-30. Determine the relative displacement of one end of
the tapered plate with respect to the other end when it is
subjected to an axial load P.

AP

/17

—d,

7
St
h

T

Prob. 4-30

A—d,
P
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4.3 PRINCIPLE OF SUPERPOSITION

The principle of superposition is often used to determine the stress or
displacement at a point in a member when the member is subjected to a
complicated loading. By subdividing the loading into components, this
principle states that the resultant stress or displacement at the point can
be determined by algebraically summing the stress or displacement caused
by each load component applied separately to the member.

The following two conditions must be satisfied if the principle of
superposition is to be applied.

1. The loading N must be linearly related to the stress o or
displacement & that is to be determined. For example, the equations
o = N/A and 8 = NL/AE involve a linear relationship between o
and N, and 6 and N.

2. The loading must not significantly change the original geometry or
configuration of the member. If significant changes do occur, the
direction and location of the applied forces and their moment arms
will change. For example, consider the slender rod shown in Fig. 4-9a,
which is subjected to the load P. In Fig. 4-9b, P is replaced by two
of its components, P = P; + P.. If P causes the rod to deflect a large
amount, as shown, the moment of this load about its support, Pd,
will not equal the sum of the moments of its component loads,
Pd # Pyd; + P.d,,because d; # d, # d.

P,
— ¥ +
|

d,

(b)
Fig. 4-9

4.4 STATICALLY INDETERMINATE
AXIALLY LOADED MEMBERS

Consider the bar shown in Fig. 4-10a, which is fixed supported at both of
its ends. From its free-body diagram, Fig. 4-10b, there are two unknown
support reactions. Equilibrium requires

+13F = 0; Fy + Fy — 500N = 0

This type of problem is called statically indeterminate,since the equilibrium
equation is not sufficient to determine both reactions on the bar.
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In order to establish an additional equation needed for solution, it is necessary
to consider how points on the bar are displaced. Specifically, an equation that
specifies the conditions for displacement is referred to as a compatibility or
kinematic condition. In this case, a suitable compatibility condition would require
the displacement of end A of the bar with respect to end B to equal zero, since the
end supports are fixed, and so no relative movement can occur between them.
Hence, the compatibility condition becomes

SA/B =0

This equation can be expressed in terms of the internal loads by using a
load-displacement relationship, which depends on the material behavior. For
example, if linear elastic behavior occurs, then 6 = NL/AE can be used. Realizing
that the internal force in segment AC is +F, ,and in segment CB it is — F, Fig. 4-10c,
then the compatibility equation can be written as

AE AE

Since AE is constant, then F4 = 1.5F. Finally, using the equilibrium equation, the
reactions are therefore

F, =300N and Fg= 200N

Since both of these results are positive, the directions of the reactions are shown
correctly on the free-body diagram.

To solve for the reactions on any statically indeterminate problem, we must
therefore satisfy both the equilibrium and compatibility equations, and relate the
displacements to the loads using the load—displacement relations.

B \PORTANT POINTS

® The principle of superposition is sometimes used to simplify
stress and displacement problems having complicated loadings.
This is done by subdividing the loading into components, then
algebracially adding the results.

® Superposition requires that the loading be linearly related to
the stress or displacement, and the loading must not significantly
change the original geometry of the member.

® A problem is statically indeterminate if the equations of
equilibrium are not sufficient to determine all the reactions on
a member.

® Compatibility conditions specify the displacement constraints
that occur at the supports or other points on a member.

500N

A
2m
3m
. -
(a)
ik
b,
(b)
Fig. 4-10
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Most concrete columns are reinforced with
steel rods; and since these two materials work
together in supporting the applied load, the
force in each material must be determined
using a statically indeterminate analysis.

- PROCEDURE FOR ANALYSIS

The support reactions for statically indeterminate problems
are determined by satisfying equilibrium, compatibility, and
load—displacement requirements for the member.

Equilibrium.

Draw a free-body diagram of the member in order to identify
all the forces that act on it.

The problem can be classified as statically indeterminate if the
number of unknown reactions on the free-body diagram is
greater than the number of available equations of equilibrium.

Write the equations of equilibrium for the member.

Compeatibility.

Consider drawing a displacement diagram in order to
investigate the way the member will elongate or contract when
subjected to the external loads.

Express the compatibility conditions in terms of the displacements
caused by the loading.

Load-Displacement.

Use a load—displacement relation, such as 8 = NL/AE, to
relate the unknown displacements in the compatibility
equation to the reactions.

Solve all the equations for the reactions. If any of the results
has a negative numerical value, it indicates that this force
acts in the opposite sense of direction to that indicated on the
free-body diagram.
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EXAMPLE 4.5

The steel rod shown in Fig. 4-11a has a diameter of 10 mm. It is fixed
to the wall at A, and before it is loaded, there is a gap of 0.2 mm
between the wall at B’ and the rod. Determine the reactions on the
rod if it is subjected to an axial force of P = 20 kN. Neglect the size of
the collar at C. Take E; = 200 GPa.

SOLUTION

Equilibrium. As shown on the free-body diagram, Fig. 4-11b, we
will assume that force P is large enough to cause the rod’s end B to
contact the wall at B. When this occurs, the problem becomes
statically indeterminate since there are two unknowns and only one
equation of equilibrium.

+ SFE =0; —F,— Fg + 20(10* N = 0 (1)

Compatibility. The force P causes point B to move to B with no
further displacement. Therefore the compatibility condition for the rod is

dp/4 = 0.0002 m
Load-Displacement. This displacement can be expressed in terms
of the unknown reactions using the load—displacement relationship,

Eq. 4-2, applied to segments AC and CB, Fig. 4-11c. Working in units
of newtons and meters, we have

Fy Lac Fp Lcp

Op/a = AE  AE = 0.0002 m
(0.005 m)? [200(10%) N /m?]
F3 (0.8 m
- "‘;( )9 — = 0.0002m
7(0.005 m) 2 [200(10°) N/m?]
or
F4 (0.4m) — Fg (0.8m) = 3141.59N - m )
Solving Egs. 1 and 2 yields
F, = 160kN  Fz = 4.05kN Ans.

Since the answer for Fj is positive, indeed end B contacts the wall at
B’ as originally assumed.

NOTE: If Fz were a negative quantity, the problem would be
statically determinate, so that Ff = 0 and F4 = 20 kN.

P=20kN 02mm-~
- — X

<C—800 mm—BJ‘

(a)

400 mm

P =20kN
Fie—i =] -«F,

(b)

F,<—  +—>»F,
Fp—f  le—Fy
()
Fig. 4-11
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EXAMPLE 4.6

P =45kN The aluminum post shown in Fig. 4-12a is reinforced with a brass core.
If this assembly supports an axial compressive load of P = 45kN,
applied to the rigid cap, determine the average normal stress in the
aluminum and the brass. Take E,; = 70 GPa and E;, = 105 GPa.

SOLUTION

Equilibrium. The free-body diagram of the post is shown in Fig. 4-12b.
Here the resultant axial force at the base is represented by the unknown
(a) components carried by the aluminum, F,, and brass, Fy,.. The problem is
statically indeterminate. Why?

Vertical force equilibrium requires

+12EF = 0; —45kN + Fy + K, =0 1)
P =45kN Compatibility. The rigid cap at the top of the post causes both the
aluminum and brass to displace the same amount.Therefore,
( 8al = 8br

Using the load—displacement relationships,

L KL
\T T AalEal a AbrEbr
. fbr T <Aa1> (Eal>
F, =K
T al br Abr Ebr
(b) 5o g |00 m)® — (0.025 m)ﬂ} { 70 GPa }
A 7(0.025m)? 105GPa
Fal = 2Pi)r (2)
Solving Egs. 1 and 2 simultaneously yields
o1, = 7.64 MPa F, = 30kN F,, = 15kN

o =509MPa  Since the results are positive, indeed the stress will be compressive.
The average normal stress in the aluminum and brass is therefore

30(10°)N . )
Oa = 2 5 = 5.093(10°) N/m" = 5.09 MPa Ans.
7[(0.05m)” — (0.025m)?]
15(10°)N . 3
Oy = — ——— 5 = 7.639(10°)N/m" = 7.64 MPa Ans.
© 7(0.025m)
Fig. 4-12 NOTE: Using these results, the stress distributions are shown in

Fig. 4-12c.
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EXAMPLE 4.7

The three A992 steel bars shown in Fig. 4-13a are pin connected to a
rigid member. If the applied load on the member is 15 kN, determine
the force developed in each bar. Bars AB and EF each have a
cross-sectional area of 50 mm?, and bar CD has a cross-sectional area
of 30 mm?.

SOLUTION

Equilibrium. The free-body diagram of the rigid member is shown
in Fig. 4-13b. This problem is statically indeterminate since there are
three unknowns and only two available equilibrium equations.

+13F, = 0; Fo+ Fc+ Fg—15kN =0 (1)
(+SMe=0; —Fa(04m) + I5kN(02m) + Fz(04m) =0 (2)

0.5 m

15 kN
Compatibility. The applied load will cause the horizontal line ACE (a)
shown in Fig. 4-13c¢ to move to the inclined position A'C’'E’. The red
displacements 84, 8., 85 can be related by similar triangles. Thus the Fy Fe Fg
compatibility equation that relates these displacements is J\ J\
C
6A_6E=6C_6E IW ‘H
0.8 m 0.4m \?/ ‘
1 1 0zm|ozm T AmT
6(: = E 6A + E 8E
15 kN
Load-Displacement. Using the load-displacement relationship, (b)
Eq. 4-2, we have
‘% 0.4 m i 0.4m i
Fo L 1{ FiL } 1{ F: L ] - C 2
_— =" —_ E
(30 mm?)E 2 | (50 mm?)E 2 | (50 mm?)E 5,4 — BET "
N C’
Fo = 03F, + 03F; 3) Ay, B o
Solving Eqgs. 1-3 simultaneously yields ©
Fig. 4-13
FE, = 952 kN Ans.
F- = 3.46 kN Ans.

Fz = 2.02kN Ans.
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EXAMPLE 4.8

mr
1
1
| | 60 mm
10 mm i 5 mm|
|
|
|
|
|
|
|
(a)
F,
—P—
F,
) 3
iB
(b)
(W]
Final
position
0.5 mm

Initial
position

Fig. 4-14

The bolt shown in Fig. 4-14a is made of 2014-T6 aluminum alloy and is
tightened so it compresses a cylindrical tube made of Am 1004-T61
magnesium alloy. The tube has an outer radius of 10 mm and it is assumed
that both the inner radius of the tube and the radius of the bolt are 5 mm.
The washers at the top and bottom of the tube are considered to be rigid
and have a negligible thickness. Initially the nut is hand tightened snugly;
then, using a wrench, the nut is further tightened one-half turn. If the
bolt has 1 thread per mm, determine the stress in the bolt.

SOLUTION

Equilibrium. The free-body diagram of a section of the bolt and the
tube, Fig. 4-14b,is considered in order to relate the force in the bolt F, to
that in the tube, F;. Equilibrium requires

+13F, = 0, FE-FE=0 (1)

Compatibility. When the nut is tightened on the bolt, the tube will
shorten §,, and the bolt will elongate 6, Fig. 4-14c. Since the nut undergoes

one-half turn, it advances a distance of % (0.001m) = 0.5(107>)m along
the bolt. Thus, the compatibility of these displacements requires
+M1 8, = 0.5(10)m — 3,

Taking the moduli of elasticity from the table given in the back of the
book, and applying Eq. 4-2, yields

F,(0.06m) B
7[(0.01m)* — (0.005m)?| [44.7(10°)N/m?]
0.5(10%)m — £, (0.06m)
m(0.005m)?[73.1 (10°) N /m’]
5.6968F, + 10.4507F, = 0.5(10°) ()

Solving Egs. 1 and 2 simultaneously, we get

F, = F, = 30.96(10*)N
The stresses in the bolt and tube are therefore
F, 30.96 (10°)N
A, w(0.005m)?
_F 30.96 (10°)N
A #[(0.01m)% — (0.005m)?]
These stresses are less than the reported yield stress for each material,

(0y)a = 414MPa and (0y)n, = 152MPa (see the back of the book),
and therefore this “elastic” analysis is valid.

oy = = 394.25(10°)N/m = 394MPa Ans.

= 131.42(10°)N/m? = 131 MPa

Oy
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4.5 THE FORCE METHOD OF ANALYSIS
FOR AXIALLY LOADED MEMBERS

Itis also possible to solve statically indeterminate problems by writing the
compatibility equation using the principle of superposition. This method
of solution is often referred to as the flexibility or force method of
analysis. To show how it is applied, consider again the bar in Fig. 4-15a.
If we choose the support at B as “redundant” and temporarily remove it
from the bar, then the bar will become statically determinate, as in
Fig. 4-15b. Using the principle of superposition, however, we must add
back the unknown redundant load Fg, as shown in Fig. 4-15c.

Since the load P causes B to be displaced downward by an amount 6p,
the reaction Fgz must displace end B of the bar upward by an amount 63,
so that no displacement occurs at B when the two loadings are
superimposed. Assuming displacements are positive downward, we have

(+1) 0=68p—8p

This condition of 6p = 8y represents the compatibility equation for
displacements at point B.

Applying the load—displacement relationship to each bar, we have
8p = S00N(2m)/AE and 63 = Fz(5 m)/AE. Consequently,

S00N(2m) Fz(5m)
B AE AE
Fgz = 200N

From the free-body diagram of the bar, Fig. 4-15d, equilibrium requires
+13F, = 0; 200N + F4 — 500N =0

Then
F, = 300N

These results are the same as those obtained in Sec. 4.4.

W) PROCEDURE FOR ANALYSIS
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A
2m
No displacement at B _
C
500N
(a) 3m
B
A
Displacement at B when
redundant force at B Nyc= 500N
is removed
(b) 500N
Nep=0
L Tep
A IF"
Displacement at B when
only the redundant force
at B is applied 500 N
Nap=-Fp l
(©
i
_ 1o
TFB —fzoo N
(d)
Fig. 4-15

The force method of analysis requires the following steps.

Compatibility.

the redundant reaction acting on the member.

® Choose one of the supports as redundant and write the equation of compatibility. To do this, the known
displacement at the redundant support, which is usually zero, is equated to the displacement at the support caused
only by the external loads acting on the member plus (vectorially) the displacement at this support caused only by
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Load-Displacement.

® Express the external load and redundant displacements in terms of the loadings by using a
load—displacement relationship, such as 6 = NL/AE.

® Once established, the compatibility equation can then be solved for the magnitude of the redundant force.

Equilibrium.

® Draw a free-body diagram and write the appropriate equations of equilibrium for the member using the
calculated result for the redundant. Solve these equations for the other reactions.

EXAMPLE 4.9

P =20kN 02m The A-36 steel rod shown in Fig. 4-16a has a diameter of 10 mm. It is fixed to
4 C m\l E the wall at A, and before it is loaded there is a gap between the wall and the
800 mm — rod of 0.2 mm. Determine the reactions at A and B'. Neglect the size of the
400 mm ) collar at C.Take E i = 200 GPa.
P =20kN SOLUTION
Compatibility. Here we will consider the support at B’ as redundant.
Initial Using the principle of superposition, Fig. 4-16b, we have
P =20kN ” position ‘ P

- (&) 0.0002m = 8p — 85 (1)

=

Nac=20kN Ncp=0 Final . . .
+ O8position Load-Displacement. The deflections §p and 8 are determined from

i - Eq.4-2.
;ﬁ@ B
Nyy=-F NucL 20(10° ) NJ(0.4
AB B 8P _ ACH AC _ [ ( 5 ) ]( 9m) 5 _ 05093(10*3) m
(b) AE (0.005 m)? [200(10%) N /m?]
NAB LAB FB (120 m) 9

dp = = = 76.3944(107°)F,
B AE 7(0.005 m)? [200(10°) N /m?] (107

Substituting into Eq. 1, we get

0.0002 m = 0.5093(1073) m — 76.3944(10°)Fy
UL 4.05 kN .
-« —> [ |— Fg = 4.05(10°) N = 4.05kN Ans.

(©) Equilibrium. From the free-body diagram, Fig. 4-16¢,
Fig. 4-16 K SF, =0, —F,+20kN —405kN =0 F, = 160kN  Ans
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. PROBLEMS

4-31. The column is constructed from high-strength
concrete and six A-36 steel reinforcing rods. If it is subjected
to an axial force of 150 kN, determine the average normal
stress in the concrete and in each rod. Each rod has a
diameter of 20 mm.

*4-32. The column is constructed from high-strength
concrete and six A-36 steel reinforcing rods. If it is subjected
to an axial force of 150 kN, determine the required diameter
of each rod so that one-fourth of the load is carried by the
concrete and three-fourths by the steel.

Probs. 4-31/32

4-33. The A-36 steel pipe has a 6061-T6 aluminum core. It
is subjected to a tensile force of 200 kN. Determine the
average normal stress in the aluminum and the steel due to
this loading. The pipe has an outer diameter of 80 mm and
an inner diameter of 70 mm.

i 400 mm i

200 kN 4—@ — 200 kN

Prob. 4-33

4-34. The 304 stainless steel post A has a diameter of
d = 50mm and is surrounded by a red brass C83400 tube B.
Both rest on the rigid surface. If a force of 25 kN is applied
to the rigid cap, determine the average normal stress
developed in the post and the tube.

4-35. The 304 stainless steel post A is surrounded by a red
brass C83400 tube B. Both rest on the rigid surface. If a
force of 25 kN is applied to the rigid cap, determine the
required diameter d of the steel post so that the load is
shared equally between the post and tube.

200 mm

75 mm
it ‘

‘T‘ W12 mm

Probs. 4-34/35

*4-36. The A-36 steel pipe has an outer radius of 20 mm
and an inner radius of 15 mm. If it fits snugly between the
fixed walls before it is loaded, determine the reaction at the
walls when it is subjected to the load shown.

B c
Fle—8kN

L— 8 kN h
- 300 mm —~———— 700 mm ————]

Prob. 4-36
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4-37. The 10-mm-diameter steel bolt is surrounded by a
bronze sleeve. The outer diameter of this sleeve is 20 mm, and
its inner diameter is 10 mm. If the yield stress for the steel is
(oy)sy = 640 MPa, and for the bronze (oy),, = 520 MPa,
determine the magnitude of the largest elastic load P that can
be applied to the assembly. £ =200 GPa, E,, = 100 GPa.

1 1
1 1
1 1
i
1 10 mm
i
1 1
1 1
P 20 mm
1
1 1
1 ) 1
P
Prob. 4-37

4-38. The 10-mm-diameter steel bolt is surrounded by a
bronze sleeve. The outer diameter of this sleeve is 20 mm, and its
inner diameter is 10 mm. If the bolt is subjected to a compressive
force of P =20 kN, determine the average normal stress in the
steel and the bronze. Ey =200 GPa, E;,, = 100 GPa.

10 mm

20 mm

P

Prob. 4-38

4-39. If column AB is made from high strength pre-cast
concrete and reinforced with four 20 mm diameter A-36
steel rods, determine the average normal stress developed
in the concrete and in each rod. Set P = 350kN.

*4-40. If column AB is made from high strength pre-cast
concrete and reinforced with four 20 mm diameter A-36
steel rods, determine the maximum allowable floor
loadings P. The allowable normal stress for the high
strength concrete and the steel are (ouow)econ = 18 MPa
and (ou0w)se = 170MPa, respectively.

P P
Aﬁﬂh
a = a EI 225 mm
N N
225 mm
3m Section a-a
B
Probs. 4-39/40

4-41. Determine the support reactions at the rigid supports
A and C.The material has a modulus of elasticity of E.

4-42. If the supports at A and C are flexible and have a
stiffness k, determine the support reactions at A and C. The
material has a modulus of elasticity of E.

N $a
P
2a ~——a
Probs. 4-41/42
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4-43. The tapered member is fixed connected at its ends A
and B and is subjected to a load P = 35kN at x = 750mm.
Determine the reactions at the supports. The material is 50
mm thick and is made from 2014-T6 aluminum.

*4-44. The tapered member is fixed connected at its ends A
and B and is subjected to a load P. Determine the location x
of the load and its greatest magnitude so that the average
normal stress in the bar does not exceed oy, = 28 MPa.
The member is 50 mm thick.

A
T B
150 I+nm P<€¢—— 175 mm
X
1500 mm
Probs. 4-43/44

4-45. The rigid bar supports the uniform distributed load of
90 kN/m. Determine the force in each cable if each cable has
a cross-sectional area of 36 mm? and E = 200 GPa.

4-46. The rigid bar is originally horizontal and is supported
by two cables each having a cross-sectional area of 36 mm?,
and E = 200GPa. Determine the slight rotation of the bar
when the uniform load is applied

90 kN/m

Probs. 4-45/46

169

4-47. The specimen represents a filament-reinforced matrix
system made from plastic (matrix) and glass (fiber). If there are
n fibers, each having a cross-sectional area of Ay and modulus
of £ embedded in a matrix having a cross-sectional area of 4,,
and modulus of E,,, determine the stress in the matrix and in
each fiber when the force P is applied on the specimen.

P

|

Ll

!

Prob. 4-47

*4-48. The rigid beam is supported by the three suspender
bars. Bars AB and EF are made of aluminum and bar CD is
made of steel. If each bar has a cross-sectional area of 450 mm?,
determine the maximum value of P if the allowable stress is
(Taow)st = 200 MPa for the steel and (o 0w )a = 150 MPa for
the aluminum. £ =200 GPa, E,; =70 GPa.

|
0.75 m¢0.75 m 0.75m|0.75 m
P

2P
Prob. 4-48

4-49. If the gap between C and the rigid wall at D is
initially 0.15 mm, determine the support reactions at A and D
when the force P = 200 kN is applied. The assembly is
made of solid A-36 steel cylinders.

~—600 mm —~=—600 mm — ~0.15 mm
| 1
E P, D
L) C
50'mm B 25 mm
Prob. 4-49
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4-50. The support consists of a solid red brass C83400
copper post surrounded by a 304 stainless steel tube. Before
the load is applied the gap between these two parts is 1 mm.
Given the dimensions shown, determine the greatest axial
load that can be applied to the rigid cap A without causing
yielding of any one of the materials.

e
A== :* 1 mm

0.25m

60 mm
80 mm

<10 mm

Prob. 4-50

4-51. The assembly consists of two red brass C83400
copper rods AB and CD of diameter 30 mm, a stainless 304
steel alloy rod EF of diameter 40 mm, and a rigid cap G. If
the supports at A, C, and F are rigid, determine the average
normal stress developed in the rods.

‘«300 mmﬂ ‘

450 mm ——

CSOmm b G

Prob. 4-51

*4-52. The bolt AB has a diameter of 20 mm and passes
through a sleeve that has an inner diameter of 40 mm and
an outer diameter of 50 mm. The bolt and sleeve are made
of A-36 steel and are secured to the rigid brackets as shown.
If the bolt length is 220 mm and the sleeve length is 200 mm,
determine the tension in the bolt when a force of 50 kN is
applied to the brackets.

}_7 200 mm —

25 kN 25 kN

25kN 25 kN

%220 mm

Prob. 4-52

4-53. The 2014-T6 aluminum rod AC is reinforced with
the firmly bonded A992 steel tube BC. If the assembly
fits snugly between the rigid supports so that there is
no gap at C, determine the support reactions when the
axial force of 400 kN is applied. The assembly is
attached at D.

4-54. The 2014-T6 aluminum rod AC is reinforced with
the firmly bonded A992 steel tube BC. When no load is
applied to the assembly, the gap between end C and the
rigid support is 0.5 mm. Determine the support reactions
when the axial force of 400 kN is applied.

T

400 mm l 400 kKN

B
800 mm A992 steel
50 mm
a a —é
25 mm 014-T6 aluminum alloy
Section a-a
—7I_IC
Probs. 4-53/54

4-55. The three suspender bars are made of A992 steel
and have equal cross-sectional areas of 450 mm?. Determine
the average normal stress in each bar if the rigid beam is
subjected to the loading shown.

80 kN
2m 50 kN

Fl mHFl m»\&l m#\&l mﬁ\

Prob. 4-55
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*4-56. The three A-36 steel wires each have a diameter
of 2 mm and unloaded lengths of L, = 1.60 m and
L,g=L4p=2.00 m. Determine the force in each wire after
the 150-kg mass is suspended from the ring at A.

4-57. The A-36steel wires AB and AD each have a diameter
of 2 mm and the unloaded lengths of each wire are L 4= 1.60
mand L,z=L,p=2.00 m. Determine the required diameter
of wire AC so that each wire is subjected to the same force
when the 150-kg mass is suspended from the ring at A.

Probs. 4-56/57

4-58. The post is made from 6061-T6 aluminum and has a
diameter of 50 mm. It is fixed supported at A and B, and at its
center C there is a coiled spring attached to the rigid collar. If
the spring is originally uncompressed, determine the reactions
at A and B when the force P =40 kN is applied to the collar.

4-59. The post is made from 606l-T6 aluminum and has a
diameter of 50 mm. It is fixed supported at A and B, and at its
center C there is a coiled spring attached to the rigid collar. If the
spring is originally uncompressed, determine the compression
in the spring when the load of P =50 kN is applied to the collar.

0.25m

k =200 MN/m

Probs. 4-58/59

*4-60. The press consists of two rigid heads that are
held together by the two A-36 steel 12-mm-diameter
rods. A 6061-T6-solid-aluminum cylinder is placed in the
press and the screw is adjusted so that it just presses up
against the cylinder. If it is then tightened one-half turn,
determine the average normal stress in the rods and in
the cylinder. The single-threaded screw on the bolt has a
lead of 0.25 mm. Note: The lead represents the distance
the screw advances along its axis for one complete turn
of the screw.

‘ 300 mm ‘

250 mm

Prob. 4-60

4-61. The press consists of two rigid heads that are held
together by the two A-36 steel 12-mm-diameter rods. A
6061-T6-solid-aluminum cylinder is placed in the press
and the screw is adjusted so that it just presses up against
the cylinder. Determine the angle through which the
screw can be turned before the rods or the specimen
begin to yield. The single-threaded screw on the bolt has
a lead of 0.25 mm. Note: The lead represents the distance
the screw advances along its axis for one complete turn
of the screw.

300 mm

250 mm

Probs. 4-61
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4-62. The rigid bar is supported by the two short white
spruce wooden posts and a spring. If each of the posts has an
unloaded length of 1 m and a cross-sectional area of 600 mm?,
and the spring has a stiffness of kK = 2 MN/m and an
unstretched length of 1.02 m, determine the force in each post
after the load is applied to the bar.

4-63. The rigid bar is supported by the two short white
spruce wooden posts and a spring. If each of the posts has an
unloaded length of 1 m and a cross-sectional area of 600 mm?,
and the spring has a stiffness of kK = 2 MN/m and an
unstretched length of 1.02 m, determine the vertical
displacement of A and B after the load is applied to the bar.

50 kN/m

¥ ¥
I |
A ¢ Bl
| |
i I

Il . 11—
‘ 1m ‘ 1m ‘
Probs. 4-62/63

*4-64. The assembly consists of two posts AB and CD each
made from material 1 having a modulus of elasticity of E;
and a cross-sectional area A4, and a central post made from
material 2 having a modulus of elasticity £, and cross-
sectional area A,. If a load P is applied to the rigid cap,
determine the force in each material.

Prob. 4-64

4-65. The assembly consists of two posts AB and CD each
made from material 1 having a modulus of elasticity of E;
and a cross-sectional area A, and a central post EF made
from material 2 having a modulus of elasticity E, and a
cross-sectional area A,. If posts AB and CD are to be
replaced by those having a material 2, determine the
required cross-sectional area of these new posts so that both
assemblies deform the same amount when loaded.

4-66. The assembly consists of two posts AB and CD each
made from material 1 having a modulus of elasticity of E;
and a cross-sectional area Aj, and a central post EF made
from material 2 having a modulus of elasticity E, and a
cross-sectional area A,. If post EF is to be replaced by one
having a material 1, determine the required cross-sectional
area of this new post so that both assemblies deform the
same amount when loaded.

P
| d d |
| ) |
A E q
o () oM
» r L)
Probs. 4-65/66

4-67. The wheel is subjected to a force of 18 kN from the
axle. Determine the force in each of the three spokes.
Assume the rim is rigid and the spokes are made of the
same material, and each has the same cross-sectional area.

Prob. 4-67
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A change in temperature can cause a body to change its dimensions.
Generally, if the temperature increases, the body will expand, whereas if
the temperature decreases, it will contract.” Ordinarily this expansion or
contraction is /inearly related to the temperature increase or decrease that
occurs. If this is the case, and the material is homogeneous and isotropic,
it has been found from experiment that the displacement of the end of a
member having a length L can be calculated using the formula

8 = aATL (4-4)

Here

a = a property of the material, referred to as the linear coefficient of
thermal expansion. The units measure strain per degree of
temperature. Itis 1 /°C (Celsius) or 1 /K (Kelvin) in the ST system.
Typical values are given in the back of the book.

AT = the algebraic change in temperature of the member
L = the original length of the member
o7 = the algebraic change in the length of the member

The change in length of a statically determinate member can easily be
calculated using Eq. 44, since the member is free to expand or contract
when it undergoes a temperature change. However, for a statically
indeterminate member, these thermal displacements will be constrained
by the supports, thereby producing thermal stresses that must be
considered in design. Using the methods outlined in the previous sections,
it is possible to determine these thermal stresses, as illustrated in the
following examples.

*There are some materials, like Invar, an iron-nickel alloy, and scandium trifluoride, that
behave in the opposite way, but we will not consider these here.
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Most traffic bridges are designed with
expansion joints to accommodate the
thermal movement of the deck and thus
avoid any thermal stress.

Long extensions of ducts and pipes that carry
fluids are subjected to variations in
temperature that will cause them to expand
and contract. Expansion joints, such as the
one shown, are used to mitigate thermal
stress in the material.
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EXAMPLE 4.10

10 mm The A-36 steel bar shown in Fig. 4-17a is constrained to just fit between
| two fixed supports when 77 = 30°C. If the temperature is raised to
- 10mm T, = 60°C, determine the average normal thermal stress developed in

the bar.
Y - Rl
SOLUTION
1m Equilibrium. The free-body diagram of the bar is shown in Fig. 4-17b.

' Since there is no external load, the force at A is equal but opposite to the
force at B; that is,

o +T2I’;:0, FA:FB:F

The problem is statically indeterminate since this force cannot be
F determined from equilibrium.

Compatibility. Since 8,/ = 0, the thermal displacement 87 at A that
occurs, Fig. 4-17¢, is counteracted by the force F that is required to push
the bar 67 back to its original position. The compatibility condition at A
becomes

F

(+h S48 =0 =207~ op

Applying the thermal and load—displacement relationships, we have

FL
= aATL — —
0=a«a AE

(b) Thus, from the data in the back of the book,

5, F = aATAE
::}E = [12(107%)/°C](60°C — 30°C)(0.010m)?[200(10°) N /m’]
8r = 7.20(10°)N

Since F also represents the internal axial force within the bar, the average
normal compressive stress is thus

F 720(10°)N . )
o=—=——"""2"="720(10°N/m* = 72.0MPa Ans.
A (0.010m)

© NOTE: From the magnitude of F, it should be apparent that changes in
temperature can cause large reaction forces in statically indeterminate
Fig. 4-17 members.



EXAMPLE 4.11

The rigid beam shown in Fig. 4-18a is fixed to the top of the three posts
made of A992 steel and 2014-T6 aluminum. The posts each have a length of
250 mm when no load is applied to the beam, and the temperature is
Ty = 20°C. Determine the force supported by each post if the bar is
subjected to a uniform distributed load of 150 kN /m and the temperature
is raised to 7, = 80°C.

SOLUTION

Equilibrium. The free-body diagram of the beam is shown in Fig. 4-18b.
Moment equilibrium about the beam’s center requires the forces in the
steel posts to be equal. Summing forces on the free-body diagram, we have

+13F, = 0 2F, + E; — 90(10) N = 0 (1)

Compatibility. Due to load, geometry, and material symmetry, the top
of each post is displaced by an equal amount. Hence,
(+ ‘I’) 8st = 5a1 (2)

The final position of the top of each post is equal to its displacement
caused by the temperature increase, plus its displacement caused by the
internal axial compressive force, Fig. 4-18c. Thus, for the steel and
aluminum post, we have
(+‘|’) 65t = _(8st)T + (8st)F
(+1) a = —@u)r + Ga)r
Applying Eq. 2 gives

_(6st) Tt (5st)F = _(aal) T+ (Sal)F

Load-Displacement. Using Eqs. 42 and 4-4 and the material
properties given in the back of the book, we get

Fy (0.250 m)
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300 mm—+}300 mm—+

A H l 1 150 kN/m

250 mm

-

40 mm-—» ‘

ik

Steel Aluminum .S.teel

(a)
90 kN
R |
‘ 1
i |
Fst Fal Fst

Gor ,_Cwr

8y =8y ()3

—[12(10 %) /°C](80°C — 20°C)(0.250 m) +

Fy (0250 m)

(0.020 m) 2 [200(10°) N/m?]

Initial position | =T !r B —|Esa )
/’ﬂ, | ﬁT IP F

Final position

()
Fig. 4-18

= —[23(10 %) /°C](80°C — 20°C)(0.250 m) +

F, = 1.216F, — 165.9(10%) (3)

To be consistent, all numerical data has been expressed in terms of
newtons, meters, and degrees Celsius. Solving Egs. 1 and 3 simultaneously
yields

Fy = —164kN F, = 123kN Ans.

The negative value for F, indicates that this force acts opposite to that
shown in Fig. 4-18b. In other words, the steel posts are in tension and the
aluminum post is in compression.

m(0.030 m)? [73.1(10%) N/m?]
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EXAMPLE 4.12

A 2014-T6 aluminum tube having a cross-sectional area of 600 mm? is used

21
-1 as a sleeve for an A-36 steel bolt having a cross-sectional area of 400 mm?,
Fig. 4-19a. When the temperature is 77 = 15°C, the nut holds the assembly
in a snug position such that the axial force in the bolt is negligible. If the
150 mm temperature increases to 7, = 80°C, determine the force in the bolt and
sleeve.
SOLUTION
- Equilibrium. The free-body diagram of a top segment of the assembly
(a)
r 19

is shown in Fig. 4-19b. The forces F, and F; are produced since the sleeve
has a higher coefficient of thermal expansion than the bolt, and therefore
the sleeve will expand more when the temperature is increased. It is
required that

+13F, = 0; F, = F (1)

Compatibility. The temperature increase causes the sleeve and bolt to
expand (8;)7 and (8,)7, Fig. 4-19¢. However, the redundant forces F,
and F; elongate the bolt and shorten the sleeve. Consequently, the end of
the assembly reaches a final position, which is not the same as its initial
position. Hence, the compatibility condition becomes

e (+1) 8=0pr +©@p)r =0)r —(6)r
b
Load-Displacement. Applying Eqgs. 4-2 and 4-4, and using the
(b) mechanical properties from the table given in the back of the book,
T we have
[12(107)/°C](80°C — 15°C)(0.150 m) +
Fp, (0.150 m)
(400 mm?)(10~° m?/mm?)[200(10°) N /m?]
Initial — -6\ /o o~ _ 1%&0
position T)i To)r [23(107°)/°C](80°C — 15°C)(0.150 m)
T 3| Gur Final - F, (0.150 m)
—J?SX)F position (600 mm?)(10~6 m?/mm?)[73.1(10%) N /m?]
(©) Using Eq. 1 and solving gives
Fig. 4-19 F,=F, =203kN Ans.

NOTE: Since linear elastic material behavior was assumed in this
analysis, the average normal stresses should be checked to make sure
that they do not exceed the proportional limits for the material.
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*4-68. The C83400-red-brass rod AB and 2014-T6-aluminum
rod BC are joined at the collar B and fixed connected at their
ends. If there is no load in the members when 7; = 10°C,
determine the average normal stress in each member when
T, = 45°C. Also, how far will the collar be displaced? The
cross-sectional area of each member is 1130 mm?.

™
I

I 1m 0.6 m |

Prob. 4-68

4-69. Three bars each made of different materials are
connected together and placed between two walls when the
temperature is 7; = 12°C. Determine the force exerted on
the (rigid) supports when the temperature becomes
T, = 18°C.The material properties and cross-sectional area
of each bar are given in the figure.

Steel Brass Copper
E, =200 GPa E,, =100 GPa E., =120 GPa
ag = 12(107%)°C @, = 21(107) /°C ay, = 17(107) °C
) Ay, = 515 mm?
Ay = 200 mm? Ap; = 450 mm
| l
| 300 mm 1 200 mm HL |
00 mm
Prob. 4-69

4-70. The steel bolt has a diameter of 7 mm and fits
through an aluminum sleeve as shown. The sleeve has an
inner diameter of 8 mm and an outer diameter of 10 mm.
The nut at A is adjusted so that it just presses up against the
sleeve. If the assembly is originally at a temperature of
Ty = 20°C and then is heated to a temperature of
T, = 100°C, determine the average normal stress in the bolt
and the sleeve. Eg = 200GPa, E, = 70GPa, oay=
14(107%)/°C, ay = 23(107%)/°C.

Prob. 4-70

4-71. The AMI1004-T61 magnesium alloy tube AB is
capped with a rigid plate E.The gap between E and end C of
the 6061-T6 aluminum alloy solid circular rod CD is 0.2 mm
when the temperature is at 30°C. Determine the normal
stress developed in the tube and the rod if the temperature
rises to 80°C. Neglect the thickness of the rigid cap.

*4-72. The AMI1004-T61 magnesium alloy tube AB is
capped with a rigid plate. The gap between E and end C of the
6061-T6 aluminum alloy solid circular rod CD is 0.2 mm when
the temperature is at 30°C. Determine the highest temperature
to which it can be raised without causing yielding either in the
tube or the rod. Neglect the thickness of the rigid cap.

25 mm@/ZO mm

Section a-a
E
| q
| t

C DU

A B 25 mm
a ol |—

0.2 mm

~—300 mm —| ‘ 450 mm

Probs. 4-71/72

4-73. The pipe is made of A992 steel and is connected to the
collars at A and B. When the temperature is 15°C, there is no
axial load in the pipe. If hot gas traveling through the pipe
causes its temperature to vary by AT = (35 + 30x)°C, where
X is in meters, determine the average normal stress in the pipe.
The inner diameter is 50 mm, the wall thickness is 4 mm.

4-74. The bronze C86100 pipe has an inner radius of 12.5
mm and a wall thickness of 5 mm. If the gas flowing through
it changes the temperature of the pipe uniformly from
T4 = 60°C at A to Tz = 15°C at B, determine the axial
force it exerts on the walls. The pipe was fitted between the
walls when 7' = 15°C.

N,
= EI —-> > > > > > > —> t; b—> >
A B
[ |

2.4 m

Probs. 4-73/74
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4-75. The 12-m-long A-36 steel rails on a train track are
laid with a small gap between them to allow for thermal
expansion. Determine the required gap é so that the rails
just touch one another when the temperature is increased
from 7 = —30°C to 7, = 30°C. Using this gap, what
would be the axial force in the rails if the temperature
were to rise to 73 = 40°C? The cross-sectional area of each
rail is 3200 mm?2.

——s

6 —F—

12m

Prob. 4-75

*4-76. The device is used to measure a change in
temperature. Bars AB and CD are made of A-36 steel and
2014-T6 aluminum alloy respectively. When the temperature
is at 40°C, ACE is in the horizontal position. Determine the
vertical displacement of the pointer at E when the
temperature rises to 80°C.

Prob. 4-76

4-77. 'The bar has a cross-sectional area A, length L, modulus
of elasticity E, and coefficient of thermal expansion «.
The temperature of the bar changes uniformly along its
length from T, at A to Ty at B so that at any point x along
thebar T = T, + x(Tg — T4)/L. Determine the force the
bar exerts on the rigid walls. Initially no axial force is in the
bar and the bar has a temperature of 7 4.

-

Ty Ty

Prob. 4-77

4-78. When the temperature is at 30°C, the A-36 steel pipe
fits snugly between the two fuel tanks. When fuel flows
through the pipe, the temperatures at ends A and B rise to
130°C and 80°C, respectively. If the temperature drop along
the pipe is linear, determine the average normal stress
developed in the pipe. Assume each tank provides a rigid
support at A and B.

150 mm

10 mm—|

Sectiona —a

Prob. 4-78

4-79. When the temperature is at 30°C, the A-36 steel pipe
fits snugly between the two fuel tanks. When fuel flows
through the pipe, the temperatures at ends A and B rise to
130°C and 80°C, respectively. If the temperature drop along
the pipe is linear, determine the average normal stress
developed in the pipe. Assume the walls of each tank act as
a spring, each having a stiffness of k = 900 MN/m.

*4-80. When the temperature is at 30°C, the A-36 steel
pipe fits snugly between the two fuel tanks. When fuel flows
through the pipe, it causes the temperature to vary along
the pipe as T = (3x% — 20x + 120)°C, where x is in meters.
Determine the normal stress developed in the pipe. Assume
each tank provides a rigid support at A and B.

150 mm

10 mm—|

Sectiona —a

6m

|
Yo

a

Probs. 4-79/80



4-81. The 50-mm-diameter cylinder is made from
Am 1004-T61 magnesium and is placed in the clamp when
the temperature is 77 = 20° C. If the 304-stainless-steel
carriage bolts of the clamp each have a diameter of 10 mm,
and they hold the cylinder snug with negligible force against
the rigid jaws, determine the force in the cylinder when the
temperature rises to 7, = 130°C.

4-82. The 50-mm-diameter cylinder is made from
Am 1004-T61 magnesium and is placed in the clamp when
the temperature is 77 = 15°C. If the two 304-stainless-steel
carriage bolts of the clamp each have a diameter of 10 mm,
and they hold the cylinder snug with negligible force against
the rigid jaws, determine the temperature at which the
average normal stress in either the magnesium or the steel
first becomes 12 MPa.

100 mm 150 mm

—

Probs. 4-81/82

4-83. The rigid block has a weight of 400 kN and is to be
supported by posts A and B, which are made of A-36 steel,
and the post C, which is made of C83400 red brass. If all
the posts have the same original length before they are
loaded, determine the average normal stress developed in
each post when post C is heated so that its temperature is
increased by 10°C. Each post has a cross-sectional area of

5000 mm?2.
A .

Ll mﬂpl mﬂ‘

Prob. 4-83
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*4-84. The cylinder CD of the assembly is heated from
T, = 30°Cto T, = 180°C using electrical resistance. At the
lower temperature 7 the gap between C and the rigid bar is
0.7 mm. Determine the force in rods AB and EF caused by
the increase in temperature. Rods AB and EF are made of
steel, and each has a cross-sectional area of 125 mm?2. CD is
made of aluminum and has a cross-sectional area of 375 mm?2.
Egq = 200 GPa, E; = 70 GPa,and e, = 23(107%)/°C.

4-85. The cylinder CD of the assembly is heated from
T, = 30°C to T, = 180°C using electrical resistance. Also,
the two end rods AB and EF are heated from 7; = 30°C to
T, = 50°C. At the lower temperature 7; the gap between C
and the rigid bar is 0.7 mm. Determine the force in rods
AB and EF caused by the increase in temperature. Rods AB
and EF are made of steel, and each has a cross-sectional
area of 125 mm?. CD is made of aluminum and has a cross-
sectional area of 375 mm?. Eg = 200 GPa, E,; = 70 GPa,
ag = 12(107%)/°C,and ey = 23(107%)/°C.

0.7 mm

Probs. 4-84/85

4-86. The metal strap has a thickness ¢ and width w and is
subjected to a temperature gradient 7' to 75 (T} < T3).This
causes the modulus of elasticity for the material to vary
linearly from E; at the top to a smaller amount E, at the
bottom. As a result, for any vertical position y, measured
from the top surface, E = [(E, — E;)/w]y + E;.Determine
the position d where the axial force P must be applied so
that the bar stretches uniformly over its cross section.

5
{ : T
d
P
TZ

Prob. 4-86

1.

N—=
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This saw blade has grooves cut into it in
order to relieve both the dynamic stress that
develops within it as it rotates and the
thermal stress that develops as it heats up.
Note the small circles at the end of each
groove. These serve to reduce the stress
concentrations that develop at the end of
each groove.

4.7 STRESS CONCENTRATIONS

In Sec. 4.1, it was pointed out that when an axial force is applied to a bar, it
creates a complex stress distribution within the localized region of the point
of load application. However, complex stress distributions arise not only
next to a concentrated loading; they can also arise at sections where the
member’s cross-sectional area changes. Consider, for example, the bar in
Fig. 4-20a, which is subjected to an axial force N. Here the once horizontal
and vertical grid lines deflect into an irregular pattern around the hole
centered in the bar. The maximum normal stress in the bar occurs on section
a—a,since it is located at the bar’s smallest cross-sectional area. Provided the
material behaves in a linear elastic manner, the stress distribution acting on
this section can be determined either from a mathematical analysis, using
the theory of elasticity, or experimentally by measuring the strain normal
to section a—a and then calculating the stress using Hooke’s law, o = Ee.
Regardless of the method used, the general shape of the stress distribution
will be like that shown in Fig. 4-20b. If instead the bar has a reduction in its
cross section, using shoulder fillets as in Fig. 4214, then at the smallest
cross-sectional area, section a—a, the stress distribution will look like that
shown in Fig. 4-21b.

N €—"

! am—

1 B

ILJ\‘ I A/ N N %UWX
71 ul ! =

. Actual stress distribution
Undistorted (b)

Tavg

i ._i. '“,,“i Y .y N<—§/
aEaiE T ‘§

| 1wl

Distorted Average stress distribution

(a) (c)

Fig. 4-20



In both of these cases, force equilibrium requires the magnitude of the
resultant force developed by the stress distribution at section a—a to be
equal to N. In other words,

N = /A o dA (4-5)

This integral graphically represents the total volume under each of the
stress-distribution diagrams shown in Fig. 4-20b or Fig. 4-21b. Furthermore,
the resultant N must act through the centroid of each of these volumes.

In engineering practice, the actual stress distributions in Fig. 4-20b and
Fig. 4-21b do not have to be determined. Instead, for the purpose of
design, only the maximum stress at these sections must be known. Specific
values of this maximum normal stress have been determined for various
dimensions of each bar, and the results have been reported in graphical
form using a stress concentration factor K, Figs. 4-23 and 4-24. We define
K as a ratio of the maximum stress to the average normal stress acting at
the cross section;i.e.,

K = —max (4-6)

OTavg

Once K is determined from the graph, and the average normal stress has
been calculated from o,,, = N/A, where A is the smallest cross-sectional
area, Figs. 4-20c and 4-21c, then the maximum normal stress at the cross
section is determined from op,,, = K(N/A).
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Stress concentrations often arise at sharp
corners on heavy machinery. Engineers can
mitigate this effect by using stiffeners welded
to the corners.

=-;_.I..| i| i I , = 2 O max
N<<— =l .| l3—>N Ne— —
Y
a Actual stress distribution
Undistorted (b)
H ——— Tavg
N<— HH H 1 3—>N N<—
2 L D
{1
| |
Distorted

(@)

Fig. 4-21

Average stress distribution

(©)
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(a)

(®)

Notice in Fig. 4-23 that, as the radius r of the shoulder fillet is decreased,
the stress concentration is increased. For example, if a bar has a sharp corner,
Fig. 4-22a,r =0, and so the stress concentration factor will become greater
than 3. In other words, the maximum normal stress will be more than three
times greater than the average normal stress on the smallest cross section.
Proper design can reduce this by introducing a rounded edge, Fig. 4-22b. A
further reduction can be made by means of small grooves or holes placed at
the transition, Fig. 4-22c¢ and 4-22d. In all of these designs the rigidity of the
material surrounding the corners is reduced, so that both the strain and the
stress are more evenly spread throughout the bar.

Remember that the stress concentration factors given in Figs. 4-23
and 4-24 were determined on the basis of a static loading, with the
assumption that the stress in the material does not exceed the
proportional limit. If the material is very brittle, the proportional limit
may be at the fracture stress, and so for this material, failure will begin
at the point of stress concentration (oy,,y) - Essentially a crack begins
to form at this point, and a higher stress concentration will develop at
the tip of this crack. This, in turn, causes the crack to propagate over
the cross section, resulting in sudden fracture. For this reason, it is very
important to use stress concentration factors for the design of members
made of brittle materials. On the other hand, if the material is ductile
and subjected to a static load, it is often not necessary to use stress
concentration factors since any stress that exceeds the proportional

(d) limit will not result in a crack. Instead, as will be shown in the next
) section, the material will have reserve strength due to yielding and
Fig. 4-22 strain hardening.
3.0
D N N A 39 [TTTTTTTTTTT]
28 " = t ]
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- IMPORTANT POINTS

® Stress concentrations occur at sections where the cross-sectional
area suddenly changes. The more severe the change, the larger
the stress concentration.

® For design or analysis, it is only necessary to determine the
maximum stress acting on the smallest cross-sectional area. This
is done using a stress concentration factor, K, that has been
determined through experiment and is only a function of the
geometry of the specimen.

® Normally the stress concentration in a ductile specimen that is
subjected to a static loading will not have to be considered in
design; however, if the material is brittle, or subjected to fatigue
loadings, then stress concentrations become important.

*4.8 INELASTIC AXIAL DEFORMATION

Up to this point we have only considered loadings that cause the material
to behave elastically. Sometimes, however, a member may be designed so
that the loading causes the material to yield and thereby permanently
deform. Such members are often made of a highly ductile metal such as
annealed low-carbon steel having a stress—strain diagram that is similar to
that of Fig. 3-6, and for nonexcessive yielding can be modeled as shown
in Fig. 4-25b. A material that exhibits this behavior is referred to as being
elastic perfectly plastic or elastoplastic.

To illustrate physically how such a material behaves, consider the bar in
Fig. 4-25a, which is subjected to the axial load N.If the load causes an elastic
stress o = o1 to be developed in the bar, then equilibrium requires
N = f o1 dA = oy A. This stress causes the bar to strain €; as indicated on
the stress—strain diagram, Fig. 4-25b. If N is now increased such that it
causes yielding of the material, then o = oy. This load N, is called the
plastic load, since it represents the maximum load that can be supported
by an elastoplastic material. For this case, the strains are not uniquely
defined. Instead, at the instant o is attained, the bar will be subjected to
the yield strain ey, Fig. 4-25b, then the bar will continue to yield (or elongate)
producing the strains €,, then €3, etc. Since our “model” of the material
exhibits perfectly plastic material behavior, this elongation is expected to
continue indefinitely. However, the material will, after some yielding, begin
to strain harden, so that the extra strength it attains will stop any further
straining, thereby allowing the bar to support an additional load.
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Failure of this steel pipe in tension occurred
at its smallest cross-sectional area, which is
through the hole. Notice how the material
yielded around the fractured surface.
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z

N

(@)

€1

€y

(b)

€1 €y € €3

(b)

Fig. 4-25

To extend this discussion, now consider the case of a bar having a hole
through it as shown in Fig. 4-26a. When N is applied, a stress concentration
occurs in the material at the edge of the hole, on section a—a. The stress here
will reach a maximum value of, say, 0,,,x = 07 and have a corresponding
elastic strain of €, Fig. 4-26b. The stresses and corresponding strains at other
points on the cross section will be smaller, as indicated by the stress
distribution shown in Fig. 4-26¢. Equilibrium again requires N = f o dA,
which is geometrically equivalent to the “volume” contained within the
stress distribution. If the load is further increased to N', so that o,,,x = oy,
then the material will begin to yield outward from the hole, until the
equilibrium condition N’ = f o dA is satisfied, Fig. 4-26d. As shown, this
produces a stress distribution that has a geometrically greater “volume” than
that shown in Fig. 4-26c¢. A further increase in load will eventually cause the
material over the entire cross section to yield, Fig. 4-26e. When this happens,
no greater load can be sustained by the bar. This plastic load N, is now

]\; = /UydA =O’yA
A

where A is the bar’s cross-sectional area at section a—a.

O'YJ Ty

o o1 Oy Ty

() (d) (e)
Fig. 4-26



*4.9 RESIDUAL STRESS

Consider a prismatic member made of an elastoplastic material having
the stress—strain diagram shown in Fig. 4-27 If an axial load produces a
stress oy in the material and a corresponding strain ec, then when the
load is removed, the material will respond elastically and follow the line
CD in order to recover some of the strain. A recovery to zero stress at
point O’ will be possible if the member is statically determinate, since
then the support reactions for the member will be zero when the load is
removed. Under these circumstances the member will be permanently
deformed so that the permanent set or strain in the member is €.

If the member is statically indeterminate, however, removal of the
external load will cause the support forces to respond to the elastic
recovery CD. Since these forces will constrain the member from full
recovery, they will induce residual stresses in the member. To solve a
problem of this kind, the complete cycle of loading and then unloading
of the member can be considered as the superposition of a positive load
(loading) on a negative load (unloading). The loading, O to C, results in a
plastic stress distribution, whereas the unloading, along CD, results only
in an elastic stress distribution. Superposition requires these loads to
cancel; however, the stress distributions will not cancel, and so residual
stresses will remain in the member. Examples 4.14 and 4.15 numerically
illustrate this situation.

(e} 0/50' €c €

Fig. 4-27
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EXAMPLE 4.13

The bar in Fig. 4-28a is made of steel that is assumed to be elastic
perfectly plastic, with oy = 250 MPa. Determine (a) the maximum
value of the applied load N that can be applied without causing the steel
to yield and (b) the maximum value of N that the bar can support. Sketch
the stress distribution at the critical section for each case.

SOLUTION

Part (a). When the material behaves elastically, we must use a
stress concentration factor determined from Fig. 4-23 that is unique for
the bar’s geometry. Here

40 mm 4
4 | L= L = 0125
N Ve N h (40 mm — 8 mm)
wo_ 40 mm — 195
4 mm T =5 am h (40 mm — 8 mm) '
@ From the figure K = 1.75. The maximum load, without causing
yielding, occurs when o,,x = 0oy. The average normal stress is
0. = N/A. Using Eq. 4-6, we have
——1 250MP
9.14 kN - ‘ B ] _ ANy
- Eg Omax — KO'an, Oy — 7
- v Ny
250(10%) Pa = 1.75
®) (10°) Pa [ (0.002 m)(0.032 m)
Ny = 9.14kN Ans.

el 250 MPa

This load has been calculated using the smallest cross section. The

YIviyly
Yvy

Np 7 resulting stress distribution is shown in Fig. 4-28b. For equilibrium, the
. “volume” contained within this distribution must equal 9.14 kN.
C
Fig. 428 Part (b). The maximum load sustained by the bar will cause all the material
1g.

at the smallest cross section to yield. Therefore, as N is increased to the
plastic load N,, it gradually changes the stress distribution from the elastic
state shown in Fig. 4-28b to the plastic state shown in Fig. 4-28c. We require

N

P
Oy — Z
250(10°) Pa = Ny
(0.002 m)(0.032 m)
N, = 16.0kN Ans.

Here N, equals the “volume” contained within the stress distribution,
which in this case is N, = oyA.
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EXAMPLE 4.14

Two steel wires are used to lift the weight of
15 kN, Fig. 4-29a. Wire AB has an
unstretched length of 5 m and wire AC has W 4
an unstretched length of 5.0075 m. If each
wire has a cross-sectional area of 30 mm?, | \
and the steel can be considered elastic

perfectly plastic as shown by the o — € S5
graph in Fig. 4-29b, determine the force in
each wire and its elongation.

5.0075 m o (MPa)

350

SOLUTION
Once the weight is supported by both
wires, then the stress in the wires depends

on the corresponding strain. There are Toom € (mm/mm)
three possibilities, namely, the strains in ’
both wires are elastic, wire AB is plastically ()
strained while wire AC is elastically
strained, or both wires are plastically strained. We will assume that AC
remains elastic and AB is plastically strained. Tag, Tac
Investigation of the free-body diagram of the suspended weight,
Fig. 4-29c¢, indicates that the problem is statically indeterminate. The
equation of equilibrium is
Since AB becomes plastically strained then it must support its
maximum load.
I5KN  (¢)
Tup = oyAsp = [350(10%) N/m?][30 (10~ %) m?] = 10.5(10°)N = 10.5kN Ans.
Therefore, from Eq. 1,
Tyc = 450kN Ans. %l
Note that wire AC remains elastic as assumed since the stress in the N>A
wire is o4 = 4.50(10°)N/[30(10~®)m?] = 150MPa < 350MPa. The '
corresponding elastic strain is determined by proportion, Fig. 4-29b; i.e.,
Sm| |5.0075 m
€AC . 0.0017
150MPa  350MPa
€4c = 0.0007286 845 = 0.0075 m + 8¢ el pefom
The elongation of AC is thus % C,
AC
d4c = (0.0007286)(5.0075m) = 0.003648 m Ans. Final position
And from Fig. 4-29d, the elongation of AB is then @

45 = 0.0075m + 0.003648m = 0.01115m Ans. Fig. 4-29
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EXAMPLE 4.15

The rod shown in Fig. 4-30a has a radius of 5 mm and is
B made of an elastic perfectly plastic material for which

,;—ﬁ———; oy = 420 MPa, E = 70 GPa, Fig. 4-30c. If a force of

C P=60kN

| P = 60kN is applied to the rod and then removed,
determine the residual stress in the rod.

SOLUTION

The free-body diagram of the rod is shown in Fig. 4-30b.

(o> F, Application of the load P will cause one of three possibilities,

(b)
Fig. 4-30

namely, both segments AC and CB remain elastic, AC is
plastic while CB is elastic, or both AC and CB are plastic.*

An elastic analysis, similar to that discussed in Sec. 4.4, will
produce F, = 45kN and Fz = 15kN at the supports.
However, this results in a stress of

45 kN
= —— = 573 MPa (compression) > = 420 MPa
7AC T (0,005 m)? (comp )= oy
15 kN
= —— = 191 MPa (tension
7CE T (0.005 m)? ( )

Since the material in segment AC will yield, we will assume that AC
becomes plastic, while CB remains elastic.
For this case, the maximum possible force developed in AC is

(Fy)y = oyA = 420(10%) kN /m? [7(0.005 m)?] = 33.0 kN
and from the equilibrium of the rod, Fig. 4-30b,
Fp = 60kN — 33.0kN = 27.0kN
The stress in each segment of the rod is therefore

o4c = oy = 420 MPa (compression)

27.0kN
ocg = Lz = 344 MPa (tension) < 420 MPa (OK)
7(0.005 m)

*The possibility of CB becoming plastic before AC will not occur because when
point C moves, the strain in AC (since it is shorter) will always be larger than the
strain in CB.



Residual Stress. In order to obtain the residual stress, it is also
necessary to know the strain in each segment due to the loading. Since

CB responds elastically,
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FoL 27.0 kKN)(0.300 7
. 300 m
5o = 2L = ( 2)( - ) — = 0.001474 m
AE  7(0.005 m)? [70(10°) kN /m?] 40
) 0.001474
€cr= 7= 0300 T = 40.004913
cB ’ m —0.006 000 € (mm/mm)
Sc 0.001474 m
= = = —0.01474
= 0.100 m
——1-420
Here the yield strain, Fig. 4-30c, is (c)
o (MPa)
420(10% N/m?
ey =% = LUADN/T_ 06 0
70(10%) N/m e
o/
. ) . €4c = —0.01474 0
Therefore, when P is applied, the stress—strain e (mm/mm)
behavior for the material in segment CB moves from €cp = 0.004913
O to A', Fig.4-30d, and the stress—strain behavior for
the material in segment AC moves from O to B'. 40
When the load P is applied in the reverse direction, in B

other words, the load is removed, then an elastic
response occurs and a reverse force of F; = 45 kN
and Fy = 15 kN must be applied to each segment.
As calculated previously, these forces now produce
stresses o, = 573 MPa (tension) and ocp =
191 MPa (compression), and as a result the residual
stress in each member is

(0ac), = —420 MPa + 573 MPa = 153 MPa Ans.
(ocp), = 344 MPa — 191 MPa = 153 MPa Ans.

This residual stress is the same for both segments, which is to be expected.
Also note that the stress—strain behavior for segment AC moves from B’
to D' in Fig. 4-30d, while the stress—strain behavior for the material in
segment CB moves from A’ to C’ when the load is removed.

(d)
Fig. 4-30 (cont.)
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. PROBLEMS

4-87. Determine the maximum normal stress developed
in the bar when it is subjected to a tension of P = 8 kN.

*4-88. If the allowable normal stress for the bar is
Talow = 120 MPa, determine the maximum axial force P
that can be applied to the bar.

Probs. 4-87/88

4-89. The steel bar has the dimensions shown. Determine
the maximum axial force P that can be applied so as not to
exceed an allowable tensile stress of 0y)10y = 150 MPa.

20 mm

60 mm

Prob. 4-89

4-90. The A-36 steel plate has a thickness of 12 mm. If
Talow = 150 MPa, determine the maximum axial load P
that it can support. Calculate its elongation, neglecting the
effect of the fillets.

A H/ 800 mm
200 mm

Prob. 4-90

4-91. Determine the maximum axial force P that can be
applied to the bar. The bar is made from steel and has an
allowable stress of o), = 147 MPa.

*4-92, Determine the maximum normal stress developed
in the bar when it is subjected to a tension of P = 8kN.

37.7 mm jL;E
— O
| <( i

r=>5mm

—> P

15 mm

Probs. 4-91/92

4-93. The member is to be made from a steel plate that is
6 mm thick. If a 25-mm hole is drilled through its center,
determine the approximate width w of the plate so that it
can support an axial force of 16.75 kN. The allowable stress
is Tallow — 150 MPa.

16.75 kN €— 16.75 kN

25 mm

Prob. 4-93



4-94. The resulting stress distribution along section AB
for the bar is shown. From this distribution, determine the
approximate resultant axial force P applied to the bar.Also,
what is the stress-concentration factor for this geometry?

12.5 mm

A

‘ B
— k42 MPa

252 MPa

Prob. 4-94

4-95. The resulting stress distribution along section AB
for the bar is shown. From this distribution, determine the
approximate resultant axial force P applied to the bar. Also,
what is the stress concentration factor?

10 mm

20 mm

— 5 MPa

<30 MPa—~

Prob. 4-95
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*4-96. The three bars are pinned together and subjected
to the load P. If each bar has a cross-sectional area A, length
L, and is made from an elastic perfectly plastic material, for
which the yield stress is oy, determine the largest load
(ultimate load) that can be supported by the bars, i.e., the
load P that causes all the bars to yield. Also, what is the
horizontal displacement of point A when the load reaches
its ultimate value? The modulus of elasticity is E.

Prob. 4-96

4-97. The rigid lever arm is supported by two A-36 steel
wires having the same diameter of 4 mm. If a force of
P = 3 kN is applied to the handle, determine the force
developed in both wires and their corresponding
elongations. Consider A-36 steel as an elastic perfectly
plastic material.

Prob. 4-97
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4-98. The weight is suspended from steel and aluminum
wires, each having the same initial length of 3 m and
cross-sectional area of 4 mm?. If the materials can be assumed
to be elastic perfectly plastic, with (oy)y; = 120 MPa and
(0y)a =70 MPa, determine the force in each wire if the weight
is (a) 600 N and (b) 720 N. E,; =70 GPa, £, =200 GPa.

Prob. 4-98

4-99. The weight is suspended from steel and aluminum
wires, each having the same initial length of 3 m and
cross-sectional area of 4 mm?. If the materials can be assumed
to be elastic perfectly plastic, with (oy)y = 120 MPa and
(0y)a =70 MPa, determine the force in each wire if the weight
is (a) 600 N and (b) 720 N. E,; =70 GPa, E =200 GPa.

F, AN Fy

Aluminum Steel

S
i

Prob. 4-99

*4-100. The distributed loading is applied to the rigid
beam, which is supported by the three bars. Each bar has a
cross-sectional area of 780 mm? and is made from a material
having a stress—strain diagram that can be approximated by
the two line segments shown. If a load of w = 400kN/m is
applied to the beam, determine the stress in each bar and
the vertical displacement of the beam.

F—12m—f—1.2 m—]
o (MPa)
420
252
0.0012 0z ¢(mm/mm) l l 1 lw
Prob. 4-100

4-101. The distributed loading is applied to the rigid
beam, which is supported by the three bars. Each bar has a
cross-sectional area of 468 mm? and is made from a material
having a stress—strain diagram that can be approximated by
the two line segments shown. Determine the intensity of the
distributed loading w needed to cause the beam to be
displaced downward 375 mm.

o (MPa)

420

252

o LLITTLTTL

Prob. 4-101

0.0012 0.2
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4-102. The rigid lever arm is supported by two A-36 steel *4-104. The rigid bar is supported by a pin at A and two

wires having the same diameter of 4 mm. Determine the steel wires, each having a diameter of 4 mm. If the yield
smallest force P that will cause (a) only one of the wires to stress for the wires is oy = 530MPa, and E; = 200GPa,
yield; (b) both wires to yield. Consider A-36 steel as an determine (a) the intensity of the distributed load w that can
elastic perfectly plastic material. be placed on the beam that will cause only one of the wires

to start to yield and (b) the smallest intensity of the
distributed load that will cause both wires to yield. For the
calculation, assume that the steel is elastic perfectly plastic.

o DyT
7
800 mm
300 mm g4 A B Z C %\i
Ml 1 1 |G
oo HERRRRRIRRNINY
A A w
} 400 mm 250 mm—{ ‘
150 mm
Prob. 4-102
Prob. 4-104
4-103. The 1500-kN weight is slowly set on the top of a
post made of 2014-T6 aluminum with an A-36 steel core. If
both materials can be considered elastic perfectly plastic, 4-105. The rigid beam is supported by three 25-mm
determine the stress in each material. diameter A-36 steel rods. If the beam supports the force of

P = 230 kN, determine the force developed in each rod.
Consider the steel to be an elastic perfectly plastic material.

D E F
Aluminum 600 mm
50 mm P
— (o A G B C
<400 mm*L 400 mmJ« 400 mm»‘

Prob. 4-103 Prob. 4-105
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4-106. The rigid beam is supported by three 25-mm
diameter A-36 steel rods. If the force of P = 230 kN is
applied on the beam and removed, determine the residual
stresses in each rod. Consider the steel to be an elastic
perfectly plastic material.

L4OO mmJ« 400 mmJ« 400 mm»‘

Prob. 4-106

4-107. The wire BC has a diameter of 3.4 mm and the
material has the stress—strain characteristics shown in the
figure. Determine the vertical displacement of the handle at
D if the pull at the grip is slowly increased and reaches a
magnitude of (a) P = 2250N, (b) P = 3000N.

C
1000 mm
A B i D
\
[«——1250 mm ———=—750 mm-—~
P

o (MPa)

560

490 [

(mm/mm)
0.007 0.12
Prob. 4-107

*4-108. The bar having a diameter of 50 mm is fixed
connected at its ends and supports the axial load P. If the
material is elastic perfectly plastic as shown by the stress—
strain diagram, determine the smallest load P needed to
cause segment CB to yield. If this load is released, determine
the permanent displacement of point C.

P
<
A C B
0.6 m i 0.9m
o (MPa)
140 —
€ (mm/mm)
0.001
Prob. 4-108

4-109. The rigid beam is supported by the three posts A, B,
and C of equal length. Posts A and C have a diameter of
75 mm and are made of a material for which E = 70 GPa
and oy = 20 MPa. Post B has a diameter of 20 mm and
is made of a material for which E’ = 100 GPa and
oy’ = 590 MPa. Determine the smallest magnitude of P so
that (a) only rods A and C yield and (b) all the posts yield.

4-110. The rigid beam is supported by the three posts A, B,
and C. Posts A and C have a diameter of 60 mm and are
made of a material for which £ = 70 GPaand oy = 20 MPa.
Post B is made of a material for which £’ = 100 GPa and
oy’ = 590 MPa. If P = 130 kN, determine the diameter of
post B so that all three posts are about to yield.

P P

‘o

A ‘ B

‘ C

f=2m -2 m—-2m—2m—|

Probs. 4-109/110
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. CHAPTER REVIEW

When a loading is applied at a point on a body, it
tends to create a stress distribution within the body
that becomes more uniformly distributed at regions
removed from the point of application of the load.
This is called Saint-Venant’s principle.

RN

_ N
|1/

|——

The relative displacement at the end of an axially
loaded member relative to the other end is
determined from

B L N(x)dx
° _/o AWEWX)

If a series of concentrated external axial forces are
applied to a member and AFE is also piecewise
constant, then

NL
P 2E Pe— P =k 5
T . . \ ||
For application, it is necessary to use a sign convention \ L Py

for the internal load N and displacement 6. We
consider tension and elongation as positive values.
Also, the material must not yield, but rather it must
remain linear elastic.

Superposition of load and displacement is possible
provided the material remains linear elastic and no
significant changes in the geometry of the member
occur after loading.

The reactions on a statically indeterminate bar can be
determined using the equilibrium equations and
compatibility conditions that relate the displacements
at the supports. These displacements are then related
to the loads using a load—displacement relationship
suchas 8 = NL/AE.
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A change in temperature can cause a member made
of homogeneous isotropic material to change its
length by

6 = aATL

If the member is confined, this change will produce
thermal stress in the member.

Holes and sharp transitions at a cross section will
create stress concentrations. For the design of a
member made of brittle material one obtains the
stress concentration factor K from a graph, which has
been determined from experiment. This value is then
multiplied by the average stress to obtain the
maximum stress at the cross section.

Omax — Ko'avg

If the loading on a bar made of ductile material
causes the material to yield, then the stress
distribution that is produced can be determined from
the strain distribution and the stress—strain diagram.
Assuming the material is perfectly plastic, yielding
will cause the stress distribution at the cross section of
a hole or transition to even out and become uniform.

oy 0

=

If a member is constrained and an external loading
causes yielding, then when the load is released, it will
cause residual stress in the member.
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. CONCEPTUAL PROBLEMS

C4-1. In each photo the concrete footings A were poured when the column was already in place. Later the concrete slab was
poured. Explain why the 45° cracks formed in the slab at each corner of the square footing and not for the circular footing.

C4-1

C4-2. The row of bricks, along with mortar and an internal steel reinforcing rod, was intended to serve as a lintel beam to
support the bricks above this ventilation opening on an exterior wall of a building. Explain what may have caused the bricks
to fail in the manner shown.
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. REVIEW PROBLEMS

R4-1. The assembly consists of two A992 steel bolts AB
and EF and an 6061-T6 aluminum rod CD. When the
temperature is at 30° C, the gap between the rod and rigid
member AE is 0.1 mm. Determine the normal stress
developed in the bolts and the rod if the temperature rises
to 130° C. Assume BF is also rigid.

R4-2. The assembly shown consists of two A992 steel bolts
AB and EF and an 6061-T6 aluminum rod CD. When the
temperature is at 30° C, the gap between the rod and rigid
member AE is 0.1 mm. Determine the highest temperature
to which the assembly can be raised without causing yielding
either in the rod or the bolts. Assume BF is also rigid.

400 mm 300 mm

Prob. R4-1/2

R4-3. The rods each have the same 25-mm diameter and
600-mm length. If they are made of A992 steel, determine
the forces developed in each rod when the temperature
increases by 50° C.

Prob. R4-3

*R4-4. Two A-36 steel pipes, each having a crosssectional
area of 200 mm?, are screwed together using a union at B as
shown. Originally the assembly is adjusted so that no load is
on the pipe. If the union is then tightened so that its screw,
having a lead of 0.550 mm, undergoes two full turns,
determine the average normal stress developed in the pipe.
Assume that the union at B and couplings at A and C are
rigid. Neglect the size of the union. Note: The lead would
cause the pipe, when unloaded, to shorten 0.550 mm when
the union is rotated one revolution.

B
0.9m |
Prob. R4-4

R4-5. The force P is applied to the bar, which is composed
of an elastic perfectly plastic material. Construct a graph to
show how the force in each section AB and BC (ordinate)
varies as P (abscissa) is increased. The bar has cross-
sectional areas of 625 mm? in region AB and 2500 mm? in
region BC, and oy = 210 MPa.

150 mm

‘L 50 mm—~

Prob. R4-5



R4-6. The 2014-T6 aluminum rod has a diameter of 12
mm and is lightly attached to the rigid supports at A and B
when 7; = 25°C. If the temperature becomes 7, = —20°C,
and an axial force of P = 80N is applied to the rigid collar
as shown, determine the reactions at A and B.

A B
P2__opm
P—>0
125 mm— | 200 mm
Prob. R4-6

R4-7. The 2014-T6 aluminum rod has a diameter of 12
mm and is lightly attached to the rigid supports at A and B
when 7} = 40°C. Determine the force P that must be
applied to the collar so that, when 7" = 0°C, the reaction at
B is zero.

P2 >
Po—>0
125 mm—»‘ l

200 mm

Prob. R4-7
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*R4-8. The rigid link is supported by a pin at A and two
A-36 steel wires, each having an unstretched length of
300 mm and cross-sectional area of 7.8 mm?. Determine the
force developed in the wires when the link supports the
vertical load of 1.75 kN.

1.75 kN

Prob. R4-8

R4-9. The joint is made from three A992 steel plates that
are bonded together at their seams. Determine the
displacement of end A with respect to end B when the joint
is subjected to the axial loads. Each plate has a thickness
of 5 mm.

100 mm

46 kN }—_‘_';e,” kN
A = M kN
I

600mm 200mm  800mm

Prob. R4-9
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(© Jill Fromer/Getty Images)

The torsional stress and angle of twist of this soil auger depend upon the output
of the machine turning the bit as well as the resistance of the soil in contact with
the shaft.




TORSION

. CHAPTER OBJECTIVES

B In this chapter we will discuss the effects of applying a torsional
loading to a long straight member such as a shaft or tube. Initially we
will consider the member to have a circular cross section. We will
show how to determine both the stress distribution within the
member and the angle of twist. The statically indeterminate analysis
of shafts and tubes will also be discussed, along with special topics
that include those members having noncircular cross sections. Lastly,
stress concentrations and residual stress caused by torsional loadings
will be given special consideration.

9.1 TORSIONAL DEFORMATION OF A
CIRCULAR SHAFT

Torque is a moment that tends to twist a member about its longitudinal
axis. Its effect is of primary concern in the design of drive shafts used in
vehicles and machinery, and for this reason it is important to be able to
determine the stress and the deformation that occur in a shaft when it is
subjected to torsional loads.

We can physically illustrate what happens when a torque is applied to
a circular shaft by considering the shaft to be made of a highly deformable
material such as rubber. When the torque is applied, the longitudinal grid
lines originally marked on the shaft, Fig. 5-1a, tend to distort into a helix,
Fig. 5-1b, that intersects the circles at equal angles. Also, all the cross
sections of the shaft will remain flat—that is, they do not warp or bulge in
or out—and radial lines remain straight and rotate during this
deformation. Provided the angle of twist is small, then the length of the
shaft and its radius will remain practically unchanged.

201
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If the shaft is fixed at one end and a torque is applied to its other end,
then the dark green shaded plane in Fig. 5-2a will distort into a skewed
form as shown. Here a radial line located on the cross section at a
distance x from the fixed end of the shaft will rotate through an angle
¢(x). This angle is called the angle of twist. It depends on the position x
and will vary along the shaft as shown.

In order to understand how this distortion strains the material, we will
now isolate a small disk element located at x from the end of the shaft,
Fig. 5-2b. Due to the deformation, the front and rear faces of the element
will undergo rotation—the back face by ¢(x), and the front face by
¢(x) + do. As a result, the difference in these rotations, d¢, causes the
element to be subjected to a shear strain,y (see Fig. 3-25b).

(a)

Circles remain
circular

Longitudinal
lines become
twisted

Radial lines
remain straight

. . After deformation
Notice the deformation of the rectangular (b)

element when this rubber bar is subjected
to a torque. Fig. 5-1
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Deformed
plane

x/ The shear strain at points on
the cross section increases linearly
The angle of twist ¢(x) increases as x increases. with p,i.e., ¥ = (p/€)Ymax-
(@) (b)
Fig. 5-2

This angle (or shear strain) can be related to the angle d¢ by noting that
the length of the red arc in Fig. 5-2b is

pdp = dxy
or
d¢
Y=e (5-1)

Since dx and d¢ are the same for all elements, then d¢ /dx is constant
over the cross section, and Eq. 5-1 states that the magnitude of the shear
strain varies only with its radial distance p from the axis of the shaft.
Since dd/dx = y/p = Ymax/C, then

y = <’Z)7max (5-2)

In other words, the shear strain within the shaft varies linearly along any
radial line, from zero at the axis of the shaft to a maximum vy, at its
outer boundary, Fig. 5-2b.
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9.2 THE TORSION FORMULA

When an external torque is applied to a shaft, it creates a corresponding
internal torque within the shaft. In this section, we will develop an
equation that relates this internal torque to the shear stress distribution
acting on the cross section of the shaft.

If the material is linear elastic, then Hooke’s law applies, 7 = Gy, or
Tmax = G¥Ymax, and consequently a linear variation in shear strain, as
noted in the previous section, leads to a corresponding linear variation
in shear stress along any radial line. Hence, 7 will vary from zero at the
shaft’s longitudinal axis to a maximum value, 7., at its outer surface,
Fig. 5-3. Therefore, similar to Eq. 5-2, we can write

7= (’C))Tmax (5-3)

Shear stress varies linearly along
each radial line of the cross section.

Fig. 5-3



Since each element of area dA, located at p, is subjected to a force of
dF = 7dA, Fig. 5-3, the torque produced by this force is then
dT = p(t dA). For the entire cross section we have

T = A p(rdA) = A p(?)Tmadi (5-4)

However, 7,,,/c is constant, and so

T = Tmax / P dA (5-5)
A

C

The integral represents the polar moment of inertia of the shaft’s
cross-sectional area about the shaft’s longitudinal axis. On the next page
we will calculate its value, but here we will symbolize its value as J. As a
result, the above equation can be rearranged and written in a more
compact form, namely,

Tmax — 7 (5-6)

Here
Tmax — the maximum shear stress in the shaft, which occurs at its
outer surface

T = the resultant internal torque acting at the cross section. Its
value is determined from the method of sections and the
equation of moment equilibrium applied about the shaft’s
longitudinal axis

J = the polar moment of inertia of the cross-sectional area

¢ = the outer radius of the shaft

If Eq. 5-6is substituted into Eq. 5-3, the shear stress at the intermediate
distance p on the cross section can be determined.

T = — (5-7)

Either of the above two equations is often referred to as the torsion
Jormula. Recall that it is used only if the shaft has a circular cross section
and the material is homogeneous and behaves in a linear elastic manner,
since the derivation of Eq. 5-3 is based on Hooke’s law.
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The shaft attached to the center of this
wheel is subjected to a torque, and the
maximum stress it creates must be
resisted by the shaft to prevent failure.
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dp

Fig. 5-4

Polar Moment of Inertia. If the shaft has a solid circular
cross section, the polar moment of inertia J can be determined using
an area element in the form of a differential ring or annulus having a
thickness dp and circumference 2mp, Fig. 5-4. For this ring,
dA = 2mp dp, and so

J= /psz = /pz(ZWpdp)
A 0

¢ 1
= 277/ pdp = 2’7T<>p4
O 4

J= %64 (5-8)

c

0

Solid Section

Note that J is always positive. A common unit used for its measurement
: 4
is mm®.

If a shaft has a tubular cross section, with inner radius ¢; and outer
radius c,, Fig. 5-5, then from Eq. 5-8 we can determine its polar moment
of inertia by subtracting J for a shaft of radius ¢; from that determined

for a shaft of radius c,. The result is

J=7(ch~cl) (5-9)

Tube

Fig. 5-5



Shear stress varies linearly along
each radial line of the cross section.

(a) (b)
Fig. 5-6

Shear Stress Distribution. If an element of material on the
cross section of the shaft or tube isisolated, then due to the complementary
property of shear, equal shear stresses must also act on four of its adjacent
faces, as shown in Fig. 5-6a. As a result, the internal torque T develops a
linear distribution of shear stress along each radial line in the plane of
the cross-sectional area, and also an associated shear-stress distribution
is developed along an axial plane, Fig. 5-6b. It is interesting to note that
because of this axial distribution of shear stress, shafts made of wood
tend to split along the axial plane when subjected to excessive torque,
Fig. 5-7 This is because wood is an anisotropic material, whereby its
shear resistance parallel to its grains or fibers, directed along the axis of
the shaft, is much less than its resistance perpendicular to the fibers
within the plane of the cross section.

Failure of a wooden shaft due to torsion.

Fig. 5-7
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The tubular drive shaft for this truck was
subjected to an excessive torque, resulting in
failure caused by yielding of the material.
Engineers deliberately design drive shafts to
fail before torsional damage can occur to
parts of the engine or transmission.
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B \PORTANT POINTS

When a shaft having a circular cross section is subjected to a torque, the cross section remains plane
while radial lines rotate. This causes a shear strain within the material that varies linearly along any radial
line, from zero at the axis of the shaft to a maximum at its outer boundary.

For linear elastic homogeneous material, the shear stress along any radial line of the shaft also varies
linearly, from zero at its axis to a maximum at its outer boundary. This maximum shear stress must not
exceed the proportional limit.

Due to the complementary property of shear, the linear shear stress distribution within the plane of the
cross section is also distributed along an adjacent axial plane of the shaft.

The torsion formula is based on the requirement that the resultant torque on the cross section is equal
to the torque produced by the shear stress distribution about the longitudinal axis of the shaft. It is
required that the shaft or tube have a circular cross section and that it is made of homogeneous material
which has linear elastic behavior.

) PROCEDURE FOR ANALYSIS

The torsion formula can be applied using the following procedure.

Internal Torque.

Section the shaft perpendicular to its axis at the point where the shear stress is to be determined, and use
the necessary free-body diagram and equations of equilibrium to obtain the internal torque at the section.

Section Property.

Calculate the polar moment of inertia of the cross-sectional area. For a solid section of radius ¢,/ = act /2,
and for a tube of outer radius ¢, and inner radius ¢;, J = 7 (¢} — ¢}) /2.

Shear Stress.

Specify the radial distance p, measured from the center of the cross section to the point where the shear
stress is to be found. Then apply the torsion formula 7 = Tp/J, or if the maximum shear stress is to be
determined use 7, = T¢/J. When substituting the data, make sure to use a consistent set of units.

The shear stress acts on the cross section in a direction that is always perpendicular to p. The force it creates
must contribute a torque about the axis of the shaft that is in the same direction as the internal resultant
torque T acting on the section. Once this direction is established, a volume element located at the point
where 7 is determined can be isolated, and the direction of 7 acting on the remaining three adjacent faces of
the element can be shown.
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EXAMPLE 5.1

The solid shaft and tube shown in Fig. 5-8 are made of a material having an
allowable shear stress of 75 MPa. Determine the maximum torque that can
be applied to each cross section, and show the stress acting on a small
element of material at point A of the shaft, and points B and C of the tube.

SOLUTION

Section Properties. The polar moments of inertia for the solid and
tubular shafts are

I = gc“ = g(o.l m)* = 0.1571(10%) m*

J = %(cﬁ — b = % [(0.1 m)* — (0.075 m)*] = 0.1074(10"3) m?*

Shear Stress. The maximum torque in each case is

Tc 7,(0.1 m)
Tnad)s = 75(10°) N/m* =
(Faas = (10°) N/ 0.1571(1073) m*
T, = 118 kN -m Ans.
Tc 7,(0.1 m)
Tma)t = 73 75(10°) N/m* =
(an)e = (10°) N/ 0.1074(107%) m*

56.2 MPa
T, = 80.5kN-m Ans.

Fig. 5-8

Also, the shear stress at the inner radius of the tube is

~805(10°) N-m (0.075 m)
T 01074(107%) m

= 56.2 MPa

These results are shown acting on small elements in Fig. 5-8. Notice how
the shear stress on the front (shaded) face of the element contributes to
the torque. As a consequence, shear stress components act on the other
three faces. No shear stress acts on the outer surface of the shaft or tube
or on the inner surface of the tube because it must be stress free.
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EXAMPLE 5.2

4.25 kN-m The shaft shown in Fig. 5-9a is supported by two bearings and is subjected
' to three torques. Determine the shear stress developed at points A and B,
located at section a—a of the shaft, Fig. 5-9c.

4.25 kKN-m

S ..

= ?
.
@1.89 MPa "

X
SOLUTION

}1'25 KN-m Internal Torque. The bearing reactions on the shaft are zero,

provided the shaft’s weight is neglected. Furthermore, the applied
@B torques satisfy moment equilibrium about the shaft’s axis.
0377MPa  The internal torque at section a—a will be determined from

0.015 m . the free-body diagram of the left segment, Fig. 5-9b. We have
e SM, =0; 425kN'm —30kN'm—T=0 T=125kN'm
Fig. 5-9

Section Property. The polar moment of inertia for the shaft is

J= g(o.ms m)* = 49.70(10"°) m*

Shear Stress. Since point Aisatp = ¢ = 0.075 m,

T 1.25(10%) N - m](0.075
o = Lo - [12509) rflé]( UTM) _ | 886(10%) N/m? = 1.89 MPa Ans
J 49.70(107%) m

Likewise for point B, at p = 0.015 m, we have

Tp _ [1.25(10°) N-m](0.015m
== (L2507 _6]( J ) 0.3773(10°) N/m* = 0.377 MPa Ans.
7 49.70(107%) m

NOTE: The directions of these stresses on each element at A and B,
Fig. 5-9c¢, are established from the direction of the resultant internal
torque T, shown in Fig. 5-9b. Note carefully how the shear stress acts
on the planes of each of these elements.
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EXAMPLE 5.3

The pipe shown in Fig. 5-10a has an inner radius of 40 mm and an outer

radius of 50 mm. If its end is tightened against the support at A using the ~ 80N

torque wrench, determine the shear stress developed in the material at the

inner and outer walls along the central portion of the pipe. (%; 2zt
\

SOLUTION

Internal Torque. A section is taken at the intermediate location C
along the pipe’s axis, Fig. 5-10b. The only unknown at the section is the
internal torque T. We require

SM, = 0; 80N(03m) + 80N(02m) — T =0 80N
T=40N-m

Section Property. The polar moment of inertia for the pipe’s cross-
sectional area is

J= g [(0.05m)*—(0.04m)*] = 5.796(10°) m*

Stress free
Shear Stress. For any point lying on the outside surface of the pipe, top
p = ¢, = 0.05 m, we have >

_Tc, 40N-m(0.05m)

To 7 5796(106) m* = 0.345 MPa Ans. 75 = 0276 MPa. = 0345 MPa
And for any point located on the inside surface, p = ¢; = 0.04 m, and so g
Tc; 40N-m(0.04m) E %
T = = - = 0.276 MPa Ans. T
J 5 _796( 10 6) m? Stress free
inside (c)
These results are shown on two small elements in Fig. 5-10c. Fig. 5-10

NOTE: Since the top face of D and the inner face of E are in stress-free
regions, no shear stress can exist on these faces or on the other corresponding
faces of the elements.
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The belt drive transmits the torque
developed by an electric motor to the
shaft at A. The stress developed in
the shaft depends upon the power
transmitted by the motor and the rate
of rotation of the shaft. P = Tw.

9.3 POWER TRANSMISSION

Shafts and tubes having circular cross sections are often used to transmit
power developed by a machine. When used for this purpose, they are
subjected to a torque that depends on both the power generated by the
machine and the angular speed of the shaft. Power is defined as the work
performed per unit of time. Also, the work transmitted by a rotating shaft
equals the torque applied times the angle of rotation. Therefore, if during
an instant of time dt an applied torque T causes the shaft to rotate df, then
the work done is 7d6 and the instantaneous power is

T do
p="—=
dt

Since the shaft’s angular velocity is w = df/dt, then the power is

P=To (5-10)
P =To]

In the SI system, power is expressed in watts when torque is measured
in newton-meters (N-m) and o is in radians per second (rad/s)
(1W = 1N-m/s). However, horsepower (hp) is often used in engi-
neering practice, where

1hp = 746 W

For machinery, the frequency of a shaft’s rotation, f, is often reported.
This is a measure of the number of revolutions or “cycles” the shaft
makes per second and is expressed in hertz (1 Hz = 1cycle/s). Since
1 cycle = 27 rad, then w = 27f, and so the above equation for power
can also be written as

P = 2mfT (5-11)

Shaft Design. When the power transmitted by a shaft and its frequency
of rotation are known, the torque developed in the shaft can be determined
from Eq. 5-11, that is, T = P/2xf. Knowing T and the allowable shear
stress for the material, 7,;,,, We can then determine the size of the shaft’s
cross section using the torsion formula. Specifically, the design or geometric
parameter J /¢ becomes

_— (5-12)

Tallow

O |~

~

For a solid shaft, J = (w7 /2)c", and thus, upon substitution, a unique
value for the shaft’s radius ¢ can be determined. If the shaft is tubular, so
that J = (7/2) (¢} — ¢}), design permits a wide range of possibilities
for the solution. This is because an arbitrary choice can be made for either
¢, or ¢; and the other radius can then be determined from Eq. 5-12.
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EXAMPLE 5.4

A solid steel shaft AB,shown in Fig. 5-11,is to be used to transmit 5 hp from
the motor M to which it is attached. If the shaft rotates at @ = 175 rpm and
the steel has an allowable shear stress of 7,;,,, = 100 MPa determine the
required diameter of the shaft to the nearest mm.

Fig. 5-11

SOLUTION

The torque on the shaft is determined from Eq. 5-10, that is, P = Tw.
Expressing P in watts and o in rad/s, we have

746 W
P=Ghp)| — ) =3730 W
( p’( Ihp )
175 rev 27r rad \/ 1 min
13) —< in )( Ltev >< DS ) = 1833 rad/s
Thus,
P = Tw;, 3730 W/s = T(18.33 rad/s)

T =203.54N-m

Applying Eq. 5-12, yields
J_mct T

¢ 2¢  Taow
C /2T \'A [ 2(203.54N-m) 13
‘- <7T'ruw> - {77 [100(10°) N /m?] }
¢ = 0.01090 m = 10.90 mm

Since 2¢ = 21.80 mm, select a shaft having a diameter of

d = 22 mm Ans.
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. PRELIMINARY PROBLEMS

P5-1. Determine the internal torque at each section and
show the shear stress on differential volume elements
located at A, B, C,and D.

Prob. P5-1

P5-2. Determine the internal torque at each section and
show the shear stress on differential volume clements
located at A, B, C,and D.

(.}\ 400 N'm

600 N-m

&L B

C

Prob. P5-2

P5-3. The solid and hollow shafts are each subjected to
the torque T.In each case,sketch the shear stress distribution
along the two radial lines.

Prob. P5-3

P5-4. The motor delivers 10 hp to the shaft. If it rotates at
1200 rpm, determine the torque produced by the motor.

Prob. P5-4
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. FUNDAMENTAL PROBLEMS

F'5-1.  The solid circular shaft is subjected to an internal F'5-3.  The shaft is hollow from A to B and solid from B
torque of 7 = 5kN-m. Determine the shear stress at to C. Determine the maximum shear stress in the shaft. The
points A and B. Represent each state of stress on a volume shaft has an outer diameter of 80 mm, and the thickness of
element. the wall of the hollow segment is 10 mm.

Prob. F5-1

Prob. F5-3

F5-2.  The hollow circular shaft is subjected to an internal
torque of 7 = 10 kN-m. Determine the shear stress at
points A and B. Represent each state of stress on a volume
element.

F5-4. Determine the maximum shear stress in the
40-mm-diameter shaft.

!T =10kN-m
28

40 mm

60 mm

Prob. F5-2 Prob. F5-4
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F5-5.  Determine the maximum shear stress in the shaft at 1'5-7. The solid 50-mm-diameter shaft is subjected to the
section a—a. torques applied to the gears. Determine the absolute
maximum shear stress in the shaft.

600 N-m
30 mm
40 mm,
Section a—a
Prob. F5-5
Prob. F5-7

F5-6.  Determine the shear stress at point A on the surface F5-8.  The gear motor can develop 2250 W when it turns
of the shaft. Represent the state of stress on a volume element at 150 rev/min. If the allowable shear stress for the shaft is
at this point. The shaft has a radius of 40 mm. Talow = 84 MPa, determine the smallest diameter of the

shaft to the nearest mm that can be used.

Prob. F5-6 Prob. F5-8
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5-1. The solid shaft of radius r is subjected to a torque T.
Determine the radius r’ of the inner core of the shaft that
resists one-half of the applied torque (7/2). Solve the
problem two ways: (a) by using the torsion formula, (b) by
finding the resultant of the shear-stress distribution.

5-2. The solid shaft of radius r is subjected to a torque T.
Determine the radius r" of the inner core of the shaft that
resists one-quarter of the applied torque (7'/4). Solve the
problem two ways: (a) by using the torsion formula, (b) by
finding the resultant of the shear-stress distribution.

Probs. 5-1/2

5-3. A shaft is made of an aluminum alloy having an
allowable shear stress of 7, = 100 MPa. If the diameter of
the shaft is 100 mm, determine the maximum torque T that
can be transmitted. What would be the maximum torque T if
a 75-mm-diameter hole were bored through the shaft? Sketch
the shear-stress distribution along a radial line in each case.

Prob. 5-3

*5-4. The link acts as part of the elevator control for a
small airplane. If the attached aluminum tube has an inner
diameter of 25 mm and a wall thickness of 5 mm,
determine the maximum shear stress in the tube when the
cable force of 600 N is applied to the cables. Also, sketch
the shear-stress distribution over the cross section.

Prob. 5-4

5-5. The solid shaft is fixed to the support at C and
subjected to the torsional loadings. Determine the shear
stress at points A and B on the surface, and sketch the shear
stress on volume elements located at these points.

=
A\ 800 N-m

Prob. 5-5
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5-6. The solid 30-mm-diameter shaft is used to transmit
the torques applied to the gears. Determine the absolute
maximum shear stress in the shaft.

300N'm 500 N-m

&

C )
G 400 N-m
300 mm D "W
~ N
S
>,

400 mm

200 N-m

500 mm

Prob. 5-6

5-7. The copper pipe has an outer diameter of 40 mm and
an inner diameter of 37 mm. If it is tightly secured to the
wall and three torques are applied to it, determine the
absolute maximum shear stress developed in the pipe.

*5-8. 'The copper pipe has an outer diameter of 40 mm and
an inner diameter of 37 mm. If it is tightly secured to the wall
at A and three torques are applied to it as shown, determine
the absolute maximum shear stress developed in the pipe.

A

e

( ‘X S—30N'm

80 N'm

Prob. 5-8

5-9. The solid aluminum shaft has a diameter of 50 mm
and an allowable shear stress of 7,y,, = 60 MPa. Determine
the largest torque 77 that can be applied to the shaft if it is
also subjected to the other torsional loadings. It is required
that T; act in the direction shown. Also, determine the
maximum shear stress within regions CD and DE.

5-10. The solid aluminum shaft has a diameter of 50 mm.
Determine the absolute maximum shear stress in the shaft and
sketch the shear-stress distribution along a radial line of the
shaft where the shear stress is maximum. Set 77 =2000 N - m.

Probs. 5-9/10



5-11. The 60-mm-diameter solid shaft is subjected to the
distributed and concentrated torsional loadings shown.
Determine the absolute maximum and minimum shear
stresses on the shaft’s surface and specify their locations,
measured from the free end.

*5-12. The solid shaft is subjected to the distributed and
concentrated torsional loadings shown. Determine the
required diameter d of the shaft if the allowable shear stress
for the material is 7., = 60 MPa.

2y
800 N'm 0.5m

Probs. 5-11/12

5-13. The assembly consists of two sections of galvanized
steel pipe connected together using a reducing coupling at B.
The smaller pipe has an outer diameter of 18.75 mm and an
inner diameter of 17 mm, whereas the larger pipe has an outer
diameter of 25 mm and an inner diameter of 21.5 mm. If the
pipe is tightly secured to the wall at C, determine the maximum
shear stress developed in each section of the pipe when the
couple shown is applied to the handles of the wrench.

75N

Prob. 5-13
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5-14. A steel tube having an outer diameter of 60 mm is
used to transmit 6.75 kW when turning at 27 rev/min.
Determine the inner diameter d of the tube to the nearest
mm if the allowable shear stress is 7,;,, = 70 MPa.

Prob. 5-14

5-15. The 60-mm-diameter solid shaft is subjected to the
distributed and concentrated torsional loadings shown.
Determine the shear stress at points A and B, and sketch the
shear stress on volume elements located at these points.

*5-16. The 60-mm-diameter solid shaft is subjected to the
distributed and concentrated torsional loadings shown.
Determine the absolute maximum and minimum shear
stresses on the shaft’s surface, and specify their locations,
measured from the fixed end C.

5-17. The solid shaft is subjected to the distributed and
concentrated torsional loadings shown. Determine the
required diameter d of the shaft if the allowable shear stress
for the material is 7,4y, = 1.6 MPa.

Probs. 5-15/16/17
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5-18. The motor delivers a torque of 50 N - m to the shaft
AB. This torque is transmitted to shaft CD using the gears
at £ and F. Determine the equilibrium torque T’ on shaft
CD and the maximum shear stress in each shaft. The
bearings B, C, and D allow free rotation of the shafts.

5-19. If the applied torque on shaft CD is T’ = 75 N-m,
determine the absolute maximum shear stress in each shaft.
The bearings B, C, and D allow free rotation of the shafts,
and the motor holds the shafts fixed from rotating.

Probs. 5-18/19

*5-20. The shaft has an outer diameter of 100 mm and an
inner diameter of 80 mm. If it is subjected to the three
torques, determine the absolute maximum shear stress in
the shaft. The smooth bearings A and B do not resist torque.

5-21. The shaft has an outer diameter of 100 mm and an
inner diameter of 80 mm. If it is subjected to the three
torques, plot the shear stress distribution along a radial line
for the cross section within region CD of the shaft. The
smooth bearings at A and B do not resist torque.

Probs. 5-20/21

5-22. 1If the gears are subjected to the torques shown,
determine the maximum shear stress in the segments AB
and BC of the A-36 steel shaft. The shaft has a diameter of
40 mm.

5-23. If the gears are subjected to the torques shown,
determine the required diameter of the A-36 steel shaft to
the nearest mm if 7, = 60 MPa.

200 N-m

Probs. 5-22/23

*5-24. The rod has a diameter of 25 mm and a weight of
150 N/m. Determine the maximum torsional stress in the
rod at a section located at A due to the rod’s weight.

5-25. The rod has a diameter of 25 mm and a weight of
225 N/m. Determine the maximum torsional stress in the
rod at a section located at B due to the rod’s weight.

Probs. 5-24/25



5-26. The solid steel shaft DF has a diameter of 25 mm and
is supported by smooth bearings at D and E. It is coupled to
a motor at F, which delivers 12 kW of power to the shaft
while it is turning at 50 rev/s. If gears A, B, and C remove
3 kW, 4 kW, and 5 kW respectively, determine the maximum
shear stress in the shaft within regions CF and BC. The shaft
is free to turn in its support bearings D and E.

5-27. The solid steel shaft DF has a diameter of 25 mm and
is supported by smooth bearings at D and E. It is coupled to
a motor at F, which delivers 12 kW of power to the shaft
while it is turning at 50 rev/s. If gears A, B, and C remove
3 kW, 4 kW, and 5 kW respectively, determine the absolute
maximum shear stress in the shaft.

Probs. 5-26/27

*5-28. The drive shaft AB of an automobile is made of a
steel having an allowable shear stress of 7,;,, = 56 MPa. If
the outer diameter of the shaft is 62.5 mm and the engine
delivers 165 kW to the shaft when it is turning at
1140 rev/min, determine the minimum required thickness
of the shaft’s wall.

5-29. The drive shaft AB of an automobile is to be
designed as a thin-walled tube. The engine delivers 125 kW
when the shaft is turning at 1500 rev/min. Determine the
minimum thickness of the shaft’s wall if the shaft’s outer
diameter is 62.5 mm. The material has an allowable shear
stress of 70w = 50 MPa.

Probs. 5-28/29

5.3 POWER TRANSMISSION 221

5-30. A ship has a propeller drive shaft that is turning at
1500 rev/min while developing 1500 kW. If it is 2.4 m long
and has a diameter of 100 mm, determine the maximum
shear stress in the shaft caused by torsion.

5-31. The motor A develops a power of 300 W and turns
its connected pulley at 90 rev/min. Determine the required
diameters of the steel shafts on the pulleys at A and B if the
allowable shear stress is T, = 85 MPa.

Prob. 5-31

*5-32.  When drilling a well at constant angular velocity,
the bottom end of the drill pipe encounters a torsional
resistance T4. Also, soil along the sides of the pipe creates a
distributed frictional torque along its length, varying
uniformly from zero at the surface B to ¢4 at A. Determine
the minimum torque 7 that must be supplied by the drive
unit to overcome the resisting torques, and calculate the
maximum shear stress in the pipe. The pipe has an outer
radius r, and an inner radius r;.

=1

~

e )

Z)

p- -

Prob. 5-32

=
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5-33. The solid steel shaft AC has a diameter of 25 mm
and is supported by smooth bearings at D and E. It is
coupled to a motor at C, which delivers 3 kW of power to the
shaft while it is turning at 50 rev/s. If gears A and B remove
1 kW and 2 kW, respectively, determine the maximum shear
stress in the shaft within regions AB and BC. The shaft is
free to turn in its support bearings D and E.

2 kW 3kW

Prob. 5-33

5-34. The shaft is subjected to a distributed torque along
its length of ¢ = (10x?) N - m/m, where x is in meters. If the
maximum stress in the shaft is to remain constant at 80 MPa,
determine the required variation of the radius c¢ of the shaft
for0 = x =3m.

Prob. 5-34

5-35. The motor delivers 12 kW to the pulley at A while
turning at a constant rate of 1800 rpm. Determine to the
nearest multiples of 5 mm the smallest diameter of shaft BC
if the allowable shear stress for steel is 7., = 84 MPa.
The belt does not slip on the pulley.

Prob. 5-35

*5-36. 'The gear motor can develop 1.6 kW when it turns
at 450 rev/min. If the shaft has a diameter of 25 mm,
determine the maximum shear stress developed in the shaft.

5-37. 'The gear motor can develop 2.4 kW when it turns at
150 rev/min. If the allowable shear stress for the shaft is
Taiow = 84 MPa, determine the smallest diameter of the
shaft to the nearest multiples of 5 mm that can be used.

Probs. 5-36/37

5-38. The 25-mm-diameter shaft on the motor is made of
a material having an allowable shear stress of
Talow = 79 MPa. If the motor is operating at its maximum
power of 5 kW, determine the minimum allowable rotation
of the shaft.

5-39. The drive shaft of the motor is made of a material
having an allowable shear stress of 7., = 75 MPa. If the
outer diameter of the tubular shaft is 20 mm and the wall
thickness is 2.5 mm, determine the maximum allowable
power that can be supplied to the motor when the shaft is
operating at an angular velocity of 1500 rev/min.

Probs. 5-38/39



*5-40 The pump operates using the motor that has a
power of 85 W.If the impeller at B is turning at 150 rev/min,
determine the maximum shear stress in the 20-mm-diameter
transmission shaft at A.

Prob. 5-40

5-41. Two wrenches are used to tighten the pipe. If
P =300N is applied to each wrench, determine the
maximum torsional shear stress developed within regions
AB and BC.The pipe has an outer diameter of 25 mm and
inner diameter of 20 mm. Sketch the shear stress distribution
for both cases.

5-42. Two wrenches are used to tighten the pipe. If the
pipe is made from a material having an allowable shear
stress Oof Tyow = 85 MPa, determine the allowable
maximum force P that can be applied to each wrench. The
pipe has an outer diameter of 25 mm and inner diameter of
20 mm.

Probs. 5-41/42
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5-43. The solid shaft has a linear taper from r, at one end
to rg at the other. Derive an equation that gives the
maximum shear stress in the shaft at a location x along the
shaft’s axis.

Prob. 5-43

*5-44. A motor delivers 375 kW to the shaft, which is
tubular and has an outer diameter of 50 mm. If it is rotating
at 200 rad/s, determine its largest inner diameter to the
nearest mm if the allowable shear stress for the material is
Tallow — 175 MPa.

Prob. 5-44

5-45. The A-36 steel tubular shaft is 2 m long and has an
outer diameter of 50 mm. When it is rotating at 40 rad/s, it
transmits 25 kW of power from the motor M to the pump P.
Determine the smallest thickness of the tube if the allowable
shear stress is 7,0 = 80 MPa.

5-46. The A-36 solid steel shaft is 2 m long and has a
diameter of 60 mm. It is required to transmit 60 kW of
power from the motor M to the pump P. Determine the
smallest angular velocity the shaft if the allowable shear
stress is Tow = 80 MPa.

P M

Probs. 5-45/46
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Long shafts subjected to torsion can, in
some cases, have a noticeable elastic
twist.

9.4 ANGLE OF TWIST

In this section we will develop a formula for determining the angle of twist
¢ (phi) of one end of a shaft with respect to its other end. To generalize
this development, we will assume the shaft has a circular cross section that
can gradually vary along its length, Fig. 5-12a. Also, the material is assumed
to be homogeneous and to behave in a linear elastic manner when the
torque is applied. As in the case of an axially loaded bar, we will neglect
the localized deformations that occur at points of application of the torques
and where the cross section changes abruptly. By Saint-Venant’s principle,
these effects occur within small regions of the shaft’s length, and generally
they will have only a slight effect on the final result.

Using the method of sections, a differential disk of thickness dx,
located at position x, is isolated from the shaft, Fig. 5-12b. At this
location, the internal torque is 7(x), since the external loading may
cause it to change along the shaft. Due to T(x), the disk will twist, such
that the relative rotation of one of its faces with respect to the other face
is d¢p. As a result an element of material located at an arbitrary radius p
within the disk will undergo a shear strain . The values of y and d¢ are
related by Eq. 5-1, namely,

dp =y— (5-13)

(®)

Fig. 5-12



Since Hooke’s law,y = 7/G, applies and the shear stress can be expressed
in terms of the applied torque using the torsion formula 7 = T(x)p/J(x),
then y = T(x)p/J(x)G(x). Substituting this into Eq. 5-13, the angle of
twist for the disk is therefore

T(x)

OGN

Integrating over the entire length L of the shaft, we can obtain the angle
of twist for the entire shaft, namely,

T(x) dx
$= / T0)GG) -14)

de =

Here

¢ = the angle of twist of one end of the shaft with respect to the other
end, measured in radians

T(x) = the internal torque at the arbitrary position x, found from the
method of sections and the equation of moment equilibrium applied
about the shaft’s axis

J(x) = the shaft’s polar moment of inertia expressed as a function of x

G(x) = the shear modulus of elasticity for the material expressed as a
function of x

Constant Torque and Cross-Sectional Area. Usually in
engineering practice the material is homogeneous so that G is constant.
Also, the cross-sectional area and the external torque are constant along
the length of the shaft, Fig. 5-13. When this is the case, the internal torque
T(x) = T, the polar moment of inertia J(x) = J, and Eq. 5-14 can be
integrated, which gives

TL

¢=7c (5-15)

Note the similarities between the above two equations and those for an
axially loaded bar.

Fig. 5-13

5.4 ANGLE OF TwisT

When calculating both the stress and
the angle of twist of this soil auger, it is
necessary to consider the variable
torsional loading which acts along
its length.
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The shear strain at points on
the cross section increases linearly
with p,ie. v = (p/C)Ymax-

(b)
Fig. 5-12 (Repeated)

Torque
strain
recorder

range

Turning
( head Motor

Movable unit
on rails

Fig. 5-14

Equation 5-15 is often used to determine the shear modulus of
elasticity, G, of a material. To do so, a specimen of known length and
diameter is placed in a torsion testing machine like the one shown in
Fig. 5-14. The applied torque 7 and angle of twist ¢ are then measured
along the length L. From Eq. 5-15, we get G = TL /J¢$. To obtain a more
reliable value of G, several of these tests are performed and the average
value is used.

Multiple Torques. If the shaft is subjected to several different
torques, or the cross-sectional area or shear modulus changes abruptly
from one region of the shaft to the next, as in Fig. 5-12, then Eq. 5-15
should be applied to each segment of the shaft where these quantities
are all constant. The angle of twist of one end of the shaft with respect to
the other is found from the algebraic addition of the angles of twist of
each segment. For this case,

b= S (5-16)




Sign Convention. The best way to apply this equation is to use a
sign convention for both the internal torque and the angle of twist of one
end of the shaft with respect to the other end. To do this, we will apply
the right-hand rule, whereby both the torque and angle will be positive,
provided the thumb is directed outward from the shaft while the fingers
curl in the direction of the torque, Fig. 5-15.

Positive sign convention
for T and ¢.

Fig. 5-15

B VPORTANT POINT

® When applying Eq. 5-14 to determine the angle of twist, it is
important that the applied torques do not cause yielding of the
material, and that the material is homogeneous and behaves in
a linear elastic manner.

5.4 ANGLE OF TwisT
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TORSION

- PROCEDURE FOR ANALYSIS

The angle of twist of one end of a shaft or tube with respect to the
other end can be determined using the following procedure.

Internal Torque.

® The internal torque is found at a point on the axis of the shaft
by using the method of sections and the equation of moment
equilibrium, applied along the shaft’s axis.

® [f the torque varies along the shaft’s length, a section should be
made at the arbitrary position x along the shaft and the internal
torque represented as a function of x, i.e., 7(x).

® [f several constant external torques act on the shaft between
its ends, the internal torque in each segment of the shaft,
between any two external torques, must be determined.

Angle of Twist.

® When the circular cross-sectional area of the shaft varies along
the shaft’s axis, the polar moment of inertia must be expressed
as a function of its position x along the axis, J(x).

® [f the polar moment of inertia or the internal torque
suddenly changes between the ends of the shaft, then
10} :f (T(x)/J(x)G(x)) dx or ¢ = TL/JG must be applied to
each segment for which J, G, and T are continuous or constant.

® When the internal torque in each segment is determined, be
sure to use a consistent sign convention for the shaft or its
segments, such as the one shown in Fig. 5-15. Also make sure
that a consistent set of units is used when substituting numerical
data into the equations.
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EXAMPLE 5.5

Determine the angle of twist of the end A of the A-36 steel shaft
shown in Fig. 5-16a. Also, what is the angle of twist of A relative to C?
The shaft has a diameter of 200 mm.

SOLUTION

Internal Torque. Using the method of sections, the internal torques
are found in each segment as shown in Fig. 5-16b. By the right-hand rule,
with positive torques directed away from the sectioned end of the shaft,

we have Typ =+80 kN-m, Tgc=—70 kN-m, and T-p = —10 KN -m. W
These results are also shown on the forque diagram, which indicates D
how the internal torque varies along the axis of the shaft, Fig. 5-16c. Tap= 80 kN-m
80 kN-m
Angle of Twist. The polar moment of inertia for the shaft is {\
J=Z(01m)* = 0.1571(1073) m* 'g/ 3
) 150 TN BC = TOKN-m
80 kN-
For A-36 steel, the table on the back cover gives G =75 GPa.Therefore, " 3 {\
the end A of the shaft has a rotation of /6% o lokNm
3\ N - ‘m
4y = 3TL _ 80(10% N -m (3 m) g/mmm
JG  (0.1571(1073) m*)(75(10%) N/m?) DL
(®)
—70(10°) N+ m (2 m) . —10(10*) N-m (1.5 m)
(0.1571(107%) m*)(75(10°) N/m?) ~ (0.1571(107%) m*)(75(10%) N/m?)
da = 7.22(1073) rad Ans, TkNm)
The relative angle of twist of A with respect to C involves only two 8o
segments of the shaft. 3 5 65+ (m)
DS TL 80(10*) N+ m (3 m) . 10
ACT TG T (0.1571(107%) m*)(75(10%) N/m?) ©
— 3 o
70(10°) N-m (2 m) Fig, 5-16

(0.1571(107%) m*)(75(10°%) N /m?)

ba/c = 8.49(107°) rad Ans.

Both results are positive, which means that end A will rotate as
indicated by the curl of the right-hand fingers when the thumb is
directed away from the shaft.
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EXAMPLE 5.6

280 N- %
150 N- m/B/ _ 0 3
Zﬂ\ '& }
100 mm (a)

TAC =150 N-m

'8
150 N'm XCE)‘\
%@N.m

150 N-mﬁ 40 N-m
280 N-m

(b)
¢, = 0.2121 rad

TORSION

4ON%

The gears attached to the fixed-end steel shaft are subjected to the
torques shown in Fig. 5-17a. If the shaft has a diameter of 14 mm,
determine the displacement of the tooth P on gear A. G = 80 GPa.

SOLUTION

Internal Torque. By inspection, the torques in segments AC, CD, and
DE are different yet constant throughout each segment. Free-body
diagrams of these segments along with the calculated internal torques
are shown in Fig. 5-17b. Using the right-hand rule and the established
sign convention that positive torque is directed away from the sectioned
end of the shaft, we have
Tyc = +150N-m

TCD = —130N-m TDE = —170 N-m

Angle of Twist. The polar moment of inertia for the shaft is

J= %(0.007 m)* = 3.771(10°) m*

Applying Eq. 5-16 to each segment and adding the results algebraically,
we have

_<TIL _ (+150N-m) (0.4 m)
$a= 2756 < 3.771(107%)m* [80(10° )N /m?]
(—=130N-m) (0.3 m) (=170N-m) (0.5m)

3.771(107°)m* [80(10°)N/m? = 3.771(10°)m* [80(10”) N/m?]

b4 = —0.2121 rad

Since the answer is negative, by the right-hand rule the thumb is directed
toward the support E of the shaft, and therefore gear A will rotate as
shown in Fig. 5-17c.

The displacement of tooth P on gear A is

sp = ¢ar = (02121 rad) (100 mm) = 21.2 mm Ans.



EXAMPLE 5.7

The two solid steel shafts shown in Fig. 5-18a are coupled together using
the meshed gears. Determine the angle of twist of end A of shaft AB
when the torque 7' = 45 N -m is applied. Shaft DC is fixed at D. Each
shaft has a diameter of 20 mm. G = 80 GPa.

5.4 ANGLE OF TwisT

ép = 0.0134 rad

'-_\D

“%,.

. F =300 Nf'
T= 4}3 N-m B § 0.150 m

t&\ : -~ F, T 4
2 m F,
(b)

SOLUTION

Internal Torque. Free-body diagrams for each shaft are shown in
Figs. 5-18b and 5-18c. Summing moments along the axis of shaft AB yields
the tangential reaction between the gears of F =45 N-m/0.15 m = 300 N.
Summing moments about the axis of shaft DC, this force then creates a
torque of (7p),=300N (0.075 m) =22.5 N-min shaft DC.

Angle of Twist. To solve the problem, we will first calculate the
rotation of gear C due to the torque of 22.5 N - m in shaft DC, Fig. 5-18c.
This angle of twist is

_ TLpc (+225N-m) (1.5m)
UG (w/2)(0.010m)*[80(10°)N/m?]

bc = +0.0269 rad

Since the gears at the end of the shafts are in mesh, the rotation ¢ ¢ of
gear C causes gear B to rotate ¢ p, Fig. 5-18d, where

¢p(0.15m) = (0.0269 rad) (0.075 m)
¢p = 0.0134 rad

We will now determine the angle of twist of end A with respect to
end B of shaft AB caused by the 45 N - m torque, Fig. 5-18b. We have

_ TABLAB . (+45N'm) (Zm) o
P48 = TUG T (2/2)(0010m)* [0(10°) Njmp]  O0716rad

The rotation of end A is therefore determined by adding ¢ and ¢4,
since both angles are in the same direction, Fig. 5-18b. We have

b4 = ¢p + dap = 0.01341ad + 0.0716 rad = +0.0850 rad ~ Ans.

(d)
Fig. 5-18
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EXAMPLE 5.8

& 015m
Mf’?\x 15
100N == &éjmo N
\

K 0.6 m

100N 013m 100N

0.9 m

\\Z

~
061 |-

\%Lm
(c)

)

8 ' Tpe
ap

x| A
ap

fg)z= 50 N'-m/m

(d)
Fig. 5-19

The 0.05-m-diameter solid cast-iron post shown in Fig. 5-19a is buried 0.6 m
in soil. If a torque is applied to its top using a rigid wrench, determine the
maximum shear stress in the post and the angle of twist at its top. Assume
that the torque is about to turn the post, and the soil exerts a uniform
torsional resistance of N - m/m along its 0.6-m buried length. G = 40 GPa.

SOLUTION

Internal Torque. The internal torque in segment AB of the post is
constant. From the free-body diagram, Fig. 5-19b, we have

SM, = 0; T,z = (100N)(0.30m) = 30N -m

The magnitude of the uniform distribution of torque along the buried
segment BC can be determined from equilibrium of the entire post,
Fig. 5-19c. Here
M, =0 (100N)(0.30 m) — #0.6m) = 0
t=50N-m/m

Hence, from a free-body diagram of a section of the post located at the
position x, Fig. 5-19d, we have
IM, = 0; Tge — 50x =0
Tgc = S0x
Maximum Shear Stress. The largest shear stress occurs in region AB,

since the torque is largest there and J is constant for the post. Applying
the torsion formula, we have

Tige  (30N-m)(0.025 m)
Tmax T T (7/2)(0.025 m)*

= 1.22(10°) N/m?

1.22 MPa Ans.

Angle of Twist. The angle of twist at the top can be determined
relative to the bottom of the post, since it is fixed and yet is about to turn.
Both segments AB and BC twist, and so in this case we have

TrpLlap N / Loe Ty cdx
JG . JG

_ BON-m)(09m) /0'6‘“50;5 dx
B JG 0 JG
27N -m? N 50[(0.6%) /2] N + m?
JG JG
36 N - m?

= = 0.00147 rad
(7/2)(0.025 m)*[40(10°) N /m?]

ba =

Ans.
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. FUNDAMENTAL PROBLEMS

15-9.  The 60-mm-diameter steel shaft is subjected to the F5-12.  Aseries of gears are mounted on the 40-mm-diameter
torques shown. Determine the angle of twist of end A with steel shaft. Determine the angle of twist of gear E relative to
respect to C. Take G = 75 GPa. gear A.Take G = 75 GPa.

2 kKN-m
Prob. F5-9

F5-10.  Determine the angle of twist of wheel B with
respect to wheel A. The shaft has a diameter of 40 mm and

1 ( Prob. F5-12
is made of steel for which G = 75 GPa.

I'5-13.  The 80-mm-diameter shaft is made of steel. If it is
subjected to the uniform distributed torque, determine the
angle of twist of end A. Take G = 75 GPa.

Prob. F5-10
I'5-11.  The hollow 6061-T6 aluminum shaft has an outer
and inner radius of ¢, = 40 mm and ¢; = 30 mm, respectively. Prob. F5-13
Determine the angle of twist of end A. The support at B is
flexible like a torsional Spring’ so that Tz = kg ¢, where the I5-14.  The 80-mm-diameter shaft is made of steel. If it is
torsional stiffness is k5 = 90 kN - m /rad. subjected to the triangular distributed load, determine the

angle of twist of end A.Take G = 75 GPa.

Prob. F5-11 Prob. F5-14
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TORSION

5-47. The propellers of a ship are connected to an A-36
steel shaft that is 60 m long and has an outer diameter of
340 mm and inner diameter of 260 mm. If the power output is
4.5 MW when the shaft rotates at 20 rad/s, determine the
maximum torsional stress in the shaft and its angle of twist.

*5-48. The solid shaft of radius c is subjected to a torque T
at its ends. Show that the maximum shear strain in the shaft is
Ymax = 1¢/JG.What is the shear strain on an element located
at point A, c/2 from the center of the shaft? Sketch the shear
strain distortion of this element.

Prob. 5-48

5-49. The A-36 steel shaft has a diameter of 50 mm and is
subjected to the distributed and concentrated loadings
shown. Determine the absolute maximum shear stress in the
shaft and plot a graph of the angle of twist of the shaft in
radians versus x.

Prob. 5-49

5-50. The 60-mm-diameter shaft is made of 6061-T6
aluminum having an allowable shear stress of 7,4, = 80 MPa.
Determine the maximum allowable torque T. Also, find the
corresponding angle of twist of disk A relative to disk C.

5-51. The 60-mm-diameter shaft is made of 6061-T6
aluminum. If the allowable shear stress is 7,1, = 80 MPa, and
the angle of twist of disk A relative to disk C is limited so
that it does not exceed 0.06 rad, determine the maximum
allowable torque T.

Probs. 5-50/51

*5-52. The splined ends and gears attached to the A992
steel shaft are subjected to the torques shown. Determine
the angle of twist of end B with respect to end A. The shaft
has a diameter of 40 mm.

400 N-m

%B

j\ m
600 mm
L

500 mm

1200 N-m

400 mm

Prob. 5-52



5-53. The hydrofoil boat has an A-36 steel propeller shaft
that is 30 m long. It is connected to an in-line diesel engine
that delivers a maximum power of 2000 kW and causes the
shaft to rotate at 1700 rpm. If the outer diameter of the
shaft is 200 mm and the wall thickness is 10 mm, determine
the maximum shear stress developed in the shaft. Also, what
is the “wind up,” or angle of twist in the shaft at full power?

Prob. 5-53

5-54. The turbine develops 300 kW of power, which is
transmitted to the gears such that both B and C receive an
equal amount. If the rotation of the 100-mm-diameter A992
steel shaft is @ = 600 rev/min., determine the absolute
maximum shear stress in the shaft and the rotation of end D
of the shaft relative to A. The journal bearing at D allows
the shaft to turn freely about its axis.
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5-55. The shaft is made of A992 steel. It has a diameter of
25 mm and is supported by bearings at A and D, which
allow free rotation. Determine the angle of twist of B with
respect to D.

*5-56. The shaft is made of A-36 steel. It has a diameter of
25 mm and is supported by bearings at A and D, which
allow free rotation. Determine the angle of twist of gear C
with respect to B.

Probs. 5-55/56

5-57. The rotating flywheel-and-shaft, when brought to a
sudden stop at D, begins to oscillate clockwise-counter-
clockwise such that a point A on the outer edge of the fly-
wheel is displaced through a 6-mm arc. Determine the
maximum shear stress developed in the tubular A-36 steel
shaft due to this oscillation. The shaft has an inner diameter
of 24 mm and an outer diameter of 32 mm. The bearings at
B and C allow the shaft to rotate freely, whereas the support
at D holds the shaft fixed.

Prob. 5-54

Prob. 5-57
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5-58. The A992 steel shaft has a diameter of 50 mm and is
subjected to the distributed loadings shown. Determine the
absolute maximum shear stress in the shaft and plot a graph
of the angle of twist of the shaft in radians versus x.

Prob. 5-58

5-59. The shaft is made of A992 steel with the allowable
shear stress of 7,w = 75 MPa. If gear B supplies 15 kW of
power, while gears A, C and D withdraw 6 kW, 4 kW and
5 kW, respectively, determine the required minimum diameter
d of the shaft to the nearest millimeter. Also, find the
corresponding angle of twist of gear A relative to gear D.The
shaft is rotating at 600 rpm.

*5-60. Gear B supplies 15 kW of power, while gears A, C
and D withdraw 6 kW, 4 kW and 5 kW, respectively. If the
shaft is made of steel with the allowable shear stress of
Talow = 75 MPa, and the relative angle of twist between any
two gears cannot exceed 0.05 rad, determine the required
minimum diameter d of the shaft to the nearest millimeter.
The shaft is rotating at 600 rpm.

Probs. 5-59/60

5-61. The turbine develops 150 kW of power, which is
transmitted to the gears such that C receives 70% and D
receives 30%. If the rotation of the 100-mm-diameter A-36
steel shaft is @ = 800 rev/min., determine the absolute
maximum shear stress in the shaft and the angle of twist of
end E of the shaft relative to B. The journal bearing at E
allows the shaft to turn freely about its axis.

5-62. The turbine develops 150 kW of power, which is
transmitted to the gears such that both C and D receive an
equal amount. If the rotation of the 100-mm-diameter A-36
steel shaft is @ = 500 rev/min., determine the absolute
maximum shear stress in the shaft and the rotation of end B
of the shaft relative to E. The journal bearing at E allows
the shaft to turn freely about its axis.

Probs. 5-61/62

5-63. The 50-mm-diameter A992 steel shaft is subjected
to the torques shown. Determine the angle of twist of the
end A.

Prob. 5-63



*5-64. The 60-mm-diameter solid shaft is made of 2014-T6
aluminum and is subjected to the distributed and
concentrated torsional loadings shown. Determine the angle
of twist at the free end A of the shaft.

Prob. 5-64

5-65. The two shafts are made of A-36 steel. Each has a
diameter of 25 mm, and they are supported by bearings at
A, B, and C, which allow free rotation. If the support at D is
fixed, determine the angle of twist of end A when the
torques are applied to the assembly as shown.

Prob. 5-65
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5-66. The A-36 steel bolt is tightened within a hole so that
the reactive torque on the shank AB can be expressed by the
equation = (kx?) N -m/m, where x is in meters. If a torque
of T = 50N-m is applied to the bolt head, determine the
constant k£ and the amount of twist in the 50-mm length of
the shank. Assume the shank has a constant radius of 4 mm.

Prob. 5-66

5-67. The A-36 steel bolt is tightened within a hole so that
the reactive torque on the shank AB can be expressed by
the equation t = (kx**) N+m/m, where x is in meters. If a
torque of 7 =50N-m is applied to the bolt head,
determine the constant k and the amount of twist in the
50-mm length of the shank. Assume the shank has a constant
radius of 4 mm.

< @@ T =50N-m

Prob. 5-67
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*5-68. The shaft of radius c is subjected to a distributed
torque ¢, measured as torque /length of shaft. Determine the
angle of twist at end A. The shear modulus is G.

’°fs§§\~o<l+<z>2>
LY

L

(
2t

Prob. 5-68

5-69. The tubular drive shaft for the propeller of a
hovercraft is 6 m long. If the motor delivers 4 MW of power
to the shaft when the propellers rotate at 25 rad /s, determine
the required inner diameter of the shaft if the outer diameter
is 250 mm. What is the angle of twist of the shaft when it is
operating? Take 7,0y = 90 MPa and G = 75 GPa.

Prob. 5-69

5-70. The A-36 steel assembly consists of a tube having an
outer radius of 25 mm and a wall thickness of 3 mm. Using a
rigid plate at B, it is connected to the solid 25-mmdiameter
shaft AB. Determine the rotation of the tube’s end C if a
torque of 25 N m. is applied to the tube at this end. The end
A of the shaft is fixed supported.

Prob. 5-70

5-71. The A-36 hollow steel shaft is 2 m long and has an
outer diameter of 40 mm. When it is rotating at 80 rad/s, it
transmits 32 kW of power from the engine E to the generator
G. Determine the smallest thickness of the shaft if the
allowable shear stress is 7.,y = 140 MPa and the shaft is
restricted not to twist more than 0.05 rad.

*5-72. The A-36 solid steel shaft is 3 m long and has a
diameter of 50 mm. It is required to transmit 35 kW of power
from the engine E to the generator G. Determine the
smallest angular velocity of the shaft if it is restricted not to
twist more than 1°.

Probs. 5-71/72



5-73. The motor produces a torque of 7 =20 N-m on
gear A. If gear C is suddenly locked so it does not turn, yet B
can freely turn, determine the angle of twist of F with respect
to E and F with respect to D of the L2-steel shaft, which has
an inner diameter of 30 mm and an outer diameter of 50 mm.
Also, calculate the absolute maximum shear stress in the
shaft. The shaft is supported on journal bearings at G at H.

0.8 m

Prob. 5-73

5-74. The shaft has a radius ¢ and is subjected to a torque
per unit length of £y, which is distributed uniformly over the
shaft’s entire length L. If it is fixed at its far end A, determine
the angle of twist ¢ of end B. The shear modulus is G.

5.4 ANGLE OF TwisT 239

5-75. The 60-mm-diameter solid shaft is made of A-36
steel and is subjected to the distributed and concentrated
torsional loadings shown. Determine the angle of twist at
the free end A of the shaft due to these loadings.

Prob. 5-75

*5-76. The contour of the surface of the shaft is defined
by the equation y = e*, where a is a constant. If the shaft
is subjected to a torque T at its ends, determine the angle
of twist of end A with respect to end B. The shear
modulus is G.

Prob. 5-74

Prob. 5-76
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9.5 STATICALLY INDETERMINATE
TORQUE-LOADED MEMBERS

A torsionally loaded shaft will be statically indeterminate if the moment
equation of equilibrium, applied about the axis of the shaft,is not adequate
to determine the unknown torques acting on the shaft. An example of
this situation is shown in Fig. 5-20a. As shown on the free-body diagram,
Fig. 5-20b, the reactive torques at the supports A and B are unknown.
Along the axis of the shaft, we require

SM = 0; SOONm — Ty — Tz = 0

In order to obtain a solution, we will use the same method of analysis
discussed in Sec. 4.4. The necessary compatibility condition requires the
angle of twist of one end of the shaft with respect to the other end to be
equal to zero, since the end supports are fixed. Therefore,

¢A/B =0

Provided the material is linear elasticc we can then apply the
load—displacement relation ¢ = TL /JG to express this equation in terms
of the unknown torques. Realizing that the internal torque in segment AC
is + 7, and in segment CB it is —Tg, Fig. 5-20c, we have

T,3m)  Tz(2m) 0
JG JG

Solving the above two equations for the reactions, we get

T, =200N-m and 7Tz =300N-m
Ty
T
6\\ Ty
(b) @
Ty

(©) @

Fig. 5-20
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- PROCEDURE FOR ANALYSIS

The unknown torques in statically indeterminate shafts
are determined by satisfying equilibrium, compatibility, and
load—displacement requirements for the shaft.

Equilibrium.

® Draw a free-body diagram of the shaft in order to identify all
the external torques that act on it. Then write the equation of
moment equilibrium about the axis of the shaft.

Comepeatibility.

® Write the compatibility equation. Give consideration as to how
the supports constrain the shaft when it is twisted.

Load-Displacement.

® Express the angles of twist in the compatibility condition in
terms of the torques, using a load—displacement relation, such
as ¢ = TL/JG.

® Solve the equations for the unknown reactive torques. If any of
the magnitudes have a negative numerical value, it indicates that
this torque acts in the opposite sense of direction to that shown
on the free-body diagram.

77

The shaft of this cutting machine is fixed at its
ends and subjected to a torque at its center,
allowing it to act as a torsional spring.
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EXAMPLE 5.9

The solid steel shaft shown in Fig. 5-21a has a diameter of 20 mm. If it is
subjected to the two torques, determine the reactions at the fixed supports
A and B.

(a) (b)

SOLUTION

Equilibrium. By inspection of the free-body diagram, Fig. 5-21b, it is
seen that the problem is statically indeterminate, since there is only one

Ty available equation of equilibrium and there are two unknowns. We require
@J?B SM, = 0 — Ty + 800N-m — 500N-m — Ty = 0 )
Ty Y= 1y Compatibility. Since the ends of the shaft are fixed, the angle of twist

of one end of the shaft with respect to the other must be zero. Hence, the
800 N'm, ~ s .
% 300 — 75 compatibility equation becomes
@ 500 N-m })\ bap =0
Ty - Load-Displacement. This condition can be expressed in terms of the
800 N-m unknown torques by using the load-displacement relationship,¢p = TL /JG.
( Here there are three regions of the shaft where the internal torque is

/ constant. On the free-body diagrams in Fig. 5-21¢ we have shown the

@ © internal torques acting on the left segments of the shaft. This way the
Ty ¢ internal torque is only a function of 7x. Using the sign convention
. established in Sec. 5.4, we have
Fig. 5-21
—T3(02m) N (800 — Tg) (1.5m) N (300 — T3)(0.3m) Q
JG JG JG B
so that

Tp = 645N-m Ans.

Using Eq. 1,
Ty = =345 N'm Ans.

The negative sign indicates that T 4 acts in the opposite direction of that
shown in Fig. 5-21b.
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EXAMPLE 5.10

The shaft shown in Fig. 5-22a is made from a steel tube, which is bonded to
a brass core. If a torque of 7= 250 N - mis applied at its end, plot the shear-
stress distribution along a radial line of its cross-sectional area. Take
Gy = 80 GPa, Gy, = 36 GPa.

SOLUTION

Equilibrium. A free-body diagram of the shaft is shown in Fig. 5-22b. 5 .
The reaction at the wall has been represented by the unknown amount of
torque resisted by the steel, 7, and by the brass, T;,,.. Equilibrium requires

Ty — Tty +250N-m =0 (1)
Compatibility. We require the angle of twist of end A to be the same
for both the steel and brass since they are bonded together. Thus,

b = by = bu %
Applying the load—displ;czment relationship, p = TL/JG,
st
(7/2)[(0.020 m)* — (0.010 m)*] [80(10°) N/m?] N )
T, L
(7/2)(0.010 m)*[36(10°)N - m?]
T, = 3333 T, ()

Solving Egs. 1 and 2, we get
Ty = 24272 N-m
Ty, = 7282 N-m

The shear stress in the brass core varies from zero at its center to a maximum
at the interface where it contacts the steel tube. Using the torsion formula,

~ (7.282N-m) (0.010 m)
Tordmax = = ) (0,010 m)*
For the steel, the minimum and maximum shear stresses are
(242.72 N - m)(0.010 m)
(7/2)[(0.020 m)* — (0.010 m)*]
(242.72 N - m)(0.020 m)
(7/2)[(0.020 m)* — (0.010 m)*]
The results are plotted in Fig. 5-22¢. Note the discontinuity of shear

= 4.636(10°) N/m* = 4.64 MPa

Yimax = 0258 (103)

= 10.30(10°) N/m? = 10.3 MPa

(Tst) min

0.129 (103)

= 20.60(10%) N/m? = 20.6 MPa

(Tst) max

(d)
stress at the brass and steel interface. This is to be expected, since the Fig. 5-22
materials have different moduli of rigidity; i.e., steel is stiffer than brass
(Gg > Gy,) and thus it carries more shear stress at the interface.

Although the shear stress is discontinuous here, the shear strain is not.

Rather, the shear strain is the same for both the brass and the steel,
Fig. 5-22d.
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. PROBLEMS

TORSION

5-77. The steel shaft is made from two segments: AC has
a diameter of 12 mm, and CB has a diameter of 25 mm. If it
is fixed at its ends A and B and subjected to a torque of
300 N - m determine the maximum shear stress in the shaft.
Gy = 75 GPa.

12 mm
/ C
125 In;n( D_300N-m
200 mm O 25 mm
" B
300 mm
Prob. 5-77

5-78. 'The steel shaft has a diameter of 40 mm and is fixed
atits ends A and B. If it is subjected to the couple, determine
the maximum shear stress in regions AC and CB of the
shaft. G =75 GPa.

3kN

Prob. 5-78

5-79. The A992 steel shaft has a diameter of 60 mm and is
fixed atits ends A and B. If it is subjected to the torques shown,
determine the absolute maximum shear stress in the shaft.

200 N-m ﬂ
B\/

Prob. 5-79

*5-80. The shaft is made of L2 tool steel, has a diameter
of 40 mm, and is fixed at its ends A and B. If it is subjected
to the torque, determine the maximum shear stress in
regions AC and CB.

B

: <

800 mm

Prob. 5-80

5-81. The Am1004-T61 magnesium tube is bonded to the
A-36 steel rod. If the allowable shear stresses for the
magnesium and steel are (Tow)mg = 45 MPa and
(Tallow)st = 75 MPa, respectively, determine the maximum
allowable torque that can be applied at A. Also, find the
corresponding angle of twist of end A.

5-82. The Am1004-T61 magnesium tube is bonded to the
A-36 steel rod. If a torque of 7 =5 kN -m is applied to
end A, determine the maximum shear stress in each
material. Sketch the shear stress distribution.

Probs. 5-81/82
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5-83. A rod is made from two segments: AB is steel and
BCis brass. It is fixed at its ends and subjected to a torque of
T = 680 N - m. If the steel portion has a diameter of 30 mm,
determine the required diameter of the brass portion so the
reactions at the walls will be the same. Gy = 75 GPa,
Gy, = 39 GPa.

*5-84. Determine the absolute maximum shear stress in
the shaft of Prob. 5-83.

B

0.75 m
\/

Probs. 5-83/84

5-85. The shaft is made from a solid steel section AB and
a tubular portion made of steel and having a brass core. If it
is fixed to a rigid support at A,and a torque of 7 = 75N -m
is applied to it at C, determine the angle of twist that occurs
at C and compute the maximum shear stress and maximum
shear strain in the brass and steel. Take Gy = 75 GPa,
Gy, = 38 GPa.

T=75Nm

25mm ¢

Prob. 5-85

5-86. The shafts are made of A-36 steel and have the
same diameter of 100 mm. If a torque of 25 kN - m is applied
to gear B, determine the absolute maximum shear stress
developed in the shaft.

5-87. The shafts are made of A-36 steel and have the
same diameter of 100 mm. If a torque of 25 kN - m is applied
to gear B, determine the angle of twist of gear B.

Probs. 5-86/87

*5-88. The shaft is made of L2 tool steel, has a diameter
of 40 mm, and is fixed at its ends A and B. If it is subjected
to the couple, determine the maximum shear stress in
regions AC and CB.

2 kN

Prob. 5-88
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5-89. The two shafts are made of A-36 steel. Each has a
diameter of 25 mm and they are connected using the gears
fixed to their ends. Their other ends are attached to fixed
supports at A and B. They are also supported by journal
bearings at C and D, which allow free rotation of the shafts
along their axes. If a torque of 500 N -m is applied to the
gear at E, determine the reactions at A and B.

5-90. The two shafts are made of A-36 steel. Each has a
diameter of 25 mm and they are connected using the gears
fixed to their ends. Their other ends are attached to fixed
supports at A and B. They are also supported by journal
bearings at C and D, which allow free rotation of the shafts
along their axes. If a torque of 500 N -m is applied to the
gear at E, determine the rotation of this gear.

Probs. 5-89/90

5-91. The two 1-m-long shafts are made of 2014-T6
aluminum. Each has a diameter of 30 mm and they are
connected using the gears fixed to their ends. Their other
ends are attached to fixed supports at A and B. They are
also supported by bearings at C and D, which allow free
rotation of the shafts along their axes. If a torque of
900 N - m is applied to the top gear as shown, determine the
maximum shear stress in each shaft.

Prob. 5-91

*5-92. If the shaft is subjected to a uniform distributed
torque of t = 20 kN - m/m, determine the maximum shear
stress developed in the shaft. The shaft is made of 2014-T6
aluminum alloy and is fixed at A and C.

Section a-a

Prob. 5-92

5-93. The tapered shaft is confined by the fixed supports
at A and B. If a torque T is applied at its mid-point,
determine the reactions at the supports.

L/2
L2
Prob. 5-93

5-94. The shaft of radius c is subjected to a distributed
torque ¢, measured as torque/length of shaft. Determine
the reactions at the fixed supports A and B.

Prob. 5-94
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*5.6 SOLID NONCIRCULAR SHAFTS

It was demonstrated in Sec. 5.1 that when a torque is applied to a shaft
having a circular cross section—that is, one that is axisymmetric—the
shear strains vary linearly from zero at its center to a maximum at its outer
surface. Furthermore, due to uniformity, the cross sections do not deform,
but rather remain plane after the shaft has twisted. Shafts that have a
noncircular cross section, however, are not axisymmetric, and so their
cross sections will bulge or warp when the shaft is twisted. Evidence of
this can be seen from the way grid lines deform on a shaft having a square
cross section, Fig. 5-23. Because of this deformation, the torsional analysis
of noncircular shafts becomes considerably more complicated and will not
be discussed in this text.

Using a mathematical analysis based on the theory of elasticity,
however, the shear-stress distribution within a shaft of square cross
section has been determined. Examples of how the shear stress varies
along two radial lines of the shaft are shown in Fig. 5-24a, and because
these shear-stress distributions are different, the shear strains they create
will warp the cross section, as shown in Fig. 5-24b. In particular, notice
that the corner points of the shaft must be subjected to zero shear stress
and therefore zero shear strain. The reason for this can be shown by
considering an element of material located at one of these corner points,
Fig. 5-24c. One would expect the top face of this element to be subjected
to a shear stress in order to contribute to the applied torque T. However,
this cannot occur, since the complementary shear stresses 7 and 7', acting
on the outer surface of the shaft, must be zero.

Deformed
Undeformed

1.

Shear stress distribution
along two radial lines

(a)

Warping of
cross-sectional area

(b)

(c)
Fig. 5-24
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The shaft connected to the soil auger has
a square cross section.

Notice the deformation of the square element when this rubber bar is subjected to
a torque.

Using the theory of elasticity, Table 5-1 provides the results of the
analysis for square cross sections, along with those for shafts having
triangular and elliptical cross sections. In all cases, the maximum shear
stress occurs at a point on the edge of the cross section that is closest to
the center axis of the shaft. Also given are formulas for the angle of twist
of each shaft. By extending these results, it can be shown that the most
efficient shaft has a circular cross section, since it is subjected to both a
smaller maximum shear stress and a smaller angle of twist than one
having the same cross-sectional area, but not circular, and subjected to
the same torque.

TABLE 5-1

Shape of

. T [
cross section max

Square

a

—

Equilateral triangle

@ @ 20T 46 TL
@ a*G

]

Ellipse
| 2T  (@+M)TL
ZI mab® wa’b*G
ol
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EXAMPLE 5.11

The 6061-T6 aluminum shaft shown in Fig. 5-25 has a cross-sectional area
in the shape of an equilateral triangle. Determine the largest torque T
that can be applied to the end of the shaft if the allowable shear stress is
Taow — 96 MPa and the angle of twist at its end is restricted to
baow = 0.02 rad. How much torque can be applied to a shaft of circular
cross section made from the same amount of material?

SOLUTION

By inspection, the resultant internal torque at any cross section along
the shaft’s axis is also T. Using the formulas for 7,,, and ¢ in
Table 5-1, we require

20T 20T
w= "5 56(10°) N/m? = ————
Tallo a’ (10°) N/m (0.040 m)*
T=1792N-m

Also,

46TL 467(1.2m
allow = 2~ 0.02rad = i ( 9) >
a’Gy (0.040 m)*[26(10”) N/m" ]
T=2412N'm =241 N-m Ans.

By comparison, the torque is limited due to the angle of twist.

Circular Cross Section. If the same amount of aluminum is to be
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