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PREFACE

It is intended that this book provide the student with a clear and thorough 
presentation of the theory and application of the principles of mechanics 
of materials. To achieve this objective, over the years this work has been 
shaped by the comments and suggestions of hundreds of reviewers in the 
teaching profession, as well as many of the author’s students. The tenth 
edition has been significantly enhanced from the previous edition, and it 
is hoped that both the instructor and student will benefit greatly from 
these improvements.

New to this editioN
• Updated Material. Many topics in the book have been re-written in 
order to further enhance clarity and to be more succinct. Also, some of 
the artwork has been enlarged and improved throughout the book to 
support these changes.

• New Layout Design. Additional design features have been added to this 
edition to provide a better display of the material. Almost all the topics 
are presented on a one or two page spread so that page turning is 
minimized.

• Improved Preliminary and Fundamental Problems. These problems sets 
are located just after each group of example problems. They offer students 
basic applications of the concepts covered in each section, and they help 
provide the chance to develop their problem-solving skills before 
attempting to solve any of the standard problems that follow. The problems 
sets may be considered as extended examples, since in this edition their 
complete solutions are given in the back of the book. Additionally, when 
assigned, these problems offer students an excellent means of preparing 
for exams, and they can be used at a later time as a review when studying 
for various engineering exams.

• New Photos. The relevance of knowing the subject matter is reflected 
by the real-world application of the additional new or updated photos 
placed throughout the book. These photos generally are used to explain 
how the principles apply to real-world situations and how materials 
behave under load.
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• New Problems. New problems involving applications to many different 
fields of engineering have been added in this edition.

• New Review Problems. Updated review problems have been placed at 
the end of each chapter so that instructors can assign them as additional 
preparation for exams.

hallmark elemeNts
Organization and Approach. The contents of each chapter are 
organized into well-defined sections that contain an explanation of 
specific topics, illustrative example problems, and a set of homework 
problems. The topics within each section are placed into subgroups 
defined by titles. The purpose of this is to present a structured method for 
introducing each new definition or concept and to make the book 
convenient for later reference and review.

Chapter Contents. Each chapter begins with a full-page illustration 
that indicates a broad-range application of the material within the chapter. 
The “Chapter Objectives” are then provided to give a general overview 
of the material that will be covered.

Procedures for Analysis. Found after many of the sections of the 
book, this unique feature provides the student with a logical and orderly 
method to follow when applying the theory. The example problems are 
solved using this outlined method in order to clarify its numerical 
application. It is to be understood, however, that once the relevant 
principles have been mastered and enough confidence and judgment have 
been obtained, the student can then develop his or her own procedures 
for solving problems.

Important Points. This feature provides a review or summary of the 
most important concepts in a section and highlights the most significant 
points that should be realized when applying the theory to solve problems.

Example Problems. All the example problems are presented in a 
concise manner and in a style that is easy to understand.

Homework Problems. Apart from of the preliminary, fundamental,  
and conceptual problems, there are numerous standard problems in the 
book that depict realistic situations encountered in engineering practice. 
It is hoped that this realism will both stimulate the student’s interest in 
the subject and provide a means for developing the skill to reduce any 
such problem from its physical description to a model or a symbolic 
representation to which principles may be applied. Furthermore, in any 
set, an attempt has been made to arrange the problems in order of 
increasing difficulty. The answers to all but every fourth problem are 
listed in the back of the book. To alert the user to a problem without a 
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reported answer, an asterisk (*) is placed before the problem number. 
Answers are reported to three significant figures, even though the data 
for material properties may be known with less accuracy. Although this 
might appear to be a poor practice, it is done simply to be consistent, 
and to allow the student a better chance to validate his or her solution. 

Appendices. The appendices of the book provide a source for review 
and a listing of tabular data. Appendix A provides information on the 
centroid and the moment of inertia of an area. Appendices B and C list 
tabular data for structural shapes, and the deflection and slopes of various 
types of beams and shafts.

Accuracy Checking. The Tenth Edition has undergone a rigorous 
Triple Accuracy Checking review. In addition to the author’s review of all 
art pieces and pages, the text was checked by the following individuals:

• Scott Hendricks, Virginia Polytechnic University

• Karim Nohra, University of South Florida

• Kurt Norlin, Bittner Development Group

• Kai Beng Yap, Engineering Consultant

The SI edition was checked by three additional reviewers.

Realistic Diagrams and Photographs. Realistic diagrams with 
vectors have been used to demonstrate real-world applications. In 
addition, many photographs are used throughout the book to enhance 
conceptual understanding and to explain how the principles of mechanics 
of materials apply to real-world situations.

452 CHAPTER 8 COMBINED LOADINGS

8–31. The drill is jammed in the wall and is subjected to the 
torque and force shown. Determine the state of stress at 
point A on the cross section of the drill bit at section a–a.

*8–32. The drill is jammed in the wall and is subjected to 
the torque and force shown. Determine the state of stress at 
point B on the cross section of the drill bit at section a–a.

8–35. The block is subjected to the eccentric load shown. 
Determine the normal stress developed at points A and B. 
Neglect the weight of the block.

*8–36. The block is subjected to the eccentric load shown. 
Sketch the normal-stress distribution acting over the cross 
section at section a–a. Neglect the weight of the block.

150 N

3
4

5

125 mm

20 N·m

400 mm

a

a

5 mm

B

A

Section a – a

z

x

y

y

Probs. 8–31/32

8–33. Determine the state of stress at point A when the 
beam is subjected to the cable force of 4 kN. Indicate the 
result as a differential volume element.

A B

C

a

a

100 mm150 kN

150 mm

Probs. 8–35/36

8–37. If the 75-kg man stands in the position shown, 
determine the state of stress at point A on the cross section 

Illustrations with 
Vectors 
Most of the diagrams 
throughout the book are in  
full-color art, and many 
photorealistic illustrations  
with vectors have been added. 
These provide a strong 
connection to the 3-D nature of 
engineering. This also helps the 
student to visualize and be 
aware of the concepts behind 
the question.

▼
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Photographs
Many photographs are used 

throughout the book to enhance 
conceptual understanding and 
explain how the principles of 

mechanics of materials apply to 
real-world situations.

▼

Once the beam has been selected, the shear formula can then be used 
to be sure the allowable shear stress is not exceeded, tallow Ú VQ>It. 
Often this requirement will not present a problem; however, if the beam 
is “short” and supports large concentrated loads, the shear-stress 
limitation may dictate the size of the beam.
Steel Sections. Most manufactured steel beams are produced by 
rolling a hot ingot of steel until the desired shape is formed. These 
so-called rolled shapes have properties that are tabulated in the 
American Institute of Steel Construction (AISC) manual. A 
representative listing of different cross sections taken from this manual is 
given in Appendix B.
their depth and mass per unit length; for example, W460 * 68 indicates unit length of 68 kg>m, Fig. 11–4. For any given selection, the mass per 
unit length, dimensions, cross-sectional area, moment of inertia, and 
section modulus are reported. Also included is the radius of gyration, r, 
which is a geometric property related to the section’s buckling strength. 
This will be discussed in Chapter 13. 

459 mm 9.14 mm

154 mm

W460 68

15.4 mm

Fig. 11–4 

Typical pro�le view of a steel wide-�ange beam

A The large shear force that occurs at the support of this steel beam can cause localized buckling of the beam’s �anges or web. To avoid this, a “stiffener” A is placed along the web to maintain stability.

g strength.

459 mm 9.14 mm

154 mm

W460 68

Fig. 11–4 

curs at the 
can cause 

m’s �anges 
ener” A is 
in stability.yy

7 

7.5 SHEAR CENTER FOR OPEN THIN-WALLED MEMBERS  
419

The reason the member twists has to do with the shear-�ow distribution 

along the channel’s �anges and web, Fig. 7–24b. When this distribution is 

integrated over the �ange and web areas, it will give resultant forces of Ff  

in each �ange and a force of V = P in the web, Fig. 7–24c. If the moments 

of these three forces are summed about point A, the unbalanced couple 

or torque created by the �ange forces is seen to be responsible for 

twisting the member. The actual twist is clockwise when viewed from the 

front of the beam, as shown in Fig. 7–24a, because reactive internal 

“equilibrium” forces Ff  cause the twisting. In order to prevent this 

twisting and therefore cancel the unbalanced moment, it is necessary to 

apply P at a point O located an eccentric distance e from the web, as 

shown in Fig. 7–24d. We require MA = Ff d = Pe, or

e =
Ff  d

P

The point O so located is called the shear center or �exural center . 

When P is applied at this point, the beam will bend without twisting, 

7–24e. Design handbooks often list the location of the shear center 

for a variety of thin-walled beam cross sections that are commonly used 

in practice.

From this analysis, it should be noted that the shear center will always 

lie on an axis of symmetry of a member’s cross-sectional area. For 

example, if the channel is rotated 90° and P is applied at A, Fig. 7–25a, no 

twisting will occur since the shear �ow in the web and �anges for this 

case is symmetrical, and therefore the force resultants in these elements 

will create zero moments about A, Fig. 7–25b. Obviously, if a member has 

a cross section with two axes of symmetry, as in the case of a wide-�ange 

beam, the shear center will coincide with the intersection of these axes 

(the centroid).

P

(a)

A

   

A

P

A

(b)

Ff
Ff

V 
P
2

V 
P
2

Fig. 7–25

Notice how this cantilever beam de�ects 

when loaded through the centroid (above) 

and through the shear center (below).

π
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Reduces lecturers’ time spent 
on repetitive explanation of 
concepts and applications.

▼

Independent video replays  
of a lecturer’s explanation 

reinforces students’ 
understanding

Flexible resource for students, 
offering learning at a 

comfortable pace

▼

▼

Video Solutions. An invaluable resource in and out of the classroom, 
these complete solution walkthroughs of representative problems and 
applications from each chapter offer fully worked solutions, self-paced 
instruction, and 24/7 accessibility via the companion Website. Lecturers 
and students can harness this resource to gain independent exposure to a 
wide range of examples by applying formulae to actual structures.
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CoNteNts
The subject matter is organized into 14 chapters. Chapter 1 begins with a 
review of the important concepts of statics, followed by a formal definition 
of both normal and shear stress, and a discussion of normal stress in axially 
loaded members and average shear stress caused by direct shear.

In Chapter 2 normal and shear strain are defined, and in Chapter 3 a 
discussion of some of the important mechanical properties of materials is 
given. Separate treatments of axial load, torsion, and bending are presented 
in Chapters 4, 5, and 6, respectively. In each of these chapters, both linear-
elastic and plastic behavior of the material covered in the previous chapters, 
where the state of stress results from combined loadings. In Chapter 9 the 
concepts for transforming multiaxial states of stress are presented. In a 
similar manner, Chapter 10 discusses the methods for strain transformation, 
including the application of various theories of failure. Chapter 11 provides 
a means for a further summary and review of previous material by covering 
design applications of beams and shafts. In Chapter 12 various methods for 
computing deflections of beams and shafts are covered. Also included is a 
discussion for finding the reactions on these members if they are statically 
indeterminate. Chapter 13 provides a discussion of column buckling, and 
lastly, in Chapter 14 the problem of impact and the application of various 
energy methods for computing deflections are considered.

Sections of the book that contain more advanced material are indicated 
by a star (*). Time permitting, some of these topics may be included in 
the course. Furthermore, this material provides a suitable reference for 
basic principles when it is covered in other courses, and it can be used as 
a basis for assigning special projects.

Alternative Method of Coverage. Some instructors prefer to cover 
stress and strain transformations first, before discussing specific applications 
of axial load, torsion, bending, and shear. One possible method for doing this 
would be first to cover stress and its transformation, Chapter 1 and Chapter 9, 
followed by strain and its transformation, Chapter 2 and the first part of 
Chapter 10. The discussion and example problems in these later chapters have 
been styled so that this is possible. Also, the problem sets have been subdivided 
so that this material can be covered without prior knowledge of the intervening 
chapters. Chapters 3 through 8 can then be covered with no loss in continuity.

aCkNowledgmeNts
Over the years, this text has been shaped by the suggestions and comments 
of many of my colleagues in the teaching profession. Their encouragement 
and willingness to provide constructive criticism are very much appreciated 
and it is hoped that they will accept this anonymous recognition. A note 
of thanks is given to the reviewers.

S. Apple, Arkansas Tech University
A. Bazar, University of California, Fullerton
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resourCes for iNstruCtors
• MasteringEngineering. This online Tutorial Homework program allows 
you to integrate dynamic homework with automatic grading and adaptive 
tutoring. MasteringEngineering allows you to easily track the performance 
of your entire class on an assignment-by-assignment basis, or the detailed 
work of an individual student.

• Instructor’s Solutions Manual. An instructor’s solutions manual was 
prepared by the author. The manual includes homework assignment lists 
and was also checked as part of the accuracy checking program. The 
Instructor Solutions Manual is available at www.pearsonglobaleditions.com.

• Presentation Resources. All art from the text is available in PowerPoint 
slide and JPEG format. These files are available for download at www 
.pearsonglobaleditions.com. If you are in need of a login and password for 
this site, please contact your local Pearson representative.

• Video Solutions. Developed primarily by Professor Edward Berger, 
Purdue University, video solutions located on the companion Website 
offer step-by-step solution walkthroughs of representative homework 
problems from each section of the text. Make efficient use of class time 
and office hours by showing students the complete and concise problem 
solving approaches that they can access anytime and view at their own 
pace. The videos are designed to be a flexible resource to be used however 
each instructor and student prefers. A valuable tutorial resource, the 
videos are also helpful for student self-evaluation as students can pause 
the videos to check their understanding and work alongside the video. 

resourCes for studeNts
• Mastering Engineering. Tutorial homework problems emulate the 
instructor’s office-hour environment, guiding students through engineering 
concepts with self-paced individualized coaching. These in-depth tutorial 
homework problems are designed to coach students with feedback specific 
to their errors and optional hints that break problems down into simpler steps.

• Companion Website—The companion Website, located at  
www.pearsonglobaleditions.com/hibbeler, includes opportunities for 
practice and review, including access to video solutions offering complete, 
step-by-step solution walkthroughs of representative homework problems 
from various sections of the text.

www.pearsonglobaleditions.com
www.pearsonglobaleditions.com/hibbeler
www.pearsonglobaleditions.com.
www.pearsonglobaleditions.com.
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Chapter 1 

The bolts used for the connections of this steel framework are subjected to stress. 
In this chapter we will discuss how engineers design these connections and their 
fasteners.

(© alexskopje/Fotolia)
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StReSS

1.1 IntroductIon
Mechanics of materials is a branch of mechanics that studies the internal 
effects of stress and strain in a solid body. Stress is associated with the 
strength of the material from which the body is made, while strain is a 
measure of the deformation of the body. A thorough understanding of 
the fundamentals of this subject is of vital importance for the design of 
any machine or structure, because many of the formulas and rules  
of design cited in engineering codes are based upon the principles of  
this subject.

Chapter OBJeCtIVeS

n In this chapter we will review some of the important principles of 
statics and show how they are used to determine the internal 
resultant loadings in a body. Afterwards the concepts of normal and 
shear stress will be introduced, and specific applications of the 
analysis and design of members subjected to an axial load or direct 
shear will be discussed.
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1

Historical Development. The origin of mechanics of materials 
dates back to the beginning of the seventeenth century, when Galileo 
Galilei performed experiments to study the effects of loads on rods and 
beams made of various materials. However, it was not until the beginning 
of the nineteenth century when experimental methods for testing 
materials were vastly improved. At that time many experimental and 
theoretical studies in this subject were undertaken, primarily in France, 
by such notables as Saint-Venant, Poisson, Lamé, and Navier.

Through the years, after many fundamental problems had been solved, 
it became necessary to use advanced mathematical and computer 
techniques to solve more complex problems. As a result, mechanics of 
materials has expanded into other areas of mechanics, such as the theory 
of elasticity and the theory of plasticity. 

1.2  EquIlIbrIum of a dEformablE 
body

Since statics plays an important role in both the development and 
application of mechanics of materials, it is very important to have a good 
grasp of its fundamentals. For this reason we will now review some of the 
main principles of statics that will be used throughout the text.

Loads. A body can be subjected to both surface loads and body 
forces. Surface loads that act on a small area of contact are reported by 
concentrated forces, while distributed loadings act over a larger surface 
area of the body. When the loading is coplanar, as in Fig. 1–1a, then a 
resultant force FR of a distributed loading is equal to the area under the 
distributed loading diagram, and this resultant acts through the geometric 
center or centroid of this area.

Fig. 1–1

1.5 m1 m1 m1 m

200 N/m

(a)

BA

700 NFR  400 N
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A body force is developed when one body exerts a force on another 
body without direct physical contact between the bodies. Examples 
include the effects caused by the earth’s gravitation or  its 
electromagnetic field. Although these forces affect all the particles 
composing the body, they are normally represented by a single 
concentrated force acting on the body. In the case of gravitation, this 
force is called the weight W of the body and acts through the body’s 
center of gravity.

Support Reactions. For bodies subjected to coplanar force systems, 
the supports most commonly encountered are shown in Table 1–1. As a 
general rule, if the support prevents translation in a given direction, 
then a force must be developed on the member in that direction. 
Likewise, if rotation is prevented, a couple moment must be exerted on 
the member. For example, the roller support only prevents translation 
perpendicular or normal to the surface. Hence, the roller exerts a normal 
force F on the member at its  point of contact. Since the member can 
freely rotate about the roller, a couple moment cannot be developed on 
the member.

Many machine elements are pin connected 
in order to enable free rotation at their 
connections. These supports exert a force 
on a member, but no moment.

F

F

Type of connection Reaction

Cable

Roller

One unknown: F

One unknown: F

F

F

Smooth support One unknown: F

 External pin

Internal pin

Fx

Fy

Fx

Fy

Two unknowns: Fx, Fy

Fx

Fx

Fy

Fy

M

Fixed support Three unknowns: Fx, Fy, M

Two unknowns: Fx, Fy

Type of connection Reaction

u

u

u

u

Journal bearing One unknown: F Thrust bearing Two unknowns: Fx, Fy

 TabLe 1–1
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equations of equilibrium. Equilibrium of a body requires 
both a balance of forces, to prevent the body from translating or 
having accelerated motion along a straight or curved path, and a 
balance of moments, to prevent the body from rotating. These 
conditions are expressed mathematically as the equations of 
equilibrium:

   ΣF = 0
ΣMO = 0

  (1–1)

Here, Σ  F represents the sum of all the forces acting on the body, and 
Σ  MO is the sum of the moments of all the forces about any point O 
either on or off the body.

If an x, y, z coordinate system is established with the origin at point O, 
the force and moment vectors can be resolved into components along 
each coordinate axis, and the above two equations can be written in 
scalar form as six equations, namely,

ΣFx = 0 ΣFy = 0 ΣFz = 0
ΣMx = 0 ΣMy = 0 ΣMz = 0

  (1–2)

Often in engineering practice the loading on a body can be represented 
as a system of coplanar forces in the x–y plane. In this case equilibrium of 
the body can be specified with only three scalar equilibrium equations,  
that is,

 ΣFx = 0
ΣFy = 0

ΣMO = 0
  (1–3)

Successful application of the equations of equilibrium must include all 
the known and unknown forces that act on the body, and the best way 
to account for these loadings is to draw the body’s free-body diagram 
before applying the equations of equilibrium. For example, the free-body 
diagram of the beam in Fig. 1–1a is shown in Fig. 1–1b. Here each force 
is identified by its magnitude and direction, and the body’s dimensions 
are included in order to sum the moments of the forces.

In order to design the members of this 
building frame, it is first necessary to find 
the internal loadings at various points 
along their length.

1.5 m1 m1 m1 m

200 N/ m

(a)

BA

700 N
FR � 400 N

Fig. 1–1

1.5 m1 m 2 m

700 N 400 N

(b)

Ay
By 

Bx
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Internal Resultant Loadings. In mechanics of materials, 
statics is primarily used to determine the resultant loadings that act 
within a body. This is done using the method of sections. For example, 
consider the body shown in Fig. 1–2a, which is held in equilibrium by 
the four external forces.* In order to obtain the internal loadings 
acting on a specific region within the body, it is necessary to pass an 
imaginary section or “cut” through the region where the internal 
loadings are to be determined. The two parts of the body are then 
separated, and a free-body diagram of one of the parts is drawn. When 
this is done, there will be a distribution of internal force acting on the 
“exposed” area of the section, Fig. 1–2b. These forces actually 
represent the effects of the material of the top section of the body 
acting on the bottom section.

Although the exact distribution of this internal loading may be 
unknown, its resultants FR and MRO

, Fig. 1–2c, are determined by applying 
the equations of equilibrium to the segment shown in Fig. 1–2c. Here 
these loadings act at point O; however, this point is often chosen at the 
centroid of the sectioned area.

*The body’s weight is not shown, since it is assumed to be quite small, and therefore 
negligible compared with the other loads.

section

F4

F2

(a)

F1

F3

   

F1
F2

(b)    

FR 

F1 F2

O

MRO

(c)

Fig. 1–2
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Three Dimensions. For later application of the formulas for 
mechanics of materials, we will consider the components of FR and MRO

 
acting both normal and tangent to the sectioned area, Fig. 1–2d. Four 
different types of resultant loadings can then be defined as follows:

Normal force, N. This force acts perpendicular to the area. It is 
developed whenever the external loads tend to push or pull on the two 
segments of the body.

Shear force, V. The shear force lies in the plane of the area, and it is 
developed when the external loads tend to cause the two segments of  
the body to slide over one another.

Torsional moment or torque, T. This effect is developed when the 
external loads tend to twist one segment of the body with respect to the 
other about an axis perpendicular to the area.

bending moment, M. The bending moment is caused by the 
external loads that tend to bend the body about an axis lying within the 
plane of the area.

Notice that graphical representation of a moment or torque is shown in 
three dimensions as a vector (arrow) with an associated curl around it. By 
the right-hand rule, the thumb gives the arrowhead sense of this vector 
and the fingers or curl indicate the tendency for rotation (twisting or 
bending).

The weight of this sign and the wind 
loadings acting on it will cause normal and 
shear forces and bending and torsional 
moments in the supporting column.

O

(c)

MRO

F1 F2

FR

 (d)

O

F1 F2

N

T

M
V

Torsional
Moment

Bending
Moment

Shear
Force

MRO

FR

Normal
Force

Fig. 1–2 (cont.) 
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Coplanar Loadings. If the body is subjected to a coplanar system of 
forces, Fig. 1–3a, then only normal-force, shear-force, and bending-
moment components will exist at the section, Fig. 1–3b. If we use the x, y, 
z coordinate axes, as shown on the left segment, then N can be obtained 
by applying ΣFx = 0, and V can be obtained from ΣFy = 0. Finally, the 
bending moment MO  can be determined by summing moments about 
point O (the z axis), ΣMO = 0, in order to eliminate the moments caused 
by the unknowns N and V.

section

F4

F3
F2

F1

(a)   

O

V
MO

N
x

y

Bending
Moment

Shear
Force

Normal
Force

(b)

F2

F1

Fig. 1–3

 • Mechanics of materials is a study of the relationship between 
the external loads applied to a body and the stress and strain 
caused by the internal loads within the body.

 • External forces can be applied to a body as distributed or 
concentrated surface loadings, or as body forces that act 
throughout the volume of the body.

 • Linear distributed loadings produce a resultant force having a 
magnitude equal to the area under the load diagram, and 
having a location that passes through the centroid of this area.

 • A support produces a force in a particular direction on its 
attached member if it prevents translation of the member in 
that direction, and it produces a couple moment on the member 
if it prevents rotation.

 • The equations of equilibrium ΣF = 0 and ΣM = 0 must be 
satisfied in order to prevent a body from translating with 
accelerated motion and from rotating.

 • The method of sections is used to determine the internal 
resultant loadings acting on the surface of a sectioned body. In 
general, these resultants consist of a normal force, shear force, 
torsional moment, and bending moment.

Important poInts
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procedure for analysIs

The resultant internal loadings at a point located on the section of a 
body can be obtained using the method of sections. This requires the 
following steps.

Support reactions.

 • When the body is sectioned, decide which segment of the body 
is to be considered. If the segment has a support or connection 
to another body, then before the body is sectioned, it will be 
necessary to determine the reactions acting on the chosen 
segment. To do this, draw the free-body diagram of the entire 
body and then apply the necessary equations of equilibrium to 
obtain these reactions.

Free-Body Diagram.

 • Keep all external distributed loadings, couple moments, 
torques, and forces in their exact locations, before passing the 
section through the body at the point where the resultant 
internal loadings are to be determined.

 • Draw a free-body diagram of one of the “cut” segments and 
indicate the unknown resultants N, V, M, and T at the section. 
These resultants are normally placed at the point representing 
the geometric center or centroid of the sectioned area.

 • If the member is subjected to a coplanar system of forces, only  
N, V, and M act at the centroid.

 • Establish the x, y, z coordinate axes with origin at the centroid 
and show the resultant internal loadings acting along the axes.

equations of equilibrium.

 • Moments should be summed at the section, about each of the 
coordinate axes where the resultants act. Doing this eliminates the 
unknown forces N and V and allows a direct solution for M and T.

 • If the solution of the equilibrium equations yields a negative 
value for a resultant, the directional sense of the resultant is 
opposite to that shown on the free-body diagram.

The following examples illustrate this procedure numerically and also 
provide a review of some of the important principles of statics.
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eXaMPLe   1.1

Determine the resultant internal loadings acting on the cross section at C of 
the cantilevered beam shown in Fig. 1–4a.

SOLUTION

Support Reactions. The support reactions at A do not have to be 
determined if segment CB is considered.

Free-Body Diagram. The free-body diagram of segment CB is shown 
in Fig. 1–4b. It is important to keep the distributed loading on the segment 
until after the section is made. Only then should this loading be replaced 
by a single resultant force. Notice that the intensity of the distributed 
loading at C is found by proportion, i.e., from Fig. 1–4a, 
w>2.4 m = (300 N>m)>3.6 m, w = 200 N>m. The magnitude of the 
resultant of the distributed load is equal to the area under the loading 
curve (triangle) and acts through the centroid of this area. Thus, 
F = 1

2(200 N>m)(2.4 m) = 240 N, which acts 1
3(2.4 m) = 0.8 m from C 

as shown in Fig. 1–4b.

Equations of Equilibrium. Applying the equations of equilibrium we 
have

S  +  ΣFx = 0;  -NC = 0 

  NC = 0 Ans.

+ cΣFy = 0; VC - 240 N = 0

 VC = 240 N Ans.

a + ΣMC = 0; -MC - (240 N)(0.8 m) = 0

 MC = -192 N # m  Ans.

The negative sign indicates that MC acts in the opposite direction to  
that shown on the free-body diagram. Try solving this problem using 
segment AC, by first checking the support reactions at A, which are given 
in Fig. 1–4c.

(a)

A B

C
1.2 m 2.4 m

300 N/ m

0.8 m 1.6 m

(b)

BC

240 N
200 N/ m

VC

MC

NC

VC

MC

NC

0.6 m
0.2 m0.4 m

100 N/ m

240 N60 N

(c)

540 N

648 N�m

CA

200 N/ m

Fig. 1–4
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eXaMPLe   1.2

The 500-kg engine is suspended from the crane boom in Fig. 1–5a. 
Determine the resultant internal loadings acting on the cross section of 
the boom at point E.

SOLUTION

Support Reactions. We will consider segment AE of the boom, so we 
must first determine the pin reactions at A. Since member CD is a  
two-force member, it acts like a cable, and therefore exerts a force FCD 
having a known direction. The free-body diagram of the boom is shown 
in Fig. 1–5b. Applying the equations of equilibrium,

a + ΣMA = 0;      FCD13
52(2 m) - [500(9.81) N](3 m) = 0

 FCD = 12 262.5 N

S + ΣFx = 0; Ax - (12 262.5 N)14
52 = 0

 Ax = 9810 N

+ cΣFy = 0; -Ay + (12 262.5 N)13
52 - 500(9.81) N = 0

 Ay = 2452.5 N

Free-Body Diagram. The free-body diagram of segment AE is shown 
in Fig. 1–5c.

Equations of Equilibrium.

S + ΣFx = 0;   NE + 9810 N = 0

 NE = -9810 N = -9.81 kN Ans.

+ c ΣFy = 0; -VE - 2452.5 N = 0

 VE = -2452.5 N = -2.45 kN Ans.

a + ΣME = 0; ME + (2452.5 N)( 1 m) = 0

ME = -2452.5  N # m = -2.45  kN # m Ans.
 

A
1 m1 m1 m

1.5 m

E

C

B

D

(a)

A

1 m2 m

500(9.81) N
(b)

3
4

5

Ay 

Ax     

FCD     

9810 N

2452.5 N

VE

ME

NE

(c)

EA

1 m

Fig. 1–5
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eXaMPLe   1.3

Determine the resultant internal loadings acting on the cross section at G of 
the beam shown in Fig. 1–6a. Each joint is pin connected.

SOLUTION

Support Reactions. Here we will consider segment AG. The free-body 
diagram of the entire structure is shown in Fig. 1–6b. Verify the calculated 
reactions at E and C. In particular, note that BC is a two-force member 
since only two forces act on it. For this reason the force at C must act 
along BC, which is horizontal as shown.

Since BA and BD are also two-force members, the free-body diagram 
of joint B is shown in Fig. 1–6c. Again, verify the magnitudes of forces FBA 
and FBD.

Free-Body Diagram. Using the result for FBA, the free-body diagram 
of segment AG is shown in Fig. 1–6d.

Equations of Equilibrium. 

S+ ΣFx = 0; (7750 N)( 4
5) + NG = 0 NG = -6200 N Ans.

+ c ΣFy = 0; -1500 N + (7750 N)( 3
5) - VG = 0

VG = 3150 N
 Ans.

 
a + ΣMG = 0; MG - (7750 N)(3

5)(1 m) + (1500 N)(1 m) = 0

MG = 3150 N # m
 Ans.

(a)

600 N/ m

1 m 1 m 3 m

1500 N

A

B

G D

C

1.5 m
E

  

1.5 m

3 m (3 m)  2 m

(3 m)(600 N/ m)  900 N

1500 N

Ey  2400 N

Ex  6200 N

FBC  6200 N

(b)

2
3

1
2

6200 N

3
4

5

(c)

B

FBA  7750 N
FBD  4650 N

Fig. 1–6

(d)

NG   

MGVG
1 m

3
4

5

7750 N1500 N

A G
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eXaMPLe   1.4

*The magnitude of each moment about the x, y, or z axis is equal to the magnitude of 
each force times the perpendicular distance from the axis to the line of action of the force. 
The direction of each moment is determined using the right-hand rule, with positive 
moments (thumb) directed along the positive coordinate axes.

Determine the resultant internal loadings acting on the cross section at B of 
the pipe shown in Fig. 1–7a. End A is subjected to a vertical force of 50 N, a 
horizontal force of 30 N, and a couple moment of 70 N # m. Neglect the 
pipe’s mass.

SOLUTION

The problem can be solved by considering segment AB, so we do not need 
to calculate the support reactions at C.

Free-Body Diagram. The free-body diagram of segment AB is shown in 
Fig. 1–7b, where the x, y, z axes are established at B. The resultant force and 
moment components at the section are assumed to act in the positive 
coordinate directions and to pass through the centroid of the cross-sectional 
area at B.

Equations of Equilibrium. Applying the six scalar equations of 
equilibrium, we have*

ΣFx = 0;     (FB)x = 0 Ans.

ΣFy = 0; (FB)y + 30 N = 0 (FB)y = -30 N Ans.

ΣFz = 0;  (FB)z - 50 N = 0 (FB)z = 50 N Ans.

Σ(MB)x = 0; (MB)x + 70 N # m - (50 N)(0.5 m) = 0

  (MB)x = -45 N # m Ans.

Σ(MB)y = 0; (MB)y + (50 N)(1.25 m) = 0

  (MB)y = -62.5 N # m Ans.

Σ(MB)z = 0;  (MB)z + (30 N)(1.25) = 0 Ans.

 (MB)z = -37.5 N # m

NOTe: What do the negative signs for (FB)y, (MB)x, (MB)y, and (MB)z 
indicate? The  normal force NB = � (FB)y � = 30 N, whereas the shear  
force is VB = 2(0)2 + (50)2 = 50 N. Also, the torsional moment  
is TB = � (MB)y � = 62.5 N # m, and the bending moment is MB =  2(45)2 + (37.5)2 = 58.6 N # m.

0.75 m

50 N

1.25 m

B

A

0.5 m

C

D

70 N�m

(a)

30 N

1.25 m

70 N·m
30 N

(b)

y

A

50 N

0.5 m

x

z

B

(FB)z
(MB)z

(MB)x
(FB)x

(MB)y

(FB)y

Fig. 1–7
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It is suggested that you test yourself on the solutions to these examples, by covering them over and then trying 
to think about which equilibrium equations must be used and how they are applied in order to determine the 
unknowns. Then before solving any of the problems, build your skills by first trying to solve the Preliminary 
Problems, which actually require little or no calculations, and then do some of the Fundamental Problems given 
on the following pages. The solutions and answers to all these problems are given in the back of the book. Doing 
this throughout the book will help immensely in understanding how to apply the theory, and thereby develop 
your problem-solving skills.

P1–1. In each case, explain how to find the resultant internal 
loading acting on the cross section at point A. Draw all 
necessary free-body diagrams, and indicate the relevant 
equations of equilibrium. Do not calculate values. The lettered 
dimensions, angles, and loads are assumed to be known.

P

B
Au

2a aa

(a)

C

D

B

a
a

w

A C

a

P

(b)

B CA

P

u

a

(c)

a/2 a/2

M

O
P

B

r

A

(d)

f

u

(e)

a

a

2a

A

C

B

P

u

a

a a

a
3a

a

P
(f)

B

A

D

C

PReLIMINaRY PRObLeMS
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F1–1. Determine the resultant internal normal force, 
shear force, and bending moment at point C in the beam.

A B

C

2 m 2 m1 m

60 kN�m

1 m

10 kN

Prob. F1–1

F1–2. Determine the resultant internal normal force, 
shear force, and bending moment at point C in the beam.

A B
C

1.5 m 1.5 m

100 N/m
200 N/m

Prob. F1–2

F1–3. Determine the resultant internal normal force, 
shear force, and bending moment at point C in the beam.

A
B

2 m 2 m 2 m

C

20 kN/m

Prob. F1–3

F1–4. Determine the resultant internal normal force, 
shear force, and bending moment at point C in the beam.

A
C

B

3 m3 m

10 kN/m

Prob. F1–4

F1–5. Determine the internal normal force, shear force, 
and bending moment at point C in the beam.

1 m 1 m 1 m

5 kN/m

A
BC

Prob. F1–5

F1–6. Determine the resultant internal normal force, 
shear force, and bending moment at point C in the beam.

3 m

2 m 2 m 2 m

A

D

C B

5 kN/m

Prob. F1–6

FUNDaMeNTaL PRObLeMS



 1.2 equilibrium of a Deformable boDy 35

1

1–1. A force of 80 N is supported by the bracket as shown. 
Determine the resultant internal loadings acting on the 
section through point A.

0.1 m

0.3 m

30

80 N

A

45

Prob. 1–1
1–2. Determine the resultant internal loadings on the cross 
section at point D.

1–3. Determine the resultant internal loadings at cross 
sections at points E and F on the assembly. 

2 m

D

0.5 m 0.5 m

1.25 kN/m

0.5 m
1.5 m

1 m

E B

C

A

F

Probs. 1–2/3

*1–4. The shaft is supported by a smooth thrust bearing 
at  A and a smooth journal bearing at B. Determine the 
resultant internal loadings acting on the cross section at C.

A DB

C

900 N

1.5 m

600 N/m

1.5 m1 m1 m1 m

Prob. 1–4

1–5.  Determine the resultant internal loadings in the 
beam at cross sections through points D and E. Point E is 
just to the right of the 15-kN load.

2 m 1.5 m

A

1.5 m

B CED

2 m

15 kN

25 kN/m

Prob. 1–5

1–6. The shaft is supported by a smooth thrust bearing 
at  B and a journal bearing at C. Determine the resultant 
internal loadings acting on the cross section at E.

A E DB C

1 m

1800 N
3600 N

1 m 1 m 1 m

Prob. 1–6

1–7. Determine the resultant internal normal and shear 
force in the member at (a) section a–a and (b) section b–b, 
each of which passes through point A. The 2000-N load is 
applied along the centroidal axis of the member.

30

A

ba

b a

2000 N2000 N

Prob. 1–7

PRObLeMS
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*1–8.  The floor crane is used to lift a 600-kg concrete pipe. 
Determine the resultant internal loadings acting on the cross 
section at G.

1–9.  The floor crane is used to lift a 600-kg concrete pipe. 
Determine the resultant internal loadings acting on the cross 
section at H.

0.2 m
0.2 m

0.4 m

0.3 m

0.5 m

75

0.6 m

C

A

E

B

F

D
H

G

Probs. 1–8/9

1–10. The beam supports the distributed load shown. 
Determine the resultant internal loadings acting on the cross 
section at point C. Assume the reactions at the supports A 
and B are vertical.

1–11. The beam supports the distributed load shown. 
Determine the resultant internal loadings acting on the cross 
section at point D. Assume the reactions at the supports A 
and B are vertical.

1.5 m 3 m

DC
A B

4 kN/m

1.5 m

Probs. 1–10/11

*1–12. The blade of the hacksaw is subjected to a pretension 
force of F = 100 N. Determine the resultant internal loadings 
acting on section a–a that passes through point D.

1–13. The blade of the hacksaw is subjected to a pretension 
force of F = 100 N. Determine the resultant internal loadings 
acting on section b–b that passes through point D.

A B

C

D

F F

a

b

b
a

30�

225 mm

150 mm

E

Probs. 1–12/13

1–14.  The boom DF of the jib crane and the column DE 
have a uniform weight of 750 N/m. If the hoist and load 
weigh 1500 N, determine the resultant internal loadings in 
the crane on cross sections through points A, B and C.

1.5 m

2.1 m

C

D F

E

B A

1500 N

0.6 m

2.4 m 0.9 m

Prob. 1–14
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1–15. The metal stud punch is subjected to a force of 120 N on 
the handle. Determine the magnitude of the reactive force at 
the pin A and in the short link BC.  Also, determine the resultant 
internal loadings acting on the cross section at point D.

*1–16. Determine the resultant internal loadings acting on 
the cross section at point E of the handle arm, and on the cross 
section of the short link BC.

60� 50 mm

100 mm

200 mm

300 mm
B

C

D

120 N

50 mm 100 mm

E

30�

A

Probs. 1–15/16

1–17.  The forged steel clamp exerts a force of F = 900 N 
on the wooden block. Determine the resultant internal 
loadings acting on section a–a passing through point A.

200 mm

a

a
F  900 N

F  900 N

30
A

Prob. 1–17

1–18. Determine the resultant internal loadings acting on 
the cross section through point B of the signpost. The post is 
fixed to the ground and a uniform pressure of 500 N/m2 acts 
perpendicular to the face of the sign.

4 m

z

y

6 m

x

B

A

3 m

2 m

3 m

500 N/m2

Prob. 1–18

1–19. Determine the resultant internal loadings acting on 
the cross section at point C in the beam. The load D has a 
mass of 300 kg and is being hoisted by the motor M with 
constant velocity.

*1–20. Determine the resultant internal loadings acting on 
the cross section at point E. The load D has a mass of 300 kg 
and is being hoisted by the motor M with constant velocity.

M

2 m

B

CE

D

A

0.1 m

2 m 2 m

1.5 m

0.1 m

1 m

Probs. 1–19/20
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1–21. Determine the resultant internal loading on the cross 
section through point C of the pliers. There is a pin at A, and 
the jaws at B are smooth.

1–22. Determine the resultant internal loading on the cross 
section through point D of the pliers.

120 mm 40 mm

15 mm

80 mm

A

C

D

30

20 N

20 N

B

Probs. 1–21/22

1–23. The shaft is supported at its ends by two bearings  
A and B and is subjected to the forces applied to the pulleys 
fixed to the shaft. Determine the resultant internal loadings 
acting on the cross section at point C. The 400-N forces act  
in the –z direction and the 200-N and 80-N forces act in the  
+y direction. The journal bearings at A and B exert only  
y and z components of force on the shaft.

B

C

200 mm
200 mm

300 mm

A

200 N

200 N

400 N
400 N

150 mm

400 mm

80 N

80 N

z

x

y

150 mm

D

Prob. 1–23

*1–24. The force 400 N acts on the gear tooth. Determine 
the resultant internal loadings on the root of the tooth, i.e., 
at the centroid point A of section a–a.

a

30

a

F  400 N

5.75 mm

45

A

4 mm

Prob. 1–24

1–25. The shaft is supported at its ends by two bearings  
A and B and is subjected to the forces applied to the pulleys 
fixed to the shaft. Determine the resultant internal loadings 
acting on the cross section at point D. The 400-N forces act 
in the -z direction and the 200-N and 80-N forces act in the 
+y direction. The journal bearings at A and B exert only y 
and z components of force on the shaft.

B

C

200 mm
200 mm

300 mm

A

200 N

200 N

400 N
400 N

150 mm

400 mm

80 N

80 N

z

x

y

150 mm

D

Prob. 1–25
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1–26.  The serving tray T used on an airplane is supported on 
each side by an arm. The tray is pin connected to the arm at A, 
and at B there is a smooth pin. (The pin can move within the 
slot in the arms to permit folding the tray against the front 
passenger seat when not in use.) Determine the resultant 
internal loadings acting on the cross section of the arm through 
point C when the tray arm supports the loads shown.

9 N

500 mm

12 N

15 mm 150 mm

60

AB

C

T

VC

MC

NC

100 mm

Prob. 1–26

1–27. The pipe has a mass of 12 kg>m. If it is fixed to the 
wall at A, determine the resultant internal loadings acting on 
the cross section at B.

1 m

2 m
2 m

B

A

y

z

x

C

3

4

5

500 N

300 N400 N

Prob. 1–27

*1–28 The brace and drill bit is used to drill a hole at O. If 
the drill bit jams when the brace is subjected to the forces 
shown, determine the resultant internal loadings acting on 
the cross section of the drill bit at A.

z

x
y

AO

225 mm
150 mm

150 mm
150 mm

225 mm
75 mm

Fx  150 N

Fy  250 N

Fz  50 N

Prob. 1–28

1–29. The curved rod AD of radius r has a weight per 
length of w. If it lies in the horizontal plane, determine the 
resultant internal loadings acting on the cross section at 
point B. Hint: The distance from the centroid C of segment 
AB to point O is CO = 0.9745r.

A

B

C 45�
90�

D

O

r

22.5�

Prob. 1–29

1–30. A differential element taken from a curved bar is 
shown in the figure. Show that dN>du = V, dV>du = -N, 
dM>du = -T, and dT>du = M.

M V

N du

M � dM T � dT

N � dN
V � dV

T

Prob. 1–30
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1.3 StrESS
It was stated in Section 1.2 that the force and moment acting at a specified 
point O on the sectioned area of the body, Fig. 1–8, represents the 
resultant effects of the distribution of loading that acts over the sectioned 
area, Fig. 1–9a. Obtaining this distribution is of primary importance in 
mechanics of materials. To solve this problem it is first necessary to 
establish the concept of stress.

We begin by considering the sectioned area to be subdivided into 
small areas, such as ∆A shown in Fig. 1–9a. As we reduce ∆A to a 
smaller and smaller size, we will make two assumptions regarding the 
properties of the material. We will consider the material to be 
continuous, that is, to consist of a continuum or uniform distribution of 
matter having no voids. Also, the material must be cohesive, meaning 
that all portions of it are connected together, without having breaks, 
cracks, or separations. A typical finite yet very small force ∆F, acting on 
∆A, is shown in Fig. 1–9a. This force, like all the others, will have a 
unique direction, but to compare it with all the other forces, we will 
replace it by its three components, namely, ∆Fx, ∆Fy, and ∆Fz. As ∆A 
approaches zero, so do ∆F and its components; however, the quotient 
of the force and area will approach a finite limit. This quotient is called 
stress, and it describes the intensity of the internal force acting on a 
specific plane (area) passing through a point.

F1 F2

O

MRO FR

Fig. 1–8

F1 F2 F1

�F

�A

�F
�Fz

z

yx
�Fx �Fy

z

(c)

x
y

(b)

zz

x
y

(a)

x
y

tyz

sy
tyx

txz

sx txy

Fig. 1–9
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Normal Stress. The intensity of the force acting normal to ∆A is 
referred to as the normal stress, s (sigma). Since ∆Fz is normal to the 
area then

 sz = lim
∆AS0

 
∆Fz

∆A
 

(1–4)

If the normal force or stress “pulls” on ∆A as shown in Fig. 1–9a, it is 
tensile stress, whereas if it “pushes” on ∆A it is compressive stress.

Shear Stress. The intensity of force acting tangent to ∆A is called 
the shear stress, t (tau). Here we have two shear stress components,

  tzx =  lim
∆AS0

 
∆Fx

∆A

  tzy =  lim
∆AS0

 
∆Fy

∆A
 

(1–5)

The subscript notation z specifies the orientation of the area ∆A,  
Fig. 1–10, and x and y indicate the axes along which each shear stress acts.

General State of Stress. If the body is further sectioned by 
planes parallel to the x–z plane, Fig. 1–9b, and the y–z plane, Fig. 1–9c, we 
can then “cut out” a cubic volume element of material that represents 
the state of stress acting around a chosen point in the body. This state of 
stress is then characterized by three components acting on each face of 
the element, Fig. 1–11.

Units. Since stress represents a force per unit area, in the International 
Standard or SI system, the magnitudes of both normal and shear stress 
are specified in the basic units of newtons per square meter (N>m2). This 
combination of units is called a pascal (1 Pa = 1 N>m2), and because it is 
rather small, prefixes such as kilo- (103), symbolized by k, mega- (106), 
symbolized by M, or giga- (109), symbolized by G, are used in engineering 
to represent larger, more realistic values of stress.* 

x
y

z

sz

sx
sy

tyz

tyxtxy

txz

tzx
tzy

Fig. 1–11

x y

z

Tzx
Tzy

sz

Fig. 1–10

*Sometimes stress is expressed in units of N>mm2, where 1 mm = 10-3 m. However, in 
the SI system, prefixes are not allowed in the denominator of a fraction, and therefore it 
is better to use the equivalent 1 N>mm2 = 1 MN>m2 = 1 MPa.
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1.4  avEragE normal StrESS In an  
axIally loadEd bar

We will now determine the average stress distribution acting over the 
cross-sectional area of an axially loaded bar such as the one shown in  
Fig. 1–12a. Specifically, the cross section is the section taken perpendicular 
to the longitudinal axis of the bar, and since the bar is prismatic all cross 
sections are the same throughout its length. Provided the material of the 
bar is both homogeneous and isotropic, that is, it has the same physical 
and mechanical properties throughout its volume, and it has the same 
properties in all directions, then when the load P is applied to the bar 
through the centroid of its cross-sectional area, the bar will deform 
uniformly throughout the central region of its length, Fig. 1–12b.

Realize that many engineering materials may be approximated as 
being both homogeneous and isotropic. Steel, for example, contains 
thousands of randomly oriented crystals in each cubic millimeter of its 
volume, and since most objects made of this material have a physical size 
that is very much larger than a single crystal, the above assumption 
regarding the material’s composition is quite realistic.

Note that anisotropic materials, such as wood, have different properties 
in different directions; and although this is the case, if the grains of wood 
are oriented along the bar’s axis (as for instance in a typical wood board), 
then the bar will also deform uniformly when subjected to the axial load P.

average Normal Stress Distribution. If we pass a section 
through the bar, and separate it into two parts, then equilibrium requires the 
resultant normal force N at the section to be equal to P, Fig. 1–12c. And 
because the material undergoes a uniform deformation, it is necessary that 
the cross section be subjected to a constant normal stress distribution.

P

P

(a)   

P

(b)

P

Region of
uniform
deformation
of bar

  

N � P

P

External force

Cross-sectional
area

Internal force

(c)

Fig. 1–12
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As a result, each small area ∆A on the cross section is subjected to a 
force ∆N = s ∆A, Fig. 1–12d, and the sum of these forces acting over 
the entire cross-sectional area must be equivalent to the internal resultant 
force P at the section. If we let ∆A S dA and therefore ∆N S dN, then, 
recognizing s is constant, we have

+ c  FRz = ΣFz;  LdN = LA
s dA

 N = s A 

s =
N
A

 (1–6)

Here

s = average normal stress at any point on the cross-sectional area

N =  internal resultant normal force, which acts through the centroid of the 
cross-sectional area. N is determined using the method of sections 
and the equations of equilibrium, where for this case N = P.

A = cross-sectional area of the bar where s is determined

equilibrium. The stress distribution in Fig. 1–12 indicates that only 
a normal stress exists on any small volume element of material located at 
each point on the cross section. Thus, if we consider vertical equilibrium 
of an element of material and then apply the equation of force 
equilibrium to its free-body diagram, Fig. 1–13,

ΣFz = 0; s(∆A) - s′(∆A) = 0

s = s′

�A

s

s¿

�A

s

s¿

�A

�A

Stress on element Free-body diagram
 

Fig. 1–13

(d)

P

�N � s�A

N

y

x

x

z

y

A�

s

Fig. 1–12 (cont.)
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In other words, the normal stress components on the element must be 
equal in magnitude but opposite in direction. Under this condition 
the material is subjected to uniaxial stress, and this analysis applies 
to members subjected to either tension or compression, as shown in 
Fig. 1–14. 

Although we have developed this analysis for prismatic bars, this 
assumption can be relaxed somewhat to include bars that have a slight 
taper. For example, it can be shown, using the more exact analysis of the 
theory of elasticity, that for a tapered bar of rectangular cross section, 
where the angle between two adjacent sides is 15°, the average normal 
stress, as calculated by s = N>A, is only 2.2% less than its value found 
from the theory of elasticity.

Maximum average Normal Stress. For our analysis, both the 
internal force N and the cross-sectional area A were constant along the 
longitudinal axis of the bar, and as a result the normal stress s = N>A is 
also constant throughout the bar’s length. Occasionally, however, the bar 
may be subjected to several external axial loads, or a change in its  
cross-sectional area may occur. As a result, the normal stress within the 
bar may be different from one section to the next, and, if the maximum 
average normal stress is to be determined, then it becomes important  
to find the location where the ratio N>A is a maximum.  
Example 1.5 illustrates the procedure. Once the internal loading 
throughout the bar is known, the maximum ratio N>A can then be 
identified. 

N

P

Tension

s

�s
N—
A

   

�

P

N

Compression

s

s

N—
A

Fig. 1–14

This steel tie rod is used as a hanger to 
suspend a portion of a staircase. As a 
result it is subjected to tensile stress.
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The equation s = N>A gives the average normal stress on the  
cross-sectional area of a member when the section is subjected to an 
internal resultant normal force N. Application of this equation 
requires the following steps.

Internal Loading.

 •  Section the member perpendicular to its longitudinal axis at 
the point where the normal stress is to be determined, and 
draw the free-body diagram of one of the segments. Apply the 
force equation of equilibrium to obtain the internal axial force 
N at the section.

average Normal Stress.

 • Determine the member’s cross-sectional area at the section 
and calculate the average normal stress s = N>A.

 • It is suggested that s be shown acting on a small volume element 
of the material located at a point on the section where stress is 
calculated. To do this, first draw s on the face of the element 
coincident with the sectioned area A. Here s acts in the same 
direction as the internal force N since all the normal stresses on 
the cross section develop this resultant. The normal stress s on 
the opposite face of the element acts in the opposite direction.

Important poInts

 • When a body subjected to external loads is sectioned, there is a 
distribution of force acting over the sectioned area which holds 
each segment of the body in equilibrium. The intensity of this 
internal force at a point in the body is referred to as stress.

 • Stress is the limiting value of force per unit area, as the area 
approaches zero. For this definition, the material is considered to 
be continuous and cohesive.

 • The magnitude of the stress components at a point depends upon 
the type of loading acting on the body, and the orientation of the 
element at the point.

 • When a prismatic bar is made of homogeneous and isotropic 
material, and is subjected to an axial force acting through the 
centroid of the cross-sectional area, then the center region of the 
bar will deform uniformly. As a result, the material will be 
subjected only to normal stress. This stress is uniform or averaged 
over the cross-sectional area.

procedure for analysIs
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eXaMPLe   1.5

*Show that you get these same results using the right segments.

The bar in Fig. 1–15a has a constant width of 35 mm and a thickness of  
10 mm. Determine the maximum average normal stress in the bar when it is 
subjected to the loading shown.

(b)

9 kN

9 kN

12 kN

12 kN

NAB � 12 kN

NBC � 30 kN

NCD � 22 kN

N (kN)

x
12
22
30

(c)

12 kN 22 kN
9 kN

9 kN

4 kN

4 kN
35 mm

A DB C

(a)

9 kN

9 kN

12 kN

4 kN

4 kN

(d)

30 kN

85.7 MPa35 mm

10 mm

Fig. 1–15

SOLUTION

Internal Loading. By inspection, the internal axial forces in regions 
AB, BC, and CD are all constant yet have different magnitudes. Using 
the method of sections, these loadings are shown on the free-body 
diagrams of the left segments shown in Fig. 1–15b.* The normal force 
diagram, which represents these results graphically, is shown in  
Fig. 1–15c. The largest loading is in region BC, where NBC = 30 kN. 
Since the cross-sectional area of the bar is constant, the largest average 
normal stress also occurs within this region of the bar.

Average Normal Stress. Applying Eq. 1–6, we have

 sBC =
NBC

A
=

30(103) N

(0.035 m)(0.010 m)
= 85.7 MPa Ans.

The stress distribution acting on an arbitrary cross section of the bar 
within region BC is shown in Fig. 1–15d. 

(b)

9 kN

9 kN

12 kN

12 kN

NAB � 12 kN

NBC � 30 kN

NCD � 22 kN

N (kN)

x
12
22
30

(c)

12 kN 22 kN
9 kN

9 kN

4 kN

4 kN
35 mm

A DB C

(a)

9 kN

9 kN

12 kN

4 kN

4 kN
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eXaMPLe   1.6

The 80-kg lamp is supported by two rods AB and BC as shown in  
Fig. 1–16a. If AB has a diameter of 10 mm and BC has a diameter of 8 mm, 
determine the average normal stress in each rod.

632.4 N

8.05 MPa

8.05 MPa

(c)(d)

SOLUTION

Internal Loading. We must first determine the axial force in each rod. 
A free-body diagram of the lamp is shown in Fig. 1–16b. Applying the 
equations of force equilibrium,

S+ ΣFx = 0; FBC14
52 - FBA cos 60° = 0

+ c ΣFy = 0; FBC13
52 + FBA sin 60° - 784.8 N = 0

 FBC = 395.2 N,  FBA = 632.4 N

By Newton’s third law of action, equal but opposite reaction, these forces 
subject the rods to tension throughout their length.

Average Normal Stress. Applying Eq. 1–6,

 sBC =
FBC

ABC
=

395.2 N
p(0.004 m)2 = 7.86 MPa  Ans.

 sBA =
FBA

ABA
=

632.4 N
p(0.005 m)2 = 8.05 MPa  Ans.

The average normal stress distribution acting over a cross section of  
rod AB is shown in Fig. 1–16c, and at a point on this cross section, an 
element of material is stressed as shown in Fig. 1–16d.

A

60� B

C

3
4

5

(a)   

(b)

60�

FBA FBC

y

x

80(9.81) � 784.8 N

B

3
4

5

Fig. 1–16
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eXaMPLe   1.7

The casting shown in Fig. 1–17a is made of steel having a density of  
7850 kg/m3. Determine the average compressive stress acting at points A 
and B.

200 mm

200 mm

800 mm

y

z

x

(a)

A

B200 mm

100 
mm

     

800 mm

(b)

A

P

(c)

61.6 kN/m2

B

Wst

Fig. 1–17

SOLUTION

Internal Loading. A free-body diagram of the top segment of the 
casting where the section passes through points A and B is shown in  
Fig. 1–17b. The weight of this segment is determined from Wst = gst Vst. 
Thus the internal axial force P at the section is

+ c ΣFz = 0; P - Wst = 0

P - (7850 kg>m3) (9.81 m>s2)(0.8 m)[p(0.2 m)2] = 0

 P = 7.7417 (103) N

Average Compressive Stress. The cross-sectional area at the section 
is A = p(0.2 m)2, and so the average compressive stress becomes

s =
P
A

=
7.7417 (103) N

p(0.2 m)2 = 61.61 (103) N>m2 = 61.6 kN>m2 Ans.

NOTe: The stress shown on the volume element of material in Fig. 1–17c 
is representative of the conditions at either point A or B. Notice that this 
stress acts upward on the bottom or shaded face of the element since  
this face forms part of the bottom surface area of the section, and on this 
surface, the resultant internal force P is pushing upward.
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eXaMPLe   1.8

Member AC shown in Fig. 1–18a is subjected to a vertical force of 3 kN. 
Determine the position x of this force so that the average compressive stress 
at the smooth support C is equal to the average tensile stress in the tie  
rod AB. The rod has a cross-sectional area of 400 mm2 and the contact area 
at C is 650 mm2.

SOLUTION

Internal Loading. The forces at A and C can be related by considering 
the free-body diagram of member AC, Fig. 1–18b. There are three 
unknowns, namely, FAB , FC , and x. To solve we will work in units of 
newtons and millimeters.

+ c ΣFy = 0;                         FAB + FC - 3000 N = 0            (1)

a + ΣMA = 0;                -(3000 N)(x) + FC (200 mm) = 0     (2)

Average Normal Stress. A necessary third equation can be written 
that requires the tensile stress in the bar AB and the compressive stress at 
C to be equivalent, i.e.,

 s =
FAB

400 mm2 =
FC

650 mm2 

 FC = 1.625FAB

Substituting this into Eq. 1, solving for FAB , then solving for FC ,  
we obtain

 FAB = 1143 N 

 FC = 1857 N
The position of the applied load is determined from Eq. 2,

x = 124 mm Ans.

As required, 0 6 x 6 200 mm.

(b)

x

3 kN

A

200 mm

FAB

FC

x

A

B

C200 mm

3 kN

(a)
Fig. 1–18
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B C
A

The pin A used to connect the 
linkage of this tractor is subjected to 
double shear because shearing 
stresses occur on the surface of the 
pin at B and C. See Fig. 1–21c.

1.5 avEragE ShEar StrESS
Shear stress has been defined in Section 1.3 as the stress component that 
acts in the plane of the sectioned area. To show how this stress can develop, 
consider the effect of applying a force F to the bar in Fig. 1–19a. If F is 
large enough, it can cause the material of the bar to deform and fail along 
the planes identified by AB and CD. A free-body diagram of the 
unsupported center segment of the bar, Fig. 1–19b, indicates that the shear 
force V = F>2 must be applied at each section to hold the segment in 
equilibrium. The average shear stress distributed over each sectioned area 
that develops this shear force is defined by

 tavg =
V
A

  (1–7)

Here
 tavg =  average shear stress at the section, which is assumed to be 

the same at each point on the section

 V =  internal resultant shear force on the section determined 
from the equations of equilibrium

 A = area of the section

The distribution of average shear stress acting over the sections is 
shown in Fig. 1–19c. Notice that tavg is in the same direction as V, since 
the shear stress must create associated forces, all of which contribute to 
the internal resultant force V.

The loading case discussed here is an example of simple or direct 
shear, since the shear is caused by the direct action of the applied load F.  
This type of shear often occurs in various types of simple connections 
that use bolts, pins, welding material, etc. In all these cases, however, 
application of Eq. 1–7 is only approximate. A more precise investigation 
of the shear-stress distribution over the section often reveals that 
much larger shear stresses occur in the material than those predicted 
by this equation. Although this may be the case, application of Eq. 1–7 
is generally acceptable for many problems involving the design or 
analysis of small elements. For example, engineering codes allow its 
use for determining the size or cross section of fasteners such as bolts, 
and for obtaining the bonding strength of glued joints subjected to 
shear loadings.

(b)

(c)

F

F

VV

tavg

F

(a)

B
D

A
C

Fig. 1–19
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y

Free-body diagram

(b) (c)(a)

Section plane

Pure shear

(d)

t

t

t

t
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Section plane
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x

z

�y

�z
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Shear Stress equilibrium. Let us consider the block in  
Fig. 1–20a, which has been sectioned and is subjected to the internal 
shear force V. A volume element taken at a point located on its surface 
will be subjected to a direct shear stress tzy, as shown in Fig. 1–20b. 
However, force and moment equilibrium of this element will also require 
shear stress to be developed on three other sides of the element. To show 
this, it is first necessary to draw the free-body diagram of the element, 
Fig. 1–20c. Then force equilibrium in the y direction requires

 force

stress area

ΣFy = 0;          tzy1∆x ∆y2 - t=zy ∆x ∆y = 0

 tzy = t=zy

In a similar manner, force equilibrium in the z direction yields tyz = t=yz. 
Finally, taking moments about the x axis,

moment

    force       arm
                   

      stress area        
 

ΣMx = 0;           -tzy1∆x ∆y2  ∆z + tyz1∆x ∆z2  ∆y = 0

   tzy = tyz
In other words,

tzy = t=zy = tyz = t=yz = t

and so, all four shear stresses must have equal magnitude and be directed 
either toward or away from each other at opposite edges of the element, 
Fig. 1–20d. This is referred to as the complementary property of shear, 
and the element in this case is subjected to pure shear.
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Fig. 1–20
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 • If two parts are thin or small when joined together, the applied 
loads may cause shearing of the material with negligible 
bending. If this is the case, it is generally assumed that an 
average shear stress acts over the cross-sectional area.

 • When shear stress t acts on a plane, then equilibrium of a 
volume element of material at a point on the plane requires 
associated shear stress of the same magnitude act on the three 
other sides of the element.

Important poInts

procedure for analysIs

The equation tavg = V>A is used to determine the average shear 
stress in the material. Application requires the following steps.

Internal Shear.

 • Section the member at the point where the average shear stress 
is to be determined.

 • Draw the necessary free-body diagram, and calculate the 
internal shear force V acting at the section that is necessary to 
hold the part in equilibrium.

average Shear Stress.

 • Determine the sectioned area A, and then calculate the 
average shear stress tavg = V>A.

 • It is suggested that tavg be shown on a small volume element of 
material located at a point on the section where it is determined. 
To do this, first draw tavg on the face of the element, coincident 
with the sectioned area A. This stress acts in the same direction 
as V. The shear stresses acting on the three adjacent planes can 
then be drawn in their appropriate directions following the 
scheme shown in Fig. 1–20d.



 1.5 average Shear StreSS 53

1

eXaMPLe   1.9

Determine the average shear stress in the 20-mm-diameter pin at A 
and the 30-mm-diameter pin at B that support the beam in Fig. 1–21a.

SOLUTION

Internal Loadings. The forces on the pins can be obtained by 
considering the equilibrium of the beam, Fig. 1–21b.

a + ΣMA = 0; 

    FBa
4
5
b 16 m2 - 30 kN12 m2 = 0   FB = 12.5 kN

S+ ΣFx = 0; 112.5 kN2a3
5
b - Ax = 0 Ax = 7.50 kN

+ c ΣFy = 0; Ay + 112.5 kN2a4
5
b - 30 kN = 0     Ay = 20 kN

Thus, the resultant force acting on pin A is

FA = 2A2
x + A2

y = 2(7.50 kN)2 + (20 kN)2 = 21.36 kN

The pin at A is supported by two fixed “leaves” and so the  
free-body diagram of the center segment of the pin shown in  
Fig. 1–21c has two shearing surfaces between the beam and each 
leaf. Since the force of the beam (21.36 kN) acting on the pin is 
supported by shear force on each of two surfaces, it is called double 
shear. Thus,

VA =
FA

2
=

21.36 kN
2

= 10.68 kN

In Fig. 1–21a, note that pin B is subjected to single shear, which occurs 
on the section between the cable and beam, Fig. 1–21d. For this pin 
segment,

VB = FB = 12.5 kN

Average Shear Stress.

1tA2avg =
VA

AA
=

10.6811032  N
p

4
10.02 m22 

= 34.0 MPa  Ans.

1tB2avg =
VB

AB
=

12.511032  N
p

4
10.03 m22

= 17.7 MPa  Ans.

4 m

(a)

2 m

30 kN

A B

C

3
45

4 m2 m

(b)

30 kN

A

3
45

FB 

Ax 

Ay

(c)

VA

VA

FA � 21.36 kN

(d)

FB � 12.5 kN

VB

Fig. 1–21
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eXaMPLe   1.10

If the wood joint in Fig. 1–22a has a thickness of 150 mm, determine the 
average shear stress along shear planes a–a and b–b of the connected 
member. For each plane, represent the state of stress on an element of the 
material.

0.1 m 0.125 m

(a)

 6 kN  6 kN

b b

a a

(b)

 6 kN

F

F

SOLUTION

Internal Loadings. Referring to the free-body diagram of the member, 
Fig. 1–22b,

S+ ΣFx = 0;  6 kN - F - F = 0  F = 3 kN

Now consider the equilibrium of segments cut across shear planes a–a 
and b–b, shown in Figs. 1–22c and 1–22d.

S+  ΣFx = 0; Va - 3 kN = 0 Va = 3 kN

S+  ΣFx = 0; 3 kN - Vb = 0 Vb = 3 kN

Average Shear Stress.

1ta2avg =
Va

Aa
=

311032 N
10.1 m2 10.15 m2 = 200 kPa Ans.

1tb2avg =
Vb

Ab
=

311032 N
10.125 m2 10.15 m2 = 160 kPa Ans.

The state of stress on elements located on sections a–a and b–b is shown 
in Figs. 1–22c and 1–22d, respectively.

 3 kN

(c)

Va
ta � 200 kPa

 3 kN

(d)

Vb
tb = 160 kPa

Fig. 1–22

 3 kN

(c)

Va
ta � 200 kPa

 3 kN

(d)

Vb
tb = 160 kPa
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eXaMPLe   1.11

The inclined member in Fig. 1–23a is subjected to a compressive force of 
3000 N. Determine the average compressive stress along the smooth areas  
of contact defined by AB and BC, and the average shear stress along  
the horizontal plane defined by DB.

25 mm

3

45

3000 N

40 mm 75 mm
50 mm

A
C

B

D

(a) (b)

3

45

3000 N

FAB

FBC

(c)

V

FAB � 1800 N

(d)

3

45

3000 N

1.20 MPa

1.80 MPa

(e)

1800 N

0.60 MPa

SOLUTION

Internal Loadings. The free-body diagram of the inclined member is 
shown in Fig. 1–23b. The compressive forces acting on the areas of contact are

S+ ΣFx = 0;  FAB - (3000 N)( 3
5) = 0   FAB = 1800 N

+ c ΣFy = 0;  FBC - (3000 N)( 45) = 0   FBC = 2400 N

Also, from the free-body diagram of the top segment ABD of the bottom 
member, Fig. 1–23c, the shear force acting on the sectioned horizontal 
plane DB is

S+ ΣFx = 0;      V = 1800 N

Average Stress. The average compressive stresses along the horizontal 
and vertical planes of the inclined member are

sAB =
FAB

AAB
=

1800 N
(0.025 m)(0.04 m)

= 1.80(106) N>m2 = 1.80 MPa Ans.

sBC =
FBC

ABC
=

2400 N
(0.05 m)(0.04 m)

= 1.20(106) N>m2 = 1.20 MPa Ans.

These stress distributions are shown in Fig. 1–23d.
The average shear stress acting on the horizontal plane defined by DB is

tavg =
1800 N

(0.075 m)(0.04 m)
= 0.600(106) N>m2 = 0.600 MPa Ans.

This stress is shown uniformly distributed over the sectioned area in  
Fig. 1–23e.

Fig. 1–23
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P1–2. In each case, determine the largest internal shear 
force resisted by the bolt. Include all necessary free-body 
diagrams.

PReLIMINaRY PRObLeMS

6 kN
2 kN

(a)

5 kNA

B

P1–3. Determine the largest internal normal force in the bar.

P1–4. Determine the internal normal force at section A if 
the rod is subjected to the external uniformally distributed 
loading along its length of 8 kN>m.

8 kN/mA

2 m 3 m

Prob. P1–4

P1–5.  The lever is held to the fixed shaft using the pin AB. 
If the couple is applied to the lever, determine the shear 
force in the pin between the pin and the lever.

P1–6. The single-V butt joint transmits the force of 5 kN 
from one bar to the other. Determine the resultant normal and 
shear force components on the face of the weld, section AB.

30�

30�

5 kN

5 kN

20 mm

100 mm

A

B

Prob. P1–6

Prob. P1–2

 

10 kN
4 kN

20 kN

(b)

6 kNA

B

C
8 kN

10 kN

6 kN2 kN5 kN

D

F

C B A

Prob. P1–3

Prob. P1–5

20 N

A

B

20 N

0.2 m 0.2 m

10 mm
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F1–7. The uniform beam is supported by two rods AB and 
CD that have cross-sectional areas of 10 mm2 and 15 mm2, 
respectively. Determine the intensity w of the distributed 
load so that the average normal stress in each rod does not 
exceed 300 kPa.

w

A C

B D

6 m

Prob. F1–7

F1–8. Determine the average normal stress on the cross 
section. Sketch the normal stress distribution over the  
cross section.

 300 kN

100 mm

80 mm

Prob. F1–8

F1–9. Determine the average normal stress developed on 
the cross section. Sketch the normal stress distribution over 
the cross section.

100 mm 25 mm

25 mm
100 mm 25 mm

75 kN

Prob. F1–9

F1–10. If the 600-kN force acts through the centroid of 
the cross section, determine the location y of the centroid 
and the average normal stress on the cross section. Also, 
sketch the normal stress distribution over the cross section.

80 mm

300 mm

60 mm

–y
80 mm

 600 kN

x

y60 mm

Prob. F1–10

F1–11. Determine the average normal stress developed at 
points A, B, and C. The diameter of each segment is 
indicated in the figure.

200 N300 N 800 N900 N

10 mm
5 mm 5 mm

A
B

C

Prob. F1–11

F1–12. Determine the average normal stress in rod AB if the 
load has a mass of 50 kg. The diameter of rod AB is 8 mm.

8 mm

A

D

B

C

5

4
3

Prob. F1–12

FUNDaMeNTaL PRObLeMS
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1–31. The bar has a cross-sectional area A and is subjected 
to the axial load P. Determine the average normal and 
average shear stresses acting over the shaded section, which 
is oriented at u from the horizontal. Plot the variation of 
these stresses as a function of u 10 … u … 90°2 .

u

A

PP

Prob. 1–31

*1–32. The built-up shaft consists of a pipe AB and solid 
rod BC. The pipe has an inner diameter of 20 mm and outer 
diameter of 28 mm. The rod has a diameter of 12 mm. 
Determine the average normal stress at points D and E and 
represent the stress on a volume element located at each of 
these points.

C

ED

A
4 kN

8 kN

B 6 kN

6 kN

Prob. 1–32

1–33. The triangular blocks are glued along each side of 
the joint. A C-clamp placed between two of the blocks is 
used to draw the joint tight. If the glue can withstand a 
maximum average shear stress of 800 kPa, determine the 
maximum allowable clamping force F.

1–34. The triangular blocks are glued along each side of 
the joint. A C-clamp placed between two of the blocks is 
used to draw the joint tight. If the clamping force is 
F = 900 N, determine the average shear stress developed 
in the glued shear plane.

50 mm

45

25 mm

F

F

glue

Probs. 1–33/34

1–35. Determine the largest intensity  w of the uniform 
loading that can be applied to the frame without causing 
either the average normal stress or the average shear stress 
at section b–b to exceed s = 15 MPa and t = 16 MPa, 
respectively. Member CB has a square cross section of  
30 mm on each side.

4 m

B

AC

3 m

b b

w

Prob. 1–35

*1–36. The supporting wheel on a scaffold is held in place 
on the leg using a 4-mm-diameter pin. If the wheel is 
subjected to a normal force of 3 kN, determine the average 
shear stress in the pin. Assume the pin only supports the 
vertical 3-kN load.

3 kN

Prob. 1–36

PRObLeMS
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1–37. If P = 5 kN, determine the average shear stress in 
the pins at A, B, and C. All pins are in double shear, and 
each has a diameter of 18 mm.

1–38. Determine the maximum magnitude P of the loads 
the beam can support if the average shear stress in each pin 
is not to exceed 80 MPa. All pins are in double shear, and 
each has a diameter of 18 mm.

2 m

A

C

B

0.5 m 0.5 m

4
3

5

1.5 m

6P

PP 3P

1.5 m

Probs. 1–37/38

1–39. Determine the average normal stress in each of the 
20-mm-diameter bars of the truss. Set P = 40 kN.

*1–40. If the average normal stress in each of the 20-mm- 
diameter bars is not allowed to exceed 150 MPa, determine  
the maximum force P that can be applied to joint C.

1–41. Determine the maximum average shear stress in pin 
A of the truss. A horizontal force of P = 40 kN is applied to 
joint C. Each pin has a diameter of 25 mm and is subjected 
to double shear.

P

1.5 m

2 m

C

A B

Probs. 1–39/40/41

1–42. The pedestal has a triangular cross section as shown. 
If it is subjected to a compressive force of 2250 N, specify 
the x and y coordinates for the location of point P(x, y), 
where the load must be applied on the cross section, so that 

the average normal stress is uniform. Compute the stress 
and sketch its distribution acting on the cross section at a 
location removed from the point of load application.

  75 mm
150 mmx

y

2250 N

P(x,y)300 mm

Prob. 1–42

1–43. The plate has a width of 0.5 m. If the stress distribution 
at the support varies as shown, determine the force P applied 
to the plate and the distance d to where it is applied.

4 m

30 MPa

P
d

    � (15x1/2) MPas

x

Prob. 1–43

*1–44. The joint is subjected to the axial member force of 
27 kN. Determine the average normal stress acting on 
sections AB and BC. Assume the member is smooth and is 
40 mm thick.

60

20
112 mm

40 mm

A

B

C

27 kN

Prob. 1–44
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1–45. The plastic block is subjected to an axial compressive 
force of 600 N. Assuming that the caps at the top and bottom 
distribute the load uniformly throughout the block, 
determine the average normal and average shear stress 
acting along section a–a.

50 mm 50 mm

50 mm

150 mm

a

a

600 N

600 N

30�

Prob. 1–45

1–46. The column is made of concrete having a density  
of 2.30 Mg>m3. At its top B it is subjected to an axial 
compressive force of 15 kN. Determine the average normal 
stress in the column as a function of the distance z measured 
from its base. 

z

x y

15 kN

4 m

180 mm

z

B

Prob. 1–46

1–47. If P = 15 kN, determine the average shear stress in 
the pins at A, B, and C. All pins are in double shear, and 
each has a diameter of 18 mm.

0.5 m
1 m 1.5 m 1.5 m

0.5 m
P 4P 4P 2P

30�

B

C

A

Prob. 1–47

*1–48. The driver of the sports car applies his rear brakes 
and causes the tires to slip. If the normal force on each rear 
tire is 1800 N and the coefficient of kinetic friction between 
the tires and the pavement is mk = 0.5, determine the 
average shear stress developed by the friction force on the 
tires. Assume the rubber of the tires is flexible and each tire 
is filled with an air pressure of 225 kPa.

1800 N

Prob. 1–48

1–49. The beam is supported by two rods AB and CD that 
have cross-sectional areas of 12 mm2 and 8 mm2, respectively. 
If d = 1 m, determine the average normal stress in each rod.

1–50. The beam is supported by two rods AB and CD that 
have cross-sectional areas of 12 mm2 and 8 mm2, respectively. 
Determine the position d of the 6-kN load so that the average 
normal stress in each rod is the same.

3 m

d

6 kN

B

A

D

C

Probs. 1–49/50
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1–51. The uniform bar, having a cross-sectional area of A 
and mass per unit length of m, is pinned at its center. If it is 
rotating in the horizontal plane at a constant angular rate of 
v, determine the average normal stress in the bar as a 
function of x.

x

V

L
2

L
2

Prob. 1–51

*1–52. The two members used in the construction of an 
aircraft fuselage are joined together using a 30° fish-mouth 
weld. Determine the average normal and average shear 
stress on the plane of each weld. Assume each inclined 
plane supports a horizontal force of 2 kN.

4 kN 4 kN

30

25 mm

25 mm

37.5 mm 30

Prob. 1–52

1–53. The pier is made of material having a specific weight g. 
If it has a square cross section, determine its width w  
as a function of z so that the average normal stress in the 
pier remains constant. The pier supports a constant load P  
at its top where its width is w1.

z

L

P

w w

w1

w1

Prob. 1–53

1–54. The 2-Mg concrete pipe has a center of mass at 
point G. If it is suspended from cables AB and AC, 
determine the average normal stress in the cables. The 
diameters of AB and AC are 12 mm and 10 mm, respectively.

1–55. The 2-Mg concrete pipe has a center of mass at point 
G. If it is suspended from cables AB and AC, determine the 
diameter of cable AB so that the average normal stress in 
this cable is the same as in the 10-mm-diameter cable AC.

A

C

GB

30� 45�

Probs. 1–54/55

*1–56. Rods AB and BC have diameters of 4 mm  
and 6 mm, respectively. If the 3 kN force is applied to the 
ring at B, determine the angle u so that the average normal 
stress in each rod is equivalent. What is this stress?

3 kN

u

C

BA

4
3

5

Prob. 1–56
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1–57. The bar has a cross-sectional area of 400(10−6) m2. If it 
is subjected to a triangular axial distributed loading along its 
length which is 0 at x = 0 and 9 kN>m at  x = 1.5 m, and to 
two concentrated loads as shown, determine the average 
normal stress in the bar as a function of x for 0 … x 6 0.6 m.

1–58. The bar has a cross-sectional area of 400(10−6) m2. If 
it is subjected to a uniform axial distributed loading along 
its length of 9 kN>m, and to two concentrated loads as 
shown, determine the average normal stress in the bar as a 
function of x for 0.6 m 6 x … 1.5 m.

x

8 kN
4 kN

0.6 m 0.9 m

Probs. 1–57/58

1–59. The two steel members are joined together using a 
30° scarf weld. Determine the average normal and average 
shear stress resisted in the plane of the weld.

40 mm

20 mm30�

15 kN

15 kN

Prob. 1–59

*1–60. The bar has a cross-sectional area of 400(10−6) m2. 
If it is subjected to a uniform axial distributed loading along 
its length and to two concentrated loads, determine the 
average normal stress in the bar as a function of x for  
0 6 x … 0.5 m.

1–61. The bar has a cross-sectional area of 400(10−6) m2. If 
it is subjected to a uniform axial distributed loading along 
its length and to two concentrated loads, determine the 
average normal stress in the bar as a function of x for  
0.5 m 6 x … 1.25 m.

x

w � 8 kN/m
6 kN

3 kN

0.5 m 0.75 m

Probs. 1–60/61

1–62. The prismatic bar has a cross-sectional area A. If it is 
subjected to a distributed axial loading that increases 
linearly from w = 0 at x = 0 to w = w0 at x = a, and then 
decreases linearly to w = 0 at x = 2a, determine the average 
normal stress in the bar as a function of x for 0 … x 6 a.

1–63. The prismatic bar has a cross-sectional area A. If it is 
subjected to a distributed axial loading that increases 
linearly from w = 0 at x = 0 to w = w0 at x = a, and then 
decreases linearly to w = 0 at x = 2a, determine the average 
normal stress in the bar as a function of x for a 6  x … 2a.

x
a a

w0

Probs. 1–62/63
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*1–64. Determine the greatest constant angular velocity v 
of the flywheel so that the average normal stress in its rim 
does not exceed s = 15 MPa. Assume the rim is a thin ring 
having a thickness of 3 mm, width of 20 mm, and a mass of 
30 kg>m. Rotation occurs in the horizontal plane. Neglect 
the effect of the spokes in the analysis. Hint: Consider a 
free-body diagram of a semicircular segment of the ring. 
The center of mass for this segment is located at rn = 2r>π 
from the center.

0.8 mm

v

Prob. 1–64

1–65. Determine the largest load P that can be applied to 
the frame without causing either the average normal stress 
or the average shear stress at section a–a to exceed 
s = 150 MPa and t = 60 MPa, respectively. Member CB 
has a square cross section of 25 mm on each side.

2 m

B

A C

1.5 m

a

a

P

Prob. 1–65

1–66. The bars of the truss each have a cross-sectional 
area of 780 mm2. Determine the average normal stress in 
each member due to the loading P = 40 kN. State whether 
the stress is tensile or compressive.

1–67. The bars of the truss each have a cross-sectional 
area of 780 mm2. If the maximum average normal stress in 
any bar is not to exceed 140 MPa, determine the maximum 
magnitude P of the loads that can be applied to the truss.

0.9 m

1.2 m 1.2 m

P
0.75 P

E DA

B C

Probs. 1–66/67

*1–68. The radius of the pedestal is defined by  
r = (0.5e−0.08y2

) m, where y is in meters. If the material has a 
density of 2.5 Mg>m3, determine the average normal stress 
at the support.

r 5 0.5e20.08y2

y

3 m

0.5 m

r

Prob. 1–68
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1.6 allowablE StrESS dESIgn
To ensure the safety of a structural or mechanical member, it is necessary 
to restrict the applied load to one that is less than the load the member 
can fully support. There are many reasons for doing this.

	 •	 The	intended	measurements	of	a	structure	or	machine	may	not	be	
exact, due to errors in fabrication or in the assembly of its component 
parts.

	 •	 Unknown	vibrations,	impact,	or	accidental	loadings	can	occur	that	
may not be accounted for in the design.

	 •	 Atmospheric	corrosion,	decay,	or	weathering	tend	to	cause	materials	
to deteriorate during service.

	 •	 Some	 materials,	 such	 as	 wood,	 concrete,	 or	 fiber-reinforced	
composites, can show high variability in mechanical properties.

One method of specifying the allowable load for a member is to use a 
number called the factor of safety (F.S.). It is a ratio of the failure load 
Ffail to the allowable load Fallow,

 F.S. =
Ffail

Fallow
 (1–8)

Here Ffail is found from experimental testing of the material.
If the load applied to the member is linearly related to the stress 

developed within the member, as in the case of s = N>A and 
tavg = V>A, then we can also express the factor of safety as a ratio of the 
failure stress sfail (or tfail) to the allowable stress sallow (or tallow). Here the 
area A will cancel, and so,

 F.S. =
sfail

sallow
 (1–9)

or

 F.S. =
tfail

tallow 
 (1–10)

Cranes are often supported using 
bearing pads to give them stability. Care 
must be taken not to crush the 
supporting surface, due to the large 
bearing stress developed between the 
pad and the surface.
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Specific values of F.S. depend on the types of materials to be used 
and the intended purpose of the structure or machine, while accounting 
for the previously mentioned uncertainties. For example, the F.S. used 
in the design of aircraft or space vehicle components may be close to 1 
in order to reduce the weight of the vehicle. Or, in the case of a nuclear 
power plant, the factor of safety for some of its components may be as 
high as 3 due to uncertainties in loading or material behavior. Whatever 
the case, the factor of safety or the allowable stress for a specific case 
can be found in design codes and engineering handbooks. Design that 
is based on an allowable stress limit is called allowable stress design 
(ASD). Using this method will ensure a balance between both public 
and environmental safety on the one hand and economic considerations 
on the other.

Simple Connections. By making simplifying assumptions 
regarding the behavior of the material, the equations s = N>A and 
tavg = V>A can often be used to analyze or design a simple connection 
or mechanical element. For example, if a member is subjected to normal 
force at a section, its required area at the section is determined from

 A =
N

sallow
 (1–11)

or if the section is subjected to an average shear force, then the required 
area at the section is

 A =
V

tallow
 (1–12)

Three examples of where the above equations apply are shown in 
Fig. 1–24. The first figure shows the normal stress acting on the bottom of 
a base plate. This compressive stress caused by one surface that bears 
against another is often called bearing stress.

B

(�b)allow

P

Assumed uniform 
normal stress 
distribution

A �
P

(�b)allow

The area of the column base plate B is determined
from the allowable bearing stress for the concrete.

d

Assumed uniform shear stress
tallow

l � —————P
tallowpd

The embedded length l of this rod in concrete 
can be determined using the allowable shear 

stress of the bonding glue. 

P

P

P

V � P

Assumed uniform 
shear stress

P

A �

tallow

P
tallow

P

P

The area of the bolt for this lap joint
is determined from the shear stress, 
which is largest between the plates.

Fig. 1–24
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1.7 lImIt StatE dESIgn
We have stated in the previous section that a properly designed member 
must account for the uncertainties resulting from the variability of both the 
material’s properties and the applied loading. Each of these uncertainties can 
be investigated using statistics and probability theory, and so in structural 
engineering there has been an increasing trend to separate load uncertainty 
from material uncertainty.* This method of design is called limit state design 
(LSD), or more specifically, in the United States it is called load and resistance 
factor design (LRFD). We will now discuss how this method is applied.

Load Factors. Various types of loads R can act on a structure or 
structural member, and each can be multiplied by a load factor  
g (gamma) that accounts for its variability. The loads include dead load, 
which is the fixed weight of the structure, and live loads, which involve 
people or vehicles that move about. Other types of live loads include 
wind, earthquake, and snow loads. The dead load D is multiplied by a 
relatively small factor such as gD = 1.2, since it can be determined with 
greater certainty than, for example, the live load L caused by people, 
which can have a load factor of gL = 1.6.

Building codes often require a structure to be designed to support various 
combinations of the loads, and when applied in combination, each type of 
load will have a unique load factor. For example, the load factor of one load 
combination of dead (D), live (L), and snow (S) loads gives a total load R of

R = 1.2D + 1.6L + 0.5S

The load factors for this combined loading reflect the probability that R will 
occur for all the events stated. In this equation, notice that the load factor 
gS = 0.5 is small, because of the low probability that a maximum snow 
load will occur simultaneously with the maximum dead and live loads.

Resistance Factors. Resistance factors f (phi) are determined 
from the probability of material failure as it relates to the material’s 
quality and the consistency of its strength. These factors will differ for 
different types of materials. For example, concrete has smaller factors 
than steel, because engineers have more confidence about the behavior 
of steel under load than they do about concrete. A typical resistance 
factor f = 0.9 is used for a steel member in tension.

* ASD combines these uncertainties by using the factor of safety or defining the allowable stress.
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Design Criteria. Once the load and resistance factors g and f have 
been specified using a code, then proper design of a structural member 
requires that its predicted strength, fPn, be greater than the predicted 
load it is intended to support. Thus, the LRFD criterion can be stated as

 fPn Ú  Σgi Ri (1–13)

Here Pn is the nominal strength of the member, meaning the load, when 
applied to the member, causes it either to fail (ultimate load), or deform 
to a state where it is no longer serviceable. In summary then, the 
resistance factor f reduces the nominal strength of the member and 
requires it to be equal to or greater than the applied load or combination 
of loads calculated using the load factors g.

Important poInt

 • Design of a member for strength is based on selecting either 
an allowable stress or a factor of safety that will enable it to 
safely support its intended load (ASD), or using load and 
resistance factors to modify the strength of the material and 
the load, respectively (LRFD).

procedure for analysIs

When solving problems using the average normal and average shear 
stress equations, careful consideration should first be given to finding 
the section over which the critical stress is acting. Once this section 
is determined, the member must then be designed to have a sufficient 
cross-sectional area at the section to resist the stress that acts on it. 
This area is determined using the following steps.

Internal Loading.

 • Section the member through the area and draw a free-body 
diagram of a segment of the member. The internal resultant 
force at the section is then determined using the equations of 
equilibrium.

required area.

 • Provided either the allowable stress or the load and resistance 
factors are known or can be determined, then the required 
area needed to sustain the calculated load or factored load at 
the section is determined from A = N>s or A = V>t. Appropriate factors of safety must be 

considered when designing cranes and cables 
used to transfer heavy loads.
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eXaMPLe   1.12

The control arm is subjected to the loading shown in Fig. 1–25a. Determine 
to the nearest 5 mm the required diameter of the steel pin at A and C if the 
factor of safety for shear is F.S. = 1.5 and the failure shear stress for  
the steel is tfail = 82.5 MPa.

(a)

C

3
5

4
50 mm75 mm

200 mm

A

C

15 kN

25 kN

B

A

3
5

4
50 mm75 mm

200 mm

Cx

15 kN
25 kN

FAB

Cy

(b)

C

(d)

15.205 kN

15.205 kN

30.41 kN

Pin at C

(c)

15 kN

15 kN
Pin at A

Fig. 1–25
SOLUTION

Internal Shear Force. A free-body diagram of the arm is shown in  
Fig. 1–25b. For equilibrium we have

a + ΣMC = 0; FAB(0.2 m) - (15 kN)(0.075 m) - (25 kN) (3
5) (0.125 m) = 0

FAB = 15 kN

S+ ΣFx = 0;  -15 kN - Cx + (25 kN)(4
5) = 0  Cx = 5 kN

+ c ΣFy = 0;  Cy - 15 kN - (25 kN)(3
5) = 0  Cy = 30 kN

The pin at C resists the resultant force at C, which is

FC = 2(5 kN)2 + (30 kN)2 = 30.41 kN

Allowable Shear Stress. We have

F.S. =
tfail

tallow
; 1.5 =

82.5 MPa
tallow

 tallow = 55 MPa

Pin at A. This pin is subjected to single shear, Fig. 1–25c, so that

A =
V

tallow
; pa

dA

2
b

2

=
15(103) N

55(106) N>m2 dA = 0.01863 m = 18.63 m

Use dA = 20 mm Ans.

Pin at C. Since the pin is subjected to double shear, a shear force of 
15.205 kN acts over its cross-sectional area between the arm and each 
supporting leaf for the pin, Fig. 1–25d. We have

A =
V

tallow
; pa

dC

2
b

2

=
15.205(103) N

55(106) N>m2 dC = 0.01876 m = 18.76 mm

Use dC = 20 mm Ans.
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eXaMPLe   1.13

The suspender rod is supported at its end by a fixed-connected circular disk 
as shown in Fig. 1–26a. If the rod passes through a 40-mm-diameter hole, 
determine the minimum required diameter of the rod and the minimum 
thickness of the disk needed to support the 20-kN load. The allowable 
normal stress for the rod is sallow = 60 MPa, and the allowable shear stress 
for the disk is tallow = 35 MPa.

SOLUTION

Diameter of Rod. By inspection, the axial force in the rod is 20 kN. 
Thus the required cross-sectional area of the rod is

A =
N

sallow
; 

p

4
 d2 =

2011032  N

6011062  N>m2

so that

 d = 0.0206 m = 20.6 mm Ans.

Thickness of Disk. As shown on the free-body diagram in Fig. 1–26b, 
the material at the sectioned area of the disk must resist shear stress 
to prevent movement of the disk through the hole. If this shear stress 
is  assumed to be uniformly distributed over the sectioned area, then, 
since V = 20 kN, we have

A =
V

tallow
;  2p10.02 m2 1 t2 =

2011032  N

3511062  N>m2

 t = 4.55(10-32m = 4.55 mm Ans.

20 kN

t

d

(a)

40 mm

  

20 kN

A allow

(b)

40 mm

t

Fig. 1–26
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Fig. 1–27

P

50 mm

15 mm

20 mm

(a)

(c)

(b)

P

P

50 mm

15 mm

10 mm

20 mm

20 mm

P

P—
2

Failure of bolt by shear

15 mm

10 mm

P

(e)

P

V = P

P

(d)

Failure of plate by shear

15 mm
P—
2

P—
2

V =

V =

20 mm

Actual stress
distribution

Assumed uniform
stress distribution

P—
2

Failure of plate in tension

Failure of plate in bearing caused by bolt

Top view

P P

eXaMPLe   1.14

Determine the largest load P that can be applied to the bars of the  
lap joint shown in Fig. 1–27a. The bolt has a diameter of 10 mm and an 
allowable shear stress of 80 MPa. Each plate has an allowable tensile 
stress of 50 MPa, an allowable bearing stress of 80 MPa, and an allowable 
shear stress of 30 MPa.

SOLUTION

To solve the problem we will determine P for each possible failure 
condition; then we will choose the smallest value of P. Why?

Failure of Plate in Tension. If the plate fails in tension, it will do so at 
its smallest cross section, Fig. 1–27b.

(sallow)t =
N
A

; 50(106) N>m2 =
P

2(0.02 m)(0.015 m)

            P = 30 kN

Failure of Plate by Bearing. A free-body diagram of the top plate,  
Fig. 1–27c, shows that the bolt will exert a complicated distribution of 
stress on the plate along the curved central area of contact with the bolt.* 
To simplify the analysis for small connections having pins or bolts such as 
this, design codes allow the projected area of the bolt to be used when 
calculating the bearing stress. Therefore,

(sallow)b =
N
A

;   80(106)N>m2 =
P

(0.01 m)(0.015 m)

 P = 12 kN

*The material strength of a bolt or pin is generally greater than that of the plate material, 
so bearing failure of the member is of greater concern.

P

50 mm

15 mm

20 mm

(a)

(c)

(b)

P

P

50 mm

15 mm

10 mm

20 mm

20 mm

P

P—
2

Failure of bolt by shear

15 mm

10 mm

P

(e)

P

V = P

P

(d)

Failure of plate by shear

15 mm
P—
2

P—
2

V =

V =

20 mm

Actual stress
distribution

Assumed uniform
stress distribution

P—
2

Failure of plate in tension

Failure of plate in bearing caused by bolt

Top view

P P

P

50 mm

15 mm

20 mm

(a)

(c)

(b)

P

P

50 mm

15 mm

10 mm

20 mm

20 mm

P

P—
2

Failure of bolt by shear

15 mm

10 mm

P

(e)

P

V = P

P

(d)

Failure of plate by shear

15 mm
P—
2

P—
2

V =

V =

20 mm

Actual stress
distribution

Assumed uniform
stress distribution

P—
2

Failure of plate in tension

Failure of plate in bearing caused by bolt

Top view

P P
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Failure of Plate by Shear. There is the possibility for the bolt to tear 
through the plate along the section shown on the free-body diagram in 
Fig. 1–27d. Here the shear is V = P>2, and so

(tallow)p =
V
A

;  30(106) N>m2 =
P>2

(0.02 m)(0.015 m)

 P = 18 kN

Failure of Bolt by Shear. The bolt can fail in shear along the plane 
between the plates. The free-body diagram in Fig. 1–27e indicates that  
V = P, so that

(tallow)b =
V
A

;  80(106) N>m2 =
P

p(0.005 m)2

    P = 6.28 kN

Comparing the above results, the largest allowable load for the 
connections depends upon the bolt shear. Therefore,

 P = 6.28 kN Ans.

P

50 mm

15 mm

20 mm

(a)

(c)

(b)

P

P

50 mm

15 mm

10 mm

20 mm

20 mm

P

P—
2

Failure of bolt by shear

15 mm

10 mm

P

(e)

P

V = P

P

(d)

Failure of plate by shear

15 mm
P—
2

P—
2

V =

V =

20 mm

Actual stress
distribution

Assumed uniform
stress distribution

P—
2

Failure of plate in tension

Failure of plate in bearing caused by bolt

Top view

P P

P

50 mm

15 mm

20 mm

(a)

(c)

(b)

P

P

50 mm

15 mm

10 mm

20 mm

20 mm

P

P—
2

Failure of bolt by shear

15 mm

10 mm

P

(e)

P

V = P

P

(d)

Failure of plate by shear

15 mm
P—
2

P—
2

V =

V =

20 mm

Actual stress
distribution

Assumed uniform
stress distribution

P—
2

Failure of plate in tension

Failure of plate in bearing caused by bolt

Top view

P P

Fig. 1–27  (cont.)
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eXaMPLe   1.15

The 400-kg uniform bar AB shown in Fig. 1–28a is supported by a steel rod 
AC and a roller at B. If it supports a live distributed loading of 3 kN>m, 
determine the required diameter of the rod. The failure stress for the steel 
is sfail = 345 MPa. Use the LRFD method, where the resistance factor for 
tension is f = 0.9 and the load factors for the dead and live loads are 
gD = 1.2 and gL = 1.6, respectively.

SOLUTION

Factored Loads. Here the dead load is the bar’s weight  
D = 400(9.81) N = 3.924 kN. Therefore, the factored dead load is 
1.2D =  4.709 kN. The live load resultant is L = (3 kN>m)(2 m) = 6 kN, 
so that the factored live load is 1.6L = 9.60 kN.

From the free-body diagram of the bar, Fig. 1–28b, the factored load in 
the rod can now be determined.

a + ΣMB = 0;  9.60  kN(1 m) + 4.709  kN(1 m) - FAC (2 m) = 0

 FAC = 7.154  kN

Area. The nominal strength of the rod is determined from Pn = sfail A, 
and since the nominal strength is defined by the resistance factor f = 0.9, 
we require

fPn Ú FAC;  0.9[345(106) N>m2] AAC = 7.154(103) N

 AAC = 23.04(10- 6) m2 = 23.04  mm2 =
p

4
 dAC

2

 dAC = 5.42  mm Ans.

2 m

3 kN/m

A

(a)

B

C

         (b)

A

1 m 1 m

9.60 kN

4.709 kN

B

FB

FAC

Fig. 1–28
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F1–13. Rods AC and BC are used to suspend the 200-kg 
mass. If each rod is made of a material for which the average 
normal stress cannot exceed 150 MPa, determine the 
minimum required diameter of each rod to the nearest mm.

A B

C

60�60�

Prob. F1–13

F1–14. The frame supports the loading shown. The pin at 
A has a diameter of 50 mm. If it is subjected to double shear, 
determine the average shear stress in the pin.

3 m

2 m

A E
C

D

B

2 m

60 kN

Prob. F1–14

F1–15. Determine the maximum average shear stress 
developed in each 12-mm-diameter bolt.

10 kN

5 kN

5 kN

Prob. F1–15

F1–16. If each of the three nails has a diameter of 4 mm and 
can withstand an average shear stress of 60 MPa, determine 
the maximum allowable force P that can be applied to  
the board.

P

Prob. F1–16

FUNDaMeNTaL PRObLeMS
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F1–17. The strut is glued to the horizontal member at 
surface AB. If the strut has a thickness of 25 mm and the glue 
can withstand an average shear stress of 600 kPa, determine 
the maximum force P that can be applied to the strut.

50 mm

A B

608

P

Prob. F1–17

F1–18. Determine the maximum average shear stress 
developed in the 30-mm-diameter pin.

30 kN

40 kN

Prob. F1–18

F1–19. If the eyebolt is made of a material having a yield 
stress of sY = 250 MPa, determine the minimum required 
diameter d of its shank. Apply a factor of safety F.S. = 1.5 
against yielding.

30 kN
d

Prob. F1–19

F1–20. If the bar assembly is made of a material having a 
yield stress of sY = 350 MPa, determine the minimum 
required dimensions h1 and h2 to the nearest mm. Apply a 
factor of safety F.S. = 1.5 against yielding. Each bar has a 
thickness of 12 mm.

A
BC

75 kN

75 kN

150 kN
h1

h2

Prob. F1–20
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F1–23. If the bolt head and the supporting bracket are made 
of the same material having a failure shear stress of  
tfail =  120 MPa, determine the maximum allowable force P 
that can be applied to the bolt so that it does not pull 
through the plate. Apply a factor of safety of F.S. = 2.5 
against shear failure.

40 mm

75 mm

80 mm

30 mm

P

Prob. F1–23

F1–24. Six nails are used to hold the hanger at A against 
the column. Determine the minimum required diameter of 
each nail to the nearest 1 mm if it is made of material having 
tfail = 112 MPa. Apply a factor of safety of F.S. = 2 against 
shear failure.

A
B

3 m

5 kN/m

Prob. F1–24

F1–21. Determine the maximum force P that can be 
applied to the rod if it is made of material having a yield 
stress of sY = 250 MPa. Consider the possibility that failure 
occurs in the rod and at section a–a. Apply a factor of safety 
of F.S. = 2 against yielding.

50 mm

60 mm120 mm

a

a

P
40 mm

Section a-a

Prob. F1–21

F1–22. The pin is made of a material having a failure shear 
stress of tfail = 100 MPa. Determine the minimum required 
diameter of the pin to the nearest mm. Apply a factor of 
safety of F.S. = 2.5 against shear failure.

80 kN

Prob. F1–22
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1–69. The tension member is fastened together using two 
bolts, one on each side of the member as shown. Each bolt 
has a diameter of 7.5 mm. Determine the maximum load P 
that can be applied to the member if the allowable shear 
stress for the bolts is tallow = 84 MPa. and the allowable 
average normal stress is sallow = 140 MPa.

60

PP

Prob. 1–69

1–70. Member B is subjected to a compressive force of  
4 kN. If A and B are both made of wood and are 10 mm 
thick, determine to the nearest multiples of 5 mm the 
smallest dimension h of the horizontal segment so that it 
does not fail in shear. The allowable shear stress for the 
segment is tallow = 2.1 MPa.

4 kNB

h
A

12

5
13

Prob. 1–70

1–71. The lever is attached to the shaft A using a key that 
has a width d and length of 25 mm. If the shaft is fixed and a 
vertical force of 200 N is applied perpendicular to the 
handle, determine the dimension d if the allowable shear 
stress for the key is tallow = 35 MPa.

500 mm

20 mm

d
aa

A

200 N

Prob. 1–71

*1–72. The lapbelt assembly is to be subjected to a force of 
800 N. Determine (a) the required thickness t of the belt  
if the allowable tensile stress for the material is 
(st)allow = 10 MPa (b) the required lap length dl if the glue 
can sustain an allowable shear stress of (tallow)g = 0.75 MPa,   
and (c) the required diameter dr of the pin if the allowable 
shear stress for the pin is (tallow)p = 30 MPa.

800 N

800 N

t

dr

dl

45 mm

Prob. 1–72

PRObLeMS
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1–73. The cotter is used to hold the two rods together. 
Determine the smallest thickness t of the cotter and the 
smallest diameter d of the rods. All parts are made of steel 
for which the failure normal stress is sfail = 500 MPa and 
the failure shear stress is tfail = 375 MPa. Use a factor of 
safety of (F.S.)t = 2.50 in tension and (F.S.)s = 1.75 in 
shear.

30 kN

30 kN

10 mm
t40 mm

d

d

Prob. 1–73

1–74. The truss is used to support the loading shown 
Determine the required cross-sectional area of member BC 
if the allowable normal strees is sallow = 165 MPa.

4000 N

E

C

F
 2000 N

D

2 m 2 m

2 m 2 m

45

30

60

B

A

Prob. 1–74

1–75. If the allowable tensile stress for wires AB and AC 
is sallow = 200 MPa, determine the required diameter of 
each wire if the applied load is P = 6 kN.

*1–76. If the allowable tensile stress for wires AB and AC 
is sallow = 180 MPa, and wire AB has a diameter of 5 mm 
and AC has a diameter of 6 mm, determine the greatest 
force P that can be applied to the chain.

45�

4

3

5

P

B

A

C

Probs. 1–75/76

1–77. The spring mechanism is used as a shock absorber 
for a load applied to the drawbar AB. Determine the force 
in each spring when the 50-kN force is applied. Each spring 
is originally unstretched and the drawbar slides along the 
smooth guide posts CG and EF. The ends of all springs are 
attached to their respective members. Also, what is  
the required diameter of the shank of bolts CG and EF if 
the allowable stress for the bolts is sallow = 150 MPa?

200 mm200 mm

50 kN

k¿ � 60 kN/m

C

A

E

H
B

G F

k¿ � 60 kN/m

k � 80 kN/m

D

Prob. 1–77
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1–78. The soft-ride suspension system of the mountain 
bike is pinned at C and supported by the shock absorber 
BD. If it is designed to support a load P = 1500 N, 
determine the required minimum diameter of pins B and C. 
Use a factor of safety of 2 against failure. The pins are made 
of material having a failure shear stress of tfail = 150 MPa, 
and each pin is subjected to double shear.

1–79. The soft-ride suspension system of the mountain bike 
is pinned at C and supported by the shock absorber BD. If it is 
designed to support a load of P = 1500 N, determine the 
factor of safety of pins B and C against failure if they are made 
of a material having a shear failure stress of tfail = 150 MPa. 
Pin B has a diameter of 7.5 mm, and pin C has a diameter of 
6.5 mm. Both pins are subjected to double shear.

CB

D

A

P

300 mm
100 mm

30 mm

60

Probs. 1–78/79

*1–80. Determine the required diameter of the pins at  
A and B if the allowable shear stress for the material is 
tallow = 100 MPa. Both pins are subjected to double shear.

A
B

C

2 kN/m

3 m

Prob. 1–80

1–81. The steel pipe is supported on the circular base 
plate and concrete pedestal. If the thickness of the pipe  
is t  = 5  mm and the base plate has a radius of 150 mm, 
determine the factors of safety against failure of the steel 
and concrete. The applied force is 500 kN, and the normal 
failure stresses for steel and concrete are (sfail)st = 350 MPa 
and (sfail)con = 25 MPa, respectively.

r

t

100 mm

500 kN

Prob. 1–81

1–82. The steel swivel bushing in the elevator control of 
an airplane is held in place using a nut and washer as shown 
in Fig. (a). Failure of the washer A can cause the push rod to 
separate as shown in Fig. (b). If the average shear stress is 
tavg = 145 MPa, determine the force F that must be applied 
to the bushing that will cause this to happen. The washer is 
1.5 mm thick.

(a) (b)

A

20 mm

FF

Prob. 1–82
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1–83. Determine the required minimum thickness t of 
member AB and edge distance b of the frame if P = 40 kN 
and the factor of safety against failure is 2. The wood has a 
normal failure stress of sfail = 42 MPa, and shear failure 
stress of tfail = 10.5 MPa.

P

b

B

C

At75 mm 75 mm

30

30

Prob. 1–83

*1–84. Determine the maximum allowable load P that can 
be safely supported by the frame if t = 30 mm and 
b = 90 mm. The wood has a normal failure stress of 
sfail = 42 MPa, and shear failure stress of tfail = 10.5 MPa. 
Use a factor of safety against failure of 2.

P

b

B

C

At75 mm 75 mm

30

30

Prob. 1–84

1–85. The hanger is supported using the rectangular pin. 
Determine the magnitude of the allowable suspended load 
P if the allowable bearing stress is (sb)allow = 220 MPa, the 
allowable tensile stress is (st)allow = 150 MPa, and the 
allowable shear stress is tallow = 130 MPa. Take t = 6 mm,
a = 5 mm and b = 25 mm.

20 mm

75 mm

10 mm

aa b

t
P

37.5 mm

37.5 mm

Prob. 1–85

1–86. The hanger is supported using the rectangular pin. 
Determine the required thickness t of the hanger, and 
dimensions a and b if the suspended load is P = 60 kN. The 
allowable tensile stress is (st)allow = 150 MPa, the allowable 
bearing stress is (sb)allow = 290 MPa, and the allowable 
shear stress is tallow = 125 MPa.

20 mm

75 mm

10 mm

aa b

t
P

37.5 mm

37.5 mm

Prob. 1–86
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1–87. The assembly is used to support the distributed 
loading of w = 10 kN>m. Determine the factor of safety with 
respect to yielding for the steel rod BC and the pins at A and 
B if the yield stress for the steel in tension is sY = 250 MPa 
and in shear tY = 125 MPa. The rod has a diameter of 13 mm, 
and the pins each have a diameter of 10 mm.

*1–88. If the allowable shear stress for each of the 
10-mm-diameter steel pins at A, B, and C is tallow = 90 MPa,  
and the allowable normal stress for the 13-mm-diameter rod 
is sallow = 150 MPa, determine the largest intensity w of  
the uniform distributed load that can be suspended from  
the beam.

C

B

A

1.2 m

0.9 m

0.3 m

w

Probs. 1–87/88

1–89. The compound wooden beam is connected together 
by a bolt at B. Assuming that the connections at A, B, C, 
and D exert only vertical forces on the beam, determine the 
required diameter of the bolt at B and the required outer 
diameter of its washers if the allowable tensile stress for the 
bolt is 1st2allow = 150 MPa and the allowable bearing 
stress for the wood is 1sb2allow = 28 MPa. Assume that the 
hole in the washers has the same diameter as the bolt.

1.5 m1.5 m1.5 m1.5 m2 m2 m

B

C D
A

3 kN 1.5 kN 2 kN

Prob. 1–89

1–90. The two aluminum rods support the vertical force 
of  P = 20 kN. Determine their required diameters if the 
allowable tensile stress for the aluminum is sallow = 150 MPa.

P

B

AC 45�

Prob. 1–90

1–91. The two aluminum rods AB and AC have diameters 
of 10 mm and 8 mm, respectively. Determine the largest 
vertical force P that can be supported. The allowable tensile 
stress for the aluminum is sallow = 150 MPa.

P

B

AC 45�

Prob. 1–91
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*1–92. The assembly consists of three disks A, B, and C  
that are used to support the load of 140 kN. Determine the 
smallest diameter d1 of the top disk, the largest diameter d2  
of the opening, and the largest diameter d3 of the hole  
in the bottom disk. The allowable bearing stress for the 
material is (sb)allow = 350 MPa and allowable shear stress is 
tallow = 125 MPa.

10 mm

20 mm

140 kN

d2

d3

d1

A
B

C

Prob. 1–92

1–93. The aluminum bracket A is used to support the 
centrally applied load of 40 kN. If it has a constant thickness 
of 12 mm, determine the smallest height h in order to prevent 
a shear failure. The failure shear stress is tfail = 160 MPa. 
Use a factor of safety for shear of F.S. = 2.5.

40 kN

hA

Prob. 1–93

1–94. The rods AB and CD are made of steel. Determine 
their smallest diameter so that they can support the dead 
loads shown. The beam is assumed to be pin connected at A 
and C. Use the LRFD method, where the resistance factor 
for steel in tension is f = 0.9, and the dead load factor is 
gD = 1.4. The failure stress is sfail = 345 MPa.

B

A

D

C

4 kN

6 kN
5 kN

3 m2 m2 m 3 m

Prob. 1–94

1–95. If the allowable bearing stress for the material 
under the supports at A and B is (sb)allow = 1.5 MPa, 
determine the size of square bearing plates A′ and B′ 
required to support the load. Dimension the plates to the 
nearest mm. The reactions at the supports are vertical. Take 
P = 100 kN.

*1–96. If the allowable bearing stress for the material 
under the supports at A and B is (sb)allow = 1.5 MPa, 
determine the maximum load P that can be applied to the 
beam. The bearing plates A′ and B′ have square cross 
sections of 150 mm * 150 mm and 250 mm * 250 mm, 
respectively.

3 m

P

A¿ B¿
A B

40 kN/m

1.5 m 1.5 m

Probs. 1–95/96
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CHaPTeR ReVIeW

O

F1 F2

N

T

M
V

Torsional
Moment

Bending
Moment

Shear
Force

Normal
Force

F
V V

tavg �
V
A

The internal loadings in a body consist of 
a normal force, shear force, bending 
moment, and torsional moment. They 
represent the resultants of both a normal 
and shear stress distribution that act over 
the cross section. To obtain these 
resultants, use the method of sections 
and the equations of equilibrium.

 ΣFx = 0

  ΣFy = 0

  ΣFz = 0

 ΣMx = 0

 ΣMy = 0

 ΣMz = 0

If a bar is made from homogeneous 
isotropic material and it is subjected to a 
series of external axial loads that pass 
through the centroid of the cross section, 
then a uniform normal stress distribution 
will act over the cross section. This 
average normal stress can be determined 
from s = N>A, where N is the internal 
axial load at the section.

s =
N
A

 

The average shear stress can be 
determined using tavg = V>A, where V is 
the shear force acting on the cross section. 
This formula is often used to find the 
average shear stress in fasteners or in 
parts used for connections.

tavg =
 V
 A

 

The ASD method of design of any simple 
connection requires that the average 
stress along any cross section not exceed 
an allowable stress of sallow  or tallow. 
These values are reported in codes and 
are considered safe on the basis of 
experiments or through experience. 
Sometimes a factor of safety is reported 
provided the failure stress is known.

F.S. =
 sfail 

 sallow 
=

 tfail 
 tallow 

 

The LRFD method of design is used for 
the design of structural members. It 
modifies the load and the strength of the 
material separately, using load and 
resistance factors.

fPn Ú ΣgiRi

s

s s �

NN

N
A
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C1–1. Hurricane winds have caused the failure of this 
highway sign. Assuming the wind creates a uniform pressure 
on the sign of 2 kPa, use reasonable dimensions for the sign 
and determine the resultant shear and moment at each of 
the two connections where the failure occurred.

C1–1

C1–2. High-heel shoes can often do damage to soft wood 
or linoleum floors. Using a reasonable weight and 
dimensions for the heel of a regular shoe and a high-heel 
shoe, determine the bearing stress under each heel if the 
weight is transferred down only to the heel of one shoe.

C1–2

C1–3. Here is an example of the single shear failure of a 
bolt. Using appropriate free-body diagrams, explain why 
the bolt failed along the section between the plates, and not 
along some intermediate section such as a–a.

aa

C1–3

C1–4. The vertical load on the hook is 5 kN. Draw the 
appropriate free-body diagrams and determine the maximum 
average shear force on the pins at A, B, and C. Note that due 
to symmetry four wheels are used to support the loading on 
the railing.

A

B C

C1–4

CONCePTUaL PRObLeMS
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R1–1. The circular punch B exerts a force of 2 kN on the 
top of the plate A. Determine the average shear stress in the 
plate due to this loading.

2 kN

2 mm

B

A

4 mm

Prob. R1–1

R1–2. Determine the required thickness of member BC 
and the diameter of the pins at A and B to the nearest mm 
if the allowable normal stress for member BC is 
sallow = 200 MPa and the allowable shear stress for the pins 
is tallow = 70 MPa.

C

60
2.4 mB A

30 kN/m

40 mm

Prob. R1–2

R1–3. The long bolt passes through the 30-mm-thick plate. 
If the force in the bolt shank is 8 kN, determine the average 
normal stress in the shank, the average shear stress along 
the cylindrical area of the plate defined by the section lines 
a–a, and the average shear stress in the bolt head along the 
cylindrical area defined by the section lines b–b.

8 kN
18 mm

7 mm

30 mm

8 mm a

a

b

b

Prob. R1–3

*R1–4. The beam AB is pin supported at A and supported 
by a cable BC. A separate cable CG is used to hold up the 
frame. If AB weighs 2.0 kN>m and the column FC has a 
weight of 3.0 kN>m, determine the resultant internal 
loadings acting on cross sections located at points D and E. 
Neglect the thickness of both the beam and column in the 
calculation.

1.2 m

3.6 m

1.2 m

2.4 m
3.6 m

1.8 m

A

E

G

B

F

D

C

Prob. R1–4

ReVIeW PRObLeMS
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R1–5. Determine the average punching shear stress the 
circular shaft creates in the metal plate through section AC 
and BD. Also, what is the average bearing stress developed 
on the surface of the plate under the shaft?

50 mm

10 mm

40 kN

60 mm

120 mm

A

C D

B

Prob. R1–5

R1–6. The 150 mm by 150 mm block of aluminum supports 
a compressive load of 6 kN. Determine the average normal 
and shear stress acting on the plane through section a–a. 
Show the results on a differential volume element located 
on the plane.

30�

150 mm

6 kN

a

a

Prob. R1–6

R1–7. The yoke-and-rod connection is subjected to a 
tensile force of 5 kN. Determine the average normal stress 
in each rod and the average shear stress in the pin A 
between the members.

25 mm

40 mm

30 mm

A

5 kN

5 kN

Prob. R1–7

*R1–8. The cable has a specific weight g (weight/volume) 
and cross-sectional area A. Assuming the sag s is small, so 
that the cable’s length is approximately L and its weight can 
be distributed uniformly along the horizontal axis, determine 
the average normal stress in the cable at its lowest point C.

s

L/2 L/2

C

A B

Prob. R1–8
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Noticeable deformation occurred in this chain link just before excessive stress 
caused it to fracture. 

2

(© Eyebyte/Alamy)
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Strain

2.1 Deformation
Whenever a force is applied to a body, it will tend to change the body’s 
shape and size. These changes are referred to as deformation, and they 
may be highly visible or practically unnoticeable. For example, a rubber 
band will undergo a very large deformation when stretched, whereas only 
slight deformations of structural members occur when a building is 
occupied. Deformation of a body can also occur when the temperature of 
the body is changed. A typical example is the thermal expansion or 
contraction of a roof caused by the weather.

In a general sense, the deformation will not be uniform throughout the 
body, and so the change in geometry of any line segment within the body 
may vary substantially along its length. Hence, to study deformation, we 
will consider line segments that are very short and located in the 
neighborhood of a point. Realize, however, that the deformation will also 
depend on the orientation of the line segment at the point. For example, 
as shown in the adjacent photos, a line segment may elongate if it is 
oriented in one direction, whereas it may contract if it is oriented in 
another direction.

Chapter OBJeCtIVeS

■ In engineering the deformation of a body is specified using the 
concepts of normal and shear strain. In this chapter we will define 
these quantities and show how they can be determined for 
various types of problems.

  

Note the before and after positions of three 
different line segments on this rubber 
membrane which is subjected to tension. The 
vertical line is lengthened, the horizontal line 
is shortened, and the inclined line changes its 
length and rotates.
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2.2 Strain
In order to describe the deformation of a body by changes in the lengths 
of line segments and changes in the angles between them, we will develop 
the concept of strain. Strain is actually measured by experiment, and once 
the strain is obtained, it will be shown in the next chapter how it can be 
related to the stress acting within the body.

L0 d

L

PP

Fig. 2–1 

Undeformed body

PP

�s

Deformed body

�s¿

Fig. 2–2 

Normal Strain. If an axial load P is applied to the bar in Fig. 2–1, it 
will change the bar’s length L0 to a length L. We will define the average 
normal strain P (epsilon) of the bar as the change in its length 
d (delta) = L - L0 divided by its original length, that is

 Pavg =
L - L0

L0
 (2–1)

The normal strain at a point in a body of arbitrary shape is defined in a 
similar manner. For example, consider the very small line segment ∆s 
located at the point, Fig. 2–2. After deformation it becomes ∆s′, and the 
change in its length is therefore ∆s′ - ∆s. As ∆s S 0, in the limit the 
normal strain at the point is therefore

 P =  lim
∆sS  0

∆s′ - ∆s
∆s

 (2–2)

In both cases P (or Pavg) is a change in length per unit length, and it is pos-
itive when the initial line elongates, and negative when the line contracts.

Units. As shown, normal strain is a dimensionless quantity, since it is a 
ratio of two lengths. However, it is sometimes stated in terms of a ratio of 
length units. If the SI system is used, where the basic unit for length is the 
meter (m), then since P is generally very small, for most engineering 
applications, measurements of strain will be in micrometers per meter 
(mm>m), where 1 mm = 10-6 m. For experimental work, strain is 
sometimes expressed as a percent. For example, a normal strain of 480(10-6) 
can be reported as 480 mm>m, or 0.0480%. Or  one can state the strain as 
simply 480 m (480 “micros”).
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Shear Strain. Deformations not only cause line segments to elongate 
or contract, but they also cause them to change direction. If we select two 
line segments that are originally perpendicular to one another, then the 
change in angle that occurs between them is referred to as shear strain. This 
angle is denoted by g (gamma) and is always measured in radians (rad), 
which are dimensionless. For example, consider the two perpendicular line 
segments at a point in the block shown in Fig. 2–3a. If an applied loading 
causes the block to deform as shown in Fig. 2–3b, so that the angle between 
the line segments  becomes u, then the shear strain at the point becomes

 g =
p

2
- u  (2–3)

Notice that if u is smaller than p>2, Fig. 2–3c, then the shear strain is 
positive, whereas if u is larger than p>2, then the shear strain is negative.

Cartesian Strain Components. We can generalize our definitions 
of normal and shear strain and consider the undeformed element at a 
point in a body, Fig. 2–4a. Since the element’s dimensions are very small,  
its deformed shape will become a parallelepiped, Fig. 2–4b. Here the 
normal strains change the sides of the element to

(1 + Px)∆x  (1 + Py)∆y  (1 + Pz)∆z

which produces a change in the volume of the element. And the shear 
strain changes the angles between the sides of the element to

p

2
- gxy  

p

2
- gyz  

p

2
- gxz

which produces a change in the shape of the element.

(a)

y

x

z

(b)

�y
�x

�z

Undeformed
element

p

2
p

2

p

2

(1 � Py)�y
(1 � Px)�x

(1 � Pz)�z

Deformed
element

(

(c)

� gyz)

( � gxz)

( � gxy)
p

2

p

2

p

2

Fig. 2–4 

(c)

Undeformed body

Positive shear strain g

V V

Negative shear strain g

Deformed bodyDeformed body

(b)(a)

p—
2

p—
2p—

2 u

u

uu

gg

Fig. 2–3 
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Small Strain Analysis. Most engineering design involves applications 
for which only small deformations are allowed. In this text, therefore, we will 
assume that the deformations that take place within a body are almost 
infinitesimal. For example, the normal strains occurring within the material 
are very small compared to 1, so that P V 1. This assumption has wide 
practical application in engineering, and it is often referred to as a small 
strain analysis. It can also be used when a change in angle, ∆u, is small, so 
that sin ∆u ≈ ∆u, cos ∆u ≈ 1, and tan ∆u ≈ ∆u.

The rubber bearing support under this 
concrete bridge girder is subjected to 
both normal and shear strain. The 
normal strain is caused by the weight 
and bridge loads on the girder, and the 
shear strain is caused by the horizontal 
movement of the girder due to 
temperature changes.

Important poInts

 • Loads will cause all material bodies to deform and, as a result, 
points in a body will undergo displacements or changes in 
position.

 • Normal strain is a measure per unit length of the elongation or 
contraction of a small line segment in the body, whereas shear 
strain is a measure of the change in angle that occurs between 
two small line segments that are originally perpendicular to one 
another.

 • The state of strain at a point is characterized by six strain 
components: three normal strains Px, Py, Pz and three shear strains 
gxy, gyz, gxz. These components all depend upon the original 
orientation of the line segments and their location in the body.

 • Strain is the geometrical quantity that is measured using 
experimental techniques. Once obtained, the stress in the body 
can then be determined from material property relations, as 
discussed in the next chapter.

 • Most engineering materials undergo very small deformations, 
and so the normal strain P V 1. This assumption of “small strain 
analysis” allows the calculations for normal strain to be simplified, 
since first-order approximations can be made about its size.
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EXAMPLE   2.1 

Determine the average normal strains in the two wires in Fig. 2–5 if the ring 
at A moves to A′.

3 m

B 

A

C

3 m

4 m

20 mm
10 mmP

A¿

Fig. 2–5 

SOLUTION

Geometry. The original length of each wire is

LAB = LAC = 2(3 m)2 + (4 m)2 = 5 m

The final lengths are

LA′B = 2(3 m - 0.01 m)2 + (4 m + 0.02 m)2 = 5.01004 m

LA′C = 2(3 m + 0.01 m)2 + (4 m + 0.02 m)2 = 5.02200 m

Average Normal Strain.

 PAB =
LA′B - LAB

LAB
=

5.01004 m - 5 m
5 m

= 2.01(10-3) m>m Ans.

 PAC =
LA′C - LAC

LAC
=

5.02200 m - 5 m
5 m

= 4.40(10-3) m>m  Ans.
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EXAMPLE   2.2

When force P is applied to the rigid lever arm ABC in Fig. 2–6a, the arm 
rotates counterclockwise about pin A through an angle of 0.05°. Determine 
the normal strain in wire BD.

SOLUTION I

Geometry. The orientation of the lever arm after it rotates about point A 
is shown in Fig. 2–6b. From the geometry of this figure,

a = tan- 1a400 mm
300 mm

b = 53.1301°

Then

f = 90° - a + 0.05° = 90° - 53.1301° + 0.05° = 36.92°

For triangle ABD the Pythagorean theorem gives

LAD = 2(300 mm)2 + (400 mm)2 = 500 mm

Using this result and applying the law of cosines to triangle AB′D,

LB′D = 2L2
AD + L2

AB′ - 2(LAD) (LAB′) cos f

 = 2(500 mm)2 + (400 mm)2 - 2(500 mm) (400 mm) cos 36.92°

 = 300.3491 mm

Normal Strain.

PBD =
 LB′D - LBD 

LBD

 =
 300.3491 mm - 300 mm

 300 mm
 = 0.00116 mm>mm Ans.

SOLUTION II

Since the strain is small, this same result can be obtained by approximating 
the elongation of wire BD as ∆LBD, shown in Fig. 2–6b. Here,

∆LBD = uLAB = c a0.05°
180°

b  (p rad) d  (400 mm) = 0.3491 mm

Therefore,

 PBD =
 ∆LBD 
 LBD 

 =
 0.3491 mm

 300 mm
 = 0.00116 mm>mm  Ans.

AB

D

C
400 mm

(a)

 P 300 mm

A

B

B¿

D

C 400 mm

400 mm

(b)

u � 0.05�
�LBD

f 

a

 P
300 mm

Fig. 2–6 
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EXAMPLE   2.3 

The plate shown in Fig. 2–7a is fixed connected along AB and held in 
the horizontal guides at its top and bottom, AD and BC. If its right side 
CD is given a uniform horizontal displacement of 2 mm, determine (a) 
the average normal strain along the diagonal AC, and (b) the shear 
strain at E relative to the x, y axes.

SOLUTION

Part (a). When the plate is deformed, the diagonal AC becomes 
AC′, Fig. 2–7b. The lengths of diagonals AC and AC′ can be found 
from the Pythagorean theorem. We have

 AC = 210.150 m22 + 10.150 m22 = 0.21213 m 

 AC′ = 210.150 m22 + 10.152 m22 = 0.21355 m

Therefore the average normal strain along AC is

 1PAC2avg =
AC′ - AC

AC
 =

0.21355 m - 0.21213 m
0.21213 m

  = 0.00669 mm>mm  Ans.

Part (b). To find the shear strain at E relative to the x and y axes, 
which are 90° apart, it is necessary to find the change in the angle at 
E. After deformation, Fig. 2–7b,

 tanau
2
b =

76 mm
75 mm

 u = 90.759° = a  p
 180°

 b 190.759°2 = 1.58404 rad

Applying Eq. 2–3, the shear strain at E is therefore the change in the 
angle AED,

 gxy =
p

2
- 1.58404 rad = -0.0132 rad  Ans.

The negative sign indicates that the once 90° angle becomes larger.

NOTE: If the x and y axes were horizontal and vertical at point E, then 
the 90° angle between these axes would not change due to the 
deformation, and so gxy = 0 at point E.

150 mm

(a)

2 mm

y

150 mm

x

D

B C

A

E

76 mm

(b)

75 mm

E¿

D¿

B C¿

A

75 mm

76 mm

u

Fig. 2–7 
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P2–1.  A loading causes the member to deform into the 
dashed shape. Explain how to determine the normal strains 
PCD  and  PAB. The displacement ∆ and the lettered 
dimensions are known.

PRELIMINARY PROBLEMS

P2–3.  A loading causes the wires to elongate into the 
dashed shape. Explain how to determine the normal strain 
PAB in wire AB. The displacement ∆ and the distances 
between all lettered points are known.

�

A

A¿

C B

Prob. P2–3 

P2–4.  A loading causes the block to deform into the 
dashed shape. Explain how to determine the strains PAB, 
PAC, PBC, (gA)xy. The angles and distances between all 
lettered points are known.

 y

x

B

B¿

C

C¿

A D

u

Prob. P2–4 

D

A C
B

L 2 L

L
L/2

�

Prob. P2–1 

P2–5.  A loading causes the block to deform into the 
dashed shape. Explain how to determine the strains (gA)xy, 
(gB)xy. The angles and distances between all lettered points 
are known.

P2–2.  A loading causes the member to deform into the 
dashed shape. Explain how to determine the normal strains 
PCD  and  PAB. The displacement ∆ and the lettered  
dimensions are known.

Prob. P2–5 

 y

x

B

A

u2

u1

Prob. P2–2 

D

A

B C

L2 L

L

L/2
�
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F2–1. When force P is applied to the rigid arm ABC, 
point B displaces vertically downward through a distance of 
0.2 mm. Determine the normal strain in wire CD.

A
B C

D

400 mm
200 mm 300 mm

P

Prob. F2–1
F2–2. If the force P causes the rigid arm ABC to rotate 
clockwise about pin A through an angle of 0.02°, determine 
the normal strain in wires BD and CE.

A
B C

D

600 mm 600 mm

600 mm

E

400 mm
P

Prob. F2–2
F2–3.  The rectangular plate is deformed into the shape of a 
parallelogram shown by the dashed line. Determine the average 
shear strain at corner A with respect to the x and y axes.

 y

x
A

B

D C

300 mm

2 mm

4 mm

400 mm

Prob. F2–3

F2–4. The triangular plate is deformed into the shape 
shown by the dashed line. Determine the normal strain 
along edge BC and the average shear strain at corner A 
with respect to the x and y axes.

A

C

B

 y

x

300 mm

3 mm

5 mm
400 mm

Prob.  F2–4

F2–5. The square plate is deformed into the shape shown 
by the dashed line. Determine the average normal strain 
along diagonal AC and the shear strain at point E with 
respect to the x and y axes.

 y x

E

A B

D C

300 mm

300 mm
3 mm3 mm

4 mm

Prob. F2–5

FUNDAMENTAL PROBLEMS
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2–1. An air-filled rubber ball has a diameter of 150 mm. If 
the air pressure within it is increased until the ball’s 
diameter becomes 175 mm, determine the average normal 
strain in the rubber.

2–2. A thin strip of rubber has an unstretched length of 
375 mm. If it is stretched around a pipe having an outer 
diameter of 125 mm, determine the average normal strain in 
the strip.

2–3. If the load P on the beam causes the end C to be 
displaced 10 mm downward, determine the normal strain in 
wires CE and BD.

C

3 m

ED

2 m

4 m

P

BA

2 m

Prob. 2–3

*2–4. The force applied at the handle of the rigid lever 
causes the lever to rotate clockwise about the pin B through 
an angle of 2°. Determine the average normal strain in each 
wire. The wires are unstretched when the lever is in the 
horizontal position.

A B

C

H

D

G F

E

200 mm

200 mm 200 mm
300 mm 300 mm

Prob. 2–4

2–5. The pin-connected rigid rods AB and BC are inclined 
at u = 30° when they are unloaded. When the force P is 
applied u becomes 30.2°. Determine the average normal 
strain in wire AC.

P

B

C A

600 mm
uu

Prob. 2–5

2–6. The wire AB is unstretched when u = 45°. If a load is 
applied to the bar AC, which causes u to become 47°, 
determine the normal strain in the wire.

2–7. If a horizontal load applied to the bar AC causes point 
A to be displaced to the right by an amount ∆L, determine 
the normal strain in the wire AB. Originally, u = 45°.

L

AC

L

B

u

Probs. 2–6/7

PROBLEMS
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*2–8. The rectangular plate is subjected to the deformation 
shown by the dashed line. Determine the average shear 
strain gxy in the plate.

3 mm

3 mm150 mm

y

x

200 mm

B

A

Prob. 2–8

2–9. The square deforms into the position shown by the 
dashed lines. Determine the shear strain at each of its 
corners, A, B, C, and D, relative to the x, y axes. Side D′B′ 
remains horizontal.

A

50 mm
8 mm

50 mm

3 mm

53 mm

D

y

x

D¿
B

C
C¿

B¿

91.58

Prob. 2–9

2–10. Part of a control linkage for an airplane consists of a 
rigid member CB and a flexible cable AB. If a force is 
applied to the end B of the member and causes it to rotate 
by u = 0.5°, determine the normal strain in the cable. 
Originally the cable is unstretched.

600 mm

A

B P

800 mm

C

u

Prob. 2–10

2–11. Part of a control linkage for an airplane consists of a 
rigid member CB and a flexible cable AB. If a force is 
applied to the end B of the member and causes a normal 
strain in the cable of 0.004 mm>mm, determine the 
displacement of point B. Originally the cable is unstretched.

600 mm

A

B P

800 mm

C

u

Prob. 2–11



98  Chapter 2  Strain

2

*2–12. Determine the shear strain gxy at corners A and B 
if the plastic distorts as shown by the dashed lines.

2–13. Determine the shear strain gxy at corners D and C if 
the plastic distorts as shown by the dashed lines.

300 mm

400 mm
D A

y

x

5 mm

4 mm

B

12 mm

3 mm 8 mm

2 mm

C

Probs. 2–12/13

2–14. The material distorts into the dashed position 
shown. Determine the average normal strains Px, Py and the 
shear strain gxy at A, and the average normal strain along 
line BE.

2–15. The material distorts into the dashed position 
shown. Determine the average normal strains along the 
diagonals AD and CF.

x

y

150 mm

50 mm

50 mm

200 mm

30 mm15 mm
D

E

FA

B

C

Probs. 2–14/15

*2–16. The nylon cord has an original length L and is tied 
to a bolt at A and a roller at B. If a force P is applied to the 
roller, determine the normal strain in the cord when the 
roller is at C, and at D. If the cord is originally unstrained 
when it is at C, determine the normal strain P′D when the 
roller moves to D. Show that if the displacements ∆C and ∆D 
are small, then P′D = PD − PC.

P

L

A

B DC

�D

�C

Prob. 2–16

2–17. A thin wire, lying along the x axis, is strained such 
that each point on the wire is displaced ∆x = kx2 along the 
x  axis. If k is constant, what is the normal strain at any 
point P along the wire?

x

P
x

Prob. 2–17
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2–18. The block is deformed into the position shown by 
the dashed lines. Determine the average normal strain along 
line AB.

y

x

B
B¿

70 mm

70 mm
55 mm

100 mm

30 mm

30 mm
30 mm

110 mm

15 mm

A

Prob. 2–18

2–19. Nylon strips are fused to glass plates. When 
moderately heated the nylon will become soft while the 
glass stays approximately rigid. Determine the average 
shear strain in the nylon due to the load P when the 
assembly deforms as indicated.

2 mm

3 mm

5 mm

3 mm

3 mm

5 mm

P

y

x

Prob. 2–19

*2–20. The guy wire AB of a building frame is originally 
unstretched. Due to an earthquake, the two columns of the 
frame tilt u = 2°. Determine the approximate normal strain 
in the wire when the frame is in this position. Assume the 
columns are rigid and rotate about their lower supports.

B

A

1 m

3 m

u  2

4 m

u  2

Prob. 2–20

2–21. The rectangular plate is deformed into the shape 
shown by the dashed lines. Determine the average normal 
strain along diagonal AC, and the average shear strain at 
corner A relative to the x, y axes.  

 y

xA B

D C

300 mm

400 mm
6 mm

6 mm

2 mm

2 mm 2 mm

3 mm400 mm

Prob. 2–21
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2–22. The corners B and D of the square plate are given 
the displacements indicated. Determine the shear strains at 
A and B.

3 mm

3 mm

16 mm16 mm

16 mm

16 mm

y

x

A

B

C

D

Prob. 2–22

2–23. Determine the shear strain gxy at corners A and B if 
the plate distorts as shown by the dashed lines.

*2–24. Determine the shear strain gxy at corners D and C 
if the plate distorts as shown by the dashed lines.

2–25. Determine the average normal strain that occurs 
along the diagonals AC and DB.

300 mm

400 mm
D A

y

x

3 mm

2 mm

B

5 mm

2 mm 4 mm

2 mm

C

Probs. 2–23/24/25

2–26. If the unstretched length of the bowstring is  
887.5 mm, determine the average normal strain in the string 
when it is stretched to the position shown.

450 mm

150 mm

450 mm

Prob. 2–26

2–27. The triangular plate is fixed at its base, and its apex A 
is given a horizontal displacement of 5 mm. Determine the 
shear strain, gxy, at A.

*2–28. The triangular plate is fixed at its base, and its apex A 
is given a horizontal displacement of 5 mm. Determine the 
average normal strain Px along the x axis.

2–29. The triangular plate is fixed at its base, and its apex A 
is given a horizontal displacement of 5 mm. Determine the 
average normal strain Px′ along the x′ axis.

800 mm

800 mm

x

x¿

y

A¿
5 mm

45�

45�

45�

A

Probs. 2–27/28/29
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2–30. The rubber band AB has an unstretched length of 1 
m. If it is fixed at B and attached to the surface at point A′, 
determine the average normal strain in the band. The surface 
is defined by the function y = (x2) m, where x is in meters.

y

x
1 m

1 m

AB

A¿

y  x2

Prob. 2–30

2–31. The rectangular plate is deformed into the shape 
shown by the dashed lines. Determine the average normal 
strain along diagonal BD, and the average shear strain at 
corner B relative to the x, y axes.  

 y

xA B

D C

300 mm

400 mm
6 mm

6 mm

2 mm

2 mm 2 mm

3 mm400 mm

Prob. 2–31

*2–32. The nonuniform loading causes a normal strain in 

the shaft that can be expressed as Px = k sin ap
L

 xb , where  

k is a constant. Determine the displacement of the center C 
and the average normal strain in the entire rod.

L—
2

L—
2

A B

C

Prob. 2–32

2–33. The fiber AB has a length L and orientation u. If its 
ends A and B undergo very small displacements uA  and vB 
respectively, determine the normal strain in the fiber when 
it is in position A′ B′.

A

y

x

B¿

B
vB

uA A¿

L
u

Prob. 2–33

2–34. If the normal strain is defined in reference to the 
final length ∆s′, that is,

P= = lim
∆s′S   0

 a∆s′ - ∆s
∆s′

b

instead of in reference to the original length, Eq. 2–2, show 
that the difference in these strains is represented as a 
second-order term, namely, P - P= = P P′.



Chapter 3

Horizontal ground displacements caused by an earthquake produced fracture of 
this concrete column. The material properties of the steel and concrete must  
be determined so that engineers can properly design the column to resist the 
loadings that caused this failure.

(© Tom Wang/Alamy)



103

Mechanical  
ProPerties of 
Materials

3.1  The Tension and Compression 
TesT

The strength of a material depends on its ability to sustain a load without 
undue deformation or failure. This strength is inherent in the material 
itself and must be determined by experiment. One of the most important 
tests to perform in this regard is the tension or compression test. Once 
this test is performed, we can then determine the relationship between 
the average normal stress and average normal strain in many engineering 
materials such as metals, ceramics, polymers, and composites.

Chapter OBJeCtIVeS

■ Having discussed the basic concepts of stress and strain, in this 
chapter we will show how stress can be related to strain by using 
experimental methods to determine the stress–strain diagram for 
a specific material. Other mechanical properties and tests that 
are relevant to our study of mechanics of materials also will 
be discussed.
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L0 � 51 mm

d0 � 13 mm

Fig. 3–1

Typical steel specimen with attached strain 
gage

load
dial

motor
and load
controls

movable
upper

crosshead

tension
specimen

Fig. 3–2

Electrical-resistance
strain gage

Fig. 3–3

To perform a tension or compression test, a specimen of the material 
is made into a “standard” shape and size, Fig. 3–1. As shown it has a 
constant circular cross section with enlarged ends, so that when tested, 
failure will occur somewhere within the central region of the 
specimen. Before testing, two small punch marks are sometimes placed 
along the specimen’s uniform length. Measurements are taken of both 
the specimen’s initial cross-sectional area, A0, and the gage-length 
distance  L0 between the punch marks. For example, when a metal 
specimen is used in a tension test, it generally has an initial diameter 
of d0 = 13 mm and a gage length of L0 = 51 mm, Fig. 3–1. A testing 
machine like the one shown in Fig. 3–2 is then used to stretch the 
specimen at a very slow, constant rate until it fails. The machine is 
designed to read the load required to maintain this uniform stretching.

At frequent intervals, data is recorded of the applied load P. Also, the 
elongation d = L - L0 between the punch marks on the specimen may 
be measured, using either a caliper or a mechanical or optical device 
called an extensometer. Rather than taking this measurement and then 
calculating the strain, it is also possible to read the normal strain directly 
on the specimen by using an electrical-resistance strain gage, which 
looks like the one shown in Fig. 3–3. As shown in the adjacent photo, the 
gage is cemented to the specimen along its length, so that it becomes an 
integral part of the specimen. When the specimen is strained in the 
direction of the gage, both the wire and specimen will experience the 
same deformation or strain. By measuring the change in the electrical 
resistance of the wire, the gage may then be calibrated to directly read 
the normal strain in the specimen.
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3.2 The sTress–sTrain diagram
Once the stress and strain data from the test are known, then the results 
can be plotted to produce a curve called the stress–strain diagram. This 
diagram is very useful since it applies to a specimen of the material made 
of any size. There are two ways in which the stress–strain diagram is 
normally described.

Conventional Stress–Strain Diagram. The nominal or 
engineering stress is determined by dividing the applied load P by the 
specimen’s original cross-sectional area A0. This calculation assumes that 
the stress is constant over the cross section and throughout the gage 
length. We have

s =
P
A0

 (3–1)

Likewise, the nominal or engineering strain is found directly from the 
strain gage reading, or by dividing the change in the specimen’s gage 
length, d, by the specimen’s original gage length L0. Thus,

P =
d

L0
 (3–2)

When these values of s and P are plotted, where the vertical axis is the 
stress and the horizontal axis is the strain, the resulting curve is called a 
conventional stress–strain diagram. A typical example of this curve is 
shown in Fig. 3–4. Realize, however, that two stress–strain diagrams for a 
particular material will be quite similar, but will never be exactly the 
same. This is because the results actually depend upon such variables as 
the material’s composition, microscopic imperfections, the way the 
specimen is manufactured, the rate of loading, and the temperature 
during the time of the test.

From the curve in Fig. 3–4, we can identify four different regions in 
which the material behaves in a unique way, depending on the amount of 
strain induced in the material.

Elastic Behavior. The initial region of the curve, indicated in light 
orange, is referred to as the elastic region. Here the curve is a straight line 
up to the point where the stress reaches the proportional limit, spl. 
When  the stress slightly exceeds this value, the curve bends until the 
stress reaches an elastic limit. For most materials, these points are very 
close, and therefore it becomes rather difficult to distinguish their exact 
values. What makes the elastic region unique, however, is that after 
reaching s  Y, if the load is removed, the specimen will recover its original 
shape. In other words, no damage will be done to the material.

elastic
region

yielding strain
hardening

necking

elastic
behavior

plastic behavior

elastic limit
yield stress

ultimate
stress

true fracture stress

fracture
stress

Conventional and true stress–strain diagram
for ductile material (steel) (not to scale)

P

s¿f

sf

sY
spl

su

s

proportional limit

E

Fig. 3–4
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Because the curve is a straight line up to spl, any increase in stress will 
cause a proportional increase in strain. This fact was discovered in 1676 
by Robert Hooke, using springs, and is known as Hooke’s law. It is 
expressed mathematically as

s = EP  (3–3)

Here E represents the constant of proportionality, which is called the 
modulus of elasticity or Young’s modulus, named after Thomas Young, 
who published an account of it in 1807.

As noted in Fig. 3–4, the modulus of elasticity represents the slope of 
the straight line portion of the curve. Since strain is dimensionless, from 
Eq. 3–3, E will have the same units as stress, such as pascals (Pa), 
megapascals (MPa), or gigapascals (GPa).

elastic
region

yielding strain
hardening

necking

elastic
behavior

plastic behavior

elastic limit
yield stress

ultimate
stress

true fracture stress

fracture
stress

Conventional and true stress–strain diagram
for ductile material (steel) (not to scale)

P

s¿f

sf

sY
spl

su

s

proportional limit

E

Fig. 3–4 (Repeated)

Yielding. A slight increase in stress above the elastic limit will result in 
a breakdown of the material and cause it to deform permanently. This 
behavior is called yielding, and it is indicated by the rectangular dark 
orange region in Fig. 3–4. The stress that causes yielding is called the yield 
stress or yield point, sY, and the deformation that occurs is called plastic 
deformation. Although not shown in Fig. 3–4, for low-carbon steels or 
those that are hot rolled, the yield point is often distinguished by two 
values. The upper yield point occurs first, followed by a sudden decrease in 
load-carrying capacity to a lower yield point. Once the yield point is 
reached, then as shown in Fig. 3–4, the specimen will continue to elongate 
(strain) without any increase in load. When the material behaves in this 
manner, it is often referred to as being perfectly plastic.
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Strain Hardening. When yielding has ended, any load causing an 
increase in stress will be supported by the specimen, resulting in a curve 
that rises continuously but becomes flatter until it reaches a maximum 
stress referred to as the ultimate stress, su. The rise in the curve in this 
manner is called strain hardening, and it is identified in Fig. 3–4 as the 
region in light green.

Necking. Up to the ultimate stress, as the specimen elongates, its 
cross-sectional area will decrease in a fairly uniform manner over the 
specimen’s entire gage length. However, just after reaching the ultimate 
stress, the cross-sectional area will then begin to decrease in a localized 
region of the specimen, and so it is here where the stress begins to 
increase. As a result, a constriction or “neck” tends to form with further 
elongation, Fig. 3–5a. This region of the curve due to necking is indicated 
in dark green in Fig. 3–4. Here the stress–strain diagram tends to curve 
downward until the specimen breaks at the fracture stress, sf , Fig. 3–5b.

True Stress–Strain Diagram. Instead of always using the original 
cross-sectional area A0 and specimen length L0 to calculate the (engineering) 
stress and strain, we could have used the actual cross-sectional area A and 
specimen length L at the instant the load is measured. The values of stress 
and strain found from these measurements are called true stress and  
true strain, and a plot of their values is called the true stress–strain diagram. 
When this diagram is plotted, it has a form shown by the upper blue curve 
in Fig. 3–4. Note that the conventional and true s9P diagrams are practically 
coincident when the strain is small. The differences begin to appear in the 
strain-hardening range, where the magnitude of strain becomes more 
significant. From the conventional s9P diagram, the specimen appears to 
support a decreasing stress (or load), since A0 is constant, s = N>A0. In 
fact, the true s9P diagram shows the area A within the necking region is 
always decreasing until fracture, s′f , and so the material actually sustains 
increasing stress, since s = N>A.

Although there is this divergence between these two diagrams, we can 
neglect this effect since most engineering design is done only within the 
elastic range. This will generally restrict the deformation of the material to 
very small values, and when the load is removed the material will restore 
itself to its original shape. The conventional stress–strain diagram can be 
used in the elastic region because the true strain up to the elastic limit is 
small enough, so that the error in using the engineering values of s and P is 
very small (about 0.1%) compared with their true values.

Typical necking pattern 
which has occurred on this 
steel specimen just before 
fracture.

Necking Failure of a
ductile material

(a) (b)

Fig. 3–5

This steel specimen clearly shows the necking 
that occurred just before the specimen failed. 
This resulted in the formation of a “cup-cone” 
shape at the fracture location, which is 
characteristic of ductile materials.
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Steel. A typical conventional stress–strain diagram for a mild steel 
specimen is shown in Fig. 3–6. In order to enhance the details, the elastic 
region of the curve has been shown in green using an exaggerated strain 
scale, also shown in green. Following this curve, as the load (stress) is 
increased, the proportional limit is reached at spl = 241 MPa, where 
Ppl = 0.0012 mm>mm. When the load is further increased, the stress 
reaches an upper yield point of 1sY2u = 262 MPa, followed by a  drop in 
stress to a lower yield point of 1sY2 l = 248 MPa. The end  of yielding 
occurs at a strain of PY = 0.030 mm>mm, which is 25 times greater than 
the strain at the proportional limit! Continuing, the specimen undergoes 
strain hardening until it reaches the ultimate stress of su = 435 MPa; then 
it begins to neck down until fracture occurs,  at sf = 324 MPa. By 
comparison, the strain at failure, Pf = 0.380 mm>mm, is 317 times greater 
than Ppl!

Since spl = 241 MPa and Ppl = 0.0012 mm>mm, we can determine the 
modulus of elasticity. From Hooke’s law, it is

E =
spl

Ppl
=

241(106) Pa

0.0012 mm>mm
= 200 GPa

Although steel alloys have different carbon contents, most grades of 
steel, from the softest rolled steel to the hardest tool steel, have about 
this same modulus of elasticity, as shown in Fig. 3–7.

0.10 0.20 0.30 0.40
0.001 0.002 0.003 0.004

0.050

Stress–strain diagram for mild steel
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Fig. 3–6
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3.3  sTress–sTrain Behavior of 
duCTile and BriTTle maTerials

Materials can be classified as either being ductile or brittle, depending on 
their stress–strain characteristics.

Ductile Materials. Any material that can be subjected to large 
strains before it fractures is called a ductile material. Mild steel, as 
discussed previously, is a typical example. Engineers often choose ductile 
materials for design because these materials are capable of absorbing 
shock or energy, and if they become overloaded, they will usually exhibit 
large deformation before failing.

One way to specify the ductility of a material is to report its percent 
elongation or percent reduction in area at the time of fracture. The 
percent elongation is the specimen’s fracture strain expressed as a 
percent. Thus, if the specimen’s original gage length is L0 and its length at 
fracture is Lf , then

Percent elongation =
Lf - L0

L0
 (100%) (3–4)

For example, as in Fig. 3–6, since Pf = 0.380, this value would be 38% for 
a mild steel specimen.

The percent reduction in area is another way to specify ductility. It is 
defined within the region of necking as follows:

Percent reduction of area =
A0 - Af

A0
 (100%) (3–5)

Here A0  is the specimen’s original cross-sectional area and Af  is the area 
of the neck at fracture. Mild steel has a typical value of 60%.

Besides steel, other metals such as brass, molybdenum, and zinc may 
also exhibit ductile stress–strain characteristics similar to steel, whereby 
they undergo elastic stress–strain behavior, yielding at constant stress, 
strain hardening, and finally necking until fracture. In most metals and 
some plastics, however, constant yielding will not occur beyond the 
elastic range. One metal where this is the case is aluminum, Fig. 3–8. 
Actually, this metal often does not have a well-defined yield point, and 
consequently it is standard practice to define a yield strength using a 
graphical procedure called the offset method. Normally for structural 
design a 0.2% strain (0.002 mm>mm) is chosen, and from this point on 
the P axis a line parallel to the initial straight line portion of the stress–
strain diagram is drawn. The point where this line intersects the curve 
defines the yield strength. From the graph, the yield strength is 
sYS = 352 MPa.

350

400
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200

250

150

100

50

0.005 0.010
0.002

(0.2% offset)

Yield strength for an aluminum alloy

sYS � 352

P (mm/mm)
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Fig. 3–8
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Realize that the yield strength is not a physical property of the material, 
since it is a stress that causes a specified permanent strain in the material. 
In this text, however, we will assume that the yield strength, yield point, 
elastic limit, and proportional limit all coincide unless otherwise stated. 
An exception would be natural rubber, which in fact does not even have 
a proportional limit, since stress and strain are not linearly related. 
Instead, as shown in Fig. 3–9, this material, which is known as a polymer, 
exhibits nonlinear elastic behavior.

Wood is a material that is often moderately ductile, and as a result it is 
usually designed to respond only to elastic loadings. The strength 
characteristics of wood vary greatly from one species to another, and for 
each species they depend on the moisture content, age, and the size and 
arrangement of knots in the wood. Since wood is a fibrous material, its 
tensile or compressive characteristics parallel to its grain will differ 
greatly from these characteristics perpendicular to its grain. Specifically, 
wood splits easily when it is loaded in tension perpendicular to its grain, 
and consequently tensile loads are almost always intended to be applied 
parallel to the grain of wood members.

14
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4

8

6

2

2 4 6 8 10

s (MPa)

P (mm/mm)

s–P diagram for natural rubber

Fig. 3–9

s–P diagram for gray cast iron
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Fig. 3–10

Concrete used for structural purposes 
must be tested in compression to be 
sure it reaches its ultimate design 
stress after curing for 30 days.
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Brittle Materials. Materials that exhibit little or no yielding 
before failure are referred to as brittle materials. Gray cast iron is an 
example, having a stress–strain diagram in tension as shown by the 
curve AB in Fig. 3–10. Here fracture at sf = 152 MPa occurred due to a 
microscopic crack, which then spread rapidly across the specimen, 
causing complete fracture. Since the appearance of initial cracks in a 
specimen is quite random, brittle materials do not have a well-defined 
tensile fracture stress. Instead the average fracture stress from a set of 
observed tests is generally reported. A typical failed specimen is shown 
in Fig. 3–11a.

Compared with their behavior in tension, brittle materials exhibit a 
much higher resistance to axial compression, as evidenced by segment 
AC of the gray cast iron curve in Fig. 3–10. For this case any cracks or 
imperfections in the specimen tend to close up, and as the load increases 
the material will generally bulge or become barrel shaped as the strains 
become larger, Fig. 3–11b.

Like gray cast iron, concrete is classified as a brittle material, and it 
also has a low strength capacity in tension. The characteristics of its 
stress–strain diagram depend primarily on the mix of concrete (water, 
sand, gravel, and cement) and the time and temperature of curing. 
A typical example of a “complete” stress–strain diagram for concrete is 
given in Fig. 3–12. By inspection, its maximum compressive strength is 
about 12.5 times greater than its tensile strength, 1sc2max = 34.5 MPa 
versus 1st2max = 2.76 MPa. For this reason, concrete is almost always 
reinforced with steel bars or rods whenever it is designed to support 
tensile loads.

It can generally be stated that most materials exhibit both ductile and 
brittle behavior. For example, steel has brittle behavior when it contains 
a high carbon content, and it is ductile when the carbon content is 
reduced. Also, at low temperatures materials become harder and more 
brittle, whereas when the temperature rises they become softer and more 
ductile. This effect is shown in Fig. 3–13 for a methacrylate plastic.

(a)

Tension failure of
a brittle material

(b)

Compression causes
material to bulge out

Fig. 3–11
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Steel rapidly loses its strength when 
heated. For this reason engineers often 
require main structural members to be 
insulated in case of fire.
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Stiffness. The modulus of elasticity is a mechanical property that 
indicates the stiffness of a material. Materials that are very stiff, such as 
steel, have large values of E (Est = 200 GPa), whereas spongy materials 
such as vulcanized rubber have low values (Er = 0.69 MPa). Values of E for 
commonly used engineering materials are often tabulated in engineering 
codes and reference books. Representative values are also listed in the back 
of the book.

The modulus of elasticity is one of the most important mechanical 
properties used in the development of equations presented in this text. It 
must always be remembered, though, that E, through the application of 
Hooke’s law, Eq. 3–3, can be used only if a material has linear elastic 
behavior. Also, if the stress in the material is greater than the proportional 
limit, the stress–strain diagram ceases to be a straight line, and so Hooke’s 
law is no longer valid.

Strain Hardening. If a specimen of ductile material, such as steel, 
is loaded into the plastic region and then unloaded, elastic strain is 
recovered as the material returns to its equilibrium state. The plastic 
strain remains, however, and as a result the material will be subjected to 
a permanent set. For example, a wire when bent (plastically) will spring 
back a little (elastically) when the load is removed; however, it will not 
fully return to its original position. This behavior is illustrated on the 
stress–strain diagram shown in Fig. 3–14a. Here the specimen is loaded 
beyond its yield point A to point A′. Since interatomic forces have to be 
overcome to elongate the specimen elastically, then these same forces 
pull the atoms back together when the load is removed, Fig. 3–14a. 
Consequently, the modulus of elasticity, E, is the same, and therefore the 
slope of line O′A′ is the same as line OA. With the load removed, the 
permanent set is OO′.

If the load is reapplied, the atoms in the material will again be displaced 
until yielding occurs at or near the stress A′, and the stress–strain 
diagram continues along the same path as before, Fig. 3–14b. Although 
this new stress–strain diagram, defined by O′A′B, now has a higher yield 
point 1A′2 , a consequence of strain hardening, it also has less ductility, or 
a smaller plastic region, than when it was in its original state.

This pin was made of a hardened steel 
alloy, that is, one having a high carbon 
content. It failed due to brittle fracture.

(a)

permanent
set

elastic
recovery

elastic
region

plastic
region

load

unload

A

A¿
B

O¿O

E

E

s

P

(b)
O¿O

elastic
region

plastic
region

A¿
B

P

s

Fig. 3–14
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3.4 sTrain energy
As a material is deformed by an external load, the load will do external work, 
which in turn will be stored in the material as internal energy. This energy is 
related to the strains in the material, and so it is referred to as strain energy. 
To show how to calculate strain energy, consider a small volume element of 
material taken from a tension test specimen, Fig. 3–15. It is subjected to the 
uniaxial stress s. This stress develops a force ∆F = s ∆A = s1∆x ∆y2 on 
the top and bottom faces of the element, which causes the element to 
undergo a vertical displacement P ∆z, Fig. 3–15b. By definition, work is 
determined by the product of a force and displacement in the direction of 
the force. Here the force is increased uniformly from zero to its final 
magnitude ∆F when the displacement P ∆z occurs, and so during the 
displacement the work done on the element by the force is equal to the 
average force magnitude 1∆F>22 times the displacement P ∆z. The 
conservation of energy requires this “external work” on the element to 
be equivalent to the “internal work” or strain energy stored in the element, 
assuming that no energy is lost in the form of heat. Consequently, the strain 
energy is ∆U = 11

2∆F2  P ∆z = 11
2  s ∆x ∆y2  P ∆z. Since the volume of the 

element is ∆V = ∆x ∆y ∆z, then ∆U = 1
2 sP ∆V.

For engineering applications, it is often convenient to specify the strain 
energy per unit volume of material. This is called the strain energy 
density, and it can be expressed as

u =
∆U
∆V

=
1
2

 sP (3–6)

Finally, if the material behavior is linear elastic, then Hooke’s law 
applies, s = EP, and therefore we can express the elastic strain energy 
density in terms of the uniaxial stress s as

u =
1
2

 
s2

E
 (3–7)

Modulus of Resilience. When the stress in a material reaches the 
proportional limit, the strain energy density, as calculated by Eq. 3–6  
or 3–7, is referred to as the modulus of resilience. It is

ur =
1
2

 spl Ppl =
1
2

 
spl

2

E
 (3–8)

Here ur is equivalent to the shaded triangular area under the elastic 
region of the stress–strain diagram, Fig. 3–16a. Physically the modulus of 
resilience represents the largest amount of strain energy per unit volume 
the material can absorb without causing any permanent damage to the 
material. Certainly this property becomes important when designing 
bumpers or shock absorbers.

(a)

�x

s

s

�y

�z

�F � s(�x �y)

�F � s(�x �y)

Free-body diagram

(b)

�x
�y

�z

Fig. 3–15

(a)

ur

Modulus of resilience ur

PPpl

s

spl

Fig. 3–16
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Modulus of Toughness. Another important property of a material 
is its modulus of toughness, ut. This quantity represents the entire area under 
the stress–strain diagram, Fig. 3–16b, and therefore it indicates the maximum 
amount of strain energy per unit volume the material can absorb just before 
it fractures. Certainly this becomes important when designing members that 
may be accidentally overloaded. By alloying metals, engineers can change 
their resilience and toughness. For example, by changing the percentage of 
carbon in steel, the resulting stress–strain diagrams in Fig. 3–17 show how its 
resilience and toughness can be changed.

(b)

ut

Modulus of toughness ut

P

s

Fig. 3–16 (cont.)

soft steel
(0.1% carbon)
most ductile

hard steel
(0.6% carbon)
highest strength

structural steel
(0.2% carbon)
toughest

P

s

Fig. 3–17

This nylon specimen exhibits a high degree 
of toughness as noted by the large amount 
of necking that has occurred just before 
fracture.

 • A conventional stress–strain diagram is important in engineering 
since it provides a means for obtaining data about a material’s 
tensile or compressive strength without regard for the material’s 
physical size or shape.

 • Engineering stress and strain are calculated using the original 
cross-sectional area and gage length of the specimen.

 • A ductile material, such as mild steel, has four distinct behaviors 
as it is loaded. They are elastic behavior, yielding, strain 
hardening, and necking.

 • A material is linear elastic if the stress is proportional to the strain 
within the elastic region. This behavior is described by Hooke’s law, 
s = EP, where the modulus of elasticity E is the slope of the line.

 • Important points on the stress–strain diagram are the proportional 
limit, elastic limit, yield stress, ultimate stress, and fracture stress.

 • The ductility of a material can be specified by the specimen’s 
percent elongation or the percent reduction in area.

 • If a material does not have a distinct yield point, a yield strength 
can be specified using a graphical procedure such as the offset 
method.

 • Brittle materials, such as gray cast iron, have very little or no 
yielding and so they can fracture suddenly.

 • Strain hardening is used to establish a higher yield point for a 
material. This is done by straining the material beyond the 
elastic limit, then releasing the load. The modulus of elasticity 
remains the same; however, the material’s ductility decreases.

 • Strain energy is energy stored in a material due to its 
deformation. This energy per unit volume is called strain 
energy density. If it is measured up to the proportional limit, it 
is referred to as the modulus of resilience, and if it is measured 
up to the point of fracture, it is called the modulus of toughness. 
It can be determined from the area under the s-P diagram.

Important poInts



 3.4 strain energy 115

3

A tension test for a steel alloy results in the stress–strain diagram shown 
in Fig. 3–18. Calculate the modulus of elasticity and the yield strength 
based on a 0.2% offset. Identify on the graph the ultimate stress and the 
fracture stress.

EXAMPLE   3.1 

O 0.02

100

200

300
345

400

500

600

700

800

0.0004

0.04
0.0008

0.06

0.0012

0.08
0.0016

0.10

0.0020

0.12
0.0024

0.14 0.16 0.18 0.20 0.22 0.24

0.2%

  

∋(mm mm) 

B

C

A

E E

= 0.23

σYS = 469

= 745σu

(MPa)σ

A′ A′

= 621σf

∋f

Fig. 3–18

SOLUTION

Modulus of Elasticity. We must calculate the slope of the initial straight-
line portion of the graph. Using the magnified curve and scale shown in 
blue, this line extends from point O to an estimated point A, which has 
coordinates of approximately (0.0016 mm>mm, 345 MPa). Therefore,

 E =
345 MPa

0.0016 mm>mm
= 216 GPa Ans.

Note that the equation of line OA is thus s = [216(103)P] MPa.

Yield Strength. For a 0.2% offset, we begin at a strain of 0.2% or  
0.0020 mm>mm and graphically extend a (dashed) line parallel to OA until  
it intersects the s-P curve at A′. The yield strength is approximately

 sYS = 469 MPa Ans.

Ultimate Stress. This is defined by the peak of the s9P graph, point B 
in Fig. 3–18.

 su = 745 MPa Ans.

Fracture Stress. When the specimen is strained to its maximum of 
Pf = 0.23 mm>mm, it fractures at point C. Thus,

 sf = 621 MPa Ans.



116  Chapter 3  MeChaniCal propert ies  of Mater ials

3

The stress–strain diagram for an aluminum alloy that is used for making 
aircraft parts is shown in Fig. 3–19. If a specimen of this material is 
stressed to s = 600 MPa, determine the permanent set that remains in 
the specimen when the load is released. Also, find the modulus of 
resilience both before and after the load application.

EXAMPLE   3.2 

O

750

F

0.040.030.020.01

600

300

150

parallel

DC

B

A

0.023

s (MPa)

POC

G

sY � 450

PY � 0.006

P (mm/mm)

Fig. 3–19

SOLUTION

Permanent Strain. When the specimen is subjected to the load, it 
strain hardens until point B is reached on the s9P diagram. The strain at 
this point is approximately 0.023 mm>mm. When the load is released, the 
material behaves by following the straight line BC, which is parallel 
to line OA. Since both of these lines have the same slope, the strain at  
point C can be determined analytically. The slope of line OA is the 
modulus of elasticity, i.e.,

 E =
450 MPa

 0.006 mm>mm
= 75.0 GPa 
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From triangle CBD, we require

E =
BD
CD

;  75.011092  Pa =
60011062  Pa

 CD
 

  CD = 0.008 mm>mm

This strain represents the amount of recovered elastic strain. The 
permanent set or strain, POC, is thus

  POC = 0.023 mm>mm - 0.008 mm>mm

 = 0.0150 mm>mm Ans.

NOTE: If gage marks on the specimen were originally 50 mm apart, then 
after the load is released these marks will be 50 mm +

10.01502 150 mm2 = 50.75 mm apart.

Modulus of Resilience. Applying Eq. 3–8, the areas under OAG and 
CBD in Fig. 3–19 are*

  1ur2 initial =
1
2

  spl Ppl =
1
2
1450 MPa2 10.006 mm>mm2

 = 1.35 MJ>m3  Ans.

 1ur2 final =
1
2

  spl Ppl =
1
2
1600 MPa2 10.008 mm>mm2

 = 2.40 MJ>m3  Ans.

NOTE: By comparison, the effect of strain hardening the material has 
caused an increase in the modulus of resilience; however, note that 
the  modulus of toughness for the material has decreased, since the 
area  under the original curve, OABF, is larger than the area under 
curve CBF.

*Work in the SI system of units is measured in joules, where 1 J = 1 N # m.
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EXAMPLE   3.3

The aluminum rod, shown in Fig. 3–20a, has a circular cross section and is 
subjected to an axial load of 10 kN. If a portion of the stress–strain 
diagram is shown in Fig. 3–20b, determine the approximate elongation of 
the rod when the load is applied. Take Eal = 70 GPa.

SOLUTION

In order to find the elongation of the rod, we must first obtain the strain. 
This is done by calculating the stress, then using the stress–strain diagram. 
The normal stress within each segment is

 sAB =
N
 A

=
1011032  N

 p10.01 m22 = 31.83 MPa

 sBC =
N
 A

=
1011032  N

 p10.0075 m22 = 56.59 MPa

From the stress–strain diagram, the material in segment AB is strained 
elastically since sAB 6 sY = 40 MPa. Using Hooke’s law,

PAB =
sAB

 Eal 
=

31.8311062  Pa

 7011092  Pa
= 0.0004547 mm>mm

The material within segment BC is strained plastically, since 
sBC 7 sY = 40 MPa. From the graph, for sBC = 56.59 MPa,  
PBC ≈ 0.045 mm>mm. The approximate elongation of the rod is therefore

 d = ΣPL = 0.00045471600 mm2 + 0.04501400 mm2

 = 18.3 mm  Ans.

(a)

600 mm 400 mm

15 mm20 mm
A B C

10 kN 10 kN

 (b)

60

50

30

20

10

O 0.02 0.04 0.06

56.59

s (MPa)

P

sY � 40

PBC � 0.045

Fig. 3–20
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F3–1. Define a homogeneous material.

F3–2. Indicate the points on the stress–strain diagram 
which represent the proportional limit and the ultimate 
stress.

A

B C E

P

D

s

Prob. F3–2

F3–3. Define the modulus of elasticity E.

F3–4. At room temperature, mild steel is a ductile 
material. True or false?

F3–5. Engineering stress and strain are calculated using 
the actual cross-sectional area and length of the specimen. 
True or false?

F3–6. As the temperature increases the modulus of 
elasticity will increase. True or false?

F3–7. A 100-mm-long rod has a diameter of 15 mm. If an 
axial tensile load of 100 kN is applied, determine its change 
in length. Assume linear elastic behavior with E = 200 GPa.

F3–8. A bar has a length of 200 mm and cross-sectional 
area of 7500  mm2. Determine the modulus of elasticity of the 
material if it is subjected to an axial tensile load of 50 kN and 
stretches 0.075 mm. The material has linear-elastic behavior.

F3–9. A 10-mm-diameter rod has a modulus of elasticity 
of E = 100 GPa. If it is 4 m long and subjected to an axial 
tensile load of 6 kN, determine its elongation. Assume linear 
elastic behavior.

F3–10. The material for the 50-mm-long specimen has the 
stress–strain diagram shown. If P = 100 kN, determine the 
elongation of the specimen.

F3–11. The material for the 50-mm-long specimen has the 
stress–strain diagram shown. If P = 150 kN is applied and 
then released, determine the permanent elongation of the 
specimen.

P

P

450

0.00225 0.03
P (mm/mm)

500

20 mms (MPa)

Prob. F3–10/11

F3–12. If the elongation of wire BC is 0.2 mm after the 
force P is applied, determine the magnitude of P. The wire 
is A-36 steel and has a diameter of 3 mm.

A

B

C

400 mm

200 mm
300 mm P

Prob. F3–12

FUNDAMENTAL PROBLEMS
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3–1. A tension test was performed on a steel specimen having 
an original diameter of 12.5 mm and gauge length of 50 mm. 
The data is listed in the table. Plot the stress–strain diagram 
and determine approximately the modulus of elasticity, the 
yield stress, the ultimate stress, and the rupture stress. Use a 
scale of 25 mm = 140 MPa and 25 mm = 0.05 mm>mm. 
Redraw the elastic region, using the same stress scale but a 
strain scale of 25 mm = 0.001 mm>mm.

0
7.0
21.0
36.0
50.0
53.0
53.0
54.0
75.0
90.0
97.0
87.8
83.3

0
0.0125
0.0375
0.0625
0.0875
0.125
0.2
0.5
1.0
2.5
7.0
10.0
11.5

Load (kN) Elongation (mm)

Prob. 3–1

3–2. Data taken from a stress–strain test for a ceramic are 
given in the table. The curve is linear between the origin and 
the first point. Plot the diagram, and determine the modulus 
of elasticity and the modulus of resilience.

3–3. Data taken from a stress–strain test for a ceramic are 
given in the table. The curve is linear between the origin and the 
first point. Plot the diagram, and determine approximately the 
modulus of toughness. The rupture stress is sr = 373.8 MPa.

0
232.4
318.5
345.8
360.5
373.8

0
0.0006
0.0010
0.0014
0.0018
0.0022

S (MPa) P (mm/mm)

Probs. 3–2/3

*3–4. The stress–strain diagram for a metal alloy having an 
original diameter of 12 mm and a gauge length of 50 mm is 
given in the figure. Determine approximately the modulus of 
elasticity for the material, the load on the specimen that causes 
yielding, and the ultimate load the specimen will support.

0

500

600

400

300

200

100

0

(MPa)σ

0
0 0.280.04 0.08 0.12 0.16 0.20 0.24

∋

0.00350.0005  0.0010.0015 0.002 0.0025 0.003

(mm/mm)

Prob. 3–4

3–5. The stress–strain diagram for a steel alloy having an 
original diameter of 12 mm and a gauge length of 50 mm is 
given in the figure. If the specimen is loaded until it is 
stressed to 500 MPa, determine the approximate amount of 
elastic recovery and the increase in the gauge length after it 
is unloaded.

0

500

600

400

300

200

100

0

(MPa)σ

0
0 0.280.04 0.08 0.12 0.16 0.20 0.24

∋

0.00350.0005  0.0010.0015 0.002 0.0025 0.003

(mm/mm)

Prob. 3–5

PROBLEMS
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3–6. The stress–strain diagram for a steel alloy having an 
original diameter of 12 mm and a gauge length of 50 mm is 
given in the figure. Determine approximately the modulus 
of resilience and the modulus of toughness for the material.

0

500

600

400

300

200

100

0

(MPa)σ

0
0 0.280.04 0.08 0.12 0.16 0.20 0.24

∋

0.00350.0005  0.0010.0015 0.002 0.0025 0.003

(mm/mm)

Prob. 3–6

3–7. A specimen is originally 300 mm long, has a diameter 
of 12 mm, and is subjected to a force of 2.5 kN. When the 
force is increased from 2.5 kN to 9 kN, the specimen 
elongates 0.225 mm. Determine the modulus of elasticity 
for the material if it remains linear elastic.

*3–8. The strut is supported by a pin at C and an A-36 
steel guy wire AB. If the wire has a diameter of 5 mm, 
determine how much it stretches when the distributed load 
acts on the strut.

2.7 m

3.4 kN/m

C

A

B

60

Prob. 3–8

3–9. The s-P diagram for elastic fibers that make up 
human skin and muscle is shown. Determine the modulus 
of elasticity of the fibers and estimate their modulus of 
toughness and modulus of resilience.

21 2.25

0.077

0.385

 (MPa)

 (mm/mm)

Prob. 3–9

3–10. A structural member in a nuclear reactor is made of 
a zirconium alloy. If an axial load of 20 kN is to be supported 
by the member, determine its required cross-sectional area. 
Use a factor of safety of 3 relative to yielding. What is the 
load on the member if it is 1 m long and its elongation is 
0.5 mm? Ezr = 100 GPa, sY = 400 MPa. The material has 
elastic behavior.

3–11. A tension test was performed on an aluminum  
2014-T6 alloy specimen. The resulting stress–strain diagram 
is shown in the figure. Estimate (a) the proportional limit, 
(b) the modulus of elasticity, and (c) the yield strength 
based on a 0.2% strain offset method.

*3–12. A tension test was performed on an aluminum 
2014-T6 alloy specimen. The resulting stress–strain diagram 
is shown in the figure. Estimate (a) the modulus of resilience; 
and (b) modulus of toughness.

P (mm/mm)0.02 0.04 0.06 0.08 0.10
0.002 0.004 0.006 0.008 0.010

70

140

210

280

350

420

490

0

s (MPa)

Probs. 3–10/11/12
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3–13. A bar having a length of 125 mm and cross-sectional 
area of 437.5 mm2 is subjected to an axial force of 40 kN. If 
the bar stretches 0.05 mm, determine the modulus of 
elasticity of the material. The material has linear-elastic 
behavior.

40 kN40 kN
125 mm

Prob. 3–13

3–14.  The rigid pipe is supported by a pin at A and an A-36 
steel guy wire BD. If the wire has a diameter of 6.5 mm, 
determine how much it stretches when a load of P = 3 kN  
acts on the pipe.

3–15. The rigid pipe is supported by a pin at A and an A-36 
guy wire BD. If the wire has a diameter of 6.5 mm, determine 
the load P if the end C is displaced 1.675 mm downward.

0.9 m 0.9 m

C
DA

B

P1.2 m

Probs. 3–14/15

*3–16. Direct tension indicators are sometimes used 
instead of torque wrenches to ensure that a bolt has a 
prescribed tension when used for connections. If a nut on 
the bolt is tightened so that the six 3-mm high heads of the 
indicator are strained 0.1 mm>mm, and leave a contact area 
on each head of 1.5 mm2, determine the tension in the bolt 
shank. The material has the stress–strain diagram shown.

3 mm

s  (MPa)

P  (mm/mm)
0.30.0015

600

450

Prob. 3–16

3–17. The stress–strain diagram for a polyester resin is 
given in the figure. If the rigid beam is supported by a strut 
AB and post CD, both made from this material, and 
subjected to a load of P = 80 kN, determine the angle of 
tilt of the beam when the load is applied. The diameter of 
the strut is 40 mm and the diameter of the post is 80 mm.

3–18. The stress–strain diagram for a polyester resin is 
given in the figure. If the rigid beam is supported by a strut 
AB and post CD made from this material, determine the 
largest load P that can be applied to the beam before it 
ruptures. The diameter of the strut is 12 mm and the 
diameter of the post is 40 mm.

0

tension

compression

0.01 0.02 0.03 0.04

95

80

100

70

60

50

40
32.2

20

00.75 m

B

C

D

A

P

0.75 m 0.5 m

2 m

P (mm/mm)

s (MPa)

Probs. 3–17/18

3–19. The stress–strain diagram for a bone is shown, and 
can be described by the equation P = 0.45110-62  s +
0.36110-122  s3, where s is in kPa. Determine the yield 
strength assuming a 0.3% offset.

P

P

P � 0.45(10�6)s + 0.36(10�12)s3

P

s

Prob. 3–19
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*3–20. The stress–strain diagram for a bone is shown and 
can be described by the equation P = 0.45110-62  s + 
0.36110-122 s3, where s is in kPa. Determine the modulus 
of toughness and the amount of elongation of a 200-mm-long 
region just before it fractures if failure occurs at 
P = 0.12 mm>mm.

P

P

P � 0.45(10�6)s + 0.36(10�12)s3

P

s

Prob. 3–20

3–21. The two bars are made of polystyrene, which has the 
stress–strain diagram shown. If the cross-sectional area of 
bar AB is 975 mm2 and BC is 2600 mm2, determine the 
largest force P that can be supported before any member 
ruptures. Assume that buckling does not occur.

3–22. The two bars are made of polystyrene, which has the 
stress–strain diagram shown. Determine the cross-sectional 
area of each bar so that the bars rupture simultaneously 
when the load P = 13.5 kN. Assume that buckling does not 
occur.

P

C
B

A

1 m

1.2 m

 (mm/mm)

 (MPa)

35

0

70

105

140

175

0.800.600.400.200

tension

compression

Probs. 3–21/22

3–23. The stress–strain diagram for many metal alloys can 
be described analytically using the Ramberg-Osgood three 
parameter equation P = s>E + ksn, where E, k, and n are 
determined from measurements taken from the diagram. 
Using the stress–strain diagram shown in the figure, take 
E = 210 GPa and determine the other two parameters k and 
n and thereby obtain an analytical expression for the curve.

s (MPa)

P (10–6)
0.1 0.2 0.3 0.4 0.5

560

420

280

140

Prob. 3–23

*3–24. The s-P diagram for a collagen fiber bundle from 
which a human tendon is composed is shown. If a segment 
of the Achilles tendon at A has a length of 165 mm and an 
approximate cross-sectional area of 145 mm2, determine its 
elongation if the foot supports a load of 625 N, which causes 
a tension in the tendon of 1718.75 N.

625 N

s (MPa)

P (mm/mm)
0.05 0.10

31.50

26.25

21.00

15.75

10.50

5.25

A

Prob. 3–24
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3.5 poisson’s raTio
When a deformable body is subjected to a force, not only does it elongate 
but it also contracts laterally. For example, consider the bar in Fig. 3–21 
that has an original radius r and length L, and is subjected to the tensile 
force P. This force elongates the bar by an amount d, and its radius 
contracts by an amount d′. The strains in the longitudinal or axial direction 
and in the lateral or radial direction become

Plong =
d

L
   and  Plat =

d′
r

In the early 1800s, the French scientist S. D. Poisson realized that within 
the elastic range the ratio of these strains is a constant, since the 
displacements d and d′ are proportional to the same applied force. This 
ratio is referred to as Poisson’s ratio, n (nu), and it has a numerical value 
that is unique for any material that is both homogeneous and isotropic. 
Stated mathematically it is

 n = -  
Plat

Plong
 (3–9)

The negative sign is included here since longitudinal elongation (positive 
strain) causes lateral contraction (negative strain), and vice versa. Keep 
in mind that these strains are caused only by the single axial or 
longitudinal force P; i.e., no force acts in a lateral direction in order to 
strain the material in this direction.

Poisson’s ratio is a dimensionless quantity, and it will be shown in  
Sec. 10.6 that its maximum possible value is 0.5, so that 0 … n … 0.5. For 
most nonporous solids it has a value that is generally between 0.25 and 
0.355. Typical values for common engineering materials are listed in the 
back of the book.

P

P
r

Final Shape

L

Original Shape

Tension

d/2

d¿

d/2

Fig. 3–21

When the rubber block is 
compressed (negative strain), its 
sides will expand (positive strain). 
The ratio of these strains remains 
constant.
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A bar made of A-36 steel has the dimensions shown in Fig. 3–22. If an 
axial force of P = 80 kN is applied to the bar, determine the change in its 
length and the change in the dimensions of its cross section. The material 
behaves elastically.

EXAMPLE   3.4 

y

x

z

P � 80 kN

P � 80 kN

100 mm

1.5 m
50 mm

Fig. 3–22

SOLUTION

The normal stress in the bar is

sz =
N
 A

=
8011032  N

 10.1 m2 10.05 m2 = 16.011062  Pa

From the table given in the back of the book for A-36 steel Est = 200 GPa,  
and so the strain in the z direction is

Pz =
sz

 Est 
=

16.011062  Pa

 20011092  Pa
= 80110-62  mm>mm

The axial elongation of the bar is therefore

dz = Pz Lz = [80110-62 ]11.5 m2 = 120 mm Ans.

Using Eq. 3–9, where nst = 0.32 as found in the back of the book, the 
lateral contraction strains in both the x and y directions are

Px = Py = -nst Pz = -0.32[80110-62 ] = -25.6 mm>m

Thus the changes in the dimensions of the cross section are

 dx = Px Lx = -[25.6110-62 ]10.1 m2 = -2.56 mm Ans.

 dy = Py Ly = -[25.6110-62 ]10.05 m2 = -1.28 mm Ans.
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3.6  The shear sTress–sTrain 
diagram

In Sec. 1.5 it was shown that when a small element of material is subjected 
to pure shear, equilibrium requires that equal shear stresses must be 
developed on four faces of the element, Fig. 3–23a. Furthermore, if the 
material is homogeneous and isotropic, then this shear stress will distort 
the element uniformly, Fig. 3–23b, producing shear strain.

In order to study the behavior of a material subjected to pure shear, 
engineers use a specimen in the shape of a thin tube and subject it to a 
torsional loading. If measurements are made of the applied torque and 
the resulting angle of twist, then by the methods to be explained in 
Chapter 5, the data can be used to determine the shear stress and shear 
strain within the tube and thereby produce a shear stress–strain diagram 
such as shown in Fig. 3–24. Like the tension test, this material when 
subjected to shear will exhibit linear elastic behavior and it will have a 
defined proportional limit tpl. Also, strain hardening will occur until an 
ultimate shear stress tu is reached. And finally, the material will begin to 
lose its shear strength until it reaches a point where it fractures, tf .

For most engineering materials, like the one just described, the elastic 
behavior is linear, and so Hooke’s law for shear can be written as

t = Gg  (3–10)

Here G is called the shear modulus of elasticity or the modulus of 
rigidity. Its value represents the slope of the line on the t–g diagram, 
that is, G = tpl>gpl. Units of measurement for G will be the same as those 
for t (Pa), since g is measured in radians, a dimensionless quantity. 
Typical values for common engineering materials are listed in the back 
of the book. 

Later it will be shown in Sec. 10.6 that the three material constants,  
E, n, and G can all be related by the equation

G =
E

 211 + n2  (3–11)

Therefore, if E and G are known, the value of n can then be determined 
from this equation rather than through experimental measurement.

x

y

(a)

txy

x

y

(b)

p

2
�

gxy

2

gxy

2

gxy

Fig. 3–23

G

t

tu

tf

tpl

g
grgugpl

Fig. 3–24
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A specimen of titanium alloy is tested in torsion and the shear stress–
strain diagram is shown in Fig. 3–25a. Determine the shear modulus 
G, the proportional limit, and the ultimate shear stress. Also, determine 
the maximum distance d that the top of a block of this material, shown 
in Fig. 3–25b, could be displaced horizontally if the material behaves 
elastically when acted upon by a shear force V. What is the magnitude 
of V necessary to cause this displacement?

SOLUTION

Shear Modulus. This value represents the slope of the straight-
line portion OA of the t-g diagram. The coordinates of point A are 
(0.008 rad, 360 MPa). Thus,

G =
360 MPa
0.008 rad

= 45(103) MPa = 45 GPa  Ans.

The equation of line OA is therefore t = Gg = [45(103)g] MPa, 
which is Hooke’s law for shear.

Proportional Limit. By inspection, the graph ceases to be linear at 
point A. Thus,

tpl = 360 MPa  Ans.

Ultimate Stress. This value represents the maximum shear stress, 
point B. From the graph,

tu = 504 MPa Ans.

Maximum Elastic Displacement and Shear Force. Since the 
maximum elastic shear strain is 0.008 rad, a very small angle, the top of 
the block in Fig. 3–25b will be displaced horizontally:

tan(0.008 rad) ≈ 0.008 rad =
d

50 mm
 

d = 0.4 mm  Ans.

The corresponding average shear stress in the block is tpl = 360 MPa.  
Thus, the shear force V needed to cause the displacement is

tavg =
V
 A

; 360(106) N>m2 =
V

(0.075m) (0.1 m)
 

V = 2700 kN Ans.

EXAMPLE   3.5

600

100
200

300

400

500

0.73

B

A

(a)

t (MPa)

tu  504

gpl  0.008 gu  0.54
g (rad)

tpl  360

O

100 mm
75 mm

50 mm g

d

V

(b)

Fig. 3–25
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An aluminum specimen shown in Fig. 3–26 has a diameter of d0 = 25 mm 
and a gage length of L0 = 250 mm. If a force of 165 kN elongates the 
gage length 1.20 mm, determine the modulus of elasticity. Also, determine 
by how much the force causes the diameter of the specimen to contract. 
Take Gal = 26 GPa and sY = 440 MPa.

SOLUTION

Modulus of Elasticity. The average normal stress in the specimen is

s =
N
 A

=
16511032  N

1p>42 10.025 m22 = 336.1 MPa

and the average normal strain is

P =
d

 L
=

1.20 mm
 250 mm

= 0.00480 mm>mm

Since s 6 sY = 440 MPa, the material behaves elastically. The modulus 
of elasticity is therefore

Eal =
s

P =
336.111062  Pa

 0.00480
= 70.0 GPa Ans.

Contraction of Diameter. First we will determine Poisson’s ratio for 
the material using Eq. 3–11.

 G =
E

 211 + n2

 26 GPa =
70.0 GPa

 211 + n2
 n = 0.347

Since Plong = 0.00480 mm>mm, then by Eq. 3–9,

 n = -
Plat 

 Plong 

 0.347 = -
Plat 

 0.00480 mm>mm

 Plat = -0.00166 mm>mm

The contraction of the diameter is therefore

 d′ = 10.001662 125 mm2
 = 0.0416 mm  Ans.

EXAMPLE   3.6 

d0
L0

165 kN

165 kN

Fig. 3–26
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*3.7  failure of maTerials due To 
Creep and faTigue

The mechanical properties of a material have up to this point been 
discussed only for a static or slowly applied load at constant temperature. 
In some cases, however, a member may have to be used in an environment 
for which loadings must be sustained over long periods of time at elevated 
temperatures, or in other cases, the loading may be repeated or cycled. We 
will not cover these effects in this book, although we will briefly mention 
how one determines a material’s strength for these conditions, since in 
some cases they must be considered for design.

Creep. When a material has to support a load for a very long period 
of time, it may continue to deform until a sudden fracture occurs or its 
usefulness is impaired. This time-dependent permanent deformation is 
known as creep. Normally creep is considered when metals and ceramics 
are used for structural members or mechanical parts that are subjected 
to high temperatures. For some materials, however, such as polymers and 
composite materials–including wood or concrete–temperature is not an 
important factor, and yet creep can occur strictly from long-term load 
application. As a typical example, consider the fact that a rubber band 
will not return to its original shape after being released from a stretched 
position in which it was held for a very long period of time.

For practical purposes, when creep becomes important, a member is 
usually designed to resist a specified creep strain for a given period of 
time. An important mechanical property that is used in this regard is 
called the creep strength. This value represents the highest stress the 
material can withstand during a specified time without exceeding an 
allowable creep strain. The creep strength will vary with temperature, 
and for design, a temperature, duration of loading, and allowable creep 
strain must all be specified. For example, a creep strain of 0.1% per year 
has been suggested for steel used for bolts and piping.

Several methods exist for determining the allowable creep strength 
for a particular material. One of the simplest involves testing several 
specimens simultaneously at a constant temperature, but with each 
subjected to a different axial stress. By measuring the length of time 
needed to produce the allowable creep strain for each specimen, a 
curve of stress versus time can be established. Normally these tests are 
run to a maximum of 1000 hours. An example of the results for stainless 
steel at a temperature of 650°C and prescribed creep strain of 1% is 
shown in Fig. 3–27. As noted, this material has a yield strength of  
276 MPa at room temperature (0.2% offset) and the creep strength at 
1000 h is found to be approximately sc = 138 MPa.

The long-term application of the cable loading 
on this pole has caused the pole to deform 
due to creep.

at 650°C and creep strain at 1%
σ

300

200

250

100

150

50

σc = 138

0 200 400 600 800 1000
(h)

(MPa)σ

t

t– diagram for stainless steel

Fig. 3–27
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For longer periods of time, extrapolations from the curves must be 
made. To do this usually requires a certain amount of experience with 
creep behavior, and some supplementary knowledge about the creep 
properties of the material. Once the material’s creep strength has been 
determined, however, a factor of safety is applied to obtain an appropriate 
allowable stress for design.

Fatigue. When a metal is subjected to repeated cycles of stress or 
strain, it causes its internal structure to break down, ultimately leading to 
fracture. This behavior is called fatigue, and it is usually responsible for a 
large percentage of failures in connecting rods and crankshafts of engines; 
steam or gas turbine blades; connections or supports for bridges, railroad 
wheels, and axles; and other parts subjected to cyclic loading. In all  
these cases, fracture will occur at a stress that is less than the material’s 
yield stress.

The nature of this failure apparently results from the fact that there are 
microscopic imperfections, usually on the surface of the member, where 
the localized stress becomes much greater than the average stress acting 
over the cross section. As this higher stress is cycled, it leads to the 
formation of minute cracks. Occurrence of these cracks causes a further 
increase of stress at their tips, which in turn causes a further extension of 
the cracks into the material as the stress continues to be cycled. 
Eventually the cross-sectional area of the member is reduced to the point 
where the load can no longer be sustained, and as a result sudden fracture 
occurs. The material, even though known to be ductile, behaves as if it 
were brittle.

In order to specify a safe strength for a metallic material under 
repeated loading, it is necessary to determine a limit below which no 
evidence of failure can be detected after applying a load for a specified 
number of cycles. This limiting stress is called the endurance or fatigue 
limit. Using a testing machine for this purpose, a series of specimens are 
each subjected to a specified stress and cycled to failure. The results are 
plotted as a graph representing the stress S (or s) on the vertical axis and 
the number of cycles-to-failure N on the horizontal axis. This graph is 
called an S–N diagram or stress–cycle diagram, and most often the 
values of N are plotted on a logarithmic scale since they are generally 
quite large.

Examples of S–N diagrams for two common engineering metals are 
shown in Fig. 3–28. The endurance limit is usually identified as the stress 
for which the S–N graph becomes horizontal or asymptotic. As noted, it 
has a well-defined value of 1Sel2 st = 186 MPa for steel. For aluminum, 
however, the endurance limit is not well defined, and so here it may be 
specified as the stress having a limit of, say, 500 million cycles, 
1Sel2al = 131 MPa. Once a particular value is obtained, it is often 
assumed that for any stress below this value the fatigue life will be 
infinite, and therefore the number of cycles to failure is no longer given 
consideration.

The design of members used for amusement 
park rides requires careful consideration of 
cyclic loadings that can cause fatigue.

Engineers must account for possible fatigue 
failure of the moving parts of this  
oil-pumping rig.
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        diagram for steel and aluminum alloys
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N

= 186stel(    )S

= 131al(    )elS

Fig. 3–28

Important poInts

 • Poisson’s ratio, n, is a ratio of the lateral strain of a homogeneous 
and isotropic material to its longitudinal strain. Generally 
these strains are of opposite signs, that is, if one is an elongation, 
the other will be a contraction.

 • The shear stress–strain diagram is a plot of the shear stress versus 
the shear strain. If the material is homogeneous and isotropic, 
and is also linear elastic, the slope of the straight line within the 
elastic region is called the modulus of rigidity or the shear 
modulus, G.

 • There is a mathematical relationship between G, E, and n.

 • Creep is the time-dependent deformation of a material for which 
stress and/or temperature play an important role. Members are 
designed to resist the effects of creep based on their material 
creep strength, which is the largest initial stress a material can 
withstand during a specified time without exceeding a specified 
creep strain.

 • Fatigue occurs in metals when the stress or strain is cycled. This 
phenomenon causes brittle fracture of the material. Members 
are designed to resist fatigue by ensuring that the stress in the 
member does not exceed its endurance or fatigue limit. This 
value is determined from an S–N diagram as the maximum 
stress the material can resist when subjected to a specified 
number of cycles of loading.
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F3–13. A 100-mm-long rod has a diameter of 15 mm. If an 
axial tensile load of 10 kN is applied to it, determine the 
change in its diameter. E = 70 GPa, n = 0.35.

15 mm

10 kN

 10 kN

100 mm

Prob. F3–13

F3–14. A solid circular rod that is 600 mm long and 20 mm 
in diameter is subjected to an axial force of P = 50 kN. The 
elongation of the rod is d = 1.40 mm, and its diameter 
becomes d′ = 19.9837 mm. Determine the modulus of 
elasticity and the modulus of rigidity of the material. 
Assume that the material does not yield.

20 mm

P � 50 kN

P � 50 kN

600 mm

Prob. F3–14

F3–15. A 20-mm-wide block is firmly bonded to rigid 
plates at its top and bottom. When the force P is applied the 
block deforms into the shape shown by the dashed line. 
Determine the magnitude of P. The block’s material has a 
modulus of rigidity of G = 26 GPa. Assume that the material 
does not yield and use small angle analysis.

150 mm

0.5 mm

150 mm

P 

Prob. F3–15

F3–16. A 20-mm-wide block is bonded to rigid plates at its 
top and bottom. When the force P is applied the block 
deforms into the shape shown by the dashed line. If  
a = 3 mm and P is released, determine the permanent shear 
strain in the block.

150 mm
 a � 3 mm

150 mm

P

130

0.005

A

t (MPa)

g (rad)

150 mm
 a � 3 mm

150 mm

P

130

0.005

A

t (MPa)

g (rad)

Prob. F3–16

FUNDAMENTAL PROBLEMS
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3–25. The acrylic plastic rod is 200 mm long and 15 mm in 
diameter. If an axial load of 300 N is applied to it, determine 
the change in its length and the change in its diameter. 
Ep = 2.70 GPa, np = 0.4.

300 N

200 mm

300 N

Prob. 3–25

3–26. The plug has a diameter of 30 mm and fits within a 
rigid sleeve having an inner diameter of 32 mm. Both the 
plug and the sleeve are 50 mm long. Determine the axial 
pressure p that must be applied to the top of the plug to 
cause it to contact the sides of the sleeve. Also, how far must 
the plug be compressed downward in order to do this? The 
plug is made from a material for which E = 5 MPa, n = 0.45.

p

Prob. 3–26

3–27. The elastic portion of the stress–strain diagram for 
an aluminum alloy is shown in the figure. The specimen 
from which it was obtained has an original diameter of 
12.7 mm and a gage length of 50.8 mm. When the applied 
load on the specimen is 50 kN, the diameter is 12.67494 mm. 
Determine Poisson's ratio for the material.

*3–28.  The elastic portion of the stress–strain diagram for 
an aluminum alloy is shown in the figure. The specimen from 
which it was obtained has an original diameter of 12.7 mm 
and a gage length of 50.8 mm. If a load of P = 60 kN is applied 
to the specimen, determine its new diameter and length. Take 
n = 0.35.

490

P  (mm/mm)
0.007

s  (MPa)

Probs. 3–27/28

3–29.  The brake pads for a bicycle tire are made of rubber. 
If a frictional force of 50 N is applied to each side of the 
tires, determine the average shear strain in the rubber. Each 
pad has cross-sectional dimensions of 20 mm and 50 mm. 
Gr = 0.20 MPa.

50 mm

10 mm 10 mm

Prob. 3–29

PROBLEMS
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3–30.  The lap joint is connected together using a 30 mm 
diameter bolt. If the bolt is made from a material having a 
shear stress–strain diagram that is approximated as shown, 
determine the shear strain developed in the shear plane of 
the bolt when P = 340 kN.

3–31. The lap joint is connected together using a 30 mm 
diameter bolt. If the bolt is made from a material having a 
shear stress-strain diagram that is approximated as shown, 
determine the permanent shear strain in the shear plane of 
the bolt when the applied force P = 680 kN is removed.

350

0.005 0.05

525

 (MPa)

 (rad)

P
2

P

P
2

Probs. 3–30/31

*3–32. A shear spring is made by bonding the rubber 
annulus to a rigid fixed ring and a plug. When an axial load 
P is placed on the plug, show that the slope at point y in the 
rubber is dy>dr = - tan  g = - tan(P>(2phGr)). For small 
angles we can write dy>dr = -P>(2phGr). Integrate this 
expression and evaluate the constant of integration using 
the condition that y = 0 at r = ro. From the result compute 
the deflection y = d of the plug.

P

y

ro
ri

y

r

h

d

Prob. 3–32

3–33. The support consists of three rigid plates, which are 
connected together using two symmetrically placed rubber 
pads. If a vertical force of 5 N is applied to plate A, determine 
the approximate vertical displacement of this plate due to 
shear strains in the rubber. Each pad has cross-sectional 
dimensions of 30 mm and 20 mm. Gr = 0.20 MPa

C B

40 mm40 mm

A

5 N

Prob. 3–33

3–34. A shear spring is made from two blocks of rubber, 
each having a height h, width b, and thickness a. The blocks 
are bonded to three plates as shown. If the plates are rigid 
and the shear modulus of the rubber is G, determine the 
displacement of plate A when the vertical load P is applied. 
Assume that the displacement is small so that 
d = a tan g ≈ ag.

P

h

aa

A
d

Prob. 3–34
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One of the most important tests for material strength is the tension test. The results, found from 
stretching a specimen of known size, are plotted as normal stress on the vertical axis and normal 
strain on the horizontal axis.

Many engineering materials exhibit 
initial linear elastic behavior, whereby 
stress is proportional to strain, defined by 
Hooke’s law, s = EP. Here E, called the 
modulus of elasticity, is the slope of this 
straight line on the stress–strain diagram.

s = EP

s

P

P
sE

ductile material

When the material is stressed beyond 
the yield point, permanent deformation 
will occur. In particular, steel has a 
region of yielding, whereby the material 
will exhibit an increase in strain with no 
increase in stress. The region of strain 
hardening causes further yielding of the 
material with a corresponding increase 
in stress. Finally, at the ultimate stress, a 
localized region on the specimen will 
begin to constrict, forming a neck. It is 
after this that the fracture occurs.

elastic
region

yielding strain
hardening

necking

elastic
behavior

plastic behavior

elastic limit
yield stress

ultimate
stress fracture

stress

P

sf

sY
spl

su

s

proportional limit

Ductile materials, such as most metals, 
exhibit both elastic and plastic behavior. 
Wood is moderately ductile. Ductility is 
usually specified by the percent 
elongation to failure or by the percent 
reduction in the cross-sectional area.

Percent elongation =
Lf - L0

 L0
  1100%2

Percent reduction of area =
A0 - Af

 A0
  1100%2

CHAPTER REVIEW
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Brittle materials exhibit little or no 
yielding before failure. Cast iron, 
concrete, and glass are typical examples.

s

P
brittle material

The yield point of a material at A can be 
increased by strain hardening. This is 
accomplished by applying a load that 
causes the stress to be greater than the 
yield stress, then releasing the load. The 
larger stress A′ becomes the new yield 
point for the material.

permanent
set

elastic
recovery

elastic
region

plastic
region

load

unload

A

A¿
B

O¿O

E

E

s

P

When a load is applied to a member, the 
deformations cause strain energy to be 
stored in the material. The strain energy 
per unit volume, or strain energy density, 
is equivalent to the area under the 
stress–strain curve. This area up to the 
yield point is called the modulus of 
resilience. The entire area under the 
stress–strain diagram is called the 
modulus of toughness.

ur

Modulus of resilience ur

PPpl

s

spl

 

ut

Modulus of toughness ut

P

s
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Poisson’s ratio n is a dimensionless 
material property that relates the lateral 
strain to the longitudinal strain. Its range 
of values is 0 … n … 0.5.

n = -  
Plat

Plong

Shear stress–strain diagrams can also be 
established for a material. Within the 
elastic region, t = Gg, where G is the 
shear modulus, found from the slope of 
the line. The value of n can be obtained 
from the relationship that exists between 
G, E, and n.

G =
E

211 + n2

When materials are in service for long 
periods of time, considerations of creep 
become important. Creep is the time 
rate of deformation, which occurs at 
high stress and/or high temperature. 
Design requires that the stress in the 
material not exceed an allowable stress 
which is based on the material’s creep 
strength.

Fatigue can occur when the material 
undergoes a large number of cycles of 
loading. This effect will cause 
microscopic cracks to form, leading to a 
brittle failure. To prevent fatigue, the 
stress in the material must not exceed a 
specified endurance or fatigue limit.

P

P
r

Final Shape

L

Original Shape

Tension

d/2

d¿

d/2

t

g

g

tG
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R3–1. The elastic portion of the tension stress–strain 
diagram for an aluminum alloy is shown in the figure. The 
specimen used for the test has a gauge length of 50 mm and 
a diameter of 12.5 mm. When the applied load is 45 kN, the 
new diameter of the specimen is 12.4780 mm. Compute the 
shear modulus Gal for the aluminum.

R3–2. The elastic portion of the tension stress–strain 
diagram for an aluminum alloy is shown in the figure. The 
specimen used for the test has a gauge length of 50 mm and 
a diameter of 12.5 mm. If the applied load is 40 kN, 
determine the new diameter of the specimen. The shear 
modulus is Gal = 27 GPa.

0.00480

350

s (MPa)

P (mm/mm)

Prob. R3–1/2

R3–3. The rigid beam rests in the horizontal position on 
two 2014-T6 aluminum cylinders having the unloaded 
lengths shown. If each cylinder has a diameter of 30 mm, 
determine the placement x of the applied 80-kN load so 
that the beam remains horizontal. What is the new diameter 
of cylinder A after the load is applied? nal = 0.35.

3 m

210 mm220 mm

x

A B

80 kN

Prob. R3–3

*R3–4. When the two forces are placed on the beam, the 
diameter of the A-36 steel rod BC decreases from 40 mm to 
39.99 mm. Determine the magnitude of each force P.

R3–5. If P = 150 kN, determine the elastic elongation of 
rod BC and the decrease in its diameter. Rod BC is made 
of A-36 streel and has a diameter of 40 mm.

1 m 1 m 1 m

0.75 m

1 m

A B

P P
C

Prob. R3–4/5

R3–6. The head H is connected to the cylinder of a 
compressor using six steel bolts. If the clamping force in 
each bolt is 4 kN, determine the normal strain in the bolts. 
Each bolt has a diameter of 5 mm. If sY = 280 MPa and 
Est = 200 GPa, what is the strain in each bolt when the nut 
is unscrewed so that the clamping force is released?

H

LC

Prob. R3–6

REVIEW PROBLEMS
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R3–7. The stress–strain diagram for polyethylene, which is 
used to sheath coaxial cables, is determined from testing a 
specimen that has a gauge length of 250 mm. If a load P on 
the specimen develops a strain of P = 0.024 mm>mm, 
determine the approximate length of the specimen, 
measured between the gauge points, when the load is 
removed. Assume the specimen recovers elastically.

P

P

σ

35

28

21

14

7

0
0.008 0.016 0.024 0.032 0.040 0.048

 (MPa)

0

∋ (mm/mm)

Prob. R3–7

*R3–8.  The solid rod, of radius r, with two rigid caps 
attached to its ends is subjected to an axial force P. If the 
rod is made from a material having a modulus of elasticity E 
and Poisson’s ratio n, determine the change in volume of the 
material.

a

a

L

P

P

Prob. R3–8

R3–9.  The 8-mm-diameter bolt is made of an aluminum 
alloy. It fits through a magnesium sleeve that has an inner 
diameter of 12 mm and an outer diameter of 20 mm. If the 
original lengths of the bolt and sleeve are 80 mm and  
50 mm, respectively, determine the strains in the sleeve and 
the bolt if the nut on the bolt is tightened so that the tension 
in the bolt is 8 kN. Assume the material at A is rigid. 
Eal = 70 GPa, Emg = 45 GPa.

50 mm

30 mm

A

Prob. R3–9

R3–10. An acetal polymer block is fixed to the rigid plates 
at its top and bottom surfaces. If the top plate displaces 
2 mm horizontally when it is subjected to a horizontal force 
P = 2 kN, determine the shear modulus of the polymer. The 
width of the block is 100 mm. Assume that the polymer is 
linearly elastic and use small angle analysis.

400 mm

200 mm

P � 2 kN

Prob. R3–10
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The string of drill pipe stacked on this oil rig will be subjected to large axial 
deformations when it is placed in the hole.

(© Hazlan Abdul Hakim/Getty Images)
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AxiAl loAd

4.1 Saint-Venant’S PrinciPle
In the previous chapters, we have developed the concept of stress as a 
means of measuring the force distribution within a body and strain as a 
means of measuring a body’s deformation. We have also shown that the 
mathematical relationship between stress and strain depends on the type 
of material from which the body is made. In particular, if the material 
behaves in a linear elastic manner, then Hooke’s law applies, and there is 
a proportional relationship between stress and strain.

Using this idea, consider the manner in which a rectangular bar will 
deform elastically when the bar is subjected to the force P applied along 
its centroidal axis, Fig. 4–1a. The once horizontal and vertical grid lines 
drawn on the bar become distorted, and localized deformation occurs at 
each end. Throughout the midsection of the bar, the lines remain 
horizontal and vertical.

Chapter OBJeCtIVeS

■ In this chapter we will discuss how to determine the deformation 
of an axially loaded member, and we will also develop a method 
for finding the support reactions when these reactions cannot be 
determined strictly from the equations of equilibrium. An analysis 
of the effects of thermal stress, stress concentrations, inelastic 
deformations, and residual stress will also be discussed.



142  Chapter 4  axial load

4

If the material remains elastic, then the strains caused by this 
deformation are directly related to the stress in the bar through Hooke’s 
law, s = EP. As a result, a profile of the variation of the stress distribution 
acting at sections a–a, b–b, and c–c, will look like that shown in Fig. 4–1b. 
By comparison, the stress tends to reach a uniform value at section c–c, 
which is sufficiently removed from the end since the localized 
deformation caused by P vanishes. The minimum distance from the bar’s 
end where this occurs can be determined using a mathematical analysis 
based on the theory of elasticity. It has been found that this distance 
should at least be equal to the largest dimension of the loaded cross 
section. Hence, section c–c should be located at a distance at least equal 
to the width (not the thickness) of the bar.*

In the same way, the stress distribution at the support in Fig. 4–1a will 
also even out and become uniform over the cross section located the 
same distance away from the support.

The fact that the localized stress and deformation behave in this manner 
is referred to as Saint-Venant’s principle, since it was first noticed by the 
French scientist Barré de Saint-Venant in 1855. Essentially it states that 
the stress and strain produced at points in a body sufficiently removed 
from the region of external load application will be the same as the stress 
and strain produced by any other applied external loading that has the 
same statically equivalent resultant and is applied to the body within the 
same region. For example, if two symmetrically applied forces P>2 act on 
the bar, Fig. 4–1c, the stress distribution at section c–c will be uniform and 
therefore equivalent to savg = P>A  as in Fig. 4–1c.

(a)

P

a
b
c

a
b
c

Lines located away
from the load and support
remain straight

Load distorts lines
located near load

Load distorts lines
located near support

Fig. 4–1

Notice how the lines on this rubber 
membrane distort after it is stretched. The 
localized distortions at the grips smooth 
out as stated by Saint-Venant’s principle.

*When section c–c is so located, the theory of elasticity predicts the maximum stress to 
be smax = 1.02 savg.



 4.2 elastiC deformation of an axially loaded member 143

4

section a–a section b–b

(b)

section c–c

PPP

savg �
P
A

savg �
P
A

section c–c

(c)

P
2

P
2

4.2  elaStic Deformation of an 
axially loaDeD member

Using Hooke’s law and the definitions of stress and strain, we will now 
develop an equation that can be used to determine the elastic displacement 
of a member subjected to axial loads. To generalize the development, 
consider the bar shown in Fig. 4–2a, which has a cross-sectional area that 
gradually varies along its length L, and is made of a material that has a 
variable stiffness or modulus of elasticity. The bar is subjected to 
concentrated loads at its ends and a variable external load distributed 
along its length. This distributed load could, for example, represent the 
weight of the bar if it is in the vertical position, or friction forces acting on 
the bar’s surface.

Here we wish to find the relative displacement d (delta) of one end of 
the bar with respect to the other end as caused by the loading. We will 
neglect the localized deformations that occur at points of concentrated 
loading and where the cross section suddenly changes. From Saint-
Venant’s principle, these effects occur within small regions of the bar’s 
length and will therefore have only a slight effect on the final result. For 
the most part, the bar will deform uniformly, so the normal stress will be 
uniformly distributed over the cross section.

P2P1

x dx

L

(a)
d

Fig. 4–2

Fig. 4–1 (cont.)

The vertical displacement of the rod at the 
top floor B only depends upon the force in 
the rod along length AB. However, the 
displacement at the bottom floor C depends 
upon the force in the rod along its entire 
length, ABC.

A

B

C
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Using the method of sections, a differential element (or wafer) of length 
dx and cross-sectional area A(x) is isolated from the bar at the arbitrary 
position x, where the modulus of elasticity is E(x). The free-body diagram 
of this element is shown in Fig. 4–2b. The resultant internal axial force will 
be a function of x since the external distributed loading will cause it to 
vary along the length of the bar. This load, N(x), will deform the element 
into the shape indicated by the dashed outline, and therefore the 
displacement of one end of the element with respect to the other end 
becomes dd. The stress and strain in the element are therefore

s =
N (x)

A(x)
  and  P =

dd
dx

Provided the stress does not exceed the proportional limit, we can apply 
Hooke’s law; i.e., s = E(x)P, and so

 
N (x)

A(x)
= E(x)add

dx
b

 dd =
N(x)dx

A(x)E(x)

For the entire length L of the bar, we must integrate this expression to 
find d. This yields

d = L
L

0

N(x)dx

A(x)E(x)
 (4–1)

Here
 d =  displacement of one point on the bar relative to the other 

point
 L = original length of bar

 N (x) =  internal axial force at the section, located a distance x from 
one end

 A(x) = cross-sectional area of the bar expressed as a function of x
 E(x) =  modulus of elasticity for the material expressed as a function of x

Constant Load and Cross-Sectional Area. In many cases 
the bar will have a constant cross-sectional area A; and the material will 
be homogeneous, so E is constant. Furthermore, if a constant external 
force is applied at each end, Fig. 4–3a, then the internal force N 
throughout the length of the bar is also constant. As a result, Eq. 4–1 
when integrated becomes

d =
 NL
  AE

  (4–2)

P2P1

x dx

L

(a)
d

dx
dd

(b)

N(x) N(x)P2P1

x dx

L

(a)
d

Fig. 4–2 (Repeated)
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If the bar is subjected to several different axial forces along its length, 
or the cross-sectional area or modulus of elasticity changes abruptly 
from one region of the bar to the next, as in Fig. 4–3b, then the above 
equation can be applied to each segment of the bar where these quantities 
remain constant. The displacement of one end of the bar with respect to 
the other is then found from the algebraic addition of the relative 
displacements of the ends of each segment. For this general case,

d = a
 

  
 
 NL
  AE

  (4–3)

Sign Convention. When applying Eqs. 4–1 through 4–3, it is best 
to use a consistent sign convention for the internal axial force and the 
displacement of the bar. To do so, we will consider both the force and 
displacement to be positive if they cause tension and elongation, Fig. 4–4; 
whereas a negative force and displacement will cause compression and 
contraction.

PP

x

L

(a)

d

  

P1 P4

(b)

P2 P3 

L4L3L2L1

Fig. 4–3

�N

�N

�d

�d

Fig. 4–4

Important poInts

 • Saint-Venant’s principle states that both the localized 
deformation and stress which occur within the regions of load 
application or at the supports tend to “even out” at a distance 
sufficiently removed from these regions.

 • The displacement of one end of an axially loaded member 
relative to the other end is determined by relating the applied 
internal load to the stress using s = N>A  and relating the 
displacement to the strain using P = dd>dx.  Finally these two 
equations are combined using Hooke’s law, s = EP,  which 
yields Eq. 4–1.

  • Since Hooke’s law has been used in the development of the 
displacement equation, it is important that no internal load 
causes yielding of the material, and that the material behaves 
in a linear elastic manner.
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procedure for analysIs

The relative displacement between any two points A and B on an 
axially loaded member can be determined by applying Eq. 4–1 (or 
Eq. 4–2). Application requires the following steps.

Internal Force.

 • Use the method of sections to determine the internal axial 
force N within the member.

 • If this force varies along the member’s length due to an external 
distributed loading, a section should be made at the arbitrary 
location x from one end of the member, and the internal force 
represented as a function of x, i.e., N(x).

 • If several constant external forces act on the member, the 
internal force in each segment of the member between any two 
external forces must be determined.

 • For any segment, an internal tensile force is positive and an 
internal compressive force is negative. For convenience, the 
results of the internal loading throughout the member can be 
shown graphically by constructing the normal-force diagram.

Displacement.

 • When the member’s cross-sectional area varies along its length, 
the area must be expressed as a function of its position x, i.e., 
A(x).

 • If the cross-sectional area, the modulus of elasticity, or the 
internal loading suddenly changes, then Eq. 4–2 should be 
applied to each segment for which these quantities are 
constant.

 • When substituting the data into Eqs. 4–1 through 4–3, be sure to 
account for the proper sign of the internal force N. Tensile forces 
are positive and compressive forces are negative. Also, use a 
consistent set of units. For any segment, if the result is a positive 
numerical quantity, it indicates elongation; if it is negative, it 
indicates a contraction.
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EXAMPLE   4.1

The uniform A-36 steel bar in Fig. 4–5a has a diameter of 50 mm and is 
subjected to the loading shown. Determine the displacement at D, 
and the displacement of point B relative to C.

N (kN)

x (m)
50

�30
�70

(c)

2
3 4.5

DA B C

80 kN 40 kN

(a)

1 m2 m 1.5 m

70 kN

   (b)

70 kN

70 kN

70 kN40 kN

40 kN80 kN

NCD � 70 kN

NBC � 30 kN

NBC � 50 kN

Fig. 4–5

SOLUTION

Internal Forces. The internal forces within the bar are determined 
using the method of sections and horizontal equilibrium. The results 
are shown on the free-body diagrams in Fig. 4–5b. The normal-force 
diagram in Fig. 4–5c shows the variation of these forces along the bar.

Displacement. From the table in the back of the book, for A-36 
steel, E = 200 GPa. Using the established sign convention, the 
displacement of the end of the bar is therefore

dD = a NL
AE

=
[-70(103) N](1.5 m)

p(0.025 m)2[200(109) N>m2]

+
[-30(103) N](1 m)

p(0.025 m)2[200(109) N>m2]
+

[50(103) N](2 m)

p(0.025 m)2[200(109) N>m2]

dD = -89.1(10-3) mm Ans.

This negative result indicates that point D moves to the left.

The displacement of B relative to C, dB>C , is caused only by the internal 
load within region BC. Thus,

dB>C =
NL
AE

=
[-30(103) N](1 m)

p(0.025 m)2[200(109) N>m2]
= -76.4(10-3) mm Ans.

Here the negative result indicates that B will move towards C.
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EXAMPLE   4.2

The assembly shown in Fig. 4–6a consists of an aluminum tube AB having a 
cross-sectional area of 400 mm2. A steel rod having a diameter of 10 mm is 
attached  to a rigid collar and passes through the tube. If a tensile load of  
80 kN is applied to the rod, determine the displacement of the end C of the 
rod. Take Est = 200 GPa,  Eal = 70 GPa.

400 mm

600 mm

AB

80 kN

(a)

C

  

80 kN

80 kN

(b)

NAB � 80 kN

NBC � 80 kN

Fig. 4–6

SOLUTION

Internal Force. The free-body diagrams of the tube and rod segments 
in Fig. 4–6b show that the rod is subjected to a tension of 80 kN, and the 
tube is subjected to a compression of 80 kN.

Displacement. We will first determine the displacement of C with 
respect to B. Working in units of newtons and meters, we have

dC>B =
NL
AE

=
[+80(103) N] (0.6 m)

p(0.005 m)2[200 (109) N>m2]
= +0.003056 m S

The positive sign indicates that C moves to the right relative to B, since 
the bar elongates.

The displacement of B with respect to the fixed end A is

 dB =
NL
AE

 =
[-80(103) N](0.4 m)

[400 mm2(10-6) m2>mm2][70(109) N>m2]
 

 = -0.001143 m = 0.001143 m S

Here the negative sign indicates that the tube shortens, and so B moves 
to the right relative to A.

Since both displacements are to the right, the displacement of C 
relative to the fixed end A is therefore

( S+ )       d C  = d B + d C>B = 0.001143 m + 0.003056 m

  = 0.00420 m = 4.20 mm S   Ans.
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EXAMPLE   4.3

Rigid beam AB rests on the two short posts shown in Fig. 4–7a. AC is made 
of steel and has a diameter of 20 mm, and BD is made of aluminum and has 
a diameter of 40 mm. Determine the displacement of point F on AB if a 
vertical load of 90 kN is applied over this point. Take Est = 200 GPa, 
Eal = 70 GPa.

SOLUTION

Internal Force. The compressive forces acting at the top of each post 
are determined from the equilibrium of member AB, Fig. 4–7b. These 
forces are equal to the internal forces in each post, Fig. 4–7c.

Displacement. The displacement of the top of each post is

Post AC:

dA =
NACLAC

AACEst
=

[-60(103) N](0.300 m)

p(0.010 m)2[200(109) N>m2]
= -286(10-6) m

 = 0.286 mm T

Post BD:

dB =
NBDLBD

ABDEal
=

[-30(103) N](0.300 m)

p(0.020 m)2[70(109) N>m2]
= -102(10-6) m

 = 0.102 mm T

A diagram showing the centerline displacements at A, B, and F on the 
beam is shown in Fig. 4–7d. By proportion of the blue shaded triangle, 
the displacement of point F is therefore

dF = 0.102 mm + (0.184 mm)a400 mm
600 mm

b = 0.225 mm T  Ans.

200 mm
400 mm

300 mm

F

A

C

B

D

90 kN

(a)

200 mm
400 mm

90 kN

60 kN
30 kN

(b)

60 kN

NAC � 60 kN

30 kN

NBD � 30 kN

(c)

400 mm

0.184 mm

0.286 mm

0.102 mm
600 mm

0.102 mm

BA F

(d)

dF

Fig. 4–7
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EXAMPLE   4.4

A member is made of a material that has a specific weight of g = 6 kN>m3 
and modulus of elasticity of 9 GPa. If it is in the form of a cone having the 
dimensions shown in Fig. 4–8a, determine how far its end is displaced due to 
gravity when it is suspended in the vertical position.

SOLUTION

Internal Force. The internal axial force varies along the member, since 
it is dependent on the weight W(y) of a segment of the member below 
any section, Fig. 4–8b. Hence, to calculate the displacement, we must use 
Eq. 4–1. At the section located a distance y from the cone’s free end, the 
radius x of the cone as a function of y is determined by proportion; i.e.,

 x
y

 =
 0.3 m 

3 m
;  x = 0.1y

The volume of a cone having a base of radius x and height y is

V =
1
3

 pyx2 =
 p(0.01)

3 
  y3 = 0.01047y3

Since W = gV , the internal force at the section becomes

+ c ΣFy = 0;   N(y) = 6(103)(0.01047y3) = 62.83y3

Displacement. The area of the cross section is also a function of 
position y, Fig. 4–8b. We have

A(y) = px2 = 0.03142 y2

Applying Eq. 4–1 between the limits of y = 0  and y = 3 m yields

 d = L
L

0

N(y) dy

A(y) E
= L

3

0

(62.83y3) dy

(0.03142y2) 9(109)
 

 = 222.2(10- 9) L
 3

 0
 y dy

 = 1(10- 6) m = 1 mm  Ans.

NOTE: This is indeed a very small amount.

y

3 m

x

(a)

0.3 m

y

y

x

W(y)

(b)

N(y)
x

Fig. 4–8
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P4–1. In each case, determine the internal normal force 
between lettered points on the bar. Draw all necessary  
free-body diagrams.

BA C D E

(a)

100 N 200 N 400 N
700 N

BA C D

(b)

400 N
600 N

300 N

P4–2. Determine the internal normal force between 
lettered points on the cable and rod. Draw all necessary 
free-body diagrams.

E

C

D

400 N

900 N

500 N

A B

P4–3. The post weighs 8 kN>m. Determine the internal 
normal force in the post as a function of x.

2 m

x

P4–4. The rod is subjected to an external axial force of  
800 N and a uniform distributed load of 100 N>m along its 
length. Determine the internal normal force in the rod as a 
function of x.

100 N/m

800 N
A

2 m
x

P4–5. The rigid beam supports the load of 60 kN. 
Determine the displacement at B. Take E = 60 GPa, and 
ABC = 2 (10-3) m2.

3 m

2 m

A

D

B

C

2 m 4 m

60 kN

PrELIMINAry PrObLEMS

P4–1

P4–2

P4–3

P4–4

P4–5
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F4–1. The 20-mm-diameter A-36 steel rod is subjected to 
the axial forces shown. Determine the displacement of 
end C with respect to the fixed support at A.

CBA

50 kN
40 kN

50 kN

600 mm 400 mm

Prob. F4–1

F4–2. Segments AB and CD of the assembly are solid 
circular rods, and segment BC is a tube. If the assembly is 
made of 6061-T6 aluminum, determine the displacement of 
end D with respect to end A.

10 kN
15 kN

15 kN

20 kN
10 kN

10 kN
400 mm400 mm 400 mm

20 mm 20 mm

A

a
B

D
C

40 mm30 mm

Section a-a

a

Prob. F4–2

F4–3. The 30-mm-diameter A992 steel rod is subjected to 
the loading shown. Determine the displacement of end C.

A B C

600 mm

3

3

4

4

5

5

90 kN

30 kN

30 kN
400 mm

Prob. F4–3

F4–4. If the 20-mm-diameter rod is made of A-36 steel 
and the stiffness of the spring is k = 50 MN>m,  determine 
the displacement of end A when the 60-kN force is applied.

k � 50 MN/m400 mm

400 mm

60 kN

A

B

Prob. F4–4

F4–5. The 20-mm-diameter 2014-T6 aluminum rod is 
subjected to the uniform distributed axial load. Determine 
the displacement of end A.

A

900 mm

30 kN/m

Prob. F4–5

F4–6. The 20-mm-diameter 2014-T6 aluminum rod is 
subjected to the triangular distributed axial load. Determine 
the displacement of end A.

A

900 mm

45 kN/m

Prob. F4–6

FUNdAMENTAL PrObLEMS
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4–1. The A992 steel rod is subjected to the loading shown. 
If the cross-sectional area of the rod is 60 mm2, determine the 
displacement of B and A, Neglect the size of the couplings at 
B, C, and D.

A

0.75 m

1.50 m

0.50 m

3.30 kN

60

D

C

B

2 kN

3
44

55

3.30 kN

60

2 kN

3

8 kN

Prob. 4–1

4–2. The copper shaft is subjected to the axial loads shown. 
Determine the displacement of end A with respect to end D 
if the diameters of each segment are dAB = 20 mm, 
dBC = 25 mm, and dCD = 12 mm. Take Ecu = 126 GPa.

27  kN36 kN

A 22.5 kN

22.5 kN

 9 kN

 9 kN

B C
D

2 m 3.75 m  2.5 m

Prob. 4–2

4–3. The composite shaft, consisting of aluminum, copper, 
and steel sections, is subjected to the loading shown. 
Determine the displacement of end A with respect to end D 
and the normal stress in each section. The cross-sectional 
area and modulus of elasticity for each section are shown in 
the figure. Neglect the size of the collars at B and C.

*4–4. Determine the displacement of B with respect to C 
of the composite shaft in Prob. 4–3.

Aluminum SteelCopper

= 70 GPaEal =  126 GPaEcu =  200 GPaEst

= 58 mm2AAB = 77 mm2ABC = 39 mm2ACD

7 kN9 kN
 16 kN 8 kN

300 mm 400 mm

CB DA

450 mm

16 kN  8 kN

Probs. 4–3/4

4–5. The 2014-T6 aluminium rod has a diameter of 30 mm 
and supports the load shown. Determine the displacement 
of end A with respect to end E. Neglect the size of the 
couplings.

4 m

8 kN

4 kN 6 kN 2 kN

2 m

A B C D
E

2 m 2 m

Prob. 4–5 

PrObLEMS
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4–6. The A992 steel drill shaft of an oil well extends 3600 
m into the ground. Assuming that the pipe used to drill the 
well is suspended freely from the derrick at A, determine 
the maximum average normal stress in each pipe segment 
and the elongation of its end D with respect to the fixed end 
at A. The shaft consists of three different sizes of pipe, AB, 
BC, and CD, each having the length, weight per unit length, 
and cross-sectional area indicated.

A

C

D

B

AAB=  1600 mm2

wAB= 50 N/m

ABC =  1125 mm2

wBC = 40 N/m

ACD= 800 mm2

wCD= 30 N/m

1500 m

1500 m

600 m

Prob. 4–6

4–7. The truss is made of three A-36 steel members, each 
having a cross-sectional area of 400 mm2. Determine the 
horizontal displacement of the roller at C when P = 8 kN.

*4–8. The truss is made of three A-36 steel members, each 
having a cross-sectional area of 400 mm2. Determine  
the magnitude P required to displace the roller to the  
right 0.2 mm.

P

0.6 m0.8 m

5 kN

0.8 m

A C

B

Probs. 4–7/8

4–9. The assembly consists of two 10-mm diameter red 
brass C83400 copper rods AB and CD, a 15-mm diameter 
304 stainless steel rod EF, and a rigid bar G. If P = 5 kN, 
determine the horizontal displacement of end F of rod EF.

4–10. The assembly consists of two 10-mm diameter red 
brass C83400 copper rods AB and CD, a 15-mm diameter 
304 stainless steel rod EF, and a rigid bar G. If the horizontal 
displacement of end F of rod EF is 0.45 mm, determine the 
magnitude of P.

P

4P

A B

C D G

E

F

P

450 mm300 mm

Probs. 4–9/10 

4–11. The load is supported by the four 304 stainless steel 
wires that are connected to the rigid members AB and DC. 
Determine the vertical displacement of the 2.5-kN load if 
the members were originally horizontal when the load was 
applied. Each wire has a cross-sectional area of 16 mm2.

*4–12. The load is supported by the four 304 stainless steel 
wires that are connected to the rigid members AB and DC. 
Determine the angle of tilt of each member after the 2.5 kN 
load is applied. The members were originally horizontal, 
and each wire has a cross-sectional area of 16 mm2.

0.54 m
0.3 m 0.6 m

CD

BA
0.9 m 0.3 m

1.5 m

0.9 m

E F G

2.5 kN

I

H

Probs. 4–11/12 
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4–13. A spring-supported pipe hanger consists of two 
springs which are originally unstretched and have a stiffness 
of k = 60 kN>m, three 304 stainless steel rods, AB and CD, 
which have a diameter of 5 mm, and EF, which has a 
diameter of 12 mm, and a rigid beam GH. If the pipe and 
the fluid it carries have a total weight of 4 kN, determine the 
displacement of the pipe when it is attached to the support.

4–14. A spring-supported pipe hanger consists of two 
springs, which are originally unstretched and have a stiffness 
of k = 60 kN>m, three 304 stainless steel rods, AB and CD, 
which have a diameter of 5 mm, and EF, which has a 
diameter of 12 mm, and a rigid beam GH. If the pipe is 
displaced 82 mm when it is filled with fluid, determine the 
weight of the fluid.

A C

DB

F

G H
E

0.25 m0.25 m

0.75 m

k k

0.75 m

Probs. 4–13/14

4–15. The steel bar has the original dimensions shown in 
the figure. If it is subjected to an axial load of 50 kN, 
determine the change in its length and its new cross-sectional 
dimensions at section a–a. Est = 200 GPa, nst = 0.29.

20 mm

50 mm

60 mm

20 mm

20 mm

50 kN

A

B

C
D

50 kN

200 mm

350 mm

200 mm

a

a

Prob. 4–15 

*4–16. The ship is pushed through the water using an A-36 
steel propeller shaft that is 8 m long, measured from the 
propeller to the thrust bearing D at the engine. If it has an 
outer diameter of 400 mm and a wall thickness of 50 mm, 
determine the amount of axial contraction of the shaft when 
the propeller exerts a force on the shaft of 5 kN. The 
bearings at B and C are journal bearings.

A B C
D

8 m

5 kN

Prob. 4–16

4–17. The bar has a length L and cross-sectional area A. 
Determine its elongation due to the force P and its own 
weight.The material has a specific weight g (weight>volume) 
and a modulus of elasticity E.

P

L

Prob. 4–17
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4–18. The assembly consists of three titanium (Ti-6A1-4V) 
rods and a rigid bar AC. The cross-sectional area of each rod 
is given in the figure. If a force of 30 kN is applied to the ring 
F, determine the horizontal displacement of point F.

4–19. The assembly consists of three titanium (Ti-6A1-4V) 
rods and a rigid bar AC.The cross-sectional area of each rod 
is given in the figure. If a force of 30 kN is applied to the ring 
F, determine the angle of tilt of bar AC.

1.8 m

0.3 m AEF  1200 mm2

AAB  900 mm2

ACD  600 mm2

1.2 m

0.6 m

 30 kN
F

A

C

E

B

D

0.3 m

Probs. 4–18/19

*4–20. The pipe is stuck in the ground so that when it is 
pulled upward the frictional force along its length varies 
linearly from zero at B to fmax (force/length) at C. Determine 
the initial force P required to pull the pipe out and the 
pipe’s elongation just before it starts to slip. The pipe has a 
length L, cross-sectional area A, and the material from 
which it is made has a modulus of elasticity E.

C

L

fmax

B

P

Prob. 4–20 

4–21. The post is made of Douglas fir and has a diameter of 
100 mm. If it is subjected to the load of 20 kN and the soil 
provides a frictional resistance distributed around the post 
that is triangular along its sides; that is, it varies from w = 0 
at y = 0 to w = 12 kN>m at y = 2 m, determine the force F 
at its  bottom needed for equilibrium. Also, what is the 
displacement of the top of the post A with respect to its 
bottom B? Neglect the weight of the post.

4–22. The post is made of Douglas fir and has a diameter 
of 100 mm. If it is subjected to the load of 20 kN and the soil 
provides a frictional resistance that is distributed along 
its  length and varies linearly from w = 4  kN>m at y = 0  
to  w = 12 kN>m at y = 2 m,  determine the force F at its 
bottom needed for equilibrium. Also, what is the displacement 
of the top of the post A with respect to its bottom B? Neglect 
the weight of the post.

w

y

A

2 m

20 kN

B

F

12 kN/m

Probs. 4–21/22 

4–23. The rigid bar is supported by the pin-connected rod 
CB that has a cross-sectional area of 14 mm2 and is made 
from 6061-T6 aluminum. Determine the vertical deflection 
of the bar at D when the distributed load is applied.

2 m 2 m

1.5 m

B

300 N/m

A

C

D

Prob. 4–23 
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*4–24. The weight of the kentledge exerts an axial force of 
P = 1500 kN on the 300-mm diameter high-strength 
concrete bore pile. If the distribution of the resisting skin 
friction developed from the interaction between the soil 
and the surface of the pile is approximated as shown, 
determine the resisting bearing force F for equilibrium. 
Take p0 = 180 kN>m. Also, find the corresponding elastic 
shortening of the pile. Neglect the weight of the pile.

F

P

p0

12 m

Prob. 4–24

4–25. Determine the elongation of the aluminum strap 
when it is subjected to an axial force of 30 kN. Eal = 70 GPa.

30 kN 30 kN

50 mm15 mm 15 mm6 mm

250 mm 250 mm
800 mm

Prob. 4–25 

4–26. The ball is truncated at its ends and is used to 
support the bearing load P. If the modulus of elasticity for 
the material is E, determine the decrease in the ball’s height 
when the load is applied.

r

r
2

P
r
2

Prob. 4–26 

4–27. The linkage is made of two pin-connected A-36 steel 
members, each having a cross-sectional area of 1000 mm2. If 
a vertical force of P = 250 kN is applied to point A, 
determine its vertical displacement at A.

*4–28. The linkage is made of two pin-connected A-36 
steel members, each having a cross-sectional area of 1000 
mm2. Determine the magnitude of the force P needed to 
displace point A 0.625 mm downward.

0.45 m0.45 m

C

A

B

0.6 m

P

Probs. 4–27/28

4–29. The bar has a cross-sectional area of 1800 mm2, and 
E = 250 GPa. Determine the displacement of its end A 
when it is subjected to the distributed loading.

w  500x1/3 N/m

1.5 m

x

A

Prob. 4–29

4–30. Determine the relative displacement of one end of 
the tapered plate with respect to the other end when it is 
subjected to an axial load P.

P

t

h

P

d1

d2

Prob. 4–30 
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4.3 PrinciPle of SuPerPoSition
The principle of superposition is often used to determine the stress or 
displacement at a point in a member when the member is subjected to a 
complicated loading. By subdividing the loading into components, this 
principle states that the resultant stress or displacement at the point can 
be determined by algebraically summing the stress or displacement caused 
by each load component applied separately to the member.

The following two conditions must be satisfied if the principle of 
superposition is to be applied.

 1.   The loading N must be linearly related to the stress S or 
displacement D that is to be determined. For example, the equations 
s = N>A and d = NL>AE involve a linear relationship between s 
and N, and d and N.

 2.   The loading must not significantly change the original geometry or 
configuration of the member. If significant changes do occur, the 
direction and location of the applied forces and their moment arms 
will change. For example, consider the slender rod shown in Fig. 4–9a, 
which is subjected to the load P. In Fig. 4–9b, P is replaced by two 
of its components, P = P1 + P2. If P causes the rod to deflect a large 
amount, as shown, the moment of this load about its support, Pd, 
will not equal the sum of the moments of its component loads, 
Pd ≠ P1d1 + P2d2 , because d1 ≠ d2 ≠ d.

(a)

d

P

(b)

�
d1

d2

�

P1
P2

Fig. 4–9 

4.4  Statically inDeterminate 
axially loaDeD memberS

Consider the bar shown in Fig. 4–10a, which is fixed supported at both of 
its ends. From its free-body diagram, Fig. 4–10b, there are two unknown 
support reactions. Equilibrium requires

+ c ΣF = 0;  FB + FA - 500 N = 0

This type of problem is called statically indeterminate, since the equilibrium 
equation is not sufficient to determine both reactions on the bar.
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In order to establish an additional equation needed for solution, it is necessary 
to consider how points on the bar are displaced. Specifically, an equation that 
specifies the conditions for displacement is referred to as a compatibility or 
kinematic condition. In this case, a suitable compatibility condition would require 
the displacement of end A of the bar with respect to end B to equal zero, since the 
end supports are fixed, and so no relative movement can occur between them. 
Hence, the compatibility condition becomes

dA>B = 0

This equation can be expressed in terms of the internal loads by using a  
load–displacement relationship, which depends on the material behavior. For 
example, if linear elastic behavior occurs, then d = NL>AE can be used. Realizing 
that the internal force in segment AC is +FA , and in segment CB it is -FB , Fig. 4–10c, 
then the compatibility equation can be written as

FA(2 m)

AE
-

FB(3 m)

AE
= 0

Since AE is constant, then FA = 1.5FB. Finally, using the equilibrium equation, the 
reactions are therefore

FA = 300 N and FB = 200 N

Since both of these results are positive, the directions of the reactions are shown 
correctly on the free-body diagram. 

To solve for the reactions on any statically indeterminate problem, we must 
therefore satisfy both the equilibrium and compatibility equations, and relate the 
displacements to the loads using the load–displacement relations.

2 m

C

3 m

A

B

(a)

FB

FA FA

FA

FB

FB

(b) (c)

500 N

500 N

Fig. 4–10 
Important poInts 

 • The principle of superposition is sometimes used to simplify 
stress and displacement problems having complicated loadings. 
This is done by subdividing the loading into components, then 
algebracially adding the results.

 • Superposition requires that the loading be linearly related to 
the stress or displacement, and the loading must not significantly 
change the original geometry of the member.

 • A problem is statically indeterminate if the equations of 
equilibrium are not sufficient to determine all the reactions on 
a member.

 • Compatibility conditions specify the displacement constraints 
that occur at the supports or other points on a member.
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Most concrete columns are reinforced with 
steel rods; and since these two materials work 
together in supporting the applied load, the 
force in each material must be determined 
using a statically indeterminate analysis.

procedure for analysIs 

The support reactions for statically indeterminate problems 
are  determined by satisfying equilibrium, compatibility, and  
load–displacement requirements for the member.

equilibrium.

 • Draw a free-body diagram of the member in order to identify 
all the forces that act on it.

 • The problem can be classified as statically indeterminate if the 
number of unknown reactions on the free-body diagram is 
greater than the number of available equations of equilibrium.

 • Write the equations of equilibrium for the member.

Compatibility.

 • Consider drawing a displacement diagram in order to 
investigate the way the member will elongate or contract when 
subjected to the external loads.

 • Express the compatibility conditions in terms of the displacements 
caused by the loading.

Load–Displacement.

 • Use a load–displacement relation, such as d = NL>AE, to 
relate the unknown displacements in the compatibility 
equation to the reactions.

 • Solve all the equations for the reactions. If any of the results 
has a negative numerical value, it indicates that this force 
acts in the opposite sense of direction to that indicated on the 
free-body diagram.
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The steel rod shown in Fig. 4–11a has a diameter of 10 mm. It is fixed 
to the wall at A, and before it is loaded, there is a gap of 0.2 mm 
between the wall at B′ and the rod. Determine the reactions on the 
rod if it is subjected to an axial force of P = 20 kN. Neglect the size of 
the collar at C. Take Est = 200 GPa.

SOLUTION

Equilibrium. As shown on the free-body diagram, Fig. 4–11b, we 
will assume that force P is large enough to cause the rod’s end B to 
contact the wall at B′. When this occurs, the problem becomes 
statically indeterminate since there are two unknowns and only one 
equation of equilibrium.

S +  ΣFx = 0;   -FA - FB + 20(103) N = 0  (1)

Compatibility. The force P causes point B to move to B′, with no 
further displacement. Therefore the compatibility condition for the rod is

dB>A = 0.0002 m

Load–Displacement. This displacement can be expressed in terms 
of the unknown reactions using the load–displacement relationship, 
Eq. 4–2, applied to segments AC and CB, Fig. 4–11c. Working in units 
of newtons and meters, we have

dB>A =
FA LAC 

AE
 -

 FB LCB 
 AE

= 0.0002 m  

 FA(0.4 m)

 p(0.005 m)2 [200(109) N>m2]
 

-  
 FB (0.8 m)

 p(0.005 m) 2 [200(10 9) N>m 2]
= 0.0002 m

or

FA (0.4 m) - FB (0.8 m) = 3141.59 N ~ m  (2)

Solving Eqs. 1 and 2 yields

 FA = 16.0 kN  FB = 4.05 kN   Ans.

Since the answer for FB  is positive, indeed end B contacts the wall at 
B′ as originally assumed.

NOTE: If FB  were a negative quantity, the problem would be  
statically determinate, so that FB = 0 and FA =  20 kN.

EXAMPLE   4.5 

400 mm
800 mm

A B¿
C B

P � 20 kN

(a)

0.2 mm

(b)

FA FB

P � 20 kN

(c)

FA FA

FB
FB

Fig. 4–11 
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The aluminum post shown in Fig. 4–12a is reinforced with a brass core. 
If this assembly supports an axial compressive load of P = 45 kN, 
applied to the rigid cap, determine the average normal stress in the 
aluminum and the brass. Take Eal = 70 GPa and Ebr = 105 GPa.

SOLUTION

Equilibrium. The free-body diagram of the post is shown in Fig. 4–12b.  
Here the resultant axial force at the base is represented by the unknown 
components carried by the aluminum, Fal, and brass, Fbr. The problem is 
statically indeterminate.Why?

Vertical force equilibrium requires

+ c ΣFy = 0;    -45 kN + Fal + Fbr = 0 (1)

Compatibility. The rigid cap at the top of the post causes both the 
aluminum and brass to displace the same amount.Therefore,

dal = dbr

Using the load–displacement relationships,

FalL

A alEal
=

FbrL

A brEbr
 

Fal = Fbr a
Aal

Abr
b  a

Eal

Ebr
b

Fal = Fbr c
p[(0.05 m)2 - (0.025 m)2]

p(0.025 m)2 d  c 70 GPa
105 GPa

d

 Fal = 2Fbr (2)

Solving Eqs. 1 and 2 simultaneously yields

Fal = 30 kN  Fbr = 15 kN

Since the results are positive, indeed the stress will be compressive.
The average normal stress in the aluminum and brass is therefore

sal =
30(103) N

p[(0.05 m)2 - (0.025 m)2]
= 5.093(106) N>m2 = 5.09 MPa Ans.

sbr =
15 (103) N

p(0.025 m)2 =  7.639 (106) N>m2 = 7.64 MPa Ans.

NOTE: Using these results, the stress distributions are shown in  
Fig. 4–12c.

EXAMPLE   4.6

Fig. 4–12

0.5 m

P  45 kN

(a)

25 mm50 mm

P  45 kN

(b)

Fbr

Fal

(c)

sal 5.09 MPa

sbr 7.64 MPa
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The three A992 steel bars shown in Fig. 4–13a are pin connected to a 
rigid member. If the applied load on the member is 15 kN, determine 
the force developed in each bar. Bars AB and EF each have a  
cross-sectional area of 50 mm2, and bar CD has a cross-sectional area 
of 30 mm2.

SOLUTION

Equilibrium. The free-body diagram of the rigid member is shown 
in Fig. 4–13b. This problem is statically indeterminate since there are 
three unknowns and only two available equilibrium equations.

+ c ΣF y = 0;   F A + F C + F E - 15 kN = 0  (1)

a + ΣMC = 0;  -F A(0.4 m) + 15 kN(0.2 m) + F E (0.4 m) = 0  (2)

Compatibility. The applied load will cause the horizontal line ACE 
shown in Fig. 4–13c to move to the inclined position A′C′E′. The red 
displacements dA, dC, dE can be related by similar triangles. Thus the 
compatibility equation that relates these displacements is

 dA - dE 
 0.8 m

 =
 dC - dE 

 0.4 m
  

dC =
 1
 2

  dA +
 1
 2

  dE 

Load–Displacement. Using the load–displacement relationship, 
Eq. 4–2, we have

 FC L

 (30 mm2)E st   
 =

 1
 2

  c
 FA L

 (50 mm2)E st   
d +

 1
 2

  c
 FE L

 (50 mm2)E st   
d

 FC = 0.3FA + 0.3FE  (3)

Solving Eqs. 1–3 simultaneously yields

  FA = 9.52 kN  Ans.

  FC = 3.46 kN  Ans.

  FE = 2.02 kN  Ans.

EXAMPLE   4.7

15 kN

0.4 m

B

A

(a)

D

C

F

E

0.5 m

0.2 m 0.2 m

0.4 m

(c)

C
0.4 m

A E

A¿
C ¿

E ¿

dA

dA � dE

dC � dE

dE

dC

dE

15 kN

0.2 m 0.2 m
0.4 m

(b)

FA FC FE

C

Fig. 4–13 
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EXAMPLE   4.8

The bolt shown in Fig. 4–14a is made of 2014-T6 aluminum alloy and is 
tightened so it compresses a cylindrical tube made of Am 1004-T61 
magnesium alloy. The tube has an outer radius of 10 mm and it is assumed 
that both the inner radius of the tube and the radius of the bolt are 5 mm. 
The washers at the top and bottom of the tube are considered to be rigid 
and have a negligible thickness. Initially the nut is hand tightened snugly; 
then, using a wrench, the nut is further tightened one-half turn. If the 
bolt has 1 thread per mm, determine the stress in the bolt.

SOLUTION

Equilibrium. The free-body diagram of a section of the bolt and the 
tube, Fig. 4–14b, is considered in order to relate the force in the bolt Fb to 
that in the tube, Ft. Equilibrium requires

+ c ΣFy = 0;  Fb - Ft = 0 (1)

Compatibility. When the nut is tightened on the bolt, the tube will 
shorten dt, and the bolt will elongate db, Fig. 4–14c. Since the nut undergoes 
one-half turn, it advances a distance of  1

2 (0.001 m) = 0.5(10- 3) m along 
the bolt. Thus, the compatibility of these displacements requires

(+ c)  dt = 0.5(10- 3) m - db

Taking the moduli of elasticity from the table given in the back of the 
book, and applying Eq. 4–2, yields

Ft (0.06 m)

p[(0.01 m)2 - (0.005 m)2] [44.7(109) N>m2]
=

0.5 (10- 3) m -  
Fb (0.06 m)

p(0.005 m)2 [73.1 (109) N>m2]
 

 5.6968Ft + 10.4507Fb = 0.5 (106) (2)

Solving Eqs. 1 and 2 simultaneously, we get

Fb = Ft = 30.96(103) N

The stresses in the bolt and tube are therefore

sb =
Fb

Ab
=

30.96 (103) N

p(0.005 m)2 = 394.25(106) N>m = 394 MPa Ans.

st =
Ft

At
=

30.96 (103) N

p[(0.01 m)2 - (0.005 m)2]
= 131.42(106) N>m2 = 131 MPa

These stresses are less than the reported yield stress for each material, 
(sY)al = 414 MPa and (sY)mg = 152 MPa (see the back of the book), 
and therefore this “elastic” analysis is valid.

60 mm

10 mm

(a)

5 mm

(b)

Ft

Fb

(c)

0.5 mm

Initial
position

Final
position

dt

db

Fig. 4–14
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procedure for analysIs

4.5  the force methoD of analySiS 
for axially loaDeD memberS

It is also possible to solve statically indeterminate problems by writing the 
compatibility equation using the principle of superposition. This method 
of solution is often referred to as the flexibility or force method of 
analysis. To show how it is applied, consider again the bar in Fig. 4–15a. 
If we choose the support at B as “redundant” and temporarily remove it 
from the bar, then the bar will become statically determinate, as in 
Fig. 4–15b. Using the principle of superposition, however, we must add 
back the unknown redundant load FB , as shown in Fig. 4–15c.

Since the load P causes B to be displaced downward by an amount dP , 
the reaction FB  must displace end B of the bar upward by an amount dB , 
so that no displacement occurs at B when the two loadings are 
superimposed. Assuming displacements are positive downward, we have

(+ T)  0 = d P - d B 

This condition of dP = dB represents the compatibility equation for 
displacements at point B.

Applying the load–displacement relationship to each bar, we have 
dP = 500 N(2 m)>AE and dB = FB(5 m)>AE.  Consequently,

 0 =
 500 N12 m2

AE
-

 FB15 m2
 AE

  

 F B =  200 N

From the free-body diagram of the bar, Fig. 4–15d, equilibrium requires

+ c ΣF y = 0;   200 N + F A - 500 N = 0

Then
FA = 300 N

These results are the same as those obtained in Sec. 4.4.

No displacement at B

(a)

Displacement at B when
redundant force at B

is removed

(b)

Displacement at B when
only the redundant force

at B is applied

(c)

A

A

A

B

C

(d)

FB

�

�

dP

dB

FA

2 m

3 m

NAC = 500 N

500 N

500 N

500 N

NCB = 0

NAB = – FB 

200 N

Fig. 4–15

The force method of analysis requires the following steps.

Compatibility.

 • Choose one of the supports as redundant and write the equation of compatibility. To do this, the known 
displacement at the redundant support, which is usually zero, is equated to the displacement at the support caused 
only by the external loads acting on the member plus (vectorially) the displacement at this support caused only by 
the redundant reaction acting on the member.
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EXAMPLE   4.9

The A-36 steel rod shown in Fig. 4–16a has a diameter of 10 mm. It is fixed to 
the wall at A, and before it is loaded there is a gap between the wall and the 
rod of 0.2 mm. Determine the reactions at A and B′. Neglect the size of the 
collar at C. Take E st = 200 GPa.

SOLUTION

Compatibility. Here we will consider the support at B′ as redundant. 
Using the principle of superposition, Fig. 4–16b, we have

(S) +   0.0002 m = dP - dB  (1)

Load–Displacement. The deflections dP and dB are determined from 
Eq. 4–2.

 dP =
 NACL AC 

 AE
=

 [20(103 ) N](0.4 m)

 p(0.005 m)2 [200(109) N>m2] 
= 0.5093(10- 3) m 

 dB =
 NAB LAB 

 AE
=

 FB (1.20 m)

 p(0.005 m)2 [200(10 9) N>m2] 
= 76.3944(10- 9)FB

Substituting into Eq. 1, we get

 0.0002 m = 0.5093(10- 3 ) m - 76.3944(10- 9 )FB  

  FB = 4.05(103 ) N = 4.05 kN  Ans.

Equilibrium. From the free-body diagram, Fig. 4–16c,

S +  ΣFx = 0;  -FA + 20 kN - 4.05 kN = 0 FA = 16.0 kN   Ans.

(b)

�

�
FB

P � 20 kN

P � 20 kN
Initial

position

Final
position

400 mm
800 mm

C
P � 20 kN

(a)

0.2 mm

A B¿

20 kNFA 4.05 kN

(c)

dP

dB

NAC � 20 kN NCB � 0

NAB � – FB 

Fig. 4–16

Load–Displacement.

 • Express the external load and redundant displacements in terms of the loadings by using a  
load–displacement relationship, such as d = NL>AE.

 • Once established, the compatibility equation can then be solved for the magnitude of the redundant force.

equilibrium.

 • Draw a free-body diagram and write the appropriate equations of equilibrium for the member using the 
calculated result for the redundant. Solve these equations for the other reactions.
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4–31. The column is constructed from high-strength 
concrete and six A-36 steel reinforcing rods. If it is subjected 
to an axial force of 150 kN, determine the average normal 
stress in the concrete and in each rod. Each rod has a 
diameter of 20 mm.

*4–32. The column is constructed from high-strength 
concrete and six A-36 steel reinforcing rods. If it is subjected 
to an axial force of 150 kN, determine the required diameter 
of each rod so that one-fourth of the load is carried by the 
concrete and three-fourths by the steel.

1.2 m

150 kN

100 mm

Probs. 4–31/32

4–33. The A-36 steel pipe has a 6061-T6 aluminum core. It 
is subjected to a tensile force of 200 kN. Determine the 
average normal stress in the aluminum and the steel due to 
this loading. The pipe has an outer diameter of 80 mm and 
an inner diameter of 70 mm.

200 kN

400 mm

200 kN

Prob. 4–33

4–34. The 304 stainless steel post A has a diameter of 
d = 50 mm and is surrounded by a red brass C83400 tube B. 
Both rest on the rigid surface. If a force of 25 kN is applied 
to the rigid cap, determine the average normal stress 
developed in the post and the tube.

4–35. The 304 stainless steel post A is surrounded by a red 
brass C83400 tube B. Both rest on the rigid surface. If a 
force of 25 kN is applied to the rigid cap, determine the 
required diameter d of the steel post so that the load is 
shared equally between the post and tube.

25 kN

d 12 mm

200 mm
A

75 mm

B A

B

Probs. 4–34/35

*4–36. The A-36 steel pipe has an outer radius of 20 mm 
and an inner radius of 15 mm. If it fits snugly between the 
fixed walls before it is loaded, determine the reaction at the 
walls when it is subjected to the load shown.

300 mm 700 mm
8 kN

8 kN
BA C

Prob. 4–36

PrObLEMS
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4–37. The 10-mm-diameter steel bolt is surrounded by a 
bronze sleeve. The outer diameter of this sleeve is 20 mm, and 
its inner diameter is 10 mm. If the yield stress for the steel is  
(sY)st = 640 MPa, and for the bronze (sY)br = 520 MPa, 
determine the magnitude of the largest elastic load P that can 
be applied to the assembly. Est = 200 GPa, Ebr = 100 GPa.

10 mm

20 mm

P

P

Prob. 4–37

4–38. The 10-mm-diameter steel bolt is surrounded by a 
bronze sleeve. The outer diameter of this sleeve is 20 mm, and its 
inner diameter is 10 mm. If the bolt is subjected to a compressive 
force of P = 20 kN, determine the average normal stress in the 
steel and the bronze. Est = 200 GPa, Ebr = 100 GPa.

10 mm

20 mm

P

P

Prob. 4–38

4–39. If column AB is made from high strength pre-cast 
concrete and reinforced with four 20 mm diameter A-36 
steel rods, determine the average normal stress developed 
in the concrete and in each rod. Set P = 350 kN.

*4–40. If column AB is made from high strength pre-cast 
concrete and reinforced with four 20 mm diameter A-36 
steel rods, determine the maximum allowable floor 
loadings P. The allowable normal stress for the high 
strength concrete and the steel are (sallow)con = 18 MPa 
and (sallow)st = 170 MPa, respectively.

3 m

A

aa

Section a-a

 225 mm

 225 mm

B

PP

Probs. 4–39/40

4–41. Determine the support reactions at the rigid supports 
A and C. The material has a modulus of elasticity of E.

4–42. If the supports at A and C are flexible and have a 
stiffness k, determine the support reactions at A and C. The 
material has a modulus of elasticity of E.

A

P

B

d

a

C

2a

3
4 d

Probs. 4–41/42
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4–43. The tapered member is fixed connected at its ends A 
and B and is subjected to a load P = 35 kN at x = 750 mm. 
Determine the reactions at the supports. The material is 50 
mm thick and is made from 2014-T6 aluminum.

*4–44. The tapered member is fixed connected at its ends A 
and B and is subjected to a load P. Determine the location x 
of the load and its greatest magnitude so that the average 
normal stress in the bar does not exceed sallow = 28 MPa. 
The member is 50 mm thick.

1500 mm

75 mm

x

A
B

150 mm P

Probs. 4–43/44

4–45. The rigid bar supports the uniform distributed load of 
90 kN/m. Determine the force in each cable if each cable has 
a cross-sectional area of 36 mm2 and E = 200 GPa.

4–46. The rigid bar is originally horizontal and is supported 
by two cables each having a cross-sectional area of 36 mm2, 
and E = 200 GPa. Determine the slight rotation of the bar 
when the uniform load is applied

. 1 m

A
D

C

B
1 m

90 kN/m

1 m

2 m

Probs. 4–45/46

4–47. The specimen represents a filament-reinforced matrix 
system made from plastic (matrix) and glass (fiber). If there are 
n fibers, each having a cross-sectional area of Af and modulus 
of Ef, embedded in a matrix having a cross-sectional area of Am 
and modulus of Em, determine the stress in the matrix and in 
each fiber when the force P is applied on the specimen.

P

P

Prob. 4–47

*4–48. The rigid beam is supported by the three suspender 
bars. Bars AB and EF are made of aluminum and bar CD is 
made of steel. If each bar has a cross-sectional area of 450 mm2, 
determine the maximum value of P if the allowable stress is  
(sallow)st = 200 MPa for the steel and (sallow)al = 150 MPa for 
the aluminum. Est = 200 GPa, Eal = 70 GPa.

2 m

B D F

A C E

0.75 m

al st al

0.75 m 0.75 m0.75 m

2P

P

Prob. 4–48

4–49. If the gap between C and the rigid wall at D is 
initially 0.15 mm, determine the support reactions at A and D 
when the force P = 200 kN is applied. The assembly is 
made of solid A-36 steel cylinders.

A

P

B
C

D

50 mm

600 mm 600 mm 0.15 mm

25 mm

Prob. 4–49
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4–50. The support consists of a solid red brass C83400 
copper post surrounded by a 304 stainless steel tube. Before 
the load is applied the gap between these two parts is 1 mm. 
Given the dimensions shown, determine the greatest axial 
load that can be applied to the rigid cap A without causing 
yielding of any one of the materials.

P

0.25 m

80 mm
60 mm

10 mm

A 1 mm

Prob. 4–50

4–51. The assembly consists of two red brass C83400  
copper rods AB and CD of diameter 30 mm, a stainless 304 
steel alloy rod EF of diameter 40 mm, and a rigid cap G. If 
the supports at A, C, and F are rigid, determine the average 
normal stress developed in the rods.

40 kN

40 kN

300 mm 450 mm

30 mm

30 mm

40 mm

A B

C D

E F

G

Prob. 4–51

*4–52. The bolt AB has a diameter of 20 mm and passes 
through a sleeve that has an inner diameter of 40 mm and 
an outer diameter of 50 mm. The bolt and sleeve are made 
of A-36 steel and are secured to the rigid brackets as shown. 
If the bolt length is 220 mm and the sleeve length is 200 mm, 
determine the tension in the bolt when a force of 50 kN is 
applied to the brackets.

25 kN

B

200 mm

220 mm

25 kN

25 kN

25 kN

A

Prob. 4–52

4–53. The 2014-T6 aluminum rod AC is reinforced with 
the firmly bonded A992 steel tube BC. If the assembly 
fits snugly between the rigid supports so that there is 
no  gap at C,  determine the support reactions when the 
axial force of 400  kN is applied. The assembly is  
attached at D.

4–54. The 2014-T6 aluminum rod AC is reinforced with 
the firmly bonded A992 steel tube BC. When no load is 
applied to the assembly, the gap between end C and the 
rigid support is 0.5 mm. Determine the support reactions  
when the axial force of 400 kN is applied.

400 mm 400 kN

800 mm

A

B

C

D

a a
50 mm

25 mm

Section a–a

A992 steel

2014–T6 aluminum alloy

Probs. 4–53/54

4–55. The three suspender bars are made of A992 steel 
and have equal cross-sectional areas of 450 mm2. Determine 
the average normal stress in each bar if the rigid beam is 
subjected to the loading shown.

BA

D

C

FE

2 m 50 kN
80 kN

1 m 1 m 1 m 1 m

Prob. 4–55
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*4–56. The three A-36 steel wires each have a diameter  
of 2  mm and unloaded lengths of LAC = 1.60 m and  
LAB = LAD = 2.00 m. Determine the force in each wire after 
the 150-kg mass is suspended from the ring at A.

4–57. The A-36 steel wires AB and AD each have a diameter 
of 2 mm and the unloaded lengths of each wire are LAC = 1.60 
m and LAB = LAD = 2.00 m. Determine the required diameter 
of wire AC so that each wire is subjected to the same force 
when the 150-kg mass is suspended from the ring at A.

A

3

B C D

4 5 45

3

Probs. 4–56/57

4–58. The post is made from 606l-T6 aluminum and has a 
diameter of 50 mm. It is fixed supported at A and B, and at its 
center C there is a coiled spring attached to the rigid collar. If 
the spring is originally uncompressed, determine the reactions 
at A and B when the force P = 40 kN is applied to the collar.

4–59. The post is made from 606l-T6 aluminum and has a 
diameter of 50 mm. It is fixed supported at A and B, and at its 
center C there is a coiled spring attached to the rigid collar. If the 
spring is originally uncompressed, determine the compression 
in the spring when the load of P = 50 kN is applied to the collar.

0.25 m

0.25 m

P

C

k � 200 MN/m

B

A

Probs. 4–58/59

*4–60. The press consists of two rigid heads that are 
held together by the two A-36 steel 12-mm-diameter 
rods. A 6061-T6-solid-aluminum cylinder is placed in the 
press and the screw is adjusted so that it just presses up 
against the cylinder. If it is then tightened one-half turn, 
determine the average normal stress in the rods and in 
the cylinder. The single-threaded screw on the bolt has a 
lead of 0.25 mm. Note: The lead represents the distance 
the screw advances along its axis for one complete turn 
of the screw.

300 mm

250 mm

50 mm

Prob. 4–60

4–61. The press consists of two rigid heads that are held 
together by the two A-36 steel 12-mm-diameter rods. A 
6061-T6-solid-aluminum cylinder is placed in the press 
and the screw is adjusted so that it just presses up against 
the cylinder. Determine the angle through which the 
screw can be turned before the rods or the specimen 
begin to yield. The single-threaded screw on the bolt has 
a lead of 0.25 mm. Note: The lead represents the distance 
the screw advances along its axis for one complete turn 
of the screw.

300 mm

250 mm

50 mm

Probs. 4–61
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4–62. The rigid bar is supported by the two short white 
spruce wooden posts and a spring. If each of the posts has an 
unloaded length of 1 m and a cross-sectional area of 600 mm2, 
and the spring has a stiffness of k = 2 MN >m and an 
unstretched length of 1.02 m, determine the force in each post 
after the load is applied to the bar.

4–63. The rigid bar is supported by the two short white 
spruce wooden posts and a spring. If each of the posts has an 
unloaded length of 1 m and a cross-sectional area of 600 mm2, 
and the spring has a stiffness of k = 2 MN >m and an 
unstretched length of 1.02 m, determine the vertical 
displacement of A and B after the load is applied to the bar.

1 m 1 m

1 m

50 kN/m

A BC

k

Probs. 4–62/63

*4–64. The assembly consists of two posts AB and CD each 
made from material 1 having a modulus of elasticity of E1 
and a cross-sectional area A1, and a central post made from 
material 2 having a modulus of elasticity E2 and cross-
sectional area A2. If a load P is applied to the rigid cap, 
determine the force in each material.

L

d d

C

D

E

P

F

A

B

1 2 1

Prob. 4–64

4–65. The assembly consists of two posts AB and CD each 
made from material 1 having a modulus of elasticity of E1 
and a cross-sectional area A1, and a central post EF made 
from material 2 having a modulus of elasticity E2 and a 
cross-sectional area A2. If posts AB and CD are to be 
replaced by those having a material 2, determine the 
required cross-sectional area of these new posts so that both 
assemblies deform the same amount when loaded.

4–66. The assembly consists of two posts AB and CD each 
made from material 1 having a modulus of elasticity of E1 
and a cross-sectional area A1, and a central post EF made 
from material 2 having a modulus of elasticity E2 and a 
cross-sectional area A2. If post EF is to be replaced by one 
having a material 1, determine the required cross-sectional 
area of this new post so that both assemblies deform the 
same amount when loaded.

L

d d

C

D

E

P

F

A

B

1 2 1

Probs. 4–65/66

4–67. The wheel is subjected to a force of 18 kN from the 
axle. Determine the force in each of the three spokes. 
Assume the rim is rigid and the spokes are made of the 
same material, and each has the same cross-sectional area.

18 kN

120�120�

0.4 m

A

B

DC

Prob. 4–67
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4.6 thermal StreSS
A change in temperature can cause a body to change its dimensions. 
Generally, if the temperature increases, the body will expand, whereas if 
the temperature decreases, it will contract.* Ordinarily this expansion or 
contraction is linearly related to the temperature increase or decrease that 
occurs. If this is the case, and the material is homogeneous and isotropic, 
it has been found from experiment that the displacement of the end of a 
member having a length L can be calculated using the formula

 dT = a∆TL  (4–4)

Here

 a =  a property of the material, referred to as the linear coefficient of 
thermal expansion. The units measure strain per degree of 
temperature. It is 1>°C (Celsius) or 1>K (Kelvin) in the SI system. 
Typical values are given in the back of the book.

 ∆T = the algebraic change in temperature of the member

 L = the original length of the member

 dT = the algebraic change in the length of the member

The change in length of a statically determinate member can easily be 
calculated using Eq. 4–4, since the member is free to expand or contract 
when it undergoes a temperature change. However, for a statically 
indeterminate member, these thermal displacements will be constrained 
by the supports, thereby producing thermal stresses that must be 
considered in design. Using the methods outlined in the previous sections, 
it is possible to determine these thermal stresses, as illustrated in the 
following examples.

*There are some materials, like Invar, an iron-nickel alloy, and scandium trifluoride, that 
behave in the opposite way, but we will not consider these here.

Long extensions of ducts and pipes that carry 
fluids are subjected to variations in 
temperature that will cause them to expand 
and contract. Expansion joints, such as the 
one shown, are used to mitigate thermal 
stress in the material.

Most traffic bridges are designed with 
expansion joints to accommodate the 
thermal movement of the deck and thus 
avoid any thermal stress.
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EXAMPLE   4.10

The A-36 steel bar shown in Fig. 4–17a is constrained to just fit between 
two fixed supports when T1 = 30°C. If the temperature is raised to 
T2 = 60°C, determine the average normal thermal stress developed in 
the bar.

SOLUTION

Equilibrium. The free-body diagram of the bar is shown in Fig. 4–17b. 
Since there is no external load, the force at A is equal but opposite to the 
force at B; that is,

+ c ΣFy = 0;  FA = FB = F

The problem is statically indeterminate since this force cannot be 
determined from equilibrium.

Compatibility. Since dA>B = 0, the thermal displacement dT at A that 
occurs, Fig. 4–17c, is counteracted by the force F that is required to push 
the bar dF back to its original position. The compatibility condition at A 
becomes

(+ c) dA>B = 0 = dT - dF

Applying the thermal and load–displacement relationships, we have

0 = a∆TL -  
FL
AE

 

Thus, from the data in the back of the book,

F = a∆TAE

= [12(10- 6)>°C](60°C - 30°C)(0.010 m)2 [200(109) N>m2]
= 7.20(103) N

Since F also represents the internal axial force within the bar, the average 
normal compressive stress is thus

 s =
F
A

=
7.20(103) N

(0.010 m)2 = 72.0(106) N>m2 = 72.0 MPa Ans.

NOTE: From the magnitude of F, it should be apparent that changes in 
temperature can cause large reaction forces in statically indeterminate 
members.

1 m

10 mm

10 mm

A

B

(a)

(b)

F

F

(c)

dT

dF

Fig. 4–17
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EXAMPLE   4.11

The rigid beam shown in Fig. 4–18a is fixed to the top of the three posts 
made of A992 steel and 2014-T6 aluminum. The posts each have a length of 
250 mm when no load is applied to the beam, and the temperature is 
T1 = 20°C. Determine the force supported by each post if the bar is 
subjected to a uniform distributed load of 150 kN>m and the temperature 
is raised to T2 = 80°C.

SOLUTION

Equilibrium. The free-body diagram of the beam is shown in Fig. 4–18b. 
Moment equilibrium about the beam’s center requires the forces in the 
steel posts to be equal. Summing forces on the free-body diagram, we have

+ c ΣFy = 0;         2Fst + Fal - 90(103) N = 0  (1)

Compatibility. Due to load, geometry, and material symmetry, the top 
of each post is displaced by an equal amount. Hence,

(+ T) dst = dal (2)

The final position of the top of each post is equal to its displacement 
caused by the temperature increase, plus its displacement caused by the 
internal axial compressive force, Fig. 4–18c. Thus, for the steel and 
aluminum post, we have

(+ T) d st = -(d st) T + (d st) F 
(+ T) d al = -(d al) T + (d al) F 

Applying Eq. 2 gives

-(d st) T + (d st) F = -(d al) T + (d al) F 

Load–Displacement. Using Eqs. 4–2 and 4–4 and the material 
properties given in the back of the book, we get

 -[12(10 -6)>°C](80°C - 20°C)(0.250 m) +
 F st (0.250 m)

  p(0.020 m) 2 [200(10 9) N>m 2] 

 = -[23(10 -6)>°C](80°C - 20°C)(0.250 m) +
 F al (0.250 m)

  p(0.030 m) 2 [73.1(10 9) N>m 2] 

 Fst = 1.216F al - 165.9(103)  (3)

To be consistent, all numerical data has been expressed in terms of 
newtons, meters, and degrees Celsius. Solving Eqs. 1 and 3 simultaneously 
yields

 F st = -16.4 kN F al = 123 kN  Ans.

The negative value for F st indicates that this force acts opposite to that 
shown in Fig. 4–18b. In other words, the steel posts are in tension and the 
aluminum post is in compression.

150 kN/m
300 mm 300 mm

(a)

SteelAluminumSteel

250 mm
40 mm

60 mm

40 mm

(b)

Fst Fal Fst

90 kN

(c)

Initial position

Final position

(dst)T
(dal)T

(dal)F

(dst)Fdst � dal

Fig. 4–18
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EXAMPLE   4.12

A 2014-T6 aluminum tube having a cross-sectional area of 600 mm2 is used 
as a sleeve for an A-36 steel bolt having a cross-sectional area of 400 mm2, 
Fig. 4–19a. When the temperature is T1 = 15°C, the nut holds the assembly 
in a snug position such that the axial force in the bolt is negligible. If the 
temperature increases to T2 = 80°C, determine the force in the bolt and 
sleeve.

SOLUTION

Equilibrium. The free-body diagram of a top segment of the assembly 
is shown in Fig. 4–19b. The forces Fb  and Fs  are produced since the sleeve 
has a higher coefficient of thermal expansion than the bolt, and therefore 
the sleeve will expand more when the temperature is increased. It is 
required that

+ c ΣF y = 0;  Fs = Fb  (1)

Compatibility. The temperature increase causes the sleeve and bolt to 
expand (ds )T and (db)T , Fig. 4–19c. However, the redundant forces Fb  
and Fs  elongate the bolt and shorten the sleeve. Consequently, the end of 
the assembly reaches a final position, which is not the same as its initial 
position. Hence, the compatibility condition becomes

(+ T) d = (d b) T + (d b) F = (d s) T - (d s) F

Load–Displacement. Applying Eqs. 4–2 and 4–4, and using the 
mechanical properties from the table given in the back of the book,  
we have

 [12(10 -6)>°C](80°C - 15°C)(0.150 m) +

 
 F b (0.150 m)

  (400 mm2)(10-6 m2>mm2)[200(109) N>m2] 

 = [23(10 -6)>°C](80°C - 15°C)(0.150 m)

 -
 F s (0.150 m)

  (600 mm2)(10-6 m2>mm2)[73.1(109) N>m2] 

Using Eq. 1 and solving gives

 F s = F b = 20.3 kN  Ans.

NOTE: Since linear elastic material behavior was assumed in this 
analysis, the average normal stresses should be checked to make sure 
that they do not exceed the proportional limits for the material.

150 mm

(a)

(b)

Fb

Fs

(ds)F

(ds)T

(db)T

(db)F
d

Initial
position

Final
position

(c)

Fig. 4–19
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*4–68. The C83400-red-brass rod AB and 2014-T6-aluminum 
rod BC are joined at the collar B and fixed connected at their 
ends. If there is no load in the members when T1 = 10°C, 
determine the average normal stress in each member when 
T2 = 45°C. Also, how far will the collar be displaced? The 
cross-sectional area of each member is 1130 mm2.

1 m 0.6 m

A B C

Prob. 4–68

4–69. Three bars each made of different materials are 
connected together and placed between two walls when the 
temperature is T1 = 12°C. Determine the force exerted on 
the (rigid) supports when the temperature becomes 
T2 = 18°C. The material properties and cross-sectional area 
of each bar are given in the figure.

300 mm 200 mm
100 mm

Steel

ast  12(10 6)/ C
Est  200 GPa

Acu  515 mm2

Abr  450 mm2
Ast  200 mm2

abr  21(10 6)/°C
Ebr  100 GPa

Brass

acu  17(10 6)/ C
Ecu  120 GPa

Copper

Prob. 4–69

4–70. The steel bolt has a diameter of 7 mm and fits 
through an aluminum sleeve as shown. The sleeve has an 
inner diameter of 8 mm and an outer diameter of 10 mm. 
The nut at A is adjusted so that it just presses up against the 
sleeve. If the assembly is originally at a temperature of 
T1 = 20°C and then is heated to a temperature of 
T2 = 100°C, determine the average normal stress in the bolt 
and the sleeve. Est = 200 GPa, Eal = 70 GPa, ast =
14(10- 6)>°C, aal = 23(10- 6)>°C.

A

Prob. 4–70

4–71. The AM1004-T61 magnesium alloy tube AB is 
capped with a rigid plate E.The gap between E and end C of 
the 6061-T6 aluminum alloy solid circular rod CD is 0.2 mm 
when the temperature is at 30°C. Determine the normal 
stress developed in the tube and the rod if the temperature 
rises to 80°C. Neglect the thickness of the rigid cap.

*4–72. The AM1004-T61 magnesium alloy tube AB is 
capped with a rigid plate. The gap between E and end C of the 
6061-T6 aluminum alloy solid circular rod CD is 0.2 mm when 
the temperature is at 30°C. Determine the highest temperature 
to which it can be raised without causing yielding either in the 
tube or the rod. Neglect the thickness of the rigid cap.

25 mm 20 mm

Section a-a
a

a
B C DA

300 mm 450 mm

0.2 mm

25 mm

E

Probs. 4–71/72

4–73. The pipe is made of A992 steel and is connected to the 
collars at A and B. When the temperature is 15°C, there is no 
axial load in the pipe. If hot gas traveling through the pipe 
causes its temperature to vary by ∆T = (35 + 30x)°C, where 
x is in meters, determine the average normal stress in the pipe. 
The inner diameter is 50 mm, the wall thickness is 4 mm.

4–74. The bronze C86100 pipe has an inner radius of 12.5 
mm and a wall thickness of 5 mm. If the gas flowing through 
it changes the temperature of the pipe uniformly from 
TA = 60°C at A to TB = 15°C at B, determine the axial 
force it exerts on the walls. The pipe was fitted between the 
walls when T = 15°C.

2.4 m
BA

Probs. 4–73/74

PrObLEMS
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4–75. The 12-m-long A-36 steel rails on a train track are 
laid with a small gap between them to allow for thermal 
expansion. Determine the required gap d  so that the rails 
just touch one another when the temperature is increased 
from T1 = -30°C to T2 = 30°C. Using this gap, what 
would be the axial force in the rails if the temperature 
were to rise to T3 = 40°C? The cross-sectional area of each 
rail is 3200 mm2.

12 m

dd

Prob. 4–75

*4–76. The device is used to measure a change in 
temperature. Bars AB and CD are made of A-36 steel and 
2014-T6 aluminum alloy respectively. When the temperature 
is at 40°C, ACE is in the horizontal position. Determine the 
vertical displacement of the pointer at E when the 
temperature rises to 80°C.

A C E

B D

36 mm

6 mm 72 mm

Prob. 4–76

4–77. The bar has a cross-sectional area A, length L, modulus 
of elasticity E, and coefficient of thermal expansion a.  
The temperature of the bar changes uniformly along its 
length from TA  at A to TB  at B so that at any point x along 
the bar T = TA + x(TB - TA)>L.  Determine the force the 
bar exerts on the rigid walls. Initially no axial force is in the 
bar and the bar has a temperature of TA.

x

TA TB

A B

Prob. 4–77

4–78. When the temperature is at 30°C, the A-36 steel pipe 
fits snugly between the two fuel tanks. When fuel flows 
through the pipe, the temperatures at ends A and B rise to 
130°C and 80°C, respectively. If the temperature drop along 
the pipe is linear, determine the average normal stress 
developed in the pipe. Assume each tank provides a rigid 
support at A and B.

6 m

150 mm

10 mm

x
a

aA B

Section a – a

Prob. 4–78

4–79. When the temperature is at 30°C, the A-36 steel pipe 
fits snugly between the two fuel tanks. When fuel flows 
through the pipe, the temperatures at ends A and B rise to 
130°C and 80°C, respectively. If the temperature drop along 
the pipe is linear, determine the average normal stress 
developed in the pipe. Assume the walls of each tank act as 
a spring, each having a stiffness of k = 900 MN>m.

*4–80. When the temperature is at 30°C, the A-36 steel 
pipe fits snugly between the two fuel tanks. When fuel flows 
through the pipe, it causes the temperature to vary along 
the pipe as T = (5

3 x2 - 20x + 120)°C, where x is in meters. 
Determine the normal stress developed in the pipe. Assume 
each tank provides a rigid support at A and B.

6 m

150 mm

10 mm

x
a

aA B

Section a – a

Probs. 4–79/80
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4–81. The 50-mm-diameter cylinder is made from  
Am 1004-T61 magnesium and is placed in the clamp when 
the temperature is T1 = 20° C. If the 304-stainless-steel 
carriage bolts of the clamp each have a diameter of 10 mm, 
and they hold the cylinder snug with negligible force against 
the rigid jaws, determine the force in the cylinder when the 
temperature rises to T2 = 130°C.

4–82. The 50-mm-diameter cylinder is made from  
Am 1004-T61 magnesium and is placed in the clamp when 
the temperature is T1 = 15°C. If the two 304-stainless-steel 
carriage bolts of the clamp each have a diameter of 10 mm, 
and they hold the cylinder snug with negligible force against 
the rigid jaws, determine the temperature at which the 
average normal stress in either the magnesium or the steel 
first becomes 12 MPa.

100 mm 150 mm

Probs. 4–81/82

4–83. The rigid block has a weight of 400 kN and is to be 
supported by posts A and B, which are made of A-36 steel, 
and the post C, which is made of C83400 red brass. If all 
the posts have the same original length before they are 
loaded, determine the average normal stress developed in 
each post when post C is heated so that its temperature is 
increased by 10°C. Each post has a cross-sectional area of 
5000 mm2.

A C B

1 m 1 m

Prob. 4–83

*4–84. The cylinder CD of the assembly is heated from 
T1 = 30°C to T2 = 180°C using electrical resistance. At the 
lower temperature T1 the gap between C and the rigid bar is 
0.7 mm. Determine the force in rods AB and EF caused by 
the increase in temperature. Rods AB and EF are made of 
steel, and each has a cross-sectional area of 125 mm2. CD is 
made of aluminum and has a cross-sectional area of 375 mm2. 
Est = 200 GPa, Eal = 70 GPa, and aal = 23(10-6)>°C.

4–85. The cylinder CD of the assembly is heated from  
T1 = 30°C to T2 = 180°C using electrical resistance. Also, 
the two end rods AB and EF are heated from T1 = 30°C to 
T2 = 50°C. At the lower temperature T1 the gap between C 
and the rigid bar is 0.7 mm. Determine the force in rods  
AB and EF caused by the increase in temperature. Rods AB 
and EF are made of steel, and each has a cross-sectional 
area of 125 mm2. CD is made of aluminum and has a cross-
sectional area of 375 mm2. Est = 200 GPa, Eal = 70  GPa, 
ast = 12(10-6)>°C, and aal = 23(10-6)>°C.

300 mm240 mm

0.7 mm

C

D

F

E

B

A

+

–

Probs. 4–84/85

4–86. The metal strap has a thickness t and width w and is 
subjected to a temperature gradient T1 to T2 (T1 6 T2). This 
causes the modulus of elasticity for the material to vary 
linearly from E1 at the top to a smaller amount E2 at  the 
bottom. As a result, for any vertical position y, measured 
from the top surface, E = [(E2 - E1)>w]y + E1. Determine 
the position d where the axial force P must be applied so 
that the bar stretches uniformly over its cross section.

w

d

T1

P

P

T2

t

Prob. 4–86
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4.7 StreSS concentrationS
In Sec. 4.1, it was pointed out that when an axial force is applied to a bar, it 
creates a complex stress distribution within the localized region of the point 
of load application. However, complex stress distributions arise not only 
next to a concentrated loading; they can also arise at sections where the 
member’s cross-sectional area changes. Consider, for example, the bar in 
Fig. 4–20a, which is subjected to an axial force N. Here the once horizontal 
and vertical grid lines deflect into an irregular pattern around the hole 
centered in the bar. The maximum normal stress in the bar occurs on section 
a–a, since it is located at the bar’s smallest cross-sectional area. Provided the 
material behaves in a linear elastic manner, the stress distribution acting on 
this section can be determined either from a mathematical analysis, using 
the theory of elasticity, or experimentally by measuring the strain normal 
to section a–a and then calculating the stress using Hooke’s law, s = EP. 
Regardless of the method used, the general shape of the stress distribution 
will be like that shown in Fig. 4–20b. If instead the bar has a reduction in its 
cross section, using shoulder fillets as in Fig. 4–21a, then at the smallest 
cross-sectional area, section a–a, the stress distribution will look like that 
shown in Fig. 4–21b.

This saw blade has grooves cut into it in 
order to relieve both the dynamic stress that 
develops within it as it rotates and the 
thermal stress that develops as it heats up. 
Note the small circles at the end of each 
groove. These serve to reduce the stress 
concentrations that develop at the end of 
each groove.

a

a

Distorted
(a)

N

Actual stress distribution
(b)

Average stress distribution
(c)

smax

savg

Undistorted

 N

NN

N

N

Fig. 4–20
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Stress concentrations often arise at sharp 
corners on heavy machinery. Engineers can 
mitigate this effect by using stiffeners welded 
to the corners.

In both of these cases, force equilibrium requires the magnitude of the 
resultant force developed by the stress distribution at section a–a to be 
equal to N. In other words,

 N = L
 

A
s dA  (4–5)

This integral graphically represents the total volume under each of the 
stress-distribution diagrams shown in Fig. 4–20b or Fig. 4–21b. Furthermore, 
the resultant N must act through the centroid of each of these volumes.

In engineering practice, the actual stress distributions in Fig. 4–20b and 
Fig. 4–21b do not have to be determined. Instead, for the purpose of 
design, only the maximum stress at these sections must be known. Specific 
values of this maximum normal stress have been determined for various 
dimensions of each bar, and the results have been reported in graphical 
form using a stress concentration factor K, Figs. 4–23 and 4–24. We define 
K as a ratio of the maximum stress to the average normal stress acting at 
the cross section; i.e.,

 K =
 smax

savg 
 (4–6)

Once K is determined from the graph, and the average normal stress has 
been calculated from savg = N>A,  where A is the smallest cross-sectional 
area, Figs. 4–20c and 4–21c, then the maximum normal stress at the cross 
section is determined from smax = K(N>A).

N

a

Distorted
(a)

N

Actual stress distribution
(b)

a

smax

savg

Average stress distribution
(c)

Undistorted

NN

N

N

Fig. 4–21
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Notice in Fig. 4–23 that, as the radius r of the shoulder fillet is decreased, 
the stress concentration is increased. For example, if a bar has a sharp corner, 
Fig. 4–22a, r = 0, and so the stress concentration factor will become greater 
than 3. In other words, the maximum normal stress will be more than three 
times greater than the average normal stress on the smallest cross section. 
Proper design can reduce this by introducing a rounded edge, Fig. 4–22b. A 
further reduction can be made by means of small grooves or holes placed at 
the transition, Fig. 4–22c and 4–22d. In all of these designs the rigidity of the 
material surrounding the corners is reduced, so that both the strain and the 
stress are more evenly spread throughout the bar.

Remember that the stress concentration factors given in Figs. 4–23 
and  4–24 were determined on the basis of a static loading, with the 
assumption that the stress in the material does not exceed the 
proportional limit. If the material is very brittle, the proportional limit 
may be at the fracture stress, and so for this material, failure will begin 
at the point of stress concentration (smax) . Essentially a crack begins 
to form at this point, and a higher stress concentration will develop at 
the tip of this crack. This, in turn, causes the crack to propagate over 
the cross section, resulting in sudden fracture. For this reason, it is very 
important to use stress concentration factors for the design of members 
made of brittle materials. On the other hand, if the material is ductile 
and subjected to a static load, it is often not necessary to use stress 
concentration factors since any stress that exceeds the proportional 
limit will not result in a crack. Instead, as will be shown in the next 
section, the material will have reserve strength due to yielding and 
strain hardening.

N N

(a)

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

K

N Nhw
t

r

savg �

� 4.0w
h

� 3.0w
h � 2.0w

h

� 1.5w
h

� 1.2w
h

� 1.1w
h

r
h

N
ht

Fig. 4–23

3.2

3.0

2.8

2.6

2.4

2.2

2.0
0 0.1 0.2 0.3 0.4 0.5

K

w

t

2r

N N

2r
w

N
(w � 2r)t

savg �

Fig. 4–24

N N

(d)

Fig. 4–22

N N

(b)

N N

(c)
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Important poInts

 • Stress concentrations occur at sections where the cross-sectional 
area suddenly changes. The more severe the change, the larger 
the stress concentration.

 • For design or analysis, it is only necessary to determine the 
maximum stress acting on the smallest cross-sectional area. This 
is done using a stress concentration factor, K, that has been 
determined through experiment and is only a function of the 
geometry of the specimen.

 • Normally the stress concentration in a ductile specimen that is 
subjected to a static loading will not have to be considered in 
design; however, if the material is brittle, or subjected to fatigue 
loadings, then stress concentrations become important.

Failure of this steel pipe in tension occurred 
at its smallest cross-sectional area, which is 
through the hole. Notice how the material 
yielded around the fractured surface.

*4.8 inelaStic axial Deformation
Up to this point we have only considered loadings that cause the material 
to behave elastically. Sometimes, however, a member may be designed so 
that the loading causes the material to yield and thereby permanently 
deform. Such members are often made of a highly ductile metal such as 
annealed low-carbon steel having a stress–strain diagram that is similar to 
that of Fig. 3–6, and for nonexcessive yielding can be modeled as shown 
in Fig. 4–25b. A material that exhibits this behavior is referred to as being 
elastic perfectly plastic or elastoplastic.

To illustrate physically how such a material behaves, consider the bar in 
Fig. 4–25a, which is subjected to the axial load N. If the load causes an elastic 
stress s = s1  to be developed in the bar, then equilibrium requires 
N = 1s1 dA = s1 A. This stress causes the bar to strain P1 as indicated on 
the stress–strain diagram, Fig. 4–25b. If N is now increased such that it 
causes yielding of the material, then s = sY . This load Np is called the 
plastic load, since it represents the maximum load that can be supported 
by an elastoplastic material. For this case, the strains are not uniquely 
defined. Instead, at the instant sY  is attained, the bar will be subjected to 
the yield strain PY, Fig. 4–25b, then the bar will continue to yield (or elongate) 
producing the strains P2 , then P3 , etc. Since our “model” of the material 
exhibits perfectly plastic material behavior, this elongation is expected to 
continue indefinitely. However, the material will, after some yielding, begin 
to strain harden, so that the extra strength it attains will stop any further 
straining, thereby allowing the bar to support an additional load.
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To extend this discussion, now consider the case of a bar having a hole 
through it as shown in Fig. 4–26a. When N is applied, a stress concentration 
occurs in the material at the edge of the hole, on section a–a. The stress here 
will reach a maximum value of, say, smax = s1  and have a corresponding 
elastic strain of P1, Fig. 4–26b. The stresses and corresponding strains at other 
points on the cross section will be smaller, as indicated by the stress 
distribution shown in Fig. 4–26c. Equilibrium again requires N = 1s dA, 
which is geometrically equivalent to the “volume” contained within the 
stress distribution. If the load is further increased to N′, so that smax = sY , 
then the material will begin to yield outward from the hole, until the 
equilibrium condition N′ = 1s dA is satisfied, Fig. 4–26d. As shown, this 
produces a stress distribution that has a geometrically greater “volume” than 
that shown in Fig. 4–26c. A further increase in load will eventually cause the 
material over the entire cross section to yield, Fig. 4–26e. When this happens, 
no greater load can be sustained by the bar. This plastic load Np is now

Np = L A
sY dA = sY A

where A is the bar’s cross-sectional area at section a–a.

(b)

s1

sY

s

P1 P2 P3
PPY

Fig. 4–25
(a)

s

N

N

(a)
N

aa

(b)

s

sY

s1

PP1 PY

(c)

N

s1 s1

 (d)

N¿

sY sY

 

sY sY

(e)

Np

Fig. 4–26
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*4.9 reSiDual StreSS
Consider a prismatic member made of an elastoplastic material having 
the stress–strain diagram shown in Fig. 4–27. If an axial load produces a 
stress sY  in the material and a corresponding strain PC , then when the 
load is removed, the material will respond elastically and follow the line 
CD in order to recover some of the strain. A recovery to zero stress at 
point O′ will be possible if the member is statically determinate, since 
then the support reactions for the member will be zero when the load is 
removed. Under these circumstances the member will be permanently 
deformed so that the permanent set or strain in the member is PO′.

If the member is statically indeterminate, however, removal of the 
external load will cause the support forces to respond to the elastic 
recovery CD. Since these forces will constrain the member from full 
recovery, they will induce residual stresses in the member. To solve a 
problem of this kind, the complete cycle of loading and then unloading 
of the member can be considered as the superposition of a positive load 
(loading) on a negative load (unloading). The loading, O to C, results in a 
plastic stress distribution, whereas the unloading, along CD, results only 
in an elastic stress distribution. Superposition requires these loads to 
cancel; however, the stress distributions will not cancel, and so residual 
stresses will remain in the member. Examples 4.14 and 4.15 numerically 
illustrate this situation.

D

PO ¿

CA
B

O O¿ PC

s

sY

P

PP

Fig. 4–27
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EXAMPLE   4.13

The bar in Fig. 4–28a is made of steel that is assumed to be elastic 
perfectly plastic, with sY = 250 MPa.  Determine (a) the maximum 
value of the applied load N that can be applied without causing the steel 
to yield and (b) the maximum value of N that the bar can support. Sketch 
the stress distribution at the critical section for each case.

SOLUTION

Part (a). When the material behaves elastically, we must use a  
stress concentration factor determined from Fig. 4–23 that is unique for 
the bar’s geometry. Here

 
r
 h

 =
4 mm

 (40 mm - 8 mm)
= 0.125

 
w
h

 =
40 mm

 (40 mm - 8 mm)
 = 1.25

From the figure K ≈ 1.75. The maximum load, without causing 
yielding, occurs when smax = sY . The average normal stress is 
savg = N>A.  Using Eq. 4–6, we have

 smax = Ksavg;     sY = Ka
NY

A
b

 250(106) Pa = 1.75 c
 NY

 (0.002 m)(0.032 m)
d

 NY = 9.14 kN Ans.

This load has been calculated using the smallest cross section. The 
resulting stress distribution is shown in Fig. 4–28b. For equilibrium, the 
“volume” contained within this distribution must equal 9.14 kN.

Part (b). The maximum load sustained by the bar will cause all the material 
at the smallest cross section to yield. Therefore, as N is increased to the 
plastic load Np , it gradually changes the stress distribution from the elastic 
state shown in Fig. 4–28b to the plastic state shown in Fig. 4–28c. We require

 sY =
Np

 A

 250(106) Pa =
Np

 (0.002 m)(0.032 m)

 Np = 16.0 kN Ans.

Here Np equals the “volume” contained within the stress distribution, 
which in this case is Np = sYA .

2 mm

40 mm

4 mm
N

4 mm

(a)

N

(b)

250 MPa
9.14 kN

(c)

250 MPa

NP

Fig. 4–28
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EXAMPLE   4.14

Two steel wires are used to lift the weight of 
15 kN, Fig. 4–29a. Wire AB has an 
unstretched length of 5 m and wire AC has 
an unstretched length of 5.0075 m. If each 
wire has a cross-sectional area of 30 mm2, 
and the steel can be considered elastic 
perfectly plastic as shown by the s - P 
graph in Fig. 4–29b, determine the force in 
each wire and its elongation.

SOLUTION
Once the weight is supported by both 
wires, then the stress in the wires depends 
on the corresponding strain. There are 
three possibilities, namely, the strains in 
both wires are elastic, wire AB is plastically 
strained while wire AC is elastically 
strained, or both wires are plastically strained. We will assume that AC 
remains elastic and AB is plastically strained.

Investigation of the free-body diagram of the suspended weight,  
Fig. 4–29c, indicates that the problem is statically indeterminate. The 
equation of equilibrium is

+ c ΣFy = 0; TAB + TAC - 15 kN = 0 (1)

Since AB becomes plastically strained then it must support its 
maximum load.

TAB = sYAAB = [350 (106)  N>m2] [30 (10- 6) m2] = 10.5 (103) N = 10.5 kN Ans.

Therefore, from Eq. 1,

 TAC = 4.50 kN Ans.

Note that wire AC remains elastic as assumed since the stress in the 
wire is sAC = 4.50 (103) N>[30 (10- 6) m2] = 150 MPa 6 350 MPa. The 
corresponding elastic strain is determined by proportion, Fig. 4–29b; i.e.,

PAC

150 MPa
=

0.0017
350 MPa

 

PAC = 0.0007286

The elongation of AC is thus

 dAC = (0.0007286)(5.0075 m) = 0.003648 m Ans.

And from Fig. 4–29d, the elongation of AB is then

 dAB = 0.0075 m + 0.003648 m = 0.01115 m Ans.

0.0017

350

(b)

P (mm/mm)

s (MPa)

TACTAB

15 kN (c)

Final position

B
C

dAB  0.0075 m  dAC

(d)

Initial position

A

5 m 5.0075 m

dAC

Fig. 4–29

5.0075 m5 m

A

C

(a)

B
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EXAMPLE   4.15

The rod shown in Fig. 4–30a has a radius of 5 mm and is 
made of an  elastic perfectly plastic material for which 
sY = 420 MPa,  E = 70 GPa, Fig. 4–30c. If a force of 
P = 60 kN is applied to the rod and then removed, 
determine the residual stress in the rod.

SOLUTION

The free-body diagram of the rod is shown in Fig. 4–30b. 
Application of the load P will cause one of three possibilities, 
namely, both segments AC and CB remain elastic, AC is 
plastic while CB is elastic, or both AC and CB are plastic.*

An elastic analysis, similar to that discussed in Sec. 4.4, will 
produce FA = 45 kN and FB = 15 kN at the supports. 
However, this results in a stress of

 s AC =
45 kN

 p(0.005 m)2 = 573 MPa (compression) 7 sY = 420 MPa

 sCB =
15 kN

 p(0.005 m)2 = 191 MPa (tension)

Since the material in segment AC will yield, we will assume that AC 
becomes plastic, while CB remains elastic.

For this case, the maximum possible force developed in AC is

(FA)Y = sYA = 420(103) kN>m2 [p(0.005 m)2] = 33.0 kN

and from the equilibrium of the rod, Fig. 4–30b,

FB = 60 kN - 33.0 kN = 27.0 kN

The stress in each segment of the rod is therefore

 sAC = sY = 420 MPa (compression)

 sCB =
 27.0 kN

 p(0.005 m)2 = 344 MPa (tension) 6 420 MPa (OK)

*The possibility of CB becoming plastic before AC will not occur because when  
point C moves, the strain in AC (since it is shorter) will always be larger than the  
strain in CB.

100 mm
300 mm

CA BP � 60 kN

(a)

P � 60 kN
FA FB

CA B

(b)

Fig. 4–30
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Residual Stress. In order to obtain the residual stress, it is also 
necessary to know the strain in each segment due to the loading. Since 
CB responds elastically,

 dC =
FBLCB

 AE
=

(27.0 kN)(0.300 m)

 p(0.005 m)2 [70(106) kN>m2]
= 0.001474 m

 PCB =
 dC

 LCB
=

0.001474 m
 0.300 m

= +0.004913

 PAC =
dC

 LAC
= -

 0.001474 m
 0.100 m

= -0.01474

Here the yield strain, Fig. 4–30c, is

PY =
sY

 E
=

 420(106) N>m2

 70(109) N>m2 = 0.006

Therefore, when P is applied, the stress–strain 
behavior for the material in segment CB moves from 
O to A′, Fig. 4–30d, and the stress–strain behavior for 
the material in segment AC moves from O to B′. 
When the load P is applied in the reverse direction, in 
other words, the load is removed, then an elastic 
response occurs and a reverse force of FA = 45 kN 
and FB = 15 kN must be applied to each segment. 
As calculated previously, these forces now produce 
stresses sAC = 573 MPa (tension) and sCB =  
191 MPa (compression), and as a result the residual 
stress in each member is

 (sAC)r = -420 MPa + 573 MPa = 153 MPa Ans.

 (sCB)r = 344 MPa - 191 MPa = 153 MPa  Ans.

This residual stress is the same for both segments, which is to be expected. 
Also note that the stress–strain behavior for segment AC moves from B′  
to D′ in Fig. 4–30d, while the stress–strain behavior for the material in 
segment CB moves from A′ to C′ when the load is removed.

420

�420

 �0.006

s (MPa)

(c)

P (mm/mm)
 0.006

420

�420

344
153
D¿

B¿

A¿

C¿
O

s (MPa)

(d)

P (mm/mm)
PAC � �0.01474

PCB � 0.004913

Fig. 4–30 (cont.)
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4–87. Determine the maximum normal stress developed 
in the bar when it is subjected to a tension of P = 8 kN.

*4–88. If the allowable normal stress for the bar is 
s allow = 120 MPa,  determine the maximum axial force P 
that can be applied to the bar.

r � 10 mm

40 mm 20 mm

P P

20 mm

5 mm

Probs. 4–87/88

4–89. The steel bar has the dimensions shown. Determine 
the maximum axial force P that can be applied so as not to 
exceed an allowable tensile stress of sallow  = 150 MPa.

r � 15 mm

60 mm30 mm 60 mm30 mm

P P 

24 mm

20 mm

Prob. 4–89

4–90. The A-36 steel plate has a thickness of 12 mm. If 
sallow = 150 MPa,  determine the maximum axial load P 
that it can support. Calculate its elongation, neglecting the 
effect of the fillets.

200 mm

r = 30 mm

r = 30 mm

120 mm

60 mm

60 mm

200 mm800 mm
P

P

B

A

C

D

Prob. 4–90

4–91. Determine the maximum axial force P that can be 
applied to the bar. The bar is made from steel and has an 
allowable stress of sallow = 147 MPa.

*4–92. Determine the maximum normal stress developed 
in the bar when it is subjected to a tension of P = 8 kN.

PP

25 mm
37.5 mm 4 mm

15 mm
r  5 mm

Probs. 4–91/92

4–93. The member is to be made from a steel plate that is 
6 mm thick. If a 25-mm hole is drilled through its center, 
determine the approximate width w of the plate so that it 
can support an axial force of 16.75 kN. The allowable stress 
is sallow = 150 MPa.

16.75 kN 16.75 kN

25 mm

6 mm

w

Prob. 4–93

PrObLEMS
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4–94. The resulting stress distribution along section AB 
for the bar is shown. From this distribution, determine the 
approximate resultant axial force P applied to the bar.Also, 
what is the stress-concentration factor for this geometry?

20 mm

15 mm

15 mm

P
5 mm

42 MPa

252 MPa

12.5 mm
A

B

Prob. 4–94

4–95. The resulting stress distribution along section AB 
for the bar is shown. From this distribution, determine the 
approximate resultant axial force P applied to the bar. Also, 
what is the stress concentration factor?

20 mm
80 mm

5 MPa

30 MPa

B

A

10 mm

P

Prob. 4–95

*4–96. The three bars are pinned together and subjected 
to the load P. If each bar has a cross-sectional area A, length 
L, and is made from an elastic perfectly plastic material, for 
which the yield stress is sY, determine the largest load 
(ultimate load) that can be supported by the bars, i.e., the 
load P that causes all the bars to yield. Also, what is the 
horizontal displacement of point A when the load reaches 
its ultimate value? The modulus of elasticity is E.

B

C

D

A

L

L

L

P
u

u

Prob. 4–96

4–97. The rigid lever arm is supported by two A-36 steel 
wires having the same diameter of 4 mm. If a force of 
P = 3 kN is applied to the handle, determine the force 
developed in both wires and their corresponding 
elongations. Consider A-36 steel as an elastic perfectly 
plastic material.

A

B D

C E

P

450 mm

150 mm

30�

150 mm

300 mm

Prob. 4–97
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4–98. The weight is suspended from steel and aluminum 
wires, each having the same initial length of 3 m and  
cross-sectional area of 4 mm2. If the materials can be assumed  
to be elastic perfectly plastic, with (sY)st = 120 MPa and  
(sY)al = 70 MPa, determine the force in each wire if the weight 
is (a) 600 N and (b) 720 N. Eal = 70 GPa, Est = 200 GPa.

SteelAluminum

Prob. 4–98

4–99. The weight is suspended from steel and aluminum 
wires, each having the same initial length of 3 m and  
cross-sectional area of 4 mm2. If the materials can be assumed  
to be elastic perfectly plastic, with (sY)st = 120 MPa and  
(sY)al = 70 MPa, determine the force in each wire if the weight 
is (a) 600 N and (b) 720 N. Eal = 70 GPa, Est = 200 GPa.

SteelAluminum

Fal Fst

Prob. 4–99

*4–100. The distributed loading is applied to the rigid 
beam, which is supported by the three bars. Each bar has a 
cross-sectional area of 780 mm2 and is made from a material 
having a stress–strain diagram that can be approximated by 
the two line segments shown. If a load of w = 400 kN>m is 
applied to the beam, determine the stress in each bar and 
the vertical displacement of the beam.

1.5 m

A CB

w

1.2 m 1.2 m

420

252

0.0012 0.2
∋

(MPa)s

(mm/mm)

Prob. 4–100

4–101. The distributed loading is applied to the rigid 
beam, which is supported by the three bars. Each bar has a 
cross-sectional area of 468 mm2 and is made from a material 
having a stress–strain diagram that can be approximated by 
the two line segments shown. Determine the intensity of the 
distributed loading w needed to cause the beam to be 
displaced downward 37.5 mm.

1.5 m

A CB

w

1.2 m 1.2 m

420

252

0.0012 0.2
∋

(MPa)s

(mm/mm)

Prob. 4–101
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4–102. The rigid lever arm is supported by two A-36 steel 
wires having the same diameter of 4 mm. Determine the 
smallest force P that will cause (a) only one of the wires to 
yield; (b) both wires to yield. Consider A-36 steel as an 
elastic perfectly plastic material.

A

B D

C E

P

450 mm

150 mm

30�

150 mm

300 mm

Prob. 4–102

4–103. The 1500-kN weight is slowly set on the top of a 
post made of 2014-T6 aluminum with an A-36 steel core. If 
both materials can be considered elastic perfectly plastic, 
determine the stress in each material.

Aluminum

Steel

50 mm
25 mm

Prob. 4–103

*4–104. The rigid bar is supported by a pin at A and two 
steel wires, each having a diameter of 4 mm. If the yield 
stress for the wires is sY = 530 MPa, and Est = 200 GPa, 
determine (a) the intensity of the distributed load w that can 
be placed on the beam that will cause only one of the wires 
to start to yield and (b) the smallest intensity of the 
distributed load that will cause both wires to yield. For the 
calculation, assume that the steel is elastic perfectly plastic.

400 mm 250 mm
150 mm

w

A

800 mm

E

B

D

C
G

Prob. 4–104

4–105. The rigid beam is supported by three 25-mm 
diameter A-36 steel rods. If the beam supports the force of 
P = 230 kN, determine the force developed in each rod. 
Consider the steel to be an elastic perfectly plastic material.

A

D E

B C

F

400 mm

600 mm

400 mm 400 mm

P

Prob. 4–105
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4–106. The rigid beam is supported by three 25-mm 
diameter A-36 steel rods. If the force of P = 230 kN is 
applied on the beam and removed, determine the residual 
stresses in each rod. Consider the steel to be an elastic 
perfectly plastic material.

A

D E

B C

F

400 mm

600 mm

400 mm 400 mm

P

Prob. 4–106

4–107. The wire BC has a diameter of 3.4 mm and the 
material has the stress–strain characteristics shown in the 
figure. Determine the vertical displacement of the handle at 
D if the pull at the grip is slowly increased and reaches a 
magnitude of (a) P = 2250 N, (b) P = 3000 N.

A B

C

D

P

1250 mm 750 mm

1000 mm

0.007 0.12

490
560

s (MPa)

P (mm/mm)

Prob. 4–107

*4–108. The bar having a diameter of 50 mm is fixed 
connected at its ends and supports the axial load P. If the 
material is elastic perfectly plastic as shown by the stress–
strain diagram, determine the smallest load P needed to 
cause segment CB to yield. If this load is released, determine 
the permanent displacement of point C.

0.6 m

A C

140

0.001

P

B

0.9 m

P (mm/mm)

s (MPa)

Prob. 4–108

4–109. The rigid beam is supported by the three posts A, B, 
and C of equal length. Posts A and C have a diameter of 
75 mm and are made of a material for which E = 70 GPa 
and sY = 20 MPa.  Post B has a diameter of 20 mm and 
is  made of a material for which E′ = 100 GPa and 
sY′ = 590 MPa.  Determine the smallest magnitude of P so 
that (a) only rods A and C yield and (b) all the posts yield.

4–110. The rigid beam is supported by the three posts A, B, 
and C. Posts A and C have a diameter of 60 mm and are  
made of a material for which E = 70 GPa and sY = 20 MPa.  
Post B is made of a material for which E′ = 100 GPa and 
sY′ = 590 MPa.  If P = 130 kN, determine the diameter of 
post B so that all three posts are about to yield.

2 m 2 m 2 m

A B

P P

C

2 m

Probs. 4–109/110
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CHAPTEr rEVIEW

When a loading is applied at a point on a body, it 
tends to create a stress distribution within the body 
that becomes more uniformly distributed at regions 
removed from the point of application of the load. 
This is called Saint-Venant’s principle.

N

savg �
N
A

N

The relative displacement at the end of an axially 
loaded member relative to the other end is  
determined from

d = L
 L

0
 

N(x)dx

 A(x)E(x)

P2P1

x dx

L
d

If a series of concentrated external axial forces are 
applied to a member and AE is also piecewise 
constant, then

d = a  
NL
 AE

For application, it is necessary to use a sign convention 
for the internal load N and displacement d. We 
consider tension and elongation as positive values. 
Also, the material must not yield, but rather it must 
remain linear elastic.

P3P2P1 P4

L
d

Superposition of load and displacement is possible 
provided the material remains linear elastic and no 
significant changes in the geometry of the member 
occur after loading.

The reactions on a statically indeterminate bar can be 
determined using the equilibrium equations and 
compatibility conditions that relate the displacements 
at the supports. These displacements are then related 
to the loads using a load–displacement relationship 
such as d = NL>AE.
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A change in temperature can cause a member made 
of homogeneous isotropic material to change its 
length by

d = a∆TL

If the member is confined, this change will produce 
thermal stress in the member.

Holes and sharp transitions at a cross section will 
create stress concentrations. For the design of a 
member made of brittle material one obtains the 
stress concentration factor K from a graph, which has 
been determined from experiment. This value is then 
multiplied by the average stress to obtain the 
maximum stress at the cross section.

smax = Ksavg

If the loading on a bar made of ductile material 
causes the material to yield, then the stress 
distribution that is produced can be determined from 
the strain distribution and the stress–strain diagram. 
Assuming the material is perfectly plastic, yielding 
will cause the stress distribution at the cross section of 
a hole or transition to even out and become uniform.

N

s1 s1

  

sY sY

Np

If a member is constrained and an external loading 
causes yielding, then when the load is released, it will 
cause residual stress in the member.
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C4–1. In each photo the concrete footings A were poured when the column was already in place. Later the concrete slab was 
poured. Explain why the 45° cracks formed in the slab at each corner of the square footing and not for the circular footing.

C4–2. The row of bricks, along with mortar and an internal steel reinforcing rod, was intended to serve as a lintel beam to 
support the bricks above this ventilation opening on an exterior wall of a building. Explain what may have caused the bricks 
to fail in the manner shown.

CONCEPTUAL PrObLEMS
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A
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R4–1. The assembly consists of two A992 steel bolts AB 
and EF and an 6061-T6 aluminum rod CD. When the 
temperature is at 30° C, the gap between the rod and rigid 
member AE is 0.1 mm. Determine the normal stress 
developed in the bolts and the rod if the temperature rises 
to 130° C. Assume BF is also rigid.

R4–2. The assembly shown consists of two A992 steel bolts 
AB and EF and an 6061-T6 aluminum rod CD. When the 
temperature is at 30° C, the gap between the rod and rigid 
member AE is 0.1 mm. Determine the highest temperature 
to which the assembly can be raised without causing yielding 
either in the rod or the bolts. Assume BF is also rigid.

300 mm400 mm

25 mm25 mm

50 mm

A C E

B D F

0.1 mm

Prob. R4–1/2

R4–3. The rods each have the same 25-mm diameter and 
600-mm length. If they are made of A992 steel, determine 
the forces developed in each rod when the temperature 
increases by 50° C.

AB

D

C

600 mm

600 mm

60�

60�

Prob. R4–3

*R4–4. Two A-36 steel pipes, each having a crosssectional 
area of 200 mm2, are screwed together using a union at B as 
shown. Originally the assembly is adjusted so that no load is 
on the pipe. If the union is then tightened so that its screw, 
having a lead of 0.550 mm, undergoes two full turns, 
determine the average normal stress developed in the pipe. 
Assume that the union at B and couplings at A and C are 
rigid. Neglect the size of the union. Note: The lead would 
cause the pipe, when unloaded, to shorten 0.550 mm when 
the union is rotated one revolution.

0.6 m0.9 m

B CA

Prob. R4–4

R4–5. The force P is applied to the bar, which is composed 
of an elastic perfectly plastic material. Construct a graph to 
show how the force in each section AB and BC (ordinate) 
varies as P (abscissa) is increased. The bar has cross-
sectional areas of 625 mm2 in region AB and 2500 mm2 in 
region BC, and sY = 210 MPa.

150 mm 50 mm

A B
C

P

Prob. R4–5
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R4–6. The 2014-T6 aluminum rod has a diameter of 12 
mm and is lightly attached to the rigid supports at A and B 
when T1 = 25°C. If the temperature becomes T2 = -20°C, 
and an axial force of P = 80 N is applied to the rigid collar 
as shown, determine the reactions at A and B.

125 mm 200 mm
P/2

P/2
BA

Prob. R4–6

R4–7. The 2014-T6 aluminum rod has a diameter of 12 
mm and is lightly attached to the rigid supports at A and B 
when T1 = 40°C. Determine the force P that must be 
applied to the collar so that, when T = 0°C, the reaction at 
B is zero.

125 mm 200 mm
P/2

P/2
BA

Prob. R4–7

*R4–8. The rigid link is supported by a pin at A and two 
A-36 steel wires, each having an unstretched length of 
300 mm and cross-sectional area of 7.8 mm2. Determine the 
force developed in the wires when the link supports the 
vertical load of 1.75 kN.

125 mm

100 mm

300 mm

150 mm

1.75 kN

A

B

C

Prob. R4–8

R4–9. The joint is made from three A992 steel plates that 
are bonded together at their seams. Determine the 
displacement of end A with respect to end B when the joint 
is subjected to the axial loads. Each plate has a thickness  
of 5 mm.

600 mm 200 mm 800 mm

100 mm

23 kN

23 kN46 kN

A B

Prob. R4–9
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The torsional stress and angle of twist of this soil auger depend upon the output 
of the machine turning the bit as well as the resistance of the soil in contact with 
the shaft.

(© Jill Fromer/Getty Images)
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Torsion

Chapter OBJeCtIVeS

■ In this chapter we will discuss the effects of applying a torsional 
loading to a long straight member such as a shaft or tube. Initially we 
will consider the member to have a circular cross section. We will 
show how to determine both the stress distribution within the 
member and the angle of twist. The statically indeterminate analysis 
of shafts and tubes will also be discussed, along with special topics 
that include those members having noncircular cross sections. Lastly, 
stress concentrations and residual stress caused by torsional loadings 
will be given special consideration.

5.1  Torsional DeformaTion of a 
CirCular shafT 

Torque is a moment that tends to twist a member about its longitudinal 
axis. Its effect is of primary concern in the design of drive shafts used in 
vehicles and machinery, and for this reason it is important to be able to 
determine the stress and the deformation that occur in a shaft when it is 
subjected to torsional loads. 

We can physically illustrate what happens when a torque is applied to 
a circular shaft by considering the shaft to be made of a highly deformable 
material such as rubber. When the torque is applied, the longitudinal grid 
lines originally marked on the shaft, Fig. 5–1a, tend to distort into a helix, 
Fig. 5–1b, that intersects the circles at equal angles. Also, all the cross 
sections of the shaft will remain flat—that is, they do not warp or bulge in 
or out—and radial lines remain straight and rotate during this 
deformation. Provided the angle of twist is small, then the length of the 
shaft and its radius will remain practically unchanged.
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If the shaft is fixed at one end and a torque is applied to its other end, 
then the dark green shaded plane in Fig. 5–2a will distort into a skewed 
form as shown. Here a radial line located on the cross section at a 
distance x from the fixed end of the shaft will rotate through an angle 
f(x). This angle is called the angle of twist. It depends on the position x 
and will vary along the shaft as shown.

In order to understand how this distortion strains the material, we will 
now isolate a small disk element located at x from the end of the shaft, 
Fig. 5–2b. Due to the deformation, the front and rear faces of the element 
will undergo rotation—the back face by f(x), and the front face by 
f(x) + df. As a result, the difference in these rotations, df, causes the 
element to be subjected to a shear strain, g (see Fig. 3–25b).

Before deformation
(a)

After deformation
(b)

Longitudinal
lines become

twisted

Circles remain
circular

Radial lines
remain straight

T

T

Fig. 5–1

Notice the deformation of the rectangular 
element when this rubber bar is subjected 
to a torque.
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This angle (or shear strain) can be related to the angle df by noting that 
the length of the red arc in Fig. 5–2b is

r df = dx g

or

 g = r 
df

dx
 (5–1)

Since dx and df are the same for all elements, then df>dx is constant 
over the cross section, and Eq. 5–1 states that the magnitude of the shear 
strain varies only with its radial distance r from the axis of the shaft. 
Since df>dx = g>r = gmax>c, then

 g = a
r

c
bgmax (5–2)

In other words, the shear strain within the shaft varies linearly along any 
radial line, from zero at the axis of the shaft to a maximum gmax at its 
outer boundary, Fig. 5–2b.

T

x

y

x

The angle of twist f(x) increases as x increases.

Undeformed
plane

Deformed
plane

z

f(x)

(a)   

c

df

dx

The shear strain at points on
the cross section increases linearly

with r, i.e., g � (r/c)gmax.

g

gmax

r

(b)

Fig. 5–2
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5.2 The Torsion formula
When an external torque is applied to a shaft, it creates a corresponding 
internal torque within the shaft. In this section, we will develop an 
equation that relates this internal torque to the shear stress distribution 
acting on the cross section of the shaft.

If the material is linear elastic, then Hooke’s law applies, t = Gg, or 
tmax = Ggmax, and consequently a linear variation in shear strain, as 
noted in the previous section, leads to a corresponding linear variation 
in shear stress along any radial line. Hence, t will vary from zero at the 
shaft’s longitudinal axis to a maximum value, tmax, at its outer surface, 
Fig. 5–3. Therefore, similar to Eq. 5–2, we can write

 t = a
r

c
btmax  (5–3)

tmax

tmax

tmax
tt

t

Shear stress varies linearly along
each radial line of the cross section.

T

c dA

r

Fig. 5–3
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Since each element of area dA, located at r, is subjected to a force of 
dF = t dA, Fig. 5–3, the torque produced by this force is then 
dT = r(t dA). For the entire cross section we have

 T = LA
r(t dA) = LA

r a
r

c
btmax dA (5–4)

However,  tmax>c is constant, and so

 T =
tmax

c LA
r2 dA (5–5)

The integral represents the polar moment of inertia of the shaft’s 
cross-sectional area about the shaft’s longitudinal axis. On the next page 
we will calculate its value, but here we will symbolize its value as J. As a 
result, the above equation can be rearranged and written in a more 
compact form, namely,

 tmax =
Tc
J

 (5–6)

Here

tmax =   the maximum shear stress in the shaft, which occurs at its 
outer surface

T =   the resultant internal torque acting at the cross section. Its 
value is determined from the method of sections and the 
equation of moment equilibrium applied about the shaft’s 
longitudinal axis

J =   the polar moment of inertia of the cross-sectional area

c =   the outer radius of the shaft

If Eq. 5–6 is substituted into Eq. 5–3, the shear stress at the intermediate 
distance r on the cross section can be determined.

 t =
Tr

J
 (5–7)

Either of the above two equations is often referred to as the torsion 
formula. Recall that it is used only if the shaft has a circular cross section 
and the material is homogeneous and behaves in a linear elastic manner, 
since the derivation of Eq. 5–3 is based on Hooke’s law.

The shaft attached to the center of this 
wheel is subjected to a torque, and the 
maximum stress it creates must be 
resisted by the shaft to prevent failure.
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Polar Moment of Inertia. If the shaft has a solid circular 
cross section, the polar moment of inertia J can be determined using 
an area element in the form of a differential ring or annulus having a 
thickness dr and circumference 2pr, Fig. 5–4. For this ring, 
dA = 2pr dr, and so

J = LA
r2 dA = L

c

0
r212pr dr2

= 2pL
c

0
r3 dr = 2pa1

4
br4 `

c

0

 J =
p

2
 c4  (5–8)

Solid Section

Note that J is always positive. A common unit used for its measurement 
is mm4. 

If a shaft has a tubular cross section, with inner radius ci and outer 
radius co, Fig. 5–5, then from Eq. 5–8 we can determine its polar moment 
of inertia by subtracting J for a shaft of radius ci from that determined 
for a shaft of radius co. The result is

 J =
p

2
 (c4

o -  c4
i )  (5–9)

Tube

dr

c
r

Fig. 5–4

co ci

Fig. 5–5
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Shear Stress Distribution. If an element of material on the 
cross section of the shaft or tube is isolated, then due to the complementary 
property of shear, equal shear stresses must also act on four of its adjacent 
faces, as shown in Fig. 5–6a. As a result, the internal torque T develops a 
linear distribution of shear stress along each radial line in the plane of 
the cross-sectional area, and also an associated shear-stress distribution 
is developed along an axial plane, Fig. 5–6b. It is interesting to note that 
because of this axial distribution of shear stress, shafts made of wood 
tend to split along the axial plane when subjected to excessive torque, 
Fig. 5–7. This is because wood is an anisotropic material, whereby its 
shear resistance parallel to its grains or fibers, directed along the axis of 
the shaft, is much less than its resistance perpendicular to the fibers 
within the plane of the cross section.

T T
Failure of a wooden shaft due to torsion.

Fig. 5–7

(a)

T

t tmax

 

tmax

Shear stress varies linearly along
each radial line of the cross section.

(b)

tmax

Fig. 5–6

The tubular drive shaft for this truck was 
subjected to an excessive torque, resulting in 
failure caused by yielding of the material. 
Engineers deliberately design drive shafts to 
fail before torsional damage can occur to 
parts of the engine or transmission.
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Procedure for AnAlysis

The torsion formula can be applied using the following procedure.

Internal torque.

 • Section the shaft perpendicular to its axis at the point where the shear stress is to be determined, and use 
the necessary free-body diagram and equations of equilibrium to obtain the internal torque at the section.

Section property.

 • Calculate the polar moment of inertia of the cross-sectional area. For a solid section of radius c, J = pc4>2, 
and for a tube of outer radius co and inner radius ci , J = p1c4

o - c4
i 2 >2.

Shear Stress.

 • Specify the radial distance r, measured from the center of the cross section to the point where the shear 
stress is to be found. Then apply the torsion formula t = Tr>J, or if the maximum shear stress is to be 
determined use tmax = Tc>J. When substituting the data, make sure to use a consistent set of units.

 • The shear stress acts on the cross section in a direction that is always perpendicular to r. The force it creates 
must contribute a torque about the axis of the shaft that is in the same direction as the internal resultant 
torque T acting on the section. Once this direction is established, a volume element located at the point 
where t is determined can be isolated, and the direction of t acting on the remaining three adjacent faces of 
the element can be shown.

imPortAnt Points

 • When a shaft having a circular cross section is subjected to a torque, the cross section remains plane 
while radial lines rotate. This causes a shear strain within the material that varies linearly along any radial 
line, from zero at the axis of the shaft to a maximum at its outer boundary.

 • For linear elastic homogeneous material, the shear stress along any radial line of the shaft also varies 
linearly, from zero at its axis to a maximum at its outer boundary. This maximum shear stress must not 
exceed the proportional limit.

 • Due to the complementary property of shear, the linear shear stress distribution within the plane of the 
cross section is also distributed along an adjacent axial plane of the shaft.

 • The torsion formula is based on the requirement that the resultant torque on the cross section is equal 
to the torque produced by the shear stress distribution about the longitudinal axis of the shaft. It is 
required that the shaft or tube have a circular cross section and that it is made of homogeneous material 
which has linear elastic behavior.
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EXAMPLE   5.1

The solid shaft and tube shown in Fig. 5–8 are made of a material having an 
allowable shear stress of 75 MPa. Determine the maximum torque that can 
be applied to each cross section, and show the stress acting on a small 
element of material at point A of the shaft, and points B and C of the tube.

SOLUTION

Section Properties. The polar moments of inertia for the solid and 
tubular shafts are

Js =
p

2
 c4 =

p

2
 (0.1 m)4 = 0.1571(10-3) m4

Jt =
p

2
 (co

4 - c4
i ) =

p

2
 3(0.1 m)4 - (0.075 m)44 = 0.1074(10- 3) m4

Shear Stress. The maximum torque in each case is

(tmax)s =
Tc
J

;        7511062  N>m2 =
Ts(0.1 m)

0.1571110-32  m4
 

 Ts = 118 kN # m Ans.

(tmax)t =
Tc
J

;      7511062  N>m2 =
Tt(0.1 m)

0.1074110-32  m4
 

 Tt = 80.5 kN # m Ans.

Also, the shear stress at the inner radius of the tube is

(ti)t =
80.511032  N # m (0.075 m)

0.1074110- 32  m4
= 56.2 MPa

These results are shown acting on small elements in Fig. 5–8. Notice how 
the shear stress on the front (shaded) face of the element contributes to 
the torque. As a consequence, shear stress components act on the other 
three faces. No shear stress acts on the outer surface of the shaft or tube 
or on the inner surface of the tube because it must be stress free.

100 mm
75 MPa A

100 mm 75 mm

56.2 MPa

B

C

75 MPa

T s

T t

Fig. 5–8
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EXAMPLE   5.2

The shaft shown in Fig. 5–9a is supported by two bearings and is subjected 
to three torques. Determine the shear stress developed at points A and B, 
located at section a–a of the shaft, Fig. 5–9c.

SOLUTION

Internal Torque. The bearing reactions on the shaft are zero, 
provided the shaft’s weight is neglected. Furthermore, the applied 
torques satisfy moment equilibrium about the shaft’s axis.

The internal torque at section a–a will be determined from 
the free-body diagram of the left segment, Fig. 5–9b. We have

4.25 kN m

3.0 kN m

1.25 kN m
a

a

(a)

(b)

4.25 kN m

3.0 kN m

T

x

(c)
x0.015 m0.075 m

B

A

1.89 MPa

0.377 MPa

1.25 kN·m

Fig. 5–9
ΣMx = 0; 4.25 kN # m - 3.0 kN # m - T = 0 T = 1.25 kN # m

Section Property. The polar moment of inertia for the shaft is

J =
p

2
 (0.075 m)4 = 49.70(10-6) m4

Shear Stress. Since point A is at r = c = 0.075 m,

tA =
Tc
J

=
[1.25(103) N # m](0.075 m)

49.70(10-6) m4 = 1.886(106) N>m2 = 1.89 MPa Ans.

Likewise for point B, at r = 0.015 m, we have

tB =
Tr

J
=

[1.25(103) N # m](0.015 m)

49.70(10-6) m4 = 0.3773(106) N>m2 = 0.377 MPa Ans.

NOTE: The directions of these stresses on each element at A and B, 
Fig. 5–9c, are established from the direction of the resultant internal 
torque T, shown in Fig. 5–9b. Note carefully how the shear stress acts 
on the planes of each of these elements.
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EXAMPLE   5.3

The pipe shown in Fig. 5–10a has an inner radius of 40 mm and an outer 
radius of 50 mm. If its end is tightened against the support at A using the 
torque wrench, determine the shear stress developed in the material at the 
inner and outer walls along the central portion of the pipe.

SOLUTION

Internal Torque. A section is taken at the intermediate location C 
along the pipe’s axis, Fig. 5–10b. The only unknown at the section is the 
internal torque T. We require

ΣMx = 0;    80 N10.3 m2 + 80 N10.2 m2 - T = 0

 T = 40 N # m

Section Property. The polar moment of inertia for the pipe’s cross-
sectional area is

J =
p

2
 310.05 m24 - 10.04 m244 = 5.796110- 62  m4

Shear Stress. For any point lying on the outside surface of the pipe, 
r = co = 0.05 m, we have

 to =
Tco

J
=

40 N # m10.05 m2
5.796110- 62  m4 = 0.345 MPa  Ans.

And for any point located on the inside surface, r = ci = 0.04 m, and so

 ti =
Tci

J
=

40 N # m10.04 m2
5.796110- 62  m4 = 0.276 MPa  Ans.

These results are shown on two small elements in Fig. 5–10c.

NOTE: Since the top face of D and the inner face of E are in stress-free 
regions, no shear stress can exist on these faces or on the other corresponding 
faces of the elements.

200 mm

80 N

(a)

B

80 N
C

300 mm

A

300 mm

200 mm

80 N

80 N

(b)

T x

(c)

T

D

E

tE � 0.276 MPa tD � 0.345 MPa

Stress free 
top

Stress free 
inside

Fig. 5–10



212  Chapter 5  tors ion

5

5.3 Power Transmission
Shafts and tubes having circular cross sections are often used to transmit 
power developed by a machine. When used for this purpose, they are 
subjected to a torque that depends on both the power generated by the 
machine and the angular speed of the shaft. Power is defined as the work 
performed per unit of time. Also, the work transmitted by a rotating shaft 
equals the torque applied times the angle of rotation. Therefore, if during 
an instant of time dt an applied torque T causes the shaft to rotate du, then 
the work done is Tdu and the instantaneous power is

P =
T du

dt

Since the shaft’s angular velocity is v = du>dt, then the power is

 P = Tv  (5–10)

In the SI system, power is expressed in watts when torque is measured 
in newton-meters 1N # m2  and v is in radians per second 1 rad>s2  
11 W = 1 N # m>s2 .  However, horsepower (hp) is often used in engi-
neering practice, where

1 hp = 746 W

For machinery, the frequency of a shaft’s rotation, f, is often reported. 
This is a measure of the number of revolutions or “cycles” the shaft 
makes per second and is expressed in hertz 11 Hz = 1 cycle>s2 . Since 
1 cycle = 2p rad, then v = 2pf, and so the above equation for power 
can also be written as

 P = 2pfT  (5–11)

Shaft Design. When the power transmitted by a shaft and its frequency 
of rotation are known, the torque developed in the shaft can be determined 
from Eq. 5–11, that is, T = P>2pf. Knowing T and the allowable shear 
stress for the material, tallow, we can then determine the size of the shaft’s 
cross section using the torsion formula. Specifically, the design or geometric 
parameter J>c becomes

 
J
c
=

T
tallow

 (5–12)

For a solid shaft, J = 1p>22c4, and thus, upon substitution, a unique 
value for the shaft’s radius c can be determined. If the shaft is tubular, so 
that J = 1p>22 1co

4 - ci
42 , design permits a wide range of possibilities 

for the solution. This is because an arbitrary choice can be made for either 
co or ci and the other radius can then be determined from Eq. 5–12.

A

The belt drive transmits the torque 
developed by an electric motor to the 
shaft at A. The stress developed in 
the shaft depends upon the power 
transmitted by the motor and the rate 
of rotation of the shaft. P = Tv.
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EXAMPLE   5.4

A solid steel shaft AB, shown in Fig. 5–11, is to be used to transmit 5 hp from 
the motor M to which it is attached. If the shaft rotates at v = 175 rpm and 
the steel has an allowable shear stress of tallow = 100 MPa determine the 
required diameter of the shaft to the nearest mm.

M

A

B
v

Fig. 5–11

SOLUTION

The torque on the shaft is determined from Eq. 5–10, that is, P = Tv. 
Expressing P in watts and v in rad>s, we have

 P = (5 hp) a746 W
1 hp

b = 3730 W 

 v = a  175 rev
 min

b   a  2p rad
 1 rev

ba  1 min
 60 s

b = 18.33 rad>s

Thus,

P = Tv;  3730 W>s = T(18.33 rad>s) 

 T = 203.54 N # m

Applying Eq. 5–12, yields 
J
c
=

p

2
  
c4

c
=

T
tallow

 

c = a 2T
ptallow

 b
1>3

= e
2(203.54 N # m)

p [100(106) N>m2]
 f

1>3
 

c = 0.01090 m = 10.90 mm

Since 2c = 21.80 mm, select a shaft having a diameter of

 d = 22 mm  Ans.
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P5–1.  Determine the internal torque at each section and 
show the shear stress on differential volume elements 
located at A, B, C, and D.

PRELIMINARY PROBLEMS
P5–3.  The solid and hollow shafts are each subjected to 
the torque T. In each case, sketch the shear stress distribution 
along the two radial lines.

T

T

Prob. P5–3

P5–4.  The motor delivers 10 hp to the shaft. If it rotates at 
1200 rpm, determine the torque produced by the motor.

P5–2.  Determine the internal torque at each section and 
show the shear stress on differential volume elements 
located at A, B, C, and D.

Prob. P5–4

D

C
A

B
800 N�m

300 N�m

Prob. P5–1

Prob. P5–2

A

C

400 N�m

600 N�m

B

D
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F5–1.  The solid circular shaft is subjected to an internal 
torque of T = 5 kN # m. Determine the shear stress at 
points A and B. Represent each state of stress on a volume 
element.

40 mm

T

30 mm

A

B

Prob. F5–1

F5–2.  The hollow circular shaft is subjected to an internal 
torque of T = 10 kN # m. Determine the shear stress at 
points A and B. Represent each state of stress on a volume 
element.

60 mm

T � 10 kN�m

40 mm

A

B

Prob. F5–2

F5–3.  The shaft is hollow from A to B and solid from B 
to C. Determine the maximum shear stress in the shaft. The 
shaft has an outer diameter of 80 mm, and the thickness of 
the wall of the hollow segment is 10 mm.

B

A

C

 2 kN�m

4 kN�m

Prob. F5–3

F5–4.  Determine the maximum shear stress in the 
40-mm-diameter shaft.

6 kN

10 kN

4 kN

2 kN

150 mm

100 mm

A

B

C

D

Prob. F5–4

FUNDAMENTAL PROBLEMS
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F5–5.  Determine the maximum shear stress in the shaft at 
section a-a.

C

D

A

 600 N � m

 600 N � m

1500 N � m

B 1500 N � m

a

a

Section a–a

40 mm
30 mm

Prob. F5–5

F5–6.  Determine the shear stress at point A on the surface 
of the shaft. Represent the state of stress on a volume element 
at this point. The shaft has a radius of 40 mm.

A

800 mm

 5 kN�m/m

Prob. F5–6

F5–7.  The solid 50-mm-diameter shaft is subjected to the 
torques applied to the gears. Determine the absolute 
maximum shear stress in the shaft.

A

250 N m�

325 N m�

75 N m�

500 mm

400 mm

500 mm

150 N m�B

D

C

Prob. F5–7

F5–8.  The gear motor can develop 2250 W when it turns 
at 150 rev>min. If the allowable shear stress for the shaft is 
tallow = 84 MPa, determine the smallest diameter of the 
shaft to the nearest mm that can be used.

Prob. F5–8



 5.3 power transmission 217

5

5–1. The solid shaft of radius r is subjected to a torque T. 
Determine the radius r′ of the inner core of the shaft that 
resists one-half of the applied torque (T>2). Solve the 
problem two ways: (a) by using the torsion formula, (b) by 
finding the resultant of the shear-stress distribution.

5–2. The solid shaft of radius r is subjected to a torque T. 
Determine the radius r′ of the inner core of the shaft that 
resists one-quarter of the applied torque (T>4). Solve the 
problem two ways: (a) by using the torsion formula, (b) by 
finding the resultant of the shear-stress distribution.

r¿

r

T

Probs. 5–1/2

5–3. A shaft is made of an aluminum alloy having an 
allowable shear stress of tallow = 100 MPa. If the diameter of 
the shaft is 100 mm, determine the maximum torque T that 
can be transmitted. What would be the maximum torque T′ if 
a 75-mm-diameter hole were bored through the shaft? Sketch 
the shear-stress distribution along a radial line in each case.

T

T ¿

Prob. 5–3

*5–4. The link acts as part of the elevator control for a 
small airplane. If the attached aluminum tube has an inner 
diameter of 25 mm and a wall thickness of 5 mm, 
determine the maximum shear stress in the tube when the 
cable force of 600 N is applied to the cables. Also, sketch 
the shear-stress distribution over the cross section.

PROBLEMS

25 mm
75 mm

600 N

600 N

75 mm
5 mm

Prob. 5–4

5–5. The solid shaft is fixed to the support at C and 
subjected to the torsional loadings. Determine the shear 
stress at points A and B on the surface, and sketch the shear 
stress on volume elements located at these points.

C
35 mm

800 N�m

35 mm
20 mm

A

B

300 N�m

Prob. 5–5
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5–6. The solid 30-mm-diameter shaft is used to transmit 
the torques applied to the gears. Determine the absolute 
maximum shear stress in the shaft.

*5–8. The copper pipe has an outer diameter of 40 mm and 
an inner diameter of 37 mm. If it is tightly secured to the wall 
at A and three torques are applied to it as shown, determine 
the absolute maximum shear stress developed in the pipe.

300 N�m

A
200 N�m

500 N�m

300 mm

400 mm

500 mm

400 N�m

B

D

C

Prob. 5–6

5–7. The copper pipe has an outer diameter of 40 mm and 
an inner diameter of 37 mm. If it is tightly secured to the 
wall and three torques are applied to it, determine the 
absolute maximum shear stress developed in the pipe.

80 N�m

20 N�m

30 N�m

Prob. 5–7

A

80 N m

20 N m

30 N m

Prob. 5–8

5–9. The solid aluminum shaft has a diameter of 50 mm 
and an allowable shear stress of tallow = 60 MPa. Determine 
the largest torque T1 that can be applied to the shaft if it is 
also subjected to the other torsional loadings. It is required 
that T1 act in the direction shown. Also, determine the 
maximum shear stress within regions CD and DE.

5–10. The solid aluminum shaft has a diameter of 50 mm. 
Determine the absolute maximum shear stress in the shaft and 
sketch the shear-stress distribution along a radial line of the 
shaft where the shear stress is maximum. Set T1 = 2000 N # m.

T1

600 N�m

900 N�m

300 N�m

A

B

C

D
E

Probs. 5–9/10
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5–11.  The 60-mm-diameter solid shaft is subjected to the 
distributed and concentrated torsional loadings shown. 
Determine the absolute maximum and minimum shear 
stresses on the shaft’s surface and specify their locations, 
measured from the free end.

*5–12.  The solid shaft is subjected to the distributed and 
concentrated torsional loadings shown. Determine the 
required diameter d of the shaft if the allowable shear stress 
for the material is tallow = 60 MPa.

5–14.  A steel tube having an outer diameter of 60 mm is 
used to transmit 6.75 kW when turning at 27 rev>min. 
Determine the inner diameter d of the tube to the nearest 
mm if the allowable shear stress is tallow = 70 MPa.

0.5 m

0.5 m
0.2 m

0.2 m

C

B

400 N�m

4 kN�m/m

800 N�m

A

d

Probs. 5–11/12

5–13. The assembly consists of two sections of galvanized 
steel pipe connected together using a reducing coupling at B. 
The smaller pipe has an outer diameter of 18.75 mm and an 
inner diameter of 17 mm, whereas the larger pipe has an outer 
diameter of 25 mm and an inner diameter of 21.5 mm. If the 
pipe is tightly secured to the wall at C, determine the maximum 
shear stress developed in each section of the pipe when the 
couple shown is applied to the handles of the wrench.

C

B

A

75 N
150 mm

75 N

200 mm

Prob. 5–13

60 mm
d

Prob. 5–14

5–15. The 60-mm-diameter solid shaft is subjected to the 
distributed and concentrated torsional loadings shown. 
Determine the shear stress at points A and B, and sketch the 
shear stress on volume elements located at these points.

*5–16. The 60-mm-diameter solid shaft is subjected to the 
distributed and concentrated torsional loadings shown. 
Determine the absolute maximum and minimum shear 
stresses on the shaft’s surface, and specify their locations, 
measured from the fixed end C.

5–17. The solid shaft is subjected to the distributed and 
concentrated torsional loadings shown. Determine the 
required diameter d of the shaft if the allowable shear stress 
for the material is tallow = 1.6 MPa.

0.4 m

0.4 m

0.3 m

0.3 m

C

B
600 N�m

2 kN�m/m

400 N�m
A

d

Probs. 5–15/16/17
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5–18. The motor delivers a torque of 50 N # m to the shaft 
AB. This torque is transmitted to shaft CD using the gears 
at E and F. Determine the equilibrium torque T′ on shaft 
CD and the maximum shear stress in each shaft. The 
bearings B, C, and D allow free rotation of the shafts.

5–19. If the applied torque on shaft CD is T′ = 75 N # m, 
determine the absolute maximum shear stress in each shaft. 
The bearings B, C, and D allow free rotation of the shafts, 
and the motor holds the shafts fixed from rotating.

10 kN�m
B

A

E

C

D

15 kN�m

5 kN�m

Probs. 5–20/21

*5–24. The rod has a diameter of 25 mm and a weight of 
150  N/m. Determine the maximum torsional stress in the 
rod at a section located at A due to the rod’s weight.

5–25. The rod has a diameter of 25 mm and a weight of 
225 N/m. Determine the maximum torsional stress in the 
rod at a section located at B due to the rod’s weight.

50 mm

B

30 mm

35 mm 125 mm
D

C
E

F
T ¿

A

Probs. 5–18/19

*5–20. The shaft has an outer diameter of 100 mm and an 
inner diameter of 80 mm. If it is subjected to the three 
torques, determine the absolute maximum shear stress in 
the shaft. The smooth bearings A and B do not resist torque.

5–21. The shaft has an outer diameter of 100 mm and an 
inner diameter of 80 mm. If it is subjected to the three 
torques, plot the shear stress distribution along a radial line 
for the cross section within region CD of the shaft. The 
smooth bearings at A and B do not resist torque.

5–22. If the gears are subjected to the torques shown, 
determine the maximum shear stress in the segments AB 
and BC of the A-36 steel shaft. The shaft has a diameter of 
40 mm.

5–23. If the gears are subjected to the torques shown, 
determine the required diameter of the A-36 steel shaft to 
the nearest mm if tallow = 60 MPa.

300 N�m

100 N�m

200 N�m

A

B

C

Probs. 5–22/23

1.2 m

0.45 m

1.35 m A

B
0.45 m

Probs. 5–24/25
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*5–28.  The drive shaft AB of an automobile is made of a 
steel having an allowable shear stress of tallow = 56 MPa. If 
the outer diameter of the shaft is 62.5 mm and the engine 
delivers 165 kW to the shaft when it is turning at 
1140 rev>min, determine the minimum required thickness 
of the shaft’s wall.

5–29.  The drive shaft AB of an automobile is to be 
designed as a thin-walled tube. The engine delivers 125 kW 
when the shaft is turning at 1500 rev>min. Determine the 
minimum thickness of the shaft’s wall if the shaft’s outer 
diameter is 62.5 mm. The material has an allowable shear 
stress of tallow = 50 MPa.

5–26.  The solid steel shaft DF has a diameter of 25 mm and 
is supported by smooth bearings at D and E. It is coupled to 
a motor at F, which delivers 12 kW of power to the shaft 
while it is turning at 50 rev>s. If gears A, B, and C remove 
3 kW, 4 kW, and 5 kW respectively, determine the maximum 
shear stress in the shaft within regions CF and BC. The shaft 
is free to turn in its support bearings D and E.

5–27. The solid steel shaft DF has a diameter of 25 mm and 
is supported by smooth bearings at D and E. It is coupled to 
a motor at F, which delivers 12 kW of power to the shaft 
while it is turning at 50 rev>s. If gears A, B, and C remove 
3 kW, 4 kW, and 5 kW respectively, determine the absolute 
maximum shear stress in the shaft.

A
FC ED

4 kW
5 kW 12 kW

25 mm3 kW

B

Probs. 5–26/27

AB

Probs. 5–28/29

5–30. A ship has a propeller drive shaft that is turning at 
1500 rev>min  while developing 1500 kW. If it is 2.4 m long 
and has a diameter of 100 mm, determine the maximum 
shear stress in the shaft caused by torsion.

5–31.  The motor A develops a power of 300 W and turns 
its connected pulley at 90 rev>min. Determine the required 
diameters of the steel shafts on the pulleys at A and B if the 
allowable shear stress is tallow = 85 MPa.

60 mm

150 mm

90 rev/min

A

BB

Prob. 5–31

*5–32.  When drilling a well at constant angular velocity, 
the bottom end of the drill pipe encounters a torsional 
resistance TA. Also, soil along the sides of the pipe creates a 
distributed frictional torque along its length, varying 
uniformly from zero at the surface B to tA at A. Determine 
the minimum torque TB that must be supplied by the drive 
unit to overcome the resisting torques, and calculate the 
maximum shear stress in the pipe. The pipe has an outer 
radius ro and an inner radius ri.

TA

L

B

TB

tA
A

Prob. 5–32
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5–34.  The shaft is subjected to a distributed torque along 
its length of t = (10x2) N # m>m, where x is in meters. If the 
maximum stress in the shaft is to remain constant at 80 MPa, 
determine the required variation of the radius c of the shaft 
for 0 …  x … 3 m.

*5–36.  The gear motor can develop 1.6 kW when it turns 
at 450 rev>min. If the shaft has a diameter of 25 mm, 
determine the maximum shear stress developed in the shaft.

5–37.  The gear motor can develop 2.4 kW when it turns at 
150 rev>min. If the allowable shear stress for the shaft is 
tallow = 84 MPa, determine the smallest diameter of the 
shaft to the nearest multiples of 5 mm that can be used.

5–33.  The solid steel shaft AC has a diameter of 25 mm 
and is supported by smooth bearings at D and E. It is 
coupled to a motor at C, which delivers 3 kW of power to the 
shaft while it is turning at 50 rev>s. If gears A and B remove 
1 kW and 2 kW, respectively, determine the maximum shear 
stress in the shaft within regions AB and BC. The shaft is 
free to turn in its support bearings D and E.

A

CB E

2 kW 3 kW
25 mm1 kW

D

Prob. 5–33

c
x

3 m

t � (10x2) N�m/m

Prob. 5–34

5–35.  The motor delivers 12 kW to the pulley at A while 
turning at a constant rate of 1800 rpm. Determine to the 
nearest multiples of 5 mm the smallest diameter of shaft BC 
if the allowable shear stress for steel is tallow = 84 MPa.
The belt does not slip on the pulley.

75 mm

A

B C

37.5 mm

Prob. 5–35

Probs. 5–36/37

5–38.  The 25-mm-diameter shaft on the motor is made of 
a material having an allowable shear stress of 
tallow = 75 MPa. If the motor is operating at its maximum 
power of 5 kW, determine the minimum allowable rotation 
of the shaft.

5–39.  The drive shaft of the motor is made of a material 
having an allowable shear stress of tallow = 75 MPa. If the 
outer diameter of the tubular shaft is 20 mm and the wall 
thickness is 2.5 mm, determine the maximum allowable 
power that can be supplied to the motor when the shaft is 
operating at an angular velocity of 1500 rev>min.

Probs. 5–38/39
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*5–40  The pump operates using the motor that has a 
power of 85 W. If the impeller at B is turning at 150 rev>min, 
determine the maximum shear stress in the 20-mm-diameter 
transmission shaft at A.

A
B150 rev/min

Prob. 5–40

5–41. Two wrenches are used to tighten the pipe. If 
P = 300 N is applied to each wrench, determine the 
maximum torsional shear stress developed within regions 
AB and BC. The pipe has an outer diameter of 25 mm and 
inner diameter of 20 mm. Sketch the shear stress distribution 
for both cases.

5–42. Two wrenches are used to tighten the pipe. If the 
pipe is made from a material having an allowable shear 
stress of tallow = 85 MPa, determine the allowable 
maximum force P that can be applied to each wrench. The 
pipe has an outer diameter of 25 mm and inner diameter of 
20 mm.

250 mm

250 mm

A

P

P

B

C

Probs. 5–41/42

5–43.  The solid shaft has a linear taper from rA at one end 
to rB at the other. Derive an equation that gives the 
maximum shear stress in the shaft at a location x along the 
shaft’s axis.

A

B

T

T

x

rA

rB

L

Prob. 5–43

*5–44.  A motor delivers 375 kW to the shaft, which is 
tubular and has an outer diameter of 50 mm. If it is rotating 
at 200 rad>s, determine its largest inner diameter to the 
nearest mm if the allowable shear stress for the material is 
tallow = 175 MPa.

150 mm

A B

Prob. 5–44

MP

Probs. 5–45/46

5–45. The A-36 steel tubular shaft is 2 m long and has an 
outer diameter of 50 mm. When it is rotating at 40 rad>s, it 
transmits 25 kW of power from the motor M to the pump P. 
Determine the smallest thickness of the tube if the allowable 
shear stress is tallow = 80 MPa.

5–46. The A-36 solid steel shaft is 2 m long and has a 
diameter of 60 mm. It is required to transmit 60 kW of 
power from the motor M to the pump P. Determine the 
smallest angular velocity the shaft if the allowable shear 
stress is tallow = 80 MPa.
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5.4 angle of TwisT
In this section we will develop a formula for determining the angle of twist 
f (phi) of one end of a shaft with respect to its other end. To generalize 
this development, we will assume the shaft has a circular cross section that 
can gradually vary along its length, Fig. 5–12a. Also, the material is assumed 
to be homogeneous and to behave in a linear elastic manner when the 
torque is applied. As in the case of an axially loaded bar, we will neglect 
the localized deformations that occur at points of application of the torques 
and where the cross section changes abruptly. By Saint-Venant’s principle, 
these effects occur within small regions of the shaft’s length, and generally 
they will have only a slight effect on the final result.

Using the method of sections, a differential disk of thickness dx, 
located at position x, is isolated from the shaft, Fig. 5–12b. At this 
location, the internal torque is T(x), since the external loading may 
cause it to change along the shaft. Due to T(x), the disk will twist, such 
that the relative rotation of one of its faces with respect to the other face 
is df. As a result an element of material located at an arbitrary radius r 
within the disk will undergo a shear strain g. The values of g and df are 
related by Eq. 5–1, namely,

 df = g 
dx
r

 (5–13)

Long shafts subjected to torsion can, in 
some cases, have a noticeable elastic 
twist.

(a)

x

dx

T3

T2

x

y

z

T1

   (b)

c

T(x)
dxdf

df

g g

gmax

r

r

Fig. 5–12
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Since Hooke’s law, g = t>G, applies and the shear stress can be expressed 
in terms of the applied torque using the torsion formula t = T(x)r>J(x), 
then g = T(x)r>J(x)G(x). Substituting this into Eq. 5–13, the angle of 
twist for the disk is therefore

df =
 T1x2

J1x2G(x)
 dx

Integrating over the entire length L of the shaft, we can obtain the angle 
of twist for the entire shaft, namely,

 f =L
L

0

T(x) dx

J(x)G(x)
 (5–14)

Here

f =   the angle of twist of one end of the shaft with respect to the other 
end, measured in radians

T(x) =   the internal torque at the arbitrary position x, found from the 
method of sections and the equation of moment equilibrium applied 
about the shaft’s axis

J(x) =   the shaft’s polar moment of inertia expressed as a function of x

G(x) =   the shear modulus of elasticity for the material expressed as a 
function of x

Constant Torque and Cross-Sectional Area. Usually in 
engineering practice the material is homogeneous so that G is constant. 
Also, the cross-sectional area and the external torque are constant along 
the length of the shaft, Fig. 5–13. When this is the case, the internal torque 
T1x2 = T, the polar moment of inertia J1x2 = J, and Eq. 5–14 can be 
integrated, which gives

 f =
 TL
 JG

 (5–15)

Note the similarities between the above two equations and those for an 
axially loaded bar.

f

L

T

T

Fig. 5–13

When calculating both the stress and 
the angle of twist of this soil auger, it is 
necessary to consider the variable 
torsional loading which acts along 
its length.
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Load
dial

Motor
controls

Load
range

selector

Torque
strain

recorder

Fixed
head

Specimen

Motor
Turning

head

Movable unit
on rails

Fig. 5–14

Equation 5–15 is often used to determine the shear modulus of 
elasticity, G, of a material. To do so, a specimen of known length and 
diameter is placed in a torsion testing machine like the one shown in 
Fig. 5–14. The applied torque T and angle of twist f are then measured 
along the length L. From Eq. 5–15, we get G = TL>Jf. To obtain a more 
reliable value of G, several of these tests are performed and the average 
value is used.

Multiple Torques. If the shaft is subjected to several different 
torques, or the cross-sectional area or shear modulus changes abruptly 
from one region of the shaft to the next, as in Fig. 5–12, then Eq. 5–15 
should be applied to each segment of the shaft where these quantities 
are all constant. The angle of twist of one end of the shaft with respect to 
the other is found from the algebraic addition of the angles of twist of 
each segment. For this case,

 f = a
 

 

 TL
JG

 (5–16)

c

df

dx

The shear strain at points on
the cross section increases linearly

with r, i.e., g � (r/c)gmax.

g

gmax

r

(b)

 Fig. 5–12 (Repeated)
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Sign Convention. The best way to apply this equation is to use a 
sign convention for both the internal torque and the angle of twist of one 
end of the shaft with respect to the other end. To do this, we will apply 
the right-hand rule, whereby both the torque and angle will be positive, 
provided the thumb is directed outward from the shaft while the fingers 
curl in the direction of the torque, Fig. 5–15.

Positive sign convention
 for T and f.

x

�T(x)

�T(x)

�f(x)

�f(x)

f

Fig. 5–15

 • When applying Eq. 5–14 to determine the angle of twist, it is 
important that the applied torques do not cause yielding of the 
material, and that the material is homogeneous and behaves in 
a linear elastic manner.

imPortAnt Point
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Procedure for AnAlysis

The angle of twist of one end of a shaft or tube with respect to the 
other end can be determined using the following procedure.

Internal torque.

 • The internal torque is found at a point on the axis of the shaft 
by using the method of sections and the equation of moment 
equilibrium, applied along the shaft’s axis.

 • If the torque varies along the shaft’s length, a section should be 
made at the arbitrary position x along the shaft and the internal 
torque represented as a function of x, i.e., T(x).

 • If several constant external torques act on the shaft between 
its ends, the internal torque in each segment of the shaft, 
between any two external torques, must be determined.

angle of twist.

 • When the circular cross-sectional area of the shaft varies along 
the shaft’s axis, the polar moment of inertia must be expressed 
as a function of its position x along the axis, J(x).

 • If the polar moment of inertia or the internal torque 
suddenly  changes between the ends of the shaft, then 
f = 1 1T(x)>J(x)G(x)2  dx or f = TL>JG must be applied to 
each segment for which J, G, and T are continuous or constant.

 • When the internal torque in each segment is determined, be 
sure to use a consistent sign convention for the shaft or its 
segments, such as the one shown in Fig. 5–15. Also make sure 
that a consistent set of units is used when substituting numerical 
data into the equations.
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EXAMPLE   5.5

Determine the angle of twist of the end A of the A-36 steel shaft 
shown in Fig. 5–16a. Also, what is the angle of twist of A relative to C? 
The shaft has a diameter of 200 mm.

SOLUTION

Internal Torque. Using the method of sections, the internal torques 
are found in each segment as shown in Fig. 5–16b. By the right-hand rule, 
with positive torques directed away from the sectioned end of the shaft, 
we have TAB = +80 kN # m, TBC = -70 kN # m, and TCD = -10 kN # m. 
These results are also shown on the torque diagram, which indicates 
how the internal torque varies along the axis of the shaft, Fig. 5–16c.

Angle of Twist. The polar moment of inertia for the shaft is

J =
p

2
10.1 m24 = 0.1571110-32  m4

For A-36 steel, the table on the back cover gives G = 75 GPa. Therefore, 
the end A of the shaft has a rotation of

fA = Σ
TL
JG

=
80(103) N # m (3 m)

(0.1571(10- 3) m4)(75(109) N>m2)
(b)

80 kN�m

80 kN�m

(a)

A
B

C
D

80 kN�m

3 m
2 m

1.5 m

150 kN�m
60 kN�m

10 kN�m

80 kN�m

T (kN�m)

x (m)

80

�70
�10

(c)

3 5 6.5

150 kN�m
TBC � 70 kN�m

TAB � 80 kN�m

TCD � 10 kN�m

150 kN�m
60 kN�m

Fig. 5–16

+  
-70(103) N # m (2 m)

(0.1571(10- 3) m4)(75(109) N>m2)
+

-10(103) N # m (1.5 m)

(0.1571(10- 3) m4)(75(109) N>m2)

 fA = 7.22(10- 3) rad Ans.

The relative angle of twist of A with respect to C involves only two 
segments of the shaft.

fA>C = Σ
TL
JG

=
80(103) N # m (3 m)

(0.1571(10- 3) m4)(75(109) N>m2)

+  
-70(103) N # m (2 m)

(0.1571(10- 3) m4)(75(109) N>m2)

 fA>C = 8.49(10- 3) rad Ans.

Both results are positive, which means that end A will rotate as 
indicated by the curl of the right-hand fingers when the thumb is 
directed away from the shaft.
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The gears attached to the fixed-end steel shaft are subjected to the 
torques shown in Fig. 5–17a. If the shaft has a diameter of 14 mm, 
determine the displacement of the tooth P on gear A. G = 80 GPa.

SOLUTION

Internal Torque. By inspection, the torques in segments AC, CD, and 
DE are different yet constant throughout each segment. Free-body 
diagrams of these segments along with the calculated internal torques 
are shown in Fig. 5–17b. Using the right-hand rule and the established 
sign convention that positive torque is directed away from the sectioned 
end of the shaft, we have

TAC = +150 N # m  TCD = -130 N # m  TDE = -170 N # m

Angle of Twist. The polar moment of inertia for the shaft is

J =
p

2
10.007 m24 = 3.771110-92  m4

Applying Eq. 5–16 to each segment and adding the results algebraically, 
we have

fA = a
 

 

TL
JG

 =
1 +150 N # m2 10.4 m2

3.771110-92m4 [8011092N>m2]
 

+
1 -130 N # m2 10.3 m2

3.771110-92m4 [8011092N>m2]
+

1 -170 N # m2 10.5 m2
3.771110-92m4 [8011092  N>m2]

fA = -0.2121 rad

Since the answer is negative, by the right-hand rule the thumb is directed 
toward the support E of the shaft, and therefore gear A will rotate as 
shown in Fig. 5–17c.

The displacement of tooth P on gear A is

 sP = fAr = 10.2121 rad2 1100 mm2 = 21.2 mm  Ans.

EXAMPLE   5.6

(a)

P

40 N�m

280 N�m

0.4 m

0.3 m

0.5 m

100 mm
A

B

C

D

E

150 N�m

TAC � 150 N�m
150 N�m

280 N�m

150 N�m

TCD � 130 N�m

TDE � 170 N�m

(b)

40 N�m

280 N�m

150 N�m

(c)

fA � 0.2121 rad

100 mm
P sP

A

Fig. 5–17
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The two solid steel shafts shown in Fig. 5–18a are coupled together using 
the meshed gears. Determine the angle of twist of end A of shaft AB 
when the torque T = 45 N # m is applied. Shaft DC is fixed at D. Each 
shaft has a diameter of 20 mm. G = 80 GPa.

EXAMPLE   5.7

SOLUTION

Internal Torque. Free-body diagrams for each shaft are shown in  
Figs. 5–18b and 5–18c. Summing moments along the axis of shaft AB yields 
the tangential reaction between the gears of F =  45 N # m>0.15 m = 300 N. 
Summing moments about the axis of shaft DC, this force then creates a 
torque of 1TD2x = 300 N 10.075 m2  = 22.5 N # m in shaft DC.

Angle of Twist. To solve the problem, we will first calculate the 
rotation of gear C due to the torque of 22.5 N # m in shaft DC, Fig. 5–18c. 
This angle of twist is

fC =
TLDC

JG
=

 1 +22.5 N # m2 11.5 m2
1p>22 10.010 m24 [8011092N>m2]

= +0.0269 rad

Since the gears at the end of the shafts are in mesh, the rotation fC of 
gear C causes gear B to rotate fB, Fig. 5–18d, where

 fB10.15 m2 = 10.0269 rad2 10.075 m2  
 fB = 0.0134 rad

We will now determine the angle of twist of end A with respect to 
end B of shaft AB caused by the 45 N # m torque, Fig. 5–18b. We have

fA>B =
TABLAB

JG
=

 1 +45 N # m2 12 m2
1p>22 10.010 m24 [8011092  N>m2] 

= +0.0716 rad

The rotation of end A is therefore determined by adding fB and fA>B, 
since both angles are in the same direction, Fig. 5–18b. We have

 fA = fB + fA>B = 0.0134 rad + 0.0716 rad = +0.0850 rad Ans.

Dz
C

(c)

Dx

Dy
(TD)x � 22.5 N�m

fC

0.075 m

F � 300 N

(MD)y

(MD)z

(d)

C

0.075 m

0.150 m

B

fC

fB

Fig. 5–18

A

 T � 45 N�m

D

E F

(a)

2 m

75 mm

B

150 mm

C
1.5 m

 

A
Fy

T � 45 N�m

Fz

Ey
Ez

(b)

B

F � 300 N
0.150 m

fB � 0.0134 rad
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The 0.05-m-diameter solid cast-iron post shown in Fig. 5–19a is buried 0.6 m 
in soil. If a torque is applied to its top using a rigid wrench, determine the 
maximum shear stress in the post and the angle of twist at its top. Assume 
that the torque is about to turn the post, and the soil exerts a uniform 
torsional resistance of t N # m>m along its 0.6-m buried length. G = 40 GPa.

SOLUTION

Internal Torque. The internal torque in segment AB of the post is 
constant. From the free-body diagram, Fig. 5–19b, we have

ΣMz = 0; TAB = (100 N)(0.30 m) = 30 N # m

The magnitude of the uniform distribution of torque along the buried 
segment BC can be determined from equilibrium of the entire post, 
Fig. 5–19c. Here

ΣMz = 0 (100 N)(0.30 m) - t(0.6 m) = 0

t = 50 N # m>m

Hence, from a free-body diagram of a section of the post located at the 
position x, Fig. 5–19d, we have

ΣMz = 0; TBC - 50x = 0 

TBC = 50x

Maximum Shear Stress. The largest shear stress occurs in region AB, 
since the torque is largest there and J is constant for the post. Applying 
the torsion formula, we have

t max =
TABc

J
=

(30 N # m)(0.025 m)

(p>2)(0.025 m)4 = 1.22(106) N>m2

= 1.22 MPa Ans.

Angle of Twist. The angle of twist at the top can be determined 
relative to the bottom of the post, since it is fixed and yet is about to turn. 
Both segments AB and BC twist, and so in this case we have

 fA =
TABLAB

JG
+ L

LBC

0

TBCdx

JG
 

 =
(30 N # m)(0.9 m)

JG
+ L

0.6 m

0

50x dx
JG

 

 =
27 N # m2

JG
+

50[(0.62)>2] N # m2

JG
 

 =
36 N # m2

(p>2)(0.025 m)4[40(109) N>m2]
= 0.00147 rad Ans.

EXAMPLE   5.8

0.05 m

0.9 m

0.6 m

A

(a)

B

C

t

0.15 m

0.15 m 100 N100 N

TAB

(b)

0.15 m

0.15 m 100 N100 N

0.6 m

0.6 t

(c)

0.9 m

0.15 m

0.15 m 100 N100 N

x

t  50 N m/m

(d)

TBC

Fig. 5–19
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F5–9.  The 60-mm-diameter steel shaft is subjected to the 
torques shown. Determine the angle of twist of end A with 
respect to C. Take G = 75 GPa.

600 mm

400 mm

A

C
B

 3 kN�m

 2 kN�m

Prob. F5–9

F5–10.  Determine the angle of twist of wheel B with 
respect to wheel A. The shaft has a diameter of 40 mm and 
is made of steel for which G = 75 GPa.

4 kN
10 kN

6 kN

2 kN

150 mm

100 mm

150 mm

150 mm

450 mm

B

A

Prob. F5–10

F5–11.  The hollow 6061-T6 aluminum shaft has an outer 
and inner radius of co = 40 mm and ci = 30 mm, respectively. 
Determine the angle of twist of end A. The support at B is 
flexible like a torsional spring, so that TB = kB fB, where the 
torsional stiffness is kB = 90 kN # m>rad.

B

A

900 mm

 3 kN�m

Prob. F5–11

F5–12.  A series of gears are mounted on the 40-mm-diameter 
steel shaft. Determine the angle of twist of gear E relative to 
gear A. Take G = 75 GPa.

A

200 mm

200 mm

200 mm

200 mm

 600 N�m

 500 N�m

 300 N�m

 500 N�m

 900 N�m

C

D

B

E

Prob. F5–12

F5–13.  The 80-mm-diameter shaft is made of steel. If it is 
subjected to the uniform distributed torque, determine the 
angle of twist of end A. Take G = 75 GPa.

800 mm

A

B

 5 kN�m/m

Prob. F5–13

F5–14.  The 80-mm-diameter shaft is made of steel. If it is 
subjected to the triangular distributed load, determine the 
angle of twist of end A. Take G = 75 GPa.

B

A

C

400 mm

600 mm

15 kN�m/m

Prob. F5–14

FUNDAMENTAL PROBLEMS
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5–47. The propellers of a ship are connected to an A-36 
steel shaft that is 60 m long and has an outer diameter of 
340 mm and inner diameter of 260 mm. If the power output is 
4.5 MW when the shaft rotates at 20 rad>s, determine the 
maximum torsional stress in the shaft and its angle of twist.

*5–48.  The solid shaft of radius c is subjected to a torque T 
at its ends. Show that the maximum shear strain in the shaft is 
gmax = Tc>JG. What is the shear strain on an element located 
at point A, c>2 from the center of the shaft? Sketch the shear 
strain distortion of this element.

5–50. The 60-mm-diameter shaft is made of 6061-T6 
aluminum having an allowable shear stress of tallow = 80 MPa. 
Determine the maximum allowable torque T. Also, find the 
corresponding angle of twist of disk A relative to disk C.

5–51. The 60-mm-diameter shaft is made of 6061-T6 
aluminum. If the allowable shear stress is tallow = 80 MPa, and 
the angle of twist of disk A relative to disk C is limited so 
that  it does not exceed 0.06 rad, determine the maximum 
allowable torque T.

PROBLEMS

T Tc

L

/2c

A

Prob. 5–48

5–49. The A-36 steel shaft has a diameter of 50 mm and is 
subjected to the distributed and concentrated loadings 
shown. Determine the absolute maximum shear stress in the 
shaft and plot a graph of the angle of twist of the shaft in 
radians versus x.

B

C

A

0.5 m

0.5 m

x

250 N�m
200 N�m/m

Prob. 5–49

B

A

CT

T2
3

T1
3

1.20 m

1.20 m

Probs. 5–50/51
*5–52. The splined ends and gears attached to the A992 
steel shaft are subjected to the torques shown. Determine 
the angle of twist of end B with respect to end A. The shaft 
has a diameter of 40 mm.

600 N�m

A

400 N�m
1200 N�m

400 mm

600 mm

500 mm
200 N�m

B

D

C

Prob. 5–52
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5–53. The hydrofoil boat has an A-36 steel propeller shaft 
that is 30 m long. It is connected to an in-line diesel engine 
that delivers a maximum power of 2000 kW and causes the 
shaft to rotate at 1700 rpm. If the outer diameter of the 
shaft is 200 mm and the wall thickness is 10 mm, determine 
the maximum shear stress developed in the shaft. Also, what 
is the “wind up,” or angle of twist in the shaft at full power?

5–55. The shaft is made of A992 steel. It has a diameter of 
25 mm and is supported by bearings at A and D, which 
allow free rotation. Determine the angle of twist of B with 
respect to D.

*5–56. The shaft is made of A-36 steel. It has a diameter of 
25 mm and is supported by bearings at A and D, which 
allow free rotation. Determine the angle of twist of gear C 
with respect to B.

30 m

Prob. 5–53

5–54. The turbine develops 300 kW of power, which is 
transmitted to the gears such that both B and C receive an 
equal amount. If the rotation of the 100-mm-diameter A992 
steel shaft is v = 600 rev>min., determine the absolute 
maximum shear stress in the shaft and the rotation of end D 
of the shaft relative to A. The journal bearing at D allows 
the shaft to turn freely about its axis.

1 m

B

C

D

A

1.5 m

2 m

v

Prob. 5–54

A

90 N m

90 N m

0.6 m

0.75 m

0.9 m
D

B

C

Probs. 5–55/56

5–57. The rotating flywheel-and-shaft, when brought to a 
sudden stop at D, begins to oscillate clockwise-counter-
clockwise such that a point A on the outer edge of the fly-
wheel is displaced through a 6-mm arc. Determine the 
maximum shear stress developed in the tubular A-36 steel 
shaft due to this oscillation. The shaft has an inner diameter 
of 24 mm and an outer diameter of 32 mm. The bearings at 
B and C allow the shaft to rotate freely, whereas the support 
at D holds the shaft fixed.

1.5 m C

B

D

A

75 mm

Prob. 5–57
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5–58. The A992 steel shaft has a diameter of 50 mm and is 
subjected to the distributed loadings shown. Determine the 
absolute maximum shear stress in the shaft and plot a graph 
of the angle of twist of the shaft in radians versus x.

5–61. The turbine develops 150 kW of power, which is 
transmitted to the gears such that C receives 70% and D 
receives 30%. If the rotation of the 100-mm-diameter A-36 
steel shaft is v = 800 rev>min., determine the absolute 
maximum shear stress in the shaft and the angle of twist of 
end E of the shaft relative to B. The journal bearing at E 
allows the shaft to turn freely about its axis.

5–62. The turbine develops 150 kW of power, which is 
transmitted to the gears such that both C and D receive an 
equal amount. If the rotation of the 100-mm-diameter A-36 
steel shaft is v = 500 rev>min., determine the absolute 
maximum shear stress in the shaft and the rotation of end B 
of the shaft relative to E. The journal bearing at E allows 
the shaft to turn freely about its axis.

B

C

A

0.5 m

0.5 m

x

500 N�m

1000 N�m/m

Prob. 5–58

5–59. The shaft is made of A992 steel with the allowable 
shear stress of tallow = 75 MPa. If gear B supplies 15 kW of 
power, while gears A, C and D withdraw 6 kW, 4 kW and 
5 kW, respectively, determine the required minimum diameter 
d of the shaft to the nearest millimeter. Also, find the 
corresponding angle of twist of gear A relative to gear D. The 
shaft is rotating at 600 rpm.

*5–60. Gear B supplies 15 kW of power, while gears A, C 
and D withdraw 6 kW, 4 kW and 5 kW, respectively. If the 
shaft is made of steel with the allowable shear stress of  
tallow = 75 MPa, and the relative angle of twist between any 
two gears cannot exceed 0.05 rad, determine the required 
minimum diameter d of the shaft to the nearest millimeter. 
The shaft is rotating at 600 rpm.

A

B

C600 mm

600 mm

600 mm

D

Probs. 5–59/60

3 m

B
C

D

E4 m

2 m

v

Probs. 5–61/62

5–63. The 50-mm-diameter A992 steel shaft is subjected 
to the torques shown. Determine the angle of twist of the 
end A.

A

800 N�m

200 N�m

400 N�m

B

D

C

600 mm

600 mm

300 mm

Prob. 5–63
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*5–64. The 60-mm-diameter solid shaft is made of 2014-T6 
aluminum and is subjected to the distributed and 
concentrated torsional loadings shown. Determine the angle 
of twist at the free end A of the shaft.

5–66. The A-36 steel bolt is tightened within a hole so that 
the reactive torque on the shank AB can be expressed by the 
equation t = (kx2) N # m>m, where x is in meters. If a torque 
of T = 50 N # m is applied to the bolt head, determine the 
constant k and the amount of twist in the 50-mm length of 
the shank. Assume the shank has a constant radius of 4 mm.

B

A
0.6 m

0.4 m

1.5 kN�m

2 kN�m/m

Prob. 5–64

5–65. The two shafts are made of A-36 steel. Each has a 
diameter of 25 mm, and they are supported by bearings at 
A, B, and C, which allow free rotation. If the support at D is 
fixed, determine the angle of twist of end A when the 
torques are applied to the assembly as shown.

A 60 N m

120 N m

200 mm

250 mm

300 mm
100 mm

D

C

250 mm

750 mm

150 mm
B

Prob. 5–65

T = 50 N�m

t

Ax
50 mm

B

Prob. 5–66

5–67. The A-36 steel bolt is tightened within a hole so that 
the reactive torque on the shank AB can be expressed by 
the equation t = (kx2>3) N # m>m, where x is in meters. If a 
torque of T = 50 N # m is applied to the bolt head, 
determine the constant k and the amount of twist in the 
50-mm length of the shank. Assume the shank has a constant 
radius of 4 mm.

T = 50 N�m

t

Ax
50 mm

B

Prob. 5–67
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*5–68. The shaft of radius c is subjected to a distributed 
torque t, measured as torque> length of shaft. Determine the 
angle of twist at end A. The shear modulus is G.

5–70. The A-36 steel assembly consists of a tube having an 
outer radius of 25 mm and a wall thickness of 3 mm. Using a 
rigid plate at B, it is connected to the solid 25-mmdiameter 
shaft AB. Determine the rotation of the tube’s end C if a 
torque of 25 N m. is applied to the tube at this end. The end 
A of the shaft is fixed supported.

B

x

L A

t = t0 1 + x—
L ) 2

t0

t02

)((

Prob. 5–68

5–69. The tubular drive shaft for the propeller of a 
hovercraft is 6 m long. If the motor delivers 4 MW of power 
to the shaft when the propellers rotate at 25 rad>s, determine 
the required inner diameter of the shaft if the outer diameter 
is 250 mm. What is the angle of twist of the shaft when it is 
operating? Take tallow = 90 MPa and G = 75 GPa.

6 m

Prob. 5–69

150 mm

100 mm

A

C

B

25 N m

Prob. 5–70

5–71. The A-36 hollow steel shaft is 2 m long and has an 
outer diameter of 40 mm. When it is rotating at 80 rad>s, it 
transmits 32 kW of power from the engine E to the generator 
G. Determine the smallest thickness of the shaft if the 
allowable shear stress is tallow = 140 MPa and the shaft is 
restricted not to twist more than 0.05 rad.

*5–72. The A-36 solid steel shaft is 3 m long and has a 
diameter of 50 mm. It is required to transmit 35 kW of power 
from the engine E to the generator G. Determine the 
smallest angular velocity of the shaft if it is restricted not to 
twist more than 1°.

E G

Probs. 5–71/72
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5–73. The motor produces a torque of T = 20 N # m on 
gear A. If gear C is suddenly locked so it does not turn, yet B 
can freely turn, determine the angle of twist of F with respect 
to E and F with respect to D of the L2-steel shaft, which has 
an inner diameter of 30 mm and an outer diameter of 50 mm. 
Also, calculate the absolute maximum shear stress in the 
shaft. The shaft is supported on journal bearings at G at H.

5–75. The 60-mm-diameter solid shaft is made of A-36 
steel and is subjected to the distributed and concentrated 
torsional loadings shown. Determine the angle of twist at 
the free end A of the shaft due to these loadings.

60 mm
40 mm

0.8 m 0.4 m
0.2 m

30 mm100 mm

0.2 m

 G
B E H

A

F
C

D

Prob. 5–73

5–74. The shaft has a radius c and is subjected to a torque 
per unit length of t0, which is distributed uniformly over the 
shaft’s entire length L. If it is fixed at its far end A, determine 
the angle of twist f of end B. The shear modulus is G.

L

A

f

B

c

t0

Prob. 5–74

B

A0.6 m

0.8 m

600 N · m

400 N�m

2 kN�m/m

Prob. 5–75

*5–76. The contour of the surface of the shaft is defined 
by the equation y = eax, where a is a constant. If the shaft 
is subjected to a torque T at its ends, determine the angle 
of twist of end A with respect to end B. The shear 
modulus is G.

T

A

B

y

x

T

L

y = eax

Prob. 5–76
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5.5  sTaTiCally inDeTerminaTe 
Torque-loaDeD members

A torsionally loaded shaft will be statically indeterminate if the moment 
equation of equilibrium, applied about the axis of the shaft, is not adequate 
to determine the unknown torques acting on the shaft. An example of 
this situation is shown in Fig. 5–20a. As shown on the free-body diagram, 
Fig. 5–20b, the reactive torques at the supports A and B are unknown. 
Along the axis of the shaft, we require

ΣM = 0; 500 N # m - TA - TB = 0

In order to obtain a solution, we will use the same method of analysis 
discussed in Sec. 4.4. The necessary compatibility condition requires the 
angle of twist of one end of the shaft with respect to the other end to be 
equal to zero, since the end supports are fixed. Therefore,

fA>B = 0

Provided the material is linear elastic, we can then apply the  
load–displacement relation f = TL>JG to express this equation in terms 
of the unknown torques. Realizing that the internal torque in segment AC 
is +TA and in segment CB it is -TB , Fig. 5–20c, we have

TA(3 m)

JG
 -

TB(2 m)

JG
= 0

Solving the above two equations for the reactions, we get 

TA = 200 N # m  and  TB = 300 N # m

3 m
500 N�m

2 m

C

(a)

A

B (b)

(c)

T

TA

TA

TA

TB

TB

TB

Fig. 5–20
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The shaft of this cutting machine is fixed at its 
ends and subjected to a torque at its center, 
allowing it to act as a torsional spring.

The unknown torques in statically indeterminate shafts 
are  determined by satisfying equilibrium, compatibility, and  
load–displacement requirements for the shaft.

equilibrium.

 • Draw a free-body diagram of the shaft in order to identify all 
the external torques that act on it. Then write the equation of 
moment equilibrium about the axis of the shaft.

Compatibility.

 • Write the compatibility equation. Give consideration as to how 
the supports constrain the shaft when it is twisted.

Load–Displacement.

 • Express the angles of twist in the compatibility condition in 
terms of the torques, using a load–displacement relation, such 
as f = TL>JG.

 • Solve the equations for the unknown reactive torques. If any of 
the magnitudes have a negative numerical value, it indicates that 
this torque acts in the opposite sense of direction to that shown 
on the free-body diagram.

Procedure for AnAlysis
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(a)

B

0.2 m

1.5 m

0.3 m

C

D

A

800 N·m

500 N·m

 (b)

x
TB

TA

800 N�m

500 N�m

EXAMPLE   5.9

SOLUTION

Equilibrium. By inspection of the free-body diagram, Fig. 5–21b, it is 
seen that the problem is statically indeterminate, since there is only one 
available equation of equilibrium and there are two unknowns. We require

ΣMx = 0; -TB + 800 N # m - 500 N # m - TA = 0 (1)

Compatibility. Since the ends of the shaft are fixed, the angle of twist 
of one end of the shaft with respect to the other must be zero. Hence, the 
compatibility equation becomes

f A>B = 0

Load–Displacement. This condition can be expressed in terms of the 
unknown torques by using the load–displacement relationship, f = TL>JG. 
Here there are three regions of the shaft where the internal torque is 
constant. On the free-body diagrams in Fig. 5–21c we have shown the 
internal torques acting on the left segments of the shaft. This way the 
internal torque is only a function of TB. Using the sign convention 
established in Sec. 5.4, we have

-TB10.2 m2
JG

+
1800 - TB2 11.5 m2

JG
+

(300 - TB)10.3 m2
JG

= 0

so that
 TB = 645 N # m Ans.

Using Eq. 1,
 TA = -345 N # m Ans.

The negative sign indicates that T A acts in the opposite direction of that 
shown in Fig. 5–21b.

The solid steel shaft shown in Fig. 5–21a has a diameter of 20 mm. If it is 
subjected to the two torques, determine the reactions at the fixed supports 
A and B.

(c)

300 � TB

800 � TBTB

TB

TB

800 N�m

TB

800 N�m

500 N�m

Fig. 5–21



 5.5 statiCally inDeterminate torque-loaDeD members 243

5

(a)

1.2 m

B

A
T  250 N�m

20 mm

10 mm

(b)
x

f

250 N m

Tbr

Tst

EXAMPLE   5.10

The shaft shown in Fig. 5–22a is made from a steel tube, which is bonded to 
a brass core. If a torque of T = 250 N # m is applied at its end, plot the shear-
stress distribution along a radial line of its cross-sectional area. Take 
Gst = 80 GPa, Gbr = 36 GPa.

SOLUTION

Equilibrium. A free-body diagram of the shaft is shown in Fig. 5–22b. 
The reaction at the wall has been represented by the unknown amount of 
torque resisted by the steel, Tst, and by the brass, Tbr. Equilibrium requires

 -Tst - Tbr + 250 N # m = 0 (1)

Compatibility. We require the angle of twist of end A to be the same 
for both the steel and brass since they are bonded together. Thus,

f = fst = fbr

Applying the load–displacement relationship, f = TL>JG,
TstL

(p>2)[(0.020 m)4 - (0.010 m)4] [80(109) N>m2]
=  

 
TbrL

(p>2)(0.010 m)4[36(109)N # m2]
 

 Tst = 33.33 Tbr (2)

Solving Eqs. 1 and 2, we get

Tst = 242.72 N # m
Tbr = 7.282 N # m

The shear stress in the brass core varies from zero at its center to a maximum 
at the interface where it contacts the steel tube. Using the torsion formula,

(tbr)max =
(7.282 N # m) (0.010 m)

(p>2) (0.010 m)4 = 4.636(106) N>m2 = 4.64 MPa

For the steel, the minimum and maximum shear stresses are

(tst)min =
(242.72 N # m)(0.010 m)

(p>2)[(0.020 m)4 - (0.010 m)4]
= 10.30(106) N>m2 = 10.3 MPa

(tst)max =
(242.72 N # m)(0.020 m)

(p>2)[(0.020 m)4 - (0.010 m)4]
= 20.60(106) N>m2 = 20.6 MPa

The results are plotted in Fig. 5–22c. Note the discontinuity of shear 
stress at the brass and steel interface. This is to be expected, since the 
materials have different moduli of rigidity; i.e., steel is stiffer than brass 
(Gst 7 Gbr) and thus it carries more shear stress at the interface. 
Although the shear stress is discontinuous here, the shear strain is not. 
Rather, the shear strain is the same for both the brass and the steel, 
Fig. 5–22d.

Shear-stress distribution

(c)

20.6 MPa
10.3 MPa

20 mm

10 mm

4.64 MPa

(d)

gmax = 0.258 (10–3)

0.129 (10–3)

Fig. 5–22



244  Chapter 5  tors ion

5

5–77.  The steel shaft is made from two segments: AC has 
a diameter of 12 mm, and CB has a diameter of 25 mm. If it 
is fixed at its ends A and B and subjected to a torque of 
300 N # m determine the maximum shear stress in the shaft. 
Gst = 75 GPa.

*5–80.  The shaft is made of L2 tool steel, has a diameter 
of 40 mm, and is fixed at its ends A and B. If it is subjected 
to the torque, determine the maximum shear stress in 
regions AC and CB.

PROBLEMS

125 mm

200 mm

300 mm

25 mm

12 mm
A

B

C

D 300 N m

Prob. 5–77
5–78.  The steel shaft has a diameter of 40 mm and is fixed 
at its ends A and B. If it is subjected to the couple, determine 
the maximum shear stress in regions AC and CB of the 
shaft. Gst = 75 GPa.

A

C

400 mm

600 mm

3 kN

3 kN

50 mm

50 mm

B

Prob. 5–78
5–79.  The A992 steel shaft has a diameter of 60 mm and is 
fixed at its ends A and B. If it is subjected to the torques shown, 
determine the absolute maximum shear stress in the shaft.

A

C

D
1 m

1 m

1.5 m

200 N�m

500 N�m

B

Prob. 5–79

A

C

800 mm

600 mm

B
2 kN�m

Prob. 5–80

5–81.  The Am1004-T61 magnesium tube is bonded to the 
A-36 steel rod. If the allowable shear stresses for the 
magnesium and steel are (tallow)mg = 45 MPa and  
(tallow)st = 75 MPa, respectively, determine the maximum 
allowable torque that can be applied at A. Also, find the 
corresponding angle of twist of end A.

5–82.  The Am1004-T61 magnesium tube is bonded to the 
A-36 steel rod. If a torque of T = 5 kN # m is applied to 
end  A, determine the maximum shear stress in each 
material. Sketch the shear stress distribution.

B

900 mm

A

80 mm
40 mm

T

Probs. 5–81/82
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5–86.  The shafts are made of A-36 steel and have the 
same diameter of 100 mm. If a torque of 25 kN # m is applied 
to gear B, determine the absolute maximum shear stress 
developed in the shaft.

5–87.  The shafts are made of A-36 steel and have the 
same diameter of 100 mm. If a torque of 25 kN # m is applied 
to gear B, determine the angle of twist of gear B.

5–83. A rod is made from two segments: AB is steel and 
BC is brass. It is fixed at its ends and subjected to a torque of 
T = 680 N # m. If the steel portion has a diameter of 30 mm, 
determine the required diameter of the brass portion so the 
reactions at the walls will be the same. Gst = 75 GPa,  
Gbr = 39 GPa.

*5–84. Determine the absolute maximum shear stress in  
the shaft of Prob. 5–83.

680 N�m
B

C

A

1.60 m

0.75 m

Probs. 5–83/84

5–85.  The shaft is made from a solid steel section AB and 
a tubular portion made of steel and having a brass core. If it 
is fixed to a rigid support at A, and a torque of T = 75 N # m 
is applied to it at C, determine the angle of twist that occurs 
at C and compute the maximum shear stress and maximum 
shear strain in the brass and steel. Take Gst = 75 GPa, 
Gbr = 38 GPa.

A

12.5 mm

25 mm

0.6 m

0.9 m

B

C
T  75 N m

Prob. 5–85

0.75 m

25 kN m

0.9 m

300 mm

150 mm

0.75 m

A

D

B

C

E

Probs. 5–86/87

*5–88.  The shaft is made of L2 tool steel, has a diameter 
of 40 mm, and is fixed at its ends A and B. If it is subjected 
to the couple, determine the maximum shear stress in 
regions AC and CB.

A

C

2 kN 

2 kN 

400 mm

600 mm

50 mm

50 mm B

Prob. 5–88
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*5–92.  If the shaft is subjected to a uniform distributed 
torque of t = 20 kN # m>m, determine the maximum shear 
stress developed in the shaft. The shaft is made of 2014-T6 
aluminum alloy and is fixed at A and C.

5–89. The two shafts are made of A-36 steel. Each has a 
diameter of 25 mm and they are connected using the gears 
fixed to their ends. Their other ends are attached to fixed 
supports at A and B. They are also supported by journal 
bearings at C and D, which allow free rotation of the shafts 
along their axes. If a torque of 500 N # m is applied to the 
gear at E, determine the reactions at A and B.

5–90. The two shafts are made of A-36 steel. Each has a 
diameter of 25 mm and they are connected using the gears 
fixed to their ends. Their other ends are attached to fixed 
supports at A and B. They are also supported by journal 
bearings at C and D, which allow free rotation of the shafts 
along their axes. If a torque of 500 N # m is applied to the 
gear at E, determine the rotation of this gear.

B

50 mm

100 mm

A

C

D

1.5 m

0.75 m

500 N�m

F

E

Probs. 5–89/90

5–91. The two 1-m-long shafts are made of 2014-T6 
aluminum. Each has a diameter of 30 mm and they are 
connected using the gears fixed to their ends. Their other 
ends are attached to fixed supports at A and B. They are 
also supported by bearings at C and D, which allow free 
rotation of the shafts along their axes. If a torque of 
900 N # m is applied to the top gear as shown, determine the 
maximum shear stress in each shaft.

900 N m

1 m

A

B

C

D
E

F

80 mm

40 mm

Prob. 5–91

A

B

Section a–a

80 mm

60 mm
a

a
600 mm

400 mm

C

20 kN�m/m

Prob. 5–92

5–93.  The tapered shaft is confined by the fixed supports 
at A and B. If a torque T is applied at its mid-point, 
determine the reactions at the supports.

L/2

T

c

A
2c

B

L/2

Prob. 5–93

5–94.  The shaft of radius c is subjected to a distributed 
torque t, measured as torque> length of shaft. Determine 
the reactions at the fixed supports A and B.

B

x

L A

)
t0

2t0

)((t � t0 1 � 2x
L

Prob. 5–94
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*5.6 soliD nonCirCular shafTs
It was demonstrated in Sec. 5.1 that when a torque is applied to a shaft 
having a circular cross section—that is, one that is axisymmetric—the 
shear strains vary linearly from zero at its center to a maximum at its outer 
surface. Furthermore, due to uniformity, the cross sections do not deform, 
but rather remain plane after the shaft has twisted. Shafts that have a 
noncircular cross section, however, are not axisymmetric, and so their 
cross sections will bulge or warp when the shaft is twisted. Evidence of 
this can be seen from the way grid lines deform on a shaft having a square 
cross section, Fig. 5–23. Because of this deformation, the torsional analysis 
of noncircular shafts becomes considerably more complicated and will not 
be discussed in this text.

Using a mathematical analysis based on the theory of elasticity, 
however, the shear-stress distribution within a shaft of square cross 
section has been determined. Examples of how the shear stress varies 
along two radial lines of the shaft are shown in Fig. 5–24a, and because 
these shear-stress distributions are different, the shear strains they create 
will warp the cross section, as shown in Fig. 5–24b. In particular, notice 
that the corner points of the shaft must be subjected to zero shear stress 
and therefore zero shear strain. The reason for this can be shown by 
considering an element of material located at one of these corner points, 
Fig. 5–24c. One would expect the top face of this element to be subjected 
to a shear stress in order to contribute to the applied torque T. However, 
this cannot occur, since the complementary shear stresses t and t′, acting 
on the outer surface of the shaft, must be zero.

Undeformed  T

T

Deformed

Fig. 5–23

T

tmax

Shear stress distribution
along two radial lines

(a)

Warping of 
cross-sectional area

(b)

tmax
T

(c)

t¿ � 0

t � 0

t¿ � 0
t � 0

Fig. 5–24
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Notice the deformation of the square element when this rubber bar is subjected to 
a torque.

Using the theory of elasticity, Table 5–1 provides the results of the 
analysis for square cross sections, along with those for shafts having 
triangular and elliptical cross sections. In all cases, the maximum shear 
stress occurs at a point on the edge of the cross section that is closest to 
the center axis of the shaft. Also given are formulas for the angle of twist 
of each shaft. By extending these results, it can be shown that the most 
efficient shaft has a circular cross section, since it is subjected to both a 
smaller maximum shear stress and a smaller angle of twist than one 
having the same cross-sectional area, but not circular, and subjected to 
the same torque.

The shaft connected to the soil auger has 
a square cross section.

 TABLE 5–1

Shape of
cross section

Tmax 

Ellipse

b

b

a a

2 T
pa3b3G

(a2 + b2)TL

Square

a

a

T
a3

4.81 T TL
a4G

7.10 TL

Equilateral triangle

a

a

a3
20 T

a4G
46 TLa

F

pab2
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EXAMPLE   5.11

The 6061-T6 aluminum shaft shown in Fig. 5–25 has a cross-sectional area 
in the shape of an equilateral triangle. Determine the largest torque T 
that can be applied to the end of the shaft if the allowable shear stress is 
tallow = 56 MPa and the angle of twist at its end is restricted to 
fallow = 0.02 rad. How much torque can be applied to a shaft of circular 
cross section made from the same amount of material?

SOLUTION

By inspection, the resultant internal torque at any cross section along 
the shaft’s axis is also T. Using the formulas for tmax and f in  
Table 5–1, we require

tallow =
20T

a3  ;     56(106) N>m2 =
20T

(0.040 m)3

 T = 179.2 N # m
Also,

fallow =
46TL

a4Gal
 ;   0.02 rad =

46T(1.2 m)

(0.040 m)4[26(109) N>m2 ]

 T = 24.12 N # m = 24.1 N # m  Ans.

By comparison, the torque is limited due to the angle of twist.

Circular Cross Section.  If the same amount of aluminum is to be 
used in making the same length of shaft having a circular cross section, 
then the radius of the cross section can be calculated. We have

 Acircle = Atriangle;  pc2 =
1
2

 (0.040 m)(0.040 m) sin 60°

 c = 0.01485 m

The limitations of stress and angle of twist then require

tallow =
Tc
J

; 56(106) N>m2 =
T(0.01485 m)

(p>2)(0.01485 m)4

 T = 288.08 N # m

fallow =
TL
JGal

; 0.02 rad =
T(1.2 m)

(p>2)(0.01485 m)4[26(109) N>m2]

 T = 33.1 N # m  Ans.

Again, the angle of twist limits the applied torque.

NOTE: Comparing this result (33.1 N # m) with that given above 
(24.1 N # m), it is seen that a shaft of circular cross section can support 
37.3% more torque than the one having a triangular cross section.

60

0.040 m

1.2 m

T

Fig. 5–25
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*5.7  Thin-walleD Tubes having 
CloseD Cross seCTions

Thin-walled tubes of noncircular cross section are often used to construct 
light-weight frameworks such as those used in aircraft. In some 
applications, they may be subjected to a torsional loading, and so in this 
section we will analyze the effects of twisting these members. Here we will 
consider a tube having a closed cross section, that is, one that does not 
have any breaks or slits along its length, Fig. 5–26a. Since the walls are 
thin, we will obtain the average shear stress by assuming that this stress is 
uniformly distributed across the thickness of the tube at any given location.

Shear Flow. Shown in Figs. 5–26a and 5–26b is a small element of 
the tube having a finite length s and differential width dx. At one end, the 
element has a thickness tA , and at the other end the thickness is tB. Due 
to the torque T, shear stress is developed on the front face of the element. 
Specifically, at end A the shear stress is tA, and at end B it is tB. These 
stresses can be related by noting that equivalent shear stresses tA and tB 
must also act on the longitudinal sides of the element. These sides have a 
constant width dx, and so the forces acting on them are dFA = tA1 tA dx2  
and dFB = tB 1 tB dx2 . Since equilibrium requires these forces to be of 
equal magnitude but opposite directions, we have

tA tA = tB tB

This important result shows that the product of the average shear stress 
and the thickness of the tube is the same at each location on the cross 
section. This product q is called shear flow,* and in general terms we can 
express it as

 q = tavgt  (5–17)

Since q is constant over the cross section, the largest average shear stress 
must occur where the tube’s thickness is the smallest.

T

(a)

x

dx

s

t
O

tA

tB

dx
s

(b)

A

B

tA

tB

tB

tA

Fig. 5–26

* The terminology “flow” is used since q is analogous to water flowing through a channel 
of rectangular cross section having a constant depth and variable width.
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If a differential element having a thickness t, length ds, and width dx is 
isolated from the tube, Fig. 5–26c, then the front face over which the 
average shear stress acts is dA = t ds, so that dF = tavg (t ds) = q ds, or 
q = dF>ds. In other words, the shear flow measures the force per unit 
length along the cross section.

Average Shear Stress. The average shear stress can be related 
to the torque T by considering the torque produced by this shear stress 
about a selected point O within the tube’s boundary, Fig. 5–26d. As 
shown, the shear stress develops a force dF = tavg dA = tavg 1 t ds2  on 
an  element of the tube. This force acts tangent to the centerline of the 
tube’s wall, and if the moment arm is h, the torque is

dT = h1dF2 = h1tavg t ds2

For the entire cross section, we require

T = Chtavg t ds

Here the “line integral” indicates that integration must be performed 
around the entire boundary. Since the shear flow q = tavg t is constant, it 
can be factored out of the integral, so that

T = tavgtCh ds

A graphical simplification can be made for evaluating the integral by 
noting that the mean area, shown by the blue colored triangle in Fig. 5–26d, 
is dAm = 11>22h ds. Thus,

T = 2tavg tL
 

 
dAm = 2tavg tAm

(c)

tavg

t

dsdx

(d)
x

h

T

O

ds

t

dF

Fig. 5–26 (cont.)
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Solving for tavg, we have

 tavg =
T

2tAm
 (5–18)

Here
tavg =   the average shear stress acting over a particular thickness of 

the tube
T =  the resultant internal torque at the cross section
t =  the thickness of the tube where tavg  is to be determined

Am =   the mean area enclosed within the boundary of the centerline of 
the tube’s thickness, shown shaded in Fig. 5–26e

Finally, since q = tavg t, then the shear flow throughout the cross 
section becomes

 q =
T

2Am
 (5–19)

Angle of Twist. The angle of twist of a thin-walled tube of length L can 
be determined using energy methods, and the development of the  necessary 
equation is given as a problem later in the book.* If the material behaves in 
a linear elastic manner and G is the shear modulus, then this angle f, given 
in radians, can be expressed as

f =
TL

4Am
2  G C

ds
t

 (5–20)

Here again the integration must be performed around the entire 
boundary of the tube’s cross-sectional area.

 • Shear flow q is the product of the tube’s thickness and the 
average shear stress. This value is the same at all points along the 
tube’s cross section. As a result, the largest average shear stress 
on the cross section occurs where the thickness is smallest.

 • Both shear flow and the average shear stress act tangent to the 
wall of the tube at all points and in a direction so as to 
contribute to the resultant internal torque.

imPortAnt Points

*See Prob. 14-14.

(e)

Am

Fig. 5–26 (cont.)
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EXAMPLE   5.12

Calculate the average shear stress in a thin-walled tube having a circular 
cross section of mean radius rm and thickness t, which is subjected to a 
torque T, Fig. 5–27a. Also, what is the relative angle of twist if the tube 
has a length L?

SOLUTION

Average Shear Stress. The mean area for the tube is Am = prm
2 . 

Applying Eq. 5–18 gives

 tavg =
T

2tAm
=

T

2ptr m
2  Ans.

We can check the validity of this result by applying the torsion 
formula. Here

  J =
p

2
 1r o

4 - r i
42

  =
p

2
 1r o

2 + r i
22 1r o

2 - r i
22

  =
p

2
 1r 2

o + r i
22 1ro + ri2 1ro - ri2

Since rm ≈ ro ≈ ri and t = ro - ri , J =
p

2
 12r m

2 2 12rm2 t = 2pr m
3 t

 tavg =
Trm

J
 =

Trm

2prm
3 t

=
T

2ptr m
2  Ans.

which agrees with the previous result.
The average shear-stress distribution acting throughout the tube’s 

cross section is shown in Fig. 5–27b. Also shown is the shear-stress 
distribution acting on a radial line as calculated using the torsion 
formula. Note that as the tube’s thickness decreases, the shear stress 
throughout the tube approaches the average shear stress.

Angle of Twist. Applying Eq. 5–20, we have

f =
TL

4Am
2 G

 C
ds
t

 =
TL

41prm
2 22Gt Cds

The integral represents the length around the centerline boundary, 
which is 2prm . Substituting, the final result is

 f =
TL

2prm
3Gt

 Ans.

Show that one obtains this same result using Eq. 5–15.

t

T
rm

L

(a)

T

T

Actual shear-stress
distribution

(torsion formula)

Average shear-stress
distribution

(thin-wall approximation)

(b)

rm

tavg

tavg

tmax

Fig. 5–27
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The tube is made of C86100 bronze and has a rectangular cross section as 
shown in Fig. 5–28a. If it is subjected to the two torques, determine the 
average shear stress in the tube at points A and B. Also, what is the angle of 
twist of end C? The tube is fixed at E.

0.5 m

1.5 m

25 N�m

60 N�m

C

D

B

A
5 mm

3 mm

3 mm

60 mm

40 mm (a)

E

Fig. 5–28

EXAMPLE   5.13

SOLUTION

Average Shear Stress.   If the tube is sectioned through points A 
and  B, the resulting free-body diagram is shown in Fig. 5–28b. The 
internal torque is 35 N # m. As shown in Fig. 5–28d, the mean area is

Am = 10.035 m2 10.057 m2 = 0.00200 m2

Applying Eq. 5–18 for point A, t = 5 mm, and so

 tA =
T

2tAm
=

35 N # m
210.005 m2 10.00200 m22

= 1.75 MPa Ans.

And for point B, t = 3 mm, and so

 tB =
T

2tAm
=

35 N # m
210.003 m2 10.00200 m22

= 2.92 MPa Ans.

These results are shown on elements of material located at points A 
and B, Fig. 5–28e. Note carefully how the 35-N # m torque in  
Fig. 5–28b creates these stresses on the back sides of each element.
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B

A

60 N�m

25 N�m

35 N�m

(b)  
60 N�m

60 N�m

(c)

57 mm

35 mm

Am

(d)  (e)

2.92 MPa

1.75 MPa

B

A

Fig. 5–28 (cont.)

Angle of Twist. From the free-body diagrams in Fig. 5–28b and 5–28c, 
the internal torques in regions DE and CD are 35 N # m and 60 N # m, 
respectively. Following the sign convention outlined in Sec. 5.4, these 
torques are both positive. Thus, Eq. 5–20 becomes

 f = a
 

 
 

TL

4Am
2 G C

ds
t

 =
60 N # m 10.5 m2

410.00200 m222 13811092  N>m22
 c 2 a57 mm

5 mm
b + 2 a35 mm

3 mm
b d

 +
35 N # m 11.5 m2

410.00200 m222 13811092  N>m22
 c 2 a57 mm

5 mm
b + 2 a35 mm

3 mm
b d

 = 6.29110-32  rad = 0.360°  Ans.
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5–95. If end B of the shaft, which has an equilateral 
triangle cross section, is subjected to a torque of T =
1200 N # m, determine the maximum shear stress developed 
in the shaft. Also, find the angle of twist of end B. The shaft 
is made from 6061-T1 aluminum.

*5–96. If the shaft has an equilateral triangle cross section 
and is made from 6061-T1 aluminum alloy that has an 
allowable shear stress of tallow = 84 MPa, determine the 
maximum allowable torque T that can be applied to end B. 
Also, find the corresponding angle of twist of end B.

5–99. If a = 25 mm and b = 15 mm, determine the maximum 
shear stress in the circular and elliptical shafts when the 
applied torque is T = 80 N # m. By what percentage is the shaft 
of circular cross section more efficient at withstanding the 
torque than the shaft of elliptical cross section?

PROBLEMS

A

0.6 m

B

75 mm

T

Probs. 5–95/96

5–97. The shaft is made of red brass C83400 and has an 
elliptical cross section. If it is subjected to the torsional 
loading, determine the maximum shear stress within  
regions AC and BC, and the angle of twist f of end B 
relative to end A.

5–98. Solve Prob. 5–97 for the maximum shear stress 
within regions AC and BC, and the angle of twist f of end B 
relative to C.

20 mm
50 mm

2 m

1.5 m

20 N�m

B

30 N�m

50 N�m

A

C

Probs. 5–97/98

a

a b

Prob. 5–99

*5–100. It is intended to manufacture a circular bar to 
resist torque; however, the bar is made elliptical in the 
process of manufacturing, with one dimension smaller than 
the other by a factor k as shown. Determine the factor by 
which the maximum shear stress is increased.

kd d

d

Prob. 5–100

5–101. The brass wire has a triangular cross section, 2 mm on 
a side. If the yield stress for brass is tY = 205 MPa, determine 
the maximum torque T to which it can be subjected so that 
the wire will not yield. If this torque is applied to the 4-m-long 
segment, determine the greatest angle of twist of one end of 
the wire relative to the other end that will not cause permanent 
damage to the wire. Gbr = 37 GPa.

T

T

4 m

Prob. 5–101
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5–102. If the solid shaft is made from red brass C83400 
copper having an allowable shear stress of tallow = 28 MPa, 
determine the maximum allowable torque T that can be 
applied at B.

5–103. If the solid shaft is made from red brass C83400 
copper and it is subjected to a torque T = 8 kN # m at B, 
determine the maximum shear stress developed in segments 
AB and BC.

5–106. The plastic tube is subjected to a torque of 150 N # m. 
Determine the mean dimension a of its sides if the allowable 
shear stress is tallow = 60 MPa. Each side has a thickness of  
t = 3 mm. 

5–107. The plastic tube is subjected to a torque of 150 N # m. 
Determine the average shear stress in the tube if the mean 
dimension a = 200 mm. Each side has a thickness of t = 3 mm. 

1.2 m

100 mm

0.6 m

50 
mm

50 mm
A

C

B

T

Probs. 5–102/103

*5–104. If the shaft is subjected to the torque of 3 kN # m, 
determine the maximum shear stress developed in the shaft. 
Also, find the angle of twist of end B. The shaft is made from 
A-36 steel. Set a = 50 mm.

5–105. If the shaft is made from A-36 steel having an allowable 
shear stress of tallow = 75 MPa, determine the minimum 
dimension a for the cross section to the nearest millimeter. Also, 
find the corresponding angle of twist at end B.

A

600 mm

3 kN�m
a

a
a

B

Probs. 5–104/105

a

150 N�m

a

Probs. 5–106/107

*5–108. For a given maximum shear stress, determine the 
factor by which the torque carrying capacity is increased if 
the half-circular section is reversed from the dashed-line 
position to the section shown. The tube is 2.5 mm thick.

30 mm

15 mm

45 mm

12.5 mm

Prob. 5–108

5–109. A torque of 200 N # m is applied to the tube. If the 
wall thickness is 2.5 mm, determine the average shear stress 
in the tube.

48.75 mm

Prob. 5–109
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5–110. The 6061-T6 aluminum bar has a square cross 
section of 25 mm by 25 mm. If it is 2 m long, determine the 
maximum shear stress in the bar and the rotation of one 
end relative to the other end.

*5–112. Determine the constant thickness of the 
rectangular tube if average stress is not to exceed 84 MPa 
when a torque of T = 2 kN # m is applied to the tube. 
Neglect stress concentrations at the corners. The mean 
dimensions of the tube are shown.

5–113. Determine the torque T that can be applied to the 
rectangular tube if the average shear stress is not to exceed 
84 MPa. Neglect stress concentrations at the corners. The 
mean dimensions of the tube are shown and the tube has a 
thickness of 3 mm.

1.5 m

25 mm
25 mm

0.5 m

20 N�m

60 N·m
80 N�m

C

A

B

Prob. 5–110

5–111. The aluminum strut is fixed between the two walls 
at A and B. If it has a 50 mm by 50 mm square cross section, 
and it is subjected to the torque of 120 N # m at C, determine 
the reactions at the fixed supports. Also, what is the angle of 
twist at C? Gal = 27 GPa.

0.6 m

0.9 m

120 N m

A

C

B

Prob. 5–111

50 mm

100 mm

T

Probs. 5–112/113

5–114. Due to a fabrication error the inner circle of the 
tube is eccentric with respect to the outer circle. By what 
percentage is the torsional strength reduced when the 
eccentricity e is one-fourth of the difference in the radii?

a b

e
2

e
2

a � b
2

Prob. 5–114
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5–118. The plastic hexagonal tube is subjected to a torque 
of 150 N # m. Determine the mean dimension a of its sides if 
the allowable shear stress is tallow = 60 MPa. Each side has a 
thickness of t = 3 mm.

5–115. The steel tube has an elliptical cross section of 
mean dimensions shown and a constant thickness of 
t = 5 mm. If the allowable shear stress is tallow = 56 MPa, 
and the tube is to resist a torque of T = 340 N # m, 
determine the necessary dimension b. The mean area for 
the ellipse is Am = pb(0.5b).

b
0.5b

340 N.m

Prob. 5–115

*5–116. The 304 stainless steel tube has a thickness of 10 mm. 
If the allowable shear stress is tallow = 80 MPa, determine the 
maximum torque T that it can transmit. Also, what is the angle 
of twist of one end of the tube with respect to the other if the 
tube is 4 m long? The mean dimensions are shown.

5–117. The 304 stainless steel tube has a thickness of 10 mm. 
If the applied torque is T = 50 N # m, determine the average 
shear stress in the tube. The mean dimensions are shown.

30 mm

70 mm
T

Probs. 5–116/117

a
t = 3 mm

T = 150 N�m

Prob. 5–118

5–119. The symmetric tube is made from a high-strength 
steel, having the mean dimensions shown and a thickness of 
5 mm. If it is subjected to a torque of T = 40 N # m, 
determine the average shear stress developed at points A 
and B. Indicate the shear stress on volume elements located 
at these points.

60 mm

20 mm
30 mm

40 N�m

A
B

Prob. 5–119
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5.8  sTress ConCenTraTion
The torsion formula, t max = Tc>J, cannot be applied to regions of a shaft 
having a sudden change in the cross section, because the shear-stress and 
shear-strain distributions in the shaft become complex. Results can be 
obtained, however, by using experimental methods or possibly by a 
mathematical analysis based on the theory of elasticity.

Three common discontinuities of the cross section that occur in 
practice are shown in Fig. 5–29. They are at couplings, which are used to 
connect two collinear shafts together, Fig. 5–29a, keyways, used to 
connect gears or pulleys to a shaft, Fig. 5–29b, and a step shaft which is 
fabricated or machined from a single shaft, Fig. 5–29c. In each case the 
maximum shear stress will occur at the point indicated on the cross 
section.

The necessity to perform a complex stress analysis at a shaft 
discontinuity to obtain the maximum shear stress can be eliminated by 
using a torsional stress concentration factor, K. As in the case of axially 
loaded members, Sec. 4.7, K is usually taken from a graph based on 
experimental data. An example, for the shoulder-fillet shaft, is shown in 
Fig. 5–30. To use this graph, one finds the geometric ratio D>d to define 
the appropriate curve, and then after calculating r>d the value of K is 
found along the vertical axis.

(a)

(b)

(c)

Fig. 5–29

0.300.250.200.150.100.050.00
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0
r

T
T

D d

K D/d � 2.5

2.0

1.67

1.25

1.11

r
d

Fig. 5–30
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The maximum shear stress is then determined from

t max = K 
 Tc
 J

   (5–21)

Here the torsion formula is applied to the smaller of the two connected 
shafts, since tmax occurs at the base of the fillet, Fig. 5–29c.

Note from the graph that an increase in fillet radius r causes a decrease 
in K. Hence the maximum shear stress in the shaft can be reduced by 
increasing the radius. Also, if the diameter of the larger section is reduced, 
the D>d ratio will be lower and so the value of K and therefore tmax will 
be lower.

Like the case of axially loaded members, torsional stress concentration 
factors should always be used when designing shafts made of brittle 
materials, or when designing shafts that will be subjected to fatigue or 
cyclic torsional loadings. These conditions give rise to the formation of 
cracks at the stress concentration, and this can often lead to a sudden 
fracture. On the other hand, if large static torsional loadings are applied 
to a shaft made of ductile material, then inelastic strains will develop 
within the shaft. Yielding of the material will cause the stress distribution 
to become more evenly distributed throughout the shaft, so that the 
maximum stress will not be limited to the region of stress concentration. 
This effect is discussed further in the next section.

Stress concentrations can arise at the 
coupling of these shafts, and this must 
be taken into account when the shaft is 
designed.

imPortAnt Points

 • Stress concentrations in shafts occur at points of sudden 
cross-sectional change, such as couplings, keyways, and step 
shafts. The more severe the change in geometry, the larger 
the stress concentration.

 • For design or analysis, it is not necessary to know the exact  
shear-stress distribution on the cross section. Instead, it is possible 
to obtain the maximum shear stress using a stress concentration 
factor, K, that has been determined through experiment. Its value 
is only a function of the geometry of the shaft.

 • Normally a stress concentration in a ductile shaft subjected to 
a static torque will not have to be considered in design; 
however, if the material is brittle, or subjected to fatigue 
loadings, then stress concentrations become important.
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EXAMPLE   5.14 

The stepped shaft shown in Fig. 5–31a is supported by bearings at A and B. 
Determine the maximum stress in the shaft due to the applied torques. The 
shoulder fillet at the junction of each shaft has a radius of r = 6 mm.

Shear-stress
distribution
predicted by

torsion formula

Actual shear-stress
distribution caused

by stress concentration

(c)

tmax = 3.10 MPa

Fig. 5–31

A

B

30 N�m

30 N�m

60 N�m

20 mm

40 mm

(a)
 

30 N�m
T � 30 N�m

(b)

SOLUTION

Internal Torque. By inspection, moment equilibrium about the axis of 
the shaft is satisfied. Since the maximum shear stress occurs at the rooted 
ends of the smaller diameter shafts, the internal torque 130 N # m2  can be  
found there by applying the method of sections, Fig. 5–31b.

Maximum Shear Stress. The stress concentration factor can be 
determined by using Fig. 5–30. From the shaft geometry we have

 
D
d

 =
 2140 mm2
 2120 mm2  = 2

 
r
d

 =
6 mm

 2120 mm2 = 0.15

Thus, the value of K = 1.3 is obtained.

Applying Eq. 5–21, we have

tmax = K
Tc
J

; tmax = 1.3 c
30 N # m (0.020 m)

(p>2)(0.020 m)4 d = 3.10 MPa   Ans.

NOTE: From experimental evidence, the actual stress distribution along 
a radial line of the cross section at the critical section looks similar to that 
shown in Fig. 5–31c. Notice how this compares with the linear stress 
distribution found from the torsion formula.
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*5.9 inelasTiC Torsion
If the torsional loadings applied to the shaft are excessive, then the 
material may yield, and, consequently, a “plastic analysis” must be used 
to determine the shear-stress distribution and the angle of twist.

It was shown in Sec. 5.1 that regardless of the material behavior, the 
shear strains that develop in a circular shaft will vary linearly, from zero 
at the center of the shaft to a maximum at its outer boundary, Fig. 5–32a. 
Also, the torque at the section must be equivalent to the torque caused 
by the entire shear-stress distribution acting on the cross section. Since 
the shear stress t acting on an element of area dA, Fig. 5–32b, produces a 
force of dF = t dA, then the torque about the axis of the shaft is 
dT = r dF = r(t dA). For the entire shaft we require

T = L
 

A
 rt dA  (5–22)

If the area dA over which t acts is defined as a differential ring having 
an area of dA = 2pr dr, Fig. 5–32c, then the above equation can be 
written as

T = 2pL
 c

0
 tr 2 dr   (5–23)

We will now apply this equation to a shaft that is subjected to two 
types of torque.

Severe twist of an aluminum specimen caused 
by the application of a plastic torque.

c

(a)

Linear shear–strain
distribution

gmax

(b)

dA

T
t

r

(c)

dA � 2pr dr

 dr
r

Fig. 5–32
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Elastic-Plastic Torque. Let us consider the material in the shaft to 
exhibit an elastic perfectly plastic behavior, as shown in Fig. 5–33a.

If the internal torque produces the maximum elastic shear strain gY, at 
the outer boundary of the shaft, then the maximum elastic torque TY 
that produces this strain can be found from the torsion formula, 
tY = TY c> 3(p>2)c 44 , so that

TY =
p

2
 tY c3   (5–24)

If the applied torque increases in magnitude above TY, it will begin to 
cause yielding, which will start at the outer boundary of the shaft, r = c. 
As the maximum shear strain increases to, say, g′, then if the material is 
elastic perfectly plastic, Fig. 5–33a, the yielding boundary will progress 
inward toward the shaft’s center, Fig. 5–33b. As shown, this produces an 
elastic core, where, by proportion, the radius of the core is rY = 1gY>g′2c. 
The outer portion of the material forms a plastic annulus or ring, since the 
shear strains g within this region are greater than gY. The corresponding 
shear-stress distribution along a radial line of the shaft is shown in  
Fig. 5–33c. It is established by taking successive points on the shear-strain 
distribution in Fig. 5–33b and finding the corresponding value of shear 
stress from the t9g diagram, Fig. 5–33a. For example, at r = c, g′ gives tY, 
and at r = rY, gY  also gives tY, etc.

Since t in Fig. 5–33c can now be expressed as a function of r, we can 
apply Eq. 5–23 to determine the torque. We have

 T = 2pL
c

0
tr2 dr 

 = 2pL
 r Y 

0
atY 

r

rY
 b  r2 dr + 2pL

c

r Y 
tY r2 dr

 =
 2p
 r Y 

  tY L
 r Y 

0
 r3 dr + 2pt Y L

c

r Y 
 r2 dr

 =
p

2rY
 tYrY

4 +
2p
3

 tY1c3 - rY
3 2

 =
ptY

6
 14c3 - rY

3 2   (5–25)

(a)

gY g¿
g

tY

t

c

(b)

Shear–strain distribution

Plastic
annulus

Elastic
core

rY

gY

g¿

c

(c)

Shear-stress distribution

T

rY

tY
tY

Fig. 5–33
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Plastic Torque. Further increases in T tend to shrink the radius of 
the elastic core until all the material yields, i.e., r Y S 0, Fig. 5–33b. The 
material of the shaft will then be subjected to perfectly plastic behavior 
and the shear-stress distribution becomes uniform, so that t = tY. We 
can now apply Eq. 5–23 to determine the plastic torque Tp , which 
represents the largest possible torque the shaft will support.

 T p = 2pL
c

0
 tY r2dr 

 =
2p
3

  tY c3   (5–26)

Compared with the maximum elastic torque TY , Eq. 5–24, it can be 
seen that

Tp =
4
3

 TY

In other words, the plastic torque is 33% greater than the maximum 
elastic torque.

Unfortunately, the angle of twist f for the shear-stress distribution in 
Fig. 5–33d cannot be uniquely defined. This is because t = tY does not 
correspond to any unique value of shear strain g Ú gY. As a result, once 
T p is applied, the shaft will continue to deform or twist with no 
corresponding increase in shear stress.

A

B
C

D

G G

Maximum elastic
recovery is 2gY

Elastic-plastic
material behavior

t

tY

gY

�tY

g1
g

Fig. 5–34

*5.10 resiDual sTress
When a shaft is subjected to plastic shear strains caused by torsion, 
removal of the torque will cause some shear stress to remain in the shaft. 
This stress is referred to as residual stress, and its distribution can be 
calculated using superposition.

For example, if Tp causes the material at the outer boundary of the 
shaft to be strained to g1, shown as point C on the t-g curve in Fig. 5–34, 
the release of Tp will cause a reverse shear stress, such that the material 
will recover some of the shear strain and follow the straight-lined 
segment CD. This will be an elastic recovery, and so this line is parallel to 
the initial straight-lined portion AB of the t9g diagram. In other words, 
both lines have the same slope G.

Tp

(d)

Fully plastic torque

c
TY

Fig. 5–33 (cont.)
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Since elastic recovery occurs, we can superimpose on the plastic torque 
stress distribution in Fig. 5–35a a linear stress distribution caused by 
applying the plastic torque Tp  in the opposite direction, Fig. 5–35b. Here 
the maximum shear stress tr for this stress distribution is called the 
modulus of rupture for torsion. It is determined from the torsion 
formula,* which gives

tr =
Tpc

J
=

Tpc

1p>22c4

Using Eq. 5–26,

tr =
3 12>32ptYc34c

1p>22c4 =
4
3

 tY

Note that reversed application of Tp using the linear shear-stress 
distribution in Fig. 5–35b is possible here, since the maximum possible 
recovery for the elastic shear strain is 2gY, as noted in Fig. 5–34. This 
would correspond to a maximum applied shear stress of 2tY, which is 
greater than the required shear stress of 43 tY calculated above. Hence, by 
superimposing the stress distributions involving applications and then 
removal of the plastic torque, we obtain the residual shear-stress 
distribution in the shaft as shown in Fig. 5–35c. Actually the shear stress 
at the center of the shaft, shown as tY, should be zero, since the material 
along the axis of the shaft is never strained. The reason it is not zero is 
that we assumed all the material of the shaft to have been strained 
beyond the yield point in order to determine the plastic torque,  
Fig. 5–35a. To be more realistic, however, an elastic-plastic torque should 
be considered when modeling the material behavior. Doing this leads to 
the superposition of the stress distribution shown in Fig. 5–35d.

Plastic torque applied
causing plastic shear strains

throughout the shaft
(a)

Tp

tY

Plastic torque reversed
causing elastic shear strains

throughout the shaft
(b)

Tp

tr

Residual shear-stress
distribution in shaft

(c)

tY

tr � tY

Elastic–plastic torque applied Elastic–plastic torque reversed Residual shear-stress
distribution in shaft

�

(d)

Tep

Tep

tY

tmax � tr

tmax � tY
�

Fig. 5–35

* The torsion formula is valid only when the material behaves in a linear elastic manner; 
however, the modulus of rupture is so named because it assumes that the material behaves 
elastically and then suddenly ruptures at the proportional limit.
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Ultimate Torque. In the general case, most engineering materials 
will have a shear stress–strain diagram as shown in Fig. 5–36a. 
Consequently, if T is increased so that the maximum shear strain in the 
shaft becomes g = gu, Fig. 5–36b, then, by proportion gY occurs at 
rY = 1gY>gu2c. Likewise, the shear strains at, say, r = r1 and r = r2, 
can be found by proportion, i.e., g1 = 1r1>c2gu and g2 = 1r2>c2gu. If 
the corresponding values of t1, tY, t2, and tu are taken from the t9g 
diagram and plotted, we obtain the shear-stress distribution, which acts 
along a radial line on the cross section, Fig. 5–36c. The torque produced 
by this stress distribution is called the ultimate torque, Tu.

The magnitude of Tu can be determined by “graphically” integrating 
Eq. 5–23. To do this, the cross-sectional area of the shaft is segmented into 
a finite number of small rings, such as the one shown shaded in Fig. 5–36d. 
The area of this ring, ∆A = 2pr ∆r, is multiplied by the shear stress t 
that acts on it, so that the force ∆F = t ∆A can be determined. The 
torque created by this force is then ∆T = r ∆F = r1t ∆A2 . The 
addition of all the torques for the entire cross section, as determined in 
this manner, gives the ultimate torque Tu; that is, Eq. 5–23 becomes 
Tu ≈ 2pΣtr2 ∆r. Of course, if the stress distribution can be expressed as 
an analytical function, t = f1r2 , as in the elastic and plastic torque cases, 
then the integration of Eq. 5–23 can be carried out directly.

(a)

Tu

TY

T

g
g1 g2gY gu

T2

T1

(b)

Ultimate shear-strain distribution

c g1
g2gY

gu

rY

 
(c)

Ultimate shear-stress distribution

cTu

rY

TY

T1

T2 Tu

 
(d)

Tu

�r

TuT

r

�A � 2pr�r

Fig. 5–36imPortAnt Points

 • The shear-strain distribution along a radial line on the cross 
section of a shaft is based on geometric considerations, and it is 
found to always vary linearly along the radial line. Once it is 
established, the shear-stress distribution can then be 
determined using the shear stress–strain diagram.

 • If the shear-stress distribution for the shaft is established, then the 
resultant torque it produces is equivalent to the resultant internal 
torque acting on the cross section.

 • Perfectly plastic behavior assumes the shear-stress distribution 
is constant over each radial line. When it occurs, the shaft will 
continue to twist with no increase in torque. This torque is 
called the plastic torque.



268  Chapter 5  tors ion

5

EXAMPLE  5.15 

The tubular shaft in Fig. 5–37a is made of an aluminum alloy that is assumed 
to have an elastic perfectly plastic t9g diagram as shown. Determine the 
maximum torque that can be applied to the shaft without causing the 
material to yield, and the plastic torque that can be applied to the shaft. 
Also, what should the minimum shear strain at the outer wall be in order to 
develop a fully plastic torque?

SOLUTION

Maximum Elastic Torque. We require the shear stress at the outer 
fiber to be 20 MPa. Using the torsion formula, we have

tY =
TYc

J
;  2011062  N>m2 =

TY10.05 m2
1p>22 3 10.05 m24 - 10.03 m244

TY = 3.42 kN # m  Ans.
The shear-stress and shear-strain distributions for this case are shown 

in Fig. 5–37b. The values at the tube’s inner wall have been obtained by 
proportion.

Plastic Torque. The shear-stress distribution in this case is shown in 
Fig. 5–37c. Application of Eq. 5–23 requires t = tY. We have

 Tp = 2pL
0.05 m

0.03 m
32011062  N>m24r2 dr = 125.66110621

3
r3 2 0.05 m

0.03 m

 

 = 4.11 kN # m  Ans.

For this tube Tp represents a 20% increase in torque capacity compared 
with the elastic torque TY.

Outer Radius Shear Strain. The tube becomes fully plastic when the 
shear strain at the inner wall becomes 0.286110 -32  rad, as shown in 
Fig. 5–37c. Since the shear strain remains linear over the cross section, 
the plastic strain at the outer fibers of the tube in Fig. 5–37c is determined 
by proportion.

 
go

50 mm
=

0.286110-32  rad

30 mm
 

 go = 0.477110-32  rad  Ans.

50 mm

30 mm

T

20

(a)

0.286 (10�3)

t (MPa)

g (rad)

(b)

Elastic shear-stress distribution

Elastic shear–strain distribution

20 MPa

12 MPa

0.286 (10�3) rad

0.172 (10�3) rad

50 mm

30 mm

(c)
Plastic shear-stress distribution

20 MPa

Initial plastic shear–strain distribution

0.286 (10�3) rad

0.477 (10�3) rad

Fig. 5–37
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EXAMPLE  5.16 

A solid circular shaft has a radius of 20 mm and length of 1.5 m. The material 
has an elastic perfectly plastic t9g diagram as shown in Fig. 5–38a. 
Determine the torque needed to twist the shaft f = 0.6 rad.

75

(a)

t (MPa)

0.0016 0.008
g (rad)

(c)

Shear-stress distribution

20 mm
tY � 75 MPa

rY � 4 mm

Shear–strain distribution

(b)

gY � 0.0016 rad

gmax � 0.008 rad

20 mm

rY

Fig. 5–38

SOLUTION

We will first obtain the shear-strain distribution based on the required 
twist, then establish the shear-stress distribution. Once this is known, 
the applied torque can be determined.

The maximum shear strain occurs at the surface of the shaft, r = c. 
Since the angle of twist is f = 0.6 rad for the entire 1.5-m length of the 
shaft, then using Eq. 5–13, for the entire length we have

f = g 
L
r

;   0.6 =
gmax11.5 m2

0.02 m
 

 gmax = 0.008 rad

The shear-strain distribution is shown in Fig. 5–38b. Note that yielding of 
the material occurs since gmax 7 gY = 0.0016 rad in Fig. 5–38a. The radius 
of the elastic core, rY, can be obtained by proportion. From Fig. 5–38b,

 
 rY 

0.0016
 =

 0.02 m
0.008

  

 rY = 0.004 m = 4 mm

Based on the shear-strain distribution, the shear-stress distribution, 
plotted over a radial line segment, is shown in Fig. 5–38c. The torque can 
now be obtained using Eq. 5–25. Substituting in the numerical data yields

 T =
ptY

6
 14c3 - rY

3 2

 =
p37511062  N>m24

6
 [410.02 m23 - 10.004 m23]

 = 1.25 kN # m  Ans.
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EXAMPLE  5.17 

A tube in Fig. 5–39a has a length of 1.5 m and its material has an elastic- 
plastic t-g diagram, also shown in Fig. 5–39a. Determine the plastic torque 
Tp. What is the residual shear-stress distribution if Tp is removed just after 
the tube becomes fully plastic?

SOLUTION

Plastic Torque. The plastic torque Tp will strain the tube such that all 
the material yields. Hence the stress distribution will appear as shown in 
Fig. 5–39b. Applying Eq. 5–23, we have

 Tp = 2pL
co

ci

tYr
2 dr =

2p
3

 tY1co
3 - ci

32  

=
2p
3

  [84(106) N>m2][(0.050 m)3-(0.025 m)3] 

= 19.24(103) N # m = 19.2 kN # m Ans.

When the tube just becomes fully plastic, yielding has started at the 
inner wall, i.e., at ci = 0.025 m, gY = 0.002 rad, Fig. 5–39a. The angle of 
twist that occurs can be determined from Eq. 5–25, which for the entire 
tube becomes

fp = gY 
L
ci

=
(0.002)(1.5 m)

(0.025 m)
= 0.120 radB

When Tp is removed, or in effect reapplied in the opposite direction, 
then the “fictitious” linear shear-stress distribution shown in Fig. 5–39c 
must be superimposed on the one shown in Fig. 5–39b. In Fig. 5–39c the 
maximum shear stress or the modulus of rupture is found from the 
torsion formula

tr =
Tpco

J
=

[19.24 (103)N # m] (0.050 m)

(p>2)[(0.050 m)4-(0.025 m)4]
= 104.53(106) N>m2

= 104.53 MPa

Also, at the inner wall of the tube the shear stress is

ti = (104.53 MPa)a25 mm
50 mm

b = 52.27 MPa  Ans.

The resultant residual shear-stress distribution is shown in Fig. 5–39d.

84

(a)
0.002

T

co 50 mm

ci 25 mm

g (rad)

t (MPa)

(b)

Plastic torque applied

84 MPa

 Tp

(c)

Plastic torque reversed

52.27 MPa

 Tp

tr  104.53 MPa

Residual shear-stress distribution

20.53 MPa

31.73 MPa (d)

Fig. 5–39
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*5–120. The stepped shaft is subjected to a torque T that 
produces yielding on the surface of the larger diameter 
segment. Determine the radius of the elastic core produced in 
the smaller diameter segment. Neglect the stress concentration 
at the fillet.

5–123. The steel shaft is made from two segments: AB and 
BC, which are connected using a fillet weld having a radius 
of 2.8 mm. Determine the maximum shear stress developed 
in the shaft.

PROBLEMS

55 mm
60 mmT

T

Prob. 5–120

5–121. The steel step shaft has an allowable shear stress of 
tallow = 8 MPa. If the transition between the cross sections 
has a radius r = 4 mm, determine the maximum torque T 
that can be applied.

20 mm 20 mm

T

50 mm

T
2

T
2

Prob. 5–121

5–122. The shaft is fixed to the wall at A and is subjected 
to the torques shown. Determine the maximum shear stress 
in the shaft. A fillet weld having a radius of 2.75 mm is used 
to connect the shafts at B.

50 mm

25 mm

300 N�m

900 N�m

100 N�m

A

B

C

Prob. 5–122

50 mm

20 mm 100 N m

60 N m

A

C

B

40 N m

D

Prob. 5–123

*5–124. The built-up shaft is to be designed to rotate at 
450  rpm while transmitting 230 kW of power. Is this 
possible? The allowable shear stress is tallow = 150 MPa.

5–125.  The built-up shaft is designed to rotate at 450 rpm. 
If the radius of the fillet weld connecting the shafts is  
r = 13.2 mm, and the allowable shear stress for the material 
is tallow = 150 MPa, determine the maximum power the 
shaft can transmit.

100 mm

60 mm

Probs. 5–124/125
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5–126. A solid shaft has a diameter of 40 mm and length 
of 1 m. It is made from an elastic-plastic material having a 
yield stress of tY = 100 MPa. Determine the maximum 
elastic torque TY and the corresponding angle of twist. 
What is the angle of twist if the torque is increased to T = 
1.2TY? G = 80 GPa.

5–130. The shaft is subjected to a maximum shear strain of 
0.0048 rad. Determine the torque applied to the shaft if the 
material has strain hardening as shown by the shear stress–
strain diagram.

5–127. Determine the torque needed to twist a short 
2-mm-diameter steel wire through several revolutions if it is 
made from steel assumed to be elastic perfectly plastic and 
having a yield stress of tY = 50 MPa. Assume that the 
material becomes fully plastic.

*5–128. A solid shaft is subjected to the torque T, which 
causes the material to yield. If the material is elastic plastic, 
show that the torque can be expressed in terms of the angle 
of twist f of the shaft as T = 4

3 TY(1-f3
Y>4f3), where TY 

and fY are the torque and angle of twist when the material 
begins to yield.

5–129. The solid shaft is made of an elastic perfectly plastic 
material. Determine the torque T needed to form an elastic 
core in the shaft having a radius of rY = 20 mm. If the shaft 
is 3 m long, through what angle does one end of the shaft 
twist with respect to the other end? When the torque is 
removed, determine the residual stress distribution in the 
shaft and the permanent angle of twist.

160

0.004
g (rad)

t (MPa)

T
T

80 mm

Prob. 5–129

T

50 mm

42

0.0006
g (rad)

t (MPa)

84

0.0048

Prob. 5–130

5–131.  A solid shaft having a diameter of 50 mm is made of 
elastic-plastic material having a yield stress of tY = 112 MPa 
and shear modulus of G = 84 GPa. Determine the torque 
required to develop an elastic core in the shaft having a 
diameter of 25 mm. Also, what is the plastic torque?

*5–132. The hollow shaft has the cross section shown and 
is made of an elastic perfectly plastic material having a yield 
shear stress of tY . Determine the ratio of the plastic torque 
Tp  to the maximum elastic torque TY.

c

c
2

Prob. 5–132
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5–133. The hollow shaft has inner and outer diameters of 
60 mm and 80 mm, respectively. If it is made of an elastic 
perfectly plastic material, which has the t-g diagram shown, 
determine the reactions at the fixed supports A and C.

5–135. The shaft is made of an elastic perfectly plastic material 
as shown. Plot the shear-stress distribution acting along a radial 
line if it is subjected to a torque of T = 20 kN # m. What is the 
residual stress distribution in the shaft when the torque is 
removed?

g (rad)

120

0.0016

450 mm

150 mm

A

B

C

15 kN m

t (MPa)

Prob. 5–133

5–134. The 2-m-long tube is made of an elastic perfectly 
plastic material as shown. Determine the applied torque T, 
which subjects the material at the tube’s outer edge to a 
shear strain of gmax = 0.006 rad. What would be the 
permanent angle of twist of the tube when this torque is 
removed? Sketch the residual stress distribution in the tube.

60 mm

50 mm

T

180

0.003
g (rad)

t (MPa)

Prob. 5–134

T

40 mm

170

0.00227
g (rad)

t (MPa)

Prob. 5–135

*5–136. The tube has a length of 2 m and is made of an 
elastic perfectly plastic material as shown. Determine the 
torque needed to just cause the material to become fully 
plastic. What is the permanent angle of twist of the tube 
when this torque is removed?

80 mm

60 mm

130

0.005
g (rad)

t (MPa)

Prob. 5–136
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5–137.  The tube has a length of 2 m and is made of an 
elastic perfectly plastic material as shown. Determine the 
torque needed to just cause the material to become fully 
plastic. What is the permanent angle of twist of the tube 
when this torque is removed?

5–139. A tubular shaft has an inner diameter of 60 mm, an 
outer diameter of 80 mm, and a length of 1 m. It is made of 
an elastic perfectly plastic material having a yield stress of 
tY = 150 MPa. Determine the maximum torque it can 
transmit. What is the angle of twist of one end with respect 
to the other end if the inner surface of the tube is about to 
yield? G = 75 GPa.

100 mm

60 mm

350

0.007
g (rad)

t (MPa)

Prob. 5–137

5–138. A torque is applied to the shaft having a radius of 
80 mm. If the material obeys a shear stress–strain relation 
of t = 500 g¼ MPa, determine the torque that must be 
applied to the shaft so that the maximum shear strain 
becomes 0.008 rad.

T

g (rad)

t (MPa)

0.008

80 mm

Prob. 5–138

1 m
30 mm

40 mm

Prob. 5–139

*5–140.  The stepped shaft is subjected to a torque T that 
produces yielding on the surface of the larger diameter 
segment. Determine the radius of the elastic core produced 
in the smaller diameter segment. Neglect the stress 
concentration at the fillet.

75 mm

80 mm

T

T

Prob. 5–140
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5–141.  The shear stress–strain diagram for a solid 50-mm- 
diameter shaft can be approximated as shown in the figure. 
Determine the torque required to cause a maximum shear 
stress in the shaft of 125 MPa. If the shaft is 3 m long, what is 
the corresponding angle of twist?

5–143. The shaft consists of two sections that are rigidly 
connected. If the material is elastic plastic as shown, 
determine the largest torque T that can be applied to the 
shaft. Also, draw the shear-stress distribution over a radial 
line for each section. Neglect the effect of stress 
concentration.

50

0.0025
� (rad)

� (MPa)

125

0.010

Prob. 5–141

5–142. The shear stress–strain diagram for a solid 
50-mm-diameter shaft can be approximated as shown in the 
figure. Determine the torque T required to cause a 
maximum shear stress in the shaft of 125 MPa. If the shaft is 
1.5 m long, what is the corresponding angle of twist?

50

0.0025
g (rad)

t (MPa)

125

0.010

1.5 m

T

T

Prob. 5–142

25 mm

20 mm

T

T

84

0.005
g (rad)

t (MPa)

Prob. 5–143

*5–144.  A steel alloy core is bonded firmly to the copper 
alloy tube to form the shaft shown. If the materials have the 
t-g diagrams shown, determine the torque resisted by the 
core and the tube.

t (MPa)

t (MPa)

180

0.0024

g (rad)

g (rad)

36

0.002

450 mm

A

B

100 mm

60 mm

Steel Alloy

Copper Alloy

 15 kN�m

Prob. 5–144
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CHAPTER REVIEW

Torque causes a shaft having a circular cross 
section to twist, such that whatever the torque, 
the shear strain in the shaft is always 
proportional to its radial distance from the 
center of the shaft. 

Provided the material is homogeneous and 
linear elastic, then the shear stress is 
determined from the torsion formula,

t =
 Tr

J
 

The design of a shaft requires finding the 
geometric parameter,

J
c
 =

T
tallow 

 

Often the power P supplied to a shaft rotating 
at v is reported, in which case the torque is 
determined from P = Tv.

 T

tmax

tmax

t

     

co

ci

T

tmax

tmax

The angle of twist of a circular shaft is 
determined from

f = L
 L

0

T1x2  dx

J(x)G(x)

If the internal torque and JG are constant 
within each segment of the shaft then

f = a
 

 

TL
JG

For application, it is necessary to use a sign 
convention for the internal torque and to be 
sure the material remains linear elastic.

T � T(x)

x

f

T1

f

T3

T2

If the shaft is statically indeterminate, then the 
reactive torques are determined from 
equilibrium, compatibility of twist, and a  
load–displacement relationship, such as 
f = TL>JG.

5
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Solid noncircular shafts tend to warp out of 
plane when subjected to a torque. Formulas 
are available to determine the maximum 
elastic shear stress and the twist for these cases.

The average shear stress in thin-walled tubes is 
determined by assuming the shear flow across 
each thickness t of the tube is constant. The 
average shear stress value is determined from 

tavg =
 T

2t Am Am

T

t

Stress concentrations occur in shafts when the 
cross section suddenly changes. The maximum 
shear stress is determined using a stress 
concentration factor K, which is determined 
from experiment and represented in graphical 

form. Once obtained, tmax = K aTc
J
b .

T
tmax

If the applied torque causes the material to 
exceed the elastic limit, then the stress 
distribution will not be proportional to the 
radial distance from the centerline of the shaft. 
Instead, the internal torque is related to the 
stress distribution using the shear stress–shear 
strain diagram and equilibrium.

cT tY tY

rY

If a shaft is subjected to a plastic torque, which 
is then released, it will cause the material to 
respond elastically, thereby causing residual 
shear stress to be developed in the shaft.
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R5–1.  The shaft is made of A992 steel and has an allowable 
shear stress of tallow = 75 MPa. When the shaft is rotating at 
300 rpm, the motor supplies 8 kW of power, while gears A 
and B withdraw 5 kW and 3 kW, respectively. Determine the 
required minimum diameter of the shaft to the nearest 
millimeter. Also, find the rotation of gear A relative to C.

R5–2. The shaft is made of A992 steel and has an allowable 
shear stress of tallow = 75 MPa. When the shaft is rotating at 
300 rpm, the motor supplies 8 kW of power, while gears A 
and B withdraw 5 kW and 3 kW, respectively. If the angle of 
twist of gear A relative to C is not allowed to exceed  
0.03 rad, determine the required minimum diameter of the 
shaft to the nearest millimeter.

C

B

A

300 mm

300 mm

Prob. R5–1/2

R5–3.  The A-36 steel circular tube is subjected to a torque 
of 10 kN # m. Determine the shear stress at the mean radius 
r = 60 mm and calculate the angle of twist of the tube if it 
is 4 m long and fixed at its far end. Solve the problem using 
Eqs. 5–7 and 5–15 and by using Eqs. 5–18 and 5–20.

4 m

t � 5 mm

r � 60 mm

10 kN�m

Prob. R5–3

*R5–4. A portion of an airplane fuselage can be 
approximated by the cross section shown. If the thickness of 
its 2014-T6-aluminum skin is 10 mm, determine the maximum 
wing torque T that can be applied if tallow = 4 MPa. Also, in a 
4-m-long section, determine the angle of twist.

2 m

0.75 m

T

0.75 m

Prob. R5–4

R5–5.  The material of which each of three shafts is made 
has a yield stress of tY and a shear modulus of G. Determine 
which shaft geometry will resist the largest torque without 
yielding. What percentage of this torque can be carried by 
the other two shafts? Assume that each shaft is made from 
the same amount of material and that it has the same  
cross-sectional area A.

A A A

60�

60�60�

Prob. R5–5

R E V I E W  P R O B L E M S
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R5–6. Segments AB and BC of the assembly are made 
from 6061-T6 aluminum and A992 steel, respectively. If 
couple forces P = 15 kN are applied to the lever arm, 
determine the maximum shear stress developed in each 
segment. The assembly is fixed at A and C.

A

P

B

D

E

P

0.8 m

1.2 m

100 mm

100 mm

1.2 m

0.8 m

C

Prob. R5–6

R5–7. Segments AB and BC of the assembly are made 
from 6061-T6 aluminum and A992 steel, respectively. If the 
allowable shear stress for the aluminum is (tallow)al =
90 MPa and for the steel (tallow)st = 120 MPa, determine 
the maximum allowable couple forces P that can be applied 
to the lever arm. The assembly is fixed at A and C.

A

P

B

D

E

P

0.8 m

1.2 m

100 mm

100 mm

1.2 m

0.8 m

C

Prob. R5–7

*R5–8.  The tapered shaft is made from 2014-T6 aluminum 
alloy, and has a radius which can be described by the 
equation r = 0.02(1 + x 3>2) m, where x is in meters. 
Determine the angle of twist of its end A if it is subjected to 
a torque of 450 N # m.

4 m

x

x

450 N�m

r = 0.02(1 + x3/2) m

A

Prob. R5–8

R5–9.  The 60-mm-diameter shaft rotates at 300 rev>min. 
This motion is caused by the unequal belt tensions on the 
pulley of 800 N and 450 N. Determine the power transmitted 
and the maximum shear stress developed in the shaft.

800 N

450 N

100 mm

300 rev/min

Prob. R5–9
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The girders of this bridge have been designed on the basis of their  ability to 
resist bending stress.

(© Construction Photography/Corbis)



281

Bending

6.1 Shear and MoMent diagraMS
Members that are slender and support loadings that are applied 
perpendicular to their longitudinal axis are called beams. In general, 
beams are long, straight bars having a constant cross-sectional area. Often 
they are classified as to how they are supported. For example, a simply 
supported beam is pinned at one end and roller supported at the other, 
Fig. 6–1, a cantilevered beam is fixed at one end and free at the other, and 
an overhanging beam has one or both of its ends freely extended over 

Chapter OBJeCtIVeS

■ In this chapter we will determine the stress in a beam or shaft caused 
by bending. The chapter begins with a discussion of how to find the 
variation of the shear and moment in these members. Then once 
the internal moment is determined, the maximum bending stress 
can be calculated. First we will consider members that are straight, 
have a symmetric cross section, and are made of homogeneous 
linear elastic material. Afterward we will discuss special cases 
involving unsymmetric bending and members made of composite 
materials. Consideration will also be given to curved members, 
stress concentrations, inelastic bending, and residual stresses.
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the supports. Beams are considered among the most important of all 
structural elements. They are used to support the floor of a building, the 
deck of a bridge, or the wing of an aircraft. Also, the axle of an automobile, 
the boom of a crane, even many of the bones of the body act as beams.

Because of the applied loadings, beams develop an internal shear force 
and bending moment that, in general, vary from point to point along the 
axis of the beam. In order to properly design a beam it therefore becomes 
important to determine the maximum shear and moment in the beam. 
One way to do this is to express V and M as functions of their arbitrary 
position x along the beam’s axis, and then plot these functions. They 
represent the shear and moment diagrams, respectively. The maximum 
values of V and M can then be obtained directly from these graphs. Also, 
since the shear and moment diagrams provide detailed information 
about the variation of the shear and moment along the beam’s axis, they 
are often used by engineers to decide where to place reinforcement 
materials within the beam or how to proportion the size of the beam at 
various points along its length.

In order to formulate V and M in terms of x we must choose the origin 
and the positive direction for x. Although the choice is arbitrary, most 
often the origin is located at the left end of the beam and the positive x 
direction is to the right.

Since beams can support portions of a distributed load and 
concentrated forces and couple moments, the internal shear and 
moment functions of x will be discontinuous, or their slopes will be 
discontinuous, at points where the loads are applied. Because of this, 
these functions must be determined for each region of the beam 
between any two discontinuities of loading. For example, coordinates  
x1, x2, and x3 will have to be used to describe the variation of V and M 
throughout the length of the beam in Fig. 6–2. Here the coordinates are 
valid only within the regions from A to B for x1, from B to C for x2, and 
from C to D for x3 .

Beam Sign Convention. Before presenting a method for 
determining the shear and moment as functions of x, and later plotting 
these functions (shear and moment diagrams), it is first necessary to 
establish a sign convention in order to define “positive” and “negative” 
values for V and M. Although the choice of a sign convention is arbitrary, 
here we will use the one often used in engineering practice. It is shown in 
Fig. 6–3. The positive directions are as follows: the distributed load acts 
upward on the beam, the internal shear force causes a clockwise rotation 
of the beam segment on which it acts, and the internal moment causes 
compression in the top fibers of the segment such that it bends the 
segment so that it “holds water”. Loadings that are opposite to these are 
considered negative.

Simply supported beam

Cantilevered beam

Overhanging beam

Fig. 6–1

DB
C

A

Pw0

x1
x2

x3

Fig. 6–2

Positive external distributed load

Positive internal shear

Positive internal moment

MM

Beam sign convention

V
V

w = w(x)

Fig. 6–3
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Important poInts

procedure for analysIs

The shear and moment diagrams for a beam can be constructed using the following procedure.

Support reactions.

 • Determine all the reactive forces and couple moments acting on the beam, and resolve all the forces into 
components acting perpendicular and parallel to the beam’s axis.

Shear and Moment Functions.

 • Specify separate coordinates x having an origin at the beam’s left end and extending to regions of the 
beam between concentrated forces and/or couple moments, or where there is no discontinuity of 
distributed loading.

 • Section the beam at each distance x, and draw the free-body diagram of one of the segments. Be sure  
V and M are shown acting in their positive sense, in accordance with the sign convention given in Fig. 6–3.

 • The shear is obtained by summing forces perpendicular to the beam’s axis.

 • To eliminate V, the moment is obtained directly by summing moments about the sectioned end of 
the segment.

Shear and Moment Diagrams.

 • Plot the shear diagram (V versus x) and the moment diagram (M versus x). If numerical values of the 
functions describing V and M are positive, the values are plotted above the x axis, whereas negative values 
are plotted below the axis.

 • Generally it is convenient to show the shear and moment diagrams below the free-body diagram of  
the beam.

 • Beams are long straight members that are subjected to loads perpendicular to their longitudinal axis. They 
are classified according to the way they are supported, e.g., simply supported, cantilevered, or overhanging.

 • In order to properly design a beam, it is important to know the variation of the internal shear and moment 
along its axis in order to find the points where these values are a maximum.

  • Using an established sign convention for positive shear and moment, the shear and moment in the beam 
can be determined as a function of their position x on the beam, and then these functions can be plotted 
to form the shear and moment diagrams.
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Draw the shear and moment diagrams for the beam shown in Fig. 6–4a.

SOLUTION

Support Reactions. The support reactions are shown in Fig. 6–4c.

Shear and Moment Functions. A free-body diagram of the left segment 
of the beam is shown in Fig. 6–4b. The distributed loading on this segment 
is  represented by its resultant force (3x) kN, which is found only after  
the segment is isolated as a free-body diagram. This force acts through the 
centroid of the area under the distributed loading, a distance of x>2 from  
the right end. Applying the two equations of equilibrium yields

+ c ΣFy = 0; 6 kN - (3x) kN - V = 0

 V = (6 - 3x) kN (1)

a + ΣM = 0; -6 kN(x) + (3x) kN 11
2 x2 + M = 0

 M = (6x - 1.5x2) kN # m (2)

Shear and Moment Diagrams. The shear and moment diagrams 
shown in Fig. 6–4c are obtained by plotting Eqs. 1 and 2. The point of zero 
shear can be found from Eq. 1:

 V = (6 - 3x) kN = 0

 x = 2 m

NOTE: From the moment diagram, this value of x represents the point on 
the beam where the maximum moment occurs, since by Eq. 6–2  
(see Sec. 6.2) the slope V = dM>dx = 0. From Eq. 2, we have

Mmax = [ 6 (2) - 1.5 (2)2  ] kN # m

= 6 kN # m

(a)

4 m

3 kN/m

x
V

M

(b)

(3x) kN
x
2

6 kN

(c)

V (kN)

M (kN�m)

x (m)

4 m

2 m

2 m
x (m)

6

– 6

6

6 kN6 kN

3 kN/m

Fig. 6–4

EXAMPLE   6.1
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Draw the shear and moment diagrams for the beam shown in Fig. 6–5a.

SOLUTION

Support Reactions. The distributed load is replaced by its resultant 
force, and the reactions have been determined, as shown in Fig. 6–5b.

Shear and Moment Functions. A free-body diagram of a beam 
segment of length x is shown in Fig. 6–5c. The intensity of the triangular 
load at the section is found by proportion, that is, w>x = (2 kN>m)>3 m 
or w = 12

3 x2  kN�m. The resultant of the distributed loading is found 
from the area under the diagram. Thus,

+ c ΣFy = 0; 3 kN -
1
2
a2

3
xbx - V = 0

 V = a3 -
1
3

 x2b  kN (1)

a + ΣM = 0; 6 kN # m - (3 kN) (x) +
1
2
a2

3
 xb  x a1

3
 xb + M = 0

 M = a-6 + 3x -
1
9

 x3b  kN # m (2)

Shear and Moment Diagrams. The graphs of Eqs. 1 and 2 are shown 
in Fig. 6–5d.

3 m

2 kN/m

(a)

6 kN�m

3 kN

(b)

2 m

2 kN/m3 kN

(d)

(c)

M

V

x

�

V (kN)

M (kN�m)

2 kN/m

6 kN�m

3 kN

x (m)

3 kN

6 

3 

x (m)

x1
3

w � x2
3

x2
3

( )1
2

x

Fig. 6–5

EXAMPLE   6.2
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Draw the shear and moment diagrams for the beam shown in Fig. 6–6a.

SOLUTION

Support Reactions. The distributed load is divided into triangular and 
rectangular component loadings and these loadings are then replaced by 
their resultant forces. The reactions have been determined as shown on 
the beam’s free-body diagram, Fig. 6–6b.

Shear and Moment Functions. A free-body diagram of the left 
segment is shown in Fig. 6–6c. As above, the trapezoidal loading is 
replaced by rectangular and triangular distributions. Note that the 
intensity of the triangular load at the section is found by proportion. The 
resultant force and the location of each distributed loading are also 
shown. Applying the equilibrium equations, we have

+ c ΣFy = 0; 

50 kN - (10 kN>m)x -  
1
2

 (20 kN>m)a x
6 m

bx - V = 0

V = a50 - 10x -  
5
3

 x2b  kN  (1)

a + ΣM = 0;

(-50 kN)(x) + [(10 kN>m)x]ax
2
b +

1
2

 (20 kN>m)a x
6 m

bxax
3
b + M = 0

 M = a50x - 5x2 -  
5
9

 x3b  kN # m  (2)

Equation 2 may be checked by noting that dM>dx = V, that is, Eq. 1. Also, 
w = dV>dx = ( -10 -  10

3  x) kN>m. This equation checks, since when 
x = 0, w = -10 kN>m, and when x = 6 m, w = -30 kN>m, Fig. 6–6a.

Shear and Moment Diagrams. Equations 1 and 2 are plotted in Fig. 6–6d.  
Since the point of maximum moment occurs when dM>dx = V = 0,  
then, from Eq. 1,

 V = 0 = 50 - 10x -
5
3

 x2

Choosing the positive root,
 x = 3.245 m
Thus, from Eq. 2,

M max = 50(3.245) - 5(3.2452) -
5
9

 (3.2453) 

= 90.62 kN # m = 90.6 kN # m

(a)
6 m

30 kN/m

10 kN/m

Fig. 6–6

EXAMPLE   6.3

(d)

V(kN)

x(m)

x(m)

(b)

3 m

70 kN50 kN

4 m
6 m

60 kN 60 kN
20 kN/m

10 kN/m

 Mmax  90.6 kN mM(kN m)

70 kN50 kN

50

70

3.245 m

30 kN/m

10 kN/m

50 kN

10x
20 x

V
M

(c)

20

2 kN/m

kN/m

1
2

x
6

x
6

x
3

x
2

x
2
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Draw the shear and moment diagrams for the beam shown in Fig. 6–7a.

SOLUTION

Support Reactions. The reactions at the supports are shown on the 
free-body diagram of the beam, Fig. 6–7d.

Shear and Moment Functions. Since there is a discontinuity of 
distributed load and also a concentrated load at the beam’s center, two 
regions of x must be considered in order to describe the shear and 
moment functions for the entire beam.

0 … x1 6 5 m, Fig. 6–7b:

+ c ΣFy = 0; 5.75 kN - V = 0

V = 5.75 kN (1)

a + ΣM = 0;  -80 kN # m - 5.75 kN x1 + M = 0

M = (5.75x1 + 80) kN # m (2)

5 m 6 x2 … 10 m, Fig. 6–7c:

+ c ΣFy = 0; 5.75 kN - 15 kN - 5 kN>m(x2 - 5 m) - V = 0

V = (15.75 - 5x2) kN (3)

a + ΣM = 0; -80 kN # m - 5.75 kN x2 + 15 kN(x2 - 5 m) 

+  5 kN>m(x2 - 5 m)¢ x2 - 5 m
2

≤ + M = 0

M = (-2.5x2
 2 + 15.75x2 + 92.5) kN # m (4)

Shear and Moment Diagrams. Equations 1 through 4 are plotted in 
Fig. 6–7d.

80 kN�m

15 kN
5 kN/m

A
C

B

5 m 5 m
(a)

(b)

V

M
80 kN�m

5.75 kN

x1

(c)

5 m

80 kN�m

15 kN

5.75 kN

V

M

x2

5 kN/m(x2 � 5)

x2 � 5
2

x2 � 5
2

(d)

V (kN)

M (kN�m)

x (m)

x (m)

B
5 m 5 m

5.75 kN 34.25 kN

108.75

80

5.75

�9.25

�34.25

A
C

80 kN�m

15 kN
5 kN/m

Fig. 6–7

EXAMPLE   6.4
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6.2 graphical Method for 
conStructing Shear and MoMent 
diagraMS

In cases where a beam is subjected to several different loadings, 
determining V and M as functions of x and then plotting these equations 
can become quite tedious. In this section a simpler method for constructing 
the shear and moment diagrams is discussed—a method based on two 
differential relations, one that exists between the distributed load and 
shear, and the other between the shear and moment.

Regions of Distributed Load. For purposes of generality,  
consider the beam shown in Fig. 6–8a, which is subjected to an arbitrary 
loading. A free-body diagram for a very small segment ∆x of the beam 
is shown in Fig. 6–8b. Since this segment has been chosen at a position x 
where there is no concentrated force or couple moment, the results to be 
obtained will not apply at these points.

Notice that all the loadings shown on the segment act in their positive 
directions according to the established sign convention, Fig. 6–3. Also, 
both the internal resultant shear and moment, acting on the right face of 
the segment, must be changed by a small amount in order to keep the 
segment in equilibrium. The distributed load, which is approximately 
constant over ∆x, has been replaced by a resultant force w∆x that acts at 
1
2(∆x) from the right side. Applying the equations of equilibrium to the 
segment, we have

Failure of this table occurred at the brace 
support on its right side. If drawn, the 
bending-moment diagram for the table 
loading would indicate this to be the 
point of maximum internal moment.

(a)

x �x

M0

F w � w(x)

 (b)

M � �M
M

V

�x

w

Free-body diagram
of segment�x

O

V � �V

w�x

(�x)1
2

Fig. 6–8
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+ c ΣFy = 0; V + w ∆x - (V + ∆V) = 0

∆V = w ∆x

a + ΣMO = 0; -V ∆x - M - w ∆x31
2(∆x)4 + (M + ∆M) = 0

∆M = V ∆x + w 12(∆x)2

Dividing by ∆x and taking the limit as ∆x S 0, the above two equations 
become

dV
dx

   =   w  (6–1)

 slope of       distributed
shear diagram      load intensity
 at each point     at each point

 

dM
dx

   =    V (6–2)

slope of         shear
moment diagram       at each

at each point     point

Equation 6–1 states that at any point the slope of the shear diagram 
equals the intensity of the distributed loading. For example, consider the 
beam in Fig. 6–9a. The distributed loading is negative and increases from 
zero to wB . Knowing this provides a quick means for drawing the shape 
of the shear diagram. It must be a curve that has a negative slope, 
increasing from zero to -wB . Specific slopes wA = 0, -wC, -wD, and 
-wB are shown in Fig. 6–9b. 

In a similar manner, Eq. 6–2 states that at any point the slope of the 
moment diagram is equal to the shear. Since the shear diagram in  
Fig. 6–9b starts at +VA, decreases to zero, and then becomes negative 
and decreases to -VB, the moment diagram (or curve) will then have an 
initial slope of +VA which decreases to zero, then the slope becomes 
negative and decreases to -VB . Specific slopes VA, VC, VD, 0, and -VB 
are shown in Fig. 6–9c.

w � w(x)
wB

A B

0

x

x

V

M

(a)

(b)

(c)

C D

w = negative increasing
slope = negative increasing

V = positive decreasing
slope = positive decreasing

�wB

0

VA

VA

VC
VD

�VB

�VB

�wC

�wD

Fig. 6–9
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Equations 6–1 and 6–2 may also be rewritten in the form dV = w dx 
and dM = Vdx. Since w dx and V dx represent differential areas under 
the distributed loading and the shear diagram, we can then integrate 
these areas between any two points C and D on the beam,  
Fig. 6–9d, and write

∆V = Lw dx (6–3)

change in         area under
  shear     distributed loading

∆M = LV dx (6–4)

change in       area under
 moment       shear diagram

Equation 6–3 states that the change in shear between C and D is equal to 
the area under the distributed-loading curve between these two points, 
Fig. 6–9d. In this case the change is negative since the distributed load 
acts downward. Similarly, from Eq. 6–4, the change in moment between 
C and D, Fig. 6–9f, is equal to the area under the shear diagram within 
the region from C to D. Here the change is positive.

Regions of Concentrated Force and Moment. A free-body 
diagram of a small segment of the beam in Fig. 6–8a taken from under 
the force is shown in Fig. 6–10a. Here force equilibrium requires

+ c ΣFy = 0; V + F - (V + ∆V) = 0

 ∆V = F (6–5)

Thus, when F acts upward on the beam, then the change in shear, ∆V, is 
positive so the values of the shear on the shear diagram will “jump” 
upward. Likewise, if F acts downward, the jump (∆V) will be downward.

When the beam segment includes the couple moment M0, Fig. 6–10b, 
then moment equilibrium requires the change in moment to be

a + ΣMO = 0; M + ∆M - M0 - V ∆x - M = 0

Letting ∆x ≈ 0, we get

∆M = M0 (6–6)

In this case, if M0 is applied clockwise, the change in moment, ∆M, is 
positive so the moment diagram will “jump” upward. Likewise, when M0 
acts counterclockwise, the jump (∆M) will be downward.

(d)

DC

x

x

V

DC

DC

(e)

(f)

M

�V

�M

Fig. 6–9 (cont.)

F

V

V � �V

M � �M

�x

(a)

M

M

(b)

M0

O

V

V � �V

M � �M

�x

Fig. 6–10
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procedure for analysIs

The following procedure provides a method for constructing the shear 
and moment diagrams for a beam based on the relations among 
distributed load, shear, and moment.

Support reactions.
 • Determine the support reactions and resolve the forces acting on 

the beam into components that are perpendicular and parallel to 
the beam’s axis.

Shear Diagram.

	 •	 Establish the V and x axes and plot the known values of the shear 
at the two ends of the beam.

 •	 Notice how the values of the distributed load vary along the beam, 
such as positive increasing, negative increasing, etc., and realize that 
each of these successive values indicates the way the shear diagram 
will slope (dV>dx = w). Here w is positive when it acts upward. Begin 
by sketching the slope at the end points.

 •	 If a numerical value of the shear is to be determined at a point, one 
can find this value either by using the method of sections and the 
equation of force equilibrium, or by using ∆V = 1w dx, which 
states that the change in the shear between any two points is equal 
to the area under the load diagram between the two points.

Moment Diagram.

	 • Establish the M and x axes and plot the known values of the 
moment at the ends of the beam.

 • Notice how the values of the shear diagram vary along the beam, 
such as positive increasing, negative increasing, etc., and realize 
that each of these successive values indicates the way the moment 
diagram will slope (dM>dx = V). Begin by sketching the slope at 
the end points.

 • At the point where the shear is zero, dM>dx = 0, and therefore 
this will be a point of maximum or minimum moment.

	 • If a numerical value of the moment is to be determined at the 
point, one can find this value either by using the method of 
sections and the equation of moment equilibrium, or by using 
∆M = 1V dx, which states that the change in moment between 
any two points is equal to the area under the shear diagram 
between the two points.

 •	 Since w must be integrated to obtain ∆V, and V is integrated to 
obtain M, then if w is a curve of degree n, V will be a curve of degree 
n + 1 and M will be a curve of degree n + 2. For example, if w is 
uniform, V will be linear and M will be parabolic.
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Draw the shear and moment diagrams for the beam shown in Fig. 6–11a.

SOLUTION

Support Reactions. The reaction at the fixed support is shown on the 
free-body diagram, Fig. 6–11b.

Shear Diagram. The shear at each end of the beam is plotted first,  
Fig. 6–11c. Since there is no distributed loading on the beam, the slope of 
the shear diagram is zero as indicated. Note how the force P at the center 
of the beam causes the shear diagram to jump downward an amount P, 
since this force acts downward.

Moment Diagram. The moments at the ends of the beam are plotted, 
Fig. 6–11d. Here the moment diagram consists of two sloping lines, one 
with a slope of +2P and the other with a slope of +P.

The value of the moment in the center of the beam can be determined 
by the method of sections, or from the area under the shear diagram. If 
we choose the left half of the shear diagram,

M 0 x=L = M 0 x=0 + ∆M

M 0 x=L = -3PL + (2P)(L) = -PL

(a)

L

PP

L

P

2P

2P

3PL

P

V

P
x

M

x

�3PL

�PL

w � 0 
slope � 0

V � positive constant 
slope � positive constant

(b)

(c)

(d)

downward force P
downward jump P

Ends with 
slope P

Begins with 
slope 2P

Fig. 6–11

EXAMPLE   6.5
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Draw the shear and moment diagrams for the beam shown in Fig. 6–12a.

(a)

L L

M0

SOLUTION

Support Reactions. The reactions are shown on the free-body diagram 
in Fig. 6–12b.

Shear Diagram. The shear at each end is plotted first, Fig. 6–12c. Since 
there is no distributed load on the beam, the shear diagram has zero 
slope and is therefore a horizontal line.

Moment Diagram. The moment is zero at each end, Fig. 6–12d. The 
moment diagram has a constant negative slope of −M0>2L since this is 
the shear in the beam at each point. However, here the couple moment 
M0 causes a jump in the moment diagram at the beam’s center. 

(b)

(c)

V

(d)

M

x

x

L L

M0

M0/2

M0/2–

w � 0 
slope � 0

clockwise moment M0
positive jump M0

V � negative constant 
slope � negative constant

M0

2L

�
M0

2L

M0

2L

Fig. 6–12

EXAMPLE   6.6
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(b)

(c)

(d)

w negative decreasing
V slope negative decreasing

V positive decreasing
M slope positive decreasing

�

(a)

3 m

V (kN)

M (kN�m)

2 kN/m

x (m)

3 kN�m

3 kN

3 

3 

x (m)

2 kN/m

Fig. 6–14

(b)

(c)
x

V  positive decreasing
M slope positive decreasing

(d)

x

�

w  negative constant 
V slope  negative constant  

(a)

Ends with 
zero slope 

V (kN)

M (kN�m)

4 m

12

24

3 kN/m

12 kN

kN�m24

3 kN/m

Fig. 6–13

Draw the shear and moment diagrams for each of the beams shown in  
Figs. 6–13a and 6–14a.

SOLUTION

Support Reactions. The reactions at the fixed support are shown on 
each free-body diagram, Figs. 6–13b and 6–14b.

Shear Diagram. The shear at each end point is plotted first,  Figs. 6–13c 
and 6–14c. The distributed loading on each beam indicates the slope of 
the shear diagram and thus produces the shapes shown.

Moment Diagram. The moment at each end point is plotted first,  
Figs. 6–13d and 6–14d. Various values of the shear at each point on the 
beam indicate the slope of the moment diagram at the point. Notice how 
this variation produces the curves shown.

NOTE: Observe how the degree of the curves from w to V to M increases 
by one due to the integration of dV = w dx and dM = Vdx. For 
example,  in Fig. 6–14, the linear distributed load produces a parabolic 
shear diagram and cubic moment diagram.

EXAMPLE   6.7 
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Draw the shear and moment diagrams for the cantilever beam in Fig. 6–15a.

2 kN 1.5 kN/m

(a)

A
B

2 m 2 m

SOLUTION

Support Reactions. The support reactions at the fixed support B 
are shown in Fig. 6–15b.

Shear Diagram. The shear at the ends is plotted first, Fig. 6–15c. 
Notice how the shear diagram is constructed by following the 
slopes defined by the loading w.

Moment Diagram. The moments at the ends of the beam are 
plotted first, Fig. 6–15d. Notice how the moment diagram is 
constructed based on knowing its slope, which is equal to the shear 
at each point. The moment at x = 2 m can be found from the area 
under the shear diagram. We have

M 0 x=2 m = M 0 x=0 + ∆M = 0 + [-2 kN(2 m)] = -4 kN # m

Of course, this same value can be determined from the method of 
sections, Fig. 6–15e.

(d)

(e)

(c)

(b)

2 kN

2 m

2 4

�5

�2

2 m

M � 4 kN�m

V � 2 kN

x (m)

V (kN)

2
0

�11

�4

x (m)

M (kN�m)

w � 0
V slope � 0

w negative constant
V slope negative constant

V negative constant 
M slope negative constant

V negative increasing
M slope negative increasing

2 kN

2 m

4

5 kN

11 kN�m
1.5 kN/m

Fig. 6–15

EXAMPLE   6.8
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4 kN/m

4 m 2 m

(a)

A
B

Draw the shear and moment diagrams for the overhang beam in Fig. 6–16a.

4 m 2 m

2 kN 10 kN

�2

8

64

4

0 x (m)

V (kN)

6

�8

0 x (m)

M (kN�m)

w � 0
V slope � 0

V positive
decreasing

M slope positive
decreasing

V negative
constant

M slope negative
constant

w negative constant
V slope negative constant

(d)

(c)

(b)

4 kN/m

slope � 0

Fig. 6–16

SOLUTION
Support Reactions. The support reactions are shown in Fig. 6–16b.

Shear Diagram. The shear at the ends is plotted first, Fig. 6–16c. The 
slopes are determined from the loading and from this the shear diagram is 
constructed. Notice the positive jump of 10 kN at x = 4 m due to the force 
reaction.

Moment Diagram. The moments at the ends are plotted first, Fig. 6–16d. 
Then following the behavior of the slope found from the shear diagram, the 
moment diagram is constructed. The moment at x = 4 m is found from the 
area under the shear diagram.

M 0 x=4 m = M 0 x=0 + ∆M = 0 + [-2 kN(4 m)] = -8 kN # m

We can also obtain this value by using the method of sections, as shown 
in Fig. 6–16e.

4 m

2 kN

A

(e)

V � 2 kN

M � 8 kN�m

EXAMPLE   6.9
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EXAMPLE   6.10

The shaft in Fig. 6–17a is supported by a thrust bearing at A and a journal 
bearing at B. Draw the shear and moment diagrams.

BA

4.5 m

(a)

2 kN/m

SOLUTION
Support Reactions. The support reactions are shown in Fig. 6–17b.

Shear Diagram. As shown in Fig. 6–17c, the shear at x = 0 is  
+1.5 kN. Following the slope defined by the loading, the shear diagram is 
constructed, where at B its value is -3 kN. Since the shear changes sign, 
the point where V = 0 must be located. To do this we will use the method 
of sections. The free-body diagram of the left segment of the shaft, sec-
tioned at an arbitrary position x, is shown in Fig. 6–17e. Notice that the 
intensity of the distributed load at x is w = 2( x

4.5), which has been found 
by proportional triangles, i.e., w2 = x>4.5.

Thus, for V = 0,

+ c ΣFy = 0;  1.5 kN - 1
2 [2( x

4,5)]x = 0

 x = 2.598 m = 2.60 m

Moment Diagram. The moment diagram starts at 0 since there is no 
moment at A; then it is constructed based on the slope as determined 
from the shear diagram. The maximum moment occurs at x = 2.60 m, 
where the shear is equal to zero, since dM>dx = V = 0, Fig. 6–17d

a + ΣM = 0; 

M max + 1
2 32 (2.598

4.5 ) (2.598)4  (2.598
3 ) - 1.5(2.598) = 0

M max = 2.598 kN # m = 2.60 kN # m

Finally, notice how integration, first of the loading w which is linear, pro-
duces a shear diagram which is parabolic, and then a moment diagram 
which is cubic.

NOTE: Having studied these examples, test yourself by covering over the 
shear and moment diagrams in Examples 6–1 through 6–4 and see if you 
can construct them using the concepts discussed here.

B

2 kN/m

A

4.5 m

Ay = 1.5 kN
By  3 kN

4.52.60

2.60

1.5

 3

V (kN)

x (m)

4.5
0

0

M (kN m)

x (m)

w  negative increasing 
slope  negative increasing

V  negative increasing 
slope  negative increasing

V  positive decreasing 
slope  positive decreasing

(d)

(c)

(b)

V  0
slope  0

2.60

A

x

(e)
Ay  1.5 kN

x
3

(     )]1
2

x
4.52         x

V

M

(     )x
4.52

[

Fig. 6–17
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PRELIMINARY PROBLEMS
P6–1. In each case, the beam is subjected to the loadings 
shown. Draw the free-body diagram of the beam, and sketch 
the general shape of the shear and moment diagrams. The 
loads and geometry are assumed to be known.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Prob. P6–1
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FUNDAMENTAL PROBLEMS

In each case, express the shear and moment functions in 
terms of x, and then draw the shear and moment diagrams 
for the beam.

F6–1. 

A B

x

6 m

30 kN·m

Prob. F6–1

F6–2.

3 m

9 kN

x

Prob. F6–2

F6–3.

3 m

x

30 kN/m

25 kN.m

Prob. F6–3

F6–4.

x

3 m

12 kN/m

Prob. F6–4

In each case, draw the shear and moment diagrams for the 
beam.

F6–5.

A B

4 kN/m 4 kN/m

3 m 1.5 m1.5 m

Prob. F6–5

F6–6.

A B

3 m

10 kN/m 10 kN/m

3 m

C

Prob. F6–6

F6–7.

A
B

3 kN
 3 kN/m

2 m 1 m 1 m

C D

Prob. F6–7

F6–8.

2 m

20 kN

4 m

A
B

20 kN/m

C

Prob. F6–8
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PROBLEMS

6–1. Draw the shear and moment diagrams for the shaft. 
The bearings at A and B exert only vertical reactions on the 
shaft.

*6–4. Express the shear and moment in terms of x for 
0 6 x 6 3 m and 3 m 6 x 6 4.5 m, and then draw the 
shear and moment diagrams for the simply supported beam.

A B

250 mm
800 mm

24 kN

Prob. 6–1

6–2. The dead-weight loading along the centerline of the 
airplane wing is shown. If the wing is fixed to the fuselage at 
A, determine the reactions at A, and then draw the shear 
and moment diagram for the wing.

0.9 m

6 kN/m
3.75 kN/m

15 kN

75 kN

0.6 m
2.4 m

A

Prob. 6–2

6–3. Draw the shear and moment diagrams for the 
overhang beam.

A

B

C

4 m 2 m

8 kN/m

Prob. 6–3

A B

3 m 1.5 m

300 N/m

Prob. 6–4

6–5. Draw the shear and moment diagrams for the simply 
supported beam.

A B

M  2 kN m

4 kN

2 m 2 m 2 m

Prob. 6–5

6–6. Draw the shear and moment diagrams for the shaft. 
The bearings at A and B exert only vertical reactions on the 
shaft. Also, express the shear and moment in the shaft as a 
function of x within the region 125 mm 6 x 6 725 mm.

A B

125 mm
600 mm

75 mm

800 N

1500 N

x

Prob. 6–6
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6–7. Express the internal shear and moment in terms of x 
for 0 … x 6 L>2, and L>2 6 x 6 L, and then draw the 
shear and moment diagrams.

6–10. Draw the shear and moment diagrams for the 
compound beam. It is supported by a smooth plate at A 
which slides within the groove and so it cannot support a 
vertical force, although it can support a moment and axial 
load. 

a

A B

a a a

P P

C
D

Prob. 6–10

6–11. The engine crane is used to support the engine, 
which has a weight of 6 kN. Draw the shear and moment 
diagrams of the boom ABC when it is in the horizontal 
position shown.

1.5 m0.9 m

CB

1.2 m

A

Prob. 6–11

*6–12. Draw the shear and moment diagrams for the 
cantilevered beam.

1.5 kN 3 kN/m

A

2 m

Prob. 6–12

A B

x

L
2

L
2

w0

Prob. 6–7

*6–8. Draw the shear and moment diagrams for the beam. 
Hint: The 100-kN load must be replaced by equivalent 
loadings at point C on the axis of the beam.

B

1 m

A

1 m 1 m

75 kN

100 kN

C

0.25 m

Prob. 6–8

6–9. The load binder is used to support a load. If the force 
applied to the handle is 225 N, determine the tensions T1 
and T2 in each end of the chain and then draw the shear and 
moment diagrams for the arm ABC.

300 mm
225 N

T2

T1

A

B

C

75 mm

Prob. 6–9
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6–13. Draw the shear and moment diagrams for the beam. *6–16. A reinforced concrete pier is used to support the 
stringers for a bridge deck. Draw the shear and moment 
diagrams for the pier. Assume the columns at A and B exert 
only vertical reactions on the pier.

L/2

A

M0M0 M0

B

L/2

Prob. 6–13

6–14. Draw the shear and moment diagrams for the beam.

A

45 kN m

B

1.5 m 1.5 m

30 kN/m

1.5 m

Prob. 6–14

6–15. Members ABC and BD of the counter chair are 
rigidly connected at B and the smooth collar at D is allowed 
to move freely along the vertical slot. Draw the shear and 
moment diagrams for member ABC.

A

D

B
C

P  750 N

0.45 m0.45 m
0.45 m

Prob. 6–15

1 m 1 m 1 m 1 m1.5 m
60 kN 60 kN35 kN 35 kN 35 kN

1.5 m

A B

Prob. 6–16

6–17. Determine the placement distance a of the roller 
support so that the largest absolute value of the moment is a 
minimum. Draw the shear and moment diagrams for this 
condition.

a

w

L

A
B

Prob. 6–17

6–18. The beam is subjected to the uniform distributed 
load shown. Draw the shear and moment diagrams for the 
beam.

BA

C
2 m

1.5 m

1 m

2 kN/m

Prob. 6–18
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6–19. Draw the shear and moment diagrams for the beam. 6–23. Draw the shear and moment diagrams for the beam.

w0

A B

L
3

L
3

L
3

Prob. 6–19

*6–20. The smooth pin is supported by two leaves A and B 
and subjected to a compressive load of 0.4 kN>m caused by 
bar C. Determine the intensity of the distributed load w0 of 
the leaves on the pin and draw the shear and moment 
diagram for the pin.

20 mm

0.4 kN/m

w0 w0

20 mm 60 mm

A B

C

Prob. 6–20

6–21. Draw the shear and moment diagrams for the 
compound beam.

3 m 3 m
1.5 m 1.5 m

5 kN
3 kN/m

A
B C D

Prob. 6–21

6–22. Draw the shear and moment diagrams for the 
simply supported beam.

A
B

2 m 2 m

10 kN 10 kN

15 kN m

2 m

Prob. 6–22

A B

3 m

18 kN/m

12 kN/m

Prob. 6–23

*6–24. The footing supports the load transmitted by the 
two columns. Draw the shear and moment diagrams for the 
footing if the reaction of soil pressure on the footing is 
assumed to be uniform.

2 m 4 m 2 m

60 kN60 kN

Prob. 6–24

6–25. Draw the shear and moment diagrams for the 
overhanging beam.

B
A

4 m

45 kN/m

 2 m

Prob. 6–25

6–26. The support at A allows the beam to slide freely 
along the vertical guide so that it cannot support a vertical 
force. Draw the shear and moment diagrams for the beam.

BA

L

w

Prob. 6–26
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6–27. Draw the shear and moment diagrams for the beam. 6–31. Draw the shear and moment diagrams for the 
overhang beam.

a a a

A

M0 M0 M0

B

Prob. 6–27

*6–28. Determine the placement distance a of the roller 
support so that the largest absolute value of the moment is 
a minimum. Draw the shear and moment diagrams for this 
condition.

A

P

a

P

B

L–
2

L–
2

Prob. 6–28

6–29. Draw the shear and moment diagrams for the beam.

B

w0

A
2L
3

L
3

Prob. 6–29

6–30. The 700-N man sits in the center of the boat, which 
has a uniform width and a weight per linear length of 450 
N/m. Determine the maximum bending moment exerted on 
the boat. Assume that the water exerts a uniform distributed 
load upward on the bottom of the boat.

2.25 m 2.25 m  

Prob. 6–30

A
B

M  10 kN m
2 m 2 m 2 m

6 kN
18 kN

Prob. 6–31

*6–32. Draw the shear and moment diagrams for the beam.

BA
4.5 m 4.5 m

5 kN/m5 kN/m

Prob. 6–32

6–33. The beam is bolted or pinned at A and rests on a 
bearing pad at B that exerts a uniform distributed loading 
on the beam over its 0.6-m length. Draw the shear and 
moment diagrams for the beam if it supports a uniform 
loading of 30 kN/m.

2.4 m
0.3 m 0.6 m

A
B

30 kN/m

Prob. 6–33

6–34. Draw the shear and moment diagrams for the 
simply supported beam.

A
B

2 m 2 m

10 kN 10 kN

15 kN�m

2 m

Prob. 6–34
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6–35. A short link at B is used to connect beams AB and 
BC to form the compound beam. Draw the shear and 
moment diagrams for the beam if the supports at A and C 
are considered fixed and pinned, respectively.

6–39. The shaft is supported by a smooth thrust bearing at 
A and smooth journal bearing at B. Draw the shear and 
moment diagrams for the shaft.

A CB

4.5 m 1.5 m 1.5 m

15 kN

3 kN/m

Prob. 6–35

*6–36. The compound beam is fixed at A, pin connected 
at B, and supported by a roller at C. Draw the shear and 
moment diagrams for the beam.

A B
C

3 kN/m

2 kN

3 m 3 m

Prob. 6–36

6–37. Draw the shear and moment diagrams for the 
compound beam.

BA C
D

2 m 1 m 1 m

5 kN/m

Prob. 6–37

6–38. The compound beam is fixed at A, pin connected at 
B, and supported by a roller at C. Draw the shear and 
moment diagrams for the beam.

A B
C

2 m2 m2 m

400 N/m

600 N

Prob. 6–38

A B

1 m 1 m 1 m

900 N

400 N�m

Prob. 6–39

*6–40. The beam is used to support a uniform load along 
CD due to the 6-kN weight of the crate. Also, the reaction at 
the bearing support B can be assumed uniformly distributed 
along its width. Draw the shear and moment diagrams for 
the beam.

2.75 m 2 m
0.75 m0.5 m

C

B
A

D

Prob. 6–40
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6–42. Draw the shear and moment diagrams for the rod. It 
is supported by a pin at A and a smooth plate at B. The plate 
slides within the groove and so it cannot support a vertical 
force, although it can support a moment.

6–45. Draw the shear and moment diagrams for the beam.

4 m

A

B

2 m

15 kN

Prob. 6–42

6–43. Draw the shear and moment diagrams for the beam.

3 m 3 m
x

A B

200 N/m

400 N/m

Prob. 6–43

*6–44. Draw the shear and moment diagrams for the beam.

w0 w  w0  sin x

BA

w

x

L–
2

p–
L

L–
2

Prob. 6–44

L

BA
x

w

w0
w 

w0

L2 x2

Prob. 6–45

6–46. The truck is to be used to transport the concrete column. 
If the column has a uniform weight of w (force/length), 
determine the equal placement a of the supports from the ends 
so that the absolute maximum bending moment in the column 
is as small as possible. Also, draw the shear and moment 
diagrams for the column.

L
a a

Prob. 6–46

6–41. Draw the shear and moment diagrams for the beam.

B

4.5 m 4.5 m

50 kN/m

A

50 kN/m

A

Prob. 6–41
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6.3  Bending deforMation of a 
Straight MeMBer

In this section, we will discuss the deformations that occur when a straight 
prismatic beam, made of homogeneous material, is subjected to bending. 
The discussion will be limited to beams having a cross-sectional area that 
is symmetrical with respect to an axis, and the bending moment is applied 
about an axis perpendicular to this axis of symmetry, as shown in Fig. 6–18. 
The behavior of members that have unsymmetrical cross sections, or are 
made of several different materials, is based on similar observations and 
will be discussed separately in later sections of this chapter.

Consider the undeformed bar in Fig. 6–19a, which has a square cross 
section and is marked with horizontal and vertical grid lines. When a 
bending moment is applied, it tends to distort these lines into the pattern 
shown in Fig. 6–19b. Here the horizontal lines become curved, while the 
vertical lines remain straight but undergo a rotation. The bending moment 
causes the material within the bottom portion of the bar to stretch and 
the material within the top portion to compress. Consequently, between 
these two regions there must be a surface, called the neutral surface, in 
which horizontal fibers of the material will not undergo a change in 
length, Fig. 6–18. As noted, we will refer to the z axis that lies along the 
neutral surface as the neutral axis.

x

y

z
M

Axis of
symmetry

Longitudinal
axis

Neutral
surfaceNeutral

axis

Fig. 6–18

Before deformation

(a)  

M

M

After deformation

(b)

Horizontal lines
become curved

Vertical lines remain
straight, yet rotate

Fig. 6–19
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From these observations we will make the following three assumptions 
regarding the way the moment deforms the material. First, the 
longitudinal axis, which lies within the neutral surface, Fig. 6–20a, does 
not experience any change in length. Rather the moment will tend to 
deform the beam so that this line becomes a curve that lies in the vertical 
plane of symmetry, Fig. 6–20b. Second, all cross sections of the beam 
remain plane and perpendicular to the longitudinal axis during the 
deformation. And third, the small lateral strains due to the Poisson effect 
discussed in Sec. 3.6 will be neglected. In other words, the cross section in 
Fig. 6–19 retains its shape.

With the above assumptions, we will now consider how the bending 
moment distorts a small element of the beam located a distance x along 
the beam’s length, Fig. 6–20. This element is shown in profile view in the 
undeformed and deformed positions in Fig. 6–21. Here the line segment Note the distortion of the lines due to 

bending of this rubber bar. The top line 
stretches, the bottom line compresses, and 
the center line remains the same length. 
Furthermore the vertical lines rotate and yet 
remain straight.

neutral
axis

(b)

x

y

longitudinal
axis

z

neutral
surface

M

x

x

(a)

�x

Fig. 6–20
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∆x, located on the neutral surface, does not change its length, whereas 
any line segment ∆s, located at the arbitrary distance y above the neutral 
surface, will contract and become ∆s′ after deformation. By definition, 
the normal strain along ∆s is determined from Eq. 2–2, namely,

P = lim
∆sS0

∆s′ - ∆s
∆s

Now let’s represent this strain in terms of the location y of the segment 
and the radius of curvature r of the longitudinal axis of the element. 
Before deformation, ∆s = ∆x, Fig. 6–21a. After deformation, ∆x has a 
radius of curvature r, with center of curvature at point O′, Fig. 6–21b, so 
that ∆x = ∆s = r∆u. Also, since ∆s′ has a radius of curvature of r - y, 
then ∆s′ = (r - y)∆u. Substituting these results into the above equation, 
we get

P = lim
∆uS0

(r - y)∆u - r∆u

r∆u

or

 P = -  
y
r

  (6–7)

O¿

Before
deformation

After
deformation

(b)

yy M M

u

rr

s¿

x x

s = x

(a)

Fig. 6–21
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Since 1>r is constant at x, this important result, P = -y>r, indicates 
that the longitudinal normal strain will vary linearly with y measured 
from the neutral axis. A contraction (-P) will occur in fibers located 
above the neutral axis (+y), whereas elongation (+P) will occur in fibers 
located below the axis (-y). This variation in strain over the cross section 
is shown in Fig. 6–22. Here the maximum strain occurs at the outermost 
fiber, located a distance of y = c from the neutral axis. Using Eq. 6–7, since 
Pmax = c>r, then by division,

P
Pmax

= -a
y>r
c>r b

So that

 P = -a
y
c
bPmax   (6–8)

This normal strain depends only on the assumptions made with regard 
to the deformation. 

y
c

Normal strain distribution

�x

�Pmax

PmaxP��
y
c

Fig. 6–22
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6.4 the flexure forMula
In this section, we will develop an equation that relates the stress 
distribution within a straight beam to the bending moment acting on its 
cross section. To do this we will assume that the material behaves in a 
linear elastic manner, so that by Hooke’s law, a linear variation of 
normal strain, Fig. 6–23a, must result in a linear variation in normal 
stress, Fig. 6–23b. Hence, like the normal strain variation, s will vary 
from zero at the member’s neutral axis to a maximum value, smax,  a 
distance c farthest from the neutral axis. Because of the proportionality 
of triangles, Fig. 6–23b, or by using Hooke’s law, s = EP, and Eq. 6–8, 
we can write

 s = -a
y
c
bsmax  (6–9)

This equation describes the stress distribution over the cross-sectional 
area. The sign convention established here is significant. For positive M, 
which acts in the +z direction, positive values of y give negative values 
for s, that is, a compressive stress, since it acts in the negative x direction. 
Similarly, negative y values will give positive or tensile values for s.

y

x

c
y

Normal strain variation
(profile view)

(a)

y

x
y

M

Bending stress variation
(profile view)

(b)

c

P

Pmax

smax

s

Fig. 6–23

This wood specimen failed in bending due to its fibers being 
crushed at its top and torn apart at its bottom.
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y c

Bending stress variation

x

z
dA

M dF

y

s

s

s

smax

Fig. 6–24

Location of Neutral Axis. To locate the position of the neutral 
axis, we require the resultant force produced by the stress distribution 
acting over the cross-sectional area to be equal to zero. Noting that the 
force dF = s dA acts on the arbitrary element dA in Fig. 6–24, we have

    FR = ΣFx;   0 = LA
 dF = LA

s dA

  = LA
-a

y
c
bsmax dA

  =
-smax

c LA
y dA

Since smax>c  is not equal to zero, then

 LA
y dA = 0 (6–10)

In other words, the first moment of the member’s cross-sectional area 
about the neutral axis must be zero. This condition can only be satisfied if 
the neutral axis is also the horizontal centroidal axis for the cross 
section.* Therefore, once the centroid for the member’s cross-sectional 
area is determined, the location of the neutral axis is known.

Bending Moment. We can determine the stress in the beam if we 
require the moment M to be equal to the moment produced by the stress 
distribution about the neutral axis. The moment of dF in Fig. 6–24 is 
dM = y dF. Since dF = s dA, using Eq. 6–9, we have for the entire cross 
section,

(MR)z = ΣMz;  M = LA
y dF = LA

y (s dA) = LA
y¢ y

c
 smax≤ dA

or

 M =
smax

c LA
y2 dA  (6–11)

*Recall that the location y for the centroid of an area is defined from the equation 
y = 1y dA> 1dA. If 1y dA = 0, then y = 0, and so the centroid lies on the reference 
(neutral) axis. See Appendix A.
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The integral represents the moment of inertia of the cross-sectional area 
about the neutral axis.* We will symbolize its value as I. Hence, Eq. 6–11 
can be solved for smax  and written as

 smax =
Mc
I

 (6–12)

Here

 smax =  the maximum normal stress in the member, which occurs at a 
point on the cross-sectional area farthest away from the 
neutral axis

 M =  the resultant internal moment, determined from the method 
of sections and the equations of equilibrium, and calculated 
about the neutral axis of the cross section

 c =  perpendicular distance from the neutral axis to a point farthest 
away from the neutral axis. This is where smax  acts.

 I =  moment of inertia of the cross-sectional area about the 
neutral axis

Since smax>c = -s>y,  Eq. 6–9, the normal stress at any distance  
y can be determined from an equation similar to Eq. 6–12. We have

 s = -  
My

I
 (6–13)

Either of the above two equations is often referred to as the flexure 
formula. Although we have assumed that the member is prismatic, we 
can conservatively also use the flexure formula to determine the normal 
stress in members that have a slight taper. For example, using a 
mathematical analysis based on the theory of elasticity, a member having 
a rectangular cross section and a length that is tapered 15° will have an 
actual maximum normal stress that is about 5.4% less than that calculated 
using the flexure formula.

*See Appendix A for a discussion on how to determine the moment of inertia for various 
shapes. 
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Important poInts

procedure for analysIs

In order to apply the flexure formula, the following procedure is suggested.

Internal Moment.

 • Section the member at the point where the bending or normal stress is to be determined, and obtain the 
internal moment M at the section. The centroidal or neutral axis for the cross section must be known, 
since M must be calculated about this axis.

 • If the absolute maximum bending stress is to be determined, then draw the moment diagram in order to 
determine the maximum moment in the member.

Section property.

 • Determine the moment of inertia of the cross-sectional area about the neutral axis. Methods used for its 
calculation are discussed in Appendix A, and a table listing values of I for several common shapes is given in 
the back of the book.

Normal Stress.

 • Specify the location y, measured perpendicular to the neutral axis to the point where the normal stress is 
to be determined. Then apply the equation s = -My>I, or if the maximum bending stress is to be 
calculated, use smax = Mc>I.  When substituting the data, make sure the units are consistent.

 • The stress acts in a direction such that the force it creates at the point contributes a moment about the 
neutral axis that is in the same direction as the internal moment M. In this manner the stress distribution 
acting over the entire cross section can be sketched, or a volume element of the material can be isolated and 
used to graphically represent the normal stress acting at the point, see Fig. 6–24.

  • The cross section of a straight beam remains plane when the beam deforms due to bending. This causes 
tensile stress on one portion of the cross section and compressive stress on the other portion. In between 
these portions, there exists the neutral axis which is subjected to zero stress.

  • Due to the deformation, the longitudinal strain varies linearly from zero at the neutral axis to a maximum at 
the outer fibers of the beam. Provided the material is homogeneous and linear elastic, then the stress also 
varies in a linear fashion over the cross section.

  • Since there is no resultant normal force on the cross section, then the neutral axis must pass through the 
centroid of the cross-sectional area. 

 • The flexure formula is based on the requirement that the internal moment on the cross section is equal to the 
moment produced by the normal stress distribution about the neutral axis.
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A beam has a rectangular cross section and is subjected to the stress 
distribution shown in Fig. 6–25a. Determine the internal moment M at 
the section caused by the stress distribution (a) using the flexure 
formula, (b) by finding the resultant of the stress distribution using 
basic principles.

SOLUTION

Part  (a). The flexure formula is s max = Mc>I. From Fig. 6–25a, 
c = 60 mm and s max = 20 MPa. The neutral axis is defined as line 
NA, because the stress is zero along this line. Since the cross section 
has a rectangular shape, the moment of inertia for the area about NA 
is determined from the formula for a rectangle given in the back of 
the book; i.e.,

I =
1
12

 bh3 =
1
12

 (0.06 m)(0.12 m)3 = 8.64(10-6) m4

Therefore,

smax =
Mc
I

 ;  20 (106) N>m2 =
M(0.06 m)

8.64(10-6) m4

 M = 2.88(103) N # m = 2.88 kN # m Ans.

Part  (b). The resultant force for each of the two triangular stress 
distributions in Fig. 6–25b is graphically equivalent to the volume 
contained within each stress distribution. Thus, each volume is

F =
1
2

 (0.06 m)[20(106) N>m2](0.06 m) = 36.0(103) N = 36.0 kN

These forces, which form a couple, act in the same direction as the 
stresses within each distribution, Fig. 6–25b. Furthermore, they act 
through the centroid of each volume, i.e., 2

3 (0.06 m) = 0.04 m, from 
the neutral axis of the beam. Hence the distance between them is 
80 mm as shown. The moment of the couple is therefore

 M = (36.0 kN) (0.08 m) = 2.88 kN # m Ans.

NOTE: This result can also be obtained by choosing a horizontal strip 
of area dA = (0.06 m) dy and using integration by applying Eq. 6–11.

EXAMPLE   6.11 

A

N

60 mm

60 mm

20 MPa

20 MPa
(a)

60 mm

A

N

0.06 m

0.06 m

F

F

(b)

0.06 m

0.04 m

0.04 m

Fig. 6–25
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The simply supported beam in Fig. 6–26a has the cross-sectional area 
shown in Fig. 6–26b. Determine the absolute maximum bending stress 
in the beam and draw the stress distribution over the cross section at 
this location. Also, what is the stress at point B?

SOLUTION

Maximum  Internal  Moment. The maximum internal moment in 
the beam, M = 22.5 kN # m, occurs at the center, as indicated on the 
moment diagram, Fig. 6–26c.

Section Property. By reasons of symmetry, the neutral axis passes 
through the centroid C at the midheight of the beam, Fig. 6–26b. The 
area is subdivided into the three parts shown, and the moment of 
inertia of each part is calculated about the neutral axis using the 
parallel-axis theorem. (See Eq. A–5 of Appendix A.) Choosing to 
work in meters, we have

  I = Σ(I + Ad2)

  = 2 c 1
12

 (0.25 m)(0.020 m)3 + (0.25 m)(0.020 m)(0.160 m)2 d  

  + c 1
12

 (0.020 m)(0.300 m)3 d

  = 301.3(10-6) m4

 smax =
Mc
I

;  smax =
22.5(103) N # m(0.170 m)

301.3(10-6) m4 = 12.7 MPa  Ans.

A three-dimensional view of the stress distribution is shown in Fig. 6–26d. 
Specifically, at point B, yB = 150 mm, and so as shown in Fig. 6–26d,

sB = -  
MyB

I
;  sB = -  

22.5(103) N # m(0.150 m)

301.3(10-6) m4 = -11.2 MPa Ans.

EXAMPLE   6.12 

6 m

5 kN/m

(a)  

M (kN�m)

x (m)

22.5

3 6

(c)

20 mm

N A

B

C

20 mm

250 mm

150 mm

150 mm

(b)

20 mm

12.7 MPa

11.2 MPa

11.2 MPa

11.2 MPaB

M � 22.5 kN�m

12.7 MPa

(d)

Fig. 6–26
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The beam shown in Fig. 6–27a has a cross-sectional area in the shape 
of a channel, Fig. 6–27b. Determine the maximum bending stress that 
occurs in the beam at section a–a.

SOLUTION
Internal Moment. Here the beam’s support reactions do not have 
to be determined. Instead, by the method of sections, the segment to 
the left of section a–a can be used, Fig. 6–27c. It is important that the 
resultant internal axial force N passes through the centroid of the 
cross section. Also, realize that the resultant internal moment must be 
calculated about the beam’s neutral axis at section a–a.

To find the location of the neutral axis, the cross-sectional area is 
subdivided into three composite parts as shown in Fig. 6–27b. Using 
Eq. A–2 of Appendix A, we have

 y =
Σy∼A

ΣA
=

2[0.100 m](0.200 m)(0.015 m) + [0.010 m](0.02 m)(0.250 m)

2(0.200 m)(0.015 m) + 0.020 m(0.250 m)

 = 0.05909 m = 59.09 mm
This dimension is shown in Fig. 6–27c.

Applying the moment equation of equilibrium about the neutral 
axis, we have
a + ΣMNA = 0; 2.4 kN(2 m) + 1.0 kN(0.05909 m) - M = 0 

M = 4.859 kN # m
Section Property. The moment of inertia of the cross-sectional area 
about the neutral axis is determined using I = ∑ (I + Ad2) applied to each 
of the three composite parts of the area. Working in meters, we have

I = c 1
12

 (0.250 m)(0.020 m)3 + (0.250 m)(0.020 m)(0.05909 m - 0.010 m)2 d  

  +  2 c 1
12

 (0.015 m)(0.200 m)3 + (0.015 m)(0.200 m)(0.100 m - 0.05909 m)2 d  

 = 42.26(10-6) m4

Maximum Bending Stress. The maximum bending stress occurs at 
points farthest away from the neutral axis. This is at the bottom of the 
beam, c = 0.200 m - 0.05909 m = 0.1409 m. Here the stress is 
compressive. Thus,

smax =
Mc
I

=
4.859(103) N # m(0.1409 m)

42.26(10-6) m4 = 16.2 MPa (C) Ans.

Show that at the top of the beam the bending stress is s′ = 6.79 MPa.

NOTE: The normal force of N = 1 kN and shear force V = 2.4 kN 
will also contribute additional stress on the cross section. The 
superposition of all these effects will be discussed in Chapter 8.

EXAMPLE   6.13

2 m 1 m

2.6 kN

12
5 a

a
(a)

13

250 mm

200 mm
AN
20 mm

(b)

C

15 mm15 mm

_
y � 59.09 mm

2 m

M
N

V

(c)

2.4 kN

1.0 kN 0.05909 m

C

Fig. 6–27
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The member having a rectangular cross section, Fig. 6–28a, is designed 
to resist a moment of 40 N # m. In order to increase its strength 
and rigidity, it is proposed that two small ribs be added at its bottom, 
Fig. 6–28b. Determine the maximum normal stress in the member for 
both cases.

SOLUTION

Without Ribs. Clearly the neutral axis is at the center of the cross 
section, Fig. 6–28a, so y = c = 15 mm = 0.015 m. Thus,

I =
1
12

 bh3 =
1
12

 (0.060 m)(0.030 m)3 = 0.135(10-6) m4

Therefore the maximum normal stress is

smax =
Mc
I

=
(40 N # m)(0.015 m)

0.135(10-6) m4 = 4.44 MPa Ans.

With Ribs. From Fig. 6–28b, segmenting the area into the large main 
rectangle and the bottom two rectangles (ribs), the location y of the 
centroid and the neutral axis is determined as follows:

 y =
Σy∼A

ΣA

 =
[0.015 m](0.030 m)(0.060 m) + 2[0.0325 m](0.005 m)(0.010 m)

(0.03 m)(0.060 m) + 2(0.005 m)(0.010 m)
 = 0.01592 m

This value does not represent c. Instead

c = 0.035 m - 0.01592 m = 0.01908 m

Using the parallel-axis theorem, the moment of inertia about the 
neutral axis is

EXAMPLE   6.14 

60 mm

30 mm

_
y40 N·m

(a)

 I = c 1
12

 (0.060 m)(0.030 m)3 + (0.060 m)(0.030 m)(0.01592 m - 0.015 m)2 d

 + 2 c
1
12

 (0.010 m)(0.005 m)3 + (0.010 m)(0.005 m)(0.0325 m - 0.01592 m)2 d

 = 0.1642(10-6) m4

Therefore, the maximum normal stress is

smax =
Mc
I

=
40 N # m(0.01908 m)

0.1642(10-6) m4 = 4.65 MPa Ans.

NOTE: This surprising result indicates that the addition of the ribs to 
the cross section will increase the maximum normal stress rather than 
decrease it, and for this reason, the ribs should be omitted.

40 N�m

30 mm _
y

10 mm

10 mm

N

A

5 mm

(b)

Fig. 6–28
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P6–2. Determine the moment of inertia of the cross 
section about the neutral axis.

0.2 m

0.2 m

0.1 m

0.1 m

0.2 m

N A

0.1 m

P6–3. Determine the location of the centroid, y, and 
the  moment of inertia of the cross section about the 
neutral axis.

0.3 m

0.1 m

0.2 m

0.1 m

y

N A

P6–4. In each case, show how the bending stress acts on a 
differential volume element located at point A and point B.

A

B

P

(a)

A

(b)

B

MM

P6–5. Sketch the bending stress distribution over each 
cross section.

M

(a)  

M

(b)

PRELIMINARY PROBLEMS

Prob. P6–2

Prob. P6–3

Prob. P6–4

Prob. P6–5
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F6–9. If the beam is subjected to a bending moment of 
M = 20 kN # m, determine the maximum bending stress in 
the beam.

300 mm

20 mm

20 mm
20 mm

M

200 mm

F6–10. If the beam is subjected to a bending moment of 
M = 50 kN # m, sketch the bending stress distribution over 
the beam’s cross section.

150 mm

150 mm

300 mm

M

F6–11. If the beam is subjected to a bending moment of 
M = 50 kN # m, determine the maximum bending stress in 
the beam.

300 mm

20 mm

20 mm
20 mm

M

200 mm

F6–12. If the beam is subjected to a bending moment of 
M = 10 kN # m, determine the bending stress in the beam 
at points A and B, and sketch the results on a differential 
element at each of these points.

200 mm

M

150 mm

150 mm

50 mm

30 mm

A

B

30 mm

50 mm

30 mm

30 mm

F6–13. If the beam is subjected to a bending moment of 
M = 5 kN # m, determine the bending stress developed at 
point A and sketch the result on a differential element at 
this point.

150 mm

25 mm

M

A

150 mm

50 mm

50 mm

50 mm

25 mm

FUNDAMENTAL PROBLEMS

Prob. F6–9

Prob. F6–10

Prob. F6–11

Prob. F6–12

Prob. F6–13
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6–47. The beam is made from three boards nailed together 
as shown. If the moment acting on the cross section is M = 
600 N # m, determine the maximum bending stress in the 
beam. Sketch a three-dimensional view of the stress 
distribution and cover the cross section.

*6–48. The beam is made from three boards nailed together 
as shown. If the moment acting on the cross section is  
M = 600 N # m, determine the resultant force the bending 
stress produces on the top board.

PROBLEMS

6–51. The beam is subjected to a moment M. Determine 
the percentage of this moment that is resisted by the stresses 
acting on both the top and bottom boards, A and B, of the 
beam.

*6–52. Determine the moment M that should be applied 
to the beam in order to create a compressive stress at point 
D of sD = 30 MPa. Also sketch the stress distribution 
acting over the cross section and compute the maximum 
stress developed in the beam.

25 mm

200 mm

150 mm

20 mm

20 mm

M � 600 N�m

Probs. 6–47/48

6–49. Determine the moment M that will produce a 
maximum stress of 70 MPa on the cross section.

6–50. Determine the maximum tensile and compressive 
bending stress in the beam if it is subjected to a moment of 
M = 6 kN # m

75 mm

D

A B

12 mm

M

12 mm

75 mm

C

250 mm

12 mm12 mm

Probs. 6–49/50

150 mm

25 mm

25 mm

150 mm

M

25 mm

25 mm

B

A

D

Probs. 6–51/52

6–53. An A-36 steel strip has an allowable bending stress 
of 165 MPa. If it is rolled up, determine the smallest radius 
r of the spool if the strip has a width of 10 mm and a 
thickness of 1.5 mm. Also, find the corresponding maximum 
internal moment developed in the strip.

r

Prob. 6–53
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6–54. If the beam is subjected to an internal moment of 
M = 30 kN # m, determine the maximum bending stress in 
the beam. The beam is made from A992 steel. Sketch the 
bending stress distribution on the cross section.

6–55. If the beam is subjected to an internal moment of 
M = 30 kN # m, determine the resultant force caused by the 
bending stress distribution acting on the top flange A.

6–58. The beam is subjected to a moment M. Determine the 
percentage of this moment that is resisted by the stresses acting 
on both the top and bottom boards of the beam.

6–59. Determine the moment M that should be applied to 
the beam in order to create a compressive stress at point D 
of sD = 10 MPa. Also sketch the stress distribution acting 
over the cross section and calculate the maximum stress 
developed in the beam.

50 mm

150 mm

15 mm

10 mm

15 mm

A

50 mm

M

Probs. 6–54/55

*6–56. If the built-up beam is subjected to an internal 
moment of M = 75 kN # m, determine the maximum tensile 
and compressive stress acting in the beam.

6–57. If the built-up beam is subjected to an internal 
moment of M = 75 kN # m, determine the amount of this 
internal moment resisted by plate A.

300 mm
A

M

20 mm

10 mm

10 mm

150 mm

150 mm

150 mm

Probs. 6–56/57

20 mm

100 mm

20 mm

100 mm

20 mm
20 mm

20 mm
90 mm

M

20 mm

90 mm

20 mm

D

Probs. 6–58/59

*6–60. If the beam is subjected to an internal moment of 
M = 150 kN # m. determine the maximum tensile and 
compressive bending stress in the beam.

6–61. If the beam is made of material having an allowable 
tensile and compressive stress of (sallow)t = 168 MPa and 
(sallow)c = 154 MPa, respectively, determine the maximum 
allowable internal moment M that can be applied to the beam.

150 mm

75 mm

50  mm

75 mm

M

37. 5 mm

Probs. 6–60/61
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6–62. The shaft is supported by smooth journal bearings at 
A and B that only exert vertical reactions on the shaft. If 
d = 90 mm, determine the absolute maximum bending 
stress in the beam, and sketch the stress distribution acting 
over the cross section.

6–63. The shaft is supported by smooth journal bearings at 
A and B that only exert vertical reactions on the shaft. 
Determine its smallest diameter d if the allowable bending 
stress is sallow = 180 MPa.

6–65. The shaft is supported by a thrust bearing at A and 
journal bearing at D. If the shaft has the cross section shown, 
determine the absolute maximum bending stress in the shaft.

B

d

A

3 m 1.5 m

12 kN/m

Probs. 6–62/63

*6–64. The pin is used to connect the three links together. 
Due to wear, the load is distributed over the top and bottom 
of the pin as shown on the free-body diagram. If the 
diameter of the pin is 10 mm, determine the maximum 
bending stress on the cross-sectional area at the center 
section a–a. For the solution it is first necessary to determine 
the load intensities w1 and w2.

3600 N

1800 N 1800 N

 25 mm

10 mm

40 mm

 25 mm

a

a

w2 w2

w1

Prob. 6–74

A C
D

B

3 kN 3 kN

0.75 m 0.75 m1.5 m

40 mm 25 mm

Prob. 6–65
6–66. Determine the absolute maximum bending stress in 
the 40-mm-diameter shaft which is subjected to the 
concentrated forces. The sleeve bearings at A and B support 
only vertical forces. 

6–67. Determine the smallest allowable diameter of the 
shaft which is subjected to the concentrated forces. The 
sleeve bearings at A and B support only vertical forces, and 
the allowable bending stress is sallow = 154 MPa.

300 mm

450 mm

B

A

1800 N

375 mm

 1350 N

Probs. 6–66/67
*6–68. A shaft is made of a polymer having an elliptical 
cross section. If it resists an internal moment of 
M = 50 N # m, determine the maximum bending stress in 
the material (a) using the flexure formula, where  
Iz = 1

4 p(0.08 m)(0.04 m)3, (b) using integration. Sketch a 
three-dimensional view of the stress distribution acting over 
the cross-sectional area. Here Ix = 1

4 p(0.08 m)(0.04 m)3.

6–69. Solve Prob. 6–68 if the moment M = 50 N # m is 
applied about the y axis instead of the x axis. Here 
Iy = 14 p (0.04 m)(0.08 m)3.

y

z x

M � 50 N�m

80 mm

160 mm

y
———
(40)

2

2

z
———
(80)

2

2
� � 1

Probs. 6–68/69
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6–70. The beam is subjected to a moment of M = 40 kN # m. 
Determine the bending stress at points A and B. Sketch the 
results on a volume element acting at each of these points.

6–73. The axle of the freight car is subjected to wheel 
loadings of 100 kN. If it is supported by two journal bearings 
at C and D, determine the maximum bending stress developed 
at the center of the axle, where the diameter is 137.5 mm.

50 mm
50 mm

50 mm

B

M = 40 kN�m50 mm

50 mm

50 mm

A

Prob. 6–70

6–71. Determine the dimension a of a beam having a 
square cross section in terms of the radius r of a beam with 
a circular cross section if both beams are subjected to the 
same internal moment which results in the same maximum 
bending stress.

a

r
a

Prob. 6–71

*6–72. A portion of the femur can be modeled as a tube 
having an inner diameter of 9.5 mm and an outer diameter 
of 32 mm. Determine the maximum elastic static force P 
that can be applied to its center. Assume the bone to be 
roller supported at its ends. The s-P diagram for the bone 
mass is shown and is the same in tension as in compression.

100  mm 100 mm

16.10

8.75

0.02 0.05

Ps  (MPa)

P (mm/mm)

Prob. 6–72

DC A B

100 kN 100 kN

250 mm 250 mm
1500 m

Prob. 6–73
6–74. The chair is supported by an arm that is hinged so it rotates 
about the vertical axis at A. If the load on the chair is 900 N 
and  the arm is a hollow tube section having the dimensions 
shown, determine the maximum bending stress at section a–a.

25 mm

75 mm

a

a

A

900 N

63 mm

13 mm900 mm

Prob. 6–74
6–75. The boat has a weight of 11.5 kN and a center of 
gravity at G. If it rests on the trailer at the smooth contact A 
and can be considered pinned at B, determine the absolute 
maximum bending stress developed in the main strut of the 
trailer. Consider the strut to be a box-beam having the 
dimensions shown and pinned at C.

0.45 m

0.9 m
D

A

B

C

0.3 m

1.5 m 1.2 m

G

45 mm

75 mm 45 mm

37.5 mm

Prob. 6–75
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*6–76. The steel beam has the cross-sectional area shown. 
Determine the largest intensity of the distributed load w0 
that it can support so that the maximum bending stress in 
the beam does not exceed sallow = 160 MPa.

6–77. The steel beam has the cross-sectional area shown. If 
w0 = 30 kN>m, determine the maximum bending stress in 
the beam.

*6–80.  The two solid steel rods are bolted together along 
their length and support the loading shown. Assume the 
support at A is a pin and B is a roller. Determine the 
required diameter d of each of the rods if the allowable 
bending stress is sallow = 130 MPa.

6–81. Solve Prob. 6–80 if the rods are rotated 90° so that 
both rods rest on the supports at A (pin) and B (roller).

300 mm

200 mm

6 mm

3 m 3 m

6 mm

6 mm

w0

Probs. 6–76/77

6–78. If the beam is subjected to a moment of 
M = 100 kN # m, determine the bending stress at points A, 
B, and C. Sketch the bending stress distribution on the cross 
section.

6–79. If the beam is made of material having an allowable 
tensile and compressive stress of (sallow)t = 125 MPa and  
(sallow)c = 150 MPa, respectively, determine the maximum 
moment M that can be applied to the beam.

M
300 mm

150 mm

30 mm

150 mm

C

30 mm

B

A

Probs. 6–78/79

B

A

2 m

80 kN
20 kN/m

2 m

Prob. 6–80/81

6–82. If the compound beam in Prob. 6–37 has a square 
cross section of side length a, determine the minimum value 
of a if the allowable bending stress is sallow = 150 MPa.

6–83. If the beam in Prob. 6–19 has a rectangular cross 
section with a width b and a height h, determine the absolute 
maximum bending stress in the beam.

*6–84. Determine the absolute maximum bending stress 
in the 80-mm-diameter shaft which is subjected to the 
concentrated forces. There is a journal bearing at A and a 
thrust bearing at B.

6–85. Determine, to the nearest millimeter, the smallest 
allowable diameter of the shaft which is subjected to the 
concentrated forces. There is a journal bearing at A and a 
thrust bearing at B. The allowable bending stress is 
sallow = 150 MPa.

0.5 m 0.6 m0.4 m

20 kN

A B

12 kN

Probs. 6–84/85
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6–86. If the beam is subjected to an internal moment of 
M = 3 kN # m, determine the maximum tensile and 
compressive stress in the beam. Also, sketch the bending 
stress distribution on the cross section.

6–87. If the allowable tensile and compressive stress for 
the beam are (sallow)t = 14 MPa and (sallow)c = 21 MPa, 
respectively, determine the maximum allowable internal 
moment M that can be applied on the cross section.

*6–88. If the beam is subjected to an internal moment of 
M = 3 kN # m, determine the resultant force of the bending 
stress distribution acting on the top vertical board A.

6–90. The wood beam has a rectangular cross section in 
the proportion shown. Determine its required dimension b 
if the allowable bending stress is sallow = 10 MPa.

100 mm

25 mm

75 mm

75 mm
75 mm

 25 mm

 25 mm

 25 mm

A

M

Probs. 6–86/87/88

6–89. A timber beam has a cross section which is originally 
square. If it is oriented as shown, determine the dimension 
h′ so that it can resist the maximum moment possible. By 
what factor is this moment greater than that of the beam 
without its top or bottom flattened?

h
h¿

Prob. 6–89

500 N/m

2 m 2 m

1.5b

b
BA

Prob. 6–90

6–91. Determine the absolute maximum bending stress in 
the tubular shaft if di = 160 mm and do = 200 mm.

*6–92. The tubular shaft is to have a cross section such 
that its inner diameter and outer diameter are related by 
di = 0.8do. Determine these required dimensions if the 
allowable bending stress is sallow = 155 MPa.

A B

di do

3 m 1 m

15 kN/m

60 kN  m

Probs. 6–91/92

6–93. If the intensity of the load w = 15 kN>m, determine the 
absolute maximum tensile and compressive stress in the beam.

6–94. If the allowable bending stress is sallow = 150 MPa, 
determine the maximum intensity w of the uniform 
distributed load.

6 m

150 mm

300 mm

A B

w

Probs. 6–93/94
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6–95. The beam has a rectangular cross section as shown. 
Determine the largest intensity w of the uniform distributed 
load so that the bending stress in the beam does not exceed 
smax = 10 MPa.

*6–96. The beam has the rectangular cross section shown. 
If w = 1 kN>m, determine the maximum bending stress in 
the beam. Sketch the stress distribution acting over the 
cross section.

*6–100. If the reaction of the ballast on the railway tie can 
be assumed uniformly distributed over its length as shown, 
determine the maximum bending stress developed in the 
tie. The tie has the rectangular cross section with thickness 
t = 150 mm.

6–101. The reaction of the ballast on the railway tie can be 
assumed uniformly distributed over its length as shown. If 
the wood has an allowable bending stress of 
sallow = 10.5 MPa, determine the required minimum 
thickness t of the rectangular cross sectional area of the tie 
to the nearest multiples of 5 mm.

2 m 2 m 2 m

50 mm

150 mm

w

Probs. 6–95/96

6–97. The simply supported truss is subjected to the 
central distributed load. Neglect the effect of the diagonal 
lacing and determine the absolute maximum bending stress 
in the truss. The top member is a pipe having an outer 
diameter of 25 mm and thickness of 5 mm and the bottom 
member is a solid rod having a diameter of 12 mm.

1.8 m

141.5 mm

1.8 m 1.8 m

1.5 kN/m

Prob. 6–97

6–98. If d = 450 mm, determine the absolute maximum 
bending stress in the overhanging beam.

6–99. If the allowable bending stress is sallow = 6 MPa, 
determine the minimum dimension d of the beam’s 
cross-sectional area to the nearest mm.

4 m

8 kN/m

2 m

12 kN

d

75 mm

25 mm
125 mm

25 mm

75 mm
A

B

Probs. 6–98/99

1.5 m0.45 m 0.45 m

75 kN 75 kN

300 mm

t

w

Probs. 6–100/101

*6–102. A log that is 0.6 m in diameter is to be cut into a 
rectangular section for use as a simply supported beam. If 
the allowable bending stress for the wood is sallow = 56 MPa,  
determine the required width b and height h of the beam 
that will support the largest load possible. What is this load?

6–103. A log that is 0.6 m in diameter is to be cut into a 
rectangular section for use as a simply supported beam. If 
the allowable bending stress for the wood is sallow = 56 MPa,  
determine the largest load P that can be supported if the 
width of the beam is b = 200 mm.

2.4 m

 0.6 m

h

b

2.4 m

P

Probs. 6–102/103
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M x

y

Neutral axis

Axis of symmetry

z

y

y

(a)

dF � sdA

dA

C

x
M

z

z

 

y

x

c
y M

Bending-stress distribution
(profile view)

(b)

smax

s

Fig. 6–30

M x

y

Neutral axis

Axis of symmetry

z

Fig. 6–29

6.5 unSyMMetric Bending
When developing the flexure formula, we required the cross-sectional 
area to be symmetric about an axis perpendicular to the neutral axis and 
the resultant moment M to act along the neutral axis. Such is the case for 
the “T” and channel sections shown in Fig. 6–29. In this section we will 
show how to apply the flexure formula either to a beam having a cross-
sectional area of any shape or to a beam supporting a moment that acts 
in any direction.

Moment Applied About Principal Axis. Consider the beam’s 
cross section to have the unsymmetrical shape shown in Fig. 6–30a. As  
in Sec. 6.4, the right-handed x, y, z coordinate system is established such 
that the origin is located at the centroid C on the cross section, and the 
resultant internal moment M acts along the +z axis. It is required that 
the stress distribution acting over the entire cross-sectional area have a 
zero force resultant. Also, the moment of the stress distribution about the 
y  axis must be zero, and the moment about the z axis must equal M. 
These three conditions can be expressed mathematically by considering 
the force acting on the differential element dA located at (0, y, z),  
Fig. 6–30a. Since this force is dF = s dA, we have

  FR = ΣFx;   0 = - LA
s dA  (6–14)

 (MR)y = ΣMy;   0 = - LA
zs dA (6–15)

 (MR)z = ΣMz;   M = LA
ys dA (6–16)
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Z-sectioned members are often used in 
light-gage metal building construction to 
support roofs. To design them to support 
bending loads, it is necessary to determine 
their principal axes of inertia.

z

M

y

(a)

M

y

x

(b)

z

M

y

x

(c)

z

Fig. 6–31

As shown in Sec. 6.4, Eq. 6–14 is satisfied since the z axis passes through 
the centroid of the area. Also, since the z axis represents the neutral axis 
for the cross section, the normal stress will vary linearly from zero at the 
neutral axis to a maximum at 0 y 0 = c, Fig. 6–30b. Hence the stress 
distribution is defined by s = -(y>c)smax. When this equation is 
substituted into Eq. 6–16 and integrated, it leads to the flexure formula 
smax = Mc>I . When it is substituted into Eq. 6–15, we get

0 =
-smax

c LA
yz dA

which requires

LA
yz dA = 0

This integral is called the product of inertia for the area. As indicated 
in Appendix A, it will indeed be zero provided the y and z axes are 
chosen as principal axes of inertia for the area. For an arbitrarily shaped 
area, such as the one in Fig. 6–30a, the orientation of the principal axes 
can always be determined, using the inertia transformation equations as 
explained in Appendix A, Sec. A.4. If the area has an axis of symmetry, 
however, the principal axes can easily be established since they will 
always be oriented along the axis of symmetry and perpendicular to it.

For example, consider the members shown in Fig. 6–31. In each of these 
cases, y and z represent the principal axes of inertia for the cross section. 
In Fig. 6–31a the principal axes are located by symmetry, and in 
Figs. 6–31b and 6–31c their orientation is determined using the methods 
of Appendix A. Since M is applied only about one of the principal axes  
(the z axis), the stress distribution has a linear variation, and is determined 
from the flexure formula, s = -My>Iz, as shown for each case.
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x
z

y

(c)

x
z

y

Mz � Mcosu

My � Msinu

(b)

xz

y

M

(a)

�
�

u

Fig. 6–32

Moment Arbitrarily Applied. Sometimes a member may be 
loaded such that M does not act about one of the principal axes of the 
cross section. When this occurs, the moment should first be resolved into 
components directed along the principal axes, then the flexure formula 
can be used to determine the normal stress caused by each moment 
component. Finally, using the principle of superposition, the resultant 
normal stress at the point can be determined.

To formalize this procedure, consider the beam to have a rectangular 
cross section and to be subjected to the moment M, Fig. 6–32a, where M 
makes an angle u with the maximum principal z axis, i.e., the axis of 
maximum moment of inertia for the cross section. We will assume u is 
positive when it is directed from the +z axis towards the +y axis. Resolving 
M into components, we have Mz = M cos u and My = M sin u, Figs. 6–32b 
and 6–32c. The normal-stress distributions that produce M and its 
components Mz and My are shown in Figs. 6–32d, 6–32e, and 6–32f, where 
it is assumed that (sx)max 7 (s′x)max. By inspection, the maximum tensile 
and compressive stresses [(sx)max + (s′x)max]  occur at two opposite 
corners of the cross section, Fig. 6–32d.

Applying the flexure formula to each moment component in Figs. 6–32b 
and 6–32c, and adding the results algebraically, the resultant normal stress 
at any point on the cross section, Fig. 6–32d, is therefore

 s = -
Mzy

Iz
+

Myz

Iy
 (6–17)

Here,

s =  the normal stress at the point. Tensile stress is positive and 
compressive stress is negative.

y, z =  the coordinates of the point measured from a right-handed 
coordinate system, x, y, z, having their origin at the centroid of 
the cross-sectional area. The x axis is directed outward from the 
cross section and the y and z axes represent, respectively, the 
principal axes of minimum and maximum moment of inertia 
for the area.

Mz, My =  the resultant internal moment components directed along the 
maximum z and minimum y principal axes. They are positive if 
directed along the +z and +y axes, otherwise they are negative. 
Or, stated another way, My = M sin u  and Mz = M cos u , 
where u is measured positive from the +z axis towards the 
+y axis.

Iz, Iy =  the maximum and minimum principal moments of inertia 
calculated about the z and y axes, respectively. See Appendix A.
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(e)
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(f)
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(sx)max

(sx)max

(s¿x)max

(s¿x)max

Fig. 6–32 (cont.)

Orientation of the Neutral Axis. The equation defining the 
neutral axis, and its inclination a, Fig. 6–32d, can be determined by 
applying Eq. 6–17 to a point y, z where s = 0, since by definition no 
normal stress acts on the neutral axis. We have

 y =
MyIz

MzIy
 z

Since Mz = M cos u  and My = M sin u , then

 y = ¢ Iz

Iy
 tan u≤z  (6–18)

Since the slope of this line is tan a = y>z, then

 tan a =
Iz

Iy
 tan u   (6–19)

Important poInts

 • The flexure formula can be applied only when bending occurs 
about axes that represent the principal axes of inertia for the 
cross section. These axes have their origin at the centroid and 
are oriented along an axis of symmetry, if there is one, and 
perpendicular to it.

 • If the moment is applied about some arbitrary axis, then the 
moment must be resolved into components along each of the 
principal axes, and the stress at a point is determined by 
superposition of the stress caused by each of the moment 
components.
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EXAMPLE   6.15

The rectangular cross section shown in Fig. 6–33a is subjected to a bending 
moment of M = 12 kN # m. Determine the normal stress developed at each 
corner of the section, and specify the orientation of the neutral axis.

SOLUTION

Internal Moment Components. By inspection it is seen that the y 
and z axes represent the principal axes of inertia since they are axes of 
symmetry for the cross section. As required we have established the  
z axis as the principal axis for maximum moment of inertia. The moment 
is resolved into its y and z components, where

 My = -
4
5

 (12 kN # m) = -9.60 kN # m

 Mz =
3
5

 (12 kN # m) = 7.20 kN # m

Section Properties. The moments of inertia about the y and z axes are

 Iy =
1
12

 (0.4 m)(0.2 m)3 = 0.2667(10-3) m4

 Iz =
1
12

 (0.2 m)(0.4 m)3 = 1.067(10-3) m4

Bending Stress. Thus,

 s = -
Mzy

Iz
+

Myz

Iy

 sB = -
7.20(103) N # m(0.2 m)

1.067(10-3) m4 +
-9.60(103) N # m(-0.1 m)

0.2667(10-3) m4 = 2.25 MPa  Ans.

 sC = -
7.20(103) N # m(0.2 m)

1.067(10-3) m4 +
-9.60(103) N # m(0.1 m)

0.2667(10-3) m4 = -4.95 MPa  Ans.

 sD = -
7.20(103) N # m(-0.2 m)

1.067(10-3) m4 +
-9.60(103) N # m(0.1 m)

0.2667(10-3) m4 = -2.25 MPa  Ans.

 sE = -
7.20(103) N # m(-0.2 m)

1.067(10-3) m4 +
-9.60(103) N # m(-0.1 m)

0.2667(10-3) m4 = 4.95 MPa  Ans.

The resultant normal-stress distribution has been sketched using these 
values, Fig. 6–33b. Since superposition applies, the distribution is linear 
as shown.
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Orientation of Neutral Axis. The location z of the neutral axis (NA), 
Fig. 6–33b, can be established by proportion. Along the edge BC, we 
require

2.25 MPa
z

=
4.95 MPa

(0.2 m - z)

0.450 - 2.25z = 4.95z

z = 0.0625 m

In the same manner this is also the distance from D to the neutral axis.
We can also establish the orientation of the NA using Eq. 6–19, which 

is used to specify the angle a that the axis makes with the z or maximum 
principal axis. According to our sign convention, u must be measured 
from the +z axis toward the +y axis. By comparison, in Fig. 6–33c, 
u = -tan-1 43 = -53.1° (or u = +306.9°). Thus,

 tan a =
Iz

Iy
 tan u

 tan a =
1.067(10-3) m4

0.2667(10-3) m4 tan(-53.1°)

  a = -79.4° Ans.

This result is shown in Fig. 6–33c. Using the value of z calculated above, 
verify, using the geometry of the cross section, that one obtains the same 
answer.

x

zy

M � 12 kN�m

(a)

0.2 m

0.2 m

0.1 m

0.1 m

E

D

B

C

5

3 4

  (b)

A

D

C

B

N

E

0.2 m

z

2.25 MPa

4.95 MPa

4.95 MPa

2.25 MPa

(c)

3

45

A

B C

D

N
y

z

E

M � 12 kN�m

a � �79.4�

u � �53.1�

Fig. 6–33
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EXAMPLE   6.16

The Z-section shown in Fig. 6–34a is subjected to the bending moment of 
M = 20 kN # m. The principal axes y and z are oriented as shown, such that 
they represent the minimum and maximum principal moments of inertia, 
Iy = 0.960(10-3) m4 and Iz = 7.54(10-3) m4, respectively.* Determine the 
normal stress at point P and the orientation of the neutral axis.

SOLUTION

For use of Eq. 6–19, it is important that the z axis represent the principal 
axis for the maximum moment of inertia. (For this case most of the area 
is located farthest from this axis.)

Internal Moment Components. From Fig. 6–34a,

 My = 20 kN # m sin 57.1° = 16.79 kN # m

 Mz = 20 kN # m cos 57.1° = 10.86 kN # m

Bending Stress. The y and z coordinates of point P must be 
determined first. Note that the y′,  z′ coordinates of P are (-0.2 m, 0.35 m). 
Using the colored triangles from the construction shown in Fig. 6–34b, 
we have

 yP = -0.35 sin 32.9° - 0.2 cos 32.9° = -0.3580 m

 zP = 0.35 cos 32.9° - 0.2 sin 32.9° = 0.1852 m

Applying Eq. 6–17,

 sP = -  
Mz yP

Iz
+

My zP

Iy

= -  
(10.86(103) N # m)(-0.3580 m)

7.54(10-3) m4 +
(16.79(103) N # m)(0.1852 m)

0.960(10-3) m4

 = 3.76 MPa Ans.

Orientation of Neutral Axis. Using the angle u = 57.1° between  
M and the z axis, Fig. 6–34a, we have 

 tan a = J 7.54(10-3) m4

0.960(10-3) m4 R  tan 57.1°

 a = 85.3° Ans.

The neutral axis is oriented as shown in Fig. 6–34b.

(a)

z

Mz

My

P

400 mm

100 mm

300 mm

M � 20 kN�m

100 mm

32.9�

y

z¿

y¿
u � 57.1�

A

zz¿

(b)

N

0.350 m0.200 m
32.9�

32.9�

y

y¿

P

a � 85.3�

Fig. 6–34

* These values are obtained using the methods of Appendix A.  
(See Example A.4 or A.5.)
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FUNDAMENTAL PROBLEMS

F6–14. Determine the bending stress at corners A and B. 
What is the orientation of the neutral axis?

y

x

4
35

150 mm

150 mm

100 mm

100 mm

A

B

z

50 kN�m

Prob. F6–14

F6–15. Determine the maximum stress in the beam’s cross 
section.

C

D

A

B

150 mm

100 mm 75 N m30

y

z

Prob. F6–15

PROBLEMS

*6–104. The member has a square cross section and is 
subjected to the moment M = 850 N # m. Determine the 
stress at each corner and sketch the stress distribution.  
Set u = 45°.

250 mm

125 mmB

A

z

y

E

M � 850 N�m
C

125 mm

D

u

Prob. 6–104

6–105. The member has a square cross section and is 
subjected to the moment M = 850 N # m as shown. 
Determine the stress at each corner and sketch the 
stress distribution. Set u = 30°.

250 mm

125 mmB

A

z

y

E

M � 850 N�m
C

125 mm

D

u

Prob. 6–105
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6–106. Consider the general case of a prismatic beam 
subjected to bending-moment components My and Mz when 
the x, y, z axes pass through the centroid of the cross section. 
If the material is linear elastic, the normal stress in the beam 
is a linear function of position such that s = a + by + cz. 
Using the equilibrium conditions 0 = 1As dA, 
My = 1Azs dA, Mz = 1A- ys dA, determine the constants a, 
b, and c, and show that the normal stress can be determined 
from the equation  s = [-(MzIy +  MyIyz)y +  (MyIz +  
  MzIyz)z]>(IyIz -  Iyz

 2), where the moments and products of 
inertia are defined in Appendix A.

6–109. The steel shaft is subjected to the two loads. If the 
journal bearings at A and B do not exert an axial force on 
the shaft, determine the required diameter of the shaft if the 
allowable bending stress is sallow = 180 MPa.

A

B

1.25 m

30�
4 kN

1.25 m

1 m

4 kN30�

Prob. 6–109

6–110. The 65-mm-diameter steel shaft is subjected to the two 
loads. If the journal bearings at A and B do not exert an axial 
force on the shaft, determine the absolute maximum bending 
stress developed in the shaft.

A

B

1.25 m

30�
4 kN

1.25 m

1 m

4 kN30�

Prob. 6–110

6–111. For the section, Iz′ = 31.7(10−6) m4, Iy′ = 114(10−6) m4, 
Iy′z′ = −15.8(10−6) m4. Using the techniques outlined in 
Appendix A, the member’s cross-sectional area has principal 
moments of inertia of Iz = 28.8(10−6) m4 and Iy = 117(10−6) m4, 
calculated about the principal axes of inertia y and z, 
respectively. If the section is subjected to the moment  
M = 15 kN # m, determine the stress at point A using Eq. 6–17.

*6–112. Solve Prob. 6–111 using the equation developed 
in Prob. 6–106.

60 mm

60 mm

60 mm

60 mm

140 mm 80 mm

z¿

y¿

10.5�

M � 15 kN�m

C

A

z

y

Probs. 6–111/112

y

y

z x

z

dA
My

C

Mz

s

Prob. 6–106

6–107. If the resultant internal moment acting on the cross 
section of the aluminum strut has a magnitude of 
M = 520 N # m and is directed as shown, determine the 
bending stress at points A and B. The location y of the 
centroid C of the strut’s cross-sectional area must be 
determined. Also, specify the orientation of the neutral axis.

*6–108. The resultant internal moment acting on the cross 
section of the aluminum strut has a magnitude of 
M = 520 N # m and is directed as shown. Determine 
maximum bending stress in the strut. The location y of the 
centroid C of the strut’s cross-sectional area must be 
determined. Also, specify the orientation of the neutral axis.

20 mm20 mm

z
B

C

–y

200 mm

y

 M  520 N m

12
5 13

200 mm 200 mm

A

20 mm

Probs. 6–107/108
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6–113. If the beam is subjected to the internal moment of 
M = 1200 kN # m, determine the maximum bending stress 
acting on the beam and the orientation of the neutral axis.

6–114. If the beam is made from a material having an 
allowable tensile and compressive stress of 
(sallow)t = 125 MPa and (sallow)c = 150 MPa respectively, 
determine the maximum allowable internal moment M that 
can be applied to the beam.

*6–116. For the section, Iy′ =  31.7(10-6) m4,  Iz′ =  114(10-6) m4,  
Iy′z′ = 15.8(10-6) m4 . Using the techniques outlined in 
Appendix A, the member’s cross-sectional area has 
principal moments of inertia of Iy = 28.8(10-6) m4  and 
Iz = 117(10-6) m4 , calculated about the principal axes of 
inertia y and z, respectively. If the section is subjected to a 
moment of M = 2500 N # m, determine the stress produced 
at point A, using Eq. 6–17.

6–117. Solve Prob. 6–116 using the equation developed in 
Prob. 6–106.

150 mm

150 mm

150 mm

150 mm

300 mm

150 mm

y

xz

M

30

Probs. 6–113/114

6–115. The shaft is subjected to the vertical and horizontal 
loadings of two pulleys D and E as shown. It is supported on 
two journal bearings at A and B which offer no resistance to 
axial loading. Furthermore, the coupling to the motor at C can 
be assumed not to offer any support to the shaft. Determine 
the required diameter d of the shaft if the allowable bending 
stress is sallow = 180 MPa.

1 m

150 N

400 N

400 N

60 mm

100 mm

150 N

1 m
A

D

E

B
C

yz

x

1 m

1 m

Prob. 6–115

60 mm

60 mm

60 mm 60 mm

140 mm

80 mm

z¿

y¿

10.5�

M � 2500 N�m C

A

z

y

Probs. 6–116/117

6–118. If the applied distributed loading of w = 4 kN>m can 
be assumed to pass through the centroid of the beam’s  
cross-sectional area, determine the absolute maximum 
bending stress in the joist and the orientation of the neutral 
axis. The beam can be considered simply supported at A and B.

6–119. Determine the maximum allowable intensity w of 
the uniform distributed load that can be applied to the 
beam. Assume w passes through the centroid of the beam’s 
cross-sectional area, and the beam is simply supported at A 
and B. The allowable bending stress is sallow = 165 MPa.

A

B

6 m
w(6 m)

15�

15�

15�

15�

w

100 mm
100 mm

100 mm

15 mm

15 mm
10 mm

Probs. 6–118/119



338  Chapter 6  Bending

6

Steel plates

M

Fig. 6–35

*6.6 coMpoSite BeaMS
Beams constructed of two or more different materials are referred to as 
composite beams. An example is a beam made of wood with straps of steel 
at its top and bottom, Fig. 6–35. Engineers purposely design beams in this 
manner in order to develop a more efficient means for supporting loads.

Since the flexure formula was developed only for beams made of 
homogeneous material, this formula cannot be applied to directly 
determine the normal stress in a composite beam. In this section, 
however, we will develop a method for modifying or “transforming” a 
composite beam’s cross section into one made of a single material. Once 
this has been done, the flexure formula can then be used to determine 
the bending stress in the beam.

To explain how to do this we will consider a composite beam made of 
two materials, 1 and 2, bonded together as shown in Fig. 6–36a. If a 
bending moment is applied to this beam, then, like one that is 
homogeneous, the total cross-sectional area will remain plane after 
bending, and hence the normal strains will vary linearly from zero at 
the neutral axis to a maximum farthest from this axis, Fig. 6–36b. 
Provided the material is linear elastic, then at any point the normal 
stress in material 1 is determined from s = E1P, and for material 2 the 
stress is found from s = E2P. Assuming material 1 is stiffer than 
material 2, then E1 7 E2 and so the stress distribution will look like 
that shown in Fig.  6–36c or 6–36d. In particular, notice the jump in 
stress that occurs at the juncture of the two materials. Here the strain is 
the same, but since the modulus of elasticity for the materials suddenly 
changes, so does the stress. 
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Rather than using this complicated stress distribution, it is simpler to 
transform the beam into one made of a single material. For example, if the 
beam is thought to consist entirely of the less stiff material 2, then the 
cross section will look like that shown in Fig. 6–36e. Here the height h of 
the beam remains the same, since the strain distribution in Fig. 6–36b 
must be the same. However, the upper portion of the beam must be 
widened in order to carry a load equivalent to that carried by the stiffer 
material 1 in Fig. 6–36d. This necessary width can be determined  
by considering the force dF acting on an area dA = dz dy of the beam  
in Fig. 6–36a. It is dF = s dA = E1P (dz dy). Assuming the width  
of a corresponding element of height dy in Fig. 6–36e is n  dz, then 
dF′ = s′dA′ = E2P (n dz dy). Equating these forces, so that they 
produce the same moment about the z (neutral) axis, we have

E1P (dz dy) = E2P (n dz dy)

or

n =
E1

E2
 (6–20)
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Less stiff
material

M
dy

dz

y

z

y h

b
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(a)

x

2

1

 

M
x

y

Normal strain variation
(profile view)

(b)

M
x

y

Bending stress variation
(profile view)

(c)    

y

z
x

M

Bending stress variation

(d)    

dy

y

z

h

b

2

(e)
Beam transformed to material   2

x

2

ndz

y

b2 � nb

Fig. 6–36
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h

b1 � n¿b

1

1

b

(f)

Beam transformed to material   1

2

2

y

z

(g)

Bending stress variation for
beam transformed to material  2

x

M

1

1

y

z

(h)

Bending stress variation for
beam transformed to material  1

x

M

Fig. 6–36 (cont.)

  • Composite beams are made of different materials in order to 
efficiently carry a load. Application of the flexure formula 
requires the material to be homogeneous, and so the cross 
section of the beam must be transformed into a single material if 
this formula is to be used to calculate the bending stress.

  • The transformation factor n is a ratio of the moduli of the 
different materials that make up the beam. Used as a multiplier, 
it converts the width of the cross section of the composite beam 
into a beam made of a single material so that this beam has the 
same strength as the composite beam. Stiff material will thus be 
replaced by more of the softer material and vice versa.

  • Once the stress in the transformed material is determined, then 
it must be multiplied by the transformation factor to obtain the 
stress in any transformed material of the actual beam.

Important poInts

This dimensionless number n is called the transformation factor. It 
indicates that the cross section, having a width b on the original beam, 
Fig. 6–36a, must be increased in width to b2 = nb in the region where 
material 1 is being transformed into material 2, Fig. 6–36e.

In a similar manner, if the less stiff material 2 is transformed into the 
stiffer material 1, the cross section will look like that shown in Fig. 6–36f. 
Here the width of material 2 has been changed to b1 = n′b, where 
n′ = E2>E1 . In this case the transformation factor n′ will be less than 
one since E1 7 E2 . In other words, we need less of the stiffer material to 
support the moment.

Once the beam has been transformed into one having a single material, 
the normal-stress distribution over the transformed cross section will be 
linear as shown in Fig. 6–36g or Fig. 6–36h. Consequently, the flexure 
formula can now be applied in the usual manner to determine the stress 
at each point on the transformed beam. Of course, the stress in the 
transformed beam will be equivalent to the stress in the same material of 
the actual beam; however, the stress in the transformed material has to 
be multiplied by the transformation factor n (or n′) to obtain the stress 
in any other actual material that was transformed. This is because the 
area of the transformed material, dA′ = n dz dy, is n times the area of 
actual material dA = dz dy. That is,

 dF = s dA = s′dA′
  s dz dy = s′n dz dy

  s = ns′ (6–21)

Example 6.17 numerically illustrates application of this method.
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(a)

b

d

M

A

(b)

M

Concrete assumed
cracked within
this region.

N

(c)

A

N

b
dh¿

C

n Ast

Fig. 6–37

*Inspection of its stress–strain diagram in Fig. 3–12 reveals that concrete can be 12.5 
times stronger in compression than in tension. 

*6.7 reinforced concrete BeaMS
All beams subjected to pure bending must resist both tensile and 
compressive stresses. Concrete, however, is very susceptible to cracking 
when it is in tension, and therefore by itself it will not be suitable for 
resisting a bending moment.* In order to circumvent this shortcoming, 
engineers place steel reinforcing rods within a concrete beam at a location 
where the concrete is in tension, Fig. 6–37a. To be most effective, these 
rods are located farthest from the beam’s neutral axis, so that the moment 
created by the forces developed in them is greatest about the neutral axis. 
Furthermore, the rods are required to have some concrete coverage to 
protect them from corrosion or loss of strength in the event of a fire. 
Codes used for actual reinforced concrete design assume the concrete will 
not be able to support any tensile loading, since the possible cracking of 
concrete is unpredictable. As a result, the normal-stress distribution acting 
on the cross-sectional area of a reinforced concrete beam is assumed to 
look like that shown in Fig. 6–37b.

The stress analysis requires locating the neutral axis and determining the 
maximum stress in the steel and concrete. To do this, the area of steel Ast  is 
first transformed into an equivalent area of concrete using the 
transformation factor n = Est>Econc, as discussed in Sec. 6.6. This ratio, 
which gives n 7 1, requires a “greater” amount of concrete to replace the 
steel. The transformed area is nAst  and the transformed section looks like 
that shown in Fig. 6–37c. Here d represents the distance from the top of the 
beam to the thin strip of (transformed) steel, b is the beam’s width, and h′ 
is the yet unknown distance from the top of the beam to the neutral axis. 
To obtain h′, we require the neutral axis to pass through the centroid C of 
the cross-sectional area of the transformed section, Fig. 6–37c. With 
reference to the neutral axis, therefore, the moment of the two areas 
together, Σy∼A, must be zero, since y = Σy∼A>ΣA = 0. Thus,

 bh′ah′
2
b - nAst  (d - h′) = 0

 
b
2

 h′2 + nAst h′ - nAst d = 0

Once h′ is obtained from this quadratic equation, the solution proceeds 
in the usual manner for obtaining the stress in the beam. Example 6.18 
numerically illustrates application of this method.
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 (a)

150 mm

20 mm

C

B
150 mm

M � 2 kN�m

  

_
y

9 mm

150 mm

20 mm

C

B¿

 N

A

150 mm

(b)

Fig. 6–38

EXAMPLE   6.17

The composite beam in Fig. 6–38a is made of wood and reinforced with a 
steel strap located on its bottom side. If the beam is subjected to a bending 
moment of M = 2 kN # m, determine the normal stress at points B and C. 
Take Ew = 12 GPa and Est = 200 GPa.

SOLUTION

Section Properties. Although the choice is arbitrary, here we will 
transform the section into one made entirely of steel. Since steel has a 
greater stiffness than wood (Est 7 Ew), the width of the wood is reduced to 
an equivalent width for steel. For this to be the case, n = Ew>Est, so that

bst = nbw =
12 GPa
200 GPa

 (150 mm) = 9 mm

The transformed section is shown in Fig. 6–38b.
The location of the centroid (neutral axis), calculated from the bottom of 

the section, is

y =
ΣyA

ΣA
=

[0.01 m](0.02 m)(0.150 m) + [0.095 m](0.009 m)(0.150 m)

0.02 m(0.150 m) + 0.009 m(0.150 m)
= 0.03638 m

The moment of inertia about the neutral axis is therefore

 INA = c 1
12

 (0.150 m)(0.02 m)3 + (0.150 m)(0.02 m)(0.03638 m - 0.01 m)2 d

 + c 1
12

 (0.009 m)(0.150 m)3 + (0.009 m)(0.150 m)(0.095 m - 0.03638 m)2 d

 = 9.358(10-6) m4
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Normal Stress. Applying the flexure formula, the normal stress at B′ 
and C is

 sB′ =
2(103) N # m(0.170 m - 0.03638 m)

9.358(10-6) m4 = 28.6 MPa

 sC =
2(103) N # m(0.03638 m)

9.358(10-6) m4 = 7.78 MPa Ans.

The normal-stress distribution on the transformed (all steel) section is 
shown in Fig. 6–38c.

The normal stress in the wood at B in Fig. 6–38a is determined from  
Eq. 6–21; that is,

sB = nsB′ =
12 GPa
200 GPa

 (28.56 MPa) = 1.71 MPa   Ans.

Using these concepts, show that the normal stress in the steel and the 
wood at the point where they are in contact is sst = 3.50 MPa and 
sw = 0.210 MPa, as shown in Fig. 6–38d.

7.78 MPa

28.6 MPa

3.50 MPa

B¿

C

(c)

M � 2 kN�m

  

7.78 MPa

C

3.50 MPa

0.210 MPa

1.71 MPa

B

(d)

M � 2 kN�m

Fig. 6–38 (cont.)
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EXAMPLE   6.18

The reinforced concrete beam has the cross-sectional area shown in Fig. 6–39a.  
If it is subjected to a bending moment of M = 60 kN # m, determine the 
normal stress in each of the steel reinforcing rods and the maximum normal 
stress in the concrete. Take Est = 200 GPa and Econc = 25 GPa.

SOLUTION
Since the beam is made from concrete, in the following analysis we will 
neglect its strength in supporting a tensile stress.

Section Properties. The total area of steel, Ast = 2[p(0.0125 m)2] =
0.3125p(10-3) m2 will be transformed into an equivalent area of concrete, 
Fig. 6–39b. Here

A′ = nAst = a200 GPa
25 GPa

b(0.3125p(10-3) m2) = 2.5p(10-3) m2

We require the centroid to lie on the neutral axis. Thus Σy∼A = 0, or

(0.3 m) (h′)ah′
2
b - [2.5p(10-3) m2] (0.4 m - h′) = 0

150 h′2 + 2.5p h′ - p = 0

Solving for the positive root,
h′ = 0.1209 m.

Using this value for h′, the moment of inertia of the transformed section 
about the neutral axis is

I = c 1
12

 (0.3 m)(0.1209 m)3 + (0.3 m)(0.1209 m)a0.1209 m
2

b
2

d

+ [2.5p(10-3) m2] (0.4 m - 0.1209 m)2 = 788.52(10-6) m4

Normal Stress. Applying the flexure formula to the transformed section, 
the maximum normal stress in the concrete is

(sconc) max =
[60 (103)N # m] (0.1209 m)

788.52 (10-6)m4 = 9.199 (106)N>m2 = 9.20 MPa 

 Ans.

The normal stress resisted by the “concrete” strip that replaced the steel is

s′conc =
[60 (103)N # m](0.4 m - 0.1209 m)

788.52 (10-6)m4 = 21.24(106)N>m2 = 21.24 MPa

The normal stress in each of the two reinforcing rods is therefore

sst = ns′conc = a200 GPa
25 GPa

b(21.24 MPa) = 169.91 MPa = 170 MPa

  Ans.
The normal-stress distribution is shown graphically in Fig. 6–39c.

300 mm

450 mm

50 mm25-mm-diameter bars

60 kN m

(a)

C
AN

0.3 m

h¿ 0.4 m

A¿  2.5p(10]3)m2

(b)

(c)

9.20 MPa

170 MPa

170 MPa

0.1209 m

Fig. 6–39
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*6.8 curved BeaMS
The flexure formula applies to a straight member, because the normal 
strain within the member varies linearly from the neutral axis. If the 
member is curved, however, the strain will not be linear, and so we must 
develop another method to describe the stress distribution. In this section 
we will consider the analysis of a curved beam, that is, a member that has 
a curved axis and is subjected to bending. Typical examples include hooks 
and rings. In all cases, the members are not slender, but rather have a 
sharp curve, and their cross-sectional dimensions will be large compared 
with their radius of curvature.

The following analysis assumes that the cross section is constant and 
has an axis of symmetry that is perpendicular to the direction of the 
applied moment M, Fig. 6–40a. This moment is positive if it tends to 
straighten out the member. Also, the material is homogeneous and 
isotropic, and it behaves in a linear elastic manner when the load is 
applied. Like the case of a straight beam, we will also assume that the 
cross sections of the member remain plane after the moment is applied. 
Furthermore, any distortion of the cross section within its own plane, as 
caused by Poisson’s effect, will be neglected. 

To perform the analysis, three radii, extending from the center of 
curvature O′ of the member, are identified in Fig. 6–40a. Here r references 
the known location of the centroid for the cross-sectional area, R 
references the yet unspecified location of the neutral axis, and r locates 
the arbitrary point or area element dA on the cross section.

A A

This crane hook represents a typical  
example of a curved beam.

M MR

r

y

Rr

eN A

y

C

dA

(a)

Centroid

Neutral axis

Area element dA
_
r

_
r

O ¿

Fig. 6–40
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If we isolate a differential segment of the beam, Fig. 6–40b, the stress 
tends to deform the material such that each cross section will rotate through 
an angle du>2. The normal strain P in the strip (or line) of material located 
at r will now be determined. This strip has an original length r du; however, 
due to the rotations du>2 the strip’s total change in length is du(R - r). 
Consequently, P = du(R - r)>r du. If we let k = du>du, a constant, since 
it is the same for any particular strip, we have P = k(R - r)>r. Unlike the 
case of straight beams, here it can be seen that the normal strain is a 
nonlinear function of r, in fact it varies in a hyperbolic fashion. This occurs 
even though the cross section of the beam remains plane after deformation. 
Since the material is linear elastic, then s = EP, and so

s = EkaR - r
r

b (6–22)

This variation is also hyperbolic, and now that it has been established, we 
can determine the location of the neutral axis, and relate the stress 
distribution to the internal moment M.

Location of Neutral Axis. To obtain the location R of the neutral 
axis, we require the resultant internal force caused by the stress 
distribution acting over the cross section to be equal to zero; i.e.,

FR = ΣFx;            LA
s dA = 0

 LA
EkaR - r

r
b  dA = 0

Since Ek and R are constants, we have

RLA
 
dA
r

- LA
 dA = 0

Solving for R yields

R =
A

LA
 
dA
r

   (6–23)

Here

R =  the location of the neutral axis, specified from the center of 
curvature O′ of the member

A = the cross-sectional area of the member

r =  the arbitrary position of the area element dA on the cross section, 
specified from the center of curvature O′ of the member

The integral in Eq. 6–23 has been evaluated for various cross-sectional 
geometries, and the results for some common cross sections are listed in 
Table 6–1.

(b)

M

M
(R � r)

(R � r)

r

rdu

du

du

2
du

2

du

2

du

2
(R � r)

O¿

Fig. 6–40 (cont.)

Shape
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_
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2pb
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r2 
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r
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  r2
�

dA
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 TABLE 6–1
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y

Rr

eN A

y

C

dA

(c)

_
r

Fig. 6–40 (cont.)

Bending Moment. In order to relate the stress distribution to the 
resultant bending moment, we require the resultant internal moment to 
be equal to the moment of the stress distribution calculated about the 
neutral axis. From Fig. 6–40c, the stress s, acting on the area element dA 
and located a distance y from the neutral axis, creates a moment about 
the neutral axis of dM = y(s dA). For the entire cross section, we require 
M = 1ys dA. Since y = R - r, and s is defined by Eq. 6–22, we have

M = LA
(R - r)EkaR - r

r
b  dA

Expanding, realizing that Ek and R are constants, then

M = Ek¢R2L
 

A
 
dA
r

- 2RLA
 dA + LA

r dA≤
The first integral is equivalent to A>R as determined from Eq. 6–23, and 
the second integral is simply the cross-sectional area A. Realizing that 
the location of the centroid of the cross section is determined from 
r = 1r dA>A, the third integral can be replaced by rA. Thus,

M = EkA(r - R)

Finally, solving for Ek in Eq. 6–22, substituting into the above equation, 
and solving for s, we have

s =
M(R - r)

Ar (r - R)
  (6–24)

Here

  s = the normal stress in the member

 M =  the internal moment, determined from the method of sections and 
the equations of equilibrium, and calculated about the neutral axis 
for the cross section. This moment is positive if it tends to increase 
the member’s radius of curvature, i.e., it tends to straighten out 
the member.

  A = the cross-sectional area of the member

  R =  the distance measured from the center of curvature to the neutral 
axis, determined from Eq. 6–23

   r =  the distance measured from the center of curvature to the centroid 
of the cross section

   r =  the distance measured from the center of curvature to the point 
where the stress s is to be determined
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From Fig. 6–40a, r = R - y. Also, the constant and usually very small 
distance between the neutral axis and the centroid is e = r - R. When 
these results are substituted into Eq. 6–24, we can also write

s =
My

Ae(R - y)
 (6–25)

These two equations represent two forms of the curved-beam formula, 
which like the flexure formula can be used to determine the  
normal-stress distribution in a curved member. This distribution is, as 
previously stated, hyperbolic. An example is shown in Figs. 6–40d and  
6–40e. Since the stress acts along the circumference of the beam, it is 
sometimes called circumferential stress, Fig. 6–40f.

Radial Stress. Due to the curvature of the beam, the circumferential 
stress will create a corresponding component of radial stress, so called 
since this component acts in the radial direction. To show how it is 
developed, consider the free-body diagram of the segment shown in 
Fig. 6–40f. Here the radial stress sr is necessary, since it creates the force 
dFr that is required to balance the two components of circumferential 
forces dF which act along the radial line O′B.

Limitations. Sometimes the radial stresses within curved members 
may become significant, especially if the member is constructed from thin 
plates and has, for example, the shape of an I or T section. In this case the 
radial stress can become as large as the circumferential stress, and 
consequently the member must be designed to resist both stresses. For 
most cases, however, these stresses can be neglected, especially if the 
member has a solid section. Here the curved-beam formula gives results 
that are in very close agreement with those determined either by 
experiment or by a mathematical analysis based on the theory of elasticity.

The curved-beam formula is normally used when the curvature of the 
member is very pronounced, as in the case of hooks or rings. However, if 
the radius of curvature is greater than five times the depth of the member, 
the flexure formula can normally be used to determine the stress. For 
example, for rectangular sections for which this ratio equals 5, the 
maximum normal stress, when determined by the flexure formula, will be 
about 7% less than its value when determined by the more accurate 
curved-beam formula. This error is further reduced when the radius of 
curvature-to-depth ratio is more than 5.*

Bending stress variation
(profile view)

(d)

M

smax

(e)

M

A

N

smax

(f)

B

sr

s
s dF

dF

O¿

dFr

Fig. 6–40 (cont.)

*See, for example, Boresi, A. P. and Schmidt, R. J. Advanced Mechanics of Materials, John 
Wiley & Sons, New York.
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 • Due to the curvature of the beam, the normal strain in the 
beam does not vary linearly with depth as in the case of a 
straight beam. As a result, the neutral axis generally does not 
pass through the centroid of the cross section.

 • The radial stress component caused by bending can generally 
be neglected, especially if the cross section is a solid section 
and not made from thin plates.

 • The curved-beam formula should be used to determine the 
circumferential stress in a beam when the radius of curvature is 
less than five times the depth of the beam.

Important poInts

procedure for analysIs

In order to apply the curved-beam formula the following procedure 
is suggested.

Section properties.

 • Determine the cross-sectional area A and the location of the 
centroid, r, measured from the center of curvature.

 • Find the location of the neutral axis, R, using Eq. 6–23 or  
Table 6–1. If the cross-sectional area consists of n “composite” 
parts, determine 1dA>r for each part. Then, from Eq. 6–23, for 
the entire section, R = ΣA>Σ(1dA>r).

Normal Stress.

 • The normal stress located at a point r away from the center of 
curvature is determined from Eq. 6–24. If the distance y to the 
point is measured from the neutral axis, then find e = r - R 
and use Eq. 6–25.

 • Since r - R generally produces a very small number, it is best to 
calculate r and R with sufficient accuracy so that the subtraction 
leads to a number e having at least four significant figures.

 • According to the established sign convention, positive M tends to 
straighten out the member, and so if the stress is positive it will be 
tensile, whereas if it is negative it will be compressive.

 • The stress distribution over the entire cross section can be 
graphed, or a volume element of the material can be isolated and 
used to represent the stress acting at the point on the cross section 
where it has been calculated.

 6.8 Curved BeaMS 349



350  Chapter 6  Bending

6

EXAMPLE   6.19

The curved bar has a cross-sectional area shown in Fig. 6–41a. If it is 
subjected to bending moments of 4 kN # m, determine the maximum 
normal stress developed in the bar.

SOLUTION

Internal Moment. Each section of the bar is subjected to the same 
resultant internal moment of 4 kN # m. Since this moment tends to 
decrease the bar’s radius of curvature, it is negative. Thus, M = -4 kN # m.

Section Properties. Here we will consider the cross section to be 
composed of a rectangle and triangle. The total cross-sectional area is

ΣA = (0.05 m)2 +
1
2

 (0.05 m)(0.03 m) = 3.250(10-3) m2

The location of the centroid is determined with reference to the center of 
curvature, point O′, Fig. 6–41a.

 r =
Σ r∼A
ΣA

 =
[0.225 m](0.05 m)(0.05 m) + [0.260 m] 12(0.050 m)(0.030 m)

3.250(10-3) m2

 = 0.233077 m

200 mm

250 mm

B

A

200 mm

50 mm

30 mm

50 mm
280 mm

4 kN·m 4 kN·m

–r

(a)

O ¿

Fig. 6–41
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We can find 1A dA>r for each part using Table 6–1. For the rectangle,

LA

dA
r

= b ln 
r2

r1
= 0.05 maln 

0.250 m
0.200 m

b = 0.0111572 m

And for the triangle,

LA

dA
r

=
br2

(r2 - r1)
 aln 

r2

r1
b - b =

(0.05 m)(0.280 m)

(0.280 m - 0.250 m)
 aln 

0.280 m
0.250 m

b - 0.05 m = 0.00288672 m

Thus the location of the neutral axis is determined from

R =
ΣA

Σ LA
dA>r

=
3.250(10-3) m2

0.0111572 m + 0.00288672 m
= 0.231417 m

The calculations were performed with sufficient accuracy so that 
(r - R) = 0.233077 m - 0.231417 m = 0.001660 m is now accurate to 
four significant figures.

Normal Stress. The maximum normal stress occurs either at A or B. 
Applying the curved-beam formula to calculate the normal stress at B, 
rB = 0.200 m, we have

 sB =
M(R - rB)

ArB(r - R)
=

(-4 kN # m)(0.231417 m - 0.200 m)

3.250(10-3) m2(0.200 m)(0.00166  0 m)

 = -116 MPa

At point A, rA = 0.280 m and the normal stress is

 sA =
M(R - rA)

ArA(r - R)
=

(-4 kN # m)(0.231417 m - 0.280 m)

3.250(10-3) m2(0.280 m)(0.001660 m)

= 129 MPa Ans.

By comparison, the maximum normal stress is at A. A two-dimensional 
representation of the stress distribution is shown in Fig. 6–41b.

B

A

(b)

129 MPa

116 MPa

4 kN�m

Fig. 6–41 (cont.)
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6.9 StreSS concentrationS
The flexure formula cannot be used to determine the stress distribution 
within regions of a member where the cross-sectional area suddenly 
changes, since the normal stress and strain distributions at this location 
are nonlinear. The results can only be obtained through experiment or, in 
some cases, by using the theory of elasticity. Common discontinuities 
include members having notches on their surfaces, Fig. 6–42a, holes for 
passage of fasteners or other items, Fig. 6–42b, or abrupt changes in the 
outer dimensions of the member’s cross section, Fig. 6–42c. The maximum 
normal stress at each of these discontinuities occurs at the section taken 
through the smallest cross-sectional area.

For design, it is generally important to only know the maximum normal 
stress developed at these sections, not the actual stress distribution. As in 
the previous cases of axially loaded bars and torsionally loaded shafts, we 
can obtain this stress due to bending using a stress concentration factor K. 
For example, Fig. 6–43 gives values of K for a flat bar that has a change in 
cross section using shoulder fillets. To use this graph,  simply  find the 

(a)

(b)

(c)

Fig. 6–42
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Fig. 6–44
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geometric ratios w>h and r>h, and then find the corresponding value of 
K. Once K is obtained, the maximum bending stress shown in Fig. 6–45 is 
determined using

smax = K 
Mc
I

 (6–26)

In the same manner, Fig. 6–44 can be used if the discontinuity consists of 
circular grooves or notches.

Like axial load and torsion, stress concentration for bending should always 
be considered when designing members made of brittle materials, or those 
that are subjected to fatigue or cyclic loadings. The stress concentration 
factors apply only when the material is subjected to elastic behavior. If the 
applied moment causes yielding of the material, as in the case of ductile 
materials, the stress becomes redistributed throughout the member, and 
the  maximum stress that results will be lower than that determined 
using  stress-concentration factors. This effect is discussed further in the 
next section.

MM

smax

smax

Fig. 6–45

Stress concentrations caused by bending 
occur at the sharp corners of this window 
lintel and are responsible for the crack at 
the corner.

 • Stress concentrations occur at points of sudden cross-sectional 
change, caused by notches and holes, because here the stress 
and strain become nonlinear. The more severe the change, the 
larger the stress concentration.

  • For design or analysis, the maximum normal stress occurs on 
the smallest cross-sectional area. This stress can be obtained by 
using a stress concentration factor, K, that has been determined 
through experiment and is only a function of the geometry of 
the member.

  • Normally, the stress concentration in a ductile material 
subjected to a static moment will not have to be considered in 
design; however, if the material is brittle, or subjected to fatigue 
loading, then stress concentrations become important.

Important poInts
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EXAMPLE   6.20 

The transition in the cross-sectional area of the steel bar is achieved using 
shoulder fillets, as shown in Fig. 6–46a. If the bar is subjected to a bending 
moment of 5 kN # m, determine the maximum normal stress developed in 
the steel. The yield stress is sY = 500 MPa.

SOLUTION

The moment creates the largest stress in the bar at the base of the fillet, 
where the cross-sectional area is smallest, and a stress concentration arises. 
The stress concentration factor can be determined by using Fig. 6–43. From 
the geometry of the bar, we have r = 16 mm, h = 80 mm, w = 120 mm. 
Thus,

r
h

=
16 mm
80 mm

= 0.2  
w
h

=
120 mm
80 mm

= 1.5

These values give K = 1.45. Applying Eq. 6–26, 

smax = K 
Mc
I

= (1.45) 
(5(103) N # m)(0.04 m)

3 1
12(0.020 m)(0.08 m)34 = 340 MPa Ans.

This result indicates that the steel remains elastic since the stress is below 
the yield stress (500 MPa).

NOTE: The normal-stress distribution is nonlinear and is shown in  
Fig. 6–46b. Realize, however, that by Saint-Venant’s principle, Sec. 4.1, these 
localized stresses smooth out and become linear when one moves 
(approximately) a distance of 80 mm or more to the right of the transition. 
In this case, the flexure formula gives smax = 234 MPa, Fig. 6–46c. 

120 mm
r � 16 mm

80 mm

20 mm
(a)

5 kN�m

5 kN�m

(b)

340 MPa

340 MPa

5 kN�m

5 kN�m

     

5 kN�m

(c)

234 MPa

234 MPa

5 kN�m

Fig. 6–46
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*6–120. The composite beam is made of 6061-T6 aluminum 
(A) and C83400 red brass (B). Determine the dimension h of 
the brass strip so that the neutral axis of the beam is located 
at the seam of the two metals. What maximum moment will 
this beam support if the allowable bending stress for the 
aluminum is (sallow)al = 128 MPa and for the brass 
(sallow)br = 35 MPa?

6–121. The composite beam is made of 6061-T6 aluminum 
(A) and C83400 red brass (B). If the height h = 40 mm, 
determine the maximum moment that can be applied to the 
beam if the allowable bending stress for the aluminum is 
(sallow)al = 128 MPa and for the brass (sallow)br = 35 MPa.

6–123. The composite beam is made of steel (A) bonded to 
brass (B) and has the cross section shown. If the allowable 
bending stress for the steel is (sallow)st = 180 MPa, and for the 
brass (sallow)br = 60 MPa, determine the maximum moment M 
that can be applied to the beam. Ebr = 100 GPa, Est = 200 GPa.

PROBLEMS

B

A
50 mm

150 mm

h

Probs. 6–120/121

6–122. The composite beam is made of steel (A) bonded to 
brass (B) and has the cross section shown. If it is subjected to 
a moment of M = 6.5 kN # m, determine the maximum 
bending stress in the brass and steel. Also, what is the stress 
in each material at the seam where they are bonded 
together? Ebr = 100 GPa, Est = 200 GPa.

175 mm

200 mm

50 mm

xz

y

MB

A

Prob. 6–122

175 mm

200 mm

50 mm

xz

y

MB

A

Prob. 6–123

*6–124. The reinforced concrete beam is made using two 
steel reinforcing rods. If the allowable tensile stress for the 
steel is (sst)allow = 280 MPa and the allowable compressive 
stress for the concrete is (sconc)allow = 21 MPa, determine 
the maximum moment M that can be applied to the section. 
Assume the concrete cannot support a tensile stress. 
Est = 200 GPa, Econc = 26.5 GPa.

100 mm

450 mm

200 mm

200 mm
150 mm

50 mm

25-mm diameter rods

M

Prob. 6–124
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6–125.  The low strength concrete floor slab is integrated 
with a wide-flange A-36 steel beam using shear studs (not 
shown) to form the composite beam. If the allowable bending 
stress for the concrete is (sallow)con = 10 MPa, and allowable 
bending stress for steel is (sallow)st = 165 MPa, determine 
the maximum allowable internal moment M that can be 
applied to the beam.

6–128. A wood beam is reinforced with steel straps at 
its  top and bottom as shown. Determine the maximum 
bending stress developed in the wood and steel if the beam 
is subjected to a moment of M = 150 kN # m. Sketch 
the  stress distribution acting over the cross section. Take 
Ew = 10 GPa, Est = 200 GPa.

M

100 mm

400 mm
15 mm

15 mm

15 mm

200 mm

1 m

Prob. 6–125

6–126. The wooden section of the beam is reinforced with 
two steel plates as shown. Determine the maximum moment 
M that the beam can support if the allowable stresses for the 
wood and steel are (sallow)w = 6 MPa, and (sallow)st = 150 MPa, 
respectively. Take Ew = 10 GPa and Est = 200 GPa.

6–127. The wooden section of the beam is reinforced with 
two steel plates as shown. If the beam is subjected to a moment 
of M = 30 kN # m, determine the maximum bending stresses in 
the steel and wood. Sketch the stress distribution over the 
cross section. Take Ew = 10 GPa and Est = 200 GPa.

150 mm

15 mm

15 mm

100 mm

M

Probs. 6–126/127

200 mm

40 mm

40 mm

400 mm

x

z

y

M � 150 kN�m

Prob. 6–128

6–129. The Douglas Fir beam is reinforced with A992  
steel straps at its sides. Determine the maximum stress in 
the wood and steel if the beam is subjected to a moment of  
Mz = 80 kN # m. Sketch the stress distribution acting over 
the cross section.

y

z400 mm

20 mm 20 mm200 mm

Prob. 6–129
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6–130. If P = 3 kN, determine the bending stress at points 
A, B, and C of the cross section at section a–a. Using these 
results, sketch the stress distribution on section a–a.

6–131. If the maximum bending stress at section a–a is not 
allowed to exceed sallow = 150 MPa, determine the maximum 
allowable force P that can be applied to the end E.

6–133. For the curved beam in Fig. 6–40a, show that when 
the radius of curvature approaches infinity, the curved-
beam formula, Eq. 6–24, reduces to the flexure formula, 
Eq. 6–13.

6–134. The curved member is subjected to the moment of 
M = 50 kN # m. Determine the percentage error introduced 
in the calculation of maximum bending stress using the 
flexure formula for straight members.

6–135. The curved member is made from material having 
an allowable bending stress of sallow = 100 MPa. Determine 
the maximum allowable moment M that can be applied to 
the member.

E

P

600 mm

300 mm

D

a

A

B
C

a

50 mm

25 mm 25 mm
25 mm

20 mm

Section a – a

Probs. 6–130/131

*6–132. If the beam is subjected to a moment of M = 45 kN # m, 
determine the maximum bending stress in the A-36 steel 
section A and the 2014-T6 aluminum alloy section B.

M

150 mm

15 mm

B

A

50 mm

Prob. 6–132

MM
200 mm

200 mm

100 mm

Probs. 6–134/135

*6–136. The curved beam is subjected to a bending 
moment of M = 900 N # m as shown. Determine the stress 
at points A and B, and show the stress on a volume element 
located at each of these points.

6–137. The curved beam is subjected to a bending moment 
of M = 900 N # m. Determine the stress at point C.

30

B

A

100 mm

150 mm

20 mm
15 mm

400 mm

B

A

M

C

C

Probs. 6–136/137
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6–138. The beam is made from three types of plastic that 
are identified and have the moduli of elasticity shown in the 
figure. Determine the maximum bending stress in the PVC.

6–141. The member has a brass core bonded to a steel 
casing. If a couple moment of 8 kN # m is applied at its end, 
determine the maximum bending stress in the member. 
Ebr = 100 GPa, Est = 200 GPa.

PVC EPVC  3.15 GPa

Escon EE  1.12 GPa

Bakelite EB  5.6 GPa

0.9 m 1.2 m

2.5 kN 2.5 kN

0.9 m

75 mm

25 mm
50 mm

50 mm

Prob. 6–138

6–139. The composite beam is made of A-36 steel (A) 
bonded to C83400 red brass (B) and has the cross section 
shown. If it is subjected to a moment of M = 6.5 kN # m, 
determine the maximum stress in the brass and steel. Also, 
what is the stress in each material at the seam where they are 
bonded together?

6–140. The composite beam is made of A-36 steel (A) 
bonded to C83400 red brass (B) and has the cross section 
shown. If the allowable bending stress for the steel is  
(sallow)st = 180 MPa and for the brass (sallow)br = 60 MPa, 
determine the maximum moment M that can be applied to 
the beam.

125 mm

100 mm

100 mm

xz

y

M
B

A

Probs. 6–139/140

3 m

100 mm

20 mm
100 mm
20 mm

20 mm 20 mm

8 kN m

Prob. 6–141

6–142. The Douglas Fir beam is reinforced with A-36 
steel straps at its sides. Determine the maximum stress in 
the wood and steel if the beam is subjected to a bending 
moment of Mz = 4 kN # m. Sketch the stress distribution 
acting over the cross section.

y

z350 mm

15 mm 15 mm200 mm

Prob. 6–142
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6–143. The curved bar used on a machine has a rectangular 
cross section. If the bar is subjected to a couple as shown, 
determine the maximum tensile and compressive stress 
acting at section a–a. Sketch the stress distribution on the 
section in three dimensions.

6–145. The ceiling-suspended C-arm is used to support the 
X-ray camera used in medical diagnoses. If the camera has a 
mass of 150 kg, with center of mass at G, determine the 
maximum bending stress at section A.

100 mm

50 mm

100 mm

200 mm

a a

5 kN

200 mm

4

3

5

4
3

5
5 kN

Prob. 6–143

*6–144. The curved member is symmetric and is subjected 
to a moment of M = 900 N # m. Determine the bending 
stress in the member at points A and B. Show the stress 
acting on volume elements located at these points.

200 mm

A

MM

B

50 mm

37 mm

12 mm

Prob. 6–144

A

G

20 mm
100 mm

200 mm

40 mm

1.2 m

Prob. 6–145

6–146. The member has a circular cross section. If it is 
subjected to a moment of M = 5 kN # m, determine the 
stress at points A and B. Is the stress at point A′, which is 
located on the member near the wall, the same as that at A? 
Explain.

6–147. The member has a circular cross section. If the 
allowable bending stress is sallow = 100 MPa, determine 
the maximum moment M that can be applied to the 
member.

B

A

200 mm

200 mm

M
A¿

Probs. 6–146/147
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*6–148. The curved bar used on a machine has a rectangular 
cross section. If the bar is subjected to a couple as shown, 
determine the maximum tensile and compressive stresses 
acting at section a–a. Sketch the stress distribution on the 
section in three dimensions.

6–150. If the radius of each notch on the plate is 
r = 12.5 mm, determine the largest moment that can be 
applied. The allowable bending stress for the material is 
sallow = 125 MPa.

6–151. The symmetric notched plate is subjected to 
bending. If the radius of each notch is r = 12.5 mm and the 
applied moment is M = 15 kN # m, determine the maximum 
bending stress in the plate.

100 mm

50 mm

100 mm

150 mm

aa

30�

30�

10 kN

200 mm

150 mm

10 kN

Prob. 6–148

6–149. The curved bar used on a machine has a rectangular 
cross section. If the bar is subjected to a couple as shown, 
determine the maximum tensile and compressive stresses 
acting at section a–a. Sketch the stress distribution on the 
section in three dimensions.

75 mm

50 mm

150 mm

100 mm

a

a

250 N

250 N

75 mm

50 mm

Prob. 6–149

312.5 mm

362.5 m
25 mm

MM

Probs. 6–150/151

*6–152. The bar is subjected to a moment of M = 100 N # m. 
Determine the maximum bending stress in the bar and sketch, 
approximately, how the stress varies over the critical section.

6–153. The allowable bending stress for the bar is 
sallow = 200 MPa. Determine the maximum moment M 
that can be applied to the bar.

80 mm

M

20 mm

M

10 mm

10 mm 10 mm

Probs. 6–152/153
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6–154. The simply supported notched bar is subjected to 
two forces P. Determine the largest magnitude of P that can 
be applied without causing the material to yield. The material 
is A-36 steel. Each notch has a radius of r = 3 mm.

*6–156. If the radius of each notch on the plate is r = 10 
mm, determine the largest moment M that can be applied. 
The allowable bending stress is sallow = 180 MPa.

500 mm 500 mm

42 mm

12 mm

P P

30 mm

500 mm 500 mm

Prob. 6–154

6–155. The stepped bar has a thickness of 10 mm. 
Determine the maximum moment that can be applied to its 
ends if the allowable bending stress is sallow = 150 MPa.

M

20 mm

M

60 mm
90 mm

7.5 mm
15 mm

Prob. 6–155

165 mm

20 mm

M

M

125 mm

Prob. 6–156

6–157. Determine the length L of the center portion of the 
bar so that the maximum bending stress at A, B, and C is the 
same. The bar has a thickness of 10 mm.

200 mm 200 mm

7 mm
40 mm60 mm

350 N

BA C

7 mm

L
2

L
2

Prob. 6–157
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*6.10 inelaStic Bending
The previous equations for determining the normal stress due to bending 
are valid only if the material behaves in a linear elastic manner. If the 
applied moment causes the material to yield, a plastic analysis must then 
be used to determine the stress distribution. For bending of straight 
members three conditions must be met.

Linear Normal-Strain Distribution. Based only on geometric 
considerations, it was shown in Sec. 6.3 that the normal strains always 
vary linearly from zero at the neutral axis to a maximum at the farthest 
point from the neutral axis.

Resultant Force Equals Zero. Since there is only a moment 
acting on the cross section, the resultant force caused by the stress 
distribution must be equal to zero. Since s creates a force on the area 
dA of dF = s dA, Fig. 6–47, then for the entire cross section,  we have

FR = ΣFx;         LA
s dA = 0 (6–27)

This equation provides the means for obtaining the location of the  
neutral axis.

Resultant Moment. The moment at the section must be equivalent 
to the moment caused by the stress distribution about the neutral axis. 
The moment of the force dF = s dA about the neutral axis is 
dM = y(s dA), Fig. 6–47, and so for the entire cross section, we have

(MR)z = ΣMz;       M = LA
y(s dA) (6–28)

These conditions of geometry and loading will now be used to show how 
to determine the stress distribution in a beam when it is subjected to an 
internal moment that causes yielding of the material. Throughout the 
discussion we will assume that the material has a stress–strain diagram 
that is the same in tension as it is in compression. For simplicity, we will 
begin by considering the beam to have a cross-sectional area with two 
axes of symmetry; in this case, a rectangle of height h and width b, as 
shown in Fig. 6–48a.

y dA

y

x

z

M

s

Fig. 6–47



6

 6.10 inelaStiC Bending 363

Plastic Moment. Some materials, such as steel, tend to exhibit 
elastic perfectly plastic behavior when the stress in the material reaches 
sY.  If the moment M = MY  is just sufficient to produce yielding in the 
top and bottom fibers of the beam, then we can determine MY  using the 
flexure formula sY = MY(h>2)> 3bh3>124  or

MY =
1
6

 bh2 sY  (6–29)

If the moment M 7 MY , the material at the top and bottom of the 
beam will begin to yield, causing a redistribution of stress over the cross 
section until the required moment M is developed. For example, if M 
causes the normal-strain distribution shown in Fig. 6–48b, then the 
corresponding normal-stress distribution must be determined from the 
stress–strain diagram, Fig. 6–48c. If the strains P1,  PY,  P2 correspond to 
stresses s1 ,  sY ,  sY , respectively, then these and others like them produce 
the stress distribution shown in Fig. 6–48d or 6–48e. The resultant forces 
of the component rectangular and triangular stress blocks are equivalent 
to their volumes.

 T1 = C1 =
1
2

 yY sYb   T2 = C2 = ah
2

- yYbsYb

Because of the symmetry, Eq. 6–27 is satisfied, and the neutral axis passes 
through the centroid of the cross section as shown. The moment M can be 
related to the yield stress sY  using Eq. 6–28. From Fig. 6–48e, we require

 M = T1a
2
3

 yYb + C1 a
2
3

 yYb + T2 c yY +
1
2

 ah
2

- yYb d

 +  C2 c yY +
1
2

 ah
2

- yYb d

 = 2 a1
2

 yY sYbba2
3

 yYb + 2 c ah
2

- yYbsYb d c 1
2

 ah
2

+ yYb d

 =
1
4

 bh2 sY a1 -
4
3

 
 yY

2

 h2 b

M � MY

h

b

(a)

Strain distribution
(profile view)

(b)

yY

�yY
�y1

y1

h
2

h
2

PY

PY

P2

P2

P1

P1

Stress–strain diagram
(elastic-plastic region)

(c)

P2
PP1 PY

s

sY

s1

    

Stress distribution
(profile view)

(d)

h
2

h
2

�yY

yY

sY

sY

sY

sY

s1

s1

    

N

Elastic
core

Plastic
yielding

(e)

b

T1

A

C2

C1

T2

M

h
2

h
2

�yY

yY

sY

sY

Fig. 6–48
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Or using Eq. 6–29,

M =
3
2

 MY a1 -
4
3

 y
2
Y

h2 b  (6–30)

As M increases in magnitude, the distance yY  in Fig. 6–48e approaches 
zero, and the material becomes entirely plastic, resulting in a stress 
distribution that looks like that shown in Fig. 6–48f.  Finding the moments 
of the stress “blocks” around the neutral axis, we can express this limiting 
value as

Mp =
1
4

 bh2 sY  (6–31)

Using Eq. 6–29, or Eq. 6–30, with yY = 0, we also have

Mp =
3
2

 MY  (6–32)

This moment is referred to as the plastic moment. Its value applies only 
for a rectangular section, since the analysis here depends on the geometry 
of the cross section.

Beams used for steel building frames are sometimes designed to resist 
a plastic moment. When this is the case, codes usually list a design 
property for a beam called the shape factor. The shape factor is defined 
as the ratio

k =
Mp

MY
 (6–33)

By definition, this value specifies the additional moment capacity that a 
beam can support beyond its maximum elastic moment. For example, 
from Eq. 6–32, a beam having a rectangular cross section has a shape 
factor of k = 1.5. Therefore this section will support 50% more bending 
moment than its maximum elastic moment when it becomes fully plastic.

Plastic moment

(f)

b

C

T

sY

sY

Mp

h
2

h
2

Fig. 6–48 (cont.)
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Residual Stress. When the plastic moment in Fig. 6–48f is removed, 
it will cause residual stress in the beam. For example, let’s say Mp  causes 
the material at the top and bottom of the beam to be strained to 
P1 (W  PY), as shown by point B on the s-P curve in Fig. 6–49a. A release 
of this moment will cause the material to recover some of this strain 
elastically by following the dashed path BC. Since this recovery is elastic, 
we can then superimpose on the stress distribution in Fig. 6–49b a linear 
stress distribution caused by applying the plastic moment in the opposite 
direction, Fig. 6–49c. Here the maximum stress for this distribution, which 
is called the modulus of rupture for bending, sr , can be determined from 
the flexure formula when the beam is loaded with the plastic moment. 
We have

 smax =
Mc
I

=
Mp11

2 h2
1 1

12 bh32 =
11

4 bh2sY2 11
2 h2

1 1
12 bh32  = 1.5sY

(a)

E E

B

Elastic-plastic
loading

P

s

�0.5 sY

C

Actual elastic
recovery

2PY

PY P1

sY

�sY

Fig. 6–49
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(b)

Plastic moment applied
causing plastic strain

A

N Mp

sY

sY

+h
2

h
2

 (c)

Plastic moment reversal
causing elastic strain

N

A

Mp
h
2

h
2

sr � 1.5sY

sr � 1.5sY

=

 (d)

Residual stress
distribution in beam

0.5sY

0.5sY

h
6

h
6

h
3

h
3

sY

Fig. 6–49 (cont.)

Axis of symmetry

M

(a)

(b)

P1

P2 P

s1

s2

s

Fig. 6–50

Fortunately this value is less than 2sY, which is caused by the greatest 
possible strain recovery, 2PY, Fig. 6–49a.

The superposition of the plastic moment, Fig. 6–49b, and its removal, 
Fig. 6–49c, gives the residual-stress distribution shown in Fig. 6–49d. As 
an exercise, use the component triangular “blocks” that represent this 
stress distribution and show that it results in a zero-force and  
zero-moment resultant on the member.

Ultimate Moment. Consider now the more general case of a beam 
having a cross section that is symmetrical only with respect to the vertical 
axis, while the moment is applied about the horizontal axis, Fig. 6–50a. Here 
we will assume that the material exhibits strain hardening and that its 
stress–strain diagrams for tension and compression are different, Fig. 6–50b.

If the moment M produces yielding of the beam, difficulty arises in 
finding both the location of the neutral axis and the maximum strain in 
the beam. To solve this problem, a trial-and-error procedure requires the 
following steps:

 1. For a given moment M, assume the location of the neutral axis and 
the slope of the linear strain distribution, Fig. 6–50c.

 2. Graphically establish the stress distribution on the member’s cross 
section using the s-P curve to plot values of stress corresponding 
to values of strain. The resulting stress distribution, Fig. 6–50d, will 
then have the same shape as the s-P curve.
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 3. Determine the volumes enclosed by the tensile and compressive 
stress “blocks.” (As an approximation, this may require dividing 
each block into composite regions.) Equation 6–27 requires 
the  volumes of these blocks to be equal, since they represent the 
resultant tensile force T and resultant compressive force C on the 
section, Fig. 6–50e. If these forces are unequal, an adjustment as to 
the location of the neutral axis must be made (point of zero strain), 
and the process repeated until Eq. 6–27 (T = C) is satisfied.

 4. Once T = C, the moments produced by T and C can be calculated 
about the neutral axis. Here the moment arms for T and C are 
measured from the neutral axis to the centroids of the volumes defined 
by the stress distributions, Fig. 6–50e. Equation 6–28 requires 
M = Ty′ + Cy″. If this equation is not satisfied, the slope of the 
strain distribution must be adjusted, and the computations for T and 
C and the moment must be repeated until close agreement is obtained.

This trial-and-error procedure is obviously very tedious, and fortunately 
it does not occur very often in engineering practice. Most beams are 
symmetric about two axes, and they are constructed from materials that 
are assumed to have similar tension-and-compression stress–strain 
diagrams. Fortunately, when this occurs, the neutral axis will pass through 
the centroid of the cross section, and the process of relating the stress 
distribution to the resultant moment will be simplified.

Assumed location of
neutral axis

Strain distribution
(profile view)

(c)

Assumed slope of
strain distribution

P1

P2

Stress distribution
(profile view)

(d)

M

s1

s2

y¿¿

A

(e)
N y¿ T

C

Fig. 6–50 (cont.)

Important poInts
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 • The normal-strain distribution over the cross section of a beam 
is based only on geometric considerations and has been found 
to always remain linear, regardless of the applied load. The 
normal-stress distribution, however, must be determined from 
the material behavior, or stress–strain diagram, once the strain 
distribution is established.

 • The location of the neutral axis is determined from the 
condition that the resultant force on the cross section is zero.

 • The internal moment on the cross section must be equal to the 
moment of the stress distribution about the neutral axis.

 • Perfectly plastic behavior assumes the normal stress is constant 
over the cross section, and the beam will continue to bend, 
with no increase in moment. This moment is called the plastic 
moment.
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The steel wide-flange beam has the dimensions shown in Fig. 6–51a. If it is 
made of an elastic perfectly plastic material having a tensile and compressive 
yield stress of sY = 250 MPa, determine the shape factor for the beam.

SOLUTION

In order to determine the shape factor, it is first necessary to calculate 
the maximum elastic moment MY  and the plastic moment Mp .

Maximum Elastic Moment. The normal-stress distribution for the 
maximum elastic moment is shown in Fig. 6–51b. The moment of inertia 
about the neutral axis is

I =
1
12

 (0.2 m)(0.25 m)3 -
1
12

 (0.1875 m)(0.225 m)3 = 82.44(10-6) m4

Applying the flexure formula, we have

s max =
Mc
I

;  250(106) N>m2 =
MY (0.125 m)

82.44(10-6) m4 

MY = 164.88(103) N # m = 164.88 kN # m

Plastic Moment. The plastic moment causes the steel over the entire 
cross section of the beam to yield, so that the normal-stress distribution 
looks like that shown in Fig. 6–51c. Due to symmetry of the cross-sectional 
area and since the tension and compression stress–strain diagrams are the 
same, the neutral axis passes through the centroid of the cross section. In 
order to determine the plastic moment, the stress distribution is divided 
into four composite rectangular “blocks,” and the force produced by each 
“block” is equal to the volume of the block. Therefore, we have

C1 = T1 = 3250(106) N>m24(0.0125 m)(0.1125 m) = 351.56(103) N

= 351.56 kN

C2 = T2 = 3250(106) N>m24  (0.2 m)(0.0125 m) = 625(103) N = 625 kN

These forces act through the centroid of the volume for each block. 
Calculating the moments of these forces about the neutral axis, we obtain 
the plastic moment.

Mp = 2[0.05625 m)(351.56 kN)]+2[(0.11875 m)(625 kN)] = 187.99 kN # m.

Shape Factor. Applying Eq. 6–33 gives

 k =
Mp

MY
=

187.99 kN # m
164.88 kN # m

= 1.14 Ans.

NOTE: This value indicates that a wide-flange beam provides a very 
efficient section for resisting an elastic moment. Most of the moment is 
developed in the flanges, i.e., in the top and bottom segments, whereas 
the web or vertical segment contributes very little. In this particular case, 
only 14% additional moment can be supported by the beam beyond that 
which can be supported elastically.

EXAMPLE   6.21 

200 mm

225 mm

12.5 mm

12.5 mm

12.5 mm

(a)

(b)

A

250 MPa

MY

250 MPa

N

(c)

A

250 MPa

250 MPa

N

T2

T1

C1

C2

Mp

Fig. 6–51
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EXAMPLE   6.22

A T-beam has the dimensions shown in Fig. 6–52a. If it is made of an 
elastic perfectly plastic material having a tensile and compressive yield 
stress of sY = 250 MPa, determine the plastic moment that can be 
resisted by the beam.

120 mm

15 mm

15 mm

(a)

100 mm

 (b)

15 mm

250 MPa

d

N

A

100 mm

T

15 mm
(120 mm � d)

C2

C1

Mp

Fig. 6–52

SOLUTION

The “plastic” stress distribution acting over the beam’s cross-sectional 
area is shown in Fig. 6–52b. In this case the cross section is not symmetric 
with respect to a horizontal axis, and consequently, the neutral axis will not 
pass through the centroid of the cross section. To determine the location of 
the neutral axis, d, we require the stress distribution to produce a zero 
resultant force on the cross section. Assuming that d … 120 mm, we have

LA
s dA = 0;  T - C1 - C2 = 0

 250 MPa (0.015 m)(d) - 250 MPa (0.015 m)(0.120 m - d)

 -  250 MPa (0.015 m)(0.100 m) = 0

d = 0.110 m 6 0.120 m OK

Using this result, the forces acting on each segment are

 T = (250 MN>m2) (0.015 m)(0.110 m) = 412.5 kN

 C1 = (250 MN>m2) (0.015 m)(0.010 m) = 37.5 kN

 C2 = (250 MN>m2) (0.015 m)(0.100 m) = 375 kN

 6.10 inelaStiC Bending 369

Hence the resultant plastic moment about the neutral axis is

Mp = (412.5 kN) a0.110 m
2

b + (37.5 kN) a0.01 m
2

b  +  (375 kN) a0.01 m +
0.015 m

2
b

Mp = 29.4 kN # m Ans.
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EXAMPLE   6.23 

The beam in Fig. 6–53a is made of an alloy of titanium that has a stress–
strain diagram that can in part be approximated by two straight lines. If 
the material behavior is the same in both tension and compression, 
determine the bending moment that can be applied to the beam that will 
cause the material at the top and bottom of the beam to be subjected to 
a strain of 0.050 mm/mm.

SOLUTION I

By inspection of the stress–strain diagram, the material is said to exhibit 
“elastic-plastic behavior with strain hardening.” Since the cross section is 
symmetric and the tension–compression s-P diagrams are the same, the 
neutral axis must pass through the centroid of the cross section. The strain 
distribution, which is always linear, is shown in Fig. 6–53b. In particular,  
the point where maximum elastic strain (0.010 mm>mm) occurs has 
been  determined by proportion, such that y>0.015 m = 0.01>0.05 or 
y = 0.003 m.

The corresponding normal-stress distribution acting over the cross 
section is shown in Fig. 6–53c. The moment produced by this distribution 
can be calculated by finding the “volume” of the stress blocks. To do so we 
will subdivide this distribution into two triangular blocks and a rect-
angular block in both the tension and compression regions, Fig. 6–53d.  
Since the beam is 20 mm wide, the resultants and their locations are 
determined as follows:

T1 = C1 =
1
2

 3280(106) N>m24(0.012 m)(0.02 m) = 33.6(103)N = 33.6 kN

y1 = 0.003 m+
2
3

 (0.012 m) = 0.011 m

30 mm

20 mm

M

(a)

0.010
s

 
10

5(
10

3 )P

0.050

1050

1330

s(MPa)

P (mm/mm)

s 7000P 980

0.05

0.05

Strain distribution

(b)

0.015 m

0.010

0.010

y  0.003 m

Fig. 6–53
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T2 = C2 = 31050(106) N>m24(0.012 m)(0.02 m) = 252(103) N = 252 kN

y2 = 0.003 m+
1
2

 (0.012 m) = 0.009 m

T3 = C3 =
1
2

 31050(106) N>m24(0.003 m)(0.02 m) = 31.5(103) N = 31.5 kN

y3 =
2
3

 (0.003 m) = 0.002 m

The moment produced by this normal-stress distribution about the 
neutral axis is therefore

M = 2[(33.6 kN)(0.011 m)+(252 kN)(0.009 m)+(31.5 kN)(0.002 m)]

 = 5.4012 kN # m = 5.40 kN # m  Ans.

SOLUTION II

Rather than using the above semigraphical technique, it is also possible 
to find the moment analytically. To do this we must express the stress 
distribution in Fig. 6–53c as a function of position y along the beam. Note 
that s = f(P) has been given in Fig. 6–53a. Also, from Fig. 6–53b, the 
normal strain can be determined as a function of position y by 
proportional triangles; i.e.,

P =
0.05
0.015

 y =
10
3

 y 0 … y … 0.015 m

Substituting this into the s-P functions shown in Fig. 6–53a gives

 s = 3350(103)y4  MPa 0 … y 6 0.003 m (1)

 s = 323.33(103)y + 9804  MPa 0.003 m 6 y … 0.015 m (2)

From Fig. 6–53e, the moment caused by s acting on the area strip 
dA = 20 dy is

dM = y(s dA) = ys(0.02 dy)

Using Eqs. 1 and 2, the moment for the entire cross section is thus

M = 2 c L
0.003 m

0
y3350(103)y4(106)(0.02 dy) + L

0.015 m

0.003 m
y323.33(103)y + 9804(106)(0.02 dy) d

= 5.4012(103) N # m = 5.40 kN # m Ans.

0.015 m

Stress distribution

(c)

1050 MPa

1050 MPa

1330 MPa

1330 MPa

y  0.003 m

(d)

C3
T3

T2
T1

y2

C2

C1

1050 MPa
280 MPa

y1

y3

0.012 m

0.003 m

(e)

N

A

s

20 mm

y dy

Fig. 6–53 (cont.)
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EXAMPLE   6.24 

The steel wide-flange beam shown in Fig. 6–54a is subjected to a fully 
plastic moment of Mp . If this moment is removed, determine the  
residual stress distribution in the beam. The material is elastic perfectly 
plastic and has a yield stress of sY = 250 MPa.

SOLUTION

The normal-stress distribution in the beam caused by Mp is shown in Fig. 
6–54b. When Mp is removed, the material responds elastically. Removal 
of Mp requires applying Mp in its reverse direction and therefore leads to 
an assumed elastic stress distribution as shown in Fig. 6–54c. The modulus 
of rupture sr is computed from the flexure formula. Using 
Mp = 187.99 kN # m and I = 82.44(10-6) m4 from Example 6.21, we have

 smax =
Mc
I

 ;

sr =
[187.99(103) N # m] (0.125 m)

82.44(10-6) m4 = 285.04(106) N>m2 = 285.04 MPa

As expected, sr 6 2sY.
Superposition of the stresses gives the residual stress distribution shown 

in Fig. 6–54d. Note that the point of zero normal stress was determined by 
proportion; i.e., from Figs. 6–54b and 6–54c, we require that

285.04 MPa
125 mm

=
250 MPa

y
 y = 109.63 mm = 110 mm

250 MPa

(b)

125 mm

125 mm

Mp

Plastic moment applied
(profile view)

Plastic moment reversed
(profile view)

(c)

250 MPa

y
125 mm

125 mm

Mp

sr  285.04 MPa

sr  285.1 MPa

35.0 MPa

250 MPa

110 mm

110 mm

Residual stress distribution

(d)

35.0 MPa

Fig. 6–54

200 mm

225 mm

12.5 mm

12.5 mm

12.5 mm

(a)
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6–158. Determine the shape factor for the cross section of 
the H-beam.

*6–160. Determine the plastic moment Mp that can be 
supported by a beam having the cross section shown. 
sY = 210 MPa.

PROBLEMS

 6.10 inelaStiC Bending 373

200 mm

Mp 20 mm

20 mm

200 mm

20 mm

Prob. 6–158

6–159. Determine the shape factor for the wide-flange beam.

200 mm

15 mm

15 mm

20 mm

200 mm

Mp

Prob. 6–159

Mp

25 mm

50 mm
25 mm

250 mm

Prob. 6–160

6–161. The wide-flange member is made from an elastic 
perfectly plastic material. Determine the shape factor for the 
beam.

t

b

h

t

t

Prob. 6–161

6–162. The rod has a circular cross section. If it is made of an 
elastic perfectly plastic material, determine the shape factor.

100 mm

Prob. 6–162
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6–167. Determine the shape factor for the beam.

6–165. Determine the shape factor of the beam’s cross 
section.

6–163. The rod has a circular cross section. If it is made of 
an elastic perfectly plastic material where sY = 345 MPa, 
determine the maximum elastic moment and plastic moment 
that can be applied to the cross section.

100 mm

Prob. 6–163

*6–164. The beam is made of an elastic perfectly plastic 
material for which sY = 200 MPa. If the largest moment in 
the beam occurs within the center section a–a, determine 
the magnitude of each force P that causes this moment to 
be (a) the largest elastic moment and (b) the largest plastic 
moment.

200 mm

100 mm

PP

2 m

a

a

2 m2 m2 m

Prob. 6–164

50 mm

100 mm

50 mm
25 mm

25 mm

Prob. 6–165

6–166. The beam is made of elastic-perfectly plastic 
material. Determine the maximum elastic moment and the 
plastic moment that can be applied to the cross section. 
Take sY = 250 MPa.

50 mm

50 mm
25 mm

25 mm

100 mm

Prob. 6–166

200 mm

10 mm

10 mm

15 mm

200 mm

Mp

Prob. 6–167
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6–169. The box beam is made of an elastic perfectly plastic 
material for which sY = 250 MPa.  Determine the residual 
stress in the top and bottom of the beam after the plastic 
moment Mp is applied and then released.

 6.10 inelaStiC Bending 375

*6–168. The beam is made of an elastic perfectly plastic 
material for which sY = 250 MPa. Determine the residual 
stress in the beam at its top and bottom after the plastic 
moment Mp is applied and then released.

200 mm

15 mm

15 mm

20 mm

200 mm

Mp

Prob. 6–168

25 mm

150 mm
150 mm

25 mm 25 mm

25 mm

Prob. 6–169

6–170. Determine the shape factor of the cross section.

a
a

a

a

a

a

Prob. 6–170

6–171. Determine the shape factor for the member having 
the tubular cross section.

2d

d

Prob. 6–171
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6–174. Determine the shape factor of the cross section.

6–175. The beam is made of elastic perfectly plastic 
material. Determine the maximum elastic moment and the 
plastic moment that can be applied to the cross section. 
Take a = 50 mm and sY = 230 MPa.

a

a

2a

a
2

a
2

Probs. 6–174/175

*6–176. The beam is made of elastic perfectly plastic 
material for which sY = 345 MPa. Determine the maximum 
elastic moment and the plastic moment that can be applied 
to the cross section.

6–177. Determine the shape factor of the cross section.

100 mm

100 mm

100 mm

100 mm

100 mm
100 mm

Probs. 6–176/177

*6–172. Determine the shape factor for the member.

6–173. The member is made from an elastic-plastic 
material. Determine the maximum elastic moment and the 
plastic moment that can be applied to the cross section. 
Take b = 100 mm, h = 150 mm, sY = 250 MPa.

–
2

–
2

h

b

h

Probs. 6–172/173

6–178. The plexiglass bar has a stress–strain curve that can 
be approximated by the straight-line segments shown. 
Determine the largest moment M that can be applied to the 
bar before it fails.

20 mm

20 mm

M

�0.06 �0.04

0.02 0.04

60

�80

compression

tension

failure

s (MPa)

P (mm/mm)

�100

40

Prob. 6–178
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6–182. A beam is made from polypropylene plastic and 
has a stress–strain diagram that can be approximated by 
the  curve shown. If the beam is subjected to a maximum 
tensile and compressive strain of P = 0.02 mm>mm, 
determine the moment M.

6–179. The beam is made of phenolic, a structural plastic, that 
has the stress–strain curve shown. If a portion of the curve can 
be represented by the equation s = (5(106)P)1/2 MPa, 
determine the magnitude w of the distributed load that can be 
applied to the beam without causing the maximum strain in its 
fibers at the critical section to exceed Pmax = 0.005 mm>mm.

*6–180. The stress–strain diagram for a titanium alloy can 
be approximated by the two straight lines. If a strut made of 
this material is subjected to bending, determine the moment 
resisted by the strut if the maximum stress reaches a value 
of (a) sA and (b) sB.

 6.10 inelaStiC Bending 377

�s(MPa)

s2 � 5(106)P

P(mm/mm)

w

150 mm

150 mm

2 m 2 m

Prob. 6–179

75 mm

M

50 mm

0.040.01

sB  1260

sA  980

B

A

P (mm/mm)

s (MPa)

Prob. 6–180

6–181. The bar is made of an aluminum alloy having a 
stress–strain diagram that can be approximated by the 
straight line segments shown. Assuming that this diagram is 
the same for both tension and compression, determine the 
moment the bar will support if the maximum strain at the 
top and bottom fibers of the beam is Pmax = 0.03.

630

0.050.006 0.025

560

420
100 mm M

75 mm
P(mm/mm)

s(MPa)

Prob. 6–181

P (mm/mm)

M

M
100 mm

30 mm

�s  (Pa)

s� 10(106)P1/4

Prob. 6–182
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Shear and moment diagrams are  
graphical representations of the internal  
shear and moment within a beam. 
They can be constructed by  sectioning 
the beam an arbitrary distance x from 
the left end, using the equilibrium 
 equations to find V and M as  functions 
of x, and then plotting the results. A sign 
convention for positive distributed load, 
shear, and moment must be followed.

Positive external distributed load

Positive internal shear

Positive internal moment

M M

Beam sign convention

w(x)

VV

It is also possible to plot the shear and 
moment diagrams by realizing that 
at each point the slope of the shear  
diagram is equal to the intensity of the 
distributed loading at the point.

Likewise, the slope of the moment  
diagram is equal to the shear at the 
point.

The area under the distributed-loading 
diagram between the points represents 
the change in shear.

And the area under the shear diagram  
represents the change in moment.

The shear and moment at any point 
can be obtained using the method of 
sections. The maximum (or minimum) 
 moment occurs where the shear is zero.

w =
dV
dx

 

V =
dM
dx

∆V = 1w dx

∆M = 1V dx

w � w(x)
wB

A
C D

B

w = negative increasing
slope = negative increasing

V = positive decreasing
slope = positive decreasing

�wB

0

0

x

x

V

VA

VA

VC

VD

�VB

�VB

M

�wC

�wD

CHAPTER REVIEW
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A bending moment tends to produce 
a linear variation of normal strain 
within a  straight beam. Provided the  
material is homogeneous and linear 
 elastic, then equilibrium can be used to 
relate the internal moment in the beam 
to the stress distribution. The result is 
the flexure formula,

smax =
Mc
I

where I and c are determined from the 
neutral axis that passes through the 
 centroid of the cross section.

cx

M

y

smax

If the cross-sectional area of the beam 
is not symmetric about an axis that is 
perpendicular to the neutral axis, then 
unsymmetrical bending will occur. The 
maximum stress can be determined 
from formulas, or the problem can be 
solved by considering the superposition 
of bending caused by the moment com-
ponents My and Mz about the principal 
axes of inertia for the area.

s = -
Mzy

Iz
+

Myz

Iy

xz

y

M

My

Mz

Beams made of composite materials 
can be “transformed” so their cross 
section is considered as if it were 
made of a single material. To do this, 
the transformation factor n, which is a 
ratio of the moduli of elasticity of the 
materials, is used to change the width b  
of the beam.

Once the cross section is transformed, 
then the stress in the material that was 
transformed is determined using the  
flexure formula multiplied by n.

n =
E1

E2 M

h

b

2

1
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Curved beams deform such that the 
normal strain does not vary linearly 
from the neutral axis. Provided the  
material is homogeneous and linear 
elastic, and the cross section has an axis 
of symmetry, then the curved-beam 
formula can be used to determine the 
bending stress.

s =
M(R - r)

Ar(r - R)

or

s =
My

Ae(R - y)
M

A

N

smax

Stress concentrations occur in members 
having a sudden change in their cross 
section, caused, for example, by holes 
and notches. The maximum bending 
stress at these locations is determined 
using a stress concentration factor K 
that is found from graphs determined 
from experiment.

s max = K
Mc
I

M

M

If the bending moment causes the stress 
in the material to exceed its elastic  
limit, then the normal strain will  remain 
linear; however, the stress  distribution 
will vary in accordance with the  
stress–strain diagram. The plastic and 
ultimate moments supported by the 
beam can be determined by requiring 
the resultant force to be zero and the 
resultant moment to be equivalent to 
the moment of the stress distribution.

A

N Mp

sY

sY

h
2

h
2

If an applied plastic or ultimate moment 
is released, it will cause the material  
to respond elastically, thereby inducing 
residual stresses in the beam.
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C6–1. The steel saw blade passes over the drive wheel of 
the band saw. Using appropriate measurements and data, 
explain how to determine the bending stress in the blade.

C6–1

C6–2. The crane boom has a noticeable taper along its 
length. Explain why. To do so, assume the boom is in the 
horizontal position and in the process of hoisting a load 
at its end, so that the reaction on the support A becomes 
zero. Use realistic dimensions and a load, to justify your 
reasoning.

A

C6–2

C6–3. Use reasonable dimensions for this hammer and a 
loading to show through an analysis why this hammer failed 
in the manner shown.

C6–3

C6–4. These garden shears were manufactured using an 
inferior material. Using a loading of 200 N applied normal 
to the blades, and appropriate dimensions for the shears,  
determine the absolute maximum bending stress in the   
material and show why the failure occurred at the critical 
location on the handle.

 

C6–4

CONCEPTUAL PROBLEMS
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(a) (b)
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R6–1. Determine the shape factor for the wide-flange 
beam.

180 mm

20 mm

20 mm

30 mm

180 mm

Mp

Prob. R6–1

R6–2. The compound beam consists of two segments 
that are pinned together at B. Draw the shear and moment 
 diagrams if it supports the distributed loading shown.

2/3 L

A C
B

1/3 L

w

Prob. R6–2

R6–3. The composite beam consists of a wood core and two 
plates of steel. If the allowable bending stress for the wood is 
(sallow)w = 20 MPa , and for the steel (sallow)st = 130 MPa, 
determine the maximum moment that can be applied to the 
beam. Ew = 11 GPa, Est = 200 GPa.

125 mm

20 mm

20 mm
75 mm

z

x

y

M

Prob. R6–3

*R6–4. A shaft is made of a polymer having a parabolic  
upper and lower cross section. If it resists a moment 
of M = 125 N # m, determine the maximum bending 
stress in the material (a) using the flexure formula and  
(b) using integration. Sketch a three-dimensional view of 
the stress distribution acting over the cross-sectional area. 
Hint: The  moment of inertia is determined using Eq. A–3 
of Appendix A.

y

z

x

M � 125 N· m

50 mm

100 mm

50 mm

y � 100 – z 

2/ 25

Prob. R6–4

REVIEW PROBLEMS



6

 review proBleMS 383

*R6–8. A wooden beam has a square cross section as 
shown. Determine which orientation of the beam provides 
the greatest strength at resisting the moment M. What is the 
difference in the resulting maximum stress in both cases?

a

a

a a

M M

(a) (b)

Prob. R6–8

R6–9. Draw the shear and moment diagrams for the shaft if 
it is subjected to the vertical loadings. The bearings at A and 
B exert only vertical reactions on the shaft.

A B

200 mm

450 N

150 N

300 N

200 mm
400 mm 300 mm

Prob. R6–9

R6–10. The strut has a square cross section a by a and is 
subjected to the bending moment M applied at an angle u 
as shown. Determine the maximum bending stress in terms 
of a,  M, and u. What angle u will give the largest bending 
stress in the strut? Specify the orientation of the neutral axis 
for this case.

M

x

z

y

a

a

�

Prob. R6–10

R6–5. Determine the maximum bending stress in the handle 
of the cable cutter at section a–a. A force of 225 N is applied 
to the handles. The cross-sectional area is shown in the figure.

100 mm

225 N20

a

a

75 mm

125 mm

A

225 N

18 mm

12 mm

Prob. R6–5

R6–6. The curved beam is subjected to a bending  moment 
of M = 85 N # m as shown. Determine the stress at points A 
and B and show the stress on a volume element located at 
these points.

30�

M � 85 N�m

B

A

100 mm

150 mm

20 mm

20 mm

15 mm

400 mm

B

A

Prob. R6–6

R6–7. Draw the shear and moment diagrams for the beam 
and determine the shear and moment in the beam as func-
tions of x, where 0 6 x 6 1.8 m.

1.8 m 1.2 m

30 kN/m

75 kN m

40 kN

x

Prob. R6–7



CHAPTER 7

Railroad ties act as beams that support very large transverse shear loadings. As a 
result, if they are made of wood they will tend to split at their ends, where the 
shear loads are the largest.

(© Bert Folsom/Alamy)
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Transverse 
shear

7.1 Shear in Straight MeMberS
In general, a beam will support both an internal shear and a moment. The 
shear V is the result of a transverse shear-stress distribution that acts over 
the beam’s cross section, Fig. 7–1. Due to the complementary property of 
shear, this stress will also create corresponding longitudinal shear stress 
that acts along the length of the beam.

CHAPTER OBJECTIVES

n In this chapter we will develop a method for finding the shear 
stress in a beam and discuss a way to find the spacing of fasteners 
along the beam’s length. The concept of shear flow will be 
presented, and used to find the average stress within thin-walled 
members. The chapter ends with a discussion of how to prevent 
twisting of a beam when it supports a load.

Longitudinal
shear stress

Transverse
shear stress

V

t

t

Fig. 7–1
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To illustrate the effect caused by the longitudinal shear stress, consider 
the beam made from three boards shown in Fig. 7–2a. If the top and 
bottom surfaces of each board are smooth, and the boards are not bonded 
together, then application of the load P will cause the boards to slide 
relative to one another when the beam deflects. However, if the boards 
are bonded together, then the longitudinal shear stress acting between 
the boards will prevent their relative sliding, and consequently the beam 
will act as a single unit, Fig. 7–2b.

As a result of the shear stress, shear strains will be developed and these 
will tend to distort the cross section in a rather complex manner. For 
example, consider the short bar in Fig. 7–3a made of a highly deformable 
material and marked with horizontal and vertical grid lines. When the 
shear force V is applied, it tends to deform these lines into the pattern 
shown in Fig. 7–3b. This nonuniform shear-strain distribution will cause 
the cross section to warp; and as a result, when a beam is subjected to 
both bending and shear, the cross section will not remain plane as 
assumed in the development of the flexure formula. 

7.2 the Shear ForMula
Because the strain distribution for shear is not easily defined, as in the 
case of axial load, torsion, and bending, we will obtain the shear-stress 
distribution in an indirect manner. To do this we will consider the 
horizontal force equilibrium of a portion of an element taken from the 
beam in Fig. 7–4a. A free-body diagram of the entire element is shown in 
Fig. 7–4b. The normal-stress distribution acting on it is caused by the 
bending moments M and M + dM. Here we have excluded the effects of 
V, V + dV, and w(x), since these loadings are vertical and will therefore 
not be involved in a horizontal force summation. Notice that ΣFx = 0 is 
satisfied since the stress distribution on each side of the element forms 
only a couple moment, and therefore a zero force resultant.

Boards not bonded together
(a)

P

    
Boards bonded together

(b)

P

Fig. 7–2

(a) Before deformation

V

(b) After deformation

V

Fig. 7–3

Shear connectors are “tack welded” to this 
corrugated metal floor liner so that when the 
concrete floor is poured, the connectors will 
prevent the concrete slab from slipping on 
the liner surface. The two materials will thus 
act as a composite slab.
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Now let’s consider the shaded top portion of the element that has been 
sectioned at y′ from the neutral axis, Fig. 7–4c. It is on this sectioned 
plane that we want to find the shear stress. This top segment has a width t 
at the section, and the two cross-sectional sides each have an area A′. 
The segment’s free-body diagram is shown in Fig. 7–4d. The resultant 
moments on each side of the element differ by dM, so that ΣFx = 0 will 
not be satisfied unless a longitudinal shear stress t acts over the bottom 
sectioned plane. To simplify the analysis, we will assume that this shear 
stress is constant across the width t of the bottom face. To find the 
horizontal force created by the bending moments, we will assume that 
the effect of warping due to shear is small, so that it can generally be 
neglected. This assumption is particularly true for the most common case 
of a slender beam, that is, one that has a small depth compared to its 
length. Therefore, using the flexure formula, Eq. 6–13, we have

d+ ΣFx = 0;  LA′
s′ dA ′ - LA′

s dA ′ - t(t dx) = 0

 LA′
aM + dM

I
by dA ′ - LA′

aM
I
by dA ′ - t(t dx) = 0

adM
I

b LA′
y dA ′ = t(t dx)  (7–1)

Solving for t, we get

t =
1
It

 adM
dx

b LA ′
y dA ′

Here V = dM>dx (Eq. 6–2). Also, the integral represents the moment of 
the area A ′ about the neutral axis, which we will denote by the symbol Q. 
Since the location of the centroid of A ′ is determined from 
y′ = 1A′y dA ′>A ′, we can also write

 Q = LA′
y dA′ = y′A ′  (7–2)

(a)

w

M1

F1 F2

M2dxx

x

   

M � dM
M

dF ¿¿ dF ¿

dF ¿¿ dF ¿

dx

�Fx � 0 satisfied

(b)

Fig. 7–4

(c)

A

Area � A¿
Section plane

t

dx

y ¿

N

_
y ¿

M � dM

M � dM

M

(d) Profile view

y¿

A¿

Three-dimensional view

t

M

dx

s s¿s¿
s

t

t

M � dM

M � dM

M

(d) Profile view

y¿

A¿

Three-dimensional view

t

M

dx

s s¿s¿
s

t

t

M � dM

M � dM

M

(d) Profile view

y¿

A¿

Three-dimensional view

t

M

dx

s s¿s¿
s

t

t
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The final result is called the shear formula, namely

  t =
VQ

It
  (7–3)

With reference to Fig. 7–5,

 t =  the shear stress in the member at the point located a distance y 
from the neutral axis. This stress is assumed to be constant and 
therefore averaged across the width t of the member

 V =  the shear force, determined from the method of sections and 
the equations of equilibrium

 I =  the moment of inertia of the entire cross-sectional area 
calculated about the neutral axis

 t =  the width of the member’s cross section, measured at the point 
where t is to be determined

      Q =  y′A ′, where A ′ is the area of the top (or bottom) portion of the 
member’s cross section, above (or below) the section plane 
where t is measured, and y′ is the distance from the neutral axis 
to the centroid of A ′

Although for the derivation we considered only the shear stress acting 
on the beam’s longitudinal plane, the formula applies as well for finding 
the transverse shear stress on the beam’s cross section, because these 
stresses are complementary and numerically equal.

A

Area � A¿

t

N

_
y ¿

t

V

Fig. 7–5
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Calculating Q. Of all the variables in the shear formula, Q is 
usually the most difficult to define properly. Try to remember that it 
represents the moment of the cross-sectional area that is above or below 
the point where the shear stress is to be determined. It is this area A ′ that 
is “held onto” the rest of the beam by the longitudinal shear stress as the 
beam undergoes bending, Fig. 7–4d. The examples shown in Fig. 7–6 will 
help to illustrate this point. Here the stress at point P is to be determined, 
and so A ′ represents the dark shaded region. The value of Q for each 
case is reported under each figure. These same results can also be 
obtained for Q by considering A ′ to be the light shaded area below P, 
although here y′ is a negative quantity when a portion of A ′ is below the 
neutral axis.

A

Q = 

N

P

_
y

A

N

A

N
P

P

A2

¿A¿ Q = 
_
y ¿A¿

Q � 2 � 
_
y¿1A¿1

_
y¿1

_
y¿2

_
y¿2A¿2

A¿1

A¿

A¿
_
y ¿

_
y ¿

¿

Fig. 7–6
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Limitations on the Use of the Shear Formula. One of the 
major assumptions used in the development of the shear formula is 
that the shear stress is uniformly distributed over the width t at the 
section. In other words, the average shear stress is calculated across the 
width. We can test the accuracy of this assumption by comparing it with 
a more exact mathematical analysis based on the theory of elasticity. 
For example, if the beam’s cross section is rectangular, the shear-stress 
distribution across the neutral axis actually varies as shown in Fig. 7–7. 
The maximum value, t′max , occurs at the sides of the cross section, and 
its magnitude depends on the ratio b>h (width>depth). For sections 
having a b>h = 0.5, t′max is only about 3% greater than the shear stress 
calculated from the shear formula, Fig. 7–7a. However, for flat sections, 
say b>h = 2, t′max is about 40% greater than tmax , Fig. 7–7b. The error 
becomes even greater as the section becomes flatter, that is, as the b>h 
ratio increases. Errors of this magnitude are certainly intolerable if one 
attempts to use the shear formula to determine the shear stress in the 
flange of the wide-flange beam shown in Fig. 7–8.

It should also be noted that the shear formula will not give accurate 
results when used to determine the shear stress at the flange–web 
junction of this beam, since this is a point of sudden cross-sectional 
change and therefore a stress concentration occurs here. Fortunately, 
engineers must only use the shear formula to calculate the average 
maximum shear stress in a beam, and for a wide-flange section this 
occurs at the neutral axis, where the b>h (width>depth) ratio for the web 
is very small, and therefore the calculated result is very close to the actual 
maximum shear stress as explained above.

(a)

b � 0.5h

h
AN

(b)

b � 2h

AN

t¿max

t¿max

VQ
Ittmax �

VQ
Ittmax �

h

Fig. 7–7

N

A

Flanges

V
Web

Fig. 7–8
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Another important limitation on the use of the shear formula can be 
illustrated with reference to Fig. 7–9a, which shows a member having a 
cross section with an irregular boundary. If we apply the shear formula to 
determine the (average) shear stress t along the line AB, it will be 
directed downward across this line as shown in Fig. 7–9b. However, an 
element of material taken from the boundary point B, Fig. 7–9c, must not 
have any shear stress on its outer surface. In other words, the shear stress 
acting on this element must be directed tangent to the boundary, and so 
the shear-stress distribution across line AB is actually directed as shown 
in Fig. 7–9d. As a result, the shear formula can only be applied at sections 
shown by the blue lines in Fig. 7–9a, because these lines intersect the 
tangents to the boundary at right angles, Fig. 7–9e.

To summarize the above points, the shear formula does not give 
accurate results when applied to members having cross sections that are 
short or flat, or at points where the cross section suddenly changes. Nor 
should it be applied across a section that intersects the boundary of the 
member at an angle other than 90°.

(a)

A B

V

 

 

Stress-free
outer surface

(c)

Shear-stress distribution
from shear formula

A B

(b)

t

t

t¿ � 0

t¿¿

t¿¿ t¿

  (d)

A B

tmax tmax

(e)

Fig. 7–9
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Important poInts

 • Shear forces in beams cause nonlinear shear-strain distributions over the cross section, causing it to warp.

 • Due to the complementary property of shear, the shear stress developed in a beam acts over the cross 
section of the beam and along its longitudinal planes.

 • The shear formula was derived by considering horizontal force equilibrium of a portion of a differential 
segment of the beam.

 • The shear formula is to be used on straight prismatic members made of homogeneous material that has 
linear elastic behavior. Also, the internal resultant shear force must be directed along an axis of symmetry 
for the cross section.

 • The shear formula should not be used to determine the shear stress on cross sections that are short or 
flat, at points of sudden cross-sectional changes, or across a section that intersects the boundary of the 
member at an angle other than 90º.

procedure for analysIs

In order to apply the shear formula, the following procedure is suggested.

Internal Shear.
 • Section the member perpendicular to its axis at the point where the shear stress is to be determined, 

and obtain the internal shear V at the section.

Section Properties.
 • Find the location of the neutral axis, and determine the moment of inertia I of the entire  

cross-sectional area about the neutral axis.

 • Pass an imaginary horizontal section through the point where the shear stress is to be determined. 
Measure the width t of the cross-sectional area at this section.

 • The portion of the area lying either above or below this width is A ′. Determine Q by using Q = y′A ′. 
Here y′ is the distance to the centroid of A ′, measured from the neutral axis. It may be helpful to 
realize that A ′ is the portion of the member’s cross-sectional area that is being “held onto the member” 
by the longitudinal shear stress as the beam undergoes bending. See Figs. 7–2 and 7–4d.

Shear Stress.
 • Using a consistent set of units, substitute the data into the shear formula and calculate the shear stress t.

 • It is suggested that the direction of the transverse shear stress t be established on a volume element of 
material located at the point where it is calculated. This can be done by realizing that t acts on the cross 
section in the same direction as V. From this, the corresponding shear stresses acting on the other three 
planes of the element can then be established.
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ExampLE   7.1

The beam shown in Fig. 7–10a is made from two boards. Determine 
the maximum shear stress in the glue necessary to hold the boards 
together along the seam where they are joined.

SOLUTION

Internal She ar. The support reactions and the shear diagram for 
the beam are shown in Fig. 7–10b. lt is seen that the maximum shear in 
the beam is 19.5 kN.

Section Properties. The centroid and therefore the neutral axis 
will be determined from the reference axis placed at the bottom of the 
cross-sectional area, Fig. 7–10a. Working in units of meters, we have

y =
Σ y∼A

ΣA

=
[0.075 m](0.150 m)(0.030 m) + [0.165 m](0.030 m)(0.150 m)

(0.150 m)(0.030 m) + (0.030 m)(0.150 m)
= 0.120 m

The moment of inertia about the neutral axis, Fig. 7–10a, is therefore

 I = c 1
12

(0.030 m)(0.150 m)3 + (0.150 m)(0.030 m)(0.120 m - 0.075 m)2 d

 + c 1
12

(0.150 m)(0.030 m)3 + (0.030 m)(0.150 m)(0.165 m - 0.120 m)2 d

 = 27.0(10- 6) m4

The top board (flange) is held onto the bottom board (web) by the 
glue, which is applied over the thickness t = 0.03 m. Consequently Q is 
taken from the area of the top board, Fig. 7–10a. We have

 Q = y′A′ = [0.180 m - 0.015 m - 0.120 m](0.03 m)(0.150 m)

 = 0.2025(10- 3) m3

Shear Stress. Applying the shear formula,

 tmax =
VQ

It
=

19.5(103) N(0.2025(10- 3) m3)

27.0(10- 6) m4(0.030 m)
= 4.88 MPa Ans.

The shear stress acting at the top of the bottom board is shown in  
Fig. 7–10c.

NOTE: It is the glue’s resistance to this longitudinal shear stress that 
holds the boards from slipping at the right support.

4 m 4 m

6.5 kN/m

(a)

N A

30 mm

150 mm

150 mm

30 mm

_
y

6 m

26 kN

(b)

2 m

19.5 kN6.5 kN

6.5

4
5 8

�19.5

V (kN)

x (m)

4.88 MPa

Plane containing glue

(c)

V � 19.5 kN

Fig. 7–10
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ExampLE   7.2

Determine the distribution of the shear stress over the cross section of 
the beam shown in Fig. 7–11a.

V

(a)

h

b

  

b

y

N

A

A¿

(b)

h
2

h
2

_
y ¿

SOLUTION

The distribution can be determined by finding the shear stress at an 
arbitrary height y from the neutral axis, Fig. 7–11b, and then plotting this 
function. Here, the dark colored area A ′ will be used for Q.* Hence

Q = y′A ′ = c y +
1
2

 ah
2

- ybd ah
2

- ybb =
1
2
ah2

4
- y2bb

Applying the shear formula, we have

t =
VQ

It
=

V11
22 3(h2>4) - y24b

1 1
12 bh32b

=
6V

bh3 ah2

4
- y2b  (1)

This result indicates that the shear-stress distribution over the cross 
section is parabolic. As shown in Fig. 7–11c, the intensity varies from 
zero at the top and bottom, y = {h>2, to a maximum value at the 
neutral axis, y = 0. Specifically, since the area of the cross section is 
A = bh, then at y = 0 Eq. 1 becomes

 tmax = 1.5 
V
A

 (2)

Rectangular cross section

(c)

b

N

Tmax

A

V

dy
y

Shear-stress distribution

Fig. 7–11

*The area below y can also be used 3A ′ = b(h>2 + y)4 , but doing so involves a bit 
more algebraic manipulation.



 7.2 the shear Formula 395

7

This same value for tmax can be obtained directly from the shear 
formula, t = VQ>It, by realizing that tmax occurs where Q is largest, 
since V, I, and t are constant. By inspection, Q will be a maximum 
when the entire area above (or below) the neutral axis is considered; 
that is, A ′ = bh>2 and y′ = h>4, Fig. 7–11d. Thus,

tmax =
VQ

It
=

V(h>4)(bh>2)

1 1
12bh32b

= 1.5 
V
A

By comparison, tmax is 50% greater than the average shear stress 
determined from Eq. 1–7; that is, tavg = V>A.

It is important to realize that tmax also acts in the longitudinal 
direction of the beam, Fig. 7–11e. It is this stress that can cause a 
timber beam to fail at its supports, as shown Fig. 7–11f. Here horizontal 
splitting of the wood starts to occur through the neutral axis at the 
beam’s ends, since there the vertical reactions subject the beam to 
large shear stress, and wood has a low resistance to shear along its 
grains, which are oriented in the longitudinal direction.

It is instructive to show that when the shear-stress distribution,  
Eq. 1, is integrated over the cross section it produces the resultant 
shear V. To do this, a differential strip of area dA = b dy is chosen,  
Fig. 7–11c, and since t acts uniformly over this strip, we have

 LA
t dA = L

h>2

-h>2
 
6V

bh3 ¢h2

4
- y2≤b dy

 =
6V

h3  ¢h2

4
 y -

1
3

 y3≤ ` h>2
-h>2

 =
6V

h3  Jh2

4
 ah

2
+

h
2
b -

1
3

 ¢h3

8
+

h3

8
≤ R = V

P

(f)

N

A

(e)

tmax

b
N

A

A¿

(d)

h
2

h
2

h
4

Fig. 7–11 (cont.)

Typical shear failure of this wooden beam 
occurred at the support and through the 
approximate center of its cross section.
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ExampLE   7.3

A steel wide-flange beam has the dimensions shown in Fig. 7–12a. If it is 
subjected to a shear of V = 80 kN, plot the shear-stress distribution 
acting over the beam’s cross section.

(a)

300 mm

15 mm

20 mm

20 mm

A

N

100 mm

100 mm

V � 80 kN
1.13 MPa

22.6 MPa

B¿

B

C

tB¿ � 1.13 MPa

tB � 22.6 MPa

tC � 25.2 MPa

(b)

SOLUTION

Since the flange and web are rectangular elements, then like the previous 
example, the shear-stress distribution will be parabolic and in this case it 
will vary in the manner shown in Fig. 7–12b. Due to symmetry, only the 
shear stresses at points B′, B, and C have to be determined. To show how 
these values are obtained, we must first determine the moment of inertia of 
the cross-sectional area about the neutral axis. Working in meters, we have

 I = c 1
12

 (0.015 m)(0.200 m)3 d

 + 2 c 1
12

 (0.300 m)(0.02 m)3 + (0.300 m)(0.02 m)(0.110 m)2 d

 = 155.6(10-6) m4

For point B′, tB 

′ = 0.300 m, and A′ is the dark shaded area shown in 
Fig. 7–12c. Thus,

QB′ = y′A ′ = (0.110 m)(0.300 m)(0.02 m) = 0.660(10-3) m3

so that

tB′ =
VQB′

ItB′
=

380(103) N4 30.660(10-3) m34
3155.6(10-6) m44(0.300 m)

= 1.13 MPa

For point B, tB = 0.015 m and QB = QB′ , Fig. 7–12c. Hence

tB =
VQB

ItB
=

380(103) N4 30.660(10-3) m34
3155.6(10-6) m44(0.015 m)

= 22.6 MPa

N A

0.02 m

0.100 m

0.300 m

B B¿
A¿

(c)

Fig. 7–12
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N A

0.02 m

0.100 m

0.300 m

C

0.015 m
A¿

(d)

Fig. 7–12 (cont.)

Note from our discussion of the “Limitations on the Use of the Shear 
Formula” that the calculated values for both tB′ and tB are actually very 
misleading. Why?

For point C, tC = 0.015 m and A′ is the dark shaded area shown in  
Fig. 7–12d. Considering this area to be composed of two rectangles,  
we have

 QC = Σy′A  ′ = (0.110 m)(0.300 m)(0.02 m)

 + (0.05 m)(0.015 m)(0.100 m)

 = 0.735(10-3) m3

Thus,

tC = tmax =
VQC

ItC
=

380(103) N4 [0.735(10-3) m3]

3155.6(10- 6) m44(0.015 m)
= 25.2 MPa

From Fig. 7–12b, note that the largest shear stress occurs in the web and is 
almost uniform throughout its depth, varying from 22.6 MPa to 25.2 MPa. 
It is for this reason that for design, some codes permit the use of 
calculating the average shear stress on the cross section of the web, rather 
than using the shear formula; that is,

tavg =
V
Aw

=
8011032  N

10.015 m2 10.2 m2 = 26.7 MPa

This will be discussed further in Chapter 11.
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pRELImINaRY pROBLEmS
P7–1. In each case, calculate the value of Q and t that are 
used in the shear formula for finding the shear stress at A. 
Also, show how the shear stress acts on a differential volume 
element located at point A.

V

A

(a)

0.3 m

0.1 m

0.1 m
0.2 m

V

A

(b)

0.3 m

0.1 m

0.1 m

0.2 m

(c)

0.1 m

0.3 m

0.5 m
0.1 m

0.1 m

0.1 m
0.1 m A

V

(d)

0.2 m

0.2 m
0.2 m

0.2 m
0.1 m

0.2 m

0.2 m

0.2 m

A

V

 

(e)

0.2 m
0.4 m

0.2 m

V

A

0.1 m

0.2 m

0.3 m

0.3 m

(f)

0.1 m

0.1 m

0.5 m

0.1 m

0.1 m

0.3 m

0.2 m

A V

Prob. P7–1
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F7–1. If the beam is subjected to a shear force of  
V = 100 kN, determine the shear stress at point A. Represent 
the state of stress on a volume element at this point.

200 mm

90 mm

300 mm

20mm

20mm

20 mm V

A

Prob. F7–1

F7–2. Determine the shear stress at points A and B if the 
beam is subjected to a shear force of V = 600 kN. Represent 
the state of stress on a volume element of these points.

100 mm

100 mm

100 mm

100 mm

100 mm

100 mm
B

A V

Prob. F7–2

F7–3. Determine the absolute maximum shear stress 
developed in the beam.

A

75 mm

150 mm

300 mm 300 mm

30 kN
15 kN

B

300 mm

Prob. F7–3

F7–4. If the beam is subjected to a shear force of  
V = 20 kN, determine the maximum shear stress in the beam.

V

Prob. F7–4

F7–5. If the beam is made from four plates and subjected 
to a shear force of V = 20 kN, determine the shear stress at 
point A. Represent the state of stress on a volume element 
at this point.

150 mm

50 mm

25 mm

25 mm

A
150 mm

50 mm

50 mm

V

Prob. F7–5

FUNDamENTaL pROBLEmS
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7–1. If the wide-flange beam is subjected to a shear of 
V = 20 kN, determine the shear stress on the web at A. 
Indicate the shear-stress components on a volume element 
located at this point.

7–2. If the wide-flange beam is subjected to a shear of 
V = 20 kN, determine the maximum shear stress in the 
beam.

7–3. If the wide-flange beam is subjected to a shear of 
V = 20 kN, determine the shear force resisted by the web of 
the beam.

A

B
V

20 mm

20 mm

20 mm

300 mm

200 mm

200 mm

Probs. 7–1/2/3

*7–4. If the beam is subjected to a shear of V = 30 kN, 
determine the web’s shear stress at A and B. Indicate the 
shear-stress components on a volume element located  
at these points. Set w = 200 mm. Show that the neutral axis  
is located at y = 0.2433 m from the bottom and  
I = 0.5382(10−3) m4. 

7–5. If the wide-flange beam is subjected to a shear of  
V = 30 kN, determine the maximum shear stress in the 
beam. Set w = 300 mm.

V

20 mm

300 mm

400 mm

w

20 mm

20 mm

B

A

Probs. 7–4/5

7–6. The wood beam has an allowable shear stress of  
tallow = 7 MPa. Determine the maximum shear force V that 
can be applied to the cross section.

50 mm

50 mm

200 mm

100 mm
50 mm

V

50 mm

Prob. 7–6

7–7. The shaft is supported by a thrust bearing at A and a 
journal bearing at B. If P = 20 kN, determine the absolute 
maximum shear stress in the shaft.

*7–8. The shaft is supported by a thrust bearing at A and a 
journal bearing at B. If the shaft is made from a material 
having an allowable shear stress of tallow = 75 MPa, 
determine the maximum value for P.

AC DB

P P

1 m 1 m 1 m

40 mm

30 mm

Probs. 7–7/8

pROBLEmS
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7–9. Determine the largest shear force V that the member 
can sustain if the allowable shear stress is tallow = 56 MPa.

7–10. If the applied shear force V = 90 kN, determine the 
maximum shear stress in the member.

7–13. Determine the shear stress at point B on the web of 
the cantilevered strut at section a–a.

7–14. Determine the maximum shear stress acting at 
section a–a of the cantilevered strut.

V
75 mm 25 mm

25 mm

25 mm

75 mm

Probs. 7–9/10

7–11. The overhang beam is subjected to the uniform 
distributed load having an intensity of w = 50 kN>m. 
Determine the maximum shear stress in the beam.

3 m 3 m

w

50 mm

100 mm

A
B

Prob. 7–11

*7–12. A member has a cross section in the form of an 
equilateral triangle. If it is subjected to a shear force V, 
determine the maximum average shear stress in the member 
using the shear formula. Should the shear formula actually 
be used to predict this value? Explain.

V

a

h

Prob. 7–12

a

a

2 kN 4 kN

250 mm 250 mm 300 mm

20 mm
50 mm

70 mm

20 mm

B

Probs. 7–13/14

7–15. Determine the maximum shear stress in the T-beam at 
the critical section where the internal shear force is maximum.

*7–16. Determine the maximum shear stress in the T-beam 
at point C. Show the result on a volume element at this point.

3 m 1.5 m1.5 m

10 kN/m

A

150 mm

150 mm 30 mm

30 mm

B
C

Probs. 7–15/16



402  Chapter 7  transverse shear

7

7–17. The strut is subjected to a vertical shear of V = 130 
kN. Plot the intensity of the shear-stress distribution acting 
over the cross-sectional area, and compute the resultant shear 
force developed in the vertical segment AB.

7–21. Determine the maximum shear stress acting in the 
fiberglass beam at the section where the internal shear force is 
maximum.

7–25. Determine the length of the cantilevered beam so 
that the maximum bending stress in the beam is equivalent 
to the maximum shear stress.

A

B

50 mm
150 mm

150 mm

150 mm

150 mm

50 mm

V  130 kN

Prob. 7–17

7–18. Plot the shear-stress distribution over the cross 
section of a rod that has a radius c. By what factor is the 
maximum shear stress greater than the average shear stress 
acting over the cross section?

c

V

y

Prob. 7–18

7–19. Determine the maximum shear stress in the strut if 
it is subjected to a shear force of V = 20 kN.

*7–20. Determine the maximum shear force V that the 
strut can support if the allowable shear stress for the 
material is tallow = 40 MPa.

V
60 mm

12 mm

20 mm

20 mm

80 mm

12 mm

Probs. 7–19/20

A

2.5 kN/m

D

18 mm

18 mm100 mm

150 mm

0.6 m
2 m2 m

12 mm

3 kN/m

100 mm

Prob. 7–21
7–22. If the beam is subjected to a shear of V = 15 kN, 
determine the web’s shear stress at A and B. Indicate the 
shear-stress components on a volume element located at these 
points. Set w = 125 mm. Show that the neutral axis is located 
at y = 0.1747 m from the bottom and INA = 0.2182(10−3) m4.

7–23. If the wide-flange beam is subjected to a shear of  
V = 30 kN, determine the maximum shear stress in the 
beam. Set w = 200 mm.

*7–24. If the wide-flange beam is subjected to a shear of  
V = 30 kN, determine the shear force resisted by the web 
of the beam. Set w = 200 mm.

A

B

V

30 mm
25 mm

30 mm

250 mm

200 mm

w

Probs. 7–22/23/24

P

L

h

b

Prob. 7–25
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7–29. The composite beam is constructed from wood and 
reinforced with a steel strap. Use the method of Sec. 6.6 and 
calculate the maximum shear stress in the beam when it is 
subjected to a shear of V = 50 kN. Take Est = 200 GPa, 
Ew = 15 GPa.

175 mm

10 mm

10 mm

300 mm

V= 50 kN

Prob. 7–29

7–30. The beam has a rectangular cross section and is 
subjected to a load P that is just large enough to develop a 
fully plastic moment Mp = PL at the fixed support. If the 
material is elastic perfectly plastic, then at a distance x 6 L 
the moment M = Px creates a region of plastic yielding 

7–26. If the beam is made from wood having an allowable 
shear stress tallow = 3 MPa, determine the maximum 
magnitude of P. Set d = 100 mm.

0.6 m 0.6 m 0.6 m

P
2P

50 mm

d

A B

Prob. 7–26

7–27. The beam is slit longitudinally along both sides. If it 
is subjected to a shear of V = 250 kN, compare the 
maximum shear stress in the beam before and after the cuts 
were made.

*7–28. The beam is to be cut longitudinally along both 
sides as shown. If it is made from a material having an 
allowable shear stress of tallow = 75 MPa, determine the 
maximum allowable shear force V that can be applied 
before and after the cut is made.

200 mm
25 mm

25 mm

25 mm

200 mm

25 mm

25 mm

100 mm

V

Probs. 7–27/28

with an associated elastic core having a height 2y′. This 
situation has been described by Eq. 6–30 and the moment M 
is distributed over the cross section as shown in Fig. 6–48e. 
Prove that the maximum shear stress in the beam is given 
by tmax = 3

2(P>A′), where A′ = 2y′b, the cross-sectional 
area of the elastic core.

h

b L

P
x

Plastic region

2y¿

Elastic region

Prob. 7–30

7–31. The beam in Fig. 6–48f is subjected to a fully plastic 
moment Mp . Prove that the longitudinal and transverse 
shear stresses in the beam are zero. Hint: Consider an 
element of the beam shown in Fig. 7–4d.
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Fig. 7–13

dx

dx

M � dM

M

(a)

dx

dF

F � dF
(b)

t
F

A¿

*The use of the word “flow” in this terminology will become meaningful as it pertains 
to the discussion in Sec. 7.4.

7.3  Shear Flow in built-up 
MeMberS

Occasionally in engineering practice, members are “built up” from several 
composite parts in order to achieve a greater resistance to loads. An 
example is shown in Fig. 7–13. If the loads cause the members to bend, 
fasteners such as nails, bolts, welding material, or glue will be needed to 
keep the component parts from sliding relative to one another, Fig. 7–2. 
In order to design these fasteners or determine their spacing, it is necessary 
to know the shear force that they must resist. This loading, when measured 
as a force per unit length of beam, is referred to as shear flow, q.*

The magnitude of the shear flow is obtained using a procedure similar 
to that for finding the shear stress in a beam. To illustrate, consider 
finding the shear flow along the juncture where the segment in Fig. 7–14a 
is connected to the flange of the beam. Three horizontal forces must act 
on this segment, Fig. 7–14b. Two of these forces, F and F + dF, are the 
result of the normal stresses caused by the moments M and M + dM, 
respectively. The third force, which for equilibrium equals dF, acts at the 
juncture. Realizing that dF is the result of dM, then, like Eq. 7–1, we have

dF =
dM

I LA′
y dA′

The integral represents Q, that is, the moment of the segment’s area A′ 
about the neutral axis. Since the segment has a length dx, the shear flow, 
or force per unit length along the beam, is q = dF>dx. Hence dividing 
both sides by dx and noting that V = dM>dx, Eq. 6–2, we have

q =
VQ

I
 (7–4)

Here
q = the shear flow, measured as a force per unit length along the beam
V =  the shear force, determined from the method of sections and the 

equations of equilibrium
I =  the moment of inertia of the entire cross-sectional area calculated 

about the neutral axis
Q =  y′A′, where A′ is the cross-sectional area of the segment that is connected 

to the beam at the juncture where the shear flow is calculated, and y′ is 
the distance from the neutral axis to the centroid of A′

   

Fig. 7–14
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Fastener Spacing. When segments of a beam are connected by 
fasteners, such as nails or bolts, their spacing s along the beam can be 
determined. For example, let’s say that a fastener, such as a nail, can 
support a maximum shear force of F (N) before it fails, Fig. 7–15a. If 
these nails are used to construct the beam made from two boards, as 
shown in Fig. 7–15b, then the nails must resist the shear flow q (N>m) 
between the boards. In other words, the nails are used to “hold” the top 
board to the bottom board so that no slipping occurs during bending. 
(See Fig. 7–2a.) As shown in Fig. 7–15c, the nail spacing is therefore 
determined from

F (N) = q (N>m) s (m)

The examples that follow illustrate application of this equation.

Other examples of shaded segments connected to built-up beams by 
fasteners are shown in Fig. 7–16. The shear flow here must be found at 
the thick black line, and is determined by using a value of Q calculated 
from A ′ and y′ indicated in each figure. This value of q will be resisted by 
a single fastener in Fig. 7–16a, by two fasteners in Fig. 7–16b, and by three 
fasteners in Fig. 7–16c. In other words, the fastener in Fig. 7–16a supports 
the calculated value of q, and in Figs. 7–16b and 7–16c each fastener 
supports q>2 and q>3, respectively.

_
y ¿

A¿

AN

(a)  

N A

(b)

A¿
A¿

AN

(c)

_
y ¿

_
y ¿

Fig. 7–16

Important poInt

 • Shear flow is a measure of the force per unit length along the axis 
of a beam. This value is found from the shear formula and is used 
to determine the shear force developed in fasteners and glue 
that holds the various segments of a composite beam together.

A

N

V

(a)

(c)

(b)

F

F

F

A

N

V

(a)

(c)

(b)

F

F

F

A

N

V

(a)

(c)

(b)

F

F

F

Fig. 7–15
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The beam is constructed from three boards glued together as shown in 
Fig. 7–17a. If it is subjected to a shear of V = 850 kN, determine the 
shear flow at B and B  ′ that must be resisted by the glue.

SOLUTION

Section Properties. The neutral axis (centroid) will be located from 
the bottom of the beam, Fig. 7–17a. Working in units of meters, we have

 y =
Σy∼A

ΣA
=

2[0.15 m](0.3 m)(0.01 m) + [0.305 m](0.250 m)(0.01 m)

2(0.3 m)(0.01 m) + (0.250 m)(0.01 m)

 = 0.1956 m

The moment of inertia of the cross section about the neutral axis is thus

 I = 2 c 1
12

 (0.01 m)(0.3 m)3 + (0.01 m)(0.3 m)(0.1956 m - 0.150 m)2 d

 + c 1
12

 (0.250 m)(0.01 m)3 + (0.250 m)(0.01 m)(0.305 m - 0.1956 m)2 d

 = 87.42(10- 6) m4

The glue at both B and B  ′ in Fig. 7–17a “holds” the top board to the 
beam. Here

 QB = y=
BA=

B = [0.305 m - 0.1956 m](0.250 m)(0.01 m)

 = 0.2735(10- 3) m3

Shear Flow.

q =
VQB

I
=

850(103) N(0.2735(10- 3) m3)

87.42(10- 6) m4 = 2.66 MN>m

Since two seams are used to secure the board, the glue per meter 
length of beam at each seam must be strong enough to resist one-half 
of this shear flow. Thus,

    qB = qB′ =
q

2
= 1.33 MN>m Ans.

NOTE: If the board CC' is added to the beam, Fig. 7–17b, then y and I 
have to be recalculated, and the shear flow at C and C′ determined 
from q = V y′ C  A′ C>I. Finally, this value is divided by one-half to obtain 
qC and qC′.

ExampLE   7.4

250 mm
10 mm

300 mm

125 mm 10 mm10 mm

AN

_
y

_
   y¿B

V � 850 kN

B B¿

(a)

A¿B

_ 
  y¿C

AN

C

(b)

C ¿

A¿C

Fig. 7–17
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A box beam is constructed from four boards nailed together as shown 
in Fig. 7–18a. If each nail can support a shear force of 30 N, determine 
the maximum spacing s of the nails at B and at C to the nearest 5 mm 
so that the beam will support the force of 80 N.

SOLUTION

Internal Shear. If the beam is sectioned at an arbitrary point along 
its length, the internal shear required for equilibrium is always 
V = 80 N, and so the shear diagram is shown in Fig. 7–18b.

Section Properties. The moment of inertia of the cross-sectional 
area about the neutral axis can be determined by considering a 
75@mm * 75@mm square minus a 45@mm * 45@mm square.

I =
1
12

 (0.075 m)(0.075 m)3 -
1
12

 (0.045 m)(0.045 m)3 = 2.295(10-6) m4

The shear flow at B is determined using QB found from the darker 
shaded area shown in Fig. 7–18c. It is this “symmetric” portion of the 
beam that is to be “held” onto the rest of the beam by nails on the left 
side and by the fibers of the board on the right side.
Thus,

QB = y′A′ = (0.03m)(0.075m)(0.015m) = 33.75(10-6)m3

Likewise, the shear flow at C can be determined using the “symmetric” 
shaded area shown in Fig. 7–18d. We have

QC = y′A ′ = (0.03m)(0.045m)(0.015m) = 20.25(106)m3

Shear Flow.

 qB =
VQB

I
=

(80 N)[33.75(10-6) m3]

2.295(10-6) m4 = 1176.47 N>m

 qC =
VQC

I
=

(80 N)[20.25(10-6)m3]

2.295(10-6) m4 = 705.88 N>m

These values represent the shear force per unit length of the beam 
that must be resisted by the nails at B and the fibers at B′, Fig. 7–18c, 
and the nails at C and the fibers at C′, Fig. 7–18d, respectively. Since in 
each case the shear flow is resisted at two surfaces and each nail can 
resist 30 N, for B the spacing is

ExampLE   7.5

(a)

80 N

s

60 mm 15 mm

60 mm

15 mm

B

C

15 mm

(c)

0.075 m

B B9
AN

0.03 m
0.015 m

0.045 m

C ¿
AN

C

(d)

0.03 m
0.015 m

Fig. 7–18sB =
30 N

(1176.47>2) N>m
= 0.0510 m = 51.0 mm Use sB = 50 mm Ans.

And for C,

sC =
30 N

(705.88>2) N>m
= 0.0850 m = 85.0 mm Use sC = 85 mm

 
Ans.

(b)

V (N)

x (m)

80
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Nails having a shear strength of 900 N are used in a beam that can be 
constructed either as in Case I or as in Case II, Fig. 7–19. If the nails 
are spaced at 250 mm, determine the largest vertical shear that can be 
supported in each case so that the fasteners will not fail.

ExampLE   7.6

N

75 mm

25 mm
80 mm

10 mm

10 mm

Case I

A N
250 mms

100 mm

10 mm

Case II

25 mm

250 mms

10 mm

AA

Fig. 7–19
SOLUTION
Since the cross section is the same in both cases, the moment of inertia 
about the neutral axis is

I =  
1
12

 (0.075 m)(0.1 m)3 -  
1
12

 (0.05 m)(0.08 m)3 = 4.1167(10- 6) m4

Case I. For this design a single row of nails holds the top or bottom 
flange onto the web. For one of these flanges,

Q = y′A′ = (0.045 m)(0.075 m)(0.01 m) = 33.75(10-6) m3

so that

 q =
VQ

I

 
900 N
0.25 m

=
V[33.75(10-6) m3]

4.1167(10-6) m4   

  V = 439.11 N = 439 N Ans.

Case II. Here a single row of nails holds one of the side boards onto 
the web. Thus

Q = y′A   ′ = (0.045 m)(0.025 m)(0.01 m) = 11.25(10-6) m3

 q =
VQ

I

 
900 N
0.25 m

=
V[11.25(10-6) m3]

4.1167(10-6) m4  

  V = 1.3173(103) N = 1.32 kN Ans.
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F7–6. The two identical boards are bolted together to form 
the beam. Determine the maximum spacing s of the bolts to 
the nearest mm if each bolt has a shear strength of 15 kN. The 
beam is subjected to a shear force of V = 50 kN.

100 mm

100 mm

300 mm

V

s

s

Prob. F7–6

F7–7. Two identical 20-mm-thick plates are bolted to the 
top and bottom flange to form the built-up beam. If the beam 
is subjected to a shear force of V = 300 kN, determine the 
maximum spacing s of the bolts to the nearest mm if each 
bolt has a shear strength of 30 kN.

20 mm

10 mm

10 mm

200 mm

200 mm

10 mm

20 mm

300 mm

s

s

V

Prob. F7–7

F7–8. The boards are bolted together to form the built-up 
beam. If the beam is subjected to a shear force of V = 20 kN, 
determine the maximum spacing s of the bolts to the nearest 
mm if each bolt has a shear strength of 8 kN.

V

150 mm

150 mm

200 mm

s
s

50 mm

25 mm
25 mm

50 mm

Prob. F7–8

F7–9. The boards are bolted together to form the built-up 
beam. If the beam is subjected to a shear force of V = 75 kN, 
determine the allowable maximum spacing of the bolts to 
the nearest multiples of 5 mm. Each bolt has a shear strength 
of 30 kN.

100 mm

75mm

75 mm

25 mm

25 mm

100 mm

25 mm

12 mm
12 mm

V

s
s

Prob. F7–9

FUNDamENTaL pROBLEmS
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*7–32. The double T-beam is fabricated by welding the 
three plates together as shown. Determine the shear stress in 
the weld necessary to support a shear force of V = 80 kN.

7–33. The double T-beam is fabricated by welding the 
three plates together as shown. If the weld can resist a shear 
stress tallow = 90 MPa, determine the maximum shear V 
that can be applied to the beam.

20 mm

50 mm50 mm 75 mm

20 mm20 mm 

V

150 mm

Probs. 7–32/33

7–34. The beam is constructed from two boards fastened 
together with three rows of nails spaced s = 50 mm apart. If 
each nail can support a 2.25-kN shear force, determine the 
maximum shear force V that can be applied to the beam.The 
allowable shear stress for the wood is tallow = 2.1 MPa.

7–35. The beam is constructed from two boards fastened 
together with three rows of nails. If the allowable shear stress 
for the wood is tallow =  1 MPa, determine the maximum shear 
force V that can be applied to the beam. Also, find the maximum 
spacing s of the nails if each nail can resist 3.25 kN in shear.

V

40 mm

s

s

150 mm

40 mm

Probs. 7–34/35

*7–36. The beam is constructed from four boards which 
are nailed together. If the nails are on both sides of the 
beam and each can resist a shear of 3 kN, determine the 
maximum load P that can be applied to the end of the beam.

P

2 m 2 m

3 kN

B CA

30 mm

30 mm
30 mm

100 mm

250 mm30 mm

150 mm

Prob. 7–36
7–37. The beam is fabricated from two equivalent structural 
tees and two plates. Each plate has a height of 150 mm and a 
thickness of 12 mm. If a shear of V =  250 kN is applied to 
the cross section, determine the maximum spacing of the 
bolts. Each bolt can resist a shear force of 75 kN.

7–38. The beam is fabricated from two equivalent structural 
tees and two plates. Each plate has a height of 150 mm and a 
thickness of 12 mm. If the bolts are spaced at s =  200 mm 
determine the maximum shear force V that can be applied to 
the cross section. Each bolt can resist a shear force of 75 kN.

75 mm

75 mm

A

V

12 mm

25 mm

12 mm

150 mm

s

N

Probs. 7–37/38

pROBLEmS
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7–39. The double-web girder is constructed from two 
plywood sheets that are secured to wood members at its top 
and bottom. If each fastener can support 3 kN in single 
shear, determine the required spacing s of the fasteners 
needed to support the loading P =  15 kN. Assume A is 
pinned and B is a roller.

*7–40. The double-web girder is constructed from two 
plywood sheets that are secured to wood members at its top 
and bottom. The allowable bending stress for the wood is 
sallow = 56 MPa and the allowable shear stress is 
tallow = 21 MPa. If the fasteners are spaced s = 150 mm 
and each fastener can support 3 kN in single shear, 
determine the maximum load P that can be applied to the 
beam.

7–42. The simply supported beam is built up from three boards 
by nailing them together as shown. The wood has an allowable 
shear stress of tallow = 1.5 MPa, and an allowable bending 
stress of sallow = 9 MPa. The nails are spaced at s = 75 mm, 
and each has a shear strength of 1.5 kN. Determine the 
maximum allowable force P that can be applied to the beam.

7–43. The simply supported beam is built up from three 
boards by nailing them together as shown. If P = 12 kN, 
determine the maximum allowable spacing s of the nails to 
support that load, if each nail can resist a shear force of 1.5 kN.

P

B

s

A

50 mm
50 mm

250 mm

150 mm
12 mm 12 mm

50 mm
50 mm

1.2 m 1.2 m

Probs. 7–39/40

7–41. A beam is constructed from three boards bolted 
together as shown. Determine the shear force in each bolt if 
the bolts are spaced s = 250 mm apart and the shear is 
V = 35 kN.

s � 250 mm

250 mm100 mm

25 mm

25 mm
25 mm

350 mm
V

Prob. 7–41

1 m 1 m

s
P

100 mm

200 mm

25 mm

25 mm

25 mm

A B

Probs. 7–42/43

*7–44. The T-beam is nailed together as shown. If the nails 
can each support a shear force of 4.5 kN, determine the 
maximum shear force V that the beam can support and the 
corresponding maximum nail spacing s to the nearest 
multiples of 5 mm. The allowable shear stress for the wood 
is tallow = 3 MPa.

300 mm

300 mm50 mm

50 mm

V

s

s

Prob. 7–44
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7–45. The nails are on both sides of the beam and each can 
resist a shear of 2 kN. In addition to the distributed loading, 
determine the maximum load P that can be applied to the 
end of the beam. The nails are spaced 100 mm apart and the 
allowable shear stress for the wood is tallow = 3 MPa.

P

1.5 m 1.5 m

B CA

40 mm

20 mm
20 mm

100 mm

200 mm

200 mm

2 kN/m

Prob. 7–45

7–46. Determine the average shear stress developed in the 
nails within region AB of the beam. The nails are located on 
each side of the beam and are spaced 100 mm apart. Each 
nail has a diameter of 4 mm. Take P =  2 kN.

P

1.5 m 1.5 m

B CA

40 mm

20 mm
20 mm

100 mm

200 mm

200 mm

2 kN/m

Prob. 7–46

7–47. The beam is made from four boards nailed together 
as shown. If the nails can each support a shear force of  
500 N, determine their required spacing s′ and s to the 
nearest mm if the beam is subjected to a shear of V =  3.5 kN.

P

P
1

—
4 P

1
—
4

0.8 m 0.8 m1 m 1 m

A B

20 mm

40 mm

30 mm

60 mm

40 mm

Prob. 7–48

*7–48. The beam is made from three polystyrene strips 
that are glued together as shown. If the glue has a shear 
strength of 80 kPa, determine the maximum load P that can 
be applied without causing the glue to lose its bond.

7–49. The timber T-beam is subjected to a load consisting 
of n concentrated forces, Pn. If the allowable shear Vnail for 
each of the nails is known, write a computer program that 
will specify the nail spacing between each load. Show an 
application of the program using the values L = 5 m, 
a1 = 1.5 m, P1 = 3 kN, a2 = 3 m, P2 = 6 kN, b1 = 40 mm, 
h1 = 200 mm, b2 = 200 mm, h2 = 25 mm, and 
Vnail = 900 N.

40 mm

250 mm

50 mm

B

V

25 mm

250 mm

25 mm

A

25 mm 

C

s
s

D

s¿

s¿

Prob. 7–47

b1

h2

h1

b2

P1 P2 Pn

a1

L

a2

an

s1 s2
s3 sn

A B

Prob. 7–49
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7.4  Shear Flow in thin-walled 
MeMberS

In this section we will show how to describe the shear-flow distribution 
throughout a member’s cross-sectional area. As with most structural 
members, we will assume that the member has thin walls, that is, the wall 
thickness is small compared to its height or width.

Before we determine the shear-flow distribution, we will first show 
how to establish its direction. To begin, consider the beam in  
Fig. 7–20a, and the free-body diagram of segment B taken from the top 
flange, Fig. 7–20b. The force dF must act on the longitudinal section in 
order to balance the normal forces F and F + dF created by the 
moments M and M + dM, respectively. Because q (and t) are 
complementary, transverse components of q must act on the cross 
section as shown on the corner element in Fig. 7–20b.

Although it is also true that V + dV will create a vertical shear-flow 
component on this element, Fig. 7–20c, here we will neglect its effects. 
This is because the flange is thin, and the top and bottom surfaces of 
the flange are free of stress. To summarize then, only the shear flow 
component that acts parallel to the sides of the flange will be 
considered. 

(a)

M

V

M � dM

V � dV

dx

t

B

C

(b)

F

F � dF
dF

BdA

q

t

q assumed constant
throughout flange
thickness

q¿ is assumed to be zero
throughout flange
thickness since the top
and bottom surfaces of
the flange must be
stress free

(c)

Fig. 7–20
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Shear Flow in Flanges. The shear-flow distribution along the top 
flange of the beam in Fig. 7–21a can be found by considering the shear 
flow q, acting on the dark blue element dx, located an arbitrary distance x 
from the centerline of the cross section, Fig. 7–21b. Here 
Q = y′A ′ = [d>2](b>2 - x)t, so that

q =
VQ

I
=

V [d>2](b>2 - x)t

I
=

Vt d
2I

  ab
2

- xb  (7–5)

By inspection, this distribution varies in a linear manner from q = 0 at 
x = b>2 to (qmax)f = Vt db>4I at x = 0. (The limitation of x = 0 is 
possible here since the member is assumed to have “thin walls” and so 
the thickness of the web is neglected.) Due to symmetry, a similar analysis 
yields the same distribution of shear flow for the other three flange 
segments. These results are as shown in Fig. 7–21d.

The total force developed in each flange segment can be determined 
by integration. Since the force on the element dx in Fig. 7–21b is 
dF = q dx, then

Ff = Lq dx = L
b>2

0

Vt d
2I

 ab
2

- xb  dx =
Vt db2

16I

We can also determine this result by finding the area under the triangle 
in Fig. 7–21d. Hence,

Ff =
1
2

 (qmax)f a
b
2
b =

Vt db2

16I

All four of these forces are shown in Fig. 7–21e, and we can see from 
their direction that horizontal force equilibrium on the cross section is 
maintained.

b

t

t

A

V
N

t

(a)

d
2

d
2

      (b)

N A

x

dx

t

q
d
2

b
2

      (c)

N A

b
t

t

t

y
q

dy d
2

Fig. 7–21
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Shear Flow in Web. A similar analysis can be performed for the 
web, Fig. 7–21c. Here q must act downward, and at element dy  
we have Q = Σy′A ′ = [d>2](bt) +  [ y + (1>2)(d >2 - y)] t(d>2 - y) =
bt d>2 + (t>2)(d2>4 - y2), so that

q =
VQ

I
=

Vt
I

 Jdb
2

+
1
2

 ¢d2

4
- y2≤ R  (7–6)

For the web, the shear flow varies in a parabolic manner, from 
q = 2(qmax)f = Vt db>2I at y = d>2 to (qmax)w = (Vt d>I)(b>2 + d>8) 
at y = 0, Fig. 7–21d.

Integrating to determine the force in the web, Fw , we have

 Fw = Lq dy = L
d>2

-d>2

Vt
I

 Jdb
2

+
1
2

 ¢d2

4
- y2≤ R  dy

 =
Vt
I
Jdb

2
 y +

1
2

 ¢d2

4
 y -

1
3

 y3≤ R 2
-d>2

d>2

 =
Vtd2

4I
 a2b +

1
3

 db

Simplification is possible by noting that the moment of inertia for the 
cross-sectional area is

I = 2J 1
12

 bt3 + bt ad
2
b

2 R +
1
12

 td3

Neglecting the first term, since the thickness of each flange is small, then

I =
td2

4
 a2b +

1
3

 db

Substituting this into the above equation, we see that Fw = V, which is to 
be expected, Fig. 7–21e.

Shear-flow distribution

(d)

(qmax)f

(qmax)f

(qmax)w

2(qmax)f

2(qmax)f

     (e)

Ff Ff

FfFf

Fw � V

Fig. 7–21 (cont.)
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From the foregoing analysis, three important points should be observed. 
First, q will vary linearly along segments (flanges) that are perpendicular 
to the direction of V, and parabolically along segments (web) that are 
inclined or parallel to V. Second, q will always act parallel to the walls of 
the member, since the section of the segment on which q is calculated is 
always taken perpendicular to the walls. And third, the directional sense of 
q is such that the shear appears to “flow” through the cross section, inward 
at the beam’s top flange, “combining” and then “flowing” downward 
through the web, since it must contribute to the  downward shear force V, 
Fig. 7–22a, and then separating and “flowing” outward at the bottom 
flange. If one is able to “visualize” this “flow” it will provide an easy means 
for establishing not only the direction of q, but also the corresponding 
direction of t. Other examples of how q is directed along the segments of 
thin-walled members are shown in Fig. 7–22b. In all cases, symmetry 
prevails about an axis that is collinear with V, and so q “flows” in a 
direction such that it will provide the vertical force V and yet also satisfy 
horizontal force equilibrium for the cross section.

(a)

V

V

V

V

V

(b)

Shear flow q

Fig. 7–22

Important poInts

 • The shear flow formula q = VQ>I can be used to determine 
the distribution of the shear flow throughout a thin-walled 
member, provided the shear V acts along an axis of symmetry 
or principal centroidal axis of inertia for the cross section.

 • If a member is made from segments having thin walls, then 
only the shear flow parallel to the walls of the member is 
important.

 • The shear flow varies linearly along segments that are 
perpendicular to the direction of the shear V.

 • The shear flow varies parabolically along segments that are 
inclined or parallel to the direction of the shear V.

 • On the cross section, the shear “flows” along the segments so 
that it results in the vertical shear force V and yet satisfies 
horizontal force equilibrium.
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ExampLE   7.7

The thin-walled box beam in Fig. 7–23a is subjected to a shear of 200 kN. 
Determine the variation of the shear flow throughout the cross section.

SOLUTION

By symmetry, the neutral axis passes through the center of the cross 
section. For thin-walled members we use centerline dimensions for 
calculating the moment of inertia.

I =
1
12

 (0.05 m)(0.175 m)3+2[(0.125 m)(0.025 m)(0.0875 m)2] = 70.18(10-6) m4

Only the shear flow at points B, C, and D has to be determined. For 
point B, the area A′ ≈ 0, Fig. 7–23b, since it can be thought of as 
being located entirely at point B. Alternatively, A′ can also represent 
the entire cross-sectional area, in which case QB = y′A  ′ = 0 since 
y′ = 0. Because QB = 0, then

qB = 0

For point C, the area A ′ is shown dark shaded in Fig. 7–23c. Here, we 
have used the mean dimensions since point C is on the centerline of 
each segment. We have

QC = y′A ′ = (0.0875 m)(0.125 m)(0.025 m) = 0.27344(10-32m3

Since there are two points of attachment,

qC =
1
2

 a
VQC

I
 b =

1
2

 c
[200 (103) N] [0.27344 (10-3) m3

70.18 (10-6) m4  d = 389.61(103) N>m = 390 kN>m

The shear flow at D is determined using the three dark-shaded 
rectangles shown in Fig. 7–23d. Again, using centerline dimensions

QD = Σy′A  ′ = 2 c a0.0875 m
2

b(0.025 m)(0.0875 m)d + [0.0875 m](0.125 m)(0.025 m) = 0.4648(10-3) m3

Because there are two points of attachment,

qD =
1
2

 a
VQD

I
 b =

1
2

 c
[200 (103) N][0.4648 (10-3) m3]

70.18 (10-6) m4 d = 662.33(103) N>m = 662 kN>m

Using these results, and the symmetry of the cross section, the shear-
flow distribution is plotted in Fig. 7–23e. The distribution is linear 
along the horizontal segments (perpendicular to V) and parabolic 
along the vertical segments (parallel to V).

(a)

A

N

C

D

75 mm

75 mm
25 mm

25 mm

25 mm
50 mm

50 mm
25 mm

200 kN

B

(b)

A9

AN

0.0875 m

0.1 m

0.125 m

N A

0.025 m

0.025 m 0.1 m
(c)

0.125 m

0.0875 m

N
A

(d)

0.0875 m

N A

(e)

662 kN/m

390 kN/m

390 kN/m

Fig. 7–23
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*7.5  Shear Center For open  
thin-walled MeMberS

In the previous section, the internal shear V was applied along a principal 
centroidal axis of inertia that also represents an axis of symmetry for the 
cross section. In this section we will consider the effect of applying the 
shear along a principal centroidal axis that is not an axis of symmetry. As 
before, only open thin-walled members will be analyzed, where the 
dimensions to the centerline of the walls of the members will be used.

A typical example of this case is the channel shown in Fig. 7–24a. Here 
it is cantilevered from a fixed support and subjected to the force P. If 
this force is applied through the centroid C of the cross section, the 
channel will not only bend downward, but it will also twist clockwise 
as shown.

(a)

P

C

P

(e)

(qmax)w

(qmax)f

(qmax)f

Shear-flow distribution

(b)

dCA

Ff

Ff

V � P

(c)

A

P

O

(d)

e

�

Fig. 7–24
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The reason the member twists has to do with the shear-flow distribution 
along the channel’s flanges and web, Fig. 7–24b. When this distribution is 
integrated over the flange and web areas, it will give resultant forces of Ff  
in each flange and a force of V = P in the web, Fig. 7–24c. If the moments 
of these three forces are summed about point A, the unbalanced couple 
or torque created by the flange forces is seen to be responsible for 
twisting the member. The actual twist is clockwise when viewed from the 
front of the beam, as shown in Fig. 7–24a, because reactive internal 
“equilibrium” forces Ff  cause the twisting. In order to prevent this 
twisting and therefore cancel the unbalanced moment, it is necessary to 
apply P at a point O located an eccentric distance e from the web, as 
shown in Fig. 7–24d. We require ΣMA = Ff d = Pe, or

e =
Ff  d

P

The point O so located is called the shear center or flexural center. 
When P is applied at this point, the beam will bend without twisting, 
Fig. 7–24e. Design handbooks often list the location of the shear center 
for a variety of thin-walled beam cross sections that are commonly used 
in practice.

From this analysis, it should be noted that the shear center will always 
lie on an axis of symmetry of a member’s cross-sectional area. For 
example, if the channel is rotated 90° and P is applied at A, Fig. 7–25a, no 
twisting will occur since the shear flow in the web and flanges for this 
case is symmetrical, and therefore the force resultants in these elements 
will create zero moments about A, Fig. 7–25b. Obviously, if a member has 
a cross section with two axes of symmetry, as in the case of a wide-flange 
beam, the shear center will coincide with the intersection of these axes 
(the centroid).

P

(a)

A

   

A

P

A

(b)

Ff Ff

�V �
P
2

V �
P
2

Fig. 7–25

Notice how this cantilever beam deflects 
when loaded through the centroid (above) 
and through the shear center (below).
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Important poInts

 • The shear center is the point through which a force can be 
applied which will cause a beam to bend and yet not twist.

 • The shear center will always lie on an axis of symmetry of the 
cross section.

 • The location of the shear center is only a function of the 
geometry of the cross section, and does not depend upon the 
applied loading.

procedure for analysIs

The location of the shear center for an open thin-walled member for 
which the internal shear is in the same direction as a principal 
centroidal axis for the cross section may be determined by using the 
following procedure.

Shear-Flow Resultants.

 • By observation, determine the direction of the shear flow 
through the various segments of the cross section, and sketch 
the force resultants on each segment of the cross section. (For 
example, see Fig. 7–24c.) Since the shear center is determined by 
taking the moments of these force resultants about a point, A, 
choose this point at a location that eliminates the moments of 
as many force resultants as possible.

 • The magnitudes of the force resultants that create a moment 
about A must be calculated. For any segment this is done by 
determining the shear flow q at an arbitrary point on the 
segment and then integrating q along the segment’s length. 
Realize that V will create a linear variation of shear flow in 
segments that are perpendicular to V, and a parabolic variation 
of shear flow in segments that are parallel or inclined to V.

Shear Center.

 • Sum the moments of the shear-flow resultants about point A 
and set this moment equal to the moment of V about A. Solve 
this equation to determine the moment-arm or eccentric 
distance e, which locates the line of action of V from A.

 • If an axis of symmetry for the cross section exists, the shear 
center lies at a point on this axis.
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Determine the location of the shear center for the thin-walled channel 
having the dimensions shown in Fig. 7–26a.

SOLUTION

Shear-Flow Resultants. A vertical downward shear V applied to 
the section causes the shear to flow through the flanges and web as 
shown in Fig. 7–26b. This in turn creates force resultants Ff  and V in 
the flanges and web as shown in Fig. 7–26c. We will take moments 
about point A so that only the force Ff  on the lower flange has to be 
determined.

The cross-sectional area can be divided into three component 
rectangles—a web and two flanges. Since each component is assumed 
to be thin, the moment of inertia of the area about the neutral axis is

I =
1
12

 th3 + 2Jbt ah
2
b

2 R =
th2

2
 ah

6
+ bb

From Fig. 7–26d, q at the arbitrary position x is

q =
VQ

I
=

V(h>2)[b - x]t

(th2>2)[(h>6) + b]
=

V(b - x)

h[(h>6) + b]

Hence, the force Ff  in the flange is

Ff = L
b

0
q dx =

V
h[(h>6) + b] L

b

0
(b - x) dx =

Vb2

2h[(h>6) + b]

This same result can also be determined without integration by first 
finding (qmax)f , Fig. 7–26b, then determining the triangular area 
1
2 b(qmax)f = Ff .

Shear Center. Summing moments about point A, Fig. 7–26c, 
we require

Ve = Ff h =
Vb2h

2h[(h>6) + b]

Thus,

e =
b2

[(h>3) + 2b]
 Ans.

ExampLE   7.8

h

b

t

(a)

t

Shear flow distribution

(b)

(qmax)w

(qmax)f

h

A
Ff

Ff

V

P � V

e

(c)

A

�

x

(d)

b

AN
q

dx

h
2

Fig. 7–26
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Determine the location of the shear center for the angle having equal 
legs, Fig. 7–27a. Also, find the internal shear-force resultant in each leg.

ExampLE   7.9

b

45�

45�

b

t

t

(a)         

Shear-flow distribution

(b)

qmax

qmax

(c)

F

F

O O�

V

Fig. 7–27

SOLUTION

When a vertical downward shear V is applied at the section, the shear 
flow and shear-flow resultants are directed as shown in Figs. 7–27b 
and 7–27c, respectively. Note that the force F in each leg must be 
equal, since for equilibrium the sum of their horizontal components 
must be equal to zero. Also, the lines of action of both forces intersect 
point O; therefore, this point must be the shear center, since the sum of 
the moments of these forces and V about O is zero, Fig. 7–27c.
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The magnitude of F can be determined by first finding the shear flow 
at the arbitrary location s along the top leg, Fig. 7–27d. Here

Q = y′A ′ =
122

 a(b - s) +
s
2
b ts =

122
 ab -

s
2
bst

b

t

(d)

s

q
45�

_
y ¿

    

b

45�

t

(e)

s

y
ds

Fig. 7–27 (cont.)
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The moment of inertia of the angle about the neutral axis must be 
determined from “first principles,” since the legs are inclined with respect 
to the neutral axis. For the area element dA = t ds, Fig. 7–27e, we have

I = LA
y2  dA = 2L

b

0
J 122

 (b - s)R 2

t ds = t ab2s - bs2 +
1
3

 s3b 2
0

b

=
tb3

3

Thus, the shear flow is

 q =
VQ

I
=

V

(tb3>3)
 J 122

 ab -
s
2
bstR

 =
3V22b3

 sab -
s
2
b

The variation of q is parabolic, and it reaches a maximum value when 
s = b, as shown in Fig. 7–27b. The force F is therefore

 F = L
b

0
q ds =

3V22b3 L
b

0
sab -

s
2
b  ds

 =
3V22b3

 ¢b 
s2

2
-

1
6

 s3≤ 2
0

b

 =
122

 V Ans.

NOTE: This result can be easily verified, since the sum of the vertical 
components of the force F in each leg must equal V and, as stated 
previously, the sum of the horizontal components equals zero.
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7–50. The beam is subjected to a shear force of V =  25 kN. 
Determine the shear flow at points A and B.

7–51. The beam is constructed from four plates and is 
subjected to a shear force of V =  25 kN. Determine the 
maximum shear flow in the cross section.

7–54. A shear force of V = 18 kN is applied to the box 
girder. Determine the shear flow at points A and B.

7–55. A shear force of V = 18 kN is applied to the box 
girder. Determine the shear flow at point C.

pROBLEmS

A

V

12 mm

12 mm

125 mm

125 mm

12 mm

50 mm 12 mm

200 mm

B

A

C

D

Probs. 7–50/51

*7–52. The aluminum strut is 10 mm thick and has the 
cross section shown. If it is subjected to a shear of 
V = 150 N, determine the shear flow at points A and B.

7–53. The aluminum strut is 10 mm thick and has the cross 
section shown. If it is subjected to a shear of V = 150 N, 
determine the maximum shear flow in the strut.

30 mm
40 mm

30 mm

V

A
B40 mm

10 mm

10 mm

10 mm10 mm

Probs. 7–52/53

C

A

150 mm

10 mm

100 mm

100 mm

10 mm

10 mm

125 mm

150 mm

10 mm
30 mm

10 mm

10 mm
30 mm

B

V

Probs. 7–54/55

*7–56. A shear force of V = 300 kN is applied to the box 
girder. Determine the shear flow at points A and B.

7–57. A shear force of V = 450 kN is applied to the box 
girder. Determine the shear flow at points C and D.

100 mm

90 mm90 mm

200 mm

200 mm

180 mm

190 mm

10 mm

10 mm

V

A D
C

B

 
Probs. 7–56/57
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7–58. The H-beam is subjected to a shear of V = 80 kN. 
Determine the shear flow at point A.

7–59. The H-beam is subjected to a shear of V = 80 kN. 
Sketch the shear-stress distribution acting along one of its 
side segments. Indicate all peak values.

7–62. The box girder is subjected to a shear of V = 15 kN. 
Determine the shear flow at point B and the maximum 
shear flow in the girder’s web AB.

250 mm

15 mm

15 mm

25 mm

25 mm

25 mm

150 mm

150 mm

B

A

V

Prob. 7–62

7–63. Determine the location e of the shear center, point O, 
for the thin-walled member having a slit along its section.

100 mm

100 mm

100 mm

e
O

Prob. 7–63

*7–64. Determine the location e of the shear center, point O, 
for the thin-walled member. The member segments have the 
same thickness t.

b

e

O h2h1

Prob. 7–64
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30 mm

V

300 mm

25 mm

25 mm

250 mm

A

50 mm

Probs. 7–58/59

*7–60. The built-up beam is formed by welding together 
the thin plates of thickness 5 mm. Determine the location of 
the shear center O.

O

200 mm

200 mm

300 mm

100 mm

100 mme

5 mm

Prob. 7–60

7–61. The assembly is subjected to a vertical shear of 
V =  35 kN. Determine the shear flow at points A and B 
and the maximum shear flow in the cross section.

150 mm

12 mm

50 mm

50 mm

150 mm12 mm

V

A

B

12 mm

12 mm
12 mm

Prob. 7–61
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7–65. The angle is subjected to a shear of V = 10 kN. 
Sketch the distribution of shear flow along the leg AB. 
Indicate numerical values at all peaks.

45 45

V

A

B

125 mm
125 mm

6 mm

Prob. 7–65

7–66. Determine the shear-stress variation over the cross 
section of the thin-walled tube as a function of elevation y 
and show that t max = 2V>A, where A = 2prt. Hint: Choose 
a differential area element dA=Rt du. Using dQ = ydA, 
formulate Q for a circular section from u to (p - u) and 

show that Q = 2R2t  cos  u, where  cos  u=2R2 - y2>R.

t

y
du

ds

R

u

Prob. 7–66

7–67. Determine the location e of the shear center, point O, 
for the beam having the cross section shown. The thickness is t.

e

O

r

1—
2 r

1—
2 r

Prob. 7–67

*7–68. Determine the location e of the shear center, point O, 
for the thin-walled member. The member segments have the 
same thickness t.

d

d

O
d—
2

d—
2

d

e

Prob. 7–68

7–69. A thin plate of thickness t is bent to form the beam 
having the cross section shown. Determine the location of 
the shear center O.

t

O

e

r

Prob. 7–69

7–70. Determine the location e of the shear center, point O, 
for the tube having a slit along its length.

O
er

t

Prob. 7–70
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CHapTER REVIEW

Transverse shear stress in beams is determined indirectly 
by using the flexure formula and the relationship between 
moment and shear (V = dM>dx). The result is the shear 
formula

t =
VQ

It

In particular, the value for Q is the moment of the area A′ 
about the neutral axis, Q = y′A′. This area is the portion 
of the cross-sectional area that is “held onto” the beam 
above (or below) the thickness t where t is to be 
determined.

A

Area � A¿

t

N

_
y ¿

t

If the beam has a rectangular cross section, then the 
shear-stress distribution will be parabolic, having a 
maximum value at the neutral axis. For this special case, 
the maximum shear stress can be determined using 

tmax = 1.5 
V
A

.

N

A

Vtmax

Shear-stress distribution

Fasteners, such as nails, bolts, glue, or weld, are used to 
connect the composite parts of a “built-up” section. The 
shear force resisted by these fasteners is determined from 
the shear flow, q, or force per unit length, that must be 
supported by the beam. The shear flow is

q =
VQ

I

N A
y¿¯

A¿
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If the beam is made from thin-walled segments, then the 
shear-flow distribution along each segment can be 
determined. This distribution will vary linearly along 
horizontal segments, and parabolically along inclined or 
vertical segments.

Shear-flow distribution

(qmax)f

(qmax)f

(qmax)w

2(qmax)f

2(qmax)f

Provided the shear-flow distribution in each segment of an 
open thin-walled section is known, then using a balance of 
moments, the location O of the shear center for the cross 
section can be determined. When a load is applied to the 
member through this point, the member will bend, and  
not twist.

P

O

e
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R7–1. Sketch the intensity of the shear-stress distribution 
acting over the beam’s cross-sectional area, and determine 
the resultant shear force acting on the segment AB. The 
shear acting at the section is V =  175 kN. Show that 
INA =  340.82(106) mm4.

50 mm

75 mm

75 mm

150 mm

200 mm

A

B

C

V

Prob. R7–1

R7–2. The T-beam is subjected to a shear of V = 150 kN. 
Determine the amount of this force that is supported by the 
web B.

200 mm

40 mm

B

V = 150 kN

40 mm

200 mm

Prob. R7–2

R7–3. The member is subject to a shear force of V = 2 kN. 
Determine the shear flow at points A, B, and C. The 
thickness of each thin-walled segment is 15 mm.

300 mm
A

B

C

100 mm

200 mm

V � 2 kN

Prob. R7–3

*R7–4. The beam is constructed from four boards glued 
together at their seams. If the glue can withstand 15 kN>m,
what is the maximum vertical shear V that the beam can 
support?

R7–5. Solve Prob. R7–4 if the beam is rotated 90° from 
the position shown.

75 mm

100 mm

75 mm

75 mm

12 mm

12 mm

12 mm12 mm

V

Prob. R7–4/5

R E V I E W  p R O B L E m S
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CHAPTER 8

The offset hanger supporting this ski gondola is subjected to the combined loadings 
of axial force and bending moment.

(© ImageBroker/Alamy)
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Combined 
Loadings

8.1  Thin-Walled Pressure 
Vessels

Cylindrical or spherical pressure vessels are commonly used in industry 
to serve as boilers or storage tanks. The stresses acting in the wall of these 
vessels can be analyzed in a simple manner provided it has a thin wall, 
that is, the inner-radius-to-wall-thickness ratio is 10 or more (r>t Ú 10). 
Specifically, when r>t = 10 the results of a thin-wall analysis will predict 
a stress that is approximately 4% less than the actual maximum stress in 
the vessel. For larger r>t ratios this error will be even smaller.

In the following analysis, we will assume the gas pressure in the vessel 
is the gage pressure, that is, it is the pressure above atmospheric pressure, 
since atmospheric pressure is assumed to exist both inside and outside 
the vessel’s wall before the vessel is pressurized.

CHAPTER OBJECTIVES

■ This chapter begins with an analysis of stress developed in  
thin-walled pressure vessels. Then we will use the formulas for axial 
load, torsion, bending, and shear to determine the stress in a 
member subjected to several loadings.

Cylindrical pressure vessels, such as this 
gas tank, have semispherical end caps 
rather than flat ones in order to reduce 
the stress in the tank.
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Cylindrical Vessels. The cylindrical vessel in Fig. 8–1a has a wall 
thickness t, inner radius r, and is subjected to an internal gas pressure p. 
To find the circumferential or hoop stress, we can section the vessel by 
planes a, b, and c. A free-body diagram of the back segment along with 
its contained gas is then shown in Fig. 8–1b. Here only the loadings in the 
x direction are shown. They are caused by the uniform hoop stress s1, 
acting on the vessel’s wall, and the pressure acting on the vertical face of 
the gas. For equilibrium in the x direction, we require

ΣFx = 0; 2[s1(t dy)] - p(2r dy) = 0

 s1 =
pr

t
 (8–1)

The longitudinal stress can be determined by considering the left portion 
of section b, Fig. 8–1a. As shown on its free-body diagram, Fig. 8–1c, s2 acts 
uniformly throughout the wall, and p acts on the section of the contained 
gas. Since the mean radius is approximately equal to the vessel’s inner 
radius, equilibrium in the y direction requires

ΣFy = 0; s2(2p rt) - p(p r2) = 0

 s2 =
pr

2t
 (8–2)

For these two equations,

s1, s2 =    the normal stress in the hoop and longitudinal directions, 
respectively. Each is assumed to be constant throughout the 
wall of the cylinder, and each subjects the material to tension.

 p =   the internal gage pressure developed by the contained gas
 r =   the inner radius of the cylinder
 t =   the thickness of the wall (r>t Ú 10)

(a)

z

y

b a
c

x

t

rs1

s2

t

dy

2r

t

p

(b)

s1

s1

t

(c)

p

r

s2

Fig. 8–1



 8.1 thin-WaLLed pressure VesseLs 433

8

By comparison, note that the hoop or circumferential stress is twice 
as large as the longitudinal or axial stress. Consequently, when fabricating 
cylindrical pressure vessels from rolled-formed plates, it is important 
that the longitudinal joints be designed to carry twice as much stress as 
the circumferential joints.

Spherical Vessels. We can analyze a spherical pressure vessel 
in a similar manner. If the vessel in Fig. 8–2a is sectioned in half, the 
resulting free-body diagram is shown in Fig. 8–2b. Like the cylinder, 
equilibrium in the y direction requires

ΣFy = 0; s2(2p rt) - p(p r  2) = 0

 s2 =
pr

2t
 (8–3)

This is the same result as that obtained for the longitudinal stress in the 
cylindrical pressure vessel, although this stress will be the same regardless 
of the orientation of the hemispheric free-body diagram.

Limitations. The above analysis indicates that an element of 
material taken from either a cylindrical or a spherical pressure vessel is 
subjected to biaxial stress, i.e., normal stress existing in only two 
directions. Actually, however, the pressure also subjects the material to a 
radial stress, s3 , which acts along a radial line. This stress has a maximum 
value equal to the pressure p at the interior wall and it decreases through 
the wall to zero at the exterior surface of the vessel, since the pressure 
there is zero. For thin-walled vessels, however, we will ignore this stress 
component, since our limiting assumption of r>t = 10 results in s2  and 
s1 being, respectively, 5 and 10 times higher than the maximum radial 
stress, (s3)max = p. Finally, note that if the vessel is subjected to an 
external pressure, the resulting compressive stresses within the wall may 
cause the wall to suddenly collapse inward or buckle rather than causing 
the material to fracture.

This thin-walled pipe was subjected to an 
excessive gas pressure that caused it to rupture 
in the circumferential or hoop direction. The 
stress in this direction is twice that in the axial 
direction as noted by Eqs. 8–1 and 8–2.

t

(a)

r
y

x

z

a

s2

s2

t

p

(b)

r

s2

Fig. 8–2
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EXAMPLE   8.1

A cylindrical pressure vessel has an inner diameter of 1.2 m and a thickness 
of 12 mm. Determine the maximum internal pressure it can sustain so that 
neither its circumferential nor its longitudinal stress component exceeds 140 
MPa. Under the same conditions, what is the maximum internal pressure 
that a spherical vessel with a similar inner diameter can sustain?

SOLUTION

Cylindrical Pressure Vessel. The maximum stress occurs in the 
circumferential direction. From Eq. 8–1 we have

s1 =
pr

t
;  140(106) N>m2 =

p(0.6 m)

0.012 m
 

   p = 2.80(106) N>m2 = 2.80  MPa  Ans.

Note that when this pressure is reached, from Eq. 8–2, the stress in the 
longitudinal direction will be s2 = 1

2 (140 MPa) = 70 MPa. Furthermore, 
the maximum stress in the radial direction occurs on the material at the 
inner wall of the vessel and is (s3) max = p = 2.80  MPa. This value is 50 
times smaller than the circumferential stress (140 MPa), and as stated 
earlier, its effects will be neglected.

Spherical Vessel. Here the maximum stress occurs in any two 
perpendicular directions on an element of the vessel, Fig. 8–2a. From 
Eq. 8–3, we have

s2 =
pr

2t
;  140(106)N>m2 =

p(0.6 m)

2(0.012 m)
 

  p = 5.60(106) N>m2 = 5.60 MPa   Ans.

NOTE: Although it is more difficult to fabricate, the spherical pressure 
vessel will carry twice as much internal pressure as a cylindrical vessel.
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8–5. Air pressure in the cylinder is increased by exerting 
forces P = 2 kN on the two pistons, each having a radius of 
45 mm. If the cylinder has a wall thickness of 2 mm, 
determine the state of stress in the wall of the cylinder.

8–6. Determine the maximum force P that can be exerted 
on each of the two pistons so that the circumferential stress 
in the cylinder does not exceed 3 MPa. Each piston  
has a radius of 45 mm and the cylinder has a wall thickness 
of 2 mm.

47 mm

P

P

Probs. 8–5/6

8–7. A boiler is constructed of 8-mm-thick steel plates 
that are fastened together at their ends using a butt joint 
consisting of two 8-mm cover plates and rivets having a 
diameter of 10 mm and spaced 50 mm apart as shown. If 
the steam pressure in the boiler is 1.35 MPa, determine 
(a) the circumferential stress in the boiler’s plate away 
from the seam, (b) the circumferential stress in the outer 
cover plate along the rivet line a–a, and (c) the shear 
stress in the rivets.

a

8 mm

50 mm a

0.75 m

Prob. 8–7

PROBLEMS

8–1. A spherical gas tank has an inner radius of r = 1.5 m. 
If it is subjected to an internal pressure of p = 300 kPa, 
determine its required thickness if the maximum normal 
stress is not to exceed 12 MPa.

8–2. A pressurized spherical tank is to be made of 
12-mm-thick steel. If it is subjected to an internal pressure 
of p = 1.4 MPa, determine its outer radius if the 
maximum normal stress is not to exceed 105 MPa.

8–3. The thin-walled cylinder can be supported in one of 
two ways as shown. Determine the state of stress in the wall 
of the cylinder for both cases if the piston P causes the 
internal pressure to be 0.5 MPa. The wall has a thickness of 
6 mm and the inner diameter of the cylinder is 200 mm.

P

(a) (b)

P

200 mm 200 mm

Prob. 8–3

*8–4. The tank of the air compressor is subjected to an 
internal pressure of 0.63 MPa. If the internal diameter of the 
tank is 550 mm, and the wall thickness is 6 mm, determine 
the stress components acting at point A. Draw a volume 
element of the material at this point, and show the results 
on the element.

A

Prob. 8–4
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8–11. The staves or vertical members of the wooden tank 
are held together using semicircular hoops having a 
thickness of 12 mm and a width of 50 mm. Determine the 
normal stress in hoop AB if the tank is subjected to an 
internal gauge pressure of 14 kPa and this loading is 
transmitted directly to the hoops. Also, if 6-mm-diameter 
bolts are used to connect each hoop together, determine the 
tensile stress in each bolt at A and B. Assume hoop AB 
supports the pressure loading within a 300-mm length of the 
tank as shown.

*8–8. The gas storage tank is fabricated by bolting together 
two half cylindrical thin shells and two hemispherical shells as 
shown. If the tank is designed to withstand a pressure of 3 MPa, 
determine the required minimum thickness of the cylindrical 
and hemispherical shells and the minimum required number of 
longitudinal bolts per meter length at each side of the cylindrical 
shell. The tank and the 25 mm diameter bolts are made from 
material having an allowable normal stress of 150 MPa and 250 
MPa, respectively. The tank has an inner diameter of 4 m.

8–9. The gas storage tank is fabricated by bolting together 
two half cylindrical thin shells and two hemispherical shells 
as shown. If the tank is designed to withstand a pressure of 
3  MPa, determine the required minimum thickness of the 
cylindrical and hemispherical shells and the minimum 
required number of bolts for each hemispherical cap. The 
tank and the 25 mm diameter bolts are made from material 
having an allowable normal stress of 150 MPa and 250 MPa, 
respectively. The tank has an inner diameter of 4 m.

Probs. 8–8/9

8–10. A wood pipe having an inner diameter of 0.9 m is 
bound together using steel hoops each having a cross-
sectional area of 125 mm2. If the allowable stress for the 
hoops is sallow = 84 MPa, determine their maximum 
spacing s along the section of pipe so that the pipe can resist 
an internal gauge pressure of 28 kPa. Assume each hoop 
supports the pressure loading acting along the length s of 
the pipe.

150 mm
300 mm

450 mm

300 mm
150 mm

BA

Prob. 8–11

*8–12. A pressure-vessel head is fabricated by welding the 
circular plate to the end of the vessel as shown. If the vessel 
sustains an internal pressure of 450 kPa, determine the 
average shear stress in the weld and the state of stress in the 
wall of the vessel.

450 mm
10 mm

20 mm

Prob. 8–12

s

s s

28 kPa28 kPa

Prob. 8–10



 8.1 thin-WaLLed pressure VesseLs 437

8

8–13. The 304 stainless steel band initially fits snugly around 
the smooth rigid cylinder. If the band is then subjected to a 
nonlinear temperature drop of ∆T = 12 sin2 u °C, where u is 
in radians, determine the circumferential stress in the band.

*8–16. The cylindrical tank is fabricated by welding a strip 
of thin plate helically, making an angle u with the 
longitudinal axis of the tank. If the strip has a width w and 
thickness t, and the gas within the tank of diameter d is 
pressured to p, show that the normal stress developed along 
the strip is given by su = (pd>8t) (3 -  cos 2u).

250 mm

u

0.4 mm

25 mm

Prob. 8–13

8–14. The ring, having the dimensions shown, is placed 
over a flexible membrane which is pumped up with a 
pressure p. Determine the change in the inner radius of the 
ring after this pressure is applied. The modulus of elasticity 
for the ring is E.

p

ro

w

ri

Prob. 8–14

8–15. The inner ring A has an inner radius r1 and outer 
radius r2. The outer ring B has an inner radius r3 and an outer 
radius r4, and r2 7 r3. If the outer ring is heated and then 
fitted over the inner ring, determine the pressure between 
the two rings when ring B reaches the temperature of the 
inner ring. The material has a modulus of elasticity of E and 
a coefficient of thermal expansion of a.

r1

r2

r3

A B

r4

Prob. 8–15

w

u

Prob. 8–16

8–17. In order to increase the strength of the pressure 
vessel, filament winding of the same material is wrapped 
around the circumference of the vessel as shown. If the 
pretension in the filament is T and the vessel is subjected to 
an internal pressure p, determine the hoop stresses in the 
filament and in the wall of the vessel. Use the free-body 
diagram shown, and assume the filament winding has a 
thickness t′ and width w for a corresponding length L of 
the vessel.

T

p

w

t ¿

L

t

T

s1

s1

Prob. 8–17
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8.2  sTaTe of sTress Caused by 
Combined loadings

In the previous chapters we showed how to determine the stress in a 
member subjected to either an internal axial force, a shear force, a 
bending moment, or a torsional moment. Most often, however, the cross 
section of a member will be subjected to several of these loadings 
simultaneously, and when this occurs, then the method of superposition 
should be used to determine the resultant stress. The following procedure 
for analysis provides a method for doing this.

This chimney is subjected to the combined 
internal loading caused by the wind and 
the chimney’s weight. 

Procedure for AnAlysis

Here it is required that the material be homogeneous and behave in a 
linear elastic manner. Also, Saint-Venant’s principle requires that the 
stress be determined at a point far removed from any discontinuities in 
the cross section or points of applied load.

Internal Loading.

 • Section the member perpendicular to its axis at the point 
where the stress is to be determined; and use the equations of 
equilibrium to obtain the resultant internal normal and shear 
force components, and the bending and torsional moment 
components.

 • The force components should act through the centroid of the 
cross section, and the moment components should be 
calculated about centroidal axes, which represent the principal 
axes of inertia for the cross section.

Stress Components.

 • Determine the stress component associated with each internal 
loading.

  Normal Force.
•  The normal force is related to a uniform normal-stress 

distribution determined from s = N>A.
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  Shear Force.
•  The shear force is related to a shear-stress distribution 

determined from the shear formula, t = VQ>It. 

  Bending Moment.
•  For straight members the bending moment is related to a  

normal-stress distribution that varies linearly from zero at 
the neutral axis to a maximum at the outer boundary of 
the member. This stress distribution is determined from the 
flexure formula, s = -My>I. If the member is curved, the 
stress distribution is nonlinear and is determined from 
s = My>[Ae(R - y)].

Torsional Moment.
•  For circular shafts and tubes the torsional moment is 

related to a shear-stress distribution that varies linearly 
from zero at the center of the shaft to a maximum at the 
shaft’s outer boundary. This stress distribution is 
determined from the torsion formula, t = Tr>J.

Thin-Walled Pressure Vessels.
•  If the vessel is a thin-walled cylinder, the internal pressure 

p will cause a biaxial state of stress in the material such 
that the hoop or circumferential stress component is 
s1 = pr>t, and the longitudinal stress component is 
s2 = pr>2t. If the vessel is a thin-walled sphere, then the 
biaxial state of stress is represented by two equivalent 
components, each having a magnitude of s2 = pr>2t.

Superposition.

 • Once the normal and shear stress components for each loading 
have been calculated, use the principle of superposition and 
determine the resultant normal and shear stress components.

 • Represent the results on an element of material located at a 
point, or show the results as a distribution of stress acting over 
the member’s cross-sectional area.

A B

F F

F

M

When a pretension force F is developed in 
the blade of this coping saw, it will produce 
both a compressive force F and bending 
moment M at the section AB of the frame. 
The material must therefore resist the 
normal stress produced by both of these 
loadings.

Problems in this section, which involve combined loadings, serve as a 
basic review of the application of the stress equations mentioned above. 
A thorough understanding of how these equations are applied, as 
indicated in the previous chapters, is necessary if one is to successfully 
solve the problems at the end of this section. The following examples 
should be carefully studied before proceeding to solve the problems.
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EXAMPLE   8.2 

A force of 300 kN is applied to the edge of the member shown in Fig. 8–3a. 
Neglect the weight of the member and determine the state of stress at 
points B and C.

SOLUTION

Internal Loadings. The member is sectioned through B and C, 
Fig. 8–3b. For equilibrium at the section there must be an axial force of 
300 kN acting through the centroid and a bending moment of 
45.0 kN # m about the centroidal principal axis, Fig. 8–3b.

Stress Components.
Normal Force. The uniform normal-stress distribution due to the 
normal force is shown in Fig. 8–3c. Here

s =
N
A

=
300(103) N

(0.1 m)(0.3 m)
= 10.0(103) N>m2 = 10.0 MPa

Bending Moment. The normal-stress distribution due to the bending 
moment is shown in Fig. 8–3d. The maximum stress is

smax =
Mc
I

=
[45.0(103) N # m] (0.15 m)

1
12 (0.1 m) (0.3 m)3

= 30.0(106) N>m2 = 30.0 MPa

Superposition. Algebraically adding the stresses at B and C, we get

sB = -
N
A

+
Mc
I

= -10.0 MPa + 30.0 MPa = 20.0 MPa  (tension) Ans.

 sC = -
N
A

-
Mc
I

= -10.0 MPa - 30.0 MPa

 = -40.0 MPa = 40.0 MPa (compression) Ans.

NOTE: The resultant stress distribution over the cross section is shown in 
Fig. 8–3e, where the location of the line of zero stress can be determined 
by proportional triangles; i.e.,

20.0 MPa
x

=
40.0 MPa

(300 mm - x)
; x = 100 mm

(a)

150 mm

50 mm
50 mm

300 kN

C
B

150 mm

300 kN

(b)
300 kN

45.0 kN�m

C
B

C
B

10.0 MPa

(c)

Normal force

C
B

30.0 MPa 30.0 MPa

(d)

Bending moment

� �

  

C
B

20.0 MPa 40.0 MPa
x
(300 mm – x)

(e)

Combined loading

  (f)

20.0 MPa

B

  (g)

40.0 MPa

C

Fig. 8–3
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EXAMPLE   8.3 

The gas tank in Fig. 8–4a has an inner radius of 600 mm and a thickness of 10 
mm. If it supports the 200 kN load at its top, and the gas pressure within it is 
450 kPa, determine the state of stress at point A.

SOLUTION

Internal Loadings. The free-body diagram of the section of the tank 
above point A is shown in Fig. 8–4b. 

Stress Components.
Circumferential Stress. Since r>t = 600 mm>10 mm = 60 7 10, the 
tank is a thin-walled vessel. Applying Eq. 8–1, using the inner radius 
r = 0.6 m, we have

s1 =
pr

t
=

3450(103) N>m24(0.6 m)

0.01 m
= 27.0(106) N>m2 = 27.0 MPa (T) 

Ans.

Longitudinal Stress. Here the wall of the tank uniformly supports the 
load of 200 kN (compression) and the pressure stress (tensile). Thus, we have

s2 = -   
N

A
+

pr

2t
= -  

200(103) N

p[(0.61 m)2 - (0.6 m)2]
+

[450(103) N>m2](0.6 m)

2 (0.01 m)

= 8.239(106) N>m2 = 8.24 MPa (T) Ans.

Point A is therefore subjected to the biaxial stress shown in Fig. 8–4c.

(a)

t 5 10 mm

r 5 600 mm

A

200 kN

 (b)

200 kN

ps2

A

200 kN

 (c)

8.24 MPa

27.0 MPa
A

Fig. 8–4
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EXAMPLE   8.4 

The member shown in Fig. 8–5a has a rectangular cross section. Determine 
the state of stress that the loading produces at point C and point D.

(a)

1.5 m

50 mm
1.5 m

2 m4 m

125 mm

2.5 m

C
C

A

B

50 kN/m

D
D

125 mm

125 mm

(b)

125 kN

97.59 kN

3
45

16.45 kN

21.93 kN

3
45

4 m

1 m1 m

0.75 m

0.75 m

A

(c)

16.45 kN

21.93 kN

1.5 m

C

M
N

V

SOLUTION

Internal Loadings. The support reactions on the member have been 
determined and are shown in Fig. 8–5b. (As a review of statics, apply  
ΣMA = 0 to show FB = 97.59 kN.) If the left segment AC of the member is 
considered, Fig. 8–5c, then the resultant internal loadings at the section 
consist of a normal force, a shear force, and a bending moment. They are

N = 16.45 kN  V = 21.93 kN  M = 32.89 kN # m

Fig. 8–5
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8Stress Components at C.
Normal Force. The uniform normal-stress distribution acting over the 
cross section is produced by the normal force, Fig. 8–5d. At point C,

(sC)a =
N
A

=
16.45(103) N

(0.050 m) (0.250 m)
= 1.32 MPa

Shear Force. Here the area A ′ = 0, since point C is located at the top of 
the member. Thus Q = y  ′A ′ = 0, Fig. 8–5e. The shear stress is therefore

tC = 0

Bending Moment. Point C is located at y = c = 0.125 m from the 
neutral axis, so the bending stress at C, Fig. 8–5f, is

(sC)b =
Mc
I

=
[32.89(103) N # m](0.125 m)

3 1
12 (0.050 m) (0.250 m)34 = 63.16 MPa

Superposition. There is no shear-stress component. Adding the normal 
stresses gives a compressive stress at C having a value of

 s C = 1.32 MPa + 63.16 MPa = 64.5 MPa  Ans.

This result, acting on an element at C, is shown in Fig. 8–5g.

Stress Components at D.
Normal Force. This is the same as at C, (sD)a = 1.32 MPa, Fig. 8–5d.

Shear Force. Since D is at the neutral axis, and the cross section is 
rectangular, we can use the special form of the shear formula, Fig. 8–5e.

tD = 1.5
V
A

= 1.5 c
21.93(103) N

(0.25 m)(0.05 m)
d = 2.63 MPa Ans.

Bending Moment. Here D is on the neutral axis and so (sD)b = 0.

Superposition. The resultant stress on the element is shown in Fig. 8–5h.

C
 1.32 MPa

Normal force

(d)

D

  

C

Shear force

(e)

�
D

 2.63 MPa

  

�

C

 63.16 MPa

Bending moment

(f)

D

64.5 MPa

(g)

1.32 MPa

(h)

2.63 MPa

Fig. 8–5 (cont.)
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EXAMPLE   8.5 

The solid rod shown in Fig. 8–6a has a radius of 20 mm. If it is subjected to 
the force of 2 kN, determine the state of stress at point A.

SOLUTION

Internal Loadings. The rod is sectioned through point A. Using the 
free-body diagram of segment AB, Fig. 8–6b, the resultant internal 
loadings are determined from the equations of equilibrium.

ΣFy = 0;  2(103) N - Ny = 0; Ny = 2(103) N 

ΣMz = 0; [2(103) N](0.2 m) - Mz = 0;  Mz = 400 N # m

In order to better “visualize” the stress distributions due to these loadings, 
we can consider the equal but opposite resultants acting on segment AC,  
Fig. 8–6c.

Stress Components.
Normal Force. The normal-stress distribution is shown in Fig. 8–6d. 
For point A, we have

(sA)y =
N
A

=
2(103) N

p(0.02 m)2 = 1.592(106) N>m2 = 1.592 MPa

Bending Moment. For the moment, c = 0.02 m, so the bending stress 
at point A, Fig. 8–6e, is

 (sA)y =
Mc
I

=
(400 N # m)(0.02 m)

p
4  (0.02 m)4  

  = 63.662(106) N>m2 = 63.662 MPa

Superposition. When the above results are superimposed, it is seen that 
an element at A, Fig. 8–6f, is subjected to the normal stress

(sA)y = 1.592 MPa + 63.66 MPa = 65.25 MPa = 65.3 MPa Ans.

125 mm

150 mm

200 mm

2 kN

x A

B

C

z

y

(a)

0.15 m

0.2 m

2(103) N

(b)

x

z

y

2(103) NNy=

� 400 N � mMz

A

Bending moment

(e)

63.66 MPa1.592 MPa

Normal force

(d)

A

400 N � m

2(103) N

(c)

��

65.3 MPa

(f)

Fig. 8–6
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EXAMPLE   8.6 

The solid rod shown in Fig. 8–7a has a radius of 20 mm. If it is subjected to 
the force of 3 kN, determine the state of stress at point A.

SOLUTION

Internal Loadings. The rod is sectioned through point A. Using the 
free-body diagram of segment AB, Fig. 8–7b, the resultant internal 
loadings are determined from the equations of equilibrium. Take a 
moment to verify these results. The equal but opposite resultants are 
shown acting on segment AC, Fig. 8–7c.
ΣFz = 0;  Vz - 3(103) N = 0; Vz = 3(103) N
ΣMx = 0; Mx - [3(103) N](0.15 m) = 0; Mx = 450 N # m
ΣMy = 0; -Ty + [3(103) N] (0.2 m) = 0; Ty = 600 N # m

Stress Components.
Shear Force. The shear-stress distribution is shown in Fig. 8–7d. For 
point A, Q is determined from the grey shaded semicircular area. 
Using the table in the back of the book, we have

Q = y′A ′ = c
4(0.02 m)

3p
 d c 1

2
 p(0.02 m)2 d = 5.3333(10-6) m3

so that

 [(tyz)v]A =
VQ

It
=

33(103) N4 35.333(310-6) m34
3p4  (0.02 m)44 [2(0.02 m)]

 

  = 3.183(106)N>m2 = 3.18 MPa

Bending Moment. Since point A lies on the neutral axis, Fig. 8–7e, the 
bending stress is

(sb)A = 0

Torque. At point A, rA = c = 0.02 m, Fig. 8–7f. Thus the shear stress is

[(tyz)T]A =
Tc
J

=
(600 N # m)(0.02 m)

p
2  (0.02 m)4 = 47.746(106) N>m2 = 47.74 MPa

Superposition. Here the element of material at A is subjected only to 
a shear stress component, Fig. 8–7g, where

       (tyz)A = 3.18 MPa + 47.74 MPa = 50.93 MPa = 50.9 MPa  Ans.

3(103) N

125 mm

150 mm
x A

B

C

(a)

z

200 mm

y

0.15 m

0.2 m

3(103) N

(b)

x

y

Mx � 450 N � m

z

My � 600 N � m
3(103) N�  Vz

Fig. 8–7

47.74 MPa

A

Torsional moment

(f)

A

Bending moment

(e)

3.18 MPa

A

Shear force

(d)

A¿450 N � m

600 N � m3(103) N

(c)

� � �

(g)

50.9 MPa
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EXAMPLE   8.7

A rectangular block has a negligible weight and is subjected to a vertical 
force P, Fig. 8–8a. (a) Determine the range of values for the eccentricity ey of 
the load along the y axis, so that it does not cause any tensile stress in the 
block. (b) Specify the region on the cross section where P may be applied 
without causing tensile stress.

SOLUTION

Part (a). When P is moved to the centroid of the cross section, Fig. 8–8b, 
it is necessary to add a bending moment Mx = Pey in order to maintain a 
statically equivalent loading. The combined normal stress at any coordinate 
location y on the cross section caused by these two loadings is therefore

s = -  
P
A

-
(Pey)y

Ix
= -  

P
A

 ¢1 +
Aeyy

Ix
≤

Here the negative sign indicates compressive stress. For positive ey, 
Fig.  8–8a, the smallest compressive stress will occur along edge AB, 
where y = -h>2, Fig. 8–8b. (By inspection, P causes compression there, 
but Mx causes tension.) Hence,

smin = -  
P
A

 ¢1 -
Aey h

2Ix
≤

This stress will remain negative, i.e., compressive, provided the term in 
parentheses is positive; i.e.,

1 7
Aey h

2Ix

Since A = bh and Ix = 1
12 bh3, then

 1 7
6ey

h
  or  ey 6

1
6

  h  Ans.

In other words, if -  16 h … ey … 1
6 h, the stress in the block along edge AB or 

CD will be zero or remain compressive.

NOTE: This is sometimes referred to as the “middle-third rule.” It is very 
important to keep this rule in mind when loading columns or arches 
having a rectangular cross section and made of material such as stone or 
concrete, which can support little or no tensile stress. We can extend this 
analysis in the same way by placing P along the x axis in Fig. 8–8b. The 
result will produce a shaded parallelogram, shown in Fig. 8–8c. This region 
is referred to as the core or kern of the section. When P is applied within 
the kern, the normal stress at the corners of the cross section will always 
be compressive.

(a)

b

P

y

x

z

h

ey

y

�

(b)

C

B

A

D

P
y

Mx � Pey

xh
2

y � �

(c)

P
y

x

A

E G

F H
b
6

b
6

h
6

h
6

Fig. 8–8
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P8–1. In each case, determine the internal loadings that 
act on the indicated section. Show the results on the left 
segment.

500 N

200 N

0.2 m

0.2 m

(a)

1 m

300 N

2 m

200 N

100 N

(b)

0.4 m

200 N

300 N

0.4 m

0.2 m

(c)

PRELIMINARY PROBLEMS
200 N

500 N
300 N

(d)

1 m

2 m

P8–2. The internal loadings act on the section. Show the 
stress that each of these loads produce on differential 
elements located at point A and point B.

(a)

V

N

T
B

A

M

(b)

T

A

M

B
V

Prob. P8–1

Prob. P8–2



448  Chapter 8  Combined Loadings

8

F8–1. Determine the normal stress at corners A and B of 
the column.

300 kN

500 kN

50 mm

100 mm

100 mm

100 mm

150 mm150 mm

150 mm 150 mm

A

z

y
x

B

Prob. F8–1

F8–2. Determine the state of stress at point A on the cross 
section at section a–a of the cantilever beam. Show the 
results in a differential element at the point.

300 mm

100 mm

100 mm

0.5 m

Section a–a

400 kN

a

a

A

Prob. F8–2

F8–3. Determine the state of stress at point A on the cross 
section of the beam at section a–a. Show the results in a 
differential element at the point.

A

2 m
0.5 m 0.5 m0.5 m

30 kN

a

a

50 mm

10 mm

10 mm

10 mm

180 mm

100 mm

Section a–a

Prob. F8–3

F8–4. Determine the magnitude of the load P that will 
cause a maximum normal stress of s max = 210 MPa in the 
link along section a–a.

P

P
50 mm

50 mm

12 mma a

Prob. F8–4

FUNDAMENTAL PROBLEMS
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F8–5. The beam has a rectangular cross section and is 
subjected to the loading shown. Determine the components 
of stress sx, sy, and txy at point B.

15 mm 15 mm

100 mm

800 N
x

y

z

10 mm

B

1000 N

20 mm

20 mm

Prob. F8–5

F8–6. Determine the state of stress at point A on the cross 
section of the pipe assembly at section a–a. Show the results 
in a differential element at the point.

a

a

400 mm

200 mm

A

A

Section a – a

20 mm

1500 N

1000 N

z

yx

Prob. F8–6

F8–7. Determine the state of stress at point A on the cross 
section of the pipe at section a–a. Show the results in a 
differential element at the point.

a

A

A

a
300 mm

300 mm

Section a – a

50 mm

40 mm

6 kN

z

y

x

Prob. F8–7

F8–8. Determine the state of stress at point A on the cross 
section of the shaft at section a–a. Show the results in a 
differential element at the point.

100 mm a

300 N

300 N

900 N

900 N

100 mm

600 mm

400 mm

300 mm

100 mm

A

Section a – a

25 mm

20 mm

A

z

y

x

a

Prob. F8–8
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8–18. Determine the shortest distance d to the edge of the 
plate at which the force P can be applied so that it produces 
no compressive stresses in the plate at section a–a. The plate 
has a thickness of 10 mm and P acts along the centerline of 
this thickness.

a

500 mm

P

a

300 mm

200 mm

d

Prob. 8–18

8–19. Determine the maximum distance d to the edge of 
the plate at which the force P can be applied so that it 
produces no compressive stresses on the plate at section 
a–a. The plate has a thickness of 20 mm and P acts along the 
centerline of this thickness.

*8–20. The plate has a thickness of 20 mm and the force  
P = 3 kN acts along the centerline of this thickness such that 
d = 150 mm. Plot the distribution of normal stress acting 
along section a–a.

a

a

P

d

200 mm

Probs. 8–19/20

8–21. If the load has a weight of 2700 N, determine the 
maximum normal stress developed on the cross section of 
the supporting member at section a–a. Also, plot the normal 
stress distribution over the cross-section.

PROBLEMS

0.5 m
25 mm

a a

Section a – a

Prob. 8–21

8–22.  The bearing pin supports the load of 3.5 kN. 
Determine the stress components in the support member at 
point A. The support is 12 mm thick.

8–23. The bearing pin supports the load of 3.5 kN. 
Determine the stress components in the support member at 
point B. The support is 12 mm thick.

30

50 mm

A A

B B

75 mm

32 mm

3.5 kN

18 mm

12 mm

Probs. 8–22/23
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*8–24. The column is built up by gluing the two boards 
together. Determine the maximum normal stress on the cross 
section when the eccentric force of P = 50 kN is applied.

8–25. The column is built up by gluing the two boards 
together. If the wood has an allowable normal stress of 
sallow = 6 MPa, determine the maximum allowable eccentric 
force P that can be applied to the column.

*8–28. The pliers are made from two steel parts pinned 
together at A. If a smooth bolt is held in the jaws and a 
gripping force of 50 N is applied at the handles, determine 
the state of stress developed in the pliers at points B and C. 
Here the cross section is rectangular, having the dimensions 
shown in the figure.

8–29. Solve Prob. 8–28 for points D and E.

150 mm

150 mm

250 mm

75 mm

300 mm

50 mm

P

Probs. 8–24/25
8–26. The offset link supports the loading of P = 30 kN. 
Determine its required width w if the allowable normal 
stress is sallow = 73 MPa. The link has a thickness of 40 mm.

8–27. The offset link has a width of w = 200 mm and a 
thickness of 40 mm. If the allowable normal stress is 
sallow = 75 MPa, determine the maximum load P that can 
be applied to the cables.

P

P

w50 mm

Probs. 8–26/27

100 mm62.5 mm

50 N

50 N

30
75 mm

B

C

A

5 mm

5 mmB

C

5 mm
D

E

D

E

4.5 mm

5 mm

44 mm

2.5 mm

Probs. 8–28/29

8–30. The rib-joint pliers are used to grip the smooth 
pipe  C. If the force of 100 N is applied to the handles, 
determine the state of stress at points A and B on the cross 
section of the jaw at section a–a. Indicate the results on an 
element at each point.

250 mm

100 N

100 N

a

Section a – a

a

A

B

C

25 mm
25 mm

10 mm

20 mm 7.5 mm

45°

Prob. 8–30
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8–31. The drill is jammed in the wall and is subjected to the 
torque and force shown. Determine the state of stress at 
point A on the cross section of the drill bit at section a–a.

*8–32. The drill is jammed in the wall and is subjected to 
the torque and force shown. Determine the state of stress at 
point B on the cross section of the drill bit at section a–a.

8–35. The block is subjected to the eccentric load shown. 
Determine the normal stress developed at points A and B. 
Neglect the weight of the block.

*8–36. The block is subjected to the eccentric load shown. 
Sketch the normal-stress distribution acting over the cross 
section at section a–a. Neglect the weight of the block.

150 N

3
4

5

125 mm

20 N·m

400 mm

a

a

5 mm

B

A

Section a – a

z

x

y

y

Probs. 8–31/32

8–33. Determine the state of stress at point A when the 
beam is subjected to the cable force of 4 kN. Indicate the 
result as a differential volume element.

8–34. Determine the state of stress at point B when the 
beam is subjected to the cable force of 4 kN. Indicate the 
result as a differential volume element.

2 m
0.75 m

1 m

4 kN

G

250 mm

375 mm

B C
D

A

200 mm

20 mm

20 mm150 mm

15 mm
A

B

100 mm

Probs. 8–33/34

A B

C

a

a

100 mm150 kN

150 mm

Probs. 8–35/36

8–37. If the 75-kg man stands in the position shown, 
determine the state of stress at point A on the cross section 
of the plank at section a–a. The center of gravity of the man 
is at G. Assume that the contact point at C is smooth.

Section a – a and b – b

G

a

a

C

B

600 mm

50 mm

12.5 mm

A

300 mm600 mm

30

1.5 m

Prob. 8–37
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8–38. Determine the normal stress developed at points A 
and B. Neglect the weight of the block.

8–39. Sketch the normal stress distribution acting over the 
cross section at section a–a. Neglect the weight of the block.

8–42. The rod has a diameter of 40 mm. If it is subjected to 
the force system shown, determine the stress components 
that act at point A, and show the results on a volume 
element located at this point.

8–43. Solve Prob. 8–42 for point B.

a

a

150 mm

30 kN

60 kN75 mm

A B

Probs. 8–38/39

*8–40. The frame supports the distributed load shown. 
Determine the state of stress acting at point D. Show the 
results on a differential element at this point.

8–41. The frame supports the distributed load shown. 
Determine the state of stress acting at point E. Show the 
results on a differential element at this point.

4 kN/m

D
B

A

C

E

1.5 m 1.5 m

20 mm

50 mm

20 mm

60 mm

3 m

3 m

5 m

D

E

Probs. 8–40/41

100 mm

300 mm

y

x

B
A

1500 N

800 N
600 N

100 N�m

z

Probs. 8–42/43

*8–44. Since concrete can support little or no tension, this 
problem can be avoided by using wires or rods to prestress 
the concrete once it is formed. Consider the simply 
supported beam shown, which has a rectangular cross 
section of 450 mm by 300 mm. If concrete has a specific 
weight of 24 kN/m3 determine the required tension in rod 
AB, which runs through the beam so that no tensile stress is 
developed in the concrete at its center section a–a. Neglect 
the size of the rod and any deflection of the beam.

8–45. Solve Prob. 8–44, if the rod has a diameter of 12 mm. 
Use the transformed area method discussed in Sec. 6.6.  
Est = 200 GPa, Ec = 25 GPa.

400 mm

1.2 m 1.2 m
a

a

A B
450 mm

150 mm 150 mm

50 mm

Probs. 8–44/45
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8–46. The man has a mass of 100 kg and center of mass at G.  
If he holds himself in the position shown, determine the 
maximum tensile and compressive stress developed in the 
curved bar at section a–a. He is supported uniformly by two 
bars, each having a diameter of 25 mm. Assume the floor is 
smooth. Use the curved-beam formula to calculate the 
bending stress. 

G

aa

300 mm

150 mm

0.35 m 1 m

300 mm

Prob. 8–46

8–47. The solid rod is subjected to the loading shown. 
Determine the state of stress at point A, and show the 
results on a differential volume element located at this 
point.

*8–48. The solid rod is subjected to the loading shown. 
Determine the state of stress at point B, and show the 
results on a differential volume element at this point.

8–49. The solid rod is subjected to the loading shown. 
Determine the state of stress at point C, and show the 
results on a differential volume element at this point.

30 mm

A
x

y

z
B

C

100 kN

10 kN

20 kN

200 mm
200 mm

Probs. 8–47/48/49

8–50. The post has a circular cross section of radius c. 
Determine the maximum radius e at which the load P can 
be applied so that no part of the post experiences a tensile 
stress. Neglect the weight of the post.

P

c

e

Prob. 8–50

8–51. The post having the dimensions shown is subjected to 
the load P. Specify the region to which this load can be 
applied without causing tensile stress at points A, B, C, and D.

x

y

z

A

a a a a

a

a

D
ez

eyB
C

P

Prob. 8–51
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*8–52. The masonry pier is subjected to the 800-kN load. 
Determine the equation of the line y = f (x) along which 
the load can be placed without causing a tensile stress in the 
pier. Neglect the weight of the pier.

8–53. The masonry pier is subjected to the 800-kN load. If 
x = 0.25 m and y = 0.5 m, determine the normal stress at 
each corner A, B, C, D (not shown) and plot the stress 
distribution over the cross section. Neglect the weight of the 
pier.

2.25 m

2.25 m
1.5 m

1.5 m

A
B

C

y

x
x

y

800 kN

Probs. 8–52/53

8–54. The vertebra of the spinal column can support a 
maximum compressive stress of smax, before undergoing a 
compression fracture. Determine the smallest force P that 
can be applied to a vertebra, if we assume this load is 
applied at an eccentric distance e from the centerline of 
the bone, and the bone remains elastic. Model the vertebra 
as a hollow cylinder with an inner radius ri and outer 
radius ro.

�
e

P

ro

ri

Prob. 8–54

8–55. The coiled spring is subjected to a force P. If we 
assume the shear stress caused by the shear force at any 
vertical section of the coil wire to be uniform, show that the 
maximum shear stress in the coil is tmax = P>A + PRr>J, 
where J is the polar moment of inertia of the coil wire and 
A is its cross-sectional area.

P

P

R

r2

Prob. 8–55

*8–56. The support is subjected to the compressive load P. 
Determine the maximum and minimum normal stress 
acting in the material. All horizontal cross sections are 
circular.

r

P

Prob. 8–56
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8–57. If P = 60 kN, determine the maximum normal 
stress developed on the cross section of the column.

8–58. Determine the maximum allowable force P, if the 
column is made from material having an allowable normal 
stress of sallow = 100 MPa.

8–61. Determine the state of stress at point A on the cross 
section of the pipe at section a–a.

8–62. Determine the state of stress at point B on the cross 
section of the pipe at section a–a.

100 mm

15 mm

15 mm

15 mm

75 mm

150 mm

150 mm

100 mm

100 mm

P

2P

Probs. 8–57/58

8–59. The C-frame is used in a riveting machine. If the 
force at the ram on the clamp at D is P = 8 kN, sketch the 
stress distribution acting over the section a–a.

*8–60. Determine the maximum ram force P that can be 
applied to the clamp at D if the allowable normal stress for 
the material is sallow = 180 MPa.

D

a

40 mm

10 mm

60 mm 10 mm

200 mm

a P

Probs. 8–59/60

250 N
B

A

300 mm250 mm

a

a

60°

19 mm

25 mm
Section a–a

z

x
y

Probs. 8–61/62

8–63. The sign is subjected to the uniform wind loading. 
Determine the stress components at points A and B on the 
100-mm-diameter supporting post. Show the results on a 
volume element located at each of these points.

*8–64. The sign is subjected to the uniform wind loading. 
Determine the stress components at points C and D on the 
100-mm-diameter supporting post. Show the results on a 
volume element located at each of these points.

D

y

x

CB

A

1 m

1.5 kPa
3 m

2 m

2 m

z

Probs. 8–63/64
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8–65. The pin support is made from a steel rod and has a 
diameter of 20 mm. Determine the stress components at 
points A and B and represent the results on a volume 
element located at each of these points.

8–66. Solve Prob. 8–65 for points C and D.

8–70. The 18-mm-diameter shaft is subjected to the 
loading shown. Determine the stress components at point 
A. Sketch the results on a volume element located at this 
point. The journal bearing at C can exert only force 
components Cy and Cz on the shaft, and the thrust bearing 
at D can exert force components Dx, Dy, and Dz on the 
shaft.

8–71. Solve Prob. 8–70 for the stress components at point B.

B
C

DA
80 mm

150 N

Probs. 8–65/66

8–67. The eccentric force P is applied at a distance ey 
from the centroid on the concrete support shown. 
Determine the range along the y axis where P can be 
applied on the cross section so that no tensile stress is 
developed in the material.

2

ey

P

3

h
3

b
2

b
2

h

z

x

y

Prob. 8–67

*8–68. The bar has a diameter of 40 mm. Determine the 
state of stress at point A and show the results on a 
differential volume element located at this point.

8–69. Solve Prob. 8–68 for point B.

200 mm

200 mm

y

z

x

B

A

800 N

3
4

5

1200 N

Probs. 8–68/69

x

C

A

B

600 N

50 mm

200 mm

200 mm

600 N

D

500 mm

500 mm

250 mm

z

y

50 mm

Probs. 8–70/71

*8–72. The hook is subjected to the force of 400 N. 
Determine the state of stress at point A at section a–a. The 
cross section is circular and has a diameter of 12 mm. Use 
the curved-beam formula to compute the bending stress.

8–73. The hook is subjected to the force of 400 N. 
Determine the state of stress at point B at section a–a. The 
cross section has a diameter of 12 mm. Use the curved-beam 
formula to compute the bending stress.

a

a

400 N

40 mm

A A

B

B

45

Probs. 8–72/73
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CHAPTER REVIEW

A pressure vessel is considered to have a 
thin wall provided r>t Ú 10. If the vessel 
contains gas having a gage pressure p, then 
for a cylindrical vessel, the circumferential 
or hoop stress is

s1 =
pr

t

This stress is twice as great as the 
longitudinal stress,

s2 =
pr

2t
 

Thin-walled spherical vessels have the 
same stress within their walls in all 
directions. It is

s1 = s2 =
pr

2t

s1

s2

t

r

  t

r

s2

s1

Superposition of stress components can be 
used to determine the normal and shear 
stress at a point in a member subjected to a 
combined loading. To do this, it is first 
necessary to determine the resultant axial 
and shear forces and the resultant torsional 
and bending moments at the section where 
the point is located. Then the normal and 
shear stress resultant components at the 
point are determined by algebraically 
adding the normal and shear stress 
components of each loading.

  

V

t �
VQ

It

M smax

s � �
My

I

  

tmax

t �
Tr
J

T

N

s

s �
N
A
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CONCEPTUAL PROBLEMS

C8–1. Explain why failure of this garden hose occurred 
near its end and why the tear occurred along its length. Use 
numerical values to explain your result. Assume the water 
pressure is 250 kPa.

C8–1

C8–2. This open-ended silo contains granular material. It 
is constructed from wood slats and held together with steel 
bands. Explain, using numerical values, why the bands are 
not spaced evenly along the height of the cylinder. Also, 
how would you find this spacing if each band is to be 
subjected to the same stress?

C8–2

C8–3. Unlike the turnbuckle at B, which is connected along 
the axis of the rod, the one at A has been welded to the edges 
of the rod, and so it will be subjected to additional stress. Use 
the same numerical values for the tensile load in each rod and 
the rod’s diameter, and compare the stress in each rod.

B

A

C8–3

C8–4. A constant wind blowing against the side of this 
chimney has caused creeping strains in the mortar joints, such 
that the chimney has a noticeable deformation. Explain how 
to obtain the stress distribution over a section at the base of 
the chimney, and sketch this distribution over the section.

C8–4
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REVIEW PROBLEMS

R8–1. The block is subjected to the three axial loads 
shown. Determine the normal stress developed at points A 
and B. Neglect the weight of the block.

R8–3. The 20-kg drum is suspended from the hook 
mounted on the wooden frame. Determine the state of stress 
at point F on the cross section of the frame at section b–b. 
Indicate the results on an element.

100 
mm50 

mm
50 mm

125 mm

125 mm

75 mm

250 N

500 N
1250 N

B
A

Prob. R8–1

R8–2. The 20-kg drum is suspended from the hook 
mounted on the wooden frame. Determine the state of 
stress at point E on the cross section of the frame at 
section a–a. Indicate the results on an element.

1 m

1 m

1 m

b

a

a

b

C
B

A

30�

1 m
0.5 m0.5 m

50 mm

75 mm
25 mm

Section a – a

E

75 mm

75 mm

25 mm
Section b – b

FD

Prob. R8–2

1 m

1 m

1 m

b

a

a

b

C
B

A

30�

1 m
0.5 m0.5 m

50 mm

75 mm
25 mm

Section a – a

E

75 mm

75 mm

25 mm
Section b – b

FD

Prob. R8–3

*R8–4. The gondola and passengers have a weight of 7.5 kN 
and center of gravity at G. The suspender arm AE has a 
square cross-sectional area of 40 mm by 40 mm, and is pin 
connected at its ends A and E. Determine the largest tensile 
stress developed in regions AB and DC of the arm.

1.2 m

1.7 m

GG

0.4 m

40 mm

40 mm

A

B C

DE

Prob. R8–4



8

 reVieW probLems 461

R8–5. If the cross section of the femur at section a–a can 
be approximated as a circular tube as shown, determine the 
maximum normal stress developed on the cross section at 
section a–a due to the load of 375 N.

a a

50 mm
375 N

M
F

24 mm 12 mm

Section a – a

Prob. R8–5

R8–6. A bar having a square cross section of 30 mm by  
30 mm is 2 m long and is held upward. If it has a mass of  
5 kg/m, determine the largest angle u, measured from the 
vertical, at which it can be supported before it is subjected 
to a tensile stress along its axis near the grip.

2 m
u

Prob. R8–6

R8–7. The wall hanger has a thickness of 6 mm and is used 
to support the vertical reactions of the beam that is loaded as 
shown. If the load is transferred uniformly to each strap of the 
hanger, determine the state of stress at points C and D on the 
strap at A. Assume the vertical reaction F at this end acts in 
the center and on the edge of the bracket as shown.

50 kN

A B

30 kN/m

0.6 m 0.6 m
1.8 m

50 mm

90 mm

65 mm

75 mm

25 mm

50 mm

50 mm

F

CD

25 mm

Prob. R8–7

*R8–8. The wall hanger has a thickness of 6 mm and is used 
to support the vertical reactions of the beam that is loaded as 
shown. If the load is transferred uniformly to each strap of the 
hanger, determine the state of stress at points C and D of the 
strap at B. Assume the vertical reaction F at this end acts in 
the center and on the edge of the bracket as shown.

50 kN

A B

30 kN/m

0.6 m 0.6 m
1.8 m

50 mm

90 mm

65 mm

75 mm

25 mm

50 mm

50 mm

F

CD

25 mm

Prob. R8–8



Chapter 9

These turbine blades are subjected to a complex pattern of stress. For design it 
is necessary to determine where and in what  direction the maximum stress occurs.

(© R.G. Henry/Fotolia)
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StreSS 
tranSformation

9.1 Plane-StreSS tranSformation
It was shown in Sec. 1.3 that the general state of stress at a point is 
characterized by six normal and shear-stress components, shown in 
Fig. 9–1a. This state of stress, however, is not often encountered in 
engineering practice. Instead, most loadings are coplanar, and so the 
stress these loadings produce can be analyzed in a single plane. When 
this is the case, the material is then said to be subjected to plane stress. 

Chapter OBJeCtIVeS

n In this chapter, we will show how to transform the stress 
components acting on an element at a point into components 
acting on a corresponding element having a different orientation. 
Once the method for doing this is established, we will then be 
able to find the maximum normal and maximum shear stress at 
the point, and find the orientation of the elements upon which 
they act.

General state of stress

(a)

Plane stress

(b)

tyz

tyz

txy

txy

txytxy

txz

txz

sz

sx

sx

sy

sy

�Fig. 9–1
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The general state of plane stress at a point, shown in Fig. 9–1b, is 
therefore represented by a combination of two normal-stress components, 
sx , sy , and one shear-stress component, txy, which act on only four faces 
of the element. For convenience, in this text we will view this state of 
stress in the x–y plane, as shown in Fig. 9–2a. Realize, however, that if this 
state of stress is produced on an element having a different orientation u, 
as in Fig. 9–2b, then it will be subjected to three different stress components, 
sx′, sy′, tx′y′, measured relative to the x′, y′ axes. In other words, the state 
of plane stress at the point is uniquely represented by two normal-stress 
components and one shear-stress component acting on an element. To be 
equivalent, these three components will be different for each specific 
orientation U of the element at the point.

If these three stress components act on the element in Fig. 9–2a, we 
will now show what their values will have to be when they act on the 
element in Fig. 9–2b. This is similar to knowing the two force 
components Fx and Fy directed along the x, y axes, and then finding the 
force components Fx′ and Fy′ directed along the x′, y′ axes, so they 
produce the same resultant force. The transformation of force must 
only account for the force component’s magnitude and direction. The 
transformation of stress components, however, is more difficult since it 
must account for the magnitude and direction of each stress and the 
orientation of the area upon which it acts.

(a)

y

x

(b)

�
y¿

x ¿

sy

sx

sy¿

sx ¿

txy

tx ¿y¿

u

u

Fig. 9–2

General state of stress

(a)

Plane stress

(b)

tyz

tyz

txy

txy

txytxy

txz

txz

sz

sx

sx

sy

sy

�
Fig. 9–1 (cont.)
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(a)

y

x

x face

sy

sx

txy

(b)

�

y¿

x ¿sy¿
sx ¿

tx ¿y¿
u

x ¿ face

Procedure for AnAlysis

If the state of stress at a point is known for a given orientation of an 
element, Fig. 9–3a, then the state of stress on an element having some 
other orientation u, Fig. 9–3b, can be determined as follows.

 • The normal and shear stress components sx′, tx′y′ acting on the 
+x′ face of the element, Fig. 9–3b, can be determined from an 
arbitrary section of the element in Fig. 9–3a as shown in Fig. 9–3c. 
If the sectioned area is ∆A, then the adjacent areas of the segment 
will be ∆A sin u and ∆A cos u.

 •	 Draw the free-body diagram of the segment, which requires 
showing the forces that act on the segment, Fig. 9–3d. This is done 
by multiplying the stress components on each face by the area 
upon which they act.

	 •	 When ΣFx′ = 0 is applied to the free-body diagram, the area ∆A 
will cancel out of each term and a direct solution for sx′ will be 
possible. Likewise, ΣFy′ = 0 will yield tx′y′.

	 •	 If sy′, acting on the +y′ face of the element in Fig. 9–3b, is to be 
determined, then it is necessary to consider an arbitrary 
segment of the element as shown in Fig. 9–3e. Applying 
ΣFy′ = 0 to its free-body diagram will give sy=. 

x

y

x ¿
y¿

(c)

�A sin u

�A cos u u �A

u

 (d)

y¿

x ¿

sx

sy

sx ¿

tx ¿y¿

txy

txy

u

�A sin u

�A sin u

�A cos u

�A cos u

�A

�A

 (e)

x ¿

y¿

sy¿

sx

sy

tx ¿y¿

txy

u

y¿ face

Fig. 9–3
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EXAMPLE   9.1

The state of plane stress at a point on the surface of the airplane fuselage is 
represented on the element oriented as shown in Fig. 9–4a. Represent the 
state of stress at the point on an element that is oriented 30° clockwise from 
this position.

(a)30�

a

a

b

b

50 MPa

80 MPa

25 MPa

(b)

�A
�A sin 30�

�A cos 30�

30�

(c)

y¿

x ¿

x
60�

30�

30�

30�

30�

sx ¿ �A

tx ¿y¿ �A

25 �A cos 30�

50 �A cos 30�

80 �A sin 30�

25 �A sin 30�

SOLUTION
The rotated element is shown in Fig. 9–4d. To obtain the stress components 
on this element we will first section the element in Fig. 9–4a by the 
line a–a. The bottom segment is removed, and assuming the sectioned 
(inclined) plane has an area ∆A, the horizontal and vertical planes have 
the areas shown in Fig. 9–4b. The free-body diagram of this segment is 
shown in Fig. 9–4c. Notice that the sectioned x′ face is defined by the 
outward normal x′ axis, and the y′ axis is along the face.

Equilibrium. If we apply the equations of force equilibrium in the x′ 
and y′directions, not the x and y directions, we will be able to obtain 
direct solutions for sx′ and tx′y′.

+ QΣFx′ = 0; sx′∆A - (50 ∆A cos 30°) cos 30°
+ (25 ∆A cos 30°) sin 30° + (80 ∆A sin 30°) sin 30°

+ (25 ∆A sin 30°) cos 30° = 0

 sx′ = -4.15 MPa Ans.

+ aΣFy′ = 0; tx′y′∆A - (50 ∆A cos 30°) sin 30°
-  (25 ∆A cos 30°) cos 30° - (80 ∆A sin 30°) cos 30°

+ (25 ∆A sin 30°) sin 30° = 0

 t x′y′ = 68.8 MPa Ans.

Since sx′ is negative, it acts in the opposite direction of that shown in 
Fig. 9–4c. The results are shown on the top of the element in Fig. 9–4d, 
since this surface is the one considered in Fig. 9–4c.Fig. 9–4
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We must now repeat the procedure to obtain the stress on the 
perpendicular plane b–b. Sectioning the element in Fig. 9–4a along b–b 
results in a segment having sides with areas shown in Fig. 9–4e. Orienting 
the +x′ axis outward, perpendicular to the sectioned face, the associated 
free-body diagram is shown in Fig. 9–4f. Thus,

+ RΣFx′ = 0; sx′∆A - (25 ∆A cos 30°) sin 30°

+ (80 ∆A cos 30°) cos 30° - (25 ∆A sin 30°) cos 30°

- (50 ∆A sin 30°) sin 30° = 0

 sx′ = -25.8 MPa Ans.

+ QΣFy′ = 0; tx′y′ ∆A + (25 ∆A cos 30°) cos 30°

+ (80 ∆A cos 30°) sin 30° - (25 ∆A sin 30°) sin 30°

+ (50 ∆A sin 30°) cos 30° = 0

 tx′y′ = -68.8 MPa Ans.

Since both sx′ and tx=y= are negative quantities, they act opposite to their 
direction shown in Fig. 9–4f. The stress components are shown acting on 
the right side of the element in Fig. 9–4d.

From this analysis we may therefore conclude that the state of stress at 
the point can be represented by a stress component acting on an element 
removed from the fuselage and oriented as shown in Fig. 9–4a, or by 
choosing one removed and oriented as shown in Fig. 9–4d. In other words, 
these states of stress are equivalent.

(d)

a

a

b

b

25.8 MPa

68.8 MPa
4.15 MPa

30� 

(e)

 �A cos 30�

 �A sin 30�

 �A

y¿

x ¿

x

30� 

30� 

30� 

30� 

(f)

30� 

25 �A sin 30�

25 �A cos 30�

80 �A cos 30�

50 �A sin 30�

sx ¿ �A

tx ¿y¿ �A
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9.2  General equationS of  
Plane-StreSS tranSformation

The method of transforming the normal and shear stress components 
from the x, y to the x′, y′ coordinate axes, as discussed in the previous 
section, can be developed in a general manner and expressed as a set of 
stress-transformation equations.

Sign Convention. To apply these equations we must first establish 
a sign convention for the stress components. As shown in Fig. 9–5, the +x 
and +x′ axes are used to define the outward normal on the right-hand 
face of the element, so that sx and sx′ are positive when they act in the 
positive x and x′ directions, and txy and tx′y′ are positive when they act in 
the positive y and y′ directions.

The orientation of the face upon which the normal and shear stress 
components are to be determined will be defined by the angle u, which is 
measured from the +x axis to the +x′ axis, Fig. 9–5b. Notice that the 
unprimed and primed sets of axes in this figure both form right-handed 
coordinate systems; that is, the positive z (or z′) axis always points out 
of the page. The angle u will be positive when it follows the curl of the 
right-hand fingers, i.e., counterclockwise as shown in Fig. 9–5b.

Normal and Shear Stress Components. Using this established 
sign convention, the element in Fig. 9–6a is sectioned along the inclined 
plane and the segment shown in Fig. 9–6b is isolated. Assuming the 
sectioned area is ∆A, then the horizontal and vertical faces of the segment 
have an area of ∆A sin u and ∆A cos u, respectively.

(a)

x

y

�sx

�txy

�sy

(a)

sy

txy

sxu
x

y

  

  

(b)

x

y

x ¿
y¿

�A sin u

�A cos u
�A

u

Fig. 9–6

(b)

x

y
y¿

x ¿

Positive sign convention

�u

sx’

tx’y’

Fig. 9–5
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The resulting free-body diagram of the segment is shown in Fig. 9–6c. 
If we apply the equations of equilibrium along the x′ and y′ axes, we can 
obtain a direct solution for sx′ and tx′y′. We have

+ QΣFx′ = 0; sx′∆A - (txy∆A sin u) cos u - (sy∆A sin u) sin u

 - (txy∆A cos u) sin u - (sx ∆A cos u) cos u = 0

 sx′ = sx cos2 u + sy sin2 u + txy(2 sin u cos u)

+ aΣFy′ = 0; tx′y′∆A + (txy∆A sin u) sin u - (sy∆A sin u) cos u 

 - (txy∆A cos u) cos u + (sx ∆A cos u) sin u = 0 

 tx′y′ = (sy - sx) sin u cos u + txy (cos2 u - sin2 u)

To simplify these two equations, use the trigonometric identities  
sin 2u =  2 sin u cos u, sin2 u = (1 - cos 2u)>2, and  
cos2 u = (1 + cos 2u)>2. Therefore,

  sx′ =
sx + sy

2
+

 sx - sy

2
 cos 2u + txy sin 2u (9–1)

  t x′y′ = -  
sx - sy 

2
 sin 2u + txy cos 2u (9–2)

Stress Components Acting along x′, y′ Axes

If the normal stress acting in the y′ direction is needed, it can be obtained 
by simply substituting u + 90° for u into Eq. 9–1, Fig. 9–6d. This yields

 sy′ =
sx + sy

2
-

 sx - sy

2
 cos 2u - txy sin 2u (9–3)

Procedure for AnAlysis

To apply the stress transformation Eqs. 9–1 and 9–2, it is simply 
necessary to substitute in the known data for sx, sy, txy, and u in 
accordance with the established sign convention, Fig. 9–5. Remember 
that the x′ axis is always directed positive outward from the plane 
upon which the normal stress is to be determined. The angle u is 
positive counterclockwise, from the x to the x′ axis. If sx′ and tx′y′ are 
calculated as positive quantities, then these stresses act in the positive 
direction of the x′ and y′ axes.

For convenience, these equations can easily be programmed on a 
pocket calculator.

x ¿

y¿

x

(c)

tx ¿y¿ �A

txy �A sin u

txy �A cos u

sx �A cos u

sy �A sin u

sx ¿ �A

u

u

u
u

u

y¿

x

(d)

x ¿

u � 90�

tx ¿y¿
sy¿

sx ¿
u

Fig. 9–6
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EXAMPLE   9.2

The state of plane stress at a point is represented on the element shown in 
Fig. 9–7a. Determine the state of stress at this point on another element 
oriented 30° clockwise from the position shown.

SOLUTION
This problem was solved in Example 9.1 using basic principles. Here we 
will apply Eqs. 9–1 and 9–2. From the established sign convention, 
Fig. 9–5, it is seen that

sx = -80 MPa  sy = 50 MPa  txy = -25 MPa

Plane CD. To obtain the stress components on plane CD, Fig. 9–7b, the 
positive x′ axis must be directed outward, perpendicular to CD, and the 
associated y′ axis is directed along CD. The angle measured from the x to 
the x′ axis is u = -30° (clockwise). Applying Eqs. 9–1 and 9–2 yields

  sx′ =
sx + sy

 2
+

 sx - sy

2
 cos 2u + txy sin 2u 

  =
-80 + 50

2
+

-80 - 50
2

 cos 2(-30°) + (-25) sin 2(-30°) 

  = -25.8 MPa Ans.

  tx′y′ = -
 sx - sy

2
 sin 2u + txy cos 2u 

  = -  
-80 - 50

2
 sin 2(-30°) + (-25) cos 2(-30°) 

  = -68.8 MPa Ans.
The negative signs indicate that sx′ and tx′y′ act in the negative x′ and y′ 
directions, respectively. The results are shown acting on the element in 
Fig. 9–7d.

Plane BC. Establishing the x′ axis outward from plane BC, Fig. 9–7c, 
then between the x and x′ axes, u = 60° (counterclockwise). Applying 
Eqs. 9–1 and 9–2,* we get

 sx′ =
-80 + 50

2
+

-80 - 50
2

 cos 2(60°) + (-25) sin 2(60°) 

 = -4.15 MPa Ans.

 tx′y′ = -  
 -80 -  50

2
 sin 2(60°) + (-25) cos 2(60°) 

 = 68.8 MPa Ans.
Here tx′y′ has been calculated twice in order to provide a check. The 
negative sign for sx′ indicates that this stress acts in the negative x′ 
direction, Fig. 9–7c. The results are shown on the element in Fig. 9–7d.

50 MPa

(a)

80 MPa

25 MPa

x

(b)

y¿

x ¿

30�

C

D

u � �30�

x

(c)

B

y¿

x¿

30�

C

u�60�

25.8 MPa
68.8 MPa

4.15 MPa

(d)

Fig. 9–7
*Alternatively, we could apply Eq. 9–3 with u = -30° rather than Eq. 9–1.
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9.3  PrinciPal StreSSeS and 
maximum in-Plane Shear 
StreSS

Since sx, sy, txy are all constant, then from Eqs. 9–1 and 9–2 it can be seen that 
the magnitudes of sx′ and tx′y′ only depend on the angle of inclination u of 
the planes on which these stresses act. In engineering practice it is often 
important to determine the orientation that causes the normal stress to be a 
maximum, and the orientation that causes the shear stress to be a maximum. 
We will now consider each of these cases.

In-Plane Principal Stresses. To determine the maximum and 
minimum normal stress, we must differentiate Eq. 9–1 with respect to u 
and set the result equal to zero. This gives

dsx′

du
= -

sx - sy

2
 (2 sin 2u) + 2txy cos 2u = 0

Solving we obtain the orientation u = up of the planes of maximum and 
minimum normal stress.

 tan 2up =
txy

(sx - sy)>2
    (9–4)

Orientation of Principal Planes

The solution has two roots, up1
 and up2

. Specifically, the values of 2up1
 and 

2up2
 are 180° apart, so up1

 and up2
 will be 90° apart.

�

�

2

2

2

�txy

txy

sx � sy

sx � sy

sx � sy

txy2

2

2up2

2up1

t

s

Fig. 9–8

The cracks in this concrete beam 
were caused by tension stress, even 
though the beam was subjected to 
both an internal moment and shear. 
The stress transformation equations 
can be used to predict the direction 
of the cracks, and the principal 
normal stresses that caused them.
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To obtain the maximum and minimum normal stress, we must 
substitute these angles into Eq. 9–1. Here the necessary sine and cosine 
of 2up1

 and 2up2
 can be found from the shaded triangles shown in Fig. 9–8, 

which are constructed based on Eq. 9–4, assuming that txy and (sx - sy) 
are both positive or both negative quantities.

After substituting and simplifying, we obtain two roots, s1 and s2. 
They are

 s1,2 =
sx + sy

2
{ C¢sx - sy

2
≤2

+ txy  

2  (9–5)

Principal Stresses

These two values, with s1 Ú s2, are called the in-plane principal stresses, 
and the corresponding planes on which they act are called the principal 
planes of stress, Fig. 9–9. Finally, if the trigonometric relations for up1

 or 
up2

 are substituted into Eq. 9–2, it will be seen that tx′y′ = 0; in other 
words, no shear stress acts on the principal planes, Fig. 9–9.

�

x 

x¿

In-plane principal stresses

sy

s1

s2

sx

txy

up2 
� up1

� 90�

up1

Fig. 9–9
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Maximum In-Plane Shear Stress. The orientation of the element 
that is subjected to maximum shear stress can be determined by taking the 
derivative of Eq. 9–2 with respect to u, and setting the result equal to zero. 
This gives

 tan 2us =
-(sx - sy)>2

txy
 (9–6)

Orientation of Maximum In-Plane Shear Stress

The two roots of this equation, us1
 and us2

, can be determined from the 
shaded triangles shown in Fig. 9–10a. Since tan 2us, Eq. 9–6, is the negative 
reciprocal of tan 2up, Eq. 9–4, then each root 2us is 90° from 2up, and the 
roots us and up are 45° apart. Therefore, an element subjected to maximum 
shear stress must be oriented 45° from the position of an element that is 
subjected to the principal stress.

The maximum shear stress can be found by taking the trigonometric 
values of sin 2us and cos 2us from Fig. 9–10 and substituting them into 
Eq. 9–2. The result is

 t
 
max
in@plane

= C¢sx - sy

2
≤2

+ txy  

2  (9–7)

Maximum In-Plane Shear Stress

Here t
 
max
in@plane

 is referred to as the maximum in-plane shear stress, because 
it acts on the element in the x–y plane.

Finally, when the values for sin 2us and cos 2us are substituted into 
Eq. 9–1, we see that there is also an average normal stress on the planes 
of maximum in-plane shear stress. It is

 savg =
sx + sy

2
 (9–8)

Average Normal Stress

For numerical applications, it is suggested that Eqs. 9–1 through 9–8 be 
programmed for use on a pocket calculator.

�

sx � sy

sx � sy

txy

�txy

2us1

2us2

2

2

t

s

(a)

x 

x¿

Maximum in-plane shear stresses

savg

us2 
� us1

� 90� us1

savg

(tx ¿y¿)max
             in-plane

(b) 

Fig. 9–10

 • The principal stresses represent the maximum and minimum 
normal stress at the point.

 • When the state of stress is represented by the principal stresses, 
no shear stress will act on the element.

 • The state of stress at the point can also be represented in terms 
of the maximum in-plane shear stress. In this case an average 
normal stress will also act on the element.

 • The element representing the maximum in-plane shear stress 
with the associated average normal stresses is oriented 45° 
from the element representing the principal stresses.

imPortAnt Points



9

474  Chapter 9  StreSS tranSformation

EXAMPLE   9.3

The state of stress at a point just before failure of this shaft is shown in 
Fig. 9–11a. Represent this state of stress in terms of its principal stresses.

SOLUTION
From the established sign convention, 

sx = -20 MPa  sy = 90 MPa  txy = 60 MPa

Orientation of Element. Applying Eq. 9–4,

tan 2up =
txy

(sx - sy)>2
=

60
(-20 - 90)>2

Solving, and referring to this first angle as up2
, we have

2up2
= -47.49°  up2

= -23.7°

Since the difference between 2up1
 and 2up2

 is 180°, the second angle is

2up1
= 180° + 2up2

= 132.51°  up1
= 66.3°

In both cases, u must be measured positive counterclockwise from the 
x axis to the outward normal (x′ axis) on the face of the element, and so 
the element showing the principal stresses will be oriented as shown in 
Fig. 9–11b.

Principal Stress. We have

 s1,2 =
sx + sy

2
{ B ¢sx - sy

2
≤2

+ txy  

2  

 =
-20 + 90

2
{ Ba -20 - 90

2
b

2

+ (60)2 

 = 35.0 { 81.4  

  s1 = 116 MPa Ans.

  s2 = -46.4 MPa Ans.
The principal plane on which each normal stress acts can be determined 

by applying Eq. 9–1 with, say, u = up2
= -23.7°. We have

 sx′ =
sx + sy

2
+

sx - sy

2
  cos 2u + txy sin 2u 

 =
-20 + 90

2
+

-20 - 90
2

  cos 2(-23.7°) + 60 sin 2(-23.7°) 

 = -46.4 MPa

Hence, s2 = -46.4 MPa acts on the plane defined by up2
= -23.7°, 

whereas s1 = 116 MPa acts on the plane defined by up1
= 66.3°, Fig. 9–11c. 

Recall that no shear stress acts on this element.

90 MPa

(a)

60 MPa

20 MPa

(b)

23.7�

66.3�

x¿

y¿y¿

x¿

x

x

(c)

up1 
� 66.3�

� 46.4 MPa

up2 
� 23.7�

s2

� 116 MPas1

Fig. 9–11
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EXAMPLE   9.4

The state of plane stress at a point on a body is represented on the 
element shown in Fig. 9–12a. Represent this state of stress in terms of 
its maximum in-plane shear stress and associated average normal stress.

SOLUTION

Orientation of Element. Since sx = -20 MPa, sy = 90 MPa, and 
txy = 60 MPa, applying Eq. 9–6, the two angles are

 tan 2us =
-(sx - sy)>2

txy
=

-(-20 - 90)>2

60

 2us2
= 42.5°       us2

= 21.3° 

 2us1
= 180° + 2us2

         us1
= 111.3°

Note how these angles are formed between the x and x′ axes, Fig. 9–12b. 
They happen to be 45° away from the principal planes of stress, which 
were determined in Example 9.3.

Maximum In-Plane Shear Stress. Applying Eq. 9–7,

t
 
max
in@plane

 = C¢sx - sy

2
≤2

+ txy  

2 = Ba -20 - 90
2

b
2

+ (60)2

= {81.4 MPa Ans.

The proper direction of t
 
max
in@plane

 on the element can be determined by 
substituting u = us2

= 21.3° into Eq. 9–2. We have

 tx′y′ = - ¢sx - sy

2
≤ sin 2u + txy cos 2u  

 = -a -20 - 90
2

b  sin 2(21.3°) + 60 cos 2(21.3°) 

 = 81.4 MPa

This positive result indicates that t
 
max
in@plane

= tx′y′ acts in the positive y′ 
direction on this face (u = 21.3°), Fig. 9–12b. The shear stresses on the 
other three faces are directed as shown in Fig. 9–12c.

Average Normal Stress. Besides the maximum shear stress, the 
element is also subjected to an average normal stress determined from 
Eq. 9–8; that is,

 savg =
sx + sy

2
=

-20 + 90
2

= 35 MPa Ans.

This is a tensile stress. The results are shown in Fig. 9–12c.

90 MPa

(a)

60 MPa

20 MPa

(b)

x¿

y¿

y¿

x¿

21.3�

111.3�
81.4 MPa

x

x

35 MPa

35 MPa
81.4 MPa

21.3�

(c)

Fig. 9–12
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EXAMPLE   9.5

When the torsional loading T is applied to the bar in Fig. 9–13a, it 
produces a state of pure shear stress in the material. Determine (a) the 
maximum in-plane shear stress and the associated average normal stress, 
and (b) the principal stress.

SOLUTION
From the established sign convention,

sx = 0  sy = 0  txy = -t

Maximum In-Plane Shear Stress. Applying Eqs. 9–7 and 9–8, we have

  t max
in@plane

= C¢sx - sy

2
≤2

+ txy  

2 = 2(0)2 + (-t)2 = {t Ans.

  savg =
sx + sy

2
=

0 + 0
2

= 0 Ans.

Thus, as expected, the maximum in-plane shear stress is represented by 
the element in Fig. 9–13a.

NOTE: Through experiment it has been found that materials that are 
ductile actually fail due to shear stress. As a result, if the bar in Fig. 9–13a 
is made of mild steel, the maximum in-plane shear stress will cause it to 
fail as shown in the adjacent photo.

Principal Stress. Applying Eqs. 9–4 and 9–5 yields

 tan 2up =
txy

(sx - sy)>2
=

-t

(0 - 0)>2
, up2

= 45°, up1
= -45° 

 s1, 2 =
sx + sy

2
{ Ba

sx - sy

2
b

2

+ txy  

2 = 0 { 2(0)2 + t2 = {t Ans.

If we now apply Eq. 9–1 with up2
= 45°, then

 sx′ =
sx + sy

2
+

sx - sy

2
 cos 2u + txy sin 2u 

 = 0 + 0 + (-t) sin 90° = -t

Thus, s2 = -t acts at up2
= 45° as shown in Fig. 9–13b, and s1 = t acts 

on the other face, up1
= -45°.

NOTE: Materials that are brittle fail due to normal stress. Therefore, if the 
bar in Fig. 9–13a is made of cast iron it will fail in tension at a 45° 
inclination as seen in the adjacent photo.

Torsion failure of mild steel.

T
T

(a)

t

Torsion failure of cast iron.

Fig. 9–13

(b)

45�
x 

y¿ x¿

s2 � t

s1 � t
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EXAMPLE   9.6

When the axial loading P is applied to the bar in Fig. 9–14a, it produces a 
tensile stress in the material. Determine (a) the principal stress and  
(b) the maximum in-plane shear stress and associated average normal stress.

SOLUTION
From the established sign convention,

sx = s  sy = 0  txy = 0

Principal Stress. By observation, the element oriented as shown in 
Fig. 9–14a illustrates a condition of principal stress since no shear stress 
acts on this element. This can also be shown by direct substitution of the 
above values into Eqs. 9–4 and 9–5. Thus,

 s1 = s  s2 = 0 Ans.

NOTE: Brittle materials will fail due to normal stress, and therefore, if the 
bar in Fig. 9–14a is made of cast iron, it will fail as shown in the adjacent 
photo.

Maximum In-Plane Shear Stress. Applying Eqs. 9–6, 9–7, and 9–8, 
we have

 tan 2us =
-(sx - sy)>2

txy
=

-(s - 0)>2

0
; us1

= 45°, us2
= -45° 

 t max
in@plane

= C¢sx - sy

2
≤2 

+ txy  

2 = Bas - 0
2

b
2 

+ (0)2 = {s

2
  Ans.

  savg =
sx + sy

2
=

s + 0
2

=
s

2
 Ans.

To determine the proper orientation of the element, apply Eq. 9–2.

tx′y′ = -  
sx - sy

2
   sin 2u + txy cos 2u = -  

s - 0
2

   sin 90° + 0 = -  
s

2

This negative shear stress acts on the x′ face in the negative y′ direction, 
as shown in Fig. 9–14b.

NOTE: If the bar in Fig. 9–14a is made of a ductile material such as mild steel 
then shear stress will cause it to fail. This can be noted in the adjacent photo, 
where within the region of necking, shear stress has caused “slipping” 
along  the steel’s crystalline boundaries, resulting in a plane of failure 
that  has formed a cone around the bar oriented at approximately 45° 
as calculated above.

(a)

P

P

s

Axial failure of cast iron.

45�45�

Axial failure of mild steel.

Fig. 9–14

(b)

45�
x 

x¿
y¿

tin-plane �
   max

s
s

s

2savg �

2

2savg �
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P9–1. In each case, the state of stress sx, sy, txy produces 
normal and shear stress components along section AB of the 
element that have values of sx′ = -5 kPa and tx′y′ = 8 kPa 
when calculated using the stress transformation equations. 
Establish the x′ and y′ axes for each segment and specify the 
angle u, then show these results acting on each segment.

(a)

B

A

B

A

B

A
txy

sy

sx

20�

(b)

30�

A A

B

A

BB

B

txy

sy

sx

(c)

40�

A
A A

B
BB

txy

sy

sx

PRELIMINARY PROBLEMS
P9–2. Given the state of stress shown on the element, find 
savg and tmax

in@plane
 and show the results on a properly oriented 

element.

4 MPa

4 MPa

Prob. P9–1

Prob. P9–2
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F9–1. Determine the normal stress and shear stress 
acting on the inclined plane AB. Sketch the result on the 
sectioned element.

500 kPa

A

B

30�

Prob. F9–1

F9–2. Determine the equivalent state of stress on an 
element at the same point oriented 45° clockwise with 
respect to the element shown.

300 kPa

400 kPa

Prob. F9–2

F9–3. Determine the equivalent state of stress on an 
element at the same point that represents the principal 
stresses at the point. Also, find the corresponding orientation 
of the element with respect to the element shown.

80 kPa

30 kPa

Prob. F9–3

F9–4. Determine the equivalent state of stress on an 
element at the same point that represents the maximum 
in-plane shear stress at the point.

100 kPa

400 kPa

700 kPa

Prob. F9–4

F9–5. The beam is subjected to the load at its end. 
Determine the maximum principal stress at point B.

60 mm

2 kN

4 kN

30 mm

B

2 m

Prob. F9–5

F9–6. The beam is subjected to the loading shown. 
Determine the principal stress at point C.

3 m 3 m

8 kN/m

A

150 mm

75 mm

75 mm

C

C

B

Prob. F9–6

FUNDAMENTAL PROBLEMS
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9–1. Prove that the sum of the normal stresses 
sx + sy = sx′ + sy′ is constant. See Figs. 9–2a and 9–2b.

9–2. Determine the stress components acting on the 
inclined plane AB. Solve the problem using the method of 
equilibrium described in Sec. 9.1.

*9–4. The state of stress at a point in a member is shown 
on the element. Determine the stress components acting on 
the inclined plane AB. Solve the problem using the method 
of equilibrium described in Sec. 9.1.

9–5. Solve Prob. 9–4 using the stress-transformation 
equations developed in Sec. 9.2. Show the result on a sketch.

PROBLEMS

30  
B

A
90 MPa

60  

50 MPa

35 MPa

Probs. 9–4/5

9–6. The state of stress at a point in a member is shown on 
the element. Determine the stress components acting on the 
inclined plane AB. Solve the problem using the method of 
equilibrium described in Sec. 9.1.

60  

B

A

500 MPa

350 MPa

Prob. 9–6

65 MPa

20 MPa

A

B

30�

Prob. 9–2

9–3. The state of stress at a point in a member is shown on 
the element. Determine the stress components acting on the 
inclined plane AB. Solve the problem using the method of 
equilibrium described in Sec. 9.1.

60  

B

A

5 MPa

8 MPa

2 MPa

Prob. 9–3
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9–7. Determine the stress components acting on the 
inclined plane AB. Solve the problem using the method of 
equilibrium described in Sec. 9.1.

*9–8. Solve Prob. 9–7 using the stress transformation 
equations developed in Sec. 9.2.

50� 

B

A
60 MPa

80 MPa

40 MPa

Probs. 9–7/8

9–9. Determine the stress components acting on the plane 
AB. Solve the problem using the method of equilibrium 
described in Sec. 9.1.

9–10. Solve Prob. 9–9 using the stress transformation 
equation developed in Sec. 9.2.

30� 

B

A

30 MPa

80 MPa

40 MPa

Probs. 9–9/10

9–11. Determine the equivalent state of stress on an element 
at the same point oriented 60° clockwise with respect to the 
element shown. Sketch the results on the element.

100 MPa

75 MPa

150 MPa

Prob. 9–11

*9–12. Determine the equivalent state of stress on an 
element at the same point oriented 60° counterclockwise with 
respect to the element shown. Sketch the results on the 
element.

100 MPa

75 MPa

150 MPa

Prob. 9–12
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9–13. Determine the stress components acting on the 
inclined plane AB. Solve the problem using the method of 
equilibrium described in Sec. 9.1.

60� 

B

A
50 MPa

100 MPa

Prob. 9–13

9–14. Determine (a) the principal stresses and (b) the 
maximum in-plane shear stress and average normal stress at 
the point. Specify the orientation of the element in each case.

200 MPa

300 MPa

100 MPa

Prob. 9–14

9–15. The state of stress at a point is shown on the element. 
Determine (a) the principal stresses and (b) the maximum 
in-plane shear stress and average normal stress at the point. 
Specify the orientation of the element in each case.

60 MPa

45 MPa

30 MPa

Prob. 9–15

*9–16. Determine the equivalent state of stress on an 
element at the point which represents (a) the principal stresses 
and (b) the maximum in-plane shear stress and the associated 
average normal stress. Also, for each case, determine the 
corresponding orientation of the element with respect to the 
element shown and sketch the results on the element.

15 MPa

50 MPa

Prob. 9–16

9–17. Determine the equivalent state of stress on an 
element at the same point which represents (a) the principal 
stress, and (b) the maximum in-plane shear stress and the 
associated average normal stress. Also, for each case, 
determine the corresponding orientation of the element 
with respect to the element shown and sketch the results on 
the element.

50 MPa

125 MPa

75 MPa

Prob. 9–17

9–18. A point on a thin plate is subjected to the two stress 
components. Determine the resultant state of stress 
represented on the element oriented as shown on the right.

85 MPa

60 MPa

30�

45�

85 MPa

��

sy

sx

txy

Prob. 9–18
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9–19. Determine the equivalent state of stress on an 
element at the same point which represents (a) the principal 
stress, and (b) the maximum in-plane shear stress and the 
associated average normal stress. Also, for each case, 
determine the corresponding orientation of the element 
with respect to the element shown and sketch the results on 
the element.

100 MPa

25 MPa

Prob. 9–19

*9–20. The stress along two planes at a point is indicated. 
Determine the normal stresses on plane b–b and the 
principal stresses.

45 MPa

60�

σb 25 MPa

b

a a

b

Prob. 9–20

9–21. The stress acting on two planes at a point is 
indicated. Determine the shear stress on plane a–a and the 
principal stresses at the point.

80 MPa

60 MPa

90  
45  

60  

b

a

a

b

ta

Prob. 9–21

9–22. The state of stress at a point in a member is shown 
on the element. Determine the stress components acting on 
the plane AB.

50 MPa

30�
28 MPa

A

B

100 MPa

Prob. 9–22

9–23. The grains of wood in the board make an angle of 
20° with the horizontal as shown. Determine the normal 
and shear stress that act perpendicular and parallel to the 
grains if the board is subjected to an axial load of 250 N.

300 mm

250 N
60 mm

25 mm20�

250 N

Prob. 9–23

*9–24. The wood beam is subjected to a load of 12 kN. If 
grains of wood in the beam at point A make an angle of 25° 
with the horizontal as shown, determine the normal and shear 
stress that act perpendicular to the grains due to the loading.

2 m 4 m1 m
12 kN

25�
75 mm

300 mm

200 mm

A

Prob. 9–24

The following problems involve material covered in Chapter 8.
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9–25. The internal loadings at a section of the beam are 
shown. Determine the in-plane principal stresses at 
point A. Also compute the maximum in-plane shear stress 
at this point.

9–26. Solve Prob. 9–25 for point B.

9–27. Solve Prob. 9–25 for point C.

9–29. The bell crank is pinned at A and supported by a 
short link BC. If it is subjected to the force of 80 N, determine 
the principal stresses at (a) point D and (b) point E. The 
crank is constructed from an aluminum plate having a 
thickness of 20 mm.

50 mm

60 mm 15 mm

E

150 mm50 mm

10 mm
A

40 mm 10 mm

C

A

80 N

D

40 mm

50 mm

3

4

5

B

Prob. 9–29

9–30. The beam has a rectangular cross section and is 
subjected to the loadings shown. Determine the principal 
stresses at point A and point B, which are located just to the 
left of the 20-kN load. Show the results on elements located 
at these points.

2 m 2 m
50 mm50 mm

100 mm
100 mm

10 kN
100 mm

20 kN

BB
AA

Prob. 9–30

200 mm

20 mm

20 mm

C

y

A

20 mm

100 mm

x
z

80 kN60 kN

B

10 kN�m

500 N�m

Probs. 9–25/26/27

*9–28. The drill pipe has an outer diameter of 75 mm, a 
wall thickness of 6 mm, and a weight of 0.8 kN/m. If it is 
subjected to a torque and axial load as shown, determine (a) 
the principal stress and (b) the maximum in-plane shear 
stress at a point on its surface at section a.

1.2 kN m

6 m

6 m

7.5 kN

a

Prob. 9–28
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9–31. The wide-flange beam is subjected to the loading 
shown. Determine the principal stress in the beam at point 
A, which is located at the top of the web. Although it is not 
very accurate, use the shear formula to determine the shear 
stress. Show the result on an element located at this point.

9–34. Determine the principal stress at point A on the 
cross section of the arm at section a–a. Specify the 
orientation of this state of stress and indicate the results on 
an element at the point.

9–35. Determine the maximum in-plane shear stress 
developed at point A on the cross section of the arm at 
section a–a. Specify the orientation of this state of stress and 
indicate the results on an element at the point.

Section a – a

a

a

A

D

B C

500 N

60

50 mm

7.5 mm

7.5 mm

7.5 mm
20 mm

0.15 m 0.15 m
0.35 m

Probs. 9–34/35

*9–36. Determine the principal stresses in the cantilevered 
beam at points A and B.

150 mm

3
4 5

15 kN

1200 mm

800 mm

120 mm

A
B

40 mm
30 mm

Prob. 9–36

A

30 kN 120 kN/m

A

20 mm
20 mm

150 mm

20 mm

150 mm

0.9 m 0.3 m

Prob. 9–31

*9–32. A paper tube is formed by rolling a cardboard strip 
in a spiral and then gluing the edges together as shown. 
Determine the shear stress acting along the seam, which is 
at 50° from the horizontal, when the tube is subjected to an 
axial compressive force of 200 N. The paper is 2 mm thick 
and the tube has an outer diameter of 100 mm.

9–33. Solve Prob. 9–32 for the normal stress acting 
perpendicular to the seam.

200 N 200 N 

40�

100 mm

Probs. 9–32/33
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9–37. The shaft has a diameter d and is subjected to 
the loadings shown. Determine the principal stresses and the 
maximum in-plane shear stress at point A. The bearings only 
support vertical reactions.

*9–40. The wide-flange beam is subjected to the 50-kN 
force. Determine the principal stresses in the beam at point A 
located on the web at the bottom of the upper flange. 
Although it is not very accurate, use the shear formula to 
calculate the shear stress.

9–41. Solve Prob. 9–40 for point B located on the web at 
the top of the bottom flange.

B

AA

1 m 3 m

50 kN

A

B
10 mm

12 mm

250 mm

12 mm

200 mm

Probs. 9–40/41

9–42. The box beam is subjected to the 26-kN force that is 
applied at the center of its width, 75 mm from each side. 
Determine the principal stresses at point A and show the 
results in an element located at this point. Use the shear 
formula to calculate the shear stress.

9–43. Solve Prob. 9–42 for point B.

2 m 3 m

26 kN
13

12

5
A

B

130 mm
75 mm
75 mm

150 mm

130 mm

A

B

Probs. 9–42/43

A

F F

P

L
2

L
2

Prob. 9–37

9–38. The solid shaft is subjected to a torque, bending 
moment, and shear force as shown. Determine the principal 
stresses acting at point A.

9–39. Solve Prob. 9–38 for point B.

450 mm

300 N m

45 N m

800 N

A
B

25 mm

Probs. 9–38/39
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9.4 mohr'S circle—Plane StreSS
In this section, we will show how to apply the equations for plane-stress 
transformation using a graphical procedure that is often convenient to use 
and easy to remember. Furthermore, this approach will allow us to 
“visualize” how the normal and shear stress components sx′ and tx′y′ vary 
as the plane on which they act changes its direction, Fig. 9–15a.

If we write Eqs. 9–1 and 9–2 in the form

sx′ - ¢sx + sy

2
≤ = ¢sx - sy

2
≤ cos 2u + txy sin 2u (9–9)

tx′y′ = - ¢sx - sy

2
≤ sin 2u + txy cos 2u (9–10)

then the parameter u can be eliminated by squaring each equation and 
adding them together. The result isJsx′ - ¢sx + sy

2
≤ R 2

+ t2
x′y′ = ¢sx - sy

2
≤2

+ t2
xy

Finally, since sx , sy , txy  are known constants, then the above equation 
can be written in a more compact form as

(sx′ - savg)
2 + t2

x′y′ = R2 (9–11)
where

savg =
sx + sy

2

R = C¢sx - sy

2
≤2

+ t2
xy (9–12)

If we establish coordinate axes, s positive to the right and t positive 
downward, and then plot Eq. 9–11, it will be seen that this equation 
represents a circle having a radius R and center on the s axis at point 
C(savg, 0), Fig. 9–15b. This circle is called Mohr’s circle, because it was 
developed by the German engineer Otto Mohr.

x ¿

(a)

y¿

x

tx ¿y¿

txy

sx ¿

sx

sy

u

C

(b)
t

s

P

R �sx

txy

2

� txy2

2
sx � sy

2
sx � sy

2
sx � sy

savg � 

Fig. 9–15
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Each point on Mohr’s circle represents the two stress components sx′ 
and tx′y′ acting on the side of the element defined by the outward  
x′ axis, when this axis is in a specific direction u. For example, when x′ 
is  coincident with the x axis as shown in Fig. 9–16a, then u = 0°  
and sx′ = sx, tx′y′ = txy. We will refer to this as the “reference point” A 
and plot its coordinates A(sx , txy), Fig. 9–16c.

Now consider rotating the x′ axis 90° counterclockwise, Fig. 9–16b. 
Then sx′ = sy, tx′y′ = -txy. These values are the coordinates of point 
G(sy,-txy) on the circle, Fig. 9–16c. Hence, the radial line CG is 180° 
counterclockwise from the radial “reference line” CA. In other words, a 
rotation u of the x′ axis on the element will correspond to a rotation 2u 
on the circle in the same direction.

As discussed in the following procedure, Mohr’s circle can be used to 
determine the principal stresses, the maximum in-plane shear stress, or 
the stress on any arbitrary plane.

x, x ¿

(a)

y, y¿sy

sx � sx ¿

txy � tx ¿y¿
u � 0�

x

(b)

x ¿

y¿

sy

sx

txy

u � 90�

C

R

G

A

(c)

sy

sx

txy

s

t

savg

�txy

u � 0�

2u � 180�

2
sx � sy

Fig. 9–16
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Procedure for AnAlysis

The following steps are required to draw and use Mohr’s circle.

Construction of the Circle.
 • Establish a coordinate system such that the horizontal axis 

represents the normal stress s, with positive to the right, and 
the vertical axis represents the shear stress t, with positive 
downwards, Fig. 9–17a.*

 • Using the positive sign convention for sx , sy , txy , Fig. 9–17a, plot 
the center of the circle C, which is located on the s axis at a 
distance savg = (sx + sy)>2 from the origin, Fig. 9–17a.

 • Plot the “reference point” A having coordinates A(sx, txy). 
This point represents the normal and shear stress components 
on the element’s right-hand vertical face, and since the x′ axis 
coincides with the x axis, this represents u = 0°, Fig. 9–17a.

 • Connect point A with the center C of the circle and determine 
CA by trigonometry. This represents the radius R of the circle, 
Fig. 9–17a.

 • Once R has been determined, sketch the circle.

principal Stress.
 • The principal stresses s1 and s2  (s1 Ú s2) are the coordinates 

of points B and D, where the circle intersects the s axis, i.e., 
where t = 0, Fig. 9–17a.

 • These stresses act on planes defined by angles up1
 and up2

, 
Fig. 9–17b. One of these angles is represented on the circle 
as 2up1

. It is measured from the radial reference line CA to 
line CB.

 • Using trigonometry, determine up1
 from the circle. Remember 

that the direction of rotation 2up on the circle (here it happens 
to be counterclockwise) represents the same direction of 
rotation up from the reference axis (+x) to the principal plane 
(+x′), Fig. 9–17b.*

Maximum In-plane Shear Stress.
 • The average normal stress and maximum in-plane shear stress 

components are determined from the circle as the coordinates 
of either point E or F, Fig. 9–17a.

 • In this case the angles us1
 and us2

 give the orientation of the 
planes that contain these components, Fig. 9–17c. The angle 2us1

 
is shown in Fig. 9–17a and can be determined using trigonometry. 
Here the rotation happens to be clockwise, from CA to CE, and 
so us1

 must be clockwise on the element, Fig. 9–17c.*

C

F

E

D

R

B

A

(a)

P

t

s

u � 0�

tx ¿y¿

sx

savg

sx ¿

txy

2u

2us1

2up1

sy

txy

sx

(b)

x

x¿
s2

s1

up2
 

up1

x

x¿

(c)

y¿
savg

savg

us1

(tx ¿y¿)max
             in-plane

us2

x

x¿

(c)

y¿
savg

savg

us1

(tx ¿y¿)max
             in-plane

us2

C

F

E

D

R

B

A

(a)

P

t

s

u � 0�

tx ¿y¿

sx

savg

sx ¿

txy

2u

2us1

2up1

sy

txy

sx

Fig. 9–17
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Stresses on arbitrary plane.

 • The normal and shear stress components sx′ and tx′y′ acting on 
a specified plane or x′ axis, defined by the angle u, Fig. 9–17d, 
can be obtained by finding the coordinates of point P on the 
circle using trigonometry, Fig. 9–17a.

 • To locate P, the known angle u (in this case counterclockwise), 
Fig. 9–17d, must be measured on the circle in the same direction 
2u (counterclockwise) from the radial reference line CA to the 
radial line CP, Fig. 9–17a.*

*If the t axis were constructed positive upwards, then the angle 2u on the circle 
would be measured in the opposite direction to the orientation u of the x′ axis.

C

F

E

D

R

B

A

(a)

P

t

s

u � 0�

tx ¿y¿

sx

savg

sx ¿

txy

2u

2us1

2up1

sy

txy

sx

C

F

E

D

R

B

A

(a)

P

t

s

u � 0�

tx ¿y¿

sx

savg

sx ¿

txy

2u

2us1

2up1

sy

txy

sx

Fig. 9–17 (cont.)

x¿

(d)

y¿

x

tx ¿y¿

txy

sx ¿
sx

sy

u
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EXAMPLE   9.7

Due to the applied loading, the element at point A on the 
solid shaft in Fig. 9–18a is subjected to the state of stress 
shown. Determine the principal stresses acting at this point.

SOLUTION

Construction of the Circle. From Fig. 9–18a,

sx = -12 MPa sy = 0 txy = -6 MPa

The center of the circle is at

savg =
-12 + 0

2
= -6 MPa

The reference point A (-12, -6) and the center C(-6, 0) 
are plotted in Fig. 9–18b. The circle is constructed having a 
radius of

R = 2(12 - 6)2 + (6)2 = 8.49 MPa

Principal Stress. The principal stresses are indicated by 
the coordinates of points B and D. We have, for s1 7 s2,

 s1 = 8.49 - 6 = 2.49 MPa Ans.

s2 = -6 - 8.49 = -14.5 MPa Ans.

The orientation of the element can be determined by calculating the 
angle 2up2

 in Fig. 9–18b, which here is measured counterclockwise from 
CA to CD. It defines the direction up2

 of s2 and its associated principal 
plane. We have

 2up2
=  tan- 1 a 6

12 - 6
 b = 45.0°

  up2
= 22.5°

The element is oriented such that the x′ axis or s2 is directed 
22.5° counterclockwise from the horizontal (x axis) as shown in 
Fig. 9–18c.

(a)

P

T

12 MPa

6 MPa

A
M

(b)

BD
C

s (MPa)

t (MPa)

R 
 8.496

12

6

A

2up2

(c)

22.5

2.49 MPa

x¿14.5 MPa

x

Fig. 9–18
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EXAMPLE   9.8

The state of plane stress at a point is shown on the element in Fig. 9–19a. 
Determine the maximum in-plane shear stress at this point.

SOLUTION

Construction of the Circle. From the problem data,

sx = -20 MPa  sy = 90 MPa  txy = 60 MPa

The s, t axes are established in Fig. 9–19b. The center of the circle C is 
located on the s axis, at the point

savg =
-20 + 90

2
= 35 MPa

Point C and the reference point A(-20, 60) are plotted. Applying the 
Pythagorean theorem to the shaded triangle to determine the circle’s 
radius CA, we have

R = 2(60)2 + (55)2 = 81.4 MPa

Maximum In-Plane Shear Stress. The maximum in-plane shear stress 
and the average normal stress are identified by point E (or F ) on the 
circle. The coordinates of point E(35, 81.4) give

 savg = 35 MPa Ans.

t max
in@plane

= 81.4 MPa Ans.

The angle us1
, measured counterclockwise from CA to CE, can be found 

from the circle, identified as 2us1
. We have

2us1
= tan-1a20 + 35

60
b = 42.5° 

us1
= 21.3° Ans.

This counterclockwise angle defines the direction of the x′ axis,  
Fig. 9–19c. Since point E has positive coordinates, then the average 
normal stress and the maximum in-plane shear stress both act in the 
positive x′ and y′ directions as shown.

90 MPa

(a)

60 MPa

20 MPa

C

A

(b)

35

60

20

81.4

F

E

R �
 81

.4

s (MPa)

t (MPa)

2us1

(c)

81.4 MPa
35 MPa

21.3�
x

y¿

x¿

Fig. 9–19
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EXAMPLE   9.9

The state of plane stress at a point is shown on the element in Fig. 9–20a. 
Represent this state of stress on an element oriented 30° counterclockwise 
from the position shown.

SOLUTION

Construction of the Circle. From the problem data,

sx = -8 MPa sy = 12 MPa txy = -6 MPa

The s and t axes are established in Fig. 9–20b. The center of the circle C 
is on the s axis at

savg =
-8 + 12

2
= 2 MPa

The reference point for u = 0° has coordinates A (-8, -6). 
Hence from the shaded triangle the radius CA is

R = 2(10)2 + (6)2 = 11.66 MPa

Stresses on 30° Element. Since the element is to be 
rotated 30° counterclockwise, we must construct a radial 
line CP, 2(30°) = 60° counterclockwise, measured from 
CA (u = 0°), Fig. 9–20b. The coordinates of point P(sx′, tx′y′) 
must now be obtained. From the geometry of the circle,

 f = tan-1 
6
10

= 30.96°   c = 60° - 30.96° = 29.04°

  sx′ = 2 - 11.66  cos  29.04° = -8.20 MPa Ans.

  tx′y′
= 11.66  sin  29.04° = 5.66 MPa Ans.

These two stress components act on face BD of the element shown in 
Fig. 9–20c since the x′ axis for this face is oriented 30° counterclockwise 
from the x axis.

The stress components acting on the adjacent face DE of the element, 
which is 60° clockwise from the positive x axis, Fig. 9–20c, are represented 
by the coordinates of point Q on the circle. This point lies on the radial 
line CQ, which is 180° from CP. The coordinates of point Q are

 sx′ = 2 + 11.66  cos  29.04° = 12.2 MPa   Ans.

 tx′y′ = -(11.66  sin  29.04) = -5.66 MPa (check) Ans.

NOTE: Here tx′y′ acts in the -y′ direction.

12 MPa

8 MPa

6 MPa

(a)

 

29.04
11.66

Q

P

A

60

120
R  11.666

c  29.04

f

s (MPa)

t (MPa)

sx¿

tx¿y¿

8 2

C

(b)

11.66

5.66 MPa

60

x¿

y¿

y¿

30

8.20 MPa
B

D

E

12.2 MPa

x¿

(c)

x

x

Fig. 9–20



9

494  Chapter 9  StreSS tranSformation

F9–7. Use Mohr’s circle to determine the normal stress 
and shear stress acting on the inclined plane AB.

500 kPa

A

B

30�

Prob. F9–7

F9–8. Use Mohr’s circle to determine the principal stresses 
at the point. Also, find the corresponding orientation of the 
element with respect to the element shown.

80 kPa

30 kPa

Prob. F9–8

F9–9. Draw Mohr’s circle and determine the principal 
stresses.

30 MPa

30 MPa

40 MPa

Prob. F9–9

F9–10. The hollow circular shaft is subjected to the torque 
of 4 kN # m. Determine the principal stresses at a point on 
the surface of the shaft.

40 mm

4 kN·m

4 kN·m
30 mm

Prob. F9–10

F9–11. Determine the principal stresses at point A on the 
cross section of the beam at section a–a.

300 mm

30 kN

a

a

50 mm

50 mm
150 mm

Section a–a

A

Prob. F9–11

F9–12. Determine the maximum in-plane shear stress at 
point A on the cross section of the beam at section a–a, 
which is located just to the left of the 60-kN force. Point A is 
just below the flange.

A
B

0.5 m 1 m

60 kN

180 mm

10 mm

10 mm

10 mm

100 mm

A

a

a

Section a–a

Prob. F9–12

FUNDAMENTAL PROBLEMS
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*9–44. Solve Prob. 9–2 using Mohr’s circle.

9–45. Solve Prob. 9–4 using Mohr’s circle.

9–46. Solve Prob. 9–6 using Mohr’s circle.

9–47. Solve Prob. 9–11 using Mohr’s circle.

*9–48. Solve Prob. 9–15 using Mohr’s circle.

9–49. Solve Prob. 9–16 using Mohr’s circle.

9–50. Mohr’s circle for the state of stress is shown in Fig. 9–17a. 
Show that finding the coordinates of point P (sx′, tx′y′) on the 
circle gives the same value as the stress transformation Eqs. 
9–1 and 9–2.

9–51. Determine (a) the principal stresses and (b) the 
maximum in-plane shear stress and average normal stress. 
Specify the orientation of the element in each case.

80 MPa

60 MPa

Prob. 9–51

*9–52. Determine the equivalent state of stress if an 
element is oriented 30° clockwise from the element shown. 
Show the result on the element.

9 MPa

4 MPa

6 MPa

Prob. 9–52

9–53. Determine the equivalent state of stress if an 
element is oriented 20° clockwise from the element shown.

PROBLEMS

2 MPa

3 MPa

4 MPa

Prob. 9–53

9–54. Draw Mohr’s circle that describes each of the 
following states of stress.

700 kPa

600 kPa

(a) (b) (c)

4 MPa

40 MPa

Prob. 9–54

9–55. Determine the equivalent state of stress for an 
element oriented 60° counterclockwise from the element 
shown. Show the result on the element.

250 MPa

400 MPa

560 MPa

Prob. 9–55



9

496  Chapter 9  StreSS tranSformation

*9–56. Determine (a) the principal stresses and (b) the 
maximum in-plane shear stress and average normal stress. 
Specify the orientation of the element in each case.

9–59. Determine (a) the principal stresses and (b) the 
maximum in-plane shear stress and average normal stress. 
Specify the orientation of the element in each case.

200 MPa

150 MPa

100 MPa

Prob. 9–59

*9–60. Determine the principal stress, the maximum 
in-plane shear stress, and average normal stress. Specify the 
orientation of the element in each case.

30 MPa

45 MPa

50 MPa

Prob. 9–60

9–61. Draw Mohr’s circle that describes each of the 
following states of stress.

5 MPa

5 MPa

(a)    

20 MPa

20 MPa

(b)

18 MPa

(c)

Prob. 9–61

9–62. The grains of wood in the board make an angle of 
20° with the horizontal as shown. Determine the normal 
and shear stresses that act perpendicular and parallel to the 
grains if the board is subjected to an axial load of 250 N.

300 mm

250 N
60 mm

25 mm20�

250 N

Prob. 9–62

20 MPa

100 MPa

40 MPa

Prob. 9–56

9–57. Determine the principal stress, the maximum in-plane 
shear stress, and average normal stress. Specify the 
orientation of the element in each case.

300 MPa

120 MPa

Prob. 9–57

9–58. Determine (a) the principal stresses and (b) the 
maximum in-plane shear stress and average normal stress. 
Specify the orientation of the element in each case.

50 MPa

30 MPa

Prob. 9–58
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9–63. The rotor shaft of the helicopter is subjected to the tensile 
force and torque shown when the rotor blades provide the lifting 
force to suspend the helicopter at midair. If the shaft has a 
diameter of 150 mm, determine the principal stress and 
maximum in-plane shear stress at a point located on the surface 
of the shaft.

15 kN.m

225 kN

Prob. 9–63

*9–64. The frame supports the triangular distributed load 
shown. Determine the normal and shear stresses at point D 
that act perpendicular and parallel, respectively, to the grains. 
The grains at this point make an angle of 35° with the 
horizontal as shown.

9–65. The frame supports the triangular distributed load 
shown. Determine the normal and shear stresses at point E 
that act perpendicular and parallel, respectively, to the grains. 
The grains at this point make an angle of 45° with the 
horizontal as shown.

3 m

2.4 m
0.6 m

1.5 m

900 N/m

B D

100 mm

200 mm

100 mm

50 mm

35� 75 mm

E

30 mm

45�

A

C D

Probs. 9–64/65

9–66. Determine the principal stresses and the maximum 
in-plane shear stress that are developed at point A. Show 
the results on an element located at this point. The rod has a 
diameter of 40 mm.

450 N

450 N

100 mm
A

B

150 mm

150 mm

Prob. 9–66

9–67. Determine the principal stresses, the maximum 
in-plane shear stress, and average normal stress. Specify the 
orientation of the element in each case.

20 MPa

30 MPa

80 MPa

Prob. 9–67

*9–68. The thin-walled pipe has an inner diameter of 
12 mm and a thickness of 0.6 mm. If it is subjected to an 
internal pressure of 3.5 MPa and the axial tension and 
torsional loadings shown, determine the principal stress at a 
point on the surface of the pipe.

30 N m 30 N m

1000 N1000 N

Prob. 9–68
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9–69. Determine the principal stress at point A on the cross 
section of the hanger at section a–a. Specify the orientation of this 
state of stress and indicate the result on an element at the point.

*9–72. A spherical pressure vessel has an inner radius of 
1.5 m and a wall thickness of 12 mm. Draw Mohr’s circle for 
the state of stress at a point on the vessel and explain the 
significance of the result. The vessel is subjected to an internal 
pressure of 0.56 MPa.

9–73. The cylindrical pressure vessel has an inner radius of 
1.25 m and a wall thickness of 15 mm. It is made from steel 
plates that are welded along the 45° seam. Determine the 
normal and shear stress components along this seam if the 
vessel is subjected to an internal pressure of 8 MPa.

9–71. The ladder is supported on the rough surface at A and by 
a smooth wall at B. If a man weighing 675 N stands upright at C, 
determine the principal stresses in one of the legs at point D. 
Each leg is made from a 25-mm-thick board having a rectangular 
cross section. Assume that the total weight of the man is exerted 
vertically on the rung at C and is shared equally by each of the 
ladder’s two legs. Neglect the weight of the ladder and the forces 
developed by the man’s arms.

1.2 m

1.5 m75 mm

25 mm
D

C

25 mm
25 mm

75 mm

D

1.5 m

B

A

3.6 m

a b

ba

0.75 m 0.75 m

250 mm250 mm

0.5 m

900 N900 N

50 mm

25 mm

100 mm

5 mm
5 mm

5 mm

Sections a – a
 and b – b

A

1.25 m

45�

Probs. 9–73

9–74. Determine the normal and shear stresses at point D 
that act perpendicular and parallel, respectively, to the grains. 
The grains at this point make an angle of 30° with the horizontal 
as shown. Point D is located just to the left of the 10-kN force.

9–75. Determine the principal stress at point D, which is 
located just to the left of the 10-kN force.

2 m1 m 1 m

B

C

100 mm

300 mm

A
D

D
100 mm

100 mm

308

10 kN

Probs. 9–74/75

*9–76. The pedal crank for a bicycle has the cross section 
shown. If it is fixed to the gear at B and does not rotate 
while subjected to a force of 400 N, determine the principal 
stress in the material on the cross section at point C.

B A

75 lb400 N

100 mm

7.5 mm
5 mm

10 mm
10 mm

C
75 mm

Prob. 9–76

9–70. Determine the principal stress at point A on the cross 
section of the hanger at section b–b. Specify the orientation of the 
state of stress and indicate the results on an element at the point.

Probs. 9–69/70

Prob. 9–71



 9.5 abSolute maximum Shear StreSS 499

9

9.5  abSolute maximum Shear 
StreSS

Since the strength of a ductile material depends upon its ability to resist 
shear stress, it becomes important to find the absolute maximum shear 
stress in the material when it is subjected to a loading. To show how this 
can be done, we will confine our attention only to the most common 
case of plane stress,* as shown in Fig. 9–21a. Here both s1 and s2 are 
tensile. If we view the element in two dimensions at a time, that is, in the 
y–z, x–z, and x–y planes, Figs. 9–21b, 9–21c, and 9–21d, then we can use 
Mohr’s circle to determine the maximum in-plane shear stress for each 
case. For example, Mohr’s circle extends between 0 and s2 for the case 
shown in Fig. 9–21b. From this circle, Fig. 9–21e, the maximum in-plane 
shear stress is t

 
max
in@plane

 = s2>2. Mohr’s circles for the other two cases are 
also shown in Fig. 9–21e. Comparing all three circles, the absolute 
maximum shear stress is

t 
max
abs =

s1

2
 (9–13)

s1 and s2 have  

the same sign

It occurs on an element that is rotated 45° about the y axis from the 
element shown in Fig. 9–21a or Fig. 9–21c. It is this out of plane shear 
stress that will cause the material to fail, not t

 
max
in@plane

.

z

yx

x–y plane stress

(a)

s1

s2

*The case for three-dimensional stress is discussed in books related to advanced mechanics 
of materials and the theory of elasticity.

s
s1

s2

(e)

Absolute
maximum
shear stress

Maximum in-plane
shear stress

(tx¿y¿)max

(ty¿z¿)max

(tx¿z¿)max

t

0

x

z

(c)

s1

  

x

y

(d)

s1

s2

y

z

(b)

s2

Fig. 9–21
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In a similar manner, if one of the in-plane principal stresses has the 
opposite sign of the other, Fig. 9–22a, then the three Mohr’s circles that 
describe the state of stress for the element when viewed from each plane 
are shown in Fig. 9–22b. Clearly, in this case 

t 
max
abs =

s1 - s2

2
 (9–14)

s1 and s2 have  
opposite signs

Here the absolute maximum shear stress is equal to the maximum 
in-plane shear stress found from rotating the element in  
Fig. 9–22a, 45° about the z axis.

s1
s2

y

x–y  plane stress

(a)

z

x

     (b)

Maximum in-plane and
absolute maximum shear stress

s1s2
s

(tx¿y¿)max

t

(tx¿z¿)max

(ty¿z¿)max

Fig. 9–22

imPortAnt Points

 • If the in-plane principal stresses both have the same sign, the 
absolute maximum shear stress will occur out of the plane and 
has a value of t 

max
abs = smax>2. This value is greater than the 

in-plane shear stress.

 • If the in-plane principal stresses are of opposite signs, then the 
absolute maximum shear stress will equal the maximum 
in-plane shear stress; that is, t 

max
abs = (smax - smin)>2.



 9.5 abSolute maximum Shear StreSS 501

9

EXAMPLE   9.10

The point on the surface of the pressure vessel in Fig. 9–23a is subjected to 
the state of plane stress. Determine the absolute maximum shear stress at 
this point.

(a)

32 MPa

16 MPa

(b)

88

16

16

32

s (MPa)

t (MPa)

s1

s2

SOLUTION
The principal stresses are s1 = 32 MPa, s2 = 16 MPa. If these stresses 
are plotted along the s axis, the three Mohr’s circles can be constructed 
that describe the state of stress viewed in each of the three perpendicular 
planes, Fig. 9–23b. The largest circle has a radius of 16 MPa and describes 
the state of stress in the plane only containing s1 = 32 MPa, shown 
shaded in Fig. 9–23a. An orientation of an element 45° within this plane 
yields the state of absolute maximum shear stress and the associated 
average normal stress, namely,

 t
 max
abs = 16 MPa Ans.

 savg = 16 MPa

This same result for t abs
max

 can be obtained from direct application of  
Eq. 9–13.

 t 
max
abs =

s1

2
=

32
2

= 16 MPa Ans.

savg =
32 + 0

2
= 16 MPa

By comparison, the maximum in-plane shear stress can be determined 
from the Mohr’s circle drawn between s1 = 32 MPa and s2 = 16 MPa, 
Fig. 9–23b. This gives a value of

t max in@plane
=

32 - 16
2

= 8 MPa

savg =
32 + 16

2
= 24 MPa

Fig. 9–23
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EXAMPLE   9.11

Due to an applied loading, an element at the point on a machine shaft is 
subjected to the state of plane stress shown in Fig. 9–25a. Determine the 
principal stresses and the absolute maximum shear stress at the point.

(a)

40 MPa

20 MPa

2(up)2

(b)

C

10

20

R
 

 41.23

40

A

(s2, 0) (s1, 0)

t (MPa)

s (MPa)

51.2 MPa

x
38.0

x¿31.2 MPa

y¿

(c)

(d)

C

10

A
2u3  75.96  90  166

s2 51.23 MPa s1  31.23 MPa

t (MPa)

s (MPa)

  41.2 MPatabs
     max

Fig. 9–24

SOLUTION

Principal Stresses.
The in-plane principal stresses can be determined from Mohr’s 
circle. The center of the circle is on the s axis at 
savg = (-20 + 0)>2 = -10 MPa. Plotting the reference point 
A (-20, -40), the radius CA is established and the circle is 
drawn as shown in Fig. 9–25b. The radius is

R = 2(20 - 10)2 + (40)2 = 41.23 MPa

The principal stresses are at the points where the circle intersects 
the s axis; i.e.,

s1 = -10 + 41.23 = 31.23 MPa 

s2 = -10 - 41.23 = -51.23 MPa

From the circle, the counterclockwise angle 2u, measured from CA to the 
-s axis, is

2(up)2 =  tan-1 a 40
20 - 10

b = 75.96°

Thus,
(up)2 = 37.98°

This counterclockwise rotation defines the direction of the x′ axis and s2 
and its associated principal plane, Fig. 9–25c. We have

 s1 = 31.23 MPa s2 = -51.23 MPa Ans.

Absolute Maximum Shear Stress. Since these stresses 
have opposite signs, applying Eq. 9–14 we have

tabs max 
=

s1 - s2

2
=

31.23 - (-51.23)

2
= 41.2 MPa  Ans.

savg =
31.23 + (-51.23)

2
= -10 MPa

NOTE: These same results can also be obtained by drawing 
Mohr’s circle for each orientation of an element about the x, y, 
and z axes, Fig. 9–25d. Since s1 and s2 are of opposite signs, 
then the absolute maximum shear stress equals the maximum 
in-plane shear stress.
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9–77. Draw the three Mohr’s circles that describe each of 
the following states of stress.

5 MPa

3 MPa

(a)

180 MPa

(b)

140 MPa

Prob. 9–77

9–78. Draw the three Mohr’s circles that describe the 
following state of stress.

400 MPa

300 MPa

Prob. 9–78

9–79. The stress at a point is shown on the element. 
Determine the principal stress and the absolute maximum 
shear stress.

PROBLEMS

90 MPa

z

yx

80 MPa

Prob. 9–79

*9–80. The stress at a point is shown on the element. 
Determine the principal stress and the absolute maximum 
shear stress.

30 MPa

70 MPa

z

yx 120 MPa

Prob. 9–80
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9–81. Determine the principal stresses and the absolute 
maximum shear stress.

9–83. Consider the general case of plane stress as shown. 
Write a computer program that will show a plot of the three 
Mohr’s circles for the element, and will also determine the 
maximum in-plane shear stress and the absolute maximum 
shear stress.

z

yx

120 MPa

150 MPa

Prob. 9–81

9–82. The stress at a point is shown on the element. 
Determine the principal stress and the absolute maximum 
shear stress.

z

yx

2 MPa

8 MPa

Prob. 9–82

sy

txy

sx

Prob. 9–83

*9–84. The state of stress at a point is shown on the 
element. Determine the principal stress and the absolute 
maximum shear stress.

2.5 kPa

z

yx

4 kPa

5 kPa

Prob. 9–84
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9–85. The solid shaft is subjected to a torque, bending 
moment, and shear force. Determine the principal stresses at 
points A and B and the absolute maximum shear stress.

450 mm

300 N�m

45 N�m
800 N

A
B

25 mm

Prob. 9–85

9–86. The frame is subjected to a horizontal force and 
couple moment. Determine the principal stresses and the 
absolute maximum shear stress at point A. The cross-
sectional area at this point is shown.

3 m

2 m

1 m
150 mm

150 mm

50 mm

50 mm

A

A

400 N

350 N�m

Prob. 9–86

9–87. Determine the principal stress and absolute 
maximum shear stress developed at point B on the cross 
section of the bracket at section a–a.

150 mm

300 mm

2.5 kN

36 mm 36 mm

6 mm6 mm

12 mm 6 mm

aa

3
4

5

A
B

Section a – a

Prob. 9–87

*9–88. Determine the principal stress and absolute 
maximum shear stress developed at point A on the cross 
section of the bracket at section a–a.

150 mm

300 mm

2.5 kN

36 mm 36 mm

6 mm6 mm

12 mm 6 mm

aa

3
4

5

A
B

Section a – a

Prob. 9–88
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CHAPTER REVIEW

Plane stress occurs when the material at a point 
is subjected to two normal stress components sx 
and sy and a shear stress txy. Provided these 
components are known, then the stress 
components acting on an element having a 
different orientation u can be determined using 
the equations of stress transformation.

sx′ =
sx + sy

2
+

sx - sy

2  cos 2u + txy sin 2u

tx′y′ = -  
sx - sy

2  sin 2u + txy cos 2u

y

x

sy

sx

txy
�

y¿

x ¿sy¿

sx ¿

tx ¿y¿

u

u

For design, it is important to determine either the 
maximum principal normal stress or the maximum 
in-plane shear stress at a point.

No shear stress acts on the planes of principal 
stress, where

s1,2 =
sx + sy

2
{ Aa

sx - sy

2
b

2
+ t 2

xy

On the planes of maximum in-plane shear stress 
there is an associated average normal stress, where

tmax 
in@plane

= Aa
sx - sy

2
b

2
+ t2

xy

savg =
sx + sy

2

x 
�

sy

sx

txy

savg

savg

t max
in-plane

s1

s2
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Mohr’s circle provides a semigraphical method 
for finding either the stress on any plane, or the 
principal normal stresses, or the maximum 
in-plane shear stress. To draw the circle, first 
establish the s and t axes, then plot the center 
of the circle C[(sx + sy)>2, 0] and the reference 
point A(sx, txy). The radius R of the circle 
extends between these two points and is 
determined from trigonometry.

C

t

s

P

R �sx

txy

2

� txy2

2
sx � sy

2
sx � sy

2
sx � sy

savg � 

If s1 and s2 are of the same sign, then the 
absolute maximum shear stress at a point will 
lie out of plane.

tabs
max

=
s1

2

If s1 and s2 have the opposite sign, then the 
absolute maximum shear stress will be equal to 
the maximum in-plane shear stress.

tabs
max

=
s1 - s2

2

x–y plane stress

s1

s2

s1
s2

x–y  plane stress
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R9–1. The wooden strut is subjected to the loading shown. 
Determine the principal stresses that act at point C and 
specify the orientation of the element at this point. The strut 
is supported by a bolt (pin) at B and smooth support at A.

R9–3. The state of stress at a point in a member is shown 
on the element. Determine the stress components acting on 
the plane AB.

REVIEW PROBLEMS

50 N 50 N 40 N 40 N

100 mm

B

A

60
C

25 mm

200 mm
100 mm

200 mm 200 mm 200 mm

50 mm

100 mm

Prob. R9–1

R9–2. The wooden strut is subjected to the loading shown. 
If grains of wood in the strut at point C make an angle of 60° 
with the horizontal as shown, determine the normal and 
shear stresses that act perpendicular and parallel to the 
grains, respectively, due to the loading. The strut is supported 
by a bolt (pin) at B and smooth support at A.

50 N 50 N 40 N 40 N

100 mm

B

A

60
C

25 mm

200 mm
100 mm

200 mm 200 mm 200 mm

50 mm

100 mm

Prob. R9–2

50 MPa

30
28 MPa

A

B

100 MPa

Prob. R9–3

*R9–4. The crane is used to support the 1500-N load. 
Determine the principal stresses acting in the boom at points 
A and B. The cross section is rectangular and has a width of 
150 mm and a thickness of 75 mm. Use Mohr’s circle.

1.5 m

1.5 m

45°

75 mm

A
B

45°

Prob. R9–4
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R9–5. Determine the equivalent state of stress on an element 
at the same point which represents (a) the principal stresses, 
and (b) the maximum in-plane shear stress and the associated 
average normal stress. Also, for each case, determine the 
corresponding orientation of the element with respect to the 
element shown and sketch the results on the element.

10 MPa

30 MPa

Prob. R9–5

R9–6. The propeller shaft of the tugboat is subjected to the 
compressive force and torque shown. If the shaft has an inner 
diameter of 100 mm and an outer diameter of 150 mm, 
determine the principal stresses at a point A located on the 
outer surface.

A

2 kN·m

10 kN

Prob. R9–6

R9–7. The box beam is subjected to the loading shown. 
Determine the principal stress in the beam at points A and B.

0.9 m
0.75 m

1.5 m
0.75 m

A

B

4 kN 6 kN

150 mm
A

B150 mm 200 
mm

200 mm

Prob. R9–7

*R9–8. The clamp exerts a force of 0.75 kN on the boards 
at G. Determine the axial force in each screw, AB and CD, 
and then compute the principal stresses at points E and F. 
Show the results on properly oriented elements located at 
these points. The section through EF is rectangular and is 
25 mm wide., 40 mm deep.
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A C

G

E

B D

12 mm

0.75 kN

0.75 kN

100 mm
40 mm40 mm

F

Prob. R9–8

R9–9. The state of stress at a point in a member is shown 
on the element. Determine the stress components acting on 
the inclined plane AB. Solve the problem using the method 
of equilibrium described in Sec. 9.1.

14 MPa

20 MPa

A

B

50°

Prob. R9–9
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This pin support for a bridge has been tested with strain gages to ensure that the 
principal strains in the material do not exceed a failure criterion for the material.

(© Peter Steiner/Alamy)
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Strain 
tranSformation

10.1 Plane Strain
As outlined in Sec. 2.2, the general state of strain at a point in a body is 
represented by a combination of three components of normal strain,  
Px, Py, Pz, and three components of shear strain, gxy, gxz, gyz, Fig. 2–4c.  
The normal strains cause a change in the volume of the element, and the 
shear strains cause a change in its shape. Like stress, these six components 
depend upon the orientation of the element, and in many situations, 
engineers must transform the strains in order to obtain their values in 
other directions.

Chapter OBJeCtIVeS 

n The transformation of strain at a point is similar to the 
transformation of stress, and as a result the methods of the 
previous chapter will be applied in this chapter. Here we will also 
discuss various ways for measuring strain and develop some 
important material-property relationships, including a generalized 
form of Hooke’s law. At the end of the chapter, a few of the 
theories used to predict the failure of a material will be discussed.
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To understand how this is done, we will direct our attention to a study 
of plane strain, whereby the element is subjected to two components of 
normal strain, Px, Py, and one component of shear strain, gxy.* Although 
plane strain and plane stress each have three components lying in the 
same plane, realize that plane stress does not necessarily cause plane 
strain or vice versa. The reason for this has to do with the Poisson effect 
discussed in Sec. 3.6. For example, the element in Fig. 10–1 is subjected to 
plane stress caused by sx and sy. Not only are normal strains Px and Py 
produced, but there is also an associated normal strain, Pz, and so this is 
not a case of plane strain.

Actually, a case of plane strain rarely occurs in practice, because many 
materials are never constrained between rigid surfaces so as not to 
permit any distortion in, say, the z direction (see photo). In spite of this, 
the analysis of plane strain, as outlined in the following section, is still 
of  great importance, because it will allow us to convert strain-gage 
data, measured at a point on the surface of a body, into plane stress at 
the point.

10.2  General equationS of  
Plane-Strain tranSformation

For plane-strain analysis it is important to establish strain transformation 
equations that can be used to determine the components of normal and 
shear strain at a point, Px′, Py′, gx′y′, Fig. 10–2b, provided the components 
Px, Py, gxy are known, Fig. 10–2a. So in other words, if we know how the 
element of material in Fig. 10–2a deforms, we want to know how the 
tipped element of material in Fig. 10–2b will deform. To do this requires 
relating the deformations and rotations of line segments which represent 
the sides of differential elements that are parallel to the x, y and x′, y′ axes.

Sign Convention. To begin, we must first establish a sign 
convention for strain. The normal strains Px and Py in Fig. 10–2a are 
positive if they cause elongation along the x and y axes, respectively, and 
the shear strain gxy is positive if the interior angle AOB becomes smaller 
than 90°. This sign convention also follows the corresponding one used 
for plane stress, Fig. 9–5a, that is, positive sx, sy, txy will cause the element 
to deform in the positive Px, Py, gxy directions, respectively. Finally, if the 
angle between the x and x′ axes is u, then, like the case of plane stress,  
u will be positive provided it follows the curl of the right-hand fingers,  
i.e., counterclockwise, as shown in Fig. 10–2c.

Plane stress, sx, sy, does not cause plane
strain in the x–y plane since Pz ≠ 0.

x y

z

Pydy

Pzdz

Pxdx

sx sy

Fig. 10–1

x

y

(a)

dy

A

O
B

�Pydy

dx
�Pxdx

gxy

2
�

gxy

2
�

dy ¿

Py¿dy ¿

Px¿dx ¿dx ¿

x ¿

y ¿

(b)

gx ¿y¿

2

gx ¿y¿

2

x

yy ¿

x ¿

(c)

�u

Fig. 10–2
*Three-dimensional strain analysis is discussed in books related to advanced mechanics 

of materials or the theory of elasticity.
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Normal and Shear Strains. To determine Px′, we must find the 
elongation of a line segment dx′ that lies along the x′ axis and is subjected 
to strain components Px, Py, gxy. As shown in Fig. 10–3a, the components 
of line dx′ along the x and y axes are

 dx = dx′ cos u

 dy = dx′ sin u 
(10–1)

When the positive normal strain Px occurs, dx is elongated Px dx, 
Fig. 10–3b, which causes dx′ to elongate Px dx cos u. Likewise, when Py 
occurs, dy elongates Py dy, Fig. 10–3c, which causes dx′ to elongate 
Py dy sin u. Finally, assuming that dx remains fixed in position, the shear 
strain gxy in Fig. 10–3d, which is the change in angle between dx and dy, 
causes the top of line dy to be displaced gxy dy to the right. This causes 
dx′ to elongate gxy dy cos u. If all three of these (red) elongations are 
added together, the resultant elongation of dx′ is then

dx′ = Px dx cos u + Py dy sin u + gxy dy cos u

Since the normal strain along line dx′ is Px′ = dx′>dx′, then using  
Eqs. 10–1, we have

          Px′ = Px cos2 u + Py sin2 u + gxy sin u cos u (10–2)

This normal strain is shown in Fig. 10–2b.

x

y
y ¿

x ¿

dx

Before deformation

(a)

dy
dx ¿

u

The rubber specimen is constrained between 
the two fixed supports, and so it will undergo 
plane strain when loads are applied to it in 
the horizontal plane.

x

y

x ¿

dx ¿dy¿

(d)

Shear strain gxy

dx

gxydy cosugxydy sinu

u

gxydy

dy
gxy

y ¿

x

y

x ¿

y ¿

Normal strain Py

dy
dx¿

(c)

Pydy sinu

Pydy cosu

u

u
Pydy

(b)

Normal strain Px

dx¿

x

y
y ¿ x ¿

dx

u

Pxdx cosu

Pxdx
Pxdx sinu

Fig. 10–3
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To determine gx′y′, we must find the rotation of each of the line 
segments dx′ and dy′ when they are subjected to the strain components 
Px, Py, gxy. First we will consider the counterclockwise rotation a of dx′, 
Fig. 10–3e. Here a = dy′>dx′. The displacement dy′ consists of three 
displacement components: one from Px, giving -Px dx sin u, Fig. 10–3b; 
another from Py, giving Py dy cos u, Fig. 10–3c; and the last from gxy, 
giving -gxy dy sin u, Fig. 10–3d. Thus, dy′ is

dy′ = -Px dx sin u + Py dy cos u - gxy dy sin u

Using Eq. 10–1, we therefore have

a =
dy′
dx′

= (-Px + Py) sin u cos u - gxy sin2 u (10–3)

Finally, line dy′ rotates by an amount b, Fig. 10–3e. We can 
determine  this angle by a similar analysis, or by simply substituting 
u + 90° for u into Eq. 10–3. Using the identities sin(u + 90°) = cos u, 
cos(u + 90°) = -sin u, we have

 b = (-Px + Py) sin(u + 90°) cos(u + 90°) - gxy sin2(u + 90°)

 = -(-Px + Py) cos u sin u - gxy cos2 u

Since a and b must represent the rotation of the sides dx′ and dy′ in  
the manner shown in Fig. 10–3c, then the element is subjected to a shear 
strain of

 gx′y′ = a - b = -2(Px - Py) sin u cos u + gxy(cos2 u - sin2 u) (10–4)

x

y

x¿

y ¿

dy ¿
b a

udx ¿

dx ¿dy ¿

dy ¿

(e)

Fig. 10–3 (cont.)

(b)

Normal strain Px

dx¿

x

y
y ¿ x ¿

dx

u

Pxdx cosu

Pxdx
Pxdx sinu

x

y

x ¿

y ¿

Normal strain Py

dy
dx¿

(c)

Pydy sinu

Pydy cosu

u

u
Pydy

x

y

x ¿

dx ¿dy¿

(d)

Shear strain gxy

dx

gxydy cosugxydy sinu

u

gxydy

dy
gxy

y ¿
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x

y

x ¿

y ¿

dy ¿

dx ¿

Positive normal strain, Px ¿

(a)

u

      

Positive shear strain, gx ¿y¿

(b)

x

y

x ¿

y ¿

dy ¿

dx ¿
u

�b

a

Fig. 10–4

Using the trigonometric identities sin 2u = 2 sin u cos u, cos2 u =
(1 + cos 2u)>2, and sin2 u + cos2 u = 1, Eqs. 10–2 and 10–4 can be 
written in the final form

 Px′ =
Px + Py

2
+

Px - Py

2
  cos 2u +

gxy

2
 sin 2u  (10–5)

   

gx′y′

2
= - ¢ Px - Py

2
≤ sin 2u +

gxy

2
 cos 2u

 
(10–6) 

Normal and Shear Strain Components

According to our sign convention, if Px′ is positive, the element elongates 
in the positive x′ direction, Fig. 10–4a, and if gx′y′ is positive, the element 
deforms as shown in Fig. 10–4b.

If the normal strain in the y′ direction is required, it can be obtained 
from Eq. 10–5 by simply substituting (u + 90°) for u. The result is

Py′ =
Px + Py

2
-

Px - Py

2
 cos 2u -

gxy

2
 sin 2u  (10–7)

The similarity between the above three equations and those for  
plane-stress transformation, Eqs. 9–1, 9–2, and 9–3, should be noted. 
Making the comparison, sx, sy, sx′, sy′ correspond to Px, Py, Px′, Py′; and txy,  
tx′y′ correspond to gxy>2, gx′y′>2.
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Complex stresses are often developed at the 
joints where the cylindrical and hemispherical 
vessels are joined together. The stresses are 
determined by making measurements of strain.

Principal Strains. Like stress, an element can be oriented at a point 
so that the element’s deformation is caused only by normal strains, with 
no shear strain. When this occurs the normal strains are referred to as 
principal strains, and if the material is isotropic, the axes along which these 
strains occur will coincide with the axes of principal stress.

From the correspondence between stress and strain, then like Eqs. 9–4 
and 9–5, the direction of the x′ axis and the two values of the principal 
strains P1 and P2 are determined from

tan 2up =
gxy

Px - Py
 (10–8) 

Orientation of principal planes 

P1,2 =
Px + Py

2
{ C¢ Px - Py

2
≤2

+ ¢gxy

2
≤2

 (10–9)

Principal strains

Maximum In-Plane Shear Strain. Similar to Eqs. 9–6, 9–7, and 
9–8, the direction of the x′ axis and the maximum in-plane shear strain 
and associated average normal strain are determined from the following 
equations:

tan 2us = -a
Px - Py

gxy
≤  (10–10) 

Orientation of maximum in-plane shear strain 

g max in@  plane

2
= Ba

Px - Py

2
b

2

+ a
gxy

2
b

2

 (10–11) 

Maximum in-plane shear strain 

Pavg =
Px + Py

2  (10–12) 

Average normal strain

Important poInts 

 • In the case of plane stress, plane-strain analysis may be used within the plane of the stresses to analyze 
the data from strain gages. Remember, though, there will be a normal strain that is perpendicular to the 
gages due to the Poisson effect.

 • When the state of strain is represented by the principal strains, no shear strain will act on the element.

 • When the state of strain is represented by the maximum in-plane shear strain, an associated average normal 
strain will also act on the element.
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EXAMPLE  10.1 

The state of plane strain at a point has components of Px = 500(10-6), 
Py = -300(10-6), gxy = 200(10-6), which tends to distort the element as 
shown in Fig. 10–5a. Determine the equivalent strains acting on an element 
of the material oriented clockwise 30°.

SOLUTION
The strain transformation Eqs. 10–5 and 10–6 will be used to solve the 
problem. Since u is positive counterclockwise, then for this problem 
u = -30°. Thus,

 Px′ =
Px + Py

2
+

Px - Py

 2
 cos 2u +

gxy

2
 sin 2u

= c
500 + (-300)

2
d (10-6) + c

500 - (-300)

2
d (10-6) cos(2(-30°)) 

 +  J200(10-6)

2
R  sin(2(-30°))

 Px′ = 213(10-6) Ans.

 
gx′y′

2
 = - ¢ Px - Py

2
≤ sin 2u +

gxy

2
  cos 2u

 = - c
500 - (-300)

2
d (10-6) sin(2(-30°)) +

200(10-6)

2
  cos(2(-30°))

gx′y′ = 793(10-6 ) Ans.

The strain in the y′ direction can be obtained from Eq. 10–7 with 
u = -30°. However, we can also obtain Py′ using Eq. 10–5 with 
u = 60°(u = -30° + 90°), Fig. 10–5b. We have with Py′ replacing Px′,

 Py′ =
Px + Py

2
+

Px - Py

2
 cos 2u +

gxy

2
 sin 2u

 = c
500 + (-300)

2
d (10-6) + c

500 - (-300)

2
d (10-6) cos(2(60°)) 

 +
200(10-6)

2
 sin(2(60°))

Py′ = -13.4(10-6) Ans.

These results tend to distort the element as shown in Fig. 10–5c.

x

y

dy

dx

(a)

gxy

2

gxy

2

Pxdx

Pydy

x

y y ¿

x ¿(b)

u � 60�

u � �30�

dy ¿
Py¿dy ¿

Px¿dx ¿

dx ¿

x ¿

y ¿

(c)

gx ¿y¿

2

gx ¿y¿

2

Fig. 10–5
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EXAMPLE  10.2

The state of plane strain at a point has components of Px = -350(10-6), 
Py = 200(10-6), gxy = 80(10-6), Fig. 10–6a. Determine the principal strains 
at the point and the orientation of the element upon which they act.

SOLUTION

Orientation of the Element. From Eq. 10–8 we have

 tan 2up =
gxy

Px - Py

 =
80(10-6)

(-350 - 200)(10-6)

Thus, 2up = -8.28° and -8.28° + 180° = 171.72°, so that

up = -4.14° and 85.9° Ans.

Each of these angles is measured positive counterclockwise, from the  
x axis to the outward normals on each face of the element. The angle 
of -4.145 is shown in Fig. 10–6b.

Principal Strains. The principal strains are determined from Eq. 10–9. 
We have

 P1,2 =
Px + Py

2
{ Ba

Px - Py

2
b

2

+ a
gxy

2
b

2

 =
(-350 + 200)(10-6)

2
{ JBa -350 - 200

2
b

2

+ a80
2
b

2 R (10-6)

 = -75.0(10-6) { 277.9(10-6)

P1 = 203(10-6)  P2 = -353(10-6) Ans.

To determine the direction of each of these strains we will apply Eq. 10–5 
with u = -4.14°, Fig. 10–6b. Thus,

 Px′ =
Px + Py

2
+

Px - Py

2
 cos 2u +

gxy

2
 sin 2u

 = a -350 + 200
2

b(10-6) + a -350 - 200
2

b(10-6) cos 2(-4.14°)

  +
80(10-6)

2
  sin 2(-4.14°)

Px′ = -353(10-6)

Hence Px′ = P2. When subjected to the principal strains, the element is 
distorted as shown in Fig. 10–6b.

x

y

(a)

gxy

2

gxy

2

Pxdxdx

dy

Pydy

x

y

(b)

y ¿

P1dy ¿

P2dx ¿
x ¿

�4.14�

85.9�

Fig. 10–6
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EXAMPLE  10.3

The state of plane strain at a point has components of Px = -350(10-6), 
Py = 200(10-6), gxy = 80(10-6), Fig. 10–7a. Determine the maximum 
in-plane shear strain at the point and the orientation of the element upon 
which it acts.

SOLUTION

Orientation of the Element. From Eq. 10–10 we have

tan 2us = -a
Px - Py

gxy
≤ = -

(-350 - 200)(10-6)

80(10-6)

Thus, 2us = 81.72° and 81.72° + 180° = 261.72°, so that

us = 40.9° and 131°

Notice that this orientation is 45° from that shown in Fig. 10–6b.

Maximum In-Plane Shear Strain. Applying Eq. 10–11 gives

g max in@plane

2
= Ba

Px - Py

 2
 b

2

 + a
gxy

 2
 b

2

 = JBa -350 - 200
2

b
2

+ a80
2
b

2 R (10-6)

g max in@plane
= 556(10- 6)  Ans.

The square root gives two signs for g max in@plane
. The proper one for each 

angle can be obtained by applying Eq. 10–6. When us = 40.9°, we have

 
gx′y′

2
= -

Px - Py

2
  sin 2u +

gxy

2
  cos 2u

 = -a -350 - 200
2

b(10-6) sin 2(40.9°) +
80(10-6)

2
  cos 2(40.9°)

gx′y′ = 556(10-6)

This result is positive and so g max in@plane
 tends to distort the element so that 

the right angle between dx′ and dy′ is decreased (positive sign 
convention), Fig. 10–7b.

Also, there are associated average normal strains imposed on the 
element that are determined from Eq. 10–12.

Pavg =
Px + Py

2
=

-350 + 200
2

 (10-6) = -75(10-6)

These strains tend to cause the element to contract, Fig. 10–7b.

x

y

(a)

dx

dy

Pxdx

Pydy
gxy

2 gxy

2

(b)

x

y

x ¿
y ¿

40.9�
Pavgdx ¿Pavgdy ¿

dx ¿
dy ¿

gmax

2
in–plane

gmax

2
in–plane

Fig. 10–7
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*10.3  mohr’S CirCle—Plane 
Strain

Since the equations of plane-strain transformation are mathematically 
similar to the equations of plane-stress transformation, we can also solve 
problems involving the transformation of strain using Mohr’s circle.

Like the case for stress, the parameter u in Eqs. 10–5 and 10–6 can be 
eliminated and the result rewritten in the form

(Px′ - Pavg)
2 + ¢gx′y′

2
≤2

= R2 (10–13)

where

 Pavg =
Px + Py

2

 R = Ba
Px - Py

2
b

2

+ a
gxy

2
b

2

Equation 10–13 represents the equation of Mohr’s circle for strain. It has a 
center on the P axis at point C(Pavg , 0) and a radius R. As described in the 
following procedure, Mohr’s circle can be used to determine the principal 
strains, the maximum in-plane strain, or the strains on an arbitrary plane.

C

A

R �
2 2

�2
Px � Py gxy

2

2
Px � Py

gxy

2

P

Px

2
Px � Py

Pavg �

g

2

u � 0�

Fig. 10–8

procedure for analysIs

The procedure for drawing Mohr’s circle for strain follows the same 
one established for stress.

Construction of the Circle.

 • Establish a coordinate system such that the horizontal axis 
represents the normal strain P, with positive to the right, and 
the vertical axis represents half the value of the shear strain, 
g>2, with positive downward, Fig. 10–8.

 • Using the positive sign convention for Px, Py, gxy, Fig. 10–2, 
determine the center of the circle C, located Pavg = (Px + Py)>2 
from the origin, Fig. 10–8.

 • Plot the reference point A having coordinates A(Px , gxy>2). 
This point represents the case when the x′ axis coincides with 
the x axis. Hence u = 0°, Fig. 10–8.

 • Connect point A with C and from the shaded triangle 
determine the radius R of the circle, Fig. 10–8.

 • Once R has been determined, sketch the circle.
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principal Strains.

 • The principal strains P1 and P2 are determined from the circle 
as the coordinates of points B and D, that is, where g>2 = 0, 
Fig. 10–9a.

 • The orientation of the plane on which P1 acts can be determined 
from the circle by calculating 2up1

 using trigonometry. Here 
this angle happens to be counterclockwise, measured from CA 
to CB, Fig. 10–9a. Remember that the rotation of up1

 must be in 
this same direction, from the element’s reference axis x to the 
x′ axis, Fig. 10–9b.*

 • When P1 and P2 are positive as in Fig. 10–9a, the element in 
Fig. 10–9b will elongate in the x′ and y′ directions as shown 
by the dashed outline.

Maximum In-plane Shear Strain.

 • The average normal strain and half the maximum in-plane 
shear strain are determined from the circle as the coordinates 
of point E or F, Fig. 10–9a.

 • The orientation of the plane on which g max in@plane
 and Pavg act  

can be determined from the circle in Fig. 10–9a, by calculating 
2us1

 using trigonometry. Here this angle happens to be 
clockwise from CA to CE. Remember that the rotation of us1

 
must be in this same direction, from the element’s reference 
axis x to the x′ axis, Fig. 10–9c.*

Strains on arbitrary plane.

 • The normal and shear strain components Px′ and gx′y′ for an 
element oriented at an angle u, Fig. 10–9d, can be obtained 
from the circle using trigonometry to determine the coordinates 
of point P, Fig. 10–9a.

 • To locate P, the known counterclockwise angle u of the x′ axis, 
Fig. 10–9d, is measured counterclockwise on the circle as 2u. 
This measurement is made from CA to CP.

 • If the value of Py′ is required, it can be determined by 
calculating the P coordinate of point Q in Fig. 10–9a. The line 
CQ lies 180° away from CP and thus represents a 90° rotation 
of the x′ axis.

C

A

(a)

D

Q

B

P

E

F

g

2

u � 0�

2up1

2us1

2u

Pavg

P

P1

P2

gmax

2
in–plane

x

(b)

up1

y ¿

x ¿

y

(1 � P1)dx ¿

(1 � P2)dy ¿

x

y

(c)

x ¿

y ¿

Pavgdx ¿

Pavgdy ¿

us1

gmax

2
in–plane

gmax

2
in–plane

x

y

(d)

x ¿

y ¿

u

Px ¿dx ¿

Py¿dy¿

gxy

2

gxy

2

Fig. 10–9

*If the g>2 axis were constructed positive upwards, then the angle 2u on the circle 
would be measured in the opposite direction to the orientation u of the plane.
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EXAMPLE  10.4

The state of plane strain at a point has components of Px = 250(10-6), 
Py = -150(10-6), gxy = 120(10-6), Fig. 10–10a. Determine the principal 
strains and the orientation of the element upon which they act.

SOLUTION

Construction of the Circle. The P and g>2 axes are established in  
Fig. 10–10b. Remember that the positive g>2 axis must be directed 
downward so that counterclockwise rotations of the element correspond 
to counterclockwise rotation around the circle, and vice versa. The center 
of the circle C is located at

Pavg =
250 + (-150)

 2
  (10-6 ) = 50(10-6 )

Since gxy >2 = 60(10-6), the reference point A (u = 0°) has coordinates 
A(250(10-6), 60(10-6)). From the shaded triangle in Fig. 10–10b, the 
radius of the circle is

R = 32(250 - 50)2 + (60)2 4(10-6) = 208.8(10-6)

Principal Strains. The P coordinates of points B and D are therefore

 P1 = (50 + 208.8)(10-6) = 259(10-6) Ans.

 P2 = (50 - 208.8)(10-6) = -159(10-6) Ans.

The direction of the positive principal strain P1 in Fig. 10–10b is defined 
by the counterclockwise angle 2up1

, measured from CA (u = 0°) to CB. 
We have

 tan 2up1
 =

60
 (250 - 50)

 

 up1
 = 8.35°  Ans.

Hence, the side dx′ of the element is inclined counterclockwise 8.35° as 
shown in Fig. 10–10c. This also defines the direction of P1. The 
deformation of the element is also shown in the figure.

x

y

gxy

2

gxy

2

Pxdxdx

dy

Pydy

(a)

(b)

60

A

C  208.850

250

2up1

B(P1, 0)D(�P2, 0)
P (10�6)

(10�6)g

2

x

y

(c)

x ¿

dx ¿

y ¿

P1dx ¿

P2dy ¿

dy ¿

up1
 � 8.35�

Fig. 10–10
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EXAMPLE  10.5

The state of plane strain at a point has components of Px = 250(10-6), 
Py = -150(10-6), gxy = 120(10-6), Fig. 10–11a. Determine the maximum 
in-plane shear strains and the orientation of the element upon which 
they act.

SOLUTION
The circle has been established in the previous example and is shown in 
Fig. 10–11b.

Maximum In-Plane Shear Strain. Half the maximum in-plane shear 
strain and average normal strain are represented by the coordinates of 
point E or F on the circle. From the coordinates of point E,

(gx′y′) max in@plane  

 2
= 208.8(10- 6)

 (gx′y′)max
in@plane  = 418(10-6) Ans.

 Pavg = 50(10-6)

To orient the element, we will determine the clockwise angle 2us1
, 

measured from CA (u = 0°) to CE.

2us1
 = 90° - 2(8.35°) 

us1
 = 36.7° Ans.

This angle is shown in Fig. 10–11c. Since the shear strain defined from 
point E on the circle has a positive value and the average normal strain is 
also positive, these strains deform the element into the dashed shape 
shown in the figure.

x

y
gxy

2

gxy

2

Pxdxdx

dy

Pydy

(a)

(b)

F

60
A

C
50

250

208.8

u � 0�

gmax

P (10�6)

2us1

(10�6)g

2

2
in–planePavg,E

(c)

x

y

x ¿

y ¿

us1
 � 36.7�

Fig. 10–11
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EXAMPLE  10.6

The state of plane strain at a point has components of Px = -300(10-6), 
Py = -100(10-6), gxy = 100(10-6), Fig. 10–12a. Determine the state of 
strain on an element oriented 20° clockwise from this position.

SOLUTION

Construction of the Circle. The P and g>2 axes are established in  
Fig. 10–12b. The center of the circle is at

Pavg = a -300 - 100
 2

 b(10-6) = -200(10-6)

The reference point A has coordinates A(-300(10-6), 50(10-6)), and so 
the radius CA, determined from the shaded triangle, is

R = 32(300 - 200)2 + (50)2 4(10-6) = 111.8(10-6)

Strains on Inclined Element. Since the element is to be oriented 20° 
clockwise, we must consider the radial line CP, 2(20°) = 40° clockwise, 
measured from CA (u = 0°), Fig. 10–12b. The coordinates of point P are 
obtained from the geometry of the circle. Note that

f = tan-1 a 50
 (300 - 200)

 b = 26.57°, c = 40° - 26.57° = 13.43°

Thus,

 Px′ = -(200 + 111.8 cos 13.43°)(10-6)

 = -309(10-6) Ans.

 
gx′y′

 2
 = -(111.8 sin 13.43°)(10-6)

 gx′y′ = -52.0(10-6) Ans.

The normal strain Py′ can be determined from the P coordinate of  
point Q on the circle, Fig. 10–12b.

 Py′ = -(200 - 111.8 cos 13.43°)(10-6) = -91.3(10-6) Ans.

As a result of these strains, the element deforms relative to the x′, y′ axes 
as shown in Fig. 10–12c.

x

y

(a)

dx

dy

Pxdx

Pydy gxy

2 gxy

2

(b)

Q
50

A

C

300

R � 111.8

P

200

gx¿y¿

2

13.43�

40�

c � 13.43�

f

Px ¿

Py ¿

P (10�6)

(10�6)g

2

gx¿y¿

2

20�

(c)
x ¿

x

y ¿y

Fig. 10–12
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10–1. Prove that the sum of the normal strains in 
perpendicular directions is constant, i.e., Px + Py = Px′ + Py′.

10–2. The state of strain at the point on the arm has components 
of Px = 200 (10-6), Py = -300 (10-6), and gxy = 400(10-6). Use 
the strain transformation equations to determine the equivalent 
in-plane strains on an element oriented at an angle of 30° 
counterclockwise from the original position. Sketch the 
deformed element due to these strains within the x–y plane.

y

x

Prob. 10–2

10–3. The state of strain at the point on the pin leaf 
has  components of Px = 200(10-6), Py = 180(10-6), and 
gxy = -300(10-6). Use the strain transformation equations 
and determine the equivalent in-plane strains on an element 
oriented at an angle of u = 60° counterclockwise from the 
original position. Sketch the deformed element due to these 
strains within the x–y plane.

*10–4. Solve Prob. 10–3 for an element oriented u = 30° 
clockwise.

x

y

Probs. 10–3/4

10–5. The state of strain at the point on the leaf of the 
caster  assembly has components of Px = -400(10-6), 
Py = 860(10-6), and gxy = 375(10-6). Use the strain 
transformation equations to determine the equivalent 
in-plane strains on an element oriented at an angle of u = 30° 
counterclockwise from the original position. Sketch the 
deformed element due to these strains within the x–y plane.

y

x

Prob. 10–5

10–6. The state of strain at a point on the bracket has 
components of Px = 150(10-6), Py = 200(10-6), gxy =
-700(10-6). Use the strain transformation equations and 
determine the equivalent in-plane strains on an element 
oriented at an angle of u = 60° counterclockwise from the 
original position. Sketch the deformed element within the x–y 
plane due to these strains.

10–7. Solve Prob. 10–6 for an element oriented u = 30° 
clockwise.

x

y

Probs. 10–6/7

PrObLEMS
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*10–8. The state of strain at the point on the spanner wrench 
has components of Px = 260(10-6), Py = 320(10-6), and 
gxy = 180(10-6). Use the strain transformation equations to 
determine (a) the in-plane principal strains and (b) the 
maximum in-plane shear strain and average normal strain. In 
each case specify the orientation of the element and show how 
the strains deform the element within the x–y plane.

x
y

Prob. 10–8

10–9. The state of strain at the point on the member has 
components of Px = 180(10-6), Py = -120(10-6), and 
gxy = -100(10-6). Use the strain transformation equations 
to determine (a) the in-plane principal strains and (b) the 
maximum in-plane shear strain and average normal strain. In 
each case specify the orientation of the element and show 
how the strains deform the element within the x–y plane.

x

y

Prob. 10–9

10–10. The state of strain at the point on the support  
has components of Px = 350(10-6), Py = 400(10-6), 
gxy = -675(10-6). Use the strain-transformation equations 
to determine (a) the in-plane principal strains and (b) the 
maximum in-plane shear strain and average normal strain. In 
each case specify the orientation of the element and show 
how the strains deform the element within the x–y plane.

P

Prob. 10–10

10–11. Due to the load P, the state of strain at the point 
on  the bracket has components of Px = 500(10-6), 
Py = 350(10-6), and gxy = -430(10-6). Use the  
strain transformation equations to determine the equivalent 
in-plane strains on an element oriented at an angle of 
u = 30° clockwise from the original position. Sketch the 
deformed element due to these strains within the x–y plane.

x

y

P

 

Prob. 10–11
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*10–12. The state of strain on an element has components  
Px = -400(10-6), Py = 0, gxy = 150(10-6). Determine the 
equivalent state of strain on an element at the same point 
oriented 30° clockwise with respect to the original element. 
Sketch the results on this element.

10–13. The state of plane strain on the element is 
Px = -300(10-6), Py = 0, and gxy = 150(10-6). Determine 
the equivalent state of strain which represents (a) the 
principal strains, and (b) the maximum in-plane shear strain 
and the associated average normal strain. Specify the 
orientation of the corresponding elements for these states of 
strain with respect to the original element.

y

x

dx

dy
   xy
2
g

   xy
2
g Pxdx

Probs. 10–12/13

10–14. The state of strain at the point on a boom of a shop 
crane has components of Px = 250(0-6), Py = 300(10-6), and 
gxy = -180(10-6 ). Use the strain transformation equations to 
determine (a) the in-plane principal strains and (b) the maximum 
in-plane shear strain and average normal strain. In each case, 
specify the orientation of the element and show how the strains 
deform the element within the x–y plane.

y x

Prob. 10–14

10–15. Consider the general case of plane strain where  
Px, Py, and gxy are known. Write a computer program that 
can be used to determine the normal and shear strain, Px′ 
and gx′y′, on the plane of an element oriented u from the 
horizontal. Also, include the principal strains and the 
element’s orientation, and the maximum in-plane shear 
strain, the average normal strain, and the element’s 
orientation.

*10–16. The state of strain on the element has components  
Px = -300(10-6), Py = 100(10-6), gxy = 150(10-6). Determine 
the equivalent state of strain, which represents (a) the 
principal strains, and (b) the maximum in-plane shear strain 
and the associated average normal strain. Specify the 
orientation of the corresponding elements for these states of 
strain with respect to the original element.

y

x

dx

dy

   xy
2

   xy
2
g

g

Pydy

Pxdx

Prob. 10–16

10–17. Solve Prob. 10–3 using Mohr’s circle.

10–18. Solve Prob. 10–4 using Mohr’s circle.

10–19. Solve Prob. 10–5 using Mohr’s circle.

*10–20. Solve Prob. 10–8 using Mohr’s circle.

10–21. Solve Prob. 10–7 using Mohr’s circle.
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*10.4  abSolute maximum Shear 
Strain

In Sec. 9.5 it was pointed out that in the case of plane stress, the absolute 
maximum shear stress in an element of material will occur out of the plane 
when the principal stresses have the same sign, i.e., both are tensile or both 
are compressive. A similar result occurs for plane strain. For example, if 
the principal in-plane strains cause elongations, Fig. 10–13a, then the three 
Mohr’s circles describing the normal and shear strain components for the 
element rotations about the x, y, and z axes are shown in Fig. 10–13b. By 
inspection, the largest circle has a radius R = (gxz)max >2, and so

g 
max 
abs  = (gxz)max = P1 

P1 and P2 have the same sign
 

(10–14)

This value gives the absolute maximum shear strain for the material. 
Note that it is larger than the maximum in-plane shear strain, which is 
(gxy)max = P1 - P2.

Now consider the case where one of the in-plane principal strains is of 
opposite sign to the other in-plane principal strain, so that P1 causes 
elongation and P2 causes contraction, Fig. 10–14a. The three Mohr’s 
circles, which describe the strain components on the element rotated 
about the x, y, z axes, are shown in Fig. 10–14b. Here

g 
max abs = (gxy) 

max 
in@plane  = P1 - P2 

P1 and P2 have opposite signs
 

(10–15)

x

x�y  plane strain

y

z

(a)

(1 � P1)dx(1 � P2)dy

(b)

PP1

g

2

(gxz)max

2

(gxy)max

2

(gyz)max

2

P2

Fig. 10–13

x
y

z

x�y plane strain

(a)

(1 – P2)dy
(1 � P1)dx

(b)

2

(gxz)max

PP1�P2

g

2

2

(gyz)max

2

(gxy)max

Fig. 10–14

 • If the in-plane principal strains both have the same sign, the 
absolute maximum shear strain will occur out of plane and has 
a value of g max abs = Pmax . This value is greater than the maximum 
in-plane shear strain.

 • If the in-plane principal strains are of opposite signs, then the 
absolute maximum shear strain equals the maximum in-plane 
shear strain, g 

max abs = P1 - P2.

Important poInts 
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EXAMPLE  10.7

The state of plane strain at a point has strain components 
of  Px = -400(10-6), Py = 200(10-6), and gxy = 150(10-6), Fig.  10–15a. 
Determine the maximum in-plane shear strain and the absolute maximum 
shear strain.

gxy

2 gxy

2

x

y

(a)

dx

dy

Pxdx

Pydy

gxy

2 gxy

2

 

 

 

400

75

100

 309
A

P1
P(10�6)

(10�6)

P2

g

2

2
in–plane

(gx¿y¿)max

(b)

Fig. 10–15

SOLUTION

Maximum In-Plane Shear Strain. We will solve this problem using 
Mohr’s circle. The center of the circle is at

Pavg =
-400 + 200

 2
  (10-6) = -100(10-6)

Since gxy >2 = 75(10-6 ), the reference point A has coordinates 
(-400(10-6), 75(10-6)), Fig. 10–15b. The radius of the circle is therefore

R = 32(400 - 100)2 + (75)2 4(10-6) = 309(10-6)

From the circle, the in-plane principal strains are

 P1 = (-100 + 309)(10-6) = 209(10-6)
 P2 = (-100 - 309)(10-6) = -409(10-6)

Also, the maximum in-plane shear strain is

gin@plane
max  = P1 - P2 = [209 - (-409)](10-6) = 618(10-6) Ans.

Absolute Maximum Shear Strain. Since the principal in-plane strains 
have opposite signs, the maximum in-plane shear strain is also the 
absolute maximum shear strain; i.e.,

g max 
abs = 618(10-6) Ans.

The three Mohr’s circles, plotted for element orientations about each of 
the x, y, z axes, are also shown in Fig. 10–15b.
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10.5 Strain roSetteS
The normal strain on the free surface of a body can be measured in a 
particular direction using an electrical resistance strain gage. For example, 
in Sec. 3.1 we showed how this type of gage is used to find the axial strain 
in a specimen when performing a tension test. When the body is subjected 
to several loads, however, then the strains Px, Py, gxy at a point on its surface 
may have to be determined. Unfortunately, the shear strain cannot be 
directly measured with a strain gage, and so to obtain Px, Py, gxy, we must 
use a cluster of three strain gages that are arranged in a specified pattern 
called a strain rosette. Once these normal strains are measured, then the 
data can be transformed to specify the state of strain at the point.

To show how this is done, consider the general case of arranging the 
gages at the angles ua, ub, uc shown in Fig. 10–16a. If the readings Pa, Pb, Pc 
are taken, we can determine the strain components Px, Py, gxy by 
applying the strain transformation equation, Eq. 10–2, for each gage. 
The results are

 Pa = Px cos2 ua + Py sin2 ua + gxy sin ua cos ua

 Pb = Px cos2 ub + Py sin2 ub + gxy sin ub cos ub

 Pc = Px cos2 uc + Py sin2 uc + gxy sin uc cos uc

 (10–16)

The values of Px, Py, gxy are determined by solving these three equations 
simultaneously.

Normally, strain rosettes are arranged in 45° or 60° patterns. In the case 
of the 45° or “rectangular” strain rosette, Fig. 10–16b, ua = 0°, ub = 45°, 
uc = 90°, so that Eq. 10–16 gives

 Px = Pa
 Py = Pc

 gxy = 2Pb - (Pa + Pc )

And for the 60° strain rosette, Fig. 10–16c, ua = 0°, ub = 60°, uc = 120°. 
Here Eq. 10–16 gives

 Px = Pa

 Py =
1
 3

  (2Pb + 2Pc - Pa ) (10–17)

 gxy =
2

 13
  (Pb - Pc )

Once Px, Py, gxy are determined, then the strain transformation 
equations or Mohr’s circle can be used to determine the principal 
in-plane strains P1 and P2, or the maximum in-plane shear strain 
g in@plane max . The stress in the material that causes these strains can 

then be determined using Hooke’s law, which is discussed in the 
next section.

x

a

b

c
(a)

ub

uc
ua

45�

45�

a

b

c

x

45� strain rosette

(b)

60�

a

b

x

60� strain rosette

(c)

60�

c

Fig. 10–16

Typical electrical resistance 45° strain rosette.
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EXAMPLE  10.8

The state of strain at point A on the bracket in Fig. 10–17a is measured 
using the strain rosette shown in Fig. 10–17b. The readings from the 
gages give Pa = 60(10-6 ), Pb = 135(10-6 ), and Pc = 264(10-6 ). 
Determine the in-plane principal strains at the point and the directions 
in which they act.

SOLUTION
We will use Eqs. 10–16 for the solution. Establishing an x axis, Fig. 10–17b, 
and measuring the angles counterclockwise from this axis to the centerlines 
of each gage, we have ua = 0°, ub = 60°, and uc = 120°. Substituting 
these results, along with the problem data, into the equations gives

 60(10-6 ) = Px cos2 0° + Py sin2 0° + gxy sin 0° cos 0°
 = Px (1)

 135(10-6 ) = Px cos2 60° + Py sin2 60° + gxy sin 60° cos 60°
 = 0.25Px + 0.75Py + 0.433gxy (2)

 264(10-6 ) = Px cos2 120° + Py sin2 120° + gxy sin 120° cos 120°
 = 0.25Px + 0.75Py - 0.433gxy (3)

Using Eq. 1 and solving Eqs. 2 and 3 simultaneously, we get

Px = 60(10-6 )  Py = 246(10-6 )  gxy = -149(10-6 )

These same results can also be obtained in a more direct manner from 
Eq. 10–17.

The in-plane principal strains will be determined using Mohr’s circle. 
The center, C, is at Pavg = 153(10-6 ), and the reference point on the 
circle is at A[60(10-6 ), -74.5(10-6 )], Fig. 10–17c. From the shaded 
triangle, the radius is

R = 32(153 - 60)2 + (74.5)2 4(10-6 ) = 119.1(10-6 )

The in-plane principal strains are therefore

 P1 = 153(10-6 ) + 119.1(10-6 ) = 272(10-6 ) Ans.

 P2 = 153(10-6 ) - 119.1(10-6 ) = 33.9(10-6 ) Ans.

 2up2
 = tan-1  

74.5
 (153 - 60)

 = 38.7°

 up2
 = 19.3° Ans.

NOTE: The deformed element is shown in the dashed position in  
Fig. 10–17d. Realize that, due to the Poisson effect, the element is also 
subjected to an out-of-plane strain, i.e., in the z direction, although 
this value will not influence the calculated results.

(a)

b
a

c

A

(b)

60�

a

b

x

120�

c

(c)

60

74.5

153

A

C

R � 119.2
P(10�6)P1P2

(10�6)
g

2

(d)
x

up2
 � 19.3�

x¿

y¿

Fig. 10–17



532  Chapter 10  Strain tranSformation

10

10–22. The strain at point A on the bracket  
has components Px = 300(10-6 ), Py = 550(10-6 ),  
gxy =  -650(10-6 ), Pz = 0. Determine (a) the principal 
strains at A in the x9y plane, (b) the maximum shear strain 
in the x–y plane, and (c) the absolute maximum shear strain.

y

xA

Prob. 10–22

10–23. The strain at point A on a beam has components 
Px =  450(10-6), Py = 825(10-6), gxy = 275(10-6), Pz = 0. 
Determine (a) the principal strains at A, (b) the maximum 
shear strain in the x–y plane, and (c) the absolute maximum 
shear strain.

A

Prob. 10–23

*10–24. The strain at point A on the pressure-vessel wall 
has components Px = 480(10-6), Py = 720(10-6), gxy=  
650(10-6). Determine (a) the principal strains at A, in the 
x9y plane, (b) the maximum shear strain in the x9y plane, 
and (c) the absolute maximum shear strain.

y

xA

Prob. 10–24

10–25. The 45° strain rosette is mounted on the surface of 
a shell. The following readings are obtained for each  
gage: Pa = -200(10-6), Pb = 300(10-6), and Pc = 250(10-6). 
Determine the in-plane principal strains.

a
b

c

45� 45�

45�

Prob. 10–25

PrObLEMS
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10–26. The 45° strain rosette is mounted on the surface 
of  a pressure vessel. The following readings are obtained 
for  each gage: Pa = 475(10-6), Pb = 250(10-6), and  
Pc = -360(10-6). Determine the in-plane principal strains.

a

bc

45�

45�

Prob. 10–26

10–27. The 60° strain rosette is mounted on the surface of 
the  bracket. The following readings are obtained for each  
gage: Pa = -780(10-6), Pb = 400(10-6), and Pc =  500(10-6). 
Determine (a) the principal strains and (b) the maximum 
in-plane shear strain and associated average normal strain. In 
each case show the deformed element due to these strains.

60�

60�
a

b

c

Prob. 10–27

*10–28. The 45° strain rosette is mounted on a steel shaft. 
The following readings are obtained from each gage:  
Pa = 800(10-6), Pb = 520(10-6), Pc = -450(10-6). Determine 
the in-plane principal strains.

45�

45�

a

b

c

Prob. 10–28

10–29. Consider the general orientation of three strain 
gages at a point as shown. Write a computer program that 
can be used to determine the principal in-plane strains and 
the maximum in-plane shear strain at the point. Show an 
application of the program using the values ua = 40°,  
Pa = 160(10-6), ub = 125°, Pb = 100(10-6), uc = 220°,  
Pc = 80(10-6).

x

a

b

c

ua

ub

uc

Prob. 10–29
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10.6  material ProPerty 
 relationShiPS

In this section we will present some important material property 
relationships that are used when the material is subjected to multiaxial 
stress and strain. In all cases, we will assume that the material is 
homogeneous and isotropic, and behaves in a linear elastic manner.

Generalized Hooke’s Law. When the material at a point is subjected 
to a state of triaxial stress, sx, sy, sz, Fig. 10–18a, then these stresses 
can be related to the normal strains Px, Py, Pz by using the principle of 
superposition, Poisson’s ratio, Plat = -nPlong, and Hooke’s law as it 
applies in the uniaxial direction, P = s>E. For example, consider the 
normal strain of the element in the x direction, caused by separate 
application of each normal stress. When sx is applied, Fig. 10–18b, the 
element elongates with a strain P′x, where

P=
x =

sx

E

Application of sy causes the element to contract with a strain P>
x,  

Fig. 10–18c. Here

P>
x = -n 

sy

E

Finally, application of sz, Fig. 10–18d, causes a contraction strain P?
x , 

so that

P?
x = -n 

sz

E

(a)

sx sx
sy

sy

sz
sz

(d)(c)(b)

� � �

Fig. 10–18
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(a)

txy

      (b)

tyz

      (c)

txz

Fig. 10–19

We can obtain the resultant strain Px by adding these three strains 
algebraically. Similar equations can be developed for the normal strains 
in the y and z directions, and so the final results can be written as

 Px =
1
E

 [sx - n(sy + sz)]

 Py =
1
E

 [sy - n(sx + sz)] (10–18)

 Pz =
1
E

 [sz - n(sx + sy)]

These three equations represent the general form of Hooke’s law for a 
triaxial state of stress. For application, tensile stress is considered a 
positive quantity, and a compressive stress is negative. If a resulting 
normal strain is positive, it indicates that the material elongates, whereas 
a negative normal strain indicates the material contracts.

If we only apply a shear stress txy to the element, Fig. 10–19a, 
experimental observations indicate that the material will change its 
shape, but it will not change its volume. In other words, txy will only cause 
the shear strain gxy in the material. Likewise, tyz and txz will only cause 
shear strains gyz and gxz, Figs. 10–19b and 10–19c. Therefore, Hooke’s law 
for shear stress and shear strain becomes

gxy =
1
G

 txy  gyz =
1
G

 tyz  gxz =
1
G

 txz  (10–19)
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Relationship Involving E, N, and G. In Sec. 3.7 it was stated that the 
modulus of elasticity E is related to the shear modulus G by Eq. 3–11, 
namely,

G =
E

2(1 + n)
 (10–20)

One way to derive this relationship is to consider an element of the 
material to be subjected only to shear, Fig. 10–20a. Applying  
Eq. 9–5 (see Example 9–5), the principal stresses at the point are smax = txy 
and smin = -txy, where this element must be oriented up1

= 45° 
counterclockwise from the x axis, as shown in Fig. 10–20b. If the three 
principal stresses smax = txy, sint = 0, and smin = -txy are then 
substituted into the first of Eqs. 10–18, the principal strain Pmax can be 
related to the shear stress txy. The result is

Pmax =
txy

E
 (1 + n) (10–21)

This strain, which deforms the element along the x′ axis, can also be 
related to the shear strain gxy. From Fig. 10–20a, sx = sy = sz = 0. 
Substituting these results into the first and second Eqs. 10–18 gives 
Px = Py = 0. Now apply the strain transformation Eq. 10–9, which gives

P1 = Pmax =
gxy

2

By Hooke’s law, gxy = txy >G, so that Pmax = txy >2G. Finally, substituting 
this into Eq. 10–21 and rearranging the terms gives our result, namely, 
Eq. 10–20.

Dilatation. When an elastic material is subjected to normal stress, the 
strains that are produced will cause its volume to change. For example, if 
the volume element in Fig. 10–21a is subjected to the principal stresses  
s1, s2, s3, Fig. 10–21b, then the lengths of the sides of the element become 
(1 + Px) dx, (1 + Py) dy, (1 + Pz ) dz. The change in volume of the 
element is therefore

dV = (1 + Px)(1 + Py)(1 + Pz) dx dy dz - dx dy dz

Expanding, and neglecting the products of the strains, since the strains 
are very small, we get

dV = (Px + Py + Pz) dx dy dz

The change in volume per unit volume is called the “volumetric strain” 
or the dilatation e.

e =
dV
dV

= Px + Py + Pz (10–22)

x

y

(a)

txy

x

y

smin � �txy
smax � txy

up1
 � 45�

(b)

x¿

Fig. 10–20

(a)

dx

dz

dy

(b)

(1 � Py)dy (1 � Px)dx

(1 � Pz)dz

s3

s2
s1

Fig. 10–21
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If we use Hooke’s law, Eq. 10–18, we can also express the dilatation in 
terms of the applied stress. We have

e =
1 - 2n

E
 (s1 + s2 + s3)  (10–23)

Bulk Modulus. According to Pascal’s law, when a volume element of 
material is subjected to a uniform pressure p caused by a static fluid, the 
pressure will be the same in all directions. Shear stresses will not be present, 
since the fluid does not flow around the element. This state of “hydrostatic” 
loading therefore requires s1 = s2 = s3 = -p, Fig. 10–22. Substituting 
into Eq. 10–23 and rearranging terms yields

p
e
= -

E
3(1 - 2n)

 (10–24)

The term on the right is called the volume modulus of elasticity or the 
bulk modulus, since this ratio,  p>e,  is similar to the ratio of one-
dimensional linear elastic stress to strain, which defines E, i.e., s>P = E. 
The bulk modulus has the same units as stress and is symbolized by the 
letter k, so that

k =
E

3(1 - 2n)
 (10–25)

For most metals n ≈  13 and so k ≈ E. However, if we assume the 
material did not change its volume when loaded, then dV = e = 0, and 
k  would be infinite. As a result, Eq. 10–25 would then indicate the 
theoretical maximum value for Poisson’s ratio to be n = 0.5.

Hydrostatic stress

s2 � p
s1 � p

s3 � p

Fig. 10–22

Important poInts

 • When a homogeneous isotropic material is subjected to a state of 
triaxial stress, the strain in each direction is influenced by the 
strains produced by all the stresses. This is the result of the Poisson 
effect, and the stress is then related to the strain in the form of a 
generalized Hooke’s law.

 • When a shear stress is applied to homogeneous isotropic material, 
it will only produce shear strain in the same plane.

 • The material constants E, G, and n are all related by Eq. 10–20.

 • Dilatation, or volumetric strain, is caused only by normal strain, 
not shear strain.

 • The bulk modulus is a measure of the stiffness of a volume of 
material. This material property provides an upper limit to 
Poisson’s ratio of n = 0.5.
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The bracket in Example 10.8, Fig. 10–23a, is made of steel for which 
Est = 200 GPa, nst = 0.3. Determine the principal stresses at point A.

EXAMPLE  10.9

(a)

b
a

c

A

Fig. 10–23

SOLUTION I
From Example 10.8 the principal strains have been determined as

 P1 = 272(10-6)

 P2 = 33.9(10-6)

Since point A is on the surface of the bracket, for which there is no loading, 
the stress on the surface is zero, and so point A is subjected to plane stress 
(not plane strain). Applying Hooke’s law with s3 = 0, we have

P1 =
s1

E
-

n

E
 s2 ;  272(10-6) =

s1

200(109)
-

0.3
200(109)

 s2

 54.4(106) = s1 - 0.3s2 (1)

P2 =
s2

E
-

n

E
 s1 ;  33.9(10-6) =

s2

200(109)
-

0.3
200(109)

 s1

 6.78(106) = s2 - 0.3s1 (2)

Solving Eqs. 1 and 2 simultaneously yields

 s1 = 62.0 MPa Ans.

 s2 = 25.4 MPa Ans.
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SOLUTION II
It is also possible to solve this problem using the given state of strain as 
specified in Example 10.8.

Px = 60(10-6)  Py = 246(10-6)  gxy = -149(10-6)

Applying Hooke’s law in the x–y plane, we have

Px =
sx

E
-

n

E
 sy ;  60(10-6) =

sx

200(109) Pa
-

0.3sy

200(109) Pa

Py =
sy

E
-

n

E
 sx ;  246(10-6) =

sy

200(109) Pa
-

0.3sx

200(109) Pa

sx = 29.4 MPa  sy = 58.0 MPa

The shear stress is determined using Hooke’s law for shear. First, 
however, we must calculate G.

G =
E

2(1 + n)
=

200 GPa
2(1 + 0.3)

= 76.9 GPa

Thus,

txy = Ggxy ;  txy = 76.9(109)[-149(10-6)] = -11.46 MPa

The Mohr’s circle for this state of plane stress has a center at 
savg = 43.7 MPa and a reference point A(29.4 MPa, -11.46 MPa),  
Fig. 10–23b. The radius is determined from the shaded triangle.

R = 2(43.7 - 29.4)2 + (11.46)2 = 18.3 MPa

Therefore,
 s1 = 43.7 MPa + 18.3 MPa = 62.0 MPa Ans.

 s2 = 43.7 MPa - 18.3 MPa = 25.4 MPa Ans.

NOTE: Each of these solutions is valid provided the material is both 
linear elastic and isotropic, since only then will the directions of the 
principal stress and strain coincide.

s (MPa)

29.4

11.46

43.7

(b)

s1s2

A

C

R � 18.3

t (MPa)

Fig. 10–23 (cont.)
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EXAMPLE 10.10

The copper bar is subjected to a uniform loading shown in Fig. 10–24. If 
it has a length a = 300 mm, width b = 50 mm, and thickness t = 20 mm 
before the load is applied, determine its new length, width, and thickness 
after application of the load. Take Ecu = 120 GPa, ncu = 0.34.

500 MPa

500 MPa

800 MPa

800 MPa

a

b

t

Fig. 10–24

SOLUTION
By inspection, the bar is subjected to a state of plane stress. From the 
loading we have

sx = 800 MPa  sy = -500 MPa  txy = 0  sz = 0

The associated normal strains are determined from Hooke’s law, Eq. 10–18; 
that is,

 Px =
sx

E
-

n

E
 (sy + sz)

 =
800 MPa

120(103) MPa
-

0.34
120(103) MPa

 (-500 MPa + 0) = 0.00808

 Py =
sy

E
-

n

E
 (sx + sz)

 =
-500 MPa

120(103) MPa
-

0.34
120(103) MPa

 (800 MPa + 0) = -0.00643

 Pz =
sz

E
-

n

E
 (sx + sy)

 = 0 -
0.34

120(103) MPa
 (800 MPa - 500 MPa) = -0.000850

The new bar length, width, and thickness are therefore

 a′ = 300 mm + 0.00808(300 mm) = 302.4 mm Ans.

 b′ = 50 mm + (-0.00643)(50 mm) = 49.68 mm Ans.

 t′ = 20 mm + (-0.000850)(20 mm) = 19.98 mm Ans.
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EXAMPLE 10.11

If the rectangular block shown in Fig. 10–25 is subjected to a uniform 
pressure of p = 140 kPa, determine the dilatation and the change in length 
of each side. Take E = 4 MPa, n = 0.45.

a � 120 mm b � 60 mm

c � 90 mm

Fig. 10–25

SOLUTION

Dilatation. The dilatation can be determined using Eq. 10–23 with 
sx = sy = sz = -140 kPa. We have

  e =
1 - 2n

E
 (sx + sy + sz)

  = c
1 - 2(0.45)

4(106) N>m2 d 533-140(103) N>m246

  = -0.0105 m3>m3 Ans.

Change in Length. The normal strain on each side is determined from 
Hooke’s law, Eq. 10–18; that is,

 P =
1
E

 [sx - n(sy + sz)]

 = c 1

4(106)N>m2 d  5-140(103) N>m2 - (0.45)3 -140(103) N>m2 - 140(103) N>m246 = -0.00350 mm>mm

Thus, the change in length of each side is

 da = (-0.00350 mm>mm)(120 mm) = -0.420 mm Ans.

 da = (-0.00350 mm>mm)(60 mm) = -0.210 mm Ans.

 da = (-0.00350 mm>mm)(90 mm) = -0.315 mm Ans.

The negative signs indicate that each dimension is decreased.
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PrObLEMS

10–30. For the case of plane stress, show that Hooke’s law 
can be written as

sx =
E

(1 - n2)
 (Px + nPy), sy =

E

(1 - n2)
 (Py + nPx)

*10–36. The spherical pressure vessel has an inner 
 diameter of 2 m and a thickness of 10 mm. A strain 
gage having a length of 20 mm is attached to it, and it 
is observed to increase in length by 0.012 mm when the  
vessel is pressurized. Determine the pressure causing this 
deformation, and find the maximum in-plane shear stress, 
and the absolute maximum shear stress at a point on the 
outer surface of the vessel. The material is steel, for which 
Est = 200 GPa and nst = 0.3.

20 mm

Prob. 10–36

10–37. Determine the bulk modulus for each of the 
following materials: (a) rubber, Er = 2.8 MPa, nr = 0.48, 
and (b) glass, Eg = 56 GPa, ng = 0.24.

10–38. The strain in the x direction at point A on the steel 
beam is measured and found to be Px = -100(10-6). 
Determine the applied load P. What is the shear strain gxy 
at point A? Est = 200 GPa, nst = 0.3.

0.9 m 1.2 m 2.1 m

75 mm
y

x

P

A

12 mm

12 mm
200 mm
12 mm

150 mm

A

75 mm

Prob. 10–38

10–31. Use Hooke’s law, Eq. 10–18, to develop the  
strain tranformation equations, Eqs. 10–5 and 10–6, from 
the stress tranformation equations, Eqs. 9–1 and 9–2.

*10–32. A bar of copper alloy is loaded in a tension 
machine and it is determined that Px = 940(10-6) and 
sx = 100 MPa, sy = 0, sz = 0. Determine the modulus of 
elasticity, Ecu, and the dilatation, ecu, of the copper. 
ncu = 0.35.

10–33. A rod has a radius of 10 mm. If it is subjected to an 
axial load of 15 N such that the axial strain in the rod is 
Px = 2.75(10-6), determine the modulus of elasticity E and 
the change in the rod’s diameter. n = 0.23.

10–34. The principal strains at a point on the aluminum 
fuselage of a jet aircraft are P1 = 780(10-6) and 
P2 = 400(10-6). Determine the associated principal stresses 
at the point in the same plane. Eal = 70 GPa. Hint: See 
Prob. 10–30.

10–35. The cross section of the rectangular beam is subjected 
to the bending moment M. Determine an expression for the 
increase in length of lines AB and CD. The material has a 
modulus of elasticity E and Poisson’s ratio is n.

h

b

A

B
D

C

M

Probs. 10–35
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10–39. The principal strains in a plane, measured 
experimentally at a point on the aluminum fuselage of a jet 
aircraft, are P1 = 630(10-6) and P2 = 350(10-6). If this is a 
case of plane stress, determine the associated principal stresses 
at the point in the same plane. Eal = 70 GPa and nal = 0.33.

*10–40. The smooth rigid-body cavity is filled with liquid 
6061-T6 aluminum. When cooled it is 0.3 mm from the top of 
the cavity. If the top of the cavity is covered and the 
temperature is increased by 110°C, determine the stress 
components sx, sy, and sz in the aluminum. Hint: Use 
Eqs. 10–18 with an additional strain term of a∆T  (Eq. 4–4).

10–41. The smooth rigid-body cavity is filled with liquid 
6061-T6 aluminum. When cooled it is 0.3 mm from the top 
of the cavity. If the top of the cavity is not covered and the 
temperature is increased by 110°C, determine the strain 
components Px, Py, and Pz in the aluminum. Hint: Use  
Eqs. 10–18 with an additional strain term of a∆T  (Eq. 4–4).

10–43. Two strain gauges a and b are attached to a plate 
made from a material having a modulus of elasticity of 
E = 70 GPa and Poisson’s ratio n = 0.35. If the gauges give 
a reading of Pa = 450(10-6) and Pb = 100(10-6), determine 
the intensities of the uniform distributed load wx and wy 
acting on the plate. The thickness of the plate is 25 mm.

*10–44. Two strain gauges a and b are attached to the 
surface of the plate which is subjected to the uniform 
distributed load wx = 700 kN>m and wy = -175 kN>m. If 
the gauges give a reading of Pa = 450(10-6) and 
Pb = 100(10-6), determine the modulus of elasticity E, 
shear modulus G, and Poisson’s ratio n for the material.

100 mm

100 mm

150 mm

0.3 mm

x

y

z

Probs. 10–40/41

10–42. The block is fitted between the fixed supports. If the 
glued joint can resist a maximum shear stress of 
tallow = 14 MPa. determine the temperature rise that will 
cause the joint to fail. Take E = 70 GPa, n = 0.2, and 
a = 11(10-6)>°C. Hint: Use Eq. 10–18 with an additional 
strain term of a∆T (Eq. 4–4).

40

Prob. 10–42

y

z x

a

b

45

wy

wx

Prob. 10–44

10–45. A material is subjected to principal stresses sx and  
sy. Determine the orientation u of the strain gage so that its 
reading of normal strain responds only to sy and not sx. The 
material constants are E and n.

y

x

u

Prob. 10–45
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10–46. The cylindrical pressure vessel is fabricated using 
hemispherical end caps in order to reduce the bending 
stress that would occur if flat ends were used. The bending 
stresses at the seam where the caps are attached can be 
eliminated by proper choice of the thickness th and tc of the 
caps and cylinder, respectively. This requires the radial 
expansion to be the same for both the hemispheres and 
cylinder. Show that this ratio is tc>th = (2 - n)>(1 - n). 
Assume that the vessel is made of the same material and 
both the cylinder and hemispheres have the same inner 
radius. If the cylinder is to have a thickness of 12 mm, what 
is the required thickness of the hemispheres? Take n = 0.3.

tc
th

r

Prob. 10–46

10–47. A thin-walled cylindrical pressure vessel has an 
inner radius r, thickness t, and length L. If it is subjected 
to  an internal pressure p, show that the increase in its 
inner  radius is dr = rP1 = pr 211 - 1

2 n2 >Et and the 
increase in its length is ∆L = pLr11

2 - n2 >Et. Using these 
results, show that the change in internal volume becomes 
dV = pr 2(1 + P1)

2(1 + P2)L - pr 2L. Since P1 and P2 are 
small quantities, show further that the change in volume 
per unit volume, called volumetric strain, can be written as 
dV>V = pr(2.5 - 2n)>Et.

P

Prob. 10–48

10–49. Initially, gaps between the A-36 steel plate and the 
rigid constraint are as shown. Determine the normal stresses 
sx and sy developed in the plate if the temperature is 
increased by ∆T = 55°C. To solve, add the thermal strain 
a∆T  to the equations for Hooke’s Law.

150 mm

0.0375 mm

200 mm 0.0625 mm

y

x

Prob. 10–49

10–50. The steel shaft has a radius of 15 mm. Determine 
the torque T in the shaft if the two strain gages, attached to 
the surface of the shaft, report strains of Px′ = -80(10-6) 
and Py′ = 80(10-6). Also, determine the strains acting in the 
x and y directions. Est = 200 GPa, nst = 0.3.

10–51. The shaft has a radius of 15 mm and is made of L2 
tool steel. Determine the strains in the x′ and y′ direction if 
a torque T = 2 kN #  m is applied to the shaft.

45�

y

x

x¿y¿T

T

Probs. 10–50/51

*10–48. The rubber block is confined in the U-shape 
smooth rigid block. If the rubber has a modulus of elasticity 
E and Poisson’s ratio n, determine the effective modulus of 
elasticity of the rubber under the confined condition.
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*10–52. The A-36 steel pipe is subjected to the axial 
loading of 60 kN. Determine the change in volume of the 
material after the load is applied.

*10–56. The thin-walled cylindrical pressure vessel of 
inner radius r and thickness t is subjected to an internal 
pressure p. If the material constants are E and n, determine 
the strains in the circumferential and longitudinal directions. 
Using these results, calculate the increase in both the 
diameter and the length of a steel pressure vessel filled with 
air and having an internal gage pressure of 15 MPa. The 
vessel is 3 m long, and has an inner radius of 0.5 m and a 
thickness of 10 mm. Est = 200 GPa, nst = 0.3.

10–57. Estimate the increase in volume of the pressure 
vessel in Prob. 10–56.

30 mm 40 mm

0.5 m

60 kN 60 kN

Prob. 10–52

10–53. Air is pumped into the steel thin-walled pressure 
vessel at C. If the ends of the vessel are closed using two 
pistons connected by a rod AB, determine the increase in 
the diameter of the pressure vessel when the internal gage 
pressure is 5 MPa. Also, what is the tensile stress in rod AB 
if it has a diameter of 100 mm? The inner radius of the 
vessel is 400 mm, and its thickness is 10 mm. Est = 200 GPa 
and nst = 0.3.

10–54. Determine the increase in the diameter of the 
pressure vessel in Prob. 10–53 if the pistons are replaced by 
walls connected to the ends of the vessel.

400 mm

A

C

B

Probs. 10–53/54

0.5 m

3 m

Probs. 10–56/57

10–58. A soft material is placed within the confines of a 
rigid cylinder which rests on a rigid support. Assuming that 
Px = 0 and Py = 0, determine the factor by which the stiffness 
of the material, or the apparent modulus of elasticity, will be 
increased when a load is applied, if n = 0.3 for the material.

P

y

z

x

Prob. 10–58

10–55. A thin-walled spherical pressure vessel having an 
inner radius r and thickness t is subjected to an internal pressure 
p. Show that the increase in the volume within the vessel is 
∆V = (2ppr 4>Et)(1 - n). Use a small-strain analysis.
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*10.7 theorieS of failure
When an engineer is faced with the problem of design using a specific 
material, it becomes important to place an upper limit on the state of 
stress that defines the material’s failure. If the material is ductile, failure 
is usually specified by the initiation of yielding, whereas if the material is 
brittle, it is specified by fracture. These modes of failure are readily defined 
if the member is subjected to a uniaxial state of stress, as in the case of 
simple tension; however, if the member is subjected to biaxial or triaxial 
stress, the criterion for failure becomes more difficult to establish.

In this section we will discuss four theories that are often used in 
engineering practice to predict the failure of a material subjected to a 
multiaxial state of stress. No single theory, however, can be applied to a 
specific material at all times. This is because the material may behave in 
either a ductile or brittle manner depending on the temperature, rate of 
loading, chemical environment, or the way the material is shaped or 
formed. When using a particular theory of failure, it is first necessary to 
calculate the normal and shear stress at points where they are the largest 
in the member. Once this state of stress is established, the principal 
stresses at these critical points must then be determined, since each of the 
following theories is based on knowing the principal stress.

Ductile Materials

Maximum Shear Stress Theory. The most common type of yielding 
of a ductile material, such as steel, is caused by slipping, which occurs 
between the contact planes of randomly ordered crystals that make up 
the material. If a specimen is made into a highly polished thin strip and 
subjected to a simple tension test, it then becomes possible to see how 
this slipping causes the material to yield, Fig. 10–26. The edges of the 
planes of slipping as they appear on the surface of the strip are referred 
to as Lüder’s lines. These lines clearly indicate the slip planes in the strip, 
which occur at approximately 45° as shown.

The slipping that occurs is caused by shear stress. To show this, consider 
an element of the material taken from a tension specimen, Fig. 10–27a, 
when the specimen is subjected to the yield stress sY. The maximum 
shear stress  can be determined from Mohr’s circle, Fig. 10–27b. The 
results indicate that

tmax =
sY

2
  (10–26)

45�

Lüder’s lines on
mild steel strip

Fig. 10–26
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Axial tension

T

T

sY

(a)

s

(b)

90� 

savg �
sY

2

sY

2
�max �

s1 � sYs2 � 0

�

45�

y ¿

(c)

x ¿

x

tmax �
sY

2 savg �
sY

2

Fig. 10–27

Furthermore, this shear stress acts on planes that are 45° from the planes 
of principal stress, Fig. 10–27c, and since these planes coincide with the 
direction of the Lüder lines shown on the specimen, this indeed indicates 
that failure occurs by shear.

Realizing that ductile materials fail by shear, in 1868 Henri Tresca 
proposed the maximum shear stress theory or Tresca yield criterion. 
This theory states that regardless of the loading, yielding of the material 
begins when the absolute maximum shear stress in the material reaches 
the shear stress that causes the same material to yield when it is subjected 
only to axial tension. Therefore, to avoid failure, it is required that tmax

abs   
in the material must be less than or equal to sY>2, where sY is  
determined from a simple tension test.

For plane stress we will use the ideas discussed in Sec. 9.5 and express 
the absolute maximum shear stress in terms of the principal stresses s1 
and s2. If these two principal stresses have the same sign, i.e., they are 
both tensile or both compressive, then failure will occur out of the plane, 
and from Eq. 9–13,

t
max

 abs =
s1

2

If instead the principal stresses are of opposite signs, then failure occurs 
in the plane, and from Eq. 9–14,

t
max

 abs =
s1 - s2

2

With these two equations and Eq. 10–26, the maximum shear stress 
theory for plane stress can therefore be expressed by the following 
criteria:

�s1 � = sY

�s2 � = sY
 r s1 , s2 have same signs 

�s1 - s2 � = sY} s1, s2 have opposite signs  

(10–27)

A graph of these equations is shown in Fig. 10–28. Therefore, if any 
point of the material is subjected to plane stress represented by the 
coordinates (s1, s2) that fall on the boundary or outside the shaded 
hexagonal area, the material will yield at the point and failure is said 
to occur.

Maximum shear stress theory

s1

�sY

�sY

�sY

�sY

s2

Fig. 10–28



548  Chapter 10  Strain tranSformation

10

Maximum Distortion Energy Theory. It was stated in Sec. 3.5 that 
an external load will deform a material, causing it to store energy 
internally throughout its volume. The energy per unit volume of material 
is called the strain-energy density, and if the material is subjected to a 
uniaxial stress the strain-energy density, defined by Eq. 3–6, becomes

u =
1
2

 sP (10–28)

If the material is subjected to triaxial stress, Fig. 10–29a, then each 
principal stress contributes a portion of the total strain-energy density,  
so that

u =
1
2

 s1 P1 +
1
2

 s2 P2 +
1
2

 s3 P3

Furthermore, if the material behaves in a linear elastic manner, then 
Hooke’s law applies. Therefore, substituting Eq. 10–18 into the above 
equation and simplifying, we get

u =
1

2E
 3s1 

2 + s2
2 + s3

2 - 2n(s1 s2 + s1 s3 + s3 s2)4  (10–29)

This strain-energy density can be considered as the sum of two parts. 
One part is the energy needed to cause a volume change of the element 
with no change in shape, and the other part is the energy needed to distort 
the element. Specifically, the energy stored in the element as a result of its 
volume being changed is caused by application of the average principal 
stress, savg = (s1 + s2 + s3)>3, since this stress causes equal principal 
strains in the material, Fig. 10–29b. The remaining portion of the stress, 
(s1 - savg), (s2 - savg), (s3 - savg), causes the energy of distortion, 
Fig. 10–29c.

Experimental evidence has shown that materials do not yield when 
they are subjected to a uniform (hydrostatic) stress, such as savg. As a 
result, in 1904, M. Huber proposed that yielding in a ductile material 
occurs when the distortion energy per unit volume of the material equals 
or exceeds the distortion energy per unit volume of the same material 
when it is subjected to yielding in a simple tension test. This theory is 
called the maximum distortion energy theory, and since it was later 
redefined independently by R. von Mises and H. Hencky, it sometimes 
also bears their names.

To obtain the distortion energy per unit volume, we must substitute the 
stresses (s1 - savg), (s2 - savg), and (s3 - savg) for s1, s2, and s3, 
respectively, into Eq. 10–29, realizing that savg = (s1 + s2 + s3)>3. 
Expanding and simplifying, we obtain

ud =
1 + n

6E
 3(s1 - s2)

2 + (s2 - s3)
2 + (s3 - s1)

24

(a)

s3

s2
s1

�

(b)

savg

savg
savg

(c)

�

(s2 � savg)

(s3 � savg)

(s1 � savg)

Fig. 10–29
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In the case of plane stress, s3 = 0, and this equation reduces to

ud =
1 + n

3E
 1s1

 2 - s1s2 + s2
 22

For a uniaxial tension test, s1 = sY, s2 = s3 = 0, and so

(ud)Y =
1 + n

3E
 sY

 2

Since the maximum distortion energy theory requires ud = (ud)Y, then 
for the case of plane or biaxial stress, we have

s1
 2 - s1s2 + s2 

2 = sY
 2  (10–30)

This is the equation of an ellipse, Fig. 10–30. Thus, if a point in the material 
is stressed such that (s1, s2) is plotted on the boundary or outside the 
shaded area, the material is said to fail.

A comparison of the above two failure criteria is shown in Fig. 10–31. 
Note that both theories give the same results when the principal stresses 
are equal in magnitude, i.e., s1 = s2 = sY, or when one of the principal 
stresses is zero and the other has a magnitude of  sY. If the material is 
subjected to pure shear, t, then the theories have the largest discrepancy 
in predicting failure. The stress coordinates of these points on the curves 
can be determined by considering the element shown in Fig. 10–32a. 
From Mohr’s circle representing this state of stress, Fig. 10–32b, we obtain 
principal stresses s1 = t and s2 = -t. Thus, with s1 = -s2 , then 
from Eq. 10–27, the maximum shear stress theory gives (sY>2, -sY>2), 
and  from Eq. 10–30, the maximum distortion energy theory gives 
(sY >23 , -sY>23), Fig. 10–31.

By performing torsion tests, which develop pure shear in a ductile 
specimen, it has been shown that the maximum distortion energy 
theory gives more accurate results for pure-shear failure than the 
maximum shear stress theory. In fact, since (sY >13)>(sY >2) = 1.15, 
the shear stress for yielding of the material, as given by the maximum 
distortion energy theory, is 15% more accurate than that given by the 
maximum shear stress theory.

Maximum distortion energy theory

s1

sY

sY

�sY

�sY

s2

Fig. 10–30

(a)

t

             (b)

90�

A (t, 0)

s2 � �t s1 � t
s

t

Fig. 10–32

Pure shear
s2

s1

sY

sY

�sY

�sY
(�sY, �sY)

(sY, sY)

�
sY

3
,sY

3

�
sY

2
,sY

2

Fig. 10–31
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brittle Materials 

Maximum Normal Stress Theory. It was previously stated that 
brittle materials, such as gray cast iron, tend to fail suddenly by fracture with 
no apparent yielding. In a tension test, the fracture occurs when the normal 
stress reaches the ultimate stress sult , Fig. 10–33a. Also, brittle fracture 
occurs in a torsion test due to tension, since the plane of fracture for an 
element is at 45° to the shear direction, Fig. 10–33b. The fracture surface is 
therefore helical as shown.* Experiments have further shown that during 
torsion the material’s strength is only slightly affected by the presence of 
the associated principal compressive stress being at right angles to the 
principal tensile stress. Consequently, the tensile stress needed to fracture 
a specimen during a torsion test is approximately the same as that needed 
to fracture a specimen in simple tension. Because of this, the  
maximum normal stress theory states that when a brittle material is 
subjected to a multiaxial state of stress, the material will fail when a principal  
tensile stress in the material reaches a value that is equal to the ultimate 
normal stress the material can sustain when it is subjected to simple tension.
Therefore, if the material is subjected to plane stress, we require that

 �s1 � = sult 

 �s2 � = sult  
(10–31)

These equations are shown graphically in Fig. 10–34. Here the stress 
coordinates (s1, s2) at a point in the material must not fall on the 
boundary or outside the shaded area, otherwise the material is said to 
fracture. This theory is generally credited to W. Rankine, who proposed it 
in the mid-1800s. Experimentally it has been found to be in close 
agreement with the behavior of brittle materials that have stress–strain 
diagrams that are similar in both tension and compression.

Mohr’s Failure Criterion. In some brittle materials the tension and 
compression properties are different. When this occurs a criterion based 
on the use of Mohr’s circle may be used to predict failure. This method 
was developed by Otto Mohr and is sometimes referred to as Mohr’s 
failure criterion. To apply it, one first performs three tests on the material. 
A uniaxial tensile test and uniaxial compressive test are used to  
determine the ultimate tensile and compressive stresses (sult)t and (sult)c, 
respectively. Also a torsion test is performed to determine the material’s 
ultimate shear stress tult . Mohr’s circle for each of these stress conditions 
is then plotted as shown in Fig. 10–35. These three circles are contained 

Failure of a brittle material
in tension

(a)

45�

Failure of a brittle material
in torsion

(b)

45�

Fig. 10–33

Maximum normal stress theory

s2

sult

sult

�sult

�sult
s1

Fig. 10–34 *A stick of blackboard chalk fails in this way when its ends are twisted with the fingers.
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within a “failure envelope” indicated by the extrapolated colored curve 
that is drawn tangent to all three circles. If a plane-stress condition at a 
point is represented by a circle that has a point of tangency with the 
envelope, or if it extends beyond the envelope’s boundary, then failure is 
said to occur.

We may also represent this criterion on a graph of principal stresses s1 
and s2. This is shown in Fig. 10–36. Here failure occurs when the absolute 
value of either one of the principal stresses reaches a value equal to or 
greater than (sult)t or (sult)c, or in general, if the state of stress at a point 
defined by the stress coordinates (s1 , s2) is plotted on the boundary or 
outside the shaded area.

Either the maximum normal stress theory or Mohr’s failure criterion 
can be used in practice to predict the failure of a brittle material. However, 
it should be realized that their usefulness is quite limited. A tensile 
fracture occurs very suddenly, and its initiation generally depends on 
stress concentrations developed at microscopic imperfections of the 
material, such as inclusions or voids, surface indentations, and small 
cracks. Unfortunately each of these irregularities varies from specimen to 
specimen, and so it becomes difficult to specify fracture on the basis of a 
single test.

Failure envelope

s
(sult)t(sult)c

tult

t

Fig. 10–35

Mohr’s failure criterion

(sult)t

(sult)t

(sult)c

(sult)c

s2

s1

Fig. 10–36
Important poInts

 • If a material is ductile, failure is specified by the initiation of yielding, whereas if it is brittle, it is specified 
by fracture.

 • Ductile failure can be defined when slipping occurs between the crystals that compose the material. This 
slipping is due to shear stress and the maximum shear stress theory is based on this idea.

 • Strain energy is stored in a material when it is subjected to normal stress. The maximum distortion energy 
theory depends on the strain energy that distorts the material, and not the strain energy that increases 
its volume.

 • The fracture of a brittle material is caused only by the maximum tensile stress in the material, and not the 
compressive stress. This is the basis of the maximum normal stress theory, and it is applicable if the 
stress–strain diagram is similar in tension and compression.

 • If a brittle material has a stress–strain diagram that is different in tension and compression, then Mohr’s 
failure criterion may be used to predict failure.

 • Due to material imperfections, tensile fracture of a brittle material is difficult to predict, and so theories of 
failure for brittle materials should be used with caution.
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EXAMPLE 10.12

The solid shaft shown in Fig. 10–37a has a radius of 5 mm and is made of 
steel having a yield stress of sY = 250 MPa. Determine if the loadings 
cause the shaft to fail according to the maximum-shear-stress theory and 
the maximum-distortion-energy theory.

SOLUTION
The state of stress in the shaft is caused by both the axial force and the 
torque. Since maximum shear stress caused by the torque occurs in the 
material at the outer surface, we have

 sx =
P
A

=
-65(103) N

p(0.0125 m)2 = -132.42 (106) N>m2 = -132.42 MPa

 txy =
Tc
A

=
(350 N # m)(0.0125 m)

p
2  (0.0125 m)4 = 114.08(106) N>m2 = 114.08 MPa

The stress components are shown acting on an element of material at 
point A in Fig. 10–37b. Rather than using Mohr’s circle, the principal stresses 
can also be obtained using the stress-transformation Eq. 9–5.

 s1.2 =
sx + sy

2
 { Ba

sx - sy

2
 b

2

+ txy
2

 =
-132.42 + 0

2
 { Ba -132.42 - 0

2
 b

2

+ 114.082

 = -66.21 { 131.90

 s1 = 65.69 MPa

 s2 = -198.11 MPa

Maximum-Shear-Stress Theory. Since the principal stresses have 
opposite signs, then from Sec. 9.5, the absolute maximum shear stress will 
occur in the plane, and therefore, applying the second of Eqs. 10–27, we have

 0s1 - s2 0 … sY

 0 65.69 - (-198.11) 0 …
?

250

 263.81 7 250

Thus, shear failure of the material will occur according to this theory.

Maximum-Distortion-Energy Theory. Applying Eq. 10–30, we have

 s1
2 - s1s2 + s2

2 … sY
2

 (65.69)2 - (65.69)(-198.11) + (-198.11)2 … (250)2

 56 578 … 62 500
Using this theory, failure will not occur.

A

65 kN

(a)

350 N m
12.5 mm

(b)

114.08 MPa

132.42 MPa

Fig. 10–37
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EXAMPLE 10.13

The solid cast-iron shaft shown in Fig. 10–38a is subjected to a torque of 
T = 500 N # m. Determine its smallest radius so that it does not fail 
according to the maximum normal stress theory. A specimen of cast iron, 
tested in tension, has an ultimate stress of (sult)t = 140 MPa.

r

T � 500 N � m

T � 500 N � m

(a)   

s1s2

(b)

s

tmax

�tmax

t

Fig. 10–38
SOLUTION
The maximum or critical stress occurs at a point located on the surface of 
the shaft. Assuming the shaft to have a radius r, the shear stress is

tmax =
Tc
J

=
(500 N # m)r

p
2  r 4

=
1000 N # m

pr 3

Mohr’s circle for this state of stress (pure shear) is shown in Fig. 10–38b. 
Since R = tmax, then

s1 = -s2 = tmax =
1000 N # m

pr 3

The maximum normal stress theory, Eq. 10–31, requires

 �s1 � … sult 

 
1000 N # m

pr 3
 … 140(106) N>m2

Thus, the smallest radius of the shaft is

 
1000 N # m

pr 3
= 140(106) N>m2  

 r = 0.013149 m = 13.1 mm Ans.
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PrObLEMS

10–59. A material is subjected to plane stress. Express the 
distortion energy theory of failure in terms of sx, sy, and txy.

*10–60. A material is subjected to plane stress. Express the 
maximum shear stress theory of failure in terms of sx, sy, and 
txy. Assume that the principal stresses are of different 
algebraic signs.

10–61. A bar with a square cross-sectional area is made of a 
material having a yield stress of sY = 840 MPa. If the bar is 
subjected to a bending moment of 10 kN # m, determine the 
required size of the bar according to the maximum- 
distortion-energy theory. Use a factor of safety of 1.5 with 
respect to yielding. 

10–62. Solve Prob. 10–61 using the maximum-shear-stress 
theory.

10–63. Derive an expression for an equivalent bending 
moment Me that, if applied alone to a solid bar with a circular 
cross section, would cause the same energy of distortion as 
the combination of an applied bending moment M and 
torque T.

*10–64. Derive an expression for an equivalent bending 
moment Me that, if applied alone to a solid bar with a 
circular cross section, would cause the same maximum 
shear stress as the combination of an applied moment M 
and torque T. Assume that the principal stresses are of 
opposite algebraic signs.

10–65. Derive an expression for an equivalent torque Te 
that, if applied alone to a solid bar with a circular cross section, 
would cause the same energy of distortion as the combination 
of an applied bending moment M and torque T.

10–66. An aluminum alloy 6061-T6 is to be used for a solid 
drive shaft such that it transmits 33 kW at 2400 rev>  min. 
Using a factor of safety of 2 with respect to yielding, 
determine the smallest-diameter shaft that can be selected 
based on the maximum-shear-stress theory.

10–67. Solve Prob. 10–66 using the maximum-distortion-
energy theory.

*10–68. If the material is machine steel having a yield stress 
of sY = 700 MPa, determine the factor of safety with respect 
to yielding if the maximum shear stress theory is considered.

50 MPa

80 MPa

Prob. 10–68

10–69. The short concrete cylinder having a diameter of  
50 mm is subjected to a torque of 500 N # m and an axial 
compressive force of 2 kN. Determine if it fails according to 
the maximum normal stress theory. The ultimate stress of the 
concrete is sult = 28 MPa.

500 N�m

500 N�m

2 kN

2 kN

Prob. 10–69
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10–70. A bar with a circular cross-sectional area is made of 
SAE 1045 carbon steel having a yield stress of sY = 1000 MPa.  
If the bar is subjected to a torque of 3.75 kN # m and a bending 
moment of 7 kN # m, determine the required diameter of the 
bar according to the maximum-distortion-energy theory. Use a 
factor of safety of 2 with respect to yielding.

10–71. The plate is made of hard copper, which yields at 
sY = 735 MPa. Using the maximum-shear-stress theory, 
determine the tensile stress sx that can be applied to the 
plate if a tensile stress sy = 0.5sx is also applied.

*10–72. Solve Prob. 10–71 using the maximum-distortion-
energy theory.

10–75. The components of plane stress at a critical point on 
a thin steel shell are shown. Determine if failure (yielding) 
has occurred on the basis of the maximum distortion energy 
theory. The yield stress for the steel is sY = 700 MPa.

*10–76. Solve Prob. 10–75 using the maximum shear  
stress theory.
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200 MPa

150 MPa

500 MPa

Probs. 10–75/76

10–77. If the A-36 steel pipe has outer and inner diameters 
of 30 mm and 20 mm, respectively, determine the factor of 
safety against yielding of the material at point A according to 
the maximum-shear-stress theory.

10–78. If the A-36 steel pipe has an outer and inner 
diameter of 30 mm and 20 mm, respectively, determine the 
factor of safety against yielding of the material at point A 
according to the maximum-distortion-energy theory.

150 mm

100 mm

200 mm

200 mm

900 N

900 N

A

Probs. 10–77/78

sy  0.5sx

sx

Prob. 10–71/72

10–73. The state of stress acting at a critical point on the 
seat frame of an automobile during a crash is shown in the 
figure. Determine the smallest yield stress for a steel that can 
be selected for the member, based on the maximum-shear- 
stress theory.

10–74. Solve Prob. 10–73 using the maximum-distortion-
energy theory.

175 MPa

560 MPa

Prob. 10–73/74
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10–79. If the 50-mm diameter shaft is made from brittle 
material having an ultimate strength of sult = 350 MPa for 
both tension and compression, determine if the shaft fails 
according to the maximum-normal-stress theory. Use a factor 
of safety of 1.5 against rupture.

*10–80. If the 50-mm diameter shaft is made from cast iron 
having tensile and compressive ultimate strengths of 
(sult)t = 350 MPa and (sult)c = 525 MPa, respectively, 
determine if the shaft fails in accordance with Mohr’s failure 
criterion.

150 kN
6 kN · m

Probs. 10–79/80

10–81. The components of plane stress at a critical point on 
an A-36 steel shell are shown. Determine if failure (yielding) 
has occurred on the basis of the maximum-shear-stress theory.

10–82. The components of plane stress at a critical point on an 
A-36 steel shell are shown. Determine if failure (yielding) has 
occurred on the basis of the maximum-distortion-energy theory.

*10–84. The state of stress acting at a critical point on a 
wrench is shown. Determine the smallest yield stress for steel 
that might be selected for the part, based on the maximum 
distortion energy theory.

10–85. The state of stress acting at a critical point on a 
wrench is shown in the figure. Determine the smallest yield 
stress for steel that might be selected for the part, based on 
the maximum shear stress theory.

300 MPa

150 MPa

Probs. 10–84/85

10–86. The shaft consists of a solid segment AB and a hollow 
segment BC, which are rigidly joined by the coupling at B. If 
the shaft is made from A-36 steel, determine the  maximum 
torque T that can be applied according to the maximum shear 
stress theory. Use a factor of safety of 1.5 against yielding.

10–87. The shaft consists of a solid segment AB and a  hollow 
segment BC, which are rigidly joined by the  coupling at B. If the 
shaft is made from A-36 steel, determine the maximum torque T 
that can be applied according to the maximum distortion energy 
theory. Use a factor of safety of 1.5 against yielding.

T

T

A

B

C

80 mm

100 mm
80 mm

Probs. 10–86/87

*10–88. The principal stresses acting at a point on a thin-
walled cylindrical pressure vessel are s1 = pr>t, s2 = pr>2t, 
and s3 = 0. If the yield stress is sY, determine the maximum 
value of p based on (a) the maximum shear stress theory and 
(b) the maximum distortion energy theory.

60 MPa

70 MPa

40 MPa

Prob. 10–81/82

10–83. The yield stress for heat-treated beryllium copper is 
sY = 900 MPa. If this material is subjected to plane stress 
and elastic failure occurs when one principal stress is 1000 
MPa, what is the smallest magnitude of the other principal 
stress? Use the maximum-distortion-energy theory.
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10–89. The gas tank has an inner diameter of 1.50 m and a 
wall thickness of 25 mm. If it is made from A-36 steel and the 
tank is pressured to 5 MPa, determine the factor of safety 
against yielding using (a) the maximum-shear-stress theory, 
and (b) the maximum-distortion-energy theory.

10–91. The internal loadings at a critical section along the steel 
drive shaft of a ship are calculated to be a torque of 3.45 kN # m 
a bending moment of 2.25 kN # m and an axial thrust of 12.5 kN. 
If the yield points for tension and shear are sY = 700 MPa and 
tY = 350 MPa, respectively, determine the required diameter 
of the shaft using the maximum-shear-stress theory.

12.5 kN

3.45 kN m
2.25 kN m

Prob. 10–91

*10–92. If the material is machine steel having a yield stress 
of sY = 750 MPa, determine the factor of safety with respect 
to yielding using the maximum distortion energy theory.

500 MPa

200 MPa

30�

Prob. 10–92

10–93. If the material is machine steel having a yield stress 
of sY = 750 MPa, determine the factor of safety with respect 
to yielding if the maximum shear stress theory is considered.

450 MPa

150 MPa

Prob. 10–93

 10.7 theorieS of failure 557

Prob. 10–89

10–90. The gas tank is made from A-36 steel and has an 
inner diameter of 1.50 m. If the tank is designed to withstand 
a pressure of 5 MPa, determine the required minimum wall 
thickness to the nearest millimeter using (a) the maximum 
shear stress theory, and (b) maximum distortion energy 
theory. Apply a factor of safety of 1.5 against yielding.

Prob. 10–90
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CHAPTEr rEVIEW

When an element of material is subjected to 
deformations that only occur in a single plane, 
then it undergoes plane strain. If the strain 
components Px, Py, and gxy are known for a 
specified orientation of the element, then 
the strains acting for some other orientation 
can be determined using the plane-strain 
transformation equations. Likewise, the 
principal normal strains and maximum 
in-plane shear strain can be determined 
using transformation equations.

 Px′ =
Px + Py

2
+

Px - Py

2
 cos 2u +

gxy

2
 sin 2u

 Py′ =
Px + Py

2
-

Px - Py

2
 cos 2u -

gxy

2
 sin 2u

 
gx′y′

2
= - ¢ Px - Py

2
≤ sin 2u +

gxy

2
 cos 2u

 P1,2 =
Px + Py

2
 { Ba

Px - Py

2
b

2

+ a
gxy

2
b

2

 

Principal strains

 

g
in@plane 
max 

2
= Ba

Px - Py

2
b

2

+ a
gxy

2
b

2

Maximum in-plane shear stress

 Pavg =
Px + Py

2

Strain transformation problems can also  
be solved in a semigraphical manner  
using Mohr’s circle. To draw the circle, the 
P and g>2 axes are established, and the 
center of the circle C [(Px + Py)>2, 0] and 
the “reference point” A (Px , gxy>2) are 
plotted. The radius of the circle extends 
between these two points and is  
determined from trigonometry.

C

A

R �
2 2

�2
Px � Py gxy

2

2
Px � Py

gxy

2

P

Px

2
Px � Py

Pavg �

g

2

u � 0�

If P1 and P2 have the same sign, then the 
absolute maximum shear strain will be out 
of plane.

If P1 and P2 have opposite signs, then the 
absolute maximum shear strain will be 
equal to the maximum in-plane shear strain. 

 g
max abs = P1

g
max abs 

=  g
max 
in@plane = P1 - P2



10

If the material is subjected to triaxial  
stress, then the strain in each direction is 
influenced by the strain produced by all 
three stresses. Hooke’s law then involves the 
material properties E and n.

 Px =
1
E

 [sx - n(sy + sz)]

 Py =
1
E

 [sy - n(sx + sz)]

 Pz =
1
E

 [sz - n(sx + sy)]

If E and n are known, then G can be 
determined.

G =
E

2(1 + n)

The dilatation is a measure of volumetric 
strain.

The bulk modulus is used to measure the 
stiffness of a volume of material.

e =
1 - 2n

E
 (sx + sy + sz)

k =
E

3(1 - 2n)

If the principal stresses at a critical point in 
the material are known, then a theory of 
failure can be used as a basis for design.

Ductile materials fail in shear, and here the 
maximum shear stress theory or the maximum 
distortion energy theory can be used to 
predict failure. Both of these theories make 
comparison to the yield stress of a specimen 
subjected to a uniaxial tensile stress.

Brittle materials fail in tension, and so the 
maximum normal stress theory or Mohr’s 
failure criterion can be used to predict 
failure. Here comparisons are made with 
the ultimate tensile stress developed in a 
specimen.

 Chapter review 559
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r E V I E W  P r O b L E M S

R10–1. In the case of plane stress, where the in-plane 
principal strains are given by P1 and P2, show that the third 
principal strain can be obtained from

P3 =
-n(P1 + P2)

(1 - n)
   

where n is Poisson’s ratio for the material.

R10–2. The plate is made of material having a modulus of 
elasticity E = 200 GPa and Poisson’s ratio n = 1

3. Determine 
the change in width a, height b, and thickness t when it is 
subjected to the uniform distributed loading shown.

y

z x

a � 400 mm

t � 20 mm

b � 300 mm

2 MN/m

3 MN/m

Prob. R10–2

R10–3. If the material is machine steel having a yield 
stress of sY = 500 MPa, determine the factor of safety with 
respect to yielding if the maximum shear stress theory is 
considered.

100 MPa

150 MPa

Prob. R10–3

*R10–4. The components of plane stress at a critical point 
on a thin steel shell are shown. Determine if yielding has 
occurred on the basis of the maximum distortion energy 
theory. The yield stress for the steel is sY = 650 MPa.

340 MPa

55 MPa

65 MPa

Prob. R10–4

R10–5. The 60° strain rosette is mounted on a beam. The 
following readings are obtained for each gage: 
Pa = 600(10-6), Pb = -700(10-6), and Pc = 350(10-6). 
Determine (a) the in-plane principal strains and (b) the 
maximum in-plane shear strain and average normal strain. 
In each case show the deformed element due to  
these strains.

60�

a

b

c

60�

60�

Prob. R10–5
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R10–6. The state of strain at the point on the bracket  
has components Px = 350(10-6), Py = -860(10-6), 
gxy = 250(10-6). Use the strain transformation equations to 
determine the equivalent in-plane strains on an element 
oriented at an angle of u = 45° clockwise from the original 
position. Sketch the deformed element within the x–y plane 
due to these strains.

R10–9. The state of strain at the point on the bracket  
has components Px = -130(10-6), Py = 280(10-6), 
gxy = 75(10-6). Use the strain transformation equations to 
determine (a) the in-plane principal strains and (b) the 
maximum in-plane shear strain and average normal strain. 
In each case specify the orientation of the element and show 
how the strains deform the element within the x–y plane.

y

x

Prob. R10–9

R10–10. The state of plane strain on the element is 
Px = 400(10-6), Py = 200(10-6), and gxy = -300(10-6). 
Determine the equivalent state of strain, which represents 
(a) the principal strains, and (b) the maximum in-plane 
shear strain and the associated average normal strain. 
Specify the orientation of the corresponding element at the 
point with respect to the original element. Sketch the results 
on the element.

y

x

dy

dx

Pydy

Pxdx

gxy

2

gxy

2

Prob. R10–10

y

x

Prob. R10–6

R10–7. A strain gauge forms an angle of 45° with the axis of 
the 50-mm diameter shaft. If it gives a reading of P = -200 
(10-6) when the torque T is applied to the shaft, determine 
the magnitude of T. The shaft is made from A-36 steel.

45

T

T

Prob. R10–7

*R10–8. A differential element is subjected to plane strain 
that has the following components; Px = 950(10-6), 
Py = 420(10-6), gxy = -325(10-6). Use the strain-
transformation equations and determine (a) the principal 
strains and (b) the maximum in-plane shear strain and the 
associated average strain. In each case specify the orientation 
of the element and show how the strains deform the element.
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Beams are important structural members used to support roof and floor loadings.

(© Olaf Speier/Alamy)
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Design of Beams  
anD shafts

11.1 Basis for Beam Design
Beams are said to be designed on the basis of strength when they can resist 
the internal shear and moment developed along their length. To design a 
beam in this way requires application of the shear and flexure formulas 
provided the material is homogeneous and has linear elastic behavior. 
Although some beams may also be subjected to an axial force, the effects 
of this force are often neglected in design since the axial stress is generally 
much smaller than the stress developed by shear and bending.

Chapter OBJeCtIVeS 

n In this chapter we will discuss how to design a prismatic beam so 
that it is able to resist both internal bending and shear. Also, we 
will present a method for determining the shape of a beam that 
is fully stressed along its length. At the end of the chapter, we will 
consider the design of shafts based on their resistance to both 
internal bending and torsion.
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As shown in Fig. 11–1, the external loadings on a beam will create 
additional stresses in the beam directly under the load. Notably, a 
compressive stress sy  will be developed, in addition to the bending 
stress sx  and shear stress txy  discussed previously in Chapters 6 and 7. 
Using advanced methods of analysis, as treated in the theory of elasticity, 
it can be shown that sy  diminishes rapidly throughout the beam’s depth, 
and for most beam span-to-depth ratios used in engineering practice, the 
maximum value of sy  remains small compared to the bending stress sx , 
that is, sx W sy. Furthermore, the direct application of concentrated 
loads is generally avoided in beam design. Instead, bearing plates are 
used to spread these loads more evenly onto the surface of the beam, 
thereby further reducing sy .

Beams must also be braced properly along their sides so that they do 
not sidesway or suddenly become unstable. In some cases they must also 
be designed to resist deflection, as when they support ceilings made of 
brittle materials such as plaster. Methods for finding beam deflections 
will be discussed in Chapter 12, and limitations placed on beam sidesway 
are often discussed in codes related to structural or mechanical design.

Knowing how the magnitude and direction of the principal stress 
change from point to point within a beam is important if the beam is 
made of a brittle material, because brittle materials, such as concrete, fail 
in tension. To give some idea as to how to determine this variation, let’s 
consider the cantilever beam shown in Fig. 11–2a, which has a rectangular 
cross section and supports a load P at its end.

In general, at an arbitrary section a–a along the beam, Fig. 11–2b, the 
internal shear V and moment M create a parabolic shear-stress distribution 
and a linear normal-stress distribution, Fig. 11–2c. As a result, the stresses 
acting on elements located at points 1 through 5 along the section are 
shown in Fig. 11–2d. Note that elements 1 and 5 are subjected only to a 
maximum normal stress, whereas element 3, which is on the neutral axis, is 
subjected only to a maximum in-plane shear stress. The intermediate 
elements 2 and 4 must resist both normal and shear stress.

w
P

y

x

sy

txy

sx

sy

txy

sx

Fig. 11–1 
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When these states of stress are transformed into principal stresses, using 
either the stress transformation equations or Mohr’s circle, the results will 
look like those shown in Fig. 11–2e. If this analysis is extended to many 
vertical sections along the beam other than a–a, a profile of the results 
can be represented by curves called stress trajectories. Each of these 
curves indicates the direction of a principal stress having a constant 
magnitude. Some of these trajectories are shown in Fig. 11–3. Here the 
solid lines represent the direction of the tensile principal stresses and 
the dashed lines represent the direction of the compressive principal 
stresses. As expected, the lines intersect the neutral axis at 45° angles 
(like element 3), and the solid and dashed lines will intersect at 90° 
because the principal stresses are always 90° apart. Once the directions 
of these  lines are established, it can help engineers decide where and 
how to place reinforcement in a beam if it is made of brittle material, so 
that it does not fail.

P

Stress trajectories for
cantilevered beam

Fig. 11–3 

P

a

a

(a)

     (b)

P

V

M2

3
4

1

5

    

Bending stress
distribution

Shear stress
distribution

(c)

1

2

3

4

5

(d)

x–y stress components

1

2

3

4

5

Principal stresses

(e)

Fig. 11–2 
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11.2 Prismatic Beam Design
Most beams are made of ductile materials, and when this is the case it is 
generally not necessary to plot the stress trajectories for the beam. Instead, 
it is simply necessary to be sure the actual bending and shear stress in the 
beam do not exceed allowable limits as defined by structural or mechanical 
codes. In the majority of cases the suspended span of the beam will be 
relatively long, so that the internal moments within it will be large. When 
this is the case, the design is then based upon bending, and afterwards the 
shear strength is checked.

A bending design requires a determination of the beam’s section 
modulus, a geometric property which is the ratio of I to c, that is,  
S = I>c. Using the flexure formula, s = Mc>I, we have

 Sreq>d =
Mmax

sallow
 (11–1)

Here Mmax is determined from the beam’s moment diagram, and the 
allowable bending stress, sallow , is specified in a design code. In many cases 
the beam’s as yet unknown weight will be small, and can be neglected in 
comparison with the loads the beam must carry. However, if the additional 
moment caused by the weight is to be included in the design, a selection 
for S is made so that it slightly exceeds Sreq>d.

Once Sreq>d is known, if the beam has a simple cross-sectional shape, 
such as a square, a circle, or a rectangle of known width-to-height 
proportions, its dimensions can be determined directly from Sreq>d, since 
Sreq>d = I>c. However, if the cross section is made from several elements, 
such as a wide-flange section, then an infinite number of web and flange 
dimensions can be determined that satisfy the value of Sreq>d. In practice, 
however, engineers choose a particular beam meeting the requirement 
that S 7 Sreq>d from a table that lists the standard sizes available from 
manufacturers. Often several beams that have the same section modulus 
can be selected, and if deflections are not restricted, usually the beam 
having the smallest cross-sectional area is chosen, since it is made of 
less material, and is therefore both lighter and more economical than 
the others.

A B

The two floor beams are connected to the 
beam AB, which transmits the load to the 
columns of this building frame. For design, 
all the connections can be considered to 
act as pins.
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Wood Sections. Most beams made of wood have rectangular cross 
sections because such beams are easy to manufacture and handle. Manuals, 
such as that of the National Forest Products Association, list the dimensions 
of lumber often used in the design of wood beams. Lumber is identified by 
its nominal dimensions, such as 50 * 100 (50 mm by 100 mm); however, 
its actual or “dressed” dimensions are smaller, being 37.5 mm by 87.5 mm. 
The reduction in the dimensions occurs in order to obtain a smooth surface 
from lumber that is rough sawn. Obviously, the actual dimensions must be 
used whenever stress calculations are performed on wood beams.

Once the beam has been selected, the shear formula can then be used 
to be sure the allowable shear stress is not exceeded, tallow Ú VQ>It. 
Often this requirement will not present a problem; however, if the beam 
is “short” and supports large concentrated loads, the shear-stress 
limitation may dictate the size of the beam.

Steel Sections. Most manufactured steel beams are produced by 
rolling a hot ingot of steel until the desired shape is formed. These 
so-called rolled shapes have properties that are tabulated in the 
American Institute of Steel Construction (AISC) manual. A 
representative listing of different cross sections taken from this manual is 
given in Appendix B. Here the wide-flange shapes  are designated by 
their depth and mass per unit length; for example, W460 * 68 indicates 
a wide-flange cross section (W) having a depth of 459 mm and a mass per 
unit length of 68 kg>m, Fig. 11–4. For any given selection, the mass per 
unit length, dimensions, cross-sectional area, moment of inertia, and 
section modulus are reported. Also included is the radius of gyration, r, 
which is a geometric property related to the section’s buckling strength. 
This will be discussed in Chapter 13. 

459 mm
9.14 mm

154 mm

W460 � 68

15.4 mm

Fig. 11–4 

Typical profile view of a steel 
wide-flange beam

A The large shear force that occurs at the 
support of this steel beam can cause 
localized buckling of the beam’s flanges 
or web. To avoid this, a “stiffener” A is 
placed along the web to maintain stability.
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Built-up Sections. A built-up section is constructed from two or 
more parts joined together to form a single unit. The capacity of this 
section to resist a moment will vary directly with its section modulus, since 
Sreq’d = M>sallow. If Sreq’d is increased, then so is I because by definition 
Sreq’d = I>c. For this reason, most of the material for a built-up section 
should be placed as far away from the neutral axis as practical. This, of 
course, is what makes a deep wide-flange beam so efficient in resisting a 
moment. For a very large load, however, an available rolled-steel section 
may not have a section modulus great enough to support the load. When 
this is the case, engineers will usually “build up” a beam made from plates 
and angles. A  deep I-shaped section having this form is called a plate 
girder. For example, the steel plate girder in Fig. 11–5 has two flange plates 
that are either welded or, using angles, bolted to the web plate.

Wood beams are also “built up,” usually in the form of a box beam,  
Fig. 11–6a. They may also be made having plywood webs and larger 
boards for the flanges. For very large spans, glulam beams are used. 
These members are made from several boards glue-laminated together 
to form a single unit, Fig. 11–6b.

Just as in the case of rolled sections or beams made from a single piece, 
the design of built-up sections requires that the bending and shear stresses 
be checked. In addition, the shear stress in the fasteners, such as weld, glue, 
nails, etc., must be checked to be certain the beam performs as a single unit.

Welded Bolted

Steel plate girders

Fig. 11–5 

Wooden box beam

(a)

 

Glulam beam

(b)  

Fig. 11–6 

 • Beams support loadings that are applied perpendicular to 
their axes. If they are designed on the basis of strength, they 
must resist their allowable shear and bending stresses.

 • The maximum bending stress in the beam is assumed to be 
much greater than the localized stresses caused by the 
application of loadings on the surface of the beam.

Important poInts 
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procedure for analysIs

Based on the previous discussion, the following procedure provides a rational method for the design of a 
beam on the basis of strength.

Shear and Moment Diagrams.

 • Determine the maximum shear and moment in the beam. Often this is done by constructing the 
beam’s shear and moment diagrams.

Bending Stress.

 • If the beam is relatively long, it is designed by finding its section modulus using the flexure formula, 
Sreq>d = Mmax>sallow.

 • Once Sreq>d is determined, the cross-sectional dimensions for simple shapes can then be calculated, 
since Sreq>d = I>c.

 • If rolled-steel sections are to be used, several possible beams can be selected from the tables in 
Appendix B that meet the requirement that S Ú Sreq>d. Of these, choose the one having the smallest 
cross-sectional area, since this beam has the least weight and is therefore the most economical.

 •	 Make sure that the selected section modulus, S, is slightly greater than Sreq>d, so that the additional 
moment created by the beam’s weight is considered.

Shear Stress.

 • Normally beams that are short and carry large loads, especially those made of wood, are first designed 
to resist shear and then later checked against the allowable bending stress requirement.

 • Using the shear formula, check to see that the allowable shear stress is not exceeded; that is, use 
tallow Ú Vmax Q>It .

 •		If the beam has a solid rectangular cross section, the shear formula becomes tallow Ú 1.5 (Vmax>A)   
(see Eq. 2 of Example 7.2.), and if the cross section is a wide flange, it is generally appropriate to assume that 
the shear stress is constant over the cross-sectional area of the beam’s web so that tallow Ú Vmax>Aweb, 
where Aweb is determined from the product of the web’s depth and its thickness. (See the hint at the end of 
Example 7.3.)

adequacy of Fasteners.

 •	 The adequacy of fasteners used on built-up beams depends upon the shear stress the fasteners can 
resist. Specifically, the required spacing of nails or bolts of a particular size is determined from the 
allowable shear flow, qallow = VQ>I , calculated at points on the cross section where the fasteners are 
located. (See Sec. 7.3.)
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A beam is to be made of steel that has an allowable bending stress of 
sallow = 165 MPa and an allowable shear stress of tallow = 100 MPa. Select 
an appropriate W shape that will carry the loading shown in Fig. 11–7a.

SOLUTION

Shear and Moment Diagrams. The support reactions have been 
calculated, and the shear and moment diagrams are shown in Fig. 11–7b. 
From these diagrams, V max = 90 kN and M max = 120 kN # m.

Bending Stress. The required section modulus for the beam is 
determined from the flexure formula,

Sreq>d =
M max 

sallow
=

120(103) N # m

165(106) N>m2 = 0.7273(10- 3) m3 = 727.3(106) mm3

Using the table in Appendix B, the following beams are adequate:

W460 * 52  S = 942(103) mm3

W410 * 46  S = 774(103) mm3

W360 * 51  S = 794(103) mm3

W310 * 67  S = 948(103) mm3

W250 * 67  S = 809(103) mm3

W200 * 86  S = 853(103) mm3

The beam having the least mass per meter is chosen, i.e.,

W410 * 46

The actual maximum moment Mmax, which includes the weight of the 
beam, can be calculated and the adequacy of the selected beam can be 
checked. In comparison with the applied loads, however, the uniform 
distributed load Ww = (46 kg>m)(9.81 N/kg) = 451 N/m due to the 
beam’s weight will only slightly increase Sreq’d to 733(103) mm3. In spite of 
this,

 Sred>d = 733(103) mm3 6 774(103) mm3 OK

Shear Stress. Since the beam is a wide-flange section, the average shear 
stress within the web will be considered. (See Example 7.3.) Here the web 
is assumed to extend from the very top to the very bottom of the beam. 
From Appendix B, for a W410 * 46, d = 403 mm and tw = 8.76 mm. 
Thus,

 tavg =
V max 

Aw
=

90(103) N

(0.403 m)(0.00876 m)
= 25.5 MPa 6 100 MPa OK

Use a W410 * 46. Ans.

EXAMPLE   11.1 

(a)

120 kN 60 kN

2 m2 m2 m

(b)

30 kN 150 kN

30

V (kN)

M (kN�m)

�90

60
x (m)

x (m)

�120

60

2.667 m

2 m 2 m 2 m

120 kN 60 kN

Fig. 11–7 



 11.2 prismatiC Beam Design 571

11

The laminated wooden beam shown in Fig. 11–8a supports a uniform 
distributed loading of 12 kN>m. If the beam is to have a height-to-width 
ratio of 1.5, determine its smallest width. Take sallow = 9 MPa, and 
tallow = 0.6 MPa. Neglect the weight of the beam.

SOLUTION

Shear and Moment Diagrams. The support reactions at A and B 
have been calculated, and the shear and moment diagrams are shown 
in Fig. 11–8b. Here Vmax = 20 kN, Mmax = 10.67 kN # m.

Bending Stress. Applying the flexure formula,

Sreq>d =
Mmax

sallow
=

10.67(103) N # m

9(106) N>m2 = 0.00119 m3

Assuming that the width is a, then the height is 1.5a, Fig. 11–8a. Thus,

 Sreq>d =
I
c
= 0.00119 m3 =

1
12(a)(1.5a)3

(0.75a)

 a3 = 0.003160 m3

 a = 0.147 m

Shear Stress. Applying the shear formula for rectangular sections 
(which is a special case of tmax = VQ>It , as shown in Example 7.2), 
we have

 tmax = 1.5 
Vmax

A
= (1.5) 

20(103) N

(0.147 m)(1.5)(0.147 m)

 = 0.929 MPa 7 0.6 MPa

Since the design based on bending fails the shear criterion, the beam 
must be redesigned on the basis of shear.

  tallow = 1.5 
Vmax

A

  600 kN>m2 = 1.5 
20(103) N

(a)(1.5a)

  a = 0.183 m = 183 mm Ans.

This larger section will also adequately resist the bending stress.

EXAMPLE   11.2 

 

1 m

(a)

12 kN/m

a

1.5a

3 mA B

�12

20

x (m)

x (m)

(b)

16 kN32 kN

�16

M (kN�m)

V (kN)

�6

10.67

1.33 m

1.33 m

12 kN/m

1 m 3 m

Fig. 11–8 
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The wooden T-beam shown in Fig. 11–9a is made from two 
200 mm * 30 mm boards. If sallow = 12 MPa and tallow = 0.8 MPa, 
determine if the beam can safely support the loading shown. Also, specify 
the maximum spacing of nails needed to hold the two boards together if 
each nail can safely resist 1.50 kN in shear.

EXAMPLE   11.3  

�1

1.5

x (m)

x (m)

(b)

0.5

M (kN�m)

V (kN)

2

2 m

1.5 kN

1 kN

0.5 kN/m

1.5 kN

2 m

Fig. 11–9 

SOLUTION

Shear and Moment Diagrams. The reactions on the beam are shown, 
and the shear and moment diagrams are drawn in Fig. 11–9b. Here 
Vmax = 1.5 kN, Mmax = 2 kN # m.

Bending Stress. The neutral axis (centroid) will be located from the 
bottom of the beam. Working in units of meters, we have

 y =
ΣyA

ΣA

 =
(0.1 m)(0.03 m)(0.2 m) + 0.215 m(0.03 m)(0.2 m)

0.03 m(0.2 m) + 0.03 m(0.2 m)
= 0.1575 m

Thus,

 I = c 1
12

 (0.03 m)(0.2 m)3 + (0.03 m)(0.2 m)(0.1575 m - 0.1 m)2 d

       + c 1
12

 (0.2 m)(0.03 m)3 + (0.03 m)(0.2 m)(0.215 m - 0.1575 m)2 d

 = 60.125(10-6) m4

Since c = 0.1575 m (not 0.230 m - 0.1575 m = 0.0725 m), we require

sallow Ú
Mmaxc

I

 12(106) Pa Ú
2(103) N # m(0.1575 m)

60.125(10-6) m4 = 5.24(106) Pa OK

 

200 mm

200 mm

30 mm

30 mm

_
y

 

2 m

(a)

1.5 kN
0.5 kN/m

C
B

2 m

D
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Shear Stress. Maximum shear stress in the beam depends upon the 
magnitude of Q and t. It occurs at the neutral axis, since Q is a maximum 
there and at the neutral axis the thickness t = 0.03 m is the smallest for 
the cross section. For simplicity, we will use the rectangular area below 
the neutral axis to calculate Q, rather than a two-part composite area 
above this axis, Fig. 11–9c. We have

Q = y′A′ = a0.1575 m
2

b [(0.1575 m)(0.03 m)] = 0.372(10-3) m3

so that

tallow Ú
VmaxQ

It

 800(103) Pa Ú
1.5(103) N[0.372(10-3)] m3

60.125(10-6)  m4(0.03 m)
= 309(103) Pa OK

Nail Spacing. From the shear diagram it is seen that the shear varies 
over the entire span. Since the nail spacing depends on the magnitude of 
shear in the beam, for simplicity (and to be conservative), we will design 
the spacing on the basis of V = 1.5 kN for region BC, and V = 1 kN for 
region CD. Since the nails join the flange to the web, Fig. 11–9d, we have

Q = y′A′ = (0.0725 m - 0.015 m)[(0.2 m)(0.03 m)] = 0.345(10-3) m3

The shear flow for each region is therefore

 qBC =
VBC Q

I
=

1.5(103) N[0.345(10-3) m3]

60.125(10-6) m4 = 8.61 kN>m

 qCD =
VCDQ

I
=

1(103) N[0.345(10-3) m3]

60.125(10-6) m4 = 5.74 kN>m

One nail can resist 1.50 kN in shear, so the maximum spacing becomes

 sBC =
1.50 kN

8.61 kN>m
= 0.174 m

 sCD =
1.50 kN

5.74 kN>m
= 0.261 m

For ease of measuring, use

  sBC = 150 mm Ans.

  sCD = 250 mm Ans.

    

0.1575 m

0.03 m

AN
0.0725 m

(c)

0.2 m

AN
0.0725 m

(d)

0.03 m

Fig. 11–9 (cont.)
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F11–1. Determine the minimum dimension a to the nearest 
mm of the beam’s cross section to safely support the load. 
The wood has an allowable normal stress of sallow = 10 MPa  
and an allowable shear stress of tallow = 1 MPa.

F11–4. Determine the minimum dimension h to the nearest 
mm of the beam’s cross section to safely support the load. 
The wood has an allowable normal stress of sallow = 15 MPa 
and an allowable shear stress of tallow = 2.5 MPa.

FUNDAMENTAL PROBLEMS

1 m

2a

1 m

6 kN6 kN

a

Prob. F11–1

F11–2. Determine the minimum diameter d to the 
nearest mm of the rod to safely support the load. The rod 
is made of a material having an allowable normal stress 
of  sallow = 100 MPa and an allowable shear stress of 
tallow = 50 MPa.

0.5 m 0.5 m

15 kN

5 kN  m

Prob. F11–2

F11–3. Determine the minimum dimension a to the nearest 
mm of the beam’s cross section to safely support the load. 
The wood has an allowable normal stress of sallow = 12 MPa 
and an allowable shear stress of tallow = 1.5 MPa.

1 m0.5 m

15 kN

A B

a

2 a

Prob. F11–3 

2 m

100 mm

25 kN/m

A B

h

F11–4Prob. F11–4 

F11–5. Determine the minimum dimension b to the nearest 
mm of the beam’s cross section to safely support the load. 
The wood has an allowable normal stress of sallow = 12 MPa 
and an allowable shear stress of tallow = 1.5 MPa.

A B

b

1 m 1 m 1 m 1 m 

50 kN

   5 kN�m    5 kN�m 

3b

Prob. F11–5

F11–6. Select the lightest W410-shaped section that can 
safely support the load. The beam is made of steel having an 
allowable normal stress of sallow = 150 MPa and an allowable 
shear stress of tallow = 75 MPa. Assume the beam is pinned 
at A and roller supported at B.

A
B

1 m

150 kN

2 m

Prob. F11–6
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11–1. The beam is made of timber that has an allowable 
bending stress of sallow = 6.5 MPa and an allowable shear 
stress of tallow = 500 kPa. Determine its dimensions if it is to 
be rectangular and have a height-to-width ratio of 1.25. 
Assume the beam rests on smooth supports.

11–5. Select the lightest-weight steel wide-flange beam 
from Appendix B that will safely support the machine 
loading shown. The allowable bending stress is 
sallow = 168 MPa and the allowable shear stress is 
tallow = 100 MPa.

PROBLEMS

2 m 2 m4 m

8 kN/m

Prob. 11–1 

11–2. Select the lightest-weight W310 steel wide-flange 
beam from Appendix B that will safely support the loading 
shown, where P = 30 kN. The allowable bending stress is 
sallow = 150 MPa and the allowable shear stress is 
tallow = 84 MPa.

11–3. Select the lightest-weight W360 steel wide-flange 
beam from Appendix B that will safely support the loading 
shown, where P = 60 kN. The allowable bending stress is 
sallow = 150 MPa and the allowable shear stress is 
tallow = 84 MPa.

1.8  m1.8 m2.7 m

PP

Probs. 11–2/3 

*11–4. Determine the minimum width of the beam to the 
nearest multiples of 5 mm that will safely support the 
loading of P = 40 kN. The allowable bending stress is 
sallow = 168 MPa and the allowable shear stress is 
tallow = 100 MPa.

P

1.8 m 1.8 m

A
150 mm B

Prob. 11–4 

25 kN

0.6 m 0.6 m 0.6 m 0.6 m 0.6 m

25 kN 25 kN 25 kN

Prob. 11–5 

11–6. The compound beam is made from two sections, 
which are pinned together at B. Use Appendix B and select 
the lightest-weight wide-flange beam that would be safe for 
each section if the allowable bending stress is 
sallow = 168 MPa and the allowable shear stress is 
tallow = 100 MPa. The beam supports a pipe loading of 
6 kN and 9 kN as shown.

1.8 m 1.8 m 2.4 m 3 m

B
A C

6 kN
9 kN

Prob. 11–6 

11–7. The brick wall exerts a uniform distributed load of 
20 kN/m on the beam. If the allowable bending stress is 
sallow = 154 MPa and the allowable shear stress is 
tallow = 84 MPa, select the lightest wide-flange section 
from Appendix B that will safely support the load.

1.2 m 1.8 m3 m

20 kN/m

Prob. 11–7 
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*11–8. If the bearing pads at A and B support only vertical 
forces, determine the greatest magnitude of the uniform 
distributed loading w that can be applied to the beam. 
sallow = 15 MPa, tallow = 1.5 MPa.

11–11. The box beam has an allowable bending stress 
of  sallow = 10 MPa and an allowable shear stress of 
tallow = 775 kPa. Determine the maximum intensity w of 
the distributed loading that it can safely support. Also, 
determine the maximum safe nail spacing for each third 
of the length of the beam. Each nail can resist a shear force 
of 200 N.

150 mm

25 mm

25 mm

150 mm

A

w

B

1 m 1 m

Prob. 11–8 

11–9. Select the lightest W360 wide-flange beam from 
Appendix B that can safely support the loading. The beam 
has an allowable normal stress of sallow = 150 MPa and an 
allowable shear stress of tallow = 80 MPa. Assume there is a 
pin at A and a roller support at B.

11–10. Investigate if the W250 * 58 beam can safely 
support the loading. The beam has an allowable normal 
stress of sallow = 150 MPa and an allowable shear stress of 
tallow = 80 MPa. Assume there is a pin at A and a roller 
support at B.

50 kN

40 kN/m

4 m 2 m
A B

Probs. 11–9/10 

6 m150 mm
30 mm

250 mm

30 mm

30 mm
w

Prob. 11–11 

*11–12. Select the lightest-weight steel wide-flange beam 
from Appendix B that will safely support the loading shown. 
The allowable bending stress is sallow = 150 MPa and the 
allowable shear stress is tallow = 84 MPa.

25 kN

1.8 m 3.6 m

A
B

27 kN  m

Prob. 11–12 

11–13. The simply supported beam is made of timber that 
has an allowable bending stress of sallow = 6.72 MPa and an 
allowable shear stress of tallow = 0.525 MPa. Determine the 
dimension b if it is to be rectangular and have a height-to- 
width ratio of 1.25.

1.8 m 1.8 m

75 kN/m

b

1.25 b

A B

Prob. 11–13 
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11–14. The beam is used in a railroad yard for loading and 
unloading cars. If the maximum anticipated hoist load is 
60  kN, select the lightest-weight steel wide-flange section 
from Appendix B that will safely support the loading. The 
hoist travels along the bottom flange of the beam, 
0.3 m … x … 7.5 m and has negligible size. Assume the 
beam is pinned to the column at B and roller supported at 
A. The allowable bending stress is sallow = 168 MPa and the 
allowable shear stress is tallow = 84 MPa.

*11–16. If the cable is subjected to a maximum force of  
P = 50 kN, select the lightest W310 wide-flange beam that 
can safely support the load. The beam has an allowable 
normal stress of sallow = 150 MPa and an allowable shear 
stress of tallow = 85 MPa.

11–17. If the W360 * 45 wide-flange beam has an allowable 
normal stress of sallow = 150 MPa and an allowable shear 
stress of tallow = 85 MPa, determine the maximum cable force 
P that can safely be supported by the beam.

BA

C

60 kN

8 m
x

4.5 m

Prob. 11–14 

11–15. The beam is constructed from three boards as 
shown. If each nail can support a shear force of 1.5 kN, 
determine the maximum allowable spacing of the nails, s,  
s′, s″, for regions AB, BC, and CD respectively. Also, if the 
allowable bending stress is sallow = 10 MPa and the 
allowable shear stress is tallow = 1 MPa, determine if it can 
safely support the load.

A

50 mm

250 mm

50 mm

100 mm

250 mm

2.5 kN

s s¿

7.5 kN

s¿¿

1.8  m1.8 m1.8 m

B C D

Prob. 11–15 

2 m 2 m

P

Probs. 11–16/17 

11–18. The simply supported beam is composed of two 
W310 * 33 sections built up as shown. Determine the 
maximum uniform loading w the beam will support if the 
allowable bending stress is sallow = 150 MPa and the 
allowable shear stress is tallow = 100 MPa.

11–19. The simply supported beam is composed of two 
W310 * 33 sections built up as shown. Determine if the 
beam will safely support a loading of w = 30 kN>m. The 
allowable bending stress is sallow = 150 MPa and the 
allowable shear stress is tallow = 100 MPa.

7.2 m

w

Probs. 11–18/19 
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*11–20. The shaft is supported by a smooth thrust bearing 
at A and a smooth journal bearing at B. If P = 5 kN and 
the shaft is made from steel having an allowable normal 
stress of sallow = 150 MPa and an allowable shear stress of 
tallow = 85 MPa, determine the required minimum wall 
thickness t of the shaft to the nearest millimeter to safely 
support the load.

11–21. The shaft is supported by a smooth thrust bearing 
at A and a smooth journal bearing at B. If the shaft is made 
from steel having an allowable normal stress of 
sallow = 150 MPa and allowable shear stress of 
tallow = 85 MPa, determine the maximum allowable force P 
that can be applied to the shaft. The thickness of the shaft’s 
wall is t = 5 mm.

11–23. The spreader beam AB is used to slowly lift the 
13.5 kN pipe that is centrally located on the straps at C and 
D. If the beam is a W310 * 67, determine if it can safely 
support the load. The allowable bending stress is 
sallow = 154 MPa and the allowable shear stress is 
tallow = 84 MPa.

B

t

0.5 m1 m

A

P40 mm

Probs. 11–20/21 

11–22. Determine the minimum depth h of the beam to 
the nearest multiples of 5 mm that will safely support the 
loading shown. The allowable bending stress is 
sallow = 147 MPa and the allowable shear stress is 
tallow = 70 MPa The beam has a uniform thickness of 
75 mm.

A
B

h

1.8 m3.6 m

60 kN/m

Prob. 11–22 

0.9 m 0.9 m1.8 m 1.8 m

 13.5 kN

0.3 m

1.5 m

C

BA

D

Prob. 11–23 

*11–24. Determine the maximum uniform loading w the 
W310 * 21 beam will support if the allowable bending 
stress is sallow = 150 MPa and the allowable shear stress is 
tallow = 84 MPa.

11–25. Determine if the W360 * 33 beam will safely 
support a loading of w = 25 kN>m. The allowable bending 
stress is sallow = 150 MPa and the allowable shear stress is 
tallow = 84 MPa.

3 m

3 m

w

Probs. 11–24/25 
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11–26. The simply supported beam supports a load of 
P = 16 kN. Determine the smallest dimension a of each 
timber if the allowable bending stress for the wood is 
sallow = 30 MPa and the allowable shear stress is 
tallow = 800 kPa. Also, if each bolt can sustain a shear of 
2.5 kN, determine the spacing s of the bolts at the calculated 
dimension a.

11–29. The beam is to be used to support the machine, 
which exerts the forces of 27 kN and 36 kN as shown. If the 
maximum bending stress is not to exceed sallow = 154 MPa, 
determine the required width b of the flanges.

3 m

s

3 m

a

P

a

a

Prob. 11–26 

11–27. Select the lightest W360 shape section from 
Appendix B that can safely support the loading acting on 
the overhanging beam. The beam is made from steel having 
an allowable normal stress of sallow = 150 MPa and an 
allowable shear stress of tallow = 80 MPa.

*11–28. Investigate if a W250 * 58 shape section can 
safely support the loading acting on the overhanging beam. 
The beam is made from steel having an allowable normal 
stress of sallow = 150 MPa and an allowable shear stress of 
tallow = 80 MPa.

50 kN

40 kN/m

4 m 2 m

Probs. 11–27/28 

27 kN

1.8 m 1.8 m2.4 m

36 kN
12 mm

b 12.5 mm

12.5 mm

175 mm

Prob. 11–29 

11–30. The steel beam has an allowable bending stress 
sallow = 140 MPa  and an allowable shear stress of 
tallow = 90 MPa . Determine the maximum load that can 
safely be supported.

20 mm
150 mm

20 mm

P

50 mm 50 mm

2 m 2 m

Prob. 11–30 
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*11.3 fully stresseD Beams
Since the moment in a beam generally varies along its length, the choice 
of a prismatic beam is usually inefficient, because it is never fully stressed 
at points where the internal moment is less than the point of maximum 
moment. In order to fully use the strength of the material and thereby 
reduce the weight of the beam, engineers sometimes choose a beam 
having a variable cross-sectional area, such that at each cross section along 
the beam, the bending stress reaches its maximum allowable value. Beams 
having a variable cross-sectional area are called nonprismatic beams. 
They are often used in machines since they can be readily formed by 
casting. Examples are shown in Fig. 11–10a. In structures such beams may 
be “haunched” at their ends as shown in Fig. 11–10b. Also, beams may be 
“built up” or fabricated in a shop using plates. An example is a girder 
made from a rolled-shaped wide-flange beam, and having cover plates 
welded to it in the region where the moment is a maximum, Fig. 11–10c.

The stress analysis of a nonprismatic beam is generally very difficult to 
perform and is beyond the scope of this text. However, if the taper or 
slope of the upper or lower boundary of the beam is not too severe, then 
the design can be based on the flexure formula. 

Although caution is advised when applying the flexure formula to 
nonprismatic beam design, we will show here how this formula can be 
used as an approximate means for obtaining the beam’s general shape. 
To do this, the depth of the beam’s cross section is determined from

S =
M

sallow

If we express M in terms of its position x along the beam, then since 
sallow  is a known constant, the section modulus S or the beam’s 
dimensions become a function of x. A beam designed in this manner is 
called a fully stressed beam. Although only bending stresses have been 
considered in approximating its final shape, attention must also be given 
to ensure that the beam will resist shear, especially at the points where 
concentrated loads are applied.

(a)

(b)
Haunched concrete beam

(c)

Wide-flange beam with cover plates

Fig. 11–10 

The beam for this bridge pier has a variable 
moment of inertia. This design will reduce 
material weight and save cost.
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Determine the shape of a fully stressed, simply supported beam that supports 
a concentrated force at its center, Fig. 11–11a. The beam has a rectangular 
cross section of constant width b, and the allowable stress is sallow.

EXAMPLE   11.4 

SOLUTION
The internal moment in the beam, Fig. 11–11b, expressed as a function of 
position, 0 … x 6 L>2, is

M =
P
2

 x

Therefore the required section modulus is

S =
M

sallow
=

P
2sallow

 x

Since S = I>c, then for a cross-sectional area h by b we have

I
c
=

1
12 bh3

h>2
=

P
2sallow

 x

h2 =
3P

sallow 

b
 x

If h = h0 at x = L>2, then

h0 

2 =
3PL

2sallowb
so that

 h2 = ¢ 2h0 

2

L
≤  x Ans.

By inspection, the depth h must therefore vary in a parabolic manner 
with the distance x.

NOTE: In practice, this shape is the basis for the design of leaf springs 
used to support the rear-end axles of most heavy trucks or train cars, as 
shown in the adjacent photo. Note that although this result indicates that 
h = 0 at x = 0, it is necessary that the beam resist shear stress at the 
supports, and so practically speaking, it must be required that h 7 0 at 
the supports, Fig. 11–11a.

P

(a)

x

h

L
2

L
2

h0

 

x

V

M

(b)

h

b

P
2

Fig. 11–11 
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The cantilevered beam shown in Fig. 11–12a is formed into a trapezoidal 
shape having a depth h0 at A, and a depth 3h0 at B. If it supports a load P at 
its end, determine the absolute maximum normal stress in the beam. The 
beam has a rectangular cross section of constant width b.

EXAMPLE   11.5  

(a)

x

P

L

hA

B

h

b

h0

3h0

x

P

h0

A

(b)

V � P

M � Px

Fig. 11–12 

SOLUTION
At any cross section, the maximum normal stress occurs at the top and 
bottom surface of the beam. However, since smax = M>S and the section 
modulus S increases as x increases, then the absolute maximum normal 
stress will not necessarily occur at the wall B, where the moment is 
maximum. Using the flexure formula, we can express the maximum 
normal stress at an arbitrary section in terms of its position x, Fig. 11–12b. 
Here the internal moment is M = Px, and since the slope of the  
bottom of the beam is 2h0>L, Fig. 11–12a, the depth of the beam at 
position x is

h =
2h0

L
 x + h0 =

h0

L
 (2x + L)
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Applying the flexure formula, we have

 s =
Mc
I

=
Px(h>2)

1 1
12 bh32 =

6PL2x

bh0 

2 (2x + L)2 (1)

To determine the position x where the absolute maximum bending 
stress occurs, we must take the derivative of s with respect to x and set it 
equal to zero. This gives

ds
dx

= ¢ 6PL2

bh0 

2 ≤  
1(2x + L)2 - x(2)(2x + L)(2)

(2x + L)4 = 0

Thus,

 4x2 + 4xL + L2 - 8x2 - 4xL = 0

 L2 - 4x2 = 0

x =
1
2

 L

Substituting into Eq. 1 and simplifying, the absolute maximum normal 
stress is therefore

 sabs
max =

3
4

 
PL

bh0 

2  Ans.

By comparison, at the wall, B, the maximum normal stress is

(smax)B =
Mc
I

=
PL(1.5h0)

3 1
12 b(3h0)

34 =
2
3

 
PL

bh0 
2 

which is 11.1% smaller than sabs
max

.

NOTE: Recall that the flexure formula was derived on the basis of 
assuming the beam to be prismatic. Since this is not the case here, some 
error is to be expected in this analysis and that of Example 11.4. A more 
exact mathematical analysis, using the theory of elasticity, reveals that 
application of the flexure formula as in the above example gives only 
small errors in the bending stress if the tapered angle of the beam is 
small. For example, if this angle is 15°, the stress calculated from the 
formula will be about 5% greater than that calculated by the more exact 
analysis. It may also be worth noting that the calculation of (smax)B  was 
done only for illustrative purposes, since, by Saint-Venant’s principle, the 
actual stress distribution at the support (wall) is highly irregular.
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(b)

x

z

T

T

y

Az

(P1)z

(P1)x

P2

Ax

Bz

Bx

*11.4 shaft Design
Shafts that have circular cross sections are often used in mechanical 
equipment and machinery. As a result, they can be subjected to cyclic or 
fatigue stress, which is caused by the combined bending and torsional 
loads they must transmit or resist. In addition to these loadings, stress 
concentrations may exist on a shaft due to keys, couplings, and sudden 
transitions in its cross section (Sec. 5.8). In order to design a shaft properly, 
it is therefore necessary to take all of these effects into account.

In this section we will consider the design of shafts required to 
transmit power. These shafts are often subjected to loads applied to 
attached pulleys and gears, such as the one shown in Fig. 11–13a. 
Since the loads can be applied to the shaft at various angles, the 
internal bending and torsion at any cross section can best be 
determined by replacing the loads by their statically equivalent 
loadings, and then resolving these loads into components in two 
perpendicular planes, Fig. 11–13b. The bending-moment diagrams for 
the loads in each plane can then be drawn, and the resultant internal 
moment at any section along the shaft is then determined by vector 
addition, M = 2 M 2

x + M 2
z , Fig. 11–13c. In addition to this moment, 

segments of the shaft may also be subjected to different internal 
torques, Fig. 11–13b. To account for this general variation of torque 
along the shaft, a torque diagram may also be drawn, Fig. 11–13d.

(a)

A

B
P1

P2

Moment diagram caused by
loads in y–z plane

y
Moment diagram caused by

loads in x–y plane

y

(c)

Mx Mz

Torque diagram 

(d)

y

T

Ty

Fig. 11–13 
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Once the moment and torque diagrams have been established, it is then 
possible to investigate certain critical sections along the shaft where the 
combination of a resultant moment M and a torque T creates the critical 
stress situation. Since the moment of inertia of a circular shaft is the same 
about any diametrical axis, we can apply the flexure formula using the 
resultant moment to obtain the maximum bending stress. For example, as 
shown in Fig. 11–13e, this stress will occur on two elements, C and D, each 
located on the outer boundary of the shaft. If a torque T is also resisted at 
this section, then a maximum shear stress will also be developed on these 
elements, Fig. 11–13f. In addition, the external forces will also create shear 
stress in the shaft determined from t = VQ>It;  however, this stress will 
generally contribute a much smaller stress distribution on the cross section 
compared with that developed by bending and torsion. In some cases, it 
must be investigated, but for simplicity, we will neglect its effect here. In 
general, then, the critical element C (or D) on the shaft is subjected to  
plane stress as shown in Fig. 11–13g, where

s =
 Mc
  I

   and  t =
 Tc
  J

 

If the allowable normal or shear stress for the material is known, the 
size of the shaft is then based on the use of these equations and selection 
of an appropriate theory of failure. For example, if the material is ductile, 
then the maximum shear stress theory may be appropriate. As stated in 
Sec. 10.7, this theory requires the allowable shear stress, which is 
determined from the results of a simple tension test, to be equal to the 
maximum shear stress in the element. Using the stress transformation 
equation, Eq. 9–7, for the stress state in Fig. 11–13g, we get

 tallow = Ba  s
  2

b
2

+ t2  

 = Ba  Mc
  2I

b
2

+ a  Tc
  J

b
2

  

Since I = pc4>4 and J = pc 4>2,  this equation becomes

t allow =
 2
pc3  2 M2 + T 2 

Solving for the radius of the shaft, 

 c = ¢  2
  pt allow 

  2 M2 + T 2 ≤ 1>3
  (11–2)

Application of any other theory of failure will, of course, lead to a 
different formulation for c. However, in all cases it may be necessary to 
apply this result at various “critical sections” along the shaft, in order to 
determine the particular combination of M and T that gives the largest 
value for c.

The following example numerically illustrates the procedure.

M

A

N C

(e)

D

s

T

C

(f)

D
t

t

D

�

(g)

s

s

t
t

Fig. 11–13 (cont.) 
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The shaft in Fig. 11–14a is supported by journal bearings at A and B. 
Due to the transmission of power to and from the shaft, the belts on 
the pulleys are subjected to the tensions shown. Determine the 
smallest diameter of the shaft using the maximum shear stress theory, 
with tallow = 50 MPa.

EXAMPLE   11.6 

SOLUTION
The support reactions have been calculated and are shown on the  
free-body diagram of the shaft, Fig. 11–14b. Bending-moment diagrams 
for Mx  and Mz  are shown in Figs. 11–14c and 11–14d. The torque diagram 
is shown in Fig. 11–14e. By inspection, critical points for bending moment 
occur either at C or B. Also, just to the right of C and at B the torque is 
7.5 N # m. At C, the resultant moment is

MC = 2(118.75 N # m)2 + (37.5 N # m)2 = 124.5 N # m

whereas at B it is smaller, namely

MB = 75 N # m

A

(a)

B
C

0.250 m

0.250 m

0.150 m

400 N

550 N

300 N

200 N

z

y

x

D 0.075 m

0.050 m

(b)

7.5 N�m

950 N

z

y 

x

650 N

475 N

475 N

150 N

7.5 N�m

0.250 m

0.250 m

0.150 m

500 N

Fig. 11–14
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Since the design is based on the maximum shear stress theory, Eq. 11–2 
applies. The radical 2 M2 + T 2 will be the largest at a section just to the 
right of C. We have

 c = ¢  2
ptallow

  2 M2 + T 2 ≤1>3
 

 = ¢  2

p(50)(106 ) N>m2 2 (124.5 N # m)2 + (7.5 N # m)2 ≤1>3
 

 = 0.0117 m

Thus, the smallest allowable diameter is

 d = 2(0.0117 m) = 23.3 mm  Ans.

y (m)

A

475 N 950 N 475 N

118.75

C B D

0.250 m 0.150 m

(c)

0.250 m

Mx (N�m)

 

A

150 N 500 N650 N

75 N�m

C B D

0.250 m 0.250 m 0.150 m

(d)

37.5 N�m

y (m)

Mz (N�m)

A

–7.5

C B
D

0.250 m 0.150 m

(e)

7.5 N�m 7.5 N�m

0.250 m
Ty (N�m)

y (m)

Fig. 11–14 (cont.)
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11–31. Determine the variation in the width w as a 
function of x for the cantilevered beam that supports a 
concentrated force P at its end so that it has a maximum 
bending stress sallow  throughout its length. The beam has a 
constant thickness t.

x

w

t
L

w

P

––
2

w
––
2

0

0

Prob. 11–31 

*11–32. The tapered beam supports a uniform distributed 
load w. If it is made from a plate and has a constant width b, 
determine the absolute maximum bending stress in the beam.

h0

w

h0 2 h0

L
2

L
2

Prob. 11–32 

11–33. The tapered beam supports the concentrated force 
P at its center. Determine the absolute maximum bending 
stress in the beam. The reactions at the supports are vertical.

L

L

P

2r0
r0

Prob. 11–33 

11–34. The beam is made from a plate that has a constant 
thickness b. If it is simply supported and carries the 
distributed loading shown, determine the variation of its 
depth h as a function of x so that it maintains a constant 
maximum bending stress sallow  throughout its length.

x

L––
2

L––
2

h0
h

w0

B

CA

Prob. 11–34 

11–35. Determine the variation in the depth d of a 
cantilevered beam that supports a concentrated force P at its 
end so that it has a constant maximum bending stress sallow  
throughout its length. The beam has a constant width b0.

L

P

dh

x

b0

Prob. 11–35 

*11–36. Determine the variation of the radius r of the 
cantilevered beam that supports the uniform distributed 
load so that it has a constant maximum bending stress smax  
throughout its length.

L
x

r0

w

r

Prob. 11–36 

PROBLEMS
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11–37. The tapered beam supports a uniform distributed 
load w. If it is made from a plate that has a constant width b0, 
determine the absolute maximum bending stress in the beam.

w

L

x

b0

y

h

h

Prob. 11–37 

11–38. Determine the variation in the width b as a function 
of x for the cantilevered beam that supports a uniform 
distributed load along its centerline so that it has the same 
maximum bending stress sallow  throughout its length. The 
beam has a constant depth t.

t

L

w

b0—
2

b0—
2

x

b—
2

Prob. 11–38 

11–39. The tubular shaft has an inner diameter of 15 mm. 
Determine to the nearest millimeter its minimum outer 
diameter if it is subjected to the gear loading. The bearings 
at A and B exert force components only in the y and z 
directions on the shaft. Use an allowable shear stress of 
tallow = 70 MPa, and base the design on the maximum 
shear stress theory of failure.

*11–40. Determine to the nearest millimeter the minimum 
diameter of the solid shaft if it is subjected to the gear 
loading. The bearings at A and B exert force components 
only in the y and z directions on the shaft. Base the design 
on the maximum distortion energy theory of failure with 
sallow = 150 MPa.

150 mm
x

y

z

B

A

500 N

100 mm

100 mm

150 mm

200 mm 500 N

Probs. 11–39/40 

11–41. The 50-mm-diameter shaft is supported by journal 
bearings at A and B. If the pulleys C and D are subjected to 
the loadings shown, determine the absolute maximum 
bending stress in the shaft.

400 mm

400 mm
300 N

150 N

150 N300 N

400 mm

A

B

C

D

Prob. 11–41
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11–42. The end gear connected to the shaft is subjected to 
the loading shown. If the bearings at A and B exert only y 
and z components of force on the shaft, determine the 
equilibrium torque T at gear C and then determine the 
smallest diameter of the shaft to the nearest millimeter that 
will support the loading. Use the maximum-shear-stress 
theory of failure with tallow = 60 MPa.

11–43. The end gear connected to the shaft is subjected to 
the loading shown. If the bearings at A and B exert only y 
and z components of force on the shaft, determine the 
equilibrium torque T at gear C and then determine the 
smallest diameter of the shaft to the nearest millimeter that 
will support the loading. Use the maximum-distortion-
energy theory of failure with sallow = 80 MPa.

11–45. The bearings at A and D exert only y and z 
components of force on the shaft. If tallow = 60 MPa, 
determine to the nearest millimeter the smallest-diameter 
shaft that will support the loading. Use the maximum-shear-
stress theory of failure.

100 mm

250 mm

150 mm

x

y

z

50 mm

75 mm

100 mm

Fz  1.5 kN

A

C

B

T

Probs. 11–42/43

*11–44. The two pulleys attached to the shaft are loaded 
as shown. If the bearings at A and B exert only vertical 
forces on the shaft, determine the required diameter of the 
shaft to the nearest mm using the maximum-distortion 
energy theory. sallow = 469 MPa.

1350 N
 540 N

540 N
1350 N

D
A

C
B

150 mm 150 mm

300 mm 900 mm 600 mm

Prob. 11–44 

350 mm

400 mm

200 mm

z

B

C

D

50 mm

75 mm

y

x

A
Fz  2 kN

Fy  3 kN

Prob. 11–45 

11–46. The bearings at A and D exert only y and z 
components of force on the shaft. If tallow = 60 MPa, 
determine to the nearest millimeter the smallest-diameter 
shaft that will support the loading. Use the maximum-
distortion-energy theory of failure. sallow = 130 MPa.

350 mm

400 mm

200 mm

z

B

C

D

50 mm

75 mm

y

x

A
Fz  2 kN

Fy  3 kN

Prob. 11–46 
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CHAPTER REVIEW

Failure of a beam will occur where the internal shear 
or moment in the beam is a maximum. To resist 
these loadings, it is therefore important that the 
maximum shear and bending stress not exceed 
allowable values as stated in codes. Normally, the 
cross section of a beam is first designed to resist the 
allowable bending stress,

sallow =
M max c

I
 

Then the allowable shear stress is checked. For 
rectangular sections, t allow Ú 1.5(V max>A), and for 
wide-flange sections it is appropriate to use 
t allow Ú Vmax>Aweb. In general, use

tallow =
 VmaxQ

 It
 

For built-up beams, the spacing of fasteners or the 
strength of glue or weld is determined using an 
allowable shear flow

qallow =
 VQ

 I
 

Fully stressed beams are nonprismatic, and designed 
such that the bending stress at each cross section along 
the beam will equal an allowable bending stress. This 
condition will define the shape of the beam.

A shaft that transmits power is generally designed 
to resist both bending and torsion. Once the 
maximum bending and torsion stresses are 
determined, then depending upon the type of 
material, an appropriate theory of failure is used to 
compare the allowable stress to what is required.

 Chapter review 591

A

B
P1

P2
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R11–1. The cantilevered beam has a circular cross section. 
If it supports a force P at its end, determine its radius y as a 
function of x so that it is subjected to a constant maximum 
bending stress sallow throughout its length.

R11–3. The journal bearings at A and B exert only x and z 
components of force on the shaft. Determine the shaft’s 
diameter to the nearest millimeter so that it can resist the 
loadings without exceeding an allowable shear stress of 
tallow = 80 MPa.  Use the maximum shear stress theory 
of failure.

A

75 mm

150 mm

350 mm

250 mm

z

x

y

50 mm

B

Fz � 7.5 kN

Fx � 5 kN

Prob. R11–3 

*R11–4. The journal bearings at A and B exert only x and 
z components of force on the shaft. Determine the shaft’s 
diameter to the nearest millimeter so that it can resist the 
loadings. Use the maximum distortion energy theory of 
failure with sallow = 200 MPa.

A

75 mm

150 mm

350 mm

250 mm

z

x

y

50 mm

B

Fz � 7.5 kN

Fx � 5 kN

Prob. R11–4 

R E V I E W  P R O B L E M S

y

x

y

P

Prob. R11–1 

R11–2. Draw the shear and moment diagrams for the 
shaft, and then determine its required diameter to the 
nearest millimeter if sallow = 140 MPa and tallow = 80 MPa. 
The bearings at A and B exert only vertical reactions on the 
shaft.

BA

125 mm
600 mm

75 mm

800 N

1500 N

Prob. R11–2 
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R11–5. Draw the shear and moment diagrams for the 
beam. Then select the lightest-weight steel wide-flange 
beam from Appendix B that will safely support the loading. 
Take sallow = 150 MPa and tallow = 84 MPa.

R11–7. The simply supported joist is used in the 
construction of a floor for a building. In order to keep the 
floor low with respect to the sill beams C and D, the ends of 
the joists are notched as shown. If the allowable shear stress 
for the wood is tallow = 2.5 MPa and the allowable bending 
stress is sallow = 12 MPa, determine the smallest height h so 
that the beam will support a load of P = 2 kN. Also, will the 
entire joist safely support the load? Neglect the stress 
concentration at the notch.

5 m

P 50 mm

h

250 mm

A

B

C

D

5 m

Prob. R11–7 

*R11–8. The overhang beam is constructed using two 
50-mm by 100-mm pieces of wood braced as shown. If the 
allowable bending stress is sallow = 4.2 MPa, determine the 
largest load P that can be applied. Also, determine the 
associated maximum spacing of nails, s, along the beam 
section AC to the nearest 5 mm if each nail can resist a shear 
force of 4 kN. Assume the beam is pin-connected at A, B, and 
D. Neglect the axial force developed in the beam along DA.

B

0.6 m

0.6 m

0.9 m

A

C

P

s

100 mm

50 mm
50 mm

D

Prob. R11–8 

B
A

3.6 m 1.8 m

50 kN/m

2.25 kN  m

Prob. R11–5 

R11–6. The simply supported joist is used in the 
construction of a floor for a building. In order to keep the 
floor low with respect to the sill beams C and D, the ends of 
the joists are notched as shown. If the allowable shear stress 
for the wood is tallow = 2.5 MPa and the allowable bending 
stress is sallow = 10.5 MPa determine the height h that will 
cause the beam to reach both allowable stresses at the same 
time. Also, what load P causes this to happen? Neglect the 
stress concentration at the notch.

5 m

P 50 mm

h

250 mm

A

B

C

D

5 m

Prob. R11–6 
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If the curvature of this pole is measured, it is then possible to  determine the  
bending stress developed within it.

(© Michael Blann/Getty Images)
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Deflection  
of Beams anD 
shafts

12.1 The elasTic curve
The deflection of a beam or shaft must often be limited in order to provide 
stability, and for beams, to prevent the cracking of any attached brittle 
materials such as concrete or plaster. Most importantly, though, slopes and 
displacements must be determined in order to find the reactions if the 
beam is statically indeterminate. In this chapter we will find these slopes 
and displacements caused by the effects of bending. The additional rather 
small deflection caused by shear will be discussed in Chapter 14.

Chapter OBJeCtIVeS 

n In this chapter we will discuss various methods for determining 
the deflection and slope of beams and shafts. The analytical 
methods include the integration method, the use of discontinuity 
functions, and the method of superposition. Also, a semigraphical 
technique, called the moment-area method, will be presented. 
At the end of the chapter, we will use these methods to solve for 
the support reactions on a beam or shaft that is statically 
indeterminate.
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Before finding the slope or displacement, it is often helpful to sketch 
the deflected shape of the beam, which is represented by its elastic curve. 
This curve passes through the centroid of each cross section of the beam,  
and for most cases it can be sketched without much difficulty. When 
doing so, just remember that supports that resist a force, such as a pin, 
restrict displacement, and those that resist a moment, such as a fixed wall, 
restrict rotation or slope as well as displacement. Two examples of the 
elastic curves for loaded beams are shown in Fig. 12–1.

If the elastic curve for a beam seems difficult to establish, it is suggested 
that the moment diagram for the beam be drawn first. Using the beam 
sign convention established in Sec. 6.1, a positive internal moment tends 
to bend the beam concave upwards, Fig. 12–2a. Likewise, a negative 
moment tends to bend the beam concave downwards, Fig. 12–2b. 
Therefore, if the moment diagram is known, it will be easy to construct 
the elastic curve. For example, consider the beam in Fig. 12–3a with its 
associated moment diagram shown in Fig. 12–3b. Due to the roller and 
pin supports, the displacement at B and D must be zero. Within the 
region of negative moment, AC, Fig. 12–3b, the elastic curve must be 
concave downwards, and within the region of positive moment, CD, the 
elastic curve must be concave upwards. There is an inflection point at C, 
where the curve changes from concave up to concave down, since this is a 
point of zero moment. It should also be noted that the displacements ∆A 
and ∆E are especially critical. At point E the slope of the elastic curve is 
zero, and there the beam’s deflection may be a maximum. Whether ∆E is 
actually greater than ∆A depends on the relative magnitudes of P1 and P2 
and the location of the roller at B.

�M �M

Positive internal moment
concave upwards

(a)   

Negative internal moment
concave downwards

(b)

�M �M

Fig. 12–2 

P

P

Fig. 12–1 
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Following these same principles, note how the elastic curve in Fig. 12–4 
was constructed. Here the beam is cantilevered from a fixed support at A, 
and therefore the elastic curve must have both zero displacement and zero 
slope at this point. Also, the largest displacement will occur either at D, 
where the slope is zero, or at C.

DInflection point

Elastic curve

A

C

(c)

M

x

Moment diagram

(b)

�C

�D

P

(a) A
CD

M

Zero slope and 
zero deflection

Fig. 12–4 

M

x

Moment diagram

(b)

B

E

D

Inflection point

C

A

(c)

Elastic curve

�E

�A

Zero deflection Zero deflection

P1 P2

A D
EC

B
(a)

Fig. 12–3 
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Moment–Curvature Relationship. Before we can obtain the 
slope and deflection at any point on the elastic curve, it is first necessary 
to relate the internal moment to the radius of curvature r (rho) of the 
elastic curve. To do this, we will consider the beam shown in Fig. 12–5a, 
and remove the small element located a distance x from the left end and 
having an undeformed length dx, Fig. 12–5b. The “localized” y coordinate 
is measured from the elastic curve (neutral axis) to the fiber in the beam 
that has an original length of ds = dx and a deformed length ds′. 
In Sec. 6.3 we developed a relationship between the normal strain in this 
fiber and the internal moment and the radius of curvature of the beam 
element, Fig. 12–5b. It is

1
r
= -  

P
y

 (12–1)

Since Hooke’s law applies, P = s>E, and s = -My>I, after substituting 
into the above equation, we get

1
r
=

M
EI

 (12–2)

Here

r =  the radius of curvature at the point on the elastic curve  
(1>r is referred to as the curvature)

M = the internal moment in the beam at the point

E = the material’s modulus of elasticity

I = the beam’s moment of inertia about the neutral axis

The sign for r therefore depends on the direction of the moment. As 
shown in Fig. 12–6, when M is positive, r extends above the beam, and 
when M is negative, r extends below the beam.

O¿

O¿

Inflection
point
M � 0

v

�r
�M �M

�M
�M

�r

Fig. 12–6 

P

M

x

x
dx

v

w

(a)

u

O¿

ds¿

dx

Before
deformation

After
deformation

(b)

yy dx

ds

M M

du

rr

Elastic
curve

Fig. 12–5 
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12.2  slope and displacemenT  
by inTegraTion

The equation of the elastic curve in Fig. 12–5a will be defined by the 
coordinates v and x. And so to find the deflection v = f(x) we must be 
able to represent the curvature (1>r) in terms of v and x. In most calculus 
books it is shown that this relationship is

1
r
=

d2v>dx2

[1 + (dv>dx)2]3>2 (12–3)

Substituting into Eq. 12–2, we have

d2v>dx2

[1 + (dv>dx)2]3>2 =
M
EI

 (12–4)

Apart from a few cases of simple beam geometry and loading, this 
equation is difficult to solve, because it represents a nonlinear second-
order differential equation. Fortunately it can be modified, because most 
engineering design codes will restrict the maximum deflection of a beam 
or shaft. Consequently, the slope of the elastic curve, which is determined 
from dv>dx, will be very small, and its square will be negligible compared 
with unity.* Therefore the curvature, as defined in Eq. 12–3, can be 
approximated by 1>r = d2v>dx2. With this simplification, Eq. 12–4 can 
now be written as

d2v

dx2 =
M
EI

 (12–5)

It is also possible to write this equation in two alternative forms. If  
we differentiate each side with respect to x and substitute V = dM>dx 
(Eq. 6–2), we get

d
dx

 ¢EI 
d2v

dx2 ≤ = V(x) (12–6)

Differentiating again, using w = dV>dx (Eq. 6–1), yields

d2

dx2  ¢EI 
d2v

dx2 ≤ = w(x) (12–7)

*See Example 12.1.
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For most problems the flexural rigidity (EI) will be constant along the 
length of the beam. Assuming this to be the case, the above results may 
be reordered into the following set of three equations:

 EI 
d4v

dx4 = w(x) (12–8)

 EI 
d3v

dx3 = V(x) (12–9)

 EI 
d2v

dx2 = M(x) (12–10)

Boundary Conditions. Solution of any of these equations requires 
successive integrations to obtain v. For each integration, it is necessary to 
introduce a “constant of integration” and then solve for all the constants to 
obtain a unique solution for a particular problem. For example, if the 
distributed load w is expressed as a function of x and Eq. 12–8 is used, then 
four constants of integration must be evaluated; however, it is generally 
easier to determine the internal moment M as a function of x and use  
Eq. 12–10, so that only two constants of integration must be found.

Most often, the integration constants are determined from boundary 
conditions for the beam, Table 12–1. As noted, if the beam is supported by 
a roller or pin, then it is required that the displacement be zero at these 
points. At the fixed support, the slope and displacement are both zero. 

Continuity Conditions. Recall from Sec. 6.1 that if the loading on a 
beam is discontinuous, that is, it consists of a series of several distributed 
and concentrated loads, Fig. 12–7a, then several functions must be written 
for the internal moment, each valid within the region between two 
discontinuities. For example, the internal moment in regions AB, BC, and 
CD can be written in terms of the x1, x2, and x3 coordinates selected as 
shown in Fig. 12–7b. 

When each of these functions is integrated twice, it will produce two 
constants of integration, and since not all of these constants can be 
determined from the boundary conditions, some must be determined 
using continuity conditions. For example, consider the beam in Fig. 12–8. 
Here two x coordinates are chosen with origin at A. Once the functions for 
the slope and deflection are obtained, they must give the same values for 
the slope and deflection at point B so the elastic curve is physically 
continuous. Expressed mathematically, these continuity conditions are 
u1(a) = u2(a) and v1(a) = v2(a). They are used to evaluate the two 
constants of integration. Once these functions and the constants of 
integration are determined, they will then give the slope and deflection 
(elastic curve) for each region of the beam for which they are valid.

(a)

B C
A D

P
w

A D

(b)

P
w

B C
x1

x2
x3

Fig. 12–7 

Roller

Pin

Fixed end

v  � 0

v  � 0

v  � 0
u � 0

Roller

v � 0

Pin
v  � 0

 TaBle 12–1 
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Sign Convention and Coordinates. When applying Eqs. 12–8 
through 12–10, it is important to use the proper signs for w, V, or M as 
established for the derivation of these equations, Fig. 12–9a. Also, since 
positive deflection, v, is upwards then positive slope u will be measured 
counterclockwise from the x axis when x is positive to the right, Fig. 12–9b.  
This is because a positive increase dx and dv creates an increased u that 
is counterclockwise. By the same reason, if positive x is directed to the 
left, then u will be positive clockwise, Fig. 12–9c.

Since we have considered dv>dx ≈ 0, the original horizontal length of 
the beam’s axis and the length of the arc of its elastic curve will almost be 
the same. In other words, ds in Figs. 12–9b and 12–9c is approximately 
equal to dx, since ds = 2(dx)2 + (dv)2 = 21 + (dv>dx)2 dx ≈ dx. As a 
result, points on the elastic curve will only be displaced vertically, and not 
horizontally. Also, since the slope u will be very small, its value in radians 
can be determined directly from u ≈ tan u = dv>dx. 

A C

x2

x1

P

a b
B

u

v

v1, v2 

Fig. 12–8 

�w

�M

�V�V

�M

Positive sign convention

(a)

dx

Elastic curve

v

x

ds

Positive sign convention

(b)

�u

du

�x

�v
dv

dx

Elastic curve

dv
�v

�x

v

x

Positive sign convention

(c)

dsdu
�u

Fig. 12–9 
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Procedure for AnAlysis 

The following procedure provides a method for determining the 
slope and deflection of a beam (or shaft) using the method of 
integration.

elastic Curve.

 • Draw an exaggerated view of the beam’s elastic curve. Recall 
that zero slope and zero displacement occur at all fixed supports, 
and zero displacement occurs at all pin and roller supports.

 • Establish the x and v coordinate axes. The x axis must be parallel 
to the undeflected beam and can have an origin at any point 
along the beam, with a positive direction either to the right or to 
the left. The positive v axis should be directed upwards.

 • If several discontinuous loads are present, establish x coordinates 
that are valid for each region of the beam between the 
discontinuities. Choose these coordinates so that they will simplify 
subsequent algebraic work.

Load or Moment Function.

 • For each region in which there is an x coordinate, express the 
loading w or the internal moment M as a function of x. In 
particular, always assume that M acts in the positive direction 
when applying the equation of moment equilibrium to determine 
M = f (x).

Slope and elastic Curve.

 • Provided EI is constant, apply either the load equation  
EI d4v>dx4 = w(x), which requires four integrations to get  
v = v(x), or the moment equation EI d2v>dx2 = M(x), which 
requires only two integrations. For each integration it is 
important to include a constant of integration.

 • The constants are evaluated using the boundary conditions 
(Table 12–1) and the continuity conditions that apply to slope and 
displacement at points where two functions meet. Once the 
constants are evaluated and substituted back into the slope and 
deflection equations, the slope and displacement at specific points 
on the elastic curve can then be determined.

 • The numerical values obtained can be checked graphically by 
comparing them with the sketch of the elastic curve. Positive values 
for slope are counterclockwise if the x axis extends positive to the 
right, and clockwise if the x axis extends positive to the left. In either 
of these cases, positive displacement is upwards.
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The beam shown in Fig. 12–10a supports the triangular distributed 
loading. Determine its maximum deflection. EI is constant.

SOlUTION

Elastic Curve. Due to symmetry, only one x coordinate is needed for 
the solution, in this case 0 … x … L>2. The beam deflects as shown in 
Fig. 12–10a. The maximum deflection occurs at the center since the slope 
is zero at this point.

Moment Function. A free-body diagram of the segment on the left is 
shown in Fig. 12–10b. The equation for the distributed loading is

 w =
2w0

L
 x (1)

Hence,

a + ΣMNA = 0;       M +
w0 x2

L
 ax

3
b -

w0L

4
 (x) = 0 

M = -   
w0 x

3

3L
+

w0 L

4
 x

Slope and Elastic Curve. Using Eq. 12–10 and integrating twice, we have

 EI 
d2v

dx2 = M = -   
w0

3L
 x3 +

w0 L

4
 x (2)

 EI 
dv

dx
= -  

w0

12L
x4 +

w0 L

8
 x2 + C1 

 EIv = -  
w0

60L
 x5 +

w0 L
24

x3 + C1x + C2

The constants of integration are obtained by applying the boundary 
condition v = 0 at x = 0 and the symmetry condition that dv>dx = 0 at 
x = L>2. This leads to

C1 = -  
5w0 L

3

192
  C2 = 0

Hence,

 EI 
dv

dx
= -  

w0

12L
 x4 +

w0 L

8
 x2 -

5w0 L
3

192
 

 EIv = -  
w0

60L
 x5 +

w0 L
24

 x3 -
5w0 L

3

192
 x

Determining the maximum deflection at x = L>2, we get

vmax = -   
w0 L

4

120EI
 Ans.

eXaMPle   12.1 

(a)

Elastic curvex

w0

L
2

L
2

x
M

V

(b)

�x x

x
3

2w0

L

w0x2

L

w0 L
4

xw �
2w0

L

1
2

Fig. 12–10 
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The cantilevered beam shown in Fig. 12–11a is subjected to a vertical 
load P at its end. Determine the equation of the elastic curve. EI is 
constant.

SOlUTION I

Elastic Curve. The load tends to deflect the beam as shown in  
Fig. 12–11a. By inspection, the internal moment can be represented 
throughout the beam using a single x coordinate.

Moment Function. From the free-body diagram, with M acting in the 
positive direction, Fig. 12–11b, we have

M = -Px

Slope and Elastic Curve. Applying Eq. 12–10 and integrating  
twice yields

 EI 
d2v

dx2 = -Px (1)

 EI 
dv

dx
= -   

Px2

2
+ C1 (2)

 EIv = -   
Px3

6
+ C1x + C2 (3)

Using the boundary conditions dv>dx = 0 at x = L and v = 0 at 
x = L, Eqs. 2 and 3 become

 0 = -  
PL2

2
+ C1

 0 = -  
PL3

6
+ C1L + C2

Thus, C1 = PL2>2 and C2 = -PL3>3. Substituting these results into  
Eqs. 2 and 3 with u = dv>dx, we get

u =
P

2EI
 (L2 - x2)

v =
P

6EI
  (-x3 + 3L2x - 2L3) Ans.

Maximum slope and displacement occur at A(x = 0), for which

 uA =
PL2

2EI
 (4)

 vA = -   
PL3

3EI
 (5)

eXaMPle   12.2 

P

x

x A

Elastic curve

L

v

(a)

vA uA

M
x

(b)

P

V

Fig. 12–11 
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The positive result for uA indicates counterclockwise rotation and the 
negative result for vA indicates that vA is downward. This agrees with the 
results sketched in Fig. 12–11a.

In order to obtain some idea as to the actual magnitude of the slope and 
displacement at the end A, consider the beam in Fig. 12–11a to have a 
length of 4.5 m, support a load of P = 25 kN, and be made of A-36 steel 
having Est = 200 GPa. Using the methods of Sec. 11.2, if this beam 
was designed without a factor of safety by assuming the allowable normal 
stress is equal to the yield stress sallow = 250 MPa, then a W310 * 39 
would be found to be adequate (I = 84.8 * 106  mm4 = 84.8 * 10-6 m4).  
From Eqs. 4 and 5 we get

 uA =
[25(103)N](4.5 m)2

2[200(109) N>m2][84.8(10-6) m4]
= 0.0149 rad

vA = -  
[25(103)N](4. 5 m)3

3[200(109)][84.8(10-6)]
= -0.04477 m = -44.8 mm.

Since uA
2 = (dv>dx)2 = 0.0002228 rad2 ⪡ 1, this justifies the use of  

Eq. 12–10, rather than applying the more exact Eq. 12–4. Also, since this 
numerical application is for a cantilevered beam, we have obtained larger 
values for u and v than would have been obtained if the beam were 
supported using pins, rollers, or other fixed supports.

SOlUTION II
This problem can also be solved using Eq. 12–8, EI d 4v>dx4 = w(x). 
Here w(x) = 0 for 0 … x … L, Fig. 12–11a, so that upon integrating once 
we get the form of Eq. 12–9, i.e.,

EI 
d 4v

dx4 = 0

EI 
d3v

dx3 = C1
= = V

The shear constant C1
=  can be evaluated at x = 0, since VA = -P 

(negative according to the beam sign convention, Fig. 12–9a). Thus, 
C1

= = -P. Integrating again yields the form of Eq. 12–10, i.e.,

EI 
d 3v
dx3 = -P

EI 
d2v

dx2 = -Px + C2
= = M

Here M = 0 at x = 0, so C2
= = 0, and as a result one obtains Eq. 1, and 

the solution proceeds as before.
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eXaMPle   12.3 

The simply supported beam shown in Fig. 12–12a is subjected to the 
concentrated force. Determine the maximum deflection of the beam. EI 
is constant.

A C

6 kN

B

(a)

2 m 1 m

D

x1

x2

      

A
C

(b)

vD

v

x

D uD � 0

SOlUTION

Elastic Curve. The beam deflects as shown in Fig. 12–12b. Two 
coordinates must be used, since the moment function will change at B. 
Here we will take x1 and x2, having the same origin at A.

Moment Function. From the free-body diagrams shown in Fig. 12–12c,

 M1 = 2x1 

 M2 = 2x2 - 6(x2 - 2) = 4(3 - x2)

Slope and Elastic Curve. Applying Eq. 12–10 for M1, for 0 … x1 6 2 m, 
and integrating twice yields

 EI 
d2v1

dx1
2

 

= 2x1

 EI 
dv1

dx1
= x1

2 + C1 (1)

 EIv1 =
1
3

 x1
3

 + C1x1 + C2 (2)

Likewise for M2, for 2 m 6 x2 … 3 m, 

 EI 
d2v2

dx2 

2 = 4(3 - x2)

 EI 
dv2

dx2
= 4¢3x2 -

x2
2

2
≤ + C3 (3)

 EIv2 = 4¢ 3
2

 x2
2 -

x2
3

6
≤ + C3 x2 + C4 (4)

2 kN

(c)

A
x2

x1

V2

M2

V1

M1

6 kN

2 kN

B
2 m

(x2 � 2 m)

Fig. 12–12 
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The four constants are evaluated using two boundary conditions, namely, 
x1 = 0, v1 = 0 and x2 = 3 m, v2 = 0. Also, two continuity conditions 
must be applied at B, that is, dv1>dx1 = dv2>dx2 at x1 = x2 = 2 m and 
v1 = v2 at x1 = x2 = 2 m. Therefore

v1 = 0 at x1 = 0;    0 = 0 + 0 + C2 

v2 = 0 at x2 = 3 m;   0 = 4¢ 3
2

 (3)2 -
(3)3

6
≤ + C3(3) + C4

dv1

dx1
`
x =  2 m

=
dv2

dx2
`
x = 2 m

; (2)2 + C1 = 4¢3(2) -
(2)2

2
≤ + C3

v1(2 m) = v2(2 m); 

 
1
3

 (2)3 + C1(2) + C2 = 4¢ 3
2

 (2)2 -
(2)3

6
≤ + C3(2) + C4

Solving, we get

 C1 = -  
8
3

      C2 = 0

 C3 = -
44
3

    C4 = 8

Thus Eqs. 1–4 become

 EI 
dv1

dx1
= x1

2
 -

8
3

 (5)

 EIv1 =
1
3

 x1
3

 -
8
3

 x1 (6)

 EI 
dv2

dx2
= 12 x2 - 2 x2

2
 -

44
3

 (7)

 EIv2 = 6x2
2

 -
2
3

 x2
3

 -
44
3

 x2 + 8 (8)

By inspection of the elastic curve, Fig. 12–12b, the maximum deflection 
occurs at D, somewhere within region AB. Here the slope must be zero. 
From Eq. 5,

x1
2

 -
8
3
= 0 

x1 = 1.633

Substituting into Eq. 6,

vmax = -  
2.90 kN # m3

EI
 Ans.

The negative sign indicates that the deflection is downwards.
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eXaMPle   12.4 

The beam in Fig. 12–13a is subjected to a load at its end. Determine the 
displacement at C. EI is constant.

A

C

B

(a)

1 m

x1

vC

4 kN

x2

2 m

(b)

M1

V1

M2

V2

x1 x2

2 kN

4 kN

Fig. 12–13 

SOlUTION

Elastic Curve. The beam deflects into the shape shown in Fig. 12–13a. 
Due to the loading, two x coordinates will be considered, namely, 
0 … x1 6 2 m and 0 … x2 6 1 m, where x2 is directed to the left from C, 
since the internal moment is easy to formulate.

Moment Functions. Using the free-body diagrams shown in Fig. 12–13b, 
we have

M1 = -2x1  M2 = -4x2

Slope and Elastic Curve. Applying Eq. 12–10,

For 0 … x1 … 2:    EI 
d2v1

dx1 

2 = -2x1

 EI 
dv1

dx1
= -x1

2 + C1 (1)

 EIv1 = -  
1
3

 x1
3

 + C1x1 + C2 (2)
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For 0 … x2 … 1 m:    EI 
d 2v2

dx2
2

 

= -4x2

 EI 
dv2

dx2
= -2x2

2 + C3 (3)

 EIv2 = -  
2
3

 x2
3 + C3x2 + C4 (4)

The four constants of integration are determined using three boundary 
conditions, namely, v1 = 0 at x1 = 0, v1 = 0 at x1 = 2 m, and v2 = 0 at 
x2 = 1 m, and one continuity equation. Here the continuity of slope at 
the roller requires dv1>dx1 = -dv2>dx2 at x1 = 2 m and x2 = 1 m. There 
is a negative sign in this equation because the slope is measured positive 
counterclockwise from the right, and positive clockwise from the left, 
Fig. 12–9. (Continuity of displacement at B has been indirectly considered 
in the boundary conditions, since v1 = v2 = 0 at x1 = 2 m and x2 = 1 m.)  
Applying these four conditions yields

v1 = 0 at x1 = 0;      0 = 0 + 0 + C2 

v1 = 0 at x1 = 2 m;      0 = -
1
3

 (2)3 + C1(2) + C2 

v2 = 0 at x2 = 1 m;       0 = -
2
3

 (1)3 + C3(1) + C4 

dv1

dx1
`
x =  2 m

=
dv2

dx2
`
x = 1 m

;    -(2)2 + C1 = -(-2(1)2 + C3)

Solving, we obtain

C1 =
4
3
  C2 = 0  C3 =

14
3
  C4 = -4

Substituting C3 and C4 into Eq. 4 gives

EIv2 = -  
2
3

 x2
3 +

14
3

 x2 - 4

The displacement at C is determined by setting x2 = 0. We get

vC = -  
4 kN # m3

EI
  Ans.



610  Chapter 12  DefleCt ion of Beams anD shafts

12

P12–1. In each case, determine the internal bending 
moment as a function of x, and state the necessary boundary 
and/or continuity conditions used to determine the elastic 
curve for the beam.

(a)

8 kN

4 m
x

(b)

2 m
x

10 kN�m

(c)

4 m
x

2 kN/m

(d)

4 m

2 m

x1

x2

8 kN�m

(e)

4 m

2 m

x1

x2

4 kN2 kN/m

(f)

4 m

2 m

x1

x2

3 kN/m

PRelIMINaRY PROBleMS

Prob. P12–1
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F12–1. Determine the slope and deflection of end A of the 
cantilevered beam. E =  200 GPa and I =  65.0(106) mm4.

3 m

30 kN�m

A

Prob. F12–1 

F12–2. Determine the slope and deflection of end A of the 
cantilevered beam. E = 200 GPa and I = 65.0(106) mm4.

3 m

10 kN�m

10 kN

A

Prob. F12–2 

F12–3. Determine the slope of end A of the cantilevered 
beam. E = 200 GPa and I = 65.0(106) mm4.

3 m

10 kN
3 kN/m

A

Prob. F12–3 

F12–4. Determine the maximum deflection of the simply 
supported beam. The beam is made of wood having a 
modulus of elasticity of Ew = 10 GPa and a rectangular 
cross section of b = 60 mm and h = 125 mm.

A
B

3 m

2000 N/m

Prob. F12–4

F12–5. Determine the maximum deflection of the simply 
supported beam. E = 200 GPa and I = 39.9(10-6) m4.

6 m

40 kN�m 10 kN�m

A B

Prob. F12–5 

F12–6. Determine the slope of the simply supported beam 
at A. E = 200 GPa and I = 39.9(10-6) m4.

3 m

20 kN

10 kN�m 10 kN�m

3 m

A
B

Prob. F12–6 

FUNDaMeNTal PROBleMS
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12–1. An A-36 steel strap having a thickness of 10 mm and a 
width of 20mm is bent into a circular arc of radius r = 10 m. 
Determine the maximum bending stress in the strap.

12–2.  When the diver stands at end C of the diving board, it 
deflects downward 87.5 mm. Determine the mass of the diver. 
The board is made of material having a modulus of elasticity 
of E = 10 GPa.

87.5 mm

2.7 m

A B

C

0.9 m 450 mm

50 mm

Prob. 12–2

12–3. A picture is taken of a man performing a pole vault, and 
the minimum radius of curvature of the pole is estimated by 
measurement to be 4.5 m. If the pole is 40 mm in diameter and 
it is made of a glass-reinforced plastic for which Eg = 131 GPa, 
determine the maximum bending stress in the pole.

r � 4.5 m

Prob. 12–3

*12–4. Determine the equation of the elastic curve for the 
beam using the x coordinate that is valid for 0 … x 6 L>2. 
Specify the slope at A and the beam’s maximum deflection. 
EI is constant.

P

A B

x
L
2

L
2

Prob. 12–4

12–5. Determine the deflection of end C of the 
100-mm-diameter solid circular shaft. Take E = 200 GPa.

2 m

6 kN

1 m

C
B

A

x2

x1

Prob. 12–5

12–6. Determine the elastic curve for the cantilevered 
beam, which is subjected to the couple moment M0. Also 
calculate the maximum slope and maximum deflection of 
the beam. EI is constant.

L

A

B

x

M0

Prob. 12–6

PROBleMS
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12–7. The A-36 steel beam has a depth of 250 mm and is 
subjected to a constant moment M0, which causes the stress 
at the outer fibers to become sY = 250 MPa. Determine the 
radius of curvature of the beam and the beam’s maximum 
slope and deflection.

L

B

M0A

Prob. 12–7

*12–8. Determine the equations of the elastic curve using 
the coordinates x1 and x2. EI is constant.

A B

a b

x1 x2

C

P

Prob. 12–8

12–9. Determine the equations of the elastic curve for the 
beam using the x1 and x2 coordinates. EI is constant.

P

x1

x2

L
2

L
2

Prob. 12–9

12–10. Determine the equations of the elastic curve using 
the coordinates x1 and x2. What is the slope at C and 
displacement at B? EI is constant.

12–11. Determine the equations of the elastic curve using 
the coordinates x1 and x3. What is the slope at B and 
deflection at C? EI is constant.

BA

a a

x1

x3

x2

w

C

Probs. 12–10/11

*12–12. Draw the bending-moment diagram for the shaft 
and then, from this diagram, sketch the deflection or elastic 
curve for the shaft’s centerline. Determine the equations of 
the elastic curve using the coordinates x1 and x2. EI is 
constant.

A B

150 mm 400 mm

5 kN

x1 x2

C

60 mm

Prob. 12–12

12–13. Determine the maximum deflection of the beam 
and the slope at A. EI is constant.

B

a a a

A

M0 M0

Prob. 12–13
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12–14. The simply supported shaft has a moment of inertia 
of 2I for region BC and a moment of inertia I for regions AB 
and CD. Determine the maximum deflection of the shaft due 
to the load P.

CA D

P

–
4
L –

4
L –

4
L –

4
L

B

Prob. 12–14

12–15. The beam is subjected to the linearly varying 
distributed load. Determine the maximum deflection of the 
beam. EI is constant.

L

BA

x

w0

Prob. 12–15

*12–16. The fence board weaves between the three 
smooth fixed posts. If the posts remain along the same line, 
determine the maximum bending stress in the board. The 
board has a width of 150 mm and a thickness of 12 mm. 
E = 12  GPa. Assume the displacement of each end of the 
board relative to its center is 75 mm.

1.2 m 1.2 m

CA B

75 mm

Prob. 12–16

12–17. Determine the equations of the elastic curve for 
the beam using the x1 and x2 coordinates. Specify the beam’s 
maximum deflection. EI is constant.

L

A

B

P

x1 x2

L
2

Prob. 12–17

12–18. The bar is supported by a roller constraint at B, 
which allows vertical displacement but resists axial load and 
moment. If the bar is subjected to the loading shown, 
determine the slope at A and the deflection at C. EI is 
constant.

12–19. Determine the deflection at B of the bar in 
Prob. 12–18.

L—
2

L—
2

P

A
C

B

Probs. 12–18/19
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*12–20. Determine the equations of the elastic curve using 
the x1 and x2 coordinates, and specify the slope at A and the 
deflection at C. EI is constant.

BA C

x1 x2
30 kN m

40 kN

6 m 3 m

Prob. 12–20

12–21. Determine the maximum deflection of the solid 
circular shaft. The shaft is made of steel having E = 200 GPa. 
It has a diameter of 100 mm.

� �

x

Prob. 12–21

12–22. Determine the elastic curve for the cantilevered 
W360 * 45 beam using the x coordinate. Specify the 
maximum slope and maximum deflection. E = 200  GPa.

B
A

x

50 kN/m

2.7 m

Prob. 12–22

12–23. Determine the equations of the elastic curve using 
the coordinates x1 and x2. What is the deflection and slope 
at C? EI is constant.

LL

A

M0

B C

x1 x2

Prob. 12–23

*12–24. Determine the equations of the elastic curve 
using the coordinates x1 and x2. What is the slope at A? EI is 
constant.

LL

A

M0

B C

x1 x2

Prob. 12–24

12–25.  Determine the elastic curve in terms of the x1 and 
x2 coordinates and the deflection of end C of the overhang 
beam. EI is constant.

w

L L
2

C

B

A

x1

x2

Prob. 12–25
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12–26. Determine the slope at end B and the maximum 
deflection of the cantilevered triangular plate of constant 
thickness t. The plate is made of material having a modulus 
of elasticity E.

L

t

b
2

b
2

w 

A

B
x

Prob. 12–26

12–27. The beam is made of a material having a specific 
weight g. Determine the displacement and slope at its end 
A due to its weight. The modulus of elasticity for the 
material is E.

L

A

b

t

Prob. 12–27

*12–28. Determine the slope at end B and the maximum 
deflection of the cantilever triangular plate of constant 
thickness t. The plate is made of material having a modulus 
of elasticity of E.

L

t

b
2

b
2

P

A

B
x

Prob. 12–28

12–29. Determine the equation of the elastic curve using 
the coordinates x1 and x2. What is the slope and deflection 
at B? EI is constant.

12–30. Determine the equations of the elastic curve using 
the coordinates x1 and x3. What is the slope and deflection 
at point B? EI is constant.

L

A

B

a

w

x1

x2 x3

C

Probs. 12–29/30
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*12.3 disconTinuiTy FuncTions
The method of integration, used to find the equation of the elastic curve 
for a beam or shaft, is convenient if the load or internal moment can be 
expressed as a continuous function throughout the beam’s entire length. 
If several different loadings act on the beam, however, this method can 
become tedious to apply, because separate loading or moment functions 
must be written for each region of the beam. Furthermore, as noted in 
Examples 12.3 and 12.4, integration of these functions requires the 
evaluation of integration constants using both the boundary and continuity 
conditions.

In this section, we will discuss a method for finding the equation of the 
elastic curve using a single expression, either formulated directly from 
the loading on the beam, w = w(x), or from the beam’s internal moment, 
M = M(x). Then when this expression for w is substituted into 
EI d4v>dx4 = w(x) and integrated four times, or if the expression for M 
is substituted into EI d2v>dx2 = M(x) and integrated twice, the constants 
of integration will only have to be determined from the boundary 
conditions.

Discontinuity Functions. In order to express the load on the beam 
or the internal moment within it using a single expression, we will use 
two types of mathematical operators known as discontinuity functions.

For safety, the beams supporting these bags 
of cement must be designed for strength and 
a restricted amount of deflection.
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Macaulay Functions. For purposes of beam or shaft deflection, 
Macaulay functions, named after the mathematician W. H. Macaulay, can 
be used to describe distributed loadings. These functions can be written 
in general form as

 8x - a9n = b0 for x 6 a
 (x - a)n for x Ú a

 

 n Ú 0 

(12–11)

Here x represents the location of a point on the beam, and a is the 
location where the distributed loading begins. The Macaulay function 
8x - a9n is written with angle or Macaulay brackets to distinguish it 
from an ordinary function (x - a)n written with parentheses. As stated 
by the equation, only when x Ú a is 8x - a9n = (x - a)n; otherwise it is 
zero. Furthermore, this function is valid only for exponential values 
n Ú 0. Integration of the Macaulay function follows the same rules as for 
ordinary functions, i.e.,

 L 8x - a9ndx = =
8x - a9n + 1

n + 1
+ C (12–12)

Macaulay functions for a uniform and triangular load are shown in 
Table 12–2. Using integration, the Macaulay functions for shear, 
V = 1w(x) dx, and moment, M = 1V dx, are also shown in the table.

 TaBle 12–2

slope � m

Loading Loading Function
w � w(x)

w � M0˚x�a¬�2

w � P˚x�a¬�1

w � w0˚x�a¬0

w � m˚x�a¬1
x

a

w0

x
a

P

x
a

x
a

M0

Shear V �  w(x)dx Moment  M �   Vdx

V � M0˚x�a¬�1

V � P˚x�a¬0

V � w0˚x�a¬1

V � ˚x�a¬2

2
m

M � M0˚x�a¬0

M � P˚x�a¬1

M �
 

˚x�a¬2

2

 w0

M � ˚x�a¬3

6
m
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Singularity Functions. These functions are used to describe 
concentrated forces or couple moments acting on a beam or shaft. 
Specifically, a concentrated force P can be considered a special case of a 
distributed loading having an intensity of w = P>P when its length P S 0, 
Fig. 12–14. The area under this loading diagram is equivalent to P, positive 
upwards, and has this value only when x = a. We will use a symbolic 
representation to express this result, namely

 w = P8x - a9-1 = b 0 for x ≠ a
P for x = a

 (12–13)

This expression is referred to as a singularity function, since it takes on the 
value P only at the point x = a where the load acts, otherwise it is zero.*

P

x

�

a

x

a

w �
P
P

P

Fig. 12–14 

*It is also referred to as a unit impulse function or the Dirac delta.
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x

=

a

x

a

M0

w � 
P

P
M0

P2

M0

P2

�

w � 
P

P
�

P

P

Fig. 12–15 

In a similar manner, a couple moment M0, considered positive 
clockwise, is a limit as P S 0 of two distributed loadings, as shown in 
Fig. 12–15. Here the following function describes its value.

 w = M08x - a9-2 = b0 for x ≠ a
M0 for x = a

 (12–14)

The exponent n = -2 in order to ensure that the units of w, force per 
length, are maintained.

Integration of the above two functions follows the rules of calculus and 
yields results that are different from those of the Macaulay function. 
Specifically,

 L 8x - a9ndx = 8x - a9n + 1, n = -1, -2  (12–15)

Using this formula, notice how M0 and P, described in Table 12–2, are 
integrated once, then twice, to obtain the internal shear and moment in 
the beam.

Application of Eqs. 12–11 through 12–15 provides a direct means for 
expressing the loading or the internal moment in a beam as a function of x. 
Close attention, however, must be paid to the signs of the external loadings. 
As stated above, and as shown in Table 12–2, concentrated forces and 
distributed loads are positive upwards, and couple moments are positive 
clockwise. If this sign convention is followed, then the internal shear and 
moment will be in accordance with the beam sign convention established 
in Sec. 6.1.
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The reactive force at B is not included here since x is never greater than 
6 m. In the same manner, we can determine the moment expression 
directly from Table 12–2. It is

3 m

A

3 m

B

3 kN/m
1.5 kN�m

6 kN/m

(a)

3 m 3 m

3 kN/m

2.75 kN

3 kN/m

(b)

m �                � 1 kN/m2

3 m
3 kN/m

1.5 kN�m

By

Bx

Fig. 12–16 

application. As an example of how to apply discontinuity functions 
to describe the loading or internal moment, we will consider the beam 
in  Fig. 12–16a. Here the reactive 2.75-kN force created by the roller,  
Fig. 12–16b, is positive since it acts upwards, and the 1.5-kN # m couple 
moment is also positive since it acts clockwise. Finally, the trapezoidal 
loading is  negative and by superposition has been separated into 
triangular and uniform loadings. From Table 12–2, the loading at any 
point x on the beam is therefore

w = 2.75 kN8x - 09-1 + 1.5 kN # m8x - 3 m9-2 - 3 kN>m8x - 3 m90 - 1 kN>m28x - 3 m91

 M = 2.75 kN8x - 091 + 1.5 kN # m8x - 3 m90 -
3 kN>m

2
 8x - 3 m92 -

1 kN>m2

6
 8x - 3 m93

 = 2.75x + 1.58x - 390 - 1.58x - 392 -
1
6

 8x - 393

The deflection of the beam can now be determined after this equation 
is integrated two successive times, and the constants of integration are 
evaluated using the boundary conditions of zero displacement at A  
and B.
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Procedure for AnAlysis

The following procedure provides a method for using discontinuity 
functions to determine a beam’s elastic curve. This method is 
particularly advantageous for solving problems involving beams or 
shafts subjected to several loadings, since the constants of integration 
can be evaluated by using only the boundary conditions, while the 
compatibility conditions are automatically satisfied.

elastic Curve.

 • Sketch the beam’s elastic curve and identify the boundary 
conditions at the supports.

 • Zero displacement occurs at all pin and roller supports, and 
zero slope and zero displacement occur at fixed supports.

 • Establish the x axis so that it extends to the right and has its 
origin at the beam’s left end.

Load or Moment Function.

 • Calculate the support reactions and then use the discontinuity 
functions in Table 12–2 to express either the loading w or the 
internal moment M as a function of x. Make sure to follow the 
sign convention for each loading.

 • Note that the distributed loadings must extend all the way to 
the beam’s right end to be valid. If this does not occur, use the 
method of superposition, which is illustrated in Example 12.6.

Slope and elastic Curve.

 • Substitute w into EI d 4v>dx4 = w(x), or M into the moment 
curvature relation EI d 2v>dx2 = M, and integrate to obtain 
the equations for the beam’s slope and deflection.

 • Evaluate the constants of integration using the boundary 
conditions, and substitute these constants into the slope and 
deflection equations to obtain the final results.

 • When the slope and deflection equations are evaluated at any 
point on the beam, a positive slope is counterclockwise, and a 
positive displacement is upwards.
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eXaMPle   12.5 

Determine the equation of the elastic curve for the cantilevered beam 
shown in Fig. 12–17a. EI is constant.

SOlUTION

Elastic Curve. The loads cause the beam to deflect as shown in  
Fig. 12–17a. The boundary conditions require zero slope and 
displacement at A.

Loading Function. The support reactions at A have been calculated 
and are shown on the free-body diagram in Fig. 12–17b. Since the 
distributed loading in Fig. 12–17a does not extend to C as required, we 
will use the superposition of loadings shown in Fig. 12–17b to represent 
the same effect. By our sign convention, the beam’s loading is therefore

w = 52 kN8x - 09-1 - 258 kN # m8x - 09-2 - 8 kN>m8x - 090 

+ 50 kN # m8x - 5 m9-2 + 8 kN>m8x - 5 m90

The 12-kN load is not included here, since x cannot be greater than 9 m. 
Because dV>dx = w(x), then by integrating, and neglecting the constant of 
integration since the reactions at A are included in the load function, we get

V = 528x - 090 - 2588x - 09-1 - 88x - 091 + 508x - 59-1 + 88x - 591

Furthermore, dM>dx = V, so that integrating again yields

 M = -2588x - 090 + 528x - 091 -
1
2

 (8)8x - 092 + 508x - 590 +
1
2

 (8)8x - 592

 = (-258 + 52x - 4x2 + 508x - 590 + 48x - 592) kN # m

This same result can be obtained directly from Table 12–2.

Slope and Elastic Curve. Applying Eq. 12–10 and integrating twice, 
we have

 EI 
d2v

dx2 = -258 + 52x - 4x2 + 508x - 590 + 48x - 592 

 EI 
dv

dx
= -258x + 26x2 -

4
3

 x3 + 508x - 591 +
4
3

 8x - 593 + C1 

 EIv = -129x2 +
26
3

 x3 -
1
3

 x4 + 258x - 592 +
1
3

 8x - 594 + C1x + C2

Since dv>dx = 0 at x = 0, C1 = 0; and v = 0 at x = 0, so C2 = 0. Thus,

 v =
1

EI
 a-129x2 +

26
3

 x3 -
1
3

 x4 + 258x - 592 +
1
3

 8x - 594b  m Ans.

12 kN

5 m

(a)

4 m

8 kN/m
50 kN�m

A
B

C

(b)

12 kN

4 m

8 kN/m

50 kN�m
A B C

8 kN/m52 kN

258 kN�m

5 m

Fig. 12–17
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eXaMPle   12.6 

Determine the maximum deflection of the beam shown in Fig. 12–18a. EI 
is constant.

3 m

(a)

6 m

35 kN

150 kN . m

vC vD

D

A

B

C

3 m

9 m

35 kN

150 kN . m

x 27.5 kN 7 . 50 kN

(b)

Fig. 12–18 

SOlUTION

Elastic Curve. The beam deflects as shown in Fig. 12–18a. The 
boundary conditions require zero displacement at A and B.

Loading Function. The reactions have been calculated and are shown 
on the free-body diagram in Fig. 12–18b. The loading function for the 
beam is

w = (-35 kN)8x - 09 - 1 + (27.5 kN)8x - 3 m9 - 1

The couple moment and force at B are not included here, since they are 
located at the right end of the beam, and x cannot be greater than 9 m. 
Integrating dV>dx = w(x), we get

V = -358x - 090 + 27.58x - 390

In a similar manner, dM>dx = V yields

 M = -358x - 091 + 27.58x - 391 

 = 5-35x + 27.58x - 3916  kN # m.
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Notice how this equation can also be established directly using the results 
of Table 12–2 for moment.

Slope and Elastic Curve. Integrating twice yields

 EI 
d2v

dx2 = -35x + 27.58x - 391 

 EI 
dv

dx
= -17.5x2 + 13.758x - 392 + C1

  EIv = -  5.8333 x3 + 4.58338x - 393 + C1x + C2 (1)

From Eq. 1, the boundary condition v = 0 at x = 3 m and v = 0 at 
x = 9 m gives

 0 = -157.5 + 4.5833(3 - 3)3 + C1(3) + C2 

 0 = -4252.5 + 4.5833(9 - 3)3 + C1(9) + C2

Solving these equations simultaneously for C1 and C2, we get C1 = 517.5 
and C2 = -1395. Thus,

  EI 
dv

dx
= -17.5x2 + 13.758x - 392 + 517.5 (2)

  EIv = -5.8333 x3 + 4.58338x - 393 + 517.5x - 1395 (3)

From Fig. 12–18a, maximum displacement can occur either at C, or at D 
where the slope dv>dx = 0. To obtain the displacement of C, set x = 0 in 
Eq. 3. We get

 vC = -  
1395 kN # m3

EI
 Ans.

The negative sign indicates that the displacement is downwards as shown 
in Fig. 12–17a. To locate point D, use Eq. 2 with x 7 3 m and dv>dx = 0. 
This gives

0 = -17.5xD 

2 + 13.75(xD - 3)2 + 517.5

3.75xD 

2 + 82.5x - 641.25 = 0

Solving for the positive root,

xD = 6.088 m
Hence, from Eq. 3,

 EIvD = -  5.8333 (6.0883) + 4.5833(6.088 - 3)3 + 517.5(6.088) - 1395 

  vD =
574 kN # m3

EI

Comparing this value with vC, we see that vmax = vC .
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12–31. The shaft is supported at A by a journal bearing 
and at C by a thrust bearing. Determine the equation of the 
elastic curve. EI is constant.

A B

a b

x

C

P

Prob. 12–31 

*12–32. The shaft supports the two pulley loads shown. 
Determine the equation of the elastic curve. The bearings at 
A and B exert only vertical reactions on the shaft. EI is 
constant.

A B

200 N

x

500 mm500 mm500 mm

300 N

Prob. 12–32

12–33. The beam is made of a ceramic material. If it is 
subjected to the elastic loading shown, and the moment of 
inertia is I and the beam has a measured maximum 
deflection ∆ at its center, determine the modulus of 
elasticity, E. The supports at A and D exert only vertical 
reactions on the beam.

A D

a a

L

B C

P P

Prob. 12–33 

12–34. Determine the equation of the elastic curve, the 
maximum deflection in region AB, and the deflection of 
end C. EI is constant.

P P

aaa

A CB

Prob. 12–34 

12–35. Determine the maximum deflection of the simply 
supported beam. E = 200  GPa and I = 65.0(106)  mm4.

1.5 m 1.5 m 3 m

15 kN/m20 kN

A

B

Prob. 12–35

*12–36. Determine the equation of the elastic curve, the 
slope at A, and the deflection at B. EI is constant.

12–37. Determine the equation of the elastic curve and 
the maximum deflection of the simply supported beam. EI 
is constant.

A
CB

D

L
3

L
3

L
3

M0 M0

Probs. 12–36/37 

PROBleMS
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12–38. Determine the maximum deflection of the simply 
supported beam. E = 200 GPa and I = 65.0(106)  mm4.

2 m2 m 2 m

30 kN
15 kN

A B

Prob. 12–38

12–39. Determine the maximum deflection of the 
cantilevered beam. Take E = 200 GPa and I = 65.0(106) mm4.

A

30 kN/m

1.5 m 1.5 m

15 kN

Prob. 12–39 

*12–40. Determine the slope at A and the deflection of end C 
of the overhang beam. E = 200  GPa and I = 84.9(10- 6)  m4.

12–41. Determine the maximum deflection in region AB of 
the overhang beam. E = 200  GPa and I = 84.9(10- 6)  m4.

1.8 m1.8 m 1.8 m

30 kN/m 15 kN

30 kN

C
B

A

Probs. 12–40/41

12–42. The beam is subjected to the load shown. 
Determine the slopes at A and B and the displacement at C. 
EI is constant.

x

A
C B

3 m 5 m

30 kN
12 kN/m

Prob. 12–42

12–43. The beam is subjected to the load shown. 
Determine the equation of the elastic curve. EI is constant.

A
B

3 m 5 m

x

100 kN/m

Prob. 12–43

*12–44. The beam is subjected to the loads shown. 
Determine the equation of the elastic curve. EI is constant.

x

A

B

10 kN

2.4 m

20 kN

6 kN m

2.4 m2.4 m

Prob. 12–44
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12–45. Determine the deflection at each of the pulleys C, 
D, and E. The shaft is made of steel and has a diameter of 
30 mm. Est = 200 GPa.

150 N 60 N 150 N

250 mm 250 mm250 mm 250 mm

D
EC

BA

Prob. 12–45 

12–46. Determine the slope of the shaft at A and B. The shaft 
is made of steel and has a diameter of 30 mm. The bearings 
only exert vertical reactions on the shaft. Est = 200 GPa.

150 N 60 N 150 N

250 mm 250 mm250 mm 250 mm

D
EC

BA

Prob. 12–46 

12–47. Determine the equation of the elastic curve. 
Specify the slopes at A and B. EI is constant. 

A B

a a

w

x
C

Prob. 12–47 

*12–48. Determine the value of a so that the displacement 
at C is equal to zero. EI is constant.

A

P

BC

P

a
L
2

L
2

Prob. 12–48 

12–49. Determine the displacement at C and the slope at 
A of the beam.

A
B

2 m 3 m

x

150 kN/m

C

Prob. 12–49 

12–50. Determine the equations of the slope and elastic 
curve. EI is constant.

A
B

5 m 3 m

x
C

3 kN/m

15 kN�m

Prob. 12–50 
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*12.4  slope and displacemenT by 
The momenT-area meThod

The moment-area method provides a semigraphical technique for finding 
the slope and displacement at specific points on the elastic curve of a 
beam or shaft. Application of the method requires calculating area 
segments of the beam’s moment diagram; and so if this diagram consists 
of simple shapes, the method is very convenient to use.

To develop the moment-area method we will make the same assumptions 
we used for the method of integration: The beam is initially straight, it is 
elastically deformed by the loads, such that the slope and deflection of the 
elastic curve are very small, and the deformations are only caused by 
bending. The moment-area method is based on two theorems, one used to 
determine the slope and the other to determine the displacement.

Theorem 1. Consider the simply supported beam with its associated 
elastic curve, shown in Fig. 12–19a. A differential segment dx of the beam 
is shown in Fig. 12–19b. Here the beam’s internal moment M deforms the 
element such that the tangents to the elastic curve at each side intersect 
at an angle du. This angle can be determined from Eq. 12–10, written as

EI 
d2v

dx2 = EI 
d
dx

 adv

dx
b = M

Since the slope is small, then u = dv>dx, and therefore

 du =
M
EI

 dx (12–16)

If the moment diagram for the beam is constructed and divided by the 
flexural rigidity, EI, Fig. 12–19c, then this equation indicates that du is 
equal to the area under the “M>EI diagram” for the beam segment dx. 
Integrating from a selected point A on the elastic curve to another 
point B, we have

 uB>A = L
B

A
 
M
EI

 dx (12–17)

This result forms the basis for the first moment-area theorem.

The angle, measured in radians, between the tangents at any two points 
on the elastic curve equals the area under the M>EI diagram between these 
two points.

The notation uB>A refers to the angle of the tangent at B measured with 
respect to the tangent at A. From the proof it should be evident that this 
angle is measured counterclockwise, from tangent A to tangent B, if the 
area under the M>EI diagram is positive. Conversely, if  the area is 
negative, or lies below the x axis, the angle uB>A is measured clockwise 
from tangent A to tangent B.

dx

w

BA

A B

tan B tan A

(a)

Elastic curve

uB/A

dx

du

(b)

M M

dx
BA

(c)

 —
E I
M

 —
E I
M

x

 —
E I
M Diagram

Fig. 12–19
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Theorem 2. The second moment-area theorem is based on the 
relative deviation of tangents to the elastic curve. Figure 12–20a shows a 
greatly exaggerated view of the vertical deviation dt of the tangents on 
each side of the differential element dx. This deviation is caused by 
the curvature of the element and has been measured along a vertical line 
passing through point A on the elastic curve. Since the slope of the elastic 
curve and its deflection are assumed to be very small, it is satisfactory to 
approximate the length of each tangent line by x and the arc ds′ by dt. 
Using the circular-arc formula s = ur, where r is the length x and s is dt, 
we can write dt = x du. Substituting Eq. 12–16 into this equation and 
integrating from A to B, the vertical deviation of the tangent at A with 
respect to the tangent at B becomes

 tA>B = L
B

A
x 

M
EI

 dx  (12–18)

Since the centroid of an area is found from x1dA = 1x dA, and 

1(M>EI) dx represents the area under the M>EI diagram, we can 
also write

 tA>B = xL
B

A
 
M
EI

 dx (12–19)

Here x is the distance from A to the centroid of the area under the M>EI 
diagram between A and B, Fig. 12–20b.

The second moment-area theorem can now be stated as follows:

The vertical distance between the tangent at a point (A) on the elastic 
curve and the tangent extended from another point (B) equals the moment 
of the area under the M>EI diagram between these two points (A and B). 
This moment is calculated about the point (A) where the vertical distance 
(tA>B) is to be determined.

Note that tA>B is not equal to tB>A, which is shown in Fig. 12–20c. This is 
because the moment of the area under the M>EI diagram between A and B 
is calculated about point A to determine tA>B, Fig. 12–20b, and it is calculated 
about point B to determine tB>A, Fig. 12–20c.

If tA>B is calculated from the moment of a positive M>EI area between 
A and B, it indicates that A is above the tangent extended from B,  
Fig. 12–20a. Similarly, negative M>EI areas indicate that A will be below 
the tangent extended from B. This same rule applies for tB>A.

A B

tan B

tan A

(a)

x

dt

dx

du
ds¿

w

A
dx

B

tA/B

BA

(b)

 —
E I
M

x
_
x

tanB tanA

BA

(c)

x

A B
tB/A

tA/B

M
EI

¿
_
x

Fig. 12–20 
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Procedure for AnAlysis 

The following procedure provides a method that may be used to 
apply the two moment-area theorems.

M/EI Diagram.

 • Determine the support reactions and draw the beam’s M>EI 
diagram. If the beam is loaded with concentrated forces and 
couple moments, the M>EI diagram will consist of a series of 
straight line segments, and the areas and their moments required 
for the moment-area theorems will be relatively easy to calculate. 
If the loading consists of a series of distributed loads, the M>EI 
diagram will consist of parabolic or perhaps higher-order curves, 
and it is suggested that the table in the back of the book be used to 
locate the area and centroid under each curve.

elastic Curve.

 • Draw an exaggerated view of the beam’s elastic curve. Recall that 
points of zero slope and zero displacement always occur at a fixed 
support, and zero displacement occurs at all pin and roller supports.

 • The unknown displacement and slope to be determined should 
be indicated on the curve.

 • Since the moment-area theorems apply only between two 
tangents, attention should be given as to which tangents should 
be constructed so that the angles or vertical distance between 
them will lead to the solution of the problem. In particular, the 
tangents at the supports should be considered, since the beam 
has zero displacement and/or zero slope at the supports.

Moment-area theorems.

 • Apply Theorem 1 to determine the angle between any two 
tangents on the elastic curve and Theorem 2 to determine the 
vertical distance between the tangents.

 • A positive uB>A represents a counterclockwise rotation of the 
tangent at B with respect to the tangent at A, and a positive 
tB>A indicates that B on the elastic curve lies above the 
extended tangent from A.
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eXaMPle   12.7

Determine the slope of the beam shown in Fig. 12–21a at point B. EI is 
constant.

(a)

P

A

L

B

  (b)

B
L

A x 

PL
EI

�

M
EI

(c) tan B

tan A

B

A uB/A

uB

Fig. 12–21 

SOlUTION

M/EI Diagram. See Fig. 12–21b.

Elastic Curve. The force P causes the beam to deflect as shown in  
Fig. 12–21c. The tangent at B is indicated since we are required to find uB. 
Also, the tangent at the support (A) is shown. This tangent has a known 
zero slope. By the construction, the angle between tan A and tan B is 
equivalent to uB. Thus,

uB = uB>A

Moment-Area Theorem. Applying Theorem 1, uB>A is equal to the 
area under the M>EI diagram between A and B; that is,

  uB = uB>A =
1
2

 a-  
PL
EI

bL

  = -  
PL2

2EI
 Ans.

The negative sign indicates that the angle measured from the tangent 
at A to the tangent at B is clockwise. This checks, since the beam slopes 
downwards at B.
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eXaMPle   12.8

Determine the displacement of points B and C of the beam shown in 
Fig. 12–22a. EI is constant.

 

(a)

A B C M0 

L
2

L
2

    (b)

BA x C

L
2

L
4

L
2

M
EI

M0

EI
�

(c)

tan B

tan C

tan A

B

tB/A � vB

tC/A � vC 

C

A

Fig. 12–22

SOlUTION

M/EI Diagram. See Fig. 12–22b.

Elastic Curve. The couple moment at C causes the beam to deflect as 
shown in Fig. 12–22c. The tangents at B and C are indicated since we are 
required to find vB and vC. Also, the tangent at the support (A) is shown 
since it is horizontal. The required displacements can now be related 
directly to the vertical distance between the tangents at B and A and C 
and A. Specifically,

 vB = tB>A

 vC = tC>A

Moment-Area Theorem. Applying Theorem 2, tB>A is equal to the 
moment of the shaded area under the M>EI diagram between A and B 
calculated about B (the point on the elastic curve), since this is the point 
where the vertical distance is to be determined. Hence, from Fig. 12–22b,

 vB = tB>A = aL
4
b J ¢ -  

M0

EI
≤aL

2
b R = -  

M0L
2

8EI
 Ans.

Likewise, for tC>A we must determine the moment of the area under 
the entire M>EI diagram from A to C about C (the point on the elastic 
curve). We have

 vC = tC>A = aL
2
b J ¢ -  

M0

EI
≤(L) R = -  

M0L
2

2EI
 Ans.

Since both answers are negative, they indicate that B and C lie below the 
tangent at A. This checks with Fig. 12–22c.
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eXaMPle   12.9

Determine the slope at point C on the shaft in Fig. 12–23a. EI is constant.

P

(a)

A B
D C

L
2

L
4

L
4

(b)

x 
D C

L
4

PL
4 EI PL

8 EI

M
EI

(c)

tan C

tan D (horizontal)

CD

uC/D

uC

Fig. 12–23 

SOlUTION

M/EI Diagram. See Fig. 12–23b.

Elastic Curve. Since the loading is applied symmetrically to the shaft, the 
elastic curve is symmetric, and the tangent at D is horizontal, Fig. 12–23c. 
Also the tangent at C is drawn, since we must find the slope uC . By the 
construction, the angle between tan D and tan C is equal to uC; that is,

uC = uC>D

Moment-Area Theorem. Using Theorem 1, uC>D is equal to the 
shaded area under the M>EI diagram between D and C. We have

 uC = uC>D = a PL
8EI

baL
4
b +

1
2

 a PL
4EI

-
PL
8EI

baL
4
b =

3PL2

64EI
 Ans.

What does the positive result indicate?
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eXaMPle 12.10

Determine the slope at point C on the steel beam in Fig. 12–24a. Take 
Est = 200 GPa, I = 17(106) mm4.

SOlUTION

M/EI Diagram. See Fig. 12–24b.

Elastic Curve. The elastic curve is shown in Fig. 12–24c. Here we are 
required to find uC . Tangents at the supports A and B are also shown in 
the figure. The slope at A, uA, in Fig. 12–24c can be found using 
∙ uA ∙ = ∙ tB>A ∙ >LAB . This equation is valid since tB>A is actually very 
small, so that tB>A can be approximated by the length of a circular arc 
defined by a radius of LAB = 8 m and a sweep of uA in radians. (Recall 
that s = ur.) From the geometry of Fig. 12–24c, we have

 ∙ uC ∙ = ∙ uA ∙ - ∙ uC>A ∙ = 2 tB>A

8
2 - ∙ uC>A ∙  (1)

Moment-Area Theorems. Using Theorem 1, uC>A is equivalent to the 
area under the M>EI diagram between points A and C; that is,

uC>A =
1
2

 (2 m)a8 kN # m
EI

b =
8 kN # m2

EI

Applying Theorem 2, tB>A is equivalent to the moment of the area 
under the M>EI diagram between B and A about point B (the point on 
the elastic curve), since this is the point where the vertical distance is to 
be determined. We have

 tB>A = a2 m +
1
3

 (6 m)b c 1
2

 (6 m)a24 kN # m
EI

b d  

 + a2
3

 (2 m)b c 1
2

 (2 m)a24 kN # m
EI

b d  

 =
320 kN # m3

EI
Substituting these results into Eq. 1, we get

uC =
320 kN # m2

(8 m) EI
-

8 kN # m2

EI
=

32 kN # m2

EI
 A

Using a consistent set of units, we have

 uC =
32 kN # m2

[200(106) kN>m2[17(10- 6) m4]
= 0.00941 rad A Ans.

(a)

A B
C

2 m

16 kN

4 m 2 m

(b)

x 
C

2 m 4 m 2 m

A B

M
EI

8
EI

24
EI

(c)

tan C

tan A

C
tan B B

A

uC/A

uA

uC tB/A

Fig. 12–24 



636  Chapter 12  DefleCt ion of Beams anD shafts

12

eXaMPle 12.11

Determine the displacement at C on the beam shown in Fig. 12–25a. EI is 
constant.

SOlUTION

M/EI Diagram. See Fig. 12–25b.

Elastic Curve. The tangent at C is drawn on the elastic curve since we 
are required to find vC, Fig. 12–25c. (Note that C is not the location of the 
maximum deflection of the beam, because the loading and hence the 
elastic curve are not symmetric.) Also indicated in Fig. 12–25c are the 
tangents at the supports A and B. It is seen that vC = v′ - tC>B . If tA>B is 
determined, then v′ can be found from proportional triangles, that is, 
v′>(L>2) = tA>B>L or v′ = tA>B>2. Hence,

 vC =
tA>B

2
- tC>B (1)

Moment-Area Theorem. Applying Theorem 2 to determine tA>B and 
tC>B, we have

 tA>B = a1
3

 (L)b J1
2

 (L)¢M0

EI
≤ R =

M0L
2

6EI
 

 tC>B = a1
3

 aL
2
b b J1

2
 aL

2
b ¢ M0

2EI
≤ R =

M0L
2

48EI

Substituting these results into Eq. 1 gives

   vC =
1
2

 ¢M0L
2

6EI
≤ - ¢M0L

2

48EI
≤ 

  =
M0L

2

16EI
T  Ans.

(a)

B
A C

M0

L
2

L
2

  (b)

x A C BL
2

L
2

M
EIM0

EI

M0

2EI

(c)
C

B 
tan A

tan B

v¿

A

tan C tC/B
tA/B

vC

L
2

L
2

Fig. 12–25 
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eXaMPle 12.12

Determine the displacement at point C for the steel overhanging beam 
shown in Fig. 12–26a. Take Est = 200 GPa, I = 50 (106) mm4.

SOlUTION

M/EI Diagram. See Fig. 12–26b.

Elastic Curve. The loading causes the beam to deflect as shown in  
Fig. 12–26c. We are required to find ∆C. By constructing tangents at C 
and at the supports A and B, it is seen that ∆C = 0 tC>A 0 - ∆′. However, 
∆′ can be related to tB>A by proportional triangles; that is, ∆′>8 = 0 tB/A 0 /4 
or ∆′ = 2 0 tB>A 0 . Hence

 ∆C = 0 tC>A 0 - 2 0 tB/A 0  (1)

Moment-Area Theorem. Applying Theorem 2 to determine tC>A and 
tB>A, we have

 tC>A = (4 m) c 1
2

 (8 m)a-  
100 kN # m

EI
b d

 = -
1600 kN # m3

EI
 

 tB>A = c 1
3

 (4 m) d c 1
2

 (4 m)a-  
100 kN # m

EI
b d = -

266.67 kN # m3

EI
 

Why are these terms negative? Substituting the results into Eq. 1 yields

∆C =
1600 kN # m3

EI
- 2a266.67 kN # m3

EI
b =

1066.67 kN # m3

EI
 T

Realizing that the calculations were made in units of kN and m, we have

 ∆C =
1066.67 (103) N # m3

3200(109)N>m24 350(10- 6) m44  

 = 0.1067 m = 107 mm Ans.

(a)

A
B

C 

25 kN

50 kN25 kN

4 m 4 m

  (b)

x 

4 m 4 m

A B C

M
EI

100 kN · m
EI

Fig. 12–26

(c) tan C
C

B

tan A

tan B
A

¿
tC/A 

tB/A

C
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F12–7. Determine the slope and deflection of end A of the 
cantilevered beam. E = 200 GPa and I = 65.0(10- 6) m4.

B A

6 kN

20 kN�m

3 m

Prob. F12–7 

F12–8. Determine the slope and deflection of end A of the 
cantilevered beam. E = 200 GPa and I = 126(10-6) m4.

B A

20 kN
10 kN

1 m 1 m

Prob. F12–8 

F12–9. Determine the slope and deflection of end A of the 
cantilevered beam. E = 200 GPa and I = 121(10-6) m4.

B A

60 kN

30 kN�m

1 m 1 m

Prob. F12–9 

F12–10. Determine the slope and deflection at A of the 
cantilevered beam. E = 200 GPa, I = 10(106) mm4.

B

A

10 kN

1 m 1 m

20 kN/m

Prob. F12–10

F12–11. Determine the maximum deflection of the simply 
supported beam. E = 200 GPa and I = 42.8(10-6) m4.

3 m

20 kN

10 kN�m 10 kN�m

3 m

A
B

C

Prob. F12–11 

F12–12. Determine the maximum deflection of the simply 
supported beam. E = 200 GPa and I = 39.9(10-6) m4.

6 m

40 kN�m 10 kN�m

A
B

Prob. F12–12 

FUNDaMeNTal PROBleMS
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12–54. Determine the slope at B and the deflection at C. 
EI is constant.

a

BA

a a a

C

P P

Prob. 12–54 

12–55. The composite simply supported steel shaft is 
subjected to a force of 10 kN at its center. Determine its 
maximum deflection. Est = 200 GPa.

5 kN

200 mm

5 kN

200 mm

200 mm

200 mm
A

B
20 mm

40 mm

Prob. 12–55 

*12–56. Determine the slope of the shaft at A and the 
displacement at D. EI is constant.

A
B

a

P P

C D

aa

Prob. 12–56 

PROBleMS

12–51. If the bearings at A and B exert only vertical 
reactions on the shaft, determine the slope at A and the 
maximum deflection.

P

aa

C

BA

2a

M0 Pa

D

Prob. 12–51

*12–52. Determine the slope and deflection at C. EI is 
constant.

10 kN

3 m6 m

B

A

C 

Prob. 12–52 

12–53. Determine the deflection of end B of the cantilever 
beam. EI is constant.

A

L
2

L
2

P P

B

Prob. 12–53 
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*12–60. Determine the slope of the 50-mm-diameter A-36 
steel shaft at the journal bearings at A and B. The bearings 
exert only vertical reactions on the shaft.

B

A

C

D

1200 mm

300 N
300 N

600 N
600 N

800 mm

500 mm

Prob. 12–60 

12–61. Determine the position a of the roller support B in 
terms of L so that the deflection at end C is the same as the 
maximum deflection of region AB of the overhang beam. 
EI is constant.

A
B

C

a

L

P

Prob. 12–61 

12–62. Determine the slope of the 20-mm-diameter A-36 
steel shaft at the journal bearings A and B. 

A C BD

800 N
350 N

500 mm300 mm
200 mm

Prob. 12–62 

12–57. The simply supported shaft has a moment of inertia 
of 2I for region BC and a moment of inertia I for regions 
AB and CD. Determine the maximum deflection of the 
shaft due to the load P. The modulus of elasticity is E.

CA D

P

B

L
4

L
4

L
4

L
4

Prob. 12–57 

12–58. Determine the deflection at C and the slope of the 
beam at A, B, and C. EI is constant.

A

C

B

6 m

8 kN�m

3 m

Prob. 12–58 

12–59. Determine the maximum deflection of the 
50-mm-diameter A-36 steel shaft. 

B

A

C

D

1200 mm

300 N
300 N

600 N
600 N

800 mm

500 mm

Prob. 12–59 
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12–63. Determine the slope and the deflection of end B of 
the cantilever beam. EI is constant.

A

L

M0M0 B

2
L
2

Prob. 12–63 

*12–64. The bar is supported by the roller constraint at C, 
which allows vertical displacement but resists axial load and 
moment. If the bar is subjected to the loading shown, 
determine the slope and displacement at A. EI is constant.

A

B
C

P

2aa

Prob. 12–64

12–65. Determine the slope at A and the displacement at 
C. Assume the support at A is a pin and B is a roller. EI is 
constant.

A C B

PPP

a a a a

Prob. 12–65 

12–66. Determine the deflection at C and the slopes at the 
bearings A and B. EI is constant. 

12–67. Determine the maximum deflection within region 
AB. EI is constant.

A B C

P2
––L

2
––L

Probs. 12–66/67 

*12–68. Determine the slope at A and the maximum 
deflection of the simply supported beam. EI is constant.

L
A B

M0 M0

Prob. 12–68 

12–69. Determine the slope at C and the deflection at B. 
EI is constant.

aa

A B

P

C

M0 Pa=

Prob. 12–69 
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12–73. At what distance a should the journal bearing 
supports at A and B be placed so that the deflection at the 
center of the shaft is equal to the deflection at its ends? EI 
is constant.

A B

P P

L

a a

Prob. 12–73 

12–74. The rod is constructed from two shafts for which 
the moment of inertia of AB is I and for BC it is 2I. 
Determine the maximum slope and deflection of the rod 
due to the loading. The modulus of elasticity is E.

P

A
B

C

L
2

L
2

Prob. 12–74 

12–75. Determine the slope at B and the deflection at C 
of the beam. E = 200 GPa and I = 65.0(106) mm4.

A

C
B

3 m 3 m

18 kN�m

40 kN

Prob. 12–75 

12–70. The bar is supported by a roller constraint at B, 
which allows vertical displacement but resists axial load and 
moment. If the bar is subjected to the loading shown, 
determine the slope at A and the deflection at C. EI is 
constant.

L—
2

L—
2

P

A
C

B

Prob. 12–70

12–71. Determine the displacement of the 20-mm-diameter 
A-36 steel shaft at D.

A C BD

800 N
350 N

500 mm300 mm
200 mm

Prob. 12–71 

*12–72. The shaft is subjected to the loading shown. If the 
bearings at A and B only exert vertical reactions on the 
shaft, determine the slope at A and the displacement at C. 
EI is constant.

a

A
C

B

a

M0 M0

Prob. 12–72
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*12–76. Determine the slope at point A and the maximum 
deflection of the simply supported beam. The beam is made 
of material having a modulus of elasticity E. The moment of 
inertia of segments AB and CD of the beam is I, and the 
moment of inertia of segment BC is 2I.

A

B C
D

L
2

L
4

L
4

PP

Prob. 12–76 

12–77. Determine the position a of roller support B in 
terms of L so that deflection at end C is the same as the 
maximum deflection in region AB of the overhang beam. 
EI is constant.

a

A

B C

L

M0

Prob. 12–77 

12–78. Determine the slope at B and deflection at C. EI is 
constant.

w

a a_a
2

_a
2

w

A B
C

Prob. 12–78 

12–79. Determine the slope and displacement at C. EI is 
constant.

A B
aa

w

C

P

Prob. 12–79 

*12–80. Determine the slope at C and deflection at B. EI 
is constant.

C

BA

a a

w

Prob. 12–80 

12–81. The two bars are pin connected at D. Determine 
the slope at A and the deflection at D. EI is constant.

–
2
L –

2
LL

A C
DB

P

Prob. 12–81 

12–82. Determine the maximum deflection of the beam. 
EI is constant.

aa

A

a

B
C D

w w

Prob. 12–82 
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12.5 meThod oF superposiTion
The differential equation EI d4v>dx4 = w(x) satisfies the two necessary 
requirements for applying the principle of superposition; i.e., the load 
w(x) is linearly related to the deflection v(x), and the load is assumed not 
to significantly change the original geometry of the beam or shaft. As a 
result, the deflections for a series of separate loadings acting on a beam 
may be superimposed. For example, if v1 is the deflection for one load and 
v2 is the deflection for another load, the total deflection for both loads 
acting together is the algebraic sum v1 + v2 . Using tabulated results for 
various beam loadings, such as the ones listed in Appendix C, or those 
found in various engineering handbooks, it is therefore possible to find 
the slope and displacement at a point on a beam subjected to several 
loadings by adding the effects of each loading.

The following examples numerically illustrate how to do this.

The resultant deflection at any point on this beam can be determined from the 
superposition of the deflections caused by each of the separate loadings acting on 
the beam.
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Determine the displacement at point C and the slope at the support A 
of the beam shown in Fig. 12–27a. EI is constant.

(a)

8 kN

4 m

A

C

B =

2 kN/m

4 m 4 m

A

A

C
B

2 kN/m

(b)

+

4 m

C
B

(c)

8 kN

4 m

4 m

vC
(vC)1

(vC)2

uA (uA)1

(uA)2

Fig. 12–27 

SOlUTION
The loading can be separated into two component parts as shown in  
Figs. 12–27b and 12–27c. The displacement at C and slope at A are  
found using the table in Appendix C for each part.

 For the distributed loading,

  (uA)1 =
3wL3

128EI
=

3(2 kN>m)(8 m)3

128EI
=

24 kN # m2

EI
A

 (vC)1 =
5wL4

768EI
=

5(2 kN>m)(8 m)4

768EI
=

53.33 kN # m3

EI
T

 For the 8-kN concentrated force,

  (uA)2 =
PL2

16EI
=

8 kN(8 m)2

16EI
=

32 kN # m2

EI
A

 (vC)2 =
PL3

48EI
=

8 kN(8 m)3

48EI
=

85.33 kN # m3

EI
T

The displacement at C and the slope at A are the algebraic sums of 
these components. Hence,

 (+A)        uA = (uA)1 + (uA)2 =
56 kN # m2

EI
 A Ans.

  (+ T)         vC = (vC)1 + (vC)2 =
139 kN # m3

EI
T   Ans.

(a)

8 kN

4 m

A

C

B =

2 kN/m

4 m 4 m

A

A

C
B

2 kN/m

(b)

+

4 m

C
B

(c)

8 kN

4 m

4 m

vC
(vC)1

(vC)2

uA (uA)1

(uA)2
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Determine the displacement at the end C of the cantilever beam shown in 
Fig. 12–28. EI is constant.

6 m 2 m

A
B C

4 kN/m

vB

vC

uB

Fig. 12–28

SOlUTION
Using the table in Appendix C for the triangular loading, the slope  
and displacement at point B are

 uB =
w0L

3

24EI
=

4 kN>m(6 m)3

24EI
=

36 kN # m2

EI

 vB =
w0L

4

30EI
=

4 kN>m(6 m)4

30EI
=

172.8 kN # m3

EI

The unloaded region BC of the beam remains straight, as shown in  
Fig. 12–28. Since uB is small, the displacement at C becomes

 (+ T)     vC = vB + uB(LBC) 

 =
172.8 kN # m3

EI
+

36 kN # m2

EI
 (2 m) 

 =
244.8 kN # m3

EI
T  Ans.
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Determine the displacement at the end C of the overhanging beam shown 
in Fig. 12–29a. EI is constant.

SOlUTION
Since the table in Appendix C does not include beams with overhangs, 
the beam will be separated into a simply supported and a cantilevered 
portion. First we will calculate the slope at B, as caused by the 
distributed load acting on the simply supported span, Fig. 12–29b.

(uB)1 =
wL3

24EI
=

5 kN>m(4 m)3

24EI
=

13.33 kN # m2

EI
 B

Since this angle is small, the vertical displacement at point C is

(vC)1 = (2 m)¢ 13.33 kN # m2

EI
≤ =

26.67 kN # m3

EI
c

Next, the 10-kN load on the overhang causes a statically equivalent 
force of 10 kN and couple moment of 20 kN # m at the support B of the 
simply supported span, Fig. 12–29c. The 10-kN force does not cause a 
slope at B; however, the 20-kN # m couple moment does cause a slope. 
This slope is

(uB)2 =
M0L

3EI
=

20 kN # m(4 m)

3EI
=

26.67 kN # m2

EI
A

so that the displacement of point C is

(vC)2 = (2 m)¢ 26.7 kN # m2

EI
≤ =

53.33 kN # m3

EI
T

Finally, the cantilevered portion BC is displaced by the 10-kN force, 
Fig. 12–29d. We have

(vC)3 =
PL3

3EI
=

10 kN(2 m)3

3EI
=

26.67 kN # m3

EI
T

Summing these results algebraically, we get

(+ T)  vC = -
26.7
EI

+
53.3
EI

+
26.7
EI

=
53.3 kN # m3

EI
T  Ans.

B
A

(a) =
4 m

5 kN/m

2 m

C

10 kN

BA

(b)
+

4 m

5 kN/m

2 m

C

B
A

(c)

(d)

+
4 m 2 m

2 m

C

B
C

10 kN

20 kN�m

10 kN

(uB)2

(uB)2

(uB)1

(uB)1

(vC)3

(vC)2

(vC)1

Fig. 12–29
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Fig. 12–30

1 kN2 kN
Rigid body displacement

(b)

2 m

A B

1 m

k  45 kN/m k  45 kN/m

=

3 kN

2 m

A
B

1 m
C

+

3 kN Original position

C

(a)

2 m1 m

3 kN

Deformable body displacement

(c)

(vC)2

(vA)1
(vC)1 (vB)1

The steel bar shown in Fig. 12–30a is supported by two springs at its ends A 
and B. Each spring has a stiffness of k = 45 kN>m and is originally 
unstretched. If the bar is loaded with a force of 3 kN at point C, determine 
the vertical displacement of the force. Neglect the weight of the bar and take 
Est = 200 GPa, I = 4.6875(10- 6) m4.

SOlUTION
The end reactions at A and B are calculated and shown in Fig. 12–30b. 
Each spring deflects by an amount

(vA)1 =
2 kN

45 kN>m
= 0.0444 m

(vB)1 =
1 kN

45 kN>m
= 0.0222 m

If the bar is considered to be rigid, these displacements cause it 
to move into the position shown in Fig. 12–30b. For this case, the 
vertical displacement at C is

(vC)1 = (vB)1 + a2 m
3 m

b [(vA)1 - (vB)1]

= 0.0222 m +
2
3

 (0.0444 m - 0.0222 m) = 0.037037 m T

We can find the displacement at C caused by the deformation of 
the bar, Fig. 12–30c, by using the table in Appendix C. We have

(vC)2 =
Pab

6EIL
 (L2 - b2 - a2)

=
[3 (103)N](1 m)(2 m)[(3 m)2 - (2 m)2 - (1 m)2]

6 [200 (109)N>m2][(4.6875 (10- 6) m4](3 m)
 

= 0.001422 m

Adding the two displacement components, we get

(+ T) vC = 0.037037 m + 0.001422 m = 0.038459 m = 38.5 mm T  Ans.
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12–83. The W310 * 67 simply supported beam is made of 
A-36 steel and is subjected to the loading shown. Determine 
the deflection at its center C.

60 kN

BA

4 m 4 m

75 kN m

C

Prob. 12–83

*12–84. The W250 * 22 cantilevered beam is made of A-36 
steel and is subjected to the loading shown. Determine the 
displacement at B and the slope at A.

AB

2 m 2 m

30 kN 20 kN

Prob. 12–84

12–85. Determine the slope and deflection at end C of the 
overhang beam. EI is constant.

12–86. Determine the slope at A and the deflection at point 
D of the overhang beam. EI is constant.

A

BD
C

aaa

w

Probs. 12–85/86

12–87. The simply supported beam is made of A-36 steel 
and is subjected to the loading shown. Determine the 
deflection at its center C. I = 0.1457(10- 3) m4.

4 kN/m

B
A

5 m

20 kN

5 m

C

Prob. 12–87

*12–88. Determine the slope at B and the deflection at 
point C of the simply supported beam E = 200 GPa and 
I = 45.5(106) mm4.

B
A

9 kN/m

3 m 3 m

10 kN

C

Prob. 12–88

12–89. Determine the vertical deflection and slope at the 
end A of the bracket. Assume that the bracket is fixed 
supported at its base, and neglect the axial deformation of 
segment AB. EI is constant.

A

C

B

100 mm 

75 mm

400 N

4 kN/m

Prob. 12–89

PROBleMS
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12–90. The simply supported beam carries a uniform load 
of 30 kN/m. Code restrictions, due to a plaster ceiling, 
require the maximum deflection not to exceed 1/360 of the 
span length. Select the lightest-weight A-36 steel wide-flange 
beam from Appendix B that will satisfy this requirement 
and safely support the load. The allowable bending stress is 
sallow = 168  MPa and the allowable shear stress is 
tallow = 100  MPa. Assume A is a pin and B a roller support.

1.2 m

BA

2.4 m

40 kN

1.2 m

30 kN/m

40 kN

Prob. 12–90

12–91. Determine the vertical deflection at the end A of 
the bracket. Assume that the bracket is fixed supported at its 
base B and neglect axial deflection. EI is constant.

a
P

A

b

B

Prob. 12–91

*12–92. Determine the slope at A and the deflection at 
point C of the simply supported beam. The modulus of 
elasticity of the wood is E = 10  GPa.

A B

3 kN 3 kN

1.5 m 1.5 m 3 m

100 mm

200 mmC

Prob. 12–92

12–93. The rod is pinned at its end A and attached to a 
torsional spring having a stiffness k, which measures the 
torque per radian of rotation of the spring. If a force P is 
always applied perpendicular to the end of the rod, 
determine the displacement of the force. EI is constant.

L

P

A

k

Prob. 12–93

12–94. Determine the deflection at end E of beam CDE. 
The beams are made of wood having a modulus of elasticity 
of E = 10  GPa.

A

C

D
a

a
a

a

E B

1.5 m

1.5 m

3 kN

2 m

1 m
75 mm

150 mm

Section a – a

Prob. 12–94
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12–95. The pipe assembly consists of three equal-sized 
pipes with flexibility stiffness EI and torsional stiffness GJ. 
Determine the vertical deflection at A.

L–
2

L–
2

L–
2 B

C

P

A

Prob. 12–95

*12–96. The framework consists of two A-36 steel 
cantilevered beams CD and BA and a simply supported 
beam CB. If each beam is made of steel and has a moment of 
inertia about its principal axis of Ix = 46(106) mm4 determine 
the deflection at the center G of beam CB.

4.8 m

A

D

2.4 m

2.4 mC G

B

75 kN

Prob. 12–96

12–97. The relay switch consists of a thin metal strip or 
armature AB that is made of red brass C83400 and is 
attracted to the solenoid S by a magnetic field. Determine 
the smallest force F required to attract the armature at C in 
order that contact is made at the free end B. Also, what 
should the distance a be for this to occur? The armature is 
fixed at A and has a moment of inertia of I = 0.18(10-12) m4.

50 mm

50 mm

2 mm

B

A

a

C

S

Prob. 12–97

12–98. Determine the moment M0 in terms of the load P 
and dimension a so that the deflection at the center of the 
shaft is zero. EI is constant.

a

P

a

M0 M0

a
2

a
2

Prob. 12–98
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12.6  sTaTically indeTerminaTe 
beams and shaFTs

In this section we will illustrate a general method for determining the 
reactions on a statically indeterminate beam or shaft. Specifically, a 
member is statically indeterminate if the number of unknown reactions 
exceeds the available number of equilibrium equations.

The additional support reactions on a beam (or shaft) that are not 
needed to keep it in stable equilibrium are called redundants, and the 
number of these redundants is referred to as the degree of indeterminacy. 
For example, consider the beam shown in Fig. 12–31a. If its free-body 
diagram is drawn, Fig. 12–31b, there will be four unknown support 
reactions, and since three equilibrium equations are available for solution, 
the beam is classified as being “indeterminate to the first degree.” Either 
Ay, By, or MA can be classified as the redundant, for if any one of these 
reactions is removed, the beam will still remain stable and in equilibrium 
(Ax cannot be classified as the redundant, for if it were removed, ΣFx = 0 
would not be satisfied.) In a similar manner, the continuous beam in  
Fig. 12–32a is “indeterminate to the second degree,” since there are five 
unknown reactions and only three available equilibrium equations,  
Fig. 12–32b. Here any two redundant support reactions can be chosen 
among Ay, By, Cy, and Dy. 

The reactions on a beam that is statically indeterminate must satisfy 
both the equations of equilibrium and the compatibility requirements at 
the supports. In the following sections we will illustrate how this is done 
using the method of integration, Sec. 12.7; the moment-area method,  
Sec. 12.8; and the method of superposition, Sec. 12.9.

(a)

P1 P2 P3

A D

CB

  
(b)

P1 P2 P3

Ay By Cy Dy

Ax

(a)

P

A
B

  
(b)

P

MA

Ax

Ay

By

Fig. 12–31

Fig. 12–32
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12.7  sTaTically indeTerminaTe 
beams and shaFTs—meThod 
oF inTegraTion

The method of integration, discussed in Sec. 12.2, requires applying the 
load–displacement relationship, d2v>dx2 = M>EI, to obtain the elastic 
curve for the beam. If the beam is statically indeterminate, then M will be 
expressed in terms of both its position x and some of the unknown support 
reactions. Although this will occur, there will be additional boundary 
conditions available for solution.

The following example problems illustrate applications of the 
integration method using the procedure for analysis outlined in 
Sec. 12.2.

An example of a statically indeterminate beam used to 
support a bridge deck.
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The beam is subjected to the distributed loading shown in Fig. 12–33a. 
Determine the reaction at A. EI is constant.

SOlUTION

Elastic Curve. The beam deflects as shown in Fig. 12–33a. Only one 
coordinate x is needed. For convenience we will take it directed to the 
right, since the internal moment is easy to formulate.

Moment Function. The beam is indeterminate to the first degree as 
indicated from the free-body diagram, Fig. 12–33b. If we choose the 
segment shown in  Fig. 12–33c, then the internal moment M will be a 
function of x, written in terms of the redundant force Ay.

M = Ay x -
1
 6

  w0 
x3

 L

Slope and Elastic Curve. Applying Eq. 12–10, we have

 EI 
d2v

 dx2 = Ayx -
1
 6

  w0 
x3

 L

 EI 
dv

dx
 =

1
 2

  Ayx2 -
1

 24
  w0 

x4

 L
+ C1

 EIv =
1

 6
  Ay x3 -

1

 120
  w0 

x5

 L
+ C1x + C2

The three unknowns Ay, C1, and C2 are determined from the three 
boundary conditions x = 0, v = 0; x = L, dv>dx = 0; and x = L, 
v = 0. Applying these conditions we get

x = 0, v = 0; 0 = 0 - 0 + 0 + C2

x = L, 
dv

dx
= 0; 0 =

1
 2

  AyL2 -
1

 24
  w0 L3 + C1

x = L, v = 0; 0 =
1
 6

  Ay L3 -
1

 120
  w0 L4 + C1 L + C2

Solving,

 Ay =
1

 10
  w0 L Ans.

 C1 = -  
1

 120
  w0L3  C2 = 0

NOTe: Using the result for Ay, the reactions at B can now be determined 
from the equations of equilibrium, Fig. 12–33b. Show that Bx = 0, 
By = 2w0 L>5, and MB = w0 L2>15. 

A

x
L

(a)

B

w0

A

(b)

By

MB

Bx 

w0L

Ay

LL
2
3

1
3

1
2

M

V

(c)

Ay

xx

w0
w0

A
2
3

1
3

1
2

x
L

x2

L

Fig. 12–33
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eXaMPle 12.18

The beam in Fig. 12–34a is fixed supported at both ends and is subjected 
to the uniform loading shown. Determine the reactions at the supports. 
Neglect the effect of axial load.

SOlUTION

Elastic Curve. The beam deflects as shown in Fig. 12–34a. As in the 
previous problem, only one x coordinate is necessary for the solution 
since the loading is continuous across the span.

Moment Function. From the free-body diagram, Fig. 12–34b, the 
respective shear and moment reactions at A and B must be equal, since 
there is symmetry of both loading and geometry. Because of this, the 
equation of equilibrium, ΣFy = 0, requires

VA = VB =
wL
 2

 Ans.

The beam is indeterminate to the first degree, with M′ the redundant at 
each end. Using the beam segment shown in Fig. 12–34c, the internal 
moment becomes

M =
wL
 2

  x -
w
 2

  x2 - M′

Slope and Elastic Curve. Applying Eq. 12–10, we have

 EI 
d2v

dx
 =

wL
 2

  x -
w
 2

  x2 - M′

 EI 
dv

dx
 =

wL
 4

  x2 -
w
 6

  x3 - M′x + C1

 EIv =
wL
 12 

  x3 -
w

 24
  x4 -

 M′
2

  x2 + C1 x + C2

The three unknowns, M′, C1, and C2, can be determined from the three 
boundary conditions v = 0 at x = 0, which yields C2 = 0; dv>dx = 0 at 
x = 0, which yields C1 = 0; and v = 0 at x = L, which yields

M′ =
wL2

 12
 Ans.

Notice that because of symmetry the remaining boundary condition 
dv>dx = 0 at x = L is automatically satisfied.

A

x
L

B

w

(a)

(b)

wL

MB � M¿ MA � M¿

VB �
wL
2

VA �
wL
2

L
2

L
2

(c)

wx

M¿
x

M

V

wL
2

x
2

Fig. 12–34
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PROBleMS

12–99. Determine the reactions at the supports A and B, 
then draw the shear and moment diagram. EI is constant. 
Neglect the effect of axial load.

P

L–
3

A B

1
L–

3
2

Prob. 12–99

*12–100. Determine the reactions at the supports, then 
draw the shear and moment diagram. EI is constant.

L

A B

P

L

Prob. 12–100

12–101. Determine the reactions at the supports A, B, and C, 
then draw the shear and moment diagrams. EI is constant.

CA
B

P P

L
2

L
2

L
2

L
2

Prob. 12–101

12–102. Determine the reactions at the supports A and B, 
then draw the shear and moment diagrams. EI is constant.

A B

P

L–
2

L–
2

Prob. 12–102

12–103. Determine the reactions at the supports A and B, 
then draw the shear and moment diagrams. EI is constant.

A
B

L

w

Prob. 12–103

*12–104. Determine the moment reactions at the supports A 
and B. EI is constant.

L

P P

A B

aa

Prob. 12–104
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12–105. Determine the reactions at the supports A and B, 
then draw the moment diagram. EI is constant.

A
B

L

M0

Prob. 12–105

12–106. Determine the reactions at the support A and B. 
EI is constant.

L

A

w

B

0

Prob. 12–106

12–107. Determine the reactions at roller support A and 
fixed support B.

L

BA

w

3
2L
3

Prob. 12–107

*12–108. Determine the moment reactions at the 
supports A and B, then draw the shear and moment 
diagrams. Solve by expressing the internal moment in the 
beam in terms of Ay and MA. EI is constant.

w

A B

L

Prob. 12–108

12–109. The beam has a constant E1I1 and is supported by 
the fixed wall at B and the rod AC. If the rod has a cross-
sectional area A2 and the material has a modulus of elasticity 
E2, determine the force in the rod.

A B 

C

w

L1

L2

Prob. 12–109

12–110. The beam is supported by a pin at A, a roller at B, 
and a post having a diameter of 50 mm at C. Determine the 
support reactions at A, B, and C. The post and the beam are 
made of the same material having a modulus of elasticity 
E = 200 GPa, and the beam has a constant moment of 
inertia I = 255(106) mm4. 

BC
A

15 kN/m

6 m

1 m

6 m

Prob. 12–110
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*12.8  sTaTically indeTerminaTe 
beams and shaFTs—
momenT-area meThod

If the moment-area method is used to determine the unknown redundants 
of a statically indeterminate beam or shaft, then when the M>EI  
diagram is drawn, the redundants will be represented as unknowns on 
this diagram. However, by applying the moment-area theorems it will be 
possible to obtain the necessary relationships between the tangents on 
the elastic curve in order to meet the conditions of compatibility at the 
supports, and thereby obtain a solution for the redundants.

Moment Diagrams Constructed by the Method of 
Superposition. Since application of the moment-area theorems 
requires calculation of both the area under the M>EI diagram and the 
centroidal location of this area, it is often convenient to use the method of 
superposition and use separate M>EI diagrams for each of the loads on the 
beam, rather than using the resultant diagram to calculate these geometric 
quantities.

Most loadings on cantilevered beams will be a combination of the 
four loadings shown in Fig. 12–35. Construction of their associated 
moment diagrams has been discussed in the examples of Chapter 6. 

P

L

M

x 

�PL
(a)

Sloping line

L

M

x

(b)

M0

M0

Zero sloping line

 
 

L

M

x 

(c)

Parabolic curve

w

�wL2

2   

L

M

x 

(d)

w0

Cubic curve

�w0L
2

6

Fig. 12–35
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With these results, the method of superposition can then be used  
to represent a moment diagram for a beam by a series of separate 
moment diagrams. For example, the three loadings on the cantilevered 
beam shown in Fig. 12–36a are statically equivalent to the three 
separate loadings on the cantilevered beams below it. Thus, if the 
moment diagrams for each separate beam are drawn, Fig. 12–36b, 
the superposition of these diagrams will yield the moment diagram for 
the beam shown at the top. Obviously, it is easier to find the area and 
location of the centroid for each part rather than doing this for the 
resultant diagram.

x (m)

�58

2 4

�40

�10

x (m)

�8

2

x (m)

�30

2

2
x (m)

�20

4

M (kN�m)

M (kN�m)

M (kN�m)

M (kN�m)

Superposition of moment diagrams

(b)

�

4

4

2 m 2 m

30 kN�m

5 kN4 kN/m
13 kN

58 kN�m

2 m

4 kN/m
8 kN

8 kN�m

30 kN�m

30 kN�m

4 m

5 kN
5 kN

20 kN�m

Superposition of loadings

(a)

2 m

A

A

A

A

�
�

�

��

Fig. 12–36
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x (m)

Resultant moment diagram

�20 �20

Superposition of moment diagrams

(b)

x (m)

70

90

12

6

12

x (m)
12

x (m)
12

�20

�20

6

6

6

12 m

20 kN�m
5 kN/m

�

�

20 kN�m

12 m

5 kN/m

12 m

12 m

Superposition of loadings

(a)

20 kN�m

20 kN�m

�

�
�

�

M (kN�m)

M (kN�m)

M (kN�m)

M (kN�m)

Fig. 12–37

In a similar manner, we can represent the resultant moment diagram 
for a simply supported beam by using the superposition of the moment 
diagrams for each of its loadings. For example, the beam loading shown 
at the top of Fig. 12–37a is equivalent to the sum of the beam loadings 
shown below it. Again, it is easier to sum the calculations of the areas and 
centroidal locations for the three moment diagrams rather than doing 
this for the moment diagram shown at the top of Fig. 12–37b.

The examples that follow should also clarify some of these points and 
illustrate how to use the moment-area theorems to directly obtain a 
specific redundant reaction on a statically indeterminate beam. The 
solutions follow the procedure for analysis outlined in Sec. 12.4.
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eXaMPle 12.19

The beam is subjected to the concentrated force shown in Fig. 12–38a. 
Determine the reactions at the supports. EI is constant.

 (a)
L

B
A

P

L

  (c)

L 2L
x

M
EI

2PL
EI

�

PL
EI

�

ByL

EI

L

(b)

B

P
MA

Ax

Ay

By

L

   (d)

B

A

tB/A � 0

tanA

tanB

Fig. 12–38

SOlUTION

M/EI Diagram. The free-body diagram is shown in Fig. 12–38b. 
Assuming the beam to be cantilevered from A, and using the method of 
superposition, the separate M>EI diagrams for the redundant reaction 
By and the load P are shown in Fig. 12–38c.

Elastic Curve. The elastic curve for the beam is shown in Fig. 12–38d. The 
tangents at the supports A and B have been constructed. Since vB = 0, then

tB>A = 0

Moment-Area Theorem. Applying Theorem 2, we have

 tB>A = a 2
 3

 Lb J 1
 2

 ¢ByL

 EI
≤L R + aL

 2
b c -PL

 EI
 (L) d

 + a 2
 3

 Lb c 1
 2

 a -PL
 EI

b(L) d = 0

By = 2.5P Ans.

Equations of Equilibrium. Using this result, the reactions at A on the 
free-body diagram, Fig. 12–38b, are

S +  ΣFx = 0;        Ax = 0 Ans.

+ c ΣFy = 0;     -Ay + 2.5P - P = 0

              Ay = 1.5P Ans.

a+ ΣMA = 0;   -MA + 2.5P(L) - P(2L) = 0

              MA = 0.5PL Ans.
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eXaMPle 12.20

The beam is subjected to the couple moment at its end C as shown in  
Fig. 12–39a. Determine the reaction at B. EI is constant.

SOlUTION

M/EI Diagram. The free-body diagram is shown in Fig. 12–39b. By 
inspection, the beam is indeterminate to the first degree. In order to 
obtain a direct solution, we will choose By as the redundant. Therefore 
we will consider the beam to be simply supported and use superposition 
to draw the M>EI diagrams for By and M0, Fig. 12–39c.

Elastic Curve. The elastic curve for the beam is shown in Fig. 12–39d, 
and the tangents at A, B, and C have been established. Since 
vA = vB = vC = 0, then the vertical distances shown must be 
proportional; i.e.,

tB>C =
1
 2

  tA>C (1)

From Fig. 12–39c, we have

 tB>C = a 1
 3

 Lb J 1
 2

 ¢By L

 2EI
≤(L) R + a 2

 3
 Lb J 1

 2
 ¢ -M0

 2EI
≤(L) R

 + aL
 2
b J ¢ -M0

 2EI
≤(L) R

 tA>C = (L)J 1
 2

 ¢By L

 2EI
≤(2L) R + a 2

 3
 (2L)b J 1

 2
 ¢ -M0

 EI
≤(2L) R

Substituting into Eq. 1 and simplifying yields

By =
3M0

 2L
 Ans.

Equations of Equilibrium. The reactions at A and C can now be 
determined from the equations of equilibrium, Fig. 12–39b. Show that 
Ax = 0, Cy = 5M0 >4L, and Ay = M0>4L. 

Note from Fig. 12–39e that this problem can also be worked in terms of 
the vertical distances,

tB>A =
1
 2

 tC>A

(a)

B
A

L

M0 
C

L

(b)

Ax

Ay Cy

By

M0

LL

(c)

2L
x

L

M
EI

M0

2EI
�

M0

2EI
� M0

EI
�

ByL

2EI

(d)

B

A

tanA
tanC

C

L

L
tanB

tB/C
tA/C

(e)

BA
tanB

tanC

tanA

L
L

tC/A

tB/A

Fig. 12–39
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12–111. Determine the moment reactions at the supports 
A and B. EI is constant.

L–
2

A B

w

L–
2

Prob. 12–111

*12–112. The rod is fixed at A, and the connection at B 
consists of a roller constraint which allows vertical 
displacement but resists axial load and moment. Determine 
the moment reactions at these supports. EI is constant.

A B

w

L

Prob. 12–112

12–113. Determine the value of a for which the maximum 
positive moment has the same magnitude as the maximum 
negative moment. EI is constant.

L

a

P

Prob. 12–113

12–114. Determine the reactions at the supports A and B, 
then draw the shear and moment diagrams. EI is constant.

P

A B

–
3
L –

3
L –

3
L

P

Prob. 12–114

12–115. Determine the reactions at the supports. EI is 
constant.

A
B

a a a

M0M0

Prob. 12–115

*12–116. Determine the reactions at the supports, then 
draw the shear and moment diagrams. EI is constant. 
Support B is a thrust bearing.

CA B

L

P

L
2

L
2

Prob. 12–116

PROBleMS
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12.9  sTaTically indeTerminaTe 
beams and shaFTs—meThod 
oF superposiTion

In order to use the method of superposition to solve for the reactions on 
a statically indeterminate beam, it is first necessary to identify the 
redundants and remove them from the beam. This will produce the 
primary beam, which will then be statically determinate and stable. 
Using superposition, we add to this beam a succession of similarly 
supported beams, each loaded only with a separate redundant. The 
redundants are determined from the conditions of compatibility that 
exist at each support where a redundant acts. Since the redundant forces 
are determined directly in this manner, this method of analysis is 
sometimes called the force method.

To clarify these concepts, consider the beam shown in Fig. 12–40a. If we 
choose the reaction By at the roller as the redundant, then the primary 
beam is shown in Fig. 12–40b, and the beam with the redundant By acting 
on it is shown in Fig. 12–40c. The displacement at the roller is to be zero, and 
since the displacement of B on the primary beam is vB, and By causes B to 
be displaced upward v′B, we can write the compatibility equation at B as

(+ c)           0 = -vB + v′B

These displacements can be expressed in terms of the loads using the 
table in Appendix C. These load–displacement relations are

vB =
5PL3

48EI
 and v=

B =
ByL

3

3EI

Substituting into the compatibility equation, we get

0 = -   
5PL3

 48EI
+

By L
3

 3EI

By =
5
16

 P

Now that By is known, the reactions at the wall are determined from 
the three equations of equilibrium applied to the free-body diagram of 
the beam, Fig. 12–40d. The results are

Ax = 0 Ay =
11
16

 P

MA =
3
16

  PL

P

Ax

Ay
P

(d)

MA

Actual beam

BA

P

(a)

B

A

P

(b)

vB

L

B

A

By

(c)

v¿B

�

�

Only redundant By applied

Redundant By removed

L
2

L
2

L
2

L
2

L
2

L
2 5

16

Fig. 12–40
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As stated in Sec. 12.6, choice of a redundant is arbitrary, provided the 
primary beam remains stable. For example, the moment at A for the beam 
in Fig. 12–41a can also be chosen as the redundant. In this case the 
capacity of the beam to resist MA is removed, and so the primary beam is 
then pin supported at A, Fig. 12–41b. To it we add the beam subjected 
only to the redundant, Fig. 12–41c. Referring to the slope at A caused by 
the load P as uA, and the slope at A caused by the redundant MA as u′A, 
the compatibility equation for the slope at A requires

(b+)            0 = uA + u′A

Again using the table in Appendix C to relate these rotations to the 
loads, we have

uA =
PL2

16EI
 and uA

= =
MAL

3EI

Thus,

0 =
PL2

16EI
+

MAL

3EI

MA = -  
3

 16
  PL

which is the same result determined previously. Here, however, the 
negative sign for MA simply means that MA acts in the opposite sense of 
direction to that shown in Fig. 12–41c.

Redundant MA removed

BA

P

(b)

Only redundant MA applied

BA(c)

MA
�

Actual beam

BA

P

(a)

�

L
2

L
2

L
2

L
2

uA

u¿A

Fig. 12–41
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A final example that illustrates this method is shown in Fig. 12–42a. In 
this case the beam is indeterminate to the second degree, and therefore 
two redundant reactions must be removed from the beam. We will choose 
the forces at the roller supports B and C as redundants. The primary 
(statically determinate) beam deforms as shown in Fig. 12–42b, and each 
redundant force deforms the beam as shown in Figs. 12–42c and 12–42d. 
By superposition, the compatibility equations for the displacements at  
B and C are therefore

 (+ T)          0 = vB + v′B + vB 
>

 (12–20)
 (+ T)          0 = vC + v′C + v C 

>

Using the table in Appendix C, all these displacement components can 
be expressed in terms of the known and unknown loads. Once this is 
done, the equations can then be solved simultaneously for the two 
unknowns By and Cy. 

B

A(a)

C

D

P1

P1

P2

P2

Actual beam

�

B

A(b)

C

D

Redundant By and Cy removed

�

vB vC

B
A(c)

C D

By

Only redundant By applied

�

B
A(d)

C D

Cy

v¿¿

Only redundant Cy applied

B

v¿B v¿C

v¿¿C

Fig. 12–42
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Procedure for AnAlysis

The following procedure provides a means for applying the method 
of superposition (or the force method) to determine the reactions 
on statically indeterminate beams or shafts.

elastic Curve.

 • Specify the unknown redundant forces or moments that must 
be removed from the beam in order to make it statically 
determinate and stable.

 • Using the principle of superposition, draw the statically 
indeterminate beam and show it equal to a sequence of 
corresponding statically determinate beams.

 • The first of these beams, the primary beam, supports the same 
external loads as the statically indeterminate beam, and each of 
the other beams “added” to the primary beam shows the beam 
loaded with a separate redundant force or moment.

 • Sketch the deflection curve for each beam and indicate the 
displacement (slope) at the point of each redundant force 
(moment).

Compatibility equations.

 • Write a compatibility equation for the displacement (slope) at 
each point where there is a redundant force (moment).

Load–Displacement equations.

 • Relate all the displacements or slopes to the forces or moments 
using the formulas in Appendix C.

 • Substitute the results into the compatibility equations and solve 
for the unknown redundants.

 • If a numerical value for a redundant is positive, it has the same 
sense of direction as originally assumed. A negative numerical 
value indicates the redundant acts opposite to its assumed sense 
of direction.

equilibrium equations.

 • Once the redundant forces and/or moments have been 
determined, the remaining unknown reactions can be found 
from the equations of equilibrium applied to the loadings 
shown on the beam’s free-body diagram.
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eXaMPle 12.21

The beam in Fig. 12–43a is fixed supported to the wall at A and pin 
connected to a 12-mm-diameter rod BC. If E = 200  GPa for both 
members, determine the force developed in the rod due to the loading. 
The moment of inertia of the beam about its neutral axis is 
I = 186(106) mm4.

SOlUTION I
Principle of Superposition. By inspection, this problem is indeter-
minate to the first degree. Here B will undergo an unknown displacement 
v″B, since the rod will stretch. The rod will be treated as the redundant and 
hence the force of the rod is removed from the beam at B, Fig. 12–43b, and 
then reapplied, Fig. 12–43c.

Compatibility Equation. At point B we require

1 + T 2  vB″ = vB - v′B (1)

The displacements vB and v′
B are determined from the table in Appendix C. 

v″B is calculated from Eq. 4–2.Working in kilopounds and inches, we have

v″B =
PL
AE

=
FBC(3 m)

3(p>4) (0.012 m)24 3200(109) N>m24 = 0.13263(10- 6) FBC

vB =
5PL3

48EI
=

5340(103) N4(4 m)3

483200(109) N>m24 3186(10- 6) m44 = 0.0071685 m

v′B =
PL3

3EI
=

FBC(4 m)3

33200(109) N>m24 3186(10- 6) m44 = 0.57348(10- 6) FBC

Thus, Eq. 1 becomes

(+ T) 0.13263(10- 6) FBC = 0.00716858 - 0.57348(10- 6) FBC

 FBC = 10.152(103) N = 10.2 kN Ans.

2 m
A

B

2 m
v¿¿

Actual beam and rod

40 kN

(a)

C

3 m

B

 

A

Redundant FBC removed

40 kN

(b)

B

vB

 

A

Only redundant FBC applied

(c)

B
FBC

v¿B

Fig. 12–43 
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SOlUTION II
Principle of Superposition. We can also solve this problem by 
removing the pin support at C and keeping the rod attached to the beam. 
In this case the 40-kN load will cause points B and C to be displaced 
downward the same amount vC, Fig. 12–43e, since no force exists in rod 
BC. When the redundant force FBC is applied at point C, it causes the end 
C of the rod to be displaced upward v′C and the end B of the beam to be 
displaced upward v′B, Fig. 12–43f. The difference in these two displace-
ments, vBC, represents the stretch of the rod due to FBC, so that 
v′C = vBC + v′B. Hence, from Figs. 12–43d, 12–43e, and 12–43f, the 
compatibility of displacement at point C is

(+ T) 0 = vC - (vBC + v′BC) (2)

From Solution I, we have

vC = vB = 0.0071685 mT

vBC = v″B = 0.13263(10- 6) FBCc

v′B = 0.57348(10- 6) FBCc

Therefore, Eq. 2 becomes

(+ T) 0 = 0.0071685 - [0.13263(10- 6) FBC + 0.57348(10- 6) FBC]

 FBC = 10.152(103) N = 10.2 kN Ans

A
2 m

Actual beam and rod

40 kN

(d)

C

B
2 m

 

A

Redundant FBC removed

40 kN

(e)

B

C
vC 

Fig. 12–43 (cont.)

 

A

Only redundant FBC applied

(f)

B

C

v¿C

v¿B

vBC

FBC
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eXaMPle 12.22

Determine the moment at B for the beam shown in Fig. 12–44a. EI is 
constant. Neglect the effects of axial load.

SOlUTION

Principle of Superposition. Since the axial load on the beam is 
neglected, there will be a vertical force and moment at A and B. Here 
there are only two available equations of equilibrium (ΣM = 0, ΣFy = 0) 
and so the problem is indeterminate to the second degree. We will assume 
that By and MB are redundant, so that by the principle of superposition, 
the beam is represented as a cantilever, loaded separately by the distributed 
load and reactions By and MB, Figs. 12–44b, 12–44c, and 12–44d.

B

Redundants MB and By removed

A(b)

2 m

9 kN/m

B

Actual beam

A(a)

2 m

9 kN/m

2 m

B

vB

Only redundant By applied

A(c)

4 m B

By

Only redundant MB applied

A(d)

B

v¿¿B

v¿B

MB

2 m

4 m
u¿¿

u¿

uB

B

Fig. 12–44
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Compatibility Equations. Referring to the displacement and slope 
at B, we require

1b + 2  0 = uB + u′B + u″B (1)

1+ T2  0 = vB + v′B + v″B (2)

Using the table in Appendix C to calculate the slopes and displacements, 
we have

uB =
wL3

48EI
=

(9 kN>m)(4 m)3

48EI
=

12 kN # m2

EI
 A

vB =
7wL4

384EI
=

7(9 kN>m)(4 m)4

384EI
=

42 kN # m3

EI
 T

u′B =
PL2

2EI
=

By(4 m)2

2EI
=

8By

EI
 A

v′B =
PL3

3EI
=

By(4 m)3

3EI
=

21.33By

EI
 T

u″B =
ML
EI

=
MB(4 m)

EI
=

4MB

EI
 A

v″B =
ML2

2EI
=

MB(4 m)2

2EI
=

8MB

EI
 T

Substituting these values into Eqs. 1 and 2 and canceling out the common 
factor EI, we get

1b + 2  0 = 12 + 8By + 4MB

1+ T 2  0 = 42 + 21.33By + 8MB

Solving these equations simultaneously gives

By = -3.375 kN

 MB = 3.75 kN # m Ans.
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eXaMPle 12.23

Determine the reactions at the roller support B of the beam shown 
in Fig. 12–45a, then draw the shear and moment diagrams. EI is 
constant.

SOlUTION

Principle of Superposition. By inspection, the beam is 
statically indeterminate to the first degree. The roller support at 
B will be chosen as the redundant so that By will be determined 
directly. Figures 12–45b and 12–45c show application of the 
principle of superposition. Here we have assumed that By acts 
upward on the beam.

Compatibility Equation. Taking positive displacement as 
downward, the compatibility equation at B is

(+ T) 0 = vB - v′B (1)

These displacements can be obtained directly from the table 
in Appendix C.

vB =
wL4

8EI
+

5PL3

48EI
 

=
(6 kN>m)(3 m)4

8EI
+

5(8 kN)(3 m)3

48EI
=

83.25 kN # m3

EI
 T

vB =
PL3

3EI
=

By(3 m)3

3EI
=

9 By

EI
 c

Substituting into Eq. 1 and solving yields

0 =
83.25

EI
-  

9 By

EI
 

 By = 9.25 kN Ans.

Equilibrium Equations. Using this result and applying the 
three equations of equilibrium, we obtain the results shown on 
the beam’s free-body diagram in Fig. 12–45d. The shear and 
moment diagrams are shown in Fig. 12–45e.

Actual beam

B
A

3 m

(a)

B

B

By

v¿B

vB

1.5 m

1.5 m
8 kN

3 m

6 kN/m

Redundant By removed

6 kN/m16.75 kN

11.25 kN m
0

8 kN

1.5

1.5

V (kN)

M (kN m)

x (m)

x (m)

11.25

16.75 7.75

9.25

7.125

9.25 kN

Only redundant By applied
3 m

1.5 m
8 kN

6 kN/m

(b)

(c)

1.5 m

(d)

(e)

Fig. 12–45
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F12–13. Determine the reactions at the fixed support A 
and the roller B. EI is constant.

A B

40 kN

4 m 2 m

F12–13

F12–14. Determine the reactions at the fixed support A 
and the roller B. EI is constant.

A
B

w0

L

F12–14

F12–15. Determine the reactions at the fixed support A 
and the roller B. Support B settles 2 mm. E = 200 GPa, 
I = 65.0(10-6) m4.

A
B

6 m

10 kN/m

F12–15

F12–16. Determine the reaction at the roller B. EI is 
constant.

A
B

C

L L

M0

F12–16

F12–17. Determine the reaction at the roller B. EI is 
constant.

A

B

C

4 m 6 m2 m

50 kN

F12–17

F12–18. Determine the reaction at the roller support B if 
it settles 5 mm. E = 200 GPa and I = 65.0(10- 6) m4. 

A
B

C

6 m 6 m

10 kN/m

F12–18

FUNDaMeNTal PROBleMS
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12–117. Determine the reactions at the journal bearing 
supports A, B, and C of the shaft, then draw the shear and 
moment diagrams. EI is constant. 

400 N

1 m 1 m

CA B

1 m 1 m

400 N

Prob. 12–117

12–118. Determine the reactions at the supports, then draw 
the shear and moment diagrams. EI is constant.

A
B

w

L L

C

Prob. 12–118

12–119. Determine the reactions at the supports, then 
draw the shear and moment diagrams. EI is constant. 

w

BA C

LL

Prob. 12–119

*12–120. Determine the reactions at the supports A 
and B. EI is constant.

L

A

w0

B

Prob. 12–120

PROBleMS
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12–121. Determine the reactions at the supports A and B. 
EI is constant.

A B
L
2

P

L

Prob. 12–121

12–122. Determine the reactions at the supports A and B. 
EI is constant.

L

A

M0

B

Prob. 12–122

12–123. Determine the reactions at the supports A and B. 
EI is constant.

A
B

w

L
2

L
2

Prob. 12–123

*12–124. Before the uniform distributed load is applied to 
the beam, there is a small gap of 0.2 mm between the beam 
and the post at B. Determine the support reactions at A, B, 
and C. The post at B has a diameter of 40 mm, and the 
moment of inertia of the beam is I = 875(106) mm4. The 
post and the beam are made of material having a modulus 
of elasticity of E = 200 GPa.

A

B
C

6 m

1 m

6 m

0.2 mm

30 kN/m

Prob. 12–124
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12–125. The fixed supported beam AB is strengthened 
using the simply supported beam CD and the roller at F 
which is set in place just before application of the load P. 
Determine the reactions at the supports if EI is constant.

P

A

C D

B

L—
4

L—
4

L—
4

L—
4

F

Prob. 12–125

12–126. The beam has a constant E1I1 and is supported by the 
fixed wall at B and the rod AC. If the rod has a cross-sectional 
area A2 and the material has a modulus of elasticity E2, 
determine the force in the rod.

A B

L

C

w

1

L2

Prob. 12–126

12–127. The beam is supported by the bolted supports at 
its ends. When loaded these supports initially do not provide 
an actual fixed connection, but instead allow a slight 
rotation a before becoming fixed after the load is fully 
applied. Determine the moment at the supports and the 
maximum deflection of the beam.

P

L—
2

L—
2

Prob. 12–127

*12–128. The 25-mm-diameter A-36 steel shaft is 
supported by unyielding bearings at A and C. The bearing 
at B rests on a simply supported steel wide-flange beam 
having a moment of inertia of I = 195(106) mm4. If the belt 
loads on the pulley are 2 kN each, determine the vertical 
reactions at A, B, and C.

2 kN
2 kN

0.6 m

0.9 m

1.5 m

1.5 m

1.5 m

A

B

C

Prob. 12–128
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12–129. The beam is made from a soft linear elastic 
material having a constant EI. If it is originally a distance ∆ 
from the surface of its end support, determine the length a 
that rests on this support when it is subjected to the uniform 
load w0, which is great enough to cause this to happen.

�

L
a

w0

Prob. 12–129

12–130. If the temperature of the 75-mm-diameter post 
CD is increased by 60°C, determine the force developed in 
the post. The post and the beam are made of A-36 steel, and 
the moment of inertia of the beam is I = 255(106) mm4.

A
C

D

B

3 m

3 m

3 m

Prob. 12–130

12–131. The rim on the flywheel has a thickness t, width b, 
and specific weight g. If the flywheel is rotating at a constant 
rate of v, determine the maximum moment developed in 
the rim. Assume that the spokes do not deform. Hint: Due 
to symmetry of the loading, the slope of the rim at each 
spoke is zero. Consider the radius to be sufficiently large so 
that the segment AB can be considered as a straight beam 
fixed at both ends and loaded with a uniform centrifugal 
force per unit length. Show that this force is w = btgv2r>g.

r

A

B

t

v

Prob. 12–131

*12–132. The box frame is subjected to a uniform 
distributed loading w along each of its sides. Determine the 
moment developed in each corner. Neglect the deflection 
due to axial load. EI is constant.

L

L

w

A B

C D

E

Prob. 12–132
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CHaPTeR ReVIeW

The elastic curve represents the centerline 
deflection of a beam or shaft. Its shape can be 
determined using the moment diagram. Positive 
moments cause the elastic curve to be concave 
upwards and negative moments cause it to be 
concave downwards. The radius of curvature at 
any point is determined from 

1
 r

=
M
 EI

 

M

x

Moment diagram

Inflection point

Elastic curve

The equation of the elastic curve and its slope 
can be obtained by first finding the internal 
moment in the member as a function of x. If 
several loadings act on the member, then 
separate moment functions must be determined 
between each of the loadings. Integrating these 
functions once using EI(d2v>dx2) = M(x) 
gives the equation for the slope of the elastic 
curve, and integrating again gives the equation 
for the deflection. The constants of integration 
are determined from the boundary conditions 
at the supports, or in cases where several 
moment functions are involved, continuity of 
slope and deflection at points where these 
functions join must be satisfied.

u � 0
v � 0

P

x1
x2

v1 � v2

v � 0

Boundary conditions

Continuity conditions

dv2

dx

dv1

dx
�

Discontinuity functions allow one to express the 
equation of the elastic curve as a continuous 
function, regardless of the number of loadings 
on the member. This method eliminates the 
need to use continuity conditions, since the two 
constants of integration can be determined from 
the two boundary conditions.
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The moment-area method is a semigraphical 
technique for finding the slope of tangents or 
the vertical distance between tangents at 
specific points on the elastic curve. It requires 
finding area segments under the M>EI diagram, 
or the moment of these segments about points 
on the elastic curve. The method works well for 
M>EI diagrams composed of simple shapes, 
such as those produced by concentrated forces 
and couple moments.

A B

tan B tan AuB/A   BA
x

M
EI uB/A � Area

tanB

tanA

A B

BA
xtB/A

M
EI

_
x ¿

tB/A �
_
x ¿(Area)

The deflection or slope at a point on a member 
subjected to combinations of loadings can be 
determined using the method of superposition. 
The table in Appendix C is available for this 
purpose. 

Statically indeterminate beams and shafts 
have more unknown support reactions than 
available equations of equilibrium. To solve, 
one first identifies the redundant reactions. 
The method of integration or the moment-
area theorems can then be used to solve for 
the unknown redundants. It is also possible to 
determine the redundants by using the method 
of superposition, where one considers the 
conditions of continuity at the redundant 
support. 
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R e V I e W  P R O B l e M S

R12–1. The shaft supports the two pulley loads shown. 
Using discontinuity functions, determine the equation of 
the elastic curve. The bearings at A and B exert only vertical 
reactions on the shaft. EI is constant.

BA

0.3 m 0.3 m 0.9 m

350 N

900 N

x

Prob. R12–1

R12–2. The shaft is supported by a journal bearing at A, 
which exerts only vertical reactions on the shaft, and by a 
thrust bearing at B, which exerts both horizontal and 
vertical reactions on the shaft. Draw the bending-moment 
diagram for the shaft and then, from this diagram, sketch 
the deflection or elastic curve for the shaft’s centerline.
Determine the equations of the elastic curve using the 
coordinates x1 and x2. EI is constant.

BA

300 mm

400 N 

x1

100 mm

x2

100 mm
400 N

300 mm

Prob. R12–2

R12–3. Determine the moment reactions at the supports 
A and B. Use the method of integration. EI is constant.

L

A

w0

B

Prob. R12–3

*R12–4. Determine the equations of the elastic curve for 
the beam using the x1 and x2 coordinates. Specify the slope 
at A and the maximum deflection. Use the method of 
integration. EI is constant.

w

A
B

L L

x1 x2

C

Prob. R12–4

R12–5. Determine the maximum deflection between the 
supports A and B. Use the method of integration. EI is 
constant.

w

A
B

L L

x1 x2

C

Prob. R12–5
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R12–6. Determine the slope at B and the deflection at C. 
Use the moment-area theorems. EI is constant.

a

BA C

P

a a

Prob. R12–6

R12–7. Determine the reactions, then draw the shear and 
moment diagrams. Use the moment-area theorems. EI is 
constant.

200 N

1 m 2 m1 m

CA B

Prob. R12–7

*R12–8. Using the method of superposition, determine 
the magnitude of M0 in terms of the distributed load w and 
dimension a so that the deflection at the center of the beam 
is zero. EI is constant.

w

M

a aa

0 M0

Prob. R12–8

*R12–9. Beam ABC is supported by beam DBE and fixed 
at C. Determine the reactions at B and C. The beams are 
made of the same material having a modulus of elasticity 
E = 200  GPa, and the moment of inertia of both beams is 
I = 25.0(106) mm4.

B

B

D E

A

DE

AC

C

2 m 4 m

9 kN/ma

a

3 m 3 m

Section a – a

Prob. R12–9
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The columns of this water tank are braced at points along their length in order to 
reduce their chance of buckling.

13

(© James Roman/Getty Images)
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Buckling of  
columns

13.1 CritiCal load
Not only must a member satisfy specific strength and deflection requirements 
but it must also be stable. Stability is particularly important if the member is 
long and slender, and it supports a compressive loading that becomes large 
enough to cause the member to suddenly deflect laterally or sidesway. These 
members are called columns, and the lateral deflection that occurs is called 
buckling. Quite often the buckling of a column can lead to a sudden and 
dramatic failure of a structure or mechanism, and as a result, special attention 
must be given to the design of columns so that they can safely support their 
intended loadings without buckling.

Chapter OBJeCtIVeS

n In this chapter we will discuss the buckling behavior of a column 
subjected to axial and eccentric loads. Afterwards, some of the 
methods used to design columns made of common engineering 
materials will be presented.
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The maximum axial load that a column can support when it is on the verge 
of buckling is called the critical load, Pcr, Fig. 13–1a. Any additional loading 
will cause the column to buckle and therefore deflect laterally as shown in 
Fig. 13–1b. 

We can study the nature of this instability by considering the two-bar 
mechanism consisting of weightless rigid bars that are pin connected as 
shown in Fig. 13–2a. When the bars are in the vertical position, the spring, 
having a stiffness k, is unstretched, and a small vertical force P is applied at 
the top of one of the bars. To upset this equilibrium position the pin at A is 
displaced by a small amount ∆, Fig. 13–2b. As shown on the free-body 
diagram of the pin, Fig. 13–2c, the spring will produce a restoring force 
F = k∆ in order to resist the two horizontal components, Px = P tan u, 
which tend to push the pin (and the bars) further out of equilibrium. Since u 
is small, ∆ ≈ u(L>2) and tan u ≈ u. Thus the restoring spring force 
becomes F = ku(L>2), and the disturbing force is 2Px = 2Pu.

If the restoring force is greater than the disturbing force, that is, 
kuL>2 7 2Pu, then, noticing that u cancels out, we can solve for P, 
which gives

P 6
kL
4
  stable equilibrium

This is a condition for stable equilibrium, since the force developed by 
the spring would be adequate to restore the bars back to their vertical 
position. However, if ku(L>2) 6 2Pu, or

P 7
kL
4
  unstable equilibrium

then the bars will be in unstable equilibrium. In other words, if this load 
is applied, and a slight displacement occurs at A, the bars will tend to 
move out of equilibrium and not be restored to their original position.

Pcr

Pcr

(a)   

P � Pcr

P � Pcr

(b)

Fig. 13–1
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The intermediate value of P, which requires kLu>2 = 2Pu, is the 
critical load. Here

Pcr =
kL
4
  neutral equilibrium

This loading represents a case of the bars being in neutral equilibrium. 
Since Pcr is independent of the (small) displacement u of the bars, any 
slight disturbance given to the mechanism will not cause it to move 
further out of equilibrium, nor will it be restored to its original position. 
Instead, the bars will simply remain in the deflected position.

These three different states of equilibrium are represented graphically 
in Fig. 13–3. The transition point where the load is equal to its critical 
value P = Pcr is called the bifurcation point. Here the bars will be in 
neutral equilibrium for any small value of u. If a larger load P is placed on 
the bars, then they will undergo a larger deflection, so that the spring is 
compressed or elongated enough to hold them in equilibrium.

In a similar manner, if the load on an actual column exceeds its critical 
loading, then this loading will also require the column to undergo a large 
deflection; however, this is generally not tolerated in engineering 
structures or machines.

P

k

(a)

A

L
2

L
2

  

A

(b)

P

k

L
2

L
2

u

u

L
2

� � u( )

  

P

P tan u

u

u

P tan u

F A

P

(c)

Fig. 13–2

Bifurcation point

Unstable
equilibrium

P

O

Neutral
equilibrium

Stable
equilibrium

u

Pcr �
kL
4

Fig. 13–3
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13.2  ideal Column with Pin 
SuPPortS

In this section we will determine the critical buckling load for a column 
that is pin supported as shown in Fig. 13–4a. The column to be considered 
is an ideal column, meaning it is made of homogeneous linear elastic 
material and it is perfectly straight before loading. Here the load is applied 
through the centroid of the cross section. 

One would think that because the column is straight, theoretically the 
axial load P could be increased until failure occurred either by fracture 
or yielding of the material. However, as we have discussed, when the 
critical load Pcr is reached, the column will be on the verge of becoming 
unstable, so that a small lateral force F, Fig. 13–4b, will cause the column 
to remain in the deflected position when F is removed, Fig. 13–4c. Any 
slight reduction in the axial load P from Pcr will allow the column to 
straighten out, and any slight increase in P, beyond Pcr, will cause a 
further increase in this deflection.

The tendency of a column to remain stable or become unstable when 
subjected to an axial load actually depends upon its ability to resist 
bending. Hence, in order to determine the critical load and the buckled 
shape of the column, we will apply Eq. 12–10, which relates the internal 
moment in the column to its deflected shape, i.e.,

 EI 
d2v

dx2 = M (13–1)

P

(a)

L

  (b)

Pcr

F

  (c)

Pcr

Fig. 13–4

The dramatic failure of this off-shore oil 
platform was caused by the horizontal 
forces of hurricane winds, which led to 
buckling of its supporting columns.
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A free-body diagram of a segment of the column in the deflected position 
is shown in Fig. 13–5a. Here both the displacement v and the internal 
moment M are shown in the positive direction. Since moment equilibrium 
requires M = -Pv, then Eq. 13–1 becomes

EI 
d2v

dx2 = -Pv

 
d2v

dx2 + a P
EI

bv = 0 (13–2)

This is a homogeneous, second-order, linear differential equation with 
constant coefficients. It can be shown by using the methods of differential 
equations, or by direct substitution into Eq. 13–2, that the general 
solution is

 v = C1 sin aA P
EI

  xb + C2 cos aA P
EI

  xb  (13–3)

The two constants of integration can be determined from the boundary 
conditions at the ends of the column. Since v = 0 at x = 0, then C2 = 0. 
And since v = 0 at x = L, then

C1 sin aA P
EI

  Lb = 0

This equation is satisfied if C1 = 0; however, then v = 0, which is a trivial 
solution that requires the column to always remain straight, even though 
the load may cause the column to become unstable. The other possibility 
requires

sin aA P
EI

  Lb = 0

which is satisfied if A P
EI

  L = np

or

 P =
n2p2EI

L2  n = 1, 2, 3, c  (13–4)

L v

v

x

x

P

P

(a)

P

M

x

P

v

Fig. 13–5
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The smallest value of P is obtained when n = 1, so the critical load for 
the column is therefore*

Pcr =
p2EI

L2

This load is sometimes referred to as the Euler load, named after the 
Swiss mathematician Leonhard Euler, who originally solved this problem 
in 1757. From Eq. 13–3, the corresponding buckled shape, shown in  
Fig. 13–5b, is therefore

v = C1 sin 
px
L

The constant C1 represents the maximum deflection, vmax, which occurs 
at the midpoint of the column, Fig. 13–5b. Unfortunately, a specific value 
for C1 cannot be obtained once it has buckled. It is assumed, however, 
that this deflection is small.

As noted above, the critical load depends on the material’s stiffness or 
modulus of elasticity E and not its yield stress. Therefore, a column 
made of high-strength steel offers no advantage over one made of 
lower-strength steel, since the modulus of elasticity for both materials is 
the same. Also note that Pcr will increase as the moment of inertia of the 
cross section increases. Thus, efficient columns are designed so that most 
of the column’s cross-sectional area is located as far away as possible 
from the center of the section. This is why hollow sections such as tubes 
are more economical than solid sections. Furthermore, wide-flange 
sections, and columns that are “built up” from channels, angles, plates, 
etc., are better than sections that are solid and rectangular.

L

P

P

v

x
n � 1

(b)

vmax

L
2

 

Fig. 13–5 (cont.)

*n represents the number of curves in the deflected shape of the column. For example, 
if n = 1, then one curve appears as in Fig. 13–5b; if n = 2, then two curves appear as in 
Fig. 13–5a, etc.

These timber columns can be considered 
pinned at their bottom and fixed connected 
to the beams at their top.
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Since Pcr is directly related to I, a column will buckle about the principal 
axis of the cross section having the least moment of inertia (the weakest 
axis), provided it is supported the same way about each axis. For example, 
a column having a rectangular cross section, like a meter stick, Fig. 13–6, 
will buckle about the a–a axis, not the b–b axis. Because of this, engineers 
usually try to achieve a balance, keeping the moments of inertia the same 
in all directions. Geometrically, then, circular tubes make excellent 
columns. Square tubes or those shapes having Ix ≈ Iy are also often 
selected for columns.

To summarize, the buckling equation for a pin-supported long slender 
column is

 Pcr =
p 

2EI

L2  (13–5)

where

Pcr =  critical or maximum axial load on the column just before it begins 
to buckle. This load must not cause the stress in the column to 
exceed the proportional limit.

E = modulus of elasticity for the material
I = least moment of inertia for the column’s cross-sectional area

L = unsupported length of the column, whose ends are pinned

For design purposes, the above equation can also be written in terms of 
stress, by using I = Ar 2, where A is the cross-sectional area and r is the 
radius of gyration of the cross-sectional area. We have,

 Pcr =
p2E(Ar 2)

L2

 aP
A
b

cr
=

p 2E
(L>r)2

or

 scr =
p 

2E

(L>r)2  (13–6)

Here

scr =  critical stress, which is an average normal stress in the column just 
before the column buckles. It is required that scr … sY.

E = modulus of elasticity for the material
L = unsupported length of the column, whose ends are pinned
r =  smallest radius of gyration of the column, determined from 

r = 2I>A, where I is the least moment of inertia of the column’s 
cross-sectional area A

The geometric ratio L>r in Eq. 13–6 is known as the slenderness ratio. It 
is a measure of the column’s flexibility, and as we will discuss later, it 
serves to classify columns as long, intermediate, or short.

 

P

a

a

b

b

Fig. 13–6

 

Failure of this crane boom was caused by 
the localized buckling of one of its tubular 
struts.
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A graph of this equation for columns made of structural steel and an 
aluminum alloy is shown in Fig. 13–7. The curves are hyperbolic and are 
valid only for critical stresses that are below the material’s yield 
point  (proportional limit). Notice that for the steel the yield stress is 
(sY)st = 250 MPa [Est = 200 GPa], and for the aluminum it is 
(sY)al = 186 MPa [Eal = 68.9 GPa]. If we substitute scr = sY into 
Eq. 13–6, the smallest allowable slenderness ratios for the steel and 
aluminum columns then become (L>r)st = 89 and (L>r)al = 60.5, 
Fig. 13–7. Thus, for a steel column, if (L>r)st 6 89, the column’s stress will 
exceed the yield point before buckling can occur, and so the Euler formula 
cannot be used.

L
r

200
186

100

50 100 150 200

Aluminum
alloy

Structural
steel

60.5 89

scr (MPa)

(sY 5 250 MPa)

(sY 5 186 MPa)

250

300

150

50

0

Fig. 13–7

  • Columns are long slender members that are subjected to axial 
compressive loads.

  • The critical load is the maximum axial load that a column can 
support when it is on the verge of buckling. This loading 
represents a case of neutral equilibrium.

  • An ideal column is initially perfectly straight, made of 
homogeneous material, and the load is applied through the 
centroid of its cross section.

  • A pin-connected column will buckle about the principal axis of 
the cross section having the least moment of inertia.

  • The slenderness ratio is L>r, where r is the smallest radius of 
gyration of the cross section. Buckling will occur about the axis 
where this ratio gives the greatest value.

Important poInts



 13.2 ideal Column with pin supports 691

13

The A992 steel W200 * 46 member shown in Fig. 13–8 is to be used as a 
pin-connected column. Determine the largest axial load it can support 
before it either begins to buckle or the steel yields.

3 m

x

x

y y

Fig. 13–8

Solution

From the table in Appendix B, the column’s cross-sectional area and moments 
of inertia are A = 5890 mm2 = 5.89 (10- 3) m2, Ix = 45.5(106) mm4  
=  45.5(10- 6) m4, and Iy = 15.3(106) mm4 =  15.3(10- 6) m4. By inspection, 
buckling will occur about the y–y axis. Why? Applying Eq. 13–5, we have

Pcr =
p2EI

L2 =
p2[200(109)N/m2][15.3(10- 6) m4]

(3 m)2 = 3.3557(106) N = 3.36 MN

When fully loaded, the average compressive stress in the column is

scr =
Per

A
=

3.3557(106) N

5.89(10- 3) m2 = 569.72(106) N>m2 = 570 MPa

Since this stress exceeds the yield stress (345 MPa), the load P is 
determined from simple compression:

345(106) N>m2 =
P

5.89(10- 3) m2  P = 2.032(106) N = 2.03 MN Ans.

In actual practice, a factor of safety would be placed on this loading.

ExamplE   13.1
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13.3  ColumnS having variouS 
tyPeS of SuPPortS

The Euler load in Sec. 13.2 was derived for a column that is pin connected or 
free to rotate at its ends. Oftentimes, however, columns may be supported in 
other ways. For example, consider the case of a column fixed at its base and 
free at the top, Fig. 13–9a. As the column buckles, the load will sidesway and  
be displaced d, while at x the displacement is v. From the free-body diagram 
in Fig. 13–9b, the internal moment at the arbitrary section is M = P(d - v), 
and so the differential equation for the deflection curve is

EI 
d2v

dx2 = P(d - v)

 
d2v

dx2 +
P
EI

 v =
P
EI

 d (13 –7)

Unlike Eq. 13–2, this equation is nonhomogeneous because of the 
nonzero term on the right side. The solution consists of both a 
complementary and a particular solution, namely,

v = C1 sinaA P
EI

 xb + C2 cosaA P
EI

 xb + d

The constants are determined from the boundary conditions. At x = 0, 
v = 0, and so C2 = -d. Also, 

dv

dx
= C1A P

EI
 cosaA P

EI
 xb - C2A P

EI
 sinaA P

EI
 xb

and at x = 0, dv>dx = 0, then C1 = 0. The deflection curve is therefore

 v = d c 1 - cosaA P
EI

 xb d  (13–8)

Finally, at the top of the column x = L, v = d, so that

d cosaA P
EI

 Lb = 0

The trivial solution d = 0 indicates that no buckling occurs, regardless of 
the load P. Instead,

cosaA P
EI

 Lb = 0  or  A P
EI

 L =
np
2

,   n = 1, 3, 5c

The smallest critical load occurs when n = 1, so that

 Pcr =
p2EI

4L2  (13–9)

By comparison with Eq. 13–5, it is seen that a column fixed supported 
at its base and free at its top will support only one-fourth the critical load 
that can be applied to a column pin supported at both ends.

L
v

v

x

x P

(a)

d

   

x
P

P

M

(b)

v

d

Fig. 13–9

The tubular columns used to support this 
water tank have been braced at three 
locations along their length to prevent them 
from buckling.
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Other types of supported columns are analyzed in much the same way 
and will not be covered in detail here.* Instead, we will tabulate the results 
for the most common types of column support and show how to apply 
these results by writing Euler’s formula in a general form.

Effective length. To use Euler’s formula, Eq. 13–5, for columns 
having different types of supports, we will modify the column length L to 
represent the distance between the points of zero moment on the column. 
This distance is called the column’s effective length, Le. Obviously, for a 
pin-ended column Le = L, Fig. 13–10a. For the fixed-end and free-ended 
column, the deflection curve is defined by Eq. 13–8. When plotted, its 
shape is equivalent to a pin-ended column having a length of 2L, 
Fig. 13–10b, and so the effective length between the points of zero moment 
is Le = 2L. Examples for two other columns with different end supports 
are also shown in Fig. 13–10. The column fixed at its ends, Fig. 13–10c, has 
inflection points or points of zero moment L>4 from each support. The 
effective length is therefore defined by the middle half of its length, that is, 
Le = 0.5L. Finally, the pin- and fixed-ended column, Fig. 13–10d, has an 
inflection point at approximately 0.7L from its pinned end, so 
that Le = 0.7L.

Rather than specifying the column’s effective length, many design codes 
provide column formulas that employ a dimensionless coefficient K called 
the effective-length factor. This factor is defined from

 Le = KL (13–10)

Specific values of K are also given in Fig. 13–10. Based on this generality, 
we can therefore write Euler’s formula as

 Pcr =
p2EI

(KL)2  (13–11)

or

 scr =
p2E

(KL>r)2  (13–12)

Here (KL>r) is the column’s effective-slenderness ratio. 

Pinned ends

P

(a)

K � 1

L � Le

   

L

P

Fixed and free ends

(b)

K � 2

Le � 2L

Fixed ends

(c)
K � 0.5

P

L Le � 0.5L

 

Pinned and fixed ends

(d)
K � 0.7

P

L

Le � 0.7L

Fig. 13–10*See Problems 13–43, 13–44, and 13–45.
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ExamplE   13.2

The aluminum column in Fig. 13–11a is braced at its top by cables so as 
to  prevent movement at the top along the x axis. If it is assumed to 
be fixed at its base, determine the largest allowable load P that can be 
applied. Use a factor of safety for buckling of F.S. = 3.0. Take 
Eal = 70 GPa, sY = 215 MPa, A = 7.5(10-3) m2, Ix = 61.3(10-6) m4, 
Iy = 23.2(10-6) m4.

Solution
Buckling about the x and y axes is shown in Figs. 13–11b and 13–11c. Using 
Fig. 13–10a, for x–x axis buckling, K = 2, so (KL)x = 2(5 m) = 10 m. For 
y–y axis buckling, K = 0.7, so (KL)y = 0.7(5 m) = 3.5 m.

Applying Eq. 13–11, the critical loads for each case are

 (Pcr)x =
p2EIx

(KL)x
2 =

p2[70(109) N>m2](61.3(10-6) m4)

(10 m)2

 = 424 kN

 (Pcr)y =
p2EIy

(KL)y
2 =

p2[70(109) N>m2](23.2(10-6) m4)

(3.5 m)2

 = 1.31 MN

By comparison, as P is increased the column will buckle about the  
x–x axis. The allowable load is therefore

 Pallow =
Pcr

F.S.
=

424 kN
3.0

= 141 kN  Ans.

Since

scr =
Pcr

A
=

424 kN
7.5(10-3) m2 = 56.5 MPa 6 215 MPa

Euler’s equation is valid.

(a)

P

x

y

5 m

z

x–x axis buckling

(b)

Le � 10 m

y–y axis buckling

(c)

Le � 3.5 m

Fig. 13–11
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ExamplE   13.3

A W150 * 24 steel column is 8 m long and is fixed at its ends as shown 
in Fig. 13–12a. Its load-carrying capacity is increased by bracing it about 
the y–y (weak) axis using struts that are assumed to be pin connected to 
its midheight. Determine the load it can support so that the column does 
not buckle nor the material exceed the yield stress. Take Est = 200  GPa 
and sY = 410 MPa.

Solution
The buckling behavior of the column will be different about the x–x and 
y–y axes due to the bracing. The buckled shape for each of these cases is 
shown in Figs. 13–12b and 13–12c. From Fig. 13–12b, the effective length 
for buckling about the x–x axis is (KL)x = 0.5(8 m) = 4 m, and from  
Fig. 13–12c, for buckling about the y–y axis, (KL)y = 0.7(8 m>2) = 2.8 m.  
The moments of inertia for a W150 * 24 are found from the table  
in Appendix B. We have Ix = 13.4(106) mm4 = 13.4(10- 6) m4, 
Iy = 1.83(106) mm4 = 1.83(10- 6) m4.

Applying Eq. 13–11,

 (Pcr)x =
p2EI

(KL)y
2 =

p2[200(109)N>m2][13.4(10- 6) m4]

(4 m)2 = 1653.16 kN (1)

 (Pcr)y =
p2EI

(KL)y
2 =

p2[200(109)N>m2][1.83(10- 6) m4]

(2.8 m)2 = 460.75 kN (2)

By comparison, buckling will occur about the y–y axis.
The area of the cross section is 3060 mm2 = 3.06(10- 3) m2, so the 

average compressive stress in the column is

scr =
Pcr

A
=

460.75(103) N

3.06(10-3) m2 = 150.57(106) N>m2 = 150.57 MPa

Since this stress is less than the yield stress, buckling will occur before  
the material yields. Thus,

Pcr = 461 kN Ans.

4 m

(b)

x–x axis buckling

(a)

P

x

x

y

y

4 m

4 m

(c)

y–y axis buckling

2.8 m

Fig. 13–12 
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FunDamEntal pRoBlEmS

F13–1. A 1.25-m-long rod is made from a 25-mm-diameter 
steel rod. Determine the critical buckling load if the ends are 
fixed supported. E = 200  GPa, sY = 250  MPa.

F13–2. A 3.6-m wooden rectangular column has the 
dimensions shown. Determine the critical load if the ends 
are assumed to be pin-connected. E = 12  GPa. Yielding 
does not occur.

3.6 m

100 mm

50 mm

Prob. F13–2

F13–3. The A992 steel column can be considered pinned 
at its top and bottom and braced against its weak axis at the 
mid-height. Determine the maximum allowable force P that 
the column can support without buckling. Apply a F.S. = 2  
against buckling. Take A = 7.4(10-3) m2, Ix = 87.3(10-6) m4, 
and Iy = 18.8(10-6) m4.

6 m

6 m

P

xy

Prob. F13–3

F13–4. A steel pipe is fixed supported at its ends. If it is  
5 m long and has an outer diameter of 50 mm and a thickness 
of 10 mm, determine the maximum axial load P that it can 
carry without buckling. Est = 200 GPa, sY = 250 MPa.

F13–5. Determine the maximum force P that can be 
supported by the assembly without causing member AC to 
buckle. The member is made of A-36 steel and has a 
diameter of 50 mm. Take F.S. = 2 against buckling.

P

0.9 m

1.2 m

C
A

B

Prob. F13–5

F13–6. The A992 steel rod BC has a diameter of 50 mm 
and is used as a strut to support the beam. Determine the 
maximum intensity w of the uniform distributed load that 
can be applied to the beam without causing the strut to 
buckle. Take F.S. = 2 against buckling.

B

C

6 m
3 m

A

w

Prob. F13–6
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pRoBlEmS

13–1. Determine the critical buckling load for the column. 
The material can be assumed rigid.

L
2

L
2

P

A

k

k

Prob. 13–1

13–2. The column consists of a rigid member that is pinned 
at its bottom and attached to a spring at its top. If the spring 
is unstretched when the column is in the vertical position, 
determine the critical load that can be placed on the column.

P

A

B
k

L

Prob. 13–2

13–3. The leg in (a) acts as a column and can be modeled 
(b) by the two pin-connected members that are attached to a 
torsional spring having a stiffness k (torque>rad). Determine 
the critical buckling load. Assume the bone material is rigid.

L—
2

L—
2

P

(b)(a)

k

Prob. 13–3

*13–4. Rigid bars AB and BC are pin connected at B. If the 
spring at D has a stiffness k, determine the critical load 
Pcr that can be applied to the bars.

k

A

B

D

a

C

P

a

a

Prob. 13–4
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13–5. A 2014-T6 aluminum alloy column has a length of  
6 m and is fixed at one end and pinned at the other. If the 
cross-sectional area has the dimensions shown, determine 
the critical load. sY = 250 MPa.

13–6. Solve Prob. 13–5 if the column is pinned at its top  
and bottom.

300 mm

10 mm 200 mm

10 mm

10 mm

Probs. 13–5/6

13–7. The W360 * 57 column is made of A-36 steel and is 
fixed supported at its base. If it is subjected to an axial load of 
P = 75 kN, determine the factor of safety with respect to 
buckling.

*13–8. The W360 * 57 column is made of A-36 steel. 
Determine the critical load if its bottom end is fixed 
supported and its top is free to move about the strong axis 
and is pinned about the weak axis.

6 m

P

Probs. 13–7/8

13–9. A steel column has a length of 9 m and is fixed at both 
ends. If the cross-sectional area has the dimensions shown, 
determine the critical load. Est = 200 GPa, sY = 250 MPa.

200 mm

10 mm 150 mm

10 mm

10 mm

Prob. 13–9

13–10. A steel column has a length of 9 m and is pinned at 
its top and bottom. If the cross-sectional area has the 
dimensions shown, determine the critical load. Est = 200 GPa, 
sY = 250 MPa. 

200 mm

10 mm 150 mm

10 mm

10 mm

Prob. 13–10

13–11. The A-36 steel angle has a cross-sectional area of 
A = 1550 mm2 and a radius of gyration about the x axis of 
rx = 31.5 mm and about the y axis of ry = 21.975 mm. The 
smallest radius of gyration occurs about the z axis and is 
rz = 16.1 mm. If the angle is to be used as a pin-connected 
3-m-long column, determine the largest axial load that can be 
applied through its centroid C without causing it to buckle.

x x

y

y

z

z

C

Prob. 13–11
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*13–12. The deck is supported by the two 40-mm-square 
columns. Column AB is pinned at A and fixed at B, whereas 
CD is pinned at C and D. If the deck is prevented from 
sidesway, determine the greatest weight of the load that can 
be applied without causing the deck to collapse. The center 
of gravity of the load is located at d = 2 m. Both columns are 
made from Douglas Fir.

13–13. The deck is supported by the two 40-mm-square 
columns. Column AB is pinned at A and fixed at B, whereas CD 
is pinned at C and D. If the deck is prevented from sidesway, 
determine the position d of the center of gravity of the load and 
the load’s greatest magnitude without causing the deck to 
collapse. Both columns are made from Douglas Fir.

5 m

C A

D B

4 m 4 m

G

d

Probs. 13–12/13

13–14. Determine the maximum force P that can be applied 
to the handle so that the A-36 steel control rod BC does not 
buckle. The rod has a diameter of 25 mm.

P

C

350 mm

800 mm
45

250 mm

A

B

Prob. 13–14

13–15. Determine the maximum load P the frame can 
support without buckling member AB. Assume that AB is 
made of steel and is pinned at its ends for y–y axis buckling 
and fixed at its ends for x–x axis buckling. Est = 200 GPa,  
sY = 360 MPa.

6 m

P
3 m

4 m

y

x

y

50 mm

50 mm

C

B

A

x
50 mm

Prob. 13–15

*13–16. The two steel channels are to be laced together  
to form a 9-m-long bridge column assumed to be pin 
connected at its ends. Each channel has a cross-sectional  
area of A = 1950 mm2 and moments of inertia 
Ix = 21.60(106) mm4, Iy = 0.15(106) mm4. The centroid C  
of its area is located in the figure. Determine the proper 
distance d between the centroids of the channels so that 
buckling occurs about the x–x and y′ - y′ axes due to the 
same load. What is the value of this critical load? Neglect the 
effect of the lacing. Est = 200  GPa, sY = 350  MPa.

30 mm6.5 mm

d

y y¿

C C

y y¿

x x

Prob. 13–16
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13–17. The W250 * 67 is made of A992 steel and is used 
as a column that has a length of 4.55 m. If its ends are 
assumed pin supported, and it is subjected to an axial load 
of 500 kN, determine the factor of safety with respect to 
buckling.

13–18. The W250 * 67 is made of A992 steel and is used 
as a column that has a length of 4.55 m. If the ends of the 
column are fixed supported, can the column support the 
critical load without yielding?

13–21. The 3-m wooden rectangular column has the 
dimensions shown. Determine the critical load if the ends 
are assumed to be pin connected. E

w
= 12  GPa, 

sY = 35  MPa.

13–22. The 3-m column has the dimensions shown. 
Determine the critical load if the bottom is fixed and the 
top is pinned. E

w
= 12 GPa, sY = 35 MPa.

4.55 m

P

P

Probs. 13–17/18

13–19. The 50-mm-diameter C86100 bronze rod is fixed 
supported at A and has a gap of 2 mm from the wall at B. 
Determine the increase in temperature ΔT that will cause 
the rod to buckle. Assume that the contact at B acts as a pin.

A B

1 m

2 mm

Prob. 13–19

*13–20. An A992 steel W200 * 46 column of length 9 m 
is fixed at one end and free at its other end. Determine  
the allowable axial load the column can support if F.S. = 2 
against buckling.

3 m

100 mm

50 mm

Probs. 13–21/22

13–23. If load C has a mass of 500 kg, determine the 
required minimum diameter of the solid L2-steel rod AB to 
the nearest mm so that it will not buckle. Use F.S. = 2 
against buckling.

*13–24. If the diameter of the solid L2-steel rod AB is  
50 mm, determine the maximum mass C that the rod can 
support without buckling. Use F.S. = 2 against buckling.

B

C

D

45°

A

60°

4 m

Probs. 13–23/24
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13–25. The members of the truss are assumed to be pin 
connected. If member GF is an A-36 steel rod having a 
diameter of 50 mm, determine the greatest magnitude of 
load P that can be supported by the truss without causing 
this member to buckle.

13–26. The members of the truss are assumed to be pin 
connected. If member AG is an A-36 steel rod having a 
diameter of 50 mm, determine the greatest magnitude of 
load P that can be supported by the truss without causing 
this member to buckle.

G

A B
D

C

F

P

4 m 4 m

3 m

P

4 m

EH

Probs. 13–25/26

13–27. Determine the maximum allowable intensity w of 
the distributed load that can be applied to member BC 
without causing member AB to buckle. Assume that AB  
is made of steel and is pinned at its ends for x–x axis 
buckling and fixed at its ends for y–y axis buckling. Use  
a factor of safety with respect to buckling of 3. 
Est = 200 GPa,  sY = 360 MPa.

*13–28. Determine if the frame can support a load of 
w = 6 kN>m if the factor of safety with respect to buckling 
of member AB is 3. Assume that AB is made of steel and is 
pinned at its ends for x–x axis buckling and fixed at its ends 
for y–y axis buckling. Est = 200 GPa,  sY = 360 MPa.

1.5 m

2 m

w

B

A

0.5 m

C

30 mm

x

x

y y
20 mm

30 mm

Probs. 13–27/28

13–29. A 6061-T6 aluminum alloy solid circular rod of length 
4 m is pinned at both of its ends. If it is subjected to an axial 
load of 15 kN and F.S. = 2 against buckling, determine the 
minimum required diameter of the rod to the nearest mm.

13–30. A 6061-T6 aluminum alloy solid circular rod of 
length 4 m is pinned at one end while fixed at the other end. 
If it is subjected to an axial load of 15 kN and F.S. = 2 against 
buckling, determine the minimum required diameter of the 
rod to the nearest mm.

13–31. The A-36 steel bar AB has a square cross section. If 
it is pin connected at its ends, determine the maximum 
allowable load P that can be applied to the frame. Use a 
factor of safety with respect to buckling of 2.

3 m 40 mm

BA
40 mm

40 mm 30

C

P

Prob. 13–31

*13–32. Determine the maximum allowable load P that 
can be applied to member BC without causing member AB 
to buckle. Assume that AB is made of steel and is pinned at 
its ends for x–x axis buckling and fixed at its ends for y–y 
axis buckling. Use a factor of safety with respect to buckling 
of F.S. = 3. Est = 200 GPa, sY = 360 MPa.

1 m

2 m

B

A

C

30 mm

x

x

y y
20 mm

30 mm

1 m
P

Prob. 13–32
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13–33. Determine if the frame can support a load of 
P = 20 kN if the factor of safety with respect to buckling of 
member AB is F.S. = 3. Assume that AB is made of steel and 
is pinned at its ends for x–x axis buckling and fixed at its 
ends for y–y axis buckling. Est = 200 GPa, sY = 360 MPa.

1 m

2 m

B

A

C

30 mm

x

x

y y
20 mm

30 mm

1 m
P

Prob. 13–33

13–34. The steel bar AB has a rectangular cross section. If 
it is pin connected at its ends, determine the maximum 
allowable intensity w of the distributed load that can be 
applied to BC without causing AB to buckle. Use a factor of 
safety with respect to buckling of 1.5. Est = 200 GPa, sY = 
360 MPa.

5 m

20 mm

3 m

w

B
C

A

y

y

x x

30 mm

20 mm

Prob. 13–34

13–35. The W360 * 45 is used as a structural A-36 steel 
column that can be assumed pinned at both of its ends. 
Determine the largest axial force P that can be applied 
without causing it to buckle.

7.5 m

P

Prob. 13–35

*13–36. The beam supports the load of P = 30 kN. As a 
result, the A-36 steel member BC is subjected to a 
compressive load. Due to the forked ends on the member, 
consider the supports at B and C to act as pins for x–x axis 
buckling and as fixed supports for y–y axis buckling. 
Determine the factor of safety with respect to buckling 
about each of these axes.

13–37. Determine the greatest load P the frame will 
support without causing the A-36 steel member BC to 
buckle. Due to the forked ends on the member, consider the 
supports at B and C to act as pins for x–x axis buckling and 
as fixed supports for y–y axis buckling.

P
1.2 m

A B

C

1.2 m

0.9 m
75 mm

25 mmx

xy

y

Probs. 13–36/37
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13–38. The members of the truss are assumed to be pin 
connected. If member AB is an A-36 steel rod of 40 mm 
diameter, determine the maximum force P that can be 
supported by the truss without causing the member to buckle.

13–39. The members of the truss are assumed to be pin 
connected. If member CB is an A-36 steel rod of 40 mm 
diameter, determine the maximum load P that can be 
supported by the truss without causing the member to buckle.

A
B

D

CE 2 m

2 m

1.5 m

P

Probs. 13–38/39

*13–40.  The steel bar AB of the frame is assumed to be 
pin connected at its ends for y–y axis buckling. If P = 18 kN, 
determine the factor of safety with respect to buckling 
about the y–y axis. Est = 200 GPa, sY = 360 MPa.

6 m

P
3 m

4 m

y

x

y

50 mm

50 mm

C

B

A

x
50 mm

Prob. 13–40

13–41.  The ideal column has a weight w (force>length) and 
is subjected to the axial load P. Determine the maximum 
moment in the column at midspan. EI is constant. Hint: 
Establish the differential equation for deflection, Eq. 13–1, 
with the origin at the midspan. The general solution is 
v = C1 sin kx + C2 cos kx +  (w>(2P))x2 - (wL>(2P))x
-  (wEI>P  

2 ) where k2 = P>EI.

L

P

w

Prob. 13–41

13–42. The ideal column is subjected to the force F at its 
midpoint and the axial load P. Determine the maximum 
moment in the column at midspan. EI is constant. 
Hint: Establish the differential equation for deflection, Eq. 13–1. 
The general solution is v = C1 sin kx + C2 cos kx - c2x>k2, 
where c2 = F>2EI, k2 = P>EI.

P

F

L
2

L
2

Prob. 13–42

13–43. The column with constant EI has the end constraints 
shown. Determine the critical load for the column.

L

P

Prob. 13–43

*13–44. Consider an ideal column as in Fig. 13–10c, having 
both ends fixed. Show that the critical load on the column is 
Pcr = 4p2EI>L2. Hint: Due to the vertical deflection of the 
top of the column, a constant moment M′ will be developed 
at the supports. Show that d2v>dx2 + (P>EI)v = M′>EI. 
The solution is of the form v = C1 sin(1P>EIx) +
C2 cos(1P>EIx) + M′>P.

13–45. Consider an ideal column as in Fig. 13–10d, having 
one end fixed and the other pinned. Show that the critical load 
on the column is Pcr = 20.19EI>L2. Hint: Due to the vertical 
deflection at the top of the column, a constant moment M′ will 
be developed at the fixed support and horizontal reactive 
forces R′ will be developed at both supports. Show that 
d2v>dx2 + (P>EI)v = (R′>EI)(L - x). The solution is  
of the form v = C1sin (1P>EIx) + C2 cos (1P>EIx) +
(R′>P)(L - x). After application of the boundary conditions 
show that tan (1P>EIL) = 1P>EI L. Solve numerically for 
the smallest nonzero root.
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*13.4 the SeCant formula
The Euler formula was derived assuming the load P is applied through the 
centroid of the column’s cross-sectional area and that the column is 
perfectly straight. Actually this is quite unrealistic, since a manufactured 
column is never perfectly straight, nor is the application of the load known 
with great accuracy. In reality, then, columns never suddenly buckle; instead 
they begin to bend, although ever so slightly, immediately upon application 
of the load. As a result, the actual criterion for load application should be 
limited, either to a specified sidesway deflection of the column, or by not 
allowing the maximum stress in the column to exceed an allowable stress.

To study the effect of an eccentric loading, we will apply the load P to 
the column at a distance e from its centroid, Fig. 13–13a. This loading is 
statically equivalent to the axial load P and bending moment M′ = Pe 
shown in Fig. 13–13b. In both cases, the ends A and B are supported so 
that they are free to rotate (pin supported), and as before, we will only 
consider linear elastic material behavior. Furthermore, the x–v plane is a 
plane of symmetry for the cross-sectional area.

From the free-body diagram of the arbitrary section, Fig. 13–13c, the 
internal moment in the column is

            M = -P(e + v) (13–13)

And so the differential equation for the deflection curve becomes

EI 
d 

2v

dx2 = -P (e + v)

L

v

v

x

B

P

x

e

A

(a)

P

=

 

L

v

v

x

P

M¿ � Pe

M¿ � Pe

x

(b)

P

 

v

x

P e

(c)

M

P

Fig. 13–13
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or
d 

2v

dx2 +
P
EI

 v = -  
P
EI

 e

This equation is similar to Eq. 13–7, and its solution consists of both 
complementary and particular solutions, namely,

 v = C1 sin A P
EI

 x + C2 cos A P
EI

 x - e (13–14)

To evaluate the constants we must apply the boundary conditions.  
At x = 0, v = 0, so C2 = e. And at x = L, v = 0, which gives

C1 =
e[1 - cos(2P>EI L)]

sin(2P>EI L)

Since 1 - cos(2P>EI L) = 2 sin2(2P>EI L>2) and sin(2P>EI L) =  

2 sin(2P>EI L>2) cos (2P>EI L>2), we have

C1 = e tanaA P
EI

 
L
2
b

Hence, the deflection curve, Eq. 13–14, becomes

 v = e c tanaA P
EI

 
L
2
b  sinaA P

EI
 xb + cosaA P

EI
 xb - 1 d       (13–15)

maximum Deflection. Due to symmetry of loading, both the 
maximum deflection and maximum stress occur at the column’s midpoint. 
Therefore, at x = L>2,

 vmax = e c sec aA P
EI

 
L
2
b - 1 d   (13–16)

Notice that if e approaches zero, then vmax approaches zero. However, if 
the terms in the brackets approach infinity as e approaches zero, then vmax 
will have a nonzero value. Mathematically, this represents the behavior of 
an axially loaded column at failure when subjected to the critical load Pcr
. Therefore, to find Pcr we require

 sec¢APcr

EI
 
L
2
b = ∞  

 APcr

EI
 
L
2

=
p

2
 

 Pcr =
p2EI

L2  (13–17)

which is the same result found from the Euler formula, Eq. 13–5.
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P

Pcr
Ideal column
(small deflections)

eas 0

vmax

e � 0

Fig. 13–14

If Eq. 13–16 is plotted for various values of eccentricity e, it results in a 
family of curves shown in Fig. 13–14. Here the critical load becomes an 
asymptote to the curves and represents the unrealistic case of an ideal 
column (e = 0). The results developed here apply only for small sidesway 
deflections, and so they certainly apply if the column is long and slender. 

Notice that the curves in Fig. 13–14 show a nonlinear relationship 
between the load P and the deflection v. As a result, the principle of 
superposition cannot be used to determine the total deflection of a 
column. In other words, the deflection must be determined by applying 
the total load to the column, not a series of component loads. Furthermore, 
due to this nonlinear relationship, any factor of safety used for design 
purposes must be applied to the load and not to the stress. 

The column supporting this crane is unusually long. 
It will be subjected not only to uniaxial load, but 
also a bending moment. To ensure it will not buckle, 
it should be braced at the roof as a pin connection.



13

 13.4 the seCant formula 707

L

P

P
e

v

P
e

e

(a)

M

P

the Secant Formula. The maximum stress in an eccentrically loaded 
column is caused by both the axial load and the moment, Fig.  13–15a. 
Maximum moment occurs at the column’s midpoint, and using Eqs. 13–13 
and 13–16, it has a magnitude of

M = � P(e + vmax) �  M = Pe sec aA P
EI

 
L
2
b     (13–18)

As shown in Fig. 13–15b, the maximum stress in the column is therefore

smax =
P
A

+
Mc
I

;  smax =
P
A

+
Pec

I
 sec aA P

EI
 
L
2
b

Since the radius of gyration is r = 2I>A, the above equation can be 
written in a form called the secant formula:

 smax =
P
A

 J1 +
ec

r 2 sec a
Le

2r
 A P

EA
b R      (13–19)

Here
smax =  maximum elastic stress in the column, which occurs at the inner 

concave side at the column’s midpoint. This stress is compressive.

P =  vertical load applied to the column. P 6 Pcr unless e = 0; then 
P = Pcr (Eq. 13–5).

e =  eccentricity of the load P, measured from the centroidal axis of 
the column’s cross-sectional area to the line of action of P

c =  distance from the centroidal axis to the outer fiber of the column 
where the maximum compressive stress smax occurs

A =  cross-sectional area of the column

Le =  unsupported length of the column in the plane of bending. 
Application is restricted to members that are pin connected, 
Le = L, or have one end free and the other end fixed, Le = 2L.

E = modulus of elasticity for the material

r =  radius of gyration, r = 2I>A, where I is calculated about the 
centroidal or bending axis

�

Axial
stress

(b)

Bending
stress

Resultant
stress

�

smax

Fig. 13–15
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Graphs of Eq. 13–19 for various values of the eccentricity ratio ec>r 2 
are plotted in Fig. 13–16 for a structural-grade A-36 steel. Note that when 
e S 0, or when ec>r 2 S 0, Eq. 13–16 gives smax = P>A, where P is the 
critical load on the column, defined by Euler’s formula. Since the results 
are valid only for elastic loadings, the stresses shown in the figure cannot 
exceed sY = 250 MPa, represented here by the horizontal line.

By inspection, the curves indicate that changes in the eccentricity ratio 
have a marked effect on the load-carrying capacity of columns with small 
slenderness ratios. However, columns that have large slenderness ratios 
tend to fail at or near the Euler critical load regardless of the eccentricity 
ratio, since the curves bunch together. Therefore, when Eq. 13–19 is used 
for design purposes, it is important to have a somewhat accurate value 
for the eccentricity ratio for shorter-length columns.

Design. Once the eccentricity ratio is specified, the column data can 
be substituted into Eq. 13–19. If a value of smax = sY is considered, then 
the corresponding load PY can be determined numerically, since the 
equation is transcendental and cannot be solved explicitly for PY. As a 
design aid, computer software, or graphs such as those in Fig. 13–16, can 
also be used to determine PY. Realize that due to the eccentric application 
of PY, this load will always be smaller than the critical load Pcr, which 
assumes (unrealistically) that the column is axially loaded.

250

(MPa)

— 0=ec
r2

— 1.0=ec
r2

0.5

1.0

1.5

A

——r
KL

50 100
A-36 structural steel

150 200

Est = 200(103) MPa, σY = 250 MPa

100

150

50

—P

300

200

0

Euler’s formula
Eq. 13–6 

Fig. 13–16

 • Due to imperfections in manufacturing or specific application 
of the load, a column will never suddenly buckle; instead, it 
begins to bend as it is loaded.

  • The load applied to a column is related to its deflection in a 
nonlinear manner, and so the principle of superposition does 
not apply.

 • As the slenderness ratio increases, eccentrically loaded 
columns tend to fail at or near the Euler buckling load.

Important poInts
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ExamplE   13.4

The W200 * 59 A992 steel column shown in Fig. 13–17a is fixed at its base 
and braced at the top so that it is fixed from displacement, yet free to rotate 
about the y–y axis. Also, it can sway to the side in the y–z plane. Determine 
the maximum eccentric load the column can support before it either begins 
to buckle or the steel yields.

Solution

From the support conditions it is seen that about the y–y axis the column 
behaves as if it were pinned at its top and fixed at the bottom and 
subjected to an axial load P, Fig. 13–17b. About the x–x axis the column 
is free at the top and fixed at the bottom, and it is subjected to both an 
axial load P and moment M = P(0.2 m), Fig. 13–17c.

y–y Axis Buckling. From Fig. 13–10d the effective length factor is 
Ky = 0.7, so (KL)y = 0.7(4 m) = 2.8 m. Using the table in Appendix B 
to determine W310 * 74 for the W200 * 59 section and applying  
Eq. 13–11, we have

 (Pcr)y =
p2EI

(KL)y
2 =

p2[200(109)N>m2][20.4(10- 6) m4]

(2.8 m)2

 = 5.136(106) N = 5.14 MN

x–x Axis Yielding. From Fig. 13–10b, Kx = 2, so (KL)x = 2(4 m) = 8 m. 
Again using the table in Appendix B to determine 
A = 7580 mm2 = 7.58(10- 3) m2, c = 210 mm>2 = 105 mm =  0.105 m, 
and rx = 89.9 mm = 0.0899 m and applying the secant formula, we have

sY =
Px

A
 c 1 +

ec

r x
2  sec a

(KL)x

2rx
 A Px

EA
 b d

345(106)N>m2 = c
Px

7.58(10- 3)m2 d e1 +
(0.2 m)(0.105 m)

(0.0899 m)2

 sec c 8m
2(0.0899 m)

 A Px

[200(109)N>m2][7.58(10- 3)m2]
 d f

Substituting the data and simplifying yields

2.6151(106) = Px51 + 2.5984  sec  [1.1427(10- 3)1Px6

Solving for Px by trial and error, noting that the argument for the secant is in 
radians, we get

 Px = 536.05(103) N = 536 kN Ans.

Since this value is less than (Pcr)y = 5.14 MN failure will occur about the  
x–x axis.

(a)

200 mm

x

x

y

y

4 m

P
z

(b) y–y axis buckling

2.8 m
4 m

P

 

4 m

(c)

P

x–x axis yielding

M  P(0.2 m)

Fig. 13–17
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*13.5 inelaStiC BuCkling
In engineering practice, columns are generally classified according to the 
type of stresses developed within them at the time of failure. Long slender 
columns will become unstable when the compressive stress remains 
elastic. The failure that occurs is referred to as elastic buckling. 
Intermediate columns fail due to inelastic buckling, meaning that the 
compressive stress at failure is greater than the material’s proportional 
limit. And short columns, sometimes called posts, do not become unstable; 
rather the material simply yields or fractures.

Application of the Euler equation requires that the stress in the column 
remain below the material’s yield point (actually the proportional limit) 
when the column buckles, and so this equation applies only to long 
columns. In practice, however, many columns have intermediate lengths. 
One way to study the behavior of these columns is to modify the Euler 
equation so that it applies for inelastic buckling. 

To show how this can be done, consider the material to have a stress–
strain diagram as shown in Fig. 13–18a. Here the proportional limit is spl , 
and the modulus of elasticity, or slope of the line AB, is E. If the column 
has a slenderness ratio that is less than its value at the proportional limit, 
(KL>r)pl , then from the Euler equation, the critical stress in the column 
will be greater than spl in order to buckle the column. For example, 
suppose a column has a slenderness ratio of (KL>r)1 6 (KL>r)pl , with a 
corresponding critical stress sD 7 spl, Fig. 13–18. When the column is 
about to buckle, the change in stress and strain that occurs in the column 
is within a small range ∆s and ∆P, so that the modulus of elasticity 
or  stiffness for the material within this range can be taken as the 
tangent modulus Et = ∆s>∆P. In other words, at the time of failure, the 
column behaves as if it were made of a material that has a lower stiffness 
than when it behaves elastically, Et 6 E.

A

(a)

B

D

E

Et

s

sD

spl

P

�P

�s

 

Fig. 13–18

This crane boom failed by buckling caused 
by an overload. Note the region of localized 
collapse.
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In general, therefore, as the slenderness ratio (KL>r) continues to 
decrease, the critical stress for a column will continue to rise; and from the 
s-P diagram, the tangent modulus for the material will decrease. Using 
this idea, we can modify Euler’s equation to include these cases of inelastic 
buckling by substituting the material’s tangent modulus Et  for E, so that

scr =
p2Et

 (KL>r)2   (13–20)

This is the so-called tangent modulus or Engesser equation, proposed 
by F. Engesser in 1889. A plot of this equation for intermediate and short-
length columns made of a material having the s-P diagram in  
Fig. 13–18a is shown in Fig. 13–18b.

As stated before, no actual column can be considered to either be 
perfectly straight or loaded along its centroidal axis, as assumed here, 
and therefore it is indeed very difficult to develop an expression that will 
provide a complete analysis of inelastic buckling. In spite of this, 
experimental testing of a large number of columns, each of which 
approximates the ideal column, has shown that Eq. 13–20 is reasonably 
accurate in predicting the column’s critical stress. Furthermore, this 
tangent modulus approach to modeling inelastic column behavior is 
relatively easy to apply.*

Long columns

(b)

Short and intermediate
length columns

ElasticInelastic

scr

spl

sD

scr �
p2Et

(KL/r)2

scr �
p2E

(KL/r)2

KL
rKL

r 1

KL
r pl

Fig. 13–18 (cont.)

*Other theories, such as Shanley’s theory, have also been used to provide a description 
of inelastic buckling. Details can be found in books related to column stability.  
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ExamplE   13.5

A solid rod has a diameter of 30 mm and is 600 mm long. It is made of 
a material that can be modeled by the stress–strain diagram shown in 
Fig. 13–19. If it is used as a pin-supported column, determine the 
critical load.

Solution
The radius of gyration is

r = A  I
 A

 = B  (p>4)(15 mm)4

 p(15 mm)2   = 7.5 mm

and therefore the slenderness ratio is

 KL
 r

 =
 1(600 mm)

 7.5 mm
 = 80

Applying Eq. 13–20 we have,

scr =
 p 2E t 

 (KL>r) 2 
 =

 p 2Et 

 (80) 2 
 = 1.542(10- 3 )Et   (1)

First we will assume that the critical stress is elastic. From Fig. 13–19,

E =
150 MPa

0.001
 = 150 GPa

Thus, Eq. 1 becomes

s cr = 1.542(10- 3)[150(103)] MPa = 231.3 MPa

Since s cr 7 s pl = 150 MPa, inelastic buckling occurs.
From the second line segment of the s-P diagram, Fig. 13–19, we can 

obtain the tangent modulus.

E t =
 ∆s

 ∆P
 =

 270 MPa - 150 MPa
 0.002 - 0.001

 = 120 GPa

Applying Eq. 1 yields

scr = 1.542(10- 3)[120(103)] MPa = 185.1 MPa

Since this value falls within the limits of 150 MPa and 270 MPa, it is 
indeed the critical stress.

The critical load on the rod is therefore

Pcr = scr A = 185.1(106) Pa[p(0.015 m)2 ] = 131 kN Ans.

270

0.001 0.002

s (MPa)

spl � 150

P

Fig. 13–19
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13–46. The W360 * 39 structural A-36 steel member is 
used as a 6-m-long column that is assumed to be fixed at its 
top and fixed at its bottom. If the 75-kN load is applied at 
an eccentric distance of 250 mm, determine the maximum 
stress in the column.

13–47. The W360 * 39 structural A-36 steel member is 
used as a column that is assumed to be fixed at its top and 
pinned at its bottom. If the 75-kN load is applied at an ec-
centric distance of 250 mm, determine the maximum stress 
in the column.

75 kN
250 mm

6 m

Probs. 13–46/47

*13–48. The aluminum column is fixed at the bottom and 
free at the top. Determine the maximum force P that can 
be applied at A without causing it to buckle or yield. Use a 
 factor of safety of 3 with respect to buckling and yielding. 
Eal = 70 GPa, sY = 95 MPa.

5 mm

5 m

P

10 mm
80 mm

80 mm

10 mm
150 mm

A

Prob. 13–48

13–49. The aluminum rod is fixed at its base and free at its 
top. If the eccentric load P = 200 kN is applied, determine 
the greatest allowable length L of the rod so that it does not 
buckle or yield. Eal = 72 GPa, sY = 410 MPa.

13–50. The aluminum rod is fixed at its base and free 
and at its top. If the length of the rod is L = 2 m, deter-
mine the greatest  allowable load P that can be applied so 
that the rod does not buckle or yield. Also, determine the 
largest sidesway deflection of the rod due to the loading. 
Eal = 72 GPa, sY = 410 MPa.

L

P
5 mm

200 mm

Probs. 13–49/50

13–51. The wood column is fixed at its base and free at its 
top. Determine the load P that can be applied to the edge of 
the column without causing the column to fail either by buck-
ling or by yielding. Ew = 12 GPa, sY = 55 MPa.

P

120 mm100 mm

100 mm

2 m

Prob. 13–51

pRoBlEmS
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*13–52. The tube is made of copper and has an outer diam-
eter of 35 mm and a wall thickness of 7 mm. Determine the 
eccentric load P that it can support without failure.The tube 
is pin supported at its ends. Ecu = 120 GPa, sY = 750 MPa.

2 m

14 mm

P P

Prob. 13–52

13–53. The W250 * 45 A-36-steel column is pinned at its 
top and fixed at its base. Also, the column is braced along its 
weak axis at mid-height. If P = 250 kN, investigate whether 
the column is adequate to support this loading. Use F.S. = 2 
against buckling and F.S. = 1.5 against yielding.

13–54. The W250 * 45 A-36-steel column is pinned 
at its top and fixed at its base. Also, the column is braced 
along its weak axis at mid-height. Determine the allowable 
force P that the column can support without causing it ei-
ther to buckle or yield. Use F.S. = 2 against buckling and 
F.S. = 1.5 against yielding.

4 m

250 mm 250 mm

4 m

PP
4

Probs. 13–53/54

13–55. The wood column is pinned at its base and top. 
If the eccentric force P = 10 kN is applied to the column, 
 investigate whether the column is adequate to support this 
loading without buckling or yielding. Take E = 10 GPa and 
s Y = 15 MPa.

*13–56. The wood column is pinned at its base and top. 
Determine the maximum eccentric force P the column can 
support without causing it to either buckle or yield. Take 
E = 10 GPa and s Y = 15 MPa.

P

3.5 m

150 mm
x

75 mm 75 mm
25 mm

25 mm
xy

Probs. 13–55/56

13–57. The wood column is fixed at its base and can be as-
sumed pin connected at its top. Determine the maximum 
eccentric load P that can be applied without causing the col-
umn to buckle or yield. Ew = 12 GPa, sY = 56 MPa.

13–58. The wood column is fixed at its base and can be as-
sumed fixed connected at its top. Determine the maximum 
eccentric load P that can be applied without causing the col-
umn to buckle or yield. Ew = 12 GPa, sY = 56 MPa.

P

3 m

250 mm

100 mm
x

y

P

x

y

Probs. 13–57/58
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13–59. Determine the maximum eccentric load P the 
2014-T6-aluminum-alloy strut can support without  causing 
it either to buckle or yield. The ends of the strut are pin 
 connected.

3 m

100 mm

150 mm

100 mm

50 mm

150 mm
a

a

P P

Section a – a

Prob. 13–59

*13–60. The W200 * 22 A-36-steel column is fixed at its 
base. Its top is constrained to rotate about the y–y axis and 
free to move along the y–y axis. Also, the column is braced 
along the x–x axis at its mid-height. Determine the allow-
able eccentric force P that can be applied without causing 
the column either to buckle or yield. Use F.S. = 2 against 
buckling and F.S. = 1.5 against yielding.

13–61. The W200 * 22 A-36-steel column is fixed at its 
base. Its top is constrained to rotate about the y–y axis and 
free to move along the y–y axis. Also, the column is braced 
along the x–x axis at its mid-height. If P = 25 kN, determine 
the maximum normal stress developed in the column.

x

x
y

y

P

5 m

5 m

100 mm

Probs. 13–60/61

13–62. The brass rod is fixed at one end and free at the other 
end. If the eccentric load P = 200 kN is applied, determine 
the greatest allowable length L of the rod so that it does not 
buckle or yield. Ebr = 101 GPa, sY = 69 MPa.

13–63. The brass rod is fixed at one end and free at the 
other end. If the length of the rod is L = 2 m, determine 
the  greatest allowable load P that can be applied so that 
the rod does not buckle or yield. Also, determine the largest  
sidesway deflection of the rod due to the loading. Ebr = 101 GPa,  
sY = 69 MPa.

L

P

10 mm
100 mm

A

B

Probs. 13–62/63

*13–64. Determine the load P required to cause the 
W310 * 74 structural A-36 steel column to fail either by 
buckling or by yielding. The column is fixed at its bottom 
and the cables at its top act as a pin to hold it.

7.5 m

50 mm
P

Prob. 13–64
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13–65. The W250 * 28 A-36-steel column is fixed at its 
base. Its top is constrained to rotate about the y–y axis and 
free to move along the y–y axis. If e = 350 mm, determine 
the allowable eccentric force P that can be applied without 
causing the column either to buckle or yield. Use F.S. = 2 
against buckling and F.S. = 1.5 against yielding.

13–66. The W250 * 28 A-36-steel column is fixed at its base. 
Its top is constrained to rotate about the y–y axis and free to 
move along the y–y axis. Determine the force P and its eccen-
tricity e so that the column will yield and buckle simultaneously.

x

x
y

y

P

6 m

e

Probs. 13–65/66

13–67. The 6061-T6 aluminum alloy solid shaft is fixed  at 
one end but free at the other end. If the shaft has a  diameter 
of 100 mm, determine its maximum allowable length L if it 
is subjected to the eccentric force P = 80 kN.

*13–68. The 6061-T6 aluminum alloy solid shaft is fixed at 
one end but free at the other end. If the length is L = 3 m, 
determine its minimum required diameter if it is subjected 
to the eccentric force P = 60 kN.

P

L

100 mm

Probs. 13–67/68

13–69. A column of intermediate length buckles when the 
compressive stress is 280 MPa. If the slenderness ratio is 60, 
determine the tangent modulus.

13–70. The stress–strain diagram for the material of a 
 column can be approximated as shown. Plot P>A vs. KL>r  
for the  column.

P (mm/mm)

200

350

0.0010 0.004

s (MPa)

Prob. 13–70

13–71. The stress–strain diagram for a material can be  
approximated by the two line segments shown. If a bar  
having a diameter of 80 mm and a length of 1.5 m is made 
from this material, determine the critical load provided the 
ends are pinned. Assume that the load acts through the axis 
of the bar. Use Engesser’s equation.

*13–72. The stress–strain diagram for a material can be  
approximated by the two line segments shown. If a bar  
having a diameter of 80 mm and a length of 1.5 m is made 
from this material, determine the critical load provided the 
ends are fixed. Assume that the load acts through the axis of 
the bar. Use Engesser’s equation.

13–73. The stress–strain diagram for a material can be 
approximated by the two line segments shown. If a bar  
having a diameter of 80 mm and length of 1.5 m is made 
from this material, determine the critical load provided one 
end is pinned and the other is fixed. Assume that the load 
acts through the axis of the bar. Use Engesser’s equation.

1100

200

0.001 0.007
P (mm/mm)

s (MPa)

Probs. 13–71/72/73
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13–74. Construct the buckling curve, P>A versus L>r, for 
a column that has a bilinear stress–strain curve in compres-
sion as shown. The column is pinned at its ends.

0.001 0.004

140

260

s (MPa)

P (mm/mm)

Prob. 13–74

13–75. The stress–strain diagram of the material can be  
approximated by the two line segments. If a bar  having a 
diameter of 80 mm and a length of 1.5 m is made from this 
material, determine the critical load provided the ends are 
pinned. Assume that the load acts through the axis of the 
bar. Use Engesser’s equation.

550

100

0.001 0.007
P (mm/mm)

s (MPa)

Prob. 13–75

*13–76. The stress–strain diagram of the material can be 
approximated by the two line segments. If a bar  having a 
diameter of 80 mm and a length of 1.5 m is made from this 
material, determine the critical load provided the ends are 
fixed. Assume that the load acts through the axis of the bar. 
Use Engesser’s equation.

550

100

0.001 0.007
P (mm/mm)

s (MPa)

Prob. 13–76

13–77. The stress–strain diagram of the material can be  
approximated by the two line segments. If a bar  having 
a diameter of 80 mm and a length of 1.5 m is made from 
this material, determine the critical load provided one end 
is pinned and the other is fixed. Assume that the load acts 
through the axis of the bar. Use Engesser’s equation.

550

100

0.001 0.007
P (mm/mm)

s (MPa)

Prob. 13–77
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*13.6  deSign of ColumnS for 
ConCentriC loading

Practically speaking, columns are not perfectly straight, and most have 
residual stresses in them, primarily due to nonuniform cooling during 
manufacture. Also, the supports for columns are less than exact, and 
the points of application and directions of loads are not known with 
absolute certainty. In order to compensate for all these effects, many 
design codes specify the use of column formulas that are empirical. 
Data found from experiments performed on a large number of axially 
loaded columns is plotted, and design formulas are developed by 
curve-fitting the mean of the data.

An example of such tests for wide-flange steel columns is shown in 
Fig. 13–20. Notice the similarity between these results and those of the 
family of curves determined from the secant formula, Fig. 13–16. The 
reason for this has to do with the influence that an “accidental” 
eccentricity ratio ec>r  2 has on the column’s strength. Tests have indicated 
that this ratio will range from 0.1 to 0.6 for most axially loaded columns.

In order to account for the behavior of different-length columns, design 
codes usually provide formulas that will best fit the data within the short, 
intermediate, and long column range. The following examples of these 
formulas for steel, aluminum, and wood columns will now be discussed.

These long unbraced timber columns are 
used to support the roof of this building.

Euler formula
Eq. 13–6

Short column

                                      

Intermediate column Long column
——KL
r

scr

sY

Fig. 13–20
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Steel Columns. Columns made of structural steel can be designed 
on the basis of formulas proposed by the Structural Stability Research 
Council (SSRC). Factors of safety have been applied to these formulas 
and adopted as specifications for building construction by the American 
Institute of Steel Construction (AISC). Basically these specifications 
provide two formulas for column design, each of which gives the maximum 
allowable stress in the column for a specific range of slenderness ratios.*

For long columns the Euler formula is proposed, i.e., smax =
p2 E>(KL>r)2. Application of this formula requires that a factor of safety 
F.S. = 23

 12 ≈ 1.92 be applied. Thus, for design,

sallow =
12p2E

23(KL>r)2        aKL
r

b
c

…
KL

r
 … 200  (13–21)

As stated, this equation is applicable for a slenderness ratio bounded by 
200 and a calculated value for (KL>r)c . Through experiments it has 
been determined that compressive residual stresses can exist in rolled-
formed steel sections that may be as much as one-half the yield stress. 
Since the Euler formula only can be used for elastic material behavior, 
then if the additional stress placed on the column is greater than 1

 2 sY , 
the equation will not apply. Therefore the lower bound value of (KL>r)c  
is determined as follows:

 
1
2

 sY =
p2E

(KL>r)c  

2   or  aKL
r

b
c
  = B 2p2E

sY
   (13–22)

Columns having slenderness ratios less than (KL>r)c  are designed 
using an empirical formula that is parabolic and has the form

smax = J1 -
(KL>r)2

 2(KL>r)c
2 RsY 

Since there is more uncertainty in the use of this formula for longer 
columns, it is divided by a factor of safety defined as follows:

F.S. =
5
 3

 +
3
 8

 
(KL>r)

 (KL>r)c
 -

(KL>r)3

 8(KL>r)c
3  

Here it is seen that F.S. = 5
 3 ≈ 1.67 at KL>r = 0 and increases to 

F.S. = 23
12 ≈ 1.92 at (KL>r)c . Hence, for design purposes,

sallow =
J1 -

(KL>r)2

 2(KL>r)c
2  RsY

(5>3) + [(3>8)(KL>r)>(KL>r)c] - 3(KL>r)3>8(KL>r)c  

34  

 (13–23)

For comparison, Eqs. 13–21 and 13–23 are plotted in Fig. 13–21.

*The current AISC code enables engineers to use one of two methods for design, namely, 
Load and Resistance Factor Design, and Allowable Stress Design. The latter is explained here.

0.6 Eq. 13–23

Eq. 13–21

0

0.261

——KL
r c

——KL
r

————
sallow
sY

Fig. 13–21
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13 193

124

12 55
——KL
r

Eq. 13–24

Eq. 13–25

Eq. 13–26

0

sallow(MPa)

Fig. 13–22

8.28

——KL
d

sallow(MPa)

Eq. 13–28

5.52

1.49

11 26 50

Eq. 13–27

Eq. 13–29

0

Fig. 13–23

aluminum Columns. Column design for structural aluminum is 
specified by the Aluminum Association using three equations, each 
applicable for a specific range of slenderness ratios. Since several types of 
aluminum alloy exist, there is a unique set of formulas for each type. For a 
common alloy (2014-T6) used in building construction, the formulas are

 sallow = 193 MPa      0 …
KL
 r

 … 12  (13–24)

 sallow = c 212 - 1.59 aKL
 r

b d  MPa      12 6
KL
 r

6 55  (13–25)

 sallow =
372 550 MPa

 (KL>r)2       55 …
KL
 r

   (13–26)

These equations are plotted in Fig. 13–22. As shown, the first two 
represent straight lines and are used to model the effects of columns in 
the short and intermediate range. The third formula has the same form as 
the Euler formula and is used for long columns.

timber Columns. Columns used in timber construction often are 
designed using formulas published by the National Forest Products 
Association (NFPA) or the American Institute of Timber Construction 
(AITC). For example, the NFPA formulas for the allowable stress in 
short, intermediate, and long columns having a rectangular cross section 
of dimensions b and d, where d < b, are

 sallow = 8.28 MPa      0 …
KL
 d

 … 11  (13–27)

 sallow = 8.28 c 1 -
1
 3

  a
KL>d

 26.0
b

2

 d  MPa    11 6
KL
 d

 … 26  (13–28)

 sallow =
3725 MPa
 (KL>d)2       26 6

KL
 d

 … 50  (13–29)

Here wood is assumed to have a modulus of elasticity of 
Ew = 12.4 GPa and an allowable compressive stress of 8.28 MPa 
parallel to its grain. In particular, Eq. 13–29 has the same form as the 
Euler formula, having a factor of safety of 3. These three equations 
are plotted in Fig. 13–23.
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ExamplE   13.6

An A992 steel W250 * 149 member is used as a pin-supported column,  
Fig. 13–24. Using the AISC column design formulas, determine the largest 
load that it can safely support.

Solution

The following data for a W250 * 149 is taken from the table in  
Appendix B.

A = 19000 mm2 = 0.019 m2  rx = 117 mm = 0.117 m ry = 67.4 mm = 0.0674 m

Since K = 1 for both x and y axis buckling, the slenderness ratio is 
largest if ry  is used. Thus,

KL
 r

 =
1(5 m)

 0.0674
 = 74.18

From Eq. 13–22, we have

 aKL
 r

 b
c
 = B 2p2 E

 sY
 

 = B 2p2[200(109) N>m2]

 345(106) N>m2   

 = 106.97

Here 0 6 KL>r 6 (KL>r)c, so Eq. 13–23 applies.

 sallow =
J1 -

(KL>r)2

 2(KL>r)c
2 RsY

 (5>3) + [(3>8)(KL>r)>(KL>r)c] - 3(KL>r)3>8(KL>rc )
34

 =
[1 - (74.18)2>2(106.97)2] (345 MPa) 

(5>3) + [(3>8)(74.18>106.97)] - [(74.18)3>8(106.97)3]

 = 139.01 MPa

The allowable load P on the column is therefore

sallow =
P
 A

 ;    139.01(106) N>m2 =
P

 0.019 m2  

 P = 2.641(106) N 
 = 2.64 MN  Ans.

P

x

x

y

y

5 m

P

Fig. 13–24
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ExamplE   13.7

The steel rod in Fig. 13–25 is to be used to support an axial load of 80 kN.  
If Est = 200 GPa and sY = 345 MPa, determine the smallest diameter of 
the rod to the nearest 5 mm as allowed by the AISC specifications. The rod 
is fixed at both ends.

80 kN80 kN

4.5 m

d

Fig. 13–25

Solution

For a circular cross section the radius of gyration becomes

r = A I
 A

 = B (1>4)p(d>2)4

 (1>4)pd2   =
d
 4

 

Applying Eq. 13–22, we have

aKL
 r

 b
c
 = B 2p2 E

 sY
 = B 2p2[200(109) N>m2]

345(106) N>m2   = 107.0

Since the rod’s radius of gyration is unknown, KL>r is unknown, and 
therefore a choice must be made as to whether Eq. 13–21 or Eq. 13–23 
applies. We will consider Eq. 13–21. For a fixed-end column K = 0.5, and so

 sallow =
12p2E

 23(KL>r)2 

 
80(103) N

(p>4)d2  =
12p2[200(109) N>m2]

 23[0.5(4.5 m)>(d>4)]2

 
101.86(103)

 d 2  = 12.71(109)d

 d = 0.05320 m = 53.20 mm

Use

d = 55 mm Ans.

For this design, we must check the slenderness-ratio limits; i.e.,

KL
 r

 =
0.5(4.5 m)

 0.055 m>4
 = 164

Since 107.0 6
KL

r
6 200, use of Eq. 13–21 is appropriate.
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ExamplE   13.8

A bar having a length of 800 mm. is used to support an axial compressive 
load of 50 kN, Fig. 13–26. It is pin supported at its ends and made of a  
2014-T6 aluminum alloy. Determine the dimensions of its cross-sectional 
area if its width is to be twice its thickness.

Solution

Since KL = 0.8 m is the same for both x and y axis buckling, the larger 
slenderness ratio is determined using the smaller radius of gyration, i.e., 
using Imin = Iy:

KL
 ry

 =
KL

 2Iy >A
 =

1(0.8)

 2(1>12)(2b)(b3)>[2b(b)]
 =

2.7713
 b

   (1)

Here we must apply Eq. 13–24, 13–25, or 13–26. Since we do not as yet 
know the slenderness ratio, we will begin by using Eq. 13–24.

 
P
 A

 = 193 MPa

 
50(103) N

 2b(b)
 = 193(106) N>m2 

 b = 0.01138 m

Checking the slenderness ratio, we have

KL
 r

 =
2.7713
 0.1138

 = 243.49 7 12

Try Eq. 13–26, which is valid for KL>r Ú 55,

 
P
 A

 =
372 550 MPa

 (KL>r)2  

 
50(103)

 2b(b)
 =

372 550(106)

 (2.7713>b)2  

 b = 0.02679 m = 26.8 mm  Ans.

From Eq. 1,
KL
 r

 =
2.7713

 0.02679
 = 103.43 7 55  OK

800 mm

50 kN

2bb

yx

50 kN

Fig. 13–26
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ExamplE   13.9

A board having cross-sectional dimensions of 35 mm by 140 mm is used to 
support an axial load of 20 kN, Fig. 13–27. If the board is assumed to be pin 
supported at its top and bottom, determine its greatest allowable length L as 
specified by the NFPA.

20 kN

L

140 mm35 mm

y
x

20 kN

Fig. 13–27

Solution

By inspection, the board will buckle about the y axis. In the NFPA 
equations, d = 35 mm. Assuming that Eq. 13–29 applies, we have

 
P
 A

 =
3725 MPa
 (KL>d)2  

 
20(103)N

 (0.035 m)(0.14 m)
 =

3725(106)N>m2

 [(1) L>0.035 m]2 

 L = 1.057 m = 1.06 m  Ans.

Here

KL
 d

 =
1(1.057 m)

 0.035 m
 = 30.2

Since 26 6 KL>d … 50, the solution is valid.
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13–78. Determine the largest length of a structural A-36 
steel rod if it is fixed supported and subjected to an axial 
load of 100 kN. The rod has a diameter of 50 mm. Use the  
AISC equations.

13–79. Check if a W250 * 58 column can safely support 
an axial force of P = 1150 kN. The column is 6 m long and 
is pinned at both ends and braced against its weak axis at 
mid-height. It is made of steel having E = 200  GPa and 
sY = 350 MPa. Use the AISC column design  formulas.

*13–80. A W200 * 36 A-36-steel column of 9-m length 
is pinned at both ends and braced against its weak axis at 
mid-height. Determine the allowable axial force P that can 
be safely supported by the column. Use the AISC column 
 design formulas.

13–81. Using the AISC equations, select from Appendix B 
the lightest-weight structural A-36 steel column that is 9 m 
long and supports an axial load of 1000 kN. The ends are 
fixed.

13–82. Using the AISC equations, select from Appendix B 
the lightest-weight structural A-36 steel column that is 7.2 m 
long and supports an axial load of 450 kN. The ends are fixed.

13–83. Determine the largest length of a W250 * 67 A992 
structural steel column if it is pin supported and subjected to 
an axial load of 1450 kN. Use the AISC equations.

*13–84. Determine the largest length of a W250 * 18 
 structural A-36 steel section if it is pin supported and is sub-
jected to an axial load of 140 kN. Use the AISC equations.

13–85. Using the AISC equations, select from Appendix 
B the lightest-weight structural A992 steel column that is  
4.2 m long and supports an axial load of 200 kN. The ends 
are pinned.

13–86. Using the AISC equations, select from Appendix 
B the lightest-weight structural A992 steel column that is 
3.6 m long and supports an axial load of 200 kN. The ends 
are fixed.

13–87. Check if a W250 * 67 column can safely support  
an axial force of P = 1000 kN. The column is 4.5 m long and  
is pinned at both of its ends. It is made of steel having 
E = 200 GPa and sY = 350 MPa. Use the AISC column de-
sign formulas.

*13–88. A 1.5-m-long rod is used in a machine to transmit 
an axial compressive load of 15 kN. Determine its smallest 
diameter if it is pin connected at its ends and is made of a 
2014-T6 aluminum alloy.

13–89. Using the AISC equations, check if a column 
 having the cross section shown can support an axial force 
of 1500 kN. The column has a length of 4 m, is made from  
A992 steel, and its ends are pinned.

350 mm

10 mm

300 mm

20 mm20 mm

Prob. 13–89

13–90. The beam and column arrangement is used in a 
 railroad yard for loading and unloading cars. If the  maximum 
anticipated hoist load is 560 kN, determine if the W200 * 46 
wide-flange A-36 steel column is adequate for supporting the 
load. The hoist travels along the bottom flange of the beam, 
0.4 m ≤ x ≤ 7.5 m, and has negligible size. Assume the beam 
is pinned to the column at B and roller supported at A. The  
column is also pinned at C.

A B

C

56 kN

8 m

4.5 m

x

Prob. 13–90

pRoBlEmS
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13–91. The bar is made of a 2014-T6 aluminum alloy. Deter-
mine its smallest thickness b if its width is 5b. Assume that it 
is pin connected at its ends.

*13–92. The bar is made of a 2014-T6 aluminum alloy. De-
termine its smallest thickness b if its width is 5b. Assume that 
it is fixed connected at its ends.

5b
b

2.4 m

3 kN

3 kN

Probs. 13–91/92

13–93. The 2014-T6 aluminum hollow section has the cross 
section shown. If the column is 3 m long and is fixed at both 
ends, determine the allowable axial force P that can be safely 
supported by the column.

13–94. The 2014-T6 aluminum hollow section has the cross 
section shown. If the column is fixed at its base and pinned 
at its top, and is subjected to the axial force P = 500 kN de-
termine the maximum length of the column for it to safely 
support the load.

100 mm

75 mm

Probs. 13–93/94

13–95. The 2014-T6 aluminum column of 3-m length has 
the cross section shown. If the column is pinned at both 
ends and braced against the weak axis at its mid-height, de-
termine the allowable axial force P that can be safely sup-
ported by the column.

*13–96. The 2014-T6 aluminum column has the cross sec-
tion shown. If the column is pinned at both ends and subject-
ed to an axial force P = 100 kN, determine the maximum 
length the column can have to safely support the loading.

100 mm

15 mm170 mm

15 mm

15 mm

Probs. 13–95/96

13–97. The tube is 6 mm thick, is made of a 2014-T6 alu-
minum alloy, and is fixed at its bottom and pinned at its top. 
Determine the largest axial load that it can support.

13–98. The tube is 6 mm thick, is made of a 2014-T6 
 aluminum alloy, and is fixed connected at its ends.  Determine 
the largest axial load that it can support.

13–99. The tube is 6 mm thick, is made of 2014-T6 alumi-
num alloy and is pin connected at its ends. Determine the 
largest axial load it can support.

P

150 mm
yx

y x
150 mm

P

3 m

Probs. 13–97/98/99
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*13–100. The column is made of wood. It is fixed at its bot-
tom and free at its top. Use the NFPA formulas to determine 
its greatest allowable length if it supports an axial load of 
P = 10 kN.

13–101. The column is made of wood. It is fixed at its bot-
tom and free at its top. Use the NFPA formulas to determine 
the largest allowable axial load P that it can support if it has 
a length L = 1.2 m.

P

L

100 mm

50 mm
x

x

y

y

Probs. 13–100/101

13–102. The wooden column shown is formed by gluing to-
gether the 150 mm * 12 mm boards. If the column is pinned 
at both ends and is subjected to an axial load P = 100 kN 
determine the required number of boards needed to form the 
column in order to safely support the loading.

2.7 m

150 mm
12 mm

P

P

Prob. 13–102

13–103. The timber column has a square cross section and 
is assumed to be pin connected at its top and bottom. If 
it supports an axial load of 250 kN, determine its smallest 
side dimension a to the nearest multiples of 5 mm. Use the 
NFPA formulas.

4.2 m

a

Prob. 13–103

*13–104. A rectangular wooden column has the cross sec-
tion shown. If the column is 1.8 m long and subjected to an 
axial force of P = 75 kN, determine the required minimum 
dimension a of its cross-sectional area to the nearest mul-
tiples of 5 mm so that the column can safely support the 
loading. The column is pinned at both ends.

13–105. A rectangular wooden column has the cross section 
shown. If a = 75 mm and the column is 3.6 m long, determine 
the allowable axial force P that can be safely supported by 
the column if it is pinned at its top and fixed at its base.

13–106. A rectangular wooden column has the cross sec-
tion shown. If a = 75 mm and the column is subjected to 
an axial force of P = 75 kN determine the maximum length 
the column can have to safely support the load. The column 
is pinned at its top and fixed at its base.

2a

a

Probs. 13–104/105/106
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*13.7  deSign of ColumnS for 
eCCentriC loading

When a column is required to support a load acting either at its edge or 
on an angle bracket or corbel attached to its side, Fig. 13–28a, then the 
bending moment M = Pe, which is caused by the eccentric loading, must 
be accounted for when the column is designed. There are several 
acceptable ways in which this is done in engineering practice. Here we will 
discuss two of the most common methods.

use of available Column Formulas. The stress distribution 
acting over the cross-sectional area of the column is shown in Fig. 13–28b. 
It is the result of a superposition of both the axial force P and the bending 
moment M = Pe. The maximum compressive stress is therefore

smax =
P
 A

 +
Mc
 I

   (13–30)

If we conservatively assume that the entire cross section is subjected to the 
uniform stress smax, then we can compare smax  with sallow , which is 
determined using one of the formulas given in Sec. 13.6. To be additionally 
conservative, calculation of sallow  is done using the largest slenderness ratio 
for the column, regardless of the axis about which the column experiences 
bending. Then if

smax … sallow 

the column will support its intended loading. If this inequality does not 
hold, then the column’s area A must be increased, and a new smax  and 
sallow must be calculated. This method of design is rather simple to apply 
and works well for columns that are short or of intermediate length.

interaction Formula. We can also design an eccentrically loaded 
column on the basis of how the bending and axial loads interact, so that a 
balance between these two effects can be achieved. To do this, we must 
consider the separate contributions made to the total column area by the 
axial force and the moment. If the allowable stress for the axial load is 
(sa )allow ,  then the required area for the column needed to support P is

Aa =
P

 (sa  )allow 
 

P

e

�

(a)

P

M � Pe

(b)

smax

Fig. 13–28
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Similarly, if the allowable bending stress is (sb)allow, then since I = Ar 2, 
the required area of the column needed to support the eccentric moment 
is determined from the flexure formula, that is,

Ab =
Mc

 (sb )allow r 2 

The total area A for the column needed to resist both the axial load 
and moment is therefore

Aa + Ab =
P

 (sa)allow  
 +

Mc

 (sb)allow r 2 … A

or

 
P>A

 (sa)allow  
 +

Mc>Ar 2

 (sb)allow  
 … 1

 
sa

 (sa)allow  
 +

sb

 (sb)allow  
 … 1  (13–31)

Here
 sa  =  axial stress caused by the force P and determined from 

sa = P>A, where A is the cross-sectional area of the column
 sb  =  bending stress caused by the eccentric load or applied 

moment. This stress is found from sb = Mc>I, where I is the 
moment of inertia of the cross-sectional area calculated 
about the bending or centroidal axis.

 (sa )allow  =  allowable axial stress as defined by formulas given in  
Sec. 13.6 or by other design code specifications. For this 
purpose, always use the largest slenderness ratio for the 
column, regardless of the axis about which the column 
experiences bending.

 (sb)allow  = allowable bending stress as defined by code specifications

Each stress ratio in Eq. 13–31 indicates the contribution of axial load 
or bending moment. Since this equation shows how these loadings 
interact, this equation is sometimes referred to as the interaction 
formula. This design approach requires a trial-and-error procedure, 
where it is required that the designer pick an available column and then 
check to see if the inequality is satisfied. If it is not, a larger section is 
then chosen and the process repeated. An economical choice is made 
when the left side is close to but less than 1.

The interaction method is often specified in codes for the design of 
columns made of steel, aluminum, or timber. In particular, for allowable 
stress design, the American Institute of Steel Construction specifies the 
use of this equation only when the axial-stress ratio sa >(sa )allow … 0.15.  
For other values of this ratio, a modified form of Eq. 13–31 is used.

Typical example of a column 
used to support an eccentric 
roof loading.
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ExamplE 13.10

The column in Fig. 13–29 is made of aluminum alloy 2014-T6 and is used 
to support an eccentric load P. Determine the maximum allowable value 
of P that can be supported if the column is fixed at its base and free at its 
top. Use Eq. 13–30.

2 m

P

50 mm 25 mm

50 mm
50 mm

Fig. 13–29

Solution

From Fig. 13–10b, K = 2. The largest slenderness ratio for the column is 
therefore

KL
 r

 =
2(2 m)

 2[(1>12)(0.1 m)(0.05 m)3]>[(0.1m)(0.05m)]
 = 277.13

By inspection, Eq. 13–26 must be used (KL>r 7 55). Thus,

sallow =
372 550 MPa

 (KL>r)2  =
372 550 MPa

 (277.13)2  = 4.8509 MPa

The maximum compressive stress in the column is determined from the 
combination of axial load and bending. We have

 smax =
P
 A

 +
(Pe)c

 I
 

 =
P

 (0.05 m)(0.1 m)
 +

[P(0.025 m)](0.05 m)

 (1>12)(0.05 m)(0.1 m)3

 = 500 P

Assuming that this stress is uniform over the cross section, we require

sallow = smax;     4.8509(106) N>m2 = 500 P
 P = 9.702(103) N = 9.70 kN Ans.
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ExamplE 13.11

The A-36 steel W150 * 30 column in Fig. 13–30 is pin connected at its ends 
and is subjected to the eccentric load P. Determine the maximum allowable 
value of P using the interaction method if the allowable bending stress is 
(sb)allow = 150 MPa.

Solution

Here K = 1. The necessary geometric properties for the W150 * 30 are 
taken from the table in Appendix B.

A = 3790 mm2 = 3.79(10-3) m2      Ix = 17.1(106) mm4 = 17.1(10-6) m4

ry = 38.2 mm = 0.0382 m     d = 157 mm = 0.157 m

We will consider ry  because this will lead to the largest value of the 
slenderness ratio. Also, Ix  is needed since bending occurs about the x axis 
(c = 0.157 m>2 = 0.0785 m). To determine the allowable compressive 
stress, we have

KL
 r

 =
1(4.5 m)

 0.0382 m
 = 117.80

Since

aKL
 r

 b
c
 = B 2p2E

 sY
 = B 2p2 [200(109) N>m2]

 250(106) N>m2   = 125.66

then KL>r 6 (KL>r)c  and so Eq. 13–23 must be used.

 (sa)allow =
[1 - (KL>r)2>2(KL>r)2

c ]
 sY

 (5>3) + [(3>8)(KL>r)>(KL>r)c] - 3(KL>r)3>8(KL>r)c  

34

 =
[1 - (117.80)2>2(125.66)2] (250 MPa)

 (5>3) + [(3>8)(117.80)>(125.66)] - [117.803>8(125.66)3]

 = 73.18 MPa

Applying the interaction Eq. 13–31 yields
sa

 (sa)allow 
 +

sb

 (sb)allow 
 … 1

 
P>[3.79(10-3) m2]

 73.18 (106) N>m2 +
[P(0.75 m)](0.0785 m)>[17.1(10-6) m4]

 150 (106) N>m2  = 1

 P = 37.65(103) N = 37.7 kN Ans.

Checking the application of the interaction method for the steel 
section, we require

 
sa

 (sa)allow 
 =

37.65(103) N>3.79(10-3)m2

 73.18(106) N>m2  = 0.136 6 0.15 OK

4.5 m

P

P

x

750 mm

750 mm

y

Fig. 13–30
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ExamplE 13.12

The timber column in Fig. 13–31 is made from two boards nailed together so 
that the cross section has the dimensions shown. If the column is fixed at its 
base and free at its top, use Eq. 13–30 to determine the eccentric load P that 
can be supported.

1.5 m

x
y

75 mm

P

75 mm
25 mm

75 mm

Fig. 13–31

Solution

From Fig. 13–10b, K = 2. Here we must calculate KL>d to determine 
which of Eqs. 13–27 through 13–29 should be used. Since sallow is to be 
determined using the largest slenderness ratio, we choose 
d = 75 mm = 0.075 m. We have 

KL
 d

 =
2(1.5 m)

 0.075 m
 = 40

Since 26 6 KL>d 6 50 the allowable axial stress is determined using 
Eq. 13–29. Thus,

sallow =
3725 MPa
 (KL>d)2  =

3725 MPa
 402  = 2.328 MPa

Applying Eq. 13–30 with sallow = smax , we have

sallow =
P
 A

 +
Mc
 I

 

2.328 (106) N>m2 =
P

 (0.075 m)(0.15 m)
 +

P(0.1 m)(0.075 m)

 (1>12)(0.075 m)(0.15 m)3 

P = 5.238(103)N = 5.24 kN Ans.
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13–107. The W360 * 33 structural A-36 steel column is 
fixed at its top and bottom. If a horizontal load (not shown) 
causes it to support end moments of M = 15 kN # m, 
determine the maximum allowable axial force P that can be 
applied. Bending is about the x–x axis. Use the AISC 
equations of Sec. 13.6 and Eq. 13–30.

*13–108. The W360 * 33 structural A-36 steel column is 
fixed at its top and bottom. If a horizontal load (not shown) 
causes it to support end moments of M = 70 kN # m, 
determine the maximum allowable axial force P that can be 
applied. Bending is about the x–x axis. Use the interaction 
formula with (sb)allow = 168 MPa.

3.6 m

y
x

yx

P

P

M

M

Probs. 13–107/108

13–109. The W360 * 79 structural A-36 steel column 
supports an axial load of 400 kN in addition to an eccentric 
load P. Determine the maximum allowable value of P based 
on the AISC equations of Sec. 13.6 and Eq. 13–30. Assume 
the column is fixed at its base, and at its top it is free to sway 
in the x–z plane while it is pinned in the y–z plane.

13–110. The W310 * 67 structural A-36 steel column 
supports an axial load of 400 kN in addition to an eccentric 
load of P = 30 kN. Determine if the column fails based on 
the AISC equations of Sec. 13.6 and Eq. 13–30.Assume that 
the column is fixed at its base, and at its top it is free to sway 
in the x–z plane while it is pinned in the y–z plane.

pRoBlEmS

3.6 m

400 kN

y

y

x

x

250 mm

P

z

Probs. 13–109/110

13–111. The W360 * 57 structural A-36 steel column is 
fixed at its bottom and free at its top. Determine the greatest 
eccentric load P that can be applied using Eq. 13–30 and the 
AISC equations of Sec. 13.6.

*13–112. The W250 * 67 structural A-36 steel column is 
fixed at its bottom and free at its top. If it is subjected to a 
load of P = 10  kN, determine if it is safe based on the 
AISC equations of Sec. 13.6 and Eq. 13–30.

P

3 m

200 kN

400 mm

Probs. 13–111/112



13

734  Chapter 13  BuCkl ing of Columns 

13–113. The A-36-steel W250 * 67 column is fixed at its 
base. Its top is constrained to move along the x–x axis but 
free to rotate about and move along the y–y axis. Determine 
the maximum eccentric force P that can be safely supported 
by the column using an interaction formula. The allowable 
bending stress is (sb)allow = 100 MPa.

13–115. The A-36-steel W250 * 67 column is fixed at its 
base. Its top is constrained to move along the x–x axis but 
free to rotate about and move along the y–y axis. Determine 
the maximum eccentric force P that can be safely supported 
by the column using the allowable stress method.

x

x
y

y

P

7.2 m

300 mm

Prob. 13–113

13–114. The A-36-steel W310 * 74 column is fixed at its 
base. Its top is constrained to move along the x–x axis but 
free to rotate about and move along the y–y axis. If the 
eccentric force P = 75 kN is applied to the column, 
investigate if the column is adequate to support the loading. 
Use the allowable stress method.

x

x
y

y

P

7.2 m

300 mm

Prob. 13–114

x

x
y

y

P

7.2 m

300 mm

Prob. 13–115

*13–116. The A-36-steel W310 * 74 column is fixed at its 
base. Its top is constrained to move along the x–x axis but 
free to rotate about and move along the y–y axis. If the 
eccentric force P = 65 kN is applied to the column, 
investigate if the column is adequate to support the loading. 
Use the interaction formula. The allowable bending stress is 
(sb)allow = 100 MPa.

x

x
y

y

P

7.2 m

300 mm

Prob. 13–116
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13–117. A 4.8-m-long column is made of aluminum alloy 
2014-T6. If it is fixed at its top and bottom, and a compressive 
load P is applied at point A, determine the maximum 
allowable magnitude of P using the equations of Sec. 13.6 
and Eq. 13–30.

13–119. The 2014-T6 hollow column is fixed at its base 
and free at its top. Determine the maximum eccentric force 
P that can be safely supported by the column. Use the 
allowable stress method. The thickness of the wall for the 
section is t = 12 mm.

 13.7 design of Columns for eCCentriC loading 735

200 mm

12 mm
12 mm

106 mm

y

x x

200 mm
y

P

A
12 mm

Prob. 13–117

13–118. A 4.8-m-long column is made of aluminum alloy 
2014-T6. If it is fixed at its top and bottom, and a compressive 
load P is applied at point A, determine the maximum 
allowable magnitude of P using the equations of Sec. 13.6 
and the interaction formula with (sb)allow = 140 MPa.

200 mm

12 mm
12 mm

106 mm

y

x x

200 mm
y

P

A
12 mm

Prob. 13–118

P
150 mm

150 mm

75 mm

2.4 m

Prob. 13–119

*13–120. The 2014-T6 hollow column is fixed at its base 
and free at its top. Determine the maximum eccentric force 
P that can be safely supported by the column. Use the 
interaction formula. The allowable bending stress is 
(sb)allow = 200 MPa. The thickness of the wall for the 
section is t = 12 mm.

P
150 mm

150 mm

75 mm

2.4 m

Prob. 13–120
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13–121. Determine if the column can support the eccentric 
compressive load of P = 7.5 kN. Assume that the ends are pin 
connected. Use the NFPA equations in Sec. 13.6 and Eq. 13–30.

13–122. Determine if the column can support the eccentric 
compressive load of P = 7.5 kN. Assume that the bottom is 
fixed and the top is pinned. Use the NFPA equations in Sec. 
13.6 and Eq. 13–30.

*13–124. Using the NFPA equations of Sec. 13.6 and Eq. 
13–30, determine the maximum allowable eccentric load P 
that can be applied to the wood column. Assume that the 
column is pinned at both its top and bottom.

13–125. Using the NFPA equations of Sec. 13.6 and  
Eq. 13–30, determine the maximum allowable eccentric 
load P that can be applied to the wood column. Assume that 
the column is pinned at the top and fixed at the bottom.

150 mm

3.6 m

P
18 mm

75 mm

Probs. 13–124/125

13–126. The 3-m-long bar is made of aluminum alloy 
2014-T6. If it is fixed at its bottom and pinned at the top, 
determine the maximum allowable eccentric load P that 
can be applied using the formulas in Sec. 13.6 and Eq. 13–30.

13–127. The 3-m-long bar is made of aluminum alloy 2014-
T6. If it is fixed at its bottom and pinned at the top, 
determine the maximum allowable eccentric load P that 
can be applied using the equations of Sec. 13.6 and the 
interaction formula with (sb)allow = 126 MPa.

76 mm38 mm

38 mm

x

x
y y

50 mm

50 mm

P

Probs. 13–126/127

7.5 kN

1.8 m

75 mm
300 mm

40 mm

7.5 kN

Probs. 13–121/122

13–123. The 250-mm-diameter utility pole supports the 
transformer that has a weight of 3 kN and center of gravity 
at G. If the pole is fixed to the ground and free at its top, 
determine if it is adequate according to the NFPA equations 
of Sec. 13.6 and Eq. 13–30.

G

5.4 m

375 mm

Prob. 13–123
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CHaptER REViEW

Buckling is the sudden instability that occurs 
in columns or members that support an axial 
compressive load. The maximum axial load 
that a member can support just before 
buckling is called the critical load Pcr.

The critical load for an ideal column is 
determined from Euler’s formula, where 
K = 1 for pin supports, K = 0.5 for fixed 
supports, K = 0.7 for a pin and a fixed 
support, and K = 2 for a fixed support and 
a free end.

Pcr =
p2 EI

 (KL)2 
Pcr

If the axial loading is applied eccentrically 
to the column, then the secant formula can 
be used to determine the maximum stress in 
the column.

smax =
P
A

 c 1 +
ec

r 2
 secaL

2rA P
EA

b d

When the axial load causes yielding of the 
material, then the tangent modulus can  
be used with Euler’s formula to determine 
the critical load for the column. This is 
referred to as Engesser’s equation.

scr =
p2 Et

 (KL>r)2 

Empirical formulas based on experimental 
data have been developed for use in the 
design of steel, aluminum, and timber 
columns.
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R E V i E W  p R o B l E m S

R13–1. If the torsional springs attached to ends A and C 
of the rigid members AB and BC have a stiffness k, 
determine the critical load Pcr.

P

k

k

B

A

C

L
2

L
2

Prob. R13–1

R13–2. Determine the maximum intensity w of the 
uniform distributed load that can be applied on the beam 
without causing the compressive members of the supporting 
truss to buckle. The members of the truss are made from 
A-36-steel rods having a 60-mm diameter. Use F.S. = 2 
against buckling.

2 m 3.6 m

1.5 m

B

C

A

D

w

Prob. R13–2

R13–3.  A steel column has a length of 5 m and is free at  
one end and fixed at the other end. If the cross-sectional 
area has the dimensions shown, determine the critical load. 
Est = 200 GPa, sY = 360 MPa.

10 mm60 mm

10 mm

80 mm

Prob. R13–3

*R13–4. The A-36-steel column can be considered pinned 
at its top and fixed at its base. Also, it is braced at its mid-
height along the weak axis. Investigate whether a 
W250 * 45 section can safely support the loading shown. 
Use the interaction formula. The allowable bending stress is 
(sb)allow = 100 MPa.

4.5 m

4.5 m

600 mm
40 kN10 kN

Probs. R13–4
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R13–5. If the A-36 steel solid circular rod BD has a 
diameter of 50 mm, determine the allowable maximum 
force P that can be supported by the frame without causing 
the rod to buckle. Use F.S. = 2 against buckling.

R13–6. If P = 75 kN, determine the required minimum 
diameter of the A992 steel solid circular rod BD to the 
nearest mm. Use F.S. = 2 against buckling.

0.9 m
0.9 m

100 mm

1.2 m

A B
C

D

P

Probs. 13–5/6

R13–7.  The steel pipe is fixed supported at its ends. If it is 
4 m long and has an outer diameter of 50 mm, determine its 
required thickness so that it can support an axial load of  
P = 100 kN without buckling. Est = 200 GPa, sY = 250 MPa.

4 m

P

P

Prob. R13–7

*R13–8. The W200 * 46 wide-flange A992 steel column 
can be considered pinned at its top and fixed at its base. 
Also, the column is braced at its mid-height against weak 
axis buckling. Determine the maximum axial load the 
column can support without causing it to buckle.

6 m

6 m

Prob. R13–8

R13–9. The wide-flange A992 steel column has the cross 
section shown. If it is fixed at the bottom and free at the top, 
determine the maximum force P that can be applied at A 
without causing it to buckle or yield. Use a factor of safety 
of 3 with respect to buckling and yielding.

R13–10. The wide-flange A992 steel column has the cross 
section shown. If it is fixed at the bottom and free at the top, 
determine if the column will buckle or yield when the load 
P = 10 kN is applied at A. Use a factor of safety of 3 with 
respect to buckling and yielding.

20 mm

4 m

P

A

10 mm

100 mm

100 mm

10 mm
150 mm

A
100 mm

10 mm

Prob. R13–9/10
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A diving board must be made of a material that can store a high value of elastic 
strain energy due to bending. This allows the board to have a large flexure, and 
thereby transfer this energy to the diver, as the board begins to straighten out.

(© 68/Ocean/Corbis)
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EnErgy MEthods

14.1  ExtErnal Work and Strain 
EnErgy

To use any of the energy methods developed in this chapter, we must first 
define the work caused by an external force and couple moment, and 
show how to express this work in terms of a body’s strain energy.

Chapter OBJeCtIVeS 

n In this chapter we will show how to apply energy methods to 
solve problems involving deflection. We will begin with a 
discussion of work and strain energy; then, using the principle of 
conservation of energy, we will show how to determine the stress 
and deflection in a member subjected to impact. Finally, the 
method of virtual work and Castigliano’s theorem will be used to 
determine the displacement and slope at points on a structural 
member or mechanical element.
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Work of a Force. A force does work when the force undergoes a 
displacement dx that is in the same direction as the force. Work is a scalar, 
defined as dUe = F dx. If the total displacement is ∆, the work is

Ue = L
∆

0
F dx (14–1)

Let’s use this equation to calculate the work done by an axial force 
applied to the end of the bar shown in Fig. 14–1a. As the magnitude of 
the force is gradually increased from zero to some limiting value F = P, 
the final displacement of the end of the bar becomes ∆. If the material 
behaves in a linear elastic manner, then the force will be directly 
proportional to its displacement; and so, F>x = P>∆ or F = (P>∆)x. 
Substituting this into Eq. 14–1 and integrating from 0 to ∆, we get

Ue =
1
2

 P∆ (14–2)

In other words, as the force is applied to the bar, its magnitude increases 
from zero to some value P, and consequently, the work done is equal to 
the average force magnitude, P>2, times the total displacement ∆. This 
work is represented graphically by the light-blue shaded area of the 
triangle in Fig. 14–1c.

Now suppose P is already applied to the bar and that another force P′ is 
applied, so that the end of the bar is displaced further by an amount ∆′, 
Fig. 14–1b. The work done by P′ is equal to the gray shaded triangular 
area, and the additional work done by P is simply its magnitude P times 
the displacement ∆′, i.e.,

U e
= = P∆′ (14–3)

This is represented by the dark-blue shaded rectangular area in 
Fig. 14–1c.

P

(a)

�

 
P

P¿

(b)

�¿
�

P¿

P

(c)

F

x

� �¿

Fig. 14–1 
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Work of a Couple Moment. A couple moment M does work 
when it undergoes an angular displacement du along its line of action. 
The work is defined as dUe = M du, Fig. 14–2. If the total angular 
displacement is u rad, the work becomes

 Ue = L
u

0
M du (14–4)

If a body has linear elastic behavior, and the magnitude of the couple 
moment is increased gradually from zero at u = 0 to M at u, then, as in 
the case of a force, the work is

 Ue =
1
2

 Mu (14–5)

However, if the couple moment is already applied to the body and 
other loadings further rotate the body by an amount u′, then the work is

U =
e = Mu′

Strain Energy. When loads are applied to a body, they will deform 
the material, and provided no energy is lost in the form of heat, the 
external work done by the loads will be converted into internal work 
called strain energy. This energy is stored in the body and is caused by 
the action of either normal or shear stress.

Normal Stress. To obtain the strain energy caused by the normal 
stress sz, consider the volume element shown in Fig. 14–3. The force 
created on the element’s top and bottom surface will be  
dFz = sz dA = sz dx dy. If this force (or stress) is applied gradually to 
the element, then the force magnitude will increase from zero to dFz, 
while the element undergoes an elongation d∆z = Pz dz. The work done 
by dFz is therefore dUi =

1
2 dFz d∆z = 1

2 [sz dx dy]Pz dz. Since the volume 
of the element is dV = dx dy dz, then

 dUi =
1
2

 szPz dV (14–6)

This strain energy is always positive, even if sz is compressive, since sz 
and Pz will always be in the same direction.

For a body of finite size, the strain energy in the body is therefore

 Ui = LV
 
sP
2

 dV (14–7)

M

u

Fig. 14–2 

dz

dx

dy

sz

Fig. 14–3 
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When the material behaves in a linear elastic manner, then s = EP, and 
we can then express the strain energy in terms of the normal stress as

 Ui = LV
 
s2

2E
 dV  (14–8)

Shear Stress. A strain energy expression similar to that for normal 
stress can also be established for the material when it is subjected to shear 
stress. Here the element in Fig. 14–4 is subjected to the shear force 
dF = t(dx dy), which acts on its top surface, causing this surface to be 
displaced g dz relative to its bottom surface. The vertical surfaces only 
rotate, and therefore the shear forces on these faces do no work. Hence, 
the strain energy stored in the element becomes

dUi =
1
2

 [t(dx dy)]g dz

Or since dV = dx dy dz,

 dUi =
1
2

 tg dV (14–9)

The strain energy stored in a body subjected to shear stress is therefore

 Ui = LV
 
tg

2
 dV (14–10)

Like the case for normal strain energy, shear strain energy is always 
positive, since t and g are always in the same direction. If the material is 
linear elastic, then g = t>G, and we can express the strain energy in 
terms of the shear stress as

 Ui = LV
 
t2

2G
 dV  (14–11)

dx

dy

dz
t

gdz

g

Fig. 14–4 
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Multiaxial Stress. The previous development can be expanded to 
determine the strain energy in a body when it is subjected to a general 
state of stress, Fig. 14–5a. To do this, the strain energies associated with 
each of the six normal and shear stress components can be obtained from 
Eqs. 14–6 and 14–9, and since energy is a scalar, the total strain energy in 
the body becomes

 Ui = LV
 c 1

2
 sxPx +

1
2

 syPy +
1
2

 szPz

  +
1
2

 txygxy +
1
2

 tyzgyz +
1
2

 txzgxz d  dV (14–12)

The strains can be eliminated by using the generalized form of Hooke’s 
law given by Eqs. 10–18 and 10–19. After substituting and combining 
terms, we have

 Ui = LV
 c 1

2E
 1sx

2 + sy
2 + sz

22 -
n

E
 (sxsy + sysz + sxsz)

  +
1

2G
 1txy

2 + tyz
2 + txz

2 2 d  dV (14–13)

If only the principal stresses s1, s2, s3 act on the element, Fig. 14–5b, 
this equation reduces to a simpler form, namely,

 Ui = LV
 c 1

2E
 1s1

2 +  s2
2 +  s3

2 2 -
n

E
 (s1s2 +  s2s3 +  s1s3) d  dV (14–14)

(a)

sz

sy
sx

txz tyz

txy

  (b)

s3

s2

s1

Fig. 14–5 
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14.2  ElaStic Strain EnErgy for 
VariouS typES of loading

Using the equations for elastic strain energy developed in the previous 
section, we will now formulate the strain energy stored in a member when 
it is subjected to an axial load, bending moment, transverse shear, and 
torsional moment.

Axial Load. Consider a bar of variable yet slightly tapered cross 
section shown in Fig. 14–6. The internal axial force at a section located a 
distance x from one end is N. If the cross-sectional area at this section is A, 
then the normal stress on the section is s = N>A. Applying Eq. 14–8,  
we have

Ui = LV
 
sx  

2

2E
 dV = LV

 
N2

2EA2 dV

If we choose a differential segment of the bar having a volume 
dV = A dx, the general formula for the strain energy in the bar is 
therefore

 Ui = L
L

0
 

N2

2AE
 dx  (14–15)

For the most common case of a bar of constant cross-sectional area A 
and constant internal axial load N, Fig. 14–7, integration gives

 Ui =
N2L
2AE

 (14–16)

Notice that the bar’s elastic strain energy will increase if the length of 
the bar is increased, or if the modulus of elasticity or cross-sectional area 
is decreased. For example, an aluminum rod [Eal = 69.0 GPa] will store 
approximately three times as much energy as a steel rod [Est = 200 GPa] 
having the same size and subjected to the same load. However, doubling 
the cross-sectional area of the rod will decrease its ability to store energy 
by one-half.

x

x
A

N
s

Fig. 14–6 

L

A

N

N

s

Fig. 14–7 
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ExAMpLE   14.1

One of the two high-strength steel bolts A and B shown in Fig. 14–8 is to 
be chosen to support a sudden tensile loading. For the choice it is 
necessary to determine the greatest amount of elastic strain energy that 
each bolt can absorb. Bolt A has a diameter of 20 mm for 50 mm of its 
length and a root (or smallest) diameter of 18 mm within the 6 mm 
threaded region. Bolt B has “upset” threads, such that the diameter 
throughout its 56-mm length can be taken as 18 mm. In both cases, 
neglect the extra material that makes up the threads. Take 
Est = 200 GPa, sY = 300 MPa.

SoLutioN
Bolt A. If the bolt is subjected to its maximum tension, the maximum stress 
of sY = 300 MPa will occur within the 6 mm region. This tension force is

P max = sY A = 3300(106) N>m24 cp a0.018 m
2

b
2

d = 76.34(103) N = 76.34 kN

Applying Eq. 14–16 to each region of the bolt, we have

Ui = a N2L
2AE

=
[76.34(103) N]2 (0.05 m)

2[p(0.02 m>2)2] [200(109) N>m2]
+

[76.34(103) N]2 (0.006 m)

2[p(0.018 m>2)2] [200(109) N>m2]

 = 2.662 N # m = 2.66 J Ans.

Bolt B. Here the bolt is assumed to have a uniform diameter of 18 mm 
throughout its 56-mm length. Also, from the calculation above, it can 
support a maximum tension force of P max = 76.34(103) N. Thus,

Ui =
N2L
2AE

=
[76.34(103) N]2 (0.056 m)

2[p(0.018 m>2)2] [200(109) N>m2]
= 3.206 N # m = 3.21 J Ans.

NotE: By comparison, bolt B can absorb 20% more elastic energy than 
bolt A, because it has a smaller cross section along its shank.

50 mm

6 mm

20 mm

18 mm

A

56 mm
18 mm

B

Fig. 14–8
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Bending Moment. Consider the axisymmetric beam shown in 
Fig. 14–9. Here the internal moment is M, which produces a normal stress 
of s = My>I on the arbitrary element located a distance y from the 
neutral axis. If the volume of this element is dV = dA dx, then the elastic 
strain energy in the beam is

Ui = LV
 
s2

2E
 dV = LV

 
1

2E
 a

My

I
b

2

 dA dx

or

Ui = L
L

0
 

M2

2EI2 ¢ LA
y2 dA≤ dx

Since the integral in parentheses represents the moment of inertia of the 
area about the neutral axis, the final result can be written as

 Ui = L
L

0
 
M2 dx
2EI

 (14–17)

To evaluate this strain energy, we must express the internal moment as a 
function of its position x along the beam, and then perform the integration 
over the beam’s entire length.

x

x
z

y

y
dA

M

s

Fig. 14–9 
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ExAMpLE   14.2 

Determine the elastic strain energy due to bending of the cantilevered 
beam in Fig. 14–10a. EI is constant.

w

L

(a)

Fig. 14–10 

SoLutioN
The internal moment in the beam is determined by establishing the  
x coordinate with origin at the left side. The left segment of the beam is 
shown in Fig. 14–10b. We have

a+ ΣMNA = 0;    M + wxax
2
b = 0             M = -w¢ x2

2
≤

Applying Eq. 14–17 yields

Ui = L
L

0

M2 dx
2EI

= L
L

0

[-w(x2>2)]2 dx

2EI
=

w2

8EI L
L

0
x4 dx

or

 Ui =
w2L5

40EI
 Ans.

We can also obtain the strain energy using an x coordinate having its 
origin at the right side of the beam and extending positive to the left, 
Fig. 14–10c. In this case,

a+ ΣMNA = 0;   -M - wxax
2
b + wL(x) -

wL2

2
= 0

                              M = -
wL2

2
+ wLx - w¢ x2

2
≤

Applying Eq. 14–17 , we will obtain the same result as before; however, 
more calculations are involved in this case.

M

V
x

wx

(b)

x
2

M

wL

x

wx

(c)

V

x
2

wL2

2
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ExAMpLE   14.3 

Determine the bending strain energy in region AB of the beam shown in 
Fig. 14–11a. EI is constant.

SoLutioN

A free-body diagram of the beam is shown in Fig. 14–11b. To obtain the 
answer, we can express the internal moment in terms of any one of the 
indicated three “x” coordinates and then apply Eq. 14–17. Each of these 
solutions will now be considered.

0 … x1 … L. From the free-body diagram of the section in Fig. 14–11c, 
we have

a+ ΣMNA = 0;    M1 + Px1 = 0

M1 = -Px1

 Ui = L  
M2 dx

2EI
= L

L

0
 
(-Px1)

2 dx1

2EI
=

P 2L3

6EI
 Ans.

0 … x2 … L. Using the free-body diagram of the section in Fig. 14–11d 
gives

a+ ΣMNA = 0;    -M2 + 2P(x2) - P(x2 + L) = 0

 M2 = P(x2 - L)

 Ui = L  
M2 dx

2EI
= L

L

0
 
[P(x2 - L)]2 dx2

2EI
=

P 2L3

6EI
 Ans.

L … x3 … 2L. From the free-body diagram in Fig. 14–11e, we have

a+ ΣMNA = 0;    -M3 + 2P(x3 - L) - P(x3) = 0

 M3 = P(x3 - 2L)

 Ui = L  
M2 dx

2EI
 = L

2L

L
 
[P(x3 - 2L)]2 dx3

2EI
=

P 2L3

6EI
 Ans.

NotE: This and the previous example indicate that the strain energy for 
the beam can be found using any suitable x coordinate. It is only 
necessary to integrate over the range of the coordinate where the internal 
energy is to be determined. Here the choice of x1 provides the simplest 
solution.

A
B

(a)

L

P

L

C

A
B

(b)

P

C 

P

L

2 P

x1 x2

x3

(c)

A

P

V1

M1x1

(d)

P 

L

2 P

V2

M2
x2

(e)

P 

V3

L

2 P

M3

(x3 � L)

x3

Fig. 14–11 
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transverse Shear. Again we will consider an axisymmetric beam 
as shown in Fig. 14–12. If the internal shear at the section x is V, then the 
shear stress acting on the volume element of material having an area dA 
and length dx is t = VQ>It. Substituting this into Eq. 14–11, the strain 
energy for shear becomes

Ui = LV
 
t 

2

2G
 dV = LV

 
1

2G
 a

VQ

It
b

2

 dA dx

Ui = L
L

0
 

V2

2GI  

2  ¢ LA
 
Q2

t 

2  dA≤ dx

The integral in parentheses represents the form factor for shear, written as

fs =
A

I  

2 LA
 
Q2

t 

2  dA (14–18)

Substituting this into the above equation, we get

Ui = L
L

0
 
fs V

2 dx

2GA
 (14–19)

From the way it is defined in Eq. 14–18, the form factor is a 
dimensionless number that is unique for each specific cross-sectional 
area. For example, if the beam has a rectangular cross section of width b 
and height h, Fig. 14–13, then

 t = b
 dA = b dy

 I =
1
12

 bh3

 Q = y′A′ = ay +
(h>2) - y

2
b  bah

2
- yb =

b
2

 ¢h2

4
- y2≤

Substituting these terms into Eq. 14–18, we get

fs =
bh

1 1
12 bh322

 L
h>2

-h>2
 
b2

4b2 ¢h2

4
- y2≤2

 b dy =
6
5

 (14–20)

x

x
z

y

y
dA

Vt

Fig. 14–12 

b

dy

y

A¿

N A

h
2

h
2

h
2

 � y)(

Fig. 14–13 
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ExAMpLE   14.4 

Determine the strain energy in the cantilevered beam due to shear, if the 
beam has a square cross section and is subjected to a uniform distributed 
load w, Fig. 14–14a. EI and G are constant.

L

w

(a)

a
a

     

x

wx

(b)

M 

V

x
2

Fig. 14–14 

SoLutioN
From the free-body diagram of an arbitrary section, Fig. 14–14b, we have

+ c ΣFy = 0;      -V - wx = 0

 V = -wx

Since the cross section is square, the form factor fs = 6
5 (Eq. 14–20), 

and therefore Eq. 14–19 becomes

(Ui)s = L
L

0
 
6
5 (-wx)2 dx

2GA
=

3w2

5GA
 L

L

0
 x2 dx

or

(Ui)s =
w2L3

5GA
 Ans.

NotE: Using the results of Example 14.2, with A = a2, I = 1
12 a4, the 

ratio of shear to bending strain energy is

(Ui)s

(Ui)b
=

w2L3>5Ga2

w2L5>40E1 1
12 a42 =

2
3

 a a
L
b

2

 
E
G

Since G = E>2(1 + n) and n … 1
2 (Sec. 10.6), then as an upper limit, 

E = 3G, so that

(Ui)s

(Ui)b
= 2a a

L
b

2

Notice that this ratio will increase as L decreases. However, even for very 
short beams, where, say, L = 5a, the contribution due to shear strain energy 
is only 8% of the bending strain energy. It is for this reason the shear strain 
energy stored in beams is usually neglected in engineering analysis.
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torsional Moment. For torsion, we will consider the slightly 
tapered shaft in Fig. 14–15, which is subjected to an internal torque T. On 
the arbitrary element of area dA and length dx, the shear stress is 
t = Tr>J, and therefore the strain energy stored in the shaft is

 Ui = LV
 
t2

2G
 dV = LV

 
1

2G
 a

Tr

J
b

2

 dA dx = L
L

0
 

T 2

2GJ 

2  ¢ LA
 r2 dA≤ dx

Since the integral in parentheses represents the polar moment of inertia J 
for the shaft at the section, the final result can be written as

Ui = L
L

0
 

T 

2

2GJ
 dx  (14–21)

The most common case occurs when the shaft (or tube) has a constant 
cross-sectional area and the applied torque is constant, Fig. 14–16. 
Integration of Eq. 14–21 then gives

Ui =
T 

2L
2GJ

 (14–22)

Notice that the energy absorbing capacity of a torsionally loaded shaft is 
decreased by increasing the diameter of the shaft, since this increases J.

T

x

x

dA

t

r

Fig. 14–15 

T

T

L

Fig. 14–16 

Important poInts 

 • A force does work when it moves through a displacement. 
When a force is applied to a body its magnitude is increased 
gradually from zero to F, and so the work is U = (F>2)∆. 
However, if a constant force acts on the body, and the body is 
given a displacement ∆, then the work becomes U = F∆.

 • A couple moment does work when it is displaced through a 
rotation.

 • Strain energy is caused by the internal work of the normal and 
shear stresses. It is always a positive quantity.

 • The strain energy can be related to the internal loadings N, V, M, 
and T.

 • As a beam becomes longer, the strain energy due to bending 
becomes much larger than the strain energy due to shear. For this 
reason, the shear strain energy in beams can generally be neglected.
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ExAMpLE   14.5 

The tubular shaft in Fig. 14–17a is fixed at the wall and subjected to two 
torques as shown. Determine the strain energy stored in the shaft due to 
this loading. G = 75 GPa.

40 N�m

55 N�m

750 mm

300 mm

15 mm

80 mm

(a)

40 N�m 40 N�m 55 N�m

(b)

T � 40 N�m
T � 15 N�m

Fig. 14–17

SoLutioN

Using the method of sections, the internal torque is first determined 
within the two regions of the shaft where it is constant, Fig. 14–17b. 
Although these torques (40 N # m and 15 N # m) are in opposite directions, 
this will be of no consequence in determining the strain energy, since the 
torque is squared in Eq. 14–22. In other words, the strain energy is always 
positive. The polar moment of inertia for the shaft is

J =
p

2
 [(0.08 m)4 - (0.065 m)4] = 36.30(10-6) m4

Applying Eq. 14–22, we have

 Ui = a  
T 2L
2GJ

 =
(40 N # m)2(0.750 m)

2[75(109) N>m2]36.30(10-6) m4 +
(15 N # m)2(0.300 m)

2[75(109) N>m2]36.30(10-6) m4

 = 233 mJ Ans.
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14–1. A material is subjected to a general state of plane 
stress. Express the strain energy density in terms of the 
elastic constants E, G, and n and the stress components sx, 
sy, and txy.

sy

sx

txy

Prob. 14–1 

14–2. The strain-energy density for plane stress must be 
the same whether the state of stress is represented by sx, sy, 
and txy, or by the principal stresses s1 and s2. This being the 
case, equate the strain–energy expressions for each of these 
two cases and show that G = E>[2(1 + n)].

14–3. The A-36 steel bar consists of two segments, one of 
circular cross section of radius r, and one of square cross 
section. If the bar is subjected to the axial loading of P, 
determine the dimensions a of the square segment so that 
the strain energy within the square segment is the same as 
in the circular segment.

L

aa

P

P

2L

Prob. 14–3 

*14–4. Determine the torsional strain energy in the A992 
steel shaft. The shaft has a radius of 50 mm.

0.6 m

0.6 m

8 kN�m

12 kN�m

Prob. 14–4 

14–5. If P = 50 kN, determine the total strain energy stored 
in the truss. Each member has a diameter of 50 mm and is 
made of A992 steel.

14–6. Determine the maximum force P and the 
corresponding maximum total strain energy that can be 
stored in the truss without causing any of the members to 
have permanent deformation. Each member of the truss has 
a diameter of 50 mm and is made of A-36 steel.

1.2 m

0.9 m0.9 m
P

A

B

C

D

Probs. 14–5/6 

14–7. Using bolts of the same material and cross-sectional 
area, two possible attachments for a cylinder head are 
shown. Compare the strain energy developed in each case, 
and then explain which design is better for resisting an axial 
shock or impact load.

(a)

L1

(b)

L2

Prob. 14–7 

pRoBLEMS
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*14–8. The shaft assembly is fixed at C. The hollow segment 
BC has an inner radius of 20 mm and outer radius of 40 mm, 
while the solid segment AB has a radius of 20 mm. Determine 
the torsional strain energy stored in the shaft. The shaft is 
made of 2014-T6 aluminum alloy. The coupling at B is rigid.

A

600 mm

600 mm

60 N�m

30 N�m
20 mm

20 mm

40 mm

B

C

Prob. 14–8 

14–9. Determine the total axial and bending strain energy in 
the A992 steel beam. A = 2850 mm2, I = 28.9(106) mm4.

6 kN/m

6 m

50 kN

Prob. 14–9 

14–10. Determine the torsional strain energy in the A-36 
steel shaft. The shaft has a radius of 40 mm.

0.6 m

0.4 m

0.5 m6 kN�m

12 kN�m

8 kN�m

Prob. 14–10 

14–11. Determine the torsional strain energy in the A992 
steel shaft. The shaft has a radius of 40 mm.

0.8 m

0.6 m

0.6 m

8 kN�m

30 kN�m/m

Prob. 14–11 

*14–12. If P = 60 kN, determine the total strain energy 
stored in the truss. Each member has a cross-sectional area 
of 2.5(103) mm2  and is made of A-36 steel.

14–13. Determine the maximum force P and the 
corresponding maximum total strain energy stored in the 
truss without causing any of the members to have permanent 
deformation. Each member has the cross-sectional area of 
2.5(103) mm2 and is made of A-36 steel.

P

1.5 m

2 m

A

B

C

D

Probs. 14–12/13 

14–14. Consider the thin-walled tube of Fig. 5–26. Use 
the formula for shear stress, tavg = T>2t Am, Eq. 5–18, and 
the general equation of shear strain energy, Eq. 14–11, to 
show that the twist of the tube is given by Eq. 5–20. Hint: 
Equate the work done by the torque T to the strain energy 
in the tube, determined from integrating the strain energy 
for a differential element, Fig. 14–4, over the volume of 
material.
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14–15. Determine the bending strain-energy in the beam 
due to the loading shown. EI is constant.

L—
2

L—
2

B

M0

A C

Prob. 14–15 

*14–16. The beam shown is tapered along its width. If a 
force P is applied to its end, determine the strain energy in the 
beam and compare this result with that of a beam that has a 
constant rectangular cross section of width b and height h.

P
L

h

b

Prob. 14–16 

14–17. The steel beam is supported on two springs, each 
having a stiffness of k = 8 MN>m. Determine the strain 
energy in each of the springs and the bending strain energy in 
the beam. Est = 200 GPa, I = 5(106) mm4.

2 kN/m

1 m

k

2 m

k

1 m

Prob. 14–17 

14–18. Determine the bending strain energy in the simply 
supported beam. EI is constant.

L
2

L
2

w0

Prob. 14–18 

14–19. Determine the bending strain energy in the beam. 
EI is constant.

L

M0M0

Prob. 14–19 

*14–20. Determine the strain energy in the horizontal 
curved bar due to torsion. There is a vertical force P acting 
at its end. JG is constant.

r

P

90

Prob. 14–20
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14–21. Determine the bending strain energy in the beam. 
EI is constant.

L

B A

w0

Prob. 14–21 

14–22. The bolt has a diameter of 10 mm, and the arm AB 
has a rectangular cross section that is 12 mm wide by 7 mm 
thick. Determine the strain energy in the arm due to 
bending and in the bolt due to axial force. The bolt is 
tightened so that it has a tension of 500 N. Both members 
are made of A-36 steel. Neglect the hole in the arm.

60 mm

50 mm

A

B

30 mm

7 mm

Prob. 14–22 

14–23. Determine the bending strain energy in the 
cantilevered beam. Solve the problem two ways.  
(a) Apply Eq. 14–17. (b) The load w dx acting on a segment 
dx of the beam is displaced a distance y, where 
y = w(-x4 + 4L3 x - 3L4)>(24EI), the equation of the 
elastic curve. Hence the internal strain energy in the 
differential segment dx of the beam is equal to the external 
work, i.e., dUi =

1
2 (w dx)(-y). Integrate this equation to 

obtain the total strain energy in the beam. EI is constant.

L
dx x

w dx

w

Prob. 14–23 

*14–24. Determine the bending strain energy in the 
simply supported beam. Solve the problem two ways.  
(a) Apply Eq. 14–17. (b) The load w dx acting on the 
segment dx of the beam is displaced a distance y, where 
y = w(-x4 + 2Lx3 - L3x)>(24EI), the equation of the 
elastic curve. Hence the internal strain energy in the 
differential segment dx of the beam is equal to the external 
work, i.e., dUi =

1
2 (w dx)(-y). Integrate this equation to 

obtain the total strain energy in the beam. EI is constant.

L
dxx

w

w dx

Prob. 14–24 
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14.3 conSErVation of EnErgy
All energy methods are based on a balance of energy, often referred to as 
the conservation of energy. In this chapter, only mechanical energy will 
be considered for this energy balance; that is, the energy developed by 
heat, chemical reactions, and electromagnetic effects will be neglected. As 
a result, if a loading is applied slowly to a body, then these loads will do 
external work Ue as they are displaced. This external work is then 
transformed into internal work or strain energy Ui, which is stored in the 
body. When the loads are removed, the strain energy restores the body to 
its original undeformed position, provided the material’s elastic limit is 
not exceeded. This conservation of energy for the body can be stated 
mathematically as

Ue = Ui  (14–23)

truss. To demonstrate how the conservation of energy applies, we will 
consider the truss in Fig. 14–18, which is subjected to the load P, causing 
the joint to be displaced Δ. Provided P is applied gradually, the external 
work done by P is determined from Eq. 14–2, that is, Ue = 1

2 P∆. Assuming 
that P develops an axial force N in a particular member, the strain energy 
stored in this member is determined from Eq. 14–16, that is, 
Ui = N2L>2AE. Summing the strain energies for all the members of the 
truss, Eq. 14–23 then requires

1
2

 P∆ = a  
N2L
2AE

 (14–24)

Once the internal forces (N) in all the members of the truss are 
determined and the terms on the right calculated, it is then possible to 
determine the displacement ∆ at the joint where P is applied.

P

�

Fig. 14–18 



760  Chapter 14  energy Methods

14

Beam. Let us now consider finding the vertical displacement ∆ under 
the load P acting on the beam in Fig. 14–19. Again, the external work is 
Ue = 1

2 P∆. In this case the strain energy is the result of internal shear 
and moment loadings caused by P. In particular, the contribution of 
strain energy due to shear is generally neglected in most beam deflection 
problems, unless the beam is short and supports a very large load. (See 
Example 14.4.) Consequently, the beam’s strain energy will be determined 
only by the internal bending moment M, and therefore, using Eq. 14–17, 
the conservation of energy requires

1
2

 P∆ = L
L

0
 
M2

2EI
 dx (14–25)

Once M is expressed as a function of position x and the integral is 
evaluated, ∆ can then be determined.

If the beam is subjected to a couple moment M   0 as shown in Fig. 14–20, 
then this moment will cause the rotational displacement u at its point of 
application. Since a couple moment only does work when it rotates, using 
Eq. 14–5, the external work is Ue = 1

2 M0 u, and so

1
2

 M0 u = L
L

0
 
M  

2

2EI
 dx (14–26)

Here u measures the slope of the elastic curve at the point where M   0 is 
applied.

Application of Eq. 14–23 for finding a deflection or slope is quite 
limited, because only a single external force or couple moment acts on 
the member or structure, and only the displacement at the point and in 
the direction of the external force, or the slope in the direction of the 
couple moment, can be calculated. If more than one external force or 
couple moment were applied, then the external work of each loading 
would have to involve its associated unknown displacement. As a result, 
none of these unknown displacements could then be determined, since 
only the single equation (Ue = Ui) is available for the solution.

P

�

Fig. 14–19 

M0

u

Fig. 14–20 
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The three-bar truss in Fig. 14–21a is subjected to a horizontal force of  
20 kN. If the cross-sectional area of each member is 100 mm2, determine 
the horizontal displacement at point B. E = 200 GPa.

ExAMpLE   14.6

A

B

C

1 m
2 m

20 kN

30

(a)

60

    

20 kN

30
60 C

B

NAB  11.547 kN

NBC  23.094 kN NAC  20 kN

Cy

23.094 kN

(b)

Fig. 14–21

SoLutioN

We can apply the conservation of energy to solve this problem because 
only a single external force acts on the truss and the required displacement 
happens to be in the same direction as the force. Furthermore, the 
reactive forces on the truss do no work since they are not displaced.

Using the method of joints, the force in each member is determined 
as shown on the free-body diagrams of the pins at B and C, Fig. 14–21b.

Applying Eq. 14–24, we have

1
2

 P∆ = a N2L
2AE

1
2

 (20 kN)(∆B)h =
(11.547 kN)2(1 m)

2AE
+

(-23.094 kN)2(2 m)

2AE

 +
(20 kN)2(1.732 m)

2AE

(∆B)h =
94.64 kN # m

AE

Notice that since N is squared, it does not matter if a particular 
member is in tension or compression. Substituting in the numerical 
data for A and E and solving, we get

 (∆B)h =
94.64(103) N # m

[0.1(10- 3) m2] [200(109) N>m]

 = 0.004732 m = 4.73 mm S  Ans.
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ExAMpLE   14.7 

The cantilevered beam in Fig. 14–22a has a rectangular cross section and 
is subjected to a load P at its end. Determine the displacement of the 
load. EI is constant.

SoLutioN
The internal shear and moment in the beam as a function of x are 
determined using the method of sections, Fig. 14–22b.

When applying Eq. 14–23 we will consider the strain energy due to 
both shear and bending. Using Eqs. 14–19 and 14–17, we have

 
1
2

 P∆ = L
L

0
 
fsV 

2 dx

2GA
+ L

L

0
 
M  

2 dx
2EI

 = L
L

0
 
16

52(-P)2dx

2GA
+ L

L

0
 
(-Px)2dx

2EI
=

3P 

2L
5GA

+
P 

2L3

6EI
 (1)

The first term on the right side of this equation represents the strain 
energy due to shear, while the second is the strain energy due to bending. 
As stated in Example 14.4, for most beams the shear strain energy is 
much smaller than the bending strain energy. To show when this is the 
case for the beam in Fig. 14–22a, we require

 
3
5

 
P 

2L
GA

V
P 

2L3

6EI

 
3
5

 
P 

2L
G(bh)

V
P 

2L3

6E3 1
12 (bh3)4

 
3

5G
 V

2L2

Eh2

Since E … 3G (see Example 14.4), then

0.9 V aL
h
b

2

Hence if L is relatively long compared with h, then the shear strain energy 
can be neglected. In other words, the shear strain energy becomes important 
only for short, deep beams. For example, if L = 5h, then approximately 28 
times more bending strain energy will be absorbed in the beam than shear 
strain energy, so neglecting the shear strain energy represents an error of 
about 3.6%. With this in mind, Eq. 1 can be simplified to

1
2

 P∆ =
P2L3

6EI
so that

∆ =
PL3

3EI
  Ans.

L

(a)

b
h

P

x
M � �Px

V � �P

P

(b)

Fig. 14–22 
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pRoBLEMS

14–25. Determine the horizontal displacement of joint A. 
Each bar is made of A-36 steel and has a cross-sectional 
area of 950 mm2.

1.2 m

CB

D

A

0.9 m

0.9 m

10 kN

Prob. 14–25 

14–26. Determine the vertical displacement of joint D.  
AE is constant.

L

P

A

B

D

C

0.8L

0.6L

Prob. 14–26 

14–27. Determine the vertical displacement of joint C.  
AE is constant.

L

P

A

B

D

C

0.8L

0.6L

Prob. 14–27

*14–28. Determine the horizontal displacement of joint C.  
AE is constant.

L

PC

BA

L/2

Prob. 14–28 
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14–29. Determine the slope at point A of the beam. EI is 
constant.

a a a

CA B

M0

Prob. 14–29 

14–30. Determine the slope of the beam at the pin support A. 
Consider only bending strain energy. EI is constant.

BA

L

M0

Prob. 14–30 

14–31. Determine the vertical displacement of point C of 
the A992 steel beam. I = 80(106) mm4.

4 m 2 m

A B

60 kN

C

Prob. 14–31 

*14–32. The A992 steel bars are pin connected at C and D. 
If they each have the same rectangular cross section, with a 
height of 200 mm and a width of 100 mm, determine the 
vertical displacement at B. Neglect the axial load in the bars.

E

500 N

A

2 m 2 m 3 m 3 m

DCB

Prob. 14–32 

14–33. Determine the vertical displacement of point B on 
the A992 steel beam. I = 80(106) mm4.

3 m 5 m

A C

20 kN

B

Prob. 14–33 

14–34. Determine the vertical displacement of end B of 
the cantilevered 6061-T6 aluminum alloy rectangular beam. 
Consider both shearing and bending strain energy.

B

A

100 mm

300 mm

a

a

Section a – a

150 kN

1 m

Prob. 14–34 

14–35. The A-36 steel bars are pin connected at B. If each 
has a square cross section, determine the vertical 
displacement at B.

A
50 mm

50 mm

4 kN

B C D

2.4 m 1.2 m 3 m

Prob. 14–35
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*14–36. The cantilevered beam has a rectangular cross-
sectional area A, a moment of inertia I, and a modulus of 
elasticity E. If a load P acts at point B as shown, determine 
the displacement at B in the direction of P, accounting for 
bending, axial force, and shear.

L

B
u

P

A

Prob. 14–36 

14–37. The pipe assembly is fixed at A. Determine the 
vertical displacement of end C of the assembly. The pipe has 
an inner diameter of 40 mm and outer diameter of 60 mm 
and is made of A-36 steel. Neglect the shearing strain energy.

800 mm

400 mm

C

B600 N

A

Prob. 14–37

14–38. Determine the vertical displacement of end B of the 
frame. Consider only bending strain energy. The frame is 
made using two A-36 steel W460 * 68 wide-flange sections.

B

A

20 kN

4 m

3 m

Prob. 14–38 

14–39. The rod has a circular cross section with a moment 
of inertia I. If a vertical force P is applied at A, determine 
the vertical displacement at this point. Only consider the 
strain energy due to bending. The modulus of elasticity is E.

r

P

A

Prob. 14–39

*14–40. The rod has a circular cross section with a moment 
of inertia I. If a vertical force P is applied at A, determine 
the vertical displacement at this point. Only consider the 
strain energy due to bending. The modulus of elastcity is E.

r

A

P

Prob. 14–40 

14–41. The rod has a circular cross section with a polar 
moment of inertia J and moment of inertia I. If a vertical 
force P is applied at A, determine the vertical displcement 
at this point. Consider the strain energy due to bending and 
torsion. The material constants are E and G.

r

P

x

z

y

A

Prob. 14–41 
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14.4 impact loading
Up to now we have considered all loadings to be applied to a body in a 
gradual manner, such that when they reach a maximum value the body 
remains static. Some loadings, however, are dynamic, such as when one 
object strikes another, producing large forces between them during a very 
short period of time. If we assume that during the collision no energy is 
lost due to heat, sound, or localized plastic deformations, then we can 
study the mechanics of this impact using the conservation of energy.

Falling Block. Consider the simple block-and-spring system shown 
in Fig. 14–23. When the block is released from rest, it falls a distance h, 
striking the spring and compressing it a distance ∆max before momentarily 
coming to rest. If we neglect the mass of the spring and assume that it 
responds elastically, then the conservation of energy requires that the 
work done by the block’s weight, falling h + ∆max, be equal to the work 
needed to displace the end of the spring an amount ∆max. Since the force 
in a spring is related to ∆max  by F = k∆max, where k is the spring 
stiffness, then

 Ue = Ui

 W(h + ∆max) =
1
2

 (k∆max) ∆max 

  W(h + ∆max) =
1
2

 k∆2
max (14–27)

  ∆2
max -

2W
k

 ∆max - 2aW
k
bh = 0

Solving this quadratic equation for ∆max, the maximum root is

 ∆max =
W
k

+ CaW
k
b

2

+ 2aW
k
bh

If the weight W is supported statically by the spring, then the displacement 
of the block is ∆st = W>k. Using this simplification, the above equation 
becomes

∆max = ∆st + 2(∆st)
2 + 2∆sth

or

 ∆max = ∆st J1 + C1 + 2¢ h
∆st 

≤ R  (14–28)

h

k

�max

Fig. 14–23 

This crash barrier is designed to absorb 
the impact energy of moving vehicles.
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Once ∆max  is calculated, the maximum force applied to the spring can 
be determined from

 Fmax = k∆max  (14–29)

This force and its associated displacement occur only at an instant. Provided 
the block does not rebound off the spring, it will continue to vibrate until 
the motion dampens out and the block assumes the static position, ∆st. 

As a special case, if the block is held just above the spring  and released, 
then from Eq. 14–28, with h = 0, the maximum displacement of the 
block will be

∆max = 2∆st 

In other words, the displacement from the dynamic load is twice what it 
would be if the block were supported by the spring (a static load).

Sliding Block. Using a similar analysis, it is also possible to determine 
the maximum displacement of the end of the spring if the block is sliding on 
a smooth horizontal surface, with a known velocity v just before it collides 
with the spring, Fig. 14–24. Here the block’s kinetic energy,* 12 (W>g)v2, will 
be transformed into stored energy in the spring. Hence,

 Ue = Ui

  
1
2

 aW
g
bv2 =

1
2

 k∆2
max

  ∆max = BWv2

gk
 (14–30)

Since the static displacement of a block resting on the spring is  
∆st = W>k, then

 ∆max = B ∆stv2

g
 (14–31)

General problem. The results of this simplified analysis can be used 
to determine both the approximate deflection and the stress developed in 
an elastic member when it is subjected to impact. To do this we must make 
some necessary assumptions regarding the collision, so that the behavior 
of the colliding bodies is similar to the response of the block-and-spring 
models discussed above. Here we will consider the moving body to be rigid 
like the block, and the stationary body to be deformable like the spring. 
Also, like the spring, we will assume that the material behaves in a linear 
elastic manner and the mass of the elastic body can be neglected. Realize 
that all of these assumptions will lead to a conservative estimate of both 
the maximum stress and deflection of the elastic body. In other words, the 
calculated values will be larger than those that actually occur.

k
v

�max

Fig. 14–24 

*Kinetic energy is “energy of motion.” For the translation of a body it is 1
2 mv2, where m 

is the body’s mass, m = W>g.
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A few examples of when this theory can be applied are shown in Fig. 14–25. 
Here a block of known weight is dropped onto a post and a beam, causing 
them to deform a maximum amount ∆max. The energy of the falling block is 
transformed momentarily into axial strain energy in the post and bending 
strain energy in the beam.* In order to determine the deformation ∆max, we 
could use the same approach as for the block–spring system, and that is to 
write the conservation of energy equation for the block and post or block 
and beam, and then solve for ∆max. However, we can also solve these 
problems in a more direct manner by modeling the post and beam by an 
equivalent spring. For example, if a force P displaces the top of the post 
∆ = PL>AE, then a spring having a stiffness k = AE>L would be displaced 
the same amount by P, that is, ∆ = P>k. In a similar manner,  
from Appendix C, a force P applied to the center of a simply supported beam 
displaces the center ∆ = PL3>48EI, and therefore an equivalent spring 
would have a stiffness of k = 48EI>L3. However, to apply Eq. 14–28 or  
14–30, it is not necessary to actually find this equivalent spring stiffness. All 
that is needed to determine ∆max is to calculate the static displacement ∆st 
due to the weight Pst = W of the block resting on the post or beam.

Once ∆max  is determined, the maximum dynamic force can then be 
calculated from Pmax = k∆max. Then if we consider Pmax to be an 
equivalent static load, the maximum stress in the member can be 
determined using statics and the theory of mechanics of materials. Of 
course this stress acts only for an instant, since the post or beam will 
begin to vibrate, thereby changing the stress within the material.

The ratio of the dynamic force Pmax to the static force Pst = W is called 
the impact factor, n. This factor represents the magnification of a statically 
applied load so that it can be treated dynamically. Since Pmax = k∆max 
and Pst = k∆st, then from Eq. 14–28, the impact factor becomes

 n = 1 + C1 + 2¢ h
∆st 

 ≤  (14–32)

For a complicated system of connected members, impact factors are 
determined from experience and experimental testing. Once n is 
determined, however, the dynamic stress and deflection ∆max at the point 
of impact are then found from the static stress sst and static deflection ∆st 
caused by the load. They are smax = nsst and ∆max = n∆st.

h

�max

h

�max

Fig. 14–25 

The members of this crash guard must be 
designed to resist a prescribed impact loading 
in order to arrest the motion of a rail car.

*Strain energy due to shear is neglected for reasons discussed in Example 14.4.
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 • Impact occurs when a large force is developed between two 
objects which strike one another during a short period of time.

 • We can analyze the effects of impact by assuming the moving 
body is rigid, the material of the stationary body is linear elastic, 
no energy is lost during collision, the bodies remain in contact 
during collision, and the mass of the elastic body is neglected.

 • The dynamic load on a body can be determined by multiplying 
the static load by an impact factor.

Important poInts

The aluminum pipe shown in Fig. 14–26 is used to support a load of 600 kN. 
Determine the maximum displacement at the top of the pipe if the load is 
(a) applied gradually, and (b) applied by suddenly releasing it from the top 
of the pipe when h = 0. Take Eal = 70 GPa and assume that the aluminum 
behaves elastically.

SoLutioN

Part (a). When the load is applied gradually, the work done by the 
weight is transformed into elastic strain energy in the pipe. Applying the 
conservation of energy, we have

 Ue = Ui

 
1
2

 W∆st =
W 2L
2AE

 ∆st =
WL
AE

=
[600(103) N] (0.24 m)

p[(0.06 m)2 - (0.05 m)2] [70(109) N>m2]

 = 0.5953(10- 3) m = 0.595 mm Ans.

Part (b). Here Eq. 14–28 can be applied, with h = 0. Hence,

∆max = ∆st c 1 + A1 + 2 a h
∆st

b d

 = 2∆st = 2(0.5953 mm)

 = 1.19 mm Ans.

Hence, the displacement of the weight when applied dynamically is twice 
as great as when the load is applied statically. In other words, the impact 
factor is n = 2, Eq. 14–32.

ExAMpLE   14.8

60 mmh
t 10 mm

240 mm

600 kN

Fig. 14–26
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The A992 steel beam shown in Fig. 14–27a is a W250 * 58. Determine the 
maximum bending stress in the beam and the beam’s maximum deflection if 
the weight W = 6 kN is dropped from a height h = 50 mm onto the beam. 
Est = 200 GPa.

SoLutioN i

We will apply Eq. 14–28. First, however, we must calculate ∆st. Using the 
table in Appendix C, and the data in Appendix B for the properties of a 
W250 * 58, we have

∆st =
WL3

48EI
=

[6(103) N] (5 m)3

48[200(109) N>m2][87.3(10- 6) m4]
= 0.8949(10- 3) m

∆ max = ∆st c 1 + B1 + 2a h
∆st

b d  = [0.8949(10- 3) m]e1 + A1 + 2 c 0.05 m
0.8949(10- 3) m

d f

= 0.01040 m = 10.4 mm Ans.

The equivalent static load that causes this displacement is therefore

P max =
48EI

L3  ∆ max = e
48[200(109) N>m2][87.3(10- 6) m4]

(5 m)3  f(0.01040 m)

= 69.71(103) N = 69.71 kN

The internal moment caused by this load is maximum at the center of the 
beam, such that by the method of sections, Fig. 14–27b, M max = P max L>4. 
Applying the flexure formula to determine the bending stress, we have

s max =
M max c

I
=

P max Lc

4I
=

12E ∆ max c

L2 =
12 [200(109) N>m2](0.01040 m)(0.252 m>2)

(5 m)2

 = 125.76 (106) N>m2 = 126 MPa Ans.

SoLutioN ii

It is also possible to obtain the dynamic or maximum deflection ∆ max  
from first principles. The external work of the falling weight W is 
Ue = W(h + ∆max). Since the beam deflects ∆ max , and 
P max = 48EI∆max >L3, then

Ue = Ui

W(h + ∆max ) =
1
2

 a
48EI∆max 

L3  b  ∆max 

[6(103) N](0.05 m + ∆max ) =
1
2

 e
48 [200(109) N>m2][87.3(10- 6) m4]

(5 m)3  f  ∆ max 
2

558.72∆ max 
2 - ∆max - 0.05 = 0

Solving and choosing the positive root yields

∆max = 0.01040 m = 10.4 mm Ans.

ExAMpLE   14.9

2.5 m

h  50 mm
W

(a)

2.5 m

Mmax

V

(b)

—
2
L

2
Pmax

Fig. 14–27
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A railroad car that is assumed to be rigid and has a mass of 80 Mg is 
moving forward at a speed of v = 0.2 m>s when it strikes a steel 200 mm 
by 200 mm post at A, Fig. 14–28a. If the post is fixed to the ground at C, 
determine the maximum horizontal displacement of its top B due to the 
impact. Take Est = 200 GPa.

SoLutioN
Here the kinetic energy of the railroad car is transformed into internal 
bending strain energy only for region AC of the post. (Region BA is not 
subjected to an internal loading.) 

We will solve for (∆A)max using first principles rather than using 
Eq. 14–31. Assuming that point A is displaced (∆A)max, then the force 
Pmax that causes this displacement can be determined from the table in 
Appendix C. We have

 Pmax =
3EI(∆A)max 

L3
AC

 (1)

Thus,
Ue = Ui ;       

1
2

 mv

2 =
1
2

 Pmax(∆A)max 

  
1
2

 mv2 =
1
2

 
3EI

L3
AC

 (∆A)2
max;   (∆A)max = Bmv

2L3
AC

3EI

Substituting in the numerical data yields

(∆A)max = B 80(103) kg(0.2 m>s)2(1.5 m)3

3[200(109) N>m23 1
12 (0.2 m)4 4  = 0.01162 m = 11.62 mm

Using Eq. 1, the force Pmax  is therefore

Pmax =
3[200(109) N>m2]3 1

12 (0.2 m)44(0.01162 m)

(1.5 m)3 = 275.4 kN

With reference to Fig. 14–28b, segment AB of the post remains straight. To 
determine the maximum displacement at B, we must first determine uA. 
Using the appropriate formula from the table in Appendix C, we have

uA =
PmaxLAC

2

2EI
=

275.4(103) N (1.5 m)2

2[200(109) N>m2]31
2 (0.2 m)44 = 0.01162  rad

The maximum displacement at B is therefore

 (∆B)max = (∆A)max + uALAB 

  = 11.62 mm + (0.01162 rad) 1 (103) mm = 23.2 mm Ans.

1 m
1.5 m

200 mm

200 mm

(a)

A
B

C

v � 0.2 m/s

B

A

C

(b)

1 m

1.5 m

uA

(�A)max

(�B)max

Pmax

Fig. 14–28 

ExAMpLE 14.10
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14–42. A bar is 4 m long and has a diameter of 30 mm. 
Determine the total amount of elastic energy that it can 
absorb from an impact loading if (a) it is made of steel for 
which Est = 200 GPa, sY = 800 MPa, and (b) it is made 
from an aluminum alloy for which Eal = 70 GPa, 
sY = 405 MPa.

14–43. Determine the diameter of a red brass C83400 
bar that is 2.5 m long if it is to be used to absorb 100 J of 
energy in tension from an impact loading. No yielding 
occurs.

*14–44. Determine the speed v of the 50-Mg mass when it 
is just over the top of the steel post, if after impact, the 
maximun stress developed in the post is 550 MPa. The post 
has a length of L = 1 m and a cross-sectional area of 0.01 m2. 
Est = 200 GPa, sY = 600 MPa.

14–46. Rods AB and AC have a diameter of 20 mm and are 
made of 6061-T6 aluminum alloy. They are connected to the 
rigid collar A which slides freely along the vertical guide rod. 
If the 50-kg block D is dropped from height h = 200 mm 
above the collar, determine the maximum normal stress 
developed in the rods.

pRoBLEMS

L

Prob. 14–44

14–45. Rods AB and AC have a diameter of 20 mm and 
are made of 6061-T6 aluminum alloy. They are connected 
to the rigid collar which slides freely along the vertical 
guide rod. Determine the maximum height h from which 
the 50-kg block D can be dropped without causing yielding 
in the rods when the block strikes the collar.

400 mm
400 mm30 30

D

h

A

CB

Probs. 14–45/46

14–47. A steel cable having a diameter of 10 mm wraps 
over a drum and is used to lower an elevator of mass 400 kg. 
The elevator is 45 m below the drum and is descending at the 
constant rate of 0.6 m/s when the drum suddenly stops. 
Determine the maximum stress developed in the cable when 
this occurs. Est = 200 GPa, sY = 350 MPa.

45 m

Prob. 14–47
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*14–48. The A-36 steel bolt is required to absorb the 
energy of a 2-kg mass that falls h = 30 mm. If the bolt has a 
diameter of 4 mm, determine its required length L so the 
stress in the bolt does not exceed 150 MPa.

14–49. The A-36 steel bolt is required to absorb the energy 
of a 2-kg mass that falls h = 30 mm. If the bolt has a diameter 
of 4 mm and a length of L = 200 mm, determine if the stress 
in the bolt will exceed 175 MPa.

14–50. The A-36 steel bolt is required to absorb the energy 
of a 2-kg mass that falls along the 4-mm-diameter bolt shank 
that is 150 mm long. Determine the maximum height h of 
release so the stress in the bolt does not exceed 150 MPa.

L

h

Probs. 14–48/49/50

14–51. The 5-kg block is traveling with the speed of 
v = 4 m>s just before it strikes the 6061-T6 aluminum 
stepped cylinder. Determine the maximum normal stress 
developed in the cylinder.

*14–52. Determine the maximum speed v of the 5-kg 
block without causing the 6061-T6 aluminum stepped 
cylinder to yield after it is struck by the block.

40 mm 20 mm

300 mm300 mm v

ABC

Probs. 14–51/52

14–53. The composite aluminum 2014-T6 bar is made 
from two segments having diameters of 7.5 mm and  
15 mm. Determine the maximum axial stress developed in 
the bar if the 10-kg collar is dropped from a height of  
h = 100 mm.

h
15 mm

7.5 mm

200 mm

300 mm

Prob. 14–53

14–54. The composite aluminum 2014-T6 bar is made 
from two segments having diameters of 7.5 mm and 15 mm. 
Determine the maximum height h from which the 10-kg 
collar should be dropped so that it produces a maximum 
axial stress in the bar of smax = 300 MPa.

h
15 mm

7.5 mm

200 mm

300 mm

Prob. 14–54
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14–55. The 25-kg block is falling at 0.9 m/s at the instant it 
is 0.6 m above the spring and post assembly. Determine the 
maximum stress in the post if the spring has a stiffness of 
k = 40 MN>m. The post has a diameter of 75 mm and a 
modulus of elasticity of E = 48 GPa. Assume the material 
will not yield.

0.6 m

k

0.9 m/s

0.6 m

Prob. 14–55

*14–56. The collar has a mass of 5 kg and falls down the 
titanium Ti-6A1-4V bar. If the bar has a diameter of 20 mm, 
determine the maximum stress developed in the bar if the 
weight is (a) dropped from a height of h = 1 m, (b) released 
from a height h ≈ 0, and (c) placed slowly on the flange at A.

h

1.5 m

20 mm

A

Prob. 14–56

14–57. The collar has a mass of 5 kg and falls down the 
titanium Ti-6A1-4V bar. If the bar has a diameter of 20 mm, 
determine if the weight can be released from rest at any point 
along the bar and not permanently damage the bar after 
striking the flange at A.

h

1.5 m

20 mm

A

Prob. 14–57

14–58. The tugboat has a mass of 60 tonnes and is traveling 
forward at 0.6 m/s when it strikes the 300-mm-diameter 
fender post AB used to protect a bridge pier. If the post  
is made from treated white spruce and is assumed fixed  
at the river bed, determine the maximum horizontal distance 
the top of the post will move due to the impact. Assume the 
tugboat is rigid and neglect the effect of the water.

3.6 m

A

C

B

0.9 m

Prob. 14–58
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14–59. The overhang beam is made of 2014-T6 aluminum. 
If the 75-kg block has a speed of v = 3 m>s at h = 0.75 m, 
determine the maximum bending stress in the beam.

*14–60. The overhang beam is made of 2014-T6 aluminum. 
Determine the maximum height h from which the 100-kg 
block can be dropped from rest (v = 0), without causing the 
beam to yield.

D

h

A
B C

2 m4 m

v

75 mm

150 mm

Probs. 14–59/60

14–61. Block C of mass 50 kg is dropped from height 
h = 0.9 m onto the spring of stiffness k = 150 kN>m 
mounted on the end B of the 6061-T6 aluminum cantilever 
beam. Determine the maximum bending stress developed 
in the beam.

14–62. Determine the maximum height h from which  
200-kg block C can be dropped without causing the 6061-T6 
aluminum cantilever beam to yield. The spring mounted on 
the end B of the beam has a stiffness of k = 150 kN>m.

3 m

A

C

h

B

k
100 mm

200 mm

a

a

Section a – a

Probs. 14–61/62

14–63. The weight of 90 kg is dropped from a height of  
1.2 m from the top of the A-36 steel beam. Determine the 
maximum deflection and maximum stress in the beam if the 
supporting springs at A and B each have a stiffness of 
k = 100 kN>m. The beam is 75 mm thick and 100 mm wide.

*14–64. The weight of 90 kg, is dropped from a height of  
1.2 m from the top of the A-36 steel beam. Determine the 
load factor n if the supporting springs at A and B each have a 
stiffness of k = 60 kN>m. The beam is 75 mm thick and 
100 mm wide.

2.4 m

BA

2.4 m

1.2 m

100 mm
kk

75 mm

Probs. 14–63/64

14–65. The simply supported W250 * 22 structural A-36 
steel beam lies in the horizontal plane and acts as a shock 
absorber for the 250-kg block which is traveling toward it at 
1.5 m/s. Determine the maximum deflection of the beam and 
the maximum stress in the beam during the impact. The 
spring has a stiffness of k = 200 kN>m.

3.6 m

3.6 m

v  1.5 m/s

k

Prob. 14–65
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14–66. The 2014-T6 aluminum bar AB can slide freely 
along the guides mounted on the rigid crash barrier. If the 
railcar of mass 10 Mg is traveling with a speed of v = 1.5 m>s,  
determine the maximum bending stress developed in the bar. 
The springs at A and B have a stiffness of k = 15 MN>m.

14–67. The 2014-T6 aluminum bar AB can slide freely 
along the guides mounted on the rigid crash barrier. 
Determine the maximum speed v the 10-Mg railcar without 
causing the bar to yield when it is struck by the railcar. The 
springs at A and B have a stiffness of k = 15 MN>m.

A

B

k

k

2 m

300 mm

2 m

v

400 mm

300 mm

Section a – a

a a

Probs. 14–66/67

*14–68. The steel beam AB acts to stop the oncoming 
railroad car, which has a mass of 10 Mg and is coasting 
towards it at v = 0.5 m>s. Determine the maximum stress 
developed in the beam if it is struck at its center by the car. 
The beam is simply supported and only horizontal forces 
occur at A and B. Assume that the railroad car and the 
supporting framework for the beam remains rigid. Also, 
compute the maximum deflection of the beam. 
Est = 200 GPa, sY = 250 MPa.

A

B

1 m

1 m

200 mm

200 mm
v  0.5 m/s

Prob. 14–68

14–69. The diver weighs 750 N and, while holding himself 
rigid, strikes the end of a wooden diving board (h = 0) with a 
downward velocity of 1.2 m. Determine the maximum bending 
stress developed in the board. The board has a thickness of  
40 mm and width of 450 mm. Ew = 12.6 GPa, sY = 56 MPa.

14–70. The diver weighs 750 N and, while holding himself 
rigid, strikes the end of the wooden diving board. Determine 
the maximum height h from which he can jump onto the 
board so that the maximum bending stress in the wood does 
not exceed 42 MPa. The board has a thickness of 40 mm and 
width of 450 mm. Ew = 12.6 GPa.

1.2 m 3 m

h

v

Probs. 14–69/70

14–71. The car bumper is made of polycarbonate-polybutylene 
terephthalate. If E = 2.0 GPa, determine the maximum 
deflection and maximum stress in the bumper if it strikes the 
rigid post when the car is coasting at v = 0.75 m>s. The car has 
a mass of 1.80 Mg, and the bumper can be considered simply 
supported on two spring supports connected to the rigid 
frame of the car. For the bumper take I = 300(106) mm4, 
c = 75 mm, sY = 30 MPa and k = 1.5 MN>m.

k k

0.9 m 0.9 m

v � 0.75 m/s

Prob. 14–71
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*14.5 principlE of Virtual Work
The principle of virtual work was developed by John Bernoulli in 1717, 
and like other energy methods of analysis, it is based on the conservation 
of energy. Although this principle has many applications in mechanics, 
here we will use it to obtain the displacement and slope at a point on a 
deformable body.

To give a general idea as to how it is used, we will consider the body to 
be of arbitrary shape, as shown in Fig. 14–29b, and subjected to the “real 
loads” P1, P2, and P3. Suppose that we want to find the displacement ∆ of 
point A on the body. Since there is no force acting at A and in the 
direction of ∆, then no external work term at this point will be included 
when the conservation of energy principle is applied to the body. To get 
around this limitation, we will place an imaginary or “virtual” force P′ on 
the body at A, such that P′ acts in the same direction as ∆. Furthermore, 
this load will be applied before the real loads are applied, Fig. 14–29a. For 
convenience, we will choose P′ to have a “unit” magnitude; that is, 
P′ = 1. It should be emphasized that the term “virtual” is used here 
because it is an imaginary load and does not actually exist as part of the 
real loading. This external virtual load creates an internal virtual load u 
in a representative element or fiber of the body, as shown in Fig. 14–29a.

When we now apply the real loads P1, P2, and P3, point A will be displaced 
∆ and the representative element will be elongated dL, Fig. 14–29b. The 
result of this creates external virtual work* 1 # ∆ on the body and internal 
virtual work u # dL on the element. If we consider only the conservation of 
virtual energy, then the external virtual work must be equal to the internal 
virtual work done on all the elements of the body. Therefore, the virtual-
work equation becomes

virtual loadings

 1 # ∆ = 1u # dL (14–33)

real displacements 

Here
P′ = 1 = external virtual unit load acting in the direction of ∆

u = internal virtual load acting on the element
Δ = displacement caused by the real loads

dL =  displacement of the element in the direction of u, caused by 
the real loads

Since we have chosen P′ = 1, it can be seen that the solution for ∆ 

follows directly, since ∆ = 1u dL.

L
u

u

A

Application of virtual unit load
(a)

P¿�1

L
dL

Application of real loads
(b)

A

P1

P2

P3

�

Fig. 14–29 

*Prior to application of the real loads the body and the element will each undergo a 
virtual (imaginary) displacement, although we will not be interested in their magnitudes.



778  Chapter 14  energy Methods

14

In a similar manner, if the angular displacement or slope of the tangent 
at a point on the body is to be determined at A, Fig. 14–30b, then a virtual 
couple moment M′, having a “unit” magnitude, is applied at the point, 
Fig. 14–30a. As a result, this couple moment causes a virtual load uu in 
one of the elements of the body. Now applying the real loads P1, P2, P3, 
the element will be deformed an amount dL, and so the angular 
displacement u can be found from the virtual-work equation

virtual loadings

1 # u = 1uu dL (14–34)

real displacements

Here

 M′ = 1 = external virtual unit couple moment acting in the 
 direction of u

 uu = internal virtual load acting on the element
 u = angular displacement in radians caused by the  
 real loads

 dL = displacement of the element in the direction of uu  
 caused by the real loads

This method for applying the principle of virtual work is often 
referred to as the method of virtual forces, since a virtual force is 
applied, resulting in a determination of an external real displacement. 
The equation of virtual work in this case represents a statement of 
compatibility requirements for the body.*

*We can also apply the principle of virtual work as a method of virtual displacements, 
that is, virtual displacements are imposed on the body when the body is subjected to real 
loadings. When it is used in this manner, the equation of virtual work is a statement of the 
equilibrium requirements for the body. See Engineering Mechanics: Statics, R. C. Hibbeler, 
Pearson Education, Inc.

L

Application of virtual unit 
couple moment

(a)

uu

A

M¿�1

uu

   

L
dL

Application of real loads
(b)

A

P1

P2

P3

u

Fig. 14–30 
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internal Virtual Work. If we assume that the material behaves in 
a linear elastic manner, and the stress does not exceed the proportional 
limit, we can then formulate the expressions for internal virtual work 
using the equations of elastic strain energy developed in Sec. 14.2. They 
are listed in the center column of Table 14–1. Recall that each of these 
expressions assumes that the internal loading N, V, M, or T was 
increased gradually from zero to its full value, and as a result, the work 
done by these resultants is shown in these expressions as one-half the 
product of the internal loading and its displacement. In the case of the 
virtual-force method, however, the virtual load is applied before the real 
loads cause displacements, and therefore the work of the virtual load is 
then the product of the virtual load and its real displacement (without 
the 1>2 factor). Referring to these internal virtual loadings (u) by the 
corresponding lowercase symbols n, v, m, and t, the virtual work due to 
each load is listed in the right-hand column of Table 14–1. Using these 
results, the virtual-work equation for a body subjected to a general 
loading can therefore be written as

 1 # ∆ = L  
nN
AE

 dx + L  
mM
EI

 dx + L  
fsvV

GA
 dx + L  

tT
GJ

 dx (14–35)

In the following sections we will apply the above equation to problems 
involving the displacement of joints on trusses, and points on beams or 
shafts. We will also include a discussion of how to handle the effects of 
fabrication errors and differential temperature. For application it is 
important that a consistent set of units be used for all the terms. For 
example, if the real loads are expressed in kilo-newtons and the body’s 
dimensions are in meters, a 1-kN virtual force or 1-kN # m virtual couple 
should be applied to the body. By doing so a calculated displacement ∆ 
will be in meters, and a calculated slope will be in radians.

tABLE 14–1 

Deformation  
caused by

Strain  
energy

Internal  
virtual work

Axial load N L
L

0

N 2

2EA
 dx L

L

0

nN
EA

 dx

Shear V L
L

0

fsV
2

2GA
 dx L

L

0

fsvV

GA
 dx

Bending moment M L
L

0

M2

2EI
 dx L

L

0

mM
EI

 dx

Torsional moment T L
L

0

T 2

2GJ
 dx L

L

0

tT
GJ

 dx
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*14.6  mEthod of Virtual forcES 
appliEd to truSSES

In this section we will show how to apply the method of virtual forces to 
determine the displacement of a truss joint. To illustrate, consider finding 
the vertical displacement of joint A of the truss shown in Fig. 14–31b. To 
do this, we must first place a virtual unit force at this joint, Fig. 14–31a, so 
that when the real loads P1 and P2 are applied to the truss, they cause the 
external virtual work 1 # ∆. Since each member has a constant cross-
sectional area A, and the virtual and real loads n and N are constant 
throughout the member’s length, then from Table 14–1, the internal virtual 
work for each member is

 L
L

0
 
nN
AE

 dx =
nNL
AE

 (14–36)

Therefore, the virtual-work equation for the entire truss is

 1 # ∆ = a  
nNL
AE

 (14–37)

Here
 1 =  external virtual unit load acting on the truss joint in the 

direction of ∆
 ∆ = joint displacement caused by the real loads on the truss
 n =  internal virtual force in a truss member caused by the external 

virtual unit load
 N = internal force in a truss member caused by the real loads
 L = length of a member
 A = cross-sectional area of a member
 E = modulus of elasticity of a member

Application of virtual unit load

(a)

1

A

nn

 

P2

P1

NN
L

Application of real loads

(b)

A

�

�L �
NL
AE

Fig. 14–31 
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temperature Change. Truss members can change their length 
due to a change in temperature. If a is the coefficient of thermal expansion 
for a member and ∆T is the change in temperature, then the change in 
length of a member is ∆L = a ∆TL (Eq. 4–4). Hence, we can determine 
the displacement of a selected truss joint due to this temperature change 
using Eq. 14–33 written as

 1 # ∆ = Σna ∆TL  (14–38)

Here
 1 =  external virtual unit load acting on the truss joint in the 

direction of ∆
 ∆ = joint displacement caused by the temperature change
 n =  internal virtual force in a truss member caused by the external 

virtual unit load
 a = coefficient of thermal expansion of the material

 ∆T = change in temperature of the member
 L = length of the member

Fabrication Errors. Occasionally errors in fabricating the lengths 
of the members of a truss may occur. If this happens, the displacement ∆ 
in a particular direction of a truss joint from its expected position can be 
determined from the application of Eq. 14–33 written as

 1 # ∆ = Σn ∆L  (14–39)

Here
 1 =  external virtual unit load acting on the truss joint in the direction 

of ∆
 ∆ =  joint displacement caused by the fabrication errors
 n =  internal virtual force in a truss member caused by the external 

virtual unit load
 ∆L =  difference in length of the member from its intended length 

caused by a fabrication error

A combination of the right sides of Eqs. 14–37 through 14–39 will be 
necessary if external loads act on the truss and some of the members 
undergo a temperature change or have been fabricated with the wrong 
dimensions.
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procedure for analysIs

The following procedure provides a method that may be used to 
determine the displacement of any joint on a truss using the method 
of virtual forces.

Virtual Forces n.

 • Place the virtual unit load on the truss at the joint where the 
displacement is to be determined. The load should be directed 
along the line of action of the displacement.

 • With the unit load so placed and all the real loads removed from 
the truss, calculate the internal n force in each truss member. 
Assume that tensile forces are positive and compressive forces 
are negative.

real Forces N.

 • Determine the N forces in each member. These forces are caused 
only by the real loads acting on the truss. Again, assume that 
tensile forces are positive and compressive forces are negative.

Virtual-Work equation.

 • Apply the equation of virtual work to determine the desired 
displacement. It is important to retain the algebraic sign for each 
of the corresponding n and N forces when substituting these terms 
into the equation.

 • If the resultant sum ΣnNL>AE is positive, the displacement ∆ is 
in the same direction as the virtual unit load. If a negative value 
results, ∆ is opposite to the virtual unit load.

 • When applying 1 # ∆ = Σna ∆TL, an increase in temperature, ∆T, 
will be positive, whereas a decrease in temperature will be negative.

 • When applying 1 # ∆ = Σn ∆L, an increase in the length of a 
member, ∆L, is positive, whereas a decrease in length is negative.
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Determine the vertical displacement of joint C of the steel truss shown in 
Fig. 14–32a. The cross-sectional area of each member is A = 400 mm2 and 
Est = 200 GPa.

ExAMpLE 14.11 

D C

B
A

2 m 2 m

2 m

(a)

100 kN

1 kN

(b)

0

�
1.4

14
 kN

0

Virtual forces

1 kN
D C

B
A

200 kN

(c)

�100 kN
100 kN

Real forces

�
14

1.4
 kN

141.4 kN

D C

B
A

Fig. 14–32 

SoLutioN

Virtual Forces n. Since the vertical displacement at joint C is to be 
determined, only a vertical 1-kN virtual load is placed at joint C, and the 
force in each member is calculated using the method of joints. The results 
are shown in Fig. 14–32b. Using our sign convention, positive numbers 
indicate tensile forces and negative numbers indicate compressive forces.

Real Forces N. The 100-kN load causes forces in the members that 
are also calculated using the method of joints. The results are shown in 
Fig. 14–32c.

Virtual-Work Equation. Arranging the data in tabular form, we have

Member n N L nNL

AB 0 -100 4 0
BC 0 141.4 2.828 0
AC -1.414 -141.4 2.828 565.7
CD 1 200 2 400

Σ 965.7 kN2 # m

Thus,

1 kN # ∆C
v

= a  
nNL
AE

=
965.7 kN2 # m

AE
Substituting the numerical values for A and E, we have

  1 kN # ∆Cv
=

965.7 kN2 # m

[400(10-6) m2][200(106) kN>m2]

  ∆Cv
 = 0.01207 m = 12.1 mm Ans.
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Determine the horizontal displacement of the roller at B of the truss shown 
in Fig. 14–33a. Due to radiant heating, member AB is subjected to an increase 
in temperature of ∆T = +60°C, and this member has been fabricated 3 mm 
too short. The members are made of steel, for which ast = 12(10-6)>°C and 
Est = 200 GPa. The cross-sectional area of each member is 250 mm2.

ExAMpLE 14.12 

C 

B

30�

4 m

30�

A

(a)

6 kN

 

�1.155 kN

C 

B

0

1 kN

A 0

(b)

Virtual forces

�12 kN

C 

B

6 kN

A 10.39 kN

�12 kN

(c)

Real forces

Fig. 14–33 

SoLutioN

Virtual Forces n. A horizontal 1-kN virtual load is applied to the truss 
at joint B, and the forces in each member are calculated, Fig. 14–33b.

Real Forces N. Since the n forces in members AC and BC are zero, 
the N forces in these members do not have to be determined. Why? 
For completeness, though, the entire “real” force analysis is shown in 
Fig. 14–33c.

Virtual-Work Equation. The loads, temperature, and the fabrication 
error all affect the displacement of point B; therefore, Eqs. 14–37, 14–38, 
and 14–39 must be combined, which gives

  1 kN # ∆Bh
 = a  

nNL
AE

+ Σna ∆TL + Σn∆L

  = 0 + 0 +
(-1.155 kN)(-12 kN)(4 m)

[250(10-6) m2][200(106) kN>m2]

+ (-1.155 kN)[12(10-6)>°C](60°C)(4 m)

+ (-1.155 kN)(-0.003 m)

  ∆Bh
 = 0.00125 m

  = 1.25 mm d   Ans.
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*14–72. Determine the vertical displacement of point E. 
Each A-36 steel member has a cross-sectional area of 
2800 mm2.

C

1.8 m

A

DEF

25 kN
2.4 m

B

2.4 m

Prob. 14–72

14–73. Determine the vertical displacement of point B. 
Each A-36 steel member has a cross-sectional area of 
2800 mm2.

C

1.8 m

A

DEF

25 kN
2.4 m

B

2.4 m

Prob. 14–73

14–74. Determine the vertical displacement of joint A. 
Each A992 steel member has a cross-sectional area of 
400 mm2.

D

CB

2 m

A

3 m1.5 m
E

40 kN 60 kN

Prob. 14–74

14–75. Determine the vertical displacement of joint H. 
Each A-36 steel member has a cross-sectional area of 
2800 mm2.

E

3 m

A

I

B
4 m

H

C

G

D

30 kN

4 m4 m4 m

40 kN30 kN

FJ

Prob. 14–75

pRoBLEMS
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*14–76. Determine the vertical displacement of joint C. 
Each A-36 steel member has a cross-sectional area of 
2800 mm2.

14–78. Determine the vertical displacement of point A. 
Each A-36 steel member has a cross-sectional area of 
400 mm2.

E

3 m

A

I

B
4 m

H

C

G

D

30 kN

4 m4 m4 m

40 kN30 kN

FJ

Prob. 14–76

14–77. Determine the vertical displacement of point B. 
Each A-36 steel member has a cross-sectional area of 
400 mm2.

30 kN
20 kN

1.5 m 1.5 m

2 m

A
B

E D

C

Prob. 14–77

30 kN
20 kN

1.5 m 1.5 m

2 m

A
B

E D

C

Prob. 14–78

14–79. Determine the horizontal displacement of joint B 
of the truss. Each A992 steel member has a cross-sectional 
area of 400 mm2.

1.5 m

C
B

2 m
4 kN

A
D

5 kN

Prob. 14–79
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*14–80. Determine the vertical displacement of joint C of 
the truss. Each A992 steel member has a cross-sectional 
area of400 mm2.

14–83. Determine the vertical displacement of joint A. 
The truss is made from A992 steel rods having a diameter 
of 30 mm.

*14–84. Determine the vertical displacement of joint D. 
The truss is made from A992 steel rods having a diameter 
of 30 mm.

1.5 m

C
B

2 m
4 kN

A
D

5 kN

Prob. 14–80

14–81. Determine the horizontal displacement of joint C. 
Each A-36 steel member has a cross-sectional area of 
400 mm2.

14–82. Determine the vertical displacement of joint D. 
Each A-36 steel member has a cross-sectional area of 
400 mm2.

1.5 m

C B

2 m

10 kN

AD

5 kN

Probs. 14–81/82

A

D C

B

20 kN

20 kN

2 m

1.5 m 1.5 m

Probs. 14–83/84

14–85. Determine the horizontal displacement of joint 
D. Each A-36 steel member has a cross-sectional area of 
300 mm2.

14–86. Determine the horizontal displacement of joint 
E. Each A-36 steel member has a cross-sectional area of 
300 mm2.

A

2 kN

3 m

3 m

B

4 kN

C

D

E

3 m

Probs. 14–85/86
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*14.7  mEthod of Virtual forcES 
appliEd to BEamS

We can also apply the method of virtual forces to determine the 
displacement and slope at a point on a beam. For example, if we wish to 
determine the vertical displacement ∆ of point A on the beam shown in 
Fig. 14–34b, we must first place a vertical unit load at this point, Fig. 14–34a, 
and then when the “real” distributed load w is applied to the beam it will 
cause external virtual work 1 # ∆. Because the distributed load causes both 
a shear and moment within the beam, we must actually consider the 
internal virtual work due to both of these loadings. In Example 14.7, 
however, it was shown that beam deflections due to shear are negligible 
compared with those caused by bending, particularly if the beam is long 
and slender. Since this is most often the case, we will only consider the 
virtual strain energy due to bending, Table 14–1. Since the moment M will 
cause the element dx in Fig. 14–34b to deform, its sides rotate through an 
angle du = (M>EI)dx, Eq. 12–16. Therefore, the internal virtual work  
is m du. Applying Eq. 14–33, the virtual-work equation for the entire 
beam becomes 

 1 # ∆ = L
L

0
 
mM
EI

 dx  (14–40)

Here

 1 = external virtual unit load acting on the beam in the direction of ∆
 ∆ = displacement caused by the real loads acting on the beam

 m =  internal virtual moment in the beam, expressed as a function of x 
and caused by the external virtual unit load

 M =  internal moment in the beam, expressed as a function of x and 
caused by the real loads

 E =  modulus of elasticity of the material

 I =  moment of inertia of the cross-sectional area about the 
neutral axis

In a similar manner, if the slope u of the tangent at a point on the 
beam’s elastic curve is to be determined, a virtual unit couple moment 
must be applied at the point, and the corresponding internal virtual 
moment mu has to be determined. If we apply Eq. 14–34 for this case and 
neglect the effect of shear deformations, we have

 1 # u = L
L

0
 
muM

EI
 dx  (14–41)
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A

x

x
dx

v

m

r

Virtual loads

(a)

1

 

A
x

�

x

w

dx

V

M

R

(b)

Real loads

du

Fig. 14–34 

When applying these equations, keep in mind that the integrals on the 
right side represent the amount of virtual bending strain energy that is 
stored in the beam. If a series of concentrated forces or couple moments 
act on the beam or the distributed load is discontinuous, a single 
integration cannot be performed across the beam’s entire length. Instead, 
separate x coordinates must be chosen within regions that have no 
discontinuity of loading. Also, it is not necessary that each x have the 
same origin; however, the x selected for determining the real moment M 
in a particular region must be the same x selected for determining the 
virtual moment m or mu within this same region. For example, consider 
the beam in Fig. 14–35. In order to determine the displacement at D, we 
can use x1 to determine the strain energy in region AB, x2 for region BC, 
x3 for region DE, and x4 for region DC. For any problem, each x 
coordinate should be selected so that both M and m (or mu) can easily be 
formulated.

A

Virtual load

E
DCB

1

(a)

x2 x4

x3x1

 

A

Real loads

E
DCB

P
w

(b)

x2 x4

x3x1

Fig. 14–35 
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procedure for analysIs

The following procedure provides a method that may be used to 
determine the displacement and slope at a point on the elastic curve 
of a beam, using the method of virtual forces.

Virtual Moments m or mU.

 • Place a virtual unit load at the point on the beam and directed 
along the line of action of the desired displacement.

 • If the slope is to be determined, place a virtual unit couple moment 
at the point.

 • Establish appropriate x coordinates that are valid within regions 
of the beam where there is no discontinuity of both real and 
virtual load.

 • With the virtual load in place, and all the real loads removed from 
the beam, calculate the internal moment m or mu as a function of 
each x coordinate. When doing this, assume that m or mu acts in 
the positive direction according to the established beam sign 
convention for positive moment, Fig. 6–3.

real Moments.

 • Using the same x coordinates as those established for m or mu, 
determine the internal moments M caused by the real loads. Be sure 
M is also shown acting in the same positive direction as m or mu.

Virtual-Work equation.

 • Apply the equation of virtual work to determine the desired 
displacement ∆ or slope u. 

 • If the algebraic sum of all the integrals for the entire beam is 
positive, ∆ or u is in the same direction as the virtual unit load or 
virtual unit couple moment. If a negative value results, ∆ or u is 
opposite to the virtual unit load or couple moment.
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Determine the displacement of point B on the beam shown in Fig. 14–36a. 
EI is constant.

ExAMpLE 14.13 

L

(a)

w

B A

B

L

x v

1

m � �1 x

(b)
Virtual loads

x

1

 

V

(c)
Real loads

w

wx

x

M��wx x
2

B

–x
2

Fig. 14–36 
SoLutioN

Virtual Moment m. The vertical displacement of point B is obtained 
by placing a virtual unit load at B, Fig. 14–36b. By inspection, there are no 
discontinuities of loading on the beam for both the real and virtual loads. 
Thus, a single x coordinate can be used to determine the virtual strain 
energy. This coordinate will be selected with its origin at B, so that the 
reactions at A do not have to be determined in order to find the internal 
moments m and M. Using the method of sections, the internal moment m 
is shown in Fig. 14–36b.

Real Moment M. Using the same x coordinate, the internal moment M 
is shown in Fig. 14–36c.

Virtual-Work Equation. The vertical displacement at B is thus

 1 # ∆B = L  
mM
EI

 dx = L
L

0
 
(-1x)(-wx2>2) dx

EI

  ∆B =
wL4

8EI
 Ans.

 14.7 Method of Virtual forCes applied to BeaMs 791
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Determine the slope at point B of the beam shown in Fig. 14–37a. EI is 
constant.

ExAMpLE 14.14 

SoLutioN

Virtual Moments mU. The slope at B is determined by placing a virtual 
unit couple moment at B, Fig. 14–37b. Two x coordinates must be selected in 
order to determine the total virtual strain energy in the beam. Coordinate x1 
accounts for the strain energy within segment AB, and coordinate x2 accounts 
for the strain energy in segment BC. Using the method of sections, the 
internal moments mu within each of these segments are shown in Fig. 14–37b.

Real Moments M. Using the same coordinates x1 and x2, the internal 
moments M are shown in Fig. 14–37c.

Virtual-Work Equation. The slope at B is thus

 1 # uB = L  
muM

EI
 dx

 = L
L>2

0
 
0(-Px1) dx1

EI
+ L

L>2

0
 
1{-P[(L>2) + x2]} dx2

EI

 uB = -
3PL2

8EI
 Ans.

The negative sign indicates that uB is clockwise, that is, opposite to the 
direction of the virtual couple moment shown in Fig. 14–37b.

C
A

(a)

P

B

1

1v2

v1

Virtual loads

mu2 � 1

mu1 � 0

(b)
Real load

P

P

(c)

—
2
L—

2
L

V2

V1

x2
x2 x1

x1

x2x2

x1

x1

M1 � �Px1

M2 � �P(
L
2

�x2)

—
2
L —

2
L

C
A

(a)

P

B

1

1v2

v1

Virtual loads

mu2 � 1

mu1 � 0

(b)
Real load

P

P

(c)

—
2
L—

2
L

V2

V1

x2
x2 x1

x1

x2x2

x1

x1

M1 � �Px1

M2 � �P(
L
2

�x2)

—
2
L —

2
L

Fig. 14–37 
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14–87. Determine the displacement at point C. EI is constant.

A

P

B

C

a a–
2
a –

2
a

P

Prob. 14–87

*14–88. The beam is made of southern pine for which 
Ep = 13 GPa. Determine the displacement at A.

3 m

A

1.5 m

4 kN/m

B C

120 mm

180 mm

15 kN

Prob. 14–88

14–89. Determine the displacement at point C. EI is constant.

14–90. Determine the slope at point C. EI is constant.

14–91. Determine the slope at point A. EI is constant.

A C
B

aa

P

Probs. 14–89/90/91

*14–92. Determine the displacement at B of the 
30-mm-diameter A-36 steel shaft.

14–93. Determine the slope of the 30-mm-diameter A-36 
steel shaft at the bearing support A.

1600 N

A

1600 N

700 N
700 N

0.45 m

0.6 m

B

D

0.6 m

1 m

C

Probs. 14–92/93

14–94. The beam is made of Douglas fir. Determine the 
slope at C.

8 kN

1.5 m

A

1.5 m

B C

120 mm

180 mm

1.5 m

Prob. 14–94

14–95. Determine the displacement at pulley B. The A992 
steel shaft has a diameter of 30 mm.

A 4 kN

1 kN 1 kN

0.4 m
B

0.4 m

0.3 m

0.3 m

3 kN

C

Prob. 14–95

pRoBLEMS

 14.7 Method of Virtual forCes applied to BeaMs 793
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*14–96. The A992 steel beam has a moment of inertia  
of I = 125(106) mm4. Determine the displacement at 
point D.

14–97. The A992 steel beam has a moment of inertia of 
I = 125(106) mm4. Determine the slope at A.

14–98. The A992 structural steel beam has a moment of 
inertia of I = 125(106) mm4. Determine the slope at B.

4 m

A

4 m

18 kN�m

3 m 3 m

D
B C

18 kN�m

Probs. 14–96/97/98

14–99. Determine the displacement at point C of the shaft. 
EI is constant.

*14–100. Determine the slope at A of the shaft. EI is 
constant.

A B
C

L L
2

P

Probs. 14–99/100

14–101. Determine the slope of end C of the overhang 
beam. EI is constant.

14–102. Determine the displacement of point D of the 
overhang beam. EI is constant.

A C
B

w

D
L
2

L
2

L
2

Probs. 14–101/102

14–103. Determine the slope at A of the 2014-T6 
aluminum shaft having a diameter of 100 mm.

*14–104. Determine the displacement at point C of the 
2014-T6 aluminum shaft having a diameter of 100 mm.

A BC

1 m 1 m
0.5 m

8 kN 8 kN

0.5 m

Probs. 14–103/104

14–105. Determine the displacement at point C and the 
slope at B. EI is constant.

BC

P

L
2

L
2

Prob. 14–105

14–106. Determine the displacement at point C of the 
beam made from A992 steel and having a moment of inertia 
of I = 22.3(106) mm4.

14–107. Determine the slope at B of the beam made from 
A992 steel and having a moment of inertia of 
I = 22.3(106) mm4.

1.5 m

40 kN

1.5 m 3 m

BA

C

Probs. 14–106/107
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*14–108. Determine the slope at A. EI is constant.

w

A

L

B
C

L

Prob. 14–108

14–109. Determine the slope and displacement of end C 
of the cantilevered beam. The beam is made of a material 
having a modulus of elasticity of E. The moments of inertia 
for segments AB and BC of the beam are 2I and I, 
respectively.

A
B C

P

L
2

L
2

Prob. 14–109

14–110. Determine the displacement at point B. The 
moment of inertia of the center portion DG of the shaft is 
2I, whereas the end segments AD and GC have a moment 
of inertia I. The modulus of elasticity for the material is E.

aa a a

A

B G

C

w

D

Probs. 14–110

14–111. Determine the maximum deflection of the beam 
caused only by bending, and caused by bending and shear. 
Take E = 3G.

L a

a

w

Prob. 14–111

*14–112. The beam is made of oak, for which Eo = 11 GPa. 
Determine the slope and displacement at point A.

3 m

A

3 m

200 mm

400 mm 4 kN/m

B

Prob. 14–112

14–113. Determine the slope of the shaft at the bearing 
support A. EI is constant.

L
2
– L

2
–

A
C

w0

B

Prob. 14–113

14–114. Determine the vertical displacement of point A 
on the angle bracket due to the concentrated force P. The 
bracket is fixed connected to its support. EI is constant. 
Consider only the effect of bending.

L

L

P

A

Prob. 14–114

 14.7 Method of Virtual forCes applied to BeaMs 795
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14–115. Beam AB has a square cross section of 100 mm by 
100 mm. Bar CD has a diameter of 10 mm. If both members 
are made of A992 steel, determine the vertical displacement 
of point B due to the loading of 10 kN.

*14–116. Beam AB has a square cross section of 100 mm 
by 100 mm. Bar CD has a diameter of 10 mm. If both 
members are made of A992 steel, determine the slope at A 
due to the loading of 10 kN.

3 m 2 m

10 kN

A D B

C

2 m

Probs. 14–115/116

14–117. Bar ABC has a rectangular cross section of  
300 mm by 100 mm. Attached rod DB has a diameter of  
20 mm. If both members are made of A-36 steel, determine the 
vertical displacement of point C due to the loading. Consider 
only the effect of bending in ABC and axial force in DB.

14–118. Bar ABC has a rectangular cross section of  
300 mm by 100 mm. Attached rod DB has a diameter of  
20 mm. If both members are made of A-36 steel, determine 
the slope at A due to the loading. Consider only the effect of 
bending in ABC and axial force in DB.

3 m

20 kN

A B

C

4 m

D

100 mm

300 mm

3 m

Probs. 14–117/118

14–119. The L-shaped frame is made from two segments, 
each of length L and flexural stiffness EI. If it is subjected to 
the uniform distributed load, determine the horizontal 
displacement of point C.

*14–120. The L-shaped frame is made from two segments, 
each of length L and flexural stiffness EI. If it is subjected 
to the uniform distributed load, determine the vertical 
displacement of point B.

L

L
A

B

C

w

Probs. 14–119/120

14–121. Determine the vertical displacement of the ring at 
point B. EI is constant.

r

A

P

B

Prob. 14–121

14–122. Determine the horizontal displacement at the 
roller at A due to the loading. EI is constant.

P A

r

B

Prob. 14–122
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*14.8 caStigliano’S thEorEm
In 1879, Alberto Castigliano, an Italian railroad engineer, published a 
book in which he outlined a method for determining the displacement 
and slope at a point in a body. This method, which is referred to as 
Castigliano’s second theorem, applies only to bodies that have constant 
temperature and are made of linear elastic material. If the displacement 
at a point is to be determined, the theorem states that the displacement 
is equal to the first partial derivative of the strain energy in the body 
with respect to a force acting at the point and in the direction of 
displacement. In a similar manner, the slope of the tangent at a point in 
a body is equal to the first partial derivative of the strain energy in the 
body with respect to a couple moment acting at the point and in the 
direction of the slope angle.

This theorem considers a body of arbitrary shape, which is subjected to 
a series of n forces P1, P2, . . ., Pn, Fig. 14–38. According to the conservation 
of energy, the external work done by these forces must be equal to the 
internal strain energy stored in the body. However, the external work is a 
function of the external loads, Ue = Σ 1P dx, Eq. 14–1, so the internal 
work is also a function of the external loads. Thus,

 Ui = Ue = f(P1 , P2 , . . . , Pn) (14–42)

Now, if any one of the external forces, say Pj, is increased by a differential 
amount dPj, the internal work will also be increased, such that the strain 
energy becomes

 Ui + dUi = Ui +
0Ui

0Pj
 dPj (14–43)

P1

P3

Pn

P2

Fig. 14–38 
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This value, however, will not depend on the sequence in which the n 
forces are applied to the body. For example, we could also apply the 
increase dPj to the body first, then apply the loads P1, P2, . . ., Pn. If we do 
this, dPj would cause the body to displace a differential amount d∆j in  
the direction of dPj. By Eq. 14–2 (Ue = 1

2 Pj∆j), the increment of strain 
energy would then be 1

2 dPj  d∆j. This is a second-order differential and 
may be neglected. Application of the loads P1, P2, . . ., Pn causes dPj to 
move further, through the displacement ∆j, so that now the strain energy 
becomes

 Ui + dUi = Ui + dPj ∆j (14–44)

Here Ui is the internal strain energy in the body, caused by the  
loads P1, P2, . . ., Pn, and dPj ∆j is the additional strain energy caused  
by dPj.

To summarize, Eq. 14–43 represents the strain energy in the body 
determined by first applying the loads P1, P2, . . ., Pn, then dPj ; Eq. 14–44 
represents the strain energy determined by first applying dPj and then 
the loads P1, P2, . . ., Pn. Since these two equations must be equal, we 
require

 ∆j =
0Ui

0Pj
 (14–45)

which proves the theorem; i.e., the displacement ∆j in the direction of Pj 
is equal to the first partial derivative of the strain energy with  
respect to Pj.

Castigliano’s second theorem is a statement regarding the body’s 
compatibility requirements, since it is a condition related to displacement.* 
The above derivation requires that only conservative forces be considered 
for the analysis. These forces can be applied in any order, and they do 
work that is independent of the path, and therefore create no energy loss. 
As long as the material has linear elastic behavior, the applied forces will 
be conservative and the theorem is valid.* 

*Castigliano also stated a first theorem, which is similar; however, it relates the load Pj to 
the partial derivative of the strain energy with respect to the corresponding displacement, 
that is, Pj = 0Ui>0∆j. This theorem is another way of expressing the equilibrium requirements 
for the body.
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*14.9  caStigliano’S thEorEm 
appliEd to truSSES

Since a truss member is only subjected to an axial load, the strain energy 
for the member is given by Eq. 14–16, Ui = N2L>2AE. Substituting this 
equation into Eq. 14–45 and omitting the subscript i, we have

∆ =
0

0P
 a  

N2L
2AE

It is generally easier to perform the differentiation prior to summation. 
Also, in general L, A, and E will be constant for a given member, and 
therefore we can write

 ∆ = aNa0N
0P

b  
L

AE
 (14–46)

Here

 ∆ = displacement of the truss joint

 P  =   an external force of variable magnitude applied to the truss joint 
in the direction of ∆

 N =   internal axial force in a member caused by both force P and the 
actual loads on the truss

 L  =  length of a member

 A =  cross-sectional area of a member

 E = modulus of elasticity of the material

Note that the above equation is similar to that used for the method of 
virtual forces, Eq. 14–37 (1 # ∆ = ΣnNL>AE), except n is replaced by 
0N>0P.
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procedure for analysIs

The following procedure provides a method that may be used to 
determine the displacement of any joint on a truss using Castigliano’s 
second theorem.

external Force P.

 • Place a force P on the truss at the joint where the displacement 
is to be determined. This force is assumed to have a variable 
magnitude and should be directed along the line of action of 
the displacement.

Internal Forces N.

 • Determine the force N in each member in terms of both the 
actual (numerical) loads and the (variable) force P. Assume that 
tensile forces are positive and compressive forces are negative.

 • Find the respective partial derivative 0N>0P for each member.

 • After N and 0N>0P have been determined, assign P its 
numerical value if it has actually replaced a real force on the 
truss. Otherwise, set P equal to zero.

Castigliano’s Second theorem.

 • Apply Castigliano’s second theorem to determine the desired 
displacement ∆. It is important to retain the algebraic signs for 
corresponding values of N and 0N>0P when substituting these 
terms into the equation.

 • If the resultant sum ΣN(0N>0P)L>AE is positive, ∆ is in the 
same direction as P. If a negative value results, ∆ is opposite to P.

Determine the vertical displacement of joint C of the steel truss shown in 
Fig. 14–39a. The cross-sectional area of each member is A = 400 mm2, and 
Est = 200 GPa.

SoLutioN

External Force P. A vertical force P is applied to the truss at joint C, since 
this is where the vertical displacement is to be determined, Fig. 14–39b.

ExAMpLE   14.15 

D C

B

A

2 m 2 m

2 m

(a)
100 kN

Fig. 14–39 
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Internal Forces N. The reactions at the truss supports A and D are 
calculated and the results are shown in Fig. 14–39b. Using the method of 
joints, the N forces in each member are determined, Fig. 14–39c.* For 
convenience, these results along with their partial derivatives 0N>0P are 
listed in tabular form. Note that since P does not actually exist as a real load 
on the truss, we require P = 0.

Member N
0N
0P N(P = 0) L N a0N

0P
bL

AB -100 0 -100 4 0

BC 141.4 0 141.4 2.828 0

AC -(141.4 + 1.414P) -1.414 -141.4 2.828 565.7

CD 200 + P 1 200 2 400

Σ 965.7 kN # m

Castigliano’s Second Theorem. Applying Eq. 14–46, we have

∆Cv
= ΣNa0N

0P
 b  

L

AE
=

965.7 kN # m
AE

Substituting the numerical values for A and E, we get

 ∆Cv
 =

965.7 kN # m

[400(10-6) m2] 200(106) kN>m2 

  = 0.01207 m = 12.1 mm Ans.

This solution should be compared with that of Example 14.11 which uses 
the virtual-work method.

(b)

P

D C

B
A

200 kN � P

200 kN � P

100 kN � P 100 kN

   (c)

200 kN � P

100 kN � P

141.4 kN � 1.414 P

100 kN
A

45�

100 kN

100 kN
B

141.4 kN

45�

Fig. 14–39 (cont.)

*It may be more convenient to analyze the truss with just the 100-kN load on it, then 
analyze the truss with the P load on it. The results can then be summed algebraically to 
give the N forces.
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14–123. Solve Prob. 14–72 using Castigliano’s theorem.

*14–124. Solve Prob. 14–73 using Castigliano’s theorem.

14–125. Solve Prob. 14–75 using Castigliano’s theorem.

14–126. Solve Prob. 14–76 using Castigliano’s theorem.

14–127. Solve Prob. 14–77 using Castigliano’s theorem.

*14–128. Solve Prob. 14–78 using Castigliano’s theorem.

14–129. Solve Prob. 14–81 using Castigliano’s theorem.

14–130. Solve Prob. 14–82 using Castigliano’s theorem.

14–131. Solve Prob. 14–85 using Castigliano’s theorem.

*14–132. Solve Prob. 14–86 using Castigliano’s theorem.

pRoBLEMS

*14.10  caStigliano’S thEorEm 
appliEd to BEamS

The internal strain energy within a beam is caused by both bending and 
shear. However, as pointed out in Example 14.7, if the beam is long and 
slender, the strain energy due to shear can be neglected compared with 
that of bending. Assuming this to be the case, the strain energy is 
Ui = 1M2 dx>2EI , Eq. 14–17. Omitting the subscript i, Castigliano’s 
second theorem, ∆i = 0Ui >0Pi, becomes

∆ =
0

0P
 L

L

0
 
M2 dx
2EI

Rather than squaring the expression for internal moment, integrating, 
and then taking the partial derivative, it is generally easier to differentiate 
prior to integration. Then we have

 ∆ = L
L

0
 Ma0M

0P
b  

dx
EI

 (14–47)
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Here

  ∆ =  displacement of the point caused by the real loads acting on  
the beam

  P =  an external force of variable magnitude applied to the beam at 
the point and in the direction of ∆

 M =  internal moment in the beam, expressed as a function of x and 
caused by both the force P and the actual loads on the beam

  E = modulus of elasticity of the material
   I =  moment of inertia of the cross-sectional area calculated about 

the neutral axis

If the slope of the tangent u at a point on the elastic curve is to be 
determined, the partial derivative of the internal moment M with respect 
to an external couple moment M′ acting at the point must be found. For 
this case,

 u = L
L

0
Ma 0M

0M′
b  

dx
EI

 (14–48)

The above equations are similar to those used for the method of virtual 
forces, Eqs. 14–40 and 14–41, except m and mu replace 0M>0P and 
0M>0M′, respectively.

In addition, if axial load, shear, and torsion cause significant strain 
energy within the member, then the effects of all these loadings should 
be included when applying Castigliano’s theorem. To do this we must use 
the strain energy functions developed in Sec. 14.2, along with their 
associated partial derivatives. We have

The method of applying this general formulation is similar to that used 
to apply Eqs. 14–47 and 14–48.

∆ = ΣNa0N
0P

b  
L

AE
+ L

L

0
 fs Va0V

0P
b  

dx
GA

 + L
L

0
Ma0M

0P
 b  

dx
EI

+ L
L

0
 Ta0T

0P
 b  

dx
GJ

 (14–49)
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procedure for analysIs

The following procedure provides a method that may be used to 
apply Castigliano’s second theorem.

external Force P or Couple Moment M′.

 • Place a force P at the point on the beam and directed along the 
line of action of the desired displacement.

 • If the slope of the tangent is to be determined at the point, 
place a couple moment M′ at the point.

 • Assume that both P and M′ have a variable magnitude.

Internal Moments M.

 • Establish appropriate x coordinates that are valid within 
regions of the beam where there is no discontinuity of force, 
distributed load, or couple moment.

 • Determine the internal moments M as a function of P or M′, 
and then find the partial derivatives 0M>0P or 0M>0M′ for 
each x coordinate.

 • After M and 0M>0P or 0M>0M′ have been determined, assign 
P or M′ its numerical value if it has actually replaced a real 
force or couple moment. Otherwise, set P or M′ equal to zero.

Castigliano’s Second theorem.

 • Apply Eq. 14–47 or 14–48 to determine the desired 
displacement ∆ or slope u. When doing so, it is important to 
retain the algebraic signs for corresponding values of M and 
0M>0P or 0M>0M′.

 • If the resultant sum of all the definite integrals is positive, ∆ or 
u is in the same direction as P or M′. If a negative value results, 
∆ or u is opposite to P or M′.
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Determine the displacement of point B on the beam shown in Fig. 14–40a. 
EI is constant.

ExAMpLE 14.16 

SoLutioN

External Force P. A vertical force P is placed on the beam at B as 
shown in Fig. 14–40b.

Internal Moments M. A single x coordinate is needed for the solution, 
since there is no discontinuity of loading between A and B. Using the 
method of sections, Fig. 14–40c, the internal moment and its partial 
derivative are

a+ ΣMNA = 0; M + wxax
2
b + P(x) = 0 

 M = -
wx2

2
- Px 

  
0M
0P

 = -x 

Setting P = 0 gives 

M =
-wx2

2
           and           

0M
0P

= -x

Castigliano’s Second Theorem. Applying Eq. 14–47, we have

 ∆B = L
L

0
 Ma0M

0P
b  

dx
EI

= L
L

0
 
(-wx2>2)(-x) dx

EI

  =
wL4

8EI
  Ans.

The similarity between this solution and that of the virtual-work 
method, Example 14.13, should be noted.

L

A

(a)

w

B

x

(b)

L

w

B

P

V

(c)

wx

M 

x

P
x
2

Fig. 14–40 
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ExAMpLE 14.17 

Determine the slope at point B of the beam shown in Fig. 14–41a. EI is 
constant.

SoLutioN

External Couple Moment M′. Since the slope at point B is to be 
determined, an external couple moment M′ is placed on the beam at this 
point, Fig. 14–41b.

Internal Moments M. Two coordinates, x1 and x2, must be used to 
completely describe the internal moments within the beam since there is a 
discontinuity, M′, at B. As shown in Fig. 14–41b, x1 ranges from A to B and 
x2 ranges from B to C. Using the method of sections, Fig. 14–41c, the internal 
moments and the partial derivatives for x1 and x2 are

a+ ΣMNA = 0;     M1 = -Px1,       
0M1

0M′
= 0

a+ ΣMNA = 0;     M2 = M′ - PaL
2

+ x2b , 
0M2

0M′
= 1

Castigliano’s Second Theorem. Setting M′ = 0 and applying 
Eq. 14–48, we have

A

—
2
L

x1

P

(b)

(a)

M¿

x2

P

P

(c)

M¿

x2

x1

M1

V1

M2

V2

P

—
2
L

—
2
L

BC

Fig. 14–41 

Note the similarity between this solution and that of Example 14.14.

uB = L
L

0
Ma 0M

0M′
b dx

EI
= L

L/2

0

(-Px1)(0) dx1

EI
+ L

L/2

0

-P[(L>2) + x2](1) dx2

EI
= -  

3PL2

8EI
  Ans.

14–133. Solve Prob. 14–90 using Castigliano’s theorem.

14–134. Solve Prob. 14–91 using Castigliano’s theorem.

14–135. Solve Prob. 14–106 using Castigliano’s theorem.

*14–136. Solve Prob. 14–107 using Castigliano’s theorem.

14–137. Solve Prob. 14–95 using Castigliano’s theorem.

14–138. Solve Prob. 14–96 using Castigliano’s theorem.

14–139. Solve Prob. 14–97 using Castigliano’s theorem.

*14–140. Solve Prob. 14–98 using Castigliano’s theorem.

14–141. Solve Prob. 14–108 using Castigliano’s theorem.

14–142. Solve Prob. 14–119 using Castigliano’s theorem.

14–143. Solve Prob. 14–120 using Castigliano’s theorem.

*14–144. Solve Prob. 14–105 using Castigliano’s theorem.

pRoBLEMS
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When a force (couple moment) acts on a deformable body 
it will do external work when it is displaced (rotates). The 
internal stresses produced in the body also undergo 
displacement, thereby creating elastic strain energy that is 
stored in the material. The conservation of energy states 
that the external work done by the loading is equal to the 
internal elastic strain energy produced by the stresses in 
the body.

Ue = Ui

The conservation of energy can be used to solve problems 
involving elastic impact, which assumes the moving body is 
rigid and all the strain energy is stored in the stationary 
body. This concept allows us to find an impact factor n, 
which is a ratio of the dynamic load to the static load. It is 
used to determine the maximum stress and displacement 
of the body at the point of impact.

n = 1 + C1 + 2a h
∆st

b  

smax   = nsst 

∆max   = n∆st

The principle of virtual work can be used to determine 
the displacement of a joint on a truss, or the slope and the 
displacement of points on a beam. It requires placing an 
external virtual unit force (virtual unit couple moment) 
at the point where the displacement (rotation) is to be 
determined. The external virtual work that is produced 
by the external loading is then equated to the internal 
virtual strain energy in the structure.

 1 # ∆ = a  
nNL
AE

 1 # ∆ = L
L

0
 
mM
EI

 dx

 1 # u = L
L

0
 
muM

EI
 dx

Castigliano’s second theorem can also be used to 
determine the displacement of a joint on a truss or the 
slope and the displacement at a point on a beam. Here a 
variable force P (couple moment M′) is placed at the 
point where the displacement (slope) is to be determined. 
The internal loading is then determined as a function 
of P (M′) and its partial derivative with respect to P (M′)  
is determined. Castigliano’s second theorem is then 
applied to obtain the desired displacement (rotation).

 ∆ = aNa0N
0P

b  
L

AE

 ∆ = L
L

0
 Ma0M

0P
b  

dx
EI

 u = L
L

0
 Ma 0M

0M′
b  

dx
EI
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R14–1. Determine the total axial and bending strain energy 
in the A992 steel beam. A = 2300 mm2, I = 9.5(106) mm4.

10 m

1.5 kN/m

15 kN

Prob. R14–1

R14–2. The 200-kg block D is dropped from a height 
h = 1 m onto end C of the A992 steel W200 * 36 overhang 
beam. If the spring at B has a stiffness k = 200 kN>m, 
determine the maximum bending stress developed in the 
beam.

R14–3. Determine the maximum height h from which the 
200-kg block D can be dropped without causing the A992 
steel W200 * 36 overhang beam to yield. The spring at B 
has a stiffness k = 200 kN>m.

C

D

h

k

A
B

2 m4 m

Prob. R14–2/3

*R14–4.  The A992 steel bars are pin connected at B  
and C. If they each have a diameter of 30 mm, determine 
the slope at E.

300 N�m

A D

3 m 2 m 2 m 3 m

CB

E

Prob. R14–4

R14–5. The steel chisel has a diameter of 12 mm and a 
length of 250 mm. It is struck by a hammer of mass 1.5 kg, 
and at the instant of impact it is moving at 3.6 m/s. 
Determine the maximum compressive stress in the chisel, 
assuming that 80% of the impacting energy goes into the 
chisel. Est = 200 GPa, sY = 700 MPa.

250 mm

Prob. R14–5

R E V i E W  p R o B L E M S
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R14–6. Determine the total strain energy in the A-36 steel 
assembly. Consider the axial strain energy in the two 
12-mm-diameter rods and the bending strain energy in the 
beam for which I = 17.0(106) mm4.

R14–9.  The cantilevered beam is subjected to a couple 
moment M0 applied at its end. Determine the slope of the 
beam at B. EI is constant. Use the method of virtual work.

R14–10.  Solve Prob. R14–9 using Castigliano’s theorem.

L
B

A M0

Prob. R14–9/10

R14–11. Determine the slope and displacement at point C. 
EI is constant.

a

A

a 2

w

a

B
C

w

Prob. R14–11

*R14–12. Determine the displacement at B. EI is constant.

B

C

w

L—
2

L—
2

A

Prob. R14–12
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0.9 m

1.2 m1.2 m

2.5 kN

Prob. R14–6

R14–7. Determine the vertical displacement of joint E. For 
each member A = 400 mm2, E = 200 GPa. Use the method 
of virtual work.

*R14–8. Solve Prob. R14–7 using Castigliano’s theorem.

C

1.5 m

A

DEF

45 kN
2 m

B

2 m

Prob. R14–7/8
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A.1 Centroid of An AreA
The centroid of an area is the point that defines the geometric center for 
the area. If the area has an arbitrary shape, as shown in Fig. A–1a, the  
x and y coordinates that locate the centroid C are determined from

 x = LA
x dA

LA
 dA
 y = LA

y dA

LA
 dA

 (A–1)

The numerators in these equations represent the “moment” of the area 
element dA about the y and the x axis, respectively, Fig. A–1b, and the 
denominators represent the total area A of the shape.

Geometric 
ProPerties of  
an area

a
APPENDIX 

(a)

y

x

_
y

_
x

C

A

(b)

y

x
x

y

dA

Fig. A–1
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A

C

Fig. A–3

y

x

dA

C

dA

�x �x

Fig. A–2

The location of the centroid for some areas may be partially or completely 
specified if the area is symmetric about an axis. Here, the centroid for the 
area will lie on this axis, Fig. A–2. If the area at the intersection of these axes, 
Fig. A–3. Based on this, or using Eq. A–1, the locations of the centroid for 
common area shapes are listed in the back of the book.

Composite Areas. Often an area can be sectioned or divided into 
several parts having simpler shapes. Provided the area and location of 
the centroid of each of these “composite shapes” are known, one can 
eliminate the need for integration to determine the centroid for the 
entire area. In this case, equations analogous to Eq. A–1 must be used, 
except that finite summation signs replace the integrals; i.e.,

 x =
Σx~A
ΣA

   y =
Σy~A

ΣA
 (A–2)

Here x~ and y~ represent the algebraic distances or x, y coordinates for the 
centroid of each composite part, and ΣA represents the sum of the areas 
of the composite parts or simply the total area. If a hole, or an empty 
region, is located within a composite part, the region is considered as an 
additional composite part having a negative area.

The following example illustrates application of Eq. A–2.
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EXAMPLE   A.1 

Locate the centroid C of the cross-sectional area for the T-beam shown 
in Fig. A–4a.

SOLUTION I

The y axis is placed along the axis of symmetry so that x = 0, Fig. A–4a. 
To obtain y we will establish the x axis (reference axis) through the 
base of the area. The area is segmented into two rectangles as shown, 
and the centroidal location y for each is established. Applying Eq. A–2, 
we have

 y =
Σy~A

ΣA
=

[50 mm](100 mm)(20 mm) + [115 mm](30 mm)(80 mm)

(100 mm)(20 mm) + (30 mm)(80 mm)

   = 85.5 mm Ans.

SOLUTION II

Using the same two segments, the x axis can be located at the top of the 
area, Fig. A–4b. Here

 y =
ΣyA

ΣA
=

[50 mm](100 mm)(20 mm) + [115 mm](30 mm)(80 mm)

(100 mm)(20 mm) + (30 mm)(80 mm)

   = -44.5 mm Ans.

The negative sign indicates that C is located below the x axis, which is  
to be expected. Also note that from the two answers 85.5 mm + 44.5 mm =  
130 mm, which is the depth of the beam.

SOLUTION III

It is also possible to consider the cross-sectional area to be one large 
rectangle less two small rectangles shown shaded in Fig. A–4c. Here 
we have

 y =
Σy~A

ΣA
=

[65 mm](130 mm)(80 mm) - 2[50 mm](100 mm)(30 mm)

(130 mm)(80 mm) - 2(100 mm)(30 mm)

   = 85.5 mm Ans.

y

x

C

20 mm

50 mm

115 mm100 mm

30 mm

80 mm

(a)

_
y

y

x

C

20 mm

15 mm

80 mm

100 mm

30 mm

(b)

_
y

80 mm

y

x

C

30 mm

50 mm
65 mm

100 mm
130 mm

80 mm

(c)

30 mm

_
y

Fig. A–4
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A.2 MoMent of inertiA for An AreA
The moment of inertia of an area is a geometric property that is calculated 
about an axis, and for the x and y axes shown in Fig. A–5, it is defined as

 Ix = LA
y2 dA

   Iy = LA
x2 dA

 (A–3)

These integrals have no physical meaning, but they are so named because 
they are similar to the formulation of the moment of inertia of a mass, 
which is a dynamical property of matter.

We can also calculate the moment of inertia of an area about the pole O 
or z axis, Fig. A–5. This is referred to as the polar moment of inertia, 
which is defined as,

 JO = LA
r 2 dA = Ix + Iy  (A–4)

Here r is the perpendicular distance from the pole (z axis) to the element 
dA. Since r2 = x2 + y2, then JO = Ix + Iy, Fig. A–5.

From the above formulations it is seen that Ix , Iy , and JO will always be 
positive, since they involve the product of distance squared and area. 
Furthermore, the units for moment of inertia involve length raised to the 
fourth power, e.g., m4 or mm4.  

Using the above equations, the moments of inertia for some common 
area shapes are calculated about their centroidal axes and are listed in 
the back of the book.

Parallel-Axis Theorem for an Area. If the moment of inertia 
for an area is known about a centroidal axis, we can determine the 
moment of inertia of the area about a corresponding parallel axis using 
the parallel-axis theorem. To derive this theorem, consider finding the 
moment of inertia of the differential element dA in Fig. A–6, located at 
the arbitrary distance y′ + dy, from the x axis. It is dIx = (y′ + dy)

2 dA. 
Then for the entire area, we have

Ix = LA
(y′ + dy)

2 dA = LA
y′2 dA + 2dyLA

y′ dA + dy
 2LA

 dA

y

x

x

y

dA

O

r

Fig. A–5

y

x

y¿dA

O

d

x¿

x¿

dy

dx
C

y¿

Fig. A–6
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The first term on the right represents the moment of inertia of the area 
about the x′ axis, Ix′. The second term is zero since the x′ axis passes 
through the area’s centroid C, that is, 1y′ dA = y′A = 0 since y′ = 0. 
The final result is therefore

 Ix = Ix′ + Ady
 2  (A–5)

A similar expression can be written for Iy, that is,

 Iy = Iy′ + Adx
 2  (A–6)

And finally, for the polar moment of inertia about an axis perpendicular to 
the x–y plane and passing through the pole O (z axis), Fig. A–6, we have

 JO = JC + Ad  

2  (A–7)

The form of each of the above equations states that the moment of 
inertia of an area about an axis is equal to the area’s moment of inertia 
about a parallel axis passing through the “centroid” of the area plus the 
product of the area and the square of the perpendicular distance between 
the axes.

Composite Areas. Many areas consist of a series of connected 
simpler shapes, such as rectangles, triangles, and semicircles. In order to 
properly determine the moment of inertia of this composite area about 
an axis, it is first necessary to divide the area into its parts and indicate 
the perpendicular distance from the axis to the parallel centroidal axis 
for each part. Using the table given in the back of the book, the moment 
of inertia of each part is determined about the centroidal axis. If this axis 
does not coincide with the specified axis, then the moment of inertia of 
the part about the specified axis is determined using the parallel-axis 
theorem, I = I + Ad  2. The moment of inertia of the entire area about 
this axis is then found by summing the results of all its composite parts. 
In particular, if a composite part has an empty region (hole), the moment 
of inertia for the composite is found by “subtracting” the moment of 
inertia for the region from the moment of inertia of the entire area 
including the region.
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A

Determine the moment of inertia of the cross-sectional area of the 
T-beam shown in Fig. A–7a about the centroidal x′ axis.

EXAMPLE   A.2 

SOLUTION I

The area is segmented into two rectangles as shown in Fig. A–7a, and the 
distance from the x′ axis and each centroidal axis is determined. Using 
the table given in the back of the book, the moment of inertia of a 
rectangle about its centroidal axis is I = 1

12 bh3. Applying the parallel-
axis theorem, Eq. A–5, to each rectangle and adding the results, we have

 I = Σ(Ix′ + Ady
 2)

 = c 1
12

 (20 mm)(100 mm)3 + (20 mm)(100 mm)(85.5 mm - 50 mm)2 d

 + c 1
12

 (80 mm)(30 mm)3 + (80 mm)(30 mm)(44.5 mm - 15 mm)2 d

 I = 6.46(106) mm4 Ans.

SOLUTION II

The area can be considered as one large rectangle less two small 
rectangles, shown shaded in Fig. A–7b. We have

 I = Σ(Ix′ + Ady
 2)

 = c 1
120

 (80 mm)(130 mm)3 + (80 mm)(130 mm)(85.5 mm - 65 mm)2 d

 -  2 c 1
12

 (30 mm)(100 mm)3 + (30 mm)(100 mm)(85.5 mm - 50 mm)2 d

 I = 6.46(106) mm4 Ans.

x¿
C

50 mm
85.5 mm100 mm

80 mm

(a)

20 mm

44.5 mm
15 mm
15 mm

30 mm

130 mm

30 mm

(b)

x¿

50 mm
85.5 mm100 mm

20 mm

44.5 mm

65 mm

C

Fig. A–7
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EXAMPLE   A.3

Determine the moments of inertia of the beam’s cross-sectional area 
shown in Fig. A–8a about the x and y centroidal axes.

SOLUTION

The cross section can be considered as three composite rectangular areas 
A, B, and D shown in Fig. A–8b. For the calculation, the centroid of each 
of these rectangles is located in the figure. From the table given in the 
back of the book, the moment of inertia of a rectangle about its centroidal 
axis is I = 1

12 bh3. Hence, using the parallel-axis theorem for rectangles A 
and D, the calculations are as follows:

Rectangle A:

 Ix = Ix′ + Ady
 2 =  

1
12

 (100 mm)(300 mm)3 +  (100 mm)(300 mm)(200 mm)2

 = 1.425(109) mm4

 Iy = Iy′ + Adx
 2 =  

1
12

 (300 mm)(100 mm)3 +  (100 mm)(300 mm)(250 mm)2

 = 1.90(109) mm4

Rectangle B:

 Ix =
1
12

 (600 mm)(100 mm)3 = 0.05(109) mm4

  Iy =
1
12

 (100 mm)(600 mm)3 = 1.80(109) mm4

Rectangle D:

 Ix = Ix′ + Ady
 2  =   

1
12

 (100 mm)(300 mm)3 +  (100 mm)(300 mm)(200 mm)2

 = 1.425(109) mm4

 Iy = Iy′ + Adx
 2  =  

1
12

 (300 mm)(100 mm)3 +  (100 mm)(300 mm)(250 mm)2

 = 1.90(109) mm4

The moments of inertia for the entire cross section are thus

 Ix = 1.425(109) + 0.05(109) + 1.425(109)

 = 2.90(109) mm4 Ans.

 Iy = 1.90(109) + 1.80(109) + 1.90(109)

 = 5.60(109) mm4 Ans.

400 mm

400 mm

x

100 mm

y

100 mm

600 mm

100 mm

(a)

300 mm

x

100 mm

y

100 mm

(b)

D200 mm

B

A

250 mm

200 mm
250 mm300 mm

Fig. A–8
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A

A.3 ProduCt of inertiA for An AreA
In general, the moment of inertia for an area is different for every axis 
about which it is computed. In some applications it is necessary to know 
the orientation of those axes that give, respectively, the maximum and 
minimum moments of inertia for the area. The method for determining 
this is discussed in Sec. A.4. However, to use this method, it is necessary 
to first determine the product of inertia for the area as well as its moments 
of inertia referenced from the x, y axes.

The product of inertia for the area A shown in Fig. A–9 is defined as

 Ixy = LA
xy dA  (A–8)

Like the moment of inertia, the product of inertia has units of length 
raised to the fourth power, e.g., m4 or mm4. However, since x or y may be 
a negative quantity, while dA is always positive, the product of inertia 
may be positive, negative, or zero, depending on the location and 
orientation of the coordinate axes. For example, the product of inertia  
Ixy for an area will be zero if either the x or the y axis is an axis of 
symmetry for the area. To show this, consider the shaded area in  
Fig. A–10, where for every element dA located at point (x, y) there is a 
corresponding element dA located at (x, -y), Since the products of 
inertia for these elements are, respectively, xy dA and -xy dA, their 
algebraic sum or the integration of all such corresponding elements of 
area chosen in this way will cancel each other. Consequently, the product 
of inertia for the total area becomes zero.

y

x

x
y

dA

dA

�y

Fig. A–10

y

x

x

y

A

dA

Fig. A–9
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Parallel-Axis Theorem. Consider the shaded area shown in  
Fig. A–11. Since the product of inertia of dA with respect to the x and y 
axes is dIxy = (x′ + dx)(y′ + dy) dA, then for the entire area,

 Ixy = LA
(x′ + dx)(y′ + dy) dA

 = LA
x′y′ dA + dxLA

y′ dA + dyLA
x′ dA + dxdyLA

 dA

The first term on the right represents the product of inertia of the area 
with respect to the centroidal axis, Ix′y′. The second and third terms are 
zero since the moments of the area are taken about the centroidal x′, y′ 
axis. Realizing that the fourth integral represents the total area A, we 
therefore have

 Ixy = Ix′y′ + Adxdy  (A–9)

The similarity between this equation and the parallel-axis theorem for 
moments of inertia should be noted. Here though, it is important that the 
algebraic signs for dx and dy be maintained when applying Eq. A–9.

y

x

C

dA

y¿

x¿

x¿

y¿

dy

dx

Fig. A–11
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EXAMPLE   A.4 

Determine the product of inertia of the beam’s cross-sectional area, 
shown in Fig. A–12a, about the x and y centroidal axes.

SOLUTION

As in Example A.3, the cross section can be considered as three composite 
rectangular areas A, B, and D, Fig. A–12b. The coordinates for the centroid 
of each of these rectangles are shown in the figure. Due to symmetry, the 
product of inertia of each rectangle is zero about a set of x′, y′ axes that 
pass through the rectangle’s centroid. Hence, application of the parallel-
axis theorem to each of the rectangles yields

Rectangle A:
 Ixy = Ix′y′ + Adxdy

 = 0 + (300 mm)(100 mm)(-250 mm)(200 mm)

 = -1.50(109) mm4

Rectangle B:
 Ixy = Ix′y′ + Adxdy

 = 0 + 0
 = 0

Rectangle D:
 Ixy = Ix′y′ + Adxdy

 = 0 + (300 mm)(100 mm)(250 mm)(-200 mm)
 = -1.50(109) mm4

The product of inertia for the entire cross section is thus

 Ixy = [-1.50(109) mm4] + 0 + [-1.50(109) mm4]
 = -3.00(109) mm4 Ans.

400 mm

400 mm

x

100 mm

y

100 mm

600 mm

100 mm

(a)

300 mm

x

100 mm

y

100 mm

(b)

D200 mm

B

A

250 mm

200 mm
250 mm300 mm

Fig. A–12
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A.4  MoMents of inertiA for An 
AreA About inClined Axes

The moments and product of inertia Ix′, Iy′ and Ix′y′ for an area with 
respect to a set of inclined x′ and y′ axes can be determined provided Ix, 
Iy, and Ixy are known. As shown in Fig. A–13, the coordinates to the area 
element dA from each of the two coordinate systems inclined at an angle 
are related by the transformation equations

 x′ = x cos u + y sin u

 y′ = y cos u - x sin u

Using these equations, the moments and product of inertia of dA about 
the x′ and y′ axes therefore become

 dIx′ = y′2 dA = (y cos u - x sin u)2 dA

 dIy′ = x′2 dA = (x cos u + y sin u)2 dA

 dIx′y′ = x′y′ dA = (x cos u + y sin u)(y cos u - x sin u) dA

y

x

dA

O

y

x¿

x

y¿

y¿

x¿
y cos u

x sin u

y sin u
x cos u

u

u

u

Fig. A–13
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Principal Moments of Inertia. Since Ix′, Iy′, and Ix′y′ depend 
on  the angle of inclination, u, of the x′, y′ axes, we can determine the 
orientation of these axes so that the moments of inertia for the area, Ix′ 
and Iy′, are maximum and minimum. This particular set of axes is called the 
principal axes of inertia for the area, and the corresponding moments of 
inertia with respect to these axes are called the principal moments of 
inertia. In general, there is a set of principal axes for every chosen origin O; 
however, in mechanics of materials the area’s centroid is the most 
important location for O.

The angle u = up, which defines the orientation of the principal axes, 
can be found by differentiating the first of Eq. A–10 with respect to u and 
setting the result equal to zero. We get

dIx′

du
= -2¢ Ix - Iy

2
≤ sin 2u - 2Ixy cos 2u = 0

Therefore, at u = up,

 tan 2up =
-Ixy

(Ix - Iy)>2
 (A–11)

This equation has two roots, up1
 and up2

, which are 90° apart and so specify 
the inclination of each principal axis.

Expanding each expression and integrating, realizing that Ix = 1y2 dA, 
Iy = 1x2 dA, and Ixy = 1xy dA, we obtain

 Ix′ = Ix cos2 u + Iy sin2 u - 2Ixy sin u cos u

 Iy′ = Ix sin2 u + Iy cos2 u + 2Ixy sin u cos u

 Ix′y′ = Ix sin u cos u - Iy sin u cos u + Ixy(cos2 u - sin2 u)

These equations may be simplified by using the trigonometric identities 
sin 2u = 2 sin u cos u and cos 2u = cos2 u - sin2 u, in which case

 Ix′ =
Ix + Iy

2
+

Ix - Iy

2
 cos 2u - Ixy sin 2u

 Iy′ =
Ix + Iy

2
-

Ix - Iy

2
 cos 2u + Ixy sin 2u 

  Ix′y′ =
Ix - Iy

2
 sin 2u + Ixy cos 2u

 (A–10)
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The sine and cosine of 2up1
 and 2up2

 can be obtained from the triangles 
shown in Fig. A–14, which are based on Eq. A–11. If these trigonometric 
relations are substituted into the first or second of Eq. A–10 and 
simplified, the result is

 Imax
min

=
Ix + Iy

2
{ C¢ Ix - Iy

2
≤2

+ I xy
 2  (A–12)

Depending on the sign chosen, this result gives the maximum or 
minimum moment of inertia for the area. Furthermore, if the above 
trigonometric relations for the sine and cosine of 2up1

 and 2up2
 are 

substituted into the third of Eq. A–10, it will be seen that Ix′y′ = 0; 
that is, the product of inertia with respect to the principal axes is zero. 
Since it was indicated in Sec. A.3 that the product of inertia is zero 
with respect to any symmetrical axis, it therefore follows that any 
symmetrical axis and the one perpendicular to it represent principal 
axes of inertia for the area. The equations derived in this section are 
similar to those for stress and strain transformation developed in 
Chapters 9 and 10, respectively, and like stress and strain, we can also 
solve these equations using a semi-graphical technique called Mohr’s 
circle of interia.*

*See Engineering Mechanism: Statics, 14th ed., R. C. Hibbeler, Pearson Education, Inc.

I 

Ixy

2up1

2up2

�Ixy

Ixy

Ix � Iy

2
�

Ix � Iy

2

� Ixy
2

Ix � Iy

2

2

Fig. A–14
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A

EXAMPLE   A.5 

Determine the principal moments of inertia for the beam’s cross- 
sectional area shown in Fig. A–15 with respect to an axis passing 
through the centroid C.

SOLUTION

The moments and product of inertia of the cross section with respect 
to the x, y axes have been determined in Examples A.3 and A.4. The 
results are

Ix = 2.90(109) mm4  Iy = 5.60(109) mm4  Ixy = -3.00(109) mm4

Using Eq. A–11, the angles of inclination of the principal axes x′ 
and y′ are

tan 2up =
-Ixy

(Ix - Iy)>2
=

3.00(109)

[2.90(109) - 5.60(109)]>2
= -2.22

2up1
= 114.2°  and  2up2

= -65.8°

Thus, as shown in Fig. A–15,

up1 = 57.1°  and  up2 = -32.9°

The principal moments of inertia with respect to the x′ and y′ axes 
are determined by using Eq. A–12.

400 mm

400 mm

x

100 mm

y

100 mm

600 mm

100 mm
C

y¿

x¿

up2 
� �32.9�

up1 
� 57.1�

Fig. A–15

 Imax
min

=
Ix + Iy

2
{ C¢ Ix - Iy

2
≤2

+ I xy
 2

 =
2.90(109) + 5.60(109)

2
{ CJ2.90(109) - 5.60(109)

2
R 2

+ [-3.00(109)]2

 = 4.25(109) { 3.29(109)

or

 Imax = 7.54(109) mm4  Imin = 0.960(109) mm4 Ans.

Specifically, the maximum moment of inertia, Imax = 7.54(109) mm4, 
occurs with respect to the x′ axis (major axis), since by inspection 
most of the cross-sectional area is farthest away from this axis. To 
show this, substitute the data with u = 57.1° into the first of Eq. A–10.
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y

xx

bf

tw

tf

d

Wide-Flange Sections or W Shapes SI Units

Designation
Area 

A
Depth 

d

Web 
thickness 

tw

Flange x–x axis y–y axis

width 
bf

thickness 
tf l S r l S r

mm : kg>m mm2 mm mm mm mm 106 mm4 103 mm3 mm 106 mm4 103 mm3 mm

W610 * 155 19 800 611 12.70 324.0 19.0 1 290 4 220 255 108 667 73.9
W610 * 140 17 900 617 13.10 230.0 22.2 1 120 3 630 250 45.1 392 50.2
W610 * 125 15 900 612 11.90 229.0 19.6 985 3 220 249 39.3 343 49.7
W610 * 113 14 400 608 11.20 228.0 17.3 875 2 880 247 34.3 301 48.8
W610 * 101 12 900 603 10.50 228.0 14.9 764 2 530 243 29.5 259 47.8
W610 * 92 11 800 603 10.90 179.0 15.0 646 2 140 234 14.4 161 34.9
W610 * 82 10 500 599 10.00 178.0 12.8 560 1 870 231 12.1 136 33.9

W460 * 97 12 300 466 11.40 193.0 19.0 445 1 910 190 22.8 236 43.1
W460 * 89 11 400 463 10.50 192.0 17.7 410 1 770 190 20.9 218 42.8
W460 * 82 10 400 460 9.91 191.0 16.0 370 1 610 189 18.6 195 42.3
W460 * 74 9 460 457 9.02 190.0 14.5 333 1 460 188 16.6 175 41.9
W460 * 68 8 730 459 9.14 154.0 15.4 297 1 290 184 9.41 122 32.8
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B

Wide-Flange Sections or W Shapes SI Units

Designation
Area 

A
Depth 

d

Web 
thickness 

tw

Flange x–x axis y–y axis

width 
bf

thickness 
tf l S r l S r

mm : kg>m mm2 mm mm mm mm 106 mm4 103 mm3 mm 106 mm4 103 mm3 mm

W460 * 60 7 590 455 8.00 153.0 13.3 255 1 120 183 7.96 104 32.4
W460 * 52 6 640 450 7.62 152.0 10.8 212 942 179 6.34 83.4 30.9

W410 * 85 10 800 417 10.90 181.0 18.2 315 1 510 171 18.0 199 40.8
W410 * 74 9 510 413 9.65 180.0 16.0 275 1 330 170 15.6 173 40.5
W410 * 67 8 560 410 8.76 179.0 14.4 245 1 200 169 13.8 154 40.2
W410 * 53 6 820 403 7.49 177.0 10.9 186 923 165 10.1 114 38.5
W410 * 46 5 890 403 6.99 140.0 11.2 156 774 163 5.14 73.4 29.5
W410 * 39 4 960 399 6.35 140.0 8.8 126 632 159 4.02 57.4 28.5

W360 * 79 10 100 354 9.40 205.0 16.8 227 1 280 150 24.2 236 48.9
W360 * 64 8 150 347 7.75 203.0 13.5 179 1 030 148 18.8 185 48.0
W360 * 57 7 200 358 7.87 172.0 13.1 160 894 149 11.1 129 39.3
W360 * 51 6 450 355 7.24 171.0 11.6 141 794 148 9.68 113 38.7
W360 * 45 5 710 352 6.86 171.0 9.8 121 688 146 8.16 95.4 37.8
W360 * 39 4 960 353 6.48 128.0 10.7 102 578 143 3.75 58.6 27.5
W360 * 33 4 190 349 5.84 127.0 8.5 82.9 475 141 2.91 45.8 26.4
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B

y

y

xx

bf

tw

tf

d

Wide-Flange Sections or W Shapes SI Units

Designation
Area 

A
Depth 

d

Web 
thickness  

tw

Flange x–x axis y–y axis

width 
bf

thickness 
tf l S r l S r

mm : kg>m mm2 mm mm mm mm 106 mm4 103 mm3 mm 106 mm4 103 mm3 mm

W310 * 129 16 500 318 13.10 308.0 20.6 308 1940 137 100 649 77.8
W310 * 74 9 480 310 9.40 205.0 16.3 165 1060 132 23.4 228 49.7
W310 * 67 8 530 306 8.51 204.0 14.6 145 948 130 20.7 203 49.3
W310 * 39 4 930 310 5.84 165.0 9.7 84.8 547 131 7.23 87.6 38.3
W310 * 33 4 180 313 6.60 102.0 10.8 65.0 415 125 1.92 37.6 21.4
W310 * 24 3 040 305 5.59 101.0 6.7 42.8 281 119 1.16 23.0 19.5
W310 * 21 2 680 303 5.08 101.0 5.7 37.0 244 117 0.986 19.5 19.2

W250 * 149 19 000 282 17.30 263.0 28.4 259 1840 117 86.2 656 67.4
W250 * 80 10 200 256 9.40 255.0 15.6 126 984 111 43.1 338 65.0
W250 * 67 8 560 257 8.89 204.0 15.7 104 809 110 22.2 218 50.9
W250 * 58 7 400 252 8.00 203.0 13.5 87.3 693 109 18.8 185 50.4
W250 * 45 5 700 266 7.62 148.0 13.0 71.1 535 112 7.03 95 35.1
W250 * 28 3 620 260 6.35 102.0 10.0 39.9 307 105 1.78 34.9 22.2
W250 * 22 2 850 254 5.84 102.0 6.9 28.8 227 101 1.22 23.9 20.7
W250 * 18 2 280 251 4.83 101.0 5.3 22.5 179 99.3 0.919 18.2 20.1

W200 * 100 12 700 229 14.50 210.0 23.7 113 987 94.3 36.6 349 53.7
W200 * 86 11 000 222 13.00 209.0 20.6 94.7 853 92.8 31.4 300 53.4
W200 * 71 9 100 216 10.20 206.0 17.4 76.6 709 91.7 25.4 247 52.8
W200 * 59 7 580 210 9.14 205.0 14.2 61.2 583 89.9 20.4 199 51.9
W200 * 46 5 890 203 7.24 203.0 11.0 45.5 448 87.9 15.3 151 51.0
W200 * 36 4 570 201 6.22 165.0 10.2 34.4 342 86.8 7.64 92.6 40.9
W200 * 22 2 860 206 6.22 102.0 8.0 20.0 194 83.6 1.42 27.8 22.3

W150 * 37 4 730 162 8.13 154.0 11.6 22.2 274 68.5 7.07 91.8 38.7
W150 * 30 3 790 157 6.60 153.0 9.3 17.1 218 67.2 5.54 72.4 38.2
W150 * 22 2 860 152 5.84 152.0 6.6 12.1 159 65.0 3.87 50.9 36.8
W150 * 24 3 060 160 6.60 102.0 10.3 13.4 168 66.2 1.83 35.9 24.5
W150 * 18 2 290 153 5.84 102.0 7.1 9.19 120 63.3 1.26 24.7 23.5
W150 * 14 1 730 150 4.32 100.0 5.5 6.84 91.2 62.9 0.912 18.2 23.0



 american Standard channelS or c ShapeS Si UnitS 827

B

American Standard Channels or C Shapes SI Units

Designation
Area 

A
Depth 

d

Web 
thickness  

tw

Flange x–x axis y–y axis

width 
bf

thickness 
tf l S r l S r

mm : kg>m mm2 mm mm mm mm 106 mm4 103 mm3 mm 106 mm4 103 mm3 mm

C380 * 74 9 480 381.0 18.20 94.4 16.50 168 882 133 4.58 61.8 22.0
C380 * 60 7 610 381.0 13.20 89.4 16.50 145 761 138 3.84 55.1 22.5

C380 * 50 6 430 381.0 10.20 86.4 16.50 131 688 143 3.38 50.9 22.9

C310 * 45 5 690 305.0 13.00 80.5 12.70 67.4 442 109 2.14 33.8 19.4
C310 * 37 4 740 305.0 9.83 77.4 12.70 59.9 393 112 1.86 30.9 19.8
C310 * 31 3 930 305.0 7.16 74.7 12.70 53.7 352 117 1.61 28.3 20.2

C250 * 45 5 690 254.0 17.10 77.0 11.10 42.9 338 86.8 1.61 27.1 17.0
C250 * 37 4 740 254.0 13.40 73.3 11.10 38.0 299 89.5 1.40 24.3 17.2
C250 * 30 3 790 254.0 9.63 69.6 11.10 32.8 258 93.0 1.17 21.6 17.6
C250 * 23 2 900 254.0 6.10 66.0 11.10 28.1 221 98.4 0.949 19.0 18.1

C230 * 30 3 790 229.0 11.40 67.3 10.50 25.3 221 81.7 1.01 19.2 16.3
C230 * 22 2 850 229.0 7.24 63.1 10.50 21.2 185 86.2 0.803 16.7 16.8
C230 * 20 2 540 229.0 5.92 61.8 10.50 19.9 174 88.5 0.733 15.8 17.0

C200 * 28 3 550 203.0 12.40 64.2 9.90 18.3 180 71.8 0.824 16.5 15.2
C200 * 20 2 610 203.0 7.70 59.5 9.90 15.0 148 75.8 0.637 14.0 15.6
C200 * 17 2 180 203.0 5.59 57.4 9.90 13.6 134 79.0 0.549 12.8 15.9

C180 * 22 2 790 178.0 10.60 58.4 9.30 11.3 127 63.6 0.574 12.8 14.3
C180 * 18 2 320 178.0 7.98 55.7 9.30 10.1 113 66.0 0.487 11.5 14.5
C180 * 15 1 850 178.0 5.33 53.1 9.30 8.87 99.7 69.2 0.403 10.2 14.8

C150 * 19 2 470 152.0 11.10 54.8 8.70 7.24 95.3 54.1 0.437 10.5 13.3
C150 * 16 1 990 152.0 7.98 51.7 8.70 6.33 83.3 56.4 0.360 9.22 13.5
C150 * 12 1 550 152.0 5.08 48.8 8.70 5.45 71.7 59.3 0.288 8.04 13.6

C130 * 13 1 700 127.0 8.25 47.9 8.10 3.70 58.3 46.7 0.263 7.35 12.4
C130 * 10 1 270 127.0 4.83 44.5 8.10 3.12 49.1 49.6 0.199 6.18 12.5

C100 * 11 1 370 102.0 8.15 43.7 7.50 1.91 37.5 37.3 0.180 5.62 11.5
C100 * 8 1 030 102.0 4.67 40.2 7.50 1.60 31.4 39.4 0.133 4.65 11.4

C75 * 9 1 140 76.2 9.04 40.5 6.90 0.862 22.6 27.5 0.127 4.39 10.6
C75 * 7 948 76.2 6.55 38.0 6.90 0.770 20.2 28.5 0.103 3.83 10.4
C75 * 6 781 76.2 4.32 35.8 6.90 0.691 18.1 29.8 0.082 3.32 10.2

y

y

xx d

bf

tw

tf
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B

y

y

y
x

z

z

x

x

Angles Having Equal Legs SI Units

Size and thickness

Mass 
per 

Meter Area

x–x axis y–y axis
z–z 
axis

l S r y l S r x r

mm kg mm2 106 mm4 106 mm3 mm mm 106 mm4 106 mm3 mm mm mm

L203 * 203 * 25.4 75.9 9 680 36.9 258 61.7 60.1 36.9 258 61.7 60.1 39.6
L203 * 203 * 19.0 57.9 7 380 28.9 199 62.6 57.8 28.9 199 62.6 57.8 40.1
L203 * 203 * 12.7 39.3 5 000 20.2 137 63.6 55.5 20.2 137 63.6 55.5 40.4

L152 * 152 * 25.4 55.7 7 100 14.6 139 45.3 47.2 14.6 139 45.3 47.2 29.7
L152 * 152 * 19.0 42.7 5 440 11.6 108 46.2 45.0 11.6 108 46.2 45.0 29.7
L152 * 152 * 12.7 29.2 3 710 8.22 75.1 47.1 42.7 8.22 75.1 47.1 42.7 30.0
L152 * 152 * 9.5 22.2 2 810 6.35 57.4 47.5 41.5 6.35 57.4 47.5 41.5 30.2

L127 * 127 * 19.0 35.1 4 480 6.54 73.9 38.2 38.7 6.54 73.9 38.2 38.7 24.8
L127 * 127 * 12.7 24.1 3 060 4.68 51.7 39.1 36.4 4.68 51.7 39.1 36.4 25.0
L127 * 127 * 9.5 18.3 2 330 3.64 39.7 39.5 35.3 3.64 39.7 39.5 35.3 25.1

L102 * 102 * 19.0 27.5 3 510 3.23 46.4 30.3 32.4 3.23 46.4 30.3 32.4 19.8
L102 * 102 * 12.7 19.0 2 420 2.34 32.6 31.1 30.2 2.34 32.6 31.1 30.2 19.9
L102 * 102 * 9.5 14.6 1 840 1.84 25.3 31.6 29.0 1.84 25.3 31.6 29.0 20.0
L102 * 102 * 6.4 9.8 1 250 1.28 17.3 32.0 27.9 1.28 17.3 32.0 27.9 20.2

L89 * 89 * 12.7 16.5 2 100 1.52 24.5 26.9 26.9 1.52 24.5 26.9 26.9 17.3
L89 * 89 * 9.5 12.6 1 600 1.20 19.0 27.4 25.8 1.20 19.0 27.4 25.8 17.4
L89 * 89 * 6.4 8.6 1 090 0.840 13.0 27.8 24.6 0.840 13.0 27.8 24.6 17.6

L76 * 76 * 12.7 14.0 1 770 0.915 17.5 22.7 23.6 0.915 17.5 22.7 23.6 14.8
L76 * 76 * 9.5 10.7 1 360 0.726 13.6 23.1 22.5 0.726 13.6 23.1 22.5 14.9
L76 * 76 * 6.4 7.3 927 0.514 9.39 23.5 21.3 0.514 9.39 23.5 21.3 15.0

L64 * 64 * 12.7 11.5 1 450 0.524 12.1 19.0 20.6 0.524 12.1 19.0 20.6 12.4
L64 * 64 * 9.5 8.8 1 120 0.420 9.46 19.4 19.5 0.420 9.46 19.4 19.5 12.4
L64 * 64 * 6.4 6.1 766 0.300 6.59 19.8 18.2 0.300 6.59 19.8 18.2 12.5

L51 * 51 * 9.5 7.0 877 0.202 5.82 15.2 16.2 0.202 5.82 15.2 16.2 9.88
L51 * 51 * 6.4 4.7 605 0.146 4.09 15.6 15.1 0.146 4.09 15.6 15.1 9.93
L51 * 51 * 3.2 2.5 312 0.080 2.16 16.0 13.9 0.080 2.16 16.0 13.9 10.1
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Beam Slope Deflection Elastic Curve

P

vmaxumax

v

L
2

L
2

x umax =
-PL2

16EI
vmax =

-PL3

 48EI

v =
-Px
48EI

  (3L2 - 4x2)

0 … x … L>2

L

x

P

a b

v

u2u1
 u1 =

-Pab(L + b)

6EIL

 u2 =
Pab(L + a)

6EIL

v 2
x=a

=
-Pba
6EIL

 (L2 - b2 - a2)
v =

-Pbx
6EIL

  (L2 - b2 - x2)

0 … x … a

v

L
u2u1

x
M0

 u1 =
-M0L

6EI

 u2 =
M0 L

3EI

vmax =
-M0 L2

923 EI
 

at x = 0.5774L
v =

-M0x

6EIL
  (L2 - x2)

v

x

L
w

vmaxumax

umax =
-wL3

24EI
vmax =

-5wL4

384EI
v =

-wx
24EI

  (x3 - 2Lx2 + L3)

v

x

w

u1

u2

L
2

L
2

 u1 =
-3wL3

128EI

 u2 =
7wL3

384EI

v 2
x=L>2

=
-5wL4

768EI

  vmax = -0.006563 
wL4

EI

  at x = 0.4598L

v =
-wx

384EI
  (16x3 - 24Lx2 + 9L3)

0 … x … L>2

v =
-wL

384EI
  (8x3 - 24Lx2

+ 17L2 x - L3)
L>2 … x 6 L

v

L

x

w0

u1 u2

 u1 =
-7w0 L3

360EI

 u2 =
w0 L3

45EI

 vmax = -0.00652 
w0 L4

EI

  at x = 0.5193L

v =
-w0x

360EIL
  (3x4 - 10L2x2 + 7L4)

Simply Supported Beam Slopes and Deflections

SlopeS and 
deflectionS of 
BeamS

c
APPENDIX
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C

Beam Slope Deflection Elastic Curve

v
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x

P

vmax
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vmax =
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3EI
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-Px2
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2
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8EI
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384EI
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24EI
  1x2 - 2Lx + 3

2 L22
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v =
-wL3

384EI
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L

x

w0
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-w0 x2
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Cantilevered Beam Slopes and Deflections
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Solutions and Answers for Preliminary Problems
P1–1a.

P

u

2a 2a C Cx

CyTB

a+ ΣMC = 0; get TB

u

2a a
A

P

NA

MA

VA

TB

       +S ΣFx = 0;  get NA

    + c ΣFy = 0;  get VA

  a  + ΣMA = 0; get MA

P1–1b.

a
aa

Bx

By

Cy

B

w(2a)

P

a+ ΣMB = 0;  get Cy

A P

a/2 a/2
NA

MA

VA Cy

w(a)

       +S ΣFx = 0;  get NA

        + c ΣFy = 0;  get VA

     a+ ΣMA = 0;  get MA

P1–1c.

aa
P

u
BK

By Cy

M

a+ ΣMB = 0;  get Cy

a P

u

Cy

MA

NA

VA

A

a/2

+S ΣFx = 0;  get NA

+ c ΣFy = 0; get VA

a+ ΣMA = 0; get MA

P1–1d.

O

y x

A

f

u
P

NA MA

VA

+ a ΣFy = 0; get NA

  + Q ΣFx = 0; get VA

      a + ΣMO = 0  or ΣMA = 0; get MA

P1–1e.

B

a

3a

P

ByBx

Nc

a+ ΣMB = 0;  get NC

A

P

a

a

Nc

VA
NA

MA

 + Q ΣFx = 0; get NA

 + a ΣFy = 0; get VA

   a+ ΣMA = 0; get MA
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P1–2b.

4 kN

5 kN
4 kN

5 kN
6 kN

5 kN

5 kN
10 kN

4 kN

4 kN
8 kN

4 kN
20 kN

FB � 3 kN

FA � 11 kN

FC � 16 kN

V max = 5 kN

P1–3.

10 kN

10 kN

10 kN

6 kN

6 kN2 kN

NAB � 10 kN

NBC � 4 kN

NCD � 6 kN

Fx � 1 kN NDF � 1 kN

N max = 10 kN

P1–4.

(8 kN/m)(3 m) � 24 kN

NA � 24 kN

P1–5.

20 N 20 N

0.4 m

0.01 mV

V

ΣM = 0; 20 N (0.4 m) - V(0.01 m) = 0

V = 800 N

P1–1f.

2a
3a

aa

a

P

Bx

Dx

Cy

+ c ΣFy = 0; get  Cy (=  P)

 a+ ΣMB = 0; get  Dx

a

VA

Dx

A

NA

MA

 + c ΣFy = 0; get NA (=  0)

 +S ΣFx = 0; get VA

          a  + ΣMA = 0; get MA

P1–2a.

6 kN

3 kN

3 kN

3 kN

3 kN
2 kN

5 kNFA � 2 kN

FB � 5 kN

V max = 3 kN



 SolutionS and anSwerS for Preliminary ProblemS 833

P2–5.

 (gA)xy =
p

2
- ap

2
+ u1b

 = (-u1) rad

 (gB)xy =
p

2
- (p - u2)

 = a-p

2
+ u2b rad

P4–1a.

100 N 200 N 400 N

200 N 400 N

400 N

NBA � 400 N

NCB � 500 N

NDC � 300 N

NED � 700 N

700 N

700 N

700 N

700 N

P4–1b.

NAB � 600 N

NBC � 200 N

NCD � 500 N

600 N

600 N

600 N
400 N 300 N

400 N

P4–2.

900 N NCB � 900 N

400 N NED � 400 N

400 N 500 N NDB � 900 N

NAB � 1800 N

900 N

900 N

P1–6.

5 kN

V

30�

5 kN

N

N = (5 kN) cos 30° = 4.33 kN

V = (5 kN) sin 30° = 2.5 kN

P2–1.

L
3L

�
� ¿

∆′
L

=
∆

3L
 ,  ∆′ =

∆
3

PAB =
∆ >3

L>2
=

2∆
3L

PCD =
∆
L

P2–2.

L

2 L
�

� ¿

    
∆′
2 L

=
∆
L

       ∆′ = 2∆

PCD =
∆
L

PAB =
2∆

L>2
=

4∆
L

P2–3.

 PAB =
LA′B - LAB

LAB

P2–4.

  PAB =
LAB′ - LAB

LAB
, PAC =

LAC′ - LAC

LAC

 PBC =
LB′C′ - LBC

LBC
, (gA)xy = ap

2
- ub rad

A

y

x

u1

B

y

x

u2
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P5–2.

B

A

400 N�m

D

C
200 N�m

P5–3.

tmax

tmax

T

tmax

tmax

T

P5–4.

P = Tv

 (10 hp)a746 W
1 hp

b = T  a1200 rev
 min 

b a1 min
60 s

b  a2p rad
1 rev

b

T = 59.36 N.m = 59.4 N.m

P4–3.

N � 8x

(8x) kN

x

P4–4.

x

N � (800 � 100x) N

800 N

100x

P4–5.

2 m 4 m

60 kN

40 kN 20 kN

∆B =
PL
AE

=
20(103) N (3 m)

2(10 - 3) m2 (60(109) N>m2)

= 0.5(10 - 3) m = 0.5 mm

P5–1.

B

A

300 N�m

300 N�m

300 N�m

Equilibrium

DC
500 N�m

500 N�m

800 N�m

300 N�m

Equilibrium
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P6–1d.

M

x

x

V

P6–1e.

M

x

x

V

P6–1f.

M

x

x

V

P6–1a.

M

x

x

V

P6–1b.

M

x

x

V

P6–1c.

M

x

x

V
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P6–3.

y =
Σy∼A

ΣA
=

(0.05 m)(0.2 m)(0.1 m) + (0.25 m)(0.1 m)(0.3 m)

(0.2 m)(0.1 m) + (0.1 m)(0.3 m)

 = 0.17 m

I = c 1
12

  (0.2 m)(0.1 m)3 + (0.2 m)(0.1 m)(0.17 m - 0.05 m)2d

   +  c 1
12

 (0.1 m)(0.3 m)3 + (0.1 m)(0.3 m)(0.25 m - 0.17 m)2d

= 0.722 (10-3) m4

P6–4a.

MB

VB

B

A

P

sB

MA

VA

sA

P6–4b.

MM
B

A

O

sB

M M

sA

P6–1g.

M

x

x

V

P6–1h.

M

x

x

V

P6–2.  I = c 1
12

  (0.2 m)(0.4 m)3 d - c 1
12

  (0.1 m)(0.2 m)3 d

  = 1.0 (10-3) m4
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P7–1b.

A

0.3 m

V

tA

0.1 m

0.1 m

0.15 m
0.2 m

 Q = y′A′ = (0.15 m) (0.3 m) (0.1 m) = 4.5(10 - 3) m3

 t = 0.3 m

P7–1c.

0.1 m

0.5 m

0.1 m

0.2 m
0.1 m

0.1 m
A

tAV

 Q = y′A′ = (0.2 m) (0.1 m) (0.5 m) = 0.01 m3

 t = 3 (0.1 m) = 0.3 m

P7–1d.

0.35 m

0.6 m0.1 m

V

tA

A

 Q = y′A′ = (0.35 m) (0.6 m) (0.1 m) = 0.021 m3

 t = 0.6 m

P6–5a.

P6–5b.

P7–1a.

V

A

0.1 m

0.1 m

0.05 m
0.15 m

0.4 m tA

 Q = y′A′ = (0.1 m) (0.1 m) (0.4 m) = 4(10 - 3) m3

 t = 0.4 m
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P8–1b.

600 N�m

200 N

300 N

100 N

400 N�m

P8–1c.

50 N�m

100 N�m

100 N

P8–1d.

300 N�m

1200 N

500 N

300 N

200 N

600 N�m

P8–2a.

N

Element A

M V T

� � �

N M V T

� � �Element B

P7–1e.

0.2 m

0.2 m

0.25 m

V

0.1 m

A

tA

 Q = y′A′ = (0.25 m) (0.2 m) (0.1 m) = 5(10 - 3) m3

 t = 0.2 m

P7–1f.

0.1 m

0.1 m

A

0.25 m

0.35 m

0.1 m
0.2 m

0.5 m

tAV

Q = Σy′A′ = (0.25 m) (0.1 m) (0.1 m)

+ (0.35 m) (0.1 m) (0.5 m) = 0.02 m3

      t = 0.1 m

P8–1a.

140 N�m

300 N
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P9–2.

 tmax = A a
sx - sy

2 b
2

+ t 
xy

2 = A a
4 - (-4)

2 b
2

+ (0)2

 = 4 MPa

 savg =
sx + sy

2
=

4 - 4
2

= 0

  tan 2us = -
(sx - sy)>2

txy
=

[4 - (-4)]>2

0
= - ∞

 us = -45°

 tx′y′ = -
sx - sy

2
 sin 2u + txy cos 2u

 = -
4 - (-4)

2
 sin 2(-45°) + 0 = 4 MPa

4 MPa

us � �45�

x

x¿

y¿

P12–1a.

x
32 N�m

M

V

8 kN

M = (8x - 32) kN # m

  x = 0, 
dy

dx
= 0

  x = 0, y = 0

P12–1b.

x

M

V

5 kN

M = (5x) kN # m

  x = 0,    y = 0

  x = 2 m,  y = 0

P8–2b.

V M T

� �Element A

V M T

� �Element B

P9–1.

u � 20�

8 kPa

5 kPa

y¿

x ¿

x

 

u � �160�

8 kPa

5 kPa

x ¿

x

y¿

P9–1b.

u � 120�
5 kPa

8 kPa

y¿

x ¿

x

     

5 kPa

8 kPa

y¿

x ¿

u � �60�

x

P9–1c.

u � 50�

5 kPa
8 kPa

y¿
x ¿

     

u � �130�5 kPa

8 kPa
y¿

x 

x ¿
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1 m1 m

V2

x2

2 kN 10 kN

4 kN

M2

M2 = 10(x2 - 2) - 4(x2 - 1) - 2x2

M2 = (4x2 - 16) kN # m

x1 = 0,   y1 = 0

x1 = 2 m,    y1 = 0

x2 = 2 m, y2 = 0

x1 = x2 = 2 m,    
dy1

dx1
=

dy2

dx2

P12–1f.

x1

V11.5 kN

M1

M1 = (1.5x1) kN # m

2 m

M2

V2
x2

1.5 kN

3 (x2 � 2) kN

(x2 � 2)1
2

M2 = 1.5x2 - 3(x2 - 2) a1
2
b  (x2 - 2)

M2 = -1.5x2
2 + 7.5x2 - 6

x1 = 0,  y1 = 0

x2 = 4 m, y2 = 0

x1 = x2 = 2 m,   
dy1

dx1
=

dy2

dx2

x1 = x2 = 2 m,   y1 = y2

P12–1c.

x

M

V

4 kN

(2 x) kN

x1
2

 M = 4 x - (2x)11
2 x2

M = (4 x - x2) kN # m

x = 0,  y = 0

x = 4 m, y = 0

P12–1d.

x1

V12 kN

M1

M1 = (-2x1) kN # m

x2

M2

V22 kN

8 kN�m

 M2 = (-2 x + 8) kN # m

  x1 = 0,  y1 = 0

x2 = 4 m, y2 = 0

 x1 = x2 = 2 m,   
dy1

dx1
=

dy2

dx2

 x1 = x2 = 2 m,   y1 = y2

P12–1e.

x1

M1

V1

2 kN

(2 x1) kN

x1
1
2

 M1 = -2 x1 - (2x1)11
2 x12

 M1 = (-2 x1 - x1
2) kN # m
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Fundamental Problems Partial Solutions and Answers
Chapter 1

F1–1 Entire beam:

 a+ ΣMB = 0;  60 - 10(2) - Ay(2) = 0  Ay = 20 kN

 Left segment:

 S + ΣFx = 0; NC = 0  Ans.

 + c ΣFy = 0;  20 - VC = 0 VC = 20 kN  Ans.

 a+ ΣMC = 0; MC + 60 - 20(1) = 0  MC = -40 kN # m  Ans.

F1–2 Entire beam:
 a+ ΣMA = 0;  By(3) - 100(1.5)(0.75) - 200(1.5)(2.25) = 0
  By = 262.5 N

 Right segment:

 S + ΣFx = 0;  NC = 0  Ans.

 + c ΣFy = 0;  VC + 262.5 - 200(1.5) = 0 VC = 37.5 N  Ans.

 a+ ΣMC = 0;  262.5(1.5) - 200(1.5)(0.75) - MC = 0  MC = 169 N # m  Ans.

F1–3 Entire beam:
 S + ΣFx = 0;  Bx = 0
 a+ ΣMA = 0;  20(2)(1) - By(4) = 0  By = 10 kN

 Right segment:

 S + ΣFx = 0;  NC = 0  Ans.

 + c ΣFy = 0; VC - 10 = 0  VC = 10 kN  Ans.

 a+ ΣMC = 0;  -MC - 10(2) = 0  MC = -20 kN # m Ans.

F1–4 Entire beam:

 a+ ΣMB = 0;  
1
2

 (10)(3)(2) + 10(3)(4.5) - Ay(6) = 0  Ay = 27.5 kN

 Left segment:

 S + ΣFx = 0;  NC = 0 Ans.

 + c ΣFy = 0;  27.5 - 10(3) - VC = 0  VC = -2.5 kN  Ans.

 a+ ΣMC = 0;  MC + 10(3)(1.5) - 27.5(3) = 0  MC = 37.5 kN # m  Ans.

F1–5 Entire beam:
 S + ΣFx = 0;  Ax = 0

 a + ΣMB = 0;  5(2)(1) -
1
2

 (5)(1)a1
3
b(1) - Ay(2) = 0  Ay = 4.583 kN

 Left segment:

 S + ΣFx = 0;  NC = 0  Ans.

 + c ΣFy = 0;  4.583 - 5(1) - VC = 0 VC = -0.417 kN  Ans.

 a + ΣMC = 0;   MC + 5(1)(0.5) - 4.583(1) = 0  MC = 2.08 kN # m  Ans.
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F1–7 Beam:
 ΣMA = 0; TCD = 2w

 ΣFy = 0; TAB = w

 Rod AB:

 s =
N
A

; 300(103) =
w

10
;

 w = 3 N>m

 Rod CD:

 s =
N
A

 ; 300(103) =
2w
15

 ;

 w = 2.25 N>m  Ans.

F1–8  A = π(0.12 - 0.082) = 3.6(10-3)π m2

 savg =
N
A

=
300(103)

3.6(10-3)p
= 26.5 MPa  Ans.

F1–9 A = 3[0.10(0.025)] = 7.5(10- 3) m2

 savg =
P
A

=
75(103)

7.5(10- 3)
= 10.0(106) N>m2

 = 10.0 MPa  Ans.

F1–10   Consider the cross section to be a rectangle and 
two triangles.

 y =
Σ~yA

ΣA
=

0.15[(0.3)(0.12)] + (0.1) c
1
2

 (0.16)(0.3) d

0.3(0.12) +
1
2

 (0.16)(0.3)
 

= 0.13 m = 130 mm  Ans.

savg =
N
A

 =
600(103)

0.06
 = 10 MPa  Ans.

F1–6 Entire beam:

 a+ ΣMA = 0;  FBD a3
5
b(4) - 5(6)(3) = 0  FBD = 37.5 kN

 S + ΣFx = 0;  37.5a4
5
b - Ax = 0  Ax = 30 kN

 + c ΣFy = 0; Ay + 37.5a3
5
b - 5(6) = 0  Ay = 7.5 kN

 Left segment:

 S + ΣFx = 0;  NC - 30 = 0  NC = 30 kN  Ans.

 + c ΣFy = 0;  7.5 - 5(2) - VC = 0  VC = -2.5 kN  Ans.

 a+ ΣMC = 0;  MC + 5(2)(1) - 7.5(2) = 0  MC = 5 kN # m  Ans.

F1–11 

AA = AC =
p

4
 (0.0052) = 6.25(10- 6)p m2, AB =

p

4
 (0.012)

= 25(10- 6)p m2

sA =
NA

AA
=

300

6.25(10- 6)p
= 15.3 MPa (T)  Ans.

sB =
NB

AB
=

-600

25(10- 6)p
= -7.64 MPa

= 7.64 MPa (C)  Ans.

sC =
NC

AC
=

200

6.25(10- 6)p
= 10.2 MPa (T)  Ans.

F1–12   Pin at A:

FAD = 50(9.81) N = 490.5 N

+ c ΣFy = 0;   FAC a3
5
b - 490.5 = 0   FAC = 817.5 N

S + ΣFx = 0;   817.5a4
5
b - F AB = 0     FAB = 654 N

AAB =
p

4
 (0.0082) = 16(10-6)p m2

(sAB)avg =
F AB

AAB
=

654

16(10-6)p
= 13.0 MPa  Ans.

F1–13  Ring C:
+ c ΣFy = 0;   2F cos 60° - 200(9.81) = 0  F = 1962 N

(sallow)avg =
F
A

 ;  150(106) =
1962
p

4
 d2

d = 0.00408 m = 4.08 mm

Use d = 5 mm.  Ans.
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F1–14  Entire frame:
ΣFy = 0; Ay = 60 kN
ΣMB = 0; Ay = 80 kN

FA = 2(60)2 + (80)2 = 100 kN

(tA)avg =
FA>2

A
=

100(103)>2
p
4  (0.052)

= 25.46(106) N>m2  Ans.

= 25.5 MPa
F1–15 Double shear:

ΣFx = 0;  4V - 10 = 0  V = 2.5 kN

A =
p

4
 (0.0122) = 0.1131(10- 3) m2

tavg =
V
A

=
2.5(103)

0.1131(10- 3)
= 22.10(106) N>m2 

= 22.1 MPa Ans.

F1–16 Nails have single shear:

ΣFx = 0;  P - 3V = 0  V =
P
3

 

A =
p

4
 (0.0042) = 4(10-6)p m2

(tavg)allow =
V
A

;  60(106) =

P
3

4(10-6)p
 P = 2.262(103) N = 2.26 kN  Ans.

F1–17 Strut:
S + ΣFx = 0;  V - P cos 60° = 0  V = 0.5P

A = a 0.05
sin 60°

b(0.025) = 1.4434(10-3) m2

(tavg)allow =
V
A

;  600(103) =
0.5P

1.4434(10-3)
P = 1.732(103) N = 1.73 kN  Ans.

F1–18  The resultant force on the pin is

 F = 2302 + 402 = 50 kN.
We have double shear:

V =
F
2

 =
50
2

 = 25 kN

A =
p

4
 (0.032) = 0.225(10-3)p m2

tavg =
V
A

 =
25(103)

0.225(10-3)p
= 35.4 MPa  Ans.

F1–19 Eyebolt:

 S + ΣFx = 0;  30 - N = 0  N = 30 kN

sallow =
sY

F.S.
 =

250
1.5

 = 166.67 MPa

sallow =
N
A

 ;  166.67(106) =
30(103)

p

4
 d2

d = 15.14 mm
Use d = 16 mm.  Ans.

F1–20  
S + ΣFx = 0; NAB - 150 = 0      NAB = 150 kN

S + ΣFx = 0; NBC - 75 - 75 - 150 = 0 NBC = 300 kN

sallow =
sY

F.S.
=

350
1.5

= 233.33 MPa

Segment AB:

sallow =
NAB

AAB
 ; 233.33(106) =

150(103)

h1(0.012)
 

h1 = 0.05357 m = 53.57 mm
Segment BC:

sallow =
NBC

ABC
 ; 233.33(106) =

300(103)

h2(0.012)
 

h2 = 0.1071 m = 107.1 mm

Use h1 = 54 mm and h2 = 108 mm.  Ans.

F1–21  N = P

sallow =
sY

F.S.
 =

250
2

 = 125 MPa

Ar =
p

4
 (0.042) = 1.2566(10-3) m2

Aa–a = 2(0.06 - 0.03)(0.05) = 3(10-3) m2

The rod will fail first.

sallow =
N
Ar

;  125(106) = 
P

1.2566(10-3)
P = 157.08(103) N = 157 kN  Ans.

F1–22   Pin has double shear:
S + ΣFx = 0;  80 - 2V = 0  V = 40 kN

tallow =
tfail

F.S.
 =

100
2.5

 = 40 MPa

tallow =
V
A

;  40(106) =
40(103)

p

4
 d2

d = 0.03568 m = 35.68 mm
Use d = 36 mm.  Ans.

Shear plane
for plate.

Shear plane
for bolt.

P

F1–23
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 V = P

tallow =
tfail 

F.S.
 =

120
2.5

  = 48 MPa

Area of shear plane for bolt head and plate:
Ab = pdt = p(0.04)(0.075) = 0.003p m2  

Ap = pdt = p(0.08)(0.03) = 0.0024p m2 

Since the area of shear plane for the plate is  
smaller,

tallow =
V
Ap

 ;  48(106) = 
P

0.0024p
 

 P = 361.91(103) N = 362 kN  Ans.

F1–24 

a + ΣMB = 0; 
1
2

 (5)(3)(2) - 6V(3) = 0 V = 0.8333 kN

tallow =
tfail

F.S.
=

112
2

= 56 MPa

tallow =
V
A

 ;  56(106) =
0.8333(103)

p

4
 d2

 

d = 4.353(10- 3) m = 4.35 mm

Use d = 5 mm Ans.

Chapter 2

F2–1 
dC

600
=

0.2
400

;  dC = 0.3 mm

PCD = 
dC

LCD
=

0.3
300

= 0.001 mm>mm  Ans.

F2–2 

A
B C

600 mm 600 mm

u dB

dC

u = a0.02°
180°

bp rad = 0.3491(10-3) rad

dB = uLAB = 0.3491(10-3)(600) = 0.2094 mm

dC = uLAC = 0.3491(10-3)(1200) = 0.4189 mm

PBD =
dB

LBD
=

0.2094
400

= 0.524(10-3) mm>mm  Ans.

PCE =
dC 

LCE
=

0.4189
600

= 0.698(10- 3) mm>mm  Ans.

F2–3 

 y

x
A

B

D C

300 mm

2 mm

4 mm

400 mm

b

a

a =
2

400
= 0.005 rad  b =

4
300

= 0.01333 rad

(gA)xy =
p

2
- u

=
p

2
- a

p

2
- a + bb

= a - b

= 0.005 - 0.01333
= -0.00833 rad  Ans.

F2–4 

A

C

B

 y

x

300 mm

3 mm

5 mm
400 mm

a

b

LBC = 23002 + 4002 = 500 mm

LB′C = 2(300 - 3)2 + (400 + 5)2 = 502.2290 mm

a =
3

405
 = 0.007407 rad

 (PBC)avg =
LB′C - LBC

LBC
=

502.2290 - 500
500

 = 0.00446 mm>mm  Ans.

(gA)xy =
p

2
 -  u =

p

2
- ap

2
+ ab  = -a = -0.00741 rad Ans.
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F2–5 

 
 y x

A B

D C

300 mm

300 mm
3 mm3 mm

4 mm

x¿y¿

E

u/2

45º

LAC = 2LCD
2 + LAD

2 = 23002 + 3002 = 424.2641 mm

LA′C′ = 2LC′D′
2 + LA′D′

2 = 23062 + 2962 = 425.7370 mm

u

2
= tan-1a

LC′D′

LA′D′
b ; u = 2 tan-1a306

296
b = 1.6040 rad

(PAC)avg =
LA′C′ - LAC

LAC
=

425.7370 - 424.2641
424.2641

= 0.00347 mm>mm  Ans.

(gE)xy =
p

2
- u =

p

2
 - 1.6040 = - 0.0332 rad   Ans.

Chapter 3
F3–1 Material has uniform properties throughout.   Ans.

F3–2 Proportional limit is A.  Ans.

Ultimate stress is D.  Ans.

F3–3 The initial slope of the s - P diagram.  Ans.

F3–4 True.  Ans.

F3–5  False. Use the original cross-sectional area 
and length.  Ans.

F3–6 False. It will normally decrease.  Ans.

F3–7 P =
s

E
=

N
AE

 

d = PL =
NL
AE

 =
100(103)(0.100)

p

4
 (0.015)2 200(109)

 = 0.283 mm  Ans.

F3–8 P =
s

E
=

P
AE

d = PL =
PL
AE

 

0.075(10- 3) =
350(103)4(0.2)

37500(10- 6)4E
 

E = 17.78(109)N>m2 = 17.8 GPa  Ans.

F3–9   P =
s

E
=

N
AE

 d = PL =
NL
AE

=
6(103)4

p

4
 (0.01)2100(109)

 = 3.06 mm  Ans.

F3–10  s =
N
A

=
100(103)

 
p

4
 (0.02)2

= 318.31 MPa

Since s 6 sY = 450 MPa, Hooke’s Law is 
applicable.

E =
sY

PY
=

450(106)

0.00225
= 200 GPa

P =
s

E
=

318.31(106)

200(109)
 = 0.001592 mm>mm

d = PL = 0.001592(50) = 0.0796 mm  Ans.

F3–11  s =
N
A

=
150(103)

p

4
 (0.022)

= 477.46 MPa

Since s 7 sY  = 450 MPa, Hooke’s Law is not 
applicable. From the geometry of the shaded 
triangle,

P - 0.00225
0.03 - 0.00225

 =
477.46 - 450

500 - 450
P = 0.017493
When the load is removed, the strain recovers along 
a line AB which is parallel to the original elastic line.

Here E =
sY

PY
 = 

450(106)

0.00225
 = 200 GPa.

The elastic recovery is

 Pr =
s

E
=

477.46(106)

200(109)
= 0.002387 mm>mm

 Pp = P - Pr = 0.017493 - 0.002387
 = 0.01511 mm>mm

dp = PpL = 0.01511(50) = 0.755 mm  Ans.

    

450

0.00225 0.03
P (mm/mm)P

500

s (MPa)

477.46
A

B
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F3–12   PBC =
dBC

LBC
=

0.2
300

= 0.6667(10-3) mm>mm

 sBC = EPBC = 200(109)[0.6667(10-3)]
 = 133.33 MPa
Since sBC 6 sY = 250 MPa, Hooke’s Law is valid.

sBC =
FBC

ABC
 ;  133.33(106) =

FBC

p

4
 (0.0032)

FBC = 942.48 N
a+ ΣMA = 0;    942.48(0.4) - P(0.6) = 0 

P = 628.31 N = 628 N Ans.

F3–13  s =
N
A

=
10(103)

p

4
 (0.015)2

= 56.59 MPa

Plong =
s

E
=

56.59(106)

70(109)
= 0.808(10-3)

 Plat = -nPlong = -0.35(0.808(10-3))
 = -0.283(10-3)

 dd = (-0.283(10-3))(15 mm) = -4.24(10-3) mm 
 Ans.

F3–14  s =
N
A

=
50(103)

p

4
 (0.022)

= 159.15 MPa

Plong =
d

L
=

1.40
600

= 0.002333 mm>mm

E =
s

Plong
=

159.15(106)

0.002333
= 68.2 GPa Ans.

Plat =
d′ - d

d
=

19.9837 - 20
20

= -0.815(10- 3) mm>mm

 n = -
Plat

Plong
= -

-0.815(10-3)

0.002333
= 0.3493

 G =
E

2(1 +  n)
=

68.21
2(1 +  0.3493)

= 25.3 GPa  Ans.

F3–15 

 

150 mm

0.5 mm

150 mm

P 

a

a =
0.5
150

= 0.003333 rad

g =
p

2
 - u =

p

2
 - ap

2
 - ab

= a = 0.003333 rad
t = Gg = [26(109)](0.003333) = 86.67 MPa

t =
V
A

 ; 86.67(106) =
P

0.15(0.02)

P = 260 kN  Ans.

F3–16 

 

150 mm
 a � 3 mm

150 mm

P

130

0.005

A

t (MPa)

g (rad)
0.02

a

a =
3

150
= 0.02 rad

g =
p

2
 - u =

p

2
 - a

p

2
 - ab = a = 0.02 rad

When P is removed, the shear strain recovers along a line 
parallel to the original elastic line.
 gr = gY = 0.005 rad
 gp = g - gr = 0.02 - 0.005 = 0.015 rad  Ans.

Chapter 4

F4–1   A =
p

4
 (0.022) = 0.1(10-3)p m2

NBC = 40 kN, NAB = -60 kN

 dC =
1

AE
 {40(103)(400) +  [-60(103)(600)]}

 =
-20(106) N # mm

AE
 = -0.318 mm  Ans.
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F4–2    AAB = ACD =
p

4
 (0.022) = 0.1(10-3)p m2

 ABC =
p

4
(0.042 - 0.032) = 0.175(10-3)p m2

NAB = -10 kN, NBC = 10 kN, NCD = -20 kN

 dD>A =
[-10(103)](400)

[0.1(10-3)p][68.9(109)]

+  
[10(103)](400)

[0.175(10-3)p][68.9(109)]

+  
[-20(103)](400)

[0.1(10-3)p][68.9(109)]

 = -0.449 mm  Ans.

F4–3   A =
p

4
(0.032) = 0.225(10-3)p m2

NBC = -90 kN, NAB = -90 + 2a
4
5
b(30) = -42 kN

 dC =
1

0.225(10-3)p[200(109)]
 5[-42(103)(0.4)]

+ [-90(103)(0.6)]6
 = -0.501(10-3) m = -0.501 mm  Ans.

F4–4    dA>B =
NL
AE

=
[60(103)](0.8)

[0.1(10-3)p][200(109)]

 = 0.7639(10-3)m T

dB =
Fsp

k
=

60(103)

50(106)
= 1.2(10-3)m T

 + T   dA = dB +  dA>B

 dA = 1.2(10-3) +  0.7639(10-3)

 = 1.9639(10-3) m = 1.96 mm T   Ans.

F4–5  

x

30 kN/m

N(x)

A =
p

4
 (0.022) = 0.1(10-3)p m2

Internal load N(x) = 30(103)x

dA = L
N(x)dx

AE

=
1

[0.1(10-3)p][73.1(109)] L
0.9 m

0
30(103)x dx

= 0.529(10-3) m = 0.529 mm  Ans.

F4–6 

x

(50 x) kN/m

N(x)

Distributed load N(x) = 
45(103)

0.9
 x = 50(103)x N>m

Internal load N(x) = 
1
2

 (50(103))x(x) = 25(103)x2

 dA = L
L

0
 
N(x)dx

AE

 =
1

[0.1(10- 3)p][73.1(109)]
 L

0.9 m

0
[25(103)x2]dx

 = 0.265 mm  Ans.

Chapter 5

F5–1   J = 
p

2
(0.044) = 1.28(10-6)p m4

tA = tmax = 
Tc
J

 = 
5(103)(0.04)

1.28(10-6)p
 = 49.7 MPa  Ans.

tB = 
TrB

J
 = 

5(103)(0.03)

1.28(10-6)p
 = 37.3 MPa  Ans.

A

B

37.3 MPa

49.7 MPa

F5–2   J = 
p

2
(0.064 - 0.044) = 5.2(10-6)p m4

tB = tmax = 
Tc
J

 = 
10(103)(0.06)

5.2(10-6)p
 = 36.7 MPa  Ans.

tA = 
TrA

J
 = 

10(103)(0.04)

5.2(10-6)p
 = 24.5 MPa  Ans.

A

B

36.7 MPa

24.5 MPa
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F5–3   JAB = 
p

2
 (0.044 -  0.034) = 0.875(10-6)p m4

JBC = 
p

2
 (0.044) = 1.28(10-6)p m4

(tAB)max = 
TAB cAB

J AB
 = 

[2(103)](0.04)

0.875(10-6)p
 = 29.1 MPa

(tBC)max = 
TBC cBC

J BC
 = 

[6(103)](0.04)

1.28(10-6)p

= 59.7 MPa  Ans.

F5–4  TAB = 0, TBC = 600 N # m, TCD = 0

J = 
p

2
 (0.024) = 80(10-9)p m4

tmax = 
Tc
J

 = 
600(0.02)

80(10- 9)p
 = 47.7 MPa  Ans.

F5–5   JBC = 
p

2
 (0.044 -  0.034) = 0.875(10-6)p m4

(tBC)max = 
TBC cBC

J BC
 = 

2100(0.04)

0.875(10- 6)p

= 30.6 MPa  Ans.

F5–6  t = 5(103) N # m>m

Internal torque is T = 5(103)(0.8) = 4000 N # m

J = 
p

2
 (0.044) = 1.28(10-6)p m4

tAB = 
TAc

J
 = 

4000(0.04)

1.28(10- 6)p
 = 39.8 MPa  Ans.

F5–7   TAB = 250 N # m, TBC = 175 N # m,  
TCD = -150 N # m
Maximum internal torque is in region AB.
TAB = 250 N # m

t
 max abs =

TAB c

J
=

250 (0.025)
p

2
 (0.025)4

= 10.2 MPa   Ans.

F5–8   P = Tv; 2250 = T c 150 a2p
60

b   rad>s d

T = 143.24 N # m

tallow =
Tc
J

 ; 84(106) =
143.24 (d>2)

p

2
 (d>2)4

 

d = 0.02056 m = 20.56 mm
Use d = 21 mm.  Ans.

F5–9  TAB = -2 kN # m, TBC = 1 kN # m

J = 
p

2
 (0.034) = 0.405(10-6)p m4

fA>C = 
-2 (103)(0.6) + (103)(0.4)

[0.405(10- 6)p][75(109)]

= - 0.00838 rad = - 0.480°  Ans.

F5–10  TAB = 600 N # m

J = 
p

2
 (0.024) = 80(10-9)p m4

fB>A = 
600(0.45)

[80(10- 9)p][75(109)]

= 0.01432 rad = 0.821°  Ans.

F5–11  J = 
p

2
 (0.044 -  0.034) = 0.875(10-6)p m4

fA>B = 
TAB LAB

JG
 = 

3(103)(0.9)

[0.875(10- 6)p][26(109)]
= 0.03778 rad

fB = 
TB

kB
 = 

3(103)

90(103)
 = 0.03333 rad

fA = fB +  fA>B

= 0.03333 + 0.03778

= 0.07111 rad = 4.07°  Ans.

F5–12   TAB = 600 N # m, TBC = -300 N # m,  
TCD = 200 N # m, TDE = 500 N # m

J = 
p

2
 (0.024) = 80(10-9)p m4

fE>A = 
[600 + (-300) + 200 + 500]0.2

[80(10- 9)p][75(109)]
= 0.01061 rad = 0.608°  Ans.

F5–13 

x

 5 kN�m/m

T(x)

J = 
p

2
 (0.044) = 1.28(10-6)p m4

t = 5(103) N # m>m
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Internal torque is 5(103)x N # m

fA>B = L
L

0
 
T(x)dx

JG

= 
1

[1.28(10- 6)p][75(109)] L
0.8 m

0
 5(103)xdx

= 0.00531 rad = 0.304°  Ans.

F5–14 
T(x)

x

t(x)

J = 
p

2
 (0.044) = 1.28(10-6)p m4

Distributed torque is t = 
15(103)

0.6
 (x)

= 25(103)x N # m>m

Internal torque in segment AB, T(x) = 
1
2

 (25x)(103)(x)

= 12.5(103)x2 N # m

In segment BC,

TBC = 
1
2

 [25 (103)(0.6)](0.6) = 4500 N # m

fA>C = L
L

0
 

T(x)dx

JG
 +

TBC LBC

JG

=
1

[1.28(10- 6)p][75(109)]
 cL

0.6 m

0
12.5(103)x2 dx + 4500(0.4)d

= 0.008952 rad = 0.513°  Ans.

Chapter 6
F6–1 

x

5 kN

M

V

a+ ΣMB = 0;     Ay(6) - 30 = 0     Ay = 5 kN

+c gFy = 0;   -V - 5 = 0    V = -5 kN
 Ans.

a + ΣM0 = 0 ;  M + 5x = 0 M = {-5x} kN # m  
 Ans.

6

�5

6

�30

x (m)

V (kN)

x

M (kN�m)

F6–2  9 kN

x

M

V

+ c gFy = 0;   -V - 9 = 0  V = -9 kN  Ans.

a+ ΣMO = 0;   M + 9x = 0  M = {-9x} kN # m  
 Ans.

3

3

�27

�9

x (m)

V (kN)

x (m)

M (kN�m)

F6–3  

x

30 kN  m

25 kN. m
M

V

/

+ c ΣFy = 0; -V - 30x = 0; V = {-30x} kN 
 Ans.

a + ΣMO = 0; M + 30xax
2
b - 25 = 0

M = {25 - 15x2}kN # m  Ans.
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3

91.2925

�110

�90

x (m)

V (kN)

x (m)

M (kN.m)

F6–4  

x

w

M

V

w
x

=
12
3

  w = 4x

+c gFy = 0; -V -
1
2

 (4x)(x) = 0

V = {-2x2} kN Ans.

a+ gMO = 0; M +  c 1
2

 (4x)(x) d ax
3
b = 0

M = e -
2
3

 x3 f  kN # m Ans.

M (kN�m)

3

�18

x (m)

V (kN)

3

�18

x (m)

F6–5  

M (kN�m)

64.5

1.5

6

�6

x (m)

V (kN)

4.5 61.5

�4.5

x (m)

F6–6  

M (kN�m)

63

15

15

6

3

�15

x (m)

V (kN)

x (m)

F6–7  

M (kN.m)

1.75
2 3 4

1.75 2 3 4

5.25

  �3.75

4.59 4.50
3.75

–0.75
x (m)

V (kN)

x (m)
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F6–8  

M (kN�m)

20
4

6

1.5
30

  �50

x (m)

V (kN)

3 4 6

1.5

22.5

  �40

x (m)

F6–9   Consider two vertical rectangles and a horizontal 
rectangle.

I = 2 c
1
12

 (0.02)(0.23) d +
1
12

 (0.26)(0.023)

= 26.84(10- 6)  m4

smax = 
Mc
I

 = 
20(103)(0.1)

26.84(10- 6)
  = 74.5 MPa  Ans.

F6–10  See the pages in the back of the book.

y = 
0.3
3

 = 0.1 m

I = 
1
36

 (0.3)(0.33) = 0.225(10- 3) m4

(smax)c = 
Mc
I

 = 
50(103)(0.3 - 0.1)

0.225(10- 3)

= 44.4 MPa (C)  Ans.

(smax)t = 
My

I
 = 

50(103)(0.1)

0.225(10- 3)
  = 22.2 MPa (T)  Ans.

F6–11   Consider large rectangle minus the two side 
rectangles.

I = 
1
12

 (0.2)(0.33) - (2)
1
12

 (0.09)(0.263)

= 0.18636(10-3) m4

smax = 
Mc
I

 = 
50(103)(0.15)

0.18636(10- 3)
= 40.2 MPa   Ans.

F6–12   Consider two vertical rectangles and two horizontal 
rectangles.

I = 2 c
1
12

 (0.03)(0.43) d  +  2 c 1
12

 (0.14)(0.033) +  0.14(0.03)(0.152) d

= 0.50963(10- 3) m4

smax = 
Mc
I

 = 
10(103)(0.2)

0.50963(10- 3)
  = 3.92 MPa  Ans.

sA = 3.92 MPa (C)

sB = 3.92 MPa (T)

F6–13  Consider center rectangle and two side rectangles.

I =
1
12

 (0.05)(0.4)3 +  2 c 1
12

 (0.025)(0.3)3 d

= 0.37917(10-3) m4

sA = 
MyA

I
 = 

5(103)(-0.15)

0.37917(10- 3)
 = 1.98 MPa (T)  Ans.

F6–14  My = 50a4
5
b = 40 kN # m

Mz = 50a3
5
b = 30 kN # m

Iy = 
1
12

 (0.3)(0.23) = 0.2(10- 3) m4

Iz = 
1
12

 (0.2)(0.33) = 0.45(10- 3) m4

s = -
Mzy

Iz
 +  

My z

Iy

sA = -
 [30(103)](-0.15)

0.45(10- 3)
 +  

[40(103)](0.1)

0.2(10- 3)

= 30 MPa (T)  Ans.

sB = -
[30(103)](0.15)

0.45(10- 3)
+

[40(103)](0.1)

0.2(10- 3)

= 10 MPa (T)  Ans.

tan a = 
Iz

Iy
 tan u

tan a = c
0.45(10- 3)

0.2(10- 3)
d a4

3
b

a = 71.6°  Ans.

F6–15  Maximum stress occurs at D or A.

(s max )D =
(75 cos 30°) (0.075)

1
12 (0.1) (0.15)3

+
(75 sin 30°) (0.05)

1
12 (0.15) (0.1)3

 

= 323.20 (103) N>m2

= 323 kPa  Ans.
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Chapter 7

F7–1   Consider two vertical rectangles and a horizontal 
rectangle.

I = 2 c 1
12

 (0.02)(0.23) d  +  
1
12

 (0.26)(0.023)

 = 26.84(10- 6) m4

Take two rectangles above A.

QA = 2[0.055(0.09)(0.02)] = 198(10-6) m3

 tA = 
VQA

It
 = 

100(103)[198(10- 6)]

[26.84(10- 6)]2(0.02)
 = 18.4 MPa Ans.

F7–2  Consider a vertical rectangle and two squares.

I = 
1
12

 (0.1)(0.33) +  (2)
1
12

 (0.1)(0.13) 

= 0.24167(10-3) m4

Take top half of area (above A).

QA = y′1A′1 + y′2A′2

= c
1
2

 (0.05) d (0.05)(0.3) +  0.1(0.1)(0.1)

= 1.375(10-3) m3

tA = 
VQ

It
 = 

600(103)[1.375(10- 3)]

[0.24167(10- 3)](0.3)
 = 11.4 MPa Ans.

Take top square (above B).
QB = y′2A′2 = 0.1(0.1)(0.1) = 1(10-3) m3

tB = 
VQ

It
 = 

600(103)[1(10- 3)]

[0.24167(10- 3)](0.1)
 = 24.8 MPa Ans.

F7–3 V max = 22.5 kN

I =
1
12

 (0.075) (0.153) = 21.09375 (10- 6) m4

Q max = y′A′ = 0.0375 (0.075) (0.075)

= 0.2109375(10- 3) m3

(t max )abs =
V max Q max 

It

=
[22.5 (103)] [0.2109375(10- 3)]

[21.09375(10- 6)]  (0.075)

= 3.00 (106) N>m2 = 3.00 MPa Ans.

F7–4  Consider two vertical rectangles and two horizontal 
rectangles.

  I = 2 c 1
12

 (0.03)(0.43) d  +  2 c 1
12

 (0.14)(0.033)

  +  0.14(0.03)(0.152)d = 0.50963(10- 3) m4

Take the top half of area.

Qmax = 2y′1 A′1  +  y′2 A′2 = 2(0.1)(0.2)(0.03)

+  (0.15)(0.14)(0.03) = 1.83(10- 3) m3

tmax =
VQmax

It
 =

20(103)[1.83(10- 3)]

0.50963(10- 3)[2(0.03)]
 = 1.20 MPa

 Ans.

F7–5  Consider one large vertical rectangle and two side 
rectangles.

 I =
1
12

 (0.05)(0.4)3+  2 c 1
12

 (0.025)(0.3)3 d

  = 0.37917(10- 3) m4

Take the top half of area.

Qmax = 2y′1 A′1 +  y′2 A′2 = 2(0.075)(0.025)(0.15)

+  (0.1)(0.05)(0.2) = 1.5625(10- 3) m3

 tmax =
VQmax

It
=

20(103)[1.5625(10- 3)]

[0.37917(10- 3)][2(0.025)]

  = 1.65 MPa Ans.

F7–6 I = 
1
12

 (0.3)(0.23) = 0.2(10- 3) m4

Top (or bottom) board
Q = y′A′ = 0.05(0.1)(0.3) = 1.5(10- 3) m3

Two rows of nails

qallow = 2a
F
s
b  = 

2[15(103)]

s
 = 

30(103)

s

qallow = 
VQ

I
 ;  

30(103)

s
 = 

50(103)[1.5(10- 3)]

0.2(10- 3)
 

 s = 0.08 m = 80 mm Ans.

F7–7 Consider large rectangle minus two side rectangles.

I = 
1
12

 (0.2)(0.343) - (2)
1
12

 (0.095)(0.283) 

 = 0.3075(10- 3) m4

Top plate

Q = y′A′ = 0.16(0.02)(0.2) = 0.64(10- 3) m3

Two rows of bolts

qallow = 2aF
s
b  = 

2[30(103)]

s
 = 

60(103)

s

qallow = 
VQ

I
 ;   

60(103)

s
 = 

300(103)[0.64(10- 3)]

0.3075(10- 3)
 

s = 0.09609 m = 96.1 mm

Use s = 96 mm Ans.
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F7–8 Consider two large rectangles and two side rectangles.

I = 2 c 1
12

 (0.025)(0.33)d + 2c 1
12

 (0.05)(0.23) + 0.05(0.2)(0.152)d

= 0.62917(10- 3) m4

Top center board is held onto beam by the top row of bolts.

Q = y′A′ = 0.15(0.2)(0.05) = 1.5(10- 3) m3

Each bolt has two shearing surfaces.

qallow = 2aF
s
b  = 

2[8(103)]

s
 = 

16(103)

s

qallow = 
VQ

I
 ;  

16(103)

s
 = 

20(103)[1.5(10- 3)]

0.62917(10- 3)

s = 0.3356 m = 335.56 mm

Use s = 335 mm Ans.

F7–9 Consider center board and four side boards.

I =
1
12

 (0.025)(0.153) + 4 c 1
12

 (0.012)(0.13) + 0.012 (0.1)(0.0752)d

 = 38.03125(10-6) m4

Top-right board is held onto beam by a row  
of bolts.

Q = y′ A′ = 0.075(0.012)(0.1) = 90(10- 6) m3

Bolts have one shear surface.

qallow =
F
s
=

30(103)

s
 

qallow =
VQ

I
 ; 

30(103)

s
=

[75(103)][90(10- 6)]

38.03125(10- 6)
 

s = 0.16903 m = 169 mm

Use s = 165 mm Ans.

Also, can consider the top two boards held onto 
beam by a row of bolts with two shearing 
surfaces.

Chapter 8
F8–1  +c gFz = (FR)z;  -500 - 300 = P

P = -800 kN
g  Mx = 0;    300(0.05) - 500(0.1) = Mx 

Mx = -35 kN # m
g  My = 0;    300(0.1) - 500(0.1) = My 

My = -20 kN # m
A = 0.3(0.3) = 0.09 m2

Ix = Iy = 
1
12

 (0.3)(0.33) = 0.675(10- 3) m4

sA = 
-800(103)

0.09
 +  

[20(103)](0.15)

0.675(10- 3)
 +  

[35(103)](0.15)

0.675(10- 3)

 = 3.3333 MPa = 3.33 MPa (T) Ans.

sB = 
-800(103)

0.09
 +  

[20(103)](0.15)

0.675(10- 3)
 -

[35(103)](0.15)

0.675(10- 3)

 = -12.22 MPa = 12.2 MPa (C) Ans.

F8–2  +c g  Fy = 0; V - 400 = 0 V = 400 kN

a+ ΣMA = 0; -M - 400(0.5) = 0 M = -200 kN # m

I = 
1
12

 (0.1)(0.33) = 0.225(10- 3) m4

Bottom segment

sA = 
My

I
 = 

[200(103)](-0.05)

0.225(10- 3)

 = -44.44 MPa = 44.4 MPa (C) Ans.

QA = y′A′ = 0.1(0.1)(0.1) = 1(10- 3) m3

 tA = 
VQ

It
 = 

400(103)[1(10- 3)]

0.225(10- 3)(0.1)
  = 17.8 MPa Ans.

44.4 MPa

17.8 MPa

F8–3 Left reaction is 20 kN.

Left segment:

+c gFy = 0;  20 - V = 0    V = 20 kN

a+ ΣMs = 0;  M - 20(0.5) = 0    M = 10 kN # m

Consider large rectangle minus two side rectangles.

I =
1
12

 (0.1)(0.23) - (2)
1
12

 (0.045)(0.183)

= 22.9267(10- 6) m4

Top segment above A
QA = y′1 A′1 +  y′2 A′2 = 0.07(0.04)(0.01)

+  0.095(0.1)(0.01) = 0.123(10- 3) m3

sA = -
MyA

I
 = -

[10(103)](0.05)

22.9267(10- 6)
 

 = -21.81 MPa = 21.8 MPa (C) Ans.

 tA = 
VQA

It
 = 

20(103)[0.123(10- 3)]

[22.9267(10- 6)](0.01)

 = 10.7 MPa Ans.

21.8 MPa

10.7 MPa
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F8–4 At the section through centroidal axis:

N = P
V = 0
M = (0.05 + 0.025)P = 0.075P

s = 
N
A

 +  
Mc
I

210(106) = 
P

0.012(0.05)
+

(0.075P)(0.025)
1
12(0.012)(0.053)

P = 12.6(103)N = 12.6 kN Ans.

F8–5 At section through B:

N = 1000 N, V = 800 N

M = 800(0.1) = 80 N # m

Axial load:

(sa)x = 
N
A

 = 
1000

0.03(0.04)
 = 0.8333 MPa (T)

Shear load:

txy = 
VQ

It
 = 

800[0.015(0.03)(0.01)]

c 1
12

 (0.03)(0.043) d (0.03)
 = 0.75 MPa

Bending moment:

(sb)x = 
My

I
 = 

80(0.01)

1
12

 (0.03)(0.043)
 = 5.00 MPa (C)

Thus

sx = 0.8333 - 5.00 = 4.17 MPa Ans.

sy = 0 Ans.

txy = 0.75 MPa Ans.

0.75 MPa

4.17 MPa

F8–6 Top segment:

gFy = 0; Vy + 1000 = 0 Vy = -1000 N
gFx = 0; Vx - 1500 = 0 Vx = 1500 N
gMz = 0; Tz - 1500(0.4) = 0 Tz = 600 N # m
gMy = 0; My - 1500(0.2) = 0 My = 300 N # m
gMx = 0; Mx - 1000(0.2) = 0 Mx = 200 N # m

Iy = Ix = 
p

4
 (0.024) = 40(10- 9)p m4

J = 
p

2
(0.024) = 80(10- 9)p m4

(Qy )A = 
4(0.02)

3p
 cp

2
 (0.022) d  = 5.3333(10- 6) m3

sA = 
Mxy

Ix
 - 

Myx

Iy
 = 

-200(0)

40(10- 9)p
-

-300(0.02)

40(10- 9)p

= 47.7 MPa (T) Ans.

[(tzy)T]A = 
Tzc

J
 = 

600(0.02)

80(10- 9)p
 = 47.746 MPa

[(tzy)V]A = 
Vy(Qy)A

Ix t
 = 

1000[5.3333(10- 6)]

[40(10- 9)p](0.04)

= 1.061 MPa

Combining these two shear stress components,

(tzy)A = 47.746 + 1.061 = 48.8 MPa Ans.

48.8 MPa

47.7 MPa

F8–7 Right Segment:

ΣFz = 0; Vz - 6 = 0 Vz = 6 kN
ΣMy = 0; Ty - 6(0.3) = 0 Ty = 1.8 kN # m
ΣMx = 0; Mx - 6(0.3) = 0 Mx = 1.8 kN # m

Ix =
p

4
 (0.054 - 0.044) = 0.9225(10- 6)p m4

J =
p

2
 (0.054 - 0.044) = 1.845(10- 6)p m4

 (Qz)A = y2 ′A2 ′ - y1′ A1 ′

 =
4(0.05)

3p
 c
p

2
 (0.052) d -

4(0.04)

3p
 c
p

2
 (0.042)d

 = 40.6667(10- 6) m3

sA =
Mxz

Ix
=

1.8(103)(0)

0.9225(10- 6)p
= 0 Ans.

[(tyz)T]A =
Ty c

J
=

[1.8(103)](0.05)

1.845(10- 6)p
= 15.53 MPa

[(tyz)V]A =
Vz(Qz)A

Ixt
=

6(103)[40.6667(10- 6)]

[0.9225(10- 6)p](0.02)

= 4.210 MPa

Combining these two shear stress components,

(tyz)A = 15.53 - 4.210 = 11.3 MPa Ans.

11.3 MPa



 Fundamental Problems Part ial solut ions and answers 855

F8–8 Left Segment:

ΣFz = 0; Vz - 900 - 300 = 0 Vz = 1200 N
ΣMy = 0; Ty + 300(0.1) - 900(0.1) = 0 Ty = 60 N # m
ΣMx = 0; Mx + (900 + 300)0.3 = 0 Mx = -360 N # m

Ix =
p

4
 (0.0254 - 0.024) = 57.65625(10- 9)p m4

J =
p

2
 (0.0254 - 0.024) = 0.1153125(10- 6)p m4

(Qy )A = 0

sA =
Mxy

Ix
=

(360)(0.025)

57.65625(10- 9)p
= 49.7 MPa Ans.

[(txy)T]A =
TyrA

J
 =

60(0.025)

0.1153125(10- 6 )p
 = 4.14 MPa Ans.

[(tyz)V]A =
Vz (Qz)A

Ixt
= 0 Ans.

49.7 MPa

4.14 MPa

Chapter 9

F9–1 u = 120° sx = 500 kPa sy = 0 txy = 0
Apply Eqs. 9–1, 9–2.

sx′ = 125 kPa Ans.

tx′y′ = 217 kPa Ans.

 

x¿

y¿

30�
x

120�
125 kPa

217 kPa

F9–2 

 

x¿

x

45�

u = -45° sx = 0 sy = -400 kPa
txy = -300 kPa

Apply Eqs. 9–1, 9–3, 9–2.
sx′ = 100 kPa Ans.

sy′ = -500 kPa Ans.

tx′y′ = 200 kPa Ans.

F9–3 ux = 80 kPa sy = 0 txy = 30 kPa

Apply Eqs. 9–5, 9–4.

s1 = 90 kPa  s2 = -10 kPa Ans.

up = 18.43° and 108.43°

From Eq. 9–1,

 sx′ =
80 + 0

2
 +

80 - 0
2

 cos 2 (18.43°)

+ 30 sin 2(18.43°)

 = 90  kPa = s1 

Thus,

(up)1 = 18.4° for s1 Ans.
10 kPa

90 kPa
18.4�

F9–4 sx = 100 kPa sy = 700 kPa

txy = -400 kPa

Apply Eqs. 9–7, 9–8.

tmax
in@plane = 500 kPa Ans.

savg = 400 kPa Ans.

F9–5 At the cross section through B:
N = 4 kN V = 2 kN

M = 2(2) = 4 kN # m

sB =
P
A

 +
Mc
I

 =
4(103)

0.03(0.06)
 +

4(103)(0.03)
1
12(0.03)(0.06)3

 

= 224 MPa (T)

Note tB = 0 since Q = 0.

Thus
s1 = 224 MPa Ans.

s2 = 0

F9–6  Ay = By = 12 kN

Segment AC:

VC = 0 MC = 24 kN # m

tC = 0 (since VC = 0)

sC = 0 (since C is on neutral axis)

s1 = s2 = 0 Ans. 
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F9–7 savg =
sx + sy

2
 =

500 + 0
2

 = 250  kPa

The coordinates of the center C of the circle and 
the reference point A are

A(500, 0)  C(250, 0)

R = CA = 500 - 250 = 250 kPa

u = 120° (counterclockwise). Rotate the radial line 
CA counterclockwise 2u = 240° to the coordinates 
of point P(sx′, tx′ y′).

a = 240° - 180° = 60°

sx′  = 250 - 250 cos 60° = 125 kPa Ans.

tx′ y′ = 250 sin 60° = 217 kPa Ans.

F9–8 savg =
sx+  sy

2
 =

80 + 0
2

 = 40 kPa

The coordinates of the center C of the circle and 
the reference point A are

A(80, 30)  C(40, 0)

R = CA = 2(80 - 40)2 + 302  = 50 kPa

s1 = 40 + 50 = 90 kPa Ans.

s2 = 40 - 50 = -10 kPa Ans.

tan 2(up)1 = 
30

80 - 40
  = 0.75

(up)1 = 18.4° (counterclockwise) Ans.

F9–9  The coordinates of the reference point A and the 
center C of the circle are

A(30, 40)  C(0, 0)
R = CA = 50 MPa
s1 = 50 MPa
s2 = -50 MPa

F9–10 J = 
p

2
 (0.044 - 0.034) = 0.875(10-6)p m4

t =
Tc
J

 =
4(103)(0.04)

0.875(10- 6)p
 = 58.21 MPa

sx = sy = 0 and txy = -58.21 MPa

savg =
sx + sy

2
 = 0

The coordinates of the reference point A and the 
center C of the circle are

A(0, -58.21)  C(0, 0)

R = CA = 58.21 MPa

s1 = 0 + 58.21 = 58.2 MPa Ans.

s2 = 0 - 58.21 = -58.2 MPa Ans.

F9–11 

+ c ΣFy = 0;   V - 30 = 0     V = 30 kN

a+ ΣMO = 0;     -M - 30(0.3) = 0  M = -9 kN # m

I =
1
12

 (0.05)(0.153) = 14.0625(10- 6) m4 

Segment above A,

QA = y′A′ = 0.05(0.05)(0.05) = 0.125(10- 3) m3 

sA = -
MyA

I
 =

[-9(103)] (0.025)

14.0625(10- 6)
 = 16 MPa (T)

tA =
VQA

It
 =

30(103)[0.125(10- 3)]

 14.0625(10- 6)(0.05)
 = 5.333 MPa

sx = 16 MPa, sy = 0, and txy = -5.333 MPa

savg =
sx + sy 

2
=

16 + 0
2

= 8 MPa

The coordinates of the reference point A and the center C  
of the circle are

A (16, -5.333)  C(8, 0)

R = CA = 2(16 - 8)2 + (-5.333)2 = 9.615 MPa

s1 = 8 + 9.615 = 17.6 MPa Ans.

s2 = 8 - 9.615 = –1.61 MPa Ans.

F9–12 

a+ ΣMB = 0;      60(1) - Ay(1.5) = 0  Ay = 40 kN

+ c ΣFy = 0;   40 - V = 0      V = 40 kN

a+ ΣMO = 0;   M - 40(0.5) = 0    M = 20 kN # m

Consider large rectangle minus two side rectangles. 

I =
1
12

 (0.1)(0.23) - (2)
1
12

 (0.045)(0.183) = 22.9267(10- 6) m4 

Top rectangle,

 QA = y′A′ = 0.095(0.01)(0.1) = 95(10- 6) m3 

 sA = -  
MyA

I
 = -

[20(103)](0.09)

22.9267(10- 6)
 = -78.51 MPa

 = 78.51 MPa (C)

tA =
VQA

It
 =

40(103)[95(10- 6)]

[22.9267(10- 6)](0.01)
 = 16.57 MPa

sx = -78.51 MPa, sy = 0, and txy = -16.57 MPa

savg =
sx + sy

2
 =

-78.51 + 0
2

 = -39.26 MPa

The coordinates of the reference point A and the center C  
of the circle are

A(-78.51, -16.57) C(-39.26, 0)
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 R = CA = 2[-78.51 - (-39.26)]2 + (-16.57)2 

 = 42.61 MPa

tmax
in@plane = |R| = 42.6 MPa Ans.

Chapter 11
F11–1
At support,

Vmax = 12 kN  Mmax = 18 kN # m

I =
1
12

 (a)(2a)3 =
2
3

 a4

sallow =
Mmax c

I
 ;  10(106) = 

18(103)(a)

2
3

 a4
 

a = 0.1392 m = 139.2 mm

Use a = 140 mm Ans.

I = 
2
3

 (0.144) = 0.2561(10-3) m4

Qmax = 
0.14

2
 (0.14)(0.14) = 1.372(10-3) m3

tmax = 
V max Q max  

It
  = 

12(103)[1.372(10- 3)]

[0.2561(10- 3)](0.14)
 

= 0.459 MPa < tallow = 1 MPa (OK)

F11–2 

V max = 15 kN  M max = 20 kN # m 

I =
p

4
 ad

2
b

4

=
pd4

64
 

sallow =
M max c

I
 ; 100(106) =

[20(103)]ad
2
b

pd4

64
 

 

d = 0.12677 m = 126.77 mm
Use d = 127 mm Ans.

I =
p

64
 (0.1274) = 12.7698(10- 6) m4

Q max =
4(0.127)

3p
 c 1

2
 ap

4
 b(0.1272) d = 0.17070(10- 3) m3

t max =
V max Q max 

It
=

[15(103)][0.17070(10- 3)]

[12.7698(10- 6)](0.127)
 

= 1.58 MPa 6 tallow = 50 MPa (OK)

F11–3 
At the supports,

Vmax = 10 kN

Under 15-kN load,

Mmax = 5 kN # m

I = 
1
12

 (a)(2a)3  = 
2
3

 a4 

sallow =
Mmaxc

I
 ;  12(106) = 

5(103)(a)

2
3

 a4
 

  a = 0.0855 m = 85.5 mm

Use a = 86 mm Ans.

I = 
2
3

 (0.0864) = 36.4672(10-6) m4

Top half of rectangle,

Qmax = 
0.086

2
 (0.086)(0.086)

= 0.318028(10-3) m3

tmax =
Vmax Q max  

It
  = 

10(103)[0.318028(10- 3)]

[36.4672(10- 6)](0.086)
 

= 1.01 MPa 6 tallow = 1.5 MPa (OK)

F11–4 

V max = 25 kN M max = 12.5 kN # m

I =
1
12

 (0.1)(h3) = 8.3333(10- 3)h3

sallow =
M max c

I
 ; 15(106) =

[12.5(103)]ah
2
b

8.333 (10- 3)h3  

h = 0.2236 m
= 223.6 mm

Q max = y′ A′ =
h
4

 ah
2
b(0.1) = 0.0125 h2

t max =
V max  Q max 

It
 ; 1.5(106) =

[25(103)](0.0125 h2)

[8.3333(10- 3)h3](0.1)
 

h = 0.250 m = 250 mm (controls)

Use h = 250 mm Ans.
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F11–5 

At the supports,
Vmax = 25 kN
At the center,
Mmax = 20 kN # m

I =
1
12

 (b)(3b)3 = 2.25b4 

sallow =
Mmaxc

I
 ; 12(106) =

20(103)(1.5b)

2.25b4  

b = 0.1036 m = 103.6 mm
Use b = 104 mm Ans.

I = 2.25(0.1044) = 0.2632(10-3) m4

Top half of rectangle,

Qmax = 0.75(0.104)[1.5(0.104)(0.104)] = 1.2655(10-3) m3

tmax =
Vmax Q max  

It
 =

25(103)[1.2655(10- 3)]

[0.2632(10- 3)](0.104)
 

= 1.156 MPa 6 tallow = 1.5 MPa (OK).

F11–6 
Within the overhang,
Vmax = 150 kN

At B,
Mmax = 150 kN # m

Sreqd =
Mmax  
sallow 

  = 
150(103)

150(106)
  = 0.001 m3 = 1000(103) mm3

Select W410 × 67 [Sx = 1200(103) mm3, d = 410 mm, and   
tw = 8.76 mm]. Ans.

tmax =
V

twd
 =

150(103)

0.00876(0.41)
 

= 41.76 MPa 6  tallow = 75 MPa (OK)

Chapter 12
F12–1

Use left segment,

M(x) = 30 kN # m

EI
d2v

 dx2 = 30

EI
dv

 dx
  = 30x + C1

EIv = 15x2 + C1 x + C2

At x = 3 m, 
dv

 dx
= 0.

C1 = -90 kN # m2

At x = 3 m, v = 0.

C2 = 135 kN # m3

dv

 dx
  = 

1
EI

 (30x - 90)

v =
1

EI
 (15x2 - 90x + 135)

For end A, x = 0

uA =
dv

dx
 `

x=0
= -

90(103)

200(109)[65.0(10- 6)]
 = -0.00692 rad

 Ans.

vA = v ∙x=0  = 
135(103)

200(109)[65.0(10- 6)]
  = 0.01038 m = 10.4 mm 

 Ans.

F12–2 

Use left segment,

M(x) = (-10x - 10) kN # m

EI
d2v

 dx2  = -10x - 10

EI
dv

 dx
  = -5x2 - 10x + C1

EIv = -
5
3

 x3 - 5x2 + C1 x + C2

At x = 3 m, 
dv

 dx
  = 0.

EI(0) = -5(32) - 10(3) + C1   C1 = 75 kN # m2

At x = 3 m, v = 0.

EI(0) = -
5
3

 (33) - 5(32) + 75(3) + C2 C2 = -135 kN # m3

dv

dx
 =

1
EI

 (-5x2 - 10x + 75)

v =
1

EI
 a-

5
3

 x3 - 5x2 + 75x - 135b

For end A, x = 0

uA =
dv

dx
 `

x=0
  = 

1
EI

 [-5(0) - 10(0) + 75]

= 
75(103)

200(109)[65.0(10- 6)]
  = 0.00577 rad Ans.

vA = v ∙x=0  = 
1

EI
 c -

5
3

 (03) - 5(02) + 75(0) - 135 d

= -
135(103)

200(109)[65.0(10- 6)]
  = -0.01038 m = -10.4 mm Ans.

F12–3 

Use left segment,

M(x) = a-
3
2

 x2 - 10xb  kN # m
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EI
d2v

 dx2 = -
3
2

 x2 - 10x

EI
dv

dx
  = -

1
2

 x3 - 5x2 + C1 

At x = 3 m, 
dv

 dx
  = 0.

EI(0) = -
1
2

 (33) - 5(32) + C1    C1 = 58.5 kN # m2

dv

dx
 = 

1
EI

 a-
1
2

 x3 - 5x2 + 58.5b

For end A, x = 0

uA = 
dv

dx
 ∙x=0  = 

58.5(103)

200(109)[65.0(10- 6)]
  = 0.0045 rad Ans.

F12–4 

Ay = 3000 N

a+ ΣMO = 0;  M(x) = (3000x - 1000x2) N # m

EI
d2v

dx2  = 3000x - 1000x2

EI
dv

dx
  = 1500x2 - 333.33x3 + C1

EIv = 500x3 - 83.333x4 + C1x + C2

At x = 0, v = 0.

EI(0) = 500(03) - 83.333(04) + C1(0) + C2  C2 = 0

At x = 3 m, v = 0.

EI(0) = 500(33) - 83.333(34) + C1(3)

C1 = -2250 N # m2

dv

dx
 = 

1
EI

 (1500x2 - 333.33x3 - 2250)

v =
1

EI
 (500x3 - 83.333x4 - 2250x)

vmax  occurs where 
dv

 dx
  = 0.

1500x2 - 333.33x3 - 2250 = 0

x = 1.5 m  Ans.

v =
1

EI
 [500(1.53) - 83.333(1.54) - 2250(1.5)] 

=
-2109.375

10(109) c 1
12

 (0.060)(0.1253) d
= -0.0216 m

= 21.6 mmT  Ans.

F12–5 

Ay = -5 kN

Use left segment,

M(x) = (40 - 5x) kN # m

EI
d2v

 dx2  = 40 - 5x

EI
dv

dx
  = 40x - 2.5x2 + C1

EIv = 20x2 - 0.8333x3 + C1x + C2

At x = 0, v = 0.

EI(0) = 20(02) - 0.8333(03) + C1(0) + C2   C2 = 0

At x = 6 m, v = 0.

EI(0) = 20(62) - 0.8333(63) + C1(6) + 0

C1 = -90 kN # m2

dv

 dx
  = 

1
EI

 (40x - 2.5x2 - 90)

v =
1

EI
 (20x2 - 0.8333x3 - 90x)

vmax  occurs where 
dv

 dx
  = 0.

40x - 2.5x2 - 90 = 0

x = 2.7085 m

v =
1

EI
 [20(2.70852) - 0.83333(2.70853) - 90(2.7085)]

= -
113.60(103)

200(109)[39.9(10- 6)]
  = -0.01424 m = -14.2 mm Ans.

F12–6 

Ay = 10 kN

Use left segment,

M(x) = (10x + 10) kN # m

EI
d2v

 dx2  = 10x + 10

EI
dv

dx
  = 5x2 + 10x + C1

Due to symmetry, 
dv

dx
= 0 at x = 3 m.

EI(0) = 5(32) + 10(3) + C1  C1 = -75 kN # m2

dv

 dx
  = 

1
EI

 [5x2 + 10x - 75]

At x = 0,

dv

dx
  = 

-75(103)

200(109)(39.9(10- 6))
 = -9.40(10- 3) rad Ans.
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F12–7 

Since B is a fixed support, uB = 0.

uA = |uA>B| = 
1
2

 a 38
EI

 +
20
EI

 b(3) = 
87 kN # m2 

EI
 

= 
87(103)

200(109)[65(10- 6)]
  = 0.00669 rad A Ans.

vA = |tA>B| = (1.5) c 20
EI

 (3) d + 2 c 1
2

 a 18
EI

b(3) d

= 
144(103)

200(109)[65(10- 6 )]
  = 0.01108 m = 11.1 mm T  Ans.

F12–8 

Since B is a fixed support, uB = 0.

uA = |uA>B| = 
1
2

 a 50
EI

 +
20
EI

b(1) +
1
2

 a 20
EI

b(1) = 
45 kN # m2 

EI
 

= 
45(103)

200(109)[126(10- 6)]
  = 0.00179 rad A Ans.

vA = |tA>B| =

(1.6667) c
1
2

 a 30
EI

 b(1) d + 1.5 c 20
EI

 (1) d + 0.6667 c 1
2

 a 20
EI

 b(1) d

= 
61.667 kN # m3 

EI
  = 

61.667(103)

200(109)[126(10- 6)]
 

= 0.002447 m = 2.48 mm T  Ans.

F12–9 

Since B is a fixed support, uB = 0.

uA = |uA>B| = 
1
2

 c 60
EI

 (1) d +
30
EI

 (2) = 
90  kN # m2

EI

= 
90(103)

200(109)[121(10- 6)]
  = 0.00372 rad A Ans.

vA = |tA>B| = 1.6667c
1
2

 a
60
EI

b(1)d + (1)c
30
EI

 (2)d

= 
110  kN # m3

EI
 

= 
110(103)

200(109)[121(10- 6)]
  = 0.004545 m = 4.55 mm T  Ans.

F12–10 

Since B is a fixed support, uB = 0.

uA = ∙ uA>B ∙ =
1
2

 a 20
EI

b(2) +
1
3

 a 10
EI

b(1) =
23.333 kN # m2

EI
 

=
23.333(103)

200(109)[10(10- 6)]
= 0.0117 rad Ans.

∆A = ∙ tA>B ∙ =
4
3

 c 1
2

 a 20
EI

b(2) d + (1 + 0.75) c 1
3

 a 10
EI

b(1) d

=
32.5 kN # m3

EI
=

32.5(103)

200(109)[10(10- 6)]
= 0.01625 mT

= 16.25 mmT  Ans.

F12–11 

Due to symmetry, the slope at the midspan of the beam 
(point C) is zero, i.e., uC = 0.

vmax = vC = |t A>C | = (2) c 1
2

 a 30
EI

 b(3) d + 1.5 c 10
EI

 (3) d

= 
135 kN # m3 

EI
 

= 
135(103)

200(109)[42.8(10- 6)]
  = 0.0158 m = 15.8 mm T  Ans.

F12–12 

tA>B = 2 c
1
2

 a 30
EI

 b(6) d + 3 c 10
EI

 (6) d  = 
360
EI

 

uB = 
∙ tA>B ∙

L
  = 

360
EI
6

  = 
60
EI

 

The maximum deflection occurs at point C where the slope 
of the elastic curve is zero.

uB = uB>C 

60
EI

  = a 10
EI

bx +
1
2

 a 5x
EI

bx

2.5x2 + 10x - 60 = 0

x = 3.2915 m

vmax = |tB>C | =

2
3

 (3.2915)e
1
2

 c
5(3.2915)

EI
 d(3.2915)f +

1
2

 (3.2915)c
10
EI

 (3.2915)d

= 
113.60  kN # m3 

EI
 

= 
113.60(103 )

200(109)[39.9(10- 6)]
  = 0.01424 m = 14.2 mm T  Ans.

F12–13 

Remove By,

(vB)1 =
Px2

6EI
 (3L - x) = 

40(42)

6EI
 [3(6) - 4] = 

1493.33
EI

 T

Apply By,

(vB)2 =
PL3

3EI
 = 

By(43)

3EI
 = 

21.33By

EI
 c

(+ c) vB = 0 = (vB)1 + (vB)2
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0 = -
1493.33

EI
+

21.33By

EI
By = 70 kN Ans.

For the beam,

S + ΣFx = 0; Ax = 0 Ans.

+ c ΣFy = 0; 70 - 40 - Ay = 0  Ay = 30 kN Ans.

a+ ΣMA = 0; 70(4) - 40(6) - MA = 0

MA = 40 kN # m Ans.

F12–14 

Remove By,

To use the deflection tables, consider loading as a superposition 
of uniform distributed load minus a triangular load.

(vB)1 =
w0 L

4

8EI
T   (vB)2 =

w0 L
4

30EI
c

Apply By,

(+c) (vB)3 =
By L

3

3EI
c  vB = 0 = (vB)1 + (vB)2 + (vB)3 

 0 = -
w0 L

4

8EI
+

w0 L
4

30EI
+

By L
3

3EI

 By =
11w0 L

40
 Ans.

For the beam,

S + ΣFx = 0;   Ax = 0 Ans.

+ c ΣFy = 0;   Ay + 
11w0 L

40
 -

1
2

 w0 L = 0

         Ay = 
9w0 L

40
  Ans.

a+ ΣMA = 0;  MA +
11w0 L

40
 (L) -

1
2

 w0 La
2
3

 Lb  = 0

         MA = 
7w0 L

2

120
 Ans.

F12–15 

Remove By,

(vB)1 =
wL4

8EI
 = 

[10(103)](64)

8[200(109)][65.0(10- 6)]
  = 0.12461 m T

Apply By,

(vB)2 =
By L

3

3EI
 = 

By (63)

3[200(109)][65.0(10- 6)]
  = 5.5385(10-6)By c

(+T)  vB = (vB)1 + (vB)2

0.002 = 0.12461 - 5.5385(10-6)By

By = 22.314(103) N = 22.1 kN Ans.

For the beam,

S + ΣFx = 0;   Ax = 0 Ans.

+ c ΣFy = 0;   Ay + 22.14 - 10(6) = 0   Ay = 37.9 kN

 Ans.
a+ ΣMA = 0;      MA + 22.14(6) - 10(6)(3) = 0

        MA = 47.2 kN # m Ans.

F12–16  

Remove By,

(vB)1 =
MOL

6EI(2L)
 [(2L)2 - L2] = 

MO L2

4EI
 T

Apply By,

(vB)2 =
By (2L)3

48EI
 = 

By L
3

6EI
  c

(+c)   vB = 0 = (vB)1 + (vB)2

  0 = -
MO L2

4EI
+

By L
3

6EI

  By = 
3MO

2L
  Ans.

F12–17 

Remove By,

(vB)1 = 
Pbx

6EIL
 (L2 - b2 - x2) = 

50(4)(6)

6EI(12)
 (122 - 42 - 62)

= 
1533.3 kN # m3

EI
 T

Apply By,

(vB)2  = 
By L

3

48EI
  = 

By (123)

48EI
  = 

36By

EI
  c

(+c)   vB = 0 = (vB)1 + (vB)2

0 = -
1533.3 kN # m3

EI
+

36By

EI
  By = 42.6 kN Ans.

F12–18 

Remove By,

(vB)1 = 
5wL4

384EI
  = 

5[10(103)](124)

384[200(109)][65.0(10- 6)]
  = 0.20769 T

Apply By,

(vB)2 =
By L

3

48EI
 =

By (123)

48[200(109)][65.0(10- 6)]
 

= 2.7692(10-6)By c
(+c)   vB = (vB)1 + (vB)2

-0.005 = -0.20769 + 2.7692(10-6)By

By = 73.19(103) N = 73.2 kN Ans.
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Chapter 13
F13–1 

P =
p2EI

(KL)2 =
p23200(109)4 cp

4
 (0.01254) d

[0.5(1.25)]2 = 96.89(103) N

 Ans.

s =
P
A

=
96.89(103)

p(0.01252)
= 197.39(106) N>m2

= 197.39 MPa 6 sY OK

F13–2 

P =
p2EI

(KL)2 =
p2312(109)4 3 1

12 (0.1)(0.053)4
[1(3.6)]2 = 9.519(103) N

= 9.52 kN Ans.

F13–3 

For buckling about the x axis, Kx = 1 and Lx = 12 m.

Pcr = 
p2 EIx

(Kx Lx)
2 = 

p2 [200(109)][87.3(10- 6)]

[1(12)]2   = 1.197(106) N

For buckling about the y axis, Ky = 1 and Ly = 6 m.

Pcr = 
p2 EIy

(Ky Ly)
2  = 

p2 [200(109)][18.8(10- 6)]

[1(6)]2  

= 1.031(106) N (controls)

Pallow = 
Pcr

F.S.
  = 

1.031(106)

2
  = 515 kN Ans.

scr = 
Pcr

A
  = 

1.031(106)

7.4(10- 3)
  = 139.30 MPa < sY = 345 MPa (OK)

F13–4 

A = p[(0.025)2 - (0.015)2] = 1.257(10-3) m2

I = 
1
4

 p3(0.025)4 - (0.015)44  = 267.04(10-9) m4

P = 
p2 EI

(KL)2  = 
p2 3200(109)43267.04(10- 9)4

[0.5(5)]2   = 84.3 kN Ans.

s = 
P
A

  = 
84.3(103)

1.257(10- 3)
 = 67.1 MPa < 250 MPa (OK)

F13–5 

+ c ΣFy = 0;  FABa
3
5
b - P = 0  FAB = 1.6667P (T)

S + ΣFx = 0;  1.6667Pa4
5
b - FAC = 0

FAC = 1.3333P (C)

A =
p

4
 (0.052) = 0.625(10- 3)p m2 I =

p

4
 (0.0254)

= 0.30680(10- 6) m4

Pcr = FAC(F.S.) = [1.3333P](2) = 2.6667P

Pcr =
p2EI

(KL)2 

2.6667P =
p2[200(109)][0.30680(10- 6)]

[1(1.2)]2  

P = 157.71(103) N = 158 kN Ans.

scr =
Pcr

A
=

2.6667[157.71(103)]

0.625(10- 3)p
= 214.18(106) N>m2

= 214.18 MPa 6 sY = 250 MPa  (OK)

F13–6 

Beam AB,

a+ ΣMA = 0;  w(6)(3) - FBC(6) = 0  FBC = 3w

Strut BC,

ABC = 
p

4
 (0.052) = 0.625(10-3)p m2  I = 

p

4
 (0.0254)

= 97.65625(10-9)p m4

Pcr = FBC(F.S.) = 3w(2) = 6w

Pcr = 
p2 EI

(KL)2 

6w = 
p2 [200(109)][97.65625(10- 9)p]

[1(3)]2  

w = 11.215(103) N>m = 11.2 kN>m Ans.

scr = 
Pcr

A
  = 

6[11.215(103)]

0.625(10- 3)p
  = 34.27 MPa < sY = 345 MPa

 (OK)



Selected Answers
Chapter 1

1–1. NA = 77.3 N, VA = 20.7 N, MA = -0.555 N # m
1–2. ND = 0.703 kN, VD = 0.3125 kN,
 MD = 0.3125 kN # m
1–3. NF = 1.17 kN, VF = 0, MF = 0, NE = 0.703 kN,
 VE = -0.3125 kN, ME = 0.3125 kN # m
1–5. ND = 0, VD = 4.17 kN,
 MD = 25.0 kN # m, NE = 0, VE = -48.3 kN,
 ME = -50.0 kN # m
1–6. NE = 0, VE = -900 N, ME = -2.70 kN # m
1–7. Na = 2000 N, Va = 0,
 Nb = 1732 N, Vb = 1000 N
1–9. NH = -2.71 kN, VH = -20.6 kN,
 MH = -4.12 kN # m
1–10. Nc = 0, VC = 2.75 kN, MC = 7.875 kN # m
1–11. ND = 0, VD = -3.25 kN, MD = 5.625 kN # m
1–13. Nb-b = -86.6 N, Vb-b = 50 N, Mb-b = -15 N # m
1–14. NA = 0, VA =  2.175 kN, MA = -1.65 kN # m,
 NB =  0, VB =  3.975 kN, MB = -9.03 kN # m,
 VC = 0, NC = -5.55 kN, MC = -11.6 kN # m
1–15. FBC = 1.39 kN, FA = 1.49 kN, ND = 120 N,
 VD = 0, MD = 36.0 N # m
1–17. Na-a = 779 N, Va-a = 450 N,
 Ma-a = 180 N # m
1–18. (VB)x = 7.50 kN, (VB)y = 0, (NB)z = 0,
 (MB)x = 0
 (MB)y = 56.25 kN # m
 (TB)z = 3.75 kN # m
1–19. NC = -2.94 kN, VC = 2.94 kN, MC = -1.47 kN # m
1–21. VC = 60 N, NC = 0, MC = 0.9 N # m
1–22. VD = 17.3 N, ND = 10 N, MD = 1.60 N # m
1–23. (NC)x = 0, (VC)y = -246 N, (VC)z = -171 N,
 (TC)x = 0, (MC)y = -154 N # m,
 (MC)z = -123 N # m
1–25. (ND)x = 0, (VD)y = 154 N, (VD)z = -171 N,
 (TD)x = 0, (MD)y = -94.3 N # m,
 (MD)z = -149 N # m
1–26. NC = -18.2 N, VC = 10.5 N, MC = -9.46 N # m
1–27. (VB)x = -300 N, (NB)y = -800 N, (VB)z = 771 N,
 (MB)x = 2.11 kN # m, (TB)y = -600 N # m,
 (MB)z = 600 N # m
1–29. VB = 0.785 wr, NB = 0, TB = 0.0783 wr 2,
 MB = -0.293 wr 2

1–31. savg =
P
A

 sin2u, tavg =
P

2A
 sin 2u 

1–33. F = 1.41 kN
1–34. tavg = 509 kPa
1–35. w = 16.0 kN>m
1–37. tB = tC = 81.9 MPa, tA = 88.1 MPa
1–38. P = 4.54 kN

863

1–39.  (savg)BC = 159 MPa, (savg)AC = 95.5 MPa, 
(savg)AB = 127 MPa

1–41. (tavg)A = 50.9 MPa
1–42. x = 100 mm, y = 100 mm, s = 66.7 kPa
1–43. P = 40 MN, d = 2.40 m
1–45. sa-a = 90.0 kPa, ta-a = 52.0 kPa
1–46. s = (238 -  22.6z) kPa
1–47. tB = tC = 324 MPa, tA = 324 MPa
1–49. sAB = 333 MPa, sCD = 250 MPa
1–50. d = 1.20 m

1–51. s =
mv2

8A
 (L2 -  4x2)

1–53. w = w1e
(w2

1g)z>(2P)

1–54. sAB = 127 MPa, sAC = 129 MPa
1–55. dAB = 11.9 mm
1–57. s = {46.9 - 7.50x2} MPa
1–58. s = {43.75 - 22.5x} MPa
1–59. s = 4.69 MPa, t = 8.12 MPa
1–61. s = (32.5 -  20.0x) MPa

1–62. s =
w0

2aA
 (2a2 -  x2)

1–63. s =  
w0

2aA
 (2a - x)2

1–65. P = 62.5 kN
1–66.

 

Joint A: sAB = 85.5 MPa (T),
        sAE = 68.4 MPa (C)
Joint E: sED = 68.4 MPa (C),
      sEB = 38.5 MPa (T)
Joint B: sBC = 188 MPa (T),
       sBD = 150 MPa (C)

1–67. P = 29.8 kN
1–69. P = 14.3 kN
1–70. h = 75 mm
1–71. d = 5.71 mm
1–73. d = 13.8 mm, t = 7.00 mm
1–74. A = 25.9 mm2

1–75. dAB = 4.81 mm, dAC = 5.22 mm
1–77. FH = 20.0 kN, FBF = FAG = 15.0 kN,
 dEF = dCG = 11.3 mm
1–78. dB = 7.08 mm, dC = 6.29 mm
1–79. (F.S.)B = 2.24, (F.S.)C = 2.13
1–81. (F.S.)st = 2.14, (F.S.)con = 3.53
1–82. F = 13.7 kN
1–83. t = 25.4 mm, b = 88.0 mm
1–85. P = 55.0 kN
1–86. t = 5.33 mm, b = 24.0 mm, a = 4.31 mm
1–87. (F.S.)rod = 3.32 
 (F.S.)pinB = 1.96
 (F.S.)pinA = 2.72
1–89. dB = 6.11 mm, dw = 15.4 mm
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1–90. dAB = 15.5 mm, dAC = 13.0 mm
1–91. P = 7.54 kN
1–93. h = 52.1 mm
1–94. dAB = 6.90 mm, dCD = 6.20 mm
1–95. aA′ = 130 mm, aB′ = 300 mm
R1–1. tavg = 79.6 MPa
R1–2. Use t = 6 mm, Use dA = 28 mm, Use dB = 20 mm
R1–3. ss = 208 MPa, (tavg)a = 4.72 MPa,
 (tavg)b = 45.5 MPa
R1–5. tavg = 25.5 MPa, sb = 4.72 MPa
R1–6. sa-a = 200 kPa, ta-a = 115 kPa
R1–7. s40 = 3.98 MPa, s30 = 7.07 MPa,

 tavg = 5.09 MPa

Chapter 2
2–1. P = 0.167 mm>mm
2–2. P = 0.0472 mm>mm
2–3. PCE = 0.00250 mm>mm, PBD = 0.00107 mm>mm
2–5. (Pavg)AC = 6.04(10- 3) mm>mm
2–6. PAB = 0.0343

2–7. PAB =
0.5∆L

L
 

2–9. (gA)xy = -0.0262 rad, (gB)xy = -0.205 rad 
 (gC)xy = -0.205 rad, (gD)xy = -0.0262 rad
2–10. PAB = 0.00418 mm>mm 
2–11. ∆B = 6.68 mm
2–13. (gxy)C = 25.5(10- 3) rad, (gxy)D = 18.1(10- 3) rad
2–14. (Px)A = 0, (Py)A = 1.80(10- 3) mm>mm,   
 (gxy)A = 0.0599 rad, PBE = -0.0198 mm>mm
2–15. PAD = 0.0566 mm>mm, PCF = -0.0255 mm>mm
2–17. P = 2kx
2–18. PAB = 38.1(10- 3) mm
2–19. g = -0.197 rad
2–21. (Pavg)AC = 0.0168 mm>mm, (gA)xy = 0.0116 rad
2–22. (gxy)A = 0.206 rad, (gxy)B = -0.206 rad
2–23. (gB)xy = 11.6(10-3) rad, (gA)xy = 11.6(10-3) rad
2–25. PAC = 1.60(10-3) mm>mm, PDB = 12.8(10-3) mm>mm
2–26. Pavg = 0.0689 mm>mm
2–27. gxy = 0.00880 rad
2–29. Px′ = 0.00884 mm>mm
2–30. Pavg = 0.479 m>m
2–31. (Pavg)BD = 1.60(10- 3) mm>mm,
 (gB)xy = 0.0148 rad

2–33. PAB =
vB sin u

L
-

uA cos u
L

 

Chapter 3
3–1. (sult)approx = 770 MPa, (sR)approx = 652 MPa,
 (sY)approx = 385 MPa, Eapprox = 224 GPa
3–2. E = 387 GPa, ur = 69.7 kJ>m3

3–3. (ui)t = 595 kJ>m3

3–5. Elastic Recovery = 0.0883 mm
 ∆L = 3.91 mm
3–6. (ui)r = 141.5 kJ>m3, [(Ui)ult]approx = 128 MJ>m3

3–7. E = 76.6 GPa
3–9.  E = 0.0385 MPa, (ui)r = 77.0 kJ>m3, 

(ui)t = 135 kJ>m3

3–10. A = 150 mm2, P = 7.50 kN
3–11. spl = 308 MPa, sY = 420 MPa, E = 77.0 GPa
3–13. E = 229 GPa
3–14. dBD = 1.70 mm
3–15. P = 2.37 kN
3–17. a = 0.708°
3–18. P = 11.3 kN
3–19. sYS = 2.03 MPa
3–21. P = 75.8 kN
3–22. ABC = 463 mm2, AAB = 121 mm2

3–23. n = 1.00, k = -4.78(10- 12)
3–25. d = 0.126 mm, ∆d = -0.00377 mm
3–26. p = 741 kPa, d = 7.41 mm
3–27. v = 0.350
3–29. g = 0.250 rad
3–30. g = 3.44(10- 3) rad
3–31. gP = 0.0318 rad
3–33. d = 0.833 mm

3–34. d =
Pa

2bhG
 

R3–1. Gal = 27.0 GPa
R3–2. d= = 12.4804 mm
R3–3. x = 1.53 m, d′A = 30.008 mm
R3–5. dBC = 0.933 mm, dd = -9.55(10- 3) mm
R3–6. e = 1.02(10- 3) mm>mm, eunscr = 0
R3–7. 254.167 mm
R3–9. Pb = 0.00227 mm>mm, Ps = 0.000884 mm>mm
R3–10. G = 5 MPa

Chapter 4
4–1. dB = 2.31 mm, dA = 2.64 mm
4–2. dA>D = 3.46 mm away from end D.
4–3. sAB = 155 MPa (T), sBC = 299 MPa (C),
 sCD = 179 MPa (C), dA>D = 0.0726 mm
 towards end D.
4–5. dA>E = 0.697 mm
4–6. sA = 95.6 MPa, sB = 69.3 MPa, 
 sC = 22.5 MPa, dD = 0.895 m
4–7. dC = 0.0975 mm S
4–9. dF = 0.453 mm
4–10. P = 4.97 kN
4–11. dI = 0.736 mm
4–13. dtot = 33.9 mm
4–14. W = 9.69 kN
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4–67. FAB = 12.0 kN (T), FAC = FAD = 6.00 kN (C)
4–69. F = 4.20 kN
4–70. ss = 40.1 MPa, sb = 29.5 MPa
4–71. sAB = 45.3 MPa, sCD = 65.2 MPa
4–73. s = 134 MPa
4–74. F = 18.6 kN
4–75. d = 8.64 mm, F = 76.8 kN

4–77. F =
aAE

2
 (TB - TA)

4–78. s = 180 MPa
4–79. s = 105 MPa
4–81. F = 904 N
4–82. T2 = 244°C
4–83. sA = sB = 24.7 MPa, sC = 30.6 MPa
4–85. FAB = FEF = 1.85 kN

4–86. d = c
2E2 + E1

3(E2 + E1)
dw

4–87. s max = 168 MPa
4–89. P = 49.1 kN
4–90. P = 77.1 kN, d = 0.429 mm
4–91. P = 5.40 kN
4–93. w = 71.5 mm
4–94. P = 73.5 kN, K = 1.29
4–95. P = 19 kN, K = 1.26
4–97. FAB = 3.14 kN, FCD = 2.72 kN,
 dCD = 0.324 mm, dAB = 0.649 mm
4–98. (a) Fst = 444 N, Fal = 156 N
 (b) Fst = 480 N, Fal = 240 N
4–99. Fst = 444 N, Fal = 156 N, Fst = 480 N, Fal = 240 N
4–101. w = 159 kN>m
4–102. (a) P = 2.62 kN, (b) P = 3.14 kN
4–103. sst = 250 MPa, sal = 171 MPa
4–105. FCF = 123 kN, FBE = 91.8 kN, FAD = 15.4 kN
4–106. (sCF)r = 17.7 MPa (C), (sBE)r = 53.2 MPa (T)
 (sAD)r = 35.5 MPa (C)
4–107. (a) dD = 9.06 mm, (b) dD = 111 mm
4–109. P = 92.8 kN, P = 181 kN
4–110. dB = 17.8 mm
R4–1. sb = 33.5 MPa, sr = 16.8 MPa
R4–2. T = 507°C
R4–3. FAB = FAC = FAD = 58.9 kN (C)
R4–5. When P = 568.75 kN, FA = 43.75 kN and
 FC = 525 kN; when P = 656.25 kN,
 FA = 131.25 kN and FC = 525 kN
R4–6. FB = 8.53 kN, FA = 8.61 kN
R4–7. P = 19.8 kN
R4–9. dA>B = 0.491 mm

Chapter 5
5–1. r′ = 0.841 r
5–2. r′ = 0.707 r

4–15. dA>D = 0.129 mm,
 h′ = 49.9988 mm, w′ = 59.9986 mm

4–17. d =
gL 2

2E
+

PL
AE

 

4–18. dF = 0.340 mm
4–19. u = 0.0106°
4–21. F = 8.00 kN, dA>B = -0.311 mm
4–22. F = 4.00 kN, dA>B = -0.259 mm
4–23. dD = 17.3 mm
4–25. d = 2.37 mm

4–26. d =
2.63P
prE

 

4–27. (dA)v = 0.732 mm T
4–29. dA = 0.920 mm

4–30. d =
Ph

Et(d2 - d1)
 c  ln 

d2

d1
 d

4–31. sst = 24.3 MPa, scon = 3.53 MPa
4–33. sal = 27.5 MPa, sst = 79.9 MPa
4–34. sbr = 2.79 MPa, sst = 5.34 MPa
4–35. d = 58.9 mm
4–37. P = 126 kN
4–38. sst = 102 MPa, sbr = 50.9 MPa
4–39. scon = 12.1 MPa, sst = 83.2 MPa

4–41. FC =
9
17

 P, FA =
8
17

 P

4–42. FC = c
9(8ka + pd2E)

136ka + 18pd2E
 dP,

 FA = a 64ka + 9pd2E

136ka + 18pd2E
 bP

4–43. FA = 20.5 kN, FB = 14.5 kN
4–45. TCD = 136 kN, TCB = 45.3 kN
4–46. ∆u = 0.902°

4–47. sm =
Em

nAf Ef + AmEm
 P, sf =

Ef

nAf Ef + AmEm
 P

4–49. FD = 20.4 kN, FA = 180 kN
4–50. P = 198 kN
4–51. sAB = sCD = 26.5 MPa, sEF = 33.8 MPa
4–53. FD = 71.4 kN, FC = 329 kN
4–54. FD = 219 kN, FC = 181 kN
4–55. sBE = 96.3 MPa, sAD = 79.6 MPa,
 sCF = 113 MPa
4–57. dAC = 1.79 mm
4–58. FB = 16.9 kN, FA = 16.9 kN
4–59. dsp = 0.0390 mm
4–61. u = 690°
4–62. FA = FB = 25.6 kN
4–63. dA = dB = 4.42 mm

4–65. A′1 = a
E 1

E2
bA1

4–66. A′2 = a
E 2

E 1
bA 2
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 f(x) = 5 -0.01086x2 +   
 0.02173 x -  0.0040746  rad
5–59. Use d = 22 mm, fA>D = 2.54°  
5–61. t max = 9.12 MPa, fE>B = 0.585°
5–62. t max = 14.6 MPa, fB>E = 1.11°
5–63. fA = 1.57°  
5–65. fA = 2.09°
5–66. k = 1.20(106) N>m2, f = 3.56°
5–67. k = 12.3(103) N>m2>3, f = 2.97°
5–69. dt = 201 mm, f = 3.30°
5–70. fC = 0.132°
5–71. t = 7.53 mm
5–73. fF>E = 0.999 (10)- 3 rad, fF>D = 0.999 (10)- 3 rad,
 t max = 3.12 MPa

5–74. f =
t0L 2

p c4 G
5–75. fA = 0.432°  
5–77. (tAC) max = 92.9 MPa
5–78. (tAC) max = 14.3 MPa, (tCB) max = 9.55 MPa 
5–79. t

max abs = 9.77 MPa

5–81. T = 4.34 kN # m, fA = 2.58°
5–82. (tst)max = 86.5 MPa, (tmg)max = 41.5 MPa,
 (tmg) ƒ  r=0.02 m = 20.8 MPa
5–83. d = 42.7 mm
5–85. fC = 0.142°
 (tst)max = 3.15 MPa,
 (gst)max = 42.0(10- 6) rad,
 (tbr)max = 0.799 MPa,
 (gbr)max = 21.0(10- 6) rad
5–86. (t max)abs = 109 MPa
5–87. fB = 1.24°  
5–89. TB = 222 N # m, TA = 55.6 N # m
5–90. fE = 1.66°
5–91. (tBD)max = 67.9 MPa,
 (tAC)max = 34.0 MPa

5–93. TB =
37
189

 T, TA =
152
189

 T

5–94. TB =
7t0L

12
 , TA =

3t0L

4
5–95. t max = 56.9 MPa, f = 2.31°
5–97. (tBC)max = 0.955 MPa, (tAC)max = 1.59 MPa, 
 fB>A = 0.207°
5–98. (tBC)max = 0.955 MPa, (tAC)max = 1.59 MPa, 
 fB>C = 0.0643°
5–99. (t max)C = 3.26 MPa, (t max)e = 9.05 MPa, 
 % more efficient = 178,
5–101. T = 0.0820 N # m, f = 25.5 rad
5–102. T = 8.73 kN # m
5–103. (t max)AB = 25.7 MPa, (t max)BC = 12.8 MPa
5–105. Use a = 47 mm, fB = 0.897°
5–106. a = 28.9 mm

5–3. T = 19.6 kN # m, T′ = 13.4 kN # m
5–5. tB = 6.79 MPa, tA = 7.42 MPa
5–6. t

max abs = 75.5 MPa

5–7. t max = 26.7 MPa
5–9. (T1)max = 2.37 kN # m, (t max)CD = 35.6 MPa,
 (t max)DE = 23.3 MPa
5–10. t

max abs = 44.8 MPa

5–11. t
max abs = 28.3 MPa for 1.0 m 6 x 6 1.2 m,

 t
min abs = 0 at x = 0.700 m

5–13. tAB = 62.5 MPa, tBC = 18.9 MPa
5–14. Use d = 40 mm
5–15. tA = 9.43 MPa, tB = 14.1 MPa
5–17. d = 34.4 mm
5–18. T′ = 125 N # m, (tAB) max = 9.43 MPa,  
 (tCD)max = 14.8 MPa
5–19. (tEA)max = 5.66 MPa, (tCD)max = 8.91 MPa
5–21. ti = 34.5 MPa, to = 43.1 MPa
5–22. (tAB)max = 23.9 MPa, (tBC)max = 15.9 MPa
5–23. d = 30 mm
5–25. t max = 52.8 MPa
5–26. (t max)CF = 12.5 MPa, (t max)BC = 7.26 MPa
5–27. t

max abs = 12.5 MPa

5–29. t = 3.00 mm
5–30. t max = 48.6 MPa
5–31. dA = 12.4 mm, dB = 16.8 mm
5–33. (tAB)max = 1.04 MPa, (tBC)max = 3.11 MPa
5–34. c = (2.98 x) mm
5–35. Use d = 20 mm
5–37. Use d = 25 mm
5–38. v = 21.7 rad>s
5–39. P = 12.7 kW
5–41. (t max)AB = 41.4 MPa, (t max)BC = 82.8 MPa
5–42. P = 308 N

5–43. t max =
2TL 3

p[rA(L - x) + rBx]3

5–45. t = 2.28 mm
5–46. v = 17.7 rad>s
5–47. t max = 44.3 MPa, f = 11.9°
5–49. t

max abs = 10.2 MPa

5–50. T = 5.09 kN # m, fA>C = 3.53°
5–51. T = 4.96 kN # m (controls)
5–53. T max = 20.8 MPa, f = 4.77°
5–54. t

max abs = 24.3 MPa, fD>A = 0.929°
5–55. fB>D = 1.34°
5–57. t max = 64.0 MPa
5–58. t

max abs = 20.4 MPa,

 For 0 … x 6 0.5 m,
 f(x) = 50.005432 (x2 + x)6  rad
 For 0.5 m 6 x … 1 m,



 Selected AnSwerS 867

 x = 3.9 m, V = 48.2 kN
 x = 2.4 m, M = -3.60 kN # m, x = 3 m 
 M = -16.0 kN
 x = 3.9 m, M = 29.6 kN # m

6–3. x = 0, V = 12 kN,
 x = 1.5 m, V = 0, x = 4m- , V = -20 kN-, 
 x = 4 m+ , V = 16 kN, x = 1.5 m, M = 9 kN # m,
 x = 4 m, M = -16 kN # m
6–5. x = 4 m-, V = 1 kN, x = 4 m+ , V = -3 kN,
 x = 2 m-1, M = 2 kN # m,  x = 2 m+, 
 M = 4 kN # m, x = 4 m,  M = 6 kN # m

6–6. V = 15.6 N, M = e15.6x + 100 f  N # m

6–7. For 0 … x 6
L
2

,  V =
w0L

24
, M =

w0L

24
 x,

 For 
L
2

 6 x … L:  V =
w0

24L
 cL2 - 6(2x - L)2 d , 

 M =
w0

24L
 cL2x - (2x - L)3 d

 

M

x

x

V

0 0.5 L

0.5 L 0.704 L L

0.704 L L

5
24

w0L

0.0208 w0L
2 0.0265 w0L

2

�

w0L

24

6–9. T1 = 1125 N, T2 = 900 N

M (N m)

x (m)

x (m)

V (N)

67.5

255

900

0.375

0.375

0.3

0.3

5–107. tavg = 1.25 MPa
5–109. tavg = 21.4 MPa
5–110. t max = 24.6 MPa, fA>C = 2.80°
5–111. TB = 48 N # m,
 TA = 72 N # m,
 fC = 0.104°
5–113. T = 2.52 kN # m
5–114. Percent reduction in strength = 25,
5–115. b = 19.7 mm
5–117. tavg = 1.19 MPa
5–118. a = 12.7 mm
5–119. (tavg)A = (tavg)B = 357 kPa
5–121. T = 20.1 N # m
5–122. (t max)CD = 97.8 MPa
5–123. (t max)f = 50.6 MPa
5–125. P = 250 kW
5–126. TY = 1.26 kN # m, f = 3.58°, f′ = 4.86°
5–127. TP = 0.105 N # m
5–129. T = 20.8 kN # m, f = 34.4°, (tr) max = 56.7 MPa,
 fr = 12.2°
5–130. T = 18.8 kN # m
5–131. T = 3.55 kN # m,
 TP = 3.67 kN # m,
5–133. TC = 9.30 kN # m, TA = 5.70 kN # m
5–134. TP = 34.3 kN # m, fr = 5.24°, (tr)o = 15.3 MPa,
 (tr)i = -17.3 MPa
5–135. (tr)c = 28.9 MPa, (tr)ry = -13.2 MPa
5–137. TP = 71.8 kN # m, fr = 7.47°
5–138. T = 148 kN # m
5–139. TP = 11.6 kN # m, f = 3.82°
5–141. T = 3.27 kN # m, f = 68.8°
5–142. t2 = 4(109)r + 25(106),
 T = 3.27 kN # m,
 f = 34.4°
5–143. T = 176 N # m
R5–1. Use d = 26 mm, fA>C = 2.11°
R5–2. Use d = 28 mm
R5–3. t = 88.3 MPa, f = 4.50°
R5–5. The circular shaft will resist the largest torque.
 For the square shaft: 73.7%,
 For the triangular shaft: 62.2%
R5–6. (t max)AB = 31.5 MPa, (t max)BC = 90.8 MPa
R5–7. P = 19.8 kN
R5–9. P = 1.10 kW, t max = 825 kPa

Chapter 6
6–1. x = 0.25 m- , V = -24 kN, x = 0.25 m+ , 
 V = 7.50 kN, x = 0.25 m, M = -6 kN # m

6–2. Ax = 0, Ay = 48.2 kN, MA = 29.6 kN # m
 x = 2.4 m-, V = -4.50 kN, x = 2.4 m+ 
 V = -19.5 kN,
 x = 3 m-, V = -22.0 kN, x = 3 m+, V = 53.0 kN
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6–25. x = 0, V = 50.0 kN, x = 2.98 m, V = 0, x = 4 m,  
 V = -40.0 kN
 x = 6 m, V = -40.0 kN
 x = 2.98 m, M = 99.4 kN # m, x = 4 m,  
 M = 80.0 kN # m

6–26.

 

M

x

x

V

L

L

wL

wL2

2

6–27. 0 … x … 3a  V = -
M0

3a

 x = 0, M = M0, x = a-, M =
2
3

 M0 

 x = a+, M =
5
3

M0,  x = 2 a-, M =
4
3

 M0 

 x = 2a+, M =
M0

3

6–29.

 

M

V

x

x

7 w0L

36

�w0L

18

0.0345 w0L
2

0.707 L

�0.0617 w0L
2

�w0L

4

6–10. x = 0, V = 0, x = a-, V = 0  
 x = a+, V = -P
 x = 3a-, V = -P, x = 3a+, V = P,
 x = 4a, V = P
 x = 0, M = Pa, x = a, M = Pa 
 x = 2a, M = 0,
 x = 3a, M = -Pa

6–11. x = 0.9  m-, V = -10 kN, x = 0.9  m+, V = 6 kN
 x = 0.9 m, M = -9.00 kN # m

6–13. V = -
M0

L
 ,

 For 0 … x 6
L
2

 , M = M0 - a
M0

L
 bx,

 For 
L
2

 6 x … L, M = -a
M0

L
 bx

6–14. x = 1.5-  m, V = -45 kN, x = 1.5+m,  
 V = -3.75 kN
 x = 1.5 m, M = -33.75 kN # m, x = 3-m  
 M = -39.375 kN # m 
 x = 3+m, M = 5.625 kN # m
6–15. 0 … x … 0.9 m, V = 750 N, x = 0.45 -m,  
 M = -337.5 N # m, x = 0.45+m,  
 M = 337.5 N # m

6–17. a =  
L12

 

 x = 0, V = 0.243 wL, x = 0.243 L, V = 0  
 x = 0.707 L- , V = -0.414 wL
 x = 0.707 L+ , V = 0.293 wL
 x = 0.243 L, M = 0.0429 wL2, x = 0.707 L,  
 M = -0.0429 wL2

6–18. x = 0, V = 1.5 kN, x = 0.75 m, V = 0, 

 x = 2 m-, V = -2.5 kN, x = 2 m+, V = 2 kN,

 x = 0.75 m, M = 0.5625 kN # m, x = 2 m, 
 M = -1.00 kN # m

6–19. VA =
w0L

3
 , M max =

23 w0L
2

216

6–21. x = 0, V = -25 kN, x = 3 m-, V = -11.5 kN,

 x = 3 m+, V = 11.5 kN, x = 7.5 m- 

 V = 2.50 kN, x = 7.5 m+ V = -2.5 kN, 

 x = 3 m, M = -21 kN # m, x = 6 m, M = 0, 

 x = 7.5 m, M = 3.75 kN # m
6–22. x = 0, V = 7.5 kN, x = 2-m, V = 7.5 kN  
 x = 2+m, V = -2.5 kN
 x = 4+m, V = -12.5 kN
 x = 2 m, M = 15  kN # m, x = 4 m,  
 M = 10 kN # m, x = 6 m, M = -15 kN # m
6–23. VB = -45 kN, MB = -63 kN # m
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6–35.

 

M  (kN m)

x (m)

V  (kN)

7.5

x (m)
6 7.5

6 7.5

11.25

4.5

4.5

7.5

0

54

0

14.25

6–37.

 

x (m)

V  (kN)

0

5.00

10.0

5.00

10.0

5.00

431

2

x (m)

M  (kN m)

0

7.50

2.50

1 2

3 4

6–38.

 

M  (N m)

x (m)

x (m)

V  (N)

800

400

400

200

4

2
0

2800

0

1000

2 4

5 6

5 6

6–30. M max = 394 N # m

 

M  (N m)

V  (N)

x (m)

394

350

x (m)

350

2.25

2.25 4.50

4.50
0

0

6–31. x = 0, V = 3.5 kN, x = 2+  m, V = -14.5 kN  
 x = 4+m, V = 6 kN
 x = 2 m, M = 7 kN # m,  x = 4 m,
 M = -22 kN # m,  x = 6 m 
 M = 10 kN, m 

6–33.

 

M  (kN m)

x (m)

x (m)

V  (kN)

36

10.810.8

32.4

36

0.3
0

0
0.3

1.5

1.5

2.7

2.7

3.3

3.3

6–34.

 

x (m)

V  (kN)

15

0

0

64

x (m)

M

6

 (kN m)

30

60

4
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x (m)

V (N)

0

200

0

3

3.87

3 3.87

691600

6

x (m)

M (N m)

6

700

6–45. x = 0.630 L, V = 0, M = 0.0394w0L
2,

 M =
w0Lx

12
-

w0x
4

12L2

6–46. a = 0.207 L
6–47. s max = 2.06 MPa
6–49. M = 13.5 kN # m
6–50. (st) max = 31.0 MPa, (sc) max = 14.8 MPa
6–51. 84.6,
6–53. r = 909 mm, M = 61.9 N # m
6–54. s max = 148 MPa
6–55. FR = 200 kN
6–57. M = 50.3 kN # m

6–58. 
M′
M

= 74.4,

6–59. M = 15.6 kN # m, s max = 12.0 MPa

6–61. M = 132 kN # m (controls)
6–62. s max = 158 MPa
6–63. d = 86.3 mm
6–65. s max = 52.8 MPa
6–66. s = 80.6 MPa
6–67. d = 32.2 mm
6–69. (a) s max = 249 kPa, (b) s max = 249 kPa
6–70. sA = 199 MPa, sB = 66.2 MPa
6–71. a = 1.68r
6–73. s max = 98.0 MPa
6–74. s max = 11.1 MPa
6–75. s max = 166 MPa
6–77. s max = 201 MPa
6–78. sA = 122 MPa (C), sB = 51.1 MPa (T),
  sC = 35.4 MPa (T)
6–79. M = 123 kN # m
6–81. d = 199 mm
6–82. a = 66.9 mm

6–83. s max =
23w0L

2

36 bh2

6–85. d = 75 mm

6–39.

 

M (N m)

x (m)

x (m)

V (N)

250

400
650

1 2 3

1
0

650

0

2 3

6–41.

 

M (kN m)

V (kN)

x (m)

112.5

x (m)

169

4.5

4.5 9

9
0

0

112.5

6–42.

 

M  (kN m)

x (m)

V  (kN)

2

1.5 3

6
9

3

x (m)
1.5 3

0

0

6–43. For 0 … x 6 3 m: V = 200 N, M = {200x} N # m,

 For 3 m 6 x … 6 m: V = e -  
100
3

 x2 + 500 fN, 

 M = e -  
100
9

 x3 + 500x - 600 fN # m
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6–142. (s max )st = 4.55 MPa, (s max )w = 0.298 MPa

6–143. (sT) max = 11.1 MPa (T), (sC) max = 8.45 MPa (C)
6–145. smax = 26.2 MPa (C)
6–146. sA = 8.48 MPa (C), sB = 5.04 MPa (T).
 No, it is not the same.
6–147. M = 59.0 kN # m
6–149. (s max )t = 0.978 MPa (T),
 (s max )c = 0.673 MPa (C)
6–150. M = 19.6 kN # m
6–151. s max = 36.9 MPa
6–153. M = 107 N # m
6–154. P = 469 N
6–155. M = 87.0 N # m
6–157. L = 950 mm
6–158. k = 1.57
6–159. k = 1.17

6–161. k =
3h
2

 c
4bt(h - t) + t(h - 2t)2

bh3 - (b - t)(h - 2t)3  d

6–162. k = 1.70
6–163. MY = 271 kN # m, MP = 460 kN # m
6–165. k = 1.70
6–166. MY = 55.1 kN # m, MP = 93.75 kN # m
6–167. k = 1.16
6–169. stop = sbottom = 67.1 MPa
6–170. k = 1.71
6–171. k = 1.58
6–173. MY = 23.4 kN # m, MP = 46.9 kN # m
6–174. k = 1.70
6–175. MY = 50.7 kN # m, MP = 86.25 kN # m
6–177. k = 1.71
6–178. M = 94.7 N # m
6–179. w = 53.4 kN>m
6–181. M = 96.5 kN # m
6–182. M = 251 N # m
R6–1. k = 1.22

R6–2. V =
2wL
27

-
w
2L

 x2, M =
2wL
27

 x -
w
6L

 x3

R6–3. M = 14.9 kN # m
R6–5. s max = 76.0 MPa
R6–6. sA = 225 kPa (C), sB = 265 kPa (T)
R6–7. V = (94 - 30x) kN,  
 M = (-15x2 + 94x - 243.6) kN # m
R6–9. V � x=600 mm = -233 N, M � x=600 mm = -50 N # m

R6–10. s max =
6M

a3  ( cos u +  sin u), u = 45°, a = 45°

Chapter 7
7–1. t A = 2.56 MPa
7–2. t max = 3.46 MPa
7–3. Vw = 19.0 kN
7–5. t max = 3.91 MPa

6–86. (s max )c = 14.9 MPa,
 (s max )t = 11.0 MPa
6–87. M = 3.83 kN # m

6–89. h′ =
8
9

  h, factor = 1.05

6–90. b = 53.1 mm
6–91. s max = 129 MPa
6–93. (s max )c = 120 MPa (C), (s max )t = 60 MPa (T)
6–94. w = 18.75 kN>m
6–95. w = 937.5 N>m
6–97. s max = 175 MPa
6–98. s max = 5.15 MPa
6–99. d = 410 mm
6–101. Use t = 150 mm
6–102. b = 346 mm, h = 490 mm, P = 647 kN
6–103. P = 498 kN
6–105. sA = -119 kPa, sB = 446 kPa, sD = -446 kPa,
 sE = 119 kPa

6–106. a = 0, b = -a
MzIy + MyIyz

IyIz - Iyz
2  b , c =

MyIz + MzIyz

IyIz - Iyz
2

6–107. sA = 1.30 MPa (C),
 sB = 0.587 MPa (T),
 a = -3.74°
6–109. d = 62.9 mm
6–110. s max = 163 MPa
6–111. sA = 20.6 MPa (C)
6–113. sB = 131 MPa (C), a = -66.5°
6–114. M = 1186 kN # m
6–115. d = 28.9 mm
6–117. sA = 2.59 MPa (T)
6–118. s max = 151 MPa, a = 72.5°
6–119. w = 4.37 kN>m
6–121. M = 6.41 kN # m
6–122. (sbr) max = 3.04 MPa, (sst) max = 4.65 MPa,  
 sbr = 1.25 MPa, sst = 2.51 MPa
6–123. M = 128 kN # m
6–125. M = 330 kN # m (controls)
6–126. M = 35.0 kN # m
6–127. (s max )st = 123 MPa, (s max )w = 5.14 MPa
6–129. (sst) max = 56.5 MPa, (sw) max = 3.70 MPa
6–130. sA = 43.7 MPa (T), sB = 7.77 MPa (T),
 sC = -65.1 MPa (C)
6–131. P = 6.91 kN
6–133. N>A
6–134. , of error = 22.3,
6–135. M = 51.8 kN # m
6–137. sC = 2.66 MPa (T)
6–138. (s max )pvc = 12.3 MPa
6–139. (s max )st = 9.42 MPa, (s max )br = 6.63 MPa,  
 sst = 1.86 MPa, sbr = 0.937 MPa
6–141. (sst) max = 20.1 MPa
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7–70. e = 2r
R7–1. VAB = 49.8 kN
R7–2. V = 131 kN
R7–3. qA = 0, qB = 1.21 kN>m, qC = 3.78 kN>m
R7–5. V = 3.73 kN

Chapter 8
8–1. t = 18.8 mm
8–2. ro = 1.812 m
8–3. Case (a): s1 = 8.33 MPa; s2 = 0
 Case (b): s1 = 8.33 MPa; s2 = 4.17 MPa
8–5. s1 = 7.07 MPa, s2 = 0
8–6. P = 848 N
8–7. (a) s1 = 127 MPa,
 (b) s1′ = 79.1 MPa,
 (c) (tavg)b = 322 MPa
8–9. tc = 40 mm, ts = 20 mm,
 ns = 308 bolts
8–10. s = 0.833 m
8–11. sh = 3.15 MPa, sb = 66.8 MPa
8–13. sc = 19.7 MPa

8–14. dri =
pr i

2

E(ro - ri)

8–15. p =
E(r2 - r3)

r 2
2

r2 - r1
+

r 3
2

r4 - r3
 

8–17. sfil =
pr

t + t′w>L
+

T
wt′

 , sw =
pr

t + t′w>L
-

T
Lt

8–18. d = 66.7 mm
8–19. d = 133 mm
8–21. smax = 111 MPa (T)
8–22. s A = 23.8 MPa(C), tA = 0 
8–23. sB = 51.8 MPa (T), tB = 0
8–25. P max = 128 kN
8–26. w = 79.7 mm
8–27. P = 109 kN
8–29. sD = 0, tD = 5.33 MPa, sE = 188 MPa, tE = 0
8–30. sA = 25 MPa (C), sB = 0, tA = 0, tB = 5 MPa
8–31. sA = 215 MPa (C), (txy)A = 0, (txz)A = 102 MPa
8–33. sA = 0.444 MPa (T), tA = 0.217 MPa
8–34. sB = 0.522 MPa (C), tB = 0
8–35. sA = 70.0 MPa (C), sB = 10.0 MPa (C)
8–37. sA = 504 kPa (C), tA = 14.9 kPa
8–38. sA = 8.00 MPa (C), sB = 24.0 MPa (C)
8–39.  sA = 8.00 MPa (C), sB = 24.0 MPa (C), 

sC = 8.00 MPa (C) sD = 8.00 MPa (T)
8–41. sE = 57.8 MPa, tE = 864 kPa

7–6. V max = 100 kN
7–7. t max = 17.9 MPa
7–9. V = 141 kN
7–10. t max = 35.9 MPa
7–11. t max = 45.0 MPa
7–13. tB = 4.41 MPa
7–14. t max = 4.85 MPa
7–15. t max = 7.33 MPa
7–17. VAB = 50.3 kN

7–18. The factor =
4
3

7–19. t max = 4.22 MPa
7–21. t max = 2.55 MPa
7–22. tA = 1.99 MPa, tB = 1.65 MPa
7–23. t max = 4.62 MPa

7–25. L =
h
4

7–26. tA = 19.1 MPa
7–27. t max = 22.0 MPa, (t max)s = 66.0 MPa
7–29. t max = 1.05 MPa
7–33. V = 499 kN
7–34. V = 7.20 kN
7–35. V = 8.00 kN, s = 65.0 mm
7–37. s = 138 mm
7–38. V = 172 kN
7–39. s = 343 mm
7–41. F = 12.5 kN
7–42. P = 11.4 kN (controls)
7–43. s = 71.3 mm
7–45. P = 3.67 kN
7–46. (tnail)avg = 119 MPa
7–47. s = 216 mm, s′ = 30 mm
7–50. qA = 65.1 kN>m, qB = 43.6 kN>m
7–51. qmax = 82.9 kN>m
7–53. qmax = 1.63 kN>m
7–54. qA = 13.0 kN>m, qB = 9.44 kN>m
7–55. qC = 38.6 kN>m
7–57. qC = 0, qD = 601 kN>m
7–58. qA = 200 kN>m
7–59. t max = 9.36 MPa
7–61. qA = 39.2 kN>m, qB = 90.1 kN>m,
 qmax = 128 kN>m
7–62. qB = 12.6 kN>m, qmax = 22.5 kN>m
7–63. e = 70 mm
7–65. q = [84.9 - 43.4 (103) y2] kN>m
 At y = 0, q = qmax = 84.9 kN>m

7–66. t =
V

pR 2t
 2R 2 - y2

7–67. e = 1.26 r

7–69. e = c
31p + 42

4 + 3p
d r
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9–6. sx′ = -678 MPa, tx′y′ = 41.5 MPa
9–7. sx′ = -61.5 MPa, tx′y′ = 62.0 MPa
9–9. sx′ = 36.0 MPa, tx′y′ = -37.0 MPa
9–10. sx′ = 36.0 MPa, tx′y′ = -37.0 MPa
9–11. sx′ = 47.5 MPa, sy′ = 202 MPa,
 tx′y′ = -15.8 MPa
9–13. sx′ = -62.5 MPa, tx′y′ = -65.0 MPa
9–14. s1 = 319 MPa, s2 = -219 MPa, up1 = 10.9°,
 up2 = -79.1°, t

 
max in@plane

= 269 MPa,

 us = -34.1° and 55.9°, savg = 50.0 MPa
9–15. s1 = 53.0 MPa, s2 = -68.0 MPa, up1 = 14.9°,

 up2 = -75.1°,t
 
max
in@plane

= 60.5 MPa,
 savg = -7.50 MPa, us = -30.1° and 59.9°
9–17. s1 = 137 MPa, s2 = -86.8 MPa,
 up1 = -13.3°, up2 = 76.7°, t

 
max
in@plane

= 112 MPa,
 us = 31.7° and 122°, savg = 25 MPa
9–18. sx = 33.0 MPa, sy = 137 MPa, txy = -30 MPa
9–19. s1 = 5.90 MPa, s2 = -106 MPa,
 up1 = 76.7° and up2 = -13.3°,
 t

 
max
in@plane

= 55.9 MPa, savg = -50 MPa,
 us = 31.7° and 122°
9–21. ta = -1.96 MPa
 s1 = 80.1 MPa, s2 = 19.9 MPa
9–22. sx′ = -63.3 MPa, tx′y′ = 35.7 MPa
9–23. sx′ = 19.5 kPa, tx′y′ = -53.6 kPa
9–25. s1 = 0, s2 = -36.6 MPa, t

 
max
in@plane

= 18.3 MPa
9–26. s1 = 16.6 MPa, s2 = 0, t

 
max
in@plane

= 8.30 MPa
9–27. s1 = 14.2 MPa, s2 = -8.02 MPa,
 t

 
max
in@plane

= 11.1 MPa
9–29. Point D: s1 = 7.56 kPa, s2 = -603 kPa,
 Point E: s1 = 395 kPa, s2 = -17.8 kPa
9–30. Point A: s1 = 0, s2 = -30.5 MPa,
 Point B: s1 = 0.541 MPa, s2 = -1.04 MPa,
 up1 = -54.2°, up2 = 35.8°
9–31. s1 = 64.9 MPa, s2 = -5.15 MPa,
 (up)1 = 15.7°, (up)2 = -74.3° 
9–33. sx′ = -191 kPa
9–34. s1 = 6.38 MPa, s2 = -0.360 MPa,
 (up)1 = 13.4°, (up)2 = 26.7°
9–35. t

 
max
in@plane

= 3.37 MPa, 

 us = -31.6° and 58.4°, savg = 3.01 MPa

9–37. s1 =
4

pd2 a2PL
d

- Fb , s2 = 0,

 t
 
max
in@plane

=
2

pd2 a
2PL

d
- Fb

8–42. sA = 37.0 MPa (C), (txy)A = -7.32 MPa, 
 (txz)A = 0
8–43. sB = 27.5 MPa (C), (txz)B = -8.81 MPa,
 (txy)B = 0
8–45. T = 9.34 kN
8–46. (st)max = 103 MPa (T), (sc)max = 117 MPa (C)
8–47. sA = 224 MPa (T), (txz)A = -30.7 MPa,
 (txy)A = 0
8–49. sC = 295 MPa (C), (txy)C = 25.9 MPa,
 (txz)C = 0

8–50. e =
c
4

8–51. 6ey + 18ez 6 5a
8–53. sA = 9.88 kPa (T), sB = 49.4 kPa (C),
 sC = 128 kPa (C), sD = 69.1 kPa (C)

8–54. P =
dmaxp(r 0

4 - r 1
4)

r 0
2 + r 1

2 + 4er0

8–57. s max = 71.0 MPa (C)
8–58. P = 84.5 kN
8–59. (s max)t = 106 MPa, (s max)c = -159 MPa
8–61. sA = 5.03 MPa(T), (txy)A = 0 
 (txz)A = 2.72 MPa
8–62. sB = 3.82 MPa (C), (txy)B = 3.46 MPa 
 (txz)B = 0
8–63. sA = 107 MPa (T), tA = 15.3 MPa,
 sB = 0, tB = 14.8 MPa
8–65. sA = 15.3 MPa, tA = 0, sB = 0,
 tB = 0.637 MPa
8–66. sC = 15.3 MPa, tC = 0, sD = 0,
 tD = 0.637 MPa

8–67. -
h
6

 … ey …
h
12

8–69. sB = 19.4 MPa (C), (txy)B = 0.509 MPa,
 (txz)B = 0
8–70. tA = 0, sA = 262 MPa (C)
8–71. sB = 0, tB = 3.14 MPa
8–73. s = 0.0107 MPa, t = 3.33 MPa
R8–1. sA = 170 kPa (C), sB = 97.7 kPa (C)
R8–2. sE = 802 kPa (T), tE = 69.8 kPa
R8–3. sF = 695 kPa (C), tA = 31.0 kPa
R8–5. s max = 2.12 MPa (C)
R8–6. u = 0.286°
R8–7. sC = 93.7 MPa (T), tC = 0,
 sD = 187 MPa (C), tD = 0

Chapter 9
9–2. sx′ = 31.4 MPa, tx′y′ = 38.1 MPa

9–3. sx′ = -3.48 MPa, tx′y′ = 4.63 MPa
9–5. sx′ = 49.7 MPa, tx′y′ = -34.8 MPa
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9–79. sint = 0, s max = 137 MPa,
 s min = -46.8 MPa,
 t

 
abs

 max
= 91.8 MPa

9–81. s1 = 222 MPa, s2 = -102 MPa, t
 
abs
 max

= 162 MPa
9–82. sint = 0 MPa,  s max = 7.06 MPa,
 s min = -9.06 MPa, t

 
abs

 max
= 8.06 MPa

9–85. s1 = 5.50 MPa, s2 = -0.611 MPa,
 s1 = 1.29 MPa, s2 = -1.29 MPa,
 t

 
abs

 max
= 3.06 MPa, t

 
abs

 max
= 1.29 MPa

9–86. s1 = 6.27 kPa, s2 = -806 kPa,
 t

 
abs

 max
= 406 kPa

9–87. s max = 98.8 MPa, sint = s min = 0,
 t

 
abs

 max
= 49.4 MPa

R9–1. s1 = 26.4 kPa, s2 = -26.4 kPa,
 up1

= -45°; up2
= 45°

R9–2. sx′ = -22.9 kPa, tx′y′ = -13.2 kPa
R9–3. sx′ = -63.3 MPa, tx′y′ = 35.7 MPa
R9–5. s1 = 3.03 MPa, s2 = -33.0 MPa,
 up1 = -16.8° and up2 = 73.2°,
 t

 
max
in@plane

= 18.0 MPa, savg = -15 MPa, us = 28.2°
 and 118°
R9–6. s1 = 3.29 MPa, s2 = -4.30 MPa
R9–7. s1 = 0.494 MPa, s2 = 0;
 s1 = 0, s2 = -0.370 MPa
R9–9. sx′ = -16.5 MPa, tx′y′ = 2.95 MPa

Chapter 10
10–2. Px′ = 248(10- 6), gx′y′ = -233(10- 6),
 Py′ = -348(10- 6)
10–3. Px′ = 55.1(10- 6), gx′y′ = 133(10- 6),
 Py′ = 325(10- 6)
10–5. Px′ = 77.4(10- 6), gx′y′ = 1279(10- 6),
 Py′ = 383(10- 6)
10–6. Px′ = -116(10- 6), Py′ = 466(10- 6),
 gx′y′ = 393(10- 6)
10–7. Px′ = 466(10- 6), Py′ = -116(10- 6),
 gx′y′ = -393(10- 6)
10–9. P1 = 188(10- 6), P2 = -128(10- 6),
 (uP)1 = -9.22°, (uP)2 = 80.8°,
 gmax

in@plane
= 316(10- 6),

 Pavg = 30(10- 6),
 us = 35.8° and -54.2°

9–38. s1 = 5.50 MPa, s2 = -0.611 MPa
9–39. s1 = 1.29 MPa, s2 = -1.29 MPa
9–41. s1 = 1.37 MPa, s2 = -198 MPa
9–42. s1 = 111 MPa, s2 = 0
9–43. s1 = 2.40 MPa, s2 = -6.68 MPa,
 up1

= -59.1°, up2 = 30.9°
9–45. sx′ = 49.7 MPa, tx′ = -34.8 MPa
9–46. sx′ = -678 MPa,  tx′y′ = 41.5 MPa
9–47. sx′ = 47.5 MPa,  tx′y′ = -15.8 MPa,
 sy′ = 202 MPa
9–49. s1 = 54.2 MPa, s2 = -4.15 MPa, (up)1 = 15.5° 
  (clockwise)
  savg = 25 MPa, t

 
max
in@plane

= 29.2 MPa, us = 29.5° 
(counterclockwise)

9–51. savg = -40.0 MPa, s1 = 32.1 MPa,
 s2 = -112 MPa, up1 = 28.2°, t

 
max
in@plane

= 72.1 MPa,
 us = -16.8°
9–53. sx′ = 4.99 MPa, tx′y′ = -1.46 MPa,
 sy′ = -3.99 MPa
9–55. sx′ = -299 MPa, tx′y′ = 551 MPa,
 sy′ = -11.1 MPa
9–57. s1 = 342 MPa,
 s2 = -42.1 MPa, uP = 19.3° (counterclockwise),
 savg = 150 MPa, t

 
max
in@plane

= 192 MPa,
 us = 25.7° (clockwise)
9–58. s1 = 64.1 MPa, s2 = -14.1 MPa, uP = 25.1°,
 savg = 25.0 MPa, t

 
max
in@plane

= 39.1 MPa, us = -19.9°
9–59. uP = -14.9°, s1 = 227 MPa, s2 = -177 MPa,
 t

 
max
in@plane

= 202 MPa, savg = 25 MPa, us = 30.1°
9–62. sx′ = 19.5 kPa, tx′y′ = -53.6 kPa
9–63. t

 
max
in@plane

= 23.5 MPa, s1 = 29.9 MPa, s2 = -17.1 MPa
9–65. sx′ = -45.0 kPa, tx′y′ = 45.0 kPa
9–66. s1 = 7.52 MPa, s2 = 0,
 t

 
max
in@plane

= 3.76 MPa,
 us = 45° (counterclockwise)
9–67. savg = 5 MPa, s1 = 88.8 MPa, s2 = -78.8 MPa,
 uP = 36.3° (counterclockwise),
 t

 
max
in@plane

= 83.8 MPa, us = 8.68° (clockwise)
9–69. s1 = 9.18 MPa, s2 = -0.104 MPa,
 (up)1 = 6.08° (counterclockwise)
9–70. s1 = 32.5 MPa, s2 = -0.118 MPa,
 (up)1 = 3.44° (counterclockwise)
9–71. s1 = 0.929 kPa, s2 = -869 kPa
9–73. sx′ = 500 MPa, tx′y′ = -167 MPa
9–74. sx′ = 470 kPa, tx′y′ = 592 kPa
9–75. s1 = 1.15 MPa, s 2 = -0.0428 MPa,
 up1

= 10.9° (clockwise)
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10–46. th = 4.94 mm
10–49. sx = 107 MPa (C), sy = 116 MPa (C)
10–50. Px = Py = 0, gxy = -160(10- 6), T = 65.2 N # m
10–51. Px′ = -2.52(10- 3), Py′ = 2.52(10- 3)
10–53. ∆d = 0.800 mm, sAB = 315 MPa
10–54. ∆d = 0.680 mm
10–57. ∆V = 0.0168 m3

10–58. k = 1.35
10–59. sx

2 + sy
2 - sxsy + 3txy

2 = sy
2

10–61. a = 47.5 mm
10–62. a = 47.5 mm

10–63. Me = AM 2 +
3
4

 T 2

10–65. Te = A4
3

 M2 + T 2

10–66. d = 21.9 mm
10–67. d = 20.9 mm
10–69. No

10–70. d = 54.0 mm
10–71. sx = 735 MPa
10–73. sY = 660 MPa
10–74. sY = 637 MPa
10–75. No
10–77. F.S. = 1.43
10–78. F.S. = 1.64
10–79. Yes, the shaft fails.
10–81. No
10–82. No
10–83. s2 = 255 MPa
10–85. sY = 424 MPa
10–86. T max = 8.38 kN # m
10–87. T max = 9.67 kN # m
10–89. F.S. = 1.67, F.S. = 1.92
10–90. (a) t = 22.5 mm, (b) t = 19.5 mm 
10–91. d = 39.2 mm
10–93. F.S. = 1.25
R10–2.  da = 0.367 mm, db = -0.255 mm, 

dt = -0.00167 mm
R10–3. F.S. = 2
R10–5. Pavg = 83.3(10- 6), P1 = 880(10- 6),
 P2 = -713(10- 6), up1 = 54.8° (clockwise),
 gmax

in@plane
= -1593(10- 6),

 us = 9.78° (clockwise)
R10–6. Px′ = -380(10- 6), Py′ = -130(10- 6),
 gx′y′ = 1.21(10- 3)
R10–7. T = 736 N # m
R10–9. P1 = 283(10- 6), P2 = -133(10- 6),
 up1 = 84.8°, up2 = -5.18°, gmax

in@plane
= 417(10- 6),

 Pavg = 75.0(10- 6), us = 39.8° and 130°

10–10. (a) P1 = 713(10- 6), P2 = 36.6(10- 6), up1 = 133°,
 (b) gmax

in@plane
= 677(10- 6), Pavg = 375(10- 6),

 us = -2.12°
10–11. Px′ = 649(10- 6), gx′y′ = -85.1(10- 6),
 Py′ = 201(10- 6)
10–13. P1 = 17.7(10- 6), P2 = -318(10-6),
 up1 = 76.7° and up2 = -13.3°,
 gmax

in@plane
= 335(10- 6), us = 31.7° and 122°,

 Pavg = -150(10- 6)
10–14. P1 = 368(10- 6), P2 = 182(10- 6),
 up1 = -52.8° and up2 = 37.2°,
 gmax

in@plane
= 187(10- 6), us = -7.76° and 82.2°,

 Pavg = 275(10- 6)
10–17. Px′ = 55.1(10- 6), gx′y′ = 133(10- 6),
 Py′ = 325(10- 6)
10–18. Px′ = 325(10- 6), gx′y′ = -133(10- 6),
 Py′ = 55.1(10- 6)
10–19. Px′ = 77.4(10- 6), gx′y′ = 1279(10- 6),
 Py′ = 383(10- 6)
10–21. Px′ = 466(10- 6), gx′y′ = -393(10- 6),
 Py′ = -116(10- 6)
10–22. (a) P1 = 773(10- 6), P2 = 76.8(10- 6),
 (b) gmax

in@plane
= 696(10- 6), (c) gabs

max
= 773(10- 6)

10–23. P1 = 870(10- 6), P2 = 405(10- 6),
 gmax

in@plane
= 465(10- 6), gabs

max
= 870(10- 6)

10–25. P1 = 380(10- 6), P2 = -330(10- 6)
10–26. P1 = 517(10- 6), P2 = -402(10- 6)
10–27. P1 = 862(10- 6), P2 = -782(10- 6),
 up1 = 88.0° (clockwise),
 Pavg = 40.0(10- 6), gmax

in@plane
= -1644(10- 6),

 us = 43.0° (clockwise)
10–33. E = 17.4 GPa, ∆d = -12.6(10- 6) mm
10–34. s1 = 71.6 MPa, s2 = 51.6 MPa

10–35. ∆LAB =
3 nM
2Ebh

,

 ∆LCD =
6 nM

Eh2

10–37. (a) Kr = 23.3 MPa, (b) Kg = 35.9 GPa
10–38. P = 58.2 kN, gxy = 0.158(10-3) rad
10–39. s1 = 58.6 MPa, s2 = 43.8 MPa
10–41. Px = Py = 0, Pz = 5.48(10-3)
10–42. ∆T = 36.9°C
10–43. wy = -184 kN>m, wx = 723 kN>m

10–45. u =  tan -1a 11n
b
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11–46. d = 34.3 mm

R11–1. y = c 4P
p sallow

 x d
1>3

R11–2. Use d = 21 mm
R11–3. Use d = 44 mm
R11–5. Use W310 * 21
R11–6. P = 2.19 kN, h = 13.1 mm
R11–7.  h = 12.0 mm; yes, the joist will support the load. 

Chapter 12
12–1. s = 100 MPa
12–2. m = 47.8 kg
12–3. s = 582 MPa
12–5. vC = -6.11 mm

12–6. umax = -  
M0 L

EI
,

 v = -  
M0 x2

2EI
,

 vmax = -  
M0 L

2

2EI
12–7. r = 100 m,

 umax =
M0 L

EI
A,

 vmax = -  
M0 L2

2EI

12–9. v1 =
P

12EI
(2x1

3 - 3Lx1
2),

 v2 =
PL2

48EI
(-6x2 + L)

12–10. v1 =
wax1

12EI
 (2x2 - 9ax1),

 v2 =
w

24EI
 ( -x2

4 + 28a3x2 - 41a4),

 uC = -  
wa3

EI
, vB = -  

41wa4

24EI

12–11. v1 =
wax1

12EI
 (2x2 - 9ax1),

 v3 =
w

24EI
 ( -x3

4 + 8a x3
3 - 24a2x2

3 + 4a3x3 - a4),

 uB = -  
7wa3

6EI
, vC = -  

7wa4

12EI

12–13. uA = -  
M0a

2EI
, vmax = -  

5M0a
2

8EI

12–14. vmax = -
3PL3

256EI

12–15. vmax = -  
0.00652w0L

4

EI
 

R10–10. P1 = 480(10- 6), P2 = 120(10- 6),
 up1 = 28.2°  (clockwise),
 gmax

in@plane
= -361(10- 6),

 us = 16.8° (counterclockwise), Pavg = 300(10- 6)

Chapter 11
11–1. b = 211 mm, h = 264 mm
11–2. Use W310 * 39
11–3. Use W360 * 79
11–5. Use W310 * 24
11–6. Use W250 * 18 
 Use W150 * 14
11–7. Use W360 * 33
11–9. Use W360 *  45.
11–10. Yes, it can.
11–11.  w = 3.02 kN>m, sends = 16.7 mm, 

smid = 50.2 mm
11–13. b = 393 mm
11–14. Use W410 * 46
11–15.  Use s = 95 mm, s′ = 145 mm, s″ = 290 mm.  

Yes, it can support the load. 
11–17. P = 103 kN
11–18. w = 24.8 kN>m
11–19. The beam fails.
11–21. P = 6.24 kN
11–22. Use h = 230 mm
11–23. Yes
11–25. Yes
11–26. a =  106 mm, s =  44.3 mm
11–27. Use W360 * 45
11–29. b = 152 mm
11–30. P = 9.52 kN
11–31. w =

w0

L
 x

11–33. smax =
8PL

27pr 3
0

11–34. h =
h0

L 3>2
 (3L2x -  4x3)1>2

11–35. d = hA x
L

11–37. smax =
3wL2

b0 h2

11–38. b =
b0

L 2
 x2

11–39. Use d = 21 mm.
11–41. smax = 13.4 MPa
11–42. T = 100 N # m, Use d = 29 mm
11–43. T = 100 N # m, Use d = 33 mm
11–45. Use d = 36 mm
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12–35. v =
1

EI
 c 3.75x3-  

10
3

 (x - 1.5)3 - 0.625(x - 3)4

 +
1
24

 (x - 3)5 - 77.625x d , 

 vmax = 11.0 mmT

12–37. v =
M0

6EI
 J3hx -

L
3
i

2

- 3hx -
2
3

 Li
2

- LxR ,

 vmax = -  
5M0L

2

72EI
 

12–38. v =
1

EI
 [4.1667x3 - 5(x - 2)3 - 2.5(x - 4)3

 - 93.333x], vmax = 13.3 mmT

12–39. vmax = -12.9 mm 
12–41. (vmax)AB = 2.10 mmc

12–42. uA = -  
378 kN # m2

EI
 , uB =

359kN # m2

EI
 , 

 vC = -  
874 kN # m3

EI
 

12–43. v =
1

EI
 [-0.278x5 + 71.78x - 393

 + 0.2788x - 395 - 158x + 542.5] kN # m3

12–45. vC = -0.501 mm, vD = -0.698 mm,
 vE = -0.501 mm
12–46. uA = -0.128°, uB = 0.128°

12–47. uA = -
3wa3

16EI
,

 uB =
7wa3

48EI
,

 v =
w

48EI
 36ax3 - 2x4 + 28x - a94 - 9a3x4

12–49. uA =
210 kN # m3

EI
  �A, vC =

720 kN # m3

EI
 T

12-50. 
dv

dx
=

1
EI

32.25x2 - 0.5x3 + 5.258x - 592

    + 0.58x - 593 - 3.1254  kN # m2

   v =
1

EI
30.75x3 - 0.125x4 + 1.758x - 593

 + 0.1258x - 594 - 3.125x4  kN # m3

12–51. uA =
17 Pa2

12EI
 , ∆ max =

481 Pa3

288EI
 

12–53.  vB =
7PL3

16EI
T

12–54. uB = -
Pa2

12EI
, vC =

Pa3

12EI
12–55. vmax = 12.2 mm

12–17. v1 =
Px1

12EI
 1 -x1

2 + L22 ,

 v2 =
P

24EI
 1 -4x3

2 + 7L2x2 - 3L32 ,

 vmax =
PL3

8EI

12–18. uA = -
3PL2

8EI
, vC = -  

PL3

6EI

12–19. vB = -  
11PL3

48EI
12–21. vmax =  -11.5 mm
12–22. umax = 0.00508 rad  �max 
 vmax =  10.1 mm T

12–23. uC =
4M0L

3EI
A, v1 =

M0

6EIL
 ( -x3

1 + L2x1),

 v2 =
M0

6EIL
  ( -3Lx2

2 + 8L2x2 - 5L3),

 vC = -
5M0L

2

6EI

12–25. vC =
11wL4

384EI
 T

12–26. uB =
3wL3

Ebt3  �B,  v max =
2wL4

Ebt3  T

12–27. uA =
2gL3

3t2E
,

 vA = -
gL4

2t2E

12–29. uB = -
wa3

6EI
,

 v1 =
w

24EI
  ( -x4

1 + 4ax3
1 - 6a2x2

1),

 v2 =
wa3

24EI
 (-4x2 + a),  vB =

wa3

24EI
 (-4L + a)

12–30. uB = -
wa3

6EI
, v1 =

wx2
1

24EI
 ( -x2

1 + 4ax1 - 6a2),

 v2 =
wa3

24EI
 (4x3 + a - 4L), vB =

wa3

24EI
  (a - 4L)

12–31. v =
1

EI
 c- Pb

6a
 x3 +

P(a + b)

6a
8x - a93 +

Pab
6

 x d

12–32. v =
1

EI
 [-8.33x3 - 33.38x - 0.593

 + 91.78x - 1.093 + 12.5x] N # m3

12–33. E =
Pa

24∆I
 (3L2 - 4a2)

12–34. v =
P

12EI
 3 -28x - a93 + 48x - 2a93 + a2x4 ,

 (vmax)AB =
0.106Pa3

EI
, vC = -

3Pa3

4EI
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12–90. Use W460 * 52

12–91. ∆A =
Pa2(3b + a)

3EI
 

12–93. v = PL2 a1
k

+
L

3EI
b

12–94. ∆E = 32.2 mmT

12–95. vA = PL3 a 1
12EI

+
1

8GJ
b T

12–97. F = 0.349 N, a = 0.800 mm

12–98. M0 =
Pa
6

12–99. Ax = Bx = 0, Ay =
20
27

 P,

 MA =
4
27

 PL, By =
7
27

 P , MB =
2
27

 PL

12–101. Ax = 0, Cy =
5
16

 P, By =
11
8

 P,  Ay =
5
16

 P 

12–102. Ax = 0, By =
5
16

 P, Ay =
11
16

 P , MA =
3PL
16

12–103. Ax =  0, By =
3wL

8
, Ay =

5wL
8

, MA =
wL2

8

12–105. Ax = 0, Ay =
3M0

2L
, By =

3M0

2L
, MB =

M0

2

12–106. Ax = 0, By =
w0L

10
, Ay =

2w0L

5
, MA =

w0L
2

15

12–107. Bx = 0, Ay =
17wL

24
, By =

7wL
24

, MB =
wL2

36

12–109. T AC =
3A2E2wL4

1

8(A2E2L
3
1 + 3E1I1L2)

12–110. Ax = 0, FC = 112 kN, Ay = 34.0 kN,
 By = 34.0 kN

12–111. MA =
5wL2

192
, MB =

11wL2

192
12–113. a = 0.414L

12–114. By =
2
3

P, MA =
PL
3

, Ay =
4
3

P, Ax = 0

12–115. Ax = 0, By =
M0

6a
, Ay =

M0

6a
, MA =

M0

2
12–117. By = 550 N, Ay = 125 N, Cy = 125 N

12–118. Ax = 0, By =
5wL

4
, Cy =

3wL
8

12–119. By =
5
8

 wL c , Cy =
wL
16

 T , Ay =
7
16

 wLc

12–57. vmax =
3PL3

256EI
 T

12–58. vC = -
84
EI

, uA =
8

EI
, uB = -

16
EI

, uC = -
40
EI

12–59. vmax = 8.16 mmT
12–61. a = 0.858 L
12–62. uA = 0.0181 rad, uB = 0.00592 rad

12–63. uB = -
3M0L

2EI
, vB =

7M0L
2

8EI
T

12–65. uA = -
5Pa2

2EI
, vC =

19Pa3

6EI
T

12–66. vC =
PL3

12EI
, uA =

PL2

24EI
, uB = -

PL2

12EI

12–67. vmax =
0.00802PL3

EI

12–69. uC = -
5Pa2

2EI
, vB =

25Pa3

6EI
T

12–70. uA =
3PL2

8EI
 , ∆C =

PL3

6EI
 

12–71. vD = 4.98 mmT
12–73. a = 0.152L

12–74. umax =
5PL2

16EI
, vmax =

3PL3

16EI
T

12–75. uB = 0.00658 rad, vC = 13.8 mmT
12–77. a = 0.865 L

12–78. uB =
7wa3

12EI
 , vC =

25wa4

48EI
T

12–79. uC = -
a 

2

6EI
(12P + wa),

 vC =
a3

24EI
 (64P + 7wa)T

12–81. uA =
PL2

12EI
, vD =

PL3

8EI
T

12–82. vmax =
3wa4

8EI
12–83. ∆C = 13.1 mmT

12–85. uC =
wa3

6EI
 , ∆C =

wa4

8EI
 T

12–86. uA =
wa3

6EI
 , ∆D =

wa4

12EI
 T

12–87. ∆C = 23.2 mT

12–89. uA =
3.29 N # m2

EI
 , (∆A)v =

0.3125 N # m3

EI
 T
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13–7. F.S. = 2.03
13–9. Pcr = 1.30 MN
13–10. Pcr = 325 kN
13–11. Pcr = 88.1 kN
13–13. W = 5.24 kN, d = 1.64 m
13–14. P = 29.9 kN
13–15. P = 42.8 kN
13–17. F.S. = 4.23
13–18. scr = 345 MPa 1No!2
13–19. ∆T = 303°C
13–21. Pcr = 13.7 kN
13–22. Pcr = 28.0 kN
13–23. Use d = 46 mm
13–25. P = 28.4 kN
13–26. P = 14.5 kN
13–27. w = 5.55 kN>m
13–29. Use d = 62 mm.
13–30. Use d = 52 mm.
13–31. P = 13.5 kN
13–33. No
13–34. w = 1.17 kN>m

13–35. P = 286 kN
13–37. P = 103 kN
13–38. P = 46.5 kN
13–39. P = 110 kN

13–41. M max = -
wEI

P
 c  sec aL

2
 A P

EI
 b - 1 d

13–42. M max = -
F
2

 AEI
P

  tan aL
2

 A P
EI

 b

13–43. Pcr =
p2EI

4L2

13–46. s max = 47.9 MPa
13–47. s max = 48.0 MPa
13–49. L = 8.34 m
13–50. P = 3.20 MN, v max = 70.5 mm
13–51. P = 31.4 kN
13–53. The column is adequate.
13–54. Pallow = 268 kN
13–55. Yes
13–57. P = 320 kN
13–58. P = 334 kN
13–59. Pcr = 83.5 kN
13–61. s max = 130 MPa
13–62. L = 1.71 m
13–63. P = 174 kN, v max = 16.5 mm
13–65. Pallow = 89.0 kN
13–66. Pcr = 199 kN, e = 175 mm
13–67. L = 2.53 m
13–69. Et = 102 GPa

12–121. By =
7P
4

 , Ay =
3P
4

, MA =
PL
4

12–122. Ax = 0, By =
7P
4

, Ay =
3P
4

, MA =
PL
4

12–123. Ax = 0, By =
7wL
128

, Ay =
57wL
128

, MA =
9wL2

128

12–125. MA = MB =
1
24

 PL, Ay = By =
1
6

 P,

 Cy = Dy =
1
3

 P, Dx = 0

12–126. TAC =
3wA2E2L

4
1

8(3E1I1L2 + A2E2L
3
1)

12–127. M =
PL
8

-
2EI
L

a, ∆max =
PL3

192EI
+

aL
4

12–129. a =  L - a72∆EI
w0

b
1>4

12–130. FCD = 6.06 kN

12–131. Mmax =
p2btgv2r 3

108g

R12–1. v =
1

EI
 [-150x3 + 2318x - 0.393

 - 58.38x - 0.693 + 121x - 32.2] N # m3

R12–2. v1 =
1

EI
 (22.2x1

3 - 2x1)N # m3, 

 v2 =
1

EI
 (-22.2x2

3 + 2x2) N # m3

R12–3. MB =
w0L

2

30
, MA =

w0L
2

20

R12–5. (v2)max =
wL4

1823EI

R12–6. uB =
Pa2

4EI
, ∆C =

Pa3

4EI
 c

R12–7. By = 138 N c , Ay = 81.3 N c , Cy = 18.8 N T
R12–9. Cx = 0, By = 31.6 kN, MC = 35.7 kN # m, 
 Cy = 22.4 kN

Chapter 13

13–1. Pcr =
5kL

4
13–2. Pcr = kL

13–3. Pcr =
4k
L

13–5. Pcr = 1.84 MN
13–6. Pcr = 902 kN
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R13–9. Pallow = 77.2 kN
R13–10. It does not buckle or yield.

Chapter 14
14–1. 

Ui

V
=

1
2E

 1sx
2 + sy

2 - 2nsxsy2 +
txy

2

2G

14–3. a = 7p

2
 r

14–5. (Ui)a = 8.36 J
14–6. P = 491 kN, Ui = 805 J

14–7. (a) Ua =
N2L1

2AE
, (b) Ub =

N2L2

2AE
  Since Ub 7 Ua, i.e., L2 7 L1, the design for case 

(b) is better able to absorb energy.
14–9. Ui = 64.4 J
14–10. Ui = 149 J
14–11. Ui = 1.08 kJ
14–13. P = 375 kN, Ui = 1.69 kJ

14–15. Ui =
M0

2L

24EI
14–17. (Ui)sp = 1.00 J, (Ui)b = 0.400 J

14–18. 1Ui2b =
17w0

2L5

10080 EI

14–19. Ui =
M0L

2 EI

14–21. Ui =
w0

2L5

504 EI
14–22. 1Ui2b = 0.477 110- 32  J, 1Ui2 l = 0.0171 J

14–23. Ui =
w2L5

40 EI
14–25. (∆A)h = 0.407 mm
14–26. (∆A)h = 0.407 mm

14–27. (∆C)v =
27PL
10AE

14–29. uA =
4M0 a

3EI

14–30. uA = -
M0L

3EI
14–31. (∆C)v = 13.3 mm
14–33. ∆B = 11.7 mm
14–34. ∆B = 3.46 mm
14–35. ∆B = 77.4 mm
14–37. ∆C = 2.13 mm
14–38. ∆B = 15.2 mm

14–39. ∆A =
3pPr 3

2EI

14–41. ∆A =
Pr 3p

2
 a 3

GJ
+

1
EI

 b

13–70. For 49.7 6 KL>r 6 99.3,
 P>A = 200 MPa
13–71. Pcr = 1.32 (103) kN 
13–73. Pcr = 2.70(103) kN 
13–75. Pcr = 661 kN
13–77. Pcr = 1.35 (103)
13–78. L = 3.56 m
13–79. Yes
13–81. Use W250 * 80
13–82. Use W200 * 36
13–83. L = 2.48 m
13–85. Use W150 * 22
13–86. Use W150 * 14
13–87. Use W250 * 67
13–89. Yes
13–90. Yes
13–91. b = 18.3 mm
13–93. Pallow = 466 kN
13–94. L = 1.87 m
13–95. Pallow = 422 kN
13–97. Pallow = 537 kN
13–98. Pallow = 593 kN
13–99. Pallow = 452 kN
13–101. Pallow = 8.08 kN
13–102. Use n = 10
13–103. Use a = 200 mm
13–105. Pallow = 37.1 kN
13–106. L = 2.13 m
13–107. P = 351 kN
13–109. P = 26.9 kN
13–110. The column is not adequate.
13–111. P = 5 .0 7  kN
13–113. P = 63.5 kN
13–114. The column is not adequate.
13–115. P = 40.2 kN
13–117. P = 397 kN
13–118. P = 412 kN
13–119. P = 11.8 kN
13–121. Yes.
13–122. Yes.
13–123. Yes
13–125. P = 15.2 kN
13–126. P = 428 kN

13–127. P = 582 kN

R13–1. Pcr =
2k
L

R13–2. w = 4.63 kN>m
R13–3. Pcr = 12.1 kN
R13–5. P = 53.8 kN
R13–6. Use d = 55 mm
R13–7. t = 5.92 mm
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14–101. uC = -
13wL3

576 EI

14–102. ∆D =
wL4

96 EI
 T

14–103. uA = -1.28°

14–105. ∆C =
PL3

48EI
 T , uB =

PL2

16EI

14–106. ∆C = 10.1 mm T
14–107. uB = 0.385°  uB 

14–109. uC =
5PL2

16EI
, ∆C =

3PL
16EI

 T

14–110. ∆B =
65wa4

48EI
 T

14–111. ∆tot = aw
G

 baL
a

 b
2

c a 5
96

 baL
a

 b
2

+
3
20

 d ,

 ∆b =
5w

96G
  aL

a
 b

4

14–113. uA = -
5w0L

3

192EI

14–114. ∆A
v

=
4PL3

3EI
14–115. ∆B = 43.5 mm T
14–117. ∆C = 17.9 mm T
14–118. uA = -0.0568°

14–119. (∆C)h =
5wL4

8EI
  S

14–121. (∆B)v =
Pr 3

4pEI
  (p2 - 8) T

14–122. (∆A)h =
pPr 3

2EI
  d

14–123. (∆E)n = 0.281 mm T
14–125. ∆Hn

= 5.05 mm T
14–126. ∆Cn

= 5.27 mm T
14–127. (∆B)h = 3.79 mm T
14–129. (∆C)h = 0.234 mm d
14–130. (∆C)v = 0.0375 mm T
14–131. (∆D)h = 4.12 mm S

14–133. uC = -
5Pa2

6EI

14–134. uA =
Pa2

6EI

14–135. ∆C = 10.1 mm T
14–137. ∆B = 47.8 mm
14–138. ∆D = 3.24 mm
14–139. uA = 0.289°

14–141. uA =
wL3

24EI

14–42. (a) Ui = 4.52 kJ, (b) Ui = 3.31 kJ

14–43. d = 145 mm
14–45. h = 0.240 m
14–46. (s max )AB = (s max )AC = 233 MPa
14–47. s max = 79.2 MPa
14–49. Yes
14–50. h = 5.29 mm
14–51. s max = 216 MPa
14–53. s max = 307 MPa
14–54. h = 95.6 mm
14–55. s max = 24.1 MPa
14–57. Yes, from any position
14–58. (∆A) max = 407 mm
14–59. s max = 137 MPa
14–61. s max = 47.8 MPa
14–62. h = 6.57 m
14–63. ∆max = 140 mm, s max = 216 MPa
14–65. ∆beam = 12.7 mm, s max = 74.7 MPa
14–66. s max = 108 MPa
14–67. v = 5.75 m>s
14–69. s max = 41.5 MPa
14–70. h = 84.0 mm
14–71. ∆ max = 23.3 mm, s max = 4.89 MPa
14–73. (∆B)n = 0.362 mmT
14–74. (∆A)v = 33.1 mmT
14–75. (∆H)

v
= 5.05 mmT

14–77. (∆B)v = 3.79 mmT
14–78. (∆A)v = 6.23 mmT
14–79. (∆B)h = 0.367 mm d
14–81. (∆C)h = 0.234 mm d
14–82. (∆D)v = 1.16 mm T
14–83. (∆A)v = 3.18 mm T
14–85. (∆D)h = 4.12 mm S
14–86. (∆E)h = 0.889 mm S

14–87. ∆C =
23Pa3

24EI

14–89. ∆C =
2Pa3

3EI

14–90. uC = -
5Pa2

6EI

14–91. uA =
Pa2

6EI
14–93. uA = 8.12° (clockwise)
14–94. uC = 0.337°
14–95. ∆B = 47.8 mm T
14–97. uA = 0.289°
14–98. uB = 0.124°

14–99. ∆C =
PL3

8EI
 T
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R14–6. 1Ui2T = 0.327 J
R14–7. ∆Bn

= 2.95 mm

R14–9. uB =
M0L

EI

R14–10. uB =
M0L

EI

R14–11. uC = -
2 wa3

3 EI
, ∆C =

5 wa4

8 EI
  T

14–142. ∆C =
5wL4

8EI

14–143. ∆B =
wL4

4EI
R14–1. Ui = 496 J
R14–2. s max = 116 MPa
R14–3. h = 10.3 m
R14–5. s max = 332 MPa



Index
A
Absolute maximum shear strain,  

528–529, 558
Absolute maximum shear stress (max), 

204–205, 207, 260–262, 277, 499–502, 507
in-plane determination of, 499–502, 507
Mohr’s circle for, 499–502
stress concentration and, 260–262, 277
torsional loads and, 204–205, 207,  

260–262, 277
Allowable stress design (ASD), 64–65, 67, 82
Aluminum column specifications, 720
Angle of twist f(x), 201–203, 224–232, 248, 

252, 276
circular shafts, 201–203, 224–232, 276
constant torque and, 225–226
material deformation and, 202–203
multiple torques and, 226
noncircular shafts, 247
procedure for analysis of, 228
right-hand rule for, 204, 227
rotation and, 202–203, 212, 224–232
sign convention for, 227
thin-walled tubes, 252
torsional deformation and, 201–203,  

224–232, 248, 252, 276
Anisotropic materials, 42
Annulus (differential ring), 206, 264
Area (A), 810–822

centroid, 810–812
composite, 811, 814
inclined axes, 820–822
moment of inertia for, 813–816, 820–822
parallel-axis theorem, 813–814, 818
principle moments of inertia, 821
product of inertia for, 817–819
transformation equations, 820

Axial loads, 42–49, 82, 141–199, 746–747
average normal stress distribution,  

42–49, 82
compatibility (kinematic) conditions, 

159–166, 195
constant, stress distribution from, 42–43, 

144–145, 195
deformation and, 141–150, 195
displacement (d), 143–150, 158–166,  

173–176, 195–196
elastic deformation from, 143–150,  

173–176, 180–183, 195–196
elastic strain energy (Ui), 746–747
equilibrium and, 43–44, 145, 158–166, 195
force (flexibility) method of analysis, 

165–166
inelastic deformation from, 183–184, 196
internal axial force, 43, 45, 746

load-displacement relationship, 159,  
166, 195

material properties of, 42
normal stress (s) in, 42–49
plastic material behavior, 183–184, 196
prismatic bars, 42–49
procedures for analysis of, 45, 146, 160, 

165–166
relative displacement (d) of, 143–150, 195
residual stresses (r) from, 185–189, 196
Saint Venant’s principle, 141–143, 195
sign convention for, 145, 195
statically indeterminate members, 158–166, 

173–174, 185, 195
stress concentrations from, 180–183, 196
superposition, principle of, 158–159, 195
thermal stress (dT) and, 173–176, 196
uniaxial stress, 43–44
uniform deformation, 42–43

Axis of symmetry, 307, 329, 418–420

B
Beams, 165–166, 281–383, 385–428, 563–583, 

591, 595–681, 760, 788–792, 802–807
basis of strength, 563–565, 569
bearing plates for, 564
bending, 281–383
bending moments (M) in, 307–309,  

328–334, 347–348
built-up members, 404–408, 427, 568, 591
cantilevered, 281
Castigliano’s theorem applied to, 802–807
circumferential stress in, 348
composite, 338–340, 379
concentrated force and moment 

regions, 290
conservation of energy for, 760
curved, 345–351, 380
deflection of, 564, 595–681
deformation of by bending, 307–310
design of, 563–583, 591
discontinuity functions, 617–625, 678
displacement, 595–598, 599–609, 629–637, 

644–648, 653–655, 658–662, 678–679
distributed load regions, 282, 288–290, 378
elastic curve for, 595–598, 602, 617–625, 

629–637, 678
energy methods for, 760, 788–792, 802–807
fabricated, 580
fastener spacing for, 405, 427
flexure formula for, 311–318, 379
force (flexibility) method of analysis, 

165–166, 664–672
fully stressed, 580–583, 591
hyperbolic stress variations, 346–347
inelastic bending of, 362–372, 380

integration method for, 599–609, 653–655, 
678–679

linear stress variations, 312–313
longitudinal shear stress in, 385–386
moment-area method for, 629–637,  

658–662, 679
neutral axis of, 307, 312, 331, 346
nonprismatic, 580–583, 591
overhanging, 281
principal axis of, 328–331
prismatic, 566–573, 591
procedures for analysis of, 283, 291, 314, 

349, 392, 420, 569, 602, 622, 631, 667,  
790, 804

radial stresses in, 348
reinforced concrete, 341–344
residual stress of, 365–366, 380
section modulus (S), 566, 580
shear and moment diagrams for,  

281–297, 378
shear center (O), 418–423, 428
shear flow (q), 404–408, 413–417, 427–428
shear force (V) in, 385–386
shear formula for, 386–397, 427
shear stresses () in, 385–428
sign conventions for, 282
simply supported, 281
slope for, 595–609, 629–637, 678
strain and, 309–310
statically indeterminate, 652–672, 679
steel, 567
straight members, 307–344, 378–379, 

385–386
stress concentrations in, 352–354, 380
stress distribution in, 311–318, 345–351, 

380
stress trajectories, 564–565
structural shapes and properties of, 

823–831
superposition method for, 644–648,  

658–662, 664–672, 679
thin-walled members, 413–423, 428
transformation factor (n) for, 339–340, 379
transverse shear in, 385–428
twisting, 418–420
unsymmetric bending of, 328–334, 379
virtual forces, method of for, 788–792
warping, 386–387
wood, 567

Bearing plates, 564
Bearing stress, 65
Bending, 281–383

composite beams, 338–340, 379
curved beams, 345–351, 380
deformation, 307–310
elastic behavior, 311–314, 338, 345–346, 

353, 379–380
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Bending (continued)
flexure formula for, 311–318, 379
inelastic, 362–372, 380
linear strain distribution, 362
neutral axis location and, 307, 312, 331, 346
plastic moment, 363–364
procedures for analysis of, 283, 291, 314, 349
reinforced concrete beams, 341–344
residual stress by, 365–366, 380
resultant forces (FR), 362, 380
resultant moment (MR), 362
shear and moment diagrams for,  

281–297, 378
sign conventions for, 282–283, 311, 378
straight members, 307–344, 378–379
stress concentrations and, 352–354, 380
transformation factor (n), 339–340, 379
ultimate, 366–367, 380
unsymmetric, 328–334, 379

Bending moment (M), 26–27, 282, 290, 
307–309, 312–314, 328–334, 347–348, 
379–380, 439, 748–750

change in, 290
combined load analysis for, 439
concentrated force and, 290
curved beams, 347–348, 380
deformation of beams, 281, 307–309, 379
elastic strain energy (Ui) and, 748–750
equilibrium and internal loadings as, 26–27
flexure formula and, 312–314
shear and moment diagrams and, 282, 290
sign convention for, 282
unsymmetric bending, 328–334, 379

Biaxial stress, 433
Bifurcation point, 685
Blocks, impact loading from, 766–771
Body force, 23
Boundary conditions, 600
Brittle failure, 130–131, 137, 261
Brittle materials, 111, 114, 136, 261, 353, 

550–551, 559
bending and, 353
fracture, 550–551
fracture stress (sf), 111
material failure of, 111, 136, 261,  

550–551, 559
maximum normal stress theory, 550
Mohr’s failure criterion, 550–551
multiaxial stress and, 550–551, 559
strain transformation and, 550–551, 559
stress concentrations and, 261, 353
torsional loadings and, 261

Buckling, 683–739. See also Columns
bifurcation point for, 685
concentric loading, 718–724
critical load (Pcr), 683–695, 737
eccentric loading, 704–708, 728–732
Engesser’s equation for, 711, 737
Euler load, 688, 737
ideal columns, 686–691, 737
inelastic, 710–712, 737
lateral deflection as, 683–685
least moment of inertia and, 689

maximum deflection (ymax), 706–707, 737
secant formula for, 704–708, 737
tangent modulus (Et), 710–711

Built-up members, 404–408, 427, 568, 591
Bulging, 247
Bulk modulus (k), 537, 559

C
Cantilevered beams, 281
Cartesian components of strain, 89
Castigliano’s theorem, 797–807
Centroid, 810–812
Circular shafts, 201–246, 276. See also 

Shafts; Tubes
Circumferential (hoop) stress, 348, 432–433
Cohesive material, 40
Columns, 683–739

aluminum specifications, 720
buckling, 683–739
classification of, 710
concentric loading, 718–724
critical load (Pcr), 683–695, 737
deflection, maximum (ymax), 706–707, 737
design of, 708, 718–724, 728–732
eccentric loading, 704–708, 728–732
eccentricity ratio (ec/r²), 708
effective length (Le), 693
Engesser’s equation for, 711, 737
equilibrium of, 684–685
Euler load, 688, 737
fixed supports for, 692–695, 737
ideal, 686–691, 737
inelastic buckling, 710–712, 737
interaction formula for, 728–729
least moment of inertia in, 689
pin-supported, 686–691, 737
radius of gyration (r), 689
secant formula for, 704–708, 737
slenderness ratio (L/r), 689–690, 693, 

719–720
steel specifications, 719
tangent modulus (Et), 710–711
wood (timber) specifications, 720

Combined loadings, 431–461
biaxial stress, 433
circumferential (hoop) stress direction, 

432–433
cylindrical vessels, 432–433, 458
longitudinal stress, 432–433
procedure for analysis of, 438–439
radial stress, 433
spherical vessels, 433, 458
state of stress caused by, 438–446, 458
superposition of stress components for, 

439, 458
thin-walled pressure vessels, 431–434,  

439, 458
Compatibility (kinematic) conditions, 

159–166, 195, 664–667, 798
Composite areas, 811, 814
Composite beams, 338–340, 379
Compression (tension) test, 103–104, 135
Compressive stress, 41, 728

Concentrated force, 22, 290
Concentric loading, 718–724
Conservation of energy, 759–762, 807
Constant load, 42–43, 144–145, 195, 225–226
Continuity conditions, 600
Continuous material, 40
Coplanar forces (loadings), 22–24, 27
Couple moment, work of, 743
Couplings, 260
Creep, 129–131, 137
Critical load (Pcr), 683–695, 737

column buckling, 683–695, 737
fixed-supports, 686–695, 737
lateral deflection and, 683–685
pin-supports, 686–691, 737

Curved beams, 345–351, 380
Cylindrical thin-walled vessels, 432–433, 458

D
Dead loads, 66
Deflection, 165–166, 564, 595–681, 683–739. 

See also Buckling
beams, 564, 595–681
columns, 683–739
coordinates, 601
critical load (Pcr), 683–695, 737
discontinuity functions, 617–625, 678
displacement, 596–597, 599–609, 629–637, 

644–648
elastic curve and, 595–598, 602, 617–625, 

629–637, 678
flexibility (force) method of analysis, 

165–166, 664–672
flexural rigidity (EI) for, 599–600
integration method for, 599–609, 653–655, 

678–679
lateral (buckling), 683–685
M/EI diagrams for, 629–637
maximum (ymax), 706–707, 737
moment-area method for, 629–637,  

658–662, 679
moment-curvature relationship, 598
moment diagrams for, 658–662
procedures for analysis of, 602, 622,  

631, 667
radius of curvature, 598, 678
shafts, 595–681
sign conventions for, 601
slope and, 595–609, 629–637, 678
statically determinate members, 595–651
statically indeterminate shafts and beams, 

652–672, 679
superposition, method of, 644–648,  

664–672, 679
Deformable bodies, 22–32

equations of equilibrium, 24, 28
equilibrium of, 22–32
external loads, 22–23
internal resultant loads, 25–27
procedure for analysis of, 28
right-hand rule for, 26
support reactions, 23
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Deformation, 42–43, 87–93, 106, 109–118, 
124–125, 129–131, 135–137, 141–199, 
201–279, 307–310, 379, 463–509, 511–561. 
See also Displacement (d); Strain ()

angle of twist f(x), 201–203, 224–232, 248, 
250–255, 276

axially loaded members, 42–43, 141–199
beams (bending), 307–310, 379
bending, 282, 307–310, 379
bulging, 247, 277
changes in a body, 87
circular shafts, 201–213, 276
creep, 129–130, 137
displacement (d), 143–150, 158–166,  

173–176, 195–196
elastic, 106, 110, 129–136, 143–150, 173–176, 

180–183, 195–196
fatigue failure and, 130–131, 137
inelastic, 183–184, 196
localized, 141–143
mechanical material properties and, 106, 

109–118, 124–125, 135–136
noncircular shafts, 247–249, 277
plastic behavior, 106, 112, 135–136, 

183–184
Poisson’s ratio (v), 124–125, 137
principal stresses, 471–477, 489, 506
principal strains, 516, 558
procedure for analysis of, 146, 160, 165–166
relative displacement (d), 143–145, 195
Saint Venant’s principle, 141–143, 195
shear strain (g) and, 89–90, 202–203
shear stress () and, 204–211, 247–255
strain and, 87–93
strain energy, 113–118, 136
strain transformation and, 511–561
stress concentration distortion, 180–183, 

196
stress distribution and, 42–43
stress—strain behavior, 109–118, 135–136
stress transformation and, 463–509
superposition, principle of, 158–159, 195
thermal stress (dT) and, 173–176, 196
thin-walled tubes, 250–255
torsional, 201–279
twisting, 201, 247, 250, 418–420
uniform, 42–43
warping, 247, 277
yielding, 106, 109–110, 135

Degree of indeterminacy, 652
Design, 64–72, 82, 212–213, 276, 563–593, 

708, 718–724, 728–732
allowable stress design (ASD), 64–65, 67, 

82
aluminum column specifications, 720
basis of strength, 563–565
beams, 563–583, 591
columns, 708, 718–724, 728–732
concentric loading, 718–724
criteria, 67
eccentric loading, 728–732
effective slenderness ratio (KL/r) for, 693, 

719–720

factor of safety (F.S.), 64–65, 82, 719
fully stressed (nonprismatic) beams, 

580–583, 591
interaction formula for, 728–729
limit state design (LSD), 66–72
load and resistance factor design (LRFD), 

66–72, 82
load factor (g), 66
power (P) transmission and, 212–213, 276
prismatic beams, 566–573, 591
procedures of analysis for, 67, 569
resistance factors (f), 66
secant formula for, 708
section modulus (S) for, 566, 580
shafts, 212–213, 276, 584–587, 591
simple connections, 64–65, 82
steel column specifications, 719
torque diagrams for, 584
wood (timber) column specifications, 720

Dilatation (e), 536–537, 559
Discontinuity functions, 617–625, 678

application of, 621
Macaulay functions, 618–619
procedure for analysis using, 622
singularity functions, 619–620

Displacement (d), 143–150, 158–166, 
173–176, 195–196, 595–598, 599–609, 
629–637, 644–648, 653–655, 658–662, 
678–679, 797–807

axially loaded members, 143–150, 158–166, 
173–176, 195–196

Castigliano’s theorem for, 797–807
compatibility (kinematic) conditions, 

159–166, 195
constant loads and, 144–145
deflection, 596–597, 599–609, 629–637, 

644–648, 653–655, 658–662, 678–679
elastic curve for, 595–598, 602, 617–625, 

629–637, 678
elastic deformation, 143–150, 195
force (flexibility) method of analysis, 

165–166
integration method for, 599–609, 653–655, 

678–679
internal forces and, 144–146
load-displacement relationship, 159–166, 

195
moment-area method, 629–637, 658–662, 

679
procedures for analysis of, 146, 160, 

165–166
relative, 143–150, 195
sign convention for, 145
slope and, 596–597, 599–609, 629–637
statically indeterminate members, 158–166, 

173–174, 195, 653–655, 658–662, 679
superposition, principle of, 158–159, 195
thermal stress (dT) and, 173–176, 196

Distortion, stress concentration causing, 
180–183, 196

Distributed loads, 22–24, 27, 82, 282, 288–290, 
378, 618

bending and, 282, 288–290, 378

coplanar forces and, 22–24, 27
discontinuous functions for, 282
equilibrium equations for, 24, 82
Macaulay functions for, 618
shear and moment diagram regions, 282, 

288–290, 378
support reactions, 23

Ductile materials, 109–110, 114, 135, 261, 
353, 546–549, 559

bending (beams), 353
failure of, 261, 353, 546–549, 559
Lüder lines, 546–547
maximum distortion energy theory, 

548–549
maximum shear stress theory, 546–547
multiaxial stress in, 546–549, 559
offset method for, 109–110
percent elongation, 109, 135
percent reduction in area, 109, 135
slipping, 546–547, 551
strain-energy density, 548
strain transformation and, 546–549, 559
stress concentrations, 261, 353
stress—strain diagrams for, 109–110,  

114, 135
torsional loadings, 261
Tresca yield criterion, 547
yield strength, 108–109
yielding, 546–547

E
Eccentric loading, 704–708, 728–732
Eccentricity ratio (ec/r²), 708
Effective length (Le), 693
Effective slenderness ratio (KL/r), 693, 

719–720
Elastic behavior, 105–114, 126–127, 135, 

137, 143–150, 173–176, 180–183, 195–196, 
260–262, 264, 277, 352–353, 380. See also 
Inelastic behavior

axially loaded members, 143–150, 173–176, 
180–183, 195–196

bending (beams), 352–353, 380
deformation, 106, 135, 143–150, 173–176, 

180–183, 195–196
displacement (d) and, 143–150, 173–176, 

195–196
elastic limit, 105–106, 135
internal forces and, 144–146
modulus of elasticity (E), 105–106, 108, 

126, 135
necking, 107, 114, 135
nonlinear, 110
perfectly plastic (elastoplastic) materials, 

106, 183–184, 196, 264
procedure for analysis of, 146
proportional limit (pl), 105–106, 114, 126
relative displacement (d) of, 143–150, 195
shear modulus (G), 126–127, 137
sign convention for, 145
strain hardening, 107, 112, 114, 135
stress concentrations, 180–183, 196,  

260–262, 277, 352–353, 380



Elastic behavior (continued)
stress—strain (s—e) diagrams for,  

105–114, 126, 135, 137
thermal stress (dT) and, 173–176, 196
torsion formula and, 204–205
torsional loads, 260–262, 277
yielding, 106, 109–110, 135
Young’s modulus (E), 105–106, 135

Elastic curve, 595–598, 602, 617–625,  
629–637, 678

construction of, 595–598, 678
discontinuity functions for, 617–625, 678
M/EI diagrams for, 629–637
moment-area method for, 629–637
moment-curvature relationship, 598
procedures for analysis of, 602, 622
radius of curvature, 598, 678

Elastic strain energy (Ui), 113, 746–754, 807
axial loads, 746–747
bending moments, 748–750
density, 113
development of, 113
internal work and, 743–754, 807
transverse shear, 751–752
torsional moments, 753–754

Elastic torque (Ty), 264
Elastoplastic materials, 183–184, 185
Electrical-resistance strain gauge, 104, 530
Endurance (fatigue) limit (Sel), 130–131
Energy methods, 741–809

Castigliano’s theorem, 797–807
conservation of energy, 759–762, 807
couple moment, work of, 743
displacement (d), 780–784, 807
elastic strain energy (Ui), 113, 746–754, 807
external work, 741–745, 759, 807
force, work of, 742
impact loading, 766–768
internal work, 746–754, 759, 779
method of virtual forces, 778, 780–784, 

788–792
procedures for analysis of, 782, 790, 800, 804
strain energy, 741–754, 807
stress and, 743–745
virtual work, 777–796, 807

Engesser’s equation, 711, 737
Engineering (nominal) stress or strain, 105
Equilibrium, 22–33, 43–44, 51, 82, 145, 

158–166, 195, 684–685
axial loads, 43–44, 145, 158–166, 195
balance of forces and moments, 24–27, 82
bifurcation point for, 685
column buckling and, 684–685
coplanar loads, 27
deformable bodies, 22–33
displacement and, 145, 195
equations of, 24, 28, 82
external loads, 22–24
free-body diagrams, 25–28
internal resultant loads, 25–27
load distribution and, 22–33
neutral, 685
normal stress (s), 43–44

procedure for analysis of, 28
shear stress (), 51
spring force and, 684–685
stable, 684–685
statically indeterminate members,  

158–166, 195
stress and, 22–32, 43–44, 51, 82
support reactions, 23
unstable, 684–685

Equivalent spring, 768
Euler load, 688, 737
Extensometer, 104

F
Fabricated beams, 580
Fabrication error, 781
Factor of safety (F.S.), 64–65, 82, 719
Failure, 129–131, 137, 207, 247, 260–262, 277, 

352–354, 385–397, 546–553, 559, 683–739
brittle behavior, 130, 137
brittle materials, 261, 353, 550–551, 559
buckling, 683–739
creep, 129–130, 137
ductile materials, 261, 378, 546–549, 559
endurance (fatigue) limit (Sel), 130–131
fatigue, 130–131, 137, 261
fracture, 550–551
maximum distortion energy theory, 

548–549
maximum normal stress theory, 550
maximum shear stress theory, 546–547
Mohr’s circle for, 546–547
Mohr’s failure criterion, 550–551
multiaxial stress and, 546–549, 559
shear formula for, 386–397
slipping, 546–547, 551
strain transformation and, 546–553, 559
stress concentrations and, 130–131, 137, 

180–183, 196, 207, 260–262, 352–354
stress—cycle (S—N) diagrams for, 130–131
theories of, 546–553, 559
torsional loadings, 207, 247, 261, 277
transverse shear and, 385–397
Tresca yield criterion, 547
warping, 247, 277, 386–387
yielding, 546–547

Fastener spacing (beams), 405, 427
Fatigue, 130–131, 137
Flexibility (force) method of analysis, 

165–166, 664–672
Flexural rigidity (EI), 599–600
Flexure formula, 311–318, 379
Force (F), 22–28, 40–50, 82, 113, 144–146, 

282, 290, 312, 362, 367, 380, 385–386, 
684–685, 742, 746, 766–767, 778, 780–784, 
788–792

axially loaded bars, 42–44
balance of, 24
bending (beams) and, 312, 362, 367, 380
body, 23
buckling from, 684–685
compression (internal), 282
concentrated, 22, 290

coplanar, 22–24, 27
disturbing, 684
equilibrium and, 24–27, 385–386, 684–685
external loads, 22–24
internal axial, 144–146, 746
internal resultant loads, 25–28, 42–44
loading and distribution of, 22–28, 82
normal (N), 26, 42–45
restoring, 684
resultant (FR), 22, 25–26, 312, 362, 367, 380
shear (V), 26, 50, 282, 385–386
shear and moment diagrams for, 282, 290
stress and distribution of, 40–49, 82
spring, 684–685, 766–767
support reactions, 23
virtual, method of, 778, 780–784, 788–792
weight (W) as, 23
work of, 113, 742

Force (flexibility) method of analysis, 
165–166, 664–672

Fracture stress (sf), 107, 111
Free-body diagrams, 25–28
Frequency of rotation (f), 212
Fully stressed (nonprismatic) beams, 

580–583, 591

G
Gage-length distance, 104
Gage pressure, 431
Glulam beams, 568

H
Homogeneous material, 42
Hooke’s law, 106, 113, 126, 135, 534–536, 559

elasticity and, 106, 113, 126, 135
relationships between E, v, and G, 532, 559
shear, 126, 535
strain energy, 113
strain transformation and, 534–536, 559
triaxial stress and, 534–535, 559

Hoop (circumferential) stress, 348, 432–433
Hyperbolic variation, 346–347

I
Impact factor (n), 768
Impact loading, 766–768
Inclined axes, 820–822
Inelastic behavior, 183–189, 196, 261, 

263–270, 277, 362–372, 380
axial loads, 183–189, 196
bending (beams), 362–372, 380
deformation from, 183–184, 196
elastic-plastic torque, 264
linear normal-strain distribution, 362
perfectly plastic (elastoplastic) materials, 

183–184, 196
plastic load (Np), 183–184
plastic moment (MY), 364–365, 380
plastic torque (Tp), 265, 277
residual stress (r), 185–189, 196, 265–270, 

277, 365–366, 380
resultant force (FR), 362
resultant moment (MR), 362
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stress concentration and, 261
torsional loads, 261, 263–265, 277
ultimate moment, 366–367, 380

Inelastic buckling, 710–712, 737
Inertia (I), 206–207, 312–313, 328–334, 689, 

813–822
area (A) moments of, 813–822
bending (beams), 312–313, 328–334
column buckling, 689
composite areas, 814
inclined axes, 820–822
least moment of, 689
moments of, 312–313, 328–334, 813–816, 

820–822
parallel-axis theorem for, 813–814, 818
polar moment of (J), 206–207, 813
principal axes of, 329–331, 821
product of, 329, 817–819
torsional loading, 205–206
unsymmetric bending, 328–334

Inflection point, 596
In-plane principal stress, 471–477, 506
Integration method, 599–609, 653–655, 

678–679
boundary conditions, 600
continuity conditions, 600
deflection and, 599–609, 653–655,  

678–679
displacement by, 599–609
flexural rigidity (EI) for, 599–600
procedure for analysis using, 602
sign conventions for, 601
slope by, 599–609
statically determinate shafts and beams, 

599–609
statically indeterminate shafts and beams, 

653–655, 679
Interaction formula, 728–729
Internal loadings, 25–28, 40, 42–44, 50, 82, 

144–146
axial loaded members, 144–146
bending moment (M) and, 26–27
coplanar forces and, 24, 27
force (F) distribution and, 25–28, 82
method of sections for, 25–28
normal force (N) and, 26
procedure for analysis of, 28, 45, 146
relative displacement (d) of, 144–146
resultant force (P), 42–44
shear force (V) and, 26, 50
stress and, 40, 42–43, 45, 82
three-dimensional resultant, 26
torque (T) and, 26

Isotropic material, 42

K
Keyways, 260

L
Least moment of inertia, 689
Limit state design (LSD), 66–72, 82
Linear coefficient of thermal  

expansion, 173

Linear variations in stress/strain, 204, 
311–312, 329, 379, 564–565

Live loads, 66
Load (P), 22–33, 40–49, 66, 82, 141–199, 

224–232, 240–243, 276, 282, 288–290, 378, 
431–461, 617–625, 683–685, 688, 704–708, 
718–724, 728–732, 737, 746–747, 766–771. 
See also Force; Torsion

axial, 42–49, 141–199, 746–747
bifurcation point, 685
column bucking, 683–685, 688, 704–708, 

718–724, 728–732, 737
combined, 431–461
concentric, 718–724
constant, 144–145, 195, 225–226
coplanar, 27
critical (Pcr), 683–685, 737
dead, 66
deflection and, 617–625
deformable bodies, 22–33
direct (simple) shear, 50
discontinuity functions for, 617–625
distributed, 22, 282, 288–290, 378, 618
eccentric, 704–708, 728–732
elastic strain energy for, 746–747
equations of equilibrium for, 24, 28, 82
equilibrium and, 22–33, 684–685
Euler formula for, 688, 737
external, 22–24
force (F) distribution and, 22–33, 40–49
free-body diagrams for, 25–28
impact, 766–471
inelastic behavior and, 183–184
internal, 25–28, 40, 42–44
live, 66
method of sections for, 25–28
moments (M) and, 24–27
plastic (Np), 183–184
procedure for analysis of, 28, 438–439
shear and moment diagram regions, 282, 

288–290, 378
statically indeterminate members, 158–166, 

195, 240–243, 276
stress (s) and, 40, 42–43, 82
support reactions, 23
surface, 22
three-dimensional resultant, 26
torque (T), 26, 224–232, 240–243, 276

Load and resistance factor (LRFD),  
66–72, 82

Load-displacement relationship, 159–166, 
195, 664

Load factor (g), 66
Localized deformation, 141–143
Longitudinal shear stress (beams), 385–386
Longitudinal stress (thin-walled vessels), 

432–433
Lüder lines, 546–547

M
M/EI diagrams, 629–637
Macaulay functions, 618–619
Magnitude, 32, 404

Material properties, 40, 42–43, 103–139, 
534–541, 558

anisotropic materials, 42
brittleness, 111, 114, 130–131, 136
bulk modulus (k), 537, 559
cohesive material, 40
continuous material, 40
creep, 129–131, 137
dilatation (e), 536–537, 559
ductility, 109–110, 114, 135
elastic behavior, 105–114, 126, 135, 137
failure, 129–131, 137
fatigue, 130–131, 137
homogeneous material, 42
Hooke’s law, 106, 113, 126, 135,  

534–536, 559
isotropic material, 42
mechanical, 103–139
modulus of elasticity (E), 105–106, 108, 

126, 135
modulus of resilience (ur), 113, 136
modulus of rigidity (G), 126–127, 137
modulus of toughness (ut), 114, 136
multiaxial stress and, 534–541
necking, 107, 114, 135
permanent set, 112, 136
plastic behavior, 106, 112, 135–136
Poisson’s ratio (y), 124–125, 131, 137
relationships between E, v, and G, 537, 559
shear modulus (G), 126, 131, 137, 537, 559
stiffness, 112
strain energy, 113–118, 136
strain hardening, 107, 112, 114, 135–136
strain transformation relationships and, 

534–541, 558
stress (s) and, 40, 42–43, 105, 107
stress—cycle (S—N) diagrams for, 130–131
stress—strain (s—e) diagrams for, 105–

114, 126–128, 131, 135–137
tension (compression) test for,  

103–104, 135
uniform deformation, 42–43
yielding, 106, 109–110, 135

Maximum deflection (ymax), 706–707, 737
Maximum distortion energy theory, 548–549
Maximum in-plane shear strain, 516, 558
Maximum in-plane shear stress, 473–477, 

489, 506
Maximum normal stress theory, 550
Maximum shear stress theory, 546–547
Mechanics of materials, 21–22
Method of sections, 25–28
Modulus of elasticity (E), 105–106, 108, 126, 

135, 536
Modulus of resilience (ur), 113, 136
Modulus of rigidity (G), 126–127, 131,  

137, 536
Modulus of rupture (r or sr), 266, 365–366
Modulus of toughness (ut), 114, 136
Mohr’s circle, 487–493, 499–502, 507, 

520–524, 528–529, 546–547, 558
absolute maximum shear strain,  

528–529, 558



Mohr’s circle (continued)
absolute maximum shear stress (max), 

499–502
failure probability using, 546–547
plane-strain transformation, 520–524, 558
plane-stress transformation, 487–493, 507
procedures for analysis of, 489–490, 

520–521
Mohr’s failure criterion, 550–551
Moment-area method, 629–637, 658–662, 679
Moment-curvature relationship, 598
Moment diagrams, 658–662
Moments (M), 24–27, 32, 82, 201, 205–206, 

282, 290, 307–309, 312–314, 328–334, 
345–348, 362–372, 378–380, 387–389, 
427, 439, 619–620, 743, 748–750, 753–754, 
810–822

area (A), 810–822
area about neutral axis (Q), 387–389, 427
arbitrarily applied, 330
balance of, 24
bending (beams), 26–27, 282, 290, 307–309, 

312–314, 328–334, 347–348, 362–372, 
378–380, 439, 748–750

combined load analysis for, 439
concentrated force and, 290
coplanar loads, 27
couple, work of, 743
curved axis, 255–348
direction of, 32
elastic strain energy (Ui), 748–750,  

753–754
energy and, 743, 748–750, 753–754
equilibrium and, 24–27, 82
inelastic bending, 362–372, 376
flexure formula and, 312–314
inertia (I), 312–313, 328–334, 813–816, 

820–822
internal, 25–27, 282
magnitude of, 32
neutral axis orientation and, 331
plastic (MY), 364–365, 380
polar moment of inertia (J), 206–207
principal axis, 328–329, 821
resultant (MR), 25–26, 328, 362, 585
shear and moment diagram regions, 282, 

290
singularity functions and, 619–620
torsional (T), 26, 82, 201, 439, 753–754
ultimate, 366–367, 380
unsymmetric bending, 328–334, 379

Multiaxial stress, 534–541, 546–549, 745

N
Necking, 107, 114, 135
Neutral axis (beams), 307, 312, 331, 346, 362, 

387–389, 427
bending, orientation of in, 307, 312, 331, 

346, 362
transverse shear, area about (Q),  

387–389, 427
Neutral surface, 307
Nominal dimensions, 567

Noncircular shafts, 247–259, 277. See also 
Shafts

Nonlinear elastic behavior, 110
Nonprismatic beams, 580–583, 591
Normal force (N), 26, 42–45
Normal strain (e), 88–90, 311, 346, 379, 

511–515, 558
bending (beams) and, 311, 379
hyperbolic variation of, 346
linear variation of, 311, 379
plane-strain transformation orientation, 

511–515, 558
principal strains, 516, 558
small strain analysis, 90
Normal stress (s), 41–49, 64–65, 82, 203–204, 

311, 329, 346–347, 460–461, 463–469, 
471–472, 506, 743–744

allowable (sallow), 64–65, 82
average, 42–49, 82
axially loaded bars, 42–49
bending (beams), 202–203, 311, 329
compressive, 41
constant, 42–43
distribution of average, 42–43
equilibrium and, 43–44
hyperbolic variation of, 346–347
in-plane principal stresses, 471–472, 506
internal force loading (P), 42–44
linear variation of, 203–204, 311, 329
maximum average, 44
plane-stress transformation orientation, 

468–469, 506
prismatic bars and, 42–49, 82
procedure for analysis of, 45
strain energy and, 743–744
stress transformation, 463–469, 506
tensile, 41

O
Offset method, 109–110
Overhanging beams, 281

P
Parabolic shear stress distribution, 394, 

564–565
Parallel-axis theorem, 813–814, 818
Percent elongation, 109, 135
Percent reduction in area, 109, 135
Perfectly plastic (elastoplastic) materials, 

106, 183–184, 196
Permanent set, 112, 136
Plane strain, 511–524, 558

maximum in-plane shear, 516, 558
Mohr’s circle for, 520–524, 558
normal and shear component orientation, 

511–515, 558
principal strains, 516, 558
procedure for analysis of, 520–521
sign convention for, 512
transformation equations for, 512–519, 558

Plane stress, 463–477, 487–493, 506–507
component orientation, 461–467, 506
in-plane principal stresses, 471–477, 506

maximum in-plane shear, 473–477, 506
Mohr’s circle for, 487–493, 507
normal stress (N), 468–469, 471–472, 506
shear stress (), 463–469, 506
procedures for analysis of, 465, 469, 

489–490
sign convention for, 468
state of, 463–467
transformation equations for, 468–470, 506

Plastic behavior, 106, 112, 135–136, 183–184, 
196, 265–270, 277. See also Inelastic 
behavior

axial loads, 183–184, 196
deformation, 106, 183–184, 196,  

265–270, 277
elastic-plastic torque, 264
elastoplastic materials, 183–184, 185
perfectly, 106, 183–184, 196
permanent set, 112, 136
strain hardening, 112, 136
torsional loading, 265–270, 277
yielding, 106, 135

Plastic load (Np), 183–184
Plastic moment (MY), 364–365, 380
Plastic torque (Tp), 265–270, 277
Plate girder, 568
Poisson’s ratio (v), 124–125, 131, 137
Polar moment of inertia (J), 206–207, 813
Posts (short columns), 710
Power (P) transmission, 212–213, 276
Principal axes, 328–331, 821
Principal strains, 516, 558
Principal stresses, 471–477, 489, 506
Prismatic bars, 42–49
Prismatic beam design, 566–573, 591
Product of inertia, 329, 817–819
Proportional limit (spl), 105–106, 114, 126
Pure shear, 51, 126

R
Radial distance (r), 203, 208
Radial stress, 348, 433
Radius of curvature, 598, 678
Radius of gyration (r), 689
Redundants, 652
Reinforced concrete beams, 341–344
Relative displacement (d), 143–150, 195
Residual stresses (r), 185–189, 196, 265–270, 

277, 365–366, 380
axial loadings, 185–189, 196
bending (beams), 365–366, 380
modulus of rupture (r or sr), 266,  

365–,366
statically indeterminate members, 185, 

187–189
superposition for, 185
torsional loadings, 265–270, 277

Resistance factors (f), 66
Resultant, 25–26, 312, 328, 362, 367, 380, 585

bending (beams), 328, 362, 367, 380
force (FR), 22, 25–26, 312, 362, 367, 380
internal loadings and, 25–26
moments (MR), 25–26, 328, 362, 585
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neutral axis and, 312, 362
shaft design and, 585

Right-hand rule, 26, 204, 227
Rolled shapes, 567
Rotation of shafts, 202–203, 212, 224–232

S
Saint Venant’s principle, 141–143, 195
Secant formula, 704–708, 737
Section modulus (S), 566, 580
Shafts, 201–279, 584–587, 591, 595–681

angle of twist (f), 201–203, 224–232, 248, 
252, 276

average shear stress (avg), 251–252, 277
bulging, 247, 277
circular, 201–246, 276
constant torque and, 225–226
deflection of, 595–681
design of, 212–213, 584–587, 591
discontinuities in cross sections, 260–262
discontinuity functions for, 617–625, 678
elastic curve for, 595–598, 602, 617–625, 

629–637, 678
force (flexibility) method of analysis, 

664–672
frequency of rotation (f), 212
inelastic torsion, 261, 263–265, 277
integration method for, 599–609, 653–655, 

678–679
moment-area method for, 629–637,  

658–662, 679
multiple torques along, 226
noncircular, 247–259, 277
polar moment of inertia (J), 206–207
power (P) transmission by, 212–213, 276
procedures for analysis of, 208, 228, 241, 

602, 622, 631, 667
residual stress (r) in, 265–270, 277
resultant moment for, 585
rotation of, 202–203, 212, 224–232
shape variations, 248
shear strain (g) along, 202–203, 264–267
shear-stress () distribution, 204–211, 

247–255, 260–261, 277
slope for, 595–609, 629–637, 678
statically indeterminate, 240–243, 276, 

652–672, 679
stress concentration factor (K),  

260–262, 277
superposition method for, 644–648,  

658–662, 664–672, 679
torque diagrams for, 229, 584
torque loads on, 224–232, 240–243, 276
torsion formula for, 204–211, 276
torsional deformation and, 201–279
tubular, 206–208, 212, 250–255, 276–277
warping, 247, 277

Shear and moment diagrams, 281–297, 378
bending (beams), 281–297, 378
concentrated force and moment regions, 290
discontinuous functions of, 282
distributed load regions, 282, 288–290, 378
functions of, 282–283

graphical method for construction of, 
288–297, 378

internal moments (compression), 282
procedures for analysis of, 283, 291,  

314, 349
slope of, 289–290, 378
sign convention for, 282
support reactions and, 281–283, 291

Shear center (O), 418–423, 428
Shear flow (q), 250–251, 404–408, 413–417, 

427–428
built-up members, 404–408, 427
directional sense of, 413, 416
fastener spacing and, 405
flanges, 414
magnitude of, 404
thin-walled members, 413–417, 428
thin-walled tubes, 250–251
torsional loading and, 250–251
transverse shear and, 404–408, 413–417, 

427–428
web, 415–416

Shear force (V), 26, 50, 282, 290,  
385–386, 439

average shear stress from, 50
bending moments (M) and, 282, 290
combined load analysis for, 439
development of, 26
transverse shear distribution and, 385–386
sign convention for, 282

Shear formula, 386–397, 427
Shear modulus (G), 126, 131, 137, 537, 559
Shear strain (g), 89, 202–203, 264–267, 

511–515, 528–529, 558
absolute maximum, 528–529, 558
component orientation, 511–515, 558
determination of, 89
inelastic torsion and, 264–265
linear variation in, 203
maximum in-plane, 516, 528–529, 558
maximum torsional (gmax), 204, 264–267
plane-strain transformation, 511–516, 

528–529, 558
torsional deformation and, 202–203, 

264–267
Shear stress (), 41, 50–55, 64–65, 82, 

126–128, 137, 204–211, 247–255, 260–261, 
266–267, 277, 385–428, 463–469, 473–477, 
489, 499–502, 506, 744

absolute maximum (max), 204–205, 207, 
499–502, 507

allowable (allow), 64–65, 82
average (avg), 50–55, 82, 251–252, 277
beams, 385–428
complementary property of, 51
component orientation, 461–467, 506
determination of, 41, 82
direct (simple) loads, 50
equilibrium and, 51
in-plane transformations, 471–477, 506
linear variation in, 204
longitudinal, 385–386
maximum in-plane, 473–477, 489, 506

maximum torsional (max), 205, 208, 248, 
260–261, 266–267, 277

modulus of elasticity/rigidity (G),  
126–128, 137

parabolic distribution, 394
plane-stress transformation, 468–470, 

499–502, 506
procedure for analysis of, 52, 465, 469
proportional limit (pl), 126
pure, 51, 126
residual, 265–270, 277
right-hand rule for, 204
shafts, distribution in, 204–205, 207, 247–

255, 260–261, 277
simple (direct) loads, 50
strain energy and, 744
thin-walled tubes, 250–255, 277
torsional loads and, 204–211, 247–255, 

260–261, 277
transverse, 385–428
ultimate (u), 126

Shear stress—strain (s—e) diagrams,  
126–128, 137

Simple connections, ASD for, 65, 82
Simple (direct) shear, 50
Simply supported beams, 281
Singularity functions, 619–620
Slenderness ratio (L/r), 689–690, 693, 

719–720
Slipping, 546–547, 551
Slope, 289–290, 378, 595–609, 629–637, 678

bending (shear), 289–290, 378
deflection and, 595–609, 629–637, 678
displacement and, 596–597, 599–609, 

629–637
elastic curve, 595–598, 602, 629–637, 678
integration method for, 599–609, 678
moment-area method for, 629–637, 678
procedures for analysis of, 602, 631
radius of curvature, 598, 678
shear and moment diagrams, 289–290, 378
sign conventions, 601

Small strain analysis, 90
Spherical thin-walled vessels, 433, 458
Spring force, 684–685, 766–767
Stable equilibrium, 684–685
State of stress, 41, 438–446, 458, 463–467

combined loadings and, 438–446, 458
determination of, 41
plane stress transformation, 463–467
procedures for analysis of, 438–439, 465

Statically indeterminate members, 158–166, 
173–174, 185, 187–190, 195, 240–243, 276, 
652–672, 679

axially-loaded, 158–166, 173–174,  
185, 195

beams, 652–672, 679
compatibility (kinematic) conditions, 

159–166, 195, 664–667
deflection of, 652–672, 679
degree of indeterminacy, 652
displacement (d), 159–166, 173–174, 195
equilibrium of, 158–166, 195



Statically indeterminate members  
(continued)

force (flexibility) method of analysis, 
165–166, 664–672

integration method for, 653–655, 679
load-displacement relationship, 159–166, 

195, 664
moment-area method for, 658–662, 679
procedures for analysis of, 160, 165–166, 

241, 667
redundants, 652
residual stresses (r), 185, 189
shafts, 240–243, 276, 652–672, 679
superposition method for, 185, 658–660, 

664–672, 679
thermal stress (dT), 173–174
torque-loaded, 240–243, 276

Steel beam design, 567
Steel column specifications, 719
Step shafts, 260
Stiffness, 112
Stiffness factor (k), 684–685, 766–767
Straight members, see Beams
Strain, 87–101, 105, 107, 124–125, 129–130, 

137, 202–203, 309–310, 362, 511–561. See 
also Normal strain (e); Shear strain (g)

bending of beams and, 309–310
Cartesian components of, 89
component orientation, 511–515, 558
creep, 129–131, 137
deformation and, 87–93, 309–310
engineering (nominal), 105
inelastic bending and, 362
linear distribution, 362
maximum in-plane shear, 516, 558
multiaxial stress and, 534–541
normal (e), 88–90, 511–515, 558
plane, 511–519, 558
Poisson’s ratio (v), 124–125, 131, 137
principals, 516, 558
procedure for analysis of, 520–521
shear (g), 89, 202–203, 511–516, 558
small strain analysis, 90
state of, 90
transformation, 511–561
true, 107
units of, 88

Strain energy (u), 113–118, 136, 548,  
741–754, 807

deformation and, 113–118, 136
density, 113, 548
elastic, 113, 746–754, 807
external work and, 741–745, 807
material properties and, 113–118, 136
modulus of resilience (ur), 113, 136
modulus of toughness (ut), 114, 136
multiaxial stress and, 548, 745
normal stress (s) and, 743–744
shear stress (), 744
work and, 113, 741–745, 807

Strain gauge, 516, 530
Strain hardening, 107, 112, 114, 135–136
Strain rosettes, 530–531

Strain transformation, 511–561
absolute maximum shear strain,  

528–529, 558
bulk modulus (k), 537, 559
dilatation (e), 536–537, 559
equations for, 512–519, 558
failure and, theories of, 546–553, 559
Hooke’s law and, 534–536, 559
in-plane shear strain, 516, 558
material property relationships,  

534–541, 558
Mohr’s circle, 520–524, 528–529,  

546–547, 558
multiaxial stress and, 534–541
normal and shear component orientation, 

511–515, 558
plane strain, 511–524, 558
principal strains, 516, 558
procedure for analysis of, 520–521
relationships between E, v, and G, 537, 559
sign convention for, 512
strain rosettes, 530–531

Strength, basis of for beam design,  
563–565, 569

Stress, 21–85, 105–108, 130–131, 135–137, 
173–176, 180–183, 185–189, 196, 203–211, 
260–262, 265–270, 276–277, 311–318, 
345–348, 365–366, 380, 431–460, 463–509, 
546–549, 560–561, 563–565, 728–729, 
743–745. See also Normal stress (s); 
Shear stress (); Torque (T); Transverse 
shear

allowable stress design (ASD), 64–65, 82
axially loaded members, 42–49, 82, 173–

176, 180–183, 185–189, 196
bearing, 65
bending (beams) and, 311–318, 345–354, 

365–366, 380, 385–428
biaxial, 433
circumferential (hoop), 348, 432–433
columns, distribution in, 728–729
combined loadings, 431–461
component orientation, 462–467, 506
compressive, 41, 728
concentration, 180–183, 196, 260–262, 277, 

352–354, 380
constant, 42–43
curved beams, 345–351
deformable bodies, 22–32
elastic behavior, 180–183, 196
endurance (fatigue) limit, 130–131, 137
engineering (nominal), 105
equilibrium and, 22–32, 43–44, 51, 82
factor of safety (F.S.), 64–65, 82
fatigue failure and, 130–131, 137
force distribution and, 40–41, 82
fracture (sf), 107, 111
hoop (circumferential), 348, 432–433
hyperbolic variation, 346–347
in-plane shear, 471–477, 506
inelastic bending and, 365–366, 380
internal force (F) and, 40, 42–44, 82
limit state design (LSD), 66–72, 82

linear variations, 204, 311–312
load and resistance factor (LRFD),  

66–72, 82
longitudinal, 385–386, 432–433
material properties and, 40, 42–43
mechanics of materials and, 21–22
multiaxial, 534–541, 546–549, 745
necking, 107, 135
normal (s), 41–49, 64–65, 82, 460–461, 

463–469, 471–472, 506, 743–744
plane, 463–477, 487–493, 506–507
principal, 471–477, 506
prismatic bars, 42–49
prismatic beam design and, 563–565
procedures for analysis of, 45, 52, 67, 

438–439
proportional limit (spl), 105–106, 114, 126
radial, 348, 433
residual (r), 185–189, 196, 265–270, 277, 

365–366, 380
shear (), 41, 50–55, 64–65, 82, 126–128, 137, 

385–428, 463–469, 473–477, 489, 499–502, 
506, 744

simple connections, 65, 82
state of, 41, 438–446, 458, 463–467
strain energy and, 743–745
superposition of combined components, 

439, 458
tensile, 41
theories of failure and, 546–549
thermal (dT), 173–176, 196
torsional, 203–211, 260–262, 265–270, 

276–277
trajectories, 564–565
transformation, 468–470, 506
triaxial, 534–535
true, 107
ultimate (su), 107, 126
uniaxial, 43–44
units of, 41
yield point (sY), 106, 108, 135

Stress concentration, 180–183, 196, 260–262, 
277, 352–354, 380

absolute maximum shear stress (max), 
260–262, 277

axial loads, 180–183, 196
bending (beams), 352–354, 380
distortion from, 180–183, 196
elastic behavior and, 180–183, 196
factor (K), 181–183, 196, 260–262, 277, 

352–354, 380
failure and, 260–262, 352–354
torsional loads, 260–262, 277
Stress—cycle (S—N) diagrams, 130–131

Stress—strain (s—e) diagrams for, 105–114, 
126–128, 131, 135–137

brittle materials, 111, 114, 136
conventional, 105–107
ductile materials, 109–110, 114, 135
elastic behavior, 105–114, 126, 135, 137
endurance (fatigue) limit (Sel), 130–131
fracture stress (sf), 107, 111
Hooke’s law, 106, 113, 126, 135
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modulus of elasticity (E), 105–106, 108, 
126, 135

modulus of resilience (ur), 113, 136
modulus of rigidity (G), 126–127, 131, 137
modulus of toughness (ut), 114, 136
necking, 107, 114, 135
nominal (engineering) stress or strain, 105
offset method, 109–110
plastic behavior, 106, 112, 135–136
Poisson’s ratio (y), 124–125, 131, 137
proportional limit (pl), 105–106, 114, 126
shear, 126–128, 137
strain energy, 113–118, 136
strain hardening, 107, 112, 114, 135–136
true, 107–108
ultimate stress (su), 107, 126
yield point (sY), 106, 108, 135
yielding, 106, 109–110, 135

Stress trajectories, 564–565
Stress transformation, 463–509

absolute maximum shear (max),  
499–502, 507

equations for, 468–470, 506
in-plane principal stress, 471–477, 506
Mohr’s circle for, 487–493, 499–502, 507
normal and shear component orientation, 

468–469, 506
plane stress, 463–477, 487–493, 506–507
principal stresses, 471–477, 489, 506
procedures for analysis of, 465, 469, 

489–490
sign convention for, 468
state of stress and, 463–467

Structural shapes, geometric properties of, 
824–831

Superposition, 158–159, 195, 439, 458, 
644–648, 658–662, 664–672, 679

axially loaded members, 158–159, 195
combined stress components, 439, 458
compatibility equations, 664–667
deflection solutions by, 644–648,  

664–672, 679
moment diagrams constructed by, 658–662
principle of, 158–159, 195
procedure for analysis using, 667
statically indeterminate shafts and beams, 

664–672, 679
Support reactions, 23
Supports for columns, 686–695, 737
Surface loadings, 22

T
Tangent modulus (Et), 710–711
Temperature change, 781
Tensile stress, 41
Tension (compression) test, 103–104, 135
Thermal stress (dT), 173–176, 196
Thin-walled elements, 250–251, 404–408, 

413–423, 427–428, 431–434, 458
angle of twist f(x), 252
average shear stress (avg), 251–252, 277
axis of symmetry, 418–420
beams, 404–408, 413–417, 427–428

biaxial stress, 433
circumferential (hoop) stress, 432–433
closed cross sections, 250–255
combined loadings, 431–434, 458
cylindrical vessels, 432–433, 458
flanges, 414
gage pressure, 431
longitudinal stress, 432–433
pressure vessels, 431–434, 458
procedure for analysis of, 420
radial stress, 433
shear center (O), 418–423, 428
shear flow (q), 250–251, 404–408, 413–417, 

427–428
spherical vessels, 433, 458
transverse shear in, 404–408, 413–423, 

427–428
tubes, 250–255, 277
twisting, 250, 418–420
web, 415–416

Three-dimensional load resultant, 26
Torque (T), 26, 201–211, 224–232, 263–270, 

276–277
angle of twist f(x) and, 201–203,  

224–232, 276
constant, 225–226
deformation from, 201–203
elastic (Ty), 264
external, 201–203
inelastic torsion and, 263–265, 277
internal, 204–211, 224–232, 276
loads and, 26
maximum elastic (TY), 264
multiple, 226
plastic (Tp), 265–270, 277
residual stress (r) and, 265–270, 277
right-hand rule for, 26, 204, 227
sign convention for, 227
torsion formula for, 204–211, 276
torsional moment, as, 26, 201
ultimate (Tu), 267

Torque diagram, 229, 584
Torsion, 201–279, 439, 753–754. See also 

Torque (T)
angle of twist f(x), 201–203, 224–232, 248, 

250–255, 276
combined load analysis for, 439
deformation and, 201–279
elastic strain energy (Ui) and, 753–754
formula for, 204–211, 276
inelastic, 261, 263–265, 277
linear elastic behavior and, 204–205
linear shear stress/strain variations, 

203–204
modulus of rupture (r) for, 266
power transmission and, 212–213, 276
procedures for analysis of, 208, 228, 241
residual stress (r), 265–270, 277
right hand rules for, 204, 227
shafts, 201–279
shear strain (g) and, 202–203
shear stress () distribution, 204–211, 

247–255, 260–261, 277

static loadings, 261
statically indeterminate members,  

240–243, 276
stress concentration factor (K), 260–262, 

277
stress distribution, 203–211, 260–262, 

265–270, 276–277
torque application and deformation, 

201–203
tubes, 206–207, 212, 228, 250–255, 277
warping and bulging from, 247, 277

Torsional moments (T), 26, 82, 201, 439, 
753–754

Transformation equations, 820
Transformation factor (n), 339–340, 379
Transverse shear, 385–428, 751–752

beams and, 385–428
built-up members, 404–408, 427
elastic strain energy (Ui) and, 751–752
procedures for analysis of, 392, 420
shear center (O), 418–423, 428
shear flow (q), 404–417, 427–428
shear formula for, 386–397, 427
straight members, 385–386
thin-walled members, 413–423, 428

Tresca yield criterion, 547
Triaxial stress, 534–535
True stress—strain (s—e) diagrams, 107–108
Trusses, 759, 780–784, 799–801

Castigliano’s theorem, 799–801
conservation of energy for, 759
fabrication errors, 781
procedures for analysis of, 782, 800
temperature changes and, 781
virtual forces, method of for, 780–784

Tubes, 206–207, 212, 228, 250–255, 277
angle of twist (f), 252
average shear stress (avg), 251–252, 277
closed cross sections, 250–255
polar moment of inertia (J), 205, 208
procedure for analysis of, 208, 228
power transmission by, 212
shear stress distribution, 207
shear flow (q) in, 250–251
thin-walled, 250–255, 277
torsion formula for, 206–208

Twisting, 201, 247, 250, 418–420

U
Ultimate moment, 366–367, 380
Ultimate shear stress (u), 126
Ultimate stress (su), 107, 126
Ultimate torque (Tu), 267
Uniaxial stress, 43–44
Uniform deformation, 42–43
Unstable equilibrium, 684–685
Unsymmetric bending, 328–334, 379

V
Virtual work, 777–796, 807

beams, 788–792
energy and, 777–796, 807
fabrication error and, 781



Virtual work (continued)
internal, 779
method of virtual forces, 778, 780–784, 

788–792
principle of, 777–779
procedures for analysis of, 782, 790
temperature change and, 781
trusses, 780–784

W
Warping, 247, 277, 386–387
Weight (W), force as, 23
Wood (timber) column specifications, 720
Wood beam design, 567

Work, 113, 212, 741–754, 759–762,  
777–796, 807

conservation of energy for,  
759–762, 807

couple moment, 743
elastic strain energy (Ui) and, 113,  

746–754, 807
external, 741–745, 759, 807
force (F) as, 113, 742
internal, 746–754, 759, 779
power (P) as, 212
procedures for analysis of, 782, 790
strain energy, 741–745
virtual, 777–796, 807

Y
Yield point (sY), 106, 108, 135
Yield strength, 108–109
Yielding, 106, 109–110, 135, 546–547. See also 

Ductile materials
deformation from, 106, 109–110, 135
failure from, 546–547
maximum shear stress theory for,  

546–547
stress—strain (s—e) diagrams and, 106, 

109–110, 135
Tresca yield criterion, 547

Young’s modulus (E), 105–106, 135
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Shear

Average direct shear stress

tavg =
V
A

Transverse shear stress

t =
VQ
It

Shear flow

q = tt =
VQ

I

Stress in Thin-Walled Pressure Vessel

Cylinder

s1 =
pr

t
     s2 =

pr

2t

Sphere

s1 = s2 =
pr

2t

Stress Transformation Equations

 sx� =
sx + sy

2
+

sx - sy

2
 cos 2u + txy sin 2u

 tx�y� = -  
sx - sy

2
 sin 2u + txy cos 2u

Principal Stress

 tan 2up =
txy

(sx - sy)>2

 s1,2 =
sx + sy

2
{ A asx -  sy

2
b

2

+ txy
2

Maximum in-plane shear stress

 tan 2us = -
(sx - sy)>2

txy
 

 tmax = A a
sx -  sy

2
b

2

+ t2
xy

 savg =
sx + sy

2

Absolute maximum shear stress

tabs
max

=
smax

2
 for smax, smin same sign

tabs
max

=
smax - smin

2
 for smax, smin opposite signs

Axial Load

Normal Stress

s =
N
A

Displacement

 d = L
L

0 
 
N(x)dx
A(x)E

 d = � 
NL
AE

 dT = a �TL

Torsion

Shear stress in circular shaft

t =
Tr

J
where

J =
p

2
c4  solid cross section

J =
p

2
 (co 

4 - ci 
4)  tubular cross section

Power

P = Tv = 2pf T

Angle of twist

f = L
L

0
 
T(x)dx
J(x)G

f = � 
TL
JG

Average shear stress in a thin-walled tube

tavg =
T

2tAm

Shear Flow

q = tavg t =
T

2Am

Bending

Normal stress

s =
My

I
Unsymmetric bending

 s = -  
Mzy

Iz
+

Myz

Iy
,  tan a =  

Iz

Iy
 tan u

Fundamental Equations of Mechanics of Materials
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h

y A = bh

x

Rectangular area

C

b

h C

A =    bh

x

Triangular area

h1
3

1
2

–

–

b

h

a A

x

Trapezoidal area

C

=     (a + b)h1
2

1
3

2
a + b
a+ b h———–

–

y
A

x

Semicircular area

C

= π
2

r
4
3

r
π

r2

—

—–

y
A

x

Circular area

C

= π

r

r2

b
C
a

A = ab2
3

b3
8–

–

– a2
5

Semiparabolic area

b
C

a

A ab=

Exparabolic area

a3–4

b3
10—

1
3—

Material Property Relations

Poisson’s ratio

             n = -  
Plat

Plong

Generalized Hooke’s Law

 Px =
1

E
 3sx - n(sy + sz)4

 Py =
1

E
 3sy - n(sx + sz)4

 Pz =
1

E
 3sz - n(sx + sy)4

 
gxy =

1

G
 txy, gyz =

1

G
 tyz, gzx =

1

G
 tzx

where

      G =
E

2(1 + n)

Relations Between w, V, M

 
dV
dx

=  w(x),
dM
dx

= V

Elastic Curve
 

1
r

=
M
EI

 EI 
d 4v

dx4 = w(x)

 EI 
d3v

dx3  = V (x)

 EI 
d2v

dx2 = M(x)

Buckling
Critical axial load

         Pcr =
p2EI
(KL)2

Critical stress

 scr =
p2E

(KL >r)2 , r = 2I>A
Secant formula

 smax =
P
A

 c 1 +
ec
r2  sec a L

2r
 A P

EA
b d

Energy Methods
Conservation of energy

    Ue = Ui
Strain energy

Ui =
N2L
2AE

    constant axial load

Ui = L
L

0

M2dx
2EI

   bending moment

Ui = L
L

0

fsV
2dx

2GA
   transverse shear

Ui = L
L

0

T2dx
2GJ

   torsional moment

Geometric Properties of Area Elements

Ix =
1
12 bh3

Iy =
1
12 hb3

Ix =
1
36 bh3

Ix =
1
8 pr4

Iy =
1
8 pr4

Ix =
1
4 pr4

Iy =
1
4 pr4
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