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Preface

Since the 1970s, Complex and chaotic nonlinear dynamics (in short, Complex
Dynamics) constitute a growing and increasingly important area that comprises
advanced research activities and strongly interdisciplinary approaches. This area
is of a fundamental interest in many sciences, including Economics.

Let us start with a comment about the interest of Complex Dynamics in Eco-
nomics and in so doing the necessity of such a book and its interdisciplinarity:
Mathematics in Economics have a very strong didactic role. Mathematics state the-
oretical models and paradigms that must conform to measurements. However, in
Economics the measurements are rare, more often of a small number of points and
of a very low density, except for stock markets. This chasm that separates Eco-
nomics from the “dense” measurable reality has maintained economists in a kind
of “isolation” (compared with other sciences): (1) that of the qualitative approach
that can be conducted, for instance, in a literary way, very often of great relevance
but which is not quantitative, (2) and that of the construction of models (“math-
ematical idealities”) with a strong didactic or mechanistic vocation often far from
the richness of “the living”. This is above all a problem of measurement. Beyond the
epistemological revolution of nonlinear theory, today there is that of the information
systems and networks, which will provide the exceptional opportunity to capture
dense measurements in numerous fields of Economics (e.g. from consumer behav-
iors up to national accounts). Thus, the economists will be in an opposite situation
than before. The measure flows for the economists will have densities increasingly
similar to those of other sciences whose measures come from “the living” for exam-
ple. Economics will have to treat these measure flows with relevant tools, which are
necessary to master. This is a turning point for Economics. Thus, Mathematics and
its analytic tools are more relevant than ever for economists, in particular to study
Complex Dynamics and to bring closer theoretical models and information com-
ing from signal or time series measurements. Calculation capabilities, networks,
measurements and information treatment also make the existence of such a book
legitimate and necessary.

In the same vein, Economic Policy needs tools going beyond simple observation
(shifted in time) offered by statistical series in order to recognize the exact and not
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only the apparent state of conjuncture. This book describes these tools, with a wealth
of details and precisions, and not only the tools but also many concrete applications
to economic series in general. When Clive W.J. Granger published his work about
the time series analysis 40 years ago, he exposed the means available at that time, of
which Fourier series decomposition. These means had been refined and improved
with the aim of applying them, for example, to telecommunications. The series on
which telecommunications analysts work contain a great number of points, the edge
effects are very often negligible and, especially, the series are almost always sta-
tionary. The use of more elaborated tools than the Fourier series decomposition is a
necessity. In Economics, this had been different for a long time; everything created
a problem in time series analysis, a weak extent, edge effects, a non-stationariness
which cannot be reduced to the existence of a tendency, as the basic handbooks
could make it believe, but is expressed by a high volatility, relative to an aver-
age value which does not have great sense, and variable according to the selected
sample.

In such a context, the content of this book shows how much the recent contri-
butions of signal theory in relation with nonlinear dynamics are powerful means
of analysis and have a so important potential. Information systems and networks
will contribute to this goal. In this regard, let us point out that the third part
of the book is a quite essential contribution. It covers signal theory, not only
in a didactic way (Fourier, Wiener, Gabor, etc.) but also by presenting highly
advanced contents (polyspectra already used by economists, best basis, multi-
resolution analysis, hybrid waveform dictionaries, matching pursuit algorithms with
time-frequency atoms, etc.). The applications are numerous and demonstrative:
stock market indexes, standard signals, signals of coupled oscillators or turbu-
lent phenomena highlighting coherent structures. Signal theory certainly has to be
promoted in Economics; this book contributes to this aim.

More than in the past, Economics calls for nonlinear formalizations which pro-
vide complex formal solutions. The increasingly frequent necessity to carry out
digital simulations after still largely heuristic “calibrations” leads to thorough anal-
yses of simulated series and reference-series (often reconstructed) for which this
book offers particularly adapted tools.

What appears most clearly is the innovation and originality of many parts of this
book, the diversity of the applications and the richness of the theoretical exploration
possibilities. This is what makes this book a document from now on impossible to
disregard for economists as for econometricians, and potentially for practitioners of
other disciplines.

To end this preface, may I wish that the readers have as much pleasure as I to
peruse this work that numerous illustrations make less austere without ceasing to be
rigorous, and then, convinced by the diversity of the applications, that the readers
implement themselves the tools.

Ecole Normale Supérieure of Cachan, Professor Alain Goergen
France
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1.13 Poincaré–Bendixson Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1.13.1 Bendixson Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1.14 Center Manifold Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1.15 Definitions of Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.16 Invariant Sets and Attractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

1.16.1 Definition of an Attractor . . . . . . . . . . . . . . . . . . . . . . . . . . 60
1.16.2 Strange Attractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1.17 Some Nonlinear Dynamical Systems with Their Associated
Attractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

1.18 Conservative and Dissipative Systems . . . . . . . . . . . . . . . . . . . . . . . . 70
1.19 Hamiltonian and Optimal Growth Model . . . . . . . . . . . . . . . . . . . . . 71

1.19.1 The Optimal Growth Model with Infinite Horizon . . . . . . 72
1.20 Torus and Combination of Basic Frequencies . . . . . . . . . . . . . . . . . . 72
1.21 Quasiperiodic Route to Chaos (Ruelle Takens),

and Landau Tn Tori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
1.21.1 Description of Both Alternative Scenarios . . . . . . . . . . . . 73
1.21.2 Experimental Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . 75
1.21.3 Circle Map, Mode-Locking and Arnold Tongue . . . . . . . . 77

1.22 An Approach of KAM Theory: Invariant Torus and Chaos . . . . . . . 80
1.22.1 KAM Torus: Irrational Rotation Number . . . . . . . . . . . . . 83

1.23 Approach of Dynamical Systems by Means of Pendulums
and Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

1.24 Navier–Stokes Equations of Flows, Attractors and Invariant
Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
1.24.1 Navier–Stokes Equations: Basic Model . . . . . . . . . . . . . . . 89
1.24.2 Navier–Stokes Dynamics: Invariant Ergodic

Measures, Characteristic Exponents
and Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
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Introduction

The aim of this work is to try to offer a stimulating environment for the study of
complex or chaotic nonlinear Dynamics. The topicality of this type of dynamics
results from widely different scientific disciplines. And although keeping an eco-
nomic or financial prevalence, the assigned objective can only be approached by an
opening to the other disciplines related to the subject.

Economic models have long been elaborated from constructions whose algebraic
nature was of a linear order. This factor, coupled with the fact that still a few decades
ago, constraints linked with calculation possibilities were strong, weighed heavily
on the way of apprehending and understanding economic and scientific phenomena
in general. The discovery or rediscovery, more than 30 years ago, of the different
types of behavior that a simple equation of a nonlinear nature can offer, opened
considerable possibilities in the formalization of economic and financial phenom-
ena. “The great discovery of the nineteenth century was that the equations of Nature
are linear, and the great discovery of the twentieth century is that they are not”
(Körner 1988). This assertion which consists in saying that the world is nonlinear
penetrates economic realities which do not escape from this observation. Even if the
writing of nonlinear models precedes this rediscovery, the possibilities of simulation
and experimentation are immense today. It is around this concept of nonlinearity,
adapted to the formalization of natural phenomena and around chaotic dynamics
that this whole book is organized. They constitute the vital leads of the four Parts of
this book:

• Part I. The first part presents investigation methods of complex and chaotic non-
linear dynamics, among which the concepts of nonlinear theory (often called
chaos theory) and also nonlinear signal processing.

• Part II. The second part reviews the evolution of statistical analysis towards
nonlinear and chaotic dynamics.

• Part III. The third part, dedicated to spectral and time-frequency analyses, under-
lines the contributions of waveforms and atomic decompositions to the study of
nonlinear phenomena.

• Part IV. The last part aims to depict the evolution of linear economic growth
models towards nonlinear models, and the growing importance of nonlinearities
in the construction of models.

T. Vialar, Complex and Chaotic Nonlinear Dynamics,
c© Springer-Verlag Berlin Heidelberg 2009
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2 Introduction

Part I

Since the 1970s the irruption of the “nonlinear” led to a profound transformation
of numerous scientific and technical fields. Economics does not escape this revo-
lution. The taking into account of nonlinearities is an infinite source of behavior
diversity, that makes it possible to better understand natural phenomena and phe-
nomena considered as complex which were adverse to any modeling before. It
is indeed a true epistemological rupture, that occurred in 1971,1 with the intro-
duction of the concepts of “deterministic chaos”, sensitive dependence on initial
conditions and dissipative systems. Henceforth, we understand how an apparent
disorder can dissimulate a subjacent order. Thus, it appears important to assemble
the theory core and the tools to investigate these complex and nonlinear dynam-
ics, which escaped any analytic effort before. These investigation methods are not
necessarily recent. Indeed, they can have distant origins in time, but today it is pos-
sible to speak of a “modern conceptual unification” through the notions of sensitive
dependence on initial conditions, bifurcations,2 subharmonic cascades, attractors,
Lyapunov exponent, saddle-connection, transitions to chaos, dissipative systems,
conservative systems, hyperbolicity, hyperbolic systems, etc. Although we are faced
with a coherent set, this set is only at an early stage.

Inside this set appear techniques developed within the last 20 years, gathered
together under the name “nonlinear signal processing” based mainly on the Takens
theorem. It is a theorem of time series reconstruction, based on the concept of topo-
logical equivalence, which enables to identify the nonlinear nature of an original
time series, for example, periodic, quasiperiodic, aperiodic or chaotic, while sav-
ing a huge amount of calculation. The stake here is extremely high. Indeed, without
necessarily knowing the equations of the dynamical system which generated a series
and by working in a reconstructed phase space of a very low dimension, it is possi-
ble to reproduce the essential features of a system or an original trajectory. The study
of the geometrical objects of low dimension can provide all the information which
we need. In Economics very often we have to face this type of problem where we do
not necessarily know the number of variables involved in dynamics nor the dimen-
sion of the system which can be infinitely large. However, it is known that large
attractors or infinite systems can have low dimensions. Thus, with largely reduced
series, the study of low-dimension objects can reveal the information that we need
to identify dynamics. It is possible to consider this as a diagnosis method, like the
Poincaré map. This approach leads directly to a major concept which is that of the
capacity dimension,3 which is a non-integer dimension. This concept is an instru-
ment quite as important as the Lyapunov exponent. On one hand, it makes it possible

1 But the origin dates back Lorenz in the 1960s, where new mathematics were born.
2 In connection with these tools, it seemed important to highlight the symptomatic phenomenon
which links the speed of transition between two states of a dynamical system with the character-
istics of the periodic or chaotic regime of the final state of the system. The section is entitled the
bifurcation paradox exhibiting the title of the authors of the study.
3 Also called Kolmogorov dimension, or “box counting”, also named Hausdorff dimension; the
whole being regrouped under the name of fractal dimension.



Introduction 3

to characterize the attractor that we have to face and, on the other hand, to make
the difference between deterministic chaos and random walk. Generally, it is said for
example that a “Brownian motion” has a capacity dimension equal to two, which is
not necessarily the case of an apparent deterministic chaos.4 It is the concept of
stability of a dynamics, approached in particular through the Floquet theory, which
leads us to define the notion of topological invariant set which then leads to define
the attractor concept.5 An attractor can be known as a fixed-point, limit-cycle, toric
or strange attractor. It is characterized by its capacity dimension, as well as the
Euclidean dimension of the system in which the attractor appears, knowing that the
latter can have only a non-integer dimension per definition. A system which does not
have an attraction area in the phase space is known as conservative, in the reverse
case it is known as dissipative. Thus, the existence of an attractor type in a dynam-
ics characterizes dissipative systems. It will be noticed however that chaotic or very
complex behaviors can singularly exist in models considered conservative. This is
indeed the case in systems of the Hamiltonian type, as it is possible in Economics.6

Like the methods mentioned above, which are assembled under the name of
“nonlinear signal processing”, there is a major tool which will be also largely
developed from another aspect in the part III, which is spectral analysis or power
spectrum of a dynamics. Spectral analysis results from two basic concepts which
are the Fourier transform and the autocorrelation function of a signal, which is an
extraction of the Wiener–Khintchine theorem. The temporal autocorrelation func-
tion measures the resemblance or the similarity of values of a variable in time. In
fact this temporal correlation function corresponds to the Fourier transform of the
power spectrum. For chaotic regimes, for example, the similarity decreases with
time. It is said that they are unpredictable due to the loss of internal similarity
to their processes. When we have a time series, an essential task is to determine
the type of dynamics which engendered it, be it a more or less complex oscilla-
tion but of a defined period, or a superposition of several different oscillations, or
other types of dynamics. The periodicities are identified with the spectral analysis
method, whether the subjacent model is known or not. This already evoked phe-
nomenon, highlights the fact that certain dynamics result from a superposition of
oscillations with different amplitudes and oscillations but also from harmonics of
these oscillations. In the last case, the regime which is described as quasiperiodic
has an associated attractor which is of a higher order than the limit-cycle, i.e. a
torus for example. For chaotic but deterministic regimes, i.e. for dynamics repre-
sented by a limited number of nonlinear differential equations, the attractor in the
phase space is a strange attractor. Thus, this method of spectral analysis makes it
possible to identify the nature of a dynamics, periodical, aperiodic or quasiperiodic.
Besides, we experiment this technique on various types of signals resulting from the

4 See section about “(non-fractional) Brownian motions”.
5 We sometimes find an unsuitable terminology to characterize an attractor and in particular the
term of “chaotic attractor”, which in fact is sometimes used to indicate an attractor which exists in
a chaotic regime.
6 Refer for cyclic growth models in Economics to Goodwin (1967).
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logistic equation, from ARMA processes, from stock market courses as the French
stock-market index (Cac40), or from the Van der Pol oscillator.

The logistic model symbolizes the paradigm of a nonlinear model. Thus, it is used
transversely to highlight numerous notions quoted previously concerning nonlinear-
ities. It is also used to experiment the delay-model applied to the logistic equation
which introduces by convolution a discrete delay into the construction of an eco-
nomic model. The lengths of the delays are distributed in a random way in the
population. The delay is in fact modelled by means of a random variable which is
characterized by its probability distribution. It will be noted that such a system top-
ples more tardily in the chaos, i.e. there is a shift of the bifurcation points but also
an unhooking in the trajectories.

The singular spectrum analysis (SSA) method is the last investigation method
concerning the complex dynamics presented in this part. The method associates the
Takens reconstruction technique and the technique called the singular value decom-
position in matrix algebra.7 If we simplify, the method consists in the projection of a
time series on a basis of eigenvectors extracted from this same time-series. In fact, a
matrix trajectory is projected on the space described by the eigenvectors of the time
series covariance matrix. The eigenvalues obtained can be ordered and be filtered
for the extraction of the deterministic part of the signal cleaned of its background
noise.

Part II

This part aims to depict the evolution of statistical analysis towards nonlinear
stochastic processes and chaotic processes. The purpose is to state the main devel-
opments concerning this subject: (a) End of the domination of the ARMA model,
(b) Nonlinearity Tests (BDS), (c) Stakes of the non-parametric analysis, (d) A sta-
tistical theory of chaotic dynamics is to be built, (e) Long-memory process and
self-similarity, (f) Construction of ARFIMA models, (g) FIGARCH models and
volatility of variances, (h) Lo and MacKinlay tests about the rejection of the random-
walk hypothesis for stock-exchange markets, (i) Estimations of the Hurst exponent
(in particular by means of the Abry–Veitch wavelet method), ( j) Estimators of den-
sity, (k) Invariant measurement of a dynamical system and (limit) invariant density,8

(l) Ergodic theory, etc.
ARMA modeling is representative of linear modeling, but the linearity Hypothe-

sis is unsuitable to represent real phenomena in many fields. The nonlinear economic
models introduced in 1950 and 1951 by Hicks and Goodwin, because of the absence
of statistical tools, did not have the deserved resonance that they should have had
at that time. This explains the long domination of the ARMA models until the
nonlinearity Hypothesis found its own consistency, in particular in statistics.

7 Karhunen-Loève method.
8 Invariant density: Invariant density is also called “natural” invariant or “natural” density.
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Thus in 1976, the first linearity Test has been developed by Granger and Newbold.
More recently, the non-parametric Test Statistic (BDS test) was taken as a nonlin-
earity test. It helps to provide information about nonlinearity, however it is not a
measurement of the nature of the time series chaos, but in this part it is used as
an introduction to non-parametric statistical analysis. Parametric analysis aims to
rebuild a deterministic model subjacent to a time series. The rebuilding is done by
means of a stochastic model with the implicit idea of the existence of a subjacent
structure. The stochastic parametric modeling of nonlinear processes does unfor-
tunately not make it possible for a great number of processes to produce robust
estimates. In front of this lack of specification about the complex or chaotic pro-
cesses, our attention is drawn to non-parametric analysis, which does not seek to
specify models, but generally aims to rebuild trajectories without a deterministic or
stochastic model. The method by means of the extraction of the time-series prop-
erties and its estimators allows the reconstruction of the dynamic relation which
links the time-series terms. It is said that the dynamic relation is estimated in a
non-parametric way.

Faced with these complex or chaotic dynamics, Chaos theory provides chaos
detection tests, as the Lyapunov test and the correlation dimension, but they are not
statistical tests in a strict sense. Thus, the statisticians have been led to elaborate
statistical validation tests of these detection tests; in particular the random mixture
test. The method is surprising and the idea is that the mixture destroys the possible
deterministic structure of a time series. If the mixed series loses its structure, the cor-
relation dimension and the Lyapunov exponent of the mixture must make it possible
to distinguish it. In spite of encouraging results, contradictions between the results
of Lyapunov and the correlation dimension prevent convincing conclusions about
the deterministic or non-deterministic nature of the observed chaotic dynamics. In
the light of this type of example, it seems fundamental to build a statistical theory
core of chaotic dynamics, which still remains to be worked out in spite of numerous
current contributions.

A way of characterizing the nature of chaotic dynamics is to study the structure
of long-memory processes. These processes are observed in numerous fields, for
example in the telecommunications sector in connection with the information flow
on the Internet, but also in connection with financial markets. They are detected by
the observation of their autocorrelation functions, which decrease hyperbolically
towards zero, whereas they decrease exponentially for short-memory processes.
(The hyperbolic decrease can also express a nonstationariness.) The long memory
is also detected by spectral concentrations which increase when we approach the
central frequency centered at zero, or by a persistent or anti-persistent behavior. It
is commonly said that the more a process is persisting, the more the convergence
is slow and the more the sum of the autocorrelations is high. For a process with
short memory, the sum of the autocorrelations is weak. In short, we are interested in
the speed of the hyperbolic and geometrical convergence towards zero. Weak lags
and strong correlations rather characterize models with short memory of the ARMA
type. The long memory processes lead us to outline the ARFIMA processes which
integrate the long memory phenomena (Long Range Dependence: LRD).
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The Hurst exponent allows to introduce long memory into an artificially gener-
ated process. It is the purpose of the numerical generators of fractional Brownian
motions. The parameter of fractional integration, i.e. unit root, is used in ARIMA
processes to test stationarity. Moreover, a functional relation was highlighted
between this parameter and the Hurst exponent, consequently assigning a new role
to it. This role is to introduce long-term dependence (or long memory) into new
models, i.e. the ARFIMA processes.9 Recently, the estimate methods of the Hurst
exponent have been developed in empirical series.10 And the effectiveness of these
methods can be tested with a good safeness, since it is possible to estimate a param-
eter that we have fixed before (a priori) to construct an experimental series. We can
proceed in a similar way with an ARFIMA process. Among the estimation methods
of the Hurst exponent, the technique developed in 1998 by Abry and Veitch using
the wavelets properties appears to be important, to which we will give a particular
place.

The ARCH processes supplanted the ARMA processes, unsuited to financial
series which have asymmetrical structures and strong volatility of variance. ARCH
processes integrate the parameters of the conditional variance in an endogenous
way and have often been used in the optimization of (financial) portfolio choices.
The study of the conditional variance makes it possible to highlight the persistence
of shocks, by using an extension of IGARCH processes (integrated GARCH), i.e.
FIGARCH processes (Fractionally Integrated GARCH).

Closely related to the birth of probability theory, the random walk hypothesis
has a famous history, whose actors are Bachelier, Lévy, Kolmogorov and Wiener.
More recently, one of the first applications of the random-walk hypothesis to the
financial markets dates back to Paul Samuelson in 1965, whose contribution has
been developed in an article entitled “Proof that Properly Anticipated Prices Fluc-
tuate Randomly”. He explains why in an efficient market, concerning information,
the price changes are unpredictable if they are properly anticipated, i.e. if they fully
incorporate the expectations, information and forecasts of all the market partici-
pants. In 1970, Fama summarizes what precedes in a rather explicit formula: “the
prices fully reflect all available information”. Contrary to numerous applications of
the random walk hypothesis in natural phenomena, for which the randomness is
supposed almost by default due to the absence of any natural alternative, Samuelson
argues that the randomness is achieved through the active participation of many
investors who seek increase of their wealth. They attempt to take advantage of the
smallest information at their disposal. And while doing so, they incorporate their
information into the market prices and quickly eliminate the capital-gain and profit
opportunities. If we imagine an “ideal” market without friction and trading-cost,
then the prices must always reflect all information available and no profits can be
garnered from the trading based on information because “such profits have already
been captured”. Thus in a contradictory way, the more the market is efficient, the
more the price time-series generated by such a market is random, and “the most

9 Hosking in 1981 and Granger, Joyeux in 1980.
10 Some of them use the concept of Embedding space resulting from the Takens theorem.
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efficient of markets is one in which the price changes are completely random and
unpredictable”. Thus the random walk hypothesis and the efficient markets hypothe-
sis became emblematic in Economics and Finance, although more recently, in 1980,
Grossman and Stiglitz considered that the efficient market assumption is an eco-
nomically unrealizable idealization. Moreover, some recent works done during the
last 15 years initiated an approach aiming to reject the random walk hypothesis.
Econometric studies conducted by Lo and MacKinlay (since 1988) relating to the
US stock-exchange market rejected the random walk hypothesis for weekly values
of the courses of the New York Stock Exchange, using a simple test based on the
volatility of the courses. They specified however that the rejection of the random
walk assumption does not necessarily imply the inefficiency of the stock-price for-
mation. We will outline this test to show how the academic assumption of random
walk for the financial markets is subjected to critiques from statisticians today.

A way of approaching the study of statistical properties of chaotic processes
results from the Birkhoff and Von Neumann works about the invariant distri-
butions11 (distributions which have a positive Lebesgue measure). Dynamics of
aperiodic nature sometimes have variables with distributions of this type, which
indicate the frequency with which they take values in a given interval. The most
analyzed invariant distributions are those which can be represented by a density
function. Techniques have been developed in order to build such functions for
chaotic processes.

Part III

One of the characteristics of behaviors belonging to nonlinear models is to high-
light transitory phenomena, intermittencies, turbulences or chaotic dynamics. They
correspond to a tool which allows the representation of phenomena of the station-
ary types already depicted by linear models, and, also at the same time, phenomena
of the periodic and turbulent or chaotic type. This faculty of representation is par-
ticularly useful. The complexity of the phenomena observed empirically thus finds
an algebraic tool which makes it possible to depict this complexity. The writing of
dynamical systems must be able to depict the coexistence of simple and complex
solutions, by the elementary play of parameter setting. Apparently, deterministic
chaos resulting from nonlinear models does not seem different from a random walk
measured on a natural phenomenon, a stock-exchange or economic phenomena.
However, in the first case, we are the “holders” of the equations of the system,
whereas in the second case, we do not know if these equations exist.

This evolution of the “linear” towards the “nonlinear” can find a symbolic illus-
tration in the overtaking (which proved to be necessary) of the Fourier analysis of
certain natural phenomena. In his study about Heat in the nineteenth century, Fourier
showed how his works help to understand the Natural phenomena by helping to

11 Absolutely continuous invariant distributions which have a positive Lebesgue measure.
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numerically solve the equations which hitherto were refractory. For a number of
differential equations, the Fourier transformation replaces a complicated equation
by a series of simple equations. Each one of these equations indicates the temporal
evolution of the coefficient of one of the sinusoids composing the initial function.
Each coefficient has its own equation. Thus the Fourier transform had an important
success, insomuch it was often used for problems to which it was unsuited (Meyer
1992, p. 86). The Fourier analysis is not appropriate for all signals nor for all prob-
lems. In fact, “the Fourier analysis helps to solve linear problems, for which the
effect is proportional to the cause” (Hubbard 1998). Nonlinear problems are more
difficult to solve. Generally, the interacting variables form systems whose behaviors
are unstable. And faced with this type of problem we treat it “as if it was linear”.
Indeed, certain complex natural phenomena that would require the use of nonlin-
ear partial differential equations are not solved in this manner because they cannot
be solved. It is by reducing the difficulty to a linear equation, which can be solved
by the Fourier analysis, that answers were brought. In addition, this is a reality
that the economists had to face in the past. The elements of the Fourier analysis
are sines and cosines which oscillate infinitely with a fixed frequency. And “in this
context of infinite time, the following expression, changing frequency, becomes a
contradiction”.12 “The Fourier analysis is thus unsuited to the signals which change
abruptly and in an unpredictable way” (Hubbard 1998), and however these events
contain the most information. Now, “wavelet analysis is a manner of expressing
our sensitivity to the variations”.13 Thus, the abrupt and unforeseeable variations
are “read” by the wavelets. The study of turbulence phenomena, i.e. sudden unpre-
dictable chaotic variations which are representative of nonlinear problems, are in
this respect symbolic of the efficiency lack of the previous investigation methods.

The Fourier analysis is not appropriate to the nonlinear problems that we meet in
turbulence phenomena, the nature of the wavelets is more adapted. The turbulence
appears on scales of very diverse frequencies and the wavelets are also adapted to
the analysis of the interactions between scales. In spite of what precedes, there is no
ideal tool to resolve nonlinear behaviors. All of these observations about waveform
analysis is one of the objects of the third part of this work.

The time-frequency theory offers transformation methods of time-series. A com-
plete statistical theory about time-frequency analysis does not exist yet, in spite of
certain recent work developed from the starting point of the Wiener determinis-
tic spectral theory. Without covering this vast and very difficult topic here, a very
particular interest however is granted to the statistical and econometric properties
of the wavelet transform of stock-exchange and economic time series. We will
argue in favor of wavelets and their particular properties, their adaptation to non-
stationarities and to abrupt variations of signals, as it was evoked previously. Most
of all, we will highlight the role of atomic decompositions of signals which use
time-frequency atoms (i.e. waveforms dictionaries, which contain different types of
waveforms to decompose a signal). Numerical imaging in time-frequency planes

12 D. Gabor quotation, Nobel Prize of Physics 1971 for the invention of holography. Recovery in
the work of Hubbard (1998).
13 Yves Meyer, one of the founders of the wavelet theory.
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(or in three-dimensional time-frequency-amplitude spaces) are also a considerable
contribution to the comprehension of the subjacent (or hidden) structures for signals
whose origin is natural, financial or economic. A contribution for which it is proba-
bly necessary, in economic and financial matters, to develop reference frameworks,
i.e. for example data banks of imagings and forms of structures calibrated on aca-
demic signals. This could be the case for signals whose origin is the stock-exchange
that we commonly consider as following a “random walk”.

Before all new analysis methods briefly mentioned previously, to which it is
advisable to add polyspectral analysis, the classical “spectral analysis” has been
already experimented in Economics in the past. Indeed, the first work dates back
to Kendall in 1922, spectral analysis has been experimented on the Beveridge corn
price index. More recently, it is possible to quote the fundamental contribution of
C.W. Granger in 1969, those of M.W. Watson in 1993 (Watson 1993), but also the
work of Wen Y. in 1998 (Wen 1998), applied to the Real Business Cycle theory, as
those of Perli and Sakellaris (1998) about the same topic. We previously evoked the
fact that, apparently, the deterministic chaos resulting from nonlinear models does
not seem different from a random walk measured on a stock-exchange market for
example. However for the first, we know the equations, whereas for the second we
do not know if they exist.

The recent Lo and MacKinlay results mentioned in the preceding part, which
reject the random walk hypothesis about stock-exchange markets, can be related to
the conclusions of quite recent work (although of very different nature) presented by
J.B. Ramsey and Z. Zhang about the Standard & Poor’s stock 500 index;14 Thus, we
are interested in describing the “Matching Pursuit Accord” (Mallat and Zhang 1993)
algorithm with its dictionaries of “waveforms” (i.e. Gabor or time-frequency atoms)
conceived by S. Mallat and Z. Zhang, and that we furthermore applied to the French
stock-exchange index (cac40). Meeting the statistical Lo and MacKinlay analysis,
the decomposition (into “time-frequency atoms”) of a signal could make it possible
to discriminate its random or non-random characteristic. The argument is based on
the fact that the number of waveform structures necessary for the decomposition of
a “natural” random series is higher than the number of waveform structures used to
decompose a stock-exchange series. Such an analysis would indeed plead in favor of
the idea that stock-exchange markets do not follow a random-walk, contrary to the
“traditional” conclusions of statistical analysis. Moreover, within this same frame-
work, a detailed attention was given to the treatment of internal or external shocks of
a signal, in particular concerning the Dirac (delta) function. Indeed, this same work
attempts to show that the high-energy bursts of a time series which involve almost
all frequencies of a spectrum would make it possible to discriminate the internal or
external origin of shocks of the aforementioned time series.

14 The S&P500 is decomposed through the “Matching Pursuit Accord” by means of dictionaries
of time-frequency atoms.
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Part IV

The last part aims to depict the growing place of nonlinearities in the concep-
tion of economic growth models. The models used during the twentieth century
were primarily of linear nature, including those aiming to represent business cycles;
in particular we think about the Frisch–Slutsky linear model (1930). The cycles
resulted then from the propagation of external shocks in our economies and were
not generated in an endogenous way by the model. All the models deriving from
these principles quickly showed their limits. The use of nonlinear models proved
to be necessary, Hicks in 1950 and Goodwin in 1951 had already introduced them,
but they had at that time a weak resonance, amongst other reasons due to the lack
of statistical and computational tools. Note that the first application of “catastrophe
theory” to economics, and in particular to Kaldor model (1940) seems to date back
to H.R. Varian (1979). Nevertheless, the linearity hypothesis is so simple to pose
and exploit, that is why historically it has long been used.

The AK models for example concern this hypothesis, where the output is con-
stantly proportional to the input and A is taken as a parameter. Endogenous growth
is generated because of a linearity in the differential equation of the model. How-
ever, this hypothesis is subject to critiques and is not necessarily relevant. Indeed,
on the one hand, the basic rules of the economic theory, which state the decrease of
marginal productivity or marginal utility, implicitly imply that the relation between
input and output is of rather nonlinear nature. In this respect, the Von Neumann
model, based on relations of linear nature, avoids this pitfall, since it is not built
from the neo-classical production function.

Moreover, even within the framework of models whose construction is linear,
the nature of the domain of definition in particular at its boundaries, can be the
source of nonlinearities because of “edge-effects”. In this respect, we can evoke
the variables which are rates and ratios, like the per capita variables for example.
The “nonlinearity” hypothesis is more relevant than its opposite which, beyond its
didactic qualities, must give way to more realistic concepts concerning the notion
of nonlinearity. As said hereinbefore, certain endogenous growth models are built
from linearities, but the endogenous growth phenomenon can appear without lin-
earity, for example from a model with two differential equations whose respective
convexities of trajectories are different. Thus, in the absence of linearity, certain
configurations allow the observation of endogenous growth. The economic models
gradually endogenize the mechanisms of growth. Exogenous in the various Solow
models, the factors of Growth integrated (directly or indirectly) the heart of the mod-
els, whether they result from internal mechanisms of choice optimization between
consumption and savings, or from positive externalities as in the Romer model.

The conception of optimal growth models highlights a system of differential
equations of order two, which determines the optimal trajectory of consumption
and investment. The solutions of this type of model generally appear as a saddle-
point (i.e. saddle path) which is a kind of instability basin, in which the trajectory of
steady balance is narrow and depends on the initial conditions. In economic models,
this type of instability basin represented by the saddle-point is symptomatic of the
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prevalence of unstable trajectories where equilibrium and stability are understood as
singularities. The optimal growth model, applied to the strategy of portfolio choice,
leads to the same observation and suggests a way to explain the instability of stock
markets. In the Boldrin–Woodford model (1990), the optimal growth exhibits cyclic
or chaotic endogeneous fluctuations. The axis of the saddle, which represents the
stable trajectory, converges towards an equilibrium point, which becomes (under
some conditions) a limit-cycle at the equilibrium in the Benhabib–Nishimura opti-
mal growth model. This analysis is developed through the “Rational Expectations”
school and explains the cycles (and fluctuations) of economy under a new light.
The model replaces the academic notion of shock by internal behaviors of opti-
mization which become the source of the Equilibrium cycles. An explanation of
an endogenous type thus leads to a better understanding of these phenomena, but
this requires to accept, as a preliminary, the probable preeminence of nonlineari-
ties in the construction of the economic models. The hypothesis of nonlinearities,
more plausible for the comprehension of natural and economic phenomena, allows
to explain equilibrium cycles but also of chaotic behaviors. The models based on
nonlinear algebraic structures, such as those of Day and Day–Lin, also depict these
periodic or chaotic behaviors. The structure of overlapping generations models
developed for instance by Benhabib–Day (1982) and Grandmont (1985) also allows
to produce cyclic or chaotic dynamics.

The economic growth models attempt to depict the evolution of national income.
However, stock markets, which are known as perfect markets and also known as
advanced indicators of economic activity, exhibit trajectories very different from
those of the national product. The characterization of these growth disparities (i.e.
gaps) is not an easy task, but can be approached from various angles through the
concepts of Market and Economic Value-Creation,15 through the rational expecta-
tion concept and that of rational bubbles, but also through the contribution of the
sunspots models.

15 e.g., indicators such as Market Value Added (MVA) and Economic Value Added (EVA).



Chapter 1
Nonlinear Theory

In the general introduction we observed that the irruption of the “nonlinear” led
to a profound transformation of a great number of scientific fields. The behaviors
resulting from the “nonlinear” make it possible to better understand the natural phe-
nomena considered as complex. The “nonlinear” introduced a set of concepts and
tools, i.e. analysis and investigation instruments of dynamics generated by the “non-
linear”. We try to gather these investigation tools, knowing that today it is possible
to say that there exists a kind of “conceptual unification” through the notions of
attractors, period-doublings, subharmonic cascades, bifurcations, Lyapunov expo-
nent, sensitive dependence on initial conditions, etc. Belonging to this set, there are
techniques gathered under the name of nonlinear signal processing based mainly on
the Takens theorem. The purpose is the reconstruction of the time series based on
the topological equivalence concept. While saving an important amount of calcula-
tion, it allows the identification of the nonlinear nature1 of the studied time-series.
The stakes are important: while working in a reconstructed phase-space of very
low dimension, the objective is to reproduce the essential features of the origi-
nal dynamics, without necessarily knowing the equations of the dynamical system
which generated the studied series.

The topological equivalence enables us to study geometrical objects of low
dimension which will provide the desired information about the original dynamics.
In Economics, we can face this type of problems. Indeed, the number of variables
implied in a dynamics is not necessarily known, just as the dimension of the sys-
tem which can be infinitely large. Moreover, it is known that the attractor of large
dynamical systems (even infinite) can have low dimensions. Consequently, with con-
siderably reduced series, the study of low dimension objects can make it possible to
extract information which we need to identify dynamics. These concepts of topo-
logical equivalence and attractor of low dimensions lead to a major concept which
is that of the capacity dimension (non-integer dimension). Indeed, it makes it pos-
sible, on the one hand to characterize the attractor which we have to face and, on
the other hand, to highlight the difference between deterministic chaos and random

1 Periodic, quasi-periodic and aperiodic or chaotic.

T. Vialar, Complex and Chaotic Nonlinear Dynamics,
c© Springer-Verlag Berlin Heidelberg 2009
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walk. It is said for example that a “Brownian motion”2 has a capacity dimension
equal to two, which is not necessarily the case of an apparent deterministic chaos.
In connection with these (investigation) tools of nonlinear dynamics, it is interest-
ing to highlight the results of recent work completed by Butkovskii, Kravtsov and
Brush concerning the predictibility of the final state of a nonlinear model. The model
used here is that of the logistic equation with its cascade of subharmonic bifurca-
tions. The observed phenomenon is rather singular and paradoxical in relation to
an a priori knowledge that we could have before the experimentation. It results
from this work that the predictibility of the final state of the model, after the first
bifurcation point, depends on the speed of change of its control parameter and on
the background noise. A relation is established between the probability of the final
state, the transition speed and the noise level. A critical value of the speed is high-
lighted by the experimentation. Indeed, when the speed is strictly higher than its
critical value, for a given noise level, the probability is close to 1, whereas if the
speed is lower than its critical value, the probability of the state is close to 1/2. Such
works, which introduce the control speed in nonlinear dynamic models, could find
interesting transpositions in economic models. Thus, this type of experimental for-
malization introduces a further dimension for the effectiveness and the control of
economic policies.

The “nonlinear signal processing” methods evoked above make it possible, in
particular, to diagnose the nature of a dynamics from the time series itself. Spec-
tral analysis is a tool which concerns the same objective. Spectral analysis results
from two mechanisms which are the Fourier transform and the autocorrelation func-
tion. However, the autocorrelation function, which measures the resemblance of
values of a variable in time, corresponds to the Fourier transform of the power
spectrum. In the case of chaotic trajectories, the resemblance decreases with time.
There is an internal loss of similarity to their processes which is the cause of our
incapacity to make forecasts, because these anticipations are established from the
resemblances in relation to the past. Thus, the forecasts rest on resemblances, recur-
rences and periodicities. The periodicities of a dynamics are identified by spectral
analysis, whether the model which underlies it is known or not. Certain dynamics
can result from simple periodicities, however other dynamics (less simple) can be
the result of a superposition of oscillations of different amplitudes. Finally, certain
complex dynamics can result from harmonics of primary oscillations. And in this
case, the regime of the dynamics, characterized as quasiperiodic, has an associ-
ated attractor, which is of a higher order than the limit-cycle, it is a torus. And for
chaotic but deterministic regimes, i.e. for dynamics represented by a limited number
of nonlinear differential equations, the attractor in the phase space is a “strange
attractor”.

The spectral analysis is thus a tool with which one can identify the nature of
dynamics, periodical, aperiodic or quasiperiodic. This tool was tested on differ-
ent types of time-series, such as: standard ARMA processes, stock-exchange time
series (e.g. the French stock-exchange index: cac40), behaviors of the Van der Pol

2 See section about the (non-fractional) Brownian motions.
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oscillator, and also various trajectories resulting from the logistic equation, for
many values of the fertility parameter. In this last case, we will particularly observe
the way in which spectral analysis, at the threshold of the chaotic regime occur-
rence, highlights the rise of spectral background noise, which comes to “enfold”
the harmonic frequencies which existed before this threshold. A particular place
is given to the “Takens theorem” and to the principle of time-series reconstruc-
tion, with various applications. Moreover in the second chapter, one of its possible
derived applications will be exposed, the technique of the “singular spectrum
analysis”.

Main subjects treated in this first chapter: (a) Dynamical systems (Solutions,
flows, maps, vector fields, existence and uniqueness of the solutions, stability
and Floquet theory, Center manifold theorem, Poincaré–Bendixson theorem, fixed-
points, saddle-connection, . . . ). (b) Invariant sets (Simple and strange attractors,
simulations, . . . ). Dissipative and conservative systems (Hamiltonian system and
optimal growth model, . . . ). (c) Instruments and concepts of Chaos theory (Deter-
ministic chaos, Sensitivite dependence on initial conditions, Poincaré map, Lya-
punov exponent, period-doubling and cascades of bifurcations, stable-superstable
and unstable cycles, Kolmogorov capacity dimension or box counting, Entropy or
the measure of disorder, KAM theory, Invariant torus and chaos, rotation number,
coupling of frequencies, . . . ). (d) Topological equivalence (From the topological
equivalence of flow towards the Poincaré map, orientation-preserving diffeomor-
phisms and topological equivalence of flows, rotation number, suspension, . . . ).
(e) Reconstruction theorems (Topological equivalence, embedding spaces, Whit-
ney embedding theorem, Broomhead and King theorem, Takens reconstruction
theorem, window concept, . . . ). (f ) Navier–Stokes dynamics and turbulent phe-
nomena (Invariant ergodic measures, Floquet theory, characteristic exponents and
Hilbert spaces, Dirac delta functions, Invariant measure of probability, nonlinear
operators, . . . ). (g) Oscillators and Pendulums (Approach of dynamical systems by
means of oscillators, approach of turbulence via the concept of “Mode”3 and the
Fourier intuition, approach of turbulence via the “nonlinear” analysis). (h) Nonlin-
earity and Hyperbolicity (Cantor sets, contradiction between dissipative systems
and chaos solved by the capacity dimension, structural stability, Smale horse-
shoe maps, hyperbolic sets, Anosov diffeomorphisms, symbolic dynamics, Smale–
Birkhoff homoclinic theorem, Hartman–Grobman theorem, hyperbolic nonlinear
fixed-points, hyperbolic structures, homoclinic orbits and perturbations, Melnikov
method, Shilnikov phenomenon, . . . ). (i) Transitions to chaos (Stability Boundaries,
Saddle-connection, blue sky catastrophe, Intermittency, Period-doubling, Quasiperi-
odic route to chaos [Ruelle–Takens], . . . ). (j) Spectral analysis (Temporal correla-
tion, power spectrum density, spectral analysis of various academic signals, spectra
of van der Pol oscillator, . . . ).

3 Mode: Collection of independent oscillators.
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1.1 Dynamical Systems

1.1.1 Differential Equation and Difference Equation

If we pose x ∈ U ⊂ R
n, t ∈ I ∈ R

1, and α ∈ V ⊂ R
p, where U et V are open

sets respectively in R
n et R

p, we use the two following definitions to indicate a
dynamical system:

The differential equations, or “vector fields”,

.
x = f (x,t;α), with

.
x≡ dx

dt
. (1.1)

or, in a developed form, with n differential equations:

dx1

dt
= f1(x1, . . . ,xn;t;α)

...
dxn

dt
= fn(x1, . . . ,xn;t;α).

(1.2)

The difference equations, or the “maps”,

x→ g(x;α)
xn+1 = g(xn;α). (1.3)

The vector x indicates the studied physical or economic variables (or one of their
transformations), t indicates the “time” and α symbolizes the parameter(s) of the
system. It is also said that in a dynamical system “time” is the independent variable.
The dependent variables x, spread in R

n which is called the phase space or the state
space. Whereas R

n×R is called the motion space of the system.

1.1.2 Solution-Trajectory of a Dynamical System

(a) The term solution of the system
.
x = f (x,t;α) means a map x, from an interval

I ⊂ R
1 to R

n, which is written as follows:

x : I −→R
n,

t �−→ x(t), (1.4)

such that x(t) satisfies
.
x = f (x,t;α), i.e.

ẋ(t) = f (x(t),t;α). (1.5)
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The geometrical interpretation of the map x is a curve in R
n, and

.
x = f (x,t;α) is

the tangent vector at each point of the curve. Thus, we refer to
.
x = f (x,t;α) as

being a vector field.4 In addition, we refer to the space R
n of independent vari-

ables as the phase space of
.
x = f (x,t;α). The goal is to understand the geometry

of “solution-curves” in the phase-space. It will be noticed that in many cases, the
structure of the phase space can be more general than R

n, we can mention for exam-
ple, phase-spaces such as: Spherical, Cylindrical, or Toric.5 We enunciated that the
equation

.
x = f (x,t;α) is called vector field. Indeed, this term is often used because

its solution at each point x is a curve in R
n, for which the speed is given by f (x).

(b) We will prefer the following notation to indicate the solution of the differen-
tial equation

.
x = f (x,t;α):

φ : I → R
n. (1.6)

Generally, in Economics I = [0,+∞), such that φ is differentiable on I, [φ(t)] ∈U
for all t ∈ I, and φ̇(t) = f [φ(t)], for all t ∈ I. The set {φ(t) : t ∈ I} is the orbit of φ :
it is contained in the phase space. The set {t,φ(t) : t ∈ I} is the trajectory of φ : it
is said that the trajectory is contained in the space of motions. In practice the terms
trajectories and orbits are often synonyms.

(c) In order to write the solution of the system, if we wish to mention the initial
conditions, i.e. the point x0 at time t0, then we write φ(t,t0,x0). Or if t0 = 0, we
write φ(t,x0). In order that a solution φ(t,x0) exists, it suffices that f is continuous.
In order that the solution is unique, it suffices that f is of C1 class in U3.

(d) The writing of solutions, most largely used, is as follows for an autonomous
system:

φt(x) : U → R
n; with φ(t,x) ≡ φt (x). (1.7)

Whereas we have written in (a) for x:

x: I −→ R
n,

t �−→ x(t). (1.8)

Indeed, for this system, the “translated” solutions, remain solutions, i.e. if φ(t)
is a solution, φ(t + τ) is also a solution for all τ ∈ R. If we consider t as a fixed
parameter, we can write φ(t,x) ≡ φt(x), or φt(x) : U → R

n. Consequently, all the
solutions can be regarded as a family of maps with one parameter from the phase
space in itself. The map φt is called the flow generated by the vector field f . This
terminology refers to the evolution of a fluid flow in the course of time, e.g. a natural
stream. In a discrete-time dynamical system, where the evolution of the variable will
be represented by sequences of discrete values, we will write (where g = φ and τ is
the value of the parameter t):

x−→ g(x),
xn+1 = g(xn).

(1.9)

4 Term used in particular in physics to indicate the orientation of the solutions of a system.
5 Introduction to applied non linear dynamical systems and chaos. S. Wiggins. Springer.
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1.2 Autonomous and Non-Autonomous Flows, Fixed-Point

1.2.1 Definition of a Flow

The flow of a dynamical system is the expression of its trajectory or beam of its
trajectories in the phase space, i.e. the movement of the variable(s) in time. If we
consider the following autonomous dynamical system

.
x = dx/dt = f (x), we can

give the following definition of a flow:

Definition 1.1 (Flow). Given x0 ∈U , let x(x0,t) be a solution of
.
x = dx/dt = f (x),

with as initial conditions x(0) = x0. We call flow of
.
x = f (x), or of the vector field

f , the map φt : U → R
n defined by

φt(x0) = x(x0,t), (1.10)

where φt has the following properties:

(1) φt(x0) is of class Cr,
(2) φ0(x0) = x,
(3) φt+s(x0) = φt(φs(x0)).

(1.11)

1.2.1.1 Remark About the Flow

We note that φt can be expressed in two manners:

• Either as the following map:

φt : I → R
n, with I ∈R

1, (1.12)

where I expresses the “time” of the system.
• Or as the following map:

φt : U → R
n, with U ∈ R

n, (1.13)

U expresses the “phase space” of the system. Thus, as seen previously, the set of
solutions φt becomes a map of the phase space in itself.

1.2.1.2 Autonomous and Non-Autonomous Flows

The flow can be a solution of a dynamical system, non-autonomous:
.
x = f (x,t;α)

and autonomous:
.
x = f (x;α). It will be also noticed that if the system is non-

parametric, the flows are written respectively non-autonomous flow and autonomous
flow:

.
x = f (x,t), or

.
x = f (x).
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1.2.2 Continuous and Discrete System

The expression of such systems of differential equations in the continuous case is
written

dx
dt

= ẋ = f (x,t;α). (1.14)

On the other hand, in the discrete case:

xt+1 = f (xt ;α). (1.15)

The values of x spread themselves in the R
n space, which is called the phase space,

where n corresponds to the number of variables of the system, x which can obviously
be a set of different variables, i.e. a vector field.

1.2.3 Definition of a Fixed Point and a Stable Fixed Point

Definition 1.2 (Fixed point). A fixed point (also called a stationary point, or equi-
librium point) of dx/dt = f (x), is the point x̄ of the phase space obtained by
canceling the second member of dx/dt = f (x), i.e. f (x̄) = 0.

(An usual approach is to bring back the fixed point x̄ to the origin by the “change
of variables” y = x− x̄).

Definition 1.3 (Stable fixed point). A fixed point x̄ ∈ R
n is stable if ∀ ε > 0, ∃δ >

0, such that ‖x(0)− x̄‖< δ ⇒‖x(t)− x̄‖< ε, and if ∃δ0 with 0 < δ0 < δ , such that
‖x(0)− x̄‖< δ0 ⇒ limt→∞ x(t) = x̄, x̄ is asymptotically stable (Fig. 1.1).6

We will present the “stability” concept in one of the following sections.
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x
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e

−
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d

e
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Source: H.Dang-Vu. C. Delcarte

Fig. 1.1 Stable fixed point (left). Asymptotically stable (right)

6 Where ‖.‖ is the norm in R
n.
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1.3 Introduction to the Resolution of Nonlinear Dynamical
Systems

1.3.1 Linearization of Nonlinear Models

Many models are nonlinear, and we are led to linearize in order to analyze their
stability. It is posed the following non parametric and autonomous model:

dx
dt

= ẋ = f (x). (1.16)

f (x) can be approximated by Taylor series truncated around the stable point x̄s
(corresponding to a solution flow φ(t)):

f (x) = f (x̄s)+
∂ f
∂x

(x− x̄s)+
1
2
∂ 2 f
∂x2 (x− x̄s)2 + o(·). (1.17)

Neglecting o(·) the terms of high degrees, we write

f (x) ≈ f (x̄s)+
∂ f
∂x

(x− x̄s). (1.18)

Being an equilibrium-point, we know that: f (x̄s) = dx̄s/dt =
.
x̄s = 0 (and for the

map x̄ = g(x̄)). Thus we can write

dx
dt

= f (x)≈ ∂ f
∂x

(x− x̄s). (1.19)

Since the derivative of a constant x̄s is zero, we can write
d(x− x̄s)

dt
=

dx
dt

.

Consequently:
d(x− x̄s)

dt
≈ ∂ f

∂x
(x− x̄s). (1.20)

x̄s being stable, we can note y as being the difference between x̄s and x, to express
the deviation in relation to the values of the stable state

y = x− x̄s. (1.21)

(It is sometimes also written x′ = x− x̄s).

dy
dt
≈ ∂ f

∂x
y. (1.22)

Thus, we write:
dy
dt

= ay, where a =
∂ f
∂x

. Thus:

ẏ = ay, (1.23)
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consequently, a general solution of the model is written

y = eaty0. (1.24)

We have just seen how to linearize a simple system, then we can generalize the
approach.

1.3.2 Linearization Generalized to All Nonlinear Models

Beforehand, we can give some details about the vocabulary generally used when
we describe dynamical systems to differentiate the different variables of a system.
It is said that a state variable is a measurable quantity which indicates the state of
a system; this must be connected to the concept of dependent variable, or output
variable. In addition, we speak of the “input” variable as a variable which must be
specified before seeking the solution of a system, i.e. to some extent, it is a process
on which we can operate. By way of example, we can quote the speed of the flow
in Fluid Mechanics. The input variables “are often handled” to control processes in
order to obtain “desired results”. We can relate them to the group of independent
variables of a system. This type of variable is defined, in contrast, to the parameters
which also must be specified before the resolution of the model, but correspond to
an element fixed by nature in the dynamics that we study. In Economics, it is true
that the distinction between parameters and “input variables” is weak, knowing that
the economist has rarely the opportunity to become a “process controller”, because
economist cannot do experiments in laboratory.

Let us consider the general nonlinear model in which x is a vector of n state-
variables, and u is a vector of “input-variables” of dimension m, and y is a vector
of r “output variables”:

ẋ1 = f1(x1, . . . ,xn;u1, . . . ,um),
...

ẋn = fn(x1, . . . ,xn;u1, . . . ,um), (1.25)
y1 = g1(x1, . . . ,xn;u1, . . . ,um),

...
yr = gr(x1, . . . ,xn;u1, . . . ,um),

or, in a simplified form:
ẋ = f(x,u), (1.26)

y = g(x,u). (1.27)
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Elements of linearization matrices:

Ai j = ∂ fi/∂x j,

Bi j = ∂ fi/∂u j,

Ci j = ∂gi/∂x j,

Di j = ∂gi/∂ ju. (1.28)

After linearization, (“′” expresses the linearized vectors), we obtain

ẋ′ = Ax′+ Bu′, (1.29)
y′ = Cx′+ Du′. (1.30)

We often omit “′” and the system is written

ẋ = Ax+ Bu, (1.31)
y = Cx+ Du. (1.32)

The measured (output) variable is not a direct function of the input variable; thus it
is more usual to write the state-space system:

ẋ = Ax+ Bu, (1.33)
y = Cx. (1.34)

1.4 Resolution of the Zero-Input Form

In (1.31) x, u are (deviation) variable vectors for the states and inputs. The inputs are
now supposed constant at their steady-state values and the states can be perturbed
from steady-state. The model is

ẋ = Ax, (1.35)

where x the state-variable can be a linearized variable. From the model above, we
analyze the stability and the behavior of the system. Remember: ẋ = ax has as solu-
tion x(t) = eatx(0), which is stable for a < 0.7 In the same way, for the system
ẋ = Ax, the solution is written

x(t) = eAtx(0), (1.36)

(eAt could be considered as a series:

eAt =
∞

∑
n=0

1
n!

(At)n = I + At +
1
2!

A2t2 + · · ·). (1.37)

7 The solution for a model ẋ = Ax can be written x(t) = eAtc.
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The solution of our system is “stable” if all eigenvalues of A are lower than zero.
The solution is oscillatory if the eigenvalues are complex. eAt could be considered
as a flow φt , (i.e. φt = eAt). At this stage, there are several manners of calculating
the exponential of the matrix. Here the following method will be used

AV = VΛ, (1.38)

where V is the eigenvector of A and Λ is the matrix of eigenvalues of A. For a
matrix A of dimension 2×2, we write the matrix of eigenvectors of A as follows:

V = [ξ1,ξ2] =
[

v11 v12
v21 v22

]

, (1.39)

where ξ1 =
[

v11
v21

]

is the first eigenvector associated with the eigenvalue λ1,and

where ξ2 =
[

v12
v22

]

is the second eigenvector associated with the eigenvalue λ2.

Thus, the matrix of eigenvalues is written

Λ =
[
λ1 0
0 λ2

]

. (1.40)

Moreover, AV = VΛ by multiplying by V−1 can be written

A = VΛV−1. (1.41)

Multiplying by the scalar t and by taking exponential matrices:

eAt = VeΛtV−1, (1.42)

where

eΛ t =
[

eλ1 t 0
0 eλ2 t

]

. (1.43)

Here, we understand the reason why if λ < 0 the solution is stable. The solution of
the system is

x(t) = VeΛ tV−1x(0). (1.44)

It will be noticed that if the vector of initial conditions x(0) is equal to ξi, then the
response of the model will be similar to ξi.

1.4.1 Solution of the General State-Space Form

We point out that a solution of a simple differential equation ẋ = ax + bu is

x(t) = eatx(0)+ (eat−1)(b/a)u(0), when u(t) = constant = u(0). (1.45)
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In a same way, consider now the general form

ẋ = Ax + Bu, (1.46)

for all t > 0 and for u(t) = constant = u(0), the solution is

x(t) = Px(0)+ Qu(0), (a)

where Q = (P− I)A−1B with P = eAt . This equation can be used to solve a system
in which the input changes from time step to time step by means of:

x(t+Δt) = Px(t)+ Qu(t) (b)

or in another form:
x(k + 1) = Px(k)+ Qu(k), (1.47)

where k is the k-th time step (or the k-th iteration). The initial form of the sys-
tem is often used for the numerical integration calculations of systems aiming to
their resolution (Ode). The evoked methods are of the type: Euler, Runge–Kutta
integrations, (Newton–Rapson). They are in particular approximation methods of
differential equations solutions, using the slope concept and the Taylor expansion.

1.5 Existence and Uniqueness of Differential System Solutions

1.5.1 Lipschitz Condition

If we consider the function f (x,t), the differential equation ẋ = f (x,t) must satisfy
some conditions, among which the Lipschitz condition is most important.

Definition 1.4 (Lipschitz condition). Let us consider the function f (x,t), where

f : R
n+1 → R

n, (1.48)
|t− t0| ≤ a,x ∈ D⊂ R

n, (1.49)

f (x,t) satisfies the Lipschitz condition, i.e. if x in [t0−a,t0 + a]×D, where:

‖ f (x1,t)− f (x2,t)‖ ≤ L‖x1− x2‖ , (1.50)

with x1 and x2 ∈ D and L a constant. L is called the Lipschitz constant.

Theorem 1.1. If we consider the differential system ẋ = f (x,t) with the initial con-
ditions x(t0) = x0, with x ∈ D ⊂ R

n, |t− t0| ≤ a;D = {x : ‖x− x0‖ ≤ d}, a and b
are positive constants. The function f (x,t) satisfies the following conditions: (1)
f (x,t) is continuous in g = [t0−a,t0 +a]×D, (2) f (x,t) continuous in the Lipschitz
sense on x, then the system has a unique solution for |t− t0| ≤ min(a,d/M), where
M = supg‖ f‖ .
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Here is an elementary example: ẋ = x, with x(0) = 1, t ≥ 0, the solution exists
for 0 ≤ t ≤ a with a as arbitrary positive constant. The solution, x(t) = et , can be
continuous for any positive t and becomes unlimited for t → ∞.

1.6 Stability of a Dynamical System

Literature about the subject is vast. We evoke the few essential definitions to pose
the necessary tools in order to study the orbit stability of a system. Let us pose again
the model ẋ = f (x), with

f : U → R
n, (1.51)

U is an open set of R
n and f is of class Cr.

Definition 1.5 (Stability in the Lyapunov sense). A solution φt of the system is
stable in the Lyapunov sense if for ε > 0 there exists δ (ε) > 0 such that for any
other given solution ψ(t) of system, for which |φ(t0)−ψ(t0)|< δ , we have

|φ(t)−ψ(t)|< ε, for any t ≥ 0. (1.52)

Definition 1.6 (Asymptotic stability). Let us suppose that an orbit φ(t) is stable
in accordance with the preceding definition and moreover suppose that there exists
δ̄ > 0, such that if |φ(t0)−ψ(t0)|< δ̄ , then:

limt→+∞ |φ(t)−ψ(t)|= 0; (1.53)

then φ(t) is said asymptotically stable.

Expressed in a different way, it will be said that an orbit is stable, if, when it is
slightly perturbated, the motion of the system does not diverge more than the non-
perturbated orbit. Moreover, if the orbit is asymptotically stable, the impact of the
perturbation will be gradually eliminated in time. We exposed the definitions of the
Stability through the flow concept φt , we can also present them through the map
concept.

Definition 1.7 (Stability in Lyapunov sense for the solutions of a map). A solu-
tion x ∈ R

n of the map:
x �−→ g(x), (1.54)

where x = {x0,x1 = g(x0),x2 = g2(x0), . . . ,xn = gn(x0)} is stable in the Lyapunov
sense, if for all ε > 0, there exists a δ (ε) > 0, such that for any other solution y with
|x0− y0|< δ , we have

|gn(x0)−gn(x0)|< ε for n ∈ [0,+∞). (1.55)

Definition 1.8 (Asymptotic stability for the solution of a map). The solution x
is asymptotically stable if it is stable and if, moreover, it exists δ > 0 such as if
|x0− y0|< δ̄ ,

limn→∞ |gn(x0)−gn(y0)|= 0. (1.56)
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Remark 1.1 (Phase-space). In a dynamical system or transformation group, the
topological space whose points are being moved about by the given transformations.
A phase space can also be defined as a mathematical space with one point for every
possible state of the system, which has as many dimensions as there are degrees of
freedom in the system. (In Quantum Mechanics, the phase space is replaced by the
state space formalism, usually a Hilbert space.) A phase space is the space in which
all possible states of a system are represented. For mechanical systems, the phase
space usually consists of all possible values of position and momentum variables.
In a phase space, every degree of freedom or parameter of the system is represented
as an axis of a multidimensional space. A phase space may contain very numerous
dimensions.

Remark 1.2 (Phase plane). For a map with two degrees of freedom, the two-
dimensional phase space which is possible for the map is called its phase plane.

Remark 1.3 (Phase portrait). A phase portrait can be understood as a plot of the
different phase curves corresponding to the different initial conditions in the same
phase plane.

Remark 1.4 (Phase diagram). A plot of position and momentum variables as a
function of time is sometimes called a phase diagram.

1.7 Floquet Theory

1.7.1 Stability, Floquet Matrix and Eigenvalues

We introduce the floquet theory, which is connected with the stability concept of
solutions for dynamical systems. To approach the subject, we focus on the periodic
solution of a nonlinear dynamical system and on dissipative systems.

1.7.1.1 Stability Problem of a Periodic Solution

Hereafter, we describe the same problem by using different ways, in order to clarify
the subject and to present it from three slightly different angles.

1st Presentation

Remember at this stage that we can write the periodicity T of a system in the fol-
lowing way: for a point P0 for which we do not know yet if it is a stable solution
(not fixed) of the system P0 = T (P0) = T 2(P0) = · · ·
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On the other hand, it is possible to say that P0 is a fixed point of the map T above.
This observation is very interesting and is in connection with the Poincaré section
concept. This property is so important that, starting from it, we can study the stabil-
ity of the periodic solution of a system. The map T is studied in the neighborhood
of P0 by the Floquet matrix. Floquet matrix8 is

M =
[
∂T
∂xi

]

x0
i

with i = 1,2. (1.57)

We know that after the action of the map T (i.e. after one period T ), the initial point
P0 plus a small variation (spacing, gap) denoted δ , i.e. P0 +δ , is near P0. The spacing
between the two points is written

T (P0 + δ )−P0 �Mδ (1.58)

with ‖δ‖ → 0. The characteristics of eigenvalues of M define the stability of solu-
tions. If the map T acts successively a number of times equal to p (i.e. after p time
one period T ), then it comes

T p(P0 + δ )−P0 �Mpδ . (1.59)

Thus, the initial gap δ is multiplied by Mp. (|λM| < 1). Therefore: (1) If all eigen-
values of M have a modulus lower than 1, then the gap decreases exponentially
towards zero.9 Then the periodic solution is linearly stable because any devia-
tion compared to the fixed point P0 tends to decline. (2) Otherwise, i.e. if at least
one eigenvalue of M has a modulus higher than 1, then the spacing exponentially
increases with time, the limit cycle is (or periodic solution) is unstable. Thus the sta-
bility loss of the limit cycle corresponds to unit circle crossing by one (or several)
eigenvalue(s) of the Floquet matrix.

8 Stability is studied for very small perturbations, and a linear analysis limited to the terms of order
1 is considered sufficient.
9 The modulus of a possible complex eigenvalue λc = a∓ ib is written: |λc|=

√
a2 +b2

= ((real(λc))2 +(imaginary(λc))2)1/2.
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2nd Presentation

Let ẋ = f (x) be a dynamical system where x ∈ R
n, its flow is written φ(t,x). If

we assume a periodic orbit of period T , we can write φ(t,x0) = φ(t + T,x0), i.e.
there is a return after one period to the starting point. We assume the existence of a
“hyperplane” , or a “hyper-surface” denoted ∑ of dimension n−1, in R

n−1, which
is intersected by the trajectory of the flow of dimension n. Then, we can define a
“map” associated with this plane of a dimension n− 1, which exists through the
periodicity T of the flow. We write

U → ∑,
x→ φ(τ(x),x), (1.60)

where τ is the “step” of the first return of the point x in the section ∑. If we lin-
earize the initial system ẋ = f (x) around the periodic solution as we have done
previously, with y = x− x̄, where x̄ are the solutions of the system. Then, we write

ẏ =
∂

.−
x

∂ t
(x−−

x). At this stage, it is necessary to study the stability of solutions of

the system linearized by analyzing the eigenvalues of the matrix eT R which is called
the Floquet characteristic Multiplier, because we remember that the solutions of the
new linearized system are written

y = eT Ry0, (1.61)

where R is the matrix which determines the system of which it is necessary to study
the eigenvalues to analyze the stability. Here we are thus brought back to the set of
remarks about the behavior of eigenvalues on the unit circle.

1.7.1.2 Floquet Theory in Dissipative Systems

Given a nonlinear dynamical system: ẋ = f (x) or its solution map xn+1 = g(xn). Sup-
pose that the solution of the system is periodic of period T . This means that the point
xt after one period T will be unchanged, we can write: xt+T = xt . To study the stabil-
ity of this solution, we can briefly say that it is necessary to observe, around the solu-
tion, the behavior of a very small initial gap (spacing, variation) that we call δx in
relation to the solution of the system, i.e. with the limit-cycle in the phase space. The
observation of δx at the end of one period gives us indications about the stability:

(1) If the variation decreases in all the directions of the space, we conclude to the
stability of solutions.

(2) If the variation increases in at least one direction, we conclude to the instability
of solutions.

If we linearize the flow around the periodic solution in the phase space (to bring
back to the solution), we can write that the initial distance (x0 + δx) becomes after
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one period T: (x0 + Mδx), where M is the Floquet matrix. Thus, the study of the
stability of the periodic solution will be done through eigenvalues of the matrix M.
The eigenvalue of the Floquet matrix in our case is equal to 1 and this value cor-
responds to δx. This observation does not give us information about stability. The
only information that we obtain is that at the end of one period, we logically come
back to the same point. On “the Poincaré section” of the trajectory, one can find the
variation δx at the same place in the plane. It is essential to study the stability to
observe what occurs in the plane perpendicular to the trajectory. The eigenvalues of
M depend of course on the solutions of the flow, i.e. the shape of the limit-cycle. The
point or the set of points (x0 + δx) becomes after one period (x0 + Mδx): (1) If the
set of eigenvalues of M is located inside the unit circle of the complex plane, pre-
sented in Fig. 1.2, then the solution is linearly stable, and all the components of
(the vector) δx perpendicular to the limit-cycle decreases regularly at each period.
(2) If at least one of the eigenvalues of M is outside of the unit circle and δx
increases regularly in at least one direction, this means that the trajectory moves
away from the limit-cycle, there are divergence and thus instability. It is the case
presented in Fig. 1.3, which depicts instability. M and its eigenvalues change while
time evolves. It is when the eigenvalues leave the unit circle that there is instability
and a bifurcation of the trajectory occurs. There are three ways for eigenvalues to
leave the unit circle: a± ib,−1,+1. The consequence of these crossing types is the
stability loss and the ulterior system behavior which depends on the nonlinearity
type and bifurcation type.

Fig. 1.2 Unit circle crossing
by eigenvalues of M

Fig. 1.3 Instability
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1.7.2 Transitions Stemming from the Linear Stability Loss
in Dissipative Systems

The study of eigenvalues of the matrix M (D f (x̄)) allows a first approach of the
bifurcation concept. For a fixed point x̄, there are three ways of losing its stability:

(1) If the unit circle is crossed by (+1) then occurs a saddle-node bifurcation. The
solution is not only unstable but disappears completely, then just beyond the
bifurcation threshold, the system generates a specific regime called type-1 inter-
mittency, characterized by a mixing of laminar phases interrupted by apparently
anarchical behaviors (turbulence bursts).

(2) If the unit circle is crossed by (−1), we have to analyze the normal or inverse
character of the bifurcation that then occurs. (a) If we face a subharmonic nor-
mal bifurcation, a new stable periodic solution (whose period is twice long)
appears. The repetition of this period-doubling for each periodic solutions gives
rise to an infinite sequence of bifurcations, i.e. a subharmonic cascade of
bifurcations, to finally produce chaos. (b) If we face an inverse bifurcation,
this leads to a type-3 intermittency whose usual manifestations qualitatively
look like those of the type-1 intermittency, i.e. long phases of almost periodic
behaviors interrupted sporadically by chaotic bursts. However, the type-3 gives
rise to a gradual increasing of the amplitude of the subharmonic during the
almost periodic phase because the nonlinear effects amplify the subharmonic
instability of the limit cycle. Consequently, the amplitude difference between
successive oscillations will grow; Beyond a critical value, the laminar phase is
interrupted.

(3) If the unit circle is simultaneously crossed by two complex conjugate eigen-
values a± ib. (a) If this Hopf bifurcation is supercritical (normal), this leads
to a stable attractor close to the limit cycle from now on unstable. This attrac-
tor is a torus T 2 whose surface contains the new solution corresponding to a
quasiperiodic regime.10 A second supercritical Hopf bifurcation can generate
then a transition T 2 → T 3, and a strange attractor occurs after a third bifurcation
(possibly confused with the second one). (b) If this is a subharmonic bifurca-
tion, it is possible to meet another phenomenon: the type-2 intermittency. This
intermittency has the same overall qualitative characteristics as those of type-
1 and type-3 intermittencies, except that the instabilities that arise during the
laminar phases have a frequency without a priori relationship with the basic
frequency of the initial limit cycle. By contrast, this new frequency is linked
to the ratio of the real and imaginary parts a/b of the eigenvalues (a± ib)
which crosses the unit circle at the bifurcation. Furthermore, the dynamical
process which allows to restart a new laminar period after a turbulent burst is
complex to describe in this case, because this requires to consider a flow in a

10 Definition (Quasiperiodic function). A function ψ: R→ R is quasiperiodic if it can be written
ψ (t) = Φ(ω1t,. . . ,ωnt) (ωi : frequencies) where Φ is periodic of period 2π in each of its arguments,
and two or more of the n frequencies are incommensurable, i.e. with irrational ratios.
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phase space of dimension 6 or a Poincaré section in R
5. Here is a summary of

scenarios:

Crossing Bifurcation Phenomena

(+1) Node-saddle Type-1 Intermittency

(−1) Subharmonic
{

Normal
Inverse

Subharmonic cascade
Type-3 Intermittency

(a± ib) Hopf
{

Normal
Inverse

Quasiperiodicity
Type-2 Intermittency

1.8 The Bifurcation Concept

The subject corresponds to a vast theory. Although it is difficult to give a gen-
eral definition of a bifurcation, it is possible to say that bifurcations are commonly
associated with the topology change notion of the trajectory of dynamical systems,
when a parameter or several parameters are modified. Mathematically the bifurca-
tion point is defined as opposed to the concept of “topological equivalence” under
the action of a homeomorphism. We can trivially define a bifurcation by saying that
it is a behavior change of a system, while when modifying the parameter which pre-
determines it, we reach a critical point during which we pass from stable solutions
to unstable solutions. The value of the parameter which separates the two types of
solution is called the critical value, critical point, or bifurcation point. Hereafter, we
restrict the analysis schematically to different types of one parameter bifurcations.

1.8.1 Codimension-1 Bifurcations of Fixed Points

The normal forms correspond to supercritical situations:

Normal form: Bifurcation type:
(a): ẋ = μ− x2 Node-Saddle,
(b): ẋ = μx− x2 Transcritical (stability exchange),
(c): ẋ = μx− x3 Pitchfork,
(d): ż = (μ + iγ)z− z |z|2 Hopf,

where x is a real variable, z is a complex variable, μ is a parameter measuring the
threshold gap, i is a pure imaginary, γ is an arbitrary constant.

(a) For the node-saddle bifurcation, the stationary solution is x =±√μ (defined
only for μ > 0) and appears thus at μ = 0. There is no stable or unstable solution
for μ = 0. (b) For the transcritical bifurcation (stability exchange), two station-
ary solutions x = 0 and x = μ coexit. x = 0 is stable if μ < 0 and unstable if
μ > 0, whereas it is the opposite for μ = 0. Thus, there is stability exchange at the



34 1 Nonlinear Theory

bifurcation point. (c) For the pitchfork bifurcation, the stationary solutions are x = 0
and x =±√μ (defined only for μ > 0). This normal form is invariant by the trans-
formation x→ (−x). Each time we meet this problem of insensitivity to a reflection
symmetry (e.g. first convective instability of the Benard experiment), we face this
normal form. (d) For the Hopf bifurcation (i.e. complex equivalent of the pitchfork
bifurcation). It is convenient for example to pose z = x + iy, the normal formal is
written: ẋ = [μ + (x2 + y2)]x− γy, ẏ = γx + [μ − (x2 + y2)]y. The stationary solu-
tions are z = 0 (x = y = 0) and also |ż|2 = x2 + y2 = μ . This condition defines the
equation of a circle in the plane (x,y) whose radius is

√μ (Fig. 1.4).
In the Hopf bifurcation diagram, we observe that the bifurcation point precedes

a limit-cycle. But this bifurcation is characterized by an essential property, i.e. the
amplitude of the cycle is proportional to |μ − μCritical |1/2. Such a characteristic is
useful to identify this type of bifurcation. The Hopf bifurcation was studied very
early by Poincaré. A way of studying this type of bifurcation is to pose the dynam-
ical system of Van der Pol (self-sustained oscillator) written

.
ẋ + x = μ(1− x2)ẋ

which is typical of such phenomena. (Remark: at μ = 0 we deal with supercritical
pitchfork bifurcation.)

Fig. 1.4 Diagram of codimension-1 bifurcations (normal form)
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Fig. 1.5 Diagram of codimension-1 subcritical (or inverse) bifurcations. (a) ẋ = μ + x2, (b) ẋ =
μx+ x2, (c) ẋ = μx+ x3, (d) ż = (μ + iγ)z+ z |z|2

1.8.2 Subcritical Bifurcations of Fixed Points

As explained in the previous section, the normal forms correspond to supercritical
situations (also named normal). That means that the nonlinear terms x2 or x3 have
an effect opposite to that of the instability generated by the term of lower order (e.g.
ẋ = μx− x3). By writing this equation as follows ẋ = μx(1− (x2/μ)), we observe
easily that the nonlinear term “saturates” the effect of the linear instability for x2 = μ
(see Fig. 1.5).

1.8.3 Codimension-1 Bifurcations of Periodic Orbits

At least locally, it is possible to wonder if the bifurcation notion of fixed points can
be extended to periodic orbits. In particular because by using a Poincaré section, a
periodic orbit is observed as a fixed point. We understand that mathematically the
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problem is difficult to treat (because to return to the cut plane, it requires the inte-
gration of equations along the orbit). Fortunately, the Floquet theory allows to avoid
this difficulty and to study the linear stability of the periodic orbit without being
obliged to follow the flow step by step. In such a case, there are three possibilities
according the manner whose eigenvalue of the Floquet matrix crosses the unit circle
of the complex plane. (1) If the crossing is carried out by +1, the theory is not radi-
cally different from that of fixed point bifurcations. The normal form, topologically
equivalent to a node-saddle bifurcation is now written: ẋ = x + μ − x2, the term x
is introduced by the eigenvalue +1. Similarly, there are normal forms which lead
to pitchfork bifurcations or stability exchanges according to the considered prob-
lem. (2) If the loss of linear stability results from an eigenvalue −1, there is no
equivalence in fixed point bifurcations of the flow. In such a case, the bifurcation
generates the occurrence of a double periodic orbit by the subharmonic instability.
The bifurcation diagram is similar to that of a pitchfork bifurcation (see Fig. 1.5)
but the dynamics the radically different. Indeed, after the subharmonic bifurcation,
the two branches are continuously visited one after another by the (periodic) solu-
tion. Whereas in a pitchfork bifurcation, one and only one stationary solution is
established, after the adoption of one or other of the two branches of a pitchfork
bifurcation. (3) If the loss of stability results from the crossing of the unit circle by
two complex conjugate eigenvalues, something similar to a Hopf bifurcation occurs,
and is often called like this in spite of its specific characteristics. It follows that in the
Poincaré section, the fixed point is replaced by a set of points on a curve and conjures
up a limit cycle (in a certain way). However, the analysis needs to be refined because
this curve (that is not an orbit) is covered in a very specific way. This is here that the
notion of rotation number appears with its rational or irrational characteristics, in
connection with the quasiperiodicity notion and phenomena of frequency coupling.

1.9 Hopf Bifurcation

1.9.1 Codimension-1 Hopf Bifurcation

Let us describe more precisely the Hopf bifurcation by using vector fields. Before-
hand, consider the following notations and definitions: Dynamical models usually
consist of a family of differential equations (or also diffeomorphisms). Given t a
continuous time variable, dynamical systems are written by a differential equation
as follows: dx/dt = ẋ = X(x). X is a m-parameter, Cr family, of vector fields and
x represents the state of the system and takes values in the state or phase space.
The family X is said to have a bifurcation point at μ = μ∗ if, in every neigh-
borhood of μ∗, there exist values of μ such that the corresponding vector fields
X(μ , ·)=Xμ(·) exhibit topologically distinct behavior.11 In addition, the partial
derivatives are denoted D.

11 For a family of diffeomorphisms we could equivalently write f(μ , ·)= fμ (·).
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Definition 1.9 (Local family). A local family X : R
m×R

n → R
n is induced by the

family Y : R
s×R

n → R
n by means of a continuous map ϕ : R

m → R
s, ϕ(0) = 0, if

X(μ ,x) = Y(ϕ(μ),x).

Definition 1.10 (Unfolding). Any local family, X(μ ,x), at (0,0) is said to be an
unfolding of the vector field X(0,x) = X0(x). When X0(x) has a singularity at x = 0,
X(μ ,x) is referred to as an unfolding of the singularity.12

Definition 1.11 (Versal unfolding). A given m-parameter local family X(γ,x) on
R

n is said to be a versal unfolding of the vector field X(0,x) = X0(x) if every other
unfolding is equivalent to one induced by the given family.

Hopf bifurcation13 (In the case of codimension-1 singularity). Let X0 be a smooth
vector field with a Hopf singularity at the origin. Then tr DX0(0) = 0 and the normal
form14 of X0 can be given by

(
0 −α
α 0

)(
x1

x2

)

+
(
x2

1 + x2
2
)
{

a1

(
x1

x2

)

+ b1

(−x2

x1

)}

+ O(|x|5), (1.62)

where α = (Det DX0(0))1/2 > 0 and a1 �= 0. Consider now the local family

X(μ ,x) =
(
μ −α
α μ

)(
x1

x2

)

+
(
x2

1 + x2
2
)
{

a1

(
x1

x2

)

+ b1

(−x2

x1

)}

+ O(|x|5) (1.63)

is a versal unfolding of the Hopf singularity. Suppose now that the terms of order
|x|5 are absent (or removed) then the family above is more malleable in the plane
polar coordinates (r,θ ). It comes: ṙ = r(μ + a1r2), θ̇ = α + b1r2.

• Suppose a1 < 0; the phase portrait of ṙ and θ̇ consists of a hyperbolic, stable
focus at the origin. If μ = 0, ṙ = a1r3 and the origin is still asymptotically stable,
even if it is no longer hyperbolic. For μ > 0, ṙ = 0 for r = (μ/ |a1|)1/2 or for r = 0.
Then we have for μ > 0 a stable limit cycle, of radius proportional to μ1/2, which
surrounds a hyperbolic, unstable focus at the origin. This is a supercritical Hopf
bifurcation (see Fig. 1.6a).

• Suppose a1 > 0, the limit cycle occurs for μ < 0, it is unstable and surrounds a
stable fixed point. When μ increases, the radius of the cycle decreases to zero
at μ = 0, where the fixed point at the origin becomes a (weakly) unstable focus.
If μ > 0, (x1,x2)T = 0 is unstable and hyperbolic. This is a subcritical Hopf
(see Fig. 1.6b). The presence or absence of the terms O(|x|5) does not affect the
characteristics of diagrams.

12 See Arnold (1983).
13 Hassard et al. (1981); Marsden and MacCracken (1976).
14 Normal Form Theorem: Given a smooth vector field X(x) on R

n with X(0) = 0, there is a
polynomial transformation to new coordinates y such that the differential equation ẋ = X(x) takes
the form ẏ = Jy +∑N

r=2 wr(y)+O(|y|N+1), where J is the real Jordan form of A = DX(0) and wr
a complementary subspace.
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Fig. 1.6 Hopf bifurcations: (a) supercritical (a1 < 0); (b) subcritical (a1 > 0)

Given Y(υ ,x), υ ∈ R
m, x ∈ R

2 a family of vector fields. Then a Hopf bifurca-
tion occurs at (υ∗,x∗) when tr DYυ(x∗) passes through zero at υ = υ∗, which
is thus associated with a change of stability of the fixed point x∗. The follow-
ing theorem provides the conditions for which the family Y(υ ,x) generates a
complete Hopf bifurcation

(
with υ ∈ υ , i.e. υ is one of υ j, j = 1,. . . ,m and

Y(υ ,x)=Y(υ ,x)|υk=υ∗k k �= j

)
:

Theorem 1.2 (Hopf bifurcation theorem). Given ẋ = Y(υ ,x) a parameterized
dynamical system, with x ∈ R

2 and υ ∈ R, which has a fixed point at the ori-
gin for all values of the real parameter υ . In addition, suppose the eigenvalues,
λ1(υ) and λ2(υ), of DY(υ ,0) are pure imaginary for υ = υ∗. If the real part of the
eigenvalues, Reλ1(υ)(=Reλ2(υ)), verifies

d
dυ

{Reλ1(υ)}|υ=υ∗ > 0 (1.64)

and the origin is an asymptotically stable fixed point when υ = υ∗ then: (1) υ = υ∗
is a bifurcation point of the system; (2) for υ ∈ (υ1,υ∗), some υ1 < υ∗, the origin
is a stable focus; (3) for υ ∈ (υ∗,υ2), some υ2 > υ∗, the origin is an unstable focus
surrounded by a stable limit cycle, whose size increases with υ .
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1.9.2 Cusp and Generalized Hopf Bifurcations

Here the bifurcations concern singularities with codimension greater than 1. These
are only unfolded by local families that depend on more than one parameter.

1.9.2.1 Cusp Bifurcation

Given X0 a smooth vector field with a cusp singularity at the origin. Then DX0(0) �=
0 but tr DX0(0) = detDX0(0) = 0 and X0 has normal form (with a2 �= 0 and b2 �= 0).

(
x2 + a2x2

1

b2x2
1

)

+ O(|x|3). (1.65)

The local family

X(μ ,x) =
(

x2 + μ2x1 + a2x2
1

μ1 + b2x2
1

)

+ O(|x|3) (1.66)

is a versal unfolding of the cusp singularity above. (Note that the cusp singular-
ity requires at least two parameters to completely unfold it.) Considering this local
family X(μ ,x), under some conditions (not shown here) in particular about param-
eters, it is possible to generate three bifurcation types: (1) Saddle node, (2) Hopf
bifurcation, (3) Saddle connection.

1.9.2.2 Generalized Hopf Bifurcations

Generalized Hopf bifurcations. (Takens 1973b, Guckenheimer and Holmes 1983,
Arrowsmith and Place 1990). Here, we describe the generalized Hopf singularity
of type p. The vector field in the previous codimension-1 Hopf bifurcation was
obtained by posing a1 �= 0 in the normal form

(
0 −α
α 0

)(
x1

x2

)

+
∞
∑

k=1

(
x2

1 + x2
2
)k
[

ak

(
x1

x2

)

+ bk

(−x2

x1

)]

. (1.67)

If a degeneracy is introduced by posing a1 = a2 = · · · = ap−1 = 0 with ap �= 0,
then the system above is said to have a generalized Hopf singularity of type p at
(x1,x2)T = 0. (Note that a codimension-1 Hopf singularity is said to be of type
1.) The framework of the generalized Hopf singularity highlights the relationship
between the degeneracy of a singularity and the number of parameters contained in
its versal unfolding.

If a Hopf singularity of type p occurs, it is possible to reduce the system above
to a simpler system. Given

φ(x1,x2) =
(

α +
∞
∑

k=1
bk(x2

1 + x2
2)

k
)

(1.68)
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that can also be written

φ(x1,x2)
[(

0 −1
1 0

)(
x1

x2

)

+
∞
∑

k=1
γk(x2

1 + x2
2)

k
(

x1

x2

)]

, (1.69)

with γ1 = a1/α . Because α > 0, we have φ(x1,x2) > 0 for all (x1,x2) enough close
to the origin. Thus there exists a neighborhood of (x1,x2)T = 0 on which the system
is topologically equivalent to the (simpler) vector field:

(
0 −1
1 0

)(
x1

x2

)

+
∞
∑

k=1
γk(x2

1 + x2
2)

k
(

x1

x2

)

. (1.70)

While preserving the topological equivalence, we can replace γp by sgn(γp) =
sgn(ap) in the vector field above. Two cases are then possible according to a singu-
larity of the type: (p,+) or (p,−). A versal unfolding for the vector field above can
be obtained through the following Takens theorem (1973b):

Theorem 1.3. The versal unfolding of a generalized Hopf singularity of type p given
in the simpler vector field above is written (where si ∈ R, i = 0,1, . . . , p−1):

(
0 −1
1 0

)(
x1

x2

)

+
∞
∑

k=1
γk(x2

1 + x2
2)

k
(

x1

x2

)

+
p−1
∑

i=0
si(x2

1 + x2
2)

i
(

x1

x2

)

. (1.71)

According to the sign of γp, the unfoldings of in this theorem gives two cases
(p,+) and (p,−). Here, we only describe the first case (p,+), and the latter case
can be related to the other by a time reversal (so the stabilities of fixed points and
limit cycles are inverted). The formula in this theorem, through the polar form ((θ̇ , ṙ)
with here θ̇ = 1), gives for (p,+) the bifurcational behavior by using the equivalent
equation: ṙ = ∑p−1

i=0 sir2i+1 + r2p+1 + O(r2p+3). The behavior is independent of the
terms of order r2p+3 (as described for the codimension-1 Hopf bifurcation), so it
suffices to consider ṙ = ∑p−1

i=0 sir2i+1 + r2p+1. This equation in particular provides
limit cycles. (1) For p = 1, by posing r2 = λ , we obtain λ 2 + s0 = 0, then a limit
cycle occurs whose radius is (−s0)1/2 only when s0 < 0. (2) For p = 2, by posing
r2 = λ , we obtain λ 2 + s1λ + s0 = 0 and non-trivial zeros result from λ = (±(s2

1−
4s0)1/2− s1)/2. Then we obtain (a) If s0 > 0 and s1 > 0 (or s2

1− 4s0<0): no limit
cycle but a repelling spiral. (b) If s1 < 0 and s2

1− 4s0 > 0: two limit cycles. (c) If
s0 < 0: one limit cycle (see Fig. 1.7).

Figure 1.7 shows the bifurcation diagram for the type-(2, + ) Hopf bifurcation.
It shows that a supercritical (subcritical) Hopf bifurcation occurs when s0 increases
through zero with s1 < 0 (subcritical with s1 > 0), and a double limit cycle bifur-
cation occurs on the semi-parabola. If s0 decreases through the semi-parabola, a
non-hyperbolic limit cycle occurs and then divides into two hyperbolic cycles.



1.10 Examples of Dynamical System Resolution 41

Fig. 1.7 Bifurcation diagram for the type-(2, +) Hopf bifurcation

1.10 Examples of Dynamical System Resolution

1.10.1 A Stable System

ẋ1 = −0,5x1 + x2, (1.72)
ẋ2 = −2x2. (1.73)

The Jacobian matrix of the system ẋ = Ax is A =
[
−0.5 1

0 −2

]

. The eigenvalues are

solutions of det(λ I−A) = 0:

det
[
λ + 0.5 −1

0 λ + 2

]

= (λ + 0.5)(λ + 2) = 0 (1.74)

thus: λ1 = −0.5, λ2 = −2. Then, the eigenvectors are written: ξ1 =
[

1
0

]

, ξ2 =
[−0.5547

0.8321

]

. Note that ξ1 is the “slow” subspace, since it corresponds to an eigen-

value λ1 = −0.5, and ξ2 is the “fast” subspace since it corresponds to λ2 = −2.
Consequently, we can write: x(t) = VeΛtV −1x(0) as follows:

x(t) =
[

1 −0.5547
0 0.8321

][
e−0.5t 0

0 e−2t

][
1 0.6667
0 1.2019

]

x(0) (1.75)
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(a) If the initial condition is x(0) = ξ1 =
[

1
0

]

, then the solutions are x(t) =
[

e−0.5t

0

]

.

(b) If the initial condition is x(0) = ξ2 =
[−0.5547

0.8321

]

, then the solutions are x(t) =
[−0.5547e−2t

0.8321e−2t

]

. Note that x(0) = ξ1 is the slow initial condition and x(0) = ξ2

is the fast initial condition. In other words, in this system, the response of the
model for an initial condition, x(0) = ξ1, will first be a transitory motion before
an asymptotic stabilization.

1.10.2 An Unstable System with a Saddle Point

ẋ1 = 2x1 + x2, (1.76)
ẋ2 = 2x1− x2. (1.77)

The Jacobian matrix of the system

ẋ = Ax, (1.78)

can be written

A =
[

2 1
2 −1

]

. (1.79)

The eigenvalues are the solutions of

det(λ I−A) = 0, (1.80)

that give

det
[
λ −2 −1
−2 λ + 1

]

= (λ + 1.5616)(λ −2.5616) = 0. (1.81)

Thus:
λ1 =−1.5616 and λ2 = 2.5616. (1.82)

Then, the eigenvectors are written

ξ1 =
[

0.2703
−0.9628

]

, ξ2 =
[

0.8719
0.4896

]

. (1.83)

Since λ1 < 0, ξ1 is a stable subspace; since it corresponds to an eigenvalue λ2 > 0,
ξ2 is an unstable subspace. Consequently, we can write the following equation:

x(t) = VeΛtV−1x(0) (1.84)



1.11 Typology of Second-Order Linear Systems 43

as follows:

x(t)=
[

0.2703 0.8719
−0.9628 0.4896

][
e−1.5616t 0

0 e−2.5616t

][
0.5038 0.8972
0.9907 0.2782

]

x(0)

(a) If the initial condition is x(0) = ξ1 =
[

0.2703
−0.9628

]

, then the solutions are

x(t) =
[

0.2703e−1.5616t

−0.9628e−1.5616t

]

.

(b) If the initial condition are x(0) = ξ2 =
[

0.8719
0.4896

]

, then the solutions are

x(t) =
[

0.8719e2.5616t

0.4896e−2.5616t

]

.

It will be also noted that x(0) = ξ1 is the slow initial condition, and x(0) = ξ2 is the
fast initial condition. In other words, in this system the response of the model for
an initial condition x(0) = ξ1 will first be a transitory motion before an asymptotic
stabilization.

1.11 Typology of Second-Order Linear Systems

We have to solve the generic system ẋ = Ax, where the Jacobian matrix is A =[
a11 a12
a21 a22

]

. The eigenvalues are obtained by solving: det(λ I − A) = (λ − a11)

(λ −a22)−a12a21 = 0, also written det(λ I−A) = λ 2− tr(A)λ + det(A) = 0. The

quadratic formula is used to find the eigenvalues λ =
tr(A)±√(tr(A)2−4det(A))

2
,

or expressed separately:

λ1 =
tr(A)−√(tr(A)2−4det(A))

2
, λ2 =

tr(A)+
√

(tr(A)2−4det(A))
2

.

If the trace tr(A) is negative, then we will have at least one negative eigenvalue.
It will be also noted that the eigenvalue will be complex if 4 det(A) > tr(A)2.
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Fig. 1.8 Behaviors of dynamical systems

1.11.1 Eigenvalues Interpretation

The behavior of the system results from its eigenvalues λ1 and λ2 (Fig. 1.8):

Sinks (Stable nodes) : Real(λ1) < 0 and Real(λ2) < 0
Saddles (Unstable point) : Real(λ1) < 0 and Real(λ2) > 0
Sources (Unstable nodes) : Real(λ1) > 0 and Real(λ2) > 0
Spirals : λ1 and λ2 are complex conjugates.

If Real(λ1) < 0, then there is stability,
if Real(λ1) > 0, there is instability.

1.11.2 Some Representations in the Phase-Plane

1. A stable equilibrium point: The node-sink (Fig. 1.9). Given the system:

ẋ1 =−x1, ẋ2 =−4x2. (1.85)

Solutions and representation in the phase-plane:

x1(t) = x1(0)e−t , x2(t) = x2(0)e−4t . (1.86)

2. An unstable equilibrium: the saddle-point (Fig. 1.10). Given the system:

ẋ1 =−x1, ẋ2 = 4x2. (1.87)
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Fig. 1.9 Node attractor,
node-sink

X
2

Node-sink 
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Fig. 1.10 Saddle-point with
the flow orientation

Fig. 1.11 Another saddle
point with flow orientation

Solutions and representation in the phase-plane:

x1(t) = x1(0)e−t , x2(t) = x2(0)e4t . (1.88)

3. Another unstable solution: another saddle-point (Fig. 1.11). Given the system:
ẋ1 = 2x1 + x2, ẋ2 = 2x1− x2. The Jacobian matrix is written

A =
[

2 1
2 −1

]

. See the representation in the phase plane.

4. An unstable zone: the spiral source (Fig. 1.12). Given the system: ẋ1 = x1 +2x2,

ẋ2 =−2x1 + x2. Jacobian matrix is written A =
[

1 2
−2 1

]

. See phase plane.

5. The center (Fig. 1.13): Given the system: ẋ1 = −x1− x2, ẋ2 = 4x1 + x2. The

Jacobian matrix is written A =
[−1 −1

4 1

]

. See phase plane.
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Fig. 1.12 Spiral source
(repelling spiral) with the
flow orientation

Spiral

Fig. 1.13 Node center with
the flow orientation

1.11.3 Behavior Summary of Second-Order Linear Systems

In order to identify the behavior of a system of second-order ordinary differential
equations as a function of the trace and the determinant of the Jacobian matrix of
the aforesaid system, we can refer to the following central graph (Fig. 1.14). In the
central diagram, in abscissa tr(A) is replaced by p and in ordinate det(A) is replaced
by q. Thus, if�= p2−4q = 0; p �= 0: the fixed point is a node, it is asymptotically
stable for p < 0, and unstable for p > 0. Note the Jacobian matrix of the node center

computed above A =
[
−1 −1

4 1

]

, we observe that the Jacobian Matrix has a trace

equal to 0 and a determinant equal to 3, which we localize easily in the graph.

1.11.3.1 Example of Eigenvalue Positions on the Unit Circle

See Figs. 1.15–1.20.
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Fig. 1.14 (a) Spiral sink, (b) node center, (c) repelling spiral, (d) attracting node sink, (e) saddle
point, and (f) repelling node
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Attracting node (sink)

Fig. 1.15 Attracting node sink (left), eigenvalues (right)

Repelling node

Fig. 1.16 Repelling node

Spiral

Fig. 1.17 Attracting spiral sink

Spiral

Fig. 1.18 Repelling spiral



1.12 Examples of Nonlinear System Resolution 49

Fig. 1.19 Saddle point with flow orientation

Fig. 1.20 Node center

1.12 Examples of Nonlinear System Resolution

1.12.1 A (Bilinear) Nonlinear System and a Saddle-Point

Given the system

dz1

dt
= z2(z1 + 1), (1.89)

dz2

dt
= z1(z2 + 3). (1.90)

This system has two equilibrium solutions:

Trivial equilibrium: z1,s = 0, z2,s = 0, (1.91)
Non-trivial equilibrium: z1,s =−1, z2,s =−3. (1.92)

If we linearize the system, we find the following Jacobian matrix:

A =
[

z2,s z1,s + 1
z2,s + 3 z1,s

]

. (1.93)
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Then, we analyze the stability of each equilibrium point:

(a) Equilibrium (1): The Jacobian matrix is

A =
[

0 1
3 0

]

(1.94)

and the eigenvalues are

λ1 =−
√

3, λ2 =
√

3. (1.95)

The analysis of the linear system enables us to say that the first equilibrium point
is a saddle point, since its first eigenvalue is stable and the second is unstable.

The stable eigenvector is: ξ1 =
[
−0.5
0.866

]

.

The unstable eigenvector is: ξ2 =
[

0.5
0.866

]

.

The phase space or the phase-plane of the model linearized around the equi-

librium point (1) is a “saddle”. The linearized model is: ẋ =
[

0 1
3 0

]

x, where

x = z− zs.
(b) Equilibrium (2): The Jacobian matrix is

A =
[−3 0

0 −1

]

(1.96)

and the eigenvalues are λ1 = −3, λ2 = −1. The analysis of the linear system
enables us to say that the second equilibrium point is a stable node, since its
eigenvalues are stable.

The stable “fast” eigenvector is ξ1 =
[

1
0

]

.

The unstable “slow” eigenvector is ξ2 =
[

0
1

]

.

1.12.2 Pitchfork Bifurcation

The differential equation is written

ẋ = μx + x3. (1.97)

This system has three equilibrium solutions for ẋ = 0:

x̄ = 0, x̄ =
√
μ , x̄ =−√μ . (1.98)
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Fig. 1.21 Pitchfork bifurcation diagram, abscissa μ , ordinate x

We have the Jacobian matrix corresponding to the eigenvalues:

λ =−3x2 + μ . (1.99)

For λ < 0 the solution is stable, for λ > 0 the solution is unstable. As we can
suppose, it is the parameter μ which will determine the behavior of the system.
In fact, we can write:

(a) For μ < 0, we have the following eigenvalue for x̄ = 0 : λ = μ .
(b) For μ > 0, we have the following eigenvalue: (1) with x̄ = 0 then λ = μ =

unstable, (2) with x̄ =
√μ then λ = −2μ , the behavior is stable, (3) with

x̄ = −√μ then λ = −2μ , the behavior is stable. Consequently, we obtain the
bifurcation diagram (Fig. 1.21).

1.12.3 Supercritical Hopf Bifurcation

Given the initial system:

ẋ1 = x2 + x1(μ− x2
1− x2

2), (1.100)
ẋ2 = −x1 + x2(μ− x2

1− x2
2), (1.101)

we can also write this model by means of polar coordinates:

ṙ = r(μ− r2), (1.102)
θ̇ = −1. (1.103)
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If we indicate f such that: ṙ = f (r) = r(μ − r2) and Jacobian is written: ∂ f/∂ r =
r(μ−r2). The equilibrium (steady-state) point is f (r) = 0, which yields r(μ−r2) =
0, which has three solutions:

r = 0 (trivial solution), (1.104)
r =

√
μ , (1.105)

r = −√μ (not physically realizable). (1.106)

(1) For μ < 0, only the single possible solution is r = 0, i.e. ∂ f/∂ r = μ . This
solution is stable because μ < 0. (2) For μ = 0, all of the steady-state solution are
r = 0 and the Jacobian is ∂ f/∂ r =−3r2 which is stable, but has slow convergence
to r = 0. (3) For μ > 0, the trivial solution (r = 0) is unstable, because ∂ f/∂ r = μ .

The nontrivial solution (r =
√μ) is stable is a stable solution because ∂ f/∂ r =

μ−3r2 =−2μ and we find the following phase-plane plots (Fig. 1.22).
Their trajectories for identical initial-values are shown in Fig. 1.23.
Hereafter, the bifurcation diagram indicates that the origin (r = 0) is stable when

u < 0. When u > 0 the origin becomes unstable, but a stable limit cycle (with radius
r =

√
u) emerges (Fig. 1.24).
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Fig. 1.24 Supercritical bifur-
cation diagram
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At this stage, we analyze this system in rectangular (x1− x2) coordinates. The
only steady-state (fixed-point or equilibrium) solution to the initial system is

xs =
[

x1s
x2s

]

=
[

0
0

]

. (1.107)

Linearizing the initial system, we have

∂ f1/∂x1 = μ−3x2
1− x2

2, ∂ f1/∂x2 = 1−2x1x2,
∂ f2/∂x1 =−1−2x1x2, ∂ f2/∂x2 = μ− x2

1−3x2
2,

(1.108)

the Jacobian is written

A =
[
μ−3x2

1− x2
2 1−2x1x2

−1−2x1x2 μ− x2
1−3x2

2

]

(1.109)

which is, for an equilibrium solution of the origin:

A =
[

μ 1
−1 μ

]

. (1.110)

The characteristic polynomial, from det(λ I−A) = 0, is

λ 2−2μλ + μ2 + 1 = 0 (1.111)

which has as eigenvalues (roots): λ = μ±
√

4μ2−4(μ2 + 1)
2

= μ± j. We see that
when μ < 0, the complex values are stable (negative real portion); when μ = 0, the
eigenvalues lie on the imaginary axis of the complex plane; and when μ > 0 the
complex values are unstable (positive real portion). The transition of eigenvalues
from the left-half plane to the right-half plane is shown hereafter (see Fig. 1.25).

This example was for a supercritical Hopf bifurcation, where a stable limit cycle
was formed whose diagram is given hereafter (Fig. 1.26).

Consider as an exercise for the reader to show the formation of a subcritical Hopf
bifurcation, where an unstable limit cycle is formed.
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Fig. 1.25 Locations of eigenvalues in the complex plane. When the eigenvalues pass from the left
side to the right side of the complex plane, a Hopf bifurcation occurs.

Fig. 1.26 Supercritical Hopf
bifurcation

Parameter

Previously, we have found that the Hopf bifurcation occurs when the real por-
tion of complex eigenvalues became zero. In the previous example, the eigenvalues
crossed the imaginary axis with zero slope, i.e., parallel to the real axis. In the
general case, the eigenvalues will cross the imaginary axis with non-zero slope.

We have also to make it clearer how an analysis of the characteristic polynomial
of the Jacobian (A) matrix can be used to determine when a Hopf bifurcation can
occur. In case of a two-state system, the characteristic polynomial has the form:

a2(μ)λ 2 + a1(μ)λ + a0(μ) = 0, (1.112)

where the polynomial parameters, ai, are a function of the bifurcation parameter
μ . (Note that it is common for a2 = 1.) Suppose that the ai(μ) parameters do not
become 0 for the same value of μ , it is possible to show that a Hopf bifurcation
occurs when a1(μ) = 0.

1.12.3.1 Higher Order Systems (n > 2)

Previouly, we dealt with Hopf bifurcations of two-state systems but Hopf bifurca-
tions can occur in any order system (n≥ 2); they key is that two complex eigenvalues
cross imaginary axis, while all other eigenvalues remain negative (stable). This is
shown in Fig. 1.27 for the three state case.

In Fig. 1.27, we show the location of eigenvalues in complex plane as a function
of μ . A Hopf bifurcation occurs as the eigenvalues pass from the left-hand side to
the righthand side of the complex plane.
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Fig. 1.27 Locations of eigenvalues. Similarly, a Hopf bifurcation occurs when the eigenvalues pass
from the left to the right side.

Fig. 1.28 Convergence to periodic solution (left). Periodic solution (center). Convergence to a
fixed-point (right)

1.13 Poincaré–Bendixson Theorem

In a space with two dimensions, we can show that the orbits of a nonlinear system
move (in spiral) towards a closed curve or a limit-cycle. And this, even when the
solutions of the system are not known.

Theorem 1.4 (Poincaré–Bendixson). Let us suppose that an orbit x(x0,t) of a sys-
tem with two equations:15 dx/dt = f (x), x = (x1,x2)T , f = ( f1, f2)T remains in a
compact “domain” D⊂ R

2 for all t ≥ 0, then either:

1. x(x0,t) is a periodic solution of the system.
2. Or x(x0,t) tends towards a periodic solution.
3. Or x(x0,t) tends towards a fixed point.

Illustration of the three types of solution enunciated in this theorem (Fig. 1.28).

1.13.1 Bendixson Criterion

Theorem 1.5 (Bendixson Criterion). If in a “domain” which does not have hole,16

D ⊂ R
2 the expression17 Div f ≡ ∑2

i=1 ∂ fi/∂xi is not identically null and does not
change sign, then the system dx/dt = f (x) does not have a periodic orbit contained
in D.

15 Definition from Dang-Vu and Delcarte (2000).
16 Simply connected domain: i.e. domain without hole or separate parts in the domain.
17 (Div : divergence).
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1.14 Center Manifold Theorem

Suppose a fixed point x̄ of the system ẋ = f (x) with x ∈ R
n and if f is of class Cr

on D which is included in R
n, the linearization of the system above around the fixed

point x̄ can be written
dξ
dt

= ξ (1.113)

with ξ = x− x̄. And J is the Jacobian matrix such that:

J ≡ D f (x̄) =
∥
∥
∥
∥
∂ fi

∂x j

∥
∥
∥
∥

x=x̄
. (1.114)

If we write ξ = ueλ t , u ∈R
n and if we then replace it in dξ/dt = Jξ then we obtain

the eigenvector and eigenvalue equations:

(J−λ I)u = 0, (1.115)
|J−λ I| = 0. (1.116)

Given:

(a) (u1, . . . ,us): the eigenvectors of J correspond to the eigenvalues λ of which the
real part is negative.

(b) (v1, . . . ,vu): the eigenvectors of J correspond to the eigenvalues λ of which the
real part is positive.

(c) (w1, . . . ,wc): the eigenvectors of J correspond to the eigenvalues λ of which
the real part is null,

with s+ u + c = n, (1.117)

with s for stable, u for unstable and c for center, constant or central, and
consider also:

(1) Es the vectorial subspace generated by (u1, . . . ,us).
(2) Eu the vectorial subspace generated by (v1, . . . ,vu).
(3) Ec the vectorial subspace generated by (w1, . . . ,wc)

with R
n = Es⊕Eu⊕Ec. (1.118)

Then, it is possible to write the following Center manifold theorem:

Theorem 1.6 (Center manifold). There exist manifolds of Crclass, stable W s,
unstable W u, center W c (central), which are tangent respectively to Es,Eu and Ec

at the fixed point x̄. These manifolds are invariant with respect to the flow φt of the
system ẋ = f (x). W s et W u are single, however W c is not necessarily single.

Under the action of the flow, we have

φt (W s) ⊂ W s, (1.119)
φt(W u) ⊂ W u, (1.120)
φt(W c) ⊂ W c, (1.121)
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Fig. 1.29 Stable, unstable and
center manifold

and we have:

limt→+∞φt (x) = x̄ for all x ∈W s, (1.122)
limt→−∞φt (x) = x̄ for all x ∈W u. (1.123)

The behavior in the neighborhood of x̄ can be depicted as follows (Fig. 1.29).

1.15 Definitions of Chaos

The term chaos associated with an interval map was first formally introduced by
Li and Yorke in 1975, where they established a simple criterion for chaos in one-
dimensional difference equations (ref. to Li and Yorke 1975). Chaos in the sense of
Li–Yorke can be given by:

Definition 1.12 (Chaos in the sense of Li–Yorke). A continuous map f : I → I,
where I is the unit interval (I =[0,1]), is a chaos in the sense of Li–Yorke if
there is an uncountable set S ⊂ I such that trajectories of any two distinct points
x,y in S are proximal and not asymptotic, i.e. liminfn→∞ d( f n(x), f n(y)) = 0 and
limsupd( f n(x), f n(y)) > 0.

The requirement of uncountability of S in this definition (i.e. for continuous maps
of the interval, but not in a general compact metric space) is equivalent to the con-
dition that S contains two points, or that S is a perfect set (i.e. nonempty, compact
and without isolated points). Chaos in the sense of Devaney (1989):

Definition 1.13 (Devaney’s definition of chaos – 1989). Let V be a set. A contin-
uous map f : V →V is said to be chaotic on V if

1. f is topologically transitive: for any pair of open non-empty sets U,W ⊂V there
exists a k > 0 such that f k(u)∩W �= ∅.

2. The periodic points of f are dense in V .
3. f has sensitive dependence on initial conditions: there exists a δ > 0 such that,

for any x∈V and any neighborhood N of x, there exists a y∈N and an n≥ 0 such
that | f n(x)− f n(y)|> δ .
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There is still no unified, universally accepted, and rigorous mathematical defini-
tion of chaos. Among the diversity of proposed definitions, those of Li–Yorke and
Devaney seem to be the most popular. Huang and Ye proved that any chaotic map in
the sense of Devaney from a compact metric space to itself is chaotic in the sense of
Li–Yorke. It has been also proved that if a continuous map from a compact metric
space to itself has positive entropy, then it is chaotic in the sense of Li–Yorke. There
exists a recurrent complaint about the lack of an universally accepted definition of
chaos. Many papers refer to density of orbits (DO), sensitive dependence on ini-
tial conditions (SDIC) and topological transitivity (TT) as the main characteristics
of chaos. It was also pointed out that density of orbits and topological transitivity
are topological characteristics, whereas sensitive dependence on initial conditions
is a metric one. It is well known that density of orbits and topological transitiv-
ity, when both satisfied, imply sensitive dependence on close initial conditions. We
also known that SDIC alone do not imply neither density of orbits nor topological
transitivity.

A redundancy was found in Devaney’s definition of chaos. Banks et al. (1992)
prove that the conditions (1) and (2) imply (3) in any metric space V . Furthermore,
Assaf and Gadbois (1992) show that for general maps this is the only redundancy:
(1) and (3) do not imply (2), and (2) and (3) do not imply (1). But, if we restrict to
maps on an interval, then one obtains a stronger result:

Proposition 1.1. Let U be a, not necessarily finite, interval and f : U →U a contin-
uous and topologically transitive map. Then (1) the periodic points of f are dense
in U and (2) f has sensitive dependence on initial conditions.

The result (1) was given by Block and Coppel (1992), and an intuitive proof of
the proposition is given by Vellekoop and Berglund (1994).
From Sharkovskii (1964) to Li–Yorke (1975): Chaos in the sense of Li–Yorke
was a corollary of general Sharkovskii’s theorem. We’ll show that the first theorem
below is the consequence of the second one.

Theorem 1.7 (Period three implies chaos). If f : I→ I is a continuous map having
a periodic point of period 3, then f has periodic points of all periods.

Definition 1.14. A point x ∈ I is said periodic of period n > 1 if f nx = x and f ix �= x
for i = 1, . . . ,n−1, It is said that f is a fixed point if f x = x.

Above we denote f A= f (A) for A ⊆ I. Thus when a point is periodic, its orbit
is finite, but in addition, f acts bijectively on this orbit as a cycle. In order to give
the Sharkovskii’s theorem we need to define a specific ordering on the set of strictly
positive natural numbers N

∗:

Definition 1.15 (Sharkovskii’s ordering). Sharkovskii’s ordering on N
∗ is the

ordering � defined by 3 � 5 � ·· · � 3 · 2 � 5 · 2 � ·· · � 3 · 2n � 5 · 2n � ·· · �
3 ·2n+1 � 5 ·2n+1� ·· · � 2n � 2n−1 � ·· · � 22 � 2� 1 and it is a total order.
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Theorem 1.8 (Sharkovskii 1964). Let f : I → I be continuous map having a peri-
odic point of period n. If n � m in the Sharkovskii ordering then f has a periodic
point of period m.

Example 1.1. x̄ = f (x) = rx(1−x), 0 < r < 4, it is easy for r > 1 to verify that the
fixed point x∗ = (r−1)/r is locally asymptotically stable, i.e. | f ′(x∗)|< 1 provided
1 < r < 3. We want to show that for 1 < r < 3, the fixed point x∗ attracts each point
in the interval (0,1). First, we show that there are no n-periodic points of the map f
for n≥ 2. By Sharkovskii’s theorem, it suffices to show that there are no 2-periodic
points. Suppose, on the contrary, there exists x ∈ (0,1), x �= x∗ such that f 2(x) = x.
Then x satisfies 1 = r2(1−x)(1−rx+rx2) or (x−x∗)(rx2−(r+1)x+((r+1)/r))=
0. Then 0 < x = (r + 1+(r2−2r−3)1/2)/2r < 1. However the condition 1 < r < 3
implies r2−2r−3 = (r−3)(r + 1) < 0. This leads to a contradiction. Since f has
no 2-periodic points in (0,1), it follows that f has no nonwandering points excluding
x∗ and consequently x∗ is a global attractor.

1.16 Invariant Sets and Attractors

From G.D. Birkhoff (1927) to J. Milnor, many authors have defined the notions of
attracting set and attractor, among the most known definitions of an attractor there
are those of R. Thom (1978), C. Conley (1978), Guckenheimer and Holmes (1983),
D. Ruelle (1981), and J. Milnor (who also defined weak attractor). Hereafter, we’ll
define these notions which are common to flows and maps.

Definition 1.16 (Invariant set). For a flow φt [or a map g] defined on U ⊂ R
n,

a subset S⊂U is said invariant if

φt(S)⊂ S, ∀t ∈R [or gn(S)⊂ S, ∀n ∈ Z ]. (1.124)

Definition 1.17 (Homoclinic orbit). Let S be an invariant set of the flow φt , p is a
point in the phase space of the flow and let us suppose that φt(p)→ S when t→+∞,
and t →−∞, then the orbit of p is said to be homoclinic to S.

Definition 1.18 (Heterocilinic orbit). Let S1 and S2 be two disjoint invariant sets of
a flow φt and let us suppose that φt(p)→ S1 as t →+∞, and φt(p)→ S2 as t →−∞,
then the orbit of p is said to be heteroclinic to S.

Definition 1.19 (Accumulation point). The ω-limit of x for a flow φt is the set of
accumulation points of φt(x),t →+∞.

Definition 1.20 (Set of accumulation points). In the same way, the α-limit of x for
a flow φt is the set of accumulation points of φt(x),t →−∞.

For example, if we consider a differential system with two fixed points, x̄1(stable)
and x̄2 (unstable) and no other limit. Then we say that for such a system, x̄1 is a ω-
limit and x̄2 is a α-limit of the flow. The notion of “invariant” has an important role
in dynamical systems, and this concept naturally leads to that of “attracting set”.
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Definition 1.21 (Attracting set). A compact set A⊂U is an attracting set if:

• A is invariant under φt .
• A has a shrinking neighborhood, i.e. there is a neighborhood V of A, such as for

all x ∈V , φt(x) ∈V , for all t ≥ 0 and φt(x)→ A for t →+∞.
A basin of attraction, for an attracting set, is defined by

W =
⋃

t≤0
φt(V ). (1.125)

W is also called a stable manifold of A. We are able to define, in the same way,
a “repelling” set and its unstable manifold by replacing t by −t and n by −n. We’ll
give a stronger definition of an attractor in one of following sections.

Definition 1.22 (Transitive topology of a set). A set A is an attractor for the flow
φt , if it satisfies the properties exposed in the preceding definition, i.e. if it is an
attracting set, and if moreover it is topologically transitive.

Let A be a compact invariant set, A is said topologically transitive for a flow φ if
for two open sets U,V ⊂ A, φt(U)∩V �= ∅, for all t ∈ R. The transitivity implies
(and is implied by) the existence of a “dense orbit”.

1.16.1 Definition of an Attractor

Definition 1.23 (Attractor – Ruelle 1981). Let A be a closed compact set of the
phase-space (or of the flow). It is supposed that A is an invariant set (i.e. φt (A) = A,
for any t). It is said that A is stable if for any neighborhood U of A, there exists
a neighborhood V of A such that any solution x(x0,t) ≡ φt(x0) will remain in U if
x0 ∈V. If moreover: ⋂

t≥0
φt(V ) = A (1.126)

and if there exists a dense orbit in A, then A is an attractor.

When A is an attractor, the set W =
⋃

t<0 φt(V ) is called “basin of attraction” of
A. This set is the set of points whose trajectories asymptotically converge towards
A. The simplest attractor is the fixed point. A second type of attractor for a vector
field is the limit cycle: it is a closed trajectory which attracts all the close orbits
(Fig. 1.30). The third type is often called the strange attractor.

1.16.2 Strange Attractor

This attractor was defined by Ruelle and Takens (1971). It is characterized by:

1. In the phase space, the attractor is of null volume.
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Fig. 1.30 Limit cycles

Fig. 1.31 Archetype of strange attractor and an associated Poincaré section

2. The dimension D of the attractor is fractal (non-integer) 2 < D < n, where n is
the dimension of the phase space.

3. There is “sensitive dependence on initial conditions” (SDIC): two trajectories
(of the attractor) initially very close will diverge.

An illustration of strange attractors can be given by means of the well-known
James Gleick picture (see Gleick 1987) of a three-dimensional attractor and a
Poincaré section (Fig. 1.31).
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1.17 Some Nonlinear Dynamical Systems with Their Associated
Attractors

Duffing attractor: The dynamical system can be written as follows:

ẋ = y, ẏ = x− x3 + ε(acosθ −by), θ̇ = 1. (1.127)

It is periodic in θ and the Euler approximation is shown in Fig. 1.32 for εa = 0.4
and εb = 0.25 (see Guckenheimer and Holmes, 1983, pp. 82–91, 191).
Chua autonomous circuit: The dynamical system is written: dx/dt = α(−x + y−
h(x), dy/dt = x−y+z, dz/dt =−βy, where h(x) = bx+0.5(a−b)( |x+1|−|x−1|),
α arbitrary, β = 15, a =−1.3, b =−0.7 (Fig. 1.33).
Hénon attractor: xn+1 = 1−ax2

n +yn, yn+1 = bxn, with a = 1.4,b = 0.3 (Fig. 1.34).
Colpitts oscillator (simple chaotic generator): The dynamical system is written:
dx/dt = K K1(x−z)−x, dy/dt = 2K2 f (y,z), dz/dt = 2K1(x−z)−2K2 f (y,z), where
f (y,z) = {(z− y, if z− y � 1) and (1 otherwise)}, k arbitrary, K1 = 11, K2 = 0.9
(Fig. 1.35).
Ikeda attractor: xn+1 = k+β (xn cosωn−yn sinωn), yn+1 = β (xn cosωn−yn sinωn),
ωn = 0.4−α/(1 + x2

n + y2
n), with α = 5.4, β = 0.9, k = 0.92 (Fig. 1.36).

Rössler attractor: ẋ = dx/dt =−(y+ z), ẏ = dy/dt = x+ay, ż = dz/dt = b+ z(x−
c), with α = 0.15, b = 0.20, c = 10 (Fig. 1.37).

Fig. 1.32 Duffing attractor

Fig. 1.33 Attractor in progress (left). Chua attractor (right)
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Fig. 1.34 Henon attractor. x = [−2, . . .,2],y = [−2, . . .,2] (left). Enlargements (right)

Fig. 1.35 Attractor in progress (left). Colpitts attractor (right)

Fig. 1.36 Ikeda map [(−0.4, . . . ,1.6), (−2, . . . ,1)] (left). Ikeda map variant (right)

Rayleigh oscillator: The dynamical system is written: εdx/dt = y+ f (−x), dy/dt =
−x− a− bsin(ωt), where f (x) = −x(1− x2), ε = 0.1, a = 0.56946, b = 5e− 4,
ω = 1.3946 (Fig. 1.38).
Moon pendulum is in connection with Duffing equations: x′′+ mx′ − 1

2 (1− x2)x =

acos(at), with m = 0.15,a = 0.15. Mackay–Glass attractor:
dz
dt

=
ax(t+T)

1+[x(t+T)]c −
bx(t), with a = 0.2, b = 0.1, c = 10.0, T = 31.8. (Figures not shown here.)
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Fig. 1.37 In progress (left). Rössler attractor,3D (center). In a plane,2D (right)

Fig. 1.38 Rayleigh attractor

Fig. 1.39 In progress (left). Lorenz attractor, 3D (center). In a plane, 2D (right)

Lorenz attractor: ẋ = dx/dt = σ(y− x), ẏ = dy/dt = x(ρ − z)− y, ż = dz/dt =
xy−β z, with σ = 16, ρ = 45.92, β = 4.0 (Fig. 1.39).
Standard map (also known as the Chirikov–Taylor map): Standard Map {xn+1 =
xn +yn, yn+1 = yn−2πε2 sin(2πxn+1)}, for example: x+y, y−0.971635 sin(2πx)/
2π , we obtain Fig. 1.40 where the closed loops correspond to stable regions with
fixed points or fixed periodic points at their centers. The hazy regions are unstable
and chaotic.
Arrowsmith–Place attractor and map: Given the map ϕ : x1 = x+y1, y1 = y+ax(x−
1), with: 0 < a < 4. Given the inverse map ϕ−1 : x = x1− y1, y = y1− ax(x− 1),
with: 0 < a < 4 (Fig. 1.41).
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Fig. 1.40 Standard map (i.e. Chirikov–Taylor map)

Fig. 1.41 Arrowsmith–Place attractor. Axis: [(−1, . . . , 2),(−1, . . . , 1)]
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Fig. 1.42 Julia attractor for c =−0.17+ i0.78. Axis: [(−1.5, . . . , 1.5),(−1.5, . . . , 1.5)]

Julia attractor: zn+1 = z2
n + c, zn = an + ibn, c = a0 + ib0 with in the case above:

c =−0.17 + i0.78 (Fig. 1.42). Some other known values for the parameter c:

c = −0.12375 + 0.56508i(basin with an attractor)
c = −0.12 + 0.74i (three attractors)
c = −0.11 + 0.6557i (three attractors with thin spirale)
c = −0.194 + 0.6557i (three attractors, Cantor Set)
c = 0 + i (filament dendrite)
c = −0.125 + 0i (parabolic case: between two and four attractors)
c = 0.11031−0.67037i (Dust of Fatou),
c = 0.27334 + 0.00742i (other parabolic case)

Mandelbrot attractor: We give a quick view of the Mandelbrot set, which belongs
to the set of complex quadratic polynomials:

z0 = 0, zn+1 = z2
n + c. (1.128)

Hereafter, we present the Mandelbrot set in the complex plane. This set is delimited
by the following segments: The axis of the real part = [−2,1] and the axis of the
imaginary part = [−1.5,1.5] (Fig. 1.43).
Attractors of quadratic maps: The dynamics results from the following system based
on quadratic maps:

xn+1 = θ1 +θ2xn +θ3x2
n +θ4xnyn +θ5yn +θ6y2

n, (1.129)
yn+1 = θ7 +θ8xn +θ9x2

n +θ10xnyn +θ11yn +θ12y2
n. (1.130)

It is possible by varying the value of the coefficients θi (with i =1, 2, 3, . . . ,12) of
the quadratic map terms between −1.2 and 1.2 to depict in Fig. 1.44 a very short
sample of strange attractors that such a quadratic system is able to provide among
2512 possible.
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Fig. 1.43 Mandelbrot set: f (z) = z2 + c

Fig. 1.44 Sample of strange attractors from the quadratic map

Hénon–Heiles attractor:

H =
1
2
(p2

x + p2
y + x2 + y2)+ x2y− 1

3
y3, (1.131)

H =
1
2
(p2

x + p2
y + x2 + y2)+ x2y− 1

3
y3, (1.132)

ẋ =
∂H
∂ px

= px, (1.133)

ẏ =
∂H
∂ py

= py, (1.134)
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ṗx = −∂H
∂x

=−x−2xy, (1.135)

ṗy = −∂H
∂y

=−y− x2 + y2. (1.136)

The trajectory of this four-dimensional system spreads in a “hypersurface”:

H = E = cte. (1.137)

In spite of the multiplicity of the possible combinations, a certain number of
(limit) representative cases are highlighted. Each case presented hereafter shows
a trajectory for different initial conditions:

{px, py,y,x = (2E− p2
x)

1/2}, (1.138)

and for
E = H : {0.06,1/12,1/8,1/6} : (1.139)

– Basic case: E = 1/12, x = 0, y = 0.02, ẏ = py =−0.08.
– “Hilborn” case: E = 0.06, x = 0, y = 0, ẏ = py = 0.
– Complex loop: E = 1/12, x = 0, y = 0, ẏ = py = 0.123.
– Isolated archipelago case: E = 1/8, x = 0, y = 0, ẏ = py = 0.08.
– Chaotic attack: E = 1/8, x = 0, ẏ =−0.15, ẏ = py = 0.
– Almost complete chaos: E = 1/6, x = 0, y =−0.15, ẏ = py = 0.

For example, in the Hilborn case, we show planes which make it possible to
liberate structures of “toric appearance” which constitute the attractor. We then show
intermediate structures which can be observed through the “archipelago” case, the
“loops” case and the “chaotic attacks” case.
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0.4
x vs x-dot
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Now, we will show the graphs of all Poincaré sections (y, px) for which the
conditions have been explicitly posed above:
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Almost complete chaos

If we progressively change the initial conditions and increase E (which is assim-
ilated to the energy of the model), the toric structures are partially replaced by chaos
until a simultaneous coexistence.

1.18 Conservative and Dissipative Systems

A system is known as conservative if the “volume” of the phase space is preserved in
the course of time. It is possible to study the contraction towards zero of the volume
of the phase space without having to solve the differential system ẋ = dx

dt = f (x),
and this, by using the following theorem of the divergence (see Liouville’s theorem
and lemma about the divergence of a system).

Theorem 1.9 (Liouville Divergence). 18 Given the flow φt of the system ẋ = f (x),
V a volume of phase space at time t = 0, V (t) = φt(V ) the image of V by φt we have

dV (t)
dt

=
∫

V
Div f dx1 · · ·dxn, with Div f ≡

n

∑
i=1

∂ fi

∂xi
(1.140)

Definition 1.24 (Conservative or dissipative system). A system is conservative if
dV/dt = 0. A system is dissipative if dV/dt < 0.

In other words, a system is conservative if the flow associated with the differential
system ẋ = f (x) preserves the volume (or hyper-volume), i.e. by respecting:

n

∑
i=1

∂ fi

∂xi
= 0. (1.141)

In the case of a Map of the system, x �−→ g(x), i.e. in the state space, we say that
the system is conservative if:

|det Dxg(x)|= 1, (1.142)

18 Theorem demonstration Dang-vu and Delcarte (2000).
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where |detDxφt(x)| = 1 with Dxφt = [∂φ i
t /∂xi] is the matrix of partial derivatives.

If under the action of the flow, or of the map, the volumes remain constant, we
can say that these systems do not have areas or regions of attraction in the phase
space. Thus, they cannot have asymptotically stable fixed-points, limit-cycles, or
strange-attractors. However, the chaotic or very complex behaviors can exist in con-
servative models. This is the case in the Hamiltonian systems. The conservative
systems are relatively rare in Economics. We will be able to quote, however, the
application to cyclic economic growth problems, that Goodwin (1967) constructs
from the A. Lotka and V. Volterra equations. Indeed, his works showed that such
systems have a conservative behavior. One of the applications of the theorem above
is related to the observation that all the maps are not always derived from “flows”
generated by differential equations, it is thus sometimes necessary to preserve the
orientation of the flow. Thus, it is necessary to control the behavior of this type of
maps by

det[Dxg(x)] > 0, (1.143)

where Dxg = [∂gi/∂xi] is the matrix of partial derivatives.

1.19 Hamiltonian and Optimal Growth Model

Definition 1.25 (Hamiltonian). A Hamiltonian system with n degrees of freedom
is a system of equations of the motion of the form:

dqi

dt
=

∂H
∂ pi

, (1.144)

d pi

dt
= −∂H

∂qi
, with i = 1,2, . . . ,n, (1.145)

where H = H(q, p,t) is the Hamiltonian. The phase-space of the system is R
2n.

Thus, it comes

dH
dt

=
∂H
∂ t

+
n

∑
i=1

∂H
∂ pi

d pi

dt
+

n

∑
i=1

∂H
∂qi

dqi

dt
(1.146)

= −
n

∑
i=1

∂H
∂ pi

∂H
∂qi

+
n

∑
i=1

∂H
∂qi

∂H
∂ pi

+
∂H
∂ t

=
∂H
∂ t

. (1.147)

If the Hamiltonian H does not depend explicitly on time, it will remain identical in
the course of time: H(q, p) = Constant.
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1.19.1 The Optimal Growth Model with Infinite Horizon

The model can be formulated very briefly in the following way:

max
k

∫ ∞

0
U(k, k̇)e−σt dt (1.148)

with (k, k̇) ∈ S ⊂ R
2n, k(0) = k0. U is the concave function of utility. k is the stock

of capital, k̇ is the net investment. The set S corresponds to the technological restric-
tions, and σ is the rate of “discount” (“actualization”). If we introduce an auxiliary
vector q ∈ R

n, then we can write

H(k,q) = max
k;(k,k̇)∈S

{U(k, k̇)+ qk̇}, (1.149)

where q can be assimilated to the “capital price”. To solve our model, it must satisfy
the following differential system:

k̇ = ∂H/∂q, (1.150)
q̇ = −(∂H/∂k)+σq. (1.151)

It can be assimilated to a Hamiltonian system with an additional element which is
“σq” representing a perturbation. This system was frequently used by the economists
to describe the mechanism of a Hamiltonian system, where H(k,q) is the
Hamiltonian function. The hypotheses concerning the concavity of U and of H(k,q)
condition the characteristics of obtained solutions. However, usually, a Hamiltonian
function is regarded as concave in numerous fields. Consequently, the solution-
points and their stability differ noticeably.

1.20 Torus and Combination of Basic Frequencies

The usual torus embedded in a three-dimensional space has a hole (see figures
below). However, tori can also have multiple holes (the term n-torus is used for
a torus with n holes). One of the more common uses of n-dimensional tori is in
dynamical systems. A fundamental result states that the phase space trajectories
of a Hamiltonian system with n degrees of freedom and possessing n integrals of
motion lie on an n-dimensional manifold which is topologically equivalent to an
n-torus (Tabor). (Moreover, we known that the quasi-periodic solution of a dif-
ferential system can take the shape of a torus T 2.) The radius from the center
of the hole to the center of the torus tube is R and the radius of the tube is l.
The equation in Cartesian coordinates for a torus azimuthally symmetric about the
z-axis is (R−

√
x2 + y2)2 + z2 = l2. The parametric equations are:

x = (R + l cosα)cosθ , (1.152)
y = (R + l cosα)sinθ , (1.153)
z = l sinα, (1.154)
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where R, l have constant lengths andα,θ ∈ [0,2π).x = Rcosθ and y = Rsinθ define
a circle in the horizontal plane, while u = l cosα and v = l sinθ define another
circle in a (u,v)-plane. This plane is mobile. Then, we write the cartesian equation
(i.e. we have to remove α and θ ). The two first equations above give x2 + y2 =
(R+ l cosα)2, i.e. l cosα =

√
x2+y2−R. By merging with the third one, we obtain:

z2 +(
√

x2 +y2−R)2 = l2.

2-torus

If f1 and f2 represent both basic frequencies of the motion, then the torus is a
combination of the frequencies f1 and f2. The form of the Poincaré section of a
solution torus T2 depends on the ratio f1/ f2. When we observe the form of the
intersection points of the torus and Poincaré section, we note that these points pro-
gressively describe a closed curve in the plane. Besides, this closed curve can cut
itself according to the type of combination of basic frequencies f1 and f2.

(a) If the ratio f1/ f2 is irrational, the trajectory of the torus (and not that of the
curve on the Poincaré sectional surface) is never closed on itself and covers the
surface of the torus in a dense way. When it intersects the Poincaré plane this
torus shows a continuous closed curve.

(b) If the ratio f1/ f2 is rational, the trajectory is not dense on the surface of the
torus. The torus which intersects the “Poincaré sectional surface” exhibits a
curve which is not continuous.

1.21 Quasiperiodic Route to Chaos (Ruelle Takens),
and Landau Tn Tori

1.21.1 Description of Both Alternative Scenarios

The route towards chaos by quasi-periodicity is one of the scenarios showing the
transition from the fixed point to chaos. It exhibits a series of bifurcations which
lead to an increasingly complex dynamics. In order to simplify, we can consider that
all the bifurcations are Hopf bifurcations. It is known that during a Hopf bifurcation,
the angle θ between two successive points of the trajectory takes values between 0
and π : θ ⊂ [0,π ]. If the angle is a rational fraction of π , the trajectory passes by
a finite number of points and passes by the same point again after a finite time.
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This trajectory is strictly periodic. In the most general case where “the angle is
not a rational fraction of π”, the cycle is densely covered, and the trajectory never
passes again by the same point. The trajectory is then known as “pseudo-periodic”.
We usually observe this type of trajectory after a first Hopf bifurcation; In each
bifurcation, a new periodicity is superposed on the one already in place. According
to the number of frequencies which are present in the spectrum, it is called a T 1

torus (i.e. a limit-cycle), a T 2 torus (i.e. two superposed cycles), a T 3 torus (i.e. three
superposed cycles), etc. Thus, from a fixed point, two successive Hopf bifurcations
lead to a dynamics which is called a T 2 torus. This torus corresponds to a closed
surface in the phase-space, densely covered by the points of the dynamics. Thus we
observe a scenario by successive bifurcations:

Fixed point→ Limit cycle→ T2 Torus→ T3 Torus→, etc.

Nevertheless, as the dynamics becomes more and more complex, a tendency to the
“coupling of frequencies” (or resonance) appears. When the dynamics is a T 2 torus
generated by two limit cycles, the two involved cycles tend to enter in a rational ratio
(ω1/ω2), i.e. to be synchronized. This tendency to coupling (or fixing) becomes
increasingly strong as we change the control parameter in the direction which leads
to more complexity. The transition from the torus to the coupling of frequencies
does not constitute a bifurcation in a strict sense, because the dynamics is not quali-
tatively modified. Simply, the relationship between the two principal frequencies of
the attractor is a rational ratio, and the torus is not densely any more traversed. The
probability that the two frequencies are in a rational ratio increases as we approach
the border of chaos (and is 1 at the border of chaos). The coupling of basic frequen-
cies is well described with simple maps, such as the Arnold map. It precedes a new
bifurcation which plunges the dynamics into a chaotic regime. The scenario of cas-
cade of bifurcations is thus interrupted by the frequency coupling and the irruption
of chaos. Thus, we have the following scenario:

Fixed point→ Limit cycle→ T2 Torus→(Coupling of frequencies)→ Chaos

Figure 1.45 shows the Ruelle–Takens (1971) route to chaos, and the Landau (1944)
route towards Tn torus. The quasiperiodic route to chaos was highlighted by Ruelle
and Takens (1971). Furthermore, we know that there are different kinds of transition
to reach chaos known as canonical:

1. “Period-doubling” in unidimensional or multidimentional models
2. “Intermittency” (i.e. explosive route) (Bergé et al. 1987)
3. “Saddle connection” or “Blue sky catastrophe”, which is closely related to “trans-

verse homoclinic orbits” (including obviously the Smale horseshoe approach) in
theory and in practice.
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Fig. 1.45 Ruelle–Takens route to chaos (or Landau Tn torus)

Fig. 1.46 S: Stationary regime. P: Periodic regime. QP2: Quasiperiodic regime with two frequen-
cies. QP3: Quasiperiodic regime with three frequencies. SA: Strange attractor

1.21.2 Experimental Illustrations

1.21.2.1 Ruelle–Takens (R–T)

Ruelle–Takens theory (R–T) has been introduced in 1971, then detailed in 1978 by
Ruelle–Takens–Newhouse (R–T–N). This theory called into question the previous
Landau mechanism in which an infinity of Hopf bifurcations would be necessary
to generate the turbulence. On the contrary, Ruelle–Takens have considered that
a small number of bifurcations was sufficient to produce chaotic behaviors. The
experiment used was that of Reynolds. Given a laminar flow, then by increasing
the Reynolds number, the system loses its stability and becomes oscillating at the
frequency f1. The same process is repeated two times, thus we obtain successively
three Hopf bifurcations at the frequencies f1, f2, f3. Then according to R–T–N, the
corresponding torus T 3 can become (under conditions) unstable and be replaced by
a strange attractor. The behavior is no more quasiperiodic with three frequencies
(tore T 3) but clearly chaotic. Here is the diagram of successive bifurcations B1, B2,
B3, which lead to the chaos of the Ruelle–Takens theory (see Fig. 1.46).

Experimental Illustration by the Rayleigh–Benard Instability (R–B)

In the Rayleigh–Bénard experiment, the fluid is the water whose temperature is so
that the Prandtl number is equal to 5. The power spectrum of a quasi-periodic signal
for three immeasurable frequencies observed in the R–B instability is shown. By
increasing the ratio Ra/Rac the stationary convection loses its stability to become
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periodic starting from Ra/Rac = 30 (first Hopf bifurcation). For Ra/Rac = 39.5
the previous periodic regime loses its stability to become quasiperiodic with two
basic frequencies (second Hopf bifurcation). From Ra/Rac = 41.5 a third bifur-
cation occurs with three basic frequencies. The frequency of each ray is indexed
as f = m1 f1 + m2 f2 + m3 f3 (where mi are integers) and cannot be indexed as
f = m′1 f ′1 + m′2 f ′2. The incommensurability is verified because the ratios f1/ f2,
f1/ f3, f2/ f3 vary continuously with Ra/Rac. If there were synchronization (e.g.
f1/ f2 rational), then a threshold coupling would occur (i.e. f1/ f2 would remain
constant in a finite domain of Ra/Rac).

Beyond RT = Ra/Rac � 43, the broad band noise becomes high, with a simultane-
ous widening of peaks, then the regime is chaotic. (Note that it is however difficult
to distinguish the threshold RT of chaotic regime and the one of the quasiperiodic
regime which are sometimes viewed as confused.)

1.21.2.2 Transition to Chaos Starting from a Torus T2 (C–Y)

Curry and Yorke Model

In the previous case, the torus T3 is transformed into a strange attractor. The route
to chaos can appear from the destabilization or destruction of a torus T2 (with
two frequencies). Taking into account the previous case, we could suppose that
the dimension of T3 is the minimal dimension to make possible the occurrence of
strange attractors. But there is no incompatibility between both cases. Indeed, if
the chaos occurs from a torus T2, this is because there is another degree of freedom
manifests itself, no longer in the form of a third frequency, but by a progressive aban-
donment of T2 by the trajectories, which is equivalent to a destruction of this torus.
The understanding of this route to chaos results from numerical experiments on a
two-dimensional iterated map representing the Poincaré section of a tridimensional
flow. This map must satisfy the following criteria:

– The map must be nonlinear.
– The map must be contracting (ref. to dissipative systems).
– The map must have a Hopf bifurcation.

This Hopf bifurcation (for the tridimensional flow) by the Poincaré section corre-
sponds to a limit cycle bifurcation. Curry and Yorke have created a model satisfying
these criteria. This a composition of two homeomorphisms of R

2: ϕ = ϕ1 ◦ ϕ2.
By using polar coordinates (θ ,σ), the map ϕ1 defines the (k + 1)th iterate func-
tion of kth by: ϕ1 = {σk+1 = ε log(1 + σk) and θk+1 = θk + θ0} where ε is the
control parameter. The map ϕ2 (in cartesian coordinates) gives the map (x,y) as
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relation between two successive iterates ϕ2 = {xk+1 = xk and yk+1 = yk + y2
k}.

ϕ1,ϕ2,ϕ−1
1 ,ϕ−1

2 are continuous and so ϕ an homeomophism. The map ϕ1 cor-
responds to a dissipative system. The existence of nonlinearities result from the
logarithmic term in ϕ1 and from the quadratic term in ϕ2. The following diagram
summarizes the different stages of the route to chaos according to the Curry and
Yorke model (see diagram).

After the critical threshold εc a strange attractor occurs and the regime is chaotic
(although there are windows of periodic behaviors).

1.21.3 Circle Map, Mode-Locking and Arnold Tongue

Let us define some essential concepts aiming to explain the Arnold tongue notion
which is closely connected to the “quasiperiodic route to chaos”. These concepts
are the following: The winding number, mode-locking and circle map.

A map winding number19 can be described as follows: The winding number
W (θ ) of a map f (θ ) with an initial value θ is defined as follows:

W (θ ) = lim
n→∞

f (n)(θ )−θ
n

. (1.155)

Such a number corresponds to the average increase in the angle θ per unit time
(average frequency). A dynamical system with a rational winding number W = p/q
is mode-locked. By contrast, a dynamical system with an irrational winding number
is quasiperiodic. Moreover, we know that the rational numbers are a set of zero
measure on any finite interval, thus almost all winding numbers will be irrational,
consequently almost all maps will be quasiperiodic.

A mode locking is a phenomenon in which a system being forced at an irra-
tional period undergoes rational, periodic behavior which persists for a finite range
of forcing values. This can happen for strong couplings between natural and forcing
oscillation frequencies. Such a phenomenon can be explained by means of the circle
map when, after iterations of the map, the new angle differs from the initial value by
a rational number

θn+q = θn + p/q.

19 Winding number: The number of times a closed curve in the plane passes around a given point
in the counterclockwise direction.
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This constitutes the unperturbed circle map with the map winding number

Ω = p/q.

When Ω is not a rational number, the behavior is quasiperiodic.
The circle map is a chaotic map showing a number of interesting chaotic behav-

iors. The concept dates back to Andrey Kolmogorov and concerns a simplified
system for driven mechanical rotors or also a simplified model of the phase-locked
loop in electronics. The circle map exhibits certain regions of its parameters where
it is locked to the driving frequency (phase-locking or mode-locking in electronics),
these are called the Arnold tongues. The circle map was used among other things to
study the dynamical behavior of electrocardiograms (EKG, ECG). The circle map
is a one-dimensional map which maps a circle onto itself

θn+1 = f (θ ) = θn +Ω− K
2π

sin(2πθn), (1.156)

where θn+1 is calculated mod 1 and K is a constant. Ω and K are two parameters,
where Ω can be regarded as an externally applied frequency, and K as a strength
of nonlinearity (K : coupling strength, Ω : driving phase and may be interpreted as
a driving frequency). The circle map shows unexpected behaviors as a function of
parameters. It is connected to the standard map notion

In+1 = In +
K
2π

sin(2πθn), (1.157)

θn+1 = θn + In +
K
2π

sin(2πθn), (1.158)

for I and θ calculated mod 1. The writing of θn+1 as follows

θn+1 = θn + In +
K
2π

sin(2πθn) (1.159)

gives the circle map with In = Ω and K =−K. The Jacobian of the circle map is

∂θn+1

∂θn
= 1−K cos(2πθn), (1.160)

thus the circle map is not area-preserving. The unperturbed circle map is

θn+1 = θn +Ω. (1.161)

In the case where Ω is rational, then it is known as the map winding number and Ω
is written

Ω = W ≡ p/q, (1.162)

and gives a periodic trajectory because θn will return to the same point – at most –
every q map orbits. In the case where Ω is irrational, then the behavior is quasiperi-
odic. If K is non-zero, then the behavior can be periodic in some finite region
surrounding each rational Ω. This periodic behavior due to an irrational forcing
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is known as mode locking. It is possible to represent the plane of the parameters
(K,Ω) with the regions of periodic mode-locked parameter space plotted around
rational Ω values (see map winding numbers), then the regions are seen to widen
upward from 0 at K = 0 to some finite width at K = 1. The region surrounding each
rational number is known as an Arnold tongue. For K = 0, the Arnold tongues are an
isolated set of measure zero. For K = 1, they constitute a Cantor set of dimension
d ≈ 0.08700. For K > 1, the tongues overlap and the circle map becomes non-
invertible. Let Ωn be the parameter value of the circle map for a cycle with map
winding number Wn = Fn/Fn+1 passing with an angle θ = 0, where Fn is a Fibonacci
number. Then the parameter values Ωn accumulate at the rate (see Feigenbaum)
δ ≡ limn→∞

Ωn−Ωn−1
Ωn+1−Ωn

=−2.833.

Arnold tongue: In short, to specify the Arnold tongue concept let us consider the
circle map again. In the case where K is non-zero, then the behavior is periodic
in some finite region surrounding each rational Ω. Such periodic behavior due to
an irrational forcing is known as mode locking. It is possible to represent, in the
(K,Ω)-plane, the regions of periodic mode-locked parameter space plotted around
rational Ω values (map winding number), then the regions are seen to widen upward
from 0 at K = 0 to some finite width at K = 1.

The region surrounding each rational number is known as an Arnold tongue: For
K = 0, the Arnold tongues are an isolated set of measure zero. For K = 1, they
constitute a Cantor set. Usually, an Arnold tongue is known as a resonance zone
emanating out from rational numbers in a two-dimensional parameter space.

Arnold tongues and Quasiperiodic route to chaos: The circle map is an essential
concept to study the transition to chaos, in particular relating to the quasiperiodic
route to chaos, and relating to Hopf or Neimark bifurcations of discrete-time dynam-
ical systems. Let us consider in the complex plane, for a two-dimensional parameter
system, the eigenvalue λ (γ) of the Jacobian matrix Jγ . If one modifies only one
parameter, this corresponds to moving along an arc in the complex (Im,Re)-plane
(see Fig. 1.47b). In this complex plane, θ represents the position along the circum-

Fig. 1.47 (a) Arnold tongues in (k,Ω)-plane. (b) Arnold tongues in (Im,Re)-plane
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ference of the circle and K corresponds to the normalized amplitude. Let us consider
again a circle map

θn+1 = f (θ ) = θn +Ω− K
2π

sin(2πθn), (1.163)

with mod 1. (In general we know that: f (θ + 1) = 1 + f (θ ); for |K| < 1, f (θ )
is a diffeomorphism; for |K| = 1, f−1(θ ) is non-differentiable; for |K| > 1 there
is no unique inverse of f (θ ).) For such a circle map, let us describe the possible
behaviors:

• If K > 1 the map f (θ ) is non-invertible and chaos can occur, while knowing that
chaotic and non-chaotic regions are intertwined in the (K,Ω)-plane.

• K = 1 is the frontier between invertible and non-invertible circle maps. The non-
mode-locked intervals between Arnold tongues constitute a Cantor set with zero
measure.

• If K is small (close to the bifurcation), the circle map tends to a single attract-
ing fixed-point if Ω is a rational number p/q (same conclusion for more or
less broad intervals of Ω close to p/q). The region surrounding each rational
number is known as an Arnold tongue. The periodic windows are limited by
two arcs of saddle-node bifurcations (see Fig. 1.47a). When each region widens
upward starting from the bifurcation point, the regions or the windows tend to
overlap themselves, and the more the coupling is strong, the more the mode-
locking phenomenon tends to appear. Such a phenomenon is also known as the
synchronization of frequencies.

The space of the parameters (K,Ω) is a very interesting framework to study the
transition to chaos. In such a framework, either we vary only one parameter, or we
vary two parameters simultaneously. Firstly, when we vary a parameter moving thus
along an arc in the (K,Ω)-plane, the mode-locking happens if K is increased beyond
1. In such a case, the transition to chaos arises only by means of one of the canonical
(codimension-1) routes to chaos,20 i.e. the blue-sky catastrophe (saddle-connection),
intermittency and period-doubling. Secondly, when we vary both parameters simul-
taneously K and Ω, a point on the line K = 1 can be attained, appertaining to the
non-mode-locking Cantor set, outside the Arnold tongues. In this context, it is dif-
ficult to analyze the consequence of an increase in K beyond 1, as regards to the
transition from quasiperiodic behavior towards chaos; although experiments seem
to conclude that the transition can occur.

1.22 An Approach of KAM Theory: Invariant Torus and Chaos

The subject of the KAM theory21 (Kolmogorov–Arnold–Moser) is often illus-
trated by the Hénon–Heiles model22 which has this possibility to provide “invariant
tori” and “chaos” simultaneously. The behaviors of the Hénon–Heiles model were

20 See section entitled: “Transitions and Routes to Chaos”.
21 Dang-Vu and Delcarte (2000). Also cf. Verhulst (1996).
22 Or by numerical calculations of Ollengren, Contopoulos.
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Fig. 1.48 (a) Torus–plane intersection. (b) Chaotic attack. (c) Chaos and tori persistence

described previously in the section about the attractors according to parameter set-
ting on E = H and initial conditions. In Fig. 1.48a (E = 1/12), the two closed
curves correspond to the intersection of the (two-dimensional) torus surface with
the Poincaré section. Figure 1.48b (E = 1/8) shows the chaotic attack of the toric
structure. Figure 1.48c shows a structure with a chaotic dominant and the persistence
of the toric structure.

The topics of KAM theory consider the Hamiltonian systems and their behaviors.
A Hamiltonian system with n degrees of freedom (ddl = n) is a system of equations
of the motion of the form:

dqi

dt
=

∂H
∂ pi

, (1.164)

d pi

dt
= −∂H

∂qi
, with i = 1,2, . . . ,n, (1.165)

where H = H(q, p,t) is the hamiltonian, and it comes

dH
dt

=
∂H
∂ t

+
n

∑
i=1

∂H
∂ pi

d pi

dt
+

n

∑
i=1

∂H
∂qi

dqi

dt
(1.166)

= −
n

∑
i=1

∂H
∂ pi

∂H
∂qi

+
n

∑
i=1

∂H
∂qi

∂H
∂ pi

+
∂H
∂ t

(1.167)

=
∂H
∂ t

. (1.168)

If H does not depend on time, it is preserved in the course of time, i.e. H(q, p) =
Constant. If the Hamiltonian is integrable, we can write the following general
canonical transformation:

qi = qi(θ j,Jj), (1.169)
pi = pi(θ j,Jj), with i, j = 1,2, . . . ,n. (1.170)

Thus, the new Hamiltonian system does not depend on θ anymore, and is written

θ̇i =
∂H(J)
∂Ji

= ωi(J), (1.171)

J̇i = −∂H(J)
∂θi

= 0. (1.172)
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This new system has the following solutions:

θi = ωit +θi(0), (1.173)
Ji = Ji(0). (1.174)

Ji are constants and θi are the variables known as angular. The solutions of
these models move on tori of the type T n. The solution on the torus is known
as quasi-periodic with n frequencies ω1,ω2, . . . ,ωn, if there is not n-tuple m =
(m1,m2, . . . ,mn) with the mi ∈ Z and m1ω1 + · · ·+ mnωn = 0. The trajectory will
not be closed and will cover the torus, and we will say that the trajectory is dense.
On the other hand, if there is a n-tuple, the trajectory will be closed on itself and we
will say that the trajectory is periodic (we will be able to find a m and a ω0 such
that mω0 = ω). To simplify the presentation, we will select a Hamiltonian with two
degrees of freedom (ddl = 2) which is written

H(J1,J2) = E = Constant. (1.175)

Such a Hamiltonian system thus has the following solutions-trajectories:

θi = ωi(J1,J2)t +θi(0), where J1 and J2 are constant. (1.176)

The trajectories will be on a torus of dimension 2, noted T2. These trajectories
will be

• Periodic, of period q, if α(J1,J2) =
ω1(Ji)
ω2(Ji)

=
p
q

.

• Dense on the torus, if α(J1,J2) is irrational.
[
α(J1,J2) is called the rotation

number.
]

Let us imagine a Poincaré section23 coming to cut the flow of trajectories,
the Poincaré section can cut the trajectories at different time periods denoted
Δt = 2π/ω2, and for this same period the angular variable θ1 increases ω1Δt =
2πα(J1) = Δθ1 (Fig. 1.49). We can pose the Poincaré map in the following way
(with α ′(J) �= 0):

P0 : Jn+1 = Jn,
θn+1 = θn + 2πα(Jn+1).

(1.177)

This map preserves the areas because:

∂ (Jn+1,θn+1)
∂ (Jn,θn)

=
∣
∣
∣
∣
1 0
2πα ′(Jn) 1

∣
∣
∣
∣= 1. (1.178)

Now, in this integrable Hamiltonian H(J), let us use a small perturbation δ which
depends on (θ ,J). The resulting Hamiltonian will be written

H(θ ,J) = H(J)+ δH1(θ ,J). (1.179)

23 Poincaré section: θ2 = 0.
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Fig. 1.49 A torus T2 (left). Poincaré section of the torus (right)

Consequently, the Poincaré map posed above is written

Pδ : Jn+1 = Jn + δ f (Jn+1,θn),
θn+1 = θn + 2πα(Jn+1)+ δg(Jn+1,θn),

(1.180)

with the functions f (J,θ ) and g(J,θ ) which are taken as periodic of period 2π . The
conservation property of areas (surfaces) described above must be respected, we
must have ∣

∣
∣
∣
∂ (Jn+1,θn+1)
∂ (Jn,θn)

∣
∣
∣
∣= 1. (1.181)

i.e. the functions f and g must satisfy

∂ f
∂J

+
∂g
∂θ

= 0. (1.182)

1.22.1 KAM Torus: Irrational Rotation Number

Let us consider the case where f (J,θ ) = f (θ ) and g(J,θ ) = 0, consequently
the condition ∂ f/∂J + ∂g/∂θ = 0 is verified, and thus the Poincaré map of the
perturbated Hamiltonian is written

Pδ : Jn+1 = Jn + δ f (θn),
θn+1 = θn + 2πα(Jn+1).

(1.183)

The question now is to find the conditions making that this map has an “invariant
orbit”:

Invariant orbit: J = J(θ ). (1.184)

If such is the case, the trajectory obtained will be spread on a torus called the KAM
torus. Thus, the map Pδ becomes

J(θ + 2πα) = J(θ )+ δ f (θ ). (1.185)
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This map can be solved by using the Fourier series expression applied to f and J:

f (θ ) = ∑+∞
−∞ akeθki, (1.186)

J(θ ) = ∑+∞
−∞ bkeθki, (1.187)

where ak and bk are the Fourier coefficients:

J(θ + 2πα) = J(θ )+ δ f (θ ), (1.188)
+∞

∑
−∞

bke(θ+2πα)ki =
+∞

∑
−∞

bkeθki + δ
+∞

∑
−∞

akeθki. (1.189)

We can extract the expression of the Fourier coefficient bk function of ak with k �= 0:

bk =
δak

e2πkiα −1
. (1.190)

The invariant orbit J = J(θ ) becomes

J(θ ) = b0 +∑
k �=0

δakeθki

e2πkiα −1
. (1.191)

It is thus advisable to check the convergence of the expression above now. If we
consider that f is of class CN , knowing that the absolute value of the nth derivative
of f with respect to the angular variable θ is lower or equal to a bound noted M:

∣
∣dN f/dθN∣∣≤M. (1.192)

We can write:24

|ak| ≤ M

|k|N . (1.193)

The rotation number α(J) must be irrational to observe a KAM torus, i.e. there must
exist constants c > 0 and m≥ 2 which satisfy the following conditions:25

Conditions:
∣
∣
∣
∣α−

l
k

∣
∣
∣
∣≥

c
km ,

i.e. |kα− l| ≥ c
km−1 .

(1.194)

It is known that (sin x ≥ 2x/π) when 0 ≤ x ≤ π/2, consequently we can write the
following succession of equalities and inequalities:
∣
∣
∣e2πkiα −1

∣
∣
∣= 2 |sinαπk|= 2 |sinπ(αk− l)| ≥ 4 |kα− l| ≥ 4c

km−1 . (1.195)

24 Ref: Weierstrass approximation theorem: Any continuous function is uniformly approached by
polynomial functions.
25 With k ∈ Z

+ and l ∈ Z.
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Thus starting from the expression which precedes and from the expressions

described above bk =
δak

e2πkiα −1
and |ak| ≤ M

|k|N , we deduce for k �= 0:

|bk| ≤ Mδ

4c |k|N−m+1 . (1.196)

Consequently

J(θ ) = b0 +∑
k �=0

δakeθki

e2πkiα −1

converges if N −m > 0. Since m ≥ 2, it is thus for a value of N : N > 2, that
J(θ ) converges and that we can observe an orbit of KAM. Thus, when the condi-

tions described above
∣
∣
∣
∣α−

l
k

∣
∣
∣
∣ ≥

c
km or |kα− l| ≥ c

km−1 are satisfied, we observe

the presence of a KAM torus. If the conditions are not satisfied, the torus will
demolish itself. The ultimate torus which disappears is the torus having the rotation
number according to

α(J) =
ω1(J)
ω2(J)

=
(
√

5−1)
2

. (1.197)

The numerical value of α(J) thus plays an important part in the nature of solu-
tions of the system. The approach of these numerical values opened developments
concerning the “algebraic number” concept, which will not be evoked here. In the
framework of this paragraph, we will not describe either the case where the rota-
tion number α(J) = p/q is rational, for which there is resonance between p and q,
which leads to the description of groups of Poincaré–Birkhoff points with hyperbolic
or elliptic forms, which will be described later in the Hyperbolicity framework.

1.23 Approach of Dynamical Systems by Means of Pendulums
and Oscillators

A simple pendulum (also called a bob pendulum) is a pendulum consisting of a
single spherical (or point) mass attached to a wire of negligible weight. This simple
gravity pendulum26 will swing back and forth under the influence of gravity over its
central (lowest) point (Fig. 1.50).

A physical pendulum is a generalization of the simple pendulum. An example
would be a bar rotating around a fixed axle. A simple pendulum can be taken as a
specific case of a physical pendulum with moment of inertia. Usually, the system
can be mathematically described as follows:

I = ml2, (1.198)

26 Pendulum: Plural can be written pendulums or pendula.
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Fig. 1.50 Damped and undamped pendulums

where m is the mass and l is the wire length. The equation of motion of a physical
pendulum can be found from the torque ϒ on it,

ϒ =−mgl sin(ω) = Iβ = I
d2ω
dt2 , (1.199)

where g is the gravitational acceleration, I is the moment of inertia, β is the angular
acceleration, and ω is the angle of the wire measured from the downward vertical.
Then

d2ω
dt2 +

mgl
I

sin(ω) = 0. (1.200)

It is possible to define the resonant frequency as follows:

θ0 =

√
mgl

I
(1.201)

then the equation d2ω
dt2 + mgl

I sin(ω) = 0 can be written in the following simple form:

ω̈ +θ 2
0 sin(ω) = 0. (1.202)

Two coupled first-order ordinary differential equations which follow make it possi-
ble to write the equation of motion:

ẋ = y, (1.203)
ẏ = −θ 2 sin(x) . (1.204)

This system of two equations provides the phase portrait as it is possible to observe
in Fig. 1.51.
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Fig. 1.51 Phase portrait of the pendulum

The equation of motion can also be written through the energy point of view. The
gravitational potential energy and the kinetic can be written

V = −mgl cos(ω), (1.205)
T = (1/2)Iω̇2. (1.206)

V
( 1

2π
)

= 0 is the zero-point of potential energy, and the sign has been chosen so
that the potential energy is higher when the “bob” is higher. Then the Lagrangian
can be written as follows:

£ = T −V = (1/2)Iω̇2 + mgl cos(ω). (1.207)

If we calculate the derivatives, it comes

∂£
∂ω̇

= Iω̇ , (1.208)

d
dt

(
∂£
∂ω̇

)

= Iω̈ , (1.209)

∂£
∂ω

= −mgl sin(ω). (1.210)

Then, the (Euler) differential equation can be written almost as at the beginning of
the paragraph:

ω̈ +θ 2
0 sin(ω) = ω̈ +

mgl
I

sin(ω) = 0. (1.211)

Moreover, using the Hamiltonian writing, the momentum is written

ψω =
∂£
∂ω̇

= Iω̇ , (1.212)
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then the Hamiltonian is written

H = ω̇ψω −£ =(1/2)Iω̇2−mgl cos(ω) (1.213)

=
ψ2
ω

2I
−mgl cos(ω), (1.214)

then the motion equation are written

ω̇ =
∂H
∂ψω

=
ψω
I

(1.215)

ψ̇ω = −∂H
∂ω

=−mgl sin(ω). (1.216)

Remark 1.5 (Simple harmonic oscillator). The equations representing the simple
harmonic oscillator as simply as possible are written as follows

ẋ = y, (1.217)
ẏ = −θ 2x. (1.218)

Such a system can provide multiple curves of motions in a phase portrait, which
correspond to the multiple initial conditions of the system. Then the multiple “phase
curves” corresponding to different initial conditions are represented in the same
“phase plane” which gives the “Phase portrait” for a simple harmonic oscillator
with various initial conditions (Fig. 1.52).

Remark 1.6 (Phase portrait). A phase portrait can be understood as a plot of the
different phase curves corresponding to the different initial conditions in the same
phase plane.27

Fig. 1.52 A simple harmonic
oscillator

27 Phase plane: As seen previously, a phase plane is a phase space with two dimensions,
i.e. corresponding to a map or a function with two degrees of freedom.
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1.24 Navier–Stokes Equations of Flows, Attractors and Invariant
Measures

1.24.1 Navier–Stokes Equations: Basic Model

The Navier–Stokes equations initially have sought to model the fluid flows (see
Reynolds experiment) and their behaviors. According to the physical parameters of
the experiment, these flows can be laminar or convective and turbulent. We give an
illustration of a convective and turbulent flow hereafter (Fig. 1.53).

A reproduction of the Reynolds experiment makes it possible to highlight the
Reynolds number re which corresponds to a critical value: re = (VD)/visc, where V
is the speed, visc is viscosity, and D is the diameter of the tube receiving the flow.
For re ≤ 2,300, the device exhibits a laminar flow, we speak of a laminar regime and
for re > 2,300 the device exhibits a turbulent flow, we speak of a turbulent regime.
Hereafter, a picture of a real turbulent regime (Fig. 1.54).

Generally the movement of fluids in R
2 or R

3 is defined by a function t → v(t),
where v(t) are the speeds which belong to the fields of flow speeds (the speed of
fluid is related with its viscosity). For a measure of a flow of a tridimensional fluid,
Navier–Stokes equation can be written in the following way:

∂v
∂ t

+(v ·∇)v =−∇p +
1
re
∇2v, (1.219)

with re the number of Reynolds and p the hydrostatic pressure (∇ partial derivatives,
gradient). The solution of this equation with nonlinear partial derivatives provides

Fig. 1.53 Illustration of a convective and turbulent flow

Fig. 1.54 Experiment of a real turbulent flow
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a “field of speed” v(x,t). We can observe the movements of microscopic elements
(of particles) of the fluid. The movements of fluid particles are influenced by the
convection phenomenon due to the field of speeds and are influenced by the molec-
ular phenomenon of diffusion. The movements of (fluid) particles are influenced by
the convection phenomenon, defined by the equation:

ẋ = v(x,t), x ∈ R
3. (1.220)

The field of speeds can be given starting from a function of the flow denoted
ψ(x1,x2,t) with

v(x1,x2,t) =
(
∂ψ
∂x2

,− ∂ψ
∂x1

)

. (1.221)

Therefore, the equations of the motion of fluid particles become

ẋ1 =
∂ψ
∂x2

(x1,x2,t), (1.222)

ẋ2 = − ∂ψ
∂x1

(x1,x2,t). (1.223)

These equations constitute a Hamiltonian system where the functionψ is the Hamil-
tonian (H). This type of problems has opened the path to many developments and is
central as regards fluid flows. An example of a flow function can be given by

ψ(x1,x2,t) = ψ0(x1,x2)+θψ0(x1,x2,t), (1.224)

with

ψ0(x1,x2) =−x2 + re cos(x1)sin(x2),
ψ1(x1,x2,t) =

γ
2

[(

1− 2
λ

)

cos(x1 +λ t +ω)+
(

1 +
2
λ

)

cos(x1−λ t−ω)
]

sin(x2).

λ > 0, ω is a phase, and (re,γ,θ ) are parameters (amplitude depending on the
temperature) with 0 < θ < 1. The fluid particles motion equations are written

ẋ1 =
∂ψ0

∂x2
(x1,x2)+θ

∂ψ1

∂x2
(x1,x2,t), (1.225)

ẋ2 = −∂ψ0

∂x2
(x1,x2)−θ

∂ψ1

∂x2
(x1,x2,t). (1.226)
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1.24.2 Navier–Stokes Dynamics: Invariant Ergodic Measures,
Characteristic Exponents and Hilbert Spaces

The differentiable Dynamics allowed to better foresee chaotic phenomena. In
physics (aerodynamics or hydrodynamics), they also allowed in particular in Fluid
Dynamics to approach turbulence phenomena which are very complex to define
and to describe. It is possible to approach the turbulence phenomenon in dynam-
ical systems by means of the Mode concept. The modes can be assimilated to a
collection of independent oscillators . Each mode is periodic and each state is repre-
sented by an angular variable. In such a representation, a global dynamical system
is quasiperiodic, i.e. it corresponds to a superposition of periodic motions. A dis-
sipative system becomes increasingly turbulent when the number of modes exciting
the system increases, i.e. when the number of oscillators necessary to describe the
system increases. This analysis method which is in accordance with the intuition
and Fourier analysis (i.e. the frequential decomposition) was changed with the non-
linear dynamical systems. In particular, the concept of the number of excited modes
is replaced by new concepts, as the number of nonnegative characteristic exponents
or the “dimension of information”.

For example in the Fourier analysis, the power spectrum of a Strange Attractor
is known as continuous, and we analyze this observation as corresponding to an
infinite number of modes, i.e. with an infinite collection of independent oscillators.
But we underlined previously that this is a way of reasoning which is only valid
in Linear theory, which must necessarily then take place in a phase space of an
infinite dimension, since we have an infinite number of oscillators and each one of
these oscillators is spread in its space. Consequently, if we have to face a continuous
power spectrum, there are two possibilities:

• Either we are studying a system which visits an infinite number of dimensions in
the phase space (such a reasoning is valid only in Linear theory).

• Or we have to face a Nonlinear evolution of an attractor of finite dimension.

Two realities are possible and the second case is frequent in practice.
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There exist methods that allow to discriminate the effective dimension of the attrac-
tor that we have to face. And it was shown that for hydrodynamic systems (see
Grassbeger and Procaccia 1983b), although the system is of an infinite dimension
(an infinite number of oscillators and a infinite number of degree of freedom), its
effective dimension (of the attractor) is finite.

1.24.2.1 Invariant Ergodic Measure

One of the techniques with which we measure the dimension but also other dynamic
quantities of a system is the Ergodic theory. This theory says that the temporal aver-
age is equal to the spatial average. The measure of such an average is invariant, we
can write

ρ [ f−t(E)] = ρ(E), t > 0, (1.227)

where E is a subset of points of R
m and f−t(E) is a unit obtained by the evolution

in the course of time t of each point in E . There can be many invariant measures in
the dynamical systems but all are not relevant.

An invariant probability measure ρ is decomposable in different parts and each
part is itself invariant. Otherwise ρ is indecomposable or ergodic. It is important
to consider that in the dynamical systems which interest us the measure is not only
invariant but also Ergodic, i.e. if ρ is ergodic, then the ergodic theorem affirms that
for any function ϕ :

lim
T→∞

1
T

∫ T

0
ϕ [ f−t x(0)]dt =

∫

ρ(dx)ϕ(x), (1.228)

for almost all the initial conditions x(0) respects the measure ρ .

1.24.2.2 Invariant Measure of Probability, Dirac Delta Function
and Attractor

An attractor A, strange or not, gives a global image of the long term behavior of
a dynamical system. A way of specifying this image is to observe the measure of
probability ρ of A, which describes how different parts of A are visited (in particular
the frequency of visit) by an orbit t → x(t) which defines the system.

ρ can be defined like the temporal average of Dirac delta functions δx(t) at the
points x(t),

ρ = lim
t→∞

1
T

∫ T

0
dtδx(t), (1.229)

For a continuous function ϕ we can write ρ :

ρ(ϕ) =
∫
ρ(dx)ϕ(x) (1.230)

= lim
T→∞

1
T

∫ T

0
dt ϕ [x(t)]. (1.231)
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The measure is invariant under the action of the dynamical system, i.e. invariant in
the course of time. This invariance can be expressed in the following way:

ρ(ϕ ◦ f t) = ρ(ϕ). (1.232)

1.24.2.3 Characteristic Exponent and Floquet Theory

If we evoke the Floquet theory and the stability of solutions of a system, we remem-
ber that after the action of the map T (i.e. after one period T ), the initial point P0 plus
a small variation called δ , i.e. P0 +δ , is near P0. The spacing between the two points
is written: T (P0 + δ )−P0 � Mδ with δ which tends obviously towards zero. The
behavior of eigenvalues of the matrix M defines the stability of solutions. If we suc-
cessively apply the map T a number of times equal to p (i.e. after p times one period
T ), then we can write: T p(P0 + δ )−P0 �Mpδ , the matrix M eigenvalues are also
called characteristic exponents. M can be also expressed in the D f (x̄) form, where
x̄ is the solution of the system. (For a linearized system) it is necessary to study the
stability of solutions by analyzing the eigenvalues of the matrix eT R, which is called
the “characteristic Multiplier of Floquet”, because (we remember that) the solutions
of the new linearized system are written: y = eT Ry0, where R is the matrix which
determines the system of which it is necessary to study the eigenvalues to analyze
stability).

1.24.2.4 Characteristic Exponent, Ergodic Measure and Measure of Entropy

Let f be a diffeomorphism and μ an ergodic measure (for f ) with a compact sup-
port. We note Tx f the matrix of partial derivatives, if f is a diffeomorphism of
R

m (respectively the tangent map of f on R). Then, by taking into account the
multiplicative ergodic theorem of Oseledec, we can decompose the space R

m (resp.
tangent space) into a direct sum W (1)

n ⊕·· ·⊕W (s)
n such that:

lim
k→±∞

1
k

log
∥
∥
∥Tx f ku

∥
∥
∥= λ (r), if u ∈W (r)

x . (1.233)

The number λ (r) is called characteristic exponent. And the largest characteristic
exponent denoted λ (s) satisfies

lim
k→+∞

1
n

log‖Tx f n‖= λ (s), (1.234)

since one supposes μ ergodic, the characteristic exponents are constant. If it is con-
sidered that the asymptotic behavior of the orbit ( f nx) is described by the measure
μ , and if the largest characteristic exponent λ (s) is strictly positive, then we are
faced with a sensitivity to the initial conditions. If λ (s) is strictly negative, then the
support of μ is an attracting periodic orbit.
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We can reformulate the characteristic exponent in the following way. Given an
ergodic invariant measure ρ , the following equation is considered

xn+1 = f (xn), (1.235)

where xi ∈ R, then one considers a small perturbation δx(0) and two initial points
noted x(0), x(0)′. The distance between these two points after a time N is written

x(N)− x(N)′ = f N(x(0))− f N(x(0)′) (1.236)

≈
(

d
dx

( f N)(x(0))
)

(x(0)− x(0)′), (1.237)

with f N(x) = f ( f (· · · f (x) · · · )) and with
d
dx

( f N)(x(0)) =
d
dx

f (x(N − 1)) ×
d
dx

f (x(N−2)) · · · d
dx

f (x(0)).
In the case of m variables, i.e. for x ∈ R

m, we replace, to describe the system,
the derivative (d/dx) f by the Jacobian matrix evaluated in x : Dx f = (∂ fi/∂x j). If
it is supposed that all the factors in the expression above have similar sizes, we can
imagine that df N/dx increases or decreases exponentially with N. We can define the
average rate of growth in the following way:

λ = lim
N→+∞

1
N

log
∣
∣Dx(0) f Nδx(0)

∣
∣ , (1.238)

With the Oseledec theorem, this limit exists for almost all x(0) respecting the invari-
ant measure ρ . If ρ is ergodic, the largest λ is independent of x(0). This number λ1
is called the largest Lyapunov exponent of the map f which respects the measure ρ .
The Lyapunov exponents, i.e. the characteristic exponents, give useful limits about
the dimension of attractors.

Consider the quantity h(ρ) which is the Entropy measure of ρ . This quan-
tity can be limited in terms of characteristic exponents in the following way:
h(ρ) ≤ ∑ positive characteristic exponents, the more often in practice we have
(Pesin formula):

h(ρ) = ∑ positive characteristic exponents.

1.24.2.5 Haussdorff Dimension

The Haussdorff dimension is a general term to evoke the various mathematical def-
initions of the dimension for fractals sets.28 Usually, it is said that the dimension of
a set commonly corresponds to the quantity of information necessary to specify its
points with enough precision.

28 See definition of the Haussdorff dimension in the appendix.
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Let Q be a compact set and we suppose that N(ε) balls of radius ε are necessary
to cover Q. Consequently a dimension dimDQ, also called capacity of Q, is written

dimD Q = lim
ε→0

sup log
N(ε)
|log(ε)| . (1.239)

This quantity is a bit weaker than N(ε)εd → f inite, which means that the volume
of the set Q is finite of size d. By retaking the Takens theorem,29 we can write

m≥ 2dimD Q+ 1, (1.240)

m being real co-ordinates (or the dimension of the reconstructed phase space).
To express the Haussdorff dimension: dimH Q, we do not suppose that Q is com-

pact. Moreover, we determine the “information dimension” of a probability measure
ρ : dimH ρ , corresponding to the minimum of the Haussdorff dimension of sets Q
for which ρ(Q) = 1. Consider a ball Bx(r) of radius r in x and the measure ρ . Then
let us suppose that the following limit exists

lim
r→0

logρ [Bx(r)]
log(r)

= ξ . (1.241)

The existence of this limit implies that it is constant by the ergodicity of ρ . And ξ
is equal to the dimension of information dimH ρ . In practice, we choose N regularly
spaced points xi and we estimate ρ [Bxi(r)], with N large, by30

1
N

N

∑
j=1

Θ
[
r− ∣∣x j− xi

∣
∣
]
. (1.242)

The expression above is also written

C(r) =
1

N2

N

∑
i j
Θ
[
r− ∣∣x j− xi

∣
∣
]

(1.243)

and the information dimension becomes

lim
r→0

logC(r)
|log(r)| . (1.244)

1.24.2.6 Navier–Stokes Equations and Haussdorff Dimensions, Exponents
and Entropy

We are interested in the measures, the limits and the relationships between Hauss-
dorff dimensions, Lyapunov exponents and Entropy. In this framework, consider the

29 See Takens theorem, and the one of Manes, or Broomhead and King.
30 Where Θ(·) is a simple function, cf. Grassberger and Procaccia (1983a, 1983b). Θ(·) =
[1+ sgn ·]/2.
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Navier–Stokes equations, and their conditions (d is the density which is constant, v
the kinematic viscosity of the device, (vi) the field of speeds belonging to Ω, p the
hydrostatic pressure and g an external field of force):

∂vi

∂ t
=−∑

j
v j∂ jvi + v�vi− 1

d
∂i p + gi, (1.245)

∑
j
∂ jv j = 0. (1.246)

∑ j ∂ jv j = 0 are the conditions of incompressibilities of the fluid.
We consider these same Navier–Stokes equations in a limited domain Ω ∈

R
d with d = 1 or d = 2. For any invariant measure ρ , we have the following

relationships between the dissipation of energy ε and the ergodic quantities:31

h(ρ) ≤ ∑
λi≥0

λi ≤ Bd

v1+d

〈∫

Ω
ε(2+d)/4

〉

(1.247)

dimHρ ≤ B′d
|Ω|2/(d+2)

vd/2

〈∫

Ω
ε(2+d)/4

〉d/(d+2)

(1.248)

Bd and B′d are constant and h(ρ) the measure of entropy.

1.24.2.7 Nonlinear Operators, Navier–Stokes Equations and Hilbert Space

If we select the usual map which describes in discrete time the evolution of a
dynamics:

xn+1 = f (xn), (1.249)

that we can write in a continuous mode:

dx
dt

= F(x), (1.250)

and we introduce a nonlinear operator of the temporal evolution of the dynamics f t

with t ∈ R or N, such that t ≥ 0; with the properties f 0 = identity, f s f t = f s + f t .
The variable evolves in the phase space noted M which is R

m, but which can be
of infinite dimension, or which can be a “manifold”, such as a toric or spherical
structure for example. In this connection, the Banach or Hilbert spaces are of a
major use in Fluid Mechanics (aerodynamics or hydrodynamics). If the space M is
linear, we define the linear operator Dx f t which corresponds to the matrix of partial
derivatives of f at the point x. And if we write f 1 = f , we obtain

Dx f n = D f n−1x f · · ·D f x f Dx f . (1.251)

31 Ruelle (1982b, 1984) and cf. Lieb (1984).
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If we consider again the case of Navier–Stokes equations and their associated
conditions (d is the density which is constant, v the viscosity of the system, (vi) the
field of speeds belonging to à Ω, p the pressure and g an external field of force):

∂vi

∂ t
=−∑

j
v j∂ jvi + v�vi− 1

d
∂i p + gi, (1.252)

∑
j
∂ jv j = 0. (1.253)

The condition ∑ j ∂ jv j = 0 is called the condition of “incompressibility”. In addi-
tion, it is specified that vi is of “free divergence” and we constrained vi with vi = 0
on ∂Ω. It will be noted that fields of vectors (vi) (of free divergence) are orthogonal
with the gradients. Thus we can eliminate the pressure p from the initial equation
by the orthogonal projection of the equation on the fields of freely divergent vectors
(vi). Consequently we obtain a similar equation with

dx
dt

= F(x). (1.254)

with M which is a Hilbert space of fields of square integrable vectors, which are
orthogonal with the gradients.

1.24.2.8 Dirichlet Norm and Navier–Stokes Equations

Consider the following Navier–Stokes equations (the density is not specified in the
system and p is not considered as a constant any more):

∂vi

∂ t
+

d

∑
j=1

v j
∂vi

∂x j
=− ∂ p

∂xi
+ v�vi + gi, (1.255)

with the condition:
d

∑
i=1

∂vi

∂xi
= 0. (1.256)

with i = 1, . . . ,d. And with d = dimension of the phase space (d = 2 or 3). With
x ∈ R

d and the time t.

• The left part of the principal equation above is the expression of the acceleration
of a fluid particle.

• The right part of the principal equation above contains the gradient of pressures
p, contains a “dissipative term” with the Laplace operator which is multiplied by
a constant v (the viscosity or kinematic viscosity) and g always corresponds to
an external force.

The fluid is always included in an region (area) Ω ∈R
d , and its speed or velocity

is imposed on ∂Ω; this is the condition vi = ai, and the initial conditions are written:
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vi = vi0 for t = 0. Now consider v = a + u in the initial Navier–Stokes equation, we
can define the following norms:

|u| =
[∫

Ω
dx∑

i
u2

i

]1/2

, (1.257)

‖u‖ =

[∫

Ω
dx∑

i j

(
∂ui

∂x j

)2
]1/2

, (1.258)

which is the Dirichlet norm (Ruelle 1980).

1.25 The Three-Body Problem (H. Poincaré)

As a preliminary, we have to underline that, if chaos can appear in a model with only
one equation in a discrete-time model, it requires three-equations with a continuous
time model: it is one of the fundamental subjects treated in the famous “three-body
problem”. When he studied this question, Henri Poincaré highlighted the concepts
of “Poincaré map”, “first-return map” and “Poincaré section” which are presented
elsewhere in different sections of this book. The problem is to compute the mutual
gravitational interaction of three masses. This problem is surprisingly difficult to
solve, even in the case of the “restricted three-body problem”, corresponding to the
(simple) case of three masses moving in a common plane. One of the questions in
this context was to demonstrate that the solar system as modeled by Newton’s equa-
tions is dynamically stable. This question was a generalization of the famous three
body problem, which was considered one of the most difficult problems in mathe-
matical physics. The three body problem consists of nine simultaneous differential
equations. The difficulty was to demonstrate that a solution in terms of invari-
ants converges. First, the two-body problem was studied by Kepler and implied
at the time famous names of the physics and mathematics such as Newton and
Poincaré, and today the subject continues to occupy scientists. During the study
of this problem, one of the question was to analyze the existence of stable equi-
lateral triangle configurations corresponding to Lagrange points. The approximate
calculations were applied in particular to the Earth–Moon–Sun system, using series
expansions involving thousands of algebraic terms. Starting from a basic setup, the
three-body system conserves standard mechanical quantities like energy and angular
momentum. Poincaré understood that the three-body problem could not be solved in
terms of algebraic formulas and integrals. He studied possible trajectories for three-
body systems and identified the famous sensitive dependence on initial conditions,
then he also created a topology to describe the motions of the system and its orbits.
Figure 1.55 depict “idealized” orbits of motions of two stellar objects in a simple
plane.

Hereafter, the figures depict different trajectories given by the system resulting
from different initial conditions. At the bottom the two bodies are initially at rest,
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Fig. 1.55 Idealized orbits of motions of two stellar objects

the body at the top is given progressively larger rightward velocities.32 In fact, one
of the bodies escapes from the other two, like t or sometimes t2/3. Generally this
happens fast, but sometimes all three bodies exhibit complex and apparently ran-
dom behavior. “The delay before escaping is reminiscent of resonant scattering”
(Wolfram 2002).

A dynamical system can be written through a continuous time system of n differen-
tial equations of the first-order which can basically be noted

ẋ(t) = f (x(t),t), (1.259)

where ẋ(t) ∈ R
n and x(t) ∈ R

n and f indicates a field of vectors. We know that the
system above is called the flow and when f does not depend explicitly on time t, the
system of differential equation is written

ẋ(t) = f (x(t)). (1.260)

32 Ref: Quotation of Wolfram (2002, p. 972, Section: Chaos theory and randomness from initial
conditions).
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This system is known as an autonomous flow. We can be interested in the flows of
lower size or equal to 3. Since in the general case it is difficult, even impossible, to
find an analytical solution for the non-autonomous and even the autonomous sys-
tems above, we consider the trajectory ϕ in the phase space formed by the points
x(t) of R

n for each value of t. For n � 3 the study of the trajectory ϕ in the phase
space R

n is irksome and for n = 3, Poincaré proposed a new method for the study of
curve ϕ , which substitutes the intersection points of this curve with the plane P suit-
ably selected. It is the starting point of the Poincaré section method. Remark: The
position of the “idealized” planets corresponds to the following differential equation
ẋ (t) =−x(t)/(x(t)2 +(1/2(t +α sin(2πt)))2)3/2 where α is the eccentricity of the
elliptical orbit (here with α = 0.1).

1.26 The Poincaré Section

The Poincaré cut method allows to considerably simplify the flow analysis of
dynamical systems by bringing several advantages:

(1) Reduction of the study space of the flow. The Poincaré section makes it possible
to pass from a flow in R

3 (for example) to a map of the plane on itself. Or more
generally to pass from a space R

n to a space R
n−1.

(2) Substitution of differential equations of the system with algebraic equations
corresponding to the map of the plane on itself, of the type P = T (P), as we
have just seen it.

(3) Considerable reduction of the quantity of data, reduced to those of the Poincaré
section. In some cases, we can pass from a complete trajectory to a very small
number of points. Let us quote for example the case of a system which is spread
in time on 10,000 iterations, where we have to face a periodic regime of period-
four, then we thus pass from an analysis of 10,000 points to a group of four
points in the plane of the section. Thus, we can ignore almost all the points of
the trajectory of the phase-space except for a group of “solutions” points of the
system.

(4) Fast and precise diagnosis of the periodic or aperiodic behavior of the system,
with a minimum number of numerical calculation, whereas in the phase-space,
it can be extremely difficult to identify the nature of the behavior of a model,
in particular in the case of several dependent variables. Indeed sometimes the
curve tangle of trajectories in the plane of variables is illegible, and we can see
nothing of the dynamics that we visualize except its complexity.

(5) Lastly, let us specify that the way in which the points of the map occupy the
sectional surface of Poincaré makes it possible to identify an aperiodic behavior
very quickly. If the points are distributed on a surface, we have to face a flow
behavior which is aperiodic and even chaotic. If on the other hand the points
are distributed on a traditional curve, this is because we faced a quasiperiodic
dynamics or an aperiodic dynamics but strongly dissipative. Because of a “too
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fast” contraction of surfaces in the phase space, which prevents from identify-
ing the “lateral extension” of the Poincaré curve of the attractor, we must look
further into the analysis.

The Poincaré section is written as a map from the plane to itself xi(k + 1) =
T (xi(k)) in the form of an iteration, which allows to easily handle the flows which
are initially very voluminous and to highlight (by the iterated map method) relevant
elements of the model and its properties.

1.26.1 Periodic Solution

For a periodic solution, the writing of the map is P0 = T (P0) = T 2(P0) = · · · . If P0
is the periodic solution of the model, i.e. if the solution is reduced to a unique point
(see Fig. 1.56) or a small number of points, then the map denoted T iterates the same
point (which is a fixed point of the model). This very interesting writing allows
to treat the problem of the periodic solution stability of a model. In Fig. 1.56 the
intersection of the trajectory with the Poincaré plane is reduced to a unique point P0.

Thus we consider again the approach relating to the stability of a system by
studying the derivative of the map, written in the form of what we call the Floquet
matrix:

Floquet matrix: M =
[
∂T
∂xi

]

x0
i

with i = 1,2. (1.261)

This is the derivative of the map T with respect to the variable: x, whereas the usual
approach studies the derivative (“temporal slope”) of the variable with respect to the
time in its differential system. We can explain that the point P0 after the action of
the map T (i.e. after one period, or after a turn) is a new point that we can write
P0 + ε which is at a certain distance of P0. After one iteration, this distance is equal
to Mε � T (P0 + ε)−P0 where ‖ε‖ → 0. As observed previously several times, the
eigenvalues of M express the stability of the trajectory of a system. After k periods
or iterations, we write T k(P0 + ε)−P0 � Mkε. Thus the initial distance ε is itself
multiplied by Mk. And if the eigenvalues of M have values lower than 1, such that
they are inside the unit circle of the complex plane, then the periodic trajectory of
the model is linearly stable, because the distance with P0 tends to decrease. On the
other hand, if one of the eigenvalues is >1, the distance increases exponentially, the
solution is unstable.

Fig. 1.56 Poincaré section of
a limit cycle. In the simple
case selected here, the section
is reduced to a unique point



102 1 Nonlinear Theory

1.26.2 Quasiperiodic Solution

We can imagine a biperiodic dynamics with two basic frequencies f1 and f2, then
we know that the associated attractor is a T 2 torus. This object conciliates two dif-
ferent cyclic trajectories which are rolled up and superposed on a volume which
is obviously spread in a three-dimensional coordinate system. A first cycle longer
which would be for example f1 is used as a base for the form of the attractor, and
around this cycle a second cycle f2 of a “smaller diameter” is rolled up which moves
to the limits of the first revolution. The set constitutes a “tubular form” closed on
itself. The Poincaré section of such an object or such a dynamics can be:

1. An ellipse and even a circle which magnificently summarizes the double orbit
or the double periodicity of system solutions. In fact, this ellipse is made up of
points which are as many intersections of the trajectory of dynamics with the
Poincaré section. These points of impact in the plane summarize the nature of
the attractor.

2. Cycloids, for example, “distorted ellipses” that have the form of an eight (or
others) and are combinations (i.e. harmonics) of the two basic frequencies.

The geometrical forms that we identify on the surface of the plane which is the
Poincaré section, are the result of the ratio between the two basic frequencies f1/ f2.
This ratio can be rational or irrational. If the ratio is irrational, the trajectory does
not close on itself and covers, in a dense way, the surface of the torus. In such a case,
both frequencies are said incommensurable, then the closed curves are continuous.
Each point is the transform of another point of the same curve. The iterative process
never takes the same point twice, and thus ends up cover in continuous manner,
at the same time the whole of the orbit in the Poincaré section, but also ends up
cover the surface of the torus in the plane of higher size than R

3. If the closed orbit
observed in the Poincaré section is denoted “O”, we can write: T (O) = O, because
it is important to note that each point of this orbit is the transform by the “first-
return map” of another point of the same curve. On the contrary, if the ratio f1/ f2
is rational, the Poincaré section shows a finite set of points. But here, the points
do not form a continuous curve, and do not constitute a dense trajectory on the
Poincaré sectional surface. It is said that there is coupling of two frequencies f1 and
f2. We know that Pk+1 = T (Pk) = T (T (Pk−1)) = T 2(Pk−1) = · · · with, i = 1,2. Thus,
we can write Pi = T j(Pi).

Figure 1.57 depicts a torus T 2 and its Poincaré section which shows the closed
curve O. Here, the ratio of f1 and f2 is supposed to be irrational.

The appearance of the Poincaré section depends on the ratio f1/ f2. If the ratio
is irrational, the trajectory does not close on itself and covers, in a dense way, the
surface of the torus. In such a case, both frequencies are said incommensurable, then
the closed curves are continuous. Each point is the transform of another point of the
same curve, this one is invariant by the map T .
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Fig. 1.57 Torus T 2 and its
Poincaré section

1.26.3 Aperiodic Solution

We can comment these solutions by saying that they are obviously generated by
complex regimes, which produce complex objects, as for example strange attractors
which are more difficult to describe. It will be simply noted that the solutions of this
type of dynamics are dissipative and that they undergo a contraction of volumes,
until they exist in the Poincaré section only by points distributed on a segment, or
arcs of curves. This means that these solutions can be summarized significantly,
inside a unidimensional space. Thus, the unidimensional map, which is the first
return map, appears very useful for the study of this type of dynamics. This is
approached in one of the following sections.

1.26.4 Some Examples

Here are some typical Poincaré sections in the Fig. 1.58. Figure 1.58a shows
a quasiperiodic regime for an irrational ratio f1/ f2. Figure 1.58b shows also a
quasiperiodic regime. Figure 1.58d shows a quasiperiodic regime for a rational ratio
f1/ f2 equal to 3/5, which corresponds to a 5-period cycle. Figure 1.58e shows a
chaotic regime.

1.27 From Topological Equivalence of Flows Towards
the Poincaré Map

1.27.1 Rotation Number, Orientation-Preserving Diffeomorphism
and Topological Equivalence of Flows

As a preliminary, before outlining the Poincaré map and associated concepts, which
are related to the topologically conjugacy concept, we introduce some useful and
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Fig. 1.58 Sketches of some typical orbits intersecting the Poincaré section: (a, b) Quasi-periodic
orbits. (c, e) Chaotic orbits. (d) 5-period cycle

important notions such that: the diffeomorphism of the circle and the rotation num-
ber, the orientation-preserving diffeomorphism and the topological equivalence of
flows.

First, let S1 be a circle which is an elementary differential manifold and let us
consider the example of pure rotations which are diffeomorphisms on S1. If we note
θ the angular displacement (associated with the radius), it is possible to simulate
the rotation “R” by σ which is written as follows (θ corresponds to units of 2π):

Rσ (θ ) = (θ +σ)mod1. (1.262)

If σ = p/q, p,q ∈ Z and relatively prime, then it comes

R
q
σ (θ ) = (θ + p)mod1 = θ , (1.263)

then it is possible to write that every point of the circle is a periodic point of period-q,
so the orbit of any point is a q-cycle. By contrast, if σ is irrational then

Rm
σ (θ ) = (θ + mσ)mod1 �= θ , (1.264)

for any θ , and the orbit of any point covers the circle densely. A basic example
is given hereafter concerning pure rotation Rσ with σ = p/q = 2/5 (Fig. 1.59).
The orbit of θ revolves two times (i.e. p = 2) before coming back to θ on the fifth
iteration.

The “lift” notion of a map h : S1→ S1 must be introduce here. The context enables
us to consider that h is a homeomorphism, furthermore let us consider a continuous
function ĥ : R→ R such that:

π(ĥ(x)) = h(π(x)) (1.265)
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Fig. 1.59 Orbit of a pure rotation Rσ with σ = p/q = 2/5

with
π(x) = xmod1 = θ . (1.266)

Thus ĥ is called a lift of h : S1 → S1 onto R. See the commutative diagram, figure
hereafter:

Proposition 1.2 (Lift of the orientation-preserving homeomorphism). Let ĥ be
a lift of the orientation-preserving homeomorphism h : S1 → S1. Then ĥ(x + 1) =
ĥ(x)+ 1 for every x ∈ R.

At this stage we must highlight that the Conjugacy is a fundamental aspect of
the topology in connection with the concepts of “equivalence relation”. They make
it possible to identify when flows have the same behavior (for developments see
“Hyperbolic nonlinear fixed point” section).

Definition 1.26 (Topologically conjugate diffeomorphisms). Two diffeomor-
phisms g,v : M → M, are topologically conjugate (or C0-conjugate) if there is a
homeomorphism h : M→M, such that

h ·g = v ·h. (1.267)

The topologically Conjugacy for two flows φt ϕt : S→ S is defined similarly with
the preceding definition and the preceding equation is replaced by h · φt = ϕt · h
with t ∈ R. The definition above shows that the homeomorphism h takes each orbit
of g (or φt ) onto an orbit of v (or ϕt ) preserving the parameter p(t): that means

gp(x) h→ vp(h(x)) for each p∈Z, or with the flows φt (x)
h→ ϕt(h(x)) for each t ∈R.
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Let us recall that rational and irrational rotations are discriminated by means
of the rotation number. Thus, for any homeomorphism h : S1 → S1 it is possible to
write the following definition.

Definition 1.27 (Rotation number). The rotation number α(h) of a homeomor-
phism h : S1 → S1 is given by

α(h) =

(

lim
n→∞

ĥn(x)− x
n

)

(1.268)

mod1, where ĥ is a lift of h.

Remark 1.7 (Rotation number of pure rotation). Let us consider R̂δ (x) = x + δ
which is the lift of the pure rotation Rδ (θ ) = (θ + δ )mod1. Then R̂n

δ (x) = x + nδ
and α(Rδ ) = δ (i.e. the rotation number of the pure rotation is equal to δ ). The
relation between the pure rotation Rδ and its lift R̂δ is depicted on the following
commutative diagram:

Proposition 1.3 (A “rational” rotation number defines “periodic” points). A dif-
feomorphism g : S1 → S1 has “periodic points” if and only if its rotation number
α(g) is “rational”.

The circle diffeomorphism with the rational number p/q ∈ Q possesses an even
number of period-q cycles. Moreover, for ĝq(x) we know33 that ĝq(1) = ĝq(0)+ 1
and due to this, if a fixed point x∗0 occurs then at least one further fixed point x∗1 must
occur. Consider, for example (q = 3), ĝ3(x) a circle diffeomorphism with a stable
3-cycle and an unstable 3-cycle. Furthermore when x∗0 is stable, then x∗1 is unstable
with a stable 3-cycle. The following figures show for ĝ3(x) the alternation of the
stable and unstable points along the bisector as well as along the circle. It is easy
to observe (figure at right) the periodic points of the map g on the circle for the lift
ĝ3 (figure at right):

33 It is an extension of the proposition about a lift of the orientation-preserving homeomorphism
(see previously).
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Theorem 1.10 (Orientation-preserving diffeomorphism topologically conjugate
to the pure rotation). 34 If an orientation-preserving diffeomorphism g : S1 → S1

is of class C2 and α(g) = μ ∈ R\Q, then it is topologically conjugate to the “pure
rotation” Rμ .

At this stage, we want to highlight the equivalence of flows. Then, let us con-
sider a homeomorphism h which is used to select successive points in the orbit of
one map g onto those of another map v. We are interested in the description of the
equivalence of two flows of maps g and v which are supposed to have similar behav-
iors. However, by analogy since we are interested in the equivalence of flows, let us
consider the following flows φt and ϕt in order to state the definition that follows:

Definition 1.28 (Topologically equivalent flows). Two flows are called topologi-
cally equivalent (or C0) if there is a homeomorphism h taking orbits of φt onto those
of ϕt preserving their orientation.

We know that the equivalence requires only the preservation of the orientation,
so it is possible to write h(φt(x)) = ϕτy(t)(y), with y = h(x) and τy(t) is an increasing
function of t for every y.

1.27.2 Poincaré Map (First Return Map) and Suspension

Let us consider the flow map φt = M → M which is a diffeomorphism for each
fixed t. A diffeomorphism can be obtained from a flow if we take its time-τ map,
φτ = M → M, τ > 0. The orbits of φτ are constrained to follow the trajectories
of the flow because {φm

τ (x)|m ∈ Z} = {φmτ (x)|m ∈ Z} ⊆ {φt(x)|t ∈ R}; i.e. the
dynamics of φτ are highly influenced by the flow φ and are not typical of those
of diffeomorphisms on M.

Moreover, it is interesting to highlight that, while the orbits of x under the action
of φτ1 and φτ1 (with τ1 �= τ2) behave similarly for x ∈ M, the two maps are not

34 See Denjoy’s theorem and Arnold (1983), Nicketi (1971).
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necessarily of the same topological type. Another way of obtaining a diffeomor-
phism from a flow is to construct its Poincaré map. Then, let us consider the flow φ
on M with a “vector field” X and suppose that ∑ is a codimension-1 submanifold of
M satisfying:

1. Every orbit of φ meets for arbitrarily large positive and negative times.
2. If x∈∑ then X(x) is not tangent to ∑ . Then, ∑ is said to be a global cross section

of the flow. Let y ∈ ∑ and τ(y) be the least positive time for which φτ(y)(y) ∈ ∑ .

Definition 1.29 (Poincaré map). The poincaré map, or first return map, for ∑ is
defined to be

P(y) = φτ(y),y ∈∑ . (1.269)

Let us note that by construction P : ∑→ ∑ is a diffeomorphism and dim∑ =
dimM− 1. In opposition to time-τ maps (see before), we expect these diffeomor-
phisms to reflect the properties of flows in one higher dimension.

Coordinates (ϕ ,θ )

Example 1.2 (Flow on the torus). A flow on the torus can be written as follows:

θ̇ = a, ϕ̇ = b, a,b > 0, (1.270)

with θ and ϕ (which are depicted in the previous figure). The solution of the
equation above are written

θ = at +θ0, and ϕ = bt +ϕ0 (1.271)

reduced mod2π , then {θ ,ϕ} first return to {θ0,ϕ0} when
{

t = tθ ,t = tϕ
}

, where{
atθ = 2π ,btϕ = 2π

}
. Then, if a/b = p/q, p,q ∈ Z

+ and qtϕ = ptθ and the orbit
through (θ0,ϕ0) returns to this point after q revolutions around the torus in the ϕ-
sense and p in the θ -sense. Thus, if a and b are “rationally” related, then every
point of T 2 is a periodic point, it means that every point lies on a closed orbit. On
the contrary, if a and b “are not rationally” related, then the orbit through (θ0,ϕ0)
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never returns to that point even if it can be very close. When we select a ϕ constant
such that ϕ = ϕ0, we obtain a “global section of the torus” if ∑ is a circle S1 with
coordinate θ . Due to the fact that the orbit of the flow first return to ϕ = ϕ0 after tϕ =
2π/a and θ = at +θ0, then it is possible to write that the Poincaré map P : S1→ S1 is
a rotation by 2πa/b. Obviously there are flows for which there is no global section.
Then, it is not possible to state that every flow corresponds to a diffeomorphism if we
use a Poincaré map. But the opposite is true, indeed every diffeomorphism g is the
Poincaré map of a flow, and is called a “suspension”35 of g. Thus, in particular since
Smale (1967) and Arnold (1968), we know that the outcome of a diffeomorphism
(dimM−1) have an “analog” for the flow in one higher dimension (dimM).

Definition 1.30 (Suspension). The flow φt (x,θ ) = (g(t+θ)(x),t +θ − [T +θ ]) with
x ∈M,θ ∈ [0,1] and [ · ] which indicates the integer part of its contents “·,” defined
on a compact manifold M̄ by identification of (x,1) and (g(x),0) in the topological
product M× [0,1], is called the suspension of the diffeomorphism g : M →M.

Poincaré map: Briefly, the Poincaré map P : ∑ −→ ∑ is a procedure used to elim-
inate a dimension of the system and thus a continuous system is transformed into
a discrete one. (Usually, it is considered as a surface that transversely intersects a
given orbit. For systems subjected to periodic forcing, Poincaré section may be rep-
resented by a surface that corresponds to a specific phase of the driving force. On this
base, we have a stroboscopically sample of the system outputs.) Thus, a Poincaré
section is used to construct a (n−1)-dimensional discrete dynamical system, i.e. a
Poincaré map, of a continuous flow given in n dimensions. This reduced system of
n−1 dimensions preserves many properties, e.g. periodicity or quasi-periodicity, of
the original system (Fig. 1.60).

If we reason in a system with three degrees of freedom, these systems can exhibit
a periodic cycle or a chaotic attractor. A Poincaré section ∑ is assumed to be a part of
a plane, which is placed within the 3D phase-space of the continuous dynamical sys-
tem such that either the periodic orbit or the chaotic attractor intersects the Poincaré
section. Thus, the Poincaré map is defined as a discrete function P : ∑−→ ∑ which
associates consecutive intersections of a trajectory of the 3D flow with ∑.

1.28 Lyapunov Exponent

We mentioned previously that the sensitive dependence on initial conditions was the
characteristic of a chaotic system. This observation can be expressed by the fact that
two points, or two trajectories, initially very close deviate exponentially and this in
a finite number of points or iterations, sometimes even very short. In such a system,
the forecast is thus impossible, except maybe over very short durations. The most
effective tool to identify such processes, that they come from dynamical systems or
from experimental series, is the Lyapunov characteristic exponent (LCE).

35 Suspension: Roughly, the space join of a topological space E and a pair of points S0, ∑(E) =
E ∗S0.
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Fig. 1.60 Poincaré sections according to a stroboscopic sampling

1.28.1 Description of the Principle

Consider two nearby points x1(0), x2(0) at the moment t = 0 of a model, starting
points of two trajectories in the phase space, the distance between these two points is
denoted d(0). At a moment t, i.e. after the movement of points along their respective
trajectory, we again measure the distance between both points denoted d(t). To use
another terminology, we can say that we applies a flow φt to both initial points
and after a lapse of time t, we measure d(t). Then, we calculate the evolution of
these two distances (ratio d(0)/d(t)) by the term eχt . For a t which tends towards
the infinite, χ converges towards a limit. This limit is the Lyapunov characteristic
exponent. If χ > 0, we say that under the action of the flow, the close orbits diverge
exponentially. It is also said that the Lyapunov characteristic exponent measures the
speed of divergence of a system.
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1.28.2 Lyapunov Exponent Calculation

The Lyapunov exponent λ (x0) measures the gap of trajectories. Let x0,x0 + ε be
two close points, then we write the Lyapunov exponent by: εenλ (x0) = | f n(x0 + ε)−
f (x0)|. For the limits of ε and n, we have

λ (x0) = lim
n→∞

lim
ε→0

1
n

log
∣
∣
∣
∣

f n(x0 + ε)− f (x0)
ε

∣
∣
∣
∣= lim

n→∞

1
n

log
∣
∣
∣
∣
d f n(x0)

dx

∣
∣
∣
∣ .

It is pointed out that xi = f i(x0) and f n(x0) = f ( f n−1(x0)), consequently d f n(x0)/
dx = f ′(xn−1) f ′(xn−2) · · · f ′(x1) f ′(xn−1). λ (x0) is written

λ (x0) = lim
n→∞

1
n
∑n−1

i=0 log
∣
∣ f ′(xi)

∣
∣ .

1.28.3 Other Writing and Comment

If we consider two points X0 and X0 +Δx0, each one of them generates an orbit
in the phase space of an arbitrary model. Incidentally, we can say that these orbits
can be regarded as the parametric functions of a variable which is the time. If we
use one of the two orbits as reference orbit, then the separation between the two
orbits will be also function of time. Because “significant dependences” can appear
in some parts of the system, as in the logistic equation, with attracting points or
attracting periodic points. The separation of orbits which has the form Δx(X0,t) is
also function of the localization of the initial value. In a system with attracting fixed
points or attracting periodic points, Δx(X0,t) decreases asymptotically over time. If
a system is unstable, then the orbits diverge exponentially. For chaotic points, the
function Δx(X0,t) will behave in an erratic way. Thus usually we study the average
exponential rate of the divergence of two orbits initially close by using the formula:

λ = lim
t→+∞
|ΔX0|→0

1
t

log
|Δx(X0,t)|
|ΔX0| .

The number called Lyapunov exponent is used to distinguish the majority of the
varieties of orbit types. The Lyapunov exponent measures the sensitive dependence
on initial conditions estimating the exponential divergence of orbits. These expo-
nents are used as a dynamical diagnostic tool for chaotic system analysis and can
also be used for the calculation of other invariant quantities as the attractor dimen-
sion. A qualitative picture of dynamics is given by means of the signs of these
exponents. The positive Lyapunov exponents define directions of local instabili-
ties in the dynamics and any system containing at least one positive exponent has
a chaotic behavior. A behavior with more than one positive exponent is called an
hyperchaos (see Savi and Pacheco 2002; Machado 2003). For a dynamical system
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which can be linearized, the calculation of Lyapunov exponents is carried out from
the algorithm by Wolf et al. (1985). For time series, the calculation is more difficult.
In practice, there are two different types of algorithms: (1) Trajectories, real space
or direct methods (see Wolf 1985; Rosenstein 1993; Kantz 1994); and (2) pertur-
bations, tangent space or the Jacobian matrix method (see Sano and Sawada 1985;
Eckmann 1986; Brown 1991; Briggs 1990). See figure below:

To give an example of Lyapunov exponent calculation, let us consider a D-
sphere of states which is transformed by a system in a D-ellipsoid. The Lyapunov
exponent concept is related to the expanding and contracting character of differ-
ent directions in phase space. The divergence of two nearby orbits is analyzed by
the variation of the relation between the initial D-sphere and the D-ellipsoid. This
variation can be written: d(t) = d0β ∗, where d is the diameter and β is a refer-
ence basis. When the Lyapunov exponent λ is negative or vanishes, trajectories
do not diverge. When the Lyapunov exponent is positive, the trajectories diverge,
characterizing chaos. In a chaotic regime, there is a local exponential divergence
of nearby orbits and thus, suitable algorithms are necessary to calculate Lyapunov
exponents (Wolf 1985; Parker and Chua 1989). They calculate the average of this
divergence considered on different points of the trajectory. Then, when the distance
d(t) becomes large, a new d0(t) is defined to calculate the divergence as follows:

λ =
1

tn− t0
∑n

k=1 logβ (d(tk)/d0(tn−1)) . The attractor dimension may be calculated

from the Lyapunov spectrum considering the Kaplan–Yorke conjecture (Kaplan and
Yorke, 1983).

1.28.4 Interpretation of λ

(1) λ < 0: Here the system generates a stable fixed point or a stable periodic orbit.
Such a negative value characterizes a dissipative or non-conservative system. The
more the exponent is negative, the more the stability is large. A superstable fixed
point will have an exponent which tends towards −∞. (2)λ = 0: A system with
such an exponent is conservative; the system shows a “Lyapunov stability”. (3)λ >
0: Here the orbit is unstable and chaotic. The initial very close points diverge to
arbitrary values over time. Here a graphic would be similar to a cloud of points
without a distinct trajectory.
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1.29 Measure of Disorder: Entropy and Lyapunov
Characteristic Exponent

(1) The word entropy has important physical implications as the amount of “disor-
der” of a system. The main contributions came from Shannon, Kolmogorov, Sinai,
Renyi. The Shannon entropy definition for a variable X is given by

H(X) =−∑x P(X) log2[P(x)] (1.272)

bits, where P(x) is the probability that X is in the state x. P log2 P is defined as 0 if
P = 0. The joint entropy of variables X1, . . . ,Xn is then defined by H(X1, . . . ,Xn) =
−∑x1 · · ·∑xn P(x1, . . . ,xn) log2[P(x1, . . . ,xn)]. Furthermore, it is possible to describe
the Kolmogorov entropy (or Kolmogorov–Sinai). Divide phase space into D-
dimensional hypercubes of content εD. Given Pi0,...,in the probability that a tra-
jectory is in hypercube i0 at t = 0, i1 at t = T , i2 at t = 2T , etc. Then define
Kn = hK = −∑i0,...,in Pi0,...,in lnPi0,...,in , where KN+1−KN is the information needed
to predict which hypercube the trajectory will be in at (n+1)T given trajectories up
to nT . Kolmogorov entropy is then defined by

K ≡ lim
T→0

lim
ε→0+

lim
N→∞

1
NT

N−1
∑

n=0
(Kn+1−Kn). (1.273)

The Kolmogorov entropy is related to Lyapunov characteristic exponents by

hK =
∫

P∑σi>0σidμ . (1.274)

(2) The Lyapunov characteristic exponent (LCE) provides the rate of exponential
divergence from perturbed initial conditions. To study the behavior of an orbit
around a point X∗(t), let us perturb the system and write X(t) = X∗(t)+V (t) with
V (t) the average deviation from the unperturbed trajectory at time t. In a chaotic
region, the LCE σ is independent of X∗(0). It is given by the Oseledec theorem,
which states that: σi = limt→∞

1
t ln |V(t)|. For an n-dimensional map, the Lyapunov

characteristic exponents are given by

σi = lim
N→∞

ln |λi(N)| (1.275)

(with i = 1, . . . ,n) where λi is the Lyapunov characteristic number. One Lyapunov
characteristic exponent is always 0, since there is never any divergence for a per-
turbed trajectory in the direction of the unperturbed trajectory. The larger the LCE,
the greater the rate of exponential divergence and the wider the corresponding sepa-
ratrix of the chaotic region. For the standard map, an analytic estimate of the width
of the chaotic zone by Chirikov gives

δ I = Be−AK−1/2
.
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Since the Lyapunov characteristic exponent increases with increasing K, some
relationship likely exists connecting both. Given a trajectory (as a map) that has
initial conditions (x0,y0) and a nearby trajectory with initial conditions (x′,y′) =
(x0 + dx,y0 + dy). The distance between trajectories at iteration k is then dk =
|(x′ − x0,y′ − y0)|, and the mean exponential rate of divergence of the trajectories is
defined by: σ1 = limk→∞

1
k ln(dk/d0). For an n-dimensional phase space (map), there

are n Lyapunov characteristic exponents σ1 ≥ σ2 ≥ ·· · ≥ σn. However, because the
largest exponent σ1 will dominate, this limit is useful only for finding the largest
exponent. Since dk increases exponentially with k, after a few steps the perturbed
trajectory is no longer nearby. Then it is necessary to renormalize frequently every
t steps. Defining rkτ ≡ dkτ/d0, we can then calculate σ1 = limn→∞

1
nτ ∑

n
k=1 lnrkτ .

The calculation of the second smaller Lyapunov exponent can be done by observing
the evolution of a two-dimensional surface. It will behave as e(σ1+σ2)t , so σ2 can be
obtained if σ1 is known. To find smaller exponents, the process can be repeated.

For Hamiltonian systems, the LCEs exist in additive inverse pairs, so if σ is an
LCE, then so is −σ . One LCE is always 0. For a one-dimensional oscillator (with
a two-dimensional phase space), the two LCEs therefore must be σ1 = σ2 = 0, so
the motion is quasiperiodic and cannot be chaotic. For higher order Hamiltonian
systems, there are always at least two 0 LCEs, but other LCEs can enter in plus-and-
minus pairs � and −�. If they (too) are both zero, the motion is integrable and not
chaotic. If they are nonzero, the positive LCE � results in an exponential separation
of trajectories, which corresponds to a chaotic region. (It is not possible to have all
LCEs negative, thus it is why convergence of orbits is never observed in Hamiltonian
systems).

Given a dissipative system. For an arbitrary n-dimensional phase space, there
must always be one LCE equal to 0, since a perturbation along the path results in
no divergence. The LCEs satisfy ∑iσi < 0. Therefore, for a two-dimensional phase
space of a dissipative system, σ1 = 0, σ2 < 0. For a three-dimensional phase space,
there are three possibilities:

(1) σ1 = 0, σ2 = 0, σ2 < 0: (integrable).
(2) σ1 = 0, σ2,σ2 < 0: (integrable).
(3) σ1 = 0, σ2 > 0, σ3 <−σ2 < 0: (chaotic).

1.30 Basic Concepts of Nonlinear Theory Illustrated
by Unidimensional Logistic Equation: The Paradigm
of a Nonlinear Model

An idea commonly admitted associates the simplicity of a system with its pre-
dictability. In the same way, the complexity is associated with the ideas of unpre-
dictability and chaotic behavior. However, this association appears inaccurate. The
logistic equation dynamics is a proof of this.
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1.30.1 A Simple Dynamic Equation Which Contains a Subjacent
“Deterministic Chaos”

Beyond the demographic model (P.F. Verhulst 1844, R.M. May 1976), this function
presents numerous advantages. Indeed, we are faced with the simplest dynamical
model, depending on only one variable, and yet it can have a highly unpredictable
behavior. It can exhibit a deterministic chaos that is interesting for the comprehen-
sion of complex dynamics in all the fields of sciences. Deterministic chaos is a term
used to describe a behavior that is seemingly (and numerically) chaotic, whereas in
reality, it is clearly determined by the simple equation of the model and by its initial
conditions. Thus, we know today, since the discovery of the mechanism of this func-
tion, that simple deterministic systems can have apparently random behaviors. It is
thus not essential to look for chaotic behavior in multidimensional dynamical sys-
tems to develop the concepts of nonlinear dynamics. The logistic equation is written
in the discrete case: xn+1 = αxn(1− xn). It expresses an autonomous, unidimen-
sional and nonlinear model of population growth with α as the fertility parameter.
This parameter can vary between 0.00 . . .1 and 4. This model, easy to handle, is a
rather rich representation of problems that we meet in nonlinear dynamics. Thus, it
will be used to study many concepts in connection with nonlinearities. Moreover,
this demographic function relates to a set of competencies concerning Economics.
The logistic equation is also called quadratic map or Verhulst equation.

1.30.2 Fixed Points

The fixed point is a value of the variable which remains unchanged, whatever the
iterations we carry out from this same fixed point. Of course, there can be several
fixed points in a model. As regards the logistic equation, we can calculate the fixed
points with a fertility parameter fixed at α = 0.5:

(1) For α = 0.5, the equation becomes: xn+1 = (0.5)xn(1− xn), and there is only
one fixed point for x = 0. Indeed for α = 0.5, and x0 = 0.2, after less than ten
iterations, the trajectory of the “orbit” of the model converges towards zero, the
fixed point of the parameterized model.

(2) For α = 1, i.e. for xn+1 = xn(1− xn), whatever the initial value of the model,
they converge all toward zeros x1 = x2 = x3 = x4 = x5 = · · · = 0. Consid-
ering what precedes, this fixed point is called attracting fixed point for this
equation. i.e. there is an attractor constituted by only one point. However con-
vergence is slower, indeed, even after 100 iterations, convergence does not
succeed completely.

(3) For α = 2, i.e. for xn+1 = 2 xn(1− xn), which is always a quadratic equation.
Here we find two fixed points, i.e. x = 0 and x = 0.5. But, here the fixed points
are not two attractors. Only x = 0.5 is attracting and stable, whereas the second
x = 0 is an unstable point or repelling.
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(4) From α = 3, i.e. for xn+1 = 3 xn(1− xn), the answers of the model become
complicated. There are still two fixed points, but they are unstable.

(5) For values of α ∈ [3,3.4985 . . .], all the trajectories tend towards two fixed val-
ues, which are related to α . It is a first bifurcation from which we have to face
an attractor composed of two unstable points. Whatever the initial value, the
variable will tend towards a cycle made up of two values, taking alternatively
one or the other value. We are in a period-doubling.

(6) For values of α ∈ [3.4985,3.54409, . . .], a new bifurcation with a new period-
doubling occurs. Here the attractor is composed of four values, and like in the
preceding interval, the variable successively takes alternatively one of these four
values.

(7) Moreover, the phenomenon is reproduced twice until obtaining 8 periods, corre-
sponding to the limit value α = 3.569946... Consequently the system becomes
aperiodic. Around this limit, for values of α with a high number of decimals,
we observe a Cantor set, which is constituted by a great number of points, our
new attractor.

(8) Starting from α = 3.569946.., the model has a chaotic mode (regime), i.e. the
outputs are “randomly” distributed in the segment [0,1].

Behaviors in the space of motion. Here are behaviors for α ∈ [2.8,4]:

(a) View of the convergence towards the fixed point, before α = 3:
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(b) Period-2: View of the behavior, after the first period-doubling.
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(c) View of the behavior in the “chaotic zone”. Some singularities (whose period-
icities) are observable, e.g. α = 3.58,α = 3.59,α = 3.745,α = 3.835:
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Illustrations for various initial values and for α = [0.5,4].
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Fig. 1.61 Logistic orbit for α = 2.6,. . . ,4

Fig. 1.62 Enlargement of α = 3.4,. . . ,4 (left). α = 3.4,. . . ,3.9 (right)

1.30.3 Logistic Orbit

1.30.3.1 Trajectory of the Model According to Fertility Parameter α

This trajectory is the response of the system when we vary the fertility param-
eter for values ranging between two and four. Thus the (α,x)-plane expresses
the diversity of outputs of the model according to value change of the parameter
(Figs. 1.61–1.63).
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Fig. 1.63 Enlargement of α = 3.822,. . . ,3.856

Inside this orbit composed of a great number of points, we observe the behavior
of the trajectory which reproduces at a smaller scale the bifurcation phenomenon
visible on a normal scale (see Fig. 1.63).

1.30.4 Sensitive Dependence on Initial Conditions

The sensitive dependence on initial conditions (SDIC) characterizes the chaotic
regime. In the chaotic regime, if we start from two very close points, after a lapse
of time (sometimes very short), we can observe that the points are in very distant
positions. This is one of the essential characteristics of deterministic chaos. The dif-
ference between the two values can be close to the value of the variable itself. Thus,
unless we identify with a quasi-infinite precision the value of the initial condition,
the long-term evolution of the system is impossible to predict. A graphic illustration
below (Fig. 1.64).

The convergence of both behaviors is observed if the calculated series is length-
ened. We also observe the predictable behavior of variables, in this stable regime.
I.e. for a value of α = 3.

Above on the left (Fig. 1.65), for α = 3.56, the convergence of both simulations
is very fast, contrary to the preceding simulation. Lastly, the behavior of two simu-
lations in a chaotic regime, for two very close initial values (0.60 and 0.65) over a
short or a long period, shows very clearly that the trajectories are different and do
not converge. To underline the divergence of two extremely close initial values, we
simulate the behavior of the system for 50 iterations with the following initial values
x0 = 0.4001 and x0 = 0.4 (Fig. 1.66). We observe that the divergence starts a little
before the tenth iteration.
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Fig. 1.66 x0 = 0.4001 and
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Fig. 1.67 Section for α = 3 (left). α = 3.4. n-period cycle (right)

Fig. 1.68 α = 4. Chaotic
regime
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Fig. 1.69 Left: α = 3 and [x(t),x(t +20)]. Right: α = 4 and [x(t),x(t +4)]

1.30.5 Poincaré Sections of the Logistic Equation

Figures 1.67–1.69 are constructed with 5,000 points (iterations). It is advisable to
observe the impact of the trajectory in the plane [x(t),x(t +1)]. In the first graph, we
observe the convergence step by step along the trajectory to the fixed point. In the
second, we will notice that the number of different impacts is very small, in spite
of the great number of calculated points. Normally for alpha equal to 3.4, we are
located in a stable cycle with two fixed points once the convergence was done. At
this stage we did not clean the trajectory of points before the “cruising regime” is
reached. We will also notice the parabolic form of the Poincaré section when we are
in a chaotic regime. Lastly, we produce sections with higher lags.
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Note that for a lag of four “steps” the shape of the orbit is sinusoidal, whereas
it was parabolic. Obviously, if we observed the points in the plane of the initial tra-
jectory, we would have a group of points (“a cloud of points”) without any distinct
form.

1.30.6 First-Return Map

The first return map written in a generic way xt+1 = g(xt) is often used for the anal-
ysis of dynamics and (in spite of its simple form) can reliably reflect aperiodic or
chaotic behaviors, as we evoked it in the paragraph relating to the Poincaré section.
The logistic equation, which is an unidimensional nonlinear model, can be studied
via this first return map, and efficiently explain the aperiodic or chaotic behaviors.
This first return map is sometimes also called Poincaré map. It allows relevant anal-
yses in the study of intermittency, convergence and divergence phenomena. It allows
to highlight the solutions of a model: i.e. fixed points, stable, or unstable, etc. In this
analysis type, for which we show a figure below, there exists a “bi-univocal” link
between the stability of a fixed point and the tangent slope of the curve at this fixed
point, if the modulus | . | of the slope is lower than 1. This type of graph allows
to study the iterations of the model starting from an initial condition x0. The first
iteration x1 = g(x0) is obtained by seeking the intersection of this curve with the
vertical of the abscissa x1. The procedure continues in this way until the fixed point
or the divergence. We will use this type of map again in the section relating to the
Cobweb diagram. First-return maps of the logistic model are depicted in Fig. 1.70
for an aperiodic regime α = 4 and for α = 2.95.

Fig. 1.70 α = 4 (left). α = 2.95 (right)
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1.30.7 Solutions and Stability of the Model

The quadratic map or logistic equation (Verhulst 1844, May 1976) is written
xk+1 = αxk(1−xk) where x is the “population” variable nomalized on [0,1]. For this
discrete time equation, by finding the solution as k tends towards the infinite, we can
determine the steady-state behavior. Consider xk+1 = αxk −αx2

k , as we approach
the steady-state solution xk+1 = xk, (if x∗ denotes the solutions). So we can write:
x∗ = αx∗ −αx∗2, or

αx∗2− (α−1)x∗ = 0. (1.276)

We find (via quadratic formula) the steady-state (fixed-point) solutions

x∗ = 0, x∗ =
α−1
α

. (1.277)

Thus, if we suppose that the initial population is zero, it will remain at zero under
the action of the system. For a non-zero initial condition, we will be able to expect
a convergence (steady-state) to α − 1/α . For four symptomatic values of α , let us
show the non-zero solutions that can be expected:

α : 2.95 3.20 3.50 3.75
x∗ : 0.6610 0.6875 0.7143 0.7333

1.30.7.1 Stability Theorem of Fixed Point solutions

By definition we know that x∗ is a fixed point if it is solution of x∗ = g(x∗) or g(x∗)−
x∗ = 0. Consequently, the stability theorem is written: Theorem (Stability) x∗ is a
stable solution of x∗ = g(x∗), if

∣
∣
∣ ∂g
∂x

∣
∣
∣< 1, when evaluated at the point x∗.

1.30.8 Stability Theorem Applied to Logistic Equation

Remember that the map is written g(x) = αx(1− x) = αx−αx2, thus:

∂g
∂x

= α−2αx = α(1−2x), (1.278)

or by changing the notation: g′(x∗) = α − 2αx∗ = α(1− 2x∗). If we apply the
theorem of stability, the following conditions must be satisfied:

|α(1−2x∗)|< 1, (1.279)
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consequently x∗ is a stable solution. In the preceding section, the general solutions
were calculated

x∗1 = 0, x∗2 =
α−1
α

. (1.280)

It remains, therefore, to numerically study the stability for the values of α wished.
If we take the values of α stated in the preceding table again, which are interesting
for the model, we find:

α x∗1 |g′(x∗1)| Stability for x∗1 x∗2 |g′(x∗2)| Stability for x∗2
2.95 0 2.95 Unstable 0.6610 0.9499 Stable
3.20 0 3.20 Unstable 0.6875 1.2000 Unstable
3.50 0 3.50 Unstable 0.7143 1.5000 Unstable
3.75 0 3.75 Unstable 0.7333 1.7500 Unstable

1.30.9 Generalization of the Stability of (Point) Solutions
of the Quadratic Map: Generic Stability

• Generic stability of x∗1:
x∗1 being equal to zero and g′(x∗1) = α − 2α(0) = α , then |g′(x∗1)| = |α| . The
stability criterion being |g′| < 1, as long as −1 < α < 1, then x∗1 is a stable
solution.

• Generic stability of x∗2:
x∗2 being equal to (α −1)/α, and g′(x∗2) = α−2α(α−1)/α = α −2(α−1) =
−α+2, thus |g′(x∗2)|= |−α+ 2| . Consequently, there is stability when 1 < α <
3 and instability outside.

1.30.10 Bifurcation Diagram

The set of solutions for 1 < α < 4 can be illustrated by the Fig. 1.71.
A change of stability appears for x∗1 at = 1. For x∗2, changes of stability appear

at α = 1 and α = 3. The values of α, for which the characteristics of stabilities
change, correspond to bifurcation points. At α = 1, the bifurcation is called trans-
critical, because there is an exchange of stability between x∗1 and x∗2 (subject of the
graph Fig. 1.71). This diagram based on a linear stability analysis should not be con-
fused with the orbit diagram that highlights the periodic behavior resulting from the
resolution of the nonlinear algebraic equation but cannot exhibit unstable solutions
unlike the bifurcation diagram.

1.30.11 Monotonic or Oscillatory Solution, Stability Theorem

From the stability criterion previously defined, we can refine the analysis by char-
acterizing the behavior and trajectory of the model through the analysis of ∂g/∂x.
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Fig. 1.71 Bifurcation diagram stable solutions (solid lines), unstable solutions (dashed lines)

∂g/∂x Stability Characteristics of motion
∂g/∂x <−1 Unstable Oscillatory
−1 < ∂g/∂x < 0 Stable Oscillatory
0 < ∂g/∂x < 1 Stable Monotonic
1 < ∂g/∂x Unstable Monotonic

This approach constructed from the analysis of the stability cannot be used directly
to study the periodic behaviors, which are developed in the section about the period-
doublings and the harmonic cascade.

1.30.12 Lyapunov Exponent Applied to the Logistic Map

1.30.12.1 Some Lyapunov Exponents of the Logistic Map

Below, we use the logistic equation and we produce an output (500 points) for dif-
ferent values of α . For each outcome produced, we calculate the Lyapunov exponent
by eliminating the first 50 values of the signal (i.e. convergence phase) during the
iterations to avoid perturbations in the calculation (Figs. 1.72–1.74).

Fast divergence of trajectories is observed in the last cobweb diagram.

1.31 Coupled Logistic Maps and Lce’s

(A) In a one-dimensional map xn+1 = f (xn), the function f can be any linear or
nonlinear map (e.g. logistic map). A two-dimensional discrete-time system can be
obtained by coupling two such one-dimensional maps (von Bremen et al. 1997):
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Fig. 1.72 For α = 3 (left). For α = 3.3 (right)
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{xn+1 = d f (xn) + (1− d) f (yn), yn+1 = (1− d) f (xn) + d f (yn)} where d is the
coupling parameter. This form of coupling often arises in physical systems. One
can think of f (xn) and f (yn) as simulating the population dynamics of a particular
species (e.g. the species can be any biological or chemical species, or even scalar
fields such as temperature) at two adjacent locations. If, after every time increment,
only a fraction d of these species remains in the same location and the rest migrate
to the other location, their dynamics is described by the system above. The cou-
pling parameter d can vary between 0 and 1. If d = 1, there is no coupling and if
d < 1, there is coupling. In short, the mapping described by the system above is
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Fig. 1.75 (a) α = 3.6, d = 0.2, x0 = 0.2, y0 = 0.3, Lce’s. (b) δx = 1.0776, δy = 1.0812

denoted (xn+1,yn+1) = M(d)◦ (xn,yn), to explicitly indicate the dependence on the
parameter d.

The Lyapunov exponents are given by λi = limn→∞ loge([|μi|]/n) where μi are
the eigenvalues of the product of the Jacobian matrices at every iteration. The two-
dimensional system above has two Lyapunov exponents. The Jacobian matrix for
this system is

Jn[M(d)](xn,yn) =
[

d f ′(xn) (1−d) f ′(yn)
(1−d) f ′(xn) d f ′(yn)

]

(see Fig. 1.75a, 1,000 iter.).
(B) The coupled logistic map (see Fig. 1.75b) can also be given, in a different

way, by the equations {xn+1 = δx(3yn +1)xn(1−xn), yn+1 = δy(3xn +1)yn(1−yn)}.
This system exhibits chaotic behaviors when δx and δy lie in the neighborhood of
the region [1.032,1.0843]. For certain ranges of the values of the parameters and the
initial conditions, the dynamics can also converge to periodic orbits.

1.31.0.2 Lyapunov Exponent of the Trajectory of the Logistic Orbit

Here are (1) the orbit of the logistic model and (2) a continuous graph equivalent to
the table of critical points for α ∈ [3, . . . , 4]:
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1.31.0.3 Critical Points of the Model

Calculation of some Lyapunov exponents for some values of the Logistic equation
when the number of iterations is equal to 4,000 and x0 = 0.5.

α λ Comment
1 −0.005112. . . Start stable fixed point
1.99 −6.643. . .
1.999 −9.965. . .
2 Calculator error*
2.001 −9.965. . . Superstable fixed point
2.01 −6.643. . .
3 −0.003518. . . Start 2-cycles
3.236067977. . . −19.43. . . * Superstable 2-cycles (1 +

√
5)

3.449489743. . . −0.003150. . . Start stable 4-cycles (1 +
√

6)
3.5699456720 −0.002093. . . Start of chaos (Hofstadter)
3.56994571869 +0.001934. . . Start of chaos (Dewdney)
3.828427125. . . −0.003860. . . Start stable 3-cycles (1 +

√
8)

3.9 +0.7095. . . Back into chaos
4 +2 End of chaos

1.31.1 Period-Doubling, Bifurcations and Subharmonic Cascade

The “route to chaos” of the quadratic function is done by successive period-
doublings, i.e. bifurcations. The method previously presented within the framework
of the stability study and the fixed points is limited. It could predict that a particular
fixed point was unstable, but could not identify the type of periodic behavior that
could appear. In this section, we will show how to find these bifurcation points and
period-doublings and their respective branches.

Period-2: When a period-doubling appears, the value of the output at the moment k
is equal to the value of the output at the moment k−2. In fact, during its movement
the point takes positions alternatively on the two branches of the bifurcation, running
“step by step” from one branch to another. This phenomenon can be expressed in
the following way:

xk = xk−2, or xk+2 = xk (1.281)

Knowing that: xk+1 = g(xk) = αxk(1− xk), then we can write

xk+2 = g(xk+1), xk+2 = g(g(xk)), xk+2 = g2(xk) (1.282)

For the logistic (or quadratic) equation, g2 will be written in the following way:

xk+2 = αxk+1(1− xk+1) (1.283)
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and if we replace: xk+1 = αxk(1− xk), in the equation above, we find xk+2 =
α[αxk(1− xk)][1− (αxk(1− xk))] and since xk = xk−2, we write xk = α[αxk(1−
xk)][1− (αxk(1− xk))] this equation becomes xk = α2[−αx4

k +2αx3
k− (1+α)x2

k +
xk] i.e. g2(xk) = α2[−αx4

k + 2αx3
k − (1 +α)x2

k + xk]. We have to face a polynomial
of degree 4, and we can find the solutions of this equation by a graphical represen-
tation of g2 and x. This is done in the figure shown below on the base of a parameter
value α = 3.2. The precise observation of the figure makes it possible to find the
following four solutions (xs) for this behavior of period-2.

xs = 0, xs = 0.5130, xs = 0.6875, xs = 0.7995. (1.284)

In the figure, we can also see that the solutions xs = 0 and xs = 0.6875 are unstable,
since the slopes of g2(xs) are larger than 1:

1. Indeed a solution of period-2 is stable if
∣
∣∂ (g2(xs))/∂ (x)

∣
∣< 1.

2. Besides, a solution for x = g(x) will always appear as one of the solutions of
x = g2(x).

3. If a solution is unstable for x = g(x), then it will be also unstable for x = g2(x).

To verify the remarks which have been just stated, we will observe in the graph
hereafter that x = 0.6875 is at the same time solution of x = g(x) and x = g2(x).
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Period-1: We can show the solution of x = g2(x) when α = 2.95 of which we
know that it is single and asymptotically stable. This solution is x = 0.6610, when
the number of iterations is large, i.e. tends towards the infinite. In other words,
asymptotically xk+2 = xk+1 = xk = 0.6610.

The singularity: α = 3. To this value of α corresponds a bifurcation point, since
the absolute value of the slope of g(x) and of g2(x) is equal to 1, for x = 0.66667.
The figure below is a transition between the two figures which precede. Even if the
difference is not easy to see, we will observe the tangency of g2(x) and x = x.

Period-4: When a period-4 appears, the value of the output at the moment k is equal
to the value of the output at the moment k− 4. In fact, during its displacement
the point takes positions alternatively on the four branches of the bifurcation. This
phenomenon can be expressed in the following way:

xk = xk−4, or xk+4 = xk. (1.285)

Knowing that: xk+1 = g(xk) = αxk(1− xk), then we can write

xk+4 = g(xk+3)
xk+4 = g(g(xk+2))

xk+4 = g(g(g(xk+1)))
xk+4 = g(g(g(g(xk+2))))

xk+4 = g4(xk).

(1.286)
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For the logistic equation, g4 is a polynomial of order eight, with eight solutions,
which are shown in the graph, calculated below from α = 3.5:

It will be noticed below, that even unstable solutions of x = g(x) are also solutions
of x = g2(x) and of x = g4(x).

Period-n: By extension of what was done for period-2 and period-4, we can write:
xk = xk−n, or xk+n = xk and xk+n = gn(xk). gn is a polynomial of degree 2n, which
admits 2n solutions, whose n of them are stable.

1.31.1.1 Iterative Functions and Fixed Points (Case α = 3.56)

We already evoked in another section the occurrence of fixed points in the logistic
model. In short it is known that for:

• 0 < α ≤ 1: The single fixed point is x = 0 and it is asymptotically stable.
• 1 <α < 3: The point x = 0 is unstable and the fixed point is equal to x = 1−1/α .

It is asymptotically stable and its domain of attraction on x is 0 < x < 1.
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On the other hand, for the values which follow, the analysis is much less
elementary:

• α > 3: By increasing the values of α from 3 to 4, we observe periodic orbits
which appears with period-doublings 2, 4, 8,. . . At each value of α for which a
period-doubling appears, there is a bifurcation. And there is an infinite number
of bifurcations and period-doubling until the value α∞ = 3.569946 . . .

Fixed Points and Periodic Points of Period-k, for α = 3.56

For a fixed α equal to 3.56 for example, if we call k the number of “periods” of
a trajectory, for k = 1, . . . ,9. Then we can write for g(x) = (3,56)x(1− x), with
x ∈ [0,1]:

gk( f (x)) = g(g(g(· · ·g(x)))) = gk ((3,56)x(1− x)). (1.287)

The periodic points of period k are identified when x = y, i.e. during the intersection
of gk with the diagonal x. The fixed points of g are indicated by the symbol “•” at
the intersection of curves.
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Fixed points are noted in the graphs by • at the intersection of x and gk.
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Fixed Points and Periodic Points of Period-k for α = 3.99027

gk(x); k = 1, . . . ,10; g(x) = αx(1− x); with α = 3.99027.

1.31.2 Subharmonic Cascade, Accumulation Point

1.31.2.1 Subharmonic Cascade

When the period-doubling phenomenon consecutive to a bifurcation is repeated an
“infinite” number of times, we are faced with a cascade of bifurcations. This type
of cascade occurs when they are associated with an subharmonic instability. In a
very general way, it is possible to speak of the notion of subharmonic instability of
a periodic solution. Here, we must understand the way in which a periodic equi-
librium can have its stability called into question. Indeed, a periodic solution can
see its equilibrium called into question, if the control parameter modification inter-
venes with time intervals separated by an integer number of half-periods T/2, that
is to say N× (T/2), by knowing that the destabilization is optimal if it is located
exactly at the half-period. Thus the suitable variation of the control parameter of
a system must “theoretically” facilitate the generation of subharmonic instabilities
giving place to successive period-doublings 2T, 4T, 8T, etc., i.e. subharmonic cas-
cades. The subharmonic term refers to the fact that the stimulation of the system
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intervenes inside the basic period which constitutes the harmonic. Thus, we say that
it is subharmonic.

1.31.2.2 Accumulation Point of a Subharmonic Cascade

Let’s take the generic case of a function of the type: xt+1 = 4αxt(1− xt) and pose
the following iterated functions: xk+1 = g(xk) = 4αxk(1− xk) and xk+2 = g2(xk) =
g(g(xk)). We describe the operation of iterated functions in another section of the
chapter, but we can say right now that we have a bifurcation-point between a
period-1 and a period-2 if the absolute value of the slope of g(x) and g2(x) is
equal to 1, at the point of intersection of g(x) of g2(x) and x = x. See the graph
below.

Within the framework of the bifurcation points study for the quadratic equation
above, we list the values of the parameter α for which there is change of period.
These points are gathered in the table below.

Period α at bifurcation point For 4α

1.20 = 1
α1 = 0.75 4α = 3

1.21 = 2
α2 = 0.86237 . . . 4α = 3.4495 . . .

1.22 = 4
α3 = 0.88602 . . . 4α = 3.5441 . . .

1.23 = 8
α4 = 0.89218 . . . 4α = 3.5687 . . .

1.24 = 16
α5 = 0.8924728 . . . 4α = 3.5699 . . .

1.25 = 32
α6 = 0.8924835 . . . 4α = 3.5699 . . .

...
1.2∞= ∞ α∞= 0.892486418 . . . 4α = 3.5699 . . .
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Observe this remarkable phenomenon which shows for an increasing series 1.2p

(with p an integer) of period, that the parameter converges towards an accumulation
point α∞ = 0.892486418 . . . .

1.31.3 Stable Cycles and Super-Stable Cycles

1.31.3.1 Stable or Unstable Cycles

It is said that a set of points x1,x2, . . . ,xp−1 constitutes a stable p order if g(xi) =
xi+1 for i = 0,1,2, . . . , p−2 and g(xp−1) = x0. This means that each point of a cycle
of p order is a fixed point for gp : gp(xi) = xi for i = 0,1,2, . . . , p−1 and is not a fixed
point for gk if k < p. If we consider a periodic point x of a cycle of p order, if the
eigenvalues of the Dgp(x) matrix are inside the unit circle, then the cycle is stable. If
one of the eigenvalues has its absolute value higher than 1, then the cycle is unstable.

1.31.3.2 Attracting, Repelling and Super-Attracting Cycles

If gp(xi) = xi we can write the derivative of gp at the point x0:

(gp)′(x0) = g′(xp−1) · · ·g′(x1)g′(x0). (1.288)

However, it is known that x0 = xp thus we can say that all the (gp)′(xi) are equal to
the same value noted mp, for i = 0,1, . . . , p−1. where mp is called the multiplier of
cycle. We will say that a set of points x1,x2, . . . ,xp−1 is:

Behaviors Conditions

Attracting (or stable) if
∣
∣mp
∣
∣< 1,

Repelling (or unstable) if
∣
∣mp
∣
∣> 1,

Indifferent if
∣
∣mp
∣
∣= 1,

Super-attracting (or super-stable) if mp = 0.

1.31.4 Cobweb Diagram

1.31.4.1 Outputs Field of the Model

Before studying the dynamics of the model by a cobweb diagram, the most basic
observation that we can do, is the increase of the domain in which the variable of
the quadratic map is spread. The observation of diagrams below makes it possible
to note the increase in the field of outputs that the model gives during the variation
of the fertility parameter α, which passed from 1 to 4 (Fig. 1.76).
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Fig. 1.76 α = 2 (left). α = 2.95 (center). α = 4 (right)

Indeed for α = 4, the responses occupy Cobweb diagram the totality of the
segment [0,1], whereas for α = 1, the field of responses occupies the segment
[0,0.25]. For α = 2, the answer belongs to [0,0.5]. And for the segment of responses
[0,0.75], α = 2.95. Thus, the studied dynamics will be spread in more or less vast
fields.

1.31.4.2 Dynamics of the Logistic Map

It is very interesting to study the behavior of a system with a unique discrete vari-
able, by using the Cobweb diagram. This is a frequently used tool in economics to
observe the dynamics of behaviors. It makes it possible, in particular, to identify
solutions of the model, fixed points, divergent trajectories, convergent trajectories,
transitory movements, oscillatory motions, and “chaotic” behaviors. The “Cobweb”
clearly does not present the “temporality” of the model, but their “dynamics” by
visualizing the periodicities, stabilities, asymptotic stabilities, explosive motions,
transitory oscillations, intermittencies or behaviors. For the logistic equation, this
diagram is obtained by tracing two curves in a graph, i.e. x and g(x)=αx(1−x). The
solutions of the model are indicated by the intersection of both curves specifying
thus the fixed points of the system.

We position an initial condition x0 in the graph and more exactly on the layout
of the curve x, then we observe the response of the logistic model g(x) for this
“input”. Then, by a simple projection, the obtained output projected on the curve
x re-becomes an “input”, which will be the subject of a new iteration under the
action of g(x). Thus, with the second iteration, we obtain a new output, which in
its turn is reintroduced in the loop as an input by the projection on the curve x. The
latter is ready again to be the subject of a third iteration, and so on until the end
of the selected number of iterations. In the case α = 2.95, the curve g(x) = xn+1 =
2.95xn(1− xn) seems a reversed parabola. From the initial condition x0 = 0.1, a
value x1 is obtained by tracing a vertical line to the curve g(x), where g(x0) =
0.265 is found, then we trace a horizontal line to the curve x = x, since x1 = g(x0),
consequently x1 = 0.265. After this, a vertical line is traced to the curve g(x) to
obtain g(x1) = 0.575, then, a vertical line is traced to the curve x = x, consequently,
x2 = 0.575. This progression, step by step is depicted in the figure below:
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Period-n with n = 1,2,3,4 and Chaotic Regime

Period-1: The figure below shows a process which converges towards a fixed point
x∞ = 0.661, when α = 2.95. From the initial condition x0 = 0.1, and before the
fixed point, we observe a transitory motion which converges.

The oscillation between 0.5130 and 0.7995 corresponds to a transitory motion.

Period-2: The two figures below show that for a value of α = 3.2, the iterative
process can adopt different behaviors, according to the selected initial value:

(a) For x0 = 0.5130, and α = 3.2, there is an oscillation between x = 0.5130 and
0.7995, without transitory motion.
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(b) For x0 = 0.1, and α = 3.2, there is an oscillation between x = 0.513, 0.7995,
with a transitory motion.

Period-4:

(a) For x0 = 0.1, and α = 3.5, there is an oscillation between x = 0.3828, 0.8269,
0.5009 and 0.8750, with a transitory motion.
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(b) For x0 = 0.3828 and α = 3.5, there is an oscillation between 0.3828, 0.8269,
0.5009, an 0.8750, without transitory motions.

Chaotic regime: For α = 3.75, the behavior is chaotic and the responses are
transitory.
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Period-3: For α = 3.83, the response of the model is alternatively 0.15615, 0.50466,
and 0.957417, i.e. a period-3 which implies a chaotic behavior.

1.31.5 Bifurcation Measure or Feigenbaum Constant

For the logistic equation, the numerical calculations show that for a rather large
number of iterations n, the computed values satisfy the following ratio:

δ = lim
n→∞

αn−αn−1

αn+1−αn
. (1.289)

Calculated in a precise way, this constant δ also called the universal constant,
has a value equal to 4.66920161 . . .. During this route to chaos, the model of
the logistic equation, shows period-doublings which give place to bifurcations
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(period-2, period-4, period-8, period-16, etc.). Feigenbaum stated that any one hump
function (graph resulting from the calculation of the iterated function g(x) for a
quadratic map) has a cascade of bifurcations for which the Feigenbaum number is
refound. The number is calculated by comparing the values of α at each successive
bifurcation. Values of α at the bifurcation points:

n Period α
1 2 3.0
2 4 3.44949
3 8 3.544090
4 16 3.564407
5 32 3.568759
6 64 3.569692
∞ ∞ 3.56995

From the table above and from the values of α , we can try to compute the value of
the Feigenbaum constant for αn−1 = 3.564407,αn = 3.568759,αn+1 = 3.569692:

δ = lim
n→∞

(
3.568759–3.564407

3.569692–3.568759

)

= 4.6645. (1.290)

The computed value is close to the exact value, although slightly different.

1.31.6 Iterative Functions of the Logistic Equation

1.31.6.1 Iterations from 1 to 10

Let us take the logistic equation xt+1 = αxt(1− xt) again and let us imagine the
iterated function (n times) of this equation, as we could see it several times in the
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Fig. 1.77 α = 2 (left). α = 3.1 (center). α = 3.57 (right)

chapter: f n(x(t)) = f ( f ( f (. . . (x(t)) . . . ))). It is possible to represent in a figure the
result of each 10 first iterations for a panel of some values of the parameter α of the
logistic model (Fig. 1.77).

One easily observes the complexification of the structure of the different curves
f 1 to f 10, which emphasizes the transition of the system to a chaotic regime.

Remark 1.8 (One-hump function). The term “one-hump” function is rarely used
whereas these functions are frequently used. They are iterated functions of which
the graph results from the calculation of the iterated function g(x) for a quadratic
map, which has a parabolic form and explains the “one hump” name: xn+1 = g(xn).
We will also use this term in one of the up coming chapters concerning the logis-
tic equation, that we will couple with a function delay, within the more general
framework of Propagation theory of information in Economics.

1.32 The Bifurcation Paradox: The Final State is Predictable
if the Transition is Fast Enough

1.32.1 Probability of a Final State and Speed of Transition

The final state of a system is predictable if the phase of transition is rather fast.
Indeed, the probability of occurrence of a final state depends on two elements: (1)
the speed of transition and (2) the noise level in the system. The logistic equa-
tion is used here as a support. The different changes of state of the system pass by
bifurcation-points which precede the period-doublings. We are interested more par-
ticularly in the first bifurcation of the logistic equation. The works about this subject
shows that the probability of transition towards a given final state varies between 1
and 1/2. For the probability equal to 1 the transition is done quickly and without any
noise added to the system, the probability of 1/2 corresponds to a slow transition.
Thus we are interested in the behavior of the model around the bifurcations. Gen-
erally, when a system undergoes a bifurcation, it can be transformed into different
new states of equilibrium at the exit of the bifurcation point. If noise is added to the
model, as seen previously, the probability to anticipate one of both states is equal
to 1/2, i.e. comparable to randomness. If there are (as for the first bifurcation of the
logistic equation) two new possible equilibrium states, which “differ only in phase”,
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i.e. ABABAB(serie1) or BABABA(serie2), then their respective probabilities are
equal to 1/2:

P(series1) = P(series2) = 1/2. (1.291)

The purpose here is to notice that in real dynamical systems, the final state is also
determined by the transition speed through the bifurcation point. Indeed, when
the parameter of the system is modified quickly, the noise does not have time to
influence the final state, and the transition occurs as if there was no noise at all. A
non-perturbated transition, with a “finite” speed allows a normal forecast of the final
state. In this case, the probability of each state depends on the initial conditions of
the system. Thus the probability of the appearance of a state will be given and be
equal either to 1 or to 0. We have P(state1) = 1 and P(state2) = 0, or P(state1) = 0
and P(state2) = 1. This work aims to describe the relation between: (1) the rate of
change of the control parameter, (2) the noise level, (3) and the predictability of the
final state.

The principle is to determine for a given level of noise the transition speed nec-
essary so that the state which follows the transition has a perfectly determined
probability, null or equal to 1.

1.32.2 Variation of the Control Parameter of the Perturbated
Logistic Equation

Given the logistic équation: xn+1 = αxn(1− xn), this equation is perturbated with a
control parameter which varies with time αn: xn+1 = αnxn(1− xn)+ ε(n,γ) where
ε(n,γ) is a pseudo random process centered at zero, uniformly distributed between
−γ and +γ , and with a variance σ2 = < ε2 > =γ2/3. The first period-doubling of
the model occurs around α = 3, and it is this bifurcation which is studied. We define
the behavior of α in the following way:

α0 for : n < N1
αn = α0 +Δαn−N1V for : N1 ≤ n < N2
α f for : n > N2
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That means αn is constant in α0 until the period of time equal to N1, then it evolves
step by step to N2, and is constant equal to α f afterwards. We also use: α0 = 2.8,
α f = 3.2, thus Δαn−N1 = 0.4. 1/V = N2−N1 which is the number of steps necessary
to complete the transition. V is then regarded as the transition speed of the system.
When the noise is equal to zero, and after the parameter α reached α f = 3.2, the
system will be in a periodic regime of period-2, in which xn alternates between a
high value and a low value, corresponding to the two branches of the bifurcation. In
this mode, there are two possible situations or states that we can note f1 and f2 for
each state. For f1, xn takes the low values for an odd index and the high values for
an even index. It is the reverse for xn( f1) = xn+1( f2). Suppose now that the system
is perturbated, with (1): a speed V evolving on 0.0002, . . . ,1. (transition time from
1 to 5,000 steps), (2): 9×10−12 < γ < 9×10−2 and a variance equal to γ2/3, (3):
and the variance of the logistic equation for α = 3.2 is equal to 0.020. Here we give
the SNR (Signal to Noise Ratio) of the system:

SNR = 10 log10
[0.0205
γ2/3

]
=−20 log10 γ−12.1. (1.292)

Let us take an initial condition x0 = (α0−1)/α0 = 0.6429 which is in fact the fixed
point of the logistic equation of the origin. When the speed V = 1, if the parameter
is changed abruptly from α0 to α f , then the final state obtained is always f1. From
this observation, it is possible to calculate the occurrence probability of f1, when
we vary the speed of the system. Here we will not have all the intermediate results
obtained in the works whose authors are quoted in margin.36 However we can give
the most important results. A particular analysis of the probability was done for two
different speeds and with a scale of noise from−150 dB to −70 dB. Both speeds are
V = 0.004 and 0.008, (i.e. respectively 250 steps and 125 steps) (Fig. 1.78).

For V = 0.004 the critical noise is equal to 128 dB. For V = 0.008 the critical
noise is equal 108 dB. For a very low level of noise, i.e. for a high SNR, the proba-
bility P1 of f1 is 1. When the level of noise increases, P1 moves towards 0.5 which
is the random probability of f1. From there, if we choose a probability of 0.75 and
if we refer on the scale of the noise level, we can find the critical point: σcritical .
Under this critical value of noise it is said that the system is mainly deterministic,

Fig. 1.78 Probability of f1 (left). Log–log scale (right)

36 Cf: O.Y. Butkovskii, Y.A. Kravtsov, and J.S. Brush. NAG000.NAG300.
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i.e. the probability P1 is closer to 1 than of 0.5. For noise values which are higher
than the critical value, the system is known as mainly random or stochastic, i.e. the
probability P1 is close to 0.5. The critical noise level σcritical :

SNRcritical(dB) = 10.27−52.02 log10 V (1.293)

or log10(Vcritical) = 0.1974−0.01922 SNR(dB). Using the noise variance σ2
critical =〈

ε2〉 = γ2/3 instead of SNR (see SNR equation), we may rewrite the equation
SNRcritical(dB) = 10.27−52.02 log10 V , as

σ2
critical = cV a (1.294)

with a = 5.37 If the speed is strictly higher than its critical value for a given noise
level, the probability P1 will be close to 1. If the speed is lower than its critical
value,the probability of occurrence of the state f1 will be close to 0.5. It is thus
particularly recommended to very quickly change the control parameter of a sys-
tem, rather than slowly and carefully. The change speed of the parameter has very
important consequences on the response of the system. Indeed, a fast change of
the value can bring about an evolution from a stable state towards another stable
state, whereas a too slow change of the parameter value can destabilize the system
towards a chaotic regime. The forecast probability of a state after the bifurcation
point depends on a relation between the speed V of the control parameter change
and the noise level σ2 of the system. Under of a critical value σ2

critical , the proba-
bility of forecast is close to 1. Above this critical value, there is equipropability of
both solutions. This remark can have technical applications in Economics or Social
Sciences.

1.33 Hyperbolicity and Kolmogorov Capacity Dimension

This dimension is an instrument quite as important as the Lyapunov exponent,
it allows:

– To distinguish between deterministic chaos and random motion
– To characterize the nature of the attractor which we have to face, which is chaotic

or “strange”

We can approach the concept in the following way:

• Let us suppose a set of points P, in a space of dimension d.
• If we imagine, for example, a Poincaré section with only one delay (i.e. a map

of the first return), which intersects the trajectory of an arbitrary dynamics, the
dynamics is lied on this plane.

37 A connection seems interesting with the developments concerning the Hurst exponent and the
(R/S) Rescaled Range Statistics.
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• We imagine then, a cube (or a “hypercube” of unspecified dimension) noted ε ,
and we measure the N(ε) number of ε which are necessary to cover the set of
points P, whence comes its other name: “Box counting”.

Then, D, the capacity dimension of the set of points P is equal to

D = lim
ε→0

lnN(ε)
ln( 1

ε )
. (1.295)

We can illustrate this point by choosing a single point for the set P. Consequently
the number of ε necessary to cover P is N(ε) = 1 and the dimension D is equal to
0. In the case where P is a segment of which by convention the length is equal to 1,
then N(ε) = 1

ε and D = 1. And in the case where P is a simple plane, by convention
of a side equal to 1, then N(ε) = 1

ε2 and D = 2. And so on.
The subtlety lies in the fact that if we meet traditional geometrical objects,

the capacity dimension D does not differ from the usual Euclidean dimension, i.e.
amongst other things that D is an integer. This is not always the case, for example in
the Cantor set that we evoked within the framework of the evolution of the logistic
orbit and its fixed points. Indeed, a Cantor set can be defined in the following way.

1.33.1 The Cantor Set

We select a segment length equal to 1 and we divide it into three sub-segments of
equal length. We can remove the central sub-segment, then again subdivide the two
remaining sub-segments in three equal sub-segments, inside which we remove the
central sub-segment. We repeat the operation n times and obtain a triadic Cantor set
(Figs. 1.79 and 1.80).

Fig. 1.79 “Cantor dust” and “triadic Cantor set”
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Fig. 1.80 Diagram of a “Cantor space” (left). Cantor function (right)

(The Cantor set38 is sometimes also called the triadic Cantor set, the Cantor comb
or no middle third set. The Cantor function39 is a particular case of a devil’s stair-
case.) If n is finite, the Cantor set is composed of some number of sub-segments and
its dimension D is equal to 1, as in the case mentioned above of a segment. On the
other hand, if n is very large, tending towards the infinite, the sub-segments become
points, and we obtain a Cantor set with only points. Consequently, the capacity
dimension must be calculated. If we choose a “hypercube” with one dimension,
whose side is equal to ε, there will be N(ε) = 1 for ε = 1 and N(ε) = 2 for ε = 1/3.
If this statement is generalized, there will be N(ε) = 2n for ε = (1/3)n. For n→ ∞
or ε → 0 we calculate the dimension D:

D = lim
ε→0
n→∞

log2n

log3n � 0.63 (1.296)

It is observed that the dimension of the set is lower than 1, and is thus not an integer.
Indeed the geometrical set that we made is more complicated than the set or the
usual objects that we meet in Euclidean spaces. We can say that this set P is an
object larger than a point but smaller than a segment. The capacity dimension and
the Haussdorff dimension are methods which we gather under the term “fractal
dimension”, because they are adapted to study fractal objects, i.e. objects whose
dimension does not correspond to an integer. The more the dimension is high, the
more the space is “filled” or “blackened” by the points of the set P, produced by the
flow of the system. A non-integer fractal dimension indicates that the orbit of the
system tends to fill or “blacken” less than an integer value. It is said for example
that a Brownian motion has a capacity dimension equal to 2, meaning that for a
very long motion, the plane in which the points move will tend to be filled and
blackened by the trajectory (see paragraph on Brownian motion). The relevance of
such matter appears when we analyze chaotic dynamics on non-invertible maps of
one dimension, for example, under some conditions of the control parameter.

38 Remark: It is possible to apply the Continuous wavelet transform of the devil’s staircase corre-
sponding to the “uniform triadic Cantor set”; and it is interesting to notice that the aspect of the
“cantor space” (see above) is similar to the skeleton of a wavelet transform, i.e. the set of all the
maxima lines (Arneado et al. 1999, p. 352).
39 Cantor function: The Cantor function f (x) can be defined as a function on [0,1] such that for
values of x on the Cantor set, i.e. x = ∑i 2 · 3−ni , then f (x) = ∑i 2−ni which is thus extended to
other values by knowing that f is a monotonic function.
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1.33.2 Finite System and Non-Intersection of Phase Trajectories

1.33.2.1 Bi-Periodical Regime and Coupling of Frequencies

An important principle (Bergé et al. 1988, p. 121) to point out is the following: When
a dynamical system is described by a finite number of ordinary equations, the trajec-
tories which represent the system cannot cut themselves (except in a singular point
where they converge). Indeed, in a system with an infinite number of differential
equations the same initial condition positioned on a point of intersection could have
different trajectories. Besides this shows us the concept of sensitive dependence on
initial conditions in a new way, by weakening it. Consider the example of a torus
T2 on which there is a trajectory made up of two basic frequencies ω1 and ω2, we
known that the ratio ω1/ω2 can be rational or irrational:

(1) In the case of an irrational ratio, we face a bi-periodic (or quasi-periodic) regime
(and the trajectory segments cover in a dense way the rectangle of the unfolded
torus, or equivalently the torus surface).

(2) In the case of a rational ratio, we face a periodic regime (and the trajectory
describes a finite number of parallel segments).

In this context, the only structural instability coming from a bi-periodical regime
will result from the coupling of frequencies ω1 and ω2 (or synchronization) during
which the ratio stops to be rational and becomes rational, as seen above. This means
that the attractor of the type T2 cannot be the expression of a pure chaotic regime,
i.e. of an aperiodic regime. (The system that has produced this attractor is of a
dimension higher or equal to 3. This remark is important for what follows).

1.33.3 Hyperbolicity: Contradiction Between Dissipative System
and Chaos Solved by the Capacity Dimension

Here we will try to describe some properties of aperiodic attractors. The concept
of Kolmogorov non-integer dimension can be connected to the concept of chaos for
a “dissipative” dynamical system, which is a priori an antinomy. We can understand
it and we will try to explain it, by considering that their complex behavior is the
result of an “infinite” repetition of “stretching” and “folding of the beam of orbits”
under the action of a flow. We illustrate the principle by the graphs below, in order

do better to approach the handling in a purely intuitive way. It is known that any
attractor, whatever the dimension (even low), which has a sensitive dependence on
initial conditions, will have a chaotic regime. This type of attractor contains two
paradoxes. It is sometimes said that this is the essential reason for which chaos in
systems with low dimension was discovered so late.



150 1 Nonlinear Theory

1.33.3.1 The First Paradox

The first paradox for the attractor is constituted by the contradiction the attrac-
tion that implies a “contraction of trajectories (folding)” and the SDIC which on
the other hand “requires” a divergence (stretching) of trajectories. A minimum
dimension of the flow seems necessary in order to allow this type of attractor.
We know that if we want that SDIC occurs, it is necessary that the flow spreads
in a three-dimensional space (important, see preceding section Bergé et al. 1988,
p. 121). We thus take the minimalist example of a three-dimensional flow graph-
ically representable to evoke the problems. This three-dimensional flow contracts
in the direction of (YY ′) and diverges in the direction of (XX ′) (see Fig. 1.81a).
Thus, we can say that an initial flow will generate a kind of two-dimensional plane
inside which the divergence of the SDIC (sensitive dependence on initial condi-
tions) is spread, this is the ABCE plane of Fig. 1.81b. This first step corresponds to
the stretching of the flow. At this stage, we must ensure that the flow can continu-
ously act in a bounded (three-dimensional) space. This is the aim of the folding.40

We observe that the CE segment has doubled its length compared to AB, thus a
folding can be practiced on CE, by dividing it of half into D in its center and folding
the two extremities C and E on themselves. Thus the CD segment of the same length
that AB can be brought closer and “pasted” on AB. The result of this folding is rep-
resented on Fig. 1.81d. Thus, we have built a three-dimensional flow in which the
SDIC exists in a finite space. We observe that from a starting space of dimension

(a) (b)

(d)(c)

Fig. 1.81 Different construction stages of a strange attractor

40 Successive foldings of flow give the sheeted structure characteristic of strange attractors.
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three, the contraction of the attractor and the expansion of the SDIC are recon-
ciled by means of this so particular work on phase-space of the system. If a cut of
Fig. 1.81a is practiced, we can observe that the flow which undergoes the attraction
exists in a vertical plane (YY ′) and the flow which undergoes the expansion exists
in a vertical plane (XX ′). And we could even say that the cut looks like a kind of
saddle point, repelling horizontally in relation to the center and attracting vertically,
the other elements of the cut tending asymptotically towards the axes in the form
of hyperboles, sometimes towards the axes (XX ′) and towards (YY ′). This is why
it is said that the reconciliation of “opposites” is carried out by means of the hyper-
bolicity concept. The folding must be done so that the flow acts continuously in the
space.

1.33.3.2 The Second Paradox

The second paradox between attractor and SDIC is as follows: It is said that to allow
the SDIC to exist, (Bergé et al. 1988, p. 121) it is necessary that the dimension of the
attractor is higher than 2. However we said that for a dissipative system for which
there is an attractor, there is a contraction of spaces, planes and volumes, i.e. the
attractor must have a null dimension after the action of the flow over time. i.e. if we
start from a starting system of dimension 3, at the arrival, we must reduce to a space
lower than 3. An attractor containing a chaotic regime must thus have a dimension
such as 2 < D < 3, where D is the dimension of the attractor and not necessarily that
of the system. Indeed, because of the SDIC, the dimension must be higher than two
and because of the attractor, the dimension must be lower than three. Consequently
how can we reconcile this contradiction, because attractors of this type exist in the
reality? This attractor type has a non-integer fractal dimension, we evoked it in the
section about capacity dimension. They are called strange attractors.

Thus, to take the title given to the present section, we reconcile the coexistence
of a dissipative system and chaos if the phase-space of a system has a dimen-
sion higher or equal to 3. Thus, the attractor of the dynamical system will be
spread in 2 < D < 3. Some systems “lodging” the attractor have Kolmogorov non-
integer dimensions contained between 2 and 3. It is known that chaotic attractors,
belonging to (continuous-time) dissipative systems where the phase space is three-
dimensional at the beginning, must have a capacity dimension of the type 2 < D < 3.
If we imagine a set P which at the beginning is of three dimensions, i.e. a volume
and which under the action of the system flow shrinks asymptotically. This means
that the dimension D of any attractor of the system must be smaller than three.
Moreover, to get an attractor chaotic, in the sense of the sensitive dependence on
initial conditions (SDIC), it is necessary that its dimension is higher than 2. Indeed,
in a space with two dimensions, there is no attractor more complex than a limit cycle
in R

2. For a toric attractor of dimension 2, we will not be able to find more com-
plex than a quasi-periodic orbit. We can depict more quickly in a different way the
work of unfolding and folding shown above as follows, and in particular through
two figures below.
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We can say that at the beginning the flow moves overall in only one direction
(formalized by a large arrow), but it tends to disperse or it is disseminated by the
stretching and folding (intermediate arrows) and pushed towards a third direction.
This is the contraction (small arrows). The result of this work is that we transform a
volume into a sheet with “almost” two dimensions. But, although the close trajecto-
ries diverge exponentially, it is said that the motion of the system by construction is
limited. This is why the sheet, on which the flow takes place, must be entirely folded
on itself. Thus, two extremities (ends) AB and A′B′ of the sheet must be folded, then
must be joined and be brought together by the ends. However, since A′B′ has two
distinct sheets and A′B′ is brought together with AB, which has only one sheet, in
order to make the junction adjust well (which is a condition necessary to represent
the system in the form of a continuous and invertible flow), the sheet on which there
is the flow must have a thickness contained between 0 and 1 (i.e. a “book” of thick-
ness), composed of an infinite number of sheets, each one of zero thickness. In fact,
if we choose a two-dimensional Poincaré section which intersects the trajectories or
the orbits, the set of intersection points resulting from it will have a fractal struc-
ture similar to the Smale horseshoe. When the compression (small arrows) is very
strong, the resulting Poincaré map can appear unidimensional.

1.33.4 Chaotic Attractor in a System of Dimension 1

We can choose the example of the logistic equation, which is spread in a space of
dimension 1. It is said that if a chaotic behavior is observable in such a model, in
fact its capacity dimension must be equal to 1.41 Strictly speaking, such dynamics
cannot be named chaotic attractors, in the sense of the definition stated in the para-
graph about attractors. Indeed, they do not have any contracting “neighborhood”,
such as we evoked it in the preceding section. We can conclude that a (discrete-
time: resulting from iterated maps) dynamical system spreading itself in a space of
dimension 1, which has a positive exponent (λ > 0), cannot be “dissipative”. Thus,

41 See concepts of “Ergodic invariant” and “Lebesgue measure”.
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we are reconciled with the contradiction which shocked us, stating in the preceding
sections and paragraphs that:

– On the one hand, for λ < 0, we are faced with a dissipative system, with a con-
vergence towards a stable fixed point, or a stable periodic orbit (several “fixed
points”), characterizing a non-conservative system.

– On the other hand, chaos can exist in a dissipative dynamics.

The latter remark is false on R and possible in spaces higher than 2. The logistic
equation is spread in a space of dimension 1, where we observe the behavior of a
single variable. For this model, we used a vocabulary commonly admitted and used
in many specialized works evoking the unidimensional dynamical systems. In this
context, the term “chaotic attractor” appears to be inappropriate, so we will speak
of chaotic behavior or attractor.

1.33.5 Measure of the Complexity Level of Attractors

We can intuitively consider the fact that the capacity dimension of a dynamics mea-
sures, in a certain manner, the complexity level of a time series. We can also consider
that this dimension reveals the number of subjacent operative variables of a dynamic
system, of which we do not necessarily have an algebraic construction at disposal. In
other words, even if there are not the equations of the motion of the studied system,
we can nevertheless have an “appreciation” of the number of variables implied in
the evolution of the system. The capacity dimension is used to understand and mea-
sure the dimension of the complex geometrical structure of attractors and strange
attractors. Beyond this crucial function, the dimension D of a complex dynamics
can be used to characterize the limits of an attractor, i.e. the bounds which separate
the different zones of the phase-space which are under the influence of the attrac-
tor(s). In practice, the calculation of D is not always easy to do, in particular when
D is higher than 2. A slightly different approach was developed by Grassberger and
Procaccia.

1.34 Nonlinearity and Hyperbolicity

1.34.1 Homoclinic Tangle and Smale Horseshoes Map

Firstly, let us recall the definitions of “invariant sets” and “homoclinic or heteroclinic
orbits”. These concepts are common to flows and maps.

Definition 1.31 (Invariant set). For a flow φt [or a map g] defined on U ⊂ R
n, a

subset S ⊂U is said invariant if

φt (S)⊂ S, ∀t ∈ R [or gn(S)⊂ S, ∀n ∈ Z ]. (1.297)
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Definition 1.32 (Homoclinic orbit). Let S be an invariant set of the flow φt , p is a
point in the phase space of the flow, and let us suppose that φt(p)→ S when t→+∞,
and t →−∞, then the orbit of p is said to be homoclinic to S.

Definition 1.33 (Heteroclinic orbit). Let S1 and S2 be two disjoint invariant sets of
a flow φt , and let us suppose that φt(p)→ S1 as t→+∞, and φt(p)→ S2 as t→−∞,
then the orbit of p is said to be heteroclinic to S.

It is important to highlight that the “homoclinic tangle” is a topological structure
similar to the “Smale horseshoe map”. We briefly present a homoclinic tangle. Let
p be the intersection point, with p′ ahead of p on one manifold and p′′ ahead of p
of the other. The mapping of each of these points g(p′) and g(p′′) must be ahead of
the mapping of p, g(p).

The only way this can happen is if the manifold loops back and crosses itself
at a new homoclinic point. Then, another loop must be formed, with g2(p) another
homoclinic point. Since g2(p) is closer to the hyperbolic point than g(p), the dis-
tance between g2(p) and g(p) is less than that between p and g(p). The area (or
volume) preservation requires the area (or volume) to remain the same, so each new
curve, which is closer than the previous one, must extend further. The loops become
longer and thinner. The set of curves leading to a dense area of homoclinic points is
known as a homoclinic tangle.

Homoclinic points appear where chaotic regions touch a hyperbolic fixed-point.

1.34.2 Smale Horseshoe: Structural Stability

Stephen Smale (1965) built a diffeomorphism f : R
2 → R

2, with very complex
dynamics, which admits an infinity of periodic orbits of arbitrarily large periods.
To illustrate it as simply as possible, we are only interested in a diffeomorphism
of the rectangle Δ = [0,1]2 on its image. The construction is carried out (see fig-
ure which follows) by a composition ( f = ϕ ◦ E) of a hyperbolic linear map
E : (x,y)→ (3x,y/3) with a nonlinear transformation ϕ . These elements are defined
such that:

f (Δ0) = Δ0, f|Δ0 : (x,y)→ (3x,y/3) (1.298)

f (Δ1) = Δ1, f|Δ1 : (x,y)→ (−3x + 3,−(y/3)+ 1) (1.299)
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In order to understand the iteration of f it is interesting to seek a subset Φ of Δ
invariant by the diffeomorphism. Let us notice that:

is equal to f−1(Δ)∩Δ = {x ∈ Δ| f (x) ∈ Δ}= Δ1∪Δ0, and

is understood as being equal to f (Δ)∩Δ=
{

x ∈ Δ| f−1(x) ∈ Δ
}

= Δ1∪Δ0 = f (Δ1)∪
f (Δ0). By means of iteration we obtain

which can be understood as being equal to

= f−2(Δ)∩ f−1(Δ)∩Δ=
{

x ∈ Δ| f (x) ∈ Δ, f 2(x) ∈ Δ
}

(1.300)

= f−1(Δ1∪Δ0)∩ (Δ1∪Δ0) = ∪Δθ0,θ−1 , θ0,θ−1 ∈ {0,1} (1.301)

with Δθ0,θ−1 = Δθ0 ∩ f−1(Δθ−1). Similarly, it is possible to write

f−n(Δ)∩·· ·∩Δ = ∪Δθ0,...,θ−n , (θ0, . . . ,θ−n) ∈ {0,1}n+1 (1.302)

and

Δθ0,...,θ−n =
n⋂

i=0

f−i
(
Δθ−i
)

. (1.303)

It is known that the width of vertical rectangles decreases exponentially and
⋂n

i=0 f−i (Δ) corresponds to the union of 2n vertical rectangles, and if n → ∞, we
obtain

⋂∞
i=0 f−i (Δ) = K× [0,1] where K is the triadic Cantor set. Similarly, through

the image of horizontal rectangle unions it is obtained
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which can be understood as being equal to

= Δ∩ f (Δ)∩ f 2(Δ)= ∪Δθ1,θ2 , with (θ1,θ2) ∈ {0,1}2. (1.304)

By extension, it is possible to write:

Δ∩ f (Δ) · · · ∩ f n(Δ) = ∪Δθ1,...,θn , with (θ1, . . . ,θn) ∈ {0,1}n, (1.305)

and

Δθ1,...,θn =
n⋂

i=1

f i
(
Δθi
)

. (1.306)

As previously the infinite intersection gives

∞⋂

i=0

f i (Δ) = [0,1]×K,

where K is always the triadic Cantor set. Then, the set

Φ =
+∞⋂

−∞
f i (Δ) (1.307)

is an invariant set by the diffeomorphism f . Moreover,Φ= K×K. And it is possible
to introduce the following very interesting equality and sets:

Δ(θ−n, . . . ,θ0,θ1, . . . ,θn) = Δθ0,...,θ−n ∩ Δθ1,...,θn . (1.308)

providing a bijective map g:∑2 = {0,1}Z→ K×K. If ∑2 is provided with the topo-
logical product, it was proven that g is a homeomorphism. Respecting the reasoning
which precedes, briefly, a simplified Smale’s Horseshoe diagram can be also given
as follows:
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As seen above, the invariant set is written

Φ =
+∞⋂

−∞
f i (Δ) (1.309)

such a map describes a Cantor set with the following properties:

– Φ contains a countable set of periodic orbits of arbitrarily long periods.
– Φ contains an uncountable set of (bounded) non-periodic orbits.
– Φ contains a dense orbit.

Henceforth, whenever the Poincaré map of a hyperbolic periodic orbit has a trans-
verse homoclinic point, this provides a horseshoe map, which alternately insures
the existence of a strange attractor and chaotic dynamics. Poincaré came across
this chaotic behavior in studying the three-body problem a long time before the
beginnings of modern chaos theory.

1.34.3 Hyperbolic Set (Anosov Diffeomorphisms)

Within the framework of the horseshoe, let us suppose that H is an open set of R
k

and f : H → R
k a C1-diffeomorphism on its image and let us suppose that there

exists a ( f -invariant compact) subset Φ ⊂ H. It is possible to write the following
definition:

Definition 1.34 (Hyperbolic set). The set Φ is said hyperbolic for the map f if there
exist C > 0, λ ∈]0,1[ and for any x ∈ Φ a decomposition R

k = Es
x⊕Eu

x into stable
and unstable subspaces such that:

(1) For any v ∈ Es
x, ‖Dx f n(v)‖ ≤Cλ n ‖v‖ , (n � 0).

(2) For any v ∈ Eu
x , ‖Dx f−n(v)‖ ≤Cλ n ‖v‖ , (n � 0).

(3) Dx f (Es
x) = Es

f (x), Dx f (Eu
x ) = Eu

f (x).
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(It could be shown that the “horseshoe set Φ” is a hyperbolic set, by choosing for
example λ = 1/3.)

Definition 1.35 (Anosov diffeomorphism). A diffeomorphism of the “torus”
f : Tk → Tk is called “Anosov diffeomorphism” if Tk is a hyperbolic set for f .

1.34.4 Symbolic Dynamics

Dynamical systems are often ciphered (or coded) by means of symbolic dynamics.
The Smale horseshoe is a particular case of symbolic dynamics use. A general case
can be written briefly as follows

ΩN = {θ = (. . . ,θ−1,θ0,θ1, . . .) |θi ∈ {0, . . . ,N−1}} (1.310)

and can be provided with a given topology by means of the following distance:

dλ (θ ,θ ′) =
+∞

∑
n=−∞

|θn−θ ′n|
λ |n|

, λ > 1. (1.311)

The dynamics can be given by the shift42

σ : ΩN →ΩN ,
σ(θ ) = θ ′, θ ′n = θn+1.

(1.312)

Main cases are not defined on all the words of the alphabet but only on a subset
characterized by a matrix which can be noted B and the technique is the following:
given B = (bi j), 0≤ i, j ≤ N−1, bi j = 0 or 1, then let us consider

ΩB =
{
θ ∈ΩN | bθnθn+1 = 1, for n ∈ Z

}
. (1.313)

Definition 1.36 (Topological Markov Chain). The restriction σ|ΩB = σB is called
a “topological Markov Chain”, it is also called a “subshift of finite type”.

1.34.5 Properties of the Smale Horseshoe Map

Changing slightly the notations and using the more usual ones in order to show
different aspects of the Smale horseshoe map, it is possible to write the following
statements and detailed properties:

• The horseshoe map f is an invertible map on R
2.

• S = [0,1]× [0,1] : Unit square in R
2.

42 See “Bernouilli shift”.
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• I0 = S.
• In = f (In−1)∩S, n = 1,2,3, . . ..
• In = f−1(In+1)∩S, n =−1,−2,−3, . . ..
• I+ =

⋂

n≥0
In : vertical lines.

• I− =
⋂

n≤0
In : horizontal lines.

• I = I+∩ I− : Invariant set.
• V0 and V1 : left and right vertical strips.
• H0 and H1 : upper and lower horizontal strips.
• f (Hi) = Vi with i = 0,1.
• Vθ1θ2θ3···θn = Vθ1 ∩ f (Vθ2θ3···θn), after n iterations of f (with θi ∈ {0,1}).
• Hθ0θ−1θ−2···θ−n = Hθ0 ∩ f−1(Hθ−1θ−2···θ−n), after n iterations of f .
• Vθ1θ2··· : Vertical line belonging to I+.
• Hθ0θ−1θ−2··· : Horizontal line belonging to I−.
• . . . ,θ−3,θ−2,θ−1,θ0,θ1,θ2,θ3, . . . : is a bi-infinite sequence.
• E : space of bi-infinite sequences.
• BL : Bernoulli left-shift on E, which can be written as follows (for βi = θi+1)

BL(. . . ,θ−2,θ−1,θ0,θ1,θ2, . . .) = (. . . ,β−2,β−1,β0,β1,β2, . . .), (1.314)

The Smale horseshoe map properties can be written:

1. The set I is an invariant set, with respect to S, of the horseshoe map.
2. Vertical and horizontal lines I+ and I− are each Cantor-like sets.
3. B−1

L on E is “equivalent” to f on I, i.e. under the action of f a point y belonging
to I (y ∈ I) is the same as a Bernoulli right-shift on the corresponding sequence
in E.

4. Let us consider 2 initially very close points in I, with respect to a metric and
provided with the distance defined on E:

d(θ ,β ) =
∞

∑
i=−∞

|θi−βi|
2|i|

, (1.315)

move away quickly as f is iterated. This property is regarded as the sensitive
dependence on initial conditions.

5. The horseshoe map contains a countable set of periodic orbits of arbitrarily long
periods (possibly infinite).

6. The horseshoe map contains an uncountable set of (bounded) non-periodic
orbits.

7. The horseshoe map contains a dense orbit.

The last properties (4) (5) (6) (7) are used to characterize chaotic dynamics in
this framework.
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1.34.6 Folding and Unfolding Mechanism: Horseshoe
and Symbolic Dynamics (Symbolic Coding)

It is fundamental to understand that it is the folding and unfolding mechanism which
allows the description of a chaotic system in terms of symbolic dynamics, as it is pos-
sible to observe on the horseshoe map f . Let us suppose that we are in a plane, then
the Symbolic dynamics acts from the plane to the plane and can be geometrically
explained. As it was seen previously by means of mathematics, the starting unit
square is initially stretched in a direction, then flattened in another. The long rib-
bon, which is thus obtained, is then folded in the horseshoe shape so as to intersect
the initial square in two horizontal bands H0 and H1. In the case which is depicted
in the figure below: The initial unit square is horizontally stretched, then vertically
flattened. One of the halves of the long ribbon, which is thus obtained, is then folded
on the other. The invariant set of the map f can be ciphered (or coded) symbolically
by means of the partition of this set in two horizontal bands {H0,H1}, or similarly
in two vertical bands {V0,V1}.

By means of the map f , there exists Φ an invariant set of points, and the points
belonging to it never leave the unit square. For each iteration, the orbit of an initial
point of the invariant set Φ is necessarily inside one or the other of the two bands,
respectively associated with symbols 0 and 1. This method is called Symbolic Cod-
ing of trajectories. Each point p of the invariant set Φ is associated with a bi-infinite
symbolic sequence which is noted ∑(p) and built with symbols indicating what
are the bands successively visited by the orbit of the point under the action of the
horseshoe map f :

∑(p) = · · ·θ j · · ·θ−2θ−1 · θ0θ1θ2 · · ·θi · · · , with θi = i if f i(p) ∈ Hi (1.316)

The θ0 symbol (after the point ·) indicates in which band the point p is located. The
symbolic sequence (1) is broken up into two sequences, the first sequence is the
forward sequence: ∑+(p) = θ0θ1θ2 · · ·θi · · · corresponding to the future of p, and
second is the backward sequence written: ∑−(p) = θ−1θ−2 · · ·θ j · · · corresponding
to its past. The process can be extended to another partition based on two vertical
ribbons V0 and V1 observed on the preceding figure. The most important subject
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to understand is that the equivalence or correspondence between the points of the
invariant set and infinite binary sequences is a bijection. Indeed, a simple mea-
surement of the state of the system makes it possible to determine the system. The
purpose is to know in which band it is. By means of the partition {V0,V1}, the points
whose orbit remains in the unit square can be associated with a bi-infinite symbolic
sequence ∑(p) = · · ·θ−2θ−1 · θ0θ1 · · · .

The figure above depicts the mechanism to create the set of points such that the n+
first symbols of ∑+(p) and the n− first symbols of ∑−(p) coincide.

A : n− = 1, n+ = 1,

B : n− = 2, n+ = 0,

C : n− = 0, n+ = 2,

D : n− = 2, n+ = 2.

The symbols of the backward sequence make it possible to localize a point vertically,
and the symbols of the forward sequence make it possible to localize a point hori-
zontally. Obviously, the point is localized with a better precision when the number
of known symbols increases.

1.34.7 Smale–Birkhoff Homoclinic Theorem

Closely related to the Smale (horseshoe map) topology43 and to the hyperbolicity
concept, it is interesting to present the following fundamental theorem.

43 See also homoclinic tangle.
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Theorem 1.11 (Smale–Birkhoff homoclinic theorem). Let f be a “diffeomor-
phism” (C1) and suppose p is a “hyperbolic fixed point”. A homoclinic point is a
point q �= p which is in the stable and unstable manifold. If the stable and unstable
manifold intersect transversally44 at q, then q is called transverse. This implies that
there is a homoclinic orbit γ(q) = {qn} such that limn→∞ qn = limn→−∞ qn = p.
Since the stable and unstable manifolds are invariant, we have qn ∈ W s(p) ∩
W u(p) for all n ∈ Z. Furthermore, if q is transversal, so are all qn since f is a
diffeomorphism.

The following figure is a sketch of behaviors in this framework (with p the
hyperbolic fixed point and q the homoclinic point which is called transverse):

Example: Let us consider the following map ϕ :

x1 = x + y1, y1 = y + ax(x−1), (1.317)

for 0 < a < 4 (Arrowsmith–Place dynamics). There are fixed points at (x,y) = (0,0)
and (1,0) and the point (0,0) is non-hyperbolic. The fixed point (1,0) is an hyper-
bolic saddle point with its invariant stable and unstable manifolds. At (0,0) the
linear approximation is conjugate to an anticlockwise rotation through angle θ , with
2sinθ = (a(4− a))1/2 and 2cosθ = (2− a). Similarly, at (1,0) the linearization
gives: s = u{−k± (a(4 + a)1/2)/2} with (u,s) local coordinates at (1,0). Then, in
order to complete the homoclinic tangle, consider the inverse map ϕ−1:

x = x1− y1, y = y1−ax(x−1), (1.318)

The result of this device is shown in Fig. 1.82; we can observe the homoclinic tangle
with the non-hyperbolic point at (0,0) and the hyperbolic saddle point at (1,0).

44 see Arnold about Transversality.
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Fig. 1.82 Non-hyperbolic point at (0,0) and hyperbolic saddle point at (1,0)

1.34.8 Hyperbolicity and Hartman–Grobman Theorem:
Hyperbolic Nonlinear Fixed Points

Let us consider as a preliminary the following definitions and theorems concerning
the properties of flows and diffeomorphisms. We will use the following notations:
discrete dynamical systems are written as the iteration of a function or map g as
follows:

xt+1 = g(xt), t ∈ N or Z. (1.319)

In the case where t is continuous, the dynamics are written by a differential equation
as follows:

dx
dt

= ẋ = X(x) (1.320)

and the solution of this equation can be described by a flow φt with velocity given by
the vector field X. Moreover, x gives the state of the system and the values taken by x
depict the state of the system or the phase space. The phase space can be Euclidean,
or non-Euclidean (see differential manifolds).

Definition 1.37 (Homeomorphism). h : U →V is a homeomorphism if it is injec-
tive and continuous and if its inverse is continuous.

Definition 1.38 (Diffeomorphism). A map g : U → V is a diffeomorphism if it
is a homeomorphism and if g and the inverse map g−1 are differentiable. Any
diffeomorphism is a homeomorphism, but the converse is false.

Let us recall some basic elements concerning diffeomorphisms, vector fields and
differentiable maps. Let us suppose that U is an open subset R

n and V is an open
subset R

m. A function g :U → R is said to be of class Cr if it is r-fold continuously
differentiable. For g :U →V the coordinates in U and V can be written (x1, . . . ,xn)
and (y1, . . . ,ym). Then g can be written contingent on component functions gi : U →
R, with yi = gi(x1, . . . ,xn) and i = 1, . . . ,m. The map g is a Cr-map if gi is Cr for
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each i = 1, . . . ,m. The map g is differentiable if it is a Cr-map (for 1 � r � ∞). The
map g is said to be smooth if it is C∞. (If a map is continuous and not differentiable it
is called C0-map). Then, we can write the definition of a diffeomorphism as follows:

Definition 1.39 (Diffeomorphism). 45 g :U →V is a diffeomorphism if it is a bijec-
tion and both g and g−1 are differentiable mappings. g is called a Ck-diffeomorphism
if both g and g−1 are Ck-maps.

Let us notice that a bijection g : U →V is a diffeomorphism if and only if m = n
and the matrix of partial derivatives

Dg(x1, . . . ,xn) =
[
∂gi

∂x j

]n

i, j=1

is non-singular at every x∈U. Then, for U = R
2 and V = {(x,y)|x,y > 0}, g(x,y) =

(exp(y),exp(x))T is a diffeomorphism due to

Det Dg(x,y) =−exp(x + y) �= 0 (1.321)

for each (x,y) ∈ R
2.

From these recalls and developments, we consider the following notions and
properties concerning diffeomorphisms, flows and the hyperbolicity.

Definition 1.40 (Hyperbolic linear diffeomorphism). A linear diffeomorphism A :
R

n → R
n is said to be “hyperbolic” if it has no “eigenvalues” with “modulus” equal

to unity.

Theorem 1.12 (Contraction, expansion). If A : R
n → R

n is a “hyperbolic linear
diffeomorphism”, then there are subspaces Es and Eu⊆R

n invariant under A, such
that A|Es is a contraction, A|Eu is an expansion and

Es⊕Eu = R
n. (1.322)

Let us consider a simple linear diffeomorphism g : R
p→ R

p, this linear diffeo-
morphism g is a contraction if all its eigenvalues have modulus less than unity, or
it is an expansion if all its eigenvalues have modulus greater than unity. e.g. if the
eigenvalues of g are distinct for any x ∈R

p with k ∈ Z
+

gkx = M−1DkMx (1.323)

with D = [λiδi j]
p
i, j=1 knowing that δi j = 1 if i = j and δi j = 0 if i �= j. The ith column

of M is an eigenvector of g and its eigenvalues λi. For i = 1, . . . , p, if |λi|< 1 then
Dk → 0 as k → ∞. Moreover, the orbit (under the action of g) of any point in R

p

tends to the origin and thus shows a contraction. Conversely, for i = 1, . . . , p, if
|λi| > 1 then Dk → 0 as k → ∞. Moreover, the orbit (under the action of g) of any
point in R

p expands away from the origin and thus shows an expansion.

45 See also diffeomorphism definition in the Appendix.
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Flow: From the point of view of the flow, let us consider the last theorem which
precedes, in this case, the subspaces Es and Eu are respectively identified as the
eigenspaces of eigenvalues with modulus less than 1 and greater than 1. It is fun-
damental to consider that they are called stable and unstable eigenspaces of A.
Directly connected with what precedes, it is also fundamental to consider that the
direct sum of Es and Eu gives the whole of R

n, because A is hyperbolic.46 The
expansion Eu = R

n and the contraction Es = R
n are obviously hyperbolic. More-

over, if Es,Eu are different from R
n the diffeomorphism is considered to be of

saddle-type.
Let us consider a linear transformation A : R

n →R
n, it is possible to describe the

corresponding linear flow on the same spaces as follows:

φt (x) = exp(At)x, (1.324)

with exp(At) the exponential matrix which is defined as follows:

exp(At) =
∞

∑
k=0

(At)k

k!
.

exp(At)x has a vector field Ax and exp(At)x0 is solution of the linear differential
equation ẋ = Ax passing through x0 at t = 0.

Definition 1.41 (Hyperbolic linear flow). The linear flow exp(At)x is hyperbolic
if A has no eigenvalues with zero real part.

Theorem 1.13. Let ẋ = Ax define a hyperbolic linear flow on R
n with dim Es = ns.

ẋ = Ax is said topologically equivalent to the system

ẋs = −xs, xs∈R
ns , (1.325)

ẋu = −xu, xu∈R
nu , (1.326)

with n = ns + nu.

Let A be a hyperbolic linear diffeomorphism with stable and unstable eigen-
spaces respectively Es

A and Eu
A. Define Ai = A|Ei

A, i = s,u. Then Ai is said to be
orientation-preserving (reversing) if Det Ai > 0 (Det Ai > 0).

Conjugacy: A fundamental aspect of the topology relates to the concepts of “equiva-
lence relation” and “Conjugacy”. They make it possible to identify when flows have
the same behavior.

Definition 1.42 (Topologically conjugate diffeomorphisms). Two diffeomorphi-
sms g,q : S→S, are topologically conjugate (or C0-conjugate) if there is a homeo-
morphism h : S→S, such that

h ·g = q ·h. (1.327)

46 See Arnold.
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The topologically Conjugacy for two flows φt ϕt : S → S is defined similarly
with the preceding definition and the preceding equation is replaced by h ·φt = ϕt ·h
with t ∈ R. The definition above shows that the homeomorphism h takes each orbit
of g (or φt ) onto an orbit of q (or ϕt ) preserving the parameter p(t): that means
gp(x) h→ qp(h(x)) for each p ∈ Z, or with the flows φt(x) h→ ϕt(h(x)) for each
t ∈ R.

Theorem 1.14 (Topologically conjugate). Let A,B : R
n →R

n be hyperbolic linear
diffeomorphisms. Then A and B are topologically conjugate if and only if:

(1) dimEs
A = dimEs

B (or equivalently dimEu
A = dimEu

B)
(2) For i = s,u, Ai and Bi are either both orientation preserving or both orientation-

reversing.

A “nonlinear dynamical system” is usually defined on a differentiable manifold,
nevertheless the topological type of a fixed point is characterized by the restriction
of the system to sufficiently small neighborhoods of points. Such neighborhoods
can be selected to lie in a single chart so that only one representative of the system
is involved. Then, in practice it is interesting to use and define diffeomorphisms
and flows on open sets in R

n. Let U be an open subset of R
n and g : U → R

n be a
nonlinear diffeomorphism with isolated fixed point at x∗ ∈U. The linearization of
g at x∗ is given by the well-known formula:

Dg(x∗) =
[
∂gi

∂x j

]n

i, j=1 |x=x∗
. (1.328)

Definition 1.43 (Hyperbolic fixed point). A fixed point x∗ of a diffeomorphism g
is a hyperbolic fixed point if Dg(x∗) is a hyperbolic linear diffeomorphism.

Theorem 1.15 (Hartman–Grobman). Let x∗ be a hyperbolic fixed point of the dif-
feomorphism g : U → R

n. Then there exist a neighborhood N ⊆U of the point x∗
and a neighborhood N′ ⊆U containing the origin such that g|N is “topologically
conjugate” to Dg(x∗)|N′.

From the two preceding theorems it follows that here are 4n topological types of
hyperbolic fixed points for diffeomorphisms: g : U → R

n. They are depicted in the
following invariant manifold theorem (which was already introduced previously in
another way).

Theorem 1.16 (Invariant manifold). Let g : U → R
n be a diffeomorphism with a

hyperbolic fixed point at x∗ ∈U. Then, on a sufficiently small neighborhood N ⊆U
of x∗, there exist local stable and unstable manifolds:

W s
loc(x

∗) = {x ∈U |gn(x)→ x∗ as n→ ∞} , (1.329)
W u

loc(x
∗) = {x ∈U |gn(x)→ x∗ as n→−∞} , (1.330)

with the same dimension as Es and Eu for Dg(x∗) and tangent to them at x∗.
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It is possible to extend and generalize the preceding theorem which makes it
possible to define global stable and unstable manifolds at x∗ as follows:

W s(x∗) =
⋃

m∈Z+

g−m(W s
loc(x

∗)), (1.331)

W u(x∗) =
⋃

m∈Z+

gm(W u
loc(x

∗)), (1.332)

when W s(x∗) and W u(x∗) meet transversely at one point, they must do so infinitely
many times and the result is homoclinic tangle. The stated concepts above have a
natural extension and generalization to the periodic points of g. Let us consider x∗
belonging to a α-cycle of g then x∗ is said to be a hyperbolic point of g if it is a
hyperbolic fixed point of gα . Then, the orbit of the fixed point x∗ under the action of
g is referred to as a “hyperbolic periodic orbit”. Then, the topological type of this
orbit is determined by that of the corresponding fixed point of gα . The last theorem
above can be extended to gα (with α-cycle).

Flow: Obviously, it is possible to apply the previous concepts and theorems to non-
linear flows. Let us give the following definition and theorem, but before let us
provide the convenient following basic elements:

• X is a vector field.
• U an open subset of R

n.

• dx
dt

= ẋ = X(x) is the flow, with x ∈U .

• Let ẋ = X(x) be such that X(x∗) = 0, x∗ ∈U .
• Linearization of ẋ = X(x) at x∗ is the linear differential equation written:

ẏ = DX(x∗)y, (1.333)

with y = (y1, . . . ,yn)T are local coordinates at x∗, and where

DX(x∗) =
[
∂Xi

∂x j

]n

i, j=1 |x=x∗
. (1.334)

Definition 1.44 (Hyperbolic singular point of the flow). A singular point x∗ of a
vector field X is said to be hyperbolic if no eigenvalue of DX(x∗) has zero real part.

Considering that x∗ is a singular point of the vector field X then it is a fixed point
of the flow ẋ = X(x). The definition above shows that x∗ is a hyperbolic singular
point of the vector field X if the flow exp(DX(x∗)t)x of the linearization of ẋ = X(x)
is hyperbolic in the sense of “hyperbolic linear flow” definition.

Theorem 1.17 (Hartman–Grobman (flow)). Let x∗ be a hyperbolic fixed point of
ẋ = X(x) with the flow φt : U ⊆R

n → R
n. Then there exists a neighborhood N of x∗

on which φ is “topologically conjugate” to the linear flow exp(DX(x∗)t)x. Homo-
clinic tangle (Fig. 1.83), where stable and unstable manifolds of the saddle-point x∗
intersect an arbitrary number of times (or infinitely). x∗ is also the hyperbolic fixed
point and q is the transverse homoclinic point.
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Fig. 1.83 Homoclinic tangle

1.34.9 Hyperbolic Structure

An invariant set Φ of the horseshoe diffeomorphism g : U2 → U2 is said to be a
hyperbolic set or to have a hyperbolic structure for g. From the definitions exposed
previously concerning the “hyperbolic fixed points” and “hyperbolic nonlinear fixed
points” for a map gα , there can be “derived” some important associated notions of
“hyperbolic periodic orbit”, “hyperbolic invariant circle”, i.e. the non-trivial hyper-
bolic set (about hyperbolicity see statement and discussion by Arrowsmith and Place
1990). When we are involved in local behaviors of a map at a fixed point (concerning
Euclidean or Banach spaces), the eigenvalues of the derivative map Dgα express the
characteristics of the hyperbolic fixed point. However, if we analyze an invariant set
Φ of a horseshoe diffeomorphism, this method cannot be applied to characterize the
hyperbolicity. The called upon reasons in this framework are that we are “located”
in manifolds47 and differentiable manifolds48 and also the complexity of the invari-
ant set Φ does not make it possible to explain it by means of a fixed-point of gα
(e.g. invariant set Φ can have aperiodic orbits which cannot deal with a fixed-point).
Indeed, in the invariant set Φ, x and g(x) are different points and this difference (or
distance) must be taken into account in the hyperbolicity. However, there is a way
of making it by replacing the derivative map by the tangent map. Consequently, the
notions of hyperbolic nonlinear fixed points, invariant manifolds and the Hartman–
Grobman theorem (exposed previously) can be used and applied. Firstly, they can
be applied to diffeomorphisms g : M →M when M is a n-dimension differentiable
manifold (which is not a subset of R

n). Thus, as we said above, the derivative map

47 Manifold: A topological space which is locally Euclidean; there are four types: topologi-
cal, piecewise linear, differentiable, or complex analytic functions of those in Euclidean space;
intuitively, a surface. (Furthermore, a manifold can have global topological properties, such as
non-contractible loops, that distinguish it from the topologically trivial R

n.) (See Appendix.)
48 Differentiable manifold: Topological space with a maximal differentiable atlas; roughly speak-
ing, a smooth surface (see Appendix for complete definitions). Differentiable atlas: A family of
embeddings hi : En → M of Euclidian space into a topological space M with the property that
h−1

i h j : En → En is a differentiable map for each pair of indices i, j. Atlas: An atlas for a manifold
is a collection of coordinate patches that covers the manifold.
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Fig. 1.84 TMx: tangent space to M at x (left). And x orbit through the map g in M (right)

Dg is replaced by the tangent map Tg. Thus, let us consider the derivative map

Dg(x∗) : R
n → R

n (1.335)

which is usually used to analyze the fixed-point x∗ of g : R
n → R

n (see preceding
section about hyperbolic nonlinear fixed point) and let us replace it by

Tgx∗ : TMx∗ → TMx∗ (1.336)

knowing that TMx∗ is the tangent space to M at x∗ (Fig. 1.84).
Since M is an n-dimension differentiable manifold, then TMx is regarded as an

equivalent class of curves on M having the same tangent vector at x.49 Thus, let
us consider ρ(0) = x∗ the parameterized curve on M passing through x∗ and more
generally let us consider ρ(t) to study g near x. (with t belonging to R or to an
interval of R). The tangent vector at x∗ is obtained by differentiation of ρ(t) with
respect to t. Such an approach can be carried out only if we use a local chart.

Let us recall briefly how to define a “local chart” and some very useful associated
concepts: if we consider a manifold M of dimension n, then for any x ∈M there is a
neighborhood U ⊆M containing x, and we consider a homeomorphism h : U → R

n

with V = h(U)⊆R
n from which the coordinates curves can be mapped back onto U.

Then, h can be taken as the local coordinates on the local surface (U of M) which is
also called a patch.50 The pair (V,h) is said a chart which can be taken to determine
differentiability on the neighborhood U . Moreover, several open sets by means of
the patches can be necessary to cover51 the whole manifold. The following graph-
ical example of the sphere is given to show a differentiable manifold and a patch
(Fig. 1.85).Similar decompositions could be shown, e.g. the torus or the cylinder.

49 For a report or discussion see Chillingworth (1976) and Arrowsmith and Place (1990).
50 Patch (or local surface): A “patch”, also called a “local surface”, is a differentiable mapping
f: U → R

n, where U is an open subset of R
2. More generally, if A is any subset of R

2, then a map
: A→R

n is a patch provided that f can be extended to a differentiable map from U into R
n, where

U is an open set containing A. Here, f(U) (or more generally, f(A)) is called the map trace of f (see
Appendix).
51 Cover: An element a of a partially ordered set covers another element b if a is greater than b,
and the only elements that are both greater than or equal to b and less than or equal to a are a and
b themselves. Covering: For a set E, a collection of sets whose union contains E.
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Fig. 1.85 A differential manifold (sphere) and patch of local (polar) coordinates

Fig. 1.86 Stereographic projection of the sphere

Besides, more generally to understand the framework, we have the opportunity to
show the stereographic projection of the sphere with patches (Fig. 1.86).

Furthermore, consider a map g : U →U, from this map it is possible to build a
new map ǧ : V →V, such that ǧ = h ·g ·h−1 (see commutative diagram below):

and if it is also assumed that g is a Cr-map on V, we are thus provided with the
preliminary elements which make possible to define a local diffeomorphism on a
manifold M. This induces that when we want a global description of a manifold M
by means of charts we need to cover it with a collection of the open sets Ui, each one
being associated with a local chart (Vi,hi) (see Arrowsmith and place 1990, Arnold
1973, Chillingworth 1976).

After these reminders, remember also that for M an n-dimension differentiable
manifold, the tangent vector at x∗ is obtained by differentiation of ρ(t) with respect
to t (remember that ρ(0) = x∗ is the parameterized curve on M passing through
x∗ and in a generic way we write ρ(t) to study g near x). Such an approach can
be carried out only if we use a local chart (Vi,hi). It is possible to gather ǧ, ρ̌,
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(Vi,hi) and to provide the local elements to study the differentiability as follows:
ǧi = hi ·g ·h−1

i , ρ̌i = hi ·ρ,

�

(g ·ρ)i = hi · (g ·ρ). (1.337)

These local elements verify:
�̇

(g ·ρ)i(t) = ǧi · (ρ̌i(t)). With a manifold M (at least) of
class C1, the preceding equation can be differentiated to provide at t = 0:

�̇

(g ·ρ)i(0) = Dǧi · (ρ̌i(0))
·
ρ̌i(0). (1.338)

�̇

(g ·ρ)i(0) and
·
ρ̌i(0) are i-representatives of components of TMx∗ in (Vi,hi). Since

we postulate being in presence of a hyperbolic fixed-point, (locally) this means
that Dǧi(x̌

∗
i ) has no eigenvalue with unit modulus (see hyperbolic fixed point def-

inition and the associated definitions). The derivative map Dǧi(x̌
∗
i ) is the local

representative of the tangent Tgx∗ .



172 1 Nonlinear Theory

The preceding figure is used to illustrate the general framework. The invariant
manifold theorem (see a previous section) makes it possible to provide the stable
and unstable manifolds in each chart for gα concerning a hyperbolic periodic orbit.
The subspaces or eigenspaces Eu

xe and Eu
xe are tangent to the images of W u

xe and W u
xe .

Let us observe in the figure the two charts (Vi,hi) and (Vj,h j). The homeomorphism
h makes it possible to pass from a neighborhood of M to V (locally for i, j) and make
it possible to map back onto this neighborhood of M (recalls: in a generic way, for
any x ∈ M there are a neighborhood U ⊆ M containing x and h : U → R

n with
V = h(U) ⊆ R

n from which the coordinates curves can be mapped back onto U,
h−1(V ) = U).

At the same time, it is possible to provide a metric for TMx∗ (and TVx̌∗i ) which
can be applied to all w of stable and unstable eigenspaces. (We have chosen the
lowercase notation w which differs from W or W and expresses a notion which is
different but closely related of course.) We thus introduce the concept of Rieman-
nian structure for differentiable manifolds. However, it is important to understand
that (relevant hypothesis for a hyperbolic fixed-point) when x∗ lies in the overlap
of two charts (Vi,hi) and (Vj,h j), we must choose a metric for each chart and
not for all w ∈ TMx∗ . Each metric is selected on TVx̌∗i and TVx̌∗j , and they respect

|w̌i|i =
∣
∣w̌ j
∣
∣

j where w̌i is the i-representative of w and w̌ j is the j-representative
of w. Moreover, it is of primary importance to understand that the common value
defines ‖w‖x∗ for each w ∈ TMx∗ . For all points x of all overlaps of an atlas,52 these
types of metrics ‖w‖x (positively definite) constitute a Riemannian structure for the
manifold M. (Recall: an Atlas for a manifold is a collection of coordinate patches
that covers the manifold.) Thus, provided with this Riemann structure, the mani-
fold M can depict the hyperbolic characteristic of the hyperbolic fixed-point x∗ by
verifying that, first (1):

TMx∗ = Es
x∗ ⊕ Eu

x∗ , (1.339)

with Es
x∗ is obviously the stable eigenspace and Eu

x∗ is the unstable eigenspace of
Tgx∗ ; and second (2), there exist λ ,γ,δ with λ ,γ > 0, and 0 < δ < 1 such that:

‖(Tgx∗)
n (w)‖x∗ > λδ n ‖w‖x∗ for all w ∈ Es

x∗ , (1.340)
‖(Tgx∗)

n (w)‖x∗ < γδ−n ‖w‖x∗ for all w ∈ Eu
x∗ , (1.341)

with n ∈ Z
+.

Hereafter, the figure is a schematic definition of a norm ‖·‖x∗ on TMx∗ in terms of
norms on TVx̌∗i and TVx̌∗j . The compatible norms on TVx̌∗i and TVx̌∗j are respectively
|·|i and |·| j .

52 Atlas: for a manifold is a collection of coordinate patches that covers the manifold.
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At this stage, we can also (explicitly) re-introduce the orbit and recurrence notions
in the writings and notations. So, considering that the map g has a α-periodic orbit,
the invariant set Φ(α) = {x0,x1, . . . ,xα−1}, it comes xe = ge(x0) is the fixed point of
gα . Then, it is possible to re-write the preceding conditions as follows, by verifying
that, first (1):53

TMxe = Es
xe⊕Eu

xe and Tgxe

(
Es

xe

)
= Es

g(xe)
, Tgxe

(
Eu

xe

)
= Eu

g(xe)
(1.342)

with Es
x∗ is obviously the stable eigenspace and Eu

x∗ is the stable eigenspace of Tgx∗ ;
and second (2), there exist λ ,γ,δ with λ ,γ > 0, and 0 < δ < 1 such that:

∥
∥
(
Tgxe

)n w
∥
∥

gn(xe)
> λδ n ‖w‖xe

for all w ∈ Es
xe , (1.343)

∥
∥
(
Tgxe

)n w
∥
∥

gn(xe)
< γδ−n ‖w‖xe

for all w ∈ Eu
xe . (1.344)

Definition 1.45 (Hyperbolic invariant set). An invariant set Φ is said to be hyper-
bolic for g (or to have a hyperbolic structure) if for each x ∈ Φ, the tangent space
TMx∗ splits into two linear subspaces Es

x, Eu
x such that (1):

Tgx (Es,u
x ) = Es,u

g(x), (1.345)

53 For discussion and developments, ref. to Arrowsmith and Place (1990).
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and (2) the inequations:
∥
∥
(
Tgxe

)n w
∥
∥

gn(xe)
> λδ n ‖w‖xe

for all w ∈ Es
xe

, (1.346)
∥
∥
(
Tgxe

)n w
∥
∥

gn(xe)
< γδ−n ‖w‖xe

for all w ∈ Eu
xe

, (1.347)

with xe �→ x, are satisfied for all positive integers n, and (3) the subspaces Es
x, Eu

x
depend continuously on x ∈Φ.

Theorem 1.18 (Insets and invariant manifold). Let g : M → M be a diffeomor-
phism on a compact manifold without boundary with a hyperbolic non-wandering
set Ω. If the periodic points of g are dense in Ω, then Ω can be written as a disjoint
union of finitely many basic sets Ωi:

Ω = Ω1∪Ω2∪·· ·∪Ωk. (1.348)

Each Ωi is “closed”, “invariant” and contains a “dense orbit” of g. Furthermore,
the splitting of Ω into basics sets is unique and M can be decomposed as a disjoint
union

M =
k⋃

i=1

in(Ωi) , (1.349)

where in(Ωi) = {x ∈M|gm(x)→Ωi, m→ ∞} is the inset54 of Ωi.

1.34.10 Homoclinic Orbit and Perturbation: Melnikov

Transverse homoclinic points can occur in the Poincaré map of some types of three-
dimensional flows. In the literature, there are many studies about periodic solutions
of systems with dimension larger than 2.55 The theory of periodic solutions uses
functional analytic and topological methods. (It is known that due to the translation
property of solutions of autonomous equations, periodic solutions of these equations
correspond with closed orbits in phase space.) More generally, let us consider non-
autonomous equations. It is interesting to study the “so-called” T -mappingαT . If we
consider an equation ẋ = f (t,x) in R

n and its solution x(t;x0) which begins at t = t0
in x0, then such a point x0 gives (t0 +T ;x0) knowing T constant, and selected so that
the solutions exists (with 0 ≤ t− t0 ≤ T. Moreover, the set S ⊂ R

n of points x0 to
which we can assign such a point x(t0 +T ;x0) is mapped by the T -mapping αT into
R

n, αT : S→R
n. In the mapping αT , T is taken as a parameter. x0 is a fixed point of

αT if αT (t0;x0) = x0 or αT (t0 +T ;x0) = x0. In such a way, let us consider in R
n the

generic equation ẋ = f (t,x) which is T -periodic f (t +T,x) = f (t,x), with t ∈R and
x ∈ R

n. It is known that the equation has a T -periodic solution if and only if the T -
mapping αT has a fixed point. The most important notion here is to understand that

54 Inset: roughly speaking an inset is a map within a map, either at a smaller scale to show relative
location, or a larger scale to show detail.
55 Amann (1983), Hale (1969), Sansone and Conti (1964), Cesari (1971).
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we show the fixed point without explicitly knowing the “solutions”.56 After these
recalls, let us consider the following basic model:

ẍ + x− x2 = ε f (t,x), (1.350)

where f is T -periodic in t. Then, we can consider the T -map of the x, ẋ-phase-plane.
ε � 0 is a perturbation.57 Below, for ε = 0, the left-figure shows the unperturbated
phase-plane (which exhibits in particular a saddle-loop), and for ε > 0, the right
figure shows the invariant manifold of point Pε in the T -map (ε > 0) and the distance
(function).

When a Poincaré map exhibits a saddle-point with a closed loop, an orbit starting
on such a loop is said homoclinic. When t → +∞, the orbit approaches the saddle-
point, i.e. a periodic solution, and when t →−∞, the homoclinic orbit approaches
the same periodic solution. When the dimension of a map is higher than two, the
fixed point is “hyperbolic”, i.e. the real parts of the associated eigenvalues are
nonzero. Moreover, when a loop connects two saddle points (or two hyperbolic fixed
points in more dimensions), the orbits on such a loop are said heteroclinic. When
t → +∞, they approach a periodic solution, and when t → −∞, they approach a
periodic solution of different type.

Starting from (left-figure above) the saddle-loop, i.e. a saddle-point with a closed
loop, when a small perturbation ε > 0 is introduced, the saddle-point is slightly
shifted and becomes a hyperbolic fixed point. Then, the saddle-loop is transformed
into a stable and unstable manifold. When these two manifolds intersect, we have at
such an intersection point a homoclinic orbit as the point belongs to both man-
ifolds. Consequently, when the two manifolds intersect, these manifolds usually
intersect an infinite number of times, providing thus an infinite number of homo-
clinic orbits. Moreover, the map contains a horseshoe map. The figure relative to
the transformation shows a homoclinic tangle.

The Melnikov method consists in calculating the distance and thus the possibility
for the stable and unstable manifold to intersect. The method uses the properties of
unperturbated solutions.58

56 See also Brouwer’s theorem and lemma, and see Amann (1983).
57 see also the Kolmogorov–Arnold–Moser theorem (1954) outlined by Kolmogorov, which was
subsequently proved in the 1960s by Arnold and Moser.
58 See Guckenheimer and Holmes (1983) and Wiggins (1988).
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Let us consider an alternative approach in order to show the Melnikov method
(and let us change the notation). Thus, consider a (planar) differential equation:

ẋ = g0(x), at x = 0, (1.351)

which contains a hyperbolic saddle-point at x = 0 and a homoclinic saddle connec-
tion ϒ, as it is possible to observe in the figure below.

Let us assume the flow of such a dynamics in R
2×Q1 which is written

ẋ = g0(x), θ̇ = 1. (1.352)

Then the saddle-point is a saddle periodic orbit ξ0, with θ ∈ Q1,x ∈ R
2. It is sup-

posed that the stable manifold Ws(ξ0) intersects the unstable manifold Wu(ξ0) (in a
cylindrical surface ϒ× Q1 ⊆R

2×Q1). However, this case is not automatic (indeed,
through a Poincaré section ∑θ , the stable and unstable manifolds of the fixed point
usually do not intersect transversely). Provided with this device, then the Melnikov
approach consists in applying small perturbations to the preceding system, it comes

ẋ = g0(x)+ εg1(x,θ ), θ̇ = 1, (with ε ∈R
+), (1.353)

with θ ∈ [0,2π ]. In order to understand the influence of the perturbation, let us
introduce the following proposition.

Proposition 1.4 (Same topological type). Let x∗ be a hyperbolic fixed point of the
diffeomorphism g : U → R

n. Then there is a neighborhood A of x∗ in U and a
neighborhood B of g in the set of C1-diffeomorphisms g : U(⊆ R

n)→ R
n with the

C1-norm such that every map q ∈ B has a unique hyperbolic fixed point y∗ ∈ A of
the same topological type as x∗.

It follows from the preceding proposition that when a sufficiently small value
of ε is selected, the system also has a hyperbolic periodic orbit ξε near ξ0. But
the invariant manifolds Ws(ξε) and Wu(ξε) need not intersect to design a cylin-
der (see Fig. 1.87). The distance between these two manifolds is the subject of the
Melnikov function. Remember that x0 ∈R

2, ϒ is the saddle connection of the unper-
turbated system and x0 belongs to this saddle connection ϒ. The Poincaré section
is dependent on θ : ∑θ . (We select a perpendicular section called Lp to the sad-
dle connection ϒ in the plane of the Poincaré section ∑θ ). The perturbated system
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Fig. 1.87 Unperturbated system ε = 0 (left). Perturbated system ε > 0 (right)

is characterized by ξε ,Ws(ξε),Wu(ξε ), which is respectively the orbit, the stable
manifold and the unstable manifold. We can observe the behavior of this system
in the plane of the Poincaré section ∑θ (similar to the Poincaré map59). The inter-
sections are written: Ws(ξε )∩∑θ , Wu(ξε )∩∑θ , ξε ∩∑θ = x∗ε,θ , where x∗ε,θ is the
hyperbolic saddle point close to x = 0.

59 The Poincaré map is written Pε,θ :∑θ −→∑θ .
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The distance (relates to the Melnikov function) between Ws(ξε) and Wu(ξε ) is cal-
culated along Lp. Usually, this distance varies according to θ if ε is strictly positive
(ε > 0). Along Lp it is possible to observe closest to x0 the intersection points Pu

and Ps with the curves of each manifold Ws(ξε ) and Wu(ξε). The distance function
is time-dependent, thus the Melnikov function can be written as follows:

M(θ ) =
∫ +∞

−∞
g0(x0(t−θ ))∧g1(x0(t−θ ),t)dt (1.354)

with
Δε(θ ,θ ) = εM(θ )+ O(ε2). (1.355)

O(.) is a type of asymptotic notation.60 Knowing that Δε(t,θ ) is |g0(x0(t−θ ))|
times the component of the vector [xu(t;θ ,ε)−xs(t;θ ,ε)] perpendicular to g0(x0
(t−θ )), and Δε(θ ,θ ) can be written

Δε(θ ,θ ) = ε
∫ +∞

−∞
g0(x0(t−θ ))∧g1(x0(t−θ ),t)dt + O(ε2). (1.356)

Proposition 1.5 (Transverse intersection). If M(θ ) has simple zeros, then for suf-
ficiently small ε > 0, Wu(x∗ε,θ ) and Ws(x∗ε,θ ) intersect transversely for some θ ∈
[0,2π ]. Otherwise, if M(θ ) is delimited away from zero, then Wu(x∗ε,θ )∩Ws(x∗ε,θ )=
∅ for all θ .

The Melnikov method is particularly interesting because it can be applied to
the Duffing attractor whose dynamical system can be written as follows: ẋ = y,
ẏ = x− x3 + ε(acosθ −by), θ̇ = 1, it is periodic in θ and the most typical behavior
is shown in the figure hereafter for εa = 0.4 and εb = 0.25.61

It is an interesting exercise to apply the Melnikov function and Poincaré map to the
Duffing attractor; in order to observe the system behavior according to the parameter
setting and in particular for different ε values (for discussions and developments,

60 The symbols O(x) (sometimes called the O-symbol, O-notation) are a type of asymptotic
notation collectively known as Landau symbols.
61 Using the Euler approximation.
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see Arrowsmith and Place, Guckenheimer and Holmes). We know that the Duffing
dynamical system can be written

ẋ = y, ẏ = x− x3 + ε(acosθ −by), θ̇ = 1, (1.357)

when ε = 0, the system becomes ẋ = y, ẏ = x− x3, θ̇ = 1. It can be written as a
Hamiltonian system such that: H(x,y) = [

(
y2− x2 + x4/2

)
]/2 and with H(x,y) = 0,

the system describes two homoclinic orbits that we can write Υ±0 , the saddle point
is localized at x = 0. For discussions about the case, when ε > 0 see Guckenheimer
and Holmes and for the Melnikov function also see Arrowsmith–Place. The follow-
ing figures briefly depict the typical behaviors of the Duffing oscillator by means
of the Poincaré map: (1) Phase-portrait of the system for ε = 0 such that ẋ = y,
ẏ = x− x3, θ̇ = 1, which exhibits two homoclinic orbits Υ±0 and the stable and
unstable manifolds with the saddle point at x = 0; (2) Trajectory sketch of stable
and unstable manifolds for εa = 0.10, εb = 0.25; (3) Trajectory sketch of stable and
unstable manifolds for εa = 0.40,εb = 0.25; (4) Euler approximation of the (real)
attractor for ε = 0.40, εb = 0.25.

(3)

(4)(2)

(1)

Within the general framework of this section about the Melnikov method which is
related to the Smale-horseshoe map, now we want to highlight the horseshoe map
and its associated dynamics. As shown in a previous section, the homoclinic tangle
depicted in Fig. 1.88 (theoretical) expresses the stable and unstable manifolds of the
saddle-point x∗ which intersect an arbitrary number of times (or infinitely). And x∗
is called the hyperbolic fixed point and q is the transverse homoclinic point.

Let us consider the domain Δ which is shown in Fig. 1.89.62 By invariance Δ
must maintain contact with Wu(·) and with Ws(·) under the action of iterations by

62 Domain: The term domain is most commonly used to describe the set of values for which a map
is defined.
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Fig. 1.88 Homoclinic tangle

g. Figure 1.89 shows the domain Δ, then maps g(Δ), g2(Δ), g3(Δ), g4(Δ), g5(Δ),
g6(Δ), g7(Δ). The remaining iterates of Δ appear in Fig. 1.89 (right). Figure 1.89
(right) shows that g7(Δ) intersects Δ, and has the shape of a horseshoe map. Let us
notice that g7(Δ) has the shape of a horseshoe. It can be demonstratedthatΔ includes
an invariant Cantor set Φ on which g7 is topologically conjugate to a full shift on
two “symbols” (see Wiggins 1988). Such elements imply that g7 has:

– A countable infinity of periodic points of all possible periods
– An uncountable infinity of non-periodic points
– A dense orbit, that is a point in Φ whose orbit under g7 approaches every point in
Φ arbitrarily closely.

1.34.11 Shilnikov Phenomenon: Homoclinic Orbit in R
3

Let us consider a three-dimensional phase flow of the following autonomous equa-
tion ẋ = f (x), x ∈ R

3.63 Then suppose that x = 0 is an equilibrium point with a
complex pair of conjugate (unstable) eigenvalues λ , λ̄ and real positive eigenvalue
γ > 0. It is supposed that Reλ < 0, |Reλ |< γ and there exists one homoclinic orbit

Fig. 1.89 Domain: Δ (left). Horseshoe map: gα (Δ) (right)

63 See for an introduction Wiggins (1988), and also Glendinning and Sparrow (1984), Arneado
et al. (1985).
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coming from x = 0 for t →−∞ which depicts a spiral towards the origin as t →+∞.
Figure 1.90 describes a homoclinic orbit coming from the origin in R

3 and spi-
ralling back to it. Due to the existence of the homoclinic orbit, it is interesting to
define a Poincaré (return) map in its neighborhood. Such a map implies stretching,
compressing and winding, which is a consequence of the hyperbolicity and horse-
shoe map. Shilnikov demonstrated that there is a horseshoe structure and then chaos
in the return map defined near the homoclinic orbit. The Rossler map (see Odes
demonstrations) reproduces this type of structure. Such Shilnikov phenomena have
also been studied in R

4. This topic which consists in showing the existence of a
horseshoe map in the flow near a homoclinic orbit have been applied by Devaney
to Hamiltonian systems (1976). For such an application, it is necessary to have an
orbit homoclinic to an equilibrium point in R

4 with a complex pair of unstable
eigenvalues or an energy manifold in R

6 (see Verhulst and Hoveijn 1992).
The Shilnikov phenomenon was detected in a large number of applications

(see, e.g. continuous-time model of inventory business cycles, Gondolfo 1983 and
Lorentz 1989b). Shilnikov (1965, 1970) proved the existence of horseshoe-like
dynamics in a three-dimensional (continuous-time) dynamical system in the pres-
ence of a homoclinic orbit. We have expressed the Shilnikov argument above, from
the system described previously: ẋ = f (x) with x ∈ R

3 and with complex pair of
conjugate unstable eigenvalues64 λ , λ̄ (with Reλ < 0, |Reλ | < γ) and with a real
positive eigenvalue γ > 0. If we explicitly write the pair of complex conjugate
eigenvalues as follows a± ib, (where a corresponds to Reλ real part of the com-
plex number), then we can write the theorem proved by Guckenheimer and Holmes
(1983, p. 319) as follows:

Theorem 1.19 (Countable set of horseshoes). If |a| < γ , then the flow φt , associ-
ated with the system ẋ = f (x) (x ∈ R

3) can be perturbated to φ ′t , has a homoclinic
orbit ξ ′ near ξ , and the return map of ξ ′ for φ ′t has a countable set of horseshoes.

The theorem shows that the systems, for which the stated conditions hold, pos-
sess invariant chaotic sets. In addition, the Smale–Birkhoff homoclinic theorem (see
a previous section) establishes the relation between homoclinic and horseshoe-like
invariant sets. We know that this theorem states that the existence of transver-
sal homoclinic orbits of a diffeomorphism implies the existence of horseshoe-like
invariant set. The transversal homoclinic orbits mean the transversal intersections of
stable and unstable manifolds of a hyperbolic fixed point.

Fig. 1.90 Shilnikov bifur-
cation and homoclinic orbit
in R

3

64 With Reλ < 0, |Reλ |< γ .
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1.35 Transitions and Routes to Chaos

We know that there exist different kinds of transition to reach chaos known as
canonical:

• Period-doubling in unidimensional or multidimensional models by means of
control parameter(s) change (SDP: sensitive dependence on parameters) (see
Schuster 1989, p. 63). In the case of two control parameters, the parameter(s)
change is related to the codimension notion.

• Intermittency (Bergé et al. 1987), i.e. explosion.
• Saddle connection (or Blue sky catastrophe) closely related, in theory and in

practice, to “transverse homoclinic orbits” (obviously including the “Smale-
horseshoe approach”).
Quasiperiodic route to chaos, as described in a previous section, is a fundamental
intermediate step in the transition to chaos (see Ruelle and Takens 1971; Landau
1944; Newhouse, Ruelle and Takens 1978; Lorentz 1963). This approach dates
back to Landau’s work in Physics. Then, Ruelle–Takens have considered (unlike
Landau) that a small number of bifurcations was sufficient to produce turbulent
phenomena and chaos.

The first canonical transition type and the Ruelle–Takens route to chaos have
already previously been outlined in other sections, then we are particularly inter-
ested in the intermittency and in the saddle-connection on which we will return.

1.35.1 Transition to Chaos Through Intermittency

It is possible to write that an intermittent regime is a predictive criterion of disorder
of a system, i.e. a transition from a stable state towards chaos. A signal is called
intermittent (for example periodic) when the signal has rare variations and generally
of very high amplitude. These rare fluctuations are localized in time and space. As
a preliminary, let us simply approach the concept of intermittency by means of low-
dimension systems depending on a single parameter. In such cases, we know that
there exists a critical value of α noted αc before which the system has a stable limit
cycle (i.e. stable fixed-points), and after which the behavior of the system is regular.
When α > αc, and in particular if α is still close to αc the oscillations continue
but they are interrupted from time to time by a different irregular type of behavior
whose characteristics depend on α and whose average frequency depends on it.
This occurrence frequency decreases when we approach αc. And conversely. when
it is far from αc, then the “memory” of oscillations disappears little by little until
being lost completely. Topologically, in terms of local bifurcations, it is possible to
distinguish three different types of intermittencies, related to the loss of stability of
“local” (i.e. localized or small) attractors, which are:
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(1) The saddle-node bifurcation
(2) The subcritical Hopf or Neimark bifurcation
(3) The subcritical flip bifurcation

When there is destruction of a “local” attractor by a local bifurcation, this does
not always imply transition to chaos. Indeed, the global (or larger) attractor can pre-
serve its stability. At the beginning of this section, we chose to start the topic by
means of low-dimension systems. So let us consider the typical case of the unidi-
mensional logistic equation depending on a single parameter, which is written as
follows:

xn+1 = f (xn) = αxn(1− xn). (1.358)

We know that the critical value of α is αc ≈ 1 +
√

8. In this example, the involved
type of intermittency is the first one, i.e. the saddle-node bifurcation. Roughly,
before αc, the system has a stable (quasi-)periodic behavior with one or multiple
fixed-points, the behavior of the system is regular; then when α > αc, and in partic-
ular if α is close to αc, the oscillations continue but they are interrupted sporadically
by a different irregular type of behavior. More exactly, when α = αc ≈ 1 +

√
8,

then the logistic equation shows a period 3-cycle; and going further in the window,
the equation shows flip bifurcations which lead to period 3n cycles. For values of
α greater than αc, but close to αc, the dynamics is regular, i.e. 3-periodic. When
α < αc but still near αc, the motion is regular and almost periodic but interrupted
sporadically by explosion of chaos. Thus, the iterates of the map near the 3-cycle
and the duration of regular behavior is an inverse function of the distance |αc−α| .
Such a phenomenon can be understood by considering the fixed point of the map
f 3(xn) which corresponds to the 3-cycle (see Fig. 1.91b).

For α > αc, the map f 3(xn) has one stable fixed point, and for α < αc, the
map f 3(xn) does not have fixed point. For α = αc, the fixed point is destroyed, and
through a fold bifurcation, the stable and unstable fixed points fuses and disappear.
Moreover, forα <αc (see Fig. 1.91a) we can observe in the neighborhood where the
fixed point was, that there is a slowdown of the motion. And after a certain number

xk+1

xk

(a)
xk+1 a < ac

a = ac

a > ac

xs xc xu xk

(b)

Fig. 1.91 (a) α < αc (b) Basic three cases
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of iterations the system leaves the neighborhood and wanders away irregularly until
it is reinjected in the channel between the map curve and the diagonal, etc.

At this stage, we leave the preceding approach which used the logistic model (and
the low dimension systems) to extend it. Besides, it is possible to say that an inter-
mittent regime is a predictive criterion of disorder of a system, i.e. a transition from
a stable state towards chaos. A signal is called intermittent (for example periodic)
when the signal has rare variations and generally of very high amplitude. These
rare fluctuations are localized in time and space. This pseudo-definition describes
phenomena which escape and are not explained by statistical and traditional econo-
metric approaches and in particular by the probability distributions. In Nature,
intermittencies are observable, in particular in the fluid flow phenomena or mete-
orology for example. One of the approaches of this intermittency notion is based on
the Floquet theory (see “Floquet theory” section). This analysis approaches linear
instability of the limit cycle which helps to explain:

• The increase in the fluctuations of a dynamics from a periodic mode, and by
contrast,

• The return to a periodic mode after intermittent fluctuations by means of the
process re-laminarization or re-injection.

Commonly, three types of linear instability of periodic trajectories are evoked.
They correspond to the three manners that the eigenvalues of a system have to cross
the unit circle in the complex plane. Or more exactly, they correspond to the manners
that the Floquet multipliers (eT R) have to cross the unit circle. Since the multiplier
is the result of the linearization of a system, ẋ = f (x) around the periodic solution
(see Floquet theory section). We linearize by means of y = x− x̄, where x̄ are the
solutions of the system. Then we write ẏ = ∂

.
x̄/∂ t(x−−

x). After that, we study the
stability of solutions of the linearized system, by analyzing the eigenvalues of the
matrix eT R which is called the Floquet characteristic Multiplier. And it is reminded
that the solutions of the new linearized system are written: y = eT Ry0, where R is
the matrix which determines the system whose eigenvalues are studied to analyze
its stability. We are thus led back to the analysis of eigenvalues behavior in the unit
circle. Some models describe better than others this phenomenon of intermittent
modes; it is for example, the Lorenz model or the Rayleigh–Bénard model which
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(a) (b) (c)

Fig. 1.92 (a) Type-1 intermittency. (b) Type-2 intermittency. (c) Type-3 intermittency

is a fluid dynamics model. The quality of the description depends on the position
occupied by the intermittent mode in relation to the other modes of the described
model, and in particular the control that we can have on the handling of different
modes through the control parameter. It will simply be said in this paragraph that the
theory of the intermittency attempts to study the nonlinearities and uses the Taylor
expansions and exposes the different processes of relaminarization. We will provide
very briefly the three categories of intermittency:

• Type 1 intermittency: The eigenvalue of the Floquet matrix leaves the unit circle
of the complex plane by +1. It is usually said for this case that the intermittent
transition occurs between two other regular modes, for example, from a periodic
mode to a quasiperiodic mode (Fig. 1.92a).

• Type 2 intermittency: The eigenvalue of the Floquet matrix leaves the unit circle
through complex values, or more exactly, when two “complex conjugate Flo-
quet multipliers” leave the circle unit of the complex plane. Then, the unstable
fluctuation increases in an exponential way (Fig. 1.92b).

• Type 3 intermittency: In this case, the crossing of the eigenvalue of the unit circle
in the complex plane is done by −1, and the associated bifurcation is subcritical
(Fig. 1.92c).

1.35.1.1 Type-1 Intermittency

Let us consider the linear approximation of the cubic recurrence equation:

xt+1 = f (xt) = β + xt + x2
t . (1.359)

We are interested implicitly in the evolution of the gap between two trajectories
defined from the primitive (i.e. integral) of this function. The type-1 intermittency
occurs when the eigenvalue of largest modulus of the Floquet matrix crosses the
unit circle65 by the value +1, which implies that β > 0. When β = 0, a saddle-node
bifurcation appears (see figures below):

65 Unit circle: A circle of radius 1, such as the one used to define the functions of trigonometry.
The unit circle can also be taken to be the contour in the complex plane defined by |z|= 1, where
|z| is the complex modulus.



186 1 Nonlinear Theory

If we choose two different initial values, we observe an increase in amplitude of
the gap between the two trajectories symbolized here by the dynamics inside the
“channel”. It expresses the phase of laminarization. However the nonlinear term
blocks this divergence which butts against a limiting value, then a phenomenon
of explosion occurs and chaotic fluctuations appear. After this phase, a new phase
known as of relaminarization occurs characterized by a new cycle whose amplitude
increases. This phenomenon is well understood when Fig. 1.93 (left) is analyzed:

Fig. 1.93 Relaminarization (left). Distribution (right)

The curve representative of the function xt+1 = f (xt) = β + xt + x2
t separates into

two branches whose presence announces the existence of a discontinuity implying
jumps in the dynamics between two phases of periodic fluctuations. The phases
of laminarization intervening with random intervals, in order to do predictions, it
was necessary to seek to build the statistical distribution (see Fig. 1.93 right) of
the average time-delay that elapses between the periodic modes and the turbulent
modes. As an example, let us consider xt+1 = f (xt ) = β + xt + x2

t , if xt+1 and xt are
close, we can take the number of iterations whose index is written n, as a continuous
variable which is expressed

dx(n)/dn = β + x2 (1.360)
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whose generic solution is x(n)= β 1/2 tan[β 1/2(n)]. Then it is proved that the average
duration of laminar phases diverges at the rate β−1/2. The theoretic shape of the
distribution is shown in Fig. 1.93 (right).

1.35.1.2 Type-3 Intermittency

In this case, the eigenvalue crossing of the unit circle is done in −1, and the
associated bifurcation is subcritical. Let us consider

xt+1 = f (xt ) =−(1 +β )xt +λx2
t + δx3

t , (1.361)

where λ ,δ are parameters. We write the following iterations:

xt+2 = (1 + 2β )xt +λ ′x2
t + δ ′x3

t , δ ′ =−2(λ 2 + δ ) and λ ′ < δ ′. (1.362)

To depict the type-3 intermittency, it is also possible to write the equation above with
λ ′ = 0, which becomes xt+2 = (1+2β )xt +δ ′x3

t , δ ′ =−2(λ 2 +δ ) and 0 = λ ′ < δ ′.
In this case, like in the preceding case a saddle-node bifurcation appears at δ = 0.
Similar laminarization phenomena can be highlighted and the associated bifurcation
is subcritical, the nonlinear terms reinforce the instability of the linear term.

1.35.1.3 Type-2 Intermittency

The eigenvalue of the Floquet matrix leaves the unit circle by the two conjugate com-
plex values. Or more exactly, when two “complex conjugate Floquet multipliers”
leave the unit circle of the complex plane. Then the unstable fluctuation increases in
an exponential way. The complex eigenvalues (a± ib) can also be written in polar
coordinates as follows:

ξ1,2 = ρe±iθ . (1.363)

Let us suppose that for a given value of the parameter β = βc, a Hopf bifurcation
occurs. In this case the modulus is unitary. At each iteration, the Floquet matrix
makes rotate each point of an angle of θ . Consider the complex number z = a± ib
and the equation

zt+1 = ρeiθ zt +ηz2
t (1.364)

Then, it comes: |zt+1|2 = ρ2 |zt |2 + |η |2 |zt |4 +ρ
∣
∣z2

t
∣
∣(eiθ z̄t η̄ + e−iθ ztη) where z̄t is

the complex conjugate of zt . Then, it is proved after some approximations that the
dynamics depends on the element:

θt+1 = ρθt

(
Q

2ρ2 θ
2
t + 1
)

(1.365)

with Q depending on η . This relation is of comparable nature than the relation
considered in the type-3 intermittency.
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1.35.2 Saddle Connections (“Blue Sky Catastrophes”)
and Reminder About the Stability Boundaries

Unlike the saddle-node or Hopf bifurcations, the saddle-connection bifurcations are
global bifurcations (and they cannot be detected by analyzing the zeros of the vector
field). Unlike in the case of intermittency, where we explained that the phenomenon
of intermittency occurs through a local–global bifurcation, so that in such a situation
there is a discontinuous change in the local stability properties of a fixed point,
associated with global changes in the phase portrait of the dynamics.

Before describing heteroclinic and homoclinic saddle connections, the latter
being of course the most important here, as a preliminary, let us point out the sig-
nificance of a separatrix, which is a very useful notion within the framework of
the present section. A separatrix66 is phase curve, i.e. an invariant manifold which
meets a “hyperbolic fixed point” (i.e. an intersection of a stable and an unstable
invariant manifold) or connects “the unstable and stable manifolds of a pair of
hyperbolic or parabolic fixed points”. The saddle-connections are more difficult to
locate than other types of bifurcations. Usually, the stable separatrix of a saddle is
not the unstable separatrix of the same or any other saddle. But this does gener-
ally occur for some parameter value in one-parameter family, and when it does, the
phase portrait tends to undergo huge changes (some examples are given through
the Figs. 1.94 and 1.95 by varying the control parameter). Figure 1.94 depicts a
Heteroclinic saddle connection between two saddles.

If a stable and unstable separatrix of one saddle coincide, the saddle connection is
called homoclinic (see Fig. 1.95 that depict Homoclinic saddle connection at bifur-
cation, it is possible to observe that the sink remains throughout, thus a limit cycle
is created). Figure 1.95 depicts a Homoclinic saddle connection at bifurcation.

Usually, the homoclinic loop of a homoclinic saddle connection has a unique zero
of the vector field. Such a zero can be a source or a sink, unless a Hopf bifurcation or
a saddle-node bifurcation occurs for the same value of the parameter. If this zero is
a source, then it will remain a source for nearby values of any parameters. However
the global spiral behavior changes branches; if a stable separatrix goes “towards
inside” before bifurcation, then an unstable separatrix will be present after bifur-
cation (see Fig. 1.95). Generally, the stable separatrix will stem from the source,

Fig. 1.94 Before bifurcation (left), at bifurcation (center), after bifurcation (right)

66 Moreover, a separatrix indicates a boundary between phase curves with different properties (e.g.
separatrix in the equation of motion for the pendulum occurs at the angular momentum where
oscillation gives way to rotation).
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Fig. 1.95 Before bifurcation (left), at bifurcation (center), after bifurcation (right)

Fig. 1.96 Before bifurcation (left), at bifurcation (center), after bifurcation (right)

Fig. 1.97 Before bifurcation (left), at bifurcation (center), after bifurcation (right)

however the unstable separatrix cannot lead to a source and must behave differently.
Frequently, a limit cycle will attract it, such a limit cycle was born in the homo-
clinic saddle connection. In such a case, that of a homoclinic saddle connection
with a limit cycle, a Hopf bifurcation is frequently present in the neighborhood of
the parameter space when the limit cycle disappears.

Obviously, the topic dealt here is the study of dynamical behaviors while chang-
ing the value of the parameter. This is equivalent to analyzing the (attracting or
repelling) basins and the changes of basins. This analysis is summarized through
Figs. 1.96 and 1.97. Figure 1.96 depicts the change of basins for a Heteroclinic
saddle connection.

Figure 1.97 depicts the change of basins for a Homoclinic saddle connection.
Obviously, the topic of this section is the Homoclinic saddle connection, in such

a framework the occurrence of limit cycles is inescapable. As we can observe
in Fig. 1.98, it is possible to say that a homoclinic saddle connection is a loop
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Fig. 1.98 Inward and outward perturbation of a homoclinic orbit

delimiting a zone of the plane which is depicted through striations (and called the
inward perturbation in the figure). For the preparation and presentation of the fol-
lowing theorem, let us consider a perturbation fδ of the equation ẋ = fδ (x) at the
bifurcation, for δ close to δ0, this perturbation will be called “inward” if the unsta-
ble separatrix, which at bifurcation led back to zero, now goes inside the loop zone,
and will be called “outward” otherwise (see Fig. 1.98). The saddle connection is
called attracting when the trajectories go inside the spiral towards the homoclinic
loop. Otherwise, the saddle connection is called repelling (see Figs. 1.98 and 1.99).

We can now enunciate the following theorem (Hubbard and West 1995b):

Theorem 1.20 (Homoclinic saddle connection). Let ẋ = fδ (x) be a family of dif-
ferential equations depending on a parameter δ , and suppose that for some value δ0
of the parameter, the vector field has a zero x0 which is a saddle with a homoclinic
saddle connection. Let ẏ = Ay be the linearization of ẋ = fδ0(x) at x0:

1. If trA > 0, the saddle connection is repelling.
If trA < 0, the saddle connection is attracting.
If trA = 0, no conclusion.

2. If the saddle connection is repelling, and δ is close to δ0 with the perturbation
outward, there will be for that value of δ a repelling limit cycle.

3. If the saddle connection is attracting, and δ is close to δ0 with the perturbation
inward, there will be for that value of δ an attracting limit cycle.

Figure 1.99 depict attracting and repelling homoclinic loops.
Different numerical simulations can be gradually carried out by means of follow-

ing examples. ẋ = y, ẏ = x3− x + ax2−0.1y, for a = 0.1 or a = 0.2. Furthermore,
by means of the system ẋ = y, ẏ = x3− x + 0.2x2 +(bx2− 0.2)y. When b � 1.4
for which there is a homoclinic saddle connection, it is possible to observe that
there is a saddle point for (x0,0) where x0 is a positive solution of the equa-
tion x2 + 0.2x− 1 = 0, that means x0 = −0.1 +

√
1.01 � 0.9. So the following
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Fig. 1.99 Attracting (left), repelling (right)

linearization matrix:

A =
[

0 1
3x2

0−0.4x0−1 + 2bx0y bx2
0−0.2

]

(1.366)

has trA = b2
0−0.2� (1.4)(0.9)2−0.2 > 0. Then the saddle connection is repelling,

and repelling limit cycles occur for the outward perturbations which appear for
b > b0.

Van der Pol oscillator case: The Forced pendulum is the quasi-general schematiza-
tion of “the oscillator”. These periodic systems are widespread in many scientific
fields. They are used to represent an immense quantity of phenomena, e.g. the
gravitation of an electron around an atom of crystal plunged in magnetic fields or
a biological rhythm, like breathing or the contraction of the cardiac muscle, the
alternation of waking and sleep, the breeding cycles of plants, etc. The key for
the analysis of these phenomena is the oscillator. In particular, the van Pol oscil-
lator is the typical modeling of oscillatory motions for these systems, and allows to
highlight the behavior changes from periodic motions to chaotic motions. Then, an
example of the “route to chaos” within the framework of saddle-connections, i.e.
the blue sky catastrophe, can be given in a two-dimensional flow, by the analysis of
the van der Pol system which can be written as follows:

ẋ = ay + μx(b− y2), (1.367)
ẏ = −x + γ. (1.368)

In such a system, the parameter γ becomes a control criterion. Suppose that γc is a
critical value, if γ is smaller than the critical value (γ < γc), there exist an unstable
saddle point and a stable limit cycle. When the value of γ is increased, the limit
cycle comes closer to the saddle point until they meet, at γ = γc, and they clash. At
this stage, the stable and the unstable arm of the saddle coincide with the location of
the cycle, so a homoclinic saddle connection occurs and the cycle disappears. When
γ > γc, the orbits that were in the area of the saddle point wander away and if there
exists another distant attractor, they move towards it.

In the saddle connections, the “blue sky catastrophe” can appear at the same time
with a hysteresis phenomenon that does not exist in intermittency. Such a case can
be easily described in the following way, if initially there exists a limit cycle, when
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the value of the control parameter is decreased until a critical value, the limit cycle
joins the saddle point, so a blue sky catastrophe occurs, and the limit cycle is thus
demolished and the dynamics relocates towards the distant stable node. Conversely,
when the value of the parameter is increased starting from a critical value, the node
is not demolished while at the same time a limit cycle occurs and the node pre-
serves its stability until a fold catastrophe appears, then the node disappears and the
dynamics comes back to the limit cycle. The behavior of the system is thus different
according to whether we increase or decrease the control parameter; this is a main
characteristic of the hysteresis phenomenon.

As we said in the introduction of this section, the saddle-connection bifurca-
tions correspond to “global bifurcations”, unlike in the intermittency which occurs
through a “local–global bifurcation”, so that in such a situation there is a discon-
tinuous change in the local stability properties of a fixed point, associated with
global changes in the phase portrait of the dynamics. In the saddle-connections,
in particular about differential systems of dimension � 3, the occurrence of blue
sky catastrophes can imply more complex attractors which lead to the creation of
chaotic attractor by means of “collision” with saddle-type structures.67 A descrip-
tion of these catastrophic creation or destruction of horseshoe-like chaotic attractor
is given by the works of Abraham and Shaw (1988) to which we will be able to
refer for a thorough analysis of this very interesting topic. These works propose
stroboscopic sketches of blue sky catastrophe occurrences helping to visualize the
phenomena.

1.35.2.1 Example of Blue Sky Catastrophe (Shilnikov–Turaev–Gavrilov)
and Reminder About Stability Boundaries

As a preliminary, let us reintroduce in a new way, the concepts of stability bound-
aries of periodic orbits (Andronov and Leontovich 1937; Andronov et al. 1971). The
boundaries of stability regions of periodic orbits in systems of differential equations
can be distinguished by the characteristics of the bifurcation. Then two sub-groups
(A) and (B) can be highlighted:

(A) The first group contains the following codimension-1 bifurcations:

1. Saddle-node (fold) bifurcation: two periodic orbits (one stable and one
unstable) merge on the stability boundary and disappear beyond it.

2. Period-doubling (flip) bifurcation: a multiplier of the bifurcating periodic
orbit is equal to (−1).

3. Bifurcation from a periodic orbit to a two-dimensional invariant torus (i.e.
birth of an invariant torus): i.e. “a cycle loses its skin” (see Andronov).
These cases lead to the analysis of the corresponding fixed-point of the
Poincaré map on a cross-section transverse to the periodic orbit.

67 Blue sky catastrophe: The attractor disappears “in the blue sky” after a collision with a saddle-
type (unstable) periodic orbit. This is a global bifurcation. Abraham and Marsden (1978); Abraham
and Stewart (1986).
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(B) The second group contains the codimension-1 bifurcations which concern cases
in which a periodic orbit merges with an equilibrium state:

4. First case is the Andronov–Hopf bifurcation in which a periodic orbit
shrinks into an equilibrium state with a pair of characteristic exponents
±iλ , (the estimation of the period T of such bifurcating orbit tends to
2π/λ ).

For the other cases, the periodic orbit “adheres” to a homoclinic loop to an
unstable equilibrium state which can be:

5. A saddle with characteristic exponents in both open (left and right) half-
planes,

6. A (simple) saddle-node with one zero real exponent. (Because of the dis-
appearance of the vector field at the equilibrium state, the period of the
bifurcating orbit tends to infinity as it approaches the homoclinic loop, while
its perimeter remains of a finite length.)

In addition to this list of six cases, Shilnikov and Turaev (1995a, pp. 596–599)
proposed a new scenario for the saddle-node bifurcation of periodic orbits, which
can have the appearance of a stable periodic orbit of an infinitely large perimeter
and infinitely long period. Because of such a “device”, Abraham calls this case:

7. A blue sky catastrophe. Besides, this boundary can (under certain con-
ditions) “separate” the Morse–Smale systems from systems with hyper-
bolic attractors in the parameter space (see Shilnikov L.P. and Turaev D.V.
1995b).

In the multi-dimensional framework, for the generic one-parameter families there
exist seven such stability boundaries. There are two types that are conditioned by
the existence or the non-existence of the periodic orbit at the critical moment. In the
first case, the intersection of the periodic orbit with a local cross-section exhibits the
fixed point of the Poincaré map, then it is possible to simplify the study by analyzing
the exit of multipliers (of the fixed point) from the unit circle.

Bifurcation Multiplier of the Comment
bifurcating periodic
orbit

1. Saddle-Node (fold): (+1) Periodic orbit
(similar to the two-dimen- disappears
sional case)

2. Period-doubling (flip): (−1) Periodic orbit does
not disappear, but
loses its stability

3. Birth of a torus: (a± ib): Periodic orbit remains
(a stable two-dimensional pair of complex- but loses its skin
invariant torus is born) conjugate multipliers
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(a) (b) (c)

Fig. 1.100 Saddle-node bifurcation: (a) δ < 0, (b) δ = 0, (c) δ > 0

In the first case, the single multiplier of the periodic orbit becomes equal to (+1),
this is the saddle-node bifurcation (fold). The second codimension-1 bifurcation is
the flip or period-doubling, the single multiplier is equal to (−1), here the periodic
orbit does not disappear after this bifurcation but loses its stability. In the third case,
a pair of complex-conjugate multipliers crosses the unit circle and the periodic orbit
remains but loses its skin, then a stable two-dimensional invariant torus is born.

Basically, such dynamics are constructed from dynamical systems which exhibit
sustainable self-oscillations, i.e. a stable periodic orbit. Then, the behaviors of
periodic orbits are analyzed when the parameters are modified.

Next, let us consider a one-parameter family Xδ (δ : parameter) of dynamical
systems with an exponentially stable periodic orbit for δ . This periodic orbit remains
stable within some interval of parameter values. Such a device is the starting point
for the study of codimension-1 stability boundaries (for dynamical systems) whose
types were enumerated above. At this stage, let us focus our attention on the saddle-
node bifurcation and its internal behavior for various values of the parameter δ .
The three emerging behaviors are as follows: (1) δ < 0, in such a case there exist
two periodic orbits (stable and saddle), (2) δ = 0, here the periodic orbits merge
into a saddle-node and its Strong Stable Manifold W ss splits the neighborhood into
the node region localized below W ss and the saddle region localized above W ss

(see Fig. 1.100b). The unstable manifold is the part of the center manifold which
is localized in the saddle region. (3) δ > 0, in this case the saddle-node disappears
(the drifting time throughout its neighborhood tends to 1/

√
δ ). See Fig. 1.100 of the

saddle-node bifurcation.
After this brief parenthesis about saddle-node bifurcation, we are going to geo-

metrically depict a three-dimensional system in which there exists a blue sky
catastrophe, as it was developed by Shilnikov and Turaev (see paper previously
mentioned). It is assumed that there exists a saddle-node periodic orbit L∗ whose
unstable manifold W u

L∗ comes back to L∗ when t tends to +∞ (see Fig. 1.101c).68

68 Remark: the closure of the unstable manifold is not a Hausdorff manifold.
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Fig. 1.101 Scenario of a “blue sky catastrophe” (ref. to Shilnikov A, Shilnikov L, Turaev D)

Figure 1.101b depicts the global shape of the manifold W u which has been built
to obtain a blue sky catastrophe. The intersection of W u with the local section ∑ in
the node zone is a countable set of circles which accumulates on ∑ ∩ L.

Figure 1.101c depicts a scenario of a “blue sky catastrophe”. The “blue sky”
stability boundary is an “open subset” of a codimension-1 bifurcational surface cor-
responding to the existence of a saddle-node periodic orbit. This open subset is
characterized by conditions defined by the geometry of the unstable manifold of the
saddle-node (see Fig. 1.101a,b) and this open subset is also characterized by quanti-
tative restrictions, i.e. the Poincaré map above (Fig. 1.101b,c) must be a contraction.
The stable periodic orbit L (noted Lδ before) whose period and length tend to the
infinite when approaching the moment of bifurcation is born when the saddle-node
orbit disappears.
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Fig. 1.102 Bifurcation diagram in the (α ,η)-parameter plane

Example of a blue sky catastrophe (Gavrilov N. and Shilnikov A. 2000): Let us
consider the following system:

ẋ = x(2 +α−β (x2 + y2)+ z2 + y2 + 2y≡ A, (1.369)
ẏ = −z3− (1 + y)(z2 + y2 + 2y)−4x +αy≡ B, (1.370)
ż = (1 + y)z2 + x2−η ≡C. (1.371)

α,β ,η are parameters and β is preset at 10 (β = 10). In the singular case α =
η = 0, the system describes a closed curve (see Fig. 1.103a) on which there are
two equilibrium states; the first one E ′(0,−2,0) is a saddle-node with one zero
characteristic exponent λ1 = 0 and two negative characteristic exponents extracted
from λ 2 +40λ +68 = 0, the second equilibrium state E(0,0,0) has also λ1 = 0 and
two imaginary characteristic exponents λ2,3 = ±2i (see Fig. 1.103a). Beyond this
preliminary singular case, let us briefly depict the general bifurcating behavior of
the system, i.e. when the parameters (α,η) are modified in the clock-wise direction
around the origin in the (α,η)-parameter plane. It is possible to show the bifurcation
diagram for (α,η)-parameter as follows (for β = 10) (Fig. 1.102).

When η gets positive, the saddle-node E ′ disappears and the equilibrium state
E splits in two equilibria E1 and E2. Inside the zone (ii), the point E1 is sta-
ble and E2 is a saddle-focus whose one-dimensional separatrices converge to E1
when t tends to +∞ (see Fig. 1.103b). On the frontier (i.e. bifurcation) between
the zones (ii) and (iii), the point E1 loses its stability by means of a supercritical
Andronov–Hopf bifurcation and E1 comes to be a saddle-focus. Moreover, the two
unstable separatrices of the saddle-focus E2tend to a new stable periodic orbit L1(see
Fig. 1.103c).

Figure 1.103 describe the occurrence of a blue-sky catastrophe. There is also
an Andronov–Hopf bifurcation for the equilibrium state E2 on the frontier between
the zones (iii) and (iv) and E2 comes to be a repelling point in the zone (iv). The
unstable manifold of the new saddle periodic orbit L2 continues to tend to L1 (see
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Fig. 1.103 Mechanizm of the blue-sky catastrophe (ref. to Gavrilov N. and Shilnikov A. 2000)

Fig. 1.103d). On the last frontier between the zones (v) and (vi), the two periodic
orbits merge, constituting thus a saddle-node cycle L∗ whose unstable manifold is
bi-asymptotic to L∗ when t →±∞ (see Fig. 1.103e). The cycle L disappears in the
region (vi), but the local stability of the system comes to be a new Unique Stable
Large-Amplitude Periodic Orbit noted Lbs which is not homotopic69 to one or the
other of former cycles (see Fig. 1.103f).

Examples of the disappearance of the saddle-node (see Shilnikov et al. 2003):
The topic here is to provide examples of global saddle-node bifurcations coming
from (continuous-time) dynamical systems. Let us consider a one parameter fam-
ily of C2-smooth (n + 2)-dimensional dynamical systems depending smoothly on
γ ∈ γ(−γ0;γ0); furthermore suppose that the following hypotheses are satisfied:

1. For γ = 0 there exists a periodic orbit L0 of saddle-node type (i.e. multipliers =
(+1)).

69 Homotopic: Two mathematical objects are said to be homotopic if one can be continuously
deformed into the other (e.g. the real line is homotopic to a single point, as is any tree. The circle is
not contractible but is homotopic to a solid torus. The basic version of homotopy is between maps).
Homotopy: Between two mappings of the same topological spaces, a continuous function repre-
senting how (in a step-by-step fashion) the image of one mapping can de continuously deformed
onto the image of the other. Homotopy group: Associated to a topological space X , the groups
appearing for each positive integer n, which reflect the number of different ways (up to homotopy)
than an n-dimensional sphere may be mapped to X . Homotopy theory: The study of the topological
structure of a space by examining the algebraic properties of its various homotopy groups.
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2. Any trajectory in the unstable manifold W u of the periodic orbit L0 tends to L0
when t → ∞ and W u∩W ss = /0 (W ss is a strong stable manifold).

3. The family of dynamical systems is transverse to the bifurcational set of systems
with a periodic orbit of the saddle-node type. Then, when γ changes the saddle-
node bifurcates into a saddle and a node when γ < 0 (but does not exist when
γ > 0).

Then let us introduce in a small neighborhood of the orbit L0 the following
generic system:

ẋ = γ + x2(1 + p(x,θ ,γ)), (1.372)
ẏ = (A(γ)+ q(x,θ ,γ))y, (1.373)
θ̇ = 1. (1.374)

θ is an angular variable. The eigenvalues of the matrix A are localized in the left
open half-plane. θ is defined modulo 1, this means that the points (x,y,θ ) = 0 and
(x,σy,θ = 1) = 0 (with σ in R

n). p is a one-periodic function in θ , and q is a
biperiodic function. Furthermore, p(0,0,0) = 0 and q(0,0,0) = 0. The coordinates
are used so that p becomes independent of θ for γ = 0. The saddle-node periodic
orbit is L0 is given by the equation (x,y) = (0,0) for γ = 0. And its strong stable
manifold W ss is given locally by the equation x = 0. The manifold W ss separates the
saddle region, where x > 0 of L0 from the node where x < 0. The invariant center
manifold is y = 0. There exist two periodic orbits when γ < 0, one is stable, it is
L1, and the other is of the saddle type L2, these two orbits merge for γ < 0 and
become L0. The are no periodic orbits when γ > 0 and a trajectory leaves the small
neighborhood of the former saddle-node.

For γ = 0, the x-coordinate increases in a monotonous way. It slowly tends to zero
in the zone x < 0 at rate 1/t. Since the y-component decreases exponentially, any
trajectory in the node zone tends to L0 when t→+∞ in a tangent way to the cylinder
given by y = 0. When t →−∞ in the saddle zone x(t)→ 0, and as y increases in
an exponential way when t decreases, all the trajectories converge to the saddle
node L0 when t → −∞, this means that its unstable manifold W u is the cylinder
{y = 0,x � 0}. Any trajectory originating from W u\{L0} (when t increases) leaves
a small neighborhood of the saddle-node. But due to the hypothesis 2, the trajectory
must return to the node zone when t → +∞ (and thus converges to L0 tangentially
to y = 0). Then, it is possible to select a ζ > 0 such that the unstable manifold
W u crosses the section ∑0 : {x = −ζ}, and the intersection between the unstable
manifold and the section W u ∩∑0 = l is a close curve. Moreover it is supposed
that the median line l0 : {y = 0} in the section ∑0 is oriented in direction of the
increase of θ , and thus is the median line l1 : {y = 0} of the section ∑0 : {x = +ζ}.
Due to l1 = W u ∩∑1, the curve l is an image of the curve l1 through the map of
trajectories, then the orientation on l1 defines the orientation on l. Considering the
orientation, the curve l becomes homotopic to ml0 where m ∈ Z. In the case m = 0
(i.e. a blue-sky catastrophe), the manifold W u is shown in Fig. 1.104a.
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(a) (b) (c)

Fig. 1.104 (a) m = 0, (b) m = 1, (c) m =−1 (ref. to Shilnikov et al. 2003)

Fig. 1.105 m = 2

When m = 1, the manifold W u is homeomorphic to a two-dimensional torus (see
Fig. 1.104b m = 1). When m = −1, the manifold W u is homeomorphic to a ”Klein
bottle” (see Fig. 1.104c m =−1). When |m|� 2, the manifold W u is a |m|-branched
manifold. And in the case m = 2, the solid torus is squeezed, doubly expanded,
twisted and inserted back into the original and so on, giving thus a solenoid with
a specific shape, which is sometimes called the Wietorus–van Danzig solenoid (see
Fig. 1.105, m = 2).

1.36 Temporal Correlation: Periodicity, Quasiperiodicity,
Aperiodicity

When the behavior of a system shows a chaotic regime, its power spectrum contains
a continuous part, this means that the evolution of this variable over time is done in a
disordered way. In order to measure this level of disorder, let us consider a function
which measures the rate of disorder and which attempts to quantify the resem-
blance of the value taken by the variable at a given moment with the value taken
by the variable at the next moment, separated from the previous moment by a step
τ . This relatively simple function is obtained by making the average of the products
of the variables at the moment t and the moment t + τ . The temporal correlation is
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Fig. 1.106 Spectrum and autocorrelation function for an aperiodic regime

given by

C(τ) =
1

t2− t1

∫ t2

t1
x(t)x(t + τ)dt (1.375)

or by using a scalar product: C(τ) = 〈x(t) · x(t + τ)〉 . This function is called the
temporal autocorrelation function and expresses the similarity of the variable (with
itself) in the course of time. Thus, the function is built by varying the interval τ
(a delay variable). This construction can be related to the power spectrum whose
construction is based on the Fourier transform and on the Wiener–Kintchine the-
orem. C(τ) is the Fourier transform of the power spectrum. Consequently, if x(t)
is constant, periodic or quasi-periodic, then the function C(τ) of temporal correla-
tion will not tend to zero when τ will tend to ∞, because in such a case the Fourier
spectrum is formed of distinct lines (expressing the power spectrum at each fre-
quency). The periodic or quasi-periodic signals preserve their internal similarity in
the course of time. This signifies that the behavior of the system is predictable, since
its knowledge during a sufficient period of time allows to know (by simple compar-
ison) what it will be at any ulterior instant. That means that it is possible to do
forecasts. However, for a chaotic regime where the spectrum contains a continuous
part, C(τ) generally tends towards 0 when τ increases (see Fig. 1.106).

Thus, the temporal similarity of the signal (with itself) progressively decreases in
the course of time and even disappears completely for moments sufficiently distant
in time. Thus, the knowledge of x(t) during a period of time (as long as it is) does
not allow to predict the future behavior of x(t). Consequently, the chaotic regimes
are unpredictable by loss or by internal loss of similarity to their process. The loss
of similarity can be connected with the notion loss of memory of initial conditions
of a system (although different). The loss of memory is not a total absence of sen-
sitive dependence on initial conditions of a system. It is not either a progressive
impoverishment of “information”. It is in fact an enrichment of information, indeed
the variety and the multiplicity of initial states of a system come to feed its attractor
which generate a multiplicity of unpredictable final states. The sensitive dependence
on initial conditions that expresses the increase of the spacing between two initially
very close trajectories, increases the uncertainty of the system over time.
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1.37 Power Spectral Density

1.37.1 Characterization of Dynamical Systems

An important objective is to try to characterize the type of subjacent dynamics
that has engendered a time series that we study. It can be a more or less com-
plex oscillation, but of defined period, or the superposition of several (different)
oscillations, or another type of dynamics. Understanding a time series requires to
know the basic period and amplitude. The periodicities are identified through spec-
tral analysis, whether the subjacent model is known or not. This is a very important
phenomenon that it is absolutely necessary to underline. We’ll discuss the principle
in the section concerning the Fourier transform in greater detail, however we can say
that some dynamics result from a superposition of oscillations of different ampli-
tudes and periods, but also from harmonics. In this case, the regime is described
as quasi-periodic. Their associated attractor, of a higher order than the limit-cycle,
is a torus. For chaotic but deterministic regimes, i.e. for dynamics represented by
a limited number of nonlinear differential equations, the attractor identified in the
phase-space is a strange attractor.

The approach by spectral analysis results from the theory of Waves; it uses the
function called “power spectrum” that shows that the power of a signal (oscilla-
tion or wave) is proportional to the square of its amplitude. This concept can be
connected with the notion of Energy of a signal mentioned in Part III.

Like the Poincaré section method that allows to identify the characteristics of
dynamics by studying the shape of the section; similarly, spectral analysis also
allows to identify by the graphic tool, the characteristics of a periodic, quasi-periodic
or aperiodic dynamics. Spectral analysis is a principle resulting from two concepts,
which are the Fourier transform and the autocorrelation function of a signal, that is
an extraction of the Wiener–Khintchine theorem. Hereafter, we are going to describe
the Wiener–Khintchine theorem. The autocorrelation function of the signal x j is

ψm =
1
n

n

∑
j=1

x jx j+m (1.376)

with Δt as “step”, thus we can write

ψm = ψ(m ·Δt). (1.377)

ψm corresponds to the average of the product of values of the signal at a moment t,
then at a posterior moment m ·Δt. This technique makes it possible to know if and
for how much time the value at time t of the signal depends on what it was before.
ψm measures the resemblance of the signal to itself over time. If the studied series
is periodic, the periodicity finds in the writing of ψm:

ψm = ψm+n (1.378)
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if we apply the inverse Fourier transform, we have

ψm =
1
n2

n

∑
j=1

n

∑
k,k′=1

x̂k · x̂k′ · exp
[

i
2π
n

(
jk +( j + m)k

′)
]

(1.379)

if we write x̂∗k′ = x̂n−k and make the sum on the indices j and k′ we write

ψm =
1
n

n

∑
j=1
|x̂k|2 cos

(
2πmk

n

)

. (1.380)

This equality clearly tells us that the autocorrelation function corresponds to a
Fourier transform of the variable |x̂k|2 . If we seek to go up on |x̂k|2, we can write a
function Sk as follows:

Sk =
n

∑
m=1

ψm cos
(

2πmk
n

)

(1.381)

by replacing ψm:

Sk =
n

∑
l=1
|x̂l|2 1

n

n

∑
m=1

cos
(

2πmk
n

)

cos
(

2πml
n

)

. (1.382)

However, in connection with the Moivre formula, it is known that:

cos
(

2πmp
n

)

=
1
2

[

exp
(

i
2πmp

n

)

+ exp
(

−i
2πmp

n

)]

. (1.383)

If we carry out a summation on m, we obtain the following series with n terms:

1
n

n

∑
m=1

cos
(

2πmk
n

)

cos
(

2πml
n

)

=
1
4

[
δ (n)

k+l + δ (n)
k−l + δ (n)

−k+l + δ (n)
−k+l

]
(1.384)

δ (n)
j being a function of the index j and by using |x̂n−l|2 = |x̂l|2, due to the

periodicity, it comes

Sk = |x̂k|2 =
n

∑
m=1

ψm cos
(

2πmk
n

)

, (1.385)

i.e. the relation of inversion that we looked for. The representative graph of |x̂k|2
function of f ( f = k ·� f ) is called the Power Spectral Density (PSD).
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Fig. 1.107 Pure sinusoidal function (left), sinusoidal function with harmonics (right)

1.37.2 Different Types of Spectra

1.37.2.1 Periodic Signal

Given a periodic series written in a simple way x(t) = x(t +T ) = x(t +2π/ω). This
is a particular case where the period is exactly equal to the duration of the signal
measurement. It can be written T = tmax = n ·Δt. The Fourier components will be
located exactly at the frequencies: 1

T , 2
T , 3

T , . . . , n
T . Consequently, in extreme cases

if the signal is a sine, for example, its spectrum will have only one non-null com-
ponent which will have as abscissa 1/T that will express only one frequency. For a
slightly more complex periodic signal, the amplitude of harmonics of its frequen-
cies
( 2

T , 3
T , . . .
)

will not be zero. If there are harmonics in a spectrum, this reveals
the non-sinusoidal character of its evolution. Hereafter, we provide two examples of
periodic signals (Fig. 1.107).

1.37.2.2 Quasi-Periodic Signal and Coupling of Frequencies

Generally, the spectrum of a quasi-periodic function has a rather complicated rep-
resentation. We call a quasiperiodic function of time, a periodic function whose
variables are all directly proportional to time (t j =ω jt, j = 1, . . . ,r). It is constituted
of basic “peaks” located at the frequencies f1, f2, . . . , fp, but also of their harmon-
ics denoted a1 f1,a2 f2, . . . ,ap fp, where (a1,a2, . . . ,ap) are positive integers. If (for
example) the spectrum analyzes a signal made up of the product of two sinusoids:
x(t) = sin(ωit) · sin(ω jt), then the Fourier spectrum contains the basic frequencies∣
∣ fi− f j

∣
∣ and

∣
∣ fi + f j

∣
∣ and their harmonics, because:

sin(ωit) · sin(ω jt) =
1
2

cos(
∣
∣ fi− f j

∣
∣2πt)− 1

2
cos(
∣
∣ fi + f j

∣
∣2πt) (1.386)
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thus, the Fourier spectrum of a quasi-periodic signal, which depends (in a non-
linear way) on periodic functions of variables ωit, contains components at all the
frequencies: ∣

∣a1 f1 + a2 f2 + · · ·+ ap fp
∣
∣ . (1.387)

If we choose a bi-periodic case (p = 2), such as it is presented in the function
x(t) above, each component of the spectrum of the signal x(ω1t,ω2t) is a peak of
abscissa:

|a1 f1 + a2 f2| . (1.388)

The ratio f1/ f2 can be rational or irrational. In general, we characterizes a quasi-
periodic spectrum by seeking the two basic frequencies f1 and f2 from which by
combination (|a1 f1 + a2 f2|), we can construct the other frequencies. If f1/ f2 is
rational, the spectrum is not representable by a continuous function, such as f1/ f2 =
σ1/σ2, where σ1 and σ2 are integers. The quasi-periodic function is then regarded
as periodic of period T = σ1T1 = σ2T2. According to the definition, we have

x(ω1t,ω2t) = x(ω1t + 2σ1π ,ω2t + 2σ2π) (1.389)

and

x(ω1t,ω2t) = x
(

ω1

(

t +
σ1

f1

)

,ω1

(

t +
σ2

f2

))

. (1.390)

There is coupling of two frequencies f1 and f2. The set of lines of the spectrum are
harmonics of the lowest frequency:

f0 =
1
T

=
f1

σ1
=

f2

σ2
. (1.391)

Two consecutive lines of the spectrum are always separated by the same distance:
1/T . Here are two examples of quasiperiodic functions:

(1) Figure 1.108 (left) shows a series for two basic frequencies f1 and f2 whose
ratio f1/ f2 is irrational. The spectrum (beyond basic frequencies) exhibits main
frequency peaks fp = m1 f1 + m2 f2:

(a) → f2− f1, (b)→ 3 f1− f2, (c)→ f1 + f2, (d)→ 3 f1, (e)→ 5 f1− f2,
(g) → 3 f1 + f2, (h)→ 5 f1, (i)→ 7 f1− f2, ( j)→ 5 f1 + f2.

(2) Figure 1.108 (right) shows almost the same function as previously, but the fre-
quency f1 is changed so that the ratio f1/ f2 = 2/3. In such a case, all the peaks
are harmonics of the frequency f = f2− f1 = (1/3) f2:

(a) → f2− f1, (b)→ 3 f (= f2), (c)→ 5 f , (d)→ 6 f , (e)→ 7 f ,
(g) → 9 f , (h)→ 10 f , (i)→ 11 f , (j)→ 12 f .

An experimental illustration is given by the Rayleigh–Bénard instability (R–
B).70 Here, the fluid is the water whose temperature is such that the Prandtl

70 Ref. to J. Gollub and S. Benson.
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Fig. 1.108 Function with f1/ f2 irrational (left), Function with f1/ f2 rational (right)

Fig. 1.109 Power spectrum of a quasiperiodic dynamic with three incommensurable frequencies
(R–B instability, Ra/Rac = 42.3). Ref. to Gollub J. and Benson S.

number is equal to 5. The power spectrum of a quasiperiodic dynamic with three
incommensurable frequencies observed in the R–B instability is shown above (see
Fig. 1.109).
The spectral scale is logarithmic. By increasing the ratio Ra/Rac the stationary con-
vection loses its stability to become periodic starting from Ra/Rac = 30 (first Hopf
bifurcation). For Ra/Rac= 39.5 the previous periodic regime loses its stability to
become quasiperiodic with two basic frequencies (second Hopf bifurcation). From
Ra/Rac = 41.5 a third bifurcation occurs with three basic frequencies (see spec-
trum above). The frequency of each ray is indexed as f = m1 f1 + m2 f2 + m3 f3
(with m1,m2,m3 integers) and obviously cannot be indexed as f = m′1 f ′1 + m′2 f ′2.
The incommensurability is verified because the ratios f1/ f2, f1/ f3, f2/ f3 vary
continuously with Ra/Rac.
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1.37.2.3 Aperiodic Signal, Chaotic Signal

In contrast, if the function or the signal studied is neither periodic, nor quasi-
periodic, it is aperiodic or non-periodic. It is generally acknowledged that the
spectrum of such a signal is continuous, but the converse is not true, because this can
be the result of the Fourier spectrum of a quasi-periodic function with a number of
very high frequencies (even infinite). Suppose that we deal with an (true) aperiodic
signal, then we have to distinguish two cases according to the degree of freedom of
the system: either the degree of freedom is very restricted, or it is very high. In the
first case, it is possible to develop a deterministic approach of dynamics, whereas in
the second case, only a probabilistic approach could be implemented, introducing
the notion of randomness (even if the underlying determinism is present).

(1) The extreme case of a random signal is the white noise (e.g. white light, source).
In such a case, the signal can be regarded as new at each instant. Such a noise
suggests the action of an almost infinite number of independent agents (e.g.
molecular agitation, elastic vibrations of atoms). The spectrum of such a noise
is flat, i.e. the amplitude is independent of the frequency and is thus devoid of
harmonic structure. It is an infinite (stationary) random signal whose function
of autocorrelation is proportional to a Dirac, i.e. a constant complex spectrum
on the whole zone of frequencies.

(2) Hereafter, we show an aperiodic signal and its characteristic continuous spec-
trum (see Fig. 1.110).

(3) Ruelle–Takens theory (R–T) was introduced in 1971, then detailed in 1978 by
Ruelle–Takens–Newhouse (R–T–N). This theory called into question the pre-
vious Landau mechanism in which an infinity of Hopf bifurcations would be
necessary to generate the turbulence. On the contrary, Ruelle–Takens have con-
sidered that a small number of bifurcations was sufficient to produce chaotic

Fig. 1.110 Continuous spectrum of an aperiodic signal
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Fig. 1.111 Spectrum evolution according to Ruelle–Takens theory

behaviors. The experiment used was that of Reynolds. Given a laminar flow,
then by increasing the Reynolds number, the system loses its stability and
becomes oscillating at the frequency f1. The same process is repeated twice,
thus we successively obtain three Hopf bifurcations at the frequencies f1, f2, f3.
Then according to R–T–N, the corresponding torus T 3 can become (subject to
conditions) unstable and be replaced by a strange attractor. The behavior is
no longer quasiperiodic with three frequencies (tore T 3) but clearly chaotic.
Here is the evolution of the spectrum according to Ruelle–Takens theory (see
Fig. 1.111); the behavior is (1) periodic, (2) quasiperiodic with two frequencies,
(3) chaotic.

1.37.2.4 ARMA Process Spectra

Some ARMA processes are generated (autoregression and moving average or com-
binations of both). xt corresponds to the dependent variable and at are Gaussian
risks. The graphs of eleven spectra are given below (see Fig. 1.112).

(1). AR(1): xt = 0.9xt−1+ at (2). AR(1): xt= −0.9xt−1+ at
(3). AR(2): xt = 0.7xt−1−0.2xt−2+ at (4). AR(2): xt= −0.7xt−1−0.4xt−2+ at
(5). MA(1): xt= at−0.8at−1 (6). MA(1): xt= at+ 0.8at−1
(7). MA(2): xt= at+ 0.9at−1+0.2at−2 (8). MA(2): xt= at−0.5at−1+ 0.8at−2
(9). ARMA(1,1): xt= −0.3xt−1+ at+ 0.4at−1 (10). AR12(1): xt = 0.6xt−12+ at
(11). MA12(1): xt= 0.6at−12+ at

1.37.2.5 Spectra of French Stock Index (Cac40)

Cac40 and Its First-Differences

The signal is a sample of 2,847 days. The (rough) spectrum of the Cac40 decreases
and shows a L-shape with an enormous localized peak. For the differences, the
spectrum of the stationarized series is very different (Figs. 1.113 and 1.114).
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Fig. 1.112 Spectra of ARMA processes
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Fig. 1.113 Left: Cac (2,847 days). Right: Spectrum
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Fig. 1.114 Left: First-differences. Right: Spectrum

1.37.2.6 Spectra of the Logistic Equation

Spectrum of the Logistic Equation for α = 4

The direct spectrum of the logistic equation is explosive. On the other hand, if we
make it stationary by means of first-differences, the series provides a (rather) rich
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Fig. 1.115 Chaotic domain (left), spectrum of the chaotic domain (right)

representation in the frequency field of the energy of the signal (Fig. 1.115). (The
symmetry of the spectrum (|x̂|2) was restored to vary the mode of representation.)

Set of Spectra of the Logistic Equation α ∈ [2.9,4]

Evolution of spectra according to the parameter:

One period and two fixed points for α ∈ [2.9,3].
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Second bifurcation and period-doubling for α ⊂ [3.498,3.544].
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New bifurcations α ∈ [3.544,3.5569]. Chaotic regime α = [3.5699,4].
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1.38 Van der Pol Oscillator and Spectra

In numerous scientific fields the study of a phenomenon is usually focused on its pre-
dominant effects (Bergé et al. 1987) Often this approach leads to linearize the char-
acteristic phenomena of a system.71 Indeed, the nonlinear effects are often regarded
as perturbative and therefore neglected, however we know that they can lead to
unexpected and surprising effects. It is possible to study such effects by means of
the Van der Pol oscillator. As a preamble, let us consider the simple pendulum.

The simple pendulum: The figure hereafter describes the simple pendulum device
where we can observe θ ,g, l and m:

For such a device, the mechanics theory leads to the following equation, if there
is no friction θ̈ +

g
l

sinθ = 0. By contrast, if there is friction, i.e. if dissipation is

introduced, it is necessary to add a term dependent on θ̇ θ̈ + 2αθ̇ +
g
l

sinθ = 0.

Such an oscillator is nonlinear except for the small angles where it is possible to
make the approximation: sinθ ≈ θ which is valid at the second order for θ . Then
the differential equation is written

θ̈ + 2αθ̇ +ω2
0θ = 0, (1.392)

where ω0 =
√

g/l. Starting from this basic reminder, it is now possible to describe
the van der Pol oscillator.

Van der Pol oscillator: For oscillations to occur it is known that in the differential
equation the coefficient of the first order term must be negative. Furthermore, so
that these oscillations have limited amplitudes, this coefficient must change its sign,

71 Considering that “a priori” there is proportionality between cause and effect.
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then the system evolves into a limit circle. This is the fundamental topic of the van
der Pol oscillator. The differential equation of the van der Pol system can be written

θ̈ − δ0

(

1− θ 2

θ 2
0

)

θ̇ +ω2θ = 0, (1.393)

where δ0 and θ0 are constants of the equation. In such an equation for small ampli-
tudes θ � θ0 the fraction is negligible, then the differential equation corresponds to
the occurrence of oscillations whose amplitude increases exponentially since the
coefficient of the first order term is � −δ0. Conversely, when the amplitude of
these oscillations is high, the fraction becomes higher than the unit, the sign of the
associated term changes and the amplitude of oscillations decreases exponentially.
The system then evolves between two limit infinitely close states, which define the
amplitude and the shape of oscillations. (θ0 influences the amplitude and δ0 the
sinusoid. Furthermore, when an external “forcing”72 is taken into account, then a
new quantity ρ cosωμt is introduced and a new equation can be written

θ̈ − (ε−θ 2) θ̇ +θ = ρ cosωμ t (1.394)

with ε =
δ0

ω
. It is possible to rewrite such an equation in the form of an autonomous

differential system:

ẋ = y, (1.395)
ẏ = ρ cos(z)− x +(ε− x2)y, (1.396)
ż = ωμ , (1.397)

with x = θ . At this stage it is possible to carry out the numerical analysis succes-
sively of Non-forced and Forced van-der-Pol oscillators.

Non-forced van der Pol oscillator: Let us study the model by means of the following
generic equation:

θ̈ − (ε−θ 2) θ̇ +θ = 0 (1.398)

and by means of the autonomous differential system, it is possible to write:

ẋ = y = ϕ1(x,y), (1.399)
ẏ = (ε− x2)y− x = ϕ2(x,y). (1.400)

Consequently, it is possible to obtain the fixed-points:
(
ẋ = 0 = y, ẏ = 0 = (ε− x2)y− x

)
. (1.401)

72 Remark: In mathematics the term “forcing” has a precise meaning: Forcing is a technique in set
theory created by Cohen (63) used to prove that the axiom of choice and continuum hypothesis are
independent of one another in Zermelo–Fraenkel set theory.
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A single fixed-point results (x,y) = (0,0). In order to study its stability, the follow-
ing Jacobian matrix of the system is analyzed

J =

⎛

⎜
⎝

∂ϕ1

∂x
∂ϕ1

∂y
∂ϕ2

∂x
∂ϕ2

∂y

⎞

⎟
⎠=
(

0 1
−1−2xy ε− x2

)

(1.402)

and for the fixed-point (x,y) = (0,0), we have

J =
(

0 1
−1 ε

)

. (1.403)

The Jacobian matrix study is carried out by its trace. The results depend on the sign
of ε . When ε > 0 or ε < 0 the system is dissipative, the fixed-point (x,y) = (0,0) is
repelling or attracting; conversely when ε = 0 the system is conservative and (x,y) =
(0,0) is a center. Here, ε corresponds to the friction, and for a low friction there will
be oscillatory motions and therefore the eigenvalues of the Jacobian matrix will be
complex and the stable point will be a focus. More precisely, from the equation of
eigenvalues:

λ 2− ελ + 1 = 0, Δ = ε2−4 (1.404)

thus the general behavior of the system is as follows:
|ε|> 2: |ε|< 2:
.ε<0⇒ (0,0): Stable-node. ε<0⇒ (0,0): Attracting focus
.ε>0⇒ (0,0): Unstable-node. ε = 0⇒ (0,0): Center

ε>0⇒ (0,0): Repelling focus (source).

Since λ± = ε± iω for ε = 0 there exists a supercritical Hopf bifurcation, which
means that at zero there is a transition from a stable focus to an unstable focus.
Figures 1.116 and 1.117 give some examples of trajectories in the analytical frame-
work described above (for initial conditions (x0,y0)):

For 0 < ε < 2 a stable limit cycle (here a limit circle) occurs because of ampli-
tude limitation consecutive to the friction quadratic term. Then, for ε = 0 there is a
supercritical Hopf bifurcation.

(a) (b)

Fig. 1.116 (a) −2 < ε < 0 for (x0,y0) = (0.8,−1); (b) ε = 0 for (x0,y0) = (0.8,−1)
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Fig. 1.117 (a) 0 < ε <−2 for (x0,y0) = (0,−0.1); (b) 0 < ε < 2 for (x0,y0) = (0.8,−1)
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Fig. 1.118 (a) ε = 0.1, ωμ = 1, ρ = 3; (b) ε = 0.1, ωμ = 1, ρ = 50

Forced van der Pol oscillator: Let us study the model by means of the following
generic equation:

θ̈ − (ε−θ 2) θ̇ +θ = ρ cosωμ t, (1.405)

which can be rewritten in autonomous form:

ẋ = y, (1.406)
ẏ = ρ cos(z)+ (ε− x2)y− x, (1.407)
ż = ωμ . (1.408)

For this system the fixed-point is (ρ ,0,0). When ε = 0 we return to the case of
the harmonic oscillator with circular trajectories. In contrast, when ε is small and
positive, ε = 0.1 : near to the origin, the trajectories diverge and draw a spiral, and
far from the origin, the trajectories tend to approach the fixed point.73 Therefore,
between these two extreme situations we understand that there exists a limit cycle.
See hereafter the almost rectangular form of the limit cycle in Fig. 1.118a or the
distorted rectangular form in Fig. 1.118b.

The almost rectangular course of the limit cycle in the Fig. 1.118a uses two dif-
ferent scales of time. If it is large enough the (forcing) parameter ρ constrains to a
regularity on these scales in relation to its frequency. Within the framework of the
van der Pol oscillator the parameters are defined as follows: ρ is the strength of the

73 Remark: In this area θ is always very small and the term θ 2 remains small.
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Fig. 1.119 Poincaré section of a flow on a torus T2

driving (sometimes called forcing parameter), ε is the coefficient of the negative lin-
ear damping (also called friction parameter) and ωμ is the frequency of the external
driving.

As seen previously, when ε changes its sign, there exists a Hopf bifurcation, then
(at least in the proximity of the bifurcation) the attractor is a torus T 2. Figure 1.119
shows a flow on a torus T 2 and the Poincaré section of this flow; thus we can see
how to construct the Poincaré map for a circle drawn on a torus and see that the
trajectory starting from the point x on this circle re-cuts the circle at the point f (x).

At this stage, in the spectral analysis framework when Fourier transform is used
to decompose the signal, we observe two different pulses (ω1,ω2) representing the
periods of motions along the large and small circles. When these frequencies have
a “rational” ratio we observe the “coupling of frequencies” (phenomenon) and we
can count the number of harmonics which is equal to this ratio. Such observations
are depicted in Fig. 1.120 in which it is almost possible to visually count the number
of different frequencies.

In Fig. 1.120d, the number of frequencies is not visually countable, so we use
the spectral analysis which highlights the peaks for each frequency in the spectrum
corresponding to the frequencies which exist in dynamics. See Fig. 1.121 where
it is possible to distinguish the peaks in the spectrum and, in particular, the basic
frequencies (ω1,ω2) for the case ωμ = 12.

In contrast, when the ratio of eigenfrequencies (and forcing) is irrational, the-
oretically the resulting (quasi-periodic) dynamics have spectra with an infinite
number of dense lines for all the pulsations |n1ω1±n2ω2| where n1 and n2 are
integers. However, in practice the sampling methods of signals imply that there is
not an infinite number of dense lines (a better approximation of irrational num-
bers and infinite number of rotations would be necessary). Figures 1.122 and
1.123 show the phase-spaces and spectra for the cases (ε,ωμ ,ρ) = (0.1,π ,3) and
(ε,ωμ ,ρ) = (0.1,μ ,3). For (0.1,π ,3) a periodic motion is always observed in the
presence of both (basic) frequencies running on the torus; the spectrum exhibits
always peaks although they are more complex and dense.

For (0.1,μ ,3) the result is clearer, thus the spectrum exhibits an infinite number
of dense lines. The van der Pol oscillator is the most typical modeling of oscillatory
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Fig. 1.120 (a) ε = 0.1, ωμ = 3, ρ = 3, (b) ε = 0.1, ωμ = 5, ρ = 3, (c) ε = 0.1, ωμ = 8, ρ = 3,
(d) ε = 0.1, ωμ = 12, ρ = 3

Fig. 1.121 ε = 0.1, ωμ = 12, ρ = 3

motions and allows to highlight fundamental phenomena. In particular, this oscil-
lator makes it possible to exhibit a supercritical Hopf bifurcation when the system
passes from an attracting state to a repelling state while ε changes its sign, and in
addition, it can exhibit the coupling of frequencies.

Remark 1.9 (Synchronization and van der Pol oscillator). It is interesting to high-
light the synchronization phenomena through the van der Pol oscillator. The
following paragraph provides (1) an introduction to this important topic, and (2)
we will use this framework to show typical spectra of the van der Pol dynamics.

Synchronization phenomena and Van der Pol oscillator: It is well-known that inter-
action between nonlinear oscillatory systems, including chaotic behaviors, can
result in their synchronization.
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(a) (b)

Fig. 1.122 (a) ε = 0.1, ωμ = μ , ρ = 3; (b) Spectrum for ε = 0.1, ωμ = μ , ρ = 3

(a) (b)

Fig. 1.123 (a) ε = 0.1, ωμ = μ , ρ = 3; (b) Spectrum for ε = 0.1, ωμ = μ , ρ = 3

(1) Various types of synchronization between oscillatory processes have been
studied in physics, chemistry and biology (Pikovsky et al. 2001; Glass and Mackey
1988; Schäfer et al. 1999). Recently, the analyses of synchronization in “living
organisms” whose activity is induced by the interaction of a large number of
complex rhythmic processes has became an important field of research. Often the
(underlying) sources of these oscillatory processes cannot be measured separately,
but only superpositions of their signals are available (e.g. in the electroencephalo-
grams recorded on the scalp the signals are the superpositions of various interacting
sources). Therefore, it is possible to detect false or “spurious” synchronization
between brain sources leading to wrong conclusions (Meinecke et al. 2005). For
many multichannel measuring devices this fact is typical. Similar problems occur
while studying synchronization between the rhythms of the cardiovascular sys-
tem (CVS). The most significant oscillating processes characterizing cardiovascular
dynamics, i.e. the main heart rhythm, respiration, and the process of blood pressure
slow regulation with the fundamental frequency close to 0.1 Hz, appear in various
signals, for example, electrocardiogram (ECG), blood pressure, blood flow, and
heart rate variability (HRV). Such facts hinder the study of their synchronization.
The systems producing the main heart rhythm and the rhythm of slow regulation of
blood pressure can be considered as “self-sustained oscillators” and the respiration
can be taken as “an external forcing of these systems”. But, as suggested above, for
respiration frequencies near to 0.1 Hz, it is difficult to distinguish the case of true
synchronization between the respiration and the process of blood pressure regula-
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tion.74 The existence of external forcing can result in linear “mixing” of the driving
signal and the signal of the self-sustained oscillator without any synchronization.
(Concomitant presence of mixing of signals and their synchronization can also be
another cause.) Similar characteristics of synchronization can be observed in the
case of periodic driving of a van der Pol oscillator and in the case of respiratory
forcing of the heartbeat and the process with the basic frequency of about 0.1 Hz.

(2) In order to study the interaction between respiration and the process of blood
pressure slow regulation, it is possible to use the (asymmetric) van der Pol oscillator
under external forcing with linearly increasing frequency:

ẍ−ν(1−αx− x2)ẋ +Φ2x = Asinψ(t) (1.409)

with ν = 1 the nonlinearity parameter, Φ = 0.24π the natural frequency, and A,ψ
the amplitude and phase of the external force. The phase equation

ψ(t) = (2π [(a + bt/T)]t) (1.410)

expresses the linear dependence of the driving frequency ωd(t) on time:

ωd(t) =
dψ(t)

dt
= 2π(a + bt/T), (1.411)

with a = 0.03, b = 0.17 and T = 1800 (maximum time of calculation). When α = 0,
the system corresponds to the usual van der Pol oscillator with symmetric limit
cycle. In this case, the spectrum of oscillations has only odd harmonics (2n + 1) f0
(with n = 1,2, . . .) of the basic frequency f0. The second harmonic 2 f0 with the basic
frequency close to 0.1 Hz is prominent, then the van der Pol oscillator is modified
by means ofα = 1. Due to the effect of nonlinearity, there is a difference between the
natural frequencyΦ and the frequency ω0 of self-sustained oscillations (ω0 = 2π f0,

Fig. 1.124 Log10(Spectrum) and Phase-plane for A = 0,Φ = 0.24π ,α = 0

74 Indeed, false synchronization can appear due to the presence of respiratory component in the
HRV and blood pressure signals used for the analysis of the rhythm with the basic frequency of
about 0.1 Hz.
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Fig. 1.125 Log10(Spectrum) and Phase-plane for A = 0,Φ = 0.24π ,α = 1

Φ = 0.24π , f0 = ω0/2π = 0.106), (see Fig. 1.124). In the asymmetric van der Pol
oscillator this difference between Φ and ω0 is greater ( f0 = 0.098), Fig. 1.125.

It could be interesting to compare (1) the synchronization of oscillations by
external driving and (2) the mixing of signals. This can be done considering

y(t) = x(t)+ Bsinψ(t), (1.412)

where x(t) is the signal of the autonomous asymmetric van der Pol oscillator and
Bsinψ(t) is the additive signal with amplitude B, phase ψ(t) and varying frequency
ωd(t) = dψ(t)/dt = 2π(a+bt/T). The literature on such subjects is abundant, and
we thus exhort the reader to consult the increasing number of publications on this
topic (Shilnikov et al. 2003; Hramov et al. 2006).

1.39 Reconstruction Theorems

Before explaining the Taken’s reconstruction theorem, we have to introduce the
embedding notion and the general Withney’s embedding theorem.

1.39.1 Embedding, Whitney Theorem (1936)

In a general way, an embedding75 is a representation of a topological object, man-
ifold, graph, field, etc., in a certain space in such a way that its connectivity
or algebraic properties are preserved. A field embedding preserves the algebraic
structure, an embedding of a topological space preserves open sets, and a graph
embedding preserves connectivity. A space A is embedded in another space B when
the properties of B restricted to A are the same as the properties of A. The rationals
are embedded in the reals, and the integers are embedded in the rationals. In geom-

75 Ref. to Riemannian geometry and topology.
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etry, the sphere is embedded in R
3 as the unit sphere. Let us specify the notion of

“embedding”:76

A differentiable manifold of class Ck (resp. C∞, Cω ) is the pair of a manifold and
an equivalence class of atlas Ck (resp. C∞, Cω ) (see def.atlas in Appendix). (Ω,ϕ)
will be a local map at P, (x1, . . . ,xn) the associated coordinate system. A map f
from a differentiable manifold Ck : Wp to another Vn is differentiable Cr (r ≤ k) at
P if, ϕ̂ ◦ f ◦ϕ−1 is differentiable Cr at ϕ(P), and we define the rank of f at P as
the rank of ϕ̂ ◦ f ◦ϕ−1 at ϕ(P). The map f is Cr is it is Cr at any point. This is an
immersion if the rank of f is equal to p at any point of W . This is an embedding if f
is an immersion such that f is a homeomorphism from Wp to f (Wp) provided with
a topology induced by that of Vn.

A sub-manifold of dimension p of a differentiable manifold Vn is a subset W of Vn
such that, for any point Q ∈W , there exists a local map (Ω,ϕ) of Vn where ϕ(Ω) is
an open set of the form θ×U with θ ⊆R

p and U ⊆R
n−p such that ϕ(Ω∩W ) = θ×

{0}. Thus there exists a system of local coordinates (x1, . . . ,xn) on a neighborhood
of Q in Vn such that Wp is locally defined by xp+1 = xp+2 = · · ·= xn = 0p. Often the
subset of W ⊂ Vn will be defined by a system of q = (n− p) equations fi(M) = 0
(1 ≤ i ≤ q) where the fi are functions C1. If the map from Vn to R

q defined by
M→ ( fi(M), . . . , fq(M)) is of rank q at any point M of W , then W is a sub-manifold
of dimension p. We suppose that the manifolds are connected. Otherwise we study
the connected components the one after the other. The definition of a differentiable
manifold is abstract. But in fact, this is a hypersurface of dimension n in R

p with
p > n. The manifold is supposed countable at infinity (there exists a sequence of
compacts Ki ⊆Vn such that, for any i, Ki ⊂ K̊i+1 and ∪i≥1Ki = Vn), Whitney proved
the theorem

Theorem 1.21 (Whitney). A differentiable connected manifold C1 of dimension
n admits an embedding in R

2n+1.

This theorem (1936) states that every n-dimensional manifold admits an embed-
ding into R

2n+1 (and concerns a general class of maps). The theorem states that
a generic map from an n-manifold to 2n + 1-dimensional Euclidean space is an
embedding: the image of the n-manifold is completely unfolded in the larger space.
In particular, no two points in the n-dimensional manifold map to the same point in
the 2n + 1-dimensional space. As 2n + 1 independent signals measured from a sys-
tem can be considered as a map from the set of states to 2n + 1-dimensional space,
Whitney’s theorem implies that each state can be identified uniquely by a vector of
2n + 1 measurements, thereby reconstructing the phase space.

76 Definition (Embedding). In short, a continuous map f : X →Y , between two topological spaces
is called an embedding, if it is a homeomorphism on a subspace of Y . (The notation f : X ↪→ Y
is often used for embeddings.) The embeddings correspond to the subspaces. f and the inclusion
map of the subspace f [X] into X differ only up to a homeomorphism.
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1.39.2 Takens Theorem (1981): A Delay Embedding Theorem

The Takens theorem (1981) corresponds to a delay embedding theorem that gives
the conditions under which a chaotic dynamical system can be reconstructed from
a sequence of observations of the state of a dynamical system. The reconstruction
preserves the properties of the dynamical system that do not change under smooth
coordinate changes, but it does not preserve the geometric shape of structures in
phase space. The (delay embedding) Takens theorem provides the conditions under
which a smooth attractor can be reconstructed from the observations made with a
generic function. (Ulterior results replaced the smooth attractor with a set of arbi-
trary box counting dimension and the class of generic functions with other classes
of functions.) The theorems published by Takens (1981) proved the link between
dynamics of a true unknown system in the (high dimension) phase space and dynam-
ics defined in a pseudo-phases space of a system reconstructed from observations.
The equations of the movement (or system) are not necessarily known. Consider a
series of observations Y (t),Y (t + τk),Y (t +2τk), . . . taken as outputs of a dynamical
system containing a certain number of variables which undergo certain dynamical
laws. We want to determine its qualitative characteristics by only analyzing Y (t).
This aim seems impossible because we do not know the role of the other variables
in the determination of the system; We do not know the dimension of the system
that can be indefinitely large, nor the numbers of variables and equations involved
in the dynamics. However, two arguments make possible this aim:

• The attractors of large (or infinite) systems can have low dimensions. Conse-
quently, if we only take into account the asymptotic behavior of the system, the
study of the geometrical objects of low dimensions can provide all information
needed.

• The extraction from a reconstructed time series of the needed information about
the original system is possible by applying the reconstruction theorems.

To this end, let us take n successive elements of the time series of Y , that we write
Y (t),Y (t +τk),Y (t +2τk), . . . ,Y (t +(n−1)τk). These elements can be regarded as a
vector that defines a point in R

n. Observe now the evolution in the course of time of
this vector: an orbit is obtained in a space A included in R

n. It can be shown that for
almost any time delay denoted τk, the dynamics in the pseudo-phase space A, have
the same properties as the original system (a condition concerning the size of n is to
be sufficiently large compared to the original attractor).

1.39.2.1 Takens Theorem by Broomhead and King (1986)

Theorem 1.22 (Takens). Let M be a compact manifold of dimension m and (F,v)
a pair where F is a set of smooth vectors and v is a smooth function on M.77

77 (1) The differentiability (possibly of a high order) of a function is regarded as a smoothing. Thus,
regarding a smoothed function, usually one considered a differentiable function (of a high order).
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ΦF,v(y) : M −→R
2m+1 (1.413)

defined by: ΦF,v(y) = (v(y),v(ϕ1(y)), . . . ,v(ϕ2m(y)))T . ΦF,v(y) is an embedding in
which ϕt is a flow of F.

Where T is the transpose, v(y) is regarded as the measurement of the system
at the point y ∈ M (i.e. here v(ϕi(y)) corresponds to an observation of Y at time
i). The space which contains the image of ΦF,v is called embedding space and the
dimension of this space is n. It is important to explain how the measurement of the
system is made on ΦF,v(M) : (v1,v2, . . . ,vi,vi+1, . . .) with vi ≡ v(ϕi(y)). n denotes
the dimension of the embedding. We suppose n ≥ 2m + 1 in order to satisfy the
Embedding Whitney theorem. The Takens theorem insures that if n is sufficiently
large, the n-dimensional image of the attractor provides a faithful (topological) rep-
resentation to the origin, e.g. periodic orbits on an attractor correspond to periodic
orbits in the reconstructed phase space, and chaotic orbits of the original system
will appear chaotic in this space, etc. Note that a chaotic attractor obtained from the
reconstructed series will have a positive Lyapunov exponent as the corresponding
attractor in the initial system.

(2) A smoothed function could be also a selection, with regular intervals, of points of a function or
a signal for example.
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The dynamical system: The state of a system is denoted y = (y1,y2, ..), where
y represents a point in the phase space of the system. It is possible to indicate
the phase space by S. Given a linear operator applied to the points belonging to
S :F(y) = dy/dt. If we denote ϕt a family of one-parameter maps of the phase space
in itself, we can write: y(t) = ϕt y0 with y0 as the initial point of the dynamics. Thus
ϕt S can be considered as a flow of points of the dynamics in the phase space. In a
dissipative system the dimension of ϕt S, which at the beginning was that of S, can
contract towards a lower dimension. Thus, if the flow contracts, we can thus repre-
sent the existence of the attractor. This attractor, which has a propensity to lower the
dimension of the flow, exists and can be represented inside a field of a dimension
lower than the phase space S. This field which is “smoothed” contains the attractor
and is denoted M, thus we can write: dimM < dimS. The dynamics on M is easier
to (analytically and numerically) study and handle, knowing that its dimension is
lower and the number of degrees of freedom is lower. The purpose is thus to con-
sider that there is a topological equivalence between the initial attractor and the
reconstructed attractor.

Topological equivalence and phase-portrait, Poincaré map: The solution of the dif-
ferential system F(y) = dy/dt is equivalent knowing the family of maps ϕt . The
Poincaré map allows to study the orbit to observe the phase portraits. Given two
differentiable vector fields F and G of class Cr, i.e. r times differentiable, they are
known as of Ck-equivalent class (k ≤ r) if there is a diffeomorphism Φ, (Ck), which
allows to pass from the orbits ϕt (y) of F to the orbits ψt′ (Φ(y)) of G and preserves
their orientations. The aim is to describe a topological equivalence which preserves
the properties of the original set.

Remark 1.10. The contribution of the Takens Embedding Theorem (1981) was to
show that the same goal as the Whitney theorem (1936) could be reached with a
single measured quantity. (The idea of using time delayed coordinates to represent
a system state is reminiscent of the theory of ordinary differential equations, where
existence theorems say that a unique solution exists for each (y(t), ẏ(t), ÿ(t), . . .).)

Some references concerning reconstruction theorems: Abarbanel (1996), Sauer
et al. (1991), Ott et al. (1994), Sauer (1994), Broomhead and King (1986), Aeyels
(1981), Takens (1981), and Whitney H (1936).

1.39.2.2 Application to Nonlinear Signals

Nearly 20 years ago, new techniques have been developed to analyze and treat the
signals corresponding to nonlinear dynamics of the chaotic type. These techniques
are gathered under the name of “nonlinear signal processing”. They are not built on
the Fourier transform as it was the case in one of the previous sections. Here, we
postulate that nonlinear dynamics are inserted within a “deterministic” framework
as opposed to traditional methods which are placed within a purely “stochastic”
framework that we try to characterize. The techniques of nonlinear signal process-
ing are based mainly on reconstruction theorems. These theorems shows that from
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a time series, we can built a unidimensional or multidimensional trajectory topo-
logically equivalent to the initial trajectory extracted from the phase-space of the
initial series. The trajectory reconstructed is represented in a pseudo-phase-space.
Since we reconstruct the series according to the dimension of the system, with one
or more delays, we posed the basis of a signal processing problem where we will
handle the series in the pseudo-phase space. For a unidimensional series X(t), the
reconstruction can be done in a two-dimensional plane: [X(t), X(t + Δt)].

Reconstruction of the logistic function for α = 3, 3.4, 4.
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α = 4: chaotic domain

Reconstruction variants with an increasing delay for α = 4.
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1.39.3 (n, J)-Window Concept

The window concept is directly derived from the principle mentioned in previous
theorems. This concept makes visible n elements of the time series. We write: if
J = 1, the elements are consecutive and if J > 1, then there is an interval between each
visible element. Consequently, the (n,1)-window corresponds to the (n)-window.
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The elements thus selected in the window constitute the components of a vector
in the Embedding-space R

n (With dim(Rn) ≥ dim(R2m+1)). The vector made up
in this space characterizes a trajectory. This trajectory is represented as follows:
xi =ΦF,v(ϕ(y)) = (vi,vi+J, . . . ,vi+( m−1)J)T . Here is the example of the construction
of a vector in an embedding space ∈ R

5.

Example of a (5)-window: We denote: (a) the starting vector, (b) selection,
(c) reconstructed vectors.

(a) : {v1, v2, . . . , vi−1, vi, vi+1, vi+2, vi+3, vi+4, vi+5, . . .}
(b) : v1, v2, . . . , vi−1, [vi, vi+1, vi+2, vi+3, vi+4], vi+5, . . .
(c) : xi = (vi, vi+1, vi+2, vi+3, vi+4)T

As a consequence, we will be able to note X a vector trajectory constructed from
a (5)-window in the following way:

X = N − 1
2

⎡

⎢
⎣

xT
1

xT
2
...

⎤

⎥
⎦= N − 1

2

⎡

⎢
⎣

v1 v2 v3 v4 v5
v2 v3 v4 v5 v6
...

...
...

...
...

⎤

⎥
⎦ . (1.414)

This trajectory matrix will be used in the next chapters, in particular within the
framework of the Singular Spectrum Analysis that we will apply to the logistic
equation and to the French stock index.



Chapter 2
Delay Model, SSA and Brownian Motion

This chapter presents three other tools to approach complex, nonlinear and chaotic
dynamics. We will consider the Delay-model, the Singular Spectrum analysis and
the Brownian motions (fractional or non-fractional). Firstly, we present the delay-
model which is applied to the logistic equation. According to the Medio’s work, a
discrete-delay is integrated into the construction of an economic model by means of
a convolution. The lengths of lags are distributed in a random way in the population.
The delay is in fact modelled by means of a random variable which is characterized
by its probability distribution. We will notice that in this way, the system built rocks
more tardily to the chaos. We will observe a shift of bifurcation points, but also an
unhooking in the trajectory.

Delay-model applied to the logistic equation. We will use the equation with the
first-order differences used by Robert May. The central element of the model is the
concept of “delay”. For a macroeconomic consumption model for example, if we
postulate that there is an (unspecified) great number of agents, and that all these
agents answer to a certain stimulation with given discrete-lags, the lengths of lags
are different for various agents and are distributed in a random way in the popula-
tion. In a global model, in the whole population, the reaction times are aggregate. In
the described case, we can model the reaction-time by means of a random variable
that will represent the global length of the lag.

The Singular Spectrum Analysis is the second investigation tool of complex
dynamics presented in this chapter. The method associates the Takens reconstruc-
tion technique and a technique known in matrix algebra which is the Singular Value
Decomposition. In such a framework, the purpose is to project a time series on a
basis of eigenvectors extracted from this same time-series. We project a trajectory
matrix on the space described by the eigenvectors of the covariance matrix of the
time series. The eigenvalues obtained can be ordered and be the subject of a filtering
with the aim to extract the deterministic part of the signal cleaned of its background
noise. The SSA was used in signal theory, and its applications to dynamical system
theory have been introduced by Broomhead and King in 1986, in connection with
their version of the Takens theorem (see Chap. 1). The method is presented in the
framework of the delay-model behavior applied to the logistic equation, but also on
the French stock index.

T. Vialar, Complex and Chaotic Nonlinear Dynamics,
c© Springer-Verlag Berlin Heidelberg 2009
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The last concept described in this chapter is the Brownian motion, which is
a formidable tool to study chaotic behaviors. We will describe their construc-
tions and experiment different types of Brownian motions, fractional (H �= 1/2) or
non-fractional (H = 1/2). The concepts associated with Brownian motions, such
as persistence, memory, Levy distribution, fractal dimension and Rescaled range
statistics are approached in this heading.

2.1 Delay Model Applied to Logistic Equation (Medio)

2.1.1 Nonlinearities and Lags

Here, the first-order difference equation of R.May is used and its general form
is: Xt+T = G(Xt), where T represents the length of the lag and G is a smoothed
one-hump function. Such an equation can be understood as an aggregate system
(i.e. a one-loop feedback system) with two components (1) a nonlinear relationship
(here, single-hump functions) and (2) a lag (here, fixed delay). For (1): Nonlinear-
ities are widely used in Economics, for example in rational consumption models,
overlapping generations models, optimal growth models, we can mentioned: Sutzer
(1980), Day (1981–1982), Benhabib and Day (1981), Grandmont (1985), Pelikan
and Deneckere (1986), Baumol and Benhabib (1988), Lorenz (1989), Boldrin and
Woodford (1990), Scheinkman (1990). For (2): The notion of lag is neglected in
Economics, however it can be a source of important developments in connection
with the notions of aggregates, agent behaviors, stochastic processes, aggregate
models and chaotic systems.

2.1.1.1 Lag Distribution of Agents

This notion of “lag” has been revisited by A. Medio and can find a significance
in certain economic models (e.g. rational consumption or overlapping generations
models).1 Suppose that there is an unspecified great number of agents and that all
these agents respond to a certain stimulation with given discrete lags. The lengths
of lags are different for various agents, and are distributed in a random way in the
population. The subject here is the “reaction time” of agents. In a global model, in
the whole population the reaction times are aggregate. In the described case, we can
model the reaction time by means of a random variable, real, positive or null, that
is called T (in accordance with the equation posed at the beginning of chapter) and
will represent the Global length of the lag. A random variable is characterized by its
probability distribution (if it is known).

1 Ref. to Medio publications, in particular: Medio (1992).
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2.1.1.2 Convolution of the Lag and Reaction of Agents

Let X(t) be a variable that is function of another variable Z(t) through a continu-
ously distributed lag.2 (Note that Z may indicate the same variable X at some time
different from t.) m can be understood as a “weighting function” (i.e. a kind of
“moment”) that formalizes the strength of impact that values of Z in the more or
less distant past have on the value of X (i.e. a kind of temporal correlation). The
equation of the lag can given by:

X(t) =
∫ ∞

0
m(s)Z(t− s)ds (2.1)

with m continuous on R, and
∫ ∞

0 m(s)ds = 1. In practice, s is bounded by t and the
previous equation becomes X(t) =

∫ t
0 m(s)Z(t− s)ds. This equation can be taken as

a (commutative) convolution.3 Given the polynomial v(p) = a0 pn + · · ·+ an, with
L the Laplace transform that is written L [m(s)] = 1/v(p) = L [L −1[1/v(p)]].
Then m(s) is defined as the inverse Laplace transform of 1/v(p), thus, m(s) =
L −1[1/v(p)], then X = m � Z is the solution of the differential equations v(D)X(t)=
Z(t) with D ≡ d./dt and the initial conditions X = X

′
= · · · = Xn−1 = 0. If the lag

is an exponential lag of order n, we have 1
v(p) =

( τ p
n + 1

)−n. Thus the differential

equation v(D)X(t) = Z(t) is written
( τD

n + 1
)n X(t) = Z(t) or also

X(t) =
(
τD
n

+ 1
)−n

Z(t), (2.2)

where n ∈ Z
+ and τ is the time constant of the lag. For multiple exponential lags,

m(t) can be calculated through the inverse Laplace transform, we have: m(t) =
( n
τ
)n tn−1

(n−1)!e
−nt/τ . For n≥ 2, m(t) has a one-hump shape:

(a) When n = 1, we deal with the ordinary differential system which can be written
in the following way: Ẋ(t) = γ(Z(t)−X(t)) where γ represents the speed of
adjustment of the model (note that 1/γ = τ).

(b) When n becomes large, the weighting function tends to a Dirac delta func-
tion and the exponential lag tends to a fixed delay of length τ . Then we have:
limn→∞

( τD
n + 1

)−n = e−τD (Fig. 2.1).

At this stage, we have to combine the delay and the model. If we place the lag in the
generic initial model Xt+T = G(Xt), this can be written:

Xn =
(

D
n

+ 1
)−n

G(Xn). (2.3)

2 The lag can be understood as a shift in the reaction time of agents.
3 See Appendix.
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Fig. 2.1 Weighting function
of different exponential lags

After the application of the factor (D
n + 1)−n to G(Xn) we encounter the value of

Xn again. We can turn over the equation, and move the lag term on the other side
of the equality and change the sign of the exponent. Then we write the following
equivalent relations that describe a differential equation system:

((D/n)−1)Xi = Xi−1, with i = 2 . . .n, (2.4)
((D/n)−1)X1 = G(Xn), (2.5)

where G(Xn) is a one-hump function. The system can also be written:

((D/n)+ 1)X2 = X1,
...

((D/n)+ 1)X1 = G(Xn).

(2.6)

2.1.2 Application to the Logistic Equation

The logistic equation is written Xn+1 = αXn(1 − Xn). Consequently: G(Xn) =
αXn(1−Xn) and the lag takes the form (D

n + 1)−n, Xn = ((D/n)+ 1)−n(αXn(1−
Xn)). We face a nonlinear functional relation and a delay-function. We will see that
the application of the lag to the logistic model shifts the chaotic zone.

2.1.2.1 Solution of the Logistic Model

At the equilibrium we have X1 = X2 = X3 = · · · = X̄ , thus for Xn+1 = αXn(1−Xn),
there are the equilibrium solutions: X̄ = 0 and X̄ = 1− (1/α). The stability of
these equilibrium points was previously studied in Chap. 1. Finally, we write the
differential system with the delay function as follows:
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2.1.2.2 Differential System Combining Logistic Model and Delay Funct

The system of ordinary differential equations of dimension n is:

((D/n)+ 1)X2 = X1,
...

((D/n)+ 1)X1 = αXn(1−Xn).
(2.7)

For a system of dimension 10 and of length N, we write:

((D/10)+ 1)X2 = X1,
...

((D/10)+ 1)X2 = αX10(1−X10).
(2.8)

By simple multiplication, the system is written:

((
.

X2/10)+ X2) = X1,

... (2.9)

((
.

X10/10)+ X10) = X9,

((
.

X1/10)+ X1) = αX10(1−X10).

The differential system can be written in matrix form:

[
·

X ] = [ A]∗ [ X ] . (2.10)

2.1.2.3 Figures of Various Simulations for α ∈ [3, . . . , 5]

Pictures of differential system solutions for different α values (Figs. 2.2–2.9).
For each value of alpha, we have to face a rectangular matrix made with vectors

X of dimension 10×N. A weight ( D
10 + 1) is applied to each vector of the matrix,

and this weight changes the trajectory.

2.1.2.4 Shift of Bifurcation Points, and Periodicity

For the logistic model the ultimate bifurcation before chaos occurs for α � 3.56.
In our case, for a system dimension equal to 10×N, this occurs for α � 5. The
period-doublings visible in the graphs of the preceding section are more tardy under
the effect of delay function. The periodic behaviors and their periods are identifi-
able with the numbers of distinct orbits in the figures. Starting from the value equal
to 5, the trajectory seems to describe different and distinct orbits which do not over-
lap, contrary to what occurred for α = 4, for example, where if we eliminate the
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Fig. 2.2 α = 4. Transitory
behavior was preserved before
convergence
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Fig. 2.3 α = 4.35. Transitory
behavior suppressed to make
the orbit visible
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Fig. 2.4 Period-doubling.
α = 4.5. Asymptotic behavior

0 0.2 0.4 0.6 0.8 1 1.2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

X3

x8

alpha = 4.5

transitory behaviors before convergence, we have a “dense closed” orbit without
unhooking and period-doubling. Moreover, in order to underline the periodicities,
we can analyse the spectrum of these trajectories and calculate the Lyapunov expo-
nent to highlight the “moment” during which the system rocks towards a pure
chaotic behavior, as we could do it in the first chapter for the logistic equation
itself. We did not represent the sensitive dependence on initial conditions of the
system which is the characteristic of chaos nor the value of the Lyapunov exponent
during the evolution of the system on the route towards chaotic zone. The capacity
dimension can also be measured rather easily. The set of these elements converges
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Fig. 2.5 α = 4.75

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

X3

x8

alpha = 4.75

Fig. 2.6 α = 4.85
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Fig. 2.7 α = 4.95
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towards a value of alpha equal to 5 to characterize the critical point. The value of
the capacity dimension for α = 5 is close to 2.15, which is a non-integer value and
characterizes the presence of a simple attractor. The principle of the exponential
lag makes it possible to model a large variety of economic situations by control-
ling the parameters T and n. The nonlinearities of one-hump functions coupled to a
delay function produce chaos. One of the characteristics of this exponential lag is
that the variance which was used to build it is low. Thus we are close to the aspect
of a Dirac function. In conclusion, it is possible to say that a high order lag, for
example n = 10 is a condition for chaos occurrence. The type of model that we have
just seen can find applications in macroeconomics, in particular in the models of
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Fig. 2.8 α = 5. Orbit
and chaotic attractor, with
unhooking
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Fig. 2.9 Behavior of X(8)
with n = 10
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production–consumption, for example the developments of Grandmont models on
the equilibrium cycles (“Overlapping-generations models”).

2.2 Singular Spectrum Analysis

2.2.1 Singular Spectrum Analysis Principle: “Windowing”,
Eigenvector and Projection

The SSA method is built from a technique known in matrix algebra as the “singular
value decomposition”. This method consists in projecting a time series on a basis of
eigenvectors extracted from this same time-series. Or more exactly, it is the projec-
tion of a matrix trajectory, built from the initial time series, on the eigenvectors of
an intermediate matrix, itself built from the studied experimental series. The SSA
was used in signal theory, and its applications to the dynamical system theory have
been introduced by Broomhead and King in 1986 (see Chap. 1). Their version of
the Takens theorem states that the space containing the image of the map ΦF,v is
called the embedding-space and its dimension n is called embedding dimension.4

4 See Takens theorem. Recall: ΦF,v : A−→ R2m+1.
ΦF,v(y) = (v(y),v(φ1(y)), . . . ,v(φ2m(y)))T .
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This is the reconstruction of phase space of solutions of an arbitrary dynamical sys-
tem. And the dimension of this reconstructed phase space is also the dimension of
the embedding space. It is pointed out that the conclusions of the Takens theorem
impose the following constraint n � 2m+ 1 with:

• m: Dimension of the attractor
• n: Dimension of the embedding space

Consider for example the values taken by a variable Y (t) with regular time
intervals denoted τ , then we can write this without dimensioning the number of
observations in the following way Y (t),Y (t + τ),Y (t + 2τ), . . .. If the set is dimen-
sioned, we can write a group of observations of the variable Yp = Y (pτ) as follows
with p = 1, . . . ,n and where τ is a “step” corresponding to a “periodic measurement
of the variable”. We will use the concept of (n,τ)-window presented in the first
chapter (see Takens theorem). Here, it is pointed out that a window is the combi-
nation of two criteria: the number of selected measurements that becomes, in fact,
the length of the series and the step τ which is the periodicity of the measurement.
Thus, the periodicity of the measurement with the number of measurements makes
visible n elements of the initial time series, which is therefore sampled on intervals
of length τ . An optimal approach in a discrete case makes us take τ equal to 1, i.e.
each measurement of the value of the variable, without descending to the value of
the step below the unit. Thus for a (n,τ)-window, we make visible n elements of the
initial time series. In the continuous case, things are different since we can construct
windows with the length we select and show exactly what we want about the model.
This makes much more easier the handling of trajectories. Our limits in this con-
struction are rather those fixed by what we wish to exhibit of the trajectory, i.e. in
general the attractor and in particular to operate its reconstruction whose principal
constraint is n � 2m+1. The subject is to manage scale problems that are important
in this type of construction. For the choice of a (n,τ)-window which obviously is of
the size n, we must generate, by means of the model equation, a discrete time series
of a sufficient length so that the window can “exist” and in a significant way.

(a) Classical method of reconstruction and trajectory matrix. It is possible to
construct a set that is sequence of vectors in the embedding space of dimension n,
which is written: {xi ∈ R

n | i = 1, . . . ,N} . Each vector xi of this set is a point in R
n.

The set contains thus N points, each one of the dimension in R
n. Consequently, we

represent the set called “n-history” by a rectangular matrix of dimension N×n. We
can write the constraint on the set:

N = No−n + 1, (2.11)

with No: number of observations (i.e. the length of the series), N: dimension of the
reconstructed series, and n: dimension of the embedding space. These sequences are

Knowing that n ≥ 2m + 1. φt is a flow of F. φ is a map representing the dynamics such that:
y j+1 = φ(y j). And the function v(y) can be taken as a measurement made on the system at the
point y ∈ A, i.e. v(φi(y)) would be equal to an observation of Y at time i.
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used to build a matrix X , which is the trajectory matrix of dimension N × n. If we
pose the trajectory matrix in the following way:

X = N−
1
2

⎛

⎜
⎝

XT
1
...

XT
N

⎞

⎟
⎠ , or X = N−

1
2

⎛

⎜
⎝

(
x1

1, . . . ,x
n
1
)

...(
x1

N , . . . ,xn
N
)

⎞

⎟
⎠ , (2.12)

with dim(X) = (N,n), and the factor N−
1
2 being introduced by convenience. “By

plotting the columns of X against the principal directions of the embedding space
while respecting n � 2m + 1, we obtain the reconstructed attractor” according to
Takens method.

(b) The SSA method. The previous method has evolved. A better reconstruction
technique has replaced the Takens method. We will describe it hereafter. In spite of a
rather long presentation, the resulting system is of a quite simple handling. Consider
a set of vectors

{
si ∈ R

N/i = 1, . . . ,n
}

(2.13)

such as by their action on X , they generate a new set of vectors “linearly independent
and orthogonal”5 which is

{ci ∈R
n/i = 1, . . . ,n} . (2.14)

It is possible to assume that the vectors {ci} are also “normal” and provide a basis
in R

n

sT
i X = σicT

i , (2.15)

where {σi} is a set of real constants used to normalize the vectors. From the algebra
of matrices we know that:

sT
i XXT s j = σiσ jδi j, (2.16)

where δ is the Kronecker symbol.6 In addition, the matrix H = XXT is real and
symmetrical and, moreover, its eigenvalues form an orthogonal basis for R

N. More
precisely the eigenvectors of H satisfy the preceding equation sT

i X = σicT
i . The

extraction of eigenvectors and eigenvalues is made from the square matrix H whose

5 We will refer to the following different notions: basis of vectors, linearly independent vectors,
singular values, and “rank” of a group of vectors. The rank of a family of p vectors (V1,V2, . . . ,Vp)
is the greatest number of linearly independent vectors among them. It is also said: row of the p
vectors. It is also said: Rank of the p vectors (V1,V2 , . . .,Vp). The rank is lower or equal to p. If A is
a matrix of vectors, we note by k = rank(A) the number of singular values of A (which are larger
than the [max(size(A)) ·norm(A)]).
6 δ is the Kronecker symbol: A family of vectors (v1,v2, . . . ,vs) of R

n is said orthogonal system
if for all (i, j), i �= j, vi · v j = δi j (where δ is the symbol of Kronecker: δi j = 0 if i �= j, δi j = 1, if
i = j). Any orthogonal system of non-null vectors is free.
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dimensions are very large, since they are those of the length of X . Then, we will see
that it is easier to work with a matrix that is a variant of H and of which the dimen-
sion is much lower. This new square matrix will note V and its dimension will be
equal to the width of matrix X . We can write:7

Hsi = σ2
i si. (2.17)

Then we have the set {si} of the corresponding eigenvectors of H, and the set
{
σ2

i
}

of the corresponding eigenvalues of H all real and non-negative (H being positive-
semidefinite). H can be written as follows:

H = N−1

⎛

⎜
⎝

XT
1 X1 · · · XT

1 XN
...

. . .
...

XT
N X1 · · · XT

N XN

⎞

⎟
⎠ (2.18)

with dim(H) : (N,n)∗ (n,N) = (N,N). The writing in the simplified form is:

H = XT X . (2.19)

H can be understood as a correlation matrix between pairs of vectors (generated
by the window of size n). With this technique, we have to face an important dif-
ficulty: indeed, H has a dimension N×N usually very large and consequently its
diagonalization is often impossible to practice.8 To remove this serious constraint in
particular, a new technique was developed.

(c) SSA 2nd method. A more effective method to obtain the desired result is the
following: it is to take the “transpose” of the equation sT

i X = σicT
i , thus:

XT si = σici. (2.20)

If we pre-multiply by X : XXT si = σiXci. By using the equation Hsi = σ2
i si and by

simplifying:
Xci = σisi. (2.21)

And if we pre-multiply the preceding equation by XT and we introduce it into the
equation sT

i X = σicT
i the following equation is obtained:

Vci = σ2
i ci, (2.22)

7 Let us note that:
f (V )−λV = 0; AV −λV = 0. Hsi−σ 2

i si = 0; (H−σ 2
i ) si = 0

Collinearity:
AV −λV
↓ ↓
Hsi−σ 2

i si.
8 See appendix about the diagonalization of matrices.
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where V ≡ XT X ∈ R
n×n, the extraction of eigenvectors and eigenvalues is carried

out on the square matrix V

V =

⎛

⎜
⎝

XT
1 X1 · · · XT

n Xn
...

. . .
...

XT
n X1 · · · XT

n Xn

⎞

⎟
⎠ . (2.23)

The equation Vci = σ2
i ci allows to deduce {ci} as the set of eigenvectors of V and{

σ2
i
}

as the set of the corresponding eigenvalues of V . As said for the matrix H, note
that V can be taken as a covariance matrix of observations. The number of “steps”
(τ) will be equal to the dimension of the “embedding” n being appreciably smaller
than N, the equation Vci = σ2

i ci is much easier to treat than the equation Hsi =
σ2

i si. The numerical calculation of eigenvectors and eigenvalues of H was often very
long, sometimes even impossible, due to the high dimensions of the matrix, directly
connected with the length of observed vectors. For example, for an experimental
series constructed from 1,000 measurements, the matrix H becomes a square matrix
of dimensions 1,000×1,000 (i.e. millions of values) which has to be diagonalized
to obtain the eigenvectors and eigenvalues. Often the calculations by H fail. On
the other hand, the use of the matrix V (which is of a considerably reduced size)
facilitates the calculation by its simplification. Let C be the matrix whose columns
are composed by the ci and ∑2 = diag

(
σ2

1 , . . . ,σ2
n
)
, where the σ2

i are ordered from
the largest to the smallest, i.e. σ2

1 ≥ σ2
2 ≥ ·· · ≥ σ2

n ≥ 0. Consequently, the equation
Vci = σ2

i ci can be written:

VC = C∑2 (2.24)

XT X ci≡ ci diag
(
σ2

1 , . . . ,σ2
n
)
. Using the definition of V , consider V ≡XT X ∈R

n×n,
we have:

(XC)T (XC) = ∑2 . (2.25)

The matrix XC represents the trajectory matrix projected on the basis {ci} . The
subject is the choice of {ci} as a basis for the projection, i.e. to project the tra-
jectory matrix onto the space spanned by the eigenvectors of the covariance matrix
of the time series. This projection is optimal because the columns of the trajectory
matrix are independent (XC)T (XC) = ∑2 and minimize the mean square error of
the projection. (“Thus the plots are not squeezed any more onto the diagonal and
the projections on the planes (I, J) and (i + p, j + p) are not equal any more, like
with the Takens method” Medio 1992.) We will find an application of the method
above in the section that follows. There are other developments of this method
which approached the time-series with a background noise that disturbs the anal-
ysis. The statistical approaches that aim at sorting the eigenvalues of the matrix V,
make it possible to “denoise” the reconstruction, but they are not depicted in the
present work.
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2.2.2 SSA Applied to the Logistic Equation with Delay Function

2.2.2.1 Projections and Reconstructions of the Initial Series

Consider the delay model applied to the logistic equation, whose system is:

Xt+1 = αXt(1−Xt), Xn = ((D/n)+ 1)−n G(Xn) with n = 10, α = 5 (2.26)

then we have ((D/n)+ 1)n + 1nX = αX(1−X). Consider the trajectory of X1 for
α = 5 to be positioned at the beginning of the chaotic regime, and then we will com-
pute outputs for α = 3, α = 4, α = 20. (Recall: Takens constraint for the attractor
reconstruction is n � 2m+ 1.)
(a) Observe the logistic system attractor for a function delay α = 5 (Fig. 2.10).

X (above) is the solution of the delay model applied to the logistic equation for a
parameter equal to 5. X has the shape of a rectangular matrix. Starting from the first
vector x1 of X , we will apply the SSA. Let us visualize x1 (Fig. 2.11).
(b) Then, let us calculate the trajectory matrix by the first method with N = No−
n + 1, N = 1000,n = 10,No = 1,009,dim(X) = (N,n) = (1000,10):

X = 1000−
1
2

⎛

⎜
⎝

XT
1
...

XT
1000

⎞

⎟
⎠= 1000−

1
2

⎛

⎜
⎝

xT
1 (1) · · · xT

1 (10)
...

. . .
...

xT
1000(1) · · · xT

1 (10)

⎞

⎟
⎠ , (2.27)

H = XT X , (2.28)

dim(H)= (N,n)∗(n,N)= (N,N). dim(H)= (1000,10)∗(10,1000)= (1000,1000)

H = 1000−1

⎛

⎜
⎝

XT
1 X1 · · · XT

1 X1000
...

. . .
...

XT
1000X1 · · · XT

1000X1000

⎞

⎟
⎠ . (2.29)

Fig. 2.10 Logistic system
attractor for a function delay
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Fig. 2.11 Behavior of x1
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(c) Let us compute the new trajectory matrix V . According to what precedes,
note that as the matrix H is heavy to handle, we use the following more effi-
cient way: Given {si ∈ R

1000/i = 1, . . . ,10} and {ci ∈ R
10/i = 1, . . . ,10} with

dim(V ) = (n,N)∗ (N,n) = (n,n), dim(V ) = (1000,10)∗ (10,1000)= (10,10)

V = XT X =

⎛

⎜
⎝

XT
1 X1 · · · XT

1 X10
...

. . .
...

XT
10X1 · · · XT

10X10

⎞

⎟
⎠ . (2.30)

(d) Results. The vectors and matrices contributing to the decomposition are:
X which is the initial matrix of vectors
XT : the transpose of X
V = X ·XT : the product of both preceding vectors
c: eigenvectors of V
σ2: eigenvalues of V
V · c: product of the matrix V with its eigenvectors
σ2 · c: product of the eigenvalues with eigenvectors
X · c: product of the initial matrix of vectors with vectors of matrix V
(X · c)T · (X · c): product of transpose of previous projection with itself
If we extract the eigenvalues from V , by taking the diagonal of the matrix of

eigenvalues σ2 composed of σ2
1 , . . . ,σ2

n , the values of the diagonal are: [ 0 0 0 0
0 0 0.0004 0.0148 0.3185 6.9033]. These eigenvalues are naturally ordered in
an ascending order. And the construction of ∑2 which is carried out in a descending
order of eigenvalues does not give more information. But such a case is obviously
not frequent in practice, especially if we increase the size of n. When the matrix
X · c is constructed, several types of Poincaré sections are shown from the different
components of X ·c and with various steps. These projections of the attractor recon-
structed by the SSA method are depicted in Fig. 2.12 (α = 5). The results of this
SSA construction could be compared with the projections resulting from the Takens
method – not shown here –: in the Takens method, the figures would show orbit
projections more or less squeezed on the diagonal according to selected “steps”.
Figure 2.12 of pairwise components of the matrix X · c, we observe very different
results. Indeed, in such a case, we do not observe any more squeezing on the diago-
nal. Note that each plane constructed with two different vectors from the matrix X ·c
provides different plots, whereas the Takens method always showed similar orbits.
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Fig. 2.12 Pairwise components of X · c by disregarding time for α = 5

Thus, the projection of X on the eigenvectors ci of C allows to isolate different struc-
tures of the signal, which correspond to the many aspects of the signal. This is due to
the eigenvectors of V that are individually different. Periodicities and stationarities
can be observed in the vectors X · c. Note that the more the sequence number of the
vector increases, the more its amplitude above and below zero increases. Then, we
construct a sample of Poincaré sections similar to the previous construction and we
observe eigenvectors of V which constitute the basis on which X is projected.
(f ) Case α = 3.5. The behavior of the system for this value of alpha is not chaotic
but periodic. The orbit exhibits a spiral form for X · c(9,10). Figure 2.13 shows
different components of XC by disregarding time.
(g) Case α = 4. Same remarks as previously, the orbit shows periodicities at the
same time on the V ·c vectors and also on the eigenvectors. The matrix XC exhibits
all the periodicities in course of time (not shown here). Figure 2.14 show the various
components of XC by disregarding time.

2.2.3 SSA Applied to a Financial Series (Cac40)

The method is based on the decomposition of a time series by using a basis generated
by the initial time series itself. In Economics and Finance, it is usual to observe time
series whose terms are autocorrelated. To study the series, it is often necessary to
suppress the trend.

In order to stationarize the time series, a regression on time can be used or the nth-
differences. Here we stationarize by the first-differences. As previously, we compute
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Fig. 2.13 Pairwise components of XC for α = 3.5

Fig. 2.14 Pairwise components of XC for α = 4

the following vectors: X ,XT ,(V = X ∗XT ),c,σ2
i ,(V ∗c),(σ2

i ∗c),(X ∗c). If the diag-
onal is extracted (σ2

1 , . . . ,σ2
n ) from matrix of eigenvalues of V , we obtain: [770.5

761.4 826.2 850.2 965.3 952.8 952.8 1,005.4 1018.5 693.5 647.1]. Note that
the eigenvalues are not naturally ordered. In Fig.2.15 we project matrix X on the
matrix of eigenvectors of V .
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Fig. 2.15 Nine main components of X ·C for SSA applied to a stock index (Cac40)

2.2.3.1 Role of Eigenvalues, and Filtering of Background Noises

One of the elements contributing to the SSA is ∑2 = diag(σ2
1 , . . . ,σ2

n ) (i.e. the vec-
tor containing the eigenvalues of the matrix V ), whose eigenvalues σ2

i are classified
in descending order from the largest to the smallest, i.e. σ2

1 ≥ σ2
2 ≥ ·· · ≥ σ2

n ≥ 0.
After their classification, the elements σ2

i of ∑2 are: [1,018.5 1,005.4 965.3 952.8
850.2 826.2 770.5 761.4 693.5 647.1]. From these ordered eigenvalues, we
obtain a diagonal matrix: ∑2. Here, the size of the window or the dimension of
the embedding space is 10. One of the properties of the SSA method is the fil-
tering of background noise of a time series. According to the words of A. Medio
(1992, p. 186), this method allows “the identification of directions along of which
the deterministic component of motion takes place, which we shall henceforth call
significant (or deterministic) directions”, whereas the infinite rest will be denoted by
“stochastic directions”. These assertions were applied to unidimensional systems in
which deterministic chaos appear (e.g. logistic equation). Here, we will not compare
the eigenvalues and the dimension of phase-space orbits of a dynamics, which has
been largely presented by A. Medio in 1992 in “Chaotic dynamics”. We will just
say that we can split the embedding space n into a space in which the attractor is
immersed, i.e. a subspace called d where the orbits exist without background noise
and a stochastic subspace (n−d) in which the only involved motion is the noise. We
also mention9 that the rank10 of the matrix V gives the higher limit of the dimension

9 By considering the Broomhead and King assumptions.
10 The rank of a matrix V is the number of linearly independent columns in the matrix V. For
a square matrix, this number is always equal to the number of linearly independent lines. If the
matrix is rectangular m×n, then the rank is lower or equal to the min(m,n).
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of the subspace explored by the deterministic component of the trajectory. Thus,
the dimension d of the deterministic subspace is obtained by computing the rank
of the matrix V . In the case of a series without background noise, a hypothesis has
been enunciated saying that d (with d ≤ n) is equal to the number of strictly positive
eigenvalues of V , and the rest of eigenvalues is equal to the number of (n−d) whose
value is equal to zero. In this particular case (i.e. differentiated Cac40), we observe
that there is no eigenvalue equal to zero. It was different for the vector x1 resulting
from the delay model applied to the logistic equation (for α = 5), for which six
values among ten were equal to zero. Observe below the eigenvalues (after classifi-
cation in descending order), (1) for the delay model, (2) then for the stock index:

Logistic. Eq/Delay model:
[6.9033 0.3185 0.0148 0.0004 0 0 0 0 0 0]
First-difference of Cac40:
[1,018.5 1,005.4 965.3 952.8 850.2 826.2 770.5 761.4 693.5 647.1]

However, the previous assumptions about the eigenvalues proved to be incom-
plete and non-exhaustive. In addition, the noise level of the background noise is
not dependent on the dimension n of the embedding space. Thus, when we increase
the size of the embedding space (by increasing the size of the window-(n,τ) or by
reducing the size of the interval τ which is used to sample), then the level of back-
ground noise is lowered and new eigenvalues appear. From these observations, we
can work on the eigenvalues σ2

i and treat them to distinguish (in a noisy signal) the
deterministic part corresponding to the cleaned signal, and the part corresponding to
the background noise. σ2

i = (σD
i )2 +(σB)2 (D: determinist, B: noise). The SSA is

an important source of research for complex dynamics in Economics and Finance.

2.3 Fractional Brownian Motions

2.3.1 Brownian Motion and Random Walk

A Brownian motion can be defined as a random series x(t) with Gaussian increases
and whose variance

var[x(t2)− x(t1)] is proportional to |t2− t1|2H

with 2H = 1/2. Although the internal structure of Brownian motion is different
according to the value of H (0 < H < 1), in a generic way, we speak of a fractional
Brownian motion, whatsoever H. Figure 2.16 shows examples of three Brownian
motions respectively for H = 0.1, 0.5 and 0.72.

Without presenting its genesis, it is possible to say that H is a statistical indicator
known under the name of the Hurst exponent. In particular, for an experimental
series, the goal of this indicator was to dissociate random walk from non-random
walk. The Hurst subject was that the experimental dynamics in Nature do generally
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Fig. 2.16 Examples of Brownian motions respectively for H = 0.1, 0.5 and 0.72

not follow random walks. The Hurst-Test was used by analogy on financial markets
in order to test the concept of random walk, which in econometrics has been used
for a long time to characterize financial series. We will see later on how the Hurst
statistic also plays a role in the following concepts: Persistence, Long memory of
the series (part II), ARFIMA models (part II), Self-similarities (part III, and fractal
series).

2.3.1.1 Rescaled Range Statistic and Fractional Brownian Motion

The long-term temporal dependence was approached by the statistic called
“Rescaled Range” that corresponds to a ratio: the ratio of the extent of a series to a
standard deviation. This is the extent of partial sums of variations to the average (of
a time series) divided by its standard deviation. Given a series (x1,x2, . . . ,xn) and
the average of sample x̄n = 1

n ∑
k
j=1 x j, we write R and S:

R = max
1≤k≤n

k

∑
j=1

(x j− x̄n)− min
1≤k≤n

k

∑
j=1

(x j− x̄n), (2.31)

S =

(
1
n∑j

(x j− x̄n)2

)1/2

. (2.32)

(k = shifts). Thus the R/S statistic is written:

R/S =
max

1≤k≤n
∑k

j=1(x j− x̄n)− min
1≤k≤n

∑k
j=1(x j− x̄n)

[
1
n
∑ j(x j− x̄n)2

]1/2 .

The relation between these statistics and the Hurst exponent can be written:

R/S = a ·nH, (2.33)
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Fig. 2.17 Log (R/S) of a Brownian motion H = 0.75

a is a constant. If the series is a random walk, then H = 0.5. On the other hand,
when H > 0.5, it is not a random walk. This statistical criterion, which implicitly
rests on the autocorrelation concept, would allow to identify the stochastic aspect of
a series. This test is also expressed in a logarithmic form:

log(R/S) = H · log(n)+ b. (2.34)

By using a log-log scale, we show the graph of the statistic (in relation to the number
of observations of the time series). From the preceding equation and for b = 0, we
deduce H = log(R/S)/ log(n). Thus, we can read the estimate of H compared with
the value chosen to construct the series. Plane [log10(n), log10(R/S)] (Fig. 2.17).

We mentioned above that when H = 0.5, we have to face a random walk, and not
for H > 0.5. This assertion means that for H = 0.5, the variable of the series is not
autocorrelated, as we could see it in a statistical analysis. On the other hand for H >
0.5, there are autocorrelation or dependence of terms. It is said that: “Each observa-
tion carries a memory of events which precedes it, this is a long term memory: the
most recent events have an impact larger than those which are prior to them. What
happens today has an influence on the future; the present is a consequence of the
past. The time plays an important role” (Abraham-Frois and Berrebi 1995).11

C = 22H−1−1. (2.35)

C is an autocorrelation of long period or a correlation of future values with the past
values. If H = 0.5 then C = 0, there is not a “temporal correlation” between the
terms of the series, we are thus faced with a random process of a random walk.
And it is noted that the characterization of the process is done without using the
probability law of the series.

11 Remark: These remarks will be able to echo in econometrics concerning concepts of process of
the DS type (Difference Stationary) where the method used to make the time series stationary is
done by differentiation, and of TS type (Trend Stationary) where the method used to make the time
series stationary is done by a regression over time.
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Fig. 2.18 Empirical distributions (histograms) of three arbitrary Brownian motions for H = 0.5.
Below histograms of their 1st-differences

If H is not equal to 0.5 and in particular when it is higher than 0.5, the corre-
lation is an increasing function of H. It is said that there is persistence, it is also
said that the Brownian motion is fractional and for this reason, there are global and
even local tendencies that emerge from the series. The series has frequent “exits”
of the tunnel described around the average of values which precede. These exits
are kinds of fractures (“unhookings”) in relation to the prior walk of the process
which does not have a periodicity. This random component of a process, which was
stated as non-stochastic, requires to use the probability laws to describe it, and the
statistic H is understood as the probability so that two consecutive events occur.12

On the other hand, if H > 0.5, there is an occurrence of non-periodic cycles, and the
more H is high, the more the aperiodic oscillations frequently deviate from the aver-
age of values that the time series took prior to each fracture. In Fig.2.18, we show
for H = 0.5 the histograms (empirical distributions) of three Brownian motions
(50,000 steps) and below, the histograms of their first-differences (increases). Note
that signal distributions have particular forms and the distributions of their first-
differences seemingly tend towards a structure of the Gaussian type (to verify with
normality test).

In Fig. 2.19, (1) we show for H > 0.5 the histograms of three Brownian motions,
(2) the histograms of their first-differences and (3) the histograms of their second-
differences.

In this case, on the other hand, for H = 0.8 > 0.5, only the distributions of
second-differences appear to tend towards a structure of the Gaussian type.

2.3.2 Capacity Dimension of a Fractional Brownian Motion

Although the characterization of a Brownian motion is complex, even if we have
given a definition above, we can depict a Brownian motion in the following way. Let
us imagine an object represented by a point that moves and that at every moment

12 Ref: Abraham-Frois and Peters: “For H = 0.6, there is a probability of 60% so that if the last
change were positive the following movement will be also” (cf. Abraham-Frois and Berrebi 1995,
p. 330).
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Fig. 2.19 Histograms of three arbitrary Brownian motions for H > 0.5. Below histograms of their
1st-differences. Below histograms of their 2nd-differences

makes a jump (or a step) in an unspecified direction (knowing that here, it is a two-
dimensional or three-dimensional Brownian motion). More exactly, we imagine that
this displacement is that of a drunk walker as it is usual to symbolize it. Viewed from
a big distance, one does not know if it is a continuous curve where each step is rep-
resented by a point, or if it is discontinuous, i.e. if each point corresponds to 100
or 1,000 steps for example. If we compare the trajectories taken step by step, all
the 100 steps or all the 1,000 steps, we will observe that the trajectories resemble
each other. It is usual to say that the trajectory is a fractal curve and its capac-
ity dimension (or fractal dimension) is equal to 2 (D = 2). This type of trajectory
has been highlighted by Jean Perrin at the beginning of the twentieth century, he
observed the movements of atoms under the microscope. One of the consequences
of this capacity dimension equal to 2 is that the trajectory tends to “blacken” the
plane while advancing in the course of time. And if despite everything the length
of the time series is not sufficient, we will be able to observe portions of the plane
“filled” uniformly by the trajectory. A “singular geometry” can be associated with
this type of trajectory which is (certainly too quickly) defined as a random walk. The
selected example of a walker, lets precise that the step taken by the walker excludes
all the “long distance jumps”. We can choose another way of symbolizing this type
of movement borrowed from the physical science by observing the trajectory of an
atom or a molecule belonging to a gas from which the temperature is different from
the absolute zero. The random movements of atoms consecutive to the presence of a
non-zero ambient temperature are called phenomena of diffusion which are related
to Physics but also the biology for example. Generally, any matter undergoes this
diffusion phenomenon through an increase in the ambient temperature. Above, we
evoked the notion of the long distance jump, but the length of the walker’s steps is
always close for two arbitrary steps, which may be slightly different if we measured
them with precision. But this way of representing the movement excludes the long
distance jump. This type of long distance jump has been approached by Paul Levy
who in the 1930s studied fundamental variants of the Brownian motion where these
long jumps are allowed, in opposition to what is stated above. The probability of
these jumps is weak, however they have the very important capacity to modify the
general structure of a movement. This type of event is called Levy jump or Levy
flight.
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2.3.2.1 Capacity Dimension of Trajectories, Gauss and Levy Laws

This concept of Levy jump can find transpositions in Nature. The most usual case
is the displacement of an albatross above the ocean, seeking the fish shoals to nour-
ish itself. The displacement of the bird is done in three dimensions. However if we
observe the trajectory in a plane (i.e. two-dimensions), we cannot observe the move-
ments (elevation) in the vertical dimension any more. The characteristic is that the
bird that found a fish shoal will describe displacements of weak length and width
during a time, the majority of its displacements at this place being vertical (not rep-
resented). Then, having finished at this place, it will move much further in the plane
until finding another fish shoal. This aspect of the set in the plane corresponds to
concentrations of movements in the form of very localized loops which will be sep-
arated by long curves without loops. The distance between two fish shoals is much
larger than the one inside the same fish shoal. In short, there will be many short
flights and from time to time long distance flights. This observation was done by
two teams, one from the British Antartic Survey from Cambridge and the other from
the Boston University. Unlike the Brownian motions described by the displacement
of a walker, where the steps have close lengths, the Levy jumps produce immense
steps (in the trajectory) even if they have a weak probability to occur. This type
of Levy jump offers trajectories whose capacity dimension or fractal dimension is
lower than 2 (D < 2). A Levy jump will thus be defined as a movement where the
probability P(s > S) of a jump s of distance higher than S varies like a negative
power of S: P(s > S) = S−D, with D < 2.13

This principle of the Levy distribution is used in astronomy in the study of the
distribution of “celestial objects”. The trajectories of the stock exchange indexes do
obviously not follow the Gauss law. The strong fluctuations of the stock exchange,
the shocks and the explosions over long periods could be integrated into the proba-
bility law. Sapoval (2001) gives a recent example of the Frankfurt Stock Exchange
index, for which we notice brutal explosions and self-similarities on different scales.
He notices that many stock market indexes have representations of this type and
have the statistical property of the self-affinity. (The stake is to consider that the
stock-exchange trajectories result from a subjacent deterministic dynamics, like the
trajectories with Levy jumps.)

2.3.2.2 Capacity Dimension and Fractional Integration

The fractional integration parameter d is defined as follows, in connection with the
Hurst exponent H evoked in the preceding sections: H = d + 1/2. In connection
with the Levy law, we can indicate the functional relation between the fractal
dimension and the Hurst exponent: D = 2−H or, the relation between the frac-
tal dimension and fractional integration: D = 3/2− d. There exists a relation
between the Levy law and fractional integration: D = 3/2−d < 2,−d <−3/2+2,

13 The central limit theorem is impugned when the expectation value: E(s2)→ ∞.
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d < 3/2−2, d <−1/2. This case corresponds to the lower bound of the parameter
of fractional integration d of a process ARFIMA(0,d,0) for which we have to face
“anti-persistence” phenomena. On the contrary, the relation between the Levy law
and the Hurst exponent is immediate: D < 2, 2−H < 2, H > 0. H will have to be
strictly higher than 0, what appears to be a too large sample to be significant. The
relation between the fractal dimension and the exponent is also written in certain
works (Mandelbrot 1975, p. 114) and under some conditions no longer described as
a difference but as a ratio: D = 1/H.

2.3.2.3 Definition of a Brownian Motion by Mandelbrot

Definition 2.1 (Mandelbrot, Brownian motion). If x is a point of the plane, x(t)
is called a Brownian motion it is a succession of small displacements which are
mutually independent and “isotropic”.14 The last characteristic means that all the
directions for the displacement of the point in the plane are possible. For any couple
of moments t and t ′ > t, one dissociates two points of vector x by x(t) to x(t ′) and
considers that (Mandelbrot 1975, p. 45):

(1) The direction as well as the length of the trajectory are independent of the initial
position and of the position of each previous point.

(2) The vector must be isotropic.
(3) The length of the vector is such that its projection on an unspecified axis obeys

the Gaussian distribution of density: 1√
2π |t′−t| exp −x2

2|t′−t| .

2.3.3 Introduction to Persistence and Loops Concepts

We implicitly evoked in different previous sections the fact that the Brownian
motion is spread in a natural space, i.e. in a plane or in a volume. This is why
in this section we chose to represent some Brownian motions in dimension higher
than 1. Brownian motions have been generated by the same simulator (simulator
seeds influence the results).

2.3.3.1 Brownian Motions: Highly Persistent, Fairly Persistent and Weakly
Persistent

Highly persistent. The Hurst exponent chosen for the simulation hereafter is close
to 0.85. We are beyond the value 0.5 of H for which we define a random walk

14 An isotropic line: an isotropic line passes through the circular points at infinity. Isotropic lines
are perpendicular to themselves.
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Fig. 2.20 (a) “Highly” persistent, H = 0.85; (b) “Fairly” persistent, H = 0.6

Fig. 2.21 (a) Brownian motion, H = 0.6; (b) Brownian motion for H = 0.51

in the sense of Hurst. The value H = 0.85 provides a fractal dimension near D =
2−0.85 = 1.15. The second approach also provides a dimension lower than 2,D =
1/0.85 = 1.17. The construction of such a time series, according to the terms of
Mandelbrot “discourages very strongly, without forbidding them”, the formation of
loops, because we “forced this trajectory to be very persistent”. We can observe
above in Fig. 2.20a that the loops are rare. The low frequency “drift” is very high.

Fairly persistent. The Hurst exponent chosen in this case is around 0.6. We are
beyond the value 0.5 of H for which we define a random walk in the sense of Hurst.
The value H = 0.6 provides a fractal dimension near D = 2−0.6 = 1.4. The second
approach also provides a dimension lower than 2, D = 1/0.6 = 1.66. We observe the
proliferation of many small loops that the trajectory describes on itself. The more the
Hurst exponent approaches 0.5, or the more the fractal dimension approaches 2, the
more the curve forms convolutions. The time series becomes dense (see Fig. 2.20b
built by means 1,000 steps). Figures 2.21a and 2.22 represent fairly persistent Brow-
nian motions built by means of 10,000 steps, the first one is a two-dimensional
motion (see Fig. 2.21a) and the second one is a three-dimensional Brownian motion
(see Fig. 2.22):

Weakly persistent. The Hurst exponent chosen in this case is around 0.51. We are
very close to the value 0.5 of H for which we define a random walk in the sense
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Fig. 2.22 Three-dimensional
Brownian motion, H = 0.6
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Fig. 2.23 Brownian motion
for H = 0.5

of Hurst. The value H = 0.51 provides a fractal dimension about D = 2− 0.51 =
1.49. the second approach also provides a dimension lower than 2 but very close,
D = 1/0.51 = 1.96. The number of loops that the trajectory describes on itself is
growing. The more the fractal dimension approaches 2, the more the curve forms
convolutions, the time series becomes more and more dense. The low frequency
“drift” becomes very variable and is almost invisible in our case (see Fig. 2.21b).

Brownian motion for H = 0.5. The different convolutions are similar. Such a
situation is similar to the statistical analysis where the spectrum is white, we have
to face a white noise, by the average or after the differentiation of the time series.
Low frequency drift is invisible. We will be able to visualize the density of the
trajectory that blackens and uniformly fills the plane (see Fig. 2.23).

2.3.4 Comment on DS/TS Process and Brownian Motions

In this section, we open a parenthesis that has the form of a question. The “memory”
notion of observations mentioned above (which appears when H > 0.5, i.e. when
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“the present is a consequence of the past”) interrogates about the “tendency” notion
in a time series. The analysis of the trend in econometrics, or more exactly the
analysis of the stationarity by means of the Dickey and Fuller (Unit root) statistic,
leads to choose for an arbitrary series between the two tendency types. The series
are identified by these tests as, either (1) or (2):

(1) DS type (Difference stationary), i.e. stationary by difference. The “stationariza-
tion” is done by differentiation.15 We speak of the stochastic stationarity that
concerns the non stationary random processes.

(2) TS type (Trend stationary), i.e. with “stationary trend”. The “stationarization”
(or detrend) is done by a regression on time. We say that there is a deterministic
non-stationarity.

The stock markets and economic time series are processes that are rarely anal-
ysed as being stationary (or even Gaussian). The non-stationarity (non-
stationariness) can result from moments of the first order (i.e. Expectation) or of the
second order (i.e. Variance). Before the end of the 1970s, there was no analytical
method to study non-stationariness. The Box–Jenkins method of graphic analysis,
that makes it possible to visualize the tendencies or the cycles and the saisonali-
ties, is interesting but not sufficient. In 1984, works of Nelson and Plosser analysed
the non-stationarity (non-stationariness) by means of two processes: TS and DS
processes.

2.3.4.1 TS Processes: Non-Stationarity of Deterministic Type

Such a process is written xt = ft + εt , where ft is a polynomial function of time,
linear or nonlinear and εt is a stationary process. An example of an elementary
process TS of order 1 is written: xt = a0 + a1t + ε t . If ε t is a white noise (Gaussian
or not) ε t ∼ N(0,σ2

ε ), the process is determined by:

E(xt) = a0 + a1t + E(εt) = a0 + a1t, (2.36)
V (xt) = E(a0 + a1t + εt − (a0 + a1t))2 = σ2

ε , (2.37)
cov(xt ,xt′) = 0 for t �= t ′. (2.38)

Such a process is non-stationary because the expectation depends on time (in a linear
way), as one can see above, t is provided with a coefficient. The expectation is calcu-
lated at every moment and obviously depends on t. We speak of (non-stationariness)
non-stationary of the deterministic type. The parameters of the tendency has a0 and
a1, we can estimate them by the method of least squares. The estimators obtained
are the “Best Linear Unbiased Estimators (BLUE)” which make forecasts possible.
The detrend is done by removing from the value of xt the estimation â0 + â1t at each
moment t. In this type of process, it is said that after a random shock, known as
transitory, the series re-takes its walk around its tendency curve.

15 Stationarization (mathematical barbarism or neologism): To make a time series stationary.
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2.3.4.2 DS Processes: Random Walk

Such a process is called “random walk” (and often used concerning stock markets).
Here, the process becomes stationary by a filter using the differences: (1−B)d =
β + εt , usually the filter is of order 1 (d = 1). εt is a stationary process or a white
noise and β is a constant symbolizing the possible drift of the process. The process
is written: xt = xt−1 +β + εt , εt is a white noise (Gaussian or not). If the process is
without drift (β = 0), then: xt = x0 +∑t

i=1 εi, thus E(xt) = x0, V (xt) = tσ2
ε , cov =

σ2
ε ×Min(t,t ′) for t �= t. If the process has a drift (β �= 0), then we write: xt =

x0 +β t +∑t
i=1 εi, thus E(xt) = x0 +β t, V (xt) = tσ2

ε , cov = σ2
ε ×Min(t,t ′) for t �= t ′.

2.3.4.3 Fractional Brownian Motion and DS Process

The fractional Brownian motions are mainly non-stationary. For a Hurst expo-
nent (H > 0.5), the process is not analysed as a random walk but as a more or
less persisting process, and the correlation C is an “increasing function of H for
0.5 < H < 1”. It is known that in this case, the movement has frequent exits of the
tunnel described by its average and its variance. These exits are fractures in rela-
tion to its prior walk. It was also said that these “exits” have a random periodicity.
(It is the random component of a process which for H > 0.5 is considered as non-
stochastic by Hurst.) The more H approaches 1, the more the non-periodic cycles
deviate frequently from the average of values that the time series took before. For
H = 0.5, we have pure randomness as in this case the correlations C = 0. The present
does not influence the future and is not influenced by the past. This is known as a
random walk.

Traditional Statistics analyse DS processes as a random walk. We can study the
stationarity by means of the Dickey and Fuller (Unit root) Test of some samples of
fractional Brownian motions for H = 0.5 and H > 0.5. In the cases where the series
exhibits a non-stationarity, usually the conclusion is that we are faced with a DS
process, i.e. a random walk that becomes stationary by means of a filter using the
differences (test not presented here). Later we will present the traditional statistical
tests of stationarity, in Part II and they will be applied to a stock index.



Chapter 3
Nonlinear Processes and Discrimination

3.1 Reminders: Statistics and Probability

3.1.1 Random Experiment and Measurement

Definition 3.1 (Random experiment). A random experiment is represented by a
triplet (Ω, a,P) where the following conditions are verified:

(1) Ω is the set of possible results of the experiment,
(2) a is a σ -algebra, i.e. a set of parts of Ω (called events), containing the parts φ

and Ω, stable by complementation and by denumerable union,
(3) P is a set function,1 i.e. a map from a to R

+, which satisfies P(Ω) = 1 and the
condition of σ -additivity: if (An) is a sequence of disjoint events and if ∑n An
indicates their union:

P
(

∑
n

An

)

= ∑
n

P(An) . (3.1)

The map P is a probability.2

3.1.1.1 Measurement

More generally, a given couple (Ω, a) can be provided with a measure, if it satisfied
the first and the second conditions of a random experiment above. Such a measure-
ment μ is defined as a set function, map from a to R

+, such that μ : a −→ R
+,

satisfying the condition of σ -additivity. Thus a probability is a measurement whose
total mass is

μ(Ω) = 1. (3.2)

1 Set function: A relation that assigns a value to each member of a collection of sets.
2 P(Ω) = 1 and P(∑n An) = ∑n P(An) are the Kolmogorov axioms.
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3.1.2 Reduction Principles of Estimators: Invariance Principle,
Unbias Principle, Asymptotic Principle

The choice of estimators is fundamental (Gourieroux and Monfort 1989). In reality,
some “intuitive” or “natural” presuppositions impose properties to the estimators.
These properties are gathered under three principles: the invariance principle, the
Unbias principle (without bias) and the asymptotic principle.

3.1.2.1 Invariance Principle

If we wish to estimate parameters of the mean type, one will choose estimators that
are linear functions of observations:

δ (x1 · · ·xn) =
n

∑
i=1

aixi. (3.3)

If we wish to estimate parameters of the variance type, one will choose estimators
that are quadratic functions of observations:

δ (x1 · · ·xn) =
n

∑
i, j

ai jxix j. (3.4)

These choices, which are intuitive and natural presuppositions (i.e. a priori),
imposed on the nature of estimators, are understood as a property of invariance
or a principle of invariance. If the linear estimators are considered, they satisfy a
property of invariance on linear combinations. Indeed such a estimator satisfies (∀
α,α∗ and ∀ x,x∗ of R

n):

δ [αx +α∗x∗] = αδ (x)+α∗δ (x∗). (3.5)

3.1.2.2 Unbias Principle

An estimator δ is an unbiased estimator of g(θ ) if and only if

Eθ δ (x) = g(θ ), ∀ : θ ∈ Θ. (3.6)

An estimator is without bias if, in the mean, the value proposed is equal to the
searched value and this for any unknown value of the parameter.

3.1.2.3 Asymptotic Principles and Convergence

When the number of observations is large, n → ∞, it is possible to impose only
asymptotic constraints to the estimators. To estimate a function g(θ ) of the
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parameter, we choose a sequence of the estimator {δn,n ∈ N} : The sequence of
the estimator is asymptotically unbiased if:

lim
n→∞

Eθ δn(x) = g(θ ), ∀θ ∈ Θ. (3.7)

A sequence of estimators is:
• Weakly convergent if δn(x) converges in probability towards g(θ ), ∀θ :

∀ε > 0,Pn,θ [‖δn(x)−g(θ )‖> ε]→ 0, ∀θ ∈Θ (3.8)

• Convergent in the quadratic mean δn →
m.q

g(θ ) if:

Eθ ‖δn(x)−g(θ )‖2 → 0, ∀θ ∈ Θ (3.9)

• Strongly convergent, if δn converges “almost surely” towards:

g(θ ), ∀θ ∈Θ (3.10)

3.1.3 Definition of a Process

A process is a sequence (Xn,n ∈ I) of random vectors defined on the same space
(Ω,a,P) and taking values in R

p. The set of indexes I is generally N,N∗ or Z.
To each state of Nature ω corresponds thus an element (Xn(ω),n ∈ I) of [RpI];
such an element is called trajectory of the process. A process admits a law, we can
show that this one is characterized by the knowledge of laws of all finite sub-family
(Xn1, . . . ,Xnk) extracted from the sequence (Xn,n ∈ I). From this characterization,
we can define particular process classes.

3.1.4 Probability Law, Cumulative Distribution Function,
and Lebesgue Measure on R

3.1.4.1 Discrete Law

When the set Ω of possible results is finite or denumerable and when a coincides
with the set of parts Ω, a measure on (Ω,a) is said discrete. A discrete measure is
characterized by the values which it takes for the sets reduced to a point. A discrete
probability law has elementary values:

Pω = P([ω ]), ω ∈Ω and ∑
ω∈Ω

pω = 1. (3.11)
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Conversely, let (pω ,ω ∈ Ω) be a denumerable family of positive real numbers
whose sum is 1. There exists a single law of probability on Ω, whose elementary
probabilities are pω ∈Ω.

3.1.4.2 Probability Law on R and Cumulative Distribution Function

If Ω= R is posed, we call a cumulative distribution function associated with the law
P the map F of R in [0,1], defined by:

F(x) = P( ]−∞, x]), ∀x ∈ R. (3.12)

A cumulative distribution function is increasing and continuous to the right, such
that:

lim
x→+∞

F(x) = 0, lim
x→+∞

F(x) = 1. (3.13)

Conversely, any increasing numerical function continuous to the right such that
limF(x) = 0 and limx→+∞F(x) = 1, can be regarded as the cumulative distribution
function of a probability law on R. This law is unique.

3.1.4.3 Lebesgue Measure on R

The measurements on R which take finite values on any limited interval are charac-
terized by the set of the values μ( ]a,b]), a < b, a,b ∈ R. It is possible to show that
it exists a measure noted λ , such that:

λ ( ]a,b]) = b−a, (3.14)

this is called the Lebesgue measure on R.

3.1.5 Integral with Respect to a Measure

A measure is a map defined on the set of characteristic functions (called indicators)3

of events, which is in fact an integral with respect to μ , noted
∫
Ω · dμ [or under a

discrete form
∫
Ω · μ(dω)] and defined such as:

∀A ∈ a,

∫

Ω
dμ : 1A −→

∫

Ω
1Adμ = μ(A). (3.15)

3 Indicator: 1A is the characteristic function (called indicator) of the set A, such that:

1A =
{

1 : if y ∈ A,
0 : otherwise.
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If μ is a discrete measure, it is written:
∫

Ω
dμ =

∫

ω∈Ω
f (ω)μ({ω}). (3.16)

3.1.6 Density and Lebesgue Measure Zero

Consider a positive function f integrable with respect to a measure μ , i.e. such that∫
Ω f dμ <∞. The map ν that associates the event A with ν(A) =

∫
Ω 1A f dμ defines a

measure on (Ω,a). This measure is called the density f with respect to μ . It is noted
ν = f ·μ or f = dν/dμ .

A probability law on R
n is continuous if and only if the cumulative distribution

function is continuous and if the set of points, whose derivative

∂ nF(x1 · · ·xn)
∂x1 · · ·∂xn

(3.17)

does not exist, is of zero Lebesgue measure. A density f can then be selected equal
to

f (x1 · · ·xn) =
∂ nF(x1 · · ·xn)
∂x1 · · ·∂xn

. (3.18)

And on R, a continuous law is given by f (x) =
dF(x)

dx
at any point where the

derivative exists.

3.1.7 Random Variables and Transfer Formula

Given two sets provided with the events (Ω,a) and (X ,B). A random variable is a
map X of Ω such that: ∀ B ∈ B, X−1(B) ∈ a. A real random variable is a variable in
R provided with the smallest family of events containing the intervals. Such maps
are characterized by the condition:

∀b ∈ R,X−1( ]−∞,b]) = {X ≤ b} ∈ a. (3.19)

When the starting space (Ω,a) is provided with a probability law P, we can use a
random variable X in order to provide (X ,B) with an adapted law. Let (Ω,a,P) be
a “probabilized” space and X a random variable of (Ω,a) in (X ,B).The function
PX defined by ∀B ∈ B, PX(B) = P[X−1(B)] is a probability law on (X ,B). It is the
image law P by X or the law of X .
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3.1.8 Some Laws of Probabilities

Discrete law Set Probabilities Mean Variance

Dirac measure {x} px = 1 x 0
Geometric N

∗ px = p(1− p)x−1 1
p

q
p2

Continuous law Density Cumulative.D.F Mean Variance

Normal law N(0,1) 1√
2π exp −x2

2 Φ(x) = 1√
2π∫ x

−∞ exp− t2

2 dt 0 1

Pareto law αAα

xα+1 1x≥A 1− ( A
x

)α α > 1 α > 2
αA
α−1

αA2

(α−1)(α−1)2

3.1.9 Autocovariance and Autocorrelation Functions

Definition 3.2 (Autocovariance). An autocovariance function of a random process
xt with a finite variance is written:

γk = Cov(xt ,xt+k) = E([xt −E(xt)][xt+k−E(xt+k)]). (3.20)

Definition 3.3 (Autocovariance). An autocovariance function of a stationary pro-
cess xt verifies at the same time:

γ0 = Cov(xt ,xt) = E([xt −E(xt)]2) = Var(xt) = σ2
x � 0, (3.21)

|γk|� γ0, (3.22)
γk = γ−k. (3.23)

Definition 3.4 (Autocorrelation). An autocovariance function of a stationary pro-
cess xt is written:

ρk =
Cov(xt ,xt+k)
σxtσxt+k

=
γk√γ0
√γ0

=
γk

γ0
. (3.24)

3.2 The ARMA Processes: Stock Markets and Random Walk

For a long time, traditional statistical analysis had used the ARMA processes, which
are representative of linear modelling. In this section, we will recall the structure of
these processes in conjunction with the construction of stationarity tests. Another
objective is to point out how traditional statistical analysis by means of the ARMA
models characterized the stock exchange index as “random walk”. This reminder is
done from a series of more than 8 years of daily values of the French stock market
(Cac40) starting 1988. After having studied stationarity, the Box–Jenkins statistical
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method will be used. As a preliminary, we proceed to a phase of identification of
characteristics of the stationarity of the series in order to define then the model
adapted within the framework of the ARIMA(p,d,q) process. With this intention, we
will use the Dichey–Fuller method and we will analyze the correlograms. Following
this analysis, the tendency will be eliminated (in this case by differentiation). We
will then proceed to the determination of the orders p and q of AR(p) and the MA(q)
processes. After the estimation of the model, we will test the adequacy of the model
by analyzing the residuals.

3.2.1 Reminders: ARMA Processes and Stationarity

3.2.1.1 ARMA(p,q) Process

In an autoregressive process of order p, the variable yt is generated by a weighted
average of observations until the p-th period:

AR(p) : yt = θ1yt−1 +θ2yt−2 + · · ·+θpyt−p + εt , (3.25)

the coefficients θi are to be estimated and εt are uncorrelated random errors, also
called “white noise errors”. The equation can be also written with a shift operator
D: (1−θ1D−θ2D2−·· ·−θpDp)yt = εt . The autocorrelations of a AR(p) process
are defined by a geometrical decrease of terms. The partial correlogram has its p
first terms different from 0. A moving average process is written:

MA(q) : yt = εt −α1εt−1−α2εt−2−·· ·−αqεt−q, (3.26)

the coefficients αi are to be estimated and εt being the white noise errors. The equa-
tion can be also written with a shift operator D: (1−α1D−α2D2−·· ·−αqDq)εt =
yt . There is an equivalence between the AR and MA processes: MA(1) = AR(∞).

3.2.1.2 Normality Tests

The normality tests of the distribution of a time series or distribution of residuals
resulting from the estimation of a model use the following statistic tests:

Skewness Test (asymmetry):

S =
1
T ∑T

t=1(yt − ȳ)3

σ3 . (3.27)

Kurtosis Test (flattening):

K =
1
T ∑T

t=1(yt − ȳ)4

σ4 . (3.28)



264 3 Nonlinear Processes and Discrimination

Jarque–Bera Statistic: this statistic brings together the results of the Skewness
and Kurtosis and is built by means of the centred moment of order-k:

mk =
1
T

T

∑
t=1

(yt − ȳ)k, (3.29)

where the Skewness coefficient is β 1/2
1 = m3/m3/2

2 and the Kurtosis coefficient is
β2 = m3/m2

2. If the distribution is normal and the number of observations large
enough, i.e. if it is higher than 30 (T > 30): β 1/2

1 → N(0;
√

6/T ) and β2 →
N(3;
√

24/T). It is necessary to extract the statistic:

ν1 =
∣
∣
∣β 1/2

1 −0
∣
∣
∣/
√

6/n and ν2 = |β2−3|/
√

24/n, (3.30)

where each one of the statistics is to be compared with the value of the normal law
for the threshold of 5% which is: 1.96. If ν1 < 1.96 and ν2 < 1.96, then the sym-
metry and flatness assumptions (i.e. Normality) are checked. Thus the Jarque–Bera
statistic takes again the preceding tests, and if the Skewness and Kurtosis coeffi-
cients follow Normal laws, then JB = n

6β1 + n
24 (β2− 3)2 follows a χ2 with two

degrees of freedom. Thus, if JB > χ2
1−α(2) the Normality hypothesis is rejected

(for a time series or the residuals of an estimation):

JB =
T − k

6

[

S2 +
1
4
(K−3)2

]

. (3.31)

3.2.1.3 Stationarity and Dickey–Fuller Tests (Unit Root): TS or DS Process

If for a given process, its expectation value and its variance (as well as its covari-
ance) are modified over time, then the process is regarded as non-stationary. Thus,
a stochastic process or a white noise process is regarded as stationary, subject to the
independence of its expectation and its variance with time.

Dickey–Fuller-DF and Augmented Dickey–Fuller-ADF Tests (Unit Root Tests)

Before practising the analysis of correlograms, a thorough study of the stationarity
and tendency is necessary in the majority of cases. This is why we present the unit
root test, using the Dickey–Fuller procedure.

The Simple DF Test

It must estimate the three following models:

1. Model without trend nor constant term. Autoregressive model of order 1:

yt = φ1yt−1 + εt , (3.32)

(or Δyt = (φ1−1)yt−1 + εt).
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2. Model without trend and with constant term. Autoregressive model with constant:

yt = φ1yt−1 +β + εt , (3.33)

(or Δyt = (φ1−1)yt−1 +β + εt).
3. Model with trend and constant term. Autoregressive model with trend:

yt = φ1yt−1 + bt + c + εt, (3.34)

(or Δyt = (φ1−1)yt−1 + bt +β + εt).

If the studied series is of the TS type (Trend Stationary), then it is necessary to
“stationarize” by a regression on time and the residual of the estimation must be
studied to check the quality of the estimated model ARMA(p,q), according to the
Box–Jenkins method. A TS process is written xt = ft + εt , where ft is a polynomial
function of time and εt always a stationary process. If the series is of the DS type
(Difference Stationary), it is necessary to “stationarize” by means of the differences
of order (d)-th. Here also the differentiated series must be studied through the Box–
Jenkins method in order to determine the order p and q of the ARIMA(p,d,q) model.

The ADF Test

It is possible that the error is autocorrelated in a model. This is a hypothesis that is
not considered in the simple DF tests, since the residual is regarded as a white noise.
The ADF test (by the OLS, Ordinary Least Squares) must consider the three models
corresponding to the following hypotheses:

4. Model without trend nor constant term. Autoregressive model:

Δyt = ρyt−1−
p

∑
j=2

φ jΔyt− j+1 + εt . (3.35)

5. Model without trend and with constant term. Autoregressive model with constant:

Δyt = ρyt−1−
p

∑
j=2

φ jΔyt− j+1 + c + εt. (3.36)

6. Model with trend and constant term. Autoregressive model with trend:

Δyt = ρyt−1−
p

∑
j=2

φ jΔyt− j+1 + c + bt + εt . (3.37)

The DFA test must lead to similar results than the results obtained with the simple
DF test.
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Unit Root, Random Walk and Stationarity

Let εt be a white noise and the following AR(1) model: yt = φyt−1 + c + εt . If
the autoregression coefficient φ = 1, then the model has a unit root and follows a
random walk with non-stationary characteristics. This walk is with a drift if c �= 0
and without drift if c = 0. If φ > 1, then the model is an explosive process. If φ < 1,
then the model is stationary.

Impact of Shocks on the Series and Correlation of Errors of the Model

At a given moment of time, the impact of a “shock” on the series is different if we
consider a TS process or a DS process. Indeed, in a process of the TS type (where
εt is a stationary process), the shock is transitory, and the series will re-find its
deterministic walk around its tendency curve. In a DS process (where εt is a white
noise) the impact of a shock at a given moment, of the time is prolonged infinitely
on the series, even if it is decreasing.

3.2.2 Dickey–Fuller Tests Applied to French Stock Index (Cac40)

The sample of the Cac40 and its histogram are represented on the following graphs.
The sample concerns almost 8 years of daily values from 1988 to 1996:
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3.2.2.1 The Simple DF Test

The model [3] to be estimated is:

D(CAC) = C(1)∗CAC(−1)+C(2)+C(3)∗Time

Coefficient Std. error T-statistic Prob.

C(1) −0.007729 0.002284 −3.384428 0.0007
C(2) 13.47671 3.596888 3.746770 0.0002
C(3) 0.001063 0.001016 1.046725 0.2954

R-squared 0.993884 Mean dependent var 1811.885
Adjusted R-squared 0.993877 S.D. dependent var 255.2393
S.E. of regression 19.97176 Akaike info criterion 5.990142
Sum squared resid 794152.7 Schwartz criterion 5.998564
Log likelihood −8798.535 F-statistic 161761.4
Durbin–Watson stat 1.917135 Prob(F-statistic) 0.000000

The estimated model [3] is:

D(CAC) =−0.007729 ∗CAC(−1)+13.47671+0.0011063∗Time

(−3.384) · · · · · · · · · · · · · · · · · ·(3.74) · · · · · · · · · (1.04)

n = 1994− (T-Statistic ) = t empirical. The coefficient of the trend (0.0011063)
is not significantly different from 0 (t = 1.04), thus we reject the assumption of a TS
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process. Furthermore, the empirical value of tφ̂1
is −3.384, whereas in the table, the

value of tφ1 for the 5% threshold is −3.41. (tφ̂1
> tφ1). Although the empirical value

is very close to the tabulated value, it is nevertheless higher. Thus we accept the
null hypothesis H0, the process is not stationary. Or we can analyze on n(φ̂1−1) =
1994(−0.007729) = −15.4116 that is higher than the value of the table for a 5%
threshold which is:−21.8. Here we accept the null hypothesis H0, the process is not
stationary.

The estimated model [2] is:

D(CAC) =−0.006190 ∗CAC(−1)+11.75
(−3.54)· · · · · · · · · · · · · · · (3.67)

The constant term is somewhat difficult to analyze, it seems significantly differ-
ent from 0 (t = 3.67). Thus we tend to accept the hypothesis of a DS process with
drift. In addition, the empirical value of tφ̂1

is −3.54, whereas in the table the value
of tφ1 for a 5% threshold is −2.86. (tφ̂1

< tφ1). Thus, we reject the null hypothesis

H0, the process is stationary. Or we can analyze on n(φ̂1−1) = 1994(−0.00619)=
−12.3429 that is higher than the value of the table for a 5% threshold which is:
−14.1. The tabulated value for a 10% threshold is −11.3. H0 is rejected with a 5%
threshold and is accepted with a 10% threshold according to the used method. For
this model, the conclusion about the stationarity and the trend of the process are
more difficult.

The estimated model [1] is:

D(CAC) = 0.000170 ∗CAC(−1)
(0.693411)

The empirical value of tφ̂1
is 0.693, whereas in the table, the value of tφ1 for the 5%

threshold is−1.95. (tφ̂1
> tφ1). Thus, we accept the null hypothesis H0, the process is

not stationary. And for n(φ̂1−1) = 1994(0.00017)= 0.339 >−8.1, the conclusion
is identical, the null hypothesis H0 is accepted, the process is non-stationary.

The conclusion of the analysis through the simple DF test is that the Cac40 sam-
ple is an non-stationary process of the DS type (and not the TS type) without drift.
Let us check these results by means of the DF test of joint hypotheses and by means
of the DFA test.

DF Test of Joint Hypotheses

The matter here is to test the following joint hypotheses (see models for b,c): H1
0:

(c,φ1) = (0,1), H2
0: (c,b,φ1) = (0,0,1), H3

0: (c,b,φ1) = (c,0,1). We can write a fast
program to calculate the F1, F2, F3 statistics. They will be compared with the values
of the Dickey–Fuller table, which come from the Fisher table:

F1 =
(SSRc−SSR2)/2

SSR2/(n−2)
, F2 =

(SSRc−SSR2)/3
SSR3/(n−3)

, F3 =
(SSR2

c−SSR3)/2
SSR3/(n−3)

.
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(With: SSRc = sum of the squares of the residuals of the model [1] constrained
under the hypothesis H1

0, SSR2 = sum of the squares of the residuals of the model
[2] non-constrained estimated with the OLS, SSR2

c = sum of the squares of the
residuals of the model [2] constrained under the hypothesis H3

0, SSR3 = sum of the
squares of the residuals of the model [3] non constrained estimated with the OLS,
SSR2

c =∑t(xt−x−1− ĉ)2, SSRc = ∑t(xt−x−1)2, and finally the degree of freedom
is related to the numerator of the F-statistic.) The empirical values of the statistics F
are: F1 = 6.998, F2 = 5.031, F3 = 6.822. The hypothesis which concerns us more is
H3

0. It tests the possibility of a process with a unit root that follows a random walk,
of the DS type with drift, on which we have a doubt. The empirical value is higher
than the tabulated value. The hypothesis is rejected. It is not a DS process with drift.

The ADF Test Estimates the Model of the Type [4]

This model without trend nor constant term is written as explained previously (table
of results not presented):

Δyt = ρyt−1−
p

∑
j=2

φ jΔyt− j+1 + εt . (3.38)

The test t (tφ̂1
= 0.563870) is higher than the critical values for all the given

thresholds. H0 is accepted. Thus the traditional statistical methods lead to conclude
that our sample of the Cac40 is a “random walk”, i.e. a DS process without drift.
This observation is checked by means of the correlograms of first differences, which
according to the traditional analysis highlight a “white noise” process. Indeed, it will
be observed that the Q-statistic has a critical probability of 0.482 (for k = 15) largely
higher than 0.05. The Cac40 series is thus a DS process, i.e. a random process (or a
random walk) that we can make stationary by means of a filter using the differences:
(1−D)dxt = β + εt , where εt is a stationary process, β a real constant, D the shift
operator and d the order of differences (filter). Here β = 0, then the process is known
as without drift. (to confirm the analysis it would be necessary to test the ADF model
n◦ 5 which is not presented here. It will simply be said that it introduces a constant
term c, and that the test T (tφ̂1

= −3.29) is higher only for the 1% critical value
and is lower for the other 5% and 10% critical values. Thus we tend to reject the
hypothesis H0, except for the critical values lower than 1%. The ADF tests of Joint
Hypotheses are not implemented within the framework of this work.

Conclusion of the Stationarity Tests

The set of DF and ADF tests leads to conclude that the French stock exchange
sample (Cac40) is a DS process without drift, even if certain components from
this relatively elementary group of tests (presented or not) somewhat impugn this
conclusion.
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3.2.3 Correlogram Analysis of the Cac40 Sample

The autocorrelation function written: ρk = ∑n
t=k+1(yt − ȳ)(yt−k− ȳ)/∑T

t=1(yt − ȳ)2

measures the correlation of the shifted series of k periods (with ȳ average of the
series on n− k periods). For a lag k equal to 15, we obtain the results presented in
the following table with the correlogram graphs:

Prob
0.000

2 0.987 -0.011 3920.6 0.000

3 0.981 0.017 5845.0 0.000

4 0.975 0.009 7746.7 0.000

5 0.969 -0.022 9624.8 0.000

6 0.963 0.020 11481. 0.000

7 0.957 -0.003 13314. 0.000

8 0.951 0.004 15126. 0.000

9 0.945 0.010 16917. 0.000

10 0.939 0.017 18688. 0.000

11 0.934 -0.014 20439. 0.000

12 0.928 0.001 22170. 0.000

13 0.923 -0.003 23881. 0.000

14 0.917 0.008 25572. 0.000

15 0.912 0.003 27245. 0.000

AC

1,05

PAC

0,85 0,9 0,95 1

AC
1 0.994 0.994 1972.6

PAC Q-Stat

If the Cac40 correlograms are observed, it is noted, first of all, that the autocorre-
lation (simple correlogram) decreases in a regular way. Thus the signal has a trend
that we will have to eliminate (by first differences) to better identify the behavior
of the data. Let us recall that the conclusion of the DF and ADF tests was a DS
process without drift. Furthermore, in the partial correlogram, only its first term is
significantly different from zero. Indeed, the partial correlation of order 1 is the only
significant one, since there is only an influence of cact on cact−1, and the effect of
the other variables is removed.

We also study the hypothesis of normality of the series distribution (see his-
togram) by means of the empirical values of the Skewness, Kurtosis and Jarque
Bera statistics ν1 =

∣
∣β 1/2

1 − 0
∣
∣/
√

6/n = |−1.02|/√6/1995 = 18.61 > 1.96 and
ν2 = |β2−3|/√24/n = |4.33−3|/√24/1995 = 12.12 > 1.96.

Thus we are led to reject the normality hypothesis with regard to the symmetry
and the flatness of the distribution, which is confirmed by the Jarque Bera statistics.
Here, JB = 494.32 > χ2

0.05(2) = 5.99, the distribution of the Cac40 is non Gaussian.
Thus, the Cac40 has a trend and is a non Gaussian process (the experimentation
mainly shows that complex signals seem non Gaussian). A priori, here, the study of
correlograms leads to the conclusion that the series is an AR(1) process.
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First-Differences

To make the series stationary, it is necessary to use the first-differences: (1−
D)cact = cact − cact−1 where D is a shift operator. Once the signal is corrected
of its trend by means of first differences (table and graph not presented here), the
observation of both correlograms of the series shows that all the terms of the sim-
ple and partial correlograms are inside the confidence interval, beyond which it is
considered that the values are significantly different from zero. Thus, the terms
are not significantly different from zero. Traditional approaches usually said that
such an observation is characteristic of a “white noise” process. The Q-statistic
of the Ljung–Box (calculated by Matlab or Eviews) confirms this observation:
Q-stat = 14.58 (with a delay k = 15) < χ2

0.05;15 = 25. Thus, we would be led to
accept the hypothesis of the nullity of coefficients ρk (the critical probability of this
test is indicated αc = 0.482 > 0.05, therefore one accepts the null hypothesis H0).
The Ljung–Box Q-Statistic evoked above is given by:

QLB = T (T + 2)
P

∑
j=1

r2
j

T − j
, (3.39)

where r j is the j-th autocorrelation and T the number of observations. Below, the
first-differences of the series:
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The normality tests highlight a non Gaussian distribution. The analyzed series
is thus a non Gaussian “white noise”. As we have observed it at the end of the
treatment of the series by the first differences, the correlograms observed are thus
satisfactory, and the series is detrended. The cac40 is an autoregressive process of
an order 1, written AR(1) or ARMA(1,0).

3.2.4 Estimation of the Model

Within the framework of the analysis of both correlograms, we observed that the
first differences give good results and thus, our series is taken as an AR(1) process
(although we could consider it as an ARMA(1,1) process). The estimated model
AR(1) gives the following equation:

CAC = 11.750002 + 0.99381019∗CAC(−1)

LS // Dependent Variable is CAC
Sample: 2 1995. Included observations: 1994

Variable Coefficient Std. error T-statistic Prob.

C 11.75000 3.196375 3.676040 0.0002
CAC(−1) 0.993810 0.001747 568.7761 0.0000

Above on the right, the distribution of the residual does not seem Gaussian.
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Series: Residual
Sample 2 1995
Observations  1994

Mean  7.61E-14
Median -0.276168
Maximum   99.27474
Minimum  -132.4846
Std. Dev.   19.96723
Skewness  -0.248110
Kurtosis    5.511868

Jarque-Bera  544.6708
Probability  0.000000

3.2.4.1 Analysis of the Residuals of the Model

Analysis of the Residuals of the ARMA(1,0) Model

The graphic analysis (not presented here) of residuals leads to predict an absence
of autocorrelation. The correlograms of residuals of the AR(1) model on the Cac40
are of good quality, i.e. they are clearly inside the confidence interval. But the visual
analysis does not always allow to conclude, thus it is sometimes necessary to use
the Durbin Watson test.

Durbin–Watson Test

The conditions of use of the Durbin–Watson test must be respected, i.e. the model
must be specified in time series, the number of observations must be higher than 15
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and the estimated model must have a constant term, which is the case here. The test
statistic calculated on the residuals is:

DW = ∑n
t=2(et − et−1)2

∑n
t=1 e2

t
. (3.40)

The et obviously are the residuals of the model. (The test statistic is to be studied
in the Durbin–Watson table.) The test of DW can identify an autocorrelation of
errors of order 12 of the type: εt = ρεt−1 + νt , with νt → N(0,σ2

ν ). The following
hypotheses are tested, H0: ρ = 0 and H1: ρ �= 0. The purpose is to accept or reject
the hypothesis of the autocorrelation of residuals. Here the test statistic of DW is
equal to 1.92. This value is to be compared with the value of the table of DW.
(k = variables, T = n = size of the sample, here k = 1 and T = 1995). The value of
the empirical test statistic DW is in the zone: d2 < DW < 4−d2, (i.e. 1.69 < DW <
4−1.69). Thus, we are led to accept the null hypothesis H0 with ρ = 0. This allows
us to predict a good adjustment. The conclusion is the absence of an autocorrelation
of the residuals, i.e. with their independence.

Q-Test of Autocorrelation of Residuals

If one studies the statistic Q of the correlograms of residuals, the empirical value Q
of the Ljung–Box statistic is equal to 20.13 with the delay k = 20. It is lower than the
value with the 5% threshold given by the table χ2

0,05 which is 31.41. Thus, we are led
to accept the hypothesis of the nullity of the coefficients ρk (the critical probability
of this test is given αc = 0.45 > 0.05, thus one accepts the H0 assumption). Then,
the residual can be assimilated to a “white noise” process. (We could compare these
results with the results of an ARMA(1,1) model.)

3.3 Econometrics of Nonlinear Processes

3.3.1 Stochastic Processes: Evolution of Linear Modeling Towards
Nonlinear Modeling

The ARMA modeling is representative of linear modeling. But the hypothesis of lin-
earity is in numerous domains improper to represent the real, economic or financial
phenomena.

In Economics, the models used during the twentieth century were primarily of a
linear nature, including those aiming at representing business cycles, in particular
the Frisch–Slutsky linear model (1930). According to these models, cycles resulted
from the propagation of external shocks in our economies and were not generated
in an endogenous way by the model. All the models derived from these princi-
ples quickly showed their limits. The exploitation of nonlinear models proved to be
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necessary, Hicks (1950) and Goodwin (1951) had already introduced them, but they
had little resonance at that time, in particular due to the lack of statistical and com-
putational tools. The ARMA processes thus remained dominant in econometrics for
a long time. The linearity hypothesis is an enormous constraint. It cannot depict, for
example, the relationship between the values of a stock exchange index on the finan-
cial markets. The latter are characterized by nonlinearities and a volatility which
vary in the course of time.

The ARMA processes do not depict asymmetrical phenomena that exist, for
example, during business cycles between the length of the tops and that of the
bottoms of cycles. Moreover, these ARMA processes do not render or depict the
ruptures with great variances. Lastly, an interesting characteristic of these processes
is that they are not able to formalize the moments of a higher order than two for the
autocovariance, only nonlinear models are able to formalize them.

Usually, it is said that there are two types of nonlinear models in Statistics (or
Econometrics), the nonlinear models on average and the nonlinear models on vari-
ance. The nonlinear models on average are either built on an evolution of ARMA
models or rest on the analysis of frequencies, and in particular on the bispectral
analysis, on the path of Polyspectra. The nonlinear models on variance concern the
models of ARCH type.

The purpose of this part is not to depict the statistics of nonlinear stochastic
processes, the literature on the subject is currently quite abundant. The purpose is
rather to depict the recent and relevant developments of the statistical analysis relat-
ing to the chaotic nonlinear processes: Non-parametric analysis, Nonlinearity tests,
Density Estimators, Estimators of dynamical systems, Long memory processes,
ARFIMA process, etc.

3.3.2 Non-Parametric Test of Nonlinearity: BDS Test
of the Linearity Hypothesis Against an Unspecified
Hypothesis

Beyond the tests of linearity, i.e. Keenan (1985) or Granger and Newbold (1976)
tests (for which the alternative hypothesis of nonlinearity does not assign a particular
form to the nonlinearity), there exists the more recent and particularly interest-
ing BDS test. The non-parametric test-statistic of Brock, Dechert and Scheinkman
(BDS) in 1987 rests on the correlation integral of a series. This test is a test of nonlin-
earity which attempts to observe if the elements of a series are independent and are
identically distributed: iid. First, let us consider an observed time series x1, . . . ,xT ,
with t = 1, . . . ,T . Then we construct a vector from this time series that deploys it
inside an embedding-space (see Takens theorem) of dimension m:

xm
t = [xt ,xt+1, . . . ,xt+m−1], (3.41)
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where t = 1, . . . ,T −m+1. Then, we construct and calculate the correlation integral
Cm(m,ε,Tm) that measures the number of couples (xi,x j) at a distance lower than ε,
considering ε as a limiting length. Cm is defined by:

Cm(m,ε,Tm) =
1

Tm(Tm−1)

Tm

∑
i, j=1

H(ε− ∣∣xm
i − xm

j
∣
∣), (3.42)

H(·) is a Heaviside function where H = 1, if (·) > 0. The test considers that:

T → ∞, then Cm(ε)→ (C1(ε))m,

and √
T [Cm(m,ε,Tm)− (C1(1,ε,Tm))m]→ N(0,σ2

m), (3.43)

what means that when the length of the time series tends towards the infinite,
T → ∞, then Cm(ε) tends towards (C1(ε))m and, moreover, the numerator of the
BDS statistic:

√
T [Cm(m,ε,Tm)− (C1(1,ε,Tm))m]→ N(0,σ2

m), where the variance
σ2

m has a heavy expression that we do not present here (see Hsieh 1991). [σm(ε) is
the standard error of Cm(m,ε,Tm)−(C1(1,ε,Tm))m which can be estimated by using
the Monté Carlo method]. The BDS statistic can be written:

BDS(ε) =
√

T
[Cm(m,ε,Tm)− (C1(1,ε,Tm))m]

σm(ε)
. (3.44)

It can be shown that asymptotically, as T → ∞, the distribution of the BDS is
a (reduced and centered) Normal law N(0,1), when the xm

t are independent and
are identically distributed: iid. Opposed to an independent and identically dis-
tributed behavior, we can find: linear dependence, non-stationary, dynamical chaos
or nonlinear stochastic processes.

This BDS test aims at the acceptance or the rejection of the independence
hypothesis of the “terms” of a time series but is not used for the measurement
or the evaluation of a “deterministic chaos”. The test makes it possible to know
if we are faced with a white noise with “independent terms”. We can use the
BDS as a test of nonlinearity. Indeed, if our objective is the estimation of a
linear model, the residuals resulting from this estimation are evaluated as non
independent, then one can conclude that the analyzed time series is of nonlin-
ear nature. On the other hand, we cannot skip this step and announce that the
time series is chaotic. The test is not a measurement of the chaotic nature of a
time series but can help to give information about its nonlinearity. Let us pre-
cise that before using this test, we must “stationarize” (make stationary) the ini-
tial time series and remove all the linear dependences that the time series could
contain.
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3.4 The Non-Parametric Analysis of Nonlinear Models

3.4.1 Parametric Analysis: Identification and Estimation
of Parametric Models

The major problem is the observation of time series of which we do not know if there
is a theoretical model able to explain it, i.e. we do not know the nature of subjacent
equations to these observations. Statistical analysis tries to reconstitute the subjacent
deterministic model of a time series (see Gouriéroux and Monfort 1989, Tome I,
Chaps. I, II). The try of reconstitution of the model is done by the construction of a
stochastic model, with the implicit idea of the existence of a subjacent deterministic
structure:

xt+1 = ϕ(xt). (3.45)

The traditional statistical (or econometric) approach consists in the construction of
parametric models by means of linear or non linear functions. The objective is to
adapt the stochastic model to the observed time series as well as possible, so that it
is its best possible theoretical representation.

A standard stochastic model can be written: xt+1 = ϕ(xt) + εt , where εt is a
white noise.4 If the observed time series is of linear nature, the relation ρ(xt) which
links the variables will be of linear nature. If the observed time series is of nonlinear
nature the relation ρ(xt), which links the variables, will be of non linear nature.
For nonlinear processes, there arises in the field, at least three main categories of
models:

1. Asymmetrical heteroscedastic processes: ARCH, GARCH, EGARCH, TARCH,
β -ARCH,

2. Long memory processes : GIGARCH, FARMA, ARFIMA, GARMA,
3. Processes with changes of states: SETAR (self-exciting Threshold Autoregres-

sive), process with changes of regime.

The construction of a stochastic model initially passes through an identification
of the process, then through an estimation of parameters of the identified model.
Then, it is necessary to test the quality of the estimation in relation to the initial
time series. The quality of the estimation about the past of the chronicle will make
it possible or not to be projected towards the future by making forecasts by means
of the estimated model. The identification of processes is quite essential, it allows a
better adjustment of the (stochastic) model with the observations.

The stochastic modeling of nonlinear processes unfortunately does not allow,
for a great number of processes, to produce robust estimations by experimentation.
The models are badly specified and forecasts prove to be impossible. We have to
face a specification deficit about complex or chaotic processes, thus our attention
is drawn to the non-parametric analysis. These methods, which are a part of this
work, do not necessarily seek to specify a model; they often aim at reconstructing

4 See Stochastic model: xt+1 = ϕ(xt)+ ε t , where ε t is a white noise.
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the orbits or trajectories of an observed phenomenon, without a deterministic or
stochastic model. The objective is always to make forecasts. In fact, the “Dynami-
cal Relation” ρ(xt) which links the variables can be considered or approached in a
non-parametric way, i.e. without seeking to specify a stochastic parametric model,
with its estimators. The non-parametric analysis, usually practiced for robustness
reasons, on long time series, seduces by its capacity to extract the properties from
a observed phenomenon. The extraction of properties of the time series and its esti-
mators, allows the reconstruction of the dynamical relation ρ . Thus, the nonlinear,
complex or chaotic Dynamics which escape from the stochastic-modeling could be
reconstructed and if required used for forecasts.

3.4.2 Non-Parametric Analysis

3.4.2.1 The Periodogram is the First Non-Parametric Estimator:
An Introduction to “Windowing” and Kernel

The concept of periodogram has been written for more than one century and was
the first known non-parametric estimator (Shuster 1896; Prestley 1981). It estimates
spectral density, and the most recent evolution of this concept integrated “windows”
in its construction. This window concept constituted a true technical contribution, it
is applied for example to:

• Histograms
• Polynomial regressions
• Weighting functions
• Approximations by moving average
• Fourier Transformations, with variable or slipping windows
• Smoothing functions
• Estimators of the density
• Or any other type of estimator, as the wavelet transform with variable or slipping

windows for example

In this evocation, the purpose is to highlight the concept of window, which largely
exceeds the simple idea of segmentation of a time series, because it is associated
with a function of various forms, which has vocation to analyze the signal. In part
III, time-frequency analysis will highlight the interest of the windowing concept and
(core) kernel concept which are of a great utility in the construction of Fourier (or
wavelet) transforms with slipping (or variable) windows.

3.4.3 Construction of a Non-Parametric Estimator of Density:
From Windowing to Kernel Concept

There are numerous types of windows, sometimes described differently according to
their source, from signal analysis, to Statistics, and “Engineering”, they are called:
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window, filters, or kernel. Statistics seem to offer a unity to this concept with the
“kernel” term, while defining its own conditions for applications (stationarity of
the process . . .) and by attributing widened qualities to it (Robinson 1986). It is not
only an interval on its fields of analysis, but it is also a weighting function where
the kernel can adopt different forms. We will further note the symmetrical forms of
these kernels, which in addition could be compared with densities. We consider a
long series of observations on R:

x1, . . . ,xn, (3.46)

and we seek to estimate its probability law μ and its associated density f by means
of their estimators μ̂ and f̂ . We introduce a constant length interval around the
values taken by x : [x− τ

2 ,x + τ
2 ], this interval segments the set of values of x; the

purpose is to work out a histogram. The choice of a narrow τ allows a finer approach
of the distribution of values of the time series and also to diminish the loss in relation
to the initial data. For i = 1, . . . ,n, and for an event:

A =
{

xi ∈
[
x− τ

2
,x +

τ
2

]}
, (3.47)

by using the indicator function of the event A:

1xi∈[x− τ
2 ,x+ τ

2 ] =
{

1 if xi ∈ [x− τ
2 ,x + τ

2 ],
0 otherwise. (3.48)

We simply proceed to the enumeration of values of the time series included in
the interval [x− τ

2 ,x + τ
2 ]. We order the possible values of x and the enumeration

obtained for each value of x is the subject of a representation on a histogram. We
have just introduced an interval on the distribution of x, it constitutes the work win-
dow of values of the time series. It is pointed out that the objective is to estimate the
density f associated with the law μ by means of an estimator f̂ . One of the usual
estimators of the density can be written in the following way:

f̂ (x) =
1

nτ

n

∑
i=1

K
(

x− xi

τ

)

, (3.49)

τ is the size of the interval or window and K is the kernel, which is a weighting
function on x (with τ → 0, when n → ∞). We present some examples of kernels
(Epanechnikov, biquadratic, cubic, Gaussian) below:

Epanechnikov kernel: Ke(x) = (3/4)(1− x2),
Biquadratic kernel: Kb(x) = (15/16)(1−2x2 + x4),
Cubic kernel: Kc(x) = (35/32)(1−3x2 + 3x4− x6),
Gaussian kernel: Kg(x) =

(
1/
√

2π
)
e−x2/2.

The kernel can work on the variable on different length intervals, i.e. the weight-
ing effect around x is more or less great and depends on the construction of each
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kernel. The kernels are represented on the graph below and we will observe the
length of the compact support on which each kernel exists. Except the Gaussian
kernel, we note that the supports of these kernels are [−1,1]: the window of these
kernels is written: 1[−1,1](x).
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Generalization of the density estimator: It is interesting to give a generalized for-
mulation of the estimator of the density for the spaces whose dimension is higher
than one. This means that for example a vector of size equal to D, whose elements
are: x = (x(1),x(2), . . . ,x(m), . . . ,x(D)), we can note the generalized estimator of the
density in the following way:

f̂n(x) =
1

nτ(1) · · ·τ(D)

n

∑
i=1

K

(
x(1)− x(1)

i

τ(1) , . . . ,
x(D)− x(D)

i

τ(D)

)

, (3.50)

or:

f̂n(x) =
1
n

n

∑
i=1

D

∏
m=1

1
τ(m) K

(
x(m)− x(m)

i

τ(m)

)

, (3.51)

with the kernel (core): K(x) = ∏D
m=1 Km

(
x(m)− x(m)

i

τ(m)

)

.

A simple example: By means of a pseudo-random generator of series, we create a
Gaussian distribution (for example) of dimension 1, then we represent on a graph
the normalized histogram of the distribution (Fig. 3.1). Then, we estimate the density
with a Gaussian kernel and we superimpose the obtained result (the curve below)
on the normalized histogram of the distribution.
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Fig. 3.1 Histogram
and estimated density

3.4.4 Estimator of Density and Conditional Expectation
of Regression Between Two Variables

If we imagine two random variables (y,z), we can estimate the conditional density
of the variable y given z. The density is written:

f̂n(y,z) =
1

nτ2

n

∑
i=1

K
(

y− yi

τ

)

K
(

z− zi

τ

)

. (3.52)

The generic form of the conditional expectation E(y/z) is written:

E(y/z) =
∫

y f (y,z)dz
∫

f (y,z)dz
. (3.53)

This conditional expectation of y given z, can be estimated from a sample length
n of variables (y,z), and we write the estimator of the conditional expectation by
combining the two preceding equations:

Êy/z =
∑n

i=1 yiK
(

z− zi

τ

)

∑n
i=1 K
(

z− zi

τ

) . (3.54)

Such an estimator of the conditional expectation gives a method to reconstruct the
dynamics of y given z.

Example of conditional densities and “a posteriori” probabilities (i.e. posterior
probabilities): The chosen illustration initially consists in producing data of dimen-
sion two, calculated from a mixture of three Gaussian random series, centered at
three centers: [(0, −0.1), (1, 1), (1, −1)]. One of these series is assigned to a class
and the two others are assigned to the second class. (The first series is of class 1:
[red points] and the two others are of class 2: [blue stars].) In the figure below on the
left, the first series of class 1, centered close to the origin (0,−0.1) is represented by
the (red) points and the two other series gathered under class 2, are represented by
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(blue) stars. We distinguish the centers marked by the crosses. Below on the right,
the density of the non-conditional probability of the set of data gathered under the
variable x.

In order to better visualize the contours of the non-conditional probability density,
we show it below with the perspective:

We distinguish the three poles around which the density is concentrated. They cor-
respond to the centers of the Gaussian series, and the strongest concentration of
the density is around (1, −1). Below, the conditional densities and the posterior
probabilities are represented successively. The top-left image below shows the con-
ditional density of x which is function of the series (of class 1 represented by) the
“(red) points”, i.e. p(x/red points). The top-right image below shows the condi-
tional density of x, which is function of the other series (of class 2 represented by)
the “(blue) stars”, i.e. p(x/blue stars). The bottom-left image shows the posterior
probability of the series “(red) points” which is function of x, i.e. p(red points/x).
The bottom-right image shows the posterior probability of the series “(blue) stars”
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which is function of x, i.e. p(blue stars/x). The scales of colors at the right of the
images assign a probability to a color (or nuance of gray). One can thus see the
zones with high and weak probabilities immediately.
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3.4.5 Estimator of the Conditional Mode of a Dynamics

It is from the conditional law of xt and xt−1 that we can construct such an estimator,
which is efficient for the dynamics of a deterministic nature. Then we estimate the
density associated with conditional law, it is written:

f̂n(x,y) =
1

nτ2

n

∑
t=1

K
(

x− xt

τ

)

K
(

y− xt−1

τ

)

, (3.55)

with τ → 0, when n → ∞. An estimator of the conditional mode ϕ̂ [mc]
n of the

dynamics ϕ verifies the following inequality:

f̂n(x, ϕ̂
[mc]
n (x))≥ sup

y
f̂n(x,y)−Θn, (3.56)

with Θn → o, when n→ ∞.

3.4.6 A First Estimator of Dynamics by Regression

To estimate the dynamics of a variable, we can of course proceed to a regres-
sion known as Nadaraya–Watson regression. It will be noticed that the conditional
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expectation of y given z, presented previously:

Êy/z =
∑n

i=1 yiK
(

z− zi

τ

)

∑n
i=1 K
(

z− zi

τ

) , (3.57)

is constructed on a similar mode with that of the regression which is written:

ϕ̂ [reg:N.W ]
n (x) =

∑n
i=1 xiK

(
x− xi

τ

)

∑n
i=1 K
(

x− xi

τ

) . (3.58)

It is known that such an estimator is efficient for the dynamics which is of a
deterministic nature or which has components with a deterministic dominant.

3.4.7 Estimator by Polynomial Regression

Such an estimator is written in the following way:

ϕ̂ [reg.p]
n (x) = argmin

{α0,α1,...,αp}

n

∑
i=1

[(xi−α0−α1(xi− x)−·· ·−αp(xi− x)p]2K
(

x− xi

τ

)

with τ → 0, when n→ ∞ and {α0,α1, . . . ,αp} are the parameters of the regression.
The degree p of the polynomial is to be chosen as a preliminary to do the estimation,
whose quality increases when the degree increases. Generally this method is coupled
with the least squares technique.

3.4.8 Estimator by the k-Nearest Neighbors Method: KNN

To establish the link with the section concerning the construction of the estima-
tor of the density, we know that a density estimator can be constructed by the
method of the k-nearest neighbors. Indeed, it is necessary to replace the width of
the window τ in the expression of the estimator of the density presented previously
f̂ (x) = 1

nτ ∑
n
i=1 K((x− xi)/τ), by a random variable which measures the distance

between a point x and the k-nearest neighbors taken among the observed values of
the initial series x1,x2, . . . ,xn. The technique thus consists in adjusting τ, which is
an interval or a step, in the density estimator with an usual kernel, in order to always
use only the same number k of observations to construct an estimation of the density.
The technique of nearest-neighbors exploits the idea that the number of observations
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locally used is always identical, whatsoever the stability of the trajectory around the
considered point x. The estimator construction of nearest neighbors of the dynamics
ϕ is built on the same principle.

The method of nearest neighbors to reconstruct the original dynamical system
consists in finding in our time series x1, . . . ,xn the nearest observed value from xn
that we note x∗i ∈ x1, . . . ,xn then in taking the following value xi+1 of x∗i and using
it to reconstruct xn+1 the future of xn (which is the last historical value of the time
series). We can give an example for k = 1, i.e. for the estimator of the dynamics ϕ
with 1-nearest neighbors, we simply write:

ϕ̂ [knn]
n (xn) = x∗i+1. (3.59)

It is also possible to choose the k nearest neighbors to construct an estimation of
xn+1. Thus, the estimator of ϕ is written then:

ϕ̂ [knn]
n (xn) = x̂n+1 =∑k

i=1 w(‖xn− x∗i ‖)x∗i+1. (3.60)

The weighting function w(·) can take different forms such as for example:

w(‖x− x∗i ‖) =
e−‖x−xi‖2

∑k
i=1 e−‖x−xi‖2 or : w(‖x− x∗i ‖) =

1
k
. (3.61)

The major stake is the choice of the number k of k-nearest neighbors. The experi-
ment shows that the method of nearest neighbors is efficient enough to estimate and
reconstruct a chaotic dynamics.

3.4.9 Estimator by the Radial Basis Function Method: RBF

This method is not so different from the precedent. It consists in taking C points in
our time series x1, . . . ,xn which is a discrete expression of the dynamics. These
C points, generally resulting from a classification technique, are noted yc. The
estimator is written:

ϕ̂ [rb f ]
n (xn) = x̂n+1 =

C

∑
c=1

λcwc(‖xn− yc‖), (3.62)

where wc(·) are the radial functions, rc is the radius of the radial function wc and λc
is generally estimated by least squares. To build this estimator it is necessary for us
thus to select: a radius rc, the radial function wc(x) and the points yc. Some models
of radial functions are given below:

Linear: wc = x/rc, Spline: wc = (x/rc)2 log(x/rc),
Gaussian: wc = e−(x/rc)2

, Multi-quadratic: wc =
√

(x2 + r2
c).

Cubic: wc = (x/rc)3,
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The experiment shows that the method of the radial basis function is very pow-
erful to estimate and reconstruct a chaotic dynamics. One gives a diagrammatic
representation of the regression by radial basis functions.
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3.4.10 A Neural Network Model: Multi-Layer Perceptron
and Limit of Decision

Explain the multi-layer perceptron model in a relevant and concise manner seems
difficult, especially because it comprises many variants since the origin (Rosenblatt
1962). To place the perceptron within a history of the set of neuronal models (Net-
works of Hopfield) could have appeared very interesting, as well as to explain its
construction from the point of view of algorithms. However in spite of the interest
of these methods, it seemed to us that a detailed presentation would be too heavy
within the framework of this book.5

The perceptron is a “Classifier”, a “linear separator”. The perceptron proceeds
to a discrimination for a decision. It is pointed out that a classification consists
in examining the characteristics of an “object” or a “model” and assigning a class
to it, the class being a particular field with discrete values. The “training” by the
perceptron (as well as by the method of least squares) is a technique of “linear sepa-
ration” (comparable with certain techniques used in statistics). It is a non-parametric
method, which does not require to make any other hypothesis on the data, except on
the separability.

The perceptron has been the subject of a very strong interest at its beginnings
from the first work of Rosenblatt in 1962, criticized by Minsky and Papert in
1969.6 Minsky and Papert rejected in particular the possibility of building “train-
ing” algorithms for the networks with several layers. The perceptron was the center
of different stakes and in particular that of the transition from the analogic to the
digital. And it is by means of the simulation possibilities offered by the digital sys-
tems that the perceptron had a strong resurgence of interest since 1980. Today the

5 It is possible to consult the work of Marc Tommasi (1997 MET DST) who gives an excellent
analytical presentation of the multi-layer networks and in particular of the perceptron. It is possible
to also consult the Matlab-Neural Network tools which clearly present the construction of the
algorithms.
6 Ref: see about the limits of the perceptron the following work which has been republished:
Minsky and Papert (1988).
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multi-layer networks are a good answer to overhaul the limitations of the simple
perceptron and Hopfield models of that time. The separator or classifier of the per-
ceptron can be applied to a dynamical system, either on its flow or on an embedding
space of the dynamics.

While leaving the precise framework of the perceptron, we can say about the
Hopfield networks (which are equivalent networks) that they classify the configura-
tions according to their basin of attraction, and two configurations are equivalent if
they have same attractor. Such classifications generally rest on a criterion of neigh-
borhood, i.e. a distance, usually it is a distance of Hamming. This criterion is not
always adapted, in particular within the framework of the “Form Recognition”, for
which the neural networks are interested in the invariances, and for which we can
say that two forms are equivalent if they result one from the other by translation.
And in such a case, the distance of Hamming of both models (or patterns) can be
important.

When we work on a rather significant number of data and when the problem
allows it, we observe that the perceptron has a good predictive capacity. However,
the majority of the “training” problems cannot be solved by so simple methods, the
possibility that natural phenomena are distributed easily on both sides of a hyper-
plane is not very probable. A way of solving this problem would be either to develop
nonlinear separators or in an equivalent way to “complexify” the space of represen-
tation in order to linearize the initial problem. The multi-layer networks make this
possible. It is necessary to understand choosing a too simple architecture limits the
nature of correlations that the network treats, and on the opposite, choosing a too
complex architecture (too big number of layers and cells) generates a too long “train-
ing” time and prevents the generalization (for the decision). The architecture of the
network depends on the studied problem. In its simplest, architecture the perceptron
(one hidden layer) is made up of:

1. A first layer which is that of the input cells on which we apply the models (or
“patterns”) to classify.

2. A second layer made up of associative cells (neurons), whose inputs are taken
among the input cells. (Generally in the networks with layers, the role of hidden
cells is of course very important, it is related to the regularities which the cells
detect in the models or patterns presented. We say that there is an internal
representation of data.)

3. A final layer that includes one or more cells of decision which are usually func-
tions with threshold whose weights are modified during the “training” procedure.

We give below the example of a multi-layer perceptron with one input layer, then
five cells, then two hidden layers having respectively three and two neurons, then
one output layer (one neuron):
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To choose an architecture, we generally start with “training” tries with a minimum
number of layers, i.e. initially without intermediate layer (association layer or hid-
den layers), then with only one layer, then we gradually increase the number of
layers according to the results obtained (the convergence theorem of the percep-
tron makes it possible to say that if there is a function which carries out the chosen
classification, then the algorithm satisfactorily converges in a finite time). Below an
example of possible architectures of a perceptron with four inputs and one output:

The mathematical model of the multi-layer perceptron: Given a quantitative vari-
able or a qualitative variable y, with q modalities that we must predict using the p
“predictives” variables (x1,x2, . . . ,xp). Furthermore, we have n individuals or obser-
vations, which are often called the training sample, described by the p variables
(x1,x2, . . . ,xp) and for which we know the values of y. Then we suppose that the
entry layer is made of p-entries (i.e. inputs), to which coefficients will be applied
that are called the synaptic weights wjm. Moreover, there exists a constant term in the
input device (called input constant) which, for practical reasons, takes the value 1.
The “hidden layer” includes c neurons which each one will be activated by an inte-
gration (usually monotonic function of the sum) of the p signals coming from the
“input layer”. There is a similar operation for the q elements of the “output layer”
implying the “synaptic” weights Wmk. There is also a direct connection from the
constant input to the output.

The introduction of the unitary input constant, connected to each neuron located
in the hidden layer and connected to each output, avoids separately introducing what
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the computer specialists call a “bias” for each unit. The “bias” become simply parts
of the series of weights. Thus, the model will be written for an observation (i):

yk = f

{

bk +
c

∑
m=1

Wmk Φ

(

bm +
p

∑
j=1

wjmx j

)}

. (3.63)

The formula enunciated above corresponds to an observation (i). In the expression
which precedes, the function Φ is the logistic function, which can be written:

Φ(z) =
ez

1 + ez =
1

1 + e−z . (3.64)

The function f called a transfer function can be: Threshold (Heaviside, Hard-limit,
Indicator function), linear or logistic (log-sigmoid):

+1

-1

0

Hard-limit Transfer Function

(Hardlim)

−1

Log-Sigmoid Transfer Function

(Logisig)

+1

0

The expression yk = f
{

bk +∑c
m=1 WmkΦ(bm +∑p

j=1 wjmx j)
}

as presented previ-
ously, corresponds to an observation (i). To conclude the process we are faced with
n equations of this type, each one utilizing q values y(i)

k and p values x(i)
j . The esti-

mation of parameters is done by minimizing a loss function, which can be simply
the sum of the squares of the gap between the computed values ŷ (i)

k and the actual

values y(i)
k in the training sample.

Diagrammatic representation of the perceptron: To better understand such a model,
it is sometimes necessary to use a diagrammatic representation that helps to perceive
the mechanism of the perceptron. Later we will show in the diagram of the multi-
layer perceptron with S neurons, but below we will observe the simple perceptron
with p-inputs and one neuron:

Input

S

x1 w
x2
x3

xp

n

b

logsig (Wx + b)

wp,1

Neuron Perceptron

1,1

Limits of decision and classification (case of a perceptron with two inputs and one
neuron): To give an example, we take the simple case of two inputs with a threshold
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transfer function of the “Hard-limit” type (if n � 0, then we have 1, and 0 otherwise).
It is known that each external input is weighted by an adapted weight wj and the sum
of weighted inputs is sent towards the hard-limit transfer function which produces
0 or 1. To simplify, we note here the result of the hard-limit transfer function by:
a = hardlim(wx+b). Thus, the perceptron will answer 1, if in the transfer function
there is “the input network” higher than 0, i.e. wx+b > 0, otherwise the perceptron
will answer 0. The transfer function (hard-limit) gives a perceptron which is able to
classify vectors inputs by dividing the space of inputs into two areas. More precisely,
the outputs will be equal to 0 if the input network n is lower than 0, or the outputs
will be equal to 1 if the input network n is � 0.

If wx + b � 0, then the perceptron a = 0,
If wx + b > 0, then the perceptron a = 1.

The two-inputs “hard-limit” space with the weights w1,1 = −1 and w2,1 = 1 and a
bias b = 1, is represented below, in the right figure:

Input

S

x1

x2

w
n a

a = hardlim (Wx + b)

b

1

w

Perceptron Neuron

2,1

1,1

w
x2

+1

+1

L

-1

-b/w

Wx+b>0

Wx+b<0

Wx+b=0
a = 0

a = 1

a = 0

x1

-b/w

1,1

1,2

-1

w1,1= -1 w2,1 = +1 and b = +1

Thus, we have two areas of classification on both sides of a limit of decision which
is noted L in wx + b = 0. This line L is perpendicular to the matrix w and can be
moved by the bias b. The vectors inputs above and on the left of the line L will
have the wx + b > 0 and moreover the neuron (hard-limit) will have an output 1. In
the same way, the vectors inputs below and on the right of the line L will have an
output 0.

The ligne L dividing the plane can be oriented or moved everywhere to classify
the space input as we wish it by choosing the weights w and the bias b. The neurons
without bias b will always have a line of classification not passing through the origin.
By adding a bias b, it allows the neurons to solve problems where the two sets of
inputs are not localized on the different sides in relation to the origin. The bias
allows the limit of decision to be moved from the origin, as it is possible to observe
it easily in the figure above.

Some numerical computation softwares and in particular MATLAB
R©

-Neural Net-
work make it possible to try out the classification method, in particular by the
displacement of the limit of decision, by picking new inputs to classify and by
observing how the repeated application of the rule of training produces a network
which classifies the vectors inputs in a suitable way.
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Fig. 3.2 Limit of decision L in wx+b = 0 during the training

Graphic illustration of the simple perceptron: The inputs here are two random
series, each one assigned to a class of symbols: the “circle” or the “star”. Figure 3.2
shows the separator, i.e. the limit of decision (here a straight line) during the training.
Figure of a one-layer perceptron including S neurons: As presented previously, the
figure of the perceptron with one neuron, we depict in the following figure the case
of the perceptron with one layer including S neurons and with a Hard-limit transfer
function (Heaviside):

Input Input Layer 1Neurons Layer
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W 
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P = number of elements
       in Input.

P

S = number of neurons
       in Iayer 1.

p × L

s × 1

s × 1

s × 1

Diagram of a three-layers perceptron: Now remains to show a diagram of a percep-
tron with several layers in order to help to represent the mechanism of the treatment
of the input within the framework of the multi-layer perceptron, and we limit it to
three layers for obvious reasons. The layer 1 contains S1-neurons, the layer 2 has
S2-neurons and the layer 3 has S3-neurons.

In this diagram, the nature of the transfer function f is not specified. All the
elements of the multi-layer perceptron, i.e. the transfer function, the weights, the
bias, are indexed according to the layer to which they belong. (IW is a
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matrix-weight-layer and LW is a matrix weight-input. Moreover matrices are noted
W (bold) and the vectors are noted: w.)
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Industrial applications of neural networks:7 The different methods are used in many
spheres of activities:

1. Telecommunications for image and data compression
2. Aerospace industry for flight control systems and simulators
3. Automatic for guidance systems
4. Banks for customer analysis or control of the credit card activity
5. Defense for trajectory guidance, facial recognition, recognition of radar objects

or risk analysis
6. Electronics for process control, voice synthesis or nonlinear modeling

7 For a general presentation of the neural networks, it is possible to consult the work of Marc
Tommasi (1997): analytical presentation of the multi-layer networks and the perceptron. It is also
very interesting to consult the MATLAB

R©
tutorial.
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7. Finance for exchange rate and market forecasts and evaluation of companies
8. Robotics for trajectory controls and vision systems
9. Signal analysis for voice recognition, . . .

Graphic illustration of classification by the multi-layer perceptron compared with
the rule of the optimal Bayesian decision: The illustration that is selected here,
retakes the example used in the section concerning the conditional density. It ini-
tially consists in producing data of dimension two, calculated from a mixture of
three Gaussian random series, centered at three centers: [(0, −0.1), (1, 1), (1, −1)].
One of these series is assigned to a class and the two others are assigned to the
second class. (The first series is of class 1: (red points) and the two others are of
class 2: (blue stars).) The multi-layer perceptron with logistic transfer function is
applied to these data (we use six hidden layers and the quasi-Newton algorithm of
optimization). This example shows the results obtained by means of the multi-layer
perceptron and, highlights, in particular the limit of decision that is furthermore
compared to the limit of decision obtained by means of the Bayesian method of
conditional probabilities. In the figure which follows below on the left, the first
series of class 1, centered close to the origin (0, −0.1) is represented by the “(red)
points” and the two other series gathered under class 2, are represented by “(blue)
stars”.

Hereafter on the right the density of the non conditional probability of the set of
data gathered under the variable x (moreover, through superimposition in the figure
we indicate by means of dotted lines the limit of the optimal Bayesian decision):
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The figure above shows the sampled data of class 1 (red points) and of class 2
(blue stars) as well as the density of probability p(x) of the set of the sample. By



294 3 Nonlinear Processes and Discrimination

Fig. 3.3 Data with assignments of classes and limit of decision of the multi-layer perceptron. (The
bayesian limit of decision corresponds to the dotted lines.) It is easy to find the perceptron decision
limit on the right-hand side image

means of dotted lines, we superimpose the Bayesian decision limit presented before
in the section concerning the estimator of the density for the same samples (ref. to
Netlab–Matlab, Bishop and Nabney 1995).

Hereafter on the left, the (red) curve shows the limit of decision obtained by
means of the multi-layer perceptron, whereas the (black) dotted lines shows the
limit of decision resulting from the Bayesian method (Fig. 3.3). The image hereafter
on the right shows the output of the perceptron with the limit of decision and the
network forecast of the posterior probability of the class 1 (red). The scale on the
right of the image assigns a color (or nuances of gray) to the probability of the zone,
the black color is close to zero, the white color is close to 1 and the nuances of red
(or gray) the intermediate probabilities.

3.5 First Statistical Tests of Validation of Chaotic Process
Detection: Brock Test and LeBaron and Scheinkman
Random Mixture Test

The book of Lardic and Mignon (2002) underlines that the tests of chaos detection,
as well as the Lyapunov test of trajectories divergence, or the correlation dimension,
are not statistical tests in a strict sense. Thus, it was necessary to create statistical
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validation tests of these detection tests. It is true also that, according to the field
of application of these detection tests, very different problems can be posed, those
related to the measurement, which are not neutral on the nature of the time series,
those related to the noises which exist inside a series, those related to the aggregation
of data are also crucial, or the length of the studied series which is a serious problem
in particular in Economics. Beyond this type of difficulties which appear upstream
but which is certainly much more structural, it is fundamental for the statisticians to
build a theory core of the chaotic dynamics which remains still today to be worked
out, in spite of numerous current contributions. The tests indicated in the title are in
relation with the Lyapunov exponent and the correlation dimension.

3.5.1 Residual Test of Brock (1986)

The linear transformation of a deterministic system preserves its properties, it is
on this concept that Brock constructed its test. The quality of the statistical estima-
tion of a model is measured in particular through its residuals. An autoregression
model (AR or ARMA), which has the vocation to provide a deterministic explana-
tory structure, must thus have a Lyapunov exponent and a correlation dimension of
its residuals similar to those of the initial series. The matter is to postulate that if:

λBrock
f (x) ∼ λBrock

x (3.65)

and
DBrock

f (x) ∼ DBrock
x , (3.66)

then the initial series is deterministic (where x is the initial series and f (x) its
linear transformation). In the opposite case, the time series that we analyze, will
be regarded as stochastic. If the test is applied to profitabilities of stock exchange
indexes of the American or European financial markets and obviously to the resid-
uals resulting from ARMA models, we note two remarks from the tests applied by
S.Lardic and V.Mignon to which we will be able to refer on the indexes evoked
above:

• The values of the Lapunov exponent are positive.
• The values of the Lyapunov exponent between initial profitabilities and residuals

are similar.

In the same way, the results about the correlation dimension show very similar
values between initial profitabilities and residuals.

Two contradictory conclusions are underlined. On one hand, the positivity of
Lyapunov coefficients would plead in favor of the presence of a (deterministic)
chaos, but on the other hand, the similarities of values between initial profitabilities
and residuals would lead to conclude to a deterministic structure. It thus appeared
necessary to specify another type of test to try to resolve this contradiction. The
“random mixture” test deals with this objective.
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3.5.2 Scheinkman and LeBaron Random Mixture Test (1989):
The Test Weakly Rejects the Hypothesis of Deterministic
Chaos and Always Regards Financial Markets as
Stochastic Processes

This test proceeds to a random mixture of values of the initial time series. The
method is surprising and the idea is that the mixture destroyed the possible deter-
ministic structure of the initial time series. If the “mixed” series loses its structure,
the correlation dimension of the mixture will be higher than the initial series; more-
over the Lyapunov exponent of the mixed series will be lower than the initial series.
On the other hand, if the initial series x is not deterministic but stochastic, the m(x)
mixture will not significantly change the values of the correlation dimension and of
the exponent. If we have:

λm(x) < λx and Dm(x) > Dx, (3.67)

then the initial series is deterministic, in contrast if: λm(x) ∼ λx and Dm(x) ∼Dx, then
the initial series is a stochastic process. The conclusions of this test are interesting,
indeed if the comparison of the Lyapunov exponent is obvious since the exponents
of the mixed series are not lower than those of the initial series, in contrast the
dimensions from the mixed series is higher than the initial series and could lead to
the acceptance of the hypothesis of a deterministic structure (and in particular the
hypothesis of deterministic chaos).

In spite of this encouraging result, the fact that the differences between the
dimensions are weak, coupled with unchanged Lyapunov exponents, lead to con-
clude to the rejection of the hypothesis of a subjacent determinism, and to accept
the hypothesis of a stochastic process for the financial markets again.

3.6 Long Memory Processes

Long memory processes are observed in many fields and in particular in Finance.
The identification of such processes can be done by the observation of the auto-
correlation function of the time series. If there is long memory, the autocorrelation
decreases hyperbolically towards zero, shown in Fig. 3.4.

Another manner of identifying such processes is to observe their spectra, i.e. their
frequencies. If there is long memory, the spectrum exhibits only very rare peaks of
frequency, i.e. “monster” peaks. Lastly, these processes can also be detected by their
persistent or anti-persistent behaviors.

Fig. 3.4 Hyperbolic shape of the autocorrelation function
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The hypothesis of the independence of elements of a time series usually is only
an approximation of the true subjacent correlation of the dynamics. Weak delays
and strong correlations are sometimes identified by short memory modelings as the
processes of the ARMA type. Frequently many series have weak correlations and
their periodogram shows a peak at the central frequency into zero. This observa-
tion is to be connected with the hyperbolic decrease of the autocorrelation function
mentioned above, which can either express a non-stationarity of the series or a more
interesting behavior: long term dependence, in other words a long-memory phe-
nomenon. This will lead to define the ARFIMA processes which are representative
of this type of phenomena in the following paragraphs.

As evoked above, the long memory processes are defined both in the temporal
field and in the spectral field. In the course of time, these processes are charac-
terized by a autocorrelation function decreasing in a hyperbolic way, whereas the
processes with short memory decrease exponentially. In the space of frequencies,
the processes with long memory are characterized by a spectral concentration that
increases when we approach the zero central frequency. We will use again the two
definitions corresponding to these assertions and relating to the asymptotic behavior
of long memory processes, first over time and second on the frequencies; by look-
ing at the way in which the processes converge. It is commonly said that the more
a process is persistent, the more the convergence is slow, the more the sum of auto-
correlations is high. For a short memory process, the sum of autocorrelations is low.
In short, we are focused on the hyperbolic and geometrical speed of convergence
towards zero.

Definition 3.5 (Long memory process defined by the autocorrelation). A station-
ary process xt is a long memory process if ∃ a real ω : 0 < ω < 1 and if ∃ a positive
constant cr, such that

lim
k→∞

ρk

cr k−ω
= 1, (3.68)

k is a delay and ρ is the autocorrelation function. Thus, asymptotically for k → ∞
we verify that ρk ≈ cr k−ω .

Definition 3.6 (Long memory process defined by the spectral density). A sta-
tionary process xt is a long memory process if ∃ a real θ : 0 < θ < 1 and if ∃ c f : a
positive constant, such that

lim
λ→0

f (λ )

c f |λ |−θ
= 1, (3.69)

λ is the frequency and f (λ ) is the spectral density for this frequency. Thus, it is
verified that f (λ ) ≈ c f |λ |−θ forλ → 0; which justifies the peak of frequency into
zero mentioned above.

The ARFIMA processes (autoregressive fractionally integrated moving average
processes) correspond to a type of long memory process. They are a development
of ARIMA processes, and we will try to quickly describe them in the following
section.
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3.6.1 ARFIMA Process

The unit root test (used in another part of this work) indicates that if there is indeed a
unit root, then the time series is non-stationary. In such a case, these time series can
be modelled by processes of ARIMA(p,d,q) type, where the unit root highlights a
long-memory phenomenon and even infinite (d = 1 : non-stationary with the differ-
ence). If there is not unit root the time series is stationary (d = 0). Between d = 1
and d = 0, the main point is to be interested in the non-integer fractional differ-
entiation exponents d. These ARFIMA(p,d,q) processes have been developed by
Hosking in 1981 and Granger, Joyeux in 1980.

The generalized ARFIMA(p,d,q) processes can be presented in the following
way:

Φ(L)xt = Θ(L)εt (3.70)

with εt = (1−L)−dυt ,8 where υt corresponds to a white noise with variance σ2. Φ
and Θ are lag polynomials of degrees p for the first and q for the second. We obtain:

xt −φ1xt−1−·· ·−φpxt−p = εt +θ1εt−1 + · · ·+θqεt−q (3.71)

where

εt = υt + dυt−1 +
d(d + 1)

2
υt−2 +

d(d + 1)(d + 2)
6

υt−3 + · · · (3.72)

The ARFIMA(p,d,q) processes are stationary long-memory processes and inver-
tible when d ∈ ]− 1

2 , 1
2

[
and d �= 0.

3.6.1.1 Particular Case of ARFIMA(0,d,0) Processes

The ARFIMA(0,d,0) process is written: (1−L)dxt = υt : where υt is a white noise.

If we select the particular case: ARFIMA(0,d,0) with d > − 1
2 , the process can

be written as an AR process:
∞

∑
k=0

βkxt−k = υt (3.73)

with

βk =
Γ(k−d)

Γ(−d)Γ(k + 1)
(3.74)

8 L is a polynomial and (1−L)d = 1−dL− d(1−d)
2!

L2 +
d(1−d)(2−d)

3!
L3−·· ·=∑∞

i=0 piLi.

∑ Γ(i−d)
Γ(i +1)Γ(−d)

= ∏
0≤k≤i

( k−1−d
k

)
, i = 1,2, . . . , where Γ is an Eulerian function (or Gamma)

of second type. Γ is defined by the integral: Γ(x) =
∫ ∞

0 tx−1e−t dt, with x real. (According to the
property Γ(n) = (n−1)! for n integer strictly higher than 1, we can use it to calculate the factorial
of a natural integer n, by : n! = Γ(n+1). Example: Γ(0.5) =−0.5! =

√
π .)
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then:

lim
k→∞

βk =
k−d−1

Γ(−d)
. (3.75)

If we select the particular case: ARFIMA(0,d,0) with d < 1
2 , the process can be

written as a MA process:

xt =
∞

∑
k=0

ψkυt−k (3.76)

with

ψk =
Γ(k + d)

Γ(d)Γ(k + 1)
(3.77)

then:

lim
k→∞

ψk =
kd−1

Γ(d)
. (3.78)

If we select the particular case: ARFIMA(0,d,0) with − 1
2 ≤ d ≤ 1

2 , and υt a
white noise of unit variance, then the autocovariance is written:

γk ∼ Γ(1−2d)Γ(k + d)
Γ(d)Γ(1−d)Γ(k + 1−d)

(3.79)

with

γk ∼ Γ(1−2d)
Γ(d)Γ(1−d)

k2d−1 when k→ ∞. (3.80)

Lastly, let us write the Spectral Density:

fd(λ ) = (2sin(λ/2))−2d (3.81)

and
lim
λ→0

fd(λ ) = λ−2d . (3.82)

The process is stationary and invertible for−1/2 < d < 1/2. Theψk and βk decrease
hyperbolically as well as the autocorrelations, i.e. less quickly than for the ARMA
processes. We will not present in this present section estimations from the ARFIMA
processes, the literature about the subject is numerous today.

3.6.1.2 R/S Analysis: Hurst Exponent and Memory of a Series

The Hurst statistic, called R/S analysis, already evoked in different other sections
of this work, allows to identify the long memory phenomena. This statistic proposes
a coefficient that is the Hurst exponent which characterizes a time series according
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to the nature of its “memory”. Statistics R/S are written as a ratio of a length R to
a standard deviation S. If we consider a time series xt , t = 1, . . . ,T with average xT ,
the statistic R/S is written:

R/S =

[

max
1≤k≤T

∑k
j=1(x j− xT )− min

1≤k≤T
∑k

j=1(x j− xT )
]

[
1
T
∑T

j=1(x j− xT )2

]1/2 . (3.83)

Asymptotically this statistic is proportional to TH, where H is the Hurst exponent
and is included between 0 and 1:

H ∼ log(R/S)
logT

. (3.84)

H makes possible an ordering of the time series according to the level of dependence
of the variable; it is said that H is a measurement of the dependence level.

Fractional Parameter of Integration d and Hurst Exponent H : d = φ(H)

We will give again a definition of a standard Brownian motion B(t), also called
Wiener process W (t), then we will develop the expression of a fractional Brownian
motion.

Definition 3.7 (Brownian motion). A Brownian motion B(t) is a stochastic pro-
cess in continuous time such that: B(0) = 0 and such that: [B(t)− B(t − 1)] are
stationary and independent.9 Consequently, for 0 ≤ t1 ≤ ·· · ≤ tn, [B(ti)−B(ti−1)]
are independent random variables such that:

E[B(ti)−B(ti−1)] = 0, (3.85)
var[B(ti)−B(ti−1)] = σ2(ti− ti−1). (3.86)

[B(ti)−B(ti−1)] have a normal distribution of null average and varianceσ2(ti−ti−1).

If σ2 = 1, then the Brownian motion is called standard. The expression of a
fractional Brownian motion BH(t) (where H is the Hurst exponent), is written in the
following way:

BH(t) =
1

Γ(H + 1/2)

[∫ t

0
(t− s)H− 1

2 dB1
H(t)
]

. (3.87)

Γ: Eulerian function (or Gamma function10) of the second type. H: Hurst expo-
nent: 0 ≤ H ≤ 1. B1

H(t): standard Brownian motion of variance equal to 1. The

9 The increments of B(t) : B(t)−B(t−1).
10 Γ(x) =

∫ ∞
0 tx−1e−t dt, with x real. Such Gamma or Eulerian functions are shown in Fig. 3.5.
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Fig. 3.5 Gamma function
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differences [BH(t)−BH(t−1)] of the fractional Brownian motion, constitute a sta-
tionary Gaussian process (or fractional Gaussian noise) whose autocovariance is
written:

γk =
1
2
[|k + 1|2H −2 |k|2H + |k−1|2H ] (3.88)

with
γk ∼ H · (2H−1) · k2H−2 when k→ ∞. (3.89)

Although one of the formulas is at continuous time and the other is discrete, if we
bring closer, with their limits, the autocovariance of generalized ARFIMA processes
and the autocovariance of the fractional Gaussian process, it is possible to establish
a functional relation between the Hurst exponent H and the fractional integration
parameter d, which are both characterized by a hyperbolic decrease. The relation
between d and H is read in the following way:

2H−2 = 2d−1 (3.90)

thus, it is obtained:

d = H− 1
2
. (3.91)

1. If d = 0, the ARFIMA series becomes an ARMA and does not contain long term
dependence.

2. If 0 < d < 1/2, the ARFIMA process is stationary and with long memory. We
progressively find for these values the well-known hyperbolic decrease towards
zero of autocorrelations during the increase of lags. And we find again the peaks
of frequencies near frequency zero. The long memory of this process is expressed
as an effect of the persistence of this memory.

3. If −1/2 < d < 0, in such a case there is an alternation of the sign of correlations
and the process is anti-persistent. As an example an illustration of this last case
will be given. Figure 3.6 shows for the Hurst exponent equal to 0.1,(d =−0.4),
the trajectory of the motion, the histogram, the autocorrelation, the partial auto-
correlation, the spectrum and incidentally the Poincaré section [t,t +1]. (In order
to do a comparison, we present the same plots for the Logistic equation in chaotic
zone.)
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Fig. 3.6 (a) Brownian motion: H = 0.1. (b) Logistic equation α � 4

3.7 Processes Developed from ARFIMA Process

3.7.1 GARMA Processes: To Integrate the Persistent Periodic
Behaviors of Long Memory

The subject is to integrate the periodic or cyclic persistent behavior of a process and
its long memory; Hosking, Gray, Zhang, Woodward and Porter-Hudak contributed
to elaborate these methods. To involve the spectrum in the analysis in order to model
the cyclic behaviors is one of the methods. Let us pose a Gegenbauer11 process with
a real parameter λ �= 0, with εt a white noise

(1−2uL+ L2)λ xt = εt , (3.92)

where (1−2uL+L2)λ is a filter. Then, by introducing the Θ(L) terms of the moving
average and Φ(L) the autoregression, we obtain a GARMA(p,u,λ ,q) process, that
is written:

Φ(L)(1−2uL+ L2)λ xt = Θ(L)εt (3.93)

(where Φ(L) = 1− φ1L− ·· ·− φpLp and Θ(L) = 1− θ1L− ·· ·− θqLq). This is a
long memory process and it is stationary if |u| < 1 and 0 < λ < 1/2 or if |u| = 1
and 0 < λ < 1/4. Let us observe the behavior of the autocorrelation functions of
u and λ :

1. If |u|= 1 and 0 < λ < 1/4 : ρk ∼ k4λ−1.
2. If |u|=−1 and 0 < λ < 1/4 : ρk ∼ (−1)kk4λ−1.

11 This process is constructed from the Gegenbauer polynomial:

Cλ
n (u) =

Integer[n/2]

∑
k=0

(−1)k Γ(λ +n− k)
Γ(λ )

(2u)n−2k[k!(n−2k)!]−1 , (Γ : Gamma).
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3. If |u| < 1 and 0 < λ < 1/2 : ρk ∼ c k2λ−1 cos(kω0), where c is an independent
constant and ω0 is the Gegenbauer frequency.

4. If |u|= 1, the process is equivalent to an ARFIMA(p,d,q) with d = 2λ .

3.7.2 ARCH Processes Towards FIGARCH Processes:
To Integrate the Persistence of Shocks in the Volatility of
Long Memory Processes

A widespread approach of financial time-series consists in studying the conditional
variance to highlight the persistence of shocks, by using an extension of IGARCH
processes (integrated GARCH), the FIGARCH processes (Fractionally Integrated
GARCH). The GARCH processes are obviously an extension of ARCH processes
(Autoregression Conditional Heteroscedasticity); the last processes were conceived
so that the variance depends on all the information available about a series and in
particular concerning time. The ARCH processes supplanted the ARMA processes
conceived before, the latter were not adapted to financial series that have in par-
ticular, asymmetrical structures and a strong volatility of their variances, and that
are more and more studied. The ARCH processes integrate in an endogenous way
the parameter of conditional variance (Lardic and Mignon 2002, Chaps. 7 and 8).
Such models were often used for the optimization of financial portfolio choices and
equities portfolio. In an ARCH model, the process εt has a conditional expectation
and variance which are written:

E(εt | (εt−1,εt−2,εt−3, . . .)) = 0 and V (εt | (εt−1,εt−2,εt−3, . . .)) = σ2
t (3.94)

(The conception of ARCH processes, usually understand εt as a “residual”, there-
fore, as directly non observable but function of an explanatory variable.) The
characteristic of such a process εt is that its conditional variance can change over
time, unlike the characteristic of ARMA models. The writing of the ARCH process,
stated by Engle in 1982, is done from a quadratic form on the conditional variance
and coefficients.

Definition 3.8 (ARCH process). ARCH(q) process is defined by:

σ2
t = α0 +

q

∑
i=1

αiε2
t−i = α0 +α(L)ε2

t (3.95)

with α0 > 0, αi ≥ 0, for all i.

GARCH process extension results from introduction of a lag in the variance.

Definition 3.9 (GARCH process). A GARCH(p,q) process is defined by:

σ2
t = α0 +

q

∑
i=1

αiε2
t−i +

p

∑
j=1

β jσ2
t− j = α0 +α(L)ε2

t +β (L)σ2
t (3.96)
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with α0 > 0, αi ≥ 0, β j ≥ 0, for all i, j; the positivity of coefficients ensures the
positivity of the conditional variance. When p = 0,this GARCH(p,q) process is an
ARCH(q) process.

There is an essential link between GARCH and ARMA processes by writing:

at = ε2
t −σ2

t ⇔ σ2
t = ε2

t −at (3.97)

by replacing σ2
t in the GARCH process definition, σ2

t = α0 +α(L)ε2
t +β (L)σ2

t :

ε2
t −at = α0 +α(L)ε2

t +β (L)(ε2
t −at) (3.98)

thus:
(I−α(L)−β (L))ε2

t = α0 +(I−β (L))at , (3.99)

which can be understood as an ARMA process. The writing α0 + (I− β (L))at =
(I−α(L)− β (L))ε2

t , thus allows to highlight the asymptotic independence of the
variance according to the time for this ARMA(max(p,q),q) process on the series of
the squares of residuals (or squares of innovations). When the lag polynomial (1−
α(L)−β (L)) has a unit root, the GARCH(p,q) process is an “integrated” process
of the type IGARCH(p,q):

Φ(L)(1−L)ε2
t = α0 +(1−β (L))at, (3.100)

where Φ(L) = (1−α(L)−β (L))(1−L)−1. The FIGARCH(p,d,q) process, that is
between GARCH(p,q) process and IGARCH(p,q) process, is written by replacing
the expression (1−L) by the expression (1−L)d that contains the parameter d of
fractional intégration. The following definition is given:

Definition 3.10 (FIGARCH process). A FIGARCH(p,d,q) process is written:

Φ(L)(1−L)dε2
t = α0 +(1−β (L))at (3.101)

• If d = 1: FIGARCH(p,1,q) is an integrated GARCH.
• If d = 0: FIGARCH(p,0,q) is an integrated GARCH(p,q).

Then, by substitution of at = ε2
t −σ2

t in this definition, we obtain: (1−β (L))σ2
t =

α0 + [1− β (L)−Φ(L)(1− L)d ]ε2
t . And since the subject of this type of process

is to study the behavior of the variance, we extract this variance: σ2
t = α0(1−

β (1))−1 + [1− (1− β (L))−1Φ(L)(1− L)d ]ε2
t . And by posing for the expression

in between square brackets on the right λ (L) = [1− (1−β (L))−1Φ(L)(1−L)d ] =
λ1L+λ2L2 +λ3L3 + · · · , with λk positive or zero, we finally obtain:

σ2
t = α0(1−β (1))−1 +λ (L)ε2

t . (3.102)

The FIGARCH processes that integrate the fractional parameter d are conceived to
highlight the persistence of shocks on the conditional variance;12 they show that it
decreases hyperbolically for 0 < d < 1.

12 The asymmetries of the shocks on the conditional variance are expressed by another type of
extension which are the “exponential” processes: FIEGARCH.
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3.8 Rejection of the “Random Walk” Hypothesis for Financial
Markets: Lo and MacKinlay Test on the Variance of the
NYSE (1988)

Lo and MacKinlay have revisited the random walk hypothesis concerning finan-
cial markets (Lo and MacKinlay 1988, 1989; Campbell et al. 1997). Prior studies
have not been able to reject this hypothesis, and Lo and MacKinlay have introduced
more sensitive test statistics able to detect a small but significant abandonment of
the random walk. In other words, they developed a more powerful test with a high
probability to reject the random walk hypothesis. In particular, they used the work
of Merton (1980) that proposed to estimate with more precision the variances when
the data are sampled on finer intervals. The suggested Test consists in comparing the
variances on different intervals and then by testing them by means of a specification
test of the Hausman type (1978). As we evoked in the introduction of this book,
the random walk hypothesis has been associated for a long time with the postulate
of the efficiency of the financial markets (“Efficient Markets Hypothesis”) (Lo and
MacKinlay 1999, p. 17).

Closely related to the birth of the probability theory, the random walk hypothesis
has a famous history, with remarkable “actors” such as Bachelier, Lévy, Kol-
mogorov and Wiener. More recently, one of the first serious applications of the
random walk hypothesis to financial markets has been the Paul Samuelson contri-
bution in 1965, stated in an article entitled “Proof that Properly Anticipated Prices
Fluctuate Randomly”. It explains why in an efficient market regarding informa-
tion, the price changes are unpredictable if they are properly anticipated, i.e. if
they fully incorporate the expectations, the information and the forecasts of all the
market participants. In 1970, Fama summarizes what precedes in a rather explicit
formula: “prices fully reflect all available information”. In contrast with many appli-
cations of the random walk hypothesis in natural phenomena, for which randomness
is supposed almost by default because of the absence of any natural alternative,
Samuelson argues that the randomness is achieved through the active participation
of many investors who seek the increase their wealth. They try to take advantage
from the least information at their disposal, as tiny as it may be. And while doing
so, they incorporate their information in the prices of the market and quickly elim-
inate capital-gain and profit opportunities. If we imagine an “ideal” market without
friction and trading cost, then the prices must always reflect all the available infor-
mation, and no profits can be garnered from trading based on information because
the profits have already been captured. Thus, in a contradictory way, we are led
to say that, the more efficient the market, the more the time series of prices gen-
erated by such a market is random, and the most efficient of all markets is the
market in which price changes are completely random and unpredictable. Thus the
random-walk hypothesis and the efficient market hypothesis became emblematic in
Economics and Finance, although more recently, in 1980, Grossman and Stiglitz
considered that the hypothesis of the efficiency of markets is an economically unre-
alizable idealization. Moreover, some recent works of the last 15 years initiated an
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approach aiming to reject this random walk hypothesis.13 Lo and MacKinlay econo-
metric studies (since 1988) relating to the American stock exchange have rejected
the random walk hypothesis for weekly values of New York Stock Exchange, using
a simple test based on the volatility of courses (Lo and MacKinlay 1988); by speci-
fying however that the rejection of the random walk hypothesis does not necessarily
imply the inefficiency of the generation (or formation) of prices for the markets.

3.8.1 Specification of the Test: Variances of the Increments
for Their Ratio and Difference

The general subject of the Test is to verify that if a process follows a random walk,
the variance of increments (or differences) is a linear function of observations (Lo
and MacKinlay 1999).14 It is said that the variance of the nth-differences is equal to
n times the variance of the first-differences:

Var[nth-differences]= n ·Var[first-differences]. (3.103)

If we name xt an index of stock exchange prices, and Xt = logxt a transformation
by the logarithm of this index, the following relation is posed:

Xt = μ + Xt−1 + εt (3.104)

μ is an arbitrary drift parameter and εt is a the random disturbance term, with
∀t, E[εt ] = 0. The random walk hypothesis usually requires that the εt are “inde-
pendent and identically distributed”15 Gaussian variables (iid), but the economists
agree more and more to say that financial time series generally have variances with
variable volatilities over time (Merton 1980; French et al. 1987). Beyond (idd) prop-
erties and gaussianity, this test of the variances is based on the non-autocorrelation
postulate and on the fact that the law is not obligatorily a Normal law and variances
can change in the course of time. In short, the postulates are as follows:

• Homoscedasticity: Idd and gaussianity.
• Heteroscedasticity: Non-autocorrelation, the law is not obligatorily a normal law,

and the variance of the law can vary in the course of time.

3.8.1.1 H0-Hypothesis of Homoscedasticity of Increments

The null hypothesis H0 says that the disturbance terms εt are independent normal
random variables and identically distributed (iid), with variance σ2

0 :

13 Lo and MacKinlay in “Newspaper of Econometrics”, volume 40, 1989; volume 45, 1990.
Econometrica, volume 59, 1991.
14 Example of an increment of order 1 of Xt is written : [Xt −Xt−1].
15 iid: independent and identically distributed.
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H0 : εt iid N(0,σ2
0 ). (3.105)

Moreover with the homoscedasticity, the hypothesis of a Gaussian law of increments
was posed. Taking the initial subject of the test again, the random-walk hypothesis
implies that the variance of differences is linear. In this sense, this supposes that the
variance of Xt −Xt−2 is the double of Xt −Xt−1. It is on this basic idea that the test
is built, which is to compare the variances of Xt −Xt−1 to that of Xt −Xt−2. With
this intention and by extension of the principle, we select a series of observations
X0, . . . ,X2n of length 2n + 1 (2n in order to handle the time series on multiples of 2,
+1 to complete the calculation with the differences). Then we build the Maximum
Likelihood Estimators of first-differences, for the unknown average and variance μ
and σ2

o :

μ̂ =
1

2n

2n

∑
k=1

(Xk−Xk−1) (3.106)

and if we carry out the theoretical sum of the expression above, it obviously follows:

μ̂ =
1

2n
(X2n−X0)

σ̂2
a =

1
2n

2n

∑
k=1

(Xk−Xk−1− μ̂)2. (3.107)

Then as previously considered, we carry out a variant of the estimator of the
variance, i.e. an estimator with the second-differences that corresponds to:

σ̂2
b =

1
2n

n

∑
k=1

(X2k−X2k−2−2μ̂)2. (3.108)

If we refer to the standard asymptotic theory, these three estimators are strongly
consistent. Moreover, we say that the estimators σ̂2

a and σ̂2
b asymptotically follow a

Gaussian law. The asymptotic equivalences are written as follows:
√

2n(σ̂2
a − σ̂2

0 ) ∼ N(0,2σ4
o ), (3.109)√

2n(σ̂2
b − σ̂2

0 ) ∼ N(0,4σ4
o ). (3.110)

The subject here is the limit-distribution of the difference of variances. If we refer
to Hausman 1978, who states that any estimator asymptotically efficient θ̂efficient of
the parameter θ can have the property to be asymptotically non-correlated with the
difference: [θ̂other− θ̂efficient] (where θ̂other is simply another estimator of θ ). Other-
wise, i.e. if there is a correlation, we can find a linear combination between θ̂efficient

and [θ̂other− θ̂efficient], which is more efficient than θ̂efficient, which is obviously con-
trary to the assertion presenting θ̂efficient as an efficient estimator. Thus, in connection
with the asymptotic variances Var∞(·), we can write:

Var∞(θ̂other) = Var∞(θ̂efficient + θ̂other− θ̂efficient)

= Var∞(θ̂efficient)+Var∞(θ̂other− θ̂efficient), (3.111)
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Var∞(θ̂other− θ̂efficient) = Var∞(θ̂other)−Var∞(θ̂efficient). (3.112)

At this stage, it is possible to write a test-statistic Ψdiff of the difference of the
variances of increments:

Ψdiff = σ̂2
b − σ̂2

a , with
√

2nΨdiff ∼ N(0,2σ4
o ). (3.113)

Or it is possible to choose as test-statistic Ψratio of the ratio of the variances
of increments. [By knowing that if we take (σ̂2

a )2 as an etimator of σ4
o , then the

standard t-test of Ψdiff = 0 will give a similar result to Ψratio = σ̂2
b

σ̂2
a
− 1 = 0, thus:

Ψdiff√
2σ̂4

a
= σ̂2

b−σ̂2
a√

2σ̂2
a

= Ψratio√
2
∼ N(0,1)]. It is written:

Ψratio =
σ̂2

b
σ̂2

a
−1, with

√
2n Ψratio ∼ N(0,2). (3.114)

Although the variance estimator σ̂2
b is based on the differences of every other

observations, it is possible to create a new variance estimator by means of differ-
ences of every qth observation (i.e. the qth-differences). Then we obtain a series of
observations X0, . . . ,Xnq of length nq+1 (for any integer q > 1). The new estimators
are written:

μ̂ =
1

nq

nq

∑
k=1

(Xk−Xk−1) (3.115)

and if we carry out the theoretical sum of the expression above, we obviously have:

μ̂ =
1

nq
(Xnq−X0).

σ̂2
a =

1
nq

nq

∑
k=1

(Xk−Xk−1− μ̂)2, (3.116)

σ̂2
b (q) =

1
nq

n

∑
k=1

(Xkq−Xqk−q−qμ̂)2, (3.117)

thus:

Ψdiff (q) = σ̂2
b (q)− σ̂2

a and Ψratio(q) =
σ̂2

b (q)
σ̂2

a
−1. (3.118)

The test can be refined by using the fact that under the null hypothesis the asymptotic
distributions are written:

√
nqΨdiff (q) ∼ N(0,2(q−1)σ4

o ), (3.119)√
nqΨratio(q) ∼ N(0,2(q−1)). (3.120)

It is possible to create an alternative of the estimator σ̂2
b (q) of σ2

o which is written:
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σ̂2
c (q) =

1
nq2

n·q
∑

k=1·q
(Xk−Xk−q−qμ̂)2 (3.121)

and from this estimator, to recreate the test-statistics for the difference and the ratio
of variances:

Mdiff (q) = σ̂2
c (q)− σ̂2

a , (3.122)

Mratio(q) =
σ̂2

c (q)
σ̂2

a
−1. (3.123)

Then we can give the unbiased version of estimators σ̂2
c (q) and σ̂2

a , that are denoted
σ̄2

c (q) and σ̄2
a :

σ̄2
a =

1
nq− 1

nq

∑
k=1

(Xk−Xk−1− μ̂)2, (3.124)

σ̄2
c (q) =

1

q(nq−q + 1)
(

1− q
nq

)
n·q
∑

k=1·q
(Xk−Xk−q−qμ̂)2, (3.125)

the statistics were refined M(·)(q):

M̄diff (q) = σ̄2
c (q)− σ̄2

a , (3.126)

M̄ratio(q) =
σ̄2

c (q)
σ̄2

a
−1. (3.127)

Under the initial hypothesis of homoscedasticity H0 : asymptotically the statistics
Mdiff (q), Mratio(q), M̄diff (q), M̄ratio(q) behave in the following way:

√
nqMdiff (q) ∼ √nqM̄diff (q)∼ N

(

0,
2(2q−1)(q−1)

3q
σ4

o

)

, (3.128)

√
nqMratio(q) ∼ √nqM̄ratio(q)∼ N

(

0,
2(2q−1)(q−1)

3q

)

. (3.129)

They can be normalized:

z1(q) =
√

nq · M̄ratio(q) ·
[

2(2q−1)(q−1)
3q

]−1/2

∼ N(0,1). (3.130)

Indeed, under the homoscedasticity of the variance of increments, asymptotically
the ratio of the variances

[
σ̄2

c (q)/σ̄2
a
] → 1, and thus the statistic M̄ratio(q) =[

(σ̄2
c (q)/σ̄2

a )−1
]→ 0. Thus, the random walk hypothesis of a time series can be

tested by means of the statistics z1(q) above.
Lo and MacKinlay highlight the fact that for q = 2, the statistic Mratio(q) can be

written:
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Mratio(2) = ρ̂1− 1
4nσ̂2

a

[
(X1−X0− μ̂)2 +(X2n−X2n−1− μ̂)2]� ρ̂1, (3.131)

i.e. for q = 2, the statistic Mratio corresponds to ρ̂1, which is the estimate of auto-
correlation coefficients of order 1 of first-differences of Xt . Thus, they underline by
generalizing that there is an equivalence between Mratio(q) and the linear combi-
nation of estimators of autocorrelation coefficients of the differences of Xt , which
decrease arithmetically for i = 1, . . . , q− 1. Thus, the Mratio(q) statistic are rewrit-
ten as a function of the estimates of autocorrelation coefficients and q (q = integer
higher than 1) in the following way:

Mratio(q) =
2(q−1)

q
ρ̂1 +

2(q−2)
q

ρ̂2 + · · ·+ 2
q
ρ̂q−1. (3.132)

Remark 3.1. The generic writing of autocorrelation coefficients of order i of first-
differences is the following:

ρ̂i =

nq

∑
k=i+1

(Xk−Xk−1−μ̂) (Xk−i−Xk−i−1−μ̂)

nq

∑
k=1

(Xk−Xk−1−μ̂)2

.

3.8.1.2 H0-Hypothesis of Heteroscedasticity of Increments

Lo and MacKinlay state that under the hypothesis of heteroscedasticity, firstly, there
is non-correlation and secondly, the law is not obligatorily a normal law and its
variance can change in the course of time.16 The M̄ratio(q) statistic still tends towards
zero under the present hypothesis, and it is only necessary to calculate its asymptotic
variance θ (q) to reach the required result. We highlight the following expression of
M̄ratio(q) obtained asymptotically:

M̄ratio(q) =
2
q

q−1

∑
i=1

(q− i)ρ̂i (3.133)

under the present hypothesis, the correlation coefficients ρ̂i are supposed to be
asymptotically non-correlated. If we can obtain the asymptotic variances δi of each
ρ̄i under the hypothesis H0, it is possible to calculate the asymptotic variances θ (q)
and calculate M̄ratio(q) as a weighted sum of the δi. Thus, if we formalize the sub-
ject, and if we note: δi = Var[ρ̂i] and θ (q) = Var[M̄ratio(q)], under the Hypothesis
H0 of the heteroscedasticity, we obtain:

• The test statistics Ψdiff (q), Ψratio(q), Mdiff (q), Mratio(q), M̄diff (q), M̄ratio(q)
converge almost surely towards zero.

16 For a discussion about the construction of the Hypothesis, see Lo and MacKinlay 1999, p. 24
and 25.
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• A consistent estimator of the heteroscedasticity of the variance δi :

δ̂i =

nq
nq

∑
k=i+1

(Xk−Xk−1− μ̂)2(Xk−i−Xk−i−1− μ̂)2

[
nq

∑
k=1

(Xk−Xk−1− μ̂)

]2 . (3.134)

• A consistent estimator of the heteroscedasticity of the variance θ (q):

θ̂(q) =
q−1

∑
i=1

[
2(q− i)

q

]2

ρ̂i. (3.135)

In spite of the presence of heteroscedasticities, the following statistic still follows
a normal law:

z2(q) =
√

nq · M̄ratio(q)
[
θ̂ (q)
]1/2 ∼ N(0,1). (3.136)

This statistic z2(q) is used by Lo and MacKinlay to test the random-walk hypothesis
on the weekly values of the NYSE index. The tables of the obtained results are a
bit heavy and not presented here, it will be necessary to consult their reference
works. However we present a summarized table of the variance-ratio test based on
weekly observations for nearly 13 years of the index. Under the null hypothesis, the
variance ratios: 1+Mratio(q) is 1 and the statistical test has asymptotically a standard
normal distribution. On the table, the asterisk “*” indicates that the variance ratios
are significantly different from 1, for a 5% threshold, thus for these values there is
rejection of the null hypothesis of the random walk:

Index17 Number

CRSP NYSE-AMEX nq q = 2 q = 4 q = 8 q = 16
Sept 1962 to Dec 1985 1216
Variance ratios 1.30 1.64 1.94 2.05
Stat z(q)* (7.51)* (8.87)* (8.48)* (6.59)*

* Rejection of the null hypothesis of the random walk

As a second example, we carried out the test on data of a French stock exchange
index, i.e. 2,847 daily values of the cac40 index, between Jan 1, 1988 and June 30,
1999. The results are as follows, subject to the test conditions (i.e. length and nature
of the series, and used algorithm):

17 Detailed tables: Lo and MacKinlay (1999, p. 28, 29, 31, 33).
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Index Cac40 q = 2 4 8 16 32 512
Jan-1988 to Jun-1999
Variance ratios 1.0553 1.0575 1.0561 1.0587 1.0526 1.191
Psi∗ (2.27)∗ (1.255) (0.78) (0.56) (0.36) (0.37)

The results are contradictory here, the rejection for q = 2 is limited and for the
other values of q, the null hypothesis is not rejected.

3.9 Estimation of the Fractional Integration Parameter d
or the Hurst Exponent H of an ARFIMA(p,d,q) Process

3.9.1 General Information About Long Memory (LRD)
Estimations and Self-Similarity

In particular, it is in the fields of telecommunication, network traffic information
flow that certain concepts have found matter to be used. Long memory phenomena,
self-similarities and power-laws but also, more difficult, fractals have been often
observed. The estimation methods of the Hurst exponent are varied enough now, but
it is not always easy to know which one of these methods offers the most precision
or robustness. Moreover sometimes, the multidisciplinary nature of all the existing
analysis methods of time series, due to the diversity of sources, can make it difficult
to choose and use these tools. The fundamentals of this work are based on the Hurst
exponent and on the “long memory” notion, of which the definition, let us recall
it, can be written as follows: A stationary process xt has a long memory or a long
range dependence (LRD), if ∃ a real α ∈ [0,1] and if ∃ a constant ca > 0 such that:

lim
k→∞

ρk

crk−α
= 1, (3.137)

where ρk : is the autocorrelation function. And the relation between α et the Hurst
exponent H is H = 1−α/2, knowing that the long memory processes appear when
1/2 < H < 1. The autocorrelations decrease slowly towards zero, whereas on the
contrary the short memory phenomena appear when the autocorrelations decrease
very quickly towards zero: in such cases they can be ARMA process or Markov
chains, for example.

Many methods are used to estimate the Hurst exponent.18 In the lines which
follow we will briefly evoke the most common ones, starting from with those that
use the periodogram, the power spectrum, the Fourier transform and finishing with
the Abry–Veitch estimator constructed by means of the wavelet transform:

1. Method of the aggregated absolute value, where an aggregated vector is defined
x(m)(k) = 1

m ∑k m
i=(k−1)m+1 xi, k = 1,2, . . . , N

m ,(xi is a time series) using different

18 Some of them use the concept of embedding space resulting from the Takens theorem.



3.10 Estimation of Parameter d by Spectral Method for ARFIMA Process 313

sizes for m “blocks”. If there is long memory phenomenon or long range depen-
dence (LRD), in a log–log plane, the graph of the aggregation level (abscissa)
and of the absolute value of the first-moment of the aggregated series x(m) (in
ordinate) is a straight line of slope H−1.

2. Method of the aggregated variance: where the log–log graph of the variance
(abscissa) and of the level of aggregation (in ordinate) is a straight line of slope
β >−1, with H = 1− β

2 .
3. R/S Method, the oldest (presented in Part I) where the log–log graph of the R/S

statistic and number of points of the aggregated series is a straight line with a
slope that is an estimate of the Hurst exponent.

4. Periodogram method. This technique provides a graph of the logarithm of the
spectral density of the time series studied on the logarithm of frequencies, and the
slope of this graph gives an estimate of H. The periodogram is written: I(λ ) =

1
2πT

∣
∣
∣
∣
∣

N

∑
j=1

x( j)ei jλ

∣
∣
∣
∣
∣

2

, where x is the series, T is the size of the series, λ is the

frequency.
5. “Whittle” estimator. This estimator is built on the function of likelihood applied

to the periodogram.
6. Variance of residuals, where the log–log graphs of the aggregation level and of

the average of the variance of the residuals of the time series is a straight line
with a slope equal to H/2.

7. Abry–Veitch method by the wavelet, where the wavelets are used to estimate the
Hurst exponent, we will explain it in one of the following sections.

Except for the R/S method previously presented in Part I, we will not present
all these methods which are now well-known and developed in the specialized lit-
erature. However, we will present the Abry–Veitch method that uses the wavelets
properties. Also in the sections that follow, we will present the two spectral methods
of the Hurst-exponent estimation or of the fractional integration parameter d.

3.10 Estimation of the Parameter d by the Spectral Methods
of an ARFIMA Process

3.10.1 Estimation of d Based on the Form of the Spectral Density:
Regression Method of the Geweke and Porter-Hudak
Estimator (GPH: 1983)

The test studies in particular the behavior of the spectrum at low frequencies of the
series. It is based on the form of the spectral density that is written:

f (λ ) =
∣
∣
∣1− e−iλ

∣
∣
∣
−2d · fARMA(λ ) (3.138)
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with fARMA(p,q)(λ ) which is the spectral density of an ARMA(p,q) process and that
is written:

fARMA(λ ) =
σ2
∣
∣Θ(e−iλ )

∣
∣2

2π
∣
∣Φ(e−iλ )

∣
∣2

. (3.139)

By applying the logarithm to the initial expression, we obtain:

log f (λ ) = log fARMA(0)−d · log
∣
∣
∣1− e−iλ

∣
∣
∣
2
+ log

[
fARMA(λ )
fARMA(0)

]

. (3.140)

Let us recall the periodogram:

I(λ ) =
1

2πT

∣
∣
∣
∣
∣

T

∑
j=1

x jei jλ

∣
∣
∣
∣
∣

2

(3.141)

and by introducing the logarithm of the periodogram log(I(λ j)) and λ j = 2π j
T ,

j = 1, . . . , T
2 , (T is the length of the series, i.e. the observations number), we have:

log I(λ j) = log fARMA(0)−d · log
∣
∣
∣1− e−iλ j

∣
∣
∣
2
+ log

[
fARMA(λ j)
fARMA(0)

]

+ log
[

I(λ j)
f (λ j)

]

.

(3.142)

The idea of the test is to notice that around the zero value of the frequency λ j,
i.e. around the null-frequency for a sampling of frequencies on 2π j/T, the term

log
[

fARMA(λ j)
fARMA(0)

]
tends to zero. Thus, the initial expression can be written as a lin-

ear regression whose coefficients can be the subject of a least squares estimation.
Even if the writing is heavy, it is possible to observe how the estimator of the
parameter d emerges: d̂. If we substitute Yj = log I(λ j), a = log( fARMA(0)), b =−d,

Zj = log
∣
∣
∣1− e−iλ j

∣
∣
∣
2
, ξ j = log

[
I(λ j)
f (λ j)

]
, with j = 1,2, . . . ,m (m is equal to ordinate

of the periodogram). Then, we write:

Yj = bZj + ξ j + a. (3.143)

The estimation of d is written as the ratio of the covariance of Zj and Yj to the
variance of the Zj:

d̂ =−

m

∑
j=1

(Zj− Z̄ )(Yj− Ȳ )

m

∑
j=1

(Zj− Z̄ )2
. (3.144)

The result of this test expresses that when T → ∞ and −1/2 < d < 1/2, then the
law of d̂ is:



3.10 Estimation of Parameter d by Spectral Method for ARFIMA Process 315

d̂ ∼ N

(

d, π2/6
m

∑
j=1

(Zj−Z)2

)

. (3.145)

The objective of the test is also to capture any fractal structure in the low frequen-
cies, i.e. the correlation structures, which are neither I(λ ) = I(0) nor I(1), but I(d).
(The choice of the number of ordinates of the interval from which the periodogram
is expressed is important, and has in particular been discussed and evaluated by
Hurvich 1998.) For example, we carried out the test on data of the French stock
exchange index: Cac40 (2,847 daily values, between January 1, 1988 to June 30,
1999). Subject to the test conditions, the results are as follows:

Cac40 Index d̂
Jan 1988 to June 1999.

Estimation of d : 0.046721

3.10.2 Estimation of d by the Logarithm of the Power Spectrum:
Estimator of Janacek (1982)

The test studies in particular Lardic and Mignon (2002) the logarithm of the power
spectrum. We select the dth-differences of a series x(t), noted z(t) which is thus
“stationarized” and which has the spectrum fz(λ ). The spectrum of x(t) is written:

log fx(λ ) =−d · log[2(1− cosλ )]+ log fz(λ ). (3.146)

We introduce in this expression a judiciously chosen weighting, that we note w(λ ) =
− 1

2 log[2(1− cosλ )], which becomes:

log fx(λ ) = 2d ·w(λ )+ log fz(λ ). (3.147)

w(λ ) is also written w(λ ) =∑∞
K=1

1
K cosKλ , by exploiting the writing of the Fourier

series and its coefficient:

aK =
1

2π

∫ π

0
log(2π fx(λ )) · cos(Kλ )dλ . (3.148)

It is written:
1
π

∫ π

0
w(λ ) log fx(λ )dλ = d

∞

∑
K=1

1
K2 +

∞

∑
K=1

aK

2K
(3.149)

and
fz(λ ) = a0 + a1 cosλ + a2 cos2λ + · · · . (3.150)

The minimal forecasting log(σ2) of the mean quadratic error σ2 is written:

log(σ2) =
1
π

∫ π

0
log(2π) f (λ )dλ . (3.151)
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The “step” of the quadratic error is written σ2
K = σ2(1 + b2

1 + b2
2 + · · ·+ b2

K). The
relation between the aK and the bK is written:

exp
[

a1z+ a2z2 + · · ·
2

]

= 1 + b1z+ b2z2 + · · · . (3.152)

There is also a relation chain:

b1 = c1,

b2 = c2 + c2
1/2!,

b3 = c3 + c1c2 + c3
1/3!,

...

with cK = aK/2. The estimation of the Fourier coefficients is carried out through
the estimate of the cK , then we extract the estimator d̂ from the equation ini-
tially enunciated: 1

π
∫ π

0 w(λ ) log fx(λ )dλ = d∑∞
K=1

1
K2 +∑∞

K=1(aK/2K). The ĉK is
written:

ĉK =
1
τ

τ−1

∑
p=1

log I(p)cosKλp +
1

2τ
[log I(0)−1T [log I(0)]], (3.153)

where 1T is an indicator function: 1T =
{

1 : if T is even
0 : otherwise

, T being the number of

observations of the series. I(λ ) is the periodogram of x(t) and τ is the integer
resulting from the expression (T −2)/2. The estimators ĉK can be written:

ĉK = (d + cK)/K + eK, (3.154)

where eK is a sequence of independent random variables, with d = 0 if the time
series is stationary. At this stage and due to the asymptotic normality of the coeffi-
cients ĉK , the left member of the initial equation 1

π
∫ π

0 w(λ ) log fx(λ )dλ = d∑∞
K=1

1
K2 +∑∞

K=1(aK/2K) follows a normal law with the following average

d
∞

∑
K=1

1
K2 +

∞

∑
K=1

cK

K
. (3.155)

We write that

S =
1
π

∫ π

0
w(λ ) log fx(λ )dλ ∼ N

(

d
∞

∑
K=1

1
K2 +

∞

∑
K=1

cK

K
, ·
)

. (3.156)
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We extract the estimator of d which is noted d̂Truncation:M :

d̂Truncation:M =
S−

M

∑
K=1

ĉK

K
M

∑
K=1

1
K2

, (3.157)

where M is a truncation parameter aiming to the approximation of the infinite sum.
The estimator follows a normal law:

d̂Truncation: M ∼ N

⎛

⎜
⎜
⎜
⎝

d +
M

∑
K=1

cK

K
M

∑
K=1

1
K2

,
Ψ′(1)

T
M

∑
K=1

1
K2

⎞

⎟
⎟
⎟
⎠

, (3.158)

where Ψ(x) = d
dx logΓx, (Γx is a gamma function) and Ψ(K)(x) = dK

dxK Ψ(x). The
estimator of d becomes an unbiased estimate if we choose the truncation parameter
M rather large, so that the coefficients cK are negligible.

3.11 Abry–Veitch Estimator (1998) of the Hurst Exponent –
Wavelet Analysis of Long Memory Processes: An Effective
Approach of Scale Phenomena

This test conceived by Abry and Veitch in 1998,19 has the same objective than the
tests that seek to estimate the Hurst exponent H (or d the fractional integration
parameter), but it uses the wavelet transform. One of the difficulties of this test
resides in the wield of the dyadic scales 2 j. The wavelet technique is built on a
Multi-Resolution Analysis (MRA) which is largely used in signal analysis today.
In this test, “the wavelet analysis is used to detect the presence and to locate the
long memory phenomena (LRD)”. The wavelet transform is of a major interest,
indeed during this transformation, the information about time is not lost, whereas
in the Fourier transform the information is lost. Thus, the wavelets make it pos-
sible to have simultaneously information about time and frequencies. The wavelet
transform allows a reading of frequencies over time, which is not the case with
the Fourier analysis. The sinusoidal functions of the Fourier theory are replaced by
wavelet functions that are written

ψu,s(t) =
1√
s
ψ0

(
t−u

s

)

, (3.159)

which are generated by the translation and dilation of a mother wavelet ψ0, and by
a bandpass function which filters at the same time on the scales of frequencies and
on time. The theory of multi-resolution analysis explains why there is no loss of

19 Abry and Veitch (1998a,b); Abry et al. (2000); Veitch et al. 2003; Abry et al. (2002a).
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information if we sample the continuous wavelet coefficients a Time-Scale plane on
a dyadic grid defined by (u,s) = (2 j,2 jk), where j and k are integers (relative). This
practice makes it possible to pass from a Continuous Wavelet Transform (CWT) to a
Discrete Wavelet Transform (DWT) and to obtain the discrete coefficients d j,k, also
called detail coefficients.

“The approach by wavelets for the statistical analysis of scale phenomena20 such
as the long memory”, is interesting because “the wavelet functions have also a
scale property”; “they constitute a system with optimal co-ordinates to observe such
phenomena”.21

Reminder: Long memory or Long Range Dependence (LRD) and self-similarity
notions:

• A stationary process xt is a long memory process if its spectral density f (λ )
satisfies:

f (λ ) ∼ c f |λ |−2d , for λ → 0, (3.160)

in order to harmonize the notations with the presentation of the Abry–Veitch
estimator, we pose α = 2d and f (λ ) = Γx(λ ), then the condition is written:

Γx(λ )∼ c f |λ |−α , for λ → 0, (3.161)

with 0 < α < 1 and the constant c f > 0, and λ the frequency. This implies that
the autocovariance function rk = E[(x(t)−E(x))(x(t + k)−E(x))] satisfies:

rk ∼ crkα−1, for k→ ∞. (3.162)

with moreover the relation cr = c f 2G(1− α)sin(πα/2), with G a gamma
function.
It is well known that the relation d = H − 1

2 links the fractional integration
parameter d and the Hurst exponent H, and since we posed α = 2d, then
α = 2H−1.

• The self-similarity, or more exactly the self-affinity (which is observed for exam-
ple in the high frequencies of financial series or more recently in Internet traffic)
can be presented by means of the Hurst exponent in the following way, for a
stochastic process x(t),t ∈ R+, ∃ H > 0:

x(t) d= a−Hx(at) for all tout a > 0, (3.163)

where d= is the equality by the distribution.

The core of this test is built, in particular, around the multi-resolution analysis
whose rudiments are presented in the following lines (refer to Mallat 1998 or to the
article of Abry and Veitch 1998a).

20 We can evoke the case of the scales of the frequencies λ , that are more or less length, composing
the spectrum highlighting the periodicities, or the case of the lags k of the autocorrelation function
in the construction of the tests of the long memory process.
21 Ref: Real-time estimation of the parameters of long-range dependence (Roughan et al. 2000).
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Presentations of the Multi-Resolution Analysis (MRA) and context of the Abry–
Veitch estimator:

At this stage, a presentation of the Multi-Resolution Analysis (MRA) and its
corollary, the discrete wavelet transform (DWT), is necessary (Abry and Veitch
1998a).

Definition 3.11 (Multi-Resolution Analysis). A sequence {V j} j∈Z of closed sub-
spaces of L2(R) is a multiresolution approximation, if the six following properties
are satisfied:22

∀( j,k) ∈ Z
2, f (t) ∈ V j ⇔ f (t−2 jk)∈ V j. (3.164)
∀ j ∈ Z,V j+1 ⊂ V j, (3.165)

∀ j ∈ Z, f (t)∈ V j ⇔ f
( t

2

)
∈ V j+1, (3.166)

Lim
j→+∞

V j =
+∞⋂

j=−∞
V j = {0}, (3.167)

Lim
j→−∞

V j = Closure

(
+∞⋃

j=−∞
V j

)

= L2(R), (3.168)

There exists θ such that {θ (t−n)}n∈Z is a Riesz basis of V0. (3.169)

The interpretation of these six properties is as follows:

• V j+1 is the image of V j by a dilation of a factor 2: There is a subjacent frequential
grid in a geometric progression.

• For any j, V j+1 is a subspace of V j.
• V j is invariant by translation of 2 j : There is a subjacent temporal grid by steps

of 2 j.
• The intersection of V j is reduced to 0 in L2: with a minimal resolution, one loses

all the signal.
• The union of V j is dense in L2: with infinite resolution, one reproduces all the

signals perfectly.
• There is a function θ such as the whole translations of θ are a Riesz basis23 of

V0: Each resolution is generated by a basis of translated atoms of 2 j.

22
Z : denotes the ring of the integers and corresponds to the following space Z =

{. . . ,−3,−2,−1,0,+1,+2,+3, . . .} (positive and negative integer including 0), which is an
extension of the space of the natural numbers N.
23 Riesz basis: A family of vectors noted {en}n∈N is a Riesz basis of H the Hilbert space, if this
basis is linearly independent and if there exists A > 0 and B > 0, such that for all f ∈ H, we
can find a discrete sequence λ [n] with f =∑+∞

n=0 λ [n]en, which satisfies (1/B)‖ f ‖2 ≤ ∑n |λ [n]|2 ≤
(1/A)‖ f ‖2 . A Riesz basis is a “lightened” concept of the orthonormal basis concept.
Hilbert Space: A Hilbert space is a space on R or C, provided with a scalar product whose asso-
ciated normed space is complete. The elements of these spaces historically were functions coming
from the formalization of oscillatory phenomena and of the calculation of the variations where
the required solutions (integral) seem to be the sum of a series of functions, often trigonometrical,
which one approaches by orthogonal polynomials for a scalar product.
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In the context of the Abry–Veitch estimator, this definition is specified as follows:
the multiresolution analysis (MRA) consists in a collection of embedded subspaces{

Vj
}

j∈Z
which have the following properties:

• ⋂
j∈Z

Vj = {0}, ⋃
j∈Z

Vj is dense on L2(R).24

• Vj ⊂Vj−1.
• x(t) ∈Vj ⇔ x(2 jt) ∈V0.
• There is a function φ0(t) in V0, called the scaling function, such that the set
{φ0(t− k)}k∈Z is a Riesz basis for V0.

In a same way, the dilated and translated functions:25

{φ j,k(t) = 2− j/2φ0(2− jt− k)}k∈Z (3.170)

also constitute a Riesz basis for V0. It is fundamental to understand that to carry out
a multiresolution analysis of a time series x(t), this is successively to project this
time series on each subspace of approximation Vj:

Approx j(t) = ProjVj
x(t) =∑

k
a j,kφ j,k(t). (3.171)

As presented above Vj ⊂ Vj−1, consequently it is known that the approximation:
approx j(t) of the series x(t) is an approximation coarser than approx j−1(t). Thus,
another fundamental idea of the multiresolution analysis (MRA) resides in the anal-
ysis of the information loss that is indicated by the term: “detail j”; this term thus
expresses the loss of information related to a more and more rough approximation,
as follows:

Detail j(t) = approx j(t)−approx j−1(t). (3.172)

The multiresolution analysis (MRA) calculates the “detail j” by the projections of
x(t) on a collection of subspaces, noted Wj, called the subspaces of wavelets. More-
over, the multiresolution analysis shows that there is a function ψ0 called mother
wavelet, which as what is made from the scaling function φ0, is used to build the
functions:

{ψ j,k(t) = 2− j/2ψ0(2− jt− k)} (3.173)

that also constitute a Riesz basis for Wj :

Detail j(t) = ProjWj
x(t) =∑

k
d j,kψ j,k(t). (3.174)

Banach Space: A complete normed vectorial space (i.e. a normed space in which any Cauchy
sequence converges) and called Banach space.
24 L2(R): Functions of finite energy, such that:

∫ | f (t) |2 dt < +∞. And the spaces of integrable
square functions.

LP(R): Functions such that
∫ | f (t) |p dt < +∞.

l2(Z): Discrete signals of finite energy, such that: ∑+∞
n=−∞ | f (t) |2 dt < +∞.

25 It is also said modulating and translating or scaling.
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The principle of the multiresolution analysis is to transform the information con-
tained in the time series x(t), in a collection, which on one hand gathers an
approximation with low resolution J, and on the other hand, the set of “detail j”
for different j = 1, . . . ,J resolution

(
noted∑J

j=1 detail j
)
. This is written:

x(t) = approxJ +
J

∑
j=1

detail j(t) =∑
k

aJ,kφJ,k(t)+
J

∑
j=1
∑
k

d j,kψ j,k(t). (3.175)

To construct approxJ which is a coarse representation with low resolution of the
series, it is necessary that the scaling function φ0, from which one calculates φJ,k
and ∑k aJ,kφJ,k(t), are a low-pass filter.

About the “detail j” terms, which correspond to the differences approx j(t)−
approx j−1(t), the function ψ0, which enters in their construction, is a bandpass
filter. The bandpass filter despite of its source (because historically it belongs to
the Fourier analysis) also corresponds in its form to a wavelet. The theory of the
multiresolution analysis describes a wavelet as a function of integral zero and that
satisfies the following condition on its Fourier transform Fψ0(λ ) =

∫
e−2πλ tψ0(t)dt:

∣
∣Fψ0(λ )

∣
∣∼ λN , λ → 0, (3.176)

where λ obviously is the frequency and N a positive integer which is the number of
vanishing moments of the wavelet. (It is interesting to link the convergence above:∣
∣Fψ0(λ )

∣
∣ ∼ λN , λ → 0 with the condition about the spectral distribution in the

definition of the long memory processes Γx(λ )∼ c f |λ |−α for λ → 0.)

Definition 3.12 (A wavelet). A wavelet ψ is a function that is written

ψ : R→ R :
∫
ψ0(t)dt = 0, (3.177)

where ψ0 is a mother wavelet. One can select any type of mother wavelet, i.e. any
basic form: Morlet, Daubechies, Haar, sombrero, etc.

Vanishing moments of a Wavelet: Vanishing moments are fundamental to measure
the local regularity of a signal. The wavelet transform can be interpreted as a mul-
tiscale differential operator. If the wavelet has N vanishing moments, it could be
possible to show that the wavelet transform can be understood as a multiscale dif-
ferential of order N (the proof is not presented here). The wavelet ψ0 has N > k
vanishing moments if:

∫

tkψ0(t)dt = 0, 0≤ k < N, and
∫

tNψ0(t)dt �= 0. (3.178)
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Scaling function: Within the general framework of signal analysis, a scaling function
is interpreted as the impulse response of a low-pass filter:26 If we note φs(t) =

1√
sφ
( t

s

)
(and with φ s(t) = φ∗s (−t)), then the low frequency approximation of a

time series x(t) for the scale s is written:

Lxu,s =
〈

x(t),
1√
s
φ
(

t−u
s

)〉

= x �φ∗s (u).

Within the framework of the description of the Abry–Veitch estimator, φs(t)
becomes φ j(t) = 1√

2 j φ0
( t

2 j

)
, then the low frequency approximation of a time

series x(t) at the (dyadic) scale 2 j is written: Lx j,k =
〈

x(t), 1√
2 j φ0
( t−k

2 j

)〉
and

φ j,k(t) = 2− j/2φ0(2− jt − k). The family {φ j,k}k∈Z is an orthonormal basis of V j
for all j ∈ Z.

Definition of a scaling function: As presented previously, the approximation of a
time series x(t) at the resolution 2 j is defined as an orthogonal projection of the time
series x(t) over V j:ProjVjx(t). To calculate this projection, we must be provided with
a basis of V j. The theory of the Multiresolution says that it is possible to build an
orthonormal basis by means of each space V j by dilation and translation of a simple
function φ0 called the scaling function. A scaling function can be coarsely defined
as an aggregation of wavelets at scales higher than 1.
Approximation of coefficients: The projection of x(t) over V j is obtained by a
progressive dilation of the scale:

ProjVj
x =

+∞

∑
k=−∞

< x,φ j,k > φ j,k. (3.179)

The inner products a j[k] = <x,φ j,k> provide a discrete approximation at the
scale 2 j, from which we can rewrite them as the result of a convolution: a j[k] =
∫+∞
−∞ x(t) 1√

2 j φ
( t−k

2 j

)
dt, or a j[k] =

∫ +∞
−∞ x(t) 2− j/2φ0(2− jt − k)dt. The discrete

approximation a j[k] is a low-pass filtering of x(t) sampled on the interval 2 j. We
retain as expression of the aJ,k:

aJ,k =
∫

x(t)2− j/2φ0(2− jt− k)dt. (3.180)

By analogy, we obtain the coefficients d j,k not by means of a scaling function of
the low-pass filter type (as previously), but by a bandpass filter, which also corre-
sponds to a wavelet constructed from a mother wavelet ψ0 (note this correspondence
between the bandpass filter resulting from the Fourier analysis and the wavelet).
The projection of x(t) on W j is obtained by the filter of the wavelet function:
2− j/2ψ0(2− jt − k). The inner products

〈
x,ψ j,k

〉
provide an approximation at the

26 From the gauge of a generic bandpass filter, one makes filters of the low-pass and high-pass
types, which filter (by means of their specific forms) the Fourier coefficients, either from the high
to the low frequencies, or from the low to the high frequencies.
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scale 2 j. The coefficient at the scale 2− j is written:

d j,k =
∫

x(t)2− j/2ψ0(2− jt− k)dt. (3.181)

The index j corresponds to the resolution level of the wavelet analysis, j is also
called octave. The octave j is the logarithm in base 2 of the scale 2 j, and k plays the
role of “time”. n is the length of the chronicle. The number of coefficients available
at the octave j is noted n j = 2− jn.

Discrete wavelet transform: The non-redundant discrete transform allows to pass
from a Hilbert space L2(R) constructed on real numbers to the Hilbert space
l2(Z) constructed on whole numbers and in particular on integers Z.27 Provided
with a scaling function φ0 and with a mother wavelet ψ0, the discrete transform
produces the set {{aJ,k}k∈Z,{d j,k, j = 1, . . . ,J}k∈Z} from the time series x(t).
As previously enunciated, these coefficients are the result of the inner products
<x,φ j,k> and <x,ψ j,k> where φ j,k and ψ j,k are respectively obtained by dilation
and translation of the gauge of a scaling function φ0 and a mother wavelet ψ0. The
algorithm used to produce the discrete wavelet transform is the recursive pyramidal
algorithm (RPA).
Principle of the Abry–Veitch estimator: Patrice Abry and Darryl Veitch write that∣
∣d j,k
∣
∣2 measures the quantity of energy of the analyzed signal at the instant 2 jk and at

the frequency 2 jλ0, where λ0 is an arbitrary reference-frequency resulting from the
choice of a mother wavelet ψ0.

28 And their intention is to consider “that a spectral
estimator can be calculated from the temporal average of

∣
∣d j,k
∣
∣2”, i.e. 1

n j
∑

n j
k=1

∣
∣d j,k
∣
∣2

(or E
∣
∣d j,k
∣
∣2). Abry and Veitch choose to designate the spectral estimator by Γ̂x, thus

on a given scale and for an arbitrary frequency λ0, we have:

Γ̂x(2− jλ0) =
1
n j
∑
k

∣
∣d j,k
∣
∣2 . (3.182)

Γ̂x(λ ) is thus:

• A quantity of energy located in the neighborhood of the frequency λ
• A statistical estimator for the spectrum Γx(λ ) of x(t)

In fact, they show that for a stationary signal, the Expectation of Γ̂x is written:

EΓ̂x(2− jλ0) =
∫
Γx(λ )2 j ∣∣Fψ0(2

jλ )
∣
∣2 dλ (3.183)

27 The generic writing of the DWT is: W f [n,a j] =∑N−1
n=0 f [m] 1√

a j ψ
∗
j [m−n] with a wavelet ψ j[n] =

1√
a j ψ j( n

a j ).
28 Abry and Veitch write: “

∣
∣d j,k
∣
∣2 measures the quantity of energy of the analyzed signal at the

instant 2 jk and at the frequency 2 jλ0, where λ0 is an arbitrary reference-frequency resulting from
the choice of the mother wavelet ψ0”.
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as explained previously, where Fψ0 is the Fourier transform of the wavelet that ana-
lyzes the signal: Fψ0(λ ) =

∫
e−2πλ tψ0(t)dt :

∣
∣Fψ0(λ )

∣
∣ ∼ λN , λ → 0. And let us

recall that a stationary process x(t) is known as a long memory process if its spec-
tral density Γx(λ ) ∼ c f |λ |−α , for λ → 0. Thus, as α = 2H − 1, the preceding
equation is rewritten:

EΓ̂x(2− jλ0) = c f
∣
∣2− j
∣
∣1−2H

∫

|λ |1−2H ∣∣Fψ0(λ )
∣
∣2 dλ (3.184)

= Γx(2− jλ0) |λ0|2H−1
∫

|λ |1−2H ∣∣Fψ0(λ )
∣
∣2 dλ . (3.185)

or, in an equivalent way, via α:

EΓ̂x(2− jλ0) = c f
∣
∣2− j
∣
∣−α
∫

|λ |−α ∣∣Fψ0(λ )
∣
∣2 dλ (3.186)

= Γx(2− jλ0) |λ0|α
∫

|λ |−α ∣∣Fψ0(λ )
∣
∣2 dλ . (3.187)

Moreover, there is an estimator Ĥ of the parameter H based on a linear regression
of log2 Γ̂x(2− jλ0) at the octaves j, for large j:

log2 Γ̂x(2− jλ0) = log2

(
1
n j
∑
k

∣
∣d j,k
∣
∣2
)

≈ (2Ĥ−1) j + ĉ, (3.188)

where ĉ is a constant independent of j. ĉ is a constant because the expression which
corresponds (to it) converges: log2[c f

∫ |λ |1−2H ∣∣Fψ0(λ )
∣
∣2 dλ ].

Or, in an equivalent way, there is an estimator α̂ of α, and since α = 2H− 1,
we write:

log2

(
1
n j
∑
k

∣
∣d j,k
∣
∣2
)

≈ α̂ j + ĉ (3.189)

or log2 E
∣
∣d j,k
∣
∣2 ≈ α̂ j + ĉ. The value n j is a number of coefficients at the scale

2 j, for practical purposes: n j ∼ n/2 j. The estimator α̂ of α is defined as an esti-
mator of the weighted least squares of the slope, and in a field of resolution
ranging between the octaves: [ j1, j2].29 In order to reduce the writings, one poses
y j = log2((1/n j)∑k

∣
∣d j,k
∣
∣2). Moreover, the weighting S j in the calculation of the

least squares estimator is taken as being the inverse of the asymptotic variance of

29 Ordinary Least Squares (OLS): Let be a model yt = αxt +β +ε t , the analytic resolution is writ-
ten: Min∑n

t=1 ε2
t = Min∑n

t=1(yt −αxt −β )2 = Min∑n
t=1 S2. To find the minimum of the function,

we derive with respect to α and to β , i.e. : dS
dβ = 0 and dS

dα = 0, and while doing the sum on t,

we obtain the normal equations: ∑xt yt − α̂ ∑x2
t − β̂ ∑xt = 0 and ∑yt − α̂ ∑xt − nβ̂ = 0, which

involve: α̂ = ∑n
t=1(xt − x)(yt − y)
∑n

t=1(xt − x)2 = ∑n
t=1 xtyt − xy

∑n
t=1 x2

t −nx2 and β̂ = y− α̂x.
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y j : S j = [Var(y j)]−1, (Var(y j)∼−2/n j(log2)2 and n j ∼ n/2 j:S j = [Var(y j)]−1 =
(n log2 2)/2 j+1). Then, the α̂ estimator is written:

α̂[ j1, j2] =

j2

∑
j= j1

S j j y j−
j2

∑
j= j1

S j j
j2

∑
j= j1

S j y j

j2

∑
j= j1

S j

j2

∑
j= j1

S j j2−
[

j2

∑
j= j1

S j j

]2 (3.190)

and in an equivalent way the expression of Ĥ can be provided by a simple substitu-

tion of α̂ in the expression Ĥ =
1
2

(α̂ + 1):

Ĥ[ j1, j2] =
1
2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

j2

∑
j= j1

S j j y j−
j2

∑
j= j1

S j j
j2

∑
j= j1

S j y j

j2

∑
j= j1

S j

j2

∑
j= j1

S j j2−
[

j2

∑
j= j1

S j j

]2 + 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3.191)

The Abry and Veitch articles can be consulted to learn more about the absence of
bias and about the efficiency of H. The articles can be also consulted about the “addi-
tional trends”, the wavelet estimator proves to be robust with additional trends, and
on the other hand, this robustness depends on the selected subjacent wavelet. Abry
and Veitch used the Daubechies wavelet (D#) at different (#) vanishing moments.30

Let us recall that the wavelet ψ0 has N vanishing moments if
∫

tkψ0(t)dt = 0,
0≤ k < N and

∫
tNψ0(t)dt �= 0. Moreover, the question of the optimal choice of the

number of vanishing moments arises in the construction of the estimator. Elements
of convergences appear around a value such that: N � H + 1.

A variant of the α̂ presentation is written:

y j = log2

(
1
n j

n j

∑
k=1

∣
∣d j,k
∣
∣2
)

−g( j), (3.192)

where the g( j) are such that Ey j = E log2 E
∣
∣d j,0
∣
∣2 for a gaussian process (g j ∼

−1/(n j log2)). The graph on the logarithmic scale represents y j and j with a 95%
confidence interval for the Ey j (Var(y j) ∼ −2/n j(log2)2). The estimator α̂ is
written:

α̂ =
j2

∑
j= j1

wjy j, where wj =
S0 j−S1

σ2
j (S0S2−S2

1)
,

where σ2
j = var(y j) and Sk =

j2
∑

j= j1

jk

σ2
j
, with k = 0,1,2. Remember that N is the

number of vanishing moments N = 3 and k is an index (playing the role of time)
which varies from zero to N−1 : k = 0,1, . . . ,N−1.

30 And also Haar wavelets, noting that D1 is also a “Haar”.
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The semi-parametric estimator α̂ is an unbiased estimator, robust with the non-
stationarities and does not depend on the conception of an “a priori” model. The
estimator can be tested for example on stochastic processes or fractional Brownian
motions, fractional white noise, ARIMA process, ARFIMA process, etc. Indeed,
when we possess the Hurst exponent that has been used for to construct ARFIMA
processes, we can test the quality of the estimation α̂ on these processes. It is pos-
sible to illustrate this point by applying the test to a fractional Gaussian noise with
H = 0.8, N = 3, n = 215 = 32768 : α̂ = 0.6.

H = 0.8, N  =  3,  n = 215,  [j1j2] = [7,12],

−5

−6

−7

−8

−9

−10

−11

−12

−13
1 3 4 5 6

Octave j

Yj

7 9 10 1182

. = 0.6, 95% I C = [0.71, 0.88]

Estimations of H: (Some illustrations). An example of experimentation (Sibbert-
sen 2002) of the estimator by wavelets is given based on the German stock exchange
price, the wavelet used is a Daubechies D4 (D#):

α̂ Ĥ

BASF 0.486 0.743
Daimler 0.526 0.763
Deutsche Bank 0.506 0.753
Dresdner Bank 0.498 0.749
Hoechst 0.488 0.744

The conclusion of these estimates is obvious, we are faced with long memory
phenomena, and the use of the other methods (aggregate variance, whittle, R/S,
etc.) provides results very close to the previous ones. Another illustration of the
Abry–Veitch estimator ÂV, compared to the other usual estimators, is carried out on
a sample of experimental signals with different H: Fractional Gaussian noises (fGn)
and Markov processes (Clegg 2003).
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H R/S Var Whit AV

fGn 0.625 0.62 0.63 0.61 0.63
fGn 0.75 0.71 0.73 0.74 0.77
fGn 0.875 0.80 0.81 0.86 0.90
Markov C. 0.625 0.64 0.58 0.63 0.69
Markov C. 0.75 0.64 0.70 0.76 0.80
Markov C. 0.875 0.73 0.74 0.84 0.88

Note that the estimator by wavelets provides results which are often at least as
efficient as the majority of the other estimators.
Comments about the d j,k coefficients properties:

• For an octave j fixed, the set {d j,k}k∈Z is stationary.
• In the case of a process with self-similarities for j fixed, d j,k = 2 jα/2d0,k and in

particular E
∣
∣d j,k
∣
∣2 = 2 jαE |d0,0|2 .

• In the case of a process with long memory, when j → ∞ : E
∣
∣d j,k
∣
∣2 ∼ 2 jαc f

∫ +∞
−∞ |λ |−α |ψ̃(λ )|2 dλ ,(= 2 jαc f Cψ,α : ref. Abry–Veitch).

• In the case of a process with long memory, for j fixed, when |k− k′| → +∞,∣
∣Ed j,kd j,k′

∣
∣≤C( j) |k− k′|α−1−2N , where N is the number of vanishing moment.

• For N > α/2, d j,k is stationary and does not show any more a long memory but
a short memory.

• For j �= j′ and k �= k′, when
∣
∣
∣2 jk−2 j′k′

∣
∣
∣ → ∞, then Ed j,kd j′,k′ ≈

∣
∣
∣2 jk−2 j′k′

∣
∣
∣
α−1−2N

.



Chapter 4
Statistical and Topological Invariants
and Ergodicity

4.1 The Measurement of a Deterministic Chaos Is Invariant
in Time

4.1.1 Ergodic Theory and Invariant Measurement Associated
with a Dynamics

At the end of the nineteenth century, first, the works of Poincaré and Boltzmann
(1885) came first, followed by those of G.D. Birkhoff and J. Von Neumann in 1931.
“The Ergodic hypothesis” is equivalent supposing that the “major part” of the tra-
jectories of a dynamical system is “equally distributed” (on surfaces of constant
energy of the phase space) and makes it possible asymptotically to “replace the tem-
poral averages by the spatial averages”.1In 1931, the Birkhoff theorem established
a rigorous general framework from which the Ergodic theory has been developed
with the purpose to study the asymptotic behavior of a dynamical system by means
of its invariant measurements (iteration of a transformation, one-parameter flow).
The ergodic theory applies to the deterministic case, i.e. dynamical systems defined
by differential equations and coupled with the martingale theory, or applied to the
probabilistic case of stochastic processes, in particular of the Markovian type.

A way of approaching the study of the statistical properties of chaotic pro-
cesses results from the works of Birkhoff and Von Neumann about “the absolutely
continuous invariant distributions” which have a positive Lebesgue measure. The
dynamics of aperiodic nature have sometimes distributions of this type, which indi-
cate the frequency with which they take values inside a given interval. The most
studied invariant distributions are those which can be represented by a function of
density. Today, there are techniques which make it possible to build such func-
tions for chaotic processes. In certain cases, it is possible to associate invariant

1 Ergodic theory: The study of measure-preserving transformations.

T. Vialar, Complex and Chaotic Nonlinear Dynamics,
c© Springer-Verlag Berlin Heidelberg 2009
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measurements with a dynamical system, by using the Frobénius–Perron opera-
tor, if these measurements are absolutely continuous with respect to the Lebesgue
measure. First, let us recall the concepts of invariant measurement and Ergodicity.2

Definition 4.1 (Random experiment). A random experiment is represented by a
triplet (Ω, a,P) where the following conditions are satisfied:

(1) Ω is the set of possible results of the experiment.
(2) a is a σ -algebra, i.e. a set of parts of Ω (called events), containing the parts φ

and Ω, stable by complementation and by denumerable union.
(3) P is a set function,3 i.e. a map from a to R

+, which satisfies P(Ω) = 1 and the
condition of σ -additivity: if (An) is a sequence of disjoint events and if ∑n An
indicates their union: P(∑n An) = ∑n P(An), the map P is a probability.

Definition 4.2 (Measure). A given couple (Ω, a) can be provided with a mea-
sure, if this couple satisfies the first and the second conditions above of a random
experiment. Such a measurement μ is defined as a set function, map from a to R

+,
such that μ : a −→ R

+, satisfying the condition of σ -additivity. (A probability is a
measurement of which the total mass is equal to 1: μ(Ω) = 1.)

Thus, a measure associates a non-negative number with a set and this measure has
the additivity and complementarity properties. One can also rewrite the definition of
a measure: Consider a given couple (Ω, a), where Ω is the set of possible results,
and a is the σ -algebra. If (An) is a sequence of disjoint events, a measure μ is a map
with an image in R

+, such that:

μ(φ) = 0, (4.1)
∀Ai ∈ a,Ai ∩

i�= j
A j, μ(∪

i
Ai) =∑

i
μ(Ai). (4.2)

Given a dynamical system ϕ(Xt) = Xt+1, where ϕ is a continuous function, then the
probability space is reintroduced (Ω, a,μ), Ω is the set of possible results, where a
is the σ -algebra and μ is a probability measure. The measure μ is called invariant
if we have:

μ [ϕ−1(δ )] = μ(δ ), ∀δ ∈ a. (4.3)

Example. Empirical distribution for three standard series: (1) French stock index
daily growth rate (Cac40), (2) a white noise, (3) the logistic equation for α = 3.99.

2 Lebesgue Measure: The measures on R which take finite values on any bound interval are
characterized by the set of the values μ(]a,b]), a < b, a,b ∈ R. One can also show that there
exists a measure noted λ (corresponding to the intuitive representation of the length), such that
λ (]a,b]) = b−a, this is the Lebesgue measure on R.
3 Set function: A relation that assigns a value to each member of a collection of sets.
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Above, we will distinguish at the center the Gaussian distribution from the white
noise, below the “U”-shape of the distribution of the logistic equation in the chaotic
field. We also point out the Poincaré sections of each trajectory of these three time
series.

4.1.2 The Measure of Probability of a Deterministic Chaotic
System Is Invariant in Time

If we study the behavior over time of a deterministic chaotic dynamical system,
we note that there is an invariant probability measure on an given time interval.
An interesting approach of the measurement concept is to note that the measure
characterizing a dynamical system describes with which frequency all the parts of an
attractor are visited. One of the fundamental properties of a dynamical system is the
spatial distribution of points of the (possible) attractor (Urbach 2000). The spatial
distribution is a kind of geometrical relation between the points of the attractor,
such as can be the density of points in a small neighborhood of the attractor. We
can express this concept of density of points as a probability measure. With this
intention, first, we define the indicator function:

1B(s) =
{

1 if s ∈ B,
0 otherwise. (4.4)
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Let us suppose that a dynamical system has an attractor Q⊂M and that s(0) is the
set of points in the basin of attraction of the attractor, with as trajectory

s(t) = ϕt [s(0)], (4.5)

then for any open set B⊂ Q, we define μ a natural measure of B by:

μ(B) = Lim
T→∞

1
T

∫ T

0
1B[s(t)]dt. (4.6)

If μ exists, then for any continuous function φ : M −→ R, the quantity:

E(φ) =
∫

M
φ(x)μ(dx) (4.7)

is the expectation or the spatial average of φ and

φ̄ = Lim
T→∞

1
T

∫ T

0
φ [s(t)]dt (4.8)

is called the temporal average of φ , which respects the dynamics on the basin
of attraction. The conditions necessary for the existence of both preceding limits
μ(B) = limT→∞ 1/T

∫ T
0 1B[s(t)]dt and φ̄ = limT→∞ 1/T

∫ T
0 φ [s(t)]dt, are the subject

of the ergodic theory. This theory says that if a natural measure exists and if this
measure is ergodic, then the average in space is equal to the average over time and
inversely. (The limit φ̄ = limT→∞ 1/T

∫ T
0 φ [s(t)]dt provides an invariant measure of

probability μ(φ). It is often also said that the average value of φ is independent of
time.)

Chaotic systems are considered ergodic, but the respect of the conditions of the
ergodic theorem is sometimes difficult to satisfy in practice. Fortunately, the major-
ity of physical systems has stable averages over time which suggests the existence of
natural ergodic measurements. The temporal average can be written as a probability
measure for a neighborhood Bε [x] of x:

Pε(x) =
1
T

∫ T

0
1Bε [x][s(t)]dt, (4.9)

this supposes its ergodicity and leads to the equality of the temporal and spatial aver-
ages. The probability measure Pε(x) is fundamental for the invariants of dynamical
systems, and in particular as regards concepts so important that are the correlation
dimension, the Lyapunov exponent and the entropy. A discrete form of this probabil-
ity can be written: Pε(x) = 1/N ·∑N

k=1Θ(ε−‖s(k)− x‖), where Θ is the Heaviside
function defined by:

Θ(h) =
{

1 if h > 0,
0 otherwise. (4.10)
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To write that a set A is invariant with respect to a dynamics ϕ(·) is equivalent to
writing that:

ϕ(A) = A. (4.11)

Intuitively, it is written that a set A is invariant if the trajectories that start from A
do not leave A. And write that the natural probability measure μ is ergodic, comes
down to write that A is invariant, so:

μ(A) = 0 or μ(A) = 1. (4.12)

A chaotic attractor is an invariant set, and the ergodicity implies that the trajec-
tories of a system are almost always recurrent in the attractor. It follows that for
the natural probability measure μ almost all the trajectories will cut a dense curve
through the attractor and “the quantity of time that these trajectories use to traverse
all the areas of the attractor is proportional to the size of the area”. The starting
states that would not have a dense orbit on the attractor belong to a set of mea-
surement zero μ(·) = 0 and include unstable orbits and periodic orbits of the saddle
type and also of fixed points. A dynamical system is known as ergodic if its natural
probability measurement is ergodic. A fundamental point will be noted: a chaotic
dynamics implies more than the ergodicity since the periodic movements of a torus
are considered as ergodic and not as chaotic.

4.1.2.1 Frobénius–Perron Operator: Extraction of Functions of Invariant
(Limit) Densities

The Frobénius–Perron operator allows to find the density functions representing the
statistical properties of attractors that result from the iteration of the dynamical
function. To simplify, the presentations of the construction method of the opera-
tor have frequently avoided several stages, consequently, they are not always very
explicit. Thus here we choose a way of presenting the subject that seems more
detailed to us and that we hope to be clearer.4

Given the map ϕ on [0,1] and a set Xo
1 , Xo

2 , . . . ,Xo
N of N initial states. The map ϕ

transforms these N initial states into N new states:

X1
1 = ϕ(Xo

1 ),X1
2 = ϕ(Xo

2 ), . . . ,X1
N = ϕ(Xo

N). (4.13)

Given the indicator5 function 1E(X) which is defined on E , and the density of the
initial states is fo(X). Consequently, ∀Eo ⊂ [0,1],

∫

E0

fo(u)� 1
N ∑

N
j=1 1Eo(Xo

j ), (4.14)

4 Ref. to Guegan (2003, p. 118): Perron–Frobénius operator.
5 Which is also written 1E the indicator function of the set E : 1E =

{
1 if X1 ∈ E
0 otherwise .
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The integration domain of f0 is Eo. Moreover, the density of new states is f1(X).
We write: ∀Eo ⊂ [0,1],

∫

E0

f1(u)� 1
N ∑

N
j=1 1Eo(X1

j ). (4.15)

The integration domain of f1 is Eo. The objective of the approach is to study the
density of initial states and the density of new states. The density of the initial
states Eo is denoted fo(X) and the density of new states E is denoted f1(X). The
map ϕ transforms Xo ∈ Eo into X1 ∈ E , i.e. more generally, initial states E0 by
ϕ are transformed into new states E: ϕ(E0) = E . However, remember that we
are interested in the invariance6 of dynamical system flow solutions and in the
invariance of densities for various states of the flow. We are thus led to study the
functional relation that links the densities of the initial states and the densities
of new states. That leads to study the reciprocal image by ϕ−1 of an interval E
included in [0,1], i.e. ϕ−1(E) = {x,ϕ(x) ∈ E}. We have X1

j ∈ E if Xo
j ∈ ϕ−1(E)

and 1E(ϕ(x)) = 1ϕ−1(E)(x), then we have:

∫

E
f1(u)du� 1

N ∑
N
j=1 1ϕ−1(E)(X

o
j ). (4.16)

By definition, we knew that ϕ(E0) = E, then, we are going to impose a constraint
on ϕ , E and Eo, by writing that:

Eo = ϕ−1(E), (4.17)

We intuitively understand its significance, it is equivalent to supposing a kind of
bijective form for the map ϕ or a bijective morphism, of which the reciprocal map
ϕ−1 is also a morphism; i.e. a kind of isomorphism. Provided with this constraint,
we can write that:

∫

E
f1(u)du =

∫

ϕ−1(E)
fo(u)du. (4.18)

The integration domain of f1 is E and the integration domain of f0 is ϕ−1(E). If
E = [a,x], we have:

∫ x

a
f1(u)du =

∫

ϕ−1([a,x])
fo(u)du. (4.19)

This equation is fundamental. The left part expresses a measurement of the den-
sity of the dynamics, for the new states, on the domain of integration E = [a,x] ⊂
[0,1]. The right part expresses a measurement of the density of the dynamics,

6 Definition (An invariant set). For a flow φt defined on U ⊂ R
n, a subset S ⊂U is said invariant

if φt(S) ⊂ S, ∀t ∈ R. [In our case: For a flow ϕt defined on [0,1] ⊂ Rn, a subset E ⊂ [0,1] is said
invariant if ϕt(E) ⊂ E, ∀t ∈ R].
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for the initial states, on an integration domain corresponding to the image by
ϕ−1 of E = [a,x] : ϕ−1([a,x]). This equality shows clearly what we are looking
for, i.e. an invariant measurement of the density between the initial states and
the new states. This measurement is an invariant measurement associated with
the dynamical system. We can also write the equation above in the following
way:

f1(x) =
d
dx

∫

ϕ−1([a,x])
fo(u)du (4.20)

or in a simplified form:
f1 = P fo, (4.21)

with:
P f (x) =

d
dx

∫

ϕ−1([a,x])
f (u)du. (4.22)

P is the Frobénius–Perron operator.

Invariant Density of the Logistic Equation xt+1 = αxt(1− xt) with α Close to 4

When a dynamical system admits a density f (with respect to the Lebesgue measure)
and an associated measurement μ , the Frobénius Perron operator can be used to
determine the aforementioned measurement μ .

The responses of the logistic equation are distributed on an interval [0,1]. When
we measure the empirical distribution of the values taken by the variable, we choose
a window (or a “subinterval”) [ i−1

n , i
n ] with i = 1, . . . ,n. And inside this interval,

we count the values that the system takes and which belong to the interval. This
enumeration on the interval [ i−1

n , i
n ] is noted fi. The enumeration gives a “sum-

marized situation” of the “sub-density” inside the interval. The number of values
taken by the system inside the interval is noted j. The totality of j is equal to
the total number of values taken by the system, i.e. N. The total number of val-
ues N is necessarily higher than the total number of intervals noted n, that means:
∑ j > ∑ i, (N > n). For i = 1 the interval is equal to [0, 1

n ], for i = 2 the interval
is equal to [ 1

n , 2
n ], for i = 3 the interval is equal to [ 2

n , 3
n ] (where n is the maxi-

mum number for i), etc. It is a histogram of responses of the dynamical system,
ϕ(x) : xt+1 = αxt(1− xt). (For this system with α = 4 we know that the output
on [0,1] theoretically behaves as a random sequence distributed according to the
arc-sine law having as density (1/π)

√
x(1− x), this is the subject of the follow-

ing paragraphs). The shape of our empirical distribution, or histogram, is specific.
We are not faced with the shape of the normal law. The enumeration is highest
near the values 1 and 0, the famous “U” shape of the histogram expresses this
observation.
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From this empirical distribution, it is possible to build the density of the dynami-
cal system, by means of the Frobénius–Perron operator. Remember that the extrac-
tion equation of the operator P is written:

P f (x) =
d
dx

∫

ϕ−1([a,x])
f (u)du and f1 = P f0. (4.23)

We explain the approach that consists in associating an invariant measurement with
a dynamical system by means of the Frobénius–Perron operator in the following
way:

1. Select the initial state of a dynamical system with its density
2. Calculate by iterations, via the Frobénius–Perron operator, the successive densi-

ties until obtaining the limit-density
3. At the end of the iteration process, extract the invariant density associated with

the dynamical system

The limit density which can be noted f l , results from the calculation of the limit:

Limn→∞Pn f = f l , (4.24)

and respects the equation:

P f l = f l . (4.25)

Remember that the measure μ (which is not necessarily single), associated with
the dynamical system, must have a density f with respect to the Lebesgue measure
[0,x] ⊂ [0,1]. Let us observe what occurs with the Frobénius–Perron equation on
the reciprocal image (i.e. inverse) of the interval [0,x] belonging to E , that means
ϕ−1([0,x]).

If we consider the logistic equation ϕ(x) = 4x(1− x) = −4x2 + 4x as a simple
second-degree equation, we can extract the reciprocal function ϕ−1(x). Let us pose
y = 4x(1− x), then: y = 4x− 4x2 ⇔ x± (x− y

4 )
1
2 = 0⇔ x± 1

2 (2x− y)
1
2 = 0. And
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since the general solution of the logistic equation is S( 1
2 ,1), the expression above

becomes: 1
2 ± 1

2 (1− y)
1
2 = 0.7 Thus, the domain of ϕ−1([0,x]) is as follows:

ϕ−1([0,x]) =
[

0,
1
2
− 1

2
(1− y)

1
2

]

∪
[

1
2

+
1
2
(1− y)

1
2 ,1
]

. (4.26)

Consequently, the generic equation:

P f (x) =
d
dx

∫

ϕ−1([a,x])
f (u)du, (4.27)

thus becomes on the interval:

P f (x) =
d
dx

∫ [ 1
2− 1

2 (1−x)
1
2 ]

0
f (u)du +

d
dx

∫ 1

[ 1
2 + 1

2 (1−x)
1
2 ]

f (u)du. (4.28)

Consequently, for our map we obtain:

P f (x) =
1

(4(1− x))
1
2

[

f
(

1
2
− 1

2
(1− x)

1
2

)

+ f
(

1
2

+
1
2
(1− x)

1
2

)]

. (4.29)

The steps 2 and 3 lead to the following limit: Limn→∞Pn f = f l and with P f l = f l

towards the invariant density associated with the system:

f l =
1

π(x(1− x))
1
2
. (4.30)

The function above gives the invariant density associated with the dynamical sys-
tem, also known as the theoretical density. For the dynamical system resulting from
our initial logistic function, the Frobénius–Perron equation is written in a generic
way on our interval:

P f (x) = [1/(4(1− x))
1
2 ]

[

f
(

1
2
− 1

2
(1− x)

1
2

)

+ f
(

1
2

+
1
2
(1− x)

) 1
2
]

. (4.31)

7 If we are interested in the logistic equation as with a simple equation of the second-degree, we
can carry out a general study of the function. Remember that for an equation of the second-degree
ax2 +bx+ c, a �= 0, the equation behaves in the following way for a < 0:

x : −∞ − b
2a +∞

ϕ ′(x) : + 0 −
ϕ(x) : −∞ ↗ 4ac−b2

4a ↘ −∞

x : −∞ 1/2 +∞
ϕ ′(x) : + 0 −
ϕ(x) : −∞ ↗ 1 ↘ −∞

The solution of a second degree equation with a < 0 is S(− b
2a , 4ac−b2

4a ), and for ϕ(x) = 4x(1−x)
the solution is S( 1

2 ,1).
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For an initial elementary density that can be selected equal to:

f (x) = 1[0,1](x) =
{

1 if x⊂ [0,1],
0 otherwise, (4.32)

the Frobénius–Perron equation becomes:

P f (x) =
1

2(1− x)
1
2
. (4.33)

The following iteration:

P(P f (x)) = P2 f (x) =
1

(4(1− x))
1
2

[
1

2(1− 1
2 + 1

2 (1− x)
1
2 )

1
2

(4.34)

+
1

2((1− 1
2 − 1

2(1− x)
1
2 )

1
2 )

]

,

it gives:

P2 f (x) =
2

1
2

8(1− x)
1
2

[
1

(1 +(1− x)
1
2 )

1
2

+
1

(1− (1− x)
1
2 )

1
2 )

]

. (4.35)

And so on until the convergence of the density. In the following first graph
(Fig. 4.1a), before the convergence of the density, we provide a representation
of P f (x) and P(P f (x)) = P2 f (x), which is stopped before the final step of
the convergence to show the process in the course of the convergence of the
iterations:
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Fig. 4.1 (a) First and second iterations. (b) Histogram and second iteration
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Fig. 4.2 Convergence of the invariant density associated with the dynamical system

In the Fig. 4.1b we observe the histogram and second-iteration P(P f (x)) =
P2 f (x) towards the calculation of the limit invariant density associated with the
dynamical system. We observe the incomplete adequacy of P(P f (x)) to the empiri-
cal distribution. Indeed, in Fig. 4.1b the iterated density P(P f (x)) is not completely
adapted to the histogram and the convergence towards the limit density is not com-
pleted. However the convergence is fast, and the continuous iterative process, until
the most adapted (limit) invariant density to the empirical distribution, leads to a
convergence shown in Fig. 4.2.

It is possible to choose a starting density different from f (x) = 1[0,1](x), how-
ever the convergence towards the (limit) invariant density will be completed in a
similar way.



Chapter 5
Spectral and Time–Frequency Analyses
and Signal Processing

5.1 Fourier Theory and Wavelets

5.1.1 Contribution of the Fourier Analysis to Regular
and Stationary Series: An Approach of Linearities

Even if the Fourier analysis dates back before the Fourier’s work and even if the
different Fourier analysis developments have been done after him, Fourier is an icon
whose influence is fundamental still today. In 1822, Fourier1 in his work entitled
“Analytical Theory of Heat”, explained the way in which the linear equations of
partial derivatives could describe the propagation of Heat in a simple form. In brief,
it stated that any periodic function can be expressed as a sum of sinusoids, i.e. sines
and cosine of different frequencies: This is the Fourier series. Then, by extension it
is said that any periodic curve, even if it is discontinuous, can be decomposed into
a sum of smooth curves. Consequently, an irregular or jagged curve and the sum of
sinusoids are representations of the same thing, but one of them has an empirical
nature and the other is the result of an algebraic decomposition. The decomposition
method uses the amplitude of sinusoids by assigning to them coefficients and uses
the phases. It is important to underline that we can reconstruct the function from the
Fourier series (or Fourier transform) without loss of information.

The Fourier transform is an operation that consists in the decomposition of a
function according to its frequencies, i.e. we transform a function that depends
on time into a function that depends on the frequency. This new function, which
depends on frequencies, shows how much sine and cosine of each frequency are
contained in the original function. The new function obtained is called the Fourier
series.2 For stock market fluctuations for example, or signals which vary in the

1 Although the first writings date back to 1807.
2 Fourier series for a periodic function: The Fourier series of a periodic function contain only the
sinusoids of frequencies equal to multiple integers of the fundamental frequency. When function
is not periodic, but when it decreases rather quickly ad infinitum so that the area located under its
graph is finite, it is possible to describe it by a superimposition of sine and cosine; but it is however

T. Vialar, Complex and Chaotic Nonlinear Dynamics,
c© Springer-Verlag Berlin Heidelberg 2009
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course of time, the frequency is generally expressed in cycles per second or in hertz.
A function and its Fourier transform are thus the two faces of the same information.
The first one favors the information about time and masks the information about fre-
quencies, while the second highlights the information about frequencies and hides
the information about time. One of the fundamental stakes of this method is to be
able to consider a curve of empirical origin as a function, even if it is irregular.

The Fourier method was applied in many technical and scientific fields such as
geophysics, astronomy, acoustics, medical research and more generally signal anal-
ysis.3 The analyzed signals are often of irregular nature, and the Fourier analysis
of these signals translates these curves into an analytical form. This analytical form
transforms a chronicle which varies in the course of the time into a function which
is the Fourier transform, and more exactly the Fourier series giving the quantity of
sine and cosine of each frequency contained in the signal.

At this stage, it is important to underline that the different sinusoids composing
a signal, highlighted by the Fourier analysis, can represent the veritable physical
waves which compose the signal. Indeed, they can be for example an acoustic sig-
nal, radio or electromagnetic waves, which are individually identifiable by their
respective frequencies. The Fourier method has demonstrated its capacity to ana-
lyze, decompose and decode the natural phenomena. In Physics the space of Fourier
transforms (i.e. “Fourier space”) makes it possible to study the characteristics of
an elementary particle and more exactly its quantity of motion (i.e. momentum4),
which makes it possible to assimilate a particle to a wave. Whereas “sponta-
neously”, we tend to characterize a particle by its position in spatial and temporal
coordinates. However, one of the main difficulties is that it is not possible to have
simultaneously for the particle its precise position and its precise quantity of motion
(momentum). This principle, called the Heisenberg uncertainty principle, is a con-
sequence of the Fourier analysis. Besides, it is possible to transpose this principle to
any signal analysis, in Finance for example. Indeed, in the Fourier space the results
of the Fourier transform on a time series give information about the frequencies
which compose it (and not about the quantity of motion). But obviously, the fre-
quencies are measured only on a time segment, i.e. a variable duration or period,
which can correspond to all the length of the signal until one of its segments which
cannot be reduced to a point. Thus it is not possible to have at the same time a precise
frequency and the position of this frequency at a point of the studied time series.

This same observation often leads to use the Fourier transform on segments of
the time series.5 Segments that slide along the signal to identify the various frequen-
cies contained in this segment. Then, usually, this segment (i.e. duration) finds its
transposition in the Fourier space in the form of another segment which expresses

necessary to calculate the coefficients at all the possible frequencies; this decomposition is called
then the Fourier series of the original function.
3 Used also in the following scientific fields: Seismology, ground analysis, radio-telescope imaging,
medical imaging.
4 Momentum: In Physics it is a measure of the motion of a body equal to the product of its mass
and velocity. Also called linear momentum. Impetus of a physical object in motion.
5 This method is called the “Windowed Fourier analysis” proposed by Gabor (1945).
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a range of frequencies from the lowest to the highest contained in the considered
duration. These segments, respectively in time and frequency, depict rectangles that
replace the points, because we cannot have a frequency in a point. The technique is
simply called the short term Fourier transform. Obviously the risk incurred in this
case is that (due to the limitation of the duration through the time segment) the long
frequencies are not captured (i.e. depicted) by this type of Fourier decomposition.
The graphic illustration of this type of representation in the time–frequency planes
is often named: Heisenberg boxes (or Heisenberg rectangles).

At an intermediate stage during the calculation of the Fourier transform, the
sinusoids are provided with Fourier coefficients. The transformation of an arbitrary
signal into a sum of sinusoids can create difficulties because we do not know the
number of terms contained in the sum. We could even imagine an infinite number
of terms. The number of coefficients obtained would be then infinite also and the
calculations would become unrealizable. However, more often, a limited number of
coefficients is sufficient, and the more the frequencies increase, the more the coef-
ficients tend towards zero. This observation leads to establish the relation with the
sampling theorem6 in the information theory, which is a consequence of the Fourier
analysis. In substance, if we position in the Fourier space, the theorem is equivalent
to saying that if a signal contains only a limited number of frequencies, it is possible
to reproduce it with a finite number of points. Generally, this allows the calculation
and digitalization.

The Fourier method does not adapt to all the signals or time series, nor to all the
difficulties. Indeed, it is advisable to say that the Fourier analysis is adapted to the
resolution of linear problems, i.e. to phenomena where “the effect is proportional to
the cause”. The writing of a Fourier series is linear, and in front of a problem of non-
linear nature, recently yet, we could treat the difficulty as if it were of a linear nature,
and thus omitting the true problems related to the nonlinearities, i.e. the existence
of transitory or turbulent behavior and also the instability of solutions. Furthermore,
it is a problem with which the economists had to face in the past, in particular due
to the limited capacities of calculation, which led to reduce a phenomenon which is
not linear to a linear model. In the nonlinear system, the most negligible paramet-
ric variations can modify more than proportionally the results. Thus, forecasts and
anticipations become more difficult. As explained before, the Fourier analysis uses
the sines and the cosine which oscillate infinitely, each one with a fixed frequency.
However, the signals which have “changing frequencies are not well adapted to this
context of infinite time”. Thus, the Fourier space, privileging the frequencies and
hiding information about time, can use the same sinusoids to represent very dif-
ferent moments of a time series. That means that any moment of the signal in the
Fourier space is confused with any other moment. Even if information about time is
not lost, because we can rebuild it by an inverse transformation, there are however

6 Theorem (Sampling Theorem). In order for a band-limited (i.e. one with a zero power spectrum
for frequencies η > A) baseband (η > 0) signal to be reconstructed fully, it must be sampled at a
rate η ≥ 2A. A signal sampled at η = 2A is said to be Nyquist sampled, and η = 2A is called the
Nyquist frequency. No information is lost if a signal is sampled at the Nyquist frequency, and no
additional information is gained by sampling faster than this rate.
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indeed a confusion or a dissembling of information about time in the Fourier space.
For example, a completely flat signal except for its extremities where there are very
strong oscillations, will be represented only by the sum of sinusoids oscillating indi-
vidually in an infinite manner, which will have completely to be compensated and
canceled in phase for the flat part of the signal, but however which should be able to
represent the strong variations of the signal localized at the extremities. This type of
difficulty is symptomatic of the maladaptation of the Fourier analysis to the signals
which have abrupt (or sharp) variations. However, these abrupt variations contain
crucial information, which if they are deformed or not well restored, damage the
comprehension of subjacent phenomena.

We can express the problem in a different way, it is possible to say that the con-
straint of the infinite oscillation of each sinusoid at each frequency tends to diffuse
a singularity of the signal among all the frequencies of the transform of the sig-
nal so that this singularity is represented (with more or less fidelity). That means
that each sinusoid will be able to contain partial information on the aforementioned
“singularity”, which will be restored “the least inaccurately” possible only by the
cumulative set of all the sinusoids. A discontinuity for example will be represented
only by the cumulative set of all possible frequencies. However, the short term
Fourier transform, mentioned previously, is a technique which makes it possible
to avoid partially the pitfall of the diffusion of abrupt variations. But the princi-
ple of the signal segmentation in “sliding windows” creates a problem, indeed, this
method cannot depict the long frequencies which exceed the size of the segment or
the window chosen, and thus also penalizes the restitution of the signal.

5.1.2 Contribution of the Wavelet Analysis to Irregular
and Non-Stationary Time Series: An Approach
of Nonlinearities

At this stage, the wavelets are intervened.7 They have the characteristic to decom-
pose a signal, at the same time, into time and frequency, which in the Fourier
analysis was not realizable in a simultaneous way. The origin and the history of
wavelets are difficult to reconstitute, so much the sources are different, however we
positions it in 1930. But it is at the same time in mathematics and physics that the
subject found an elaborated structure.8 The creation of wavelets is attributed to a
geophysicist Jean Morlet, within the framework of petroleum prospecting. The for-
mer techniques (of the 1960s) used the Fourier analysis of echoes to analyze the
soil layers. However, the Fourier analysis tends to diffuse the components of the
different layers, the ones in the others, “mixing up” the decomposition of echoes as
by interference of layers. These phenomena of diffusion and interference have been

7 We will note the fundamental contributions of J. Morlet, A. Grossmann and Y. Meyer in the
analysis and the comprehension of the wavelets.
8 The first description in 1971 by K. Wilson, Nobel Prize of physics. Other very different work
made it possible to build wavelets called the “self-similar functions of Gabor”.
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resolved in 1975 by the (previously mentioned) use of a segmented analysis of the
signal by temporal sliding-windows which are also sometimes overlapped with the
aim of having a finer local definition. Thus, in this technique the window slid along
the signal but always preserved the same length. And inside the window, it is the
frequency or the number of oscillations which changed.

A new step was initiated by Morlet, which consisted in preserving constant the
number of oscillations while varying the size of the (centered) window. In order
to increase the size of the window, as by dilation, by keeping the constant number
of oscillations, has the consequence to decrease the frequency inside the window.
Indeed, the stretching of the window stretches the oscillations. We can say that this is
one of the principles which allows to understand the wavelet technique. The objec-
tive is to locate the high frequencies with small windows and the low frequencies
with large windows. One calls a “mother wavelet” the basic shape which is the sub-
ject of the dilation or compression. One of the characteristics of mother wavelets
is that they are not necessarily composed of a continuous sinusoids at a unique
frequency but can be (now) composed of a combination of various frequencies.

At this stage, it is advisable to distinguish the Gabor functions (sometimes called
“gaborets” or “gaborettes”) also called “Gabor wavelets”, which are an intermediate
stage between the short term Fourier analysis and the wavelets created by Morlet
and presented above which have the name of constant form wavelets.

It is through the operation of convolution the between the signal and the wavelets,
at successive stages of the dilation, that the analysis and decomposition work is car-
ried out. Each dilation level (or stretching) is often called resolution level. A large
window, i.e. a mother wavelet largely stretched (large wavelet), highlights the com-
ponents of long duration, of low frequency; the term used is the low resolution. And
a compressed “mother wavelet” (narrow wavelet) highlights the high frequencies,
i.e. the components of short duration and transients; the term used is the high res-
olution. This technique is called the multiresolution. It was also proved that during
the wavelet transform the energy of the signal remains unchanged. The Energy is
measured by the average of the square of the amplitude. This means that convolu-
tion and the deconvolution, i.e. the return to the initial signal, preserves the energy
of the studied time series.

Unlike the traditional Fourier analysis, which transforms a signal into a function
with one variable, which is the frequency, the wavelet transformation produces a
transformation through two variables; the time and the frequency. Thus, the convo-
lution must use “double integrals”. However, the approximation methods allowed to
avoid the double integration facilitating thus largely the calculations. Furthermore,
it was proved that these approximation methods do not generate miscalculation.9

Like what occurs in the Fourier analysis where the objective of the transformation
is to calculate the coefficients assigned to each sinusoid, the wavelet analysis pro-
duces also coefficients. These coefficients can be used besides through different
manners, such as filters for example. A coefficient corresponds to the calculation of
the integral of the product of the signal with a wavelet at a given resolution level. As

9 Proof: see J. Morlet et A. Grossmann.
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explained above, in order to facilitate the calculations, approximation methods are
preferred in order to avoid the double integration. The set of coefficients obtained
at each resolution level synthesizes the set of information of the studied signal. By
convention, each resolution level is twice finer than the previous (and usually five
or six different resolution levels are used). When we say that the resolution level
is twice finer, that means that the doubling of the resolution reveals the elements
of the signal which have frequencies twice higher. On the other hand, it is possi-
ble to decompose the time series in intermediate levels of resolution. The term of
“resolution” can also be understood as the number of wavelets used to decompose
a signal, indeed the more the resolution increases, the more the wavelet number
increases.

In the literature about the wavelets, the term “resolution” corresponds to the terms
of “scale” and “octave”. The term “scale” corresponds to the “correlation” between
the size of the wavelet and the size of the elements of the signal that we can identify
and highlight.

At this stage, it is essential to redefine that a wavelet does not have necessarily
a precise frequency unlike a sine or a cosine. Indeed, the phenomenon of dilatation
or compression of the mother wavelet, related to the size of the window which is
used, modifies its frequency. A second element essential for the comprehension of
the structure of a wavelet is that the integral of a wavelet is equal to zero (zero inte-
gral). This means that during the convolution between the signal and the wavelet,
for example, if the signal is perfectly stationary, the coefficient emanating from the
calculation will be also equal to zero. The direct consequence of this observation is
that the wavelets highlight the changes in a signal. However, it is logical to think
that the changes in a signal contain important information interesting to analyze.
Obviously, the stationary elements are also interesting, but they are generally appre-
hended by former techniques belonging to approaches of linear nature: i.e. linear
systems or Fourier analysis.

Thus, in the decomposition of a signal, we will be able to understand the need for
using the “hybrid” methods (or “mixed methods”) which utilize at the same time the
properties of the wavelet analysis and those of the Fourier analysis: The first one to
highlight the non-stationarities which are potentially related to nonlinearities, and
the second one to highlight the stationarities which are potentially related to the
linearities.

5.1.3 A Statistical Theory of the Time–Frequency Analysis
Remains to Be Developed

The methods of Fourier transforms and the wavelets transforms are merged within
the scope of the time–frequency analysis (or time-scale analysis). This analysis
framework is largely widespread in many technical fields. Today, we have thus new
tools which are particularly interesting for signal analysis specialists. These meth-
ods have a common purpose: Capture the best part of a signal, which by direct
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reading offers a weak readability. The extraction of its characteristics and intrinsic
structures is not necessarily solved and treated in an exhaustive way by the sta-
tistical work that we can apply to a signal. The transformation of a sound, or a
sonorous echo (or others), medical images for example, exceed the framework of
the current statistical analysis. Indeed the statistical analysis does not bring all the
answers to the full knowledge of a signal. Thus, there is still a qualitative work to
do to assemble the time–frequency analysis and the statistical analysis. This con-
cerns moreover deterministic signals or random signals. Indeed, the signal analysis
specialists also work on random or “noized” times series containing sometimes pos-
sible non-stationary components. And these subjects can also touch the community
of statisticians, which generally neglects the spectral analysis of time series. The use
of wavelet bases is increasingly widely used, and many applications, in engineering
in particular, tried to utilize the continuous Gabor transforms or the wavelet trans-
forms for statistical purposes. For example to detect, to denoise or to reconstruct a
signal, and even more important, to carry out the spectral analysis on non-stationary
signals.

The statisticians did not yet really share the benefit of this type of work. The tra-
ditional spectral analysis of random or deterministic stationary processes constituted
the core of the time–frequency analysis. Today, a very particular attention is focused
on the sampling of stationary continuous signals, but also non-stationary, within the
framework of time–frequency representations. The main question is to apprehend
the importance of time–frequency representations resulting from the Gabor trans-
formations and from the wavelet transforms. Indeed, their potential is large, but
still requires an academic validation of the statisticians’ community. A remarkable
attempt to bring closer both fields has been presented by R. Carmona, W.L. Hwang
and B. Torrésani (1998). This work tries to establish the relation between the con-
tribution of this type of analysis and their statistical interest. Moreover, the authors
believe in the capacity of these methods to provide a toolbox with various advan-
tages and talents for the spectral analysis of non-stationary signals. Unfortunately,
the corresponding statistical theory is not completely developed yet. The authors
revisit the traditional elements of spectral theory of the stationary random processes
in the light of the new tools of the time–frequency analysis.

To revisit the traditional elements of the spectral theory implies the evolution of
the Wiener’s deterministic spectral theory towards a deterministic spectral theory of
the time series in general, by highlighting for example the duality and the relation
between correlogram and periodogram (power spectrum).10 This also implies the
necessity to develop methods of non-parametric spectral estimation that aim for
example to carry out the analysis of non-stationary processes which can be locally
stationary, or the analysis of stationary random processes.

10 See section entitled “Wiener theory and time–frequency analysis” which presents some elements
of R. Carmona, W. Hwang and B. Torrésani works.
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5.2 A Brief Typology of Information Transformations in Signal
Analysis

5.2.1 Fourier, Wavelet and Hybrid Analyses

There exist different types of transformation which are either the expression of tech-
nological developments or an adaptation to the needs of different application fields.
We can list the various methods:11

1. The Fourier transform. The analyzing functions are sines and cosines, which
oscillate indefinitely. This method is suitable for stationary signals corresponding
to constant (or predictable) laws.

2. The windowed Fourier transform, i.e. Fourier transform with sliding windows
(but of fixed size), also called short term Fourier transform or Gabor transform.
The analyzing function is a wave limited in time, multiplied by trigonometric
oscillations. That is suitable for quasi-stationary signals, i.e. stationary at the
scale of the window.

3. The wavelet transform (with variable window). The analyzing functions is a wave
limited in time, with a fixed number of oscillations.

4. The adaptative windowed Fourier transform, i.e. Fourier transform with adap-
tive windows, with an analyzing function of particular forms, also called Malvar
wavelets.

5. The wavelet packets transform. This method corresponds to a wavelet multiplied
by trigonometrical functions. The frequency, position and scale are indepen-
dent parameters. That is suitable for signals that combine non-stationary and
stationary elements (e.g. fingerprint analysis).

6. The Transformation by means of the Matching Pursuit algorithm.The analyzing
function is a gaussian of variable window size, multiplied by trigonometric func-
tions. The frequency, position of the window and size of the window can change
independently. That is suitable for highly non-stationary signals composed of
very different elements.

These types of transformation come in a great number of variants.

5.3 The Fourier Transform

5.3.1 Fourier Series and Fourier Transform

An arbitrary periodic function, even if it is discontinuous, can be represented by a
sum of sinusoids of different frequencies, each one is provided with a coefficient.
The set of these coefficients makes it possible to reconstitute the function or the

11 Refer to Hubbard (1998) for an interesting report of the information transformations methods.
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studied initial series. This is the principle of the Fourier series. The Fourier series
allow to transform a time series or a function into a series of independent (differ-
ential) equations. Each one of these equations shows the chronological evolution of
the coefficients of one of the sinusoids which will compose the initial series. Thus,
any periodic curve can be decomposed into a sum of smooth curves, because they
result from sinusoidal functions. Fourier series can be written for example (without
cosine):

f (x) = c1 · sinϕ1(x)+ c2 · sinϕ2(x)+ c3 · sinϕ3(x)+ · · · (5.1)

or also f (x) = sinx + 1
a sina · x + 1

b sinb · x + · · · . The Fourier coefficients of this
series are (1,1/a,1/b, . . .). We can illustrate this remark by means of a numer-
ical and graphic example, i.e.: f (x) = (−0.4sin(5x)) + (0.3sin(3x)) + (sin(x)) +
(sin(x/2)). We observe that this series is written as the sum of sinusoidal functions.
The series and the functions are represented in the graph below:

Fourier series

−0.4 sin(5t)

0.3 sin(3t)

sin(t)

sin(t/2)

SUM

The measurement of Fourier coefficients at a given frequency, is done using the
calculation of the integral of the function or series:

The continuous Fourier transform is written:

f̂ (ω) =
∫ +∞

−∞
f (t)e−iωt dt (5.2)

or, eiωt are sinusoids.12 And the discrete Fourier transform f̂ [k] is written:

f̂ [k] =
N−1

∑
n=0

f [n]exp
(−i2πkn

N

)

for 0 � k � N. (5.3)

The traditional Fourier transform compares all the signal with infinite sinusoids of
various frequencies. On the other hand, the Fourier transform with “sliding window”
compares a segment of the signal with segments of sinusoids of different frequen-
cies. We can also speak of local frequencies. when a segment of the signal was

12 When we are in the discrete mode, the notation [.] is used to symbolize the sequences.
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analyzed, we can slide the window along the signal, and analyze the following part.
Gabor introduced the Fourier atoms with window, which had vocation to measure
the variations of frequencies:

gu,ξ (t) = eiξ t g(t−u). (5.4)

The corresponding continuous transform with window13 of f is written:

S f̂ (ω) =
〈

f ,gu,ξ
〉

=
∫ +∞

−∞
f (t)g(t−u)e−iξ tdt. (5.5)

The discrete transform with window14 is written:

S f [m, l] =
〈

f ,gm,l
〉

=
N−1

∑
n=0

f [n]g[n−m]exp
(−i2πkn

N

)

. (5.6)

5.3.2 Interpretation of Fourier Coefficients

5.3.2.1 Frequencies

For the functions, or signals which vary with time (as it is the case with the stock
exchange fluctuations), the frequency is usually expressed in Hertz, or in cycles per
second. Below two sinusoids of different frequencies:

1. The frequency sin(2πt) corresponds to 1 cycle per second (1 Hz) (Fig. 5.1a).
2. The frequency sin(2π2t) corresponds to 2 cycles per second (2 Hz) (Fig. 5.1b).
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Fig. 5.1 (a) sin(2πt). (b) sin(2π2t)

13 Also called “windowed continuous Fourier transform”.
14 Also called “windowed discrete Fourier transform”.
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We transform also functions which vary with space. The transform of a finger-
print would present maxima in the neighborhood of the “spatial frequency” equal to
15 striae per centimeter. The temporal frequency is the inverse of time. The spatial
frequency also called number of waves, is the inverse of the length. A function and
its Fourier transform are two aspects of the same information. The Fourier transform
however reveals information on frequencies and hides information on the temporal
evolution.

5.3.2.2 Series and Coefficients of Fourier

Series

Any periodic function can be written in Fourier series. If the period is 1 (i.e. if
f (t) = f (t + 1)), this series takes the form:

f (t) =
1
2

a0 +(a1 cos2πt + b1 sin2πt)+ (a2 cos2π2t + b2 sin2π2t)+ · · · . (5.7)

Coefficients

The coefficient ak measures the “quantity” of cosine function cos2πkt of frequency
k contained in the signal; the coefficient bk measures the “quantity” of sine function
sin2πkt of frequency k contained in the signal. The Fourier series includes only
sinusoids of frequencies equal to multiple integers of the fundamental frequency
(this fundamental frequency is the inverse of the period). We can write the formula
above in a more usual way:

f (t) =
1
2

a0 +
∞

∑
k=1

(ak cos2πkt + bk sin2πkt), (5.8)

where k represents the frequency. The formula above makes it possible to recon-
struct a function using its Fourier coefficients: we multiply each sinusoid by its
coefficient (we modify its amplitude) and we add, point by point, the functions thus
obtained; the first term is divided by 2. By convention, usually ξ corresponds to
x for the transform of a signal which varies with space. All 2π make heavier the
formulas but are inevitable to express the periodicity: The function (sin 2πt) is of
period 1, while sin(t) is of period 2π (Fig. 5.2).
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Fig. 5.2 (a) sin(2πt). (b) sin(t), between 0 and 2π

We obtain Fourier coefficients of a function f (t) of period 1 using the integrals:

ak = 2
∫ 1

0
f (t)cos2πktdt and bk = 2

∫ 1

0
f (t)sin 2πktdt (5.9)

that means that we calculate the product of the function f by the sine or cosine of
frequency k, we integrate it, and we multiply the result by 2. Integrate a function
comes down to measure the area located under a portion of its curve.

5.4 The Gabor Transform: A Stage Between the Short Term
Fourier Transform and the Wavelet Transform

5.4.1 The Gabor Function

In the windowed Fourier analysis the size of the window remains fixed. It is the
number of oscillations inside the window which varies, at the same time making
vary the frequency. In the short term Fourier analysis the window is not fixed, but it
moves along the signal to decompose it by successive segments. This technique has
inspired the conception of a new technique. It is the Gabor transform, which is the
first step towards the wavelet analysis. It is an intermediate stage between the short
term Fourier analysis and the wavelet analysis.

The method uses a Gabor function (also known as gaboret or also Gabor atom).15

The length of the window of the Gabor function remains constant, unlike what
occurs with a wavelet. For a wavelet the stretching of the window modifies its length
and in certain cases its amplitude also. In fact the length and amplitude of a Gabor
function do not change. The only element which changes is the frequency inside the
interval of the Gabor function. This principle induces a type of signal analysis by

15 The Gabor function is also called the “gaboret” or “gaborette”.
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Fig. 5.3 Two Gabor functions: g(0,2π)(x) and g(6,4π)(x)

segment. The Gabor function moves along the signal, it combines with the signal
and produces its coefficients which are as many sampled decompositions of the sig-
nal by frequency. The displacement of the Gabor function along the signal is done
by means of the window and centering parameter b. Thus, b indicates the position
in time of the Gabor function and of the window

g(b,ω)(x) = g(x−b)eiω(x−b). (5.10)

Using an example of window such as:

g(x−b) = exp−(t−b)2
. (5.11)

We can illustrate the subject with a quantified example and Fig. 5.3.

g(0,2π)(x) = g(x)ei2πx = e−t2
e i2πx (5.12)

g(6,4π)(x) = g(x−6)ei4π(x−6) = e−(t−6)2
ei4π (x−6). (5.13)

5.4.2 The Gabor Transform with a Sliding Window: The “Gabor
Wavelet”

The principle of the Gabor function such as it is quickly described above, shows
that its use for the analysis of a signal will be done by sliding the Gabor function
(Gaboret or gaborette) along the signal and each segment of the aforesaid signal
will be analyzed by a “range (or scale)” of Gabor functions of different internal
frequencies, but of identical amplitude and length. The Gabor transform illustrates
one of the types of windowed transform. The Gabor transform of an unspecified
function f (x) is written: ∫

f (x)g(x−b)e−iωxdx (5.14)
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or can be written in a more practical form:

G f (b,ω) =
∫

f (x)g(x−b)∗e−iω(x−b)dx =
〈

f ,g(b,ω)
〉

(5.15)

with a Gabor wavelet g(b,ω):

g(b,ω) = g(x−b)eiω(x−b). (5.16)

The reconstruction of the function or initial series is carried out by the inversion of
the Gabor transform.

5.5 The Wavelet Transform

5.5.1 A Wavelet ψ Is a Function of Zero Average,
i.e. Zero-Integral:

∫ +∞
−∞ ψ(t)dt = 0

The above condition is a characteristic of wavelets and of all the functions which are
potentially used as such. Although we can find some exceptions (e.g. Gauss pseudo-
wavelet that is not considered as a true wavelet), the fact that the integral of a wavelet
is equal to zero allows during the operation of convolution between the signal and
the wavelet to identify the signal components which are of a non-stationary nature.
In this case the wavelet coefficient resulting from the convolution will be different
from zero (Fig. 5.4).

5.5.1.1 Conditions for Obtaining a Good Wavelet

It is said commonly that any function with zero-integral can be regarded as a
wavelet. However additional conditions make it possible to obtain good wavelets.
Firstly, it is said that they must be “regular”, i.e. to have a support limited in

Fig. 5.4 Zero integral, zero
area
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frequency. It is necessary also that they have a support limited in time. Secondly,
beyond the basic condition stated above:

∫ +∞
−∞ ψ(t)dt = 0, we add the following

constraints relative to the moments:
∫ +∞

−∞
tψ(t)dt = 0 and

∫ +∞

−∞
tnψ(t)dt = 0. (5.17)

Note that all the wavelets do not satisfy necessarily these conditions.

5.5.2 Wavelets and Variable-Window

The principle inherent to the wavelets is the variable window which is applied to the
mother wavelet. The size of a variable-window is dilated or compressed. Thus, only
the frequency and sometimes the amplitude of oscillations contained in the window
vary. This technique is truly at the root of the construction of a wavelet transform.

5.5.3 The Wavelet Transform

5.5.3.1 Scale of Frequencies and Level of Resolution: Illustrations

The principle of the wavelet transform is different from the transformation by the
Gabor function (also called “Gabor atom”). Indeed, contrary to the principle of the
construction of the Gabor function, which varies its frequency inside the same seg-
ment which moves on the signal, the wavelet, in this case, has a variable amplitude,
or more exactly it can be “dilated” (i.e. extended) or “contracted” (i.e. compressed).
The purpose is to analyze the signal by a range of wavelets more adapted to the
shape of the signal. Thus, by using a type of basic wavelet (of which there is an
infinity) adapted to specificities of the signal, we can obtain a certain number of
sub-wavelets which are only the variation through the amplitude, height and length
of the initial wavelet. Thus, we contract or we dilate the wavelet to change the size of
the “window” and therefore the size of the “scale” to which we observe the signal;
the “frequency” of the wavelet changes at the same time as the size of the window.
The scale is the level of resolution of the observation. Indeed, with large wavelets the
examination of the signal is carried out at a coarse resolution (with a small number
of coefficients). That is why the wavelets have sometimes been called the “mathe-
matical microscope”. The compression of the wavelet increases the enlargement (i.e.
magnification) and the resolution which highlights the increasingly precise details
of the signal. The level of resolution is also called the “number of octaves” (usually
six or five). As we will see again in next sections, it is possible to analyze a sig-
nal with intermediate resolutions by the octaves which offer partially “redundant”
information. Scale, resolution or octave express the same reality. The transformation
gives a “number of samples” of the signal. The compute of each transform at a given
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scale provides a “sample” (or observation) of the signal. The method can be applied
to the entire signal (or possibly to segments of it by using sliding-windows). Here
are two examples of wavelet transform.

Example 5.1. (Discrete wavelet transform). For an arbitrary signal, see Fig. 5.5.
Figure 5.5 shows a discrete wavelet transform on five scales (with cubic spline

wavelet). Note that the transforms, somehow, stationarize the signal (see supra).

Example 5.2. (Continuous wavelet transform). For French stock index, see Fig. 5.6.
Figure 5.6 shows a continuous wavelet transform using a Gauss pseudo-wavelet

which is a very particular case where the signal is not stationarized. The finest res-
olution of the wavelet transform at the octave 5 is in the higher part of the figure, it
provides the most details. We observe the transform at given scale.
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Fig. 5.5 Discrete (dyadic) wavelet transform of an arbitrary signal

Fig. 5.6 Continuous wavelet transforms of a stock index by Gauss pseudo-wavelet
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The term scale indicates the correlation between the size of the wavelet and the
size of the components that one can see. Note that the scales are usually sampled
in geometric progression. The term octave indicates that the doubling of the reso-
lution causes to raise the frequency of wavelets in order to observe the components
of double frequencies. The effective work of the window of the wave consists in
extracting the “transitory” components of the signal at the high frequencies with
a narrow window and the long duration components at the low frequencies with a
large window. Thus, the size of the window is variable. Thus, the variable elements
(after the window) are the scale and the frequency. We’ll give later two examples of
this variation from a Morlet basic wavelet (i.e. Morlet mother wavelet). If we write:

Mother wavelet: ψ(x), (5.18)

Wavelet family: ψ(a,b)(x) = 1
aψ
( x−b

a

)
, (5.19)

obviously, we do not calculate a wavelet transform of a finite length signal for each
possible value of the two parameters a and b, we restrict to finite sets and regular
scales. The length of the signal divided by the length of the wavelet support noted Iψ
provides the maximum of the scale parameter “a”, that we note here Amax. The floor
of the scale parameter is provided by dividing the central frequency of the wavelet
by the sampling rate of the signal (Torresani 1995). The extraction of the transform
at each value of the scale provides a “sample” of the signal. The size of the wavelet
is variable. It is possible to create by using for example a Morlet “mother wavelet”
written as follows:

ψ(x) = e−x2/2eiωx, with ω = 5.5 (5.20)

a wavelet family by means of the variation of the parameter couple (b,a). Due to the
fact that the lateral displacements of the wavelet according to the variation of b are
simple to imagine, we keep the parameter of “centering” b equal to zero. However,
it is interesting to observe the form of the wavelet, if we vary the scale parameter a
and for example between values 1/5 and 1.

5.5.3.2 Variation of the Dilation Parameter

Thus, the wavelet family for a = (1/5) . . .1, is written:

ψ(a,0)(x) =
1
a
ψ
( x

a

)
(5.21)

and we can write for better represent them, by way of illustration, two sub-wavelets
extracted from the family expressed above.

• For a = 1/3, the sub-wavelet, also called “daughter wavelet”, is written:

ψ((1/3),0)(x) = 1
(1/3)ψ

( x
1/3

)
= 3× e−(3x)2/2ei (5.5)3x. (5.22)
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• For a = 0.83 the wavelet is written:

ψ((0.83),0)(x) = 1
0.83ψ
( x

0.83

)
= 1

0.83 × e(−x/0.83)2/2e i (5.5) (x/0.83). (5.23)
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Generally, in this type of construction, when the scale parameter increases, the
length of the “central frequency” of the wavelet tends to increase and, on the other
hand, the height tends to decrease.

5.5.3.3 Concomitant Variation of the Parameters (b,a)

This provides a complete range, or a family of wavelets, which is written (as
described previously): ψ(b,a)(x) = e−(((x−b)/a)2/2)e iωx/a. We can represent two
wavelets of this family, for example ψ(0,1) and ψ(6,2).

In Fig. 5.7, we observe the lateral displacement, the change of amplitude, but
also the shrinking of the segment inside of which the central frequency is observ-
able. Another important aspect of the use of sliding windows is related to the good
adequacy of the size of the window to the size of the studied object. (Recall: a is the
dilation parameter or scale and b is the position.)
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Fig. 5.7
[
ψ(0,1)(x);ψ(6,2)(x)

]
: two Morlet wavelets ψ(b,a)(x), with ω = 5.5

5.5.3.4 Transform and Inverse Transform

The wavelet transform can be written:

Tf (b,a) =
〈

f ,ψ(b,a)
〉

=
∫ +∞

−∞
f (x)

1√
a
ψ∗
(

x−b
a

)

dx. (5.24)

Like for the inverse Fourier transform, we can write the inverse wavelet transform.16

The inverse transform is written:

f (x) = cψ
∫ +∞

−∞

∫ +∞

0
Tf (b,a)

ψ(b,a)

a
dadb, (5.25)

where the constant cψ is written: cψ =
∫ +∞

0
|ψ̂(ω)|

ω dω < +∞.

5.5.4 Wavelet Transform and Reconstruction

5.5.4.1 Continuous Wavelet Transform and Reconstruction

The wavelet model has first been formalized by Grossmann and Morlet. For the sake
of simplification, let us use the following notation: Let ψs(x) be the dilation of the
wavelet ψ(x) by a factor s:

ψs(x) =
1
s
ψ
(

x
s

)

. (5.26)

The wavelet transform of a function f (x) at the scale s and position x is given by the
convolution product:

Ws f (x) = f ∗ψs(x). (5.27)

16 Theorem of Calderon, Grossmann, Morlet.
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Given ψ̂(ω) the Fourier transform of ψ(x). Morlet and Grossmann proved that if
the wavelet ψ(x) has a Fourier transform equal to zero at ω = 0, then the wavelet
transform satisfies an energy conservation equation and f (x) can be reconstructed
from its wavelet transform. The wavelet ψ(x) can be understood as the impulse
response of a band-pass filter and the wavelet transform as a convolution with a
band-pass filter which is dilated. When the scale s is large, Ws f (x) detects the lower
frequency components of the signal f (x). When the scale s decreases, the support
of ψs(x) decreases so the wavelet transform Ws f (x) is sensitive to finer details. The
scale s determines the size and the regularity of signal features extracted by the
wavelet transform.

5.5.4.2 Dyadic Wavelet Transform and Reconstruction Formula

The wavelet transform depends on two parameters s and x which vary continuously
over the set of real numbers. For practical applications, s and x must be discretized.
For a specific class of wavelets, the scale parameter can be sampled along the dyadic
sequence [2 j] j∈Z, without modifying the properties of the transform. The wavelet
transform at the scale 2 j is given by:

W2 j f (x) = f ∗ψ2 j(x). (5.28)

At each scale 2 j, the function W2 j f (x) is continuous since it is equal to the
convolution of two functions in L2(R). The Fourier transform of W2 j f (x) is

Ŵ2 j f (ω) = f̂ (ω)ψ̂(2 jω). (5.29)

When the following constraint is imposed:

+∞
∑

j=−∞

∣
∣ψ̂(2 jω)

∣
∣2 = 1 (5.30)

then the whole frequency axis is covered by a dilation of ψ̂(ω) by the scales factors
[2 j] j∈Z. Any wavelet satisfying the constraint is called a dyadic wavelet. The dyadic
wavelet transform corresponds also to the sequence of functions:

[W2 j f (x)] j∈Z
. (5.31)

Let “W ” be the dyadic wavelet operator defined by W f = [W2 j f (x)] j∈Z
. From the

equation of the Fourier transform of W2 j f (x) with its constraint (supra), and by
using the Parseval theorem, we can write an energy conservation equation:17

‖ f‖2 =
+∞
∑

j=−∞
‖W2 j f (x)‖2 . (5.32)

17 Remark: The norm (energy) of f (x) ∈ L2(R) is given by ‖ f ‖2 =
∫+∞
−∞ | f (x)|2 dx.
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We pose ψ2 j (x) = ψ2 j (−x). The function f (x) is reconstructed from its dyadic
wavelet transform by the reconstruction formula:

f (x) =
+∞
∑

j=−∞
W2 j f ∗ψ2 j (x). (5.33)

Given V, the space of the dyadic wavelet transforms [W2 j f (x)] j∈Z
, for all the func-

tions f (x) ∈ L2(R).18 Then, l2(L2) the Hilbert space of all sequences of functions
[h j(x)] j∈Z, such that h j(x) ∈ L2(R) and ∑+∞

j=−∞ ‖h j(x)‖2 < +∞. The energy con-
servation equation (see supra) proves that V is a subspace of l2(L2). Then, W −1

denotes the operator from l2(L2) to L2(R) defined by: W −1 [h j(x)] j∈Z
=∑+∞

j=−∞h j ∗
ψ2 j(x). The reconstruction formula (see supra) shows that the restriction of W −1

to the wavelet space V is the inverse of the dyadic wavelet transform operator W .
Every sequence of functions [h j(x)] j∈Z

∈ l2(L2) is not – a priori – the dyadic wavelet
transform of some function f (x)∈L2(R). In fact, if there is a function f (x)∈L2(R)
such that [h j(x)] j∈Z

= W f , then we should have W
[
W −1 [h j(x)] j∈Z

]
= [h j(x)] j∈Z

.

When we replace the operators W and W −1 by their expression given in the
equations W2 j f (x) = f ∗ψ2 j(x) (supra: wavelet transform) and W −1 [h j(x)] j∈Z

=
∑+∞

j=−∞ h j ∗ψ2 j (x) (see supra), then it comes:

∑+∞
l=−∞hl ∗Kl, j(x) = h j(x) with j ∈ Z and Kl, j(x) = ψ2 j ∗ψ2 j(x). (5.34)

The sequence [h j(x)] j∈Z
is a dyadic wavelet transform if and only if the afore-

mentioned equations ∑+∞
l=−∞ hl ∗Kl, j(x) = h j(x) and Kl, j(x) = ψ2 j ∗ψ2 j (x) hold.

These equations are known as reproducing kernel equations, and show the correla-
tion between the functions W2 j f (x) of a dyadic wavelet transform. The correlation
between the functions W2 j f (x) and W2l f (x) at two different scales 2 j and 2l can
be understood by observing their Fourier transform: Ŵ2 j f (ω) = f̂ (ω)ψ̂(2 jω) and
Ŵ2l f (ω) = f̂ (ω)ψ̂(2lω). The redundancy of Ŵ2 j f (ω) and Ŵ2l f (ω) depend on the
overlap of the functions ψ̂(2 jω) and ψ̂(2lω). The energy of this overlap is equal to
the energy of the kernel Kl, j(x). (It is maximum for l = j−1, l = j + 1.) Let PV be
an operator defined by

PV = W ◦W −1 (5.35)

this operator is a projector from l2(L2) on the Vspace. It is possible to prove that
any sequence of functions [h j(x)] j∈Z

∈ l2(L2) satisfies PV [h j(x)] j∈Z
∈ V, and any

element of V is invariant under the action of this operator.

18 Recall: The following spaces correspond to the respective functions or associated signals: (1)
L2(R): Finite energy functions:

∫ | f (t)|2dt < +∞; and consequently is the space of integrable
square functions. (2) LP(R): Functions such that

∫ | f (t)|pdt < +∞. (3) l2(Z): Discrete finite
energy signals: ∑+∞

n=−∞ | f (t)|2 < +∞. (4) lP(Z): Discrete signals such that: ∑+∞
n=−∞ | f (t)|p < +∞.
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5.5.4.3 Dyadic Wavelet Transform and Maxima

A signal is usually measured with a finite resolution which imposes a finer scale
when computing the wavelet transform. For practical purposes, the scale parameter
must also vary on a finite range. We are going to explain how to interpret math-
ematically a dyadic wavelet transform on a finite range. In both previous sections
(for the sake of simplification) the model was based on functions of a continuous
parameter x, but we have to discretize the abscissa x and explain efficient algorithms
for computing a discrete wavelet transform and its inverse.

Interpretation of a Dyadic Wavelet Transform

For practical purposes, it is not possible to compute the wavelet transform at all
scales 2 j for j varying between−∞ and +∞. In fact, we are limited by a finite larger
scale and a non-zero finer scale. In order to normalize, we suppose that the finer
scale is equal to 1 and 2 j is the largest scale. (With f (x) ∈ L2). Between the scales
1 and 2 j, the wavelet transform [W2 j f (x)]1≤ j≤J can be interpreted as the details
available when smoothing f (x) at the scale 1 but which have disappeared when
f (x) at the larger scale 2 j. At this stage, we introduce a function φ(x) whose Fourier
transform is: ∣

∣
∣φ̂ (ω)

∣
∣
∣
2
=

+∞
∑
j=1

∣
∣ψ̂(2 jω)

∣
∣2 . (5.36)

Because we know that the wavelet ψ(x) verifies ∑+∞
j=1 |ψ̂(2 jω)|2 = 1, so we have

lim
ω→0

|φ̂ (ω)|2 = 1. In addition, the energy distribution of the Fourier transform φ̂(ω)

is localized in the low frequencies, thus φ(x) is a smoothing function. Given S2 j the
smoothing operator defined as follows:

S2 j f (x) = f ∗φ2 j(x) where φ2 j (x) =
1
2 j φ2 j

(
x
2J

)

. (5.37)

The larger the scale 2 j, the more details of f (x) are removed by the smoothing
operator S2 j . The dyadic wavelet transform [W2 j f (x)]1≤ j≤J between the scale 1 and
2 j give the details available in S1 f (x) but not for S2 j f (x). The Fourier transforms
Ŝ1 f (ω), Ŝ2J f (ω), Ŵ2 j f (ω) of S1 f (x), S2 j f (x), W2 j f (x) are respectively given by:

Ŝ1 f (ω) = φ̂ (ω) f̂ (ω), Ŝ2J f (ω) = φ̂(2Jω) f̂ (ω), Ŵ2 j f (ω) = ψ(2 jω) f̂ (ω).
(5.38)

The first equation |φ̂ (ω)|2 = ∑+∞
j=1 |ψ̂(2 jω)|2 (i.e. Fourier transform of φ(x)) gives:

∣
∣
∣φ̂(ω)

∣
∣
∣
2
= ∑J

j=1
∣
∣ψ̂(2 jω)

∣
∣2 +
∣
∣
∣φ̂ (2Jω)

∣
∣
∣
2
. (5.39)
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From the equation above and from the three equations of Fourier transforms (see
supra) Ŝ1 f (ω), Ŝ2J f (ω), Ŵ2 j f (ω) and by using Parseval’s theorem, we obtain the
following energy conservation equation:

‖S1 f (x)‖2 = ∑J
j=1 ‖W2 j f (x)‖2 +‖S2J f (x)‖2 . (5.40)

Such an equation shows that the higher frequencies of S1 f (x) which disappeared
in S2J f (x) can be recovered from the dyadic wavelet transform [W2 j f (x)]1≤ j≤J
between the scales 1 and 2J . The functions {S2J f (x), [W2 j f (x)]1≤ j≤J} are known
as the finite scale wavelet transform of S1 f (x). For practical purposes, the signals
are given by discrete sequences of values, and we know that any discrete signal
D of finite energy can be interpreted as the uniform sampling of some function
smoothed at the scale 1. (Remark: Given D = [dn]n∈Z a discrete signal of finite
energy: ∑+∞

n=−∞ |dn|2<+∞. Suppose that the Fourier transform φ̂(ω) verifies: ∃C1 >

0,∃C2 > 0,C1 ≤ ∑+∞
n=−∞ |φ̂ (ω + 2nπ)|2 ≤C2 where ω ∈ R. There exists a function

f (x) ∈ L2(R) which is not unique, such that for any n ∈ Z, S1 f (n) = dn.) Thus the
discrete signal D can be rewritten as follows D = [S1 f (n)]n∈Z

. For a specific class of
wavelets ψ(x), the samples [S1 f (n)]n∈Z

allow to compute a uniform sampling of the
finite scale wavelet transform of S1 f (x): {[S2J f (n)]n∈Z

,
[
[W2 j f (n +ρ)]n∈Z

]
1≤ j≤J}

where ρ is the sampling shift which depends on the wavelet ψ(x) (Meyer 1989,
Appendix 2, pp. 267–268). Then, we pose: W d

2 j f = [W2 j f (n +ρ)]n∈Z
and Sd

2 j f =
[S2 j f (n)]n∈Z

. The sequence of discrete signal {Sd
2J f , [W2 j f ]1≤ j≤J} is known as a

discrete dyadic wavelet transform of the signals D = [S1 f (n)]n∈Z. Let W d be the dis-
crete wavelet transform operator which associates to a signal D the discrete wavelet
transform previously defined. (Remark: This operator uses a fast algorithm; note
that if the signal possesses N non-zero samples, the level of complexity of such an
algorithm is O(N log(N)); the algorithm uses a cascade of convolutions with two
discrete filters. It is also possible to compute the discrete inverse wavelet trans-
form W−1d which allows the reconstruction of the signal D from its discrete dyadic
wavelet transform). A model of a cubic spline wavelet ψ(x) is shown in Fig. 5.8
(left). The shape of the function φ(x) corresponding to the wavelet ψ(x) is shown
in Fig. 5.8 (right) (φ(x) is also a cubic spline but with a compact support of size 4).

Fig. 5.8 Left: ψ(x). Right: φ(x)
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Fig. 5.9 (a) An arbitrary signal, (b) wavelet transforms (c) maxima (ref. to Mallat, Meyer 1989)

Figure 5.9a shows a signal (256 samples), Fig. 5.9b is the discrete wavelet trans-
form of the signal decomposed on five scales with a cubic spline wavelet. Figure 5.9c
corresponds to the maxima representation of the signal. At each scale, the Diracs
show the position and amplitude of a local maximum of the wavelet transform given
in Fig. 5.9b.

The curve denoted Sd
25 f is the coarse signal. Since the wavelet used is the first

derivative of a smoothing function, the maxima of the wavelet transform show the
points of sharper variation at each scale. The wavelet maxima representation of a
signal D is defined by the discrete maxima of its discrete wavelet transform W d

2 j f
for each scale 1≤ 2 j ≤ 2J , plus the coarse signal Sd

2J f . The maxima show at different
scales the position of the signal sharper variations. (Note that for the functions φ(x)
whose support is larger than 2, the discrete maxima detection produces errors; note
also that the function φ(x) used previously has a compact support of size 4.)
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Fig. 5.10 Distinction between the different window mechanisms

5.6 Distinction of Different Window Mechanisms by Type
of Transformation

In previous sections, three types of basic transformation have been distinguished,
i.e. the Fourier transform (of short term), the Gabor transform and the wavelet trans-
form. In order to distinguish the different window mechanisms, it seems useful to
represent them in a graph. We observe clearly in Fig. 5.10, that for the short term
Fourier transform and the Gabor transform, the window has a fixed size and con-
sequently, it slides along the signal. On the other hand, the size of the window is
variable for the wavelet transform. Indeed, we clearly distinguish the dilation of the
wavelet by increase in the size of the window; the mechanism is easily visible.

5.7 Wavelet Transform of Function or Time Series

5.7.1 The Wavelets Identify the Variations of a Signal

The wavelets are a natural extension of the Fourier analysis. The purpose is always
to transform a signal into coefficients, from which we can reconstruct the initial sig-
nal. The transformation of a signal is carried out with the sum of different wavelets.
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If a variable size window of a wavelet is chosen narrow, we capture the sharp and
short variations of the signal, i.e. events of the peak type, or the discontinuities. If
the window is large, we capture long oscillations and long variations, i.e. low fre-
quencies. The choice of the window is conditioned by what we want to extract. The
wavelets highlight with precision the variations of the signal. An absence of varia-
tion or a very slow variation will provide a very small coefficient or equal to 0. A
wavelet has shapes more technical, more complex and more adapted than a sinu-
soid. A wavelet coefficient measures the correlation between the wavelet and the
signal (or portion of signal to which we apply it). Recall: a wavelet has a zero inte-
gral, and the positive areas neutralize negative areas. The wavelets are also a way
of highlighting changes of state of a signal (i.e. transitions) with a reduced num-
ber of non-zero coefficients. The size of a window allows to capture the different
components of a signal.

Figure 5.11 is shown to understand the mechanism of signal analysis and decom-
position by a wavelet. A signal is artificially built, then a wavelet. Then we displace
along the signal, a wavelet whose window size remains constant, and in so doing
we carry out a convolution between the wavelet (whose size remains constant) and
the signal. The convolution (product) of each segment of the signal with the wavelet
provides a new curve. The area (i.e. the integral of this curve) gives the wavelet
coefficient. The segment of the signal, which has “similarities” with the wavelet,
will have a product (segment ∗ wavelet) providing a curve with a high coefficient.

(a) (b)

(c) (d)

(e) (f)

Fig. 5.11 (a) An arbitrary signal, (b) a wavelet, (c, e) signal analyzed by a wavelet, (d, f) product =
signal ∗ wavelet
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(a) (b)

Fig. 5.12 (a) Signal analyzed by a wavelet, (b) Area = coefficient

Conversely, the integral of the product will be small or zero, if there is no similarity,
because the negative values of the integral will be compensated by the positive val-
ues of areas. The coefficients of the wavelet applied to the signal, correspond to
the surface located between the curve and the axis centered at zero. Note that when
the wavelet analyzes the signal which has the same form as the wavelet itself, their
product is entirely positive (curves of real parts) and thus the area is also positive
and has a high enough value (Fig. 5.12). On the other hand, if the wavelet analyzes a
flat signal, then the integral of the product (signal by wavelet) will be zero, because
by definition the integral of the wavelet is zero. If the signal offers small curves
without strong variation, the integral of the product will provide low coefficients.
The displacement of the wavelet along the signal is carried out by means of the
parameter (u):

ψu,s(t) =
1√
s
ψ
(

t−u
s

)

. (5.41)

Usually, five or six groups of wavelet transforms are used to represent the initial
signal, we can also speak of octaves. Each group is decomposed into intermediate
transforms, usually six also. Thus, a resolution 6 provides 36 wavelet transforms of
the initial signal.

5.7.2 Continuous Wavelet Transform

The continuous wavelet transform of a function or a signal f at the scale s and at the
position u is calculated by “correlating” f with a wavelet also called “wavelet atom”:

W f (u,s) = 〈 f ,ψu,s〉=
∫ +∞

−∞
f (t)

1√
s
ψ∗
(

t−u
s

)

dt, (a)

whereψ∗ is the complex conjugate of ψ in C. It is also possible to write this equation
as the following convolution product:

W f (u,s) = f � ψ̄s(u), (b)

where ψ̄s(t) =
1√
s
ψ∗
(
− t

s

)
. The Fourier transform of ψ̄s(t) is given by:

∧
ψ̄s(ω) =

√
sψ̂∗ (sω) (5.42)
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with

ψ̂(0) =
∫ +∞

−∞
ψ(t)dt = 0. (5.43)

It appears that ψ̂ is the transfer function of a band-pass filter of frequencies. This
convolution computes the wavelet transform with band-pass filters. The graphic
expression of a continuous wavelet transform is in a plane whose abscissa (u) is
the unit of time and ordinate (Log2(s)) is the frequency scale.

5.7.3 Discrete Wavelet Transform

W f [n,a j] =
N−1

∑
n=0

f [m]
1√
a j
ψ∗j [m−n] (c)

with a wavelet:

ψ j[n] =
1√
a j
ψ
( n

a j

)
. (5.44)

The discrete transformation can also be written as a circular convolution like in the
continuous case:

W f [n,a j] = f � ψ̄ j[n] (d)

with
ψ̄ j[n] = ψ∗j [−n] (5.45)

this circular convolution is calculated with the Fast Fourier Transform which requires
O(N log2N) operations.19 If

a = 2
1
v (5.46)

there are v log2(N/2K) scales a j ∈ [2N−1,K−1]. The number of operations neces-
sary to compute the transformation is O(vN(log2N)2).

5.7.4 Wavelet Models: “Gauss Pseudo-Wavelet”, Gauss-Derivative,
Morlet and Sombrero

5.7.4.1 The Case of “Gauss Pseudo-Wavelet” or “Gauss Window”

Construction of a “Gauss pseudo-wavelet” (constructed by Gabor):

g(t) = e−ω
2
o t/2 . (5.47)

19 f [n] = O(g[n]), there exists K such that ( f [n]≤ Kg[n]). ( f [n]) = o(g[n]), limn→+∞
f [n]
g[n] = 0.
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Fig. 5.13 Gauss pseudo-
wavelet, also called Gauss
window

Fig. 5.14 Gauss window and
its derivative x102

A Gauss pseudo-wavelet is an isolated structure in the set of wavelet forms which
were constructed subsequently (Fig. 5.13). Indeed, its bell shape does not offer many
oscillations around the x-axis (abscissa). It is an almost rudimentary form which
offers a weak adaptation to signals with complex structures. Certain works still
evoke this structure as a wavelet, however we will prefer to consider it as a Gauss
window or as a filter. Indeed, it does not satisfy all the conditions necessary to the
wavelet construction.

A Particularity of the Gauss Window and Gauss-Derivative Wavelet

It will be noted, first, that the derivative of a Gauss window can be regarded as a
wavelet (the integral of this derivative is zero). The Gauss window and its derivative
are represented in Fig. 5.14.

Let us consider the equivalent of the differential of an arbitrary signal denoted
f ′(x) and a Gauss window g(x) (i.e. “Gauss pseudo-wavelet”), then we can write by
carrying out an integration by parts:20

∫
f ′(x)g(x)dx =−

∫
f (x)g′(x)dx +[·] , (5.48)

where [·] = 0. Thus:
∫

f ′(x)g(x)dx =−
∫

f (x)g′(x)dx. (5.49)

20 Integration by parts:
∫

f ′g = [ f g]− ∫ f g′.
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Applied to a financial signal (French stock index: Cac40), thus:
∫

cac′(x)g(x)dx =−
∫

cac(x)g′(x)dx. (5.50)

This particularity is interesting because this shows that the Gauss pseudo-wavelet
transform of the first-differences of the Cac40 is equivalent to the Gauss-derivative
wavelet transform of the Cac40 itself (up to a sign). And their representations in the
time–frequency plane are similar.

5.7.4.2 Construction of a Morlet Wavelet

A Morlet wavelet (Fig. 5.15) is written:

ψ(t) = e−iωot e−t2/2 . (5.51)

5.7.4.3 Construction of a Sombrero Wavelet

ψ(t) = 2
π1/4

√
3σ

( t2

σ2 −1)e−t2/2σ2
(5.52)

(Fig. 5.16).
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g=(exp((-((t-b)).^2)/2).*(exp(i.*pi.*((t-b)))))
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Morlet wavelet

Fig. 5.15 (a) ω = π , (b) ω = 3π
2 , (c) ω = 2π
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Fig. 5.16 (a) σ = 1, (b) σ = 3/4, (c) σ = 1/10
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5.8 Aliasing and Sampling

In the figure below,21 we show at the top a few “wave functions” f (t) in the space
of positions and at the bottom the corresponding Fourier transforms in the space of
impulse responses. The graphs (2),(3),(6),(7) shows wave packets.

A signal f is discretized by recording its sample values { f (nT )}n∈Z at interval
T . A discrete signal can be represented as a sum of Diracs. Any sample f (nT )
is associated with a Dirac f (nT )δ (t − nT ) located at t = nT . So, a uniform sam-
pling of f corresponds to the weighted Dirac sum fd(t) = ∑+∞

n=-∞ f (nT )δ (t − nT ).
The Fourier transform of δ (t − nT ) is e−inTω . Thus the Fourier transform of fd

is a Fourier series f̂d(ω) = ∑+∞
n=-∞ f (nT )e−inTω . f̂ and f̂d are related by f̂d(ω) =

(1/T )∑+∞
k=-∞ f̂ (ω− (2kπ/T)). The sampling theorem is given by:

Theorem 5.1 (Shannon, Whittaker). If the support of the Fourier transform f̂
is included in [−π/T,π/T ] then f (t) = ∑+∞

n=−∞ f (nT )ϑT (t − nT ) with ϑT (t) =
sin(πt/T)/(πt/T).

This theorem imposes that the support of f̂ is included in [−π/T,π/T ] which
prevents abrupt variations of f between consecutive samples. However the sampling
interval is generally imposed and the support of f̂ is not included in [−π/T,π/T]. So
the formula of the theorem does not recover f . A filtering technique to reduce error
is then used, i.e. aliasing.22 Consider a support of f̂ going beyond [−π/T,π/T ],
usually the support of f̂ (ω − (2kπ/T )) intersects [−π/T,π/T ] for several k, see
infra Fig (ii). When there is aliasing, the interpolated signal ϑT ∗ fd(t) =
∑+∞

n=−∞ f (nT )ϑT (t − nT ) possesses a Fourier transform f̂d(ω)ϑ̂T (ω) =
T f̂d(ω)1[−π/T,π/T ](ω) = 1[−π/T,π/T ](ω)∑+∞

k=-∞ f̂ (ω− (2kπ/T)) which can be very
different from f̂ (ω) over [−π/T,π/T]. The signal ϑT ∗ fd(t) can be an inappropri-
ate approximation of f , see infra (†) in Fig. (ii). In Fig. (i): (a) shows a signal with its
Fourier transform; (b) a uniform sampling of the signal generates a periodic Fourier
transform; (c) low-pass filter; (d) the filtering of (b) with (c) recovers f . In Fig. (ii):
(a)′ shows a signal with its Fourier transform; (b)′ aliasing generated by an over-
lapping of f̂ (−2kπ/T) for different k, see dashed lines; (c)′ low-pass filter; (d)′ the
filtering of (b)′ with (c)′ generates a low-frequency signal different from f , see (†).

21 Remark: The Heisenberg uncertainty relations are illustrated by the fact that a large uncertainty
in position is associated with a low uncertainty in impulse response and vice versa.
22 Definition (Aliasing). Introduction of error into the computed amplitudes of the lower frequen-
cies in a Fourier analysis of a function carried out using discrete time samplings whose interval
does not allow the proper analysis of the higher frequencies present in the analyzed function.
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5.9 Time-Scale Plane (b,a), Cone of Influence

5.9.1 Cone of Influence and Time-Scale Plane

Let f (x) be a function and ψ(x) a wavelet which occupies the space: Iψ = [−X ,X ].
The behavior of the function f (x) in a precise point, x, is mainly observed on the
wavelet transform in the cone b ∈ a Iψ + x = [−aX + x,aX + x] (Fig. 5.17).

ψ (x) is a mother wavelet and ψ(a,b) (x) is a wavelet family created by the changes
of the parameters a,b. As described in previous sections, “b” represents the position
in time of the wavelet, i.e. its position along the analyzed signal. “a” represents the

Iy

a

x b
(Source: B Torresani)

a = 1

(a)

a

b

amax

amin

(Source: B Torresani) (b)

Fig. 5.17 (a) Cone of influence of a point x of b. (b) (b,a)-plane
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log (1/a)

log (1/amax)

log (1/amin)

(Source: B Torresani)

>0

0 b

Fig. 5.18 Phase-space (hyperbolic plane)

dilation and contraction of the wavelet. The wavelet transform Tf (b,a) is repre-
sented in the hyperbolic space of transforms (Fig. 5.18) (Time–frequency plane =
Phase space). We mentioned it in the preceding section, in certain types of construc-
tion, when the scale parameter “a” increases, the length of the “central frequency”
of the wave tends to increase. This is an analysis which is valid for example within
the framework of the continuous wavelet transform. Thus, in the plane which pre-
cedes, the coarsest or less fine “long waves” calculated by the transformation, will
be in the upper part of the plane. On the contrary, the finest wavelets, which analyze
with more precision the signal, will be represented in the lower part of the plane.
Hyperbolic planes such as these allow a form of symmetry around the abscissa (x-
axis). We often uses the scale “log 2”, which offers the property to represent the
transforms of a signal in the positive plane above the abscissa, if the scale parameter
is taken as a divider, i.e. log 2(1/a). In the opposite case, the image of transforms will
be represented in the plane below the abscissa. The plane itself will obviously have
a minimum and a maximum that determine thus the limits of the image (Fig. 5.19).

Note that if we select a scale parameter as divider of transforms, the ordinates of
the plane will be positive, otherwise, the ordinates will be negative. The representa-
tion in negative ordinates is rather frequent (see Torrésani or Mallat). If the signal
which is the subject of a transformation has a dyadic length, we will use log 2 rather
than log. We cannot numerically calculate a wavelet transform for all the values
of b and a. We sample the wavelet transform. The extreme values of the scale are
computed starting from the following extrema, as follows:

amax =
Size of the signal

Size of the wavelet
,

amin =
Central frequency of the wavelet

Sampling frequency of the signal
.
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0

<0

b

log (amax)

log (a) (Source: B Torresani)

log (amin)

Fig. 5.19 Hyperbolic plane, logarithmic scale

5.9.2 Time–Frequency Plane

The time–frequency plane is used in particular in the transformations with slid-
ing window of the Gabor type, or in the wavelet multiresolution programs. The
Mallat and Zhang “Pursuit” algorithm uses also the time–frequency plane. The gen-
eral principle: Since the wavelet and the window are localized along the signal,
it is possible – by using segments which are sampled and localized in time – to
make correspond to these segments a frequency which will occupy by projection
a segment on the ordinate axis. Thus, we construct “time–frequency” rectangles or
“time–frequency” squares localized such as “tiles” in the plane. This process is close
to the principle of Heisenberg boxes described in the section which follows. The
construction of such time–frequency planes requires to constitute a grid intended
to receive these time–frequency rectangles: (Δt,Δω) or (σt ,σω ). The choice of
the type of grid can be large enough, we can speak of the Fourier grid or Gabor
grid. Then, we establish a scale corresponding to frequency levels, for example:
gray nuances. Finally, we assign to each “time–frequency tile” a nuance of gray
corresponding to its eigen frequency. There are other types of construction of time–
frequency plane, in particular the plane of the Wigner–Ville distribution, the plane of
the energy distribution, or the spectrograms, for which representations are more dif-
fuse and segmented, just as for the representation of the energy distribution resulting
from the “Pursuit” algorithm.

5.10 Heisenberg Boxes and Time–Frequency Plane

Briefly, we introduce the Heisenberg theorem which leads to the construction of
Heisenberg boxes, which then allows to underline the two different approaches
between the wavelets and “Fourier”, and this by using the bivalent concept of
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time–frequency atom which makes it possible to unify, but also to have in hand
equivalences from a field to another of the analysis.

Theorem 5.2 (Heisenberg uncertainty). The temporal variance σ2
t and the fre-

quency variance σ2
ω of the function f (which belongs to the L2 space), verify:

σ2
t σ

2
ω ≥

1
4

(5.53)

or, in a similar way by means of the standard deviations σtσω ≥ 1
2 . The inequality

becomes an equality if and only if there exist (a,b,u,ξ ) ∈R
2×C

2 such that f (t) =
aexp(iξ t−b(t−u)2).

This observation leads to a kind of compromise between the temporal resolution
and the frequential resolution. The localization in time–frequency can be reached
only in standard deviation. This localization is representable by means of a Heisen-
berg box. The cover of the time–frequency plane is carried out through different
manners in accordance with the Fourier atoms or wavelet atoms.

5.10.1 Concept of Time–Frequency Atom: Concept of Waveform
Family

We know that the transformation of an unspecified signal in the time–frequency
plane can be carried out either by sines and cosines or by wavelets, thus, we can
indicate in a general way these forms which enter into the mechanics of transforma-
tion as waveforms; a family of waveforms is also called time–frequency atoms and is
written: {φγ} where γ is a vector of parameters. Generally, it is agreed that φγ such
that
∥
∥φγ
∥
∥= 1.23 The transformation of a signal f (t) by this family of atoms φγ , can

be written:24

Tf =
∫ +∞

−∞
f (t)φ∗γ (t)dt =

〈
f ,φγ
〉
. (5.54)

For a windowed Fourier transform, a Fourier atom by translation and modulation is
written:

φγ (t) = gu,ξ (t) = g(t−u)eiξ (t−u). (5.55)

For a wavelet transform, a wavelet atom by translation and modulation are written:

φγ (t) = ψu,s(t) =
1√
s
ψ
(

t−u
s

)

. (5.56)

23 φγ : belongs to the integrable functions L2(R).
24 By the well-known Parseval formula we know that:

Tf =
∫+∞
−∞ f (t)φ ∗γ (t)dt = 1

2π
∫ +∞
−∞ f̂ (ω)φ̂ ∗γ (ω)dω .
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5.10.2 Energy Density, Probability Distribution and Heisenberg
Boxes

After having defined the concept of time–frequency atom, we present the concept
of density of energy (Mallat 1998). These notions are increasingly diffused out of
the Physics where they come from.

5.10.2.1 Energy Density and Probability Distribution of a Time–Frequency
Atom

For any parameter of translation and modulation (u,ξ ), we suppose that there is
a single atom φγ:(u,ξ ) which is centered at (u,ξ ) in the time–frequency plane. The
time–frequency boxes of this atom determines a neighborhood of (u,ξ ) where the
energy of f is measured by

PT f (u,ξ ) =
∣
∣
〈

f ,φγ:(u,ξ )
〉∣
∣2 =
∣
∣
∣
∣

∫ +∞

−∞
f (t)φ∗γ : f (u,ξ )(t) dt

∣
∣
∣
∣

2

. (5.57)

The generic transformation T f =
〈

f ,φγ
〉

in the time–frequency plane (t,ω) of a
signal depends on the nature of the atom φγ and depends on its time–frequency
“spread”, i.e. as well in time as in frequency. Thus, one attempts to approach this
notion of spread of a time–frequency atom. We know that:

∥
∥φγ
∥
∥2 =

∫ +∞

−∞

∣
∣φγ (t)

∣
∣2 dt = 1, (5.58)

the element which is the subject of the integration, i.e. the square of the absolute
value of the atom, is understood as a probability distribution centered at uγ , whose
center (or average) is:

uγ =
∫ +∞

−∞

∣
∣φγ(t)

∣
∣2 · t dt. (5.59)

And its variance measures its spread around u:

σ2
t (γ) =

∫ +∞

−∞

∣
∣φγ (t)

∣
∣2 (t−uγ)2dt. (5.60)

So that we can symbolically write that the atom follows a probability law:

φγ ∼ Law(uγ ,σ2
t(γ)). (5.61)

If we are located in the space of frequencies (of the trigonometrical functions or
wavelets), we can wonder what becomes the center, the variance and the spread
of this atom which (it) is expressed simultaneously in time and frequency. It is by
using the Plancherel transfer formula, which provides an equivalence in both fields
frequency and time, that we can determine the center frequency of the atom and
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its spread in the frequency (frequency support). The Plancherel formula, which is

written
∫+∞
−∞
∣
∣φγ (t)

∣
∣2 dt = 1/2π

∫ +∞
−∞
∣
∣
∣φ̂γ(ω)

∣
∣
∣
2

dω , provides this equivalence between
both fields, and applied to φγ , this gives:

∫ +∞

−∞

∣
∣φγ (t)

∣
∣2 dt =

1
2π

∫ +∞

−∞

∣
∣
∣φ̂γ (ω)

∣
∣
∣
2

dω . (5.62)

In addition, we know that for an unspecified25 function f we have ‖ f‖2 = 〈 f , f 〉 =
∫+∞
−∞ | f (t)|2 dt, consequently for the atom φγ , there is a similar result:

∥
∥φγ
∥
∥2 =

〈
φγ ,φγ

〉
=
∫ +∞
−∞
∣
∣φγ(t)

∣
∣2 dt, thus the Plancherel formula for the atom φγ is written:

∫ +∞

−∞

∣
∣φγ (t)

∣
∣2 dt =

1
2π

∫ +∞

−∞

∣
∣
∣φ̂γ (ω)

∣
∣
∣
2

dω , (5.63)

this can also be written:

2π
∥
∥φγ
∥
∥2 =

∫ +∞

−∞
| φ̂γ(ω) |2 dω . (5.64)

Thus, endowed with these equivalences, we can determine the center frequency
of the atom and its “frequency spread” (measured by the variance). The center
frequency ξγ of φ̂γ is written:

ξγ =
1

2π

∫ +∞

−∞
ω
∣
∣
∣φ̂γ (ω)

∣
∣
∣
2

dω , (5.65)

then the spread around the center frequency ξγ is written:

σ2
ω (γ) =

1
2π

∫ +∞

−∞
(ω− ξγ)2

∣
∣
∣φ̂γ (ω)

∣
∣
∣
2

dω . (5.66)

We are thus endowed with the necessary tools for a representation in the time–
frequency plane of a basic atom φγ by means of the two following pairs (uγ ,σ2

t )
and (ξγ ,σ2

ω), i.e. respectively the temporal center and spread, then the center fre-
quency and spread in the frequency. The time–frequency resolution is depicted in the
time–frequency plane (t,ω) by means of the Heisenberg boxes centered at (uγ ,ξγ)
of which the width along time is σt(γ) and the width along frequency is σω(γ).
Moreover, we note that σtσω is the area of a Heisenberg box. By referring to the
Heisenberg uncertainty theorem which explains that the temporal variance σ2

t and
the frequency variance σ2

ω of the function f , verify:

σ2
t σ

2
ω ≥

1
4
, (5.67)

25 Even if it is a discontinuous function f .
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Fig. 5.20 Heisenberg Boxes representing an atom φγ

or, in an equivalent way: σtσω ≥ 1/2, this constraint on the variances says that the
surface of the rectangle representing the atom is higher or equal to 1/2. Thus, we
do not represent the atom by a point but by rectangles, we will be able to refer to the
figure which follows in the next section.

5.10.2.2 Heisenberg Boxes of Time–Frequency Atoms: Fourier Atoms
and Wavelet Atoms

Generic presentation of the Heisenberg box: One represents the time–frequency
localization of a basic atom (time–frequency atom) by means of a Heisenberg box,
located in the time frequency plane, which is a rectangle of dimensions σt and
σω , centered at the point of coordinates: (temporal center, center frequency), as
described in the previous section (Fig. 5.20).

Presentation of the Heisenberg box for a windowed Fourier atom: Remember that
the principle of the windowed Fourier transform can be defined as follows:

S f (u,ξ ) =
〈

f ,gu,ξ
〉

=
∫ +∞

−∞
f (t)g(t−u)eiξ (t−u)dt. (5.68)

The atom used is a sinusoid multiplied by a window g. The analysis vector family
is obtained by translation and modulation of the window as follows: gu,ξ (t) = g(t−
u)eiξ (t−u). This function is centered for the frequencies at ξ and is symmetric in
relation to u. The standard-deviation in frequency is constant. The family is thus
obtained by translation in time and frequency of a single window. Here is an example
of Heisenberg boxes of windowed Fourier atoms (Fig. 5.21).

Presentation of the Heisenberg box for the “wavelet atoms”: Let us recall the
principle of the wavelet transform which can be defined as follows:

W f (u,s) = 〈 f ,ψu,s〉=
∫ +∞

−∞
f (t)

1√
s
ψ∗
(

t−u
s

)

dt, (5.69)
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Fig. 5.21 Heisenberg rectangles, or time–frequency boxes, symbolizing the energy spread of two
Gabor atoms

where the basic atom, or the basic wavelet, ψ is a function of zero average, centered
at the neighborhood of 0 and of a finite energy. The family of vectors is obtained by
translation and dilation of the atom ψu,s(t) = 1√

sψ
( t−u

s

)
. This function is centered

at the neighborhood u, as the windowed Fourier atom. If the center frequency of ψ
is indicated by η , the center frequency of the dilated function is at η/s. The tem-
poral standard-deviation is proportional to s. The standard-deviation in frequency is
inversely proportional to s. Thus, one can present an example of Heisenberg boxes
of wavelet atoms (Fig. 5.22).

5.10.3 Spectrogram, Scalogram and Energy Conservation

The square of the modulus of the windowed Fourier transform described in the
preceding section corresponds to the spectrogram:

PS f (u,ξ ) = |S f (u,ξ )|2 =
∣
∣
∣
∣

∫ +∞

−∞
f (t)g(t−u)eiξ (t−u)dt

∣
∣
∣
∣

2

. (5.70)

In order to calculate the scalogram, which is the equivalent for the wavelets of
the spectrogram for the Fourier transform, one takes for example η as the center
frequency of the wavelet, then the center frequency of a dilated wavelet is ξ = η/s.

The scalogram is written then:

PW f (u,ξ ) = |W f (u,s)|2 =
∣
∣
∣
∣W f
(

u,
η
ξ

)∣
∣
∣
∣

2

. (5.71)
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Fig. 5.22 Example for two wavelets ψu,s(t) and ψu0 ,s0(t). When the scale s decreases, the time-
segment is reduced but the “spread” of the frequency increases

The scalogram is also called energy density. This interpretation of the scalogram
as energy density is shown by the following theorem, which shows that the energy
is preserved during the transformation of a real unspecified signal f :

Theorem 5.3 (The scalogram is an energy density). 26 For any f ∈ L2(R)

W f (u,s) =
1
2

W fa(u,s) (5.72)

if the admissibility condition of the wavelet written:

Cψ =
∫ +∞

0

|ψ̂(ω)|
ω

dω < +∞ (5.73)

is verified and if f is real, then:

f (t) =
2

Cψ
real
[∫ +∞

0

∫ +∞

−∞
W f (u,s)ψs(t−u)du

ds
s2

]

(5.74)

and

‖ f (t)‖2 =
2

Cψ

∫ +∞

0

∫ +∞

−∞
|W f (u,s)|2 du

ds
s2 . (5.75)

26 Proof in Mallat (1998).
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5.10.4 Reconstruction Formulas of Signal: Stable and Complete
Representations

The objective of this section is to point out the reconstruction formulas of a sig-
nal, which result from the Fourier transform with window and from the wavelet
transform.

5.10.4.1 Reconstruction by the Windowed Fourier Transform

For the Fourier atoms gu,ξ (t) when the couple of indexes (u,ξ ) varies on R
2, the

Heisenberg boxes of the atoms cover the whole of the time–frequency plane. This
assertion has a corollary, indeed it is possible to rebuild the signal by means of its
windowed Fourier transform S f (u,ξ ). The reconstruction formula of the signal is
written:

f (t) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
S f (u,ξ )g(t−u)eitξdξdu, (5.76)

with
∫ +∞
−∞ | f (t)|2dt = 1

2π
∫ +∞
−∞
∫+∞
−∞ |S f (u,ξ )|2g(t−u)eitξdξdu. Moreover, the recon-

struction formula preserves identical the energy of the signal. The reconstruction
formula can also be rewritten as follows:

f (t) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
〈

f ,gu,ξ
〉

gu,ξ (t)dξdu. (5.77)

5.10.4.2 Reconstruction by the Wavelet Transform

Similarly, it is possible to rebuild the signal from the wavelet transform. The (real)
wavelet transform is complete and preserves the quantity of energy (as long as the
wavelet verifies the weak admissibility condition written: Cψ =

∫ +∞
0 (|ψ̂(ω)|/ω)

dω < +∞). The reconstruction formula is given by:

f (t) =
1

Cψ

∫ +∞

0

∫ +∞

−∞
W f (u,s)

1√
s
ψ
(

t−u
s

)

du
ds
s2 , (5.78)

with
∫ +∞

−∞
| f (t)|2 dt =

1
Cψ

∫ +∞

0

∫ +∞

−∞
|W f (u,s) |2 du

ds
s2 . (5.79)
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5.11 Wiener Theory and Time–Frequency Analysis

5.11.1 Introduction to the Correlogram–Periodogram Duality:
Similarities and Resemblances Researches

The correlogram and periodogram are the base of spectral analysis. Spectral analy-
sis can be interpreted as the decomposition of the variance of a time series into the
field of frequencies. It is commonly said that the function of the temporal correla-
tion corresponds to the Fourier transform of the power spectrum of a time series.
The purpose of spectral analysis is to identify similarities and resemblances of a
signal (on itself). One will choose here in this preamble a simplified presentation
of these periodogram and correlogram concepts, which are also described within
the framework of the Wiener–Khintchine theorem. Consider a process {xt} with a
temporal index t = 1, . . . ,T . If one chooses a stochastic process weakly stationary,
it will satisfy the conditions:

E |xt |2 < ∞, ∀t, (5.80)
Ext = μ , ∀t, (5.81)

E(xt − μ)(xs− μ) = E(xt+τ − μ)(xs+τ− μ), ∀s,t,τ. (5.82)

5.11.1.1 Autocovariance and Autocorrelation Functions

Definition 5.1 (Autocovariance). The autocovariance function at the given delay
τ of a process xt is defined for τ ∈ {0, . . . ,T −1} such that:

γ̂(τ) =
1
T

T

∑
t=τ+1

(xt − x̄)(xt−τ − x̄), (5.83)

where x̄ = 1
T ∑T

T=1 xt is an arithmetic mean of xt . The autocorrelations ρ̂(τ) are
defined by standardizing the autocovariance function γ̂(τ) by γ̂(0) (i.e. the variance
of the process):

ρ̂(τ) =
γ̂(τ)
γ(0)

. (5.84)

(The confidence interval on the correlograms is written ±2/
√

T .) Another mea-
sure often used is the partial autocorrelation. A partial autocorrelation with order
τ ≥ 2 is calculated as a correlation of two residuals obtained after regression of xτ+1
and x1 on the intermediate observations x2, . . . ,xτ . The partial autocorrelation at the
given delay equal to 1 is defined as the correlation between x1 and x2.
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5.11.1.2 Estimator of the Spectral Density

The periodogram is the equivalent, in the field of frequencies, to the autocorrelation
function in the field of time. The analysis of the frequency field is carried out by the
decomposition of the observed series into periodic components. The principal tool
for the spectral analysis of a series is the spectrum which is defined by:

f (λ ) =
1

2π

[

γ(0)+ 2
∞

∑
τ=1

γ(τ)cos(λτ)

]

, (5.85)

with λ the angular frequencies [−π ,π ] and γ(τ) the theoretical autocovariances
(τ = 1, . . . ,∞). The spectrum is symmetric around zero, the analysis is restricted at
the frequencies [0,π ]. For a sample of T observations, one considers the harmonic
frequencies, or Fourier frequencies λ j = 2π j/T, j = 1, . . . , [T/2]. The periodogram,
by using the spectrum, is defined by:

I(λ ) =
1

2π

[

γ̂(0)+ 2
T−1

∑
τ=1

γ̂(τ)cos(λτ)

]

. (5.86)

An estimator is said to be “consistent” if its variance tends towards zero when the
number of observations tends towards the infinite. The consistency implies that the
estimator becomes gradually more precise when the quantity of acquired informa-
tion increases. If one chooses a stationary random process of order two, it can be
shown that the estimator obtained is centered but does not converge. It is appropriate
only for the time series which have strict periodicities and its graph (periodogram is
equivalent to the autocorrelation function in the field of time) has an “abrupt” shape
which makes it difficult to interpret it. In order to solve this problem of readability of
the graph, spectral windows are used. Indeed, in order to solve this readability prob-
lem of graphs, we do not estimate for each frequency the value I(λ ), but an average
value on equal frequency bands, whose juxtaposition covers the interval given by λ .
In fact, we carry out a smoothing of the spectrum, i.e. a kind of filtering. We take,
around a number of equidistant points of the frequency axis, a weighted average
on the “neighboring frequencies”, i.e. one builds a window in the space of the fre-
quency. The choice of the window is important. According to its form, i.e. according
to the chosen weighting factors, spectral “leaks” at the adjacent frequencies for a
given frequency are possible. For example, if at a frequency λ j of the spectrum of
a time series there exists a “peak” with a high spectral power, in relation to the
adjacent frequencies, the secondary lobes inherent to the spectral window, can gen-
erate, at their frequencies, significant spectral powers. It is thus difficult to choose
a good spectral window, because it is necessary that the power of secondary lobes
is low and that the power at the adjacent frequencies are not correlated. There are
two types of window often used in spectral analysis, they are the Tukey–Hanning
and Parzen windows. For the first, it is said that the secondary peaks are lower or



386 5 Spectral and Time–Frequency Analyses and Signal Processing

Fig. 5.23 Plane (x-axis: frequency; y-axis: window function ĝ): The energy spread of ĝ measured
by its bandwidth Δω and the maximum amplitude A of the first side-lobes (localized at ω =±ω0)

equal to 2% of the main peak and the spectral estimators at the frequencies λ j and
λ j+2 are not correlated.27

Construction of a Fourier Windows

Let g be the window in the (windowed) Fourier transform, whose energy is concen-
trated around 0 (Fig. 5.23). There is three parameters which determine the energy
spread:

(1) The root mean square bandwidth Δω written as follows:

|ĝ(Δω/2)|2
|ĝ(0)|2 =

1
2
. (5.87)

If Δω is small, the energy of the window is well concentrated around 0.
(2) The maximum amplitude A of its first side-lobes, measured in decibels:

A = 10log10
|ĝ(ω0)|2
|ĝ(0)|2 . (5.88)

It is possible that these side-lobes create shadows on each side of the center
frequency.

(3) The polynomial exponent which describes the decay of the window of the
Fourier transform for broad frequencies:

|ĝ(ω0)|= O(ω−p−1) (5.89)

It represents the behavior of the Fourier transform beyond the first side-lobes.

27 For a discuss about the subject one will be able to refer to Bourbonnais and Terraza (1998).
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Traditional Spectral Windows: Rectangular, Gaussian, Hamming, Hanning,
Blackman

As presented previously the Heisenberg uncertainty theorem imposes that the
standard-deviation in time σt and in frequency σω of a function verify: σtσω ≥ 1/2.
This observation leads to a compromise between the temporal resolution and the
frequential resolution. The localization in time–frequency can be reached only in
standard deviation (or variance). This localization is representable by the Heisen-
berg box. However, it will be noted that the limit σtσω = 1/2 is reached only if
the window is Gaussian. The Gaussian, Hamming, Hanning, Blackman windows
obviously have very close structures, but nevertheless different. The following table
gives the values of parameters which were presented in the previous section for
traditional windows, normalized so that g(0) = 1.

Window g(t) Δω Amax (dB)

Rectangular grec(t) = 1, 0.89 −13
Gaussian gg(x) = exp(−18t2), 1.55 −55
Hamming ghm(t) = 0.54 + 0.46.cos(2πt), 1.36 −43
Hanning ghn(x) = cos2(πt), 1.44 −32
Blackman gb(x) = 0.42 + 0.5.cos(2πt)+ 0.08.cos(4πt). 1.68 −58

Amax is the maximum amplitude measured in decibels (dB) and Δω the bandwidth.
Hereafter their graphs (the rectangular window is not represented) (Fig. 5.24).
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Fig. 5.24 Four windows on the support: [−0.5,0.5]
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5.11.2 Elements of Wiener Spectral Theory and Extensions

In this section we consider the time–frequency analysis for signals of dimension one
and we present basic tools. These tools are particularly interesting for the special-
ists who work on random or noized (disturbed) signals with possible non-stationary
characteristics. These subjects can also concern the statisticians who usually are
rarely involved in the spectral time series analysis. The utilization of wavelet bases
is increasingly widespread and many applications in particular in engineering have
tried to exploit the continuous Gabor transforms or the wavelet transforms with sta-
tistical goals. It could be a question of detecting, denoizing or reconstruction of sig-
nals and more important to carry out the spectral analysis of non-stationary signals.
It seems that the statisticians did not share yet the benefit of this type of work.

The traditional spectral analysis of stationary processes (random or determinis-
tic) constitutes the hard core of the analysis. But, a very particular interest can be
granted to the sampling of stationary or non-stationary continuous signals within
the framework of time–frequency representations. One of the important questions is
to apprehend the time–frequency representations resulting from the Gabor transfor-
mations and wavelet transform. Their potential is vast but still requires an academic
validation.

A synthetic work has been presented in 1998 by R. Carmona, W.L. Hwang and
B. Torrésani (Carmona et al. 1998). This work tries to establish the link between
the contribution of this type of analysis and their statistical interest. Moreover, the
authors believe in the capacity of these methods to provide tools with advantages
and varied talents for the spectral analysis of non-stationary signals. Unfortunately,
the corresponding statistical theory is not completely developed yet. The authors
revisit in their works the traditional elements of the spectral theory of stationary
random processes in the light of these new tools.

5.11.2.1 Wiener’s Deterministic (Classical) Spectral Theory

This theory of deterministic signals is a set of mathematical concepts which are
presented in the sub-sections which follow. First, one considers continuous signals.
Let us consider a function f , one can write the autocovariance function Cf (τ) of f
for all τ, as follows:

Cf (τ) = lim
T→∞

1
2T

∫ +T

−T
f (x + τ) f (x)dx. (5.90)

Its value at the origin is written:

Cf (0) = lim
T→∞

1
2T

∫ +T

−T
f (x)2dx. (5.91)

This value at the origin is called the power of the signal f , which is finite. The
function of autocovariance of a signal with real values makes it possible to write
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also Cf (τ) = Cf (−τ). If one confines oneself with a class of function f with finite
power and possibly complex valued, it comes:

Cf (0) = lim
T→∞

1
2T

∫ +T

−T

∣
∣ f (x)2∣∣dx. (5.92)

And if this value exists, then one can write the inner product of two functions:

〈 f ,g〉= lim
T→∞

1
2T

∫ +T

−T
f (x)g(x)dx. (5.93)

And the Schwartz inequality is written:
∣
∣Cf (τ)

∣
∣≤Cf (0). (5.94)

The autocovariance is defined as non-negative:

∑n
j,k=1 z jzkCf (x j− xk)≥ 0 (5.95)

whatsoever the choice of the complex numbers z j and elements x j. This equation
implies the existence of non-negative finite measurements ν f satisfying:28

Cf (τ) =
1

2π

∫ +∞

−∞
eiτων f dω . (5.96)

The measure ν f is called the spectral measure of the signal f . The spectral analysis
of a signal f consists in finding the properties of this measure. In general, when we
speak of measurements, we are interested in the significance of non-negative finite
measurement. The following stage relates to the Lebesgue decomposition into three
elements of this measurement, which is written:

ν f = ν f ,pp +ν f ,sc +ν f ,ac, (5.97)

• ν f ,pp is a pure point measure (i.e. a weighted sum of Dirac point masses).
• ν f ,sc is a singular, i.e. concentrated on a set of Lebesgue measure zero, and con-

tinuous because ν f ,sc({ω}) = 0 for any singleton ω measure. Thus ν f ,sc is a
continuous singular.

• ν f ,ac is absolutely continuous, i.e. is given by a density with respect to the
Lebesgue measure, i.e. dν f ,ac(ω) = ν f ,ac(ω)dω , for some non-negative inte-
grable functions ν f .

In a similar way, the Lebesgue decomposition of the spectral measure provides a
decomposition of the autocovariance function, such that:

Cf = Cf ,pp +Cf ,sc +Cf ,ac (5.98)

28 Theorem (Bochner’s theorem). Among the continuous functions on R
n, the positive definite

functions are those functions which are the Fourier transforms of finite measures.
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with

Cf , ..(τ) =
∫ +∞

−∞
eiτων f ,..(dτ). (5.99)

This decomposition means that the signal can be understood as the sum of three
orthogonal signals, i.e. uncorrelated, with pure spectra given by the components of
original spectral components in the Lebesgue decomposition (Carmona et al. 1998).
The following function ρ f (ω) = ν f ({ω}) is called the spectral mass function, and
the density ν f ,ac(ω) is called the spectral density function. The interpretation of the
component Cf ,sc of the covariance is difficult. However, in practice this component
relative to a measure ν f ,sc is rare and usually is equal to zero: ν f ,sc = 0. The measure
ν f ,pp is written:

ν f ,pp =∑
k
ρkδωk, (5.100)

considering the non-negative weights ρk = ρ f (ωk) and the possibly unit point
masses δωk, then the pure point part of the autocovariance function has the fol-
lowing form of a potentially complex trigonometrical polynomial when the number
of frequencies ωk is finite,

Cf ,pp(τ) =
1

2π ∑k
ρkeiωkτ (5.101)

and it has generally the form of an almost periodic function. It will be noted that:
1

2π ∑k ρk = Cf ,pp(0) < +∞.

Case of the Spectrum of an Almost Periodic Function

If one considers an almost periodic function of the following form:

f (x) =∑+∞
j=−∞ c jeiλ jx (5.102)

λ j are distinct real numbers and the coefficients c j are potentially complex numbers,
satisfying:

∑+∞
j=−∞
∣
∣c j
∣
∣2 < ∞. (5.103)

One can write:
Cf (τ) =∑+∞

j=−∞
∣
∣c j
∣
∣2 eiλ jτ , (5.104)

this formula expresses that the autocovariance function is a pure point, which means
that Cf ,sc(τ) = Cf ,ac(τ) = 0, and the spectrum is concentrated on a set of λ j. Thus,
the spectral mass function ρ f (ω) can be written:

ρ f (ω) =
{∣
∣c j
∣
∣2 if ω = λ j,

0 otherwise.
(5.105)
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It is highlighted that there is an information loss of phases. That means that the
autocovariance function Cf (τ) is only a function of the modulus of the coefficient
c j (i.e.

∣
∣c j
∣
∣2) and the arguments of these complex numbers cannot be obtained from

the knowledge of the spectrum. (Because “these phases values measure the dis-
placements of harmonic components relative to a fixed time origin, and they cannot
be retained by the spectral analysis because the latter is based on a definition of
the autocovariance function which wipes out any natural notion of time origin”
[Carmona et al. 1998, p. 44].)

The Wiener Theory is Extended to Random Signals

The Wiener theory is extended to random signals if the limit defining the auto-
covariance function Cf (τ) = lim

T→∞
1

2T
∫+T
−T f (x + τ) f (x)dx exists and if the limit is

non-random. This is indeed the case for ergodic and stationary processes. But spec-
tral theory of these processes has advantages which exceed the spectral Wiener
theory of deterministic signals considered previously.

Indeed, it admits a representation of a signal as a random superposition of
complex exponentials and this representation is very important in spectral anal-
ysis of these random signals (Carmona et al. 1998, pp. 74–79). But there is no
decomposition adapted in the Wiener theory of deterministic signals.

5.11.2.2 Extensions: Deterministic Spectral Theory for Time Series

Note that this type of analysis could be illustrated by taking for example time series
resulting from stock exchange or financial markets.29

Correlogram and Memory of a Series

In this section, let us consider the finite time series

f = { f0, f1, . . . , fN−1} (5.106)

of real numbers and it is discussed, in different ways, of quantifying the statistical
correlations between the successive values of the f j . The most used dependence
measure is the sample autocovariance function, defined as follows:

c f ( j) =
1
N

N−1−| j|
∑

K=0

(
fk− f̄

)(
fk+| j| − f̄

)
, (a)

29 It is in particular about the evolution of the logarithms of the prices of a “futures” contracts of
Japanese yen that R. Carmona, W.L. Hwang and B. Torrésani develop their argument.



392 5 Spectral and Time–Frequency Analyses and Signal Processing

where f̄ is the average of the sample which is simply written:

f̄ =
1
N

N−1

∑
j=0

f j. (5.107)

The writing (a) of the autocovariance function above is usually preferred to the
following writing (b):

c̃ f ( j) =
1

N−| j|
N−1−| j|
∑

K=0

(
fk− f̄

)(
fk+| j| − f̄

)
=

N
N−| j|c f ( j). (b)

j in the expression above is considered as a lag and often corresponds to non-
negative values. From this autocovariance function we are led to the notion of
sample autocorrelation function of the signal f , which is written:

ρ f ( j) =
c f ( j)
c f (0)

=
∑N−1− j

j′=0

(
f j′ − f̄

)(
f j+ j′ − f̄

)

∑N−1− j
j′=0

(
f j′ − f̄

)2 , j = 0,1, . . . ,N−1. (c)

The graph of the autocorrelation function ρ f ( j) of j is called a correlogram. (The
maximum lag corresponds to N−1, even if we use, in practice, values which usually
are much smaller.) Commonly, it is said that a series has a “long memory” when
the correlogram decreases slowly, and it said that a series has a short memory
when the correlogram decrease quickly. However when the series is “detrended”
by differentiation for example, the phenomenon of long memory disappears and
different new correlograms take place. The correlograms of stock exchange indexes
on the long term generally highlight these phenomena of long memories where a
slow decrease of correlograms is observed.

5.11.2.3 Periodogram: Interpretations

The objective of spectral theory is to represent a signal as a sum of trigonomet-
ric functions with specific phases and amplitudes. All the phases involved in the
representation are called the spectrum of the series and the size of amplitudes is
summarized in what is usually called the periodogram. If one quickly points out the
expression of the discrete Fourier transform (DFT) one writes

f̂ j =
N−1

∑
k=0

f je−2iπ jωk , k = 0,1, . . . ,N−1, (5.108)

ωk is the natural frequencyωk = k/N. Usually in the Fourier transform it is ξ which
is equivalent to the relation: ξ = 2πω . It is also pointed out that the original signal
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can be reconstituted from an inverse Fourier transform:

f j =
1
N

N−1

∑
k=0

f̂ je2iπ jωk , k = 0,1, . . . ,N−1, (5.109)

the inversion formula above expresses that any finite series f can be written as a
linear combination of complex exponentials. From this decomposition, in particular
when the original series is real, one can write that: ak = 1

N R f̂k and bk = 1
N I f̂k.

Moreover, we have:30

f j− f̄ =
N−1

∑
k=2

e j(k), (5.110)

the trigonometric functions e j are defined by

e j(k) = rk cos(2π jωk−ϕk), (5.111)

and rk =
√

a2
k + b2

k, ϕk = tan−1(bk/ak). Thus, k = 1, . . . ,N/2, and we have

ak = aN−k and bk =−bN−k, (5.112)

and then,
r2

k = r2
N−k and e j(k) = e j(N− k). (5.113)

What precedes implies the following trigonometrical representation:

f j− f̄ =

⎧
⎨

⎩

2∑N/2
k=1 rk cos(2π jωk) if N odd,

2∑(N/2)−1
k=1 rk cos(2π jωk)+ rN/2 cos(2π jωN/2) if N even.

The purpose of the equation above is to “untangle the dependence among the com-
plex exponentials appearing in the inverse Fourier transform”. Such a dependence
is not present any more in the equation above because the trigonometric functions
e j(k) = rk cos(2π jωk) appearing in the function above are mutually orthogonal.
As expressed previously, any series f can be written as a sum of cosine func-
tions of frequencies ω1 = 1/N,ω2 = 1/N, . . . ,ωN/2 = (N/2)/N. (Remember that

r2
k = 1

N2

∣
∣
∣∑N−1

j=0 f je−2iπ jωk

∣
∣
∣
2
, with k = 0,1, . . . ,N/2 and ωk = k/N.) The graph of

Nr2
k

for ωk is called the periodogram of the series f , and the function ν f (ω) defined
for ω ∈ [0,1], by:

ν f (ω) =
1
N

∣
∣
∣
∣
∣

N−1

∑
j=0

f je−2iπ jω

∣
∣
∣
∣
∣

2

: Sample spectral density (d)

considering ω ∈ [0,1/2] and ν f (ω) = ν f (1− ω), considering ω ∈ [1/2,1] this
expression is called the “sample spectral density” of f . Often some values of rk are

30 Note that a1 = f̄ and b1 = 0.
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very large compared with the others, it is one of the reasons which creates difficul-
ties to analyze the information contained in the periodogram. However to represent
the logarithm of the values r2

k , instead of the values themselves, helps to see more
elements relating to the frequencies. Furthermore, we have:

1
N

N−1

∑
j=1

Nr2
k

σ2 = 1. (5.114)

If σ2 is expressed as a variance

σ2 =
1
N

N−1

∑
j=0

( f j− f̄ )2, (5.115)

then in practice we have more graphic information about the contents of the set of
frequencies, it is represented graphically as follows:

[

Log
(

Nr2
k

σ2

)

against ωk

]

. (5.116)

The remarks which follow are useful for the interpretation of periodograms, which
are:

• “Smooth” when the amplitudes of cosine functions of low frequencies are large
compared with the other frequencies.

• “Erratic” when the amplitudes of cosine functions of high frequencies are large
compared with the other frequencies.

• With a “peak” at the frequency ω when the signal is a cosine or a sine function
of period 1/ω .

• With a “peak” at the frequency ω and “peaks” at multiple frequencies of ω
(harmonic) when the signal is a periodic function of period 1/ω without being a
sine or cosine function.

Comments on the Comparison Between Correlogram and Periodogram

Usually a debate is open between the two possible definitions [(a) or (b)] seen previ-
ously of the autocovariance function of finite time series. The two definitions differ
only when the size N of the data is large, however one can choose. The second def-
inition c̃ f (corresponding to the equation (b)) is adapted to the point of view of the
statistical analysis in particular when samples f j of random variables form a station-
ary stochastic process. This second definition provides an unbiased estimation of the
true autocovariance function. But it is generally (a), the first definition c f which is
selected as the autocovariance function. Usually one chooses this definition because
(except for the particular cases for which all the f j are equal to each other): the
sequence c f =

{
c f ( j)
}

j defined by c f ( j) = 1
N ∑N−1−| j|

K=0

(
fk− f̄

)(
fk+| j| − f̄

)
when
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| j| < N and 0 otherwise the sequence is defined non-negative. Which implies due
to the Bochner’s theorem31 the existence of a finite non-negative measure ν f on
[0,1] whose Fourier transform is the sequence c f (such a measure is absolutely
continuous). One writes this density ν f (ω)

ν f (ω) =
N−1

∑
j=−(N−1)

c f ( j)e2iπ jω , ω ∈ [0,1]. (5.117)

Such a ν f (ω) is called the spectral density due to the fact that it is equal to the quan-
tity defined previously having the same name. One can use simple trigonometrical
handling to show that the function ν f (ω) defined above satisfied:

ν f (ω) =
1
N

∣
∣
∣
∣
∣

N−1

∑
j=0

f je−2iπ jω

∣
∣
∣
∣
∣

2

. (5.118)

That means that the autocovariance function c f and the spectral density ν f (ω)
form a “Fourier pair”, because they are Fourier transforms the one each other.
This correspondence is of a quite essential interest.

5.11.2.4 Remark About the Non-Parametric Spectral Estimation:
Case of the Non-Stationary Process Locally Stationary

If a stochastic process is stationary, then its autocovariance defines what is called a
convolution operator which is diagonalized by Fourier expansions. It is one of the
starting points of all the non-parametric spectral estimation methods. In a number
of practical situations, the function of autocovariance does not allow to see a convo-
lution operator and the problem of the spectral estimation cannot be solved by the
standard Fourier analysis. The stationarity may be broken in various manners. One
can give two examples of time–frequency or time-scale representations to illustrate
the subject:

• The first example is the case of “locally stationary process”, i.e. processes for
which there is a local spectrum varying slowly. In such case the time–frequency
representations provide efficient tools for these local spectral estimation subjects.

• The second example is the case of self-similar process such as fractional Brow-
nian motions which can have stationary increases, and after the wavelets trans-
form the non-stationarities disappear.

31 Theorem (Bochner theorem). Among the continuous functions on R
n, the positive definite

functions are those functions which are the Fourier transform of finite measures.
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5.11.2.5 Spectral Theory of Stationary Random Processes

Stationary Processes

Consider a signal made up of real numbers such as: f = { f0, f1, . . . , fN−1} , this sig-
nal is random if the numbers f j can be regarded as results of a finite sequence of
random variables. An example is provided through observations of a deterministic
signal in the presence of additional noise: signal + noise. Consequently, the obser-
vations can be written in the following way:

f j = f ∗j + ε j (5.119)

where f ∗j =
{

f ∗0 , f ∗1 , . . . , f ∗N−1
}

is of “deterministic origin” and ε = {ε0,ε1, . . . ,εN−1}
is the “noise perturbation”. The field of the random series searches to develop tools
to carry out forecasts from observed time series. The usual methods use models
made by series generators and the majority of these models is based on the notion
of temporal homogeneity of signals. This notion is regarded as relative to the sta-
tionnarity. The following lines provide some elements of the theory of stationary
processes, but it is important to say that generally the most interesting signals
are non-stationary and for these signals the theory is inoperative. (It will be also
noticed that beyond the non-stationarity, the majority of complex signals are rather
non-Gaussian.)

The most adapted way to analyze the finite signals is to regard the set of N sam-
ples of f j as a part of a doubly infinite sequence . . . f−1, f0, f1, . . . which can be seen
as a set of regular samples which comes from a continuous signal but discretized.
In fact, one supposes that there is a function f of a continuous variable x ∈ R, such
that:

f j = f (x j), with j = 0,1, . . . ,N−1 (5.120)

the x j corresponds to the time at which the measurements are made. One considers
the regular samples provided by the observations at times x j = x0 + jΔx for an fixed
sampling interval Δx which allows to sample the signal. One can define the concept
of stationnarity in the following way:

Stationarity in the Strict Sense

A random signal f = { f (x); x ∈ R} is stationary in the strict sense if for any choice
x and x1 < · · ·< xk of real numbers, the random vectors:

[ f (x1), . . . , f (xk)] and [ f (x1 + x), . . . , f (xk + x)] (5.121)

have the same distribution in R
k (or in C

k if it is a complex signal). Any statistic
obtained by translation or shift of such random processes is invariant. One can say
that the first moment m(x) = E { f (x)} is constant and independent of the variable x.

Considering the case of a finite signal, the stationnarity can be defined without
the notion of continuous variables functions. Thus, it is written that a random signal
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f = { f0, f1, . . . , fN−1} is known as stationary if for any choice of j and j1 < · · ·< jk
of integers in {0,1, . . . ,N−1} , the following random vectors

{
f j1 , . . . , f jk

}
and

{
f j1+ j, . . . , f jk+ j

}
(5.122)

take advantage of the same distribution in R
k or in C

k for the complex signals.32

If one considers the case of a signal to which one adds a noise as previously: f j =
f ∗j + ε j, the stationarity hypothesis is satisfied for the noise component, i.e. for ε =
{ε0,ε1, . . . ,εN−1} , but if f ∗ =

{
f ∗0 , f ∗1 , . . . , f ∗N−1

}
is not constant, the stationarity

cannot be proved for the other component f = { f0, f1, . . . , fN−1}.

Stationarity in the Wide Sense

There exists a weaker definition of the stationarity. Consider a random process f =
{ f (x);x ∈ R} of order 2 (for a continuous variable x), that means that all the random
variables f (x) are square integrables. This random process is known as stationary
in the wide sense if

mf (x) = E { f (x)} (5.123)

is independent of x, that means m f (x) = m for constant m, and if its autocovariance

Cf (y,x) = E
{
( f (y)−m)( f (x)−m)

}
(5.124)

is a function of the difference (y− x), i.e. for a one-variable non-negative function
noted Cf , if:

Cf (y,x) = Cf (y− x). (5.125)

By means of the Bochner theorem it is possible to say that there exists a non-negative
finite measure ν f on R which satisfies the definition Cf (τ) = 1

2π
∫+∞
−∞ eiτων f dω .

This measure ν f is called the spectral measure of the stationary process f =
{ f (x);x ∈ R}. The expression Cf (τ) = 1

2π
∫+∞
−∞ eiτων f dω allows to say that the

covariance function Cf is the Fourier transform of the spectral measure v f .
Usually, the covariance function Cf is integrable on R, then it is possible to intro-

duce the spectral measure without the Bochner theorem. Thus, the following Fourier
transformation (under the integrability condition) is defined as a function on R:

ϑ f (ξ ) =
∫

Cf (x)e−ixξ dξ . (5.126)

Because of the autocovariance function Cf is defined non-negative, the function ν f
is non-negative. This can be called the spectral function or spectral density.33 The

32 The addition of integers is understood as mod N.
33 It is the density of the spectral measure which is possible by means of the Bochner theorem
because of ν f (dξ ) = ν f (ξ )dξ , and which allows the utilization of the same notation to express
the spectral measure and the spectral function.
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autocorrelation function ρ f defined as follows

ρ f (y,x) =
Cf

(Cf (y,y))1/2(Cf (x,x))1/2 (5.127)

is also written as a function of the difference (y− x) when the process is stationary,
and in such a case there is ρ f (y,x) = ρ f (y− x) with:

ρ f (y− x) =
Cf (y− x)

Cf (0)
. (5.128)

In a similar way, it is possible to provide a definition of the stationarity in the wide
sense for the finite random signals. In all these approaches it is always assumed that
the average of a stationary signal in the wide sense is zero.

Comparison with the Wiener Spectral Theory

It is interesting to compare the elements of the spectral theory of this type of process
with the Wiener spectral theory, presented previously. Ergodic theorem34 explains
that the limit:

Cf (τ) = lim
T→∞

1
2T

∫ +T

−T
f (x + τ) f (x)dx (5.129)

exists, if f is a stationary process. Furthermore, if the process f is Ergodic,
i.e. if the shift-invariant functions of signal are constant, the limit above results
from an almost sure convergence, and is deterministic, and is equivalent to the
autocovariance Cf (τ) seen previously defined when y = x + τ, as follows:

Cf (y,x) = E
{
( f (y)−m)( f (x)−m)

}
(5.130)

and
Cf (y,x) = Cf (y− x). (5.131)

That means that the “Spectral theory of stationary processes contains the Wiener
theory when the analyzed processes are Ergodic”. (“It is known that the esti-
mates calculated from f̄ = 1

N ∑N−1
j=0 f j or from the sample autocovariance function

c f ( j) = 1
N ∑N−1−| j|

K=0

(
fk− f̄

)(
fk+| j| − f̄

)
or from the sample autocorrelation func-

tion ρ f ( j) = c f ( j)
c f (0) =

∑N−1− j
j′=0

(
f j′ − f̄

)(
f j+ j′ − f̄

)

∑N−1− j
j′=0

(
f j′− f̄

)2 are estimations of their theoretical

counterparts: m, Cf , and ρ f ”.)

34 Regarded as a generalization of the law of large numbers.
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5.12 The Construction of Orthonormal Bases and Riesz Bases

5.12.1 Signal of Finite Energy

The time series or signals are often regarded as vectors, and can also be regarded
as measurable functions. Then, one poses the integration Lebesgue theorem, which
explains that a function f is integrable, if f is of finite energy:

f +∞
−∞ | f (t)|dt < +∞. (5.132)

The space of integrable functions is noted L1(R) if f +∞
−∞ | f1(t)− f2(t)|dt = 0. This

means that f1 and f2 can differ only on a set of points of measure zero. Roughly, it
is said that they are equal almost everywhere. Moreover, the time series or signals
which are the subject of transformations in the time–frequency planes are offered
to the handling of scientists who practise the signal processing and define a metric
and exploit the properties of vector spaces. The concepts of distance, norm, conver-
gence, integration, orthogonality, projection, basis, are largely used and enriched.

5.12.2 Reminders: Norms and Banach Spaces

Banach space: A complete normed vector space, i.e. a normed space in which any
Cauchy sequence converges, is called Banach space. In order to define a distance
we work inside a vector space H which admits a norm. The properties of a norm are
the following:

∀ f ∈ H,‖ f‖ ≥ 0 and ‖ f‖ = 0⇔ f = 0, (5.133)
∀λ ∈ C‖λ f‖= |λ |‖ f‖ , (5.134)

∀ f ,g ∈ H,‖ f + g‖ ≤ ‖ f‖+‖g‖ . (5.135)

With such a norm, the convergence of a family (or sequence) of positive functions
{ fn}n∈N towards f in H means that:

lim
n→+∞

fn = f ⇔ lim
n→+∞

‖ fn− f‖= 0. (5.136)

One can impose a complete state of properties using the Cauchy sequence. A family
or sequence { fn}n∈N is a Cauchy sequence if for all ε > 0, if n and p are large
enough, then

∥
∥ fn− fp

∥
∥ < ε . The vector space H is said complete if any Cauchy

sequence in H converges towards an element of H. One can evoke the particular
case of a space LP(R). The space LP(R) is composed of measurable functions on
R for which:

‖ f‖p =
(∫ +∞

−∞
| f (t)|p dt

)1/p

< +∞. (5.137)

LP is a Banach space and the integral above determines a norm.
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5.12.3 Reminders: Inner Products and Hilbert Spaces

A Hilbert space is a space on R or C, provided with a scalar product whose asso-
ciated normed space is complete. The elements of these spaces historically were
functions coming from the formalization of oscillatory phenomena and from the
calculus of variations where the searched solutions (generally integrals) appear as
sums of a series of functions, often trigonometric, which one approaches by orthog-
onal polynomials for a scalar product. A complete prehilbert space (for the norm
associated with the scalar product) is called Hilbert space.

The Hilbert space is a Banach space provided with an inner product. The inner
product of two vectors 〈 f ,g〉 is linear and respects:

∀λ1,λ2 ∈ C,〈λ1 f1 +λ2 f2,g〉= λ1 〈 f1,g〉+λ2 〈 f2,g〉 . (5.138)

And there is an Hermitian symmetry:35

〈 f ,g〉= 〈g, f 〉∗ (5.139)

Moreover, 〈 f , f 〉 ≥ 0 and 〈 f , f 〉 = 0 ⇔ f = 0. It can be also shown that ‖ f‖ =
〈 f , f 〉1/2 is a norm. The inequality of Cauchy–Schwarz can be also shown:

|〈 f ,g〉| ≤ ‖ f‖‖g‖ , (5.140)

and if f and g are linearly independent, there is the following equality:

|〈 f ,g〉|= ‖ f‖‖g‖ . (5.141)

5.12.4 Orthonormal Basis

Orthogonal vectors: A family of vector noted {en}n∈N of a Hilbert space is orthog-
onal if for n �= p: 〈

en,ep
〉

= 0. (5.142)

(It will be noted that from a statistical point of view, two orthogonal vectors are
uncorrelated.)
Orthogonal basis: If for f ∈H, there exists a sequence λ [n] such that:36

lim
N→+∞

∥
∥
∥
∥
∥

f −
N

∑
n=0

λ [n]en

∥
∥
∥
∥
∥

= 0, (5.143)

35 Property of Hermitian symmetry: For f (t) ∈ R, on the Fourier transform we obtain: f̂ (−ω) =
f̂ ∗(ω).
Property of complex conjugates: For f ∗(t), on the Fourier transform we obtain: f̂ ∗(−ω).
36 λ [n]: Corresponds to a discrete sequence.
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then {en}n∈N is an orthogonal basis of H. The orthogonality implies that (λ [n] is a
sequence):

λ [n] =
〈 f ,en〉
‖en‖2 , (5.144)

and one can write:

f =
+∞

∑
n=0

〈 f ,en〉
‖en‖2 en. (5.145)

The basis is orthonormal if ‖en‖ = 1 for any n ∈ N. If one calculates the inner
product of g ∈H with the Parseval equation for orthonormal bases:

〈 f ,g〉=
+∞

∑
n=0
〈 f ,en〉〈 f ,en〉∗ . (5.146)

When g = f , one obtains an Energy Conservation derived from the Plancherel
formula:

‖ f‖2 =
+∞

∑
n=0
|〈 f ,en〉|2 . (5.147)

It is possible to construct orthonormal bases by means of local cosine (or sine)
functions and wavelets or wavelet packets.

5.12.5 Riesz Basis, Dual Family and Biorthogonality

A Riesz basis: A family of vectors denoted {en}n∈N is a Riesz basis of the Hilbert
space H, if it is linearly independent and if there exists A > 0 and B > 0 such that
for any f ∈ H. It is possible to find a sequence λ [n] with f = ∑+∞

n=0λ [n]en, which
satisfies

1
B
‖ f‖2 ≤∑

n
|λ [n]|2 ≤ 1

A
‖ f‖2 . (5.148)

The Riesz theorem proves that there exists ẽn such that λ [n] = 〈 f , ẽn〉 , and further-

more the preceding inequations
1
B
‖ f‖2 ≤ ∑n |λ [n]|2 ≤ 1

A
‖ f‖2 implies:

1
B
‖ f‖2 ≤∑

n
|〈 f , ẽn〉|2 ≤ 1

A
‖ f‖2 . (5.149)

Moreover, it is also possible to write that for any f ∈H,

A‖ f‖2 ≤∑
n
|〈 f ,en〉|2 ≤ B‖ f‖2 , (5.150)

And

f =
+∞

∑
n=0
〈 f , ẽn〉en =

+∞

∑
n=0
〈 f ,en〉 ẽn, (5.151)
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{ẽn}n∈N is a linearly independent dual family and is also a Riesz basis. If for example
f = es, we have es = ∑+∞

n=0 〈es, ẽn〉en. The linear independence of {en}n∈N implies a
biorthogonality of dual bases, which are called biorthogonal bases:

〈en, ẽs〉= δ [n− s]. (5.152)

5.12.6 Orthogonal Projection

Let V be a subspace of the space H. A projector PV on V is a linear operator which
satisfies:

∀ f ∈H,PV f ∈ V and ∀ f ∈ V, PV f = f . (5.153)

The projector PV is orthogonal if:

∀ f ∈H,∀g ∈ V, 〈 f −PV f ,g〉 = 0. (5.154)

The following properties of projectors can be proposed:

• If {en}n∈N is an orthogonal basis of V, then we have:

PV f =
+∞

∑
n=0

〈 f ,en〉
‖en‖2 en. (5.155)

• If {en}n∈N is a Riesz basis of V and {ẽn}n∈N is the orthogonal basis then we
have:

PV f =
+∞

∑
n=0
〈 f ,en〉 ẽn =

+∞

∑
n=0
〈 f , ẽn〉en. (5.156)

5.12.7 The Construction of Orthonormal Basis and Calculation
of the “Detail” Coefficient on Dyadic Scale

Subsequently, it will be developed the notions of orthonormal basis, Fourier basis
and wavelet basis, which are fundamental in the time–frequency analysis, but before
to familiarize with this notion, one shows quickly how to build a basis from a
dyadic scale. Let ψ(t) be a wavelet whose dilations and translations generate an
orthonormal basis of L2(R):

{

ψ j,n(t) =
1√
2 j
ψ
(

t−2 jn
2 j

)}

( j,n)∈Z2
. (5.157)
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All the signals of finite energy can be decomposed on this type of wavelet basis
{ψ j,n(t)}( j,n)∈Z2 , which is written:

f =
+∞

∑
j=−∞

+∞

∑
n=−∞

〈
f ,ψ j,n

〉
ψ j,n. (5.158)

We know that ψ(t) has a zero-integral or a zero-average and we can write:

d j(t) =
+∞

∑
n=−∞

〈
f ,ψ j,n

〉
ψ j,n(t), (5.159)

which corresponds to the variations of “detail” at a dyadic scale 2 j. The approxi-
mation of f is constructed from the addition of these variations of detail on each
scale, whose sum allows to reconstruct the signal f . Note that if the signal has
structures rather smooth, one can then approach the signal with an approxima-
tion from which the “details” at fine scale have been removed, thus the writing of
f = ∑+∞

j=−∞∑
+∞
n=−∞
〈

f ,ψ j,n
〉
ψ j,n becomes:

fJ(t) =
+∞

∑
j=J

d j(t). (5.160)

5.13 Concept of Frames

Before quickly presenting the concept of frames, it seemed fundamental to re-
introduce two elements of the Fourier theory, without which (even reduced to their
rudiments) the time–frequency analysis and the wavelet analysis seem difficult or
even impossible to understand. These elements are the Fourier transform in L2 and
the Parseval and Plancherel formulas that one has for the latter already mentioned.

5.13.1 The Fourier Transform in L2(R)

Briefly, remember that the following spaces correspond to the respective functions
or associated signals:

• L2(R): Finite energy functions:
∫ | f (t)|2 dt < +∞. And consequently is the space

of integrable square functions.
• LP(R): Functions such that

∫ | f (t)|p dt < +∞.
• l2(Z): Discrete finite energy signals: ∑+∞

n=−∞ | f (t)|2 < +∞.
• lP(Z): Discrete signals such that: ∑+∞

n=−∞ | f (t)|p < +∞.
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5.13.1.1 Convergence Limit of Fourier Transform of Function in L1(R)

As seen several times, the Fourier transform of a function f (t) is carried out by the
integration of the function f and trigonometric functions e−iωt . The latter are used
to decompose and rewrite the studied function into a sum of sine curves, whose
transformation in the Fourier space provides Fourier coefficients, which characterize
the studied function in the space of the frequencies (ω). In other words, the number
of sine or cosine functions and their respective frequencies define f . The Fourier
transform is written:

f̂ (ω) =
∫ +∞

−∞
f (t)e−iωt dt. (5.161)

If the function f is integrable (i.e. if f is of finite energy f +∞
−∞ | f (t)|dt < +∞),

i.e. if f ∈ L1(R), then there exists a bound for the Fourier transform, i.e. there is
convergence:

∣
∣
∣ f̂ (ω)

∣
∣
∣≤
∫ +∞

−∞
| f (t)|dt < +∞. (5.162)

Thus, the Fourier transform through the absolute value
∣
∣
∣ f̂ (ω)

∣
∣
∣ is bounded by the

finite integral of the absolute value of the function f :
∫ +∞

−∞
| f (t)|dt. (5.163)

5.13.1.2 Fourier Transform in the Space L2(R) of Square Integrable
Functions

Certain functions are not integrable, because they are not continuous. This case is
not rare and can also be transposed to signals themselves; discontinuities or sin-
gularities can create problems concerning the integrability of a function and by
extension of a signal. A non-integrable function f is not continuous, however its
square is integrable. One can for example evoke the indicator function which is
non-continuous.37 This is on the base of this observation that the Fourier transform
of integrable functions (and thus continuous) is extended to the Fourier transform
of square integrable functions, in order to compensate the difficulties related to
problems of discontinuities. The extension of the Fourier transform is done in the
space L2(R) of finite energy functions

∫ +∞
−∞ | f (t)|dt < +∞ which is also the space

of square integrable functions. Consequently, we are located in the Hilbert space,
where we can be endowed with an inner product and a norm. It is pointed out that
the inner product of f and g belonging to L2(R) is written

〈 f ,g〉=
∫ +∞

−∞
f (t)g∗(t)dt, (5.164)

37 Example. The Fourier transform of indicator function: f = 1[−1,1] is written as a multiple of
cardinal sine: f̂ (ω) =

∫ +1
−1 e−iωt dt = (2sin(ω))/ω.
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and that the norm in the Hilbert space L2(R) is:

‖ f‖2 = 〈 f , f 〉 =
∫ +∞

−∞
| f (t)|2 dt. (5.165)

5.13.1.3 Parseval and Plancherel Formulas: Norm and Inner Product are
Conserved by the Fourier Transform up to a Factor of 2π

Theorem 5.4 (Parseval and Plancherel transfer formulas). If f and g belong to
L1(R)∩L2(R), then

∫ +∞

−∞
f (t)g(t)dt =

1
2π

∫ +∞

−∞
f̂ (ω)ĝ∗(ω)dω , (5.166)

which is the Parseval formula. When f = g, it follows the well-known Plancherel
formula: ∫ +∞

−∞
| f (t)|2 dt =

1
2π

∫ +∞

−∞

∣
∣
∣ f̂ (ω)

∣
∣
∣
2

dω . (5.167)

5.13.2 Frames

The frames provide a stable and possibly redundant representation of a signal. The
frames are a generalization of the basic notion of a vector space. A frame is a family
of vectors which allows to represent any signal (L2) by its scalar products with these
vectors. The frames provide a discrete and redundant representation of the signal.

Definition 5.2 (Frame). A sequence38 {φn}n∈Γ (with the index n belonging to a
finite or infinite set noted: Γ) of vectors of a Hilbert space H is a frame of H if there
exist two constants A > 0 and B > 0 such that, for any f of H,

A‖ f‖2 ≤ ∑
n∈Γ
|〈 f ,φn〉|2 ≤ B‖ f‖2 , (5.168)

If A = B, it is said that the frame is tight.39 (A Riesz basis is a frame of independent
vectors.)

If the vectors of frame are independent, then A ≤ 1 ≤ B.40 The frame is an
orthonormal basis if and only if A = B = 1. If A > 1, the frame is redundant.

38 Or family of vectors.
39 Example. We are located in the plane and we consider a family of three unit vectors resulting
the ones from the others by rotation of the third of a turn. It forms a tight (adjusted) frame of the
plane, with A = B = 3/2.
40 It is taken vectors of frame normalized to 1.
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5.13.2.1 Windowed Fourier Frames and Fourier Atoms

It is pointed out that the windowed Fourier transform is written

〈
f ,gu,ξ

〉
=
∫ +∞

−∞
f (t)g(t−u)eiξ (t−u)dt. (5.169)

The atom used is a sinusoid multiplied by a window g. The family of vectors of the
analysis is obtained by translation and modulation of the window:

gu,ξ (t) = g(t−u)eiξ (t−u). (5.170)

This function is centered for the frequencies at ξ and symmetrical in relation to u.
The temporal standard deviation is constant. The standard deviation in frequency
is constant. The family is thus obtained by translation in time and frequency of a
single window. The Heisenberg boxes of windowed Fourier atoms have dimensions
independent of the center in time and frequency. A frame is obtained by covering
the time–frequency plane by discrete boxes. The grid used is uniform rectangular

To obtain a frame, the following condition on the paving (tiling) of the zone proves
to be necessary:

2π
u0ξ0

≥ 1. (5.171)

5.13.2.2 Frames of Wavelets and Atoms of Wavelets

One points out the writing of the wavelet transform

W f (u,s) = 〈 f ,ψu,s〉=
∫ +∞

−∞
f (t)

1√
s
ψ∗
(

t−u
s

)

dt, (5.172)

where the atom or the wavelet ψ is a function of zero average, centered at the neigh-
borhood of 0 and of finite energy. The family of vectors is obtained by translation
and dilation of the atom:

ψu,s(t) =
1√
s
ψ
(

t−u
s

)

. (5.173)
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This function is centered at the neighborhood of u, like the windowed Fourier atom.
If the center frequency of ψ is indicated by η , the center frequency of the dilated
function is in η/s. The standard deviation in time is proportional to s. The standard
deviation in frequency is inversely proportional to s. In order to obtain a complete
cover, the scale is sampled in an exponential way and denoted a j and the parameter
of translation is uniformly distributed u = nu0. The transform is written:

ψ j,n(t) =
1√
a j
ψ
(

t−nu0 a j

a j

)

. (5.174)

In order to pave the time–frequency plane with wavelet Heisenberg boxes, one
does not use a grid with fixed segmentation, but with time-segments inversely pro-
portional to the frequential segments, which are themselves proportional to the
scale.

The wavelet must satisfy the condition which follows:

∫ +∞

0

|ψ̂(ω)|
ω

dω < +∞ (5.175)

which guarantees the inversibility of the wavelet transform. One will refer to the
work of Daubechies or Mallat to know the necessary conditions to the construction
of a wavelet frame.

5.13.2.3 Frames and Bases of Time–Frequency Atoms

The windowed Fourier transform and the wavelet transform are written as inner
products in L2(R) with each one their time–frequency atom, that means respectively:

S f (u,ξ ) =
〈

f ,gu,ξ
〉

=
∫ +∞

−∞
f (t)g∗u,ξ (t)dt, (5.176)

W f (u,s) = 〈 f ,ψu,s〉=
∫ +∞

−∞
f (t)ψ∗u,s(t)dt. (5.177)
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Fig. 5.25 Tiling of the plane by time–frequency boxes of a wavelets basis

A signal can be reconstructed from linear combinations of windowed Fourier atoms
or wavelet atoms, which provide a complete representation of the signal. The frame
theory treats conditions of signal reconstructions, stability, completeness and elim-
ination of redundancies in the construction of bases, many notions which are the
subject of important developments of which we provided here only preliminary
elements.

5.13.3 Tiling of the Time–Frequency Plane by Fourier
and Wavelets Bases

A complete orthogonal wavelet basis allows the tiling by time–frequency boxes of
wavelets of the whole surface of the plane. Figure 5.25 illustrates this tiling of the
plane and highlights two wavelets boxes constructed from ψ j,n(t) and its translation
by 2 jn, i.e. ψ j+1,p(t), which contributes both to the cover of the plane. It is a simple
example and a multitude of possibilities is offered to us to cover the plane.

The cover of the time–frequency plane can be carried out from a Fourier basis of
local sinusoids (i.e. local cosine bases) (Fig. 5.26). At this stage, one utilizes Malvar
bases of local sinusoids, which are constructed with windows gp(t) on intervals
[ap,ap+1], that one multiplies by cosine functions of the type cos(λ t + φ) whose
frequencies vary. The set is thus written in the following way: [gp(t) · cos(λ t +φ)],
and allows to carry out translations through the axis of frequencies. The time axis
itself is divided by the intervals [ap,ap+1]. This method makes it possible to build a
basis of local cosines which divide the time axis by the windows gp(t).
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Fig. 5.26 Basis of local sinusoids which cover the time–frequency plane

5.14 Linear and Nonlinear Approximations of a Signal
by Projection on an Orthonormal Basis

5.14.1 General Framework of the Linear Approximation
and Karhunen–Loève Optimal Basis

Within the framework of the time–frequency analysis, a linear approximation con-
sists in projecting the studied signal f on M vectors (the M first) a priori selected in
an orthonormal basis {gm}m∈N. The projection, called the first M, is written:

fM =
M−1

∑
m=0

〈 f ,gm〉gm, (5.178)

and the approximation error is written as the square of the norm of the difference
between the signal and its approximation ( f − fM), or as the sum of the remaining
squared inner products:

Error = ‖ f − fM‖2 =
+∞

∑
m=M

|〈 f ,gm〉|2 . (5.179)

In a Fourier basis the reduction of the error is related to the general regularity
of the signal. A Fourier basis provides a good linear approximation of uniformly
smooth signals. They are projected on the M first low frequency sinusoids. The
linear approximations of these signals have the same properties in the Fourier or
wavelet bases.
Choice of an Optimal Basis: This choice consists in minimizing the approximation
error from a basis called “Karhunen–Loève basis”, which diagonalizes the covari-
ance matrix of the signal. (This method has to be connected with the projection
method of the Singular Spectrum Analysis described in the first part of this book
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which consists in operating a projection of the signal on the covariance matrix of
this signal.)

5.14.2 Nonlinear Approximation and Adaptive Basis Dependent
on the Signal: Regularity and Singularity

For nonlinear structures, the Karhunen–Loève basis is not suitable, it is indeed
rather simple to find bases which have errors of approximation smaller than that
of Karhunen–Loève. However, there is no in the nonlinear field standard procedure
to find an optimal basis as in the linear field. The approximation process is improved
by the (no longer “a priori” but) “a posteriori” choice of the M vectors of gm. These
M vectors are identified by their index which belongs to a set IM : m ∈ IM. The
choice of IM is crucial, it is done by taking the largest modulus of the inner product:
|〈 f ,gm〉|, i.e. to maximize the amplitude of the inner product. The approximation of
f is written:

fM = ∑
m∈IM

〈 f ,gm〉gm. (5.180)

And the approximation error is expressed as the sum of the absolute value of squared
inner products, but on the vectors n /∈ IM:

Error = ‖ f − fM‖2 = ∑
n/∈IM

|〈 f ,gm〉|2 . (5.181)

During the construction of the basis, the choice of IM maximizes the amplitude of
the inner product and also aims to minimize the error. The notion of the nonlin-
ear approximation comes from the fact that the choice of approximation vectors is
modified according to the nature of the signal. (In the previous section in the lin-
ear framework, we have seen that when M increases and the approximation error
decreases, this can be connected with the global regularity of the signal.) The global
or local regularity and singularity notions of signals are central within the nonlinear
approximations. Indeed (see section about the regularity concept), the amplitudes
(i.e. modulus) of inner products in a wavelet basis are related to the notion of local
regularity of a signal.

The irregularities and singularities are symptomatic of nonlinear signals.
Because of irregularities of a signal and in particular at the places where this signal
is irregular, it is necessary to have an adaptive approximation grid, by which the
resolution increases where the signal is irregular, which corresponds to a nonlinear
approximation having the largest possible inner products of wavelets (maximizing
the amplitude of inner products locally). At the places where the signal has sin-
gularities, the nonlinear approximation is much more precise and adapted than the
linear method which does not change resolution on the entire signal. Thus, we repeat
again, the amplitude of inner products in a wavelet basis must be linked with the
local regularity of the signal.
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The nonlinear signals can be also approximated by families of vectors which are
not built from a unique basis. It will be also noted that the technique of the best
basis is constructed from bases of wavelets packets or from local sinusoidal func-
tions. These bases of wavelets packets or sinusoidal local functions are families of
orthogonal bases which thus contain various types of time–frequency atoms. The
choice of the “best basis” is carried out from a dictionary of bases, by the minimiza-
tion of a “concave cost function”. A wavelet packet “best basis” or a best basis of
local sinusoidal functions decompose the signal with atoms which are adapted to
the time–frequency structures of the signal.

It is also possible to slacken the orthogonality constraint for the choice of bases
but that can lead to non-effective or explosive constructions. An approximation of
the signal can be produced from M non-orthogonal vectors {gγm}0≤m≤M, selected
in a redundant dictionary D = {gγ}.

fM =
M−1

∑
m=0

amgγm . (5.182)

One can summarize the idea by saying that to optimize the approximation of non-
linear signals, it is interesting to choose, in an adaptive way, a basis dependent on
the signal itself.

5.14.2.1 Concave Cost Function, Best Basis, Ideal Basis and Entropy

A basis B∗ is a better basis than the basis B to approximate a signal f if and only if
for any concave function Φ(u) there is:41

N

∑
m=1

Φ

(
|〈 f ,g∗m〉|2
‖ f‖2

)

≤
N

∑
m=1

Φ

(
|〈 f ,gm〉|2
‖ f‖2

)

. (5.183)

In fact, the comparison of two bases is done by using a single concave function
Φ(u). The cost of the approximation of a signal f in a basis Bλ is determined by the
sum as follows:42

C( f ,Bλ ) =
N

∑
m=1

Φ

(∣
∣〈 f ,gλm

〉∣∣2

‖ f‖2

)

. (5.184)

Coifmann and Wickerhauser construct a best basis B∗, by minimizing the cost of a
signal f :

C( f ,B∗) = min
λ∈Λ

C( f ,Bλ ). (5.185)

Even if there is not better basis than B∗, there can exist several bases, which min-
imize in an equivalent way the cost of f ; then the choice is done according to the

41 For a demonstration see Mallat (1998, p. 407, Lemma of Hardy, Littlewood, Polya).
42 Schur-concave sum (Ostrowski): To refer for example to Tin-Yau Tam (2001). (This concept is
also linked to the concept of invariance, Sn-invariance.)
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concave function Φ. After having presented how the choice of the “best basis” was
carried out, the approximation theory introduces another concept which is the “ideal
basis”. An ideal basis is a basis which has one of its vectors proportional to the
signal itself, i.e. one can write: gm = α f with α ∈ C. Thus the signal f can be
approximated and rebuilt from a single vector which is a basis. Any basis B is worse
than the ideal basis and better than a “diffusing” basis to approximate a signal f .
If Φ(0) = 0, then:

Φ(1)≤C( f ,B) ≤ NΦ
(

1
N

)

. (5.186)

The concept opposed to the “ideal basis” is the “diffusing basis” for which the
approximation quality is lower. All the information contained in the signal is not
restored in its integrity. There is an information loss by diffusion, which is linked to
the Entropy concept. It is written that the entropy Φ(x) = −x loge x is concave for
x≥ 0. The resulting cost is regarded as the entropy of the energy distribution:

C( f ,B) =−
N

∑
m=1

|〈 f ,gm〉|2
‖ f‖2 loge

(
|〈 f ,gm〉|2
‖ f‖2

)

. (5.187)

Whence it is possible to deduce the bounds of the cost function:

0≤C( f ,B)≤ loge N. (5.188)

5.14.2.2 Tree Structure, Time–Frequency Plane and Best Basis

A local Fourier “best basis” divides the time–frequency plane in atoms according
to the signal itself. The constitution of a dictionary of local sinusoids or wavelet
packets requires more than 2N/2 bases for a signal whose length is N, these are
considerable sizes. A best basis minimizes the cost function:

C( f ,B∗) = min
λ∈Λ

C( f ,Bλ ), (5.189)

however to calculate this minimum by a systematic comparison of the cost of
each base requires almost N2N/2 calculations, which is even more considerable. A
“dynamic programming algorithm” developed by Coifman and Wickerhauser con-
structs the best basis with O(N log2 N) calculations. This algorithm uses the tree
structures constructed from dictionaries of local Fourier or wavelets bases. The
trees divide the space into subspaces, which admit themselves an orthonormal basis
of wavelet packets or local sinusoids. In these binary trees of wavelet packets or
local sinusoids, each node (at the place of the junction or bifurcation of the fork)
corresponds to a space Wp

j with which an orthonormal basis is associated Bp
j either

with wavelet packets, or local sinusoids. The space Wp
j is divided into two subspaces

localized at the nodes:
Wp

j = W2p
j+1

⊕
W2p+1

j+1 . (5.190)
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Fig. 5.27 Tree of wavelet packet space (left). Tree of local sinusoids space (right)

The space Wp
j is thus divided into two subspaces W2p

j+1 and W2p+1
j+1 , which admit

themselves an orthogonal basis each one. The union of the orthogonal bases of W2p
j+1

and W2p+1
j+1 forms thus the basis associated with Wp

j . And so on. . . during the divi-
sions. According to the considered basis (i.e. local sinusoids or the wavelet packets)
the initial space is denoted W0

0 or W0
L, this space covers43 all the length N of signal,

it is the starting point of bifurcations which follow (Fig. 5.27).
The “best basis” of the space Wp

j is obtained by minimization of the cost func-
tion. We have already presented how to write the cost function of a signal f within a
basis: B = {gm}0≤m<M, which is constituted of M vectors. The cost must be calcu-
lated according to the division in subspace. Whatever the bases B0 and B1, the idea
of Coifman and Wickerhauser is to say that if C is an additive cost function, i.e. if
C( f ,B0∪B1) = C( f ,B0)+C( f ,B1), then the best basis noted Θp

j , corresponds to:

Θp
j =

{
Θ2p

j+1∪Θ2p+1
j+1 if C( f ,Θ2p

j+1)+C( f ,Θ2p+1
j+1 ) < C( f ,Bp

j ),
Bp

j if C( f ,Θ2p
j+1)+C( f ,Θ2p+1

j+1 )≥C( f ,Bp
j ).

(5.191)

This method makes it possible to build the best basis of the space at the root of
the tree structure, by calculating in a recursive way the best bases of all spaces Wp

j
inside the tree, from the root downwards. The best bases of the spaces {Wp

j }p are
calculated from the best bases of spaces {Wp

j+1}p by means of the cost calculation
method presented previously. The operation is thus repeated until obtaining the best
basis on W0

0 for the bases of sinusoids and W0
L for the bases of wavelets. The depth

of the tree is lower than log2N, and the quantity of calculations necessary to obtain
the best basis is O(N log2 N).

Example of Tree and Wavelet Packet Basis

The multiresolution analysis is a good support to illustrate the wavelet packet trees.
Indeed, in the multiresolution analysis (MRA), the space Vj is reduced to a lower
resolution space V j+1 and to a space called the “detail” space W j+1. What means

43 Where 2L = N−1.
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to divide an orthogonal basis {φ j(t−2 jn)}n∈Z belonging to V j into two orthogonal
bases (of scaling functions and wavelets):

{φ j+1(t−2 j+1n)}n∈Z ∈V j+1, and {ψ j+1(t−2 j+1n)}n∈Z ∈W j+1. (5.192)

In a generic way, a theorem stated by Coifmann, Meyer and Wickerhauser shows that
the “conjugate mirror filters” transform an orthogonal basis {θ j(t − 2 jn)}n∈Z into
two families of orthogonal bases: {θ 0

j+1(t−2 j+1n)}n∈Z and {θ 1
j+1(t−2 j+1n)}n∈Z.

If we denote U0
j+1 and U1

j+1 the spaces associated with these two families, it is said
that these spaces are orthogonal and:

U0
j+1

⊕
U1

j+1 = U j. (5.193)

Consequently, it is possible to establish that U j = W j and thus to divide these
“detail” spaces W j into subspaces which have new associated bases. These suc-
cessive divisions produce (see illustration supra) the binary trees (because division
is a division by two), and if the scale for the approximation is dyadic of the type
2L, it is possible to associate with it the approximation space VL and an orthogonal
basis of scaling functions:

{φL(t−2Ln)}n∈Z, (5.194)

(where φL = 2−L/2φ(2−Lt), with j ≥ L). j−L ≥ 0 corresponds to the depth of the
binary tree. Each junction point (or node) of the binary tree is referred by a couple
( j, p) where j is the resolution level and p the “number” of the node starting from
the left at the same depth j− L. To each one of the node of the tree (indexed by
the couples ( j, p)) corresponds one space Wp

j and one basis {ψ p
j (t− 2 jn)}n∈Z. To

the starting point of the tree, the space VL corresponds to the space W0
j , (VL = W0

j )
and the scaling function φL corresponds to ψ0

L. And if one chooses an unspeci-
fied division of the tree, one says that the bases B2p

j+1 = {ψ2p
j+1(t− 2 j+1n)}n∈Z and

B2p+1
j+1 = {ψ2p+1

j+1 (t − 2 j+1n)}n∈Z are orthonormal bases of two orthogonal spaces

W2p
j+1 and W2p+1

j+1 , which respect the equality mentioned previously

Wp
j = W2p

j+1

⊕
W2p+1

j+1 . (5.195)

Illustration of Tree Structure and Best Basis for a Transient Signal

Tree and Best basis of sinusoids packets space of the signal. Observe in Fig. 5.28
the signal and image of the Heisenberg boxes of Fourier atoms (Fig. 5.28).

Hereafter, in the upper part of the figure on the left: the sinusoids packets
decomposition within the framework of the best basis (level of division: D = 9 =
log2(512)). In the upper part of the figure on the right: the tree of the best basis
of sinusoids packets. In the lower part on the left: Heisenberg boxes of the Fourier
atoms in the time–frequency plane. In the lower right part: Image of the Heisenberg
boxes of Fourier atoms:
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Tree and Best Basis of wavelet packets space of the signal. Observe in Fig. 5.29 the
signal and image of the Heisenberg boxes of wavelet atoms (Fig. 5.29).

Hereafter in the upper part on the left: the wavelet packets decomposition of the
signal with the best basis (calculated with a Daubechies-12 filter). In the upper right
part: Tree of the best basis of wavelet packets. In the lower left part: Heisenberg
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boxes of wavelet atoms in the time frequency plane. In the lower right part: Image
of the Heisenberg boxes of wavelet atoms:
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Illustration of Tree Structure and Best Basis of the Stock Exchange Index: Cac40

Tree of the wavelet packet space: The decomposed signal is the French stock
exchange index (Cac40) for 2,048 observations of the daily growth rate.
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Fig. 5.30 Mirror filter: Coiflet Mirror filter

Fig. 5.31 Wavelet packet tree
(frequency domain division)
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For the wavelet packet decomposition, a mirror filter (of the type Coiflet 3) is used,
one gives its representation (Fig. 5.30). Then a convolution is operated between the
signal and the filter. The calculation of the best basis (6.5285) gives the following
tree with a depth level of D = 11 = log2(2,048) (Fig. 5.31).

Tree of the sinusoid packet space: The representation of Heisenberg boxes in the
time–frequency plane has, in this case, a weak visual interest and thus will not be
presented (Fig. 5.32).

5.14.3 Donoho and Johnstone Nonlinear Estimation: Algorithm
with Threshold

The problem of the estimation is to find a structure in a signal which apparently does
not let it show through. Either a signal is really random without any structure, or the
structure is hidden due to the presence of a noise which covers it. (It is obvious that
the structures of nonlinear origin are more difficult to isolate.) A good part of the
debate regarding the estimation is related to the notion of threshold between noise
and signal. Thus, it is possible to conceive a signal as the addition of a structure and
a noise:

X = f + noise. (5.196)

The signal f is estimated by the transformation of the disturbed (i.e. noized) signal
X by an operator D, one poses F̃ the estimator of f :

F̃ = DX . (5.197)
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Fig. 5.32 Fourier basis tree
(time domain division)
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The average error provides the risk of the estimator:

r(D, f ) = E
{
‖ f −DX‖2

}
. (5.198)

The choice of a nonlinear operator D is more effective to decrease the risk than a
linear operator. Donoho and Johnstone show that a nonlinear estimator close to the
optimality is obtained by means of a thresholding:

F̃ = DX =
N−1

∑
m=0

ρT (〈X ,gm〉)gm. (5.199)

ρT (x) is a function with threshold T which is worth x for |x| ≥ T and 0 for |x|< T.
The method proceeds to a smoothing which is a function of the threshold but also of
the selected basis.

5.14.4 Nonlinear Estimators are More Efficient to Minimize
the Bayesian Risk: Optimization by Minimax

The estimate of the operator D in the expression described previously F̃ = DX is
a vast subject and obviously the objective here is not to be exhaustive. We will
describe the current practices in the field, which use in particular the bayesian
analysis. See also the (statistics) part II of the present book.

5.14.4.1 Bayesian Approach: A Posteriori Law Specification of the Parameter
and Choice of the A Priori Law

A statistical model is a couple (Y ,P), where Y is the set of possible observations
and P is a family of probability laws on Y . Such a model is known as dominated, if
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all the laws of the family admit a density with respect to a same measure μ , which
is called the dominating measure. Given a parametric (dominated) model:

[Y ,P = {Pθ = l(y;θ ) ·μ ;θ ∈ Θ}], (5.200)

the Bayes approach provides the set Θ of the possible values of the parameter θ of
a law Π, this law is known as the a priori law (or prior law), and it is made as if the
parameter were random of law Π. Moreover, when we possess the observations y,
the “a priori” idea about the parameter is then modified. Indeed, we consider these
observations, and have to replace the (a priori) marginal law of θ by the conditional
law of θ knowing y, which is the “a posteriori” law. The transition of the a priori
law to the a posteriori law is expressed by the Bayes formula:

π(θ/y) =
l(y;θ )π(θ )

∫
Θ l(y;θ )π(θ )v(dθ )

= π(θ )
l(y;θ )

l(y)
, (5.201)

this formula supposes that the a priori law admits a density π(θ ) with respect to a
measure v. Consequently, the a posteriori law admits a density π(θ/y) with respect
to this measure. The a posteriori law is obtained by multiplying the a priori density
by the ratio of the conditional density of y knowing θ (likelihood of y knowing θ )
to the marginal density of y (predictive density). In this approach, the most difficult
is to choose the most adapted a priori law, even if obviously the calculation of
the transition formula of the a priori law towards the a posteriori law is often also
difficult.

In this type of Bayesian approach, there is thus an a priori law Π on Θ, and for a
statistical test ϕ , it is possible to define the bayesian risk and to compare the tests.
The bayesian risk is written:

rΠ (ϕ) =
∫

Θ
R(ϕ ,θ )dΠ(θ ). (5.202)

The Bayes analysis benefits from the information contained in the signal to calculate
an a posteriori law. (There is a kind of recursivity in the Bayes approach.) The
estimate of the operator D, in the expression described previously F̃ = DX , will be
optimized if one can benefit from the information that the signal contains. Within the
framework of the terminology used in time–frequency analysis, the risk is written:

r(D,π) = Eπ{r(D,F)}, (5.203)

this risk takes into account the empirical law, i.e. the probability distribution π of
the signal. An optimal operator which is taken among all the possible estimators D,
must provide the minimum bayesian risk, which is written:

r(π) = inf
D

r(D,F). (5.204)

These techniques are difficult to use and the choice of the a priori law predetermines
the results.
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5.14.4.2 Minimax and Nonlinear Operators

The framework of the Game and Decision Theory allows to introduce simpler
techniques, where we do not specify the probability distribution. Here are signals
modelled as “particular elements of a set Θ”. In order to control the risk, we evaluate
its maximum for any signal belonging to the set Θ. The maximum risk is written:

r(D,Θ) = sup
f∈Θ

r(D, f ), (5.205)

And the Minimax risk is written:

rn(Θ) = inf
D

r(D,Θ). (5.206)

In a general way, in the field of the possible estimators for D, the nonlinear esti-
mators prove to have a “minimax risk” lower than the linear estimators (except for
particular cases of convexity).44 Thus, a good operator D will be provided by a
nonlinear estimate using the minimax to reach the weakest possible risk.

5.14.5 Approximation by the “Matching Pursuit”: A General
Presentation

For many signals made up of complex structures, the best bases of local sinusoids
or wavelet packets are not the most powerful approximations. As underlined pre-
viously, by the slackening of the orthogonality constraint, an approximation of the
signal can be produced from M non-orthogonal vectors {gγm}0≤m≤M, selected in a
redundant dictionary D = {gγ}. And the approximation of the signal was written:

fM =
M−1

∑
m=0

amgγm . (5.207)

For a signal length N, the number of vectors of a redundant dictionary is calcu-
lated by P = N log2 N. Thus, the dictionary is constituted of P vectors at the most,
which contains at least N linearly independent vectors. These N linearly indepen-
dent vectors are selected to build a set of bases. In addition, note that if a set of
non-orthogonal bases is constructed, this set usually will be larger than the set
made up from orthogonal bases. For a dictionary D = {gp}0≤p<P, whatsoever M
(with N < P, 0 ≤ m ≤M, and M ≤ N), the approximation is the result of a linear
combination of the M vectors of the dictionary.45 And the approximation is written

44 For a discussion about the optimality of the minimax within the framework of the time–
frequency analysis, we can refer to Mallat (1999, pp. 469–500).
45 Ref. to Theory concerning the linear programming, the minimax, and the algorithm of the
simplex is used in the time–frequency analysis and is also used by economists.
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in a discrete way:

fM =
M−1

∑
m=0

a[pm]gpm . (5.208)

The calculations of fM and the minimization of ‖ f − fM‖ are heavy and difficult.
Mallat and Zhang have developed the version of the Matching Pursuit algorithm
which has the property to reduce the calculations by sacrificing the “optimality” to
the “efficiency”. Starting from the initial redundant dictionary D = {gγ}, the algo-
rithm “pursuit”46 allows to select N vectors to construct a basis {gγm}0≤m<N . The
matching pursuit is connected with the pursuit algorithms of projection developed
in statistics.

5.14.5.1 The “Matching Pursuit” Structure

Given the dictionary D = {gγ(t)}γ∈Γ of P vectors (endowed with a unit norm such
that
∥
∥gγ
∥
∥ = 1), which contains N linearly independent vectors defining a basis.

Thus, a matching pursuit calculates a linear expansion of f , by successions of
approximations of f , by means of orthogonal projections of the signal on elements
of D. Given gγo ∈D, the vector f can be decomposed as follows:

f =
〈

f ,gγo
〉

gγo + R f . (5.209)

R f is the residual vector after approximation of f in the direction of gγo. And gγo
is orthogonal to R f and is normalized at 1. Since R f is orthogonal to gγo:

‖ f‖2 =
∣
∣〈 f , gγo

〉∣∣2 +‖R f‖2 . (5.210)

Minimize the residual vector ‖R f‖ comes down to choose gγo in order to maximize∣
∣
〈

f ,gγo
〉∣
∣. From the point of view of calculations, the most effective is to find a

sub-optimal vector gγo:
∣
∣
〈

f ,gγo
〉∣
∣� α

γ∈Γ
sup
∣
∣
〈

f ,gγ
〉∣
∣ , (5.211)

[with 0 ≤ α ≤ 1]. The Matching pursuit is an iterative algorithm which with suc-
cessive stages decomposes the residue R f of a previous projection.47 If we are
located at an unspecified moment of the iteration process and if the mth residue
Rm f has been calculated, then the following stage is to choose an element gγm of the
dictionary which approximates the Rm f residue:

∣
∣
〈
Rm f ,gγm

〉∣
∣� αsup

γ∈Γ

∣
∣
〈
Rm f ,gγ

〉∣
∣ (5.212)

46 Chen and Donoho’s algorithm (Chen and Donoho 1995).
47 R0 f = f .
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the residue Rm f is decomposed:

Rm f =
〈

f ,gγm

〉
gγm + Rm+1 f , (5.213)

Since Rm+1 f is orthogonal to gγm , we can write:

‖Rm f‖2 =
∣
∣
〈
Rm f ,gγm

〉∣
∣2 +
∥
∥Rm+1 f

∥
∥2

. (5.214)

We obtain by summation:

f =
M−1

∑
m=0

〈
Rm f ,gγm

〉
gγm + RM f . (5.215)

and then:

‖ f‖2 =
M−1

∑
m=0

∣
∣
〈
Rn f ,gγm

〉∣
∣2 +
∥
∥RM f

∥
∥2

. (5.216)

‖Rm f‖ converges (Mallat 1998, p. 422) exponentially towards 0, when m tends
towards the infinite:

lim
m→∞

‖Rm f‖ = 0. (5.217)

The approximation carried out by the matching pursuit is largely improved by the
orthogonalization of the directions of projection. This is done by means of the
Gram–Schmidt procedure (Pati et al. 1993). The convergence of the orthogonal
matching pursuit is carried out with a finite number of iterations, whereas it is not
the case with the non-orthogonal matching pursuit.

Orthogonal Matching Pursuit

In the previous procedure the vectors gγm selected by the matching pursuit are a
priori non-orthogonal to vectors earlier selected, which are written: {gγp} with 0 ≤
p < m. The previous matching pursuit selected the gγm which verified:

∣
∣〈Rm f ,gγm

〉∣∣� αsup
γ∈Γ

∣
∣〈Rm f ,gγ

〉∣∣ . (5.218)

In order to distinguish with the former procedure, we pose ξ0 = gγ0 . The Gram–
Schmidt algorithm orthogonalizes the gγm with the {gγp}0≤p<m and we pose:

ξm = gγm −
m−1

∑
p=0

〈
gγm ,ξp

〉
ξp

∥
∥ξp
∥
∥2 , (5.219)

Previously Rm f was projected on gγm , but now, Rm f is projected on ξm:

Rm f =
〈Rm f ,ξm〉 ξm

‖ξm‖2 + Rm+1 f . (5.220)
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By summation on m, we obtain:

f =
k−1

∑
m=0

〈Rm f ,ξm〉 ξm

‖ξm‖2 + Rk f (5.221)

= PVk f + Rk f . (5.222)

The {ξm}0≤m<k generates the space Vk, and PVk is an orthogonal projector on Vk.
For m = k, we have:

〈Rm f ,ξm〉=
〈
Rm f ,gγm

〉
, (5.223)

and it exists M such that f ∈ VM, thus RM f = 0. And for k = M by combining the
preceding expression with the equation of f , we have:

f =
k−1

∑
m=0

〈
Rm f ,gγm

〉
ξm

‖ξm‖2 . (5.224)

In the preceding section, we have introduced the convergence of the orthogonal
matching pursuit, this convergence is done at the end of M iterations. The square of
the norm of f is written as the following sum:

‖ f‖2 =
M−1

∑
m=0

∣
∣〈Rm f ,gγm

〉∣∣2

‖ξm‖2 . (5.225)

Finally, in order to develop f on the initial dictionary {gγm}0≤m<M, we write:

ξm =
m

∑
p=0

b[p,m]gγp

which gives:

f =
M−1

∑
m=0

a[γp]gγp , (5.226)

with:

a[γp] =
M−1

∑
m=p

b[p,m]

〈
Rm f ,gγm

〉

‖ξm‖2 . (5.227)

Hereafter, we provide the representations in the time–frequency plane of both
decompositions of a transitory signal (transient).

Figure 5.33 corresponds to the decomposition of the signal by the matching pur-
suit with dictionaries of windowed Fourier atoms. One will notice the “spread” of
each atom in the time–frequency plane.

Figure 5.34 corresponds to the decomposition of the same signal by the matching
pursuit with dictionaries of wavelet atoms. Observe the “spread” and the localization
of atoms compared with Fig. 5.33.
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Fig. 5.33 Heisenberg boxes
of Fourier atoms
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Fig. 5.34 Heisenberg boxes
of wavelet atoms
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Gabor Atom, Function and Dictionary

An improvement of the Matching Pursuit was made by Mallat and Zhang, as well
as by Qian and Chen by means of the Gabor dictionary. This is by modulating, relo-
cating and spreading (i.e. scaling) a Gaussian window which is used for its qualities
of energy (and frequency) distribution.48 The window is written:

g(t) = 21/4e−πt2
, (5.228)

in a discrete mode for a period denoted N and a parameter denoted α j, this window
is sampled and modulated on a scale 2 j, and becomes:

g j[n] = α j

+∞

∑
p=−∞

g
(

n− pN
2 j

)

, (5.229)

∥
∥g j
∥
∥ = 1 is obtained by means of α j. Then, the window is translated in time and

frequency via an index denoted:

γ = (p,k,2 j) (5.230)

48 See proof by the Heisenberg theorem.
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with j belonging to [0, log2 N] and (p,k) belonging to [0,N−1]2. We obtain a Gabor
atom:

gγ [n] = g j[n− p]e
2π ikn

N , (5.231)

We denote D = {gγ} the Gabor dictionary of these Gabor atoms. More precisely,
the matching pursuit uses the following set of indexes:

γ± = (p,±k,2 j) (5.232)

and provides groups of complex Gabor atoms: gγ− and gγ+ (also called polarized
atoms). In this case and for a real signal, the matching pursuit is a projection of
Rm f on:

gΩγ [n] = α j,Ωg j[n− p]cos
(

2π ikn
N

+Ω
)

. (5.233)

The approximation of the signal is thus written as the following decomposition:

f =
+∞

∑
m=0

〈
Rm f ,gΩm

γm

〉
gΩm
γm , (5.234)

which is represented by an energy distribution resulting from the addition of the
Wigner–Ville density of complex atoms:

PM f [n,k] =
+∞

∑
m=0

∣
∣
∣
〈

Rm f ,gΩm
γm

〉∣
∣
∣
2

Dgγm[n,k]. (5.235)

(This matching pursuit version will be presented in detail later on in another
section.) Hereafter, one provides the representation of the decomposition in the
time–frequency plane of the (same) transient signal by Matching Pursuit with Gabor
atoms. It will be noticed the shape, the spread and the localization of atoms in the
time–frequency plane (Fig. 5.35).

Fig. 5.35 Wigner–Ville
distribution of Gabor atoms
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5.14.6 Comparison of Best Bases and Matching Pursuits

The presentations of approximation methods of the Best Basis and Matching Pur-
suits previously made have been illustrated by means of the same signal that is of
transient type (i.e. intermittent with some Diracs), this one now makes it possible to
compare the results in Fig. 5.36.

Fig. 5.36 (a) Best basis and Fourier, (b) matching pursuit and Fourier, (c) best basis and wavelets,
(d) matching pursuit and wavelets, (e) matching pursuit and Gabor atoms
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Although the parameter setting (choice of filter mirror for the wavelets, split
level, etc.) in the construction of approximations, plays an important role and
can change the quality of representations, it is easy to observe the evolution of
approximation methods towards the latest method presented in Fig. 5.36e.

5.15 The Multiresolution Analysis Notion

It is obviously necessary to present the multiresolution analysis (MRA: Multires-
olution analysis) whose first corollary is the discrete wavelet transform (DWT).
Beforehand, we quickly introduce the notion of (quadratic) conjugate mirror filter
which is used in the construction of fast algorithms of the wavelet transform.

5.15.1 (Quadratic) Conjugate Mirror Filter

This type of filter is used in various applications and gave rise to the development
of a true theory. In particular for the construction of fast algorithms of calcula-
tions of the (orthogonal) wavelet transforms and the improvement of methods of
signal reconstruction. It contributes also to the construction of the algorithms of
the multiresolution analysis (MRA). Its role is important, it is perfectly presented
and developed in the works of S. Mallat. The presentation of the history and the
construction of these filters allows to approach the multiresolution analysis in an
interesting way. It will be simply noted here that the fast algorithms of wavelet
transforms calculations decompose the signals into low-pass and high-pass compo-
nents which are sub-sampled in two subsets. The signal is filtered by a low-pass
filter denoted h̄[p] = h[−p] and a high-pass filter ḡ[p] = g[−p], these filters make it
possible by convolution to sub-sample a signal f into two outputs:

a1[p] = f � h̄[2p] and d1[p] = f � ḡ[2p]. (5.236)

In fact, such a transformation decomposes each approximation PV j f into a coarse
approximation PV j+1 f and into wavelet coefficients PW j+1 f . During the reconstruc-
tion the PV j f are “re-found” from PV j+1 f and PW j+1 f . It is known that:

{φ j,n}n∈Z and {ψ j,n}n∈Z (5.237)

are orthonormal bases of V j and W j. Furthermore, it is known that the projections
on these bases are defined by:

a j[n] =
〈

f ,φ j,n
〉

and d j[n] =
〈

f ,ψ j,n
〉
. (5.238)
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These coefficients are calculable by means of a cascade of discrete convolutions and
sub-samplings. If we pose that x̄[n] = x[−n] and:

x̂[n] =
{

x[p] if n = 2p,
0 if n = 2p + 1,

(5.239)

then, it is known that a signal is decomposable into:

a j+1[p] =
+∞

∑
n=−∞

h[n−2p]a j[n] = a j � h̄[2p], (5.240)

d j+1[p] =
+∞

∑
n=−∞

g[n−2p]a j[n] = a j � ḡ[2p], (5.241)

and the signal reconstruction is written:

a j[p] =
+∞

∑
n=−∞

h[n−2p]a j+1[n]+
+∞

∑
n=−∞

g[n−2p]d j+1[n] (5.242)

= â j+1 � h̄[p]+ d̂ j+1 � g[p]. (5.243)

The mirror filters satisfy the following (Mallat and Meyer) quadratic condition:

∣
∣ĥ(ω)

∣
∣2 +
∣
∣ĥ(ω +π)

∣
∣2 = 2 and ĥ(0) =

√
2, (5.244)

where φ is an integrable scaling function belonging to L2(R), where h[n] =〈
2−1/2φ(t/2),φ(t−n)

〉
and ĥ is its Fourier transform∀ω ∈R. The mirror filters h[n]

are of different types, we will mention without presenting them the following types:
“Haar”, “Beylkin”, “Coiflet”, “Daubechies”, “Symmlet”, “Vaidyanathan”, “Battle”.

5.15.2 Multiresolution Analysis

Definition 5.3 (Multiresolution). A sequence49 {V j} j∈Z. of closed subspaces
of L2(R) is a multiresolution approximation, if the six following properties are
verified:

∀( j,k) ∈ Z
2, f (t) ∈ V j ⇔ f (t−2 jk)∈ V j, (5.245)
∀ j ∈ Z,V j+1 ⊂ V j, (5.246)

∀ j ∈ Z, f (t)∈ V j ⇔ f
( t

2

)
∈ V j+1, (5.247)

Lim
j→+∞

V j =
+∞⋂

j=−∞
V j = {0}, (5.248)

49
Z: Space of the (positive and negative) integers, Z = {. . . ,−3,−2,−1,0,+1,+2,+3, . . .} which

is an extension of the space of the integers N.
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Lim
j→−∞

V j = Closure

(
+∞⋃

j=−∞
V j

)

= L2(R), (5.249)

There exists θ such that {θ (t−n)}n∈Z is Riesz basis of V0. (5.250)

These properties are interpreted in the following way:
• V j+1 is the image of V j by a dilation of a factor 2: There exists a subjacent

frequential grid in geometric progression.
• For any j, V j+1 is a sub-space of V j .
• V j is invariant by translation of 2 j: There exists a subjacent temporal grid by step

of 2 j.
• The intersection of V j is reduced to 0 in L2: At a minimal resolution, one loses

all the image. This hypothesis is formulated by convention, because it is always
verified.

• The union of the V j is dense in L2: At an infinite resolution, any signal is
perfectly reproduced.

• There exists a function θ such that the whole translations of θ form a Riesz
basis of V0: Each resolution is generated by a basis of atoms translated of 2 j. A
Riesz basis is a frame of independent vectors.

The dilated and translated functions φ j,k(t):

{φ j,k(t) = 2− j/2φ0(2− jt− k)}k∈Z (5.251)

constitute also a Riesz basis for V0. It is fundamental to understand that to carry
out a multiresolution analysis of a time series x(t), this is successively to project the
latter on each approximation subspaces Vj:

Approx j(t) = ProjVj
x(t) =∑

k
a j,kφ j,k(t). (5.252)

As presented previously Vj ⊂ Vj−1, consequently we know that the approxima-
tion: approx j(t) of the series x(t) is an approximation coarser than approx j−1(t).
Thus, another fundamental idea of the multiresolution analysis (MRA), consists
in the analysis of the information loss which is indicated by the term: “detail j”,
it expresses the information loss related to an increasingly coarse approximation,
as follows:

Detail j(t) = approx j(t)−approx j−1(t). (5.253)

The multiresolution analysis (MRA) computes the “detail j” by projections of x(t)
on a collection of subspaces noted Wj, called the wavelet subspaces. Furthermore,
the multiresolution analysis proves that there is a functionψ0, called mother wavelet
(built as the scaling function φ0) which is used to construct the functions:

{ψ j,k(t) = 2− j/2ψ0(2− jt− k)} (5.254)
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which constitute also a Riesz basis for Wj:

Detail j(t) = ProjWj
x(t) =∑

k
d j,kψ j,k(t). (5.255)

The principle of the multiresolution analysis is to transform the information con-
tained in the time series x(t) in a collection, which gathers on the one hand, an
approximation with low resolution J, and on the other hand, the set of “detail j” at
different resolution j = 1, . . . ,J (noted ∑J

j=1 detail j). Then it is possible to write:

x(t) = approxJ +
J

∑
j=1

detail j(t) =∑
k

aJ,kφJ,k(t)+
J

∑
j=1
∑
k

d j,kψ j,k(t). (5.256)

In order to construct approxJ which is a coarse representation at a low resolution
of the series, it is necessary that the scaling function φ0 (from which we calculate
φJ,k and ∑k aJ,kφJ,k(t)) is a low-pass filter. As regards the terms “detail j” which
correspond to the differences approx j(t)− approx j−1(t), the function ψ0, which
enters in their construction, is a band-pass filter. The band-pass filter (which in spite
of its source because it historically belongs to the Fourier analysis) corresponds also
to a wavelet through its form.

Scaling function: Within the general framework of the signal analysis, it is known
that a scaling function is interpreted as the impulse response of a low-pass filter.
From the gauge of a generic filter band-pass, we construct filters of the low-pass
and high-pass type, which filter by means of their specific forms the Fourier coef-
ficients, either from the high frequencies towards the low frequencies or from the
low frequencies towards the high frequencies. If we note φs(t) = 1√

sφ
( t

s

)
(and with

φ s(t) = φ∗s (−t)), then the low frequency approximation of a time series x(t) at the

scale s is written: Lxu,s =
〈

x(t), 1√
sφ
( t−u

s

)〉
= x �φ∗s (u).

Definition of a scaling function: As presented previously, the approximation of a
time series x(t) at the resolution 2 j is defined as an orthogonal projection of the time
series x(t) on V j: ProjVj x(t). To calculate this projection, we have to be endowed
with a basis of V j. The Multiresolution theory says that it is possible to construct
an orthonormal basis from each space V j by dilation and translation of a simple
function φ0 called the scaling function. A scaling function can be defined coarsely
as an aggregation of wavelets at scales higher than 1.

Approximation of coefficients: The projection of x(t) on V j is obtained by a pro-
gressive dilation of the scale:

ProjVj
x =

+∞

∑
k=−∞

〈
x,φ j,k

〉
φ j,k. (5.257)

The inner products a j[k] =
〈
x,φ j,k

〉
provide a discrete approximation at the scale

2 j, from which we can rewrite them as the result of a convolution: a j[k] =
∫ +∞
−∞ x(t)
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1√
2 j φ
( t−k

2 j

)
dt, or a j[k] =

∫+∞
−∞ x(t) 2− j/2φ0(2− jt−k)dt. The discrete approximation

a j[k] is low-pass filtering of x(t) sampled on the interval 2 j. We express the aJ,k as
follows:

aJ,k =
∫

x(t)2− j/2φ0(2− jt− k)dt. (5.258)

By analogy, we obtain the coefficients d j,k no more by means of a scaling func-
tion of the low-pass filter type, but by a band-pass filter, which also corresponds
to a wavelet built from a mother wavelet ψ0 (note this correspondence between
filter band-pass resulting from the Fourier analysis and the wavelet analysis).
The projection of x(t) on W j is obtained by the filter of the wavelet function:
2− j/2ψ0(2− jt − k). The inner products

〈
x,ψ j,k

〉
provide an approximation at the

scale 2 j. The coefficient at the scale 2− j is written:

d j,k =
∫

x(t)2− j/2ψ0(2− jt− k)dt. (5.259)

The index j corresponds at the resolution level of the wavelet analysis, j is also
called octave. The octave j is the logarithm of the scale2 j, and k plays the role of
time.50 n is the length of the time series. The number of available coefficients at the
octave j is denoted n j = 2− jn.
Discrete Wavelet Transform: The discrete non redundant transformation allows the
transition from a Hilbert space L2(R) constructed on the real numbers to the Hilbert
space l2(Z) constructed on the integer numbers Z.51 Provided with a scaling func-
tion φ0 and a mother wavelet ψ0, the discrete transform products from the time series
x(t) the set {{aJ,k}k∈Z,{d j,k, j = 1, . . . ,J}k∈Z}. We observed previously that these
coefficients are the result of the inner products

〈
x,φ j,k

〉
and
〈
x,ψ j,k

〉
and where

φ j,k and ψ j,k are obtained by dilation and translation respectively of the gauge of a
scaling function φ0 and of a mother wavelet ψ0. The algorithm used to produce the
discrete wavelet transform is the recursive pyramidal algorithm (APR).

General remark about the notations: It is noted that W j is a closed subspace
generated by an orthonormal basis of L2(R) (i.e. here a family of wavelets at the
scale 2− j) :{ψ j,k(t) = 2− j/2ψ0(2− jt− k)} j∈Z. We can write:

L2(R) =
⊕

j∈Z

Wj. (5.260)

The analysis of a time series by scale level is carried out through the introduction
of the approximation spaces noted V j, which are defined by:

Vl+1 =
⊕

j≤l

Wj, l ∈ Z. (5.261)

50 The dyadic wavelet transforms are of large interest (they are discrete in scale but continuous in
time) because they make it possible not to sub-sample the signals when we pass on to coarse scales
and thus not to deteriorate a signal with low resolutions.
51 Generic writing of the DWT: W f [n,a j] = ∑N−1

n=0 f [m] 1√
a j ψ

∗
j [m− n] with a wavelet ψ j[n] =

1√
a j ψ j( n

a j ).
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5.16 Singularity and Regularity of a Time Series:
Self-Similarities, Multifractals and Wavelets

We had the opportunity to underline several times the property of wavelets to pro-
vide information simultaneously in time and frequency. This ability to locate in
frequency the events is interesting. The singularities and the irregularities of a signal
provide information as fundamental as the regularities or periodicities for example.
We know that a (positive or negative) peak very localized in a financial series or
in an electrocardiogram contains fundamental information. Mallat (1998, p. 163)
textually highlights that “the local signal regularity is characterized by the decay of
the wavelet transform amplitude across scales”. Moreover, he underlines that “non-
isolated singularities appear in complex signals such as multifractals”. Multifractals
are subjacent in numerous signals of natural origin. “The wavelet transform takes
advantage of multifractals self-similarities” in order to calculate the distribution of
their singularities. Thus, the time-scale analysis (with its singularity spectrum) and
the wavelets contribute to the knowledge of the properties of multifractals.

In order to present the singularity and the regularity of a signal it is necessary
before to point out the Lipschitz conditions, which were already presented in the part
I. With this intention, as a preliminary, we present the Taylor approximation formula
and the associated approximation error. Given the function f which is n times dif-
ferentiable on a interval centered at x0: [x0−h,x0 +h], the Taylor formula is written:

px0(t) =
n−1

∑
k=0

f (k)(x0)
k!

(t− x0)k. (5.262)

And the approximation error ε(t) = f (t)− px0(t) verifies with u ∈ [x0−h,x0 + h]:

∀t ∈ [x0−h,x0 + h], |ε(t)| ≤ |t− x0|
n!

sup | f n(u)| , (5.263)

The nth order differentiability of f around x0 provides the upper bound of the error
ε(t) when t → x0. At this stage, the Lipschitz exponent allows to specify this upper
bound.

5.16.1 Lipschitz Exponent (or Hölder Exponent): Measurement
of Regularity and Singularity by Means of the Hölder
Functions α(t)

The Fourier analysis makes it possible to characterize the global regularity of a
function and the wavelet transform makes it possible to analyze the pointwise regu-
larity. This distinction exists also in the definition of the regularity in the Lipschitz
sense (also called Hölder regularity), we speak of pointwise or uniform regularity.
This Lipschitz or Hölder regularity concept was extended recently to more robust
approaches such as the regularity 2-microlocal (not presented here). Moreover, there
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are multiple manners of carrying out a fractal analysis of a signal, the calculation
of the pointwise regularity is one of them, and the multifractal analysis is an another
one also. In the first case, we associate with a signal f (t) another signal α(t), which
is called the Hölder function of f , which measures the regularity of f at each point
t. The regularity of f can be evaluated by means of different methods, the pointwise
Lipschitz (or Hölder) exponent α of f at x0, is one of those methods, another one
is the local exponent which is often written αL(x0). But let us present the initial
definition of the regularity in the Lipschitz sense.

Definition 5.4 (Regularity in the Lipschitz sense).

• A function f is pointwise Lipschitz α ≥ 0 at x0, if there exist K > 0 and a poly-
nomial px0 of degree n, where n is equal to the largest integer n � α such that:

∀t ∈ R,
∣
∣ f (t)− px0(t)

∣
∣≤ K |t− x0|α . (5.264)

• A function f is uniformly Lipschitz-α over [a,b], if it satisfies the preceding
condition for all x0 ∈ [a,b], with a constant K which is independent of x0.

• The Lipschitz regularity of the function f at x0 or over [a,b] is the sup of the
α such that f is Lipschitz-α.

If f is n time continuously differentiable (with n equal to the largest integer) in
a neighborhood of x0, then the polynomial px0 is the Taylor approximation of f
at x0.52

It is remarkable to note that “it is possible to construct multifractal functions
with non-isolated singularities”, for which the signal has a different Lipschitz reg-
ularity at each point. However, the uniform Lipschitz exponents provide a more
global measure of regularity on the entire interval. With a signal f uniformly Lip-
schitz α > n in the neighborhood of x0, it is necessary to verify that f is n times
continuously differentiable. Otherwise, i.e. for a f non-differentiable, α will char-
acterize the type of singularity. We will note simply that if the condition: f is n times
continuously differentiable is verified for 0 ≤ α < 1, then px0(t) = f (x0) and the
Lipschitz condition ∀t ∈ R,

∣
∣ f (t)− px0(t)

∣
∣≤ K |t− x0|α becomes:

∀t ∈R, | f (t)− f (x0)| ≤ K |t− x0|α . (5.265)

The main idea could be summarized as follows: For the pointwise regularity we
associate a signal f (t) with another signal α(t) which is the Hölder function of f
and which measures the regularity of f at each point t.

This pointwise regularity is evaluated by means of:

1. The pointwise Lipschitz exponent α of f at x0, which can be defined as follows:

α(x0) = lim
ρ→0

sup{α : ∃K > 0, | f (t)− f (x0)| ≤ K |t− x0|α , |t− x0|< ρ}
if α is non-integer and if f is non-differentiable. Otherwise, it is necessary to
replace in the expression above the f (x0) term by a polynomial px0(t).

52 For each x0 the polynomial is unique.
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2. The local exponent αL(x0) such that:

αL(x0) = lim
ρ→0

sup{α : ∃K > 0, | f (t)− f (y)| ≤ K |t− y|α , |t− x0| < ρ ,

|y− x0|< ρ}.
It will be noted that α and αL have different properties and usually do not cor-

respond,53 we give the following example, if we consider the signal f as a function
such that: f (t) = |t|α sin

(
1/ |t|γ) , then α(0) = α and αL(0) = α/(1 + γ).

Generally the value of α(t) give us the following indications about the regularity
and the continuity of f :

• If α(t) is small, then the function (or signal) f is irregular at t.
• If α(t) > 1: f is at least differentiable once at t.
• If α(t) < 0: there is a discontinuity on f .

The Lipschitz (or Hölder) exponent allows to intuitively represent the regularity
concept and to characterize a time-series by means of their Hölder regularities. It
is used in particular in the signal processing to study the “turbulence phenomena”.
These methods are of a strong interest when the irregularities of a signal contain
important information, as it is frequent besides.

5.16.2 n Wavelet Vanishing Moments and Multiscale Differential
Operator of Order n

In order to study and measure the local regularity of a function or a signal, it is
fundamental to use the wavelet vanishing moments. (Recall: A wavelet ψ has N
vanishing moments if

∫
tkψ(t)dt = 0, 0 ≤ k < N, and

∫
tNψ(t)dt �= 0.) Indeed, the

wavelet transform of a signal which has n vanishing moments is interpreted as a
multiscale differential operator of order n.54

The Lipschitz condition presented previously (∀t ∈ R,
∣
∣ f (t)− px0(t)

∣
∣ ≤ K

|t− x0|α) makes it possible to approximate f by a polynomial px0 in the neigh-
borhood of x0: f (t) = px0(t)+ ε(t) with |ε(t)| ≤ K |t− x0|α . However, a wavelet
transform estimates the exponent α ignoring the polynomial px0 . In order to do
this, a wavelet is selected which has n > α vanishing moments:

∫
tkψ(t)dt = 0,

0 ≤ k < n. A wavelet with n vanishing moments is orthogonal to the polynomials
of degree n−1. And because n > α, the polynomial px0 has a degree at most equal
to n− 1. If one carries out a change of variable you t ′ = (t − u)/s, we verify the
following transform:

W px0(u,s) =
∫

px0(t)
1√
s
ψ
(

t−u
s

)

dt = 0. (5.266)

because f = px0 + ε : W px0(u,s) = Wε(u,s).

53 Stable by differentiation: One of the properties which is respected by αL (and which is not
respected by α) is the property to be stable by differentiation αL( f ′,x0) = αL( f ,x0)−1.
54 See in the appendix the definition of the differentiable operators in Banach spaces.
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The transformation of a signal by a wavelet which has n vanishing moments is
interpreted as a (multiscale) differential operator of order n. There is a relation
between the differentiability of f and the decay of its wavelet transform at the fine
scales. And it is possible to write that a wavelet with n vanishing moments can be
written as the derivative of order n of a function θ .

Theorem 5.5 (Vanishing moments of wavelet with a fast decay). A wavelet ψ
with a fast decay has n vanishing moments if and only if there exists θ with a fast
decay such that:

ψ(t) = (−1)n(dnθ (t)/dtn). (5.267)

Consequently:

W f (u,s) = sn dn

dtn ( f �θ s)(u), with θ s(t) = (θ (−t/s)/
√

s). (5.268)

And ψ have no more than n vanishing moments i f and only i f
∫+∞
−∞ θ (t)dt �= 0.

5.16.3 Regularity Measures by Wavelets

In the prolongation of what was presented above, the decay of the amplitude of
the wavelet transform along the scales is associated with the uniform and pointwise
Lipschitz regularities of a signal. To measure this decay comes down to observe the
structure of the signal while varying the scale. If we choose a n times differentiable
wavelet with n vanishing moments, it comes: ∃Cγ , with γ ∈ N, ∀t ∈ R,

∣
∣
∣ψ(k)(t)

∣
∣
∣ ≤

Cγ/(1 + |t|γ).
Theorem 5.6 (Lipschitz uniform). If f ∈L2(R) is uniformly Lipschitz α ≤ n over
[a,b], then there exists A > 0 such that:

∀(u,s) ∈ [a,b]×R
+, |W f (u,s)| ≤ Asα+(1/2). (5.269)

Reciprocally, let us suppose that f is bounded and that W f (u,s) satisfy the condition
above for an α < n which is not an integer, then f is uniformly Lipschitz α over
[a + ε,b− ε] for any ε > 0.

Theorem 5.7 (Jaffard). If f ∈ L2(R) is Lipschitz α ≤ n at x0, then there exists A
such that: ∀(u,s) ∈ R×R

+,

|W f (u,s) | ≤ Asα+(1/2)(1+ | (u− x0)/s |α). (5.270)

Reciprocally, if α < n is not an integer and there exist A and α ′ < α such that
∀(u,s) ∈ R×R

+,

|W f (u,s) |≤ Asα+(1/2)(1+ | (u− x0)/s |α ′), (5.271)

then f is Lipschitz α at x0.
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This condition establishes a relationship between the pointwise regularity of a
signal and the decay of the modulus of its wavelet transform. To give an illustration
of the condition above we can represent the cone of influence of a point x0. If we
consider a mother wavelet with compact support [−C,C], we obtain by modulations
of scales ψ(u,s) = ψ((t − u)/s)/

√
s, and the modulations on the compact support

provide ψ((t−u)/s) : [u−Cs,u +Cs].
The cone of influence of x0 is written |u− x0| ≤Cs. If u is in the cone of influence

of x0, there is the wavelet transform W f (u,s) = 〈 f ,ψu,s〉 which depends on the
value of f in the neighborhood of x0. We observe the cone of influence of x0 in the
scale-plane (u,s).

0 x0 u

|u-x0| > cs |u-x0| > cs

|u-x0| < cs

Since |u− x0|/s≤C, the conditions of the theorem above is written thus:

|W f (u,s) |≤ A′sα+(1/2) (5.272)

which corresponds to the first theorem of a uniformly Lipschitz function f .
The two preceding theorems show that the Lipschitz regularity of a function f at

x0 depends on the decay of the modulus |W f (u,s)| in the neighborhood of x0.

5.16.4 Detection of Singularities: The Maxima of the Modulus
of Wavelet Transform are Associated with the Singularities

The theorem of Hwang and Mallat shows that there is a maximum at fine scales
when a signal contains singularities. Indeed, it is shown that there cannot be singu-
larity without local maximum of the modulus of the wavelet transform at fine scales.
The theorem is thus interested in the modulus of the wavelet transform and obvi-
ously in the abscissa to which the singularity is identified on the signal. In general,
we detect a succession of modulus maxima converging towards the singularity. The
notion of modulus maximum |W f (u,s)| is described by means of the derivative at u
of the transform:

∂W f (u,s)
∂u

= 0. (5.273)
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with s given, we search a local maximum at u.55 (Remember that ψ is a wavelet,
f is the signal-function and θ is a function.)

Theorem 5.8 (Hwang, Mallat). Suppose that ψ is of the class Cn with a compact
support and that ψ = (−1)nθ (n) with

∫ +∞
−∞ θ (t)dt �= 0. Let f ∈ L1[a,b]. If there

exists s0 > 0 such that the modulus |W f (u,s)| has no local maximum for u ∈ [a,b]
and s < s0, then f is uniformly Lipschitz n on [a + ε,b− ε] for any ε > 0.

Thus, the function-signal f can be singular at a point x0, which means not
Lipschitz-1, if there exists a sequence of wavelet maxima points (uα ,sα ) that
converges towards x0 at the fine scales,56 i.e. if α ∈ N:

limα→+∞(uα ,sα) = (x0,0). (5.274)

The decay rate of maxima on the curves indicates the order of the isolated singular-
ities.57 In general, we make appear the logarithm of the modulus of the wavelet
transform log2 |W f (u,s)| in a graph in the plane [log2(s), log2 |W f (u,s)|]. That
means that it is possible to express the modulus maxima according to the scale in a
log-log plane and the slope obtained provides the estimated order of singularity.

5.16.4.1 Examples of Local Maxima for the Continuous Wavelet Transform
of the Stock Exchange Index: Cac40

The calculation of the local modulus maxima of the continuous wavelet transform
for 2,048 daily values of the Cac40 index, then for its daily growth rate (Fig. 5.37).

The modulus maxima correspond to the “ridges curves” of images. Figure 5.38
represents in a log–log plane, the amplitude along the ridges of the continuous
wavelet transform for a selection of six ridges.

5.16.5 Self-Similarities, Wavelets and Fractals

The most familiar way to approach the concept of self-similarity or more exactly
the concept of self-affinity, that it is possible to observe for example in the high
frequencies of the financial series or in the Internet traffic, can be presented from

55 In detail, the wavelet transform is rewritten as a multiscale operator of order n (ψ(t) =
(−1)n(dnθ(t)/dtn); ψ with n vanishing moments) as presented previously: W f (u, s) = sn dn

dun ( f �

θ s)(u). The multiscale modulus maxima are used to analyze the discontinuities of a signal (see
S. Mallat).
56 Stephane Mallat underlines that they are modulus maxima of the transform. Whereas the
instantaneous frequencies are detected while following the maxima of the normalized scalogram
(ξ/n)PW f (u,ξ ).
57 log2 |W f (u, s) |≤ log2 A+(α +1) log2 s.
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the Hurst exponent in the following way,58 for a stochastic process x(t),t ∈ R
+, ∃

H > 0:
x(t) = a−Hx(at) for any a > 0. (5.275)

The topological approach of the definition of self-similarities states that a set S∈R
n

is self-similar (or self-affine), if the union of the disjoint subsets S1, . . . ,Sm can be

58 Where the equality is understood as a equality by distribution d=.
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obtained from S by scales of translation and rotation. The examples of sets of this
type are numerous, such the Cantor set presented in another section. This concept
must be associated with the concepts of the fractal dimension, Hausdorff dimension
or capacity dimension, which is a simplification of the Haussdorff dimension. It is
possible to describe the generic concept of capacity dimension in the following way.
Let us suppose a set of points P, in a space of dimension d, then if we imagine for
example a first return map which intersects the trajectory of an unspecified dynam-
ics; consequently the dynamics is lying on this plane. We imagine then a cube (or
a “hypercube” of unspecified dimension) denoted ε , and we measure the number
N(ε) of ε which is necessary to cover the set of points P (explaining thus its other
name of box counting). Then, D the capacity dimension of the point set P is equal to:

D = lim
ε→0

[logN(ε)/ log(1/ε)]. (5.276)

We can illustrate the subject while choosing for the set P a single point, consequently
the number of ε necessary to cover P, is N(ε) = 1, and the dimension D is equal to 0.
In the case where P is a segment of which the length by convention is equal to 1, then
N(ε) = 1/ε and D = 1. And in the case where P is a simple plane, by convention of
side equal to 1, then N(ε) = 1/ε2 and D = 2, and so on.

If we uses again the topological approach of the self-similarity, and if we replace
the cubes (or hypercubes) of the “box-counting” approach by “radial structures”
(that we could presage above) by the action of the rotation scale. Then we can con-
sider our set S (bounded on R

n) and we can count the minimum number N(s) of
radial structures of radius s which it is necessary to cover the set S. If S is a set of
dimension D of finite size (such that D = 1,D = 2,D = 3) then,

N(s)∼ s−D, (5.277)

consequently, we have: D =− lims→0(logN(s)/ log(1/s)). Thus, the capacity dimen-
sion D, or fractal dimension, of our set is defined in a generic way by:

D =−liminf
s→0

logN(s)
logs

. (5.278)

And the measure of S is written: limsupN(s) sD.
s→0

Self-similarity: Beyond the definition of selfsimilar processes x(t) = a−Hx(at) given
above, the wavelet analysis of signals and self-affine functions, offers a very inter-
esting perspective to introduce the subject. Let us pose a continuous function f
with a compact support S. This function is selfsimilar, if there exist disjoint subsets
S1, . . . ,Sm such as the representation of f on each subset Si is an affine transforma-
tion of f . Thus, we have for any t ∈ Si an affine transformation by a translation ai,
a weight bi, a scale di, with a constant ci:

f (t) = bi f (di(t−ai))+ ci. (5.279)
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It is said that the affine invariance of f on Si produces an affine invariance for any
wavelet whose support belongs to Si. Moreover, It is said that if a function is self-
similar, or self-affine, its wavelet transform is also self-similar. Moreover, the self-
similarity of the wavelet transform means that the positions and the modulus maxima
are also self-similar.

If an affine transformation � of f is selected, it is written:

�(t) = b f (d(t−a))+ c, (5.280)

the wavelet transform of � is written:

W�(u,s) =
∫ +∞

−∞
�(t)

1√
s
ψ
(

t−u
s

)

dt. (5.281)

Since a wavelet had an integral equal to zero
∫ +∞
−∞ ψ(t)dt = 0, by a change of variable

t ′ = d(t−a), it comes:

W�(u,s) =
b√
d

W f (d(u−a),ds). (5.282)

If we take a wavelet with non-infinite support, i.e. compact, for example on [−C,C],
the affine invariance of f on Si = [mi,ni] provides an affine invariance for any
wavelet whose support is included in Si. For any s < (ni −mi)/C and for any
u ∈ [mi +Cs,ni−Cs]:

W f (u,s) = bi(d
−1/2
i )W f (di(u−ai),dis). (5.283)

5.16.6 Spectrum of Singularity: Multifractals, Fractional
Brownian Motions and Wavelets

Definition 5.5 (Singularity spectrum). Let Sα be a set of points t ∈ R where the
Lipschitz regularity of f is equal to α. The spectrum of singularity D(α) of f is the
fractal dimension of Sα .

The singularity spectrum measures the global distribution of singularities having
different Lipschitz regularities. And the distribution of singularities in a multifractal
signal is used for the study of its properties. It is in the complex phenomena of
turbulences, in particular in fluid dynamics and in geophysics that this type of work
was born. The spectrum of singularity makes it possible to obtain the proportion
of Lipschitz-α singularities which are present at any scale s. Indeed, the capacity
dimension or fractal: D =− lims→0 inf(lnN(s)/ ln(s)), is based on a principle which
consists in proceeding to a disjoint cover of the support of f by “objects” (i.e. radial
structures, intervals, or hypercubes) of length s, of which the number on the set Sα is:

Nα (s)∼ s−D(α). (5.284)
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A multifractal function or signal is known as “homogeneous”, if all the singular-
ities have the same Lipschitz exponent α0. That means that the support of D(α) is
reduced to α0. In order to illustrate the subject we will present the case of fractional
Brownian motions which are homogeneous multifractals. It was shown previously
that the multifractals have non-isolated singularities, and thus it is impossible to
obtain their pointwise Lipchitz regularity. However, it is possible to analyze the
singularity spectrum of multifractals by means of wavelet transforms of the local
maxima. It is known that for a signal f , if the pointwise Lipschitz regularity
α0(<n) at x0 (n is the vanishing moments of the wavelet), then the wavelet trans-
form W f (u,s) has a sequence of modulus maxima |W f (u,s)| at the fine scale that
converges towards x0.

The maxima at the scale s can be taken as a “cover of the singular support” of
f by means of the wavelet transform at the scale s. At these maxima locations we
have:

|W f (u,s)| ∼ sα0+(1/2). (5.285)

The locations of all these modulus local maxima of transforms at the scale s are
represented by the sequence uθ (s) (with θ ∈ Z: integers). By means of a partition59

we can proceed to the sum of these modulus maximum at a power q ∈ R, this sum
is written: ∑θ |W f (u,s)|q . And the length between two consecutive maxima has a
lower limit for a Δ> 0, such that |uθ+1−uθ |> (sΔ). If the length between two max-
ima was shorter, i.e. equal or lower than the limit length sΔ, the sum ∑θ |W f (u,s)|q
will include only the maxima of larger amplitude to “avoid the redundancies”. If we
pose the exponent τ(q) which evaluates the decay of the sum, we have:

τ(q) = liminf
s→0

log∑θ |W f (u,s)|q
logs

, (5.286)

which provides:
∑
θ
|W f (u,s)|q ∼ sτ(q). (5.287)

Under several conditions concerning the wavelet and its vanishing moments, τ(q)
is the Legendre transformation60 of the singularity spectrum D(α).

Theorem 5.9 (Self-similar signal, Arneodo, Bacry, Jaffard, Muzy). Let Λ =
[αmin,αmax] be the support of D(α) and ψ is a wavelet with n > αmax vanish-
ing moments. If f is a selfsimilar function or signal, then we obtain (the Legendre
transformation of the spectrum of singularity D(α)):

τ(q) = min
α∈Λ

(q(α+ 1/2)−D(α)). (5.288)

59 Definition (Partition). If
⋃

i∈I
Ai = G and if all the Ai are supposed to be different from /0 and

are pairwise disjoint, then the set {Ai} is called a partition of G.
60 Legendre transformation: A mathematical procedure in which one replaces a function of sev-
eral variables with a new function which depends on partial derivatives of the original function
with respect to some of the original independent variables. Also known as Legendre contact
transformation.
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Fig. 5.39 Convex spectrum with D(α0) = maxα∈Λ D(α) =−τ(0)

It is noted that the scaling exponent τ(q) is the Legendre transformation τ(q) =
minα∈Λ(q(α+1/2)−D(α)) and is a convex function of q. This Legendre transfor-
mation is invertible (to recover the singularity spectrum D(α)) if and only if D(α)
is convex, thus:

D(α) = min
q∈R

(q(α + 1/2)− τ(α)). (5.289)

Then it possible to write that “the D(α) spectrum of a selfsimilar signal is con-
vex”. Moreover, this observation can be applied to the majority of multifractals and
fractional Brownian motions, under the condition of the convexity of the singular-
ity spectrum. Refer to the works of A. Arneodo, E. Bacry, J.F. Muzy, S. Jaffard,
Y. Meyer and S. Mallat about the singularity spectrum and its convexity. The Brow-
nian motions are regarded as (Gaussian) selfsimilar processes and it is interesting to
analyze their (wavelet and Fourier) singularity spectra (Fig. 5.39).

5.16.6.1 Power Spectrum and Wavelet Transform: Brownian Motion
and Fractal Noise

The power spectrum is introduced to show that the differences or increments in
a Brownian motion are stationary. But, let us note about the fractional Brownian
motions that they:

• Are non-stationary and with Gaussian increase (i.e. Gaussian increment)
• Have power spectra with fast decay, (in spite of the difficulty in producing the

spectrum because of non-stationarity)
• Are singular almost everywhere with the same Lipschitz regularity at all points

Definition 5.6 (Fractional Brownian motions). A fractional Brownian motion x(t)
of Hurst exponent 0 < H < 1, is a process with zero-average Gaussian increase
(increments), such that with x(0) = 0:

E[|x(t)− x(t− τ)|2] = σ2 |τ|2H . (5.290)
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It follows that a fractional Brownian motion “fBm” is singular almost everywhere
with a pointwise Lipschitz regularity α = H. There exists an additional property,
which explains that the singularity of fBm decreases when H increases, and con-
versely when H decreases, the singularity increases. Moreover if τ = t is posed, it
follows:

E[|x(t)|2] = σ2 |t|2H . (5.291)

Furthermore, it τ = t−u, is posed, we obtain then:

E[x(t) · x(u)] =
σ2

2
(|t|2H + |u|2H −|t−u|2H). (5.292)

Remember the autocovariance definition for a random process and a stationary
process:

Definition 5.7 (Autocovariance function of a random process). An autocovari-
ance function of a random process xt with finite variance, is written: γk = Cov[x(t),
x(t + k)] = E([x(t)−E(x(t))][x(t + k)−E(x(t + k))]).

Definition 5.8 (Autocovariance function of a stationary process). An autocovari-
ance function of a stationary process xt with finite variance, is written:

γ0 = Cov[x(t),x(t)] = E([x(t)−E(x(t))]2) = Var(x(t)) = σ2
x � 0,

|γk| ≤ γ0 and γk = γ−k.

If we consider again the property E[x(t) ·x(u)]=(σ2/2) ·(|t|2H+|u|2H−|t−u|2H),
it is said that the covariance of fBm does not depend solely on the argument τ =
t−u, which shows that a fBm is quite non-stationary.

Let us recall the definition of self-similar processes: x(t) d= a−Hx(at) or x(at) d=

aHx(t) (where d= means: Equal in distribution). It is by introducing a scale parameter
on t which is noted a, that we verify the self-similarity characteristic. This way
of making which consists in introducing a scale parameter on t, is familiar to the
practitioners of the wavelet transform, although in general there are translations on t
by u and modulations of the scale by 1/s. In the case of the self-similarity property
we note that the modulation of the scale over time is done with 1/s = a. Beyond
this remark, from the preceding expression: E[x(t) ·x(u)] = (σ2/2) ·(|t|2H + |u|2H−
|t−u|2H), it follows:

E[x(at) · x(au)] = E[aHx(t) ·aHx(u)], (5.293)

and x(at), aHx(t) are Gaussian with identical covariances and averages, and it is
possible to write:

x(at) d= aHx(t). (5.294)

As explained previously, one of the characteristics of the fBm is that they have power
spectra with fast decay, in spite of the difficulty to produce the spectrum because of
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non-stationariness. We circumvent the difficulty by incrementing,61 thus the power
spectrum is calculated on the increments of fBm which are stationary.

Power Spectrum of a Fractional Brownian Motion and of a Fractal Noise

If we pose, on the one hand, a fractional Brownian motion fBm(t) and on the other
hand Δτ(t) = δ (t)− δ (t− τ), the process resulting from the increments:

I [fBm(t)] = fBm(t)�Δτ(t) = fBm(t)− fBm(t− τ), (5.295)

is a stationary process whose spectrum is written:

ŜI [fBm](λ ) =
σ2

H

|λ |2H+1 | Δ̂τ(λ ) |2 . (5.296)

where λ is the frequency, Δ̂τ(λ ) is the Fourier transform of Δτ(t). And (fBm(t)�
Δτ(t)) is a continuous convolution. δ (t) a distribution of dirac.62 From the lines
which precede, it arises that the increments of a (non-stationary) fractional Brown-
ian motion are stationary. And we can extend the subject by writing:

ŜfBm(λ ) =
ŜI [fBm](λ )

| Δ̂τ(λ ) |2
=

σ2
H

|λ |2H+1 . (5.297)

The increments I [fBm(t)] are stationary because in the expression of the power

spectrum ŜI [fBm] = (σ2
H /|λ |2H+1)

∣
∣
∣Δ̂τ(λ )

∣
∣
∣
2

the multiplication by
∣
∣
∣Δ̂τ(λ )

∣
∣
∣
2

allows
to “remove” the energy explosion of low frequency. And it is important to highlight
that the non-stationarity of fBm occurs in the energy burst at low frequency. Note

that
∣
∣
∣Δ̂τ(λ )

∣
∣
∣
2
= O(λ 2). (Recall: For two different discrete signals f1[n] and f2[n], to

write f1[n]∼ f2[n] is equivalent to write that f1[n] = O( f2[n]) and f2[n] = O( f1[n]).
The function O(.) means “of order #”, indeed one can write that f1[n] = O( f2[n]),
and there exists K such that f1[n]≤K · f2[n]).63 The power spectrum is used to prove
that the increments of a fBm are stationary.

61 In statistics we evaluate the degree of differentiation τ th to measure the quality of the
stationarization.
62 Dirac distribution: These distributions are important in particular when one passes from the
continuous to the discrete, and during the transition between functions and real discrete series.
(They make it possible to relieve convergence problems.) A Dirac delta function δ (t) has a support
reduced to t = 0, i.e. δ (0). And if one associates with a Dirac any function f (t) its value in t = 0:∫+∞
−∞ δ (t) f (t)dt = f (0).

63 In a similar way one defines the order o(·) of two discrete signals or function with f1[n] =
o( f2[n]) by limn→∞( f1[n]/ f2[n]) = 0.
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In a similar way to the Brownian motions, the power spectrum of a fractal noise
x(t) is decreasing and is written:

Ŝx(t)(λ ) =
σ2

H

|λ |2H+1 . (5.298)

This type of processes although generally non-Gaussian which can contain singu-
larities of various types, have decreasing power spectra.

The Wavelet Transform of a Fractional Brownian Motion Is a Gaussian Stationary
Process

The transformation is written:

WfBm(u,s) = f Bm�ψs(u). (5.299)

Around λ = 0, the modulus of the Fourier transform of a wavelet, which has at least
one vanishing moment, is of order λ : |ψ̂s(λ )| = O(λ ). The purpose is to highlight
the fact that the wavelet transform of a fBm on each scale is a Gaussian stationary
process.

ŜWfBm(λ ) = s |ψ̂s(sλ )|2 σ2
H

|λ |2H+1 = s2H+2ŜWfBm(sλ ). (5.300)

The gaussianity and the self-similarity of the fBm show that the wavelet transform
is selfsimilar on the scale: WfBm(u,s) = sH+1/2WfBm(u/s,1). The figure hereafter
illustrates the wavelet transform of a fractional Brownian motion for H = 0.7.
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Hereafter two different white noises generated in an identical way and their wavelet
transforms.
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5.16.6.2 The Wavelet Transform of an Artificial Signal

The signal which is used as support here is successively made up of a Gauss curve,
its derivative, then, its second derivative, a triangular, a sinusoid, a Dirac, a Morlet
wavelet, a staircase, a random series and an increasing then decreasing oscillating
structure (n = 512). Here is a continuous transforms by the Morlet wavelets and by
the derivative[Gauss] wavelet in the time-scale plane (Figs. 5.40 and 5.41).
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Fig. 5.40 Derivative[Gauss]-wavelet transform
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Fig. 5.41 Morlet-wavelet transform

Fig. 5.42 2,048 daily values
and their growth rates
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5.17 The Continuous Wavelet Transform

5.17.1 Application to a Stock Exchange Index: Cac40

The decomposed series is a sample of the Cac40 index corresponding to 2,048 daily
values from January 1988 during more than 8 years (Fig. 5.42).

Let us recall that the continuous wavelet transform of a function (or a signal) f
at the scale s and at the position u is calculated by correlating f with a wavelet (or
with a wavelet atom):

W f (u,s) = 〈 f ,ψu,s〉=
∫ +∞

−∞
f (t)

1√
s
ψ∗
(

t−u
s

)

dt, (a)

where ψ∗ is the complex conjugate of ψ in C. There is equivalence between the
expression above and the following equation which is written as a product of
convolution:

W f (u,s) = f � ψ̄s(u) (b)
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with ψ̄s(t) = 1√
sψ

∗ (− t
s

)
. The Fourier transform of ψ̄s(t) is:

∧
ψ̄s(ω) =

√
sψ̂∗ (sω) (5.301)

with ψ̂(0) =
∫ +∞
−∞ ψ(t)dt = 0, where ψ̂ is the transfer function64 of a band-pass filter

of frequencies. Thus, in practice the algorithms calculate the continuous wavelet
transform by means of band-pass filters.

The filtering is carried out in the space of the Fourier coefficients of the signal
and in the space of the filter. The coefficients are successively filtered by the filter
modulations. Then, we proceed to an inverse transform to return to the phase space
of the signal at the chosen frequency scales, from the coarser to the finest. In this
case, the length of the series which is the subject of the transformation is equal
to 2,048, that means that it is a dyadic dimension (n = 2 j), i.e. n = 2 j = 211 =
2,048. The finest scale of the decomposition of the signal is written: log2(n)−5 =
log2(2,048)− 5 = log2(2,048)− log2(32) = 11− 5 = 6, and the coarsest scale
is 2. We illustrate hereafter the method with a Gauss pseudo-wavelet at a fine scale,
we observe in the lower left part of Fig. 5.43 the coefficients filtered in the Fourier
space.

The result of the signal transformation at different scales is a matrix of vectors,
it is represented in Fig. 5.44.

Fig. 5.43 Stages of the transformation by filtering

64 Transfer function: The engineering terminology for a use of Fourier transforms. By breaking up
a wave pulse into its frequency spectrum: fv = F(v)e2πivt , the entire signal can be written as a sum
of contributions from each frequency, f (t) =

∫+∞
−∞ fvdv =

∫ +∞
−∞ F(v)e2πivt dv.
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Fig. 5.44 Matrix of transforms (left). Range (scale) of transforms (right)

Fig. 5.45 Range of transforms used for the time-scale representation

The transform which considers at the same time the low frequencies and the high
frequencies is the closest to the initial signal.

5.17.1.1 Images of Transforms in the Time-Scale Plane

The graphical representation of the continuous wavelet transform can be done in a
time-scale plane with in abscissa u the time unit and in ordinate Log2(s) the fre-
quency scale. The axis of ordinates exploits the form of wavelet transforms while
going from the lower part for the transforms at the high frequencies towards the
upper part for the transforms at the low frequencies. (The colors or the scale of
gray represents the amplitude.) Thus, the time, the frequency and the amplitude are
depicted by means of this graphical representation. The scale denoted log2(1/a)
corresponds to a division of the frequency, with a minimum and a maximum respec-
tively equal to 2 and log2(n)−5. Without providing the detail of the construction of
the wavelet transform matrix resulting from the algorithm used to build this image in
the time-scale plane, we show simply through Fig. 5.45 that the divergent elements
of the matrix at the extremities have been removed.
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The amplitude of the transform is expressed by a scale of colors or a gray scale
(if the color is not used). Here are the results of a transformation by a Gauss-window
(i.e. a Gauss pseudo-wavelet) of the cac40 (picture on the left) and of its growth rate
(picture on the right):

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

4

6

8

t

lo
g2

(1
/a

)

200 400 600 800 1000 1200 1400 1600 1800 2000

1000

1500

2000

Pseudo-Gauss cwt of cac40

Cac40 index [2048 days]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

4

6

8

t

lo
g2

(1
/a

)

200 400 600 800 1000 1200 1400 1600 1800 2000
−0.1

−0.05

0

0.05

0.1

Pseudo-Gauss cwt of cac40 growth rate

Growth rate of cac40 [2048 days]

It is known that filtering by a Gauss-window (i.e. a Gauss pseudo-wavelet ) does
not stationarize the signal that contains a trend. Thus, the resulting image does not
offer much information because the amplitudes are not centered and normalized.
However, this Gauss filtering applied to the growth rate of the Cac40, offers more
information. Indeed, the use of the growth rate (i.e. “differentiation”) stationarizes
the signal. Thus, the changes of amplitudes and the frequencies become more vis-
ible. In the time-scale planes, the amplitude differences at the limits of involved
frequencies are depicted by means of a gray scale (or colors). In the left image the
green and blue colors represent the Cac40 depressions, which are visible in particu-
lar at the beginning of the series. In the right image, although the analyzing function
is the same one, the transformation is applied to the growth rate and provides more
information. We observe the dark color (or red) in the upper left part and in the
upper right part of the image, they depict the depressions (described previously)
at the beginning and also at the end of the signal, which are not visible any more
besides by means of a direct reading on the growth rate series. We now clearly
observe the high frequencies which are in the lower part of the plane (and which
are depicted by a blue scale) which express at the same time different amplitudes.
Let us remark for example, at the middle of the frequency scale and around t = 0.3
and t = 0.75, a dark color (blue) with ramifications in the lower part of the image in
the highest frequencies. This is the representation of the two signal rises, visible on
the initial signal, but that we do not distinguish any more on the growth rate; they
involve many frequencies but not all frequencies.
Image of the Mexican Hat-wavelet transform (or Sombrero): Hereafter, we show
the rough matrix of wavelet transforms and different three-dimensional perspectives
(3D) of this same matrix, with the contours projected on the bottom of the reliefs of
the image. Moreover, a two-dimensional image of the continuous Sombrero-wavelet
transform (scale: “color jet”) is shown. The transformations by true wavelets center
at zero the amplitudes and stationarize the signal, which is not the case with the
Gauss pseudo-window (Figs. 5.46 and 5.47).

In the 2D image, the darkest colors (reds) express depressions of the signal. It is
easy to identify on the left a depression which involves almost all the frequencies.
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Fig. 5.46 Matrix of transforms (left). Perspective and contours (right)
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Fig. 5.47 Image of a CWT of the index Cac40 by sombrero wavelet (Jet version)

We identify smaller depressions that imply less frequencies. This is the case around
t = 0.75 and around t = 0.3, for which the involved frequencies are different. We
clearly observe at t = 0.3 that the covered frequencies are located on the scale
between 3 and 7. Whereas for t = 0.75 the covered frequencies are located between
2 and 6. The high frequencies in the lower part of the image are numerous. Cer-
tain low frequencies in the upper part of the image are spread in the form of tree
structures. It is the case for example of a (blue) dark tree structure at t = 0.35 which
is divided into three very distinct parts, then is subdivided again until the highest
frequencies in the lower part of the plane. That means that the observed “object”, if
it is indeed made of all the frequencies, does not cover however all the time axis but
only sub-segments of this one.
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The option for the two images which follow is to use a gray scale to represent
the amplitudes. The wavelet is a sombrero and the signal is the same French stock
index as previously:
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Compared images of transforms: The decomposed signal is the growth rate of the
Cac40. The four types of decompositions were gathered in a same figure. We show
a decomposition by means of a Gauss pseudo-wavelet, then by a true wavelet that
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is the derivative of the Gauss pseudo-wavelet, then by a Morlet wavelet and finally
by a sombrero wavelet. Note that the representations are rather different, but the
fundamental subjacent structures can be still distinguished. The differences in the
representation result from the shape of the analyzing wavelet.
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5.17.1.2 Details of the Transform Matrix

We show the elements of the transform matrix by means of two types of wavelets:
the Gauss pseudo-wavelet and the Morlet wavelet. Note that the results highlight
different structures of the signal. This results from the nature of the analyzing
waveform but also from the fact that we initially analyze the rough signal (i.e.
non-stationary) and then, its growth rate (i.e. stationary).

Each group of graphs represents the stock index (Cac40) or its growth rate and
its transform at arbitrary octaves; The simple objective is to illustrate the evolution
of the shape of transforms at different scales, from the finest towards the coarsest.
We will notice how much for the highest octave (i.e. for the finest transform) the
adaptation to the shape of the signal is strong, as an “interpolation”, an “approxi-
mation”, or an “estimation”. Moreover, it is remarkable to note how much for the
lowest octave, the transform exhibits the shape of a wave whose cycle is spread over
the entire length of the signal.



5.17 The Continuous Wavelet Transform 455

0 200 400 600 800 1000 1200 1400 1600 1800 2000

1000

1500

2000

2048 data of cac40

0 200 400 600 800 1000 1200 1400 1600 1800 2000

1000

1500

2000

Gauss pseudo-wavelet transform n° 72 of signal

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.1

−0.05

0

0.05

0.1
2048 data of cac40 growth rate 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.01

−0.005

0

0.005

0.01
Morlet wavelet transform n° 72 of signal

0 200 400 600 800 1000 1200 1400 1600 1800 2000

1000

1500

2000

2048 data of cac40

0 200 400 600 800 1000 1200 1400 1600 1800 2000

1000

1500

2000

Gauss pseudo-wavelet transform n° 52 of signal

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.1

−0.05

0

0.05

0.1
2048 data of cac40 growth rate 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−4

−2

0

2

4 x 10-3 Morlet wavelet transform n° 52 of signal

0 200 400 600 800 1000 1200 1400 1600 1800 2000

1000

1500

2000

2048 data of cac40

0 200 400 600 800 1000 1200 1400 1600 1800 2000

1400

1600

1800

2000

2200
Gauss pseudo-wavelet transform n° 32 of signal

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.1

−0.05

0

0.05

0.1
2048 data of cac40 growth rate

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−2

−1

0

1

2 x 10-3 Morlet wavelet transform n° 32 of signal

0 200 400 600 800 1000 1200 1400 1600 1800 2000

1000

1500

2000

2048 data of cac40

0 200 400 600 800 1000 1200 1400 1600 1800 2000

1400

1600

1800

2000

Gauss pseudo-wavelet transform n° 22 of signal

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−150

−100

−50

0

50

100

2048 data of cac40 growth rate

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.4

−0.2

0

0.2

0.4

0.6
Morlet wavelet transform n° 1 of signal



456 5 Spectral and Time–Frequency Analyses and Signal Processing

0 200 400 600 800 1000 1200 1400 1600 1800 2000
800

1000

1200

1400

1600

1800

2000

2200

2400
Gauss pseudo-wavelet applied to cac40

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

Wavelet transforms of
cac40 growth rate: [1],[12],[32],[52],[72]

Fig. 5.48 Gauss pseudo-wavelet transforms (left). Morlet wavelet transforms (right)
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Fig. 5.49 Gauss pseudo-wavelet transforms (left). Morlet wavelet transforms (right)

Fig. 5.48 shows superimposed graphs of different transforms at different
octaves.

Fig. 5.49 shows some transforms without superimposition. Note the decreasing
scale of transforms in left-picture, and the increasing scale in the second.

5.18 Wigner–Ville Density: Representation of the Fourier
and Wavelet Atoms in the Time–Frequency Plane

We will not describe the history of the Wigner–Ville density or distribution in spite
of its great interest, which concerns physics and thermodynamics. As explained
previously the concept of time–frequency atom allows to have a common notion
to Fourier and wavelet analyses. The Wigner–Ville density is calculated by corre-
lating the signal with a translation in time and frequency of itself. It is possible to
do the same observation about time–frequency atoms. The Fourier transforms or
wavelet transforms are also a correlation between the signal and its translation in
time and frequency. Even if it is not the reason of its creation, since at the beginning
the interest was the representation of the instantaneous frequencies, nevertheless
the Wigner–Ville density allows a type of representation in a time–frequency plane
of time–frequency atoms, without resolution loss and without energy loss (ref. to



5.18 Wigner–Ville Density: Representation of the Fourier and Wavelet Atoms 457

Moyal’s theorem65). The limit of resolution corresponds to the limit of time–
frequency atoms themselves. The Wigner–Ville density or distribution DW.V (u,ξ )
(which is also a projector PV on V ) is written as follows:

DW.V f (u,ξ ) = PV f (u,ξ ) =
∫ +∞

−∞
f
(

u +
τ
2

)
f ∗
(

u− τ
2

)
e− iπξdτ. (5.302)

We can also write it in the frequency field by means of the Parseval formula:

DW.V f (u,ξ ) =
1

2π

∫ +∞

−∞
f̂
(
ξ +

γ
2

)
f̂ ∗
(
ξ − γ

2

)
e− iγudγ. (5.303)

Remark 5.1. While leaving the framework of this section temporarily, it seems
interesting to provide a simple illustration of the difference between the Wigner
distribution and the wavelet transform in the time–frequency planes. An elementary
Dirac function makes it possible to observe in Fig. 5.50 that the Wigner–Ville dis-
tribution does not spread the localization of the Dirac function, whereas the wavelet
transform simultaneously spreads the Dirac function in time and frequency in the
time-scale plane.

The Wigner–Ville distribution is recognized to be an important instrument of
the time–frequency analysis. However, its main critique is to produce interferences
because of quadratic terms (or cross terms) in its construction. These terms can be
highlighted, by creating for example a signal built by means of two “sub-signals”,

Fig. 5.50 Comparison (in time–frequency and time-scale planes) between the Wigner–Ville
distribution and wavelet transformation of a Dirac function

65 Theorem (Moyal). For any f and g in L2(R):
∣
∣∫+∞
−∞ f (t)g∗(t)

∣
∣2 = 1

2π
∫ ∫

PV f (u,ξ ) PV g(u,ξ ) du dξ .
For a demonstration see Moyal or Mallat.
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the quadratic terms of the combination of the two sub-signals reveal non-zero values
which correspond to interferences: f = fa + fb:

PV f (u,ξ ) = PV fa(u,ξ )+ PV fb(u,ξ )+ PV [ fa, fb](u,ξ )+ PV [ fb; fa](u,ξ ) (5.304)

the interference terms are:

I(u,ξ ) = PV [ fa, fb](u,ξ )+ PV [ fb; fa](u,ξ ). (5.305)

The figure which follows represents a signal composed of two Gabor atoms of
different frequencies. We will observe the localization in time and frequency of the
energy of each atom, but also the interference at the center (either by means of a
gray scale, or a color scale according to the representation mode).

2 
A

to
m

s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

Time

Fr
eq

ue
nc

y

Wigner-Ville distribution

2 
A

to
m

s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

Time

Fr
eq

ue
nc

y

Wigner-Ville distribution



5.18 Wigner–Ville Density: Representation of the Fourier and Wavelet Atoms 459

5.18.1 Cohen’s Class Distributions and Kernels of Convolution

The interference terms, which are of oscillatory nature and with more or less com-
plex structure, can be “removed” or “attenuated” by the weighting action of kernels
θ (also called windows) in the Wigner–Ville distribution, which give in particular
positive densities but nevertheless induced a resolution loss. Indeed, the interference
terms contain positive and negative oscillations. They can be “removed” by means
of the kernels θ . Then, it comes:

Pθ f (u,ξ ) =
∫ +∞

−∞

∫ +∞

−∞
PV f (u,ξ )θ (u,u,ξ ,ξ )dudξ . (5.306)

The invariance66 by linear translation is a fundamental property of the time–
frequency analysis.67 And the theory of the time–frequency analysis shows that “the
invariant operators of linear translations are convolution products” (Mallat 1998,
p. 116). The energy distributions are translated of a quantity equivalent to the trans-
lation, because the energy conservation68 properties are respected (ref. to Moyal’s
theorem). The kernel above can thus be written as a structure of translation in time
and modulation in frequency, provided with the invariance properties:

θ (u,u,ξ ,ξ ) = θ (u− u,ξ − ξ ), (5.307)

which allow by convolution with the Wigner–Ville distribution to obtain a weighted
or smoothed distribution, such as:

Pθ f (u,ξ ) = PV f �θ (u,ξ ) =
∫ ∫

PV f (u,ξ )θ (u− u,ξ − ξ)dudξ . (5.308)

This type of distribution is known as of the “Cohen’s class”. The general expression
above of the distribution is provided with a double integral on time and on frequency,
and the kernels impact obviously the initial distribution on spreads corresponding to
their own support in time and frequency. The types of kernels are rather numerous
and condition obviously the result of the convolution. (In spite of the interest of the
subject, we will not report it here.)

66 Invariance by linear translation:
g(t) = L f (t)⇒ g(t− τ) = L fτ(t).

67 Invariance property of the Wigner–Ville distribution:
f (t) = g(t−u0)⇒ PV f (u,ξ ) = PV g(u−u0,ξ ),
f (t) = exp(iξ0t)g(t)⇒ PV f (u,ξ ) = PV g(u,ξ −ξ0).

68 Energy conservation equation: ‖ f ‖2 =
∫+∞
−∞ | f (t)|2 dt = 1

2π
∫ +∞
−∞
∣
∣
∣ f̂ (λ )

∣
∣
∣
2

dλ .

Property of the Wigner–Ville distribution PV f (u,ξ ): For any f , one has the following
properties:
∫ +∞
−∞ PV f (u,ξ )du = | f̂ (ξ )|2 and 1

2π
∫+∞
−∞ PV f (u,ξ )dξ = | f (u)|2.

These properties make it possible to regard the Wigner–Ville distribution as a “time–frequency
energy density”.
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When the distribution is computed again and the interference terms removed or
more exactly attenuated, we can observe the image in the time–frequency plane of
atoms (see Figs. 5.51 and 5.52).
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Fig. 5.51 Cohen’s class distribution of two Gabor atoms (B&W)
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Fig. 5.52 Cohen’s class distribution of two Gabor atoms (Jet)
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5.18.1.1 Distribution of an Artificial Signal

We create an artificial signal, it is successively composed of a Gauss-curve, then, its
derivative, its second derivative, a triangular function, a sinusoid, a Dirac function,
a Morlet wavelet, a staircase, a random series and an increasing oscillating structure
then decreasing (n = 512). Figures 5.53 and 5.54 show the Wigner–Ville distribution
and the Cohen’s class distribution in the time–frequency plane.

Hereafter, we present the Cohen’s class distribution for the same signal. Note
that the representation in the time frequency plane is refined and the interferences
are attenuated.
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Fig. 5.55 Wigner distribution of the atomic decomposition by the MP

Wigner Distribution of the Decomposition by the “Matching Pursuit” of This
Artificial Signal

As explained previously, the Wigner distribution can be used to represent in the
time–frequency plane the decomposition by the “Matching Pursuit” with dictionar-
ies of time–frequency atoms of this artificial signal. The signal is almost the same, as
in the preceding section, except for the “random part” which is a new random sam-
ple. We will observe in Fig. 5.55 the result of the matching pursuit approximation
in the time–frequency plane that it will be possible to compare with the previous
Wigner–Ville distribution or with the Cohen’s class distribution for the artificial
signal.

5.19 Introduction to the Polyspectral Analysis
(for the Nonlinearities)

It is not possible to approach the domains of spectral analysis, time–frequency anal-
ysis or signal processing without providing a report about polyspectral analysis.
New estimators of the normalized polyspectrum of the order 3 (bicoherency, bis-
pectrum) and of the normalized polyspectrum of the order 4 (trispectrum) have
been developed. Their normalization terms take into account the fact that we search
to identify the “phase relations” between the involved frequencies. The evaluation
of the performances of estimators are currently in process, in particular about the
nonlinear dynamical systems described by the Zakharov equations. This type of
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study is to be supplemented by the evaluations of the fractal dimension of turbu-
lent processes. Such approaches are carried out by the physics laboratories for the
signal processing of the stellar plasma type for example, but also by some economic
laboratories about the social data analysis. We refer to some studies supported by
the OECD concerning economical and social data which exploit the polyspectral
analysis but also wavelet analysis (Amin et al. 1997).

5.19.1 Polyspectral Analysis Definition for Random Processes
with Zero-Average

In order to define the polyspectral analysis or the spectral analysis of a high order
(i.e. order higher than two), we use an extension of the autocorrelation notion with
multiple lags (delays), from the definition of the cumulant (or moments) of order n
of a random process with zero-average (Mendel 1991; Pilgram et al. 1997),

Cn(τ1,τ2, . . . ,τn−1), (5.309)

the cumulants of order 2 for the time series x(t) is written:

C2(τ1) = E[x(t)x(t + τ1)], (5.310)

where E[.] is the expectation. Thus, the second order cumulant of x(t) is the
autocovariance function of x(t). The third order cumulant is:

C3(τ1,τ2) = E[x(t)x(t + τ1)x(t + τ2)] (5.311)

and the fourth order cumulant is written:

C4(τ1,τ2,τ3) = E[x(t)x(t + τ1)x(t + τ2)x(t + τ3)]−C2(τ1)C2(τ2− τ3)
−C2(τ2)C2(τ3− τ1)−C2(τ3)C2(τ1− τ2). (5.312)

If x(t) is a Gaussian random process, all the cumulants of an order higher than 2
are equal to 0. This property is useful for example during a cardiorespiratory anal-
ysis, because it makes it possible to distinguish the non-Gaussian components (e.g.
a deterministic oscillation as a respiratory arrhythmia) in a Gaussian background
noise, independently of the noise spectrum shape, by the calculation of cumulants
of order higher than 2. But, because the third order cumulants are equal to 0 for the
Gaussian processes, but also for the processes which have a symmetrical distribu-
tion, then we use in such cases the fourth order cumulants. The Fourier transform of
cumulants are called spectra of high order, or polyspectra. The Fourier transform
of second order cumulants (corresponding to the autocovariance) is obviously the
power spectrum. The Fourier transform of C3(τ1,τ2) is a bispectrum.
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5.19.2 Polyspectra and Nonlinearities

The spectra of a high order are supposed to provide a tool to study the nonlinearities.
All the cumulants of order higher than two are equal to zero for a Gaussian pro-
cess, thus the polyspectra are particularly useful to study the deviations (i.e. gaps)
in comparison with the Gaussian behaviors. But, this creates problems, because
the intuitive interpretation of cumulants is not spontaneous. The spectral distribu-
tion of the second order is linked with the autocorrelation function by the Fourier
transform,

S(λ ) =
∫ +∞

−∞
C(τ)e−i2π λτdτ, (5.313)

C(τ) =
∫ +∞

−∞
S(λ )e+i2π λτdλ , (5.314)

λ is the frequency and τ the lag. And we have in particular σ2 the variance of the
process written as follows:

σ2 = C(0) =
∫ +∞

−∞
S(λ )dλ . (5.315)

To calculate the bispectrum, we pose the “tri-variance” T (τ1,τ2), written:

T (τ1,τ2) = E[(x(t)− μ) · (x(t + τ1)− μ) · (x(t + τ2)− μ)], (5.316)

to simplify the writings we poses μ as the average of the process x(t), and we obtain
the bispectrum:

B(λ1,λ2) =
∫ ∫

T (τ1,τ2)e−i2π (λ1τ1+λ2τ2)dτ1dτ2. (5.317)

Its inverse Fourier transform is written:

T (τ1,τ2) =
∫ ∫

B(λ1,λ2)e+i2π (λ1τ1+λ2τ2)dλ1dλ2. (5.318)

From the definition above, T (0,0) is σ3 times the skewness (asymmetry69), then the
preceding equation becomes:

σ3× skewness =
∫ ∫

B(λ1,λ2)dλ1dλ2, (5.319)

thus, B(λ1,λ2) is interpreted as a function which shows how the “skewness” is
linked with the frequency pairs.

It is known that the power spectra, i.e. the correlations of order 2, are blind as
regards the phases. In addition, it is said that the Gaussian random processes can

69 In statistics, the Skewness test (i.e. asymmetry) is written: 1
T ∑T

t=1(yt −y)3/σ 3. And the Kurtosis
test (i.e. flatness) is written: 1

T ∑T
t=1(yt − y)4/σ 4.
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be completely specified by the knowledge of their statistics of the first and second
order. There exist many practical situations, where we have to look at correlations
of a higher order, i.e. cumulants of order higher than 2 of a signal, in order to extract
the information concerning the phase, i.e. the presence of nonlinearities or the devi-
ation in relation to the “Gaussianity” of the signal, etc. The polyspectra (order >2)
of Gaussian processes are equal to zero. Thus, it is said in theory that the polyspec-
tra analysis are domains with high Noise–Signal Ratio, where the identification of
the system and the reconstruction of the signal can done and provide results. The
non-Gaussian processes are better apprehended or identified by the polyspectra.
However, the polyspectra have tardily received many critiques, in particular because
the amount of data necessary to produce estimates of weak-variance and the number
of involved calculations are very high.

Examples of Polyspectrum.

First example: Bispectrum and third order cumulants are calculated for an ARMA
(2,1) process with AR = [1,−1.5,0.8] and MA = [1,−2]. Figures 5.56 and 5.57
depict respectively, Bispectrum, Cumulants in the plane, Cumulants in 3D and a
sample of Trispectrum (contour plots).

Second example: The analyzed time series is segmented into several overlapping
records. The signal corresponds to artificial data for the Quadratic-Phase Coupling
problem. Signal is constructed from four unity amplitude harmonics with frequen-
cies 0.1, 0.15, 0.25 and 0.40 Hz. We add to the signal a white Gaussian noise with a
variance of 1.5. The harmonics at (0.1, 0.15, 0.25) are frequency-coupled and phase-
coupled, however the harmonics at (0.15, 0.25, 0.40) are frequency-coupled, but not
phase-coupled. Hereafter the bispectrum amplitude is shown in a contour plot. The
sharpness of peaks highlights the quadratic phase coupling (see Fig. 5.58a).

Third example: Figure 5.58b shows the Bispectrum of sunspots (Annual sunspots
for years 1700–1987). The sunspot time series is positive and the bispectrum is
calculated by means of differences. Last examples: The first time series is the logis-
tic model close to the chaotic regime. The second time series is a Bi-linear model
(Signal = y1 · y2 : y1 = sin(2π · f1 · t + ϕ1) and y2 = (0.1) · sin(2π · f2 · t + ϕ2),
f1 = 60 Hz, f2 = 4 Hz, and ϕ1,ϕ2 are randomly chosen. In this case ϕ1 = 0.7 and
ϕ2 = 0.3 radians). Each Fig. 5.59a and Fig. 5.59b depicts Averaged signal, Third
order cumulant, Bispectrum magnitude and Bispectrum phase.
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Fig. 5.58 (a) Cross-Bispectrum of signal, (b) Bispectrum of Sunspots

5.20 Polyspectral and Wavelet Bicoherences

5.20.1 A New Tool of Turbulence Analysis: Wavelet Bicoherence

Recently, a new tool for the analysis of turbulence has been introduced and inves-
tigated, it is the wavelet bicoherence (see van Milligen et al. 1995a). This tool
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Fig. 5.59 (a) Logistic equation, (b) Bi-linear process

is able to detect the phase coupling, i.e. the nonlinear interactions of the lowest
“quadratic” order with time resolution. Its potential is important and it was applied
in specific works (see footnote70) to numerical models of chaos and turbulence and
also applied to real measures. In the first case, the van der Pol model of chaos,
this tool detected the coupling interaction between two coupled van der Pol oscil-
lators. In the second case, the drift wave turbulence model concerning the plasma
physics, it detected a highly localized “coherent structure”. In the case of real mea-
sures, i.e. for the analysis of reflectometry measures concerning fusion plasmas,
it detected temporal intermittency and a strong increase in nonlinear phase cou-
pling which coincide with the Low-to-High71 confinement mode transition. Three
arguments plead for a new tool about the turbulent phenomenon analysis: (1) First,
the tools of chaos theory (as fractal dimensions, Lyapunov exponent, etc.) are not
always easily applicable to real phenomena, in particular if the noise level is high.
Moreover, information recovered by these methods is not always adapted to physi-
cal understanding. Indeed, a low fractal dimension measured in a real phenomenon
is helpful information, but a high dimension, in particular higher than 5 (for exam-
ple often observed in fusion plasmas) does not offer interesting solution. (2) Second,
the applications of the traditional analysis (i.e. which involve long-time averages of
moments of data) of standard spectral analysis are limited concerning chaotic or tur-
bulent real phenomena. Indeed, if we consider the transition from quasi-periodicity
to chaos in theoretical dynamical systems, as we have explained in the first part
of this book, there exist several possible routes to chaos which can be summarized
as follows: period-doubling, crises and intermittency. In these three main routes
(Ott 1993), the transition to chaos are abrupt. Then, an explanation of the chaotic
regime by means of a superposition of a large number of harmonic modes (i.e. oscil-
lators which correspond to the Fourier analysis72) does not seem suitable. Indeed,

70 van Milligen et al. 1995b. Asociación EURATOM-CIEMAT, Madrid, Spain. B. Carreras.
Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. L. Garcı́a.Universidad Carlos III,
Madrid, Spain.
71 Usually written by physicists: (L/H).
72 See the Navier–Stokes equations sections in the present book.
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Fig. 5.60 “Coherent
structures” in turbulent phe-
nomenon (ref: Haller)
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for some systems of which the equations do not have a complete set of solutions
and for which therefore the observed behavior cannot be decomposed into eigen-
modes. Therefore, a decomposition into Fourier harmonics (i.e. modes), which is
appropriate for the global description of turbulence or chaos by means of (for
example) the decay of the spectrum in frequency, produces a confused picture at
a finer scale, because it is not an optimal method in particular for the expansion
(van Milligen et al. 1995b, p. 2). (3) Third, numerous and important arguments (both
numerical simulations and observation turbulence) lead to state that turbulence usu-
ally is an intermittent phenomenon, that means that it is localized in time and often
in space also. Such an observation is in opposition to the Fourier analysis, indeed,
the Fourier analysis supposes the “homogeneity” in the phenomenon, and thus does
not seem suitable. Moreover, this concept of non-homogeneity in the turbulence phe-
nomena is closely related to the concept of Coherent structures73 (see for example,
Lagrangian Coherent Structures in 2D Turbulence, Haller’s research, Department of
Mechanical Engineering, MIT).

Figure 5.60 depicts how Coherent structures (and their possible interactions)
could be distributed in a turbulence phenomenon picture. These types of phenom-
ena plead for the use of the wavelet analysis. As explained previously, the wavelet
analysis can be taken as an extension of the Fourier analysis. Even if Fourier and
wavelet analyses in many cases lead to similar conclusion, however wavelet analysis
has a fundamental additional property which is the time resolution. (Even if we use
the windowed Fourier transform or short time Fourier transform, because the defects
and deficiencies of the Fourier methods persist.) It is important to highlight that
many successful applications (Farge 1992; Hudgins et al. 1993; Meneveau 1991) of
the wavelet analysis concern turbulent phenomena. At this stage, during the wavelet
transformation the important purpose is to “extract the information relevant to non-
linear interactions”. In connection with what precedes, the higher-order spectra in
the Fourier analysis were applied with interesting results (Meneveau 1991; Kim and
Powers 1978). The paper (van Milligen et al. 1995b) that we evoke presently goes
further, indeed, the concept of the first higher-order spectrum, i.e. the bispectrum

73 “While the existence of these structures is clear from visual observations, their mathematical
description is far more difficult” Haller and Iacono (2003).
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was generalized to the wavelet analysis. The bicoherence, i.e. the normalized bispec-
trum, is a measure of the amount of “phase coupling” which occurs in a signal. The
phase coupling occurs when two frequencies θ1 and θ2 are simultaneously present
in a signal along with their sum (or difference) and the sum of the phases ϕ of these
frequency components remains constant. The bicoherence measures this quantity
and is a function of two frequencies θ1 and θ2 which is close to 1 when the signal
contains three frequencies θ1, θ2 and θ that satisfy the relation θ1 + θ2 = θ and
ϕ1 +ϕ2 = ϕ + constant (otherwise it is close to 0). When the signal, which is ana-
lyzed, shows “structures”, it is highly probable that “some phase coupling occurs”.
Therefore, the generalization of the bispectrum to wavelet analysis can be used to be
able to “detect temporal variations in phase coupling”, i.e. “intermittent behavior”
or “structures localized in time”.

In the paper evoked presently, this method is applied to the output of a nonlinear
chaotic dynamical system (i.e. van der Pol), then to a model of drift wave turbulence
relevant to plasma physics, and finally to real measurements, i.e. to the analysis
of reflectometry measures made in (thermonuclear) fusion plasmas. The only one
application which will be briefly presented in this section is the nonlinear van der
Pol model, in the case of a system of two coupled van der Pol oscillators in the
periodic and chaotic states.

5.20.1.1 Wavelet Bicoherence: Study of “Abrupt Frequency Change”, “Phase
Coupling” and Singularities

The objective of these works was to analyze the abrupt changes of frequencies,
pulses, or singularities very localized in time (as in turbulent phenomena). These
types of problems cannot be analyzed and resolved by the Fourier analysis which
does not have resolution in time, because this type of problem involves an integral
over time as well as on frequencies. With the Fourier analysis, abrupt variations and
singularities localized in time are spread among all the signal decomposition, and
the temporal information is eliminated during the reconstruction of a signal (such
remark is valid also for the windowed Fourier transform to rebuild the singularities
or abrupt variations). Wavelet analysis is based on (non-continuous) “oscillating
functions” (with compact supports) which decay rapidly in the course of time,
rather than sines and cosines in the Fourier analysis which do not have such a decay.
Indeed, a wavelet transform is a function of the frequency and time. Let us present
briefly these important works. If ψ indicates a wavelet, consider a wavelet family
which can be written:

ψa(t) =
1
apψ
( t

a

)
, (5.320)

where a is a scale parameter and the factor p is a normalization choice, the authors
selected p = 0.5 (the argument of their choice is to say that the L2-norm of the
wavelet is independent of a). We know that the wavelet admissibility condition is
written:
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Cψ =
∫ +∞

−∞
|ψ̂(ω)|2 |ω |−1 dω < ∞. (5.321)

The wavelet transform of a function f (t) is written:

Wf (a,τ) =
∫

f (t)ψa (t− τ)dt, (5.322)

where τ is a translation parameter. And the inverse wavelet transform is written for
p = 0.5:

f (t) =
1

Cψ

∫ ∫

Wf (a,τ)ψ∗a (τ− t)dτ
da
a2 . (5.323)

In the wavelet analysis we know that time-resolved spectra (i.e. time resolution in
spectra) can be preserved. The wavelet cross spectrum is written:

CW
f g =
∫

T
W ∗

f (a,τ)Wg (a,τ)dτ, (5.324)

where T is a finite time interval and f (t) and g(t) are two time series. It is introduced
a delayed wavelet cross spectrum:

CW
f g(a,Δτ) =

∫

T
W ∗

f (a,τ)Wg (a,τ +Δτ)dτ (5.325)

which is a quantity used to detect “structures” between two separated observations.
A normalized delayed wavelet cross coherence is written:

γW
f g(a,Δτ) =

∣
∣
∣
∫

T W ∗
f (a,τ)Wg (a,τ+Δτ)dτ

∣
∣
∣

(
PW

f (a)PW
g (a)
)1/2 (5.326)

which is contained in the interval [0,1]. The wavelet power spectrum can be written
in term of the usual Fourier power spectra of the wavelet:

PW
f (a) =

1
2π

∫

Pψa(ω)Pf (ω)dω (5.327)

with Pf (ω) calculated on the interval T . The wavelet74 auto-power spectrum can be
written as follows: PW

f (a) = CW
f f (a). The first higher-order spectrum along the same

lines is introduced and the wavelet cross-bispectrum is defined by the authors of the
paper in the following way:

BW
f g(a1,a2) =

∫

T
W ∗

f (a,τ)Wg (a1,τ)Wg (a2,τ)dτ (5.328)

with 1/a = 1/a1 + 1/a2 which is the frequency sum-rule. This wavelet cross-
bispectrum measures the amount of phase coupling (inside T ) which occurs between

74 According to the term used in the authors’ article.
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wavelet components a1 and a1 of g(t) and wavelet component a of f (t) (in such a
way that the sum-rule is verified). It is supposed that ω = 2π/a, wavelet
cross-bispectrum can be understood as the coupling between waveforms or more
exactly between waves of frequencies, i.e. wavelets of frequencies such that ω =
ω1 +ω2.75 In a similar way, the wavelet76 auto-bispectrum is written:

BW (a1,a2) = BW
f f (a1,a2). (5.329)

It is possible to write that the “squared wavelet cross bicoherence” is the “normal-
ized squared cross-bispectrum”:

(
bW

f g(a1,a2)
)2

=

∣
∣
∣BW

f g(a1,a2)
∣
∣
∣
2

(∫ ∣
∣Wg(a1,τ)Wg (a2,τ)

∣
∣2 dτ
)

PW
f (a)

(5.330)

contained between the interval [0,1]. Besides, the squared wavelet auto bicoherence
is written:

(
bW (a1,a2)

)2
=
(
bW

f f (a1,a2)
)2

. (5.331)

The square bicoherence
(
bW (a1,a2)

)2 is usually plotted in a (ω1,ω2)-plane rather
than (a1,a2)-plane.77 At this stage, the total bicoherence is written:

(
bW)2 =

1
S∑∑

(
bW (a1,a2)

)2
, (5.332)

where S the number of terms in the summation insures the inclusion in the interval
[0,1]. At this stage, the choice of one wavelet can be introduced. Usually the choice
is often restricted to a wavelet which has Fourier transforms showing a single promi-
nent peak. In this respect, a theoretical wavelet is constructed by the authors which
is written as follows: ψa(t) = 1√

a exp
[
i 2πt

a − 1
2 (t/ad)2] the choice of d provides the

exponential decay of the wavelet, which is adapted to the time–frequency resolution.

5.20.1.2 Application to the Coupled van der Pol Oscillators

The coupled van der Pol oscillators can be written as follows:

dxi

dt
= yi, (5.333)

dyi

dt
=
(
(ai− (xi + b jx j)2)yi− (xi + b jx j) , (5.334)

75 See article about this postulate.
76 According to the term used in the authors’ article.
77 Remark: ω1 +ω2 = ω, this sum must be smaller than the Nyquist frequency (half sampling
frequency). Moreover, it is postulated to plot that ω1 � ω2.



472 5 Spectral and Time–Frequency Analyses and Signal Processing

where i = 1, j = 2 correspond to the first oscillator and i = 2, j = 1 is the second.
ai correspond to the limit-cycles of oscillators and b j correspond to the nonlinear
couplings between oscillators. Two cases are studied, the first one is the periodic
state and the second is the chaotic state.

Periodic state: The successive pictures below, show the Fourier spectrum (top-left),
the cross phase probability (top-right), thewavelet bicoherence (bottom-left), the
wavelet cross bicoherence (bottom-right). The Fourier spectrum shows some rare
peaks of frequency and their associated harmonics. The bicoherence (bottom-left)
shows rectilinear horizontal and diagonal ridges corresponding to a frequency at
0.34, which can be identified in the spectrum as the second peak. So, the two dom-
inant peaks (i.e. the first and the third) in the Fourier spectrum respectively at 0.17
and at 0.5 couple (i.e. there is coupling) with their difference frequency at 0.34. Sim-
ilarly, the difference in frequency between the second and the fourth peak, between
the fourth and the sixth peak, . . . is always 0.34. Idem for the odd sequence of peaks.
The even peaks are the consequence of the coupling interaction between the two
oscillators, whereas the odd peaks are the harmonics of the limit cycle of oscillators
(ref. to van Milligen et al. 1995b).
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Chaotic state: Fourier spectrum (top-left) still shows some of former peaks and
other of the periodic state which are shifted in frequency. New peaks occur because
of period-doublings (on the route to chaos). Spectrum shows chaos on a broad band.
The bicoherence (bottom-left) shows (weaker) rectilinear horizontal and diagonal
ridges which appear at a frequency close to 0.25 corresponding to the 4th peak in
the Fourier spectrum, which is related to the frequency at 0.34 highlighted in the
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periodic-state spectrum. A modification of the parameter of the coupled model to
obtain the chaotic regime induces a global frequency shift.

Chaotic state
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Extracting the wavelet bicoherences of the periodic and chaotic states from the
preceding pictures, we highlight the comparison between two states:
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The comparison above shows that the images have similar strong main ridges, and
except for these ridges the images are different. Indeed, the vertical line which
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appeared around the frequency “0.34” (showing the coupling in the periodic-state
bicoherence) is divided and partitioned into several small distinct parts. This remark
is in connection with the period-doublings appeared in the chaotic-state. New
couplings can be also observed in lower frequencies (around 0.2 and 0.13, see article
for comments).

5.20.2 Compared Bicoherences: Fourier and Wavelet

In order to compare the bicoherences between wavelet and Fourier, the analyzed
measures are taken at the “Advanced Toroidal facility” (ATF, Lyon et al. 1986)
with “Langmuir” probes and with (known) strong Fourier bicoherence (Hidalgo
et al. 1994).at 1 MHz. The Fourier spectrum of this signal (not shown) is turbu-
lent and does not have preeminent peaks or modes (i.e. oscillations, periods or
cycles). Figure 5.61 show the Fourier and wavelet bicoherences.78 The wavelet
picture shows less detail and the global aspects of the pictures are similar.

In order to demonstrate that the wavelet bicoherence shows more clearly ele-
ments which are less well detected by means of the Fourier spectrum, the FFT
is computed on the raw data, the phase information is scrambled, and an inverse
FFT is computed to obtain a new data series. We strongly recommend the reader
to consult this interesting article to have comments, technical demonstrations and
results.

Fig. 5.61 Bicoherences (ref. to van Milligen et al, 1995a, 1995b)

78 Computed on a frequency grid with 64 grid points from 0 to 500 kHz from a data section running
from 1 to 16 ms.
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5.21 Arguments in Favor of Wavelet Analysis Compared
to Fourier Analysis

5.21.1 Signal Deformation by Diffusion of Peaks, Discontinuities
and Errors in the Fourier Transform

In a Fourier transform the information about time is not lost because we can rebuild
the signal from a transform, however it is hidden under the phases, i.e. the same
sines and cosine can represent moments very different of the signal because they
are shifted in phase to amplify or to cancel themselves. Consequently, the Fourier
analysis is inadequate and unsuited to the signals which change abruptly and in an
unpredictable way. However, such changes contain very interesting information. In
theory, it is possible to extract information about time by computing the phases from
the Fourier coefficients. In practice, to calculate them precisely is impossible. The
fact that the information at one moment of the signal is widespread among all the
frequencies of the transform is a major problem. A local characteristic of the signal
as a peak or a discontinuity becomes a global characteristic of the transform. In
connection with the peaks, we know for example that a narrow and high rectangular
function has a very wide Fourier transform, as it is easy to observe in Fig. 5.62.

As mentioned before, a discontinuity for example, is represented by a superposi-
tion of all the possible frequencies. In the same way, as the white color is made of all
the colors of the spectrum; It is not possible to deduce from such a superposition that
the signal is discontinuous and moreover to locate this discontinuity. Consequently
for all these reasons, in the Fourier space the lack of information about time makes
a Fourier transform very sensitive and vulnerable to the errors. Indeed, an error can
corrupt all the Fourier transform. The (true or erroneous) information in a part of
the signal spreads throughout the transform; thus, the errors of phases deform the
signal and can produce a signal very different from the original.

Its Fourier Transform

 Rectangular Function

Fig. 5.62 The Fourier transform of a peak is extensive
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5.21.2 Wavelets are Better Adapted to the Signal by Respecting
Discontinuities and Peaks, Because they Identify
the Variations

Because of the preceding observations, the wavelets have been conceived. They
avoid the diffusion and interference phenomena, allowing also the decomposition
of the signal and its reconstruction. In the Fourier analysis, the window is fixed and
the number of oscillations varies. A small window is blind for the low frequencies
which are too large to be captured. In a too large window, the information about the
fast or abrupt variations is drowned in the information concerning the entire interval
contained in the window. In the wavelet analysis, we analyze the signal at different
scales, because we stretch and compress a mother wavelet. The broad wavelets pro-
vide an approximate image of the signal while the narrow wavelets allow to zoom in
the details.79 We reconstruct a signal from its wavelet transform, by adding wavelets
of various sizes, just as for the Fourier transform we rebuild the signal by adding
sines and cosines. In principle, the calculation of coefficients is done in the same
way, we multiply the signal and the analyzing function, and we compute the inte-
gral of the product.80 However, in practice we use different fast algorithms. (We
have already explained that a wavelet81 was built starting from the “Gaussian func-
tion”, but this one does not satisfy the strict conditions for the construction of a
wavelet, and such a wavelet was used by Gabor in the windowed Fourier analy-
sis.) The stretching and compression of wavelets are the true inventions which made
evolve the method. The wavelets are automatically adapted to the different compo-
nents of the signal: they use a narrow window to look at the transitory components
and a broad window for the components of long duration and low frequency.

It is essential to remember that, unlike the Fourier analysis, the information about
frequencies is only approximate, indeed a sine and a cosine have a precise frequency,
this is not the case for a wavelet. This is the characteristic of wavelets, due to their
“constant shapes”: The resolution, the scale and the frequency vary at the same time.

The set of coefficients at all the scales provide a good image of the signal. Unlike
Fourier series, here, the wavelet coefficients translate, in simple, precise and exact
ways, the properties of these functions, i.e. the properties which correspond to tran-
sitory periods, for example the ruptures, discontinuities. It is said that the wavelets
detect and encode only the variations. A wavelet coefficient measures the correla-
tion between the wavelet (its peaks and its hollows) and the corresponding interval
of the signal and they allow to closely look at the details of a signal. A constant
interval of the signal provides a coefficient equal to zero, because the wavelet by
definition has a zero-integral. Thus, the integral of the product of the wavelet by the
signal is equal to zero for a constant signal. The wavelet analysis is a manner of
expressing the sensitivity to the variations.

79 A technique which is sometimes called the “mathematic microscope”.
80 ∫ ( f ∗g)dt.
81 Created by Yves Morlet.



5.21 Arguments in Favor of Wavelet Analysis Compared to Fourier Analysis 477

When we use the continuous wavelet transform, any function can be named
“wavelet”, on the condition that it has a zero integral. The Fourier transform decom-
poses a signal according to its frequencies; the wavelet transform decomposes a
signal into its components at different scales. In both cases, we calculate the inte-
grals: we multiply the signal by the analyzing function (sinusoids or wavelets) and
we integrate. It is essential to explain that the transformation is robust, i.e. a small
change in the wavelet representation induces a comparable change of size in the
signal; a small error or modification is not amplified in an exaggerated way.

5.21.3 Wavelets are Adapted to Non-Stationary Signals

The wavelet analysis is thus appropriate to the non-stationary signals which present
discontinuities and peaks. The Fourier analysis is appropriate to regular periodic
signals and to stationary signals. If the signal is regular over a long duration and
simply oscillates, it is not logical to analyze it with small wavelets, which capture
only some oscillations. Moreover, the determination of the frequency by wavelets is
imprecise in high frequencies.

5.21.4 Signal Energy is Constant in the Wavelet Transform

Grossmann and Morlet proved that when we represent a signal by means of the
wavelet transform, the signal “energy” does not change. This energy corresponds to
the average value of the square of the amplitude, which is different from the energy
concept in physics.

5.21.5 Wavelets Facilitate the Signal “Denoizing”

The wavelets provide also a method to extract the signal from the white noise, which
exists at all the frequencies. The procedure is simple, we transform the signal by
means of wavelets, we eliminate for all the resolutions the coefficients lower than a
“threshold value” and we rebuild the signal with the remaining values. This method
requires few information about the signal. Previously we were supposed to guess
the type of regularity of the signal.

5.21.6 Wavelets are Less Selective in Frequency than the Fourier
Transform

In the Fourier analysis, the analyzing function is a sinusoid of precise frequency
and when we multiply it by the signal, the obtained coefficient only refers to this
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frequency. On the other hand, a wavelet is composed of a mixture of frequencies
(which is indicated by its own Fourier transform). The wavelet coefficients refer to
this mixture of frequencies.

5.21.7 The Hybrid Transformations Allow an Optimal Adaptation
to Transitory Complex Signals

Starting from the analytic observation concerning wavelet and Fourier transforms,
the creation of “hybrid” tools turned out a necessity for an optimal adaptation to
the structure of transitory signals, i.e. signals composed of different sub-structures.
The wavelet packets, for example, are the product of a wavelet with an oscillating
function. The wavelet detects the abrupt change, whereas the oscillations reveal
the regular variations. This technique is used for example to study the turbulence
phenomena.

Moreover, the algorithm of the “best basis (Coifman)” identifies the signal and
in so doing directs its analysis towards:

– Fourier transforms for the periodic “patterns”
– Wavelets for the irregular signals with strong short variations
– Wavelet packets mentioned above, or towards the Malvar wavelets which are

an evolution of wavelet packets (i.e. an attack, a plate and a decreasing of the
analyzing function)

The algorithm selects, for each signal, the basis which will encode it with an
optimal concision.

Finally, the Pursuit algorithm is better adapted than the “best basis” to the decom-
position of non-stationary signals. This algorithm finds for each part of the signal the
wave which resembles the most to it. Instead of seeking the optimal representation
for the entire signal, we seek the optimal representation for each characteristic of the
signal. To this end, the algorithm browses a wave and wavelet dictionary and selects
the most resembling to the part of the gradually analyzed signal. The window of the
algorithm is a Gaussian of variable size which respects the non-stationarities, mod-
ified by sinusoids of different frequencies. Starting from this structure it is possible
to build an infinity of bases. The dictionary can be very large.



Chapter 6
The Atomic Decompositions of Signals

6.1 A Hybrid Transformation: Evolution of the “Matching
Pursuit” Towards the Mallat and Zhang Version

It is one of the applications of waveforms theory, which corresponds to the trans-
formation by the “Pursuit” algorithm with adaptive window. This technique will
be applied in this chapter to a stock index, i.e. the French stock index: Cac40. We
know that this transformation decomposes the signal in a time–frequency plane, the
analyzing function is usually Gaussian of a variable width. The variable elements
in the decomposition are the frequency, the position of the window and the size of
the window, and we know that these three elements are independent. This transfor-
mation is particularly adapted to the strongly non-stationary signals which contain
very different components. The algorithm “Pursuit” seeks the best “accord” (i.e.
concordance) for each component of the signal rather than for the entire signal. The
encoding or the decomposition of a non-stationary signal with “Pursuit” is concise
and invariant by translation.

The latest version of the Matching Pursuit (i.e. Mallat and Zhang), that we present
at the end of this chapter, has allowed J.B. Ramsey and Z. Zhang to establish sev-
eral statements about the nature of the analyzed signals. This also made it possible to
have a new perspective concerning the time–frequency analysis due to the use of the
time–frequency atom dictionaries (i.e. wave form dictionaries). A wave form dictio-
nary is a class of transforms that generalizes both windowed Fourier transforms and
wavelets. Each wave form is parameterized by location, frequency and scale. Such
methods can analyze signals that have highly localized structures in either time or
frequency spaces as well as broad band structures. The matching pursuit algorithm
is used to implement the application of wave form dictionaries to decompose the
signal in the stock market index. Over long period, a stock market index shows very
localized bursts of high intensity energy (see Ramses and Zhang) and in the neigh-
borhood of which the signal is on the contrary very stable. Later on we will see how
these explosions are decomposed and analyzed by the algorithm.

T. Vialar, Complex and Chaotic Nonlinear Dynamics,
c© Springer-Verlag Berlin Heidelberg 2009
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The traditional statistics still recently concluded1 that the long-period stock mar-
ket indexes have a random nature, whether they are stationary or not. Generally, it
is said that they follow a random walk and they are also compared to the behaviors
of Brownian motions. In econometrics, it is said that the non-stationary series have
heteroscedastic variances.2

The Ramsey and Zhang analysis is to consider according to their own terms that
“the energy of a system is largely internally generated, rather than the result of
external forcing”. In fact, they consider that oscillations of quasi-periodic nature,
inside of which exist all the frequencies, can appear in an explosion of a signal,
in a very localized manner. They also consider that the first proof that the stock
exchange signals do not follow a random walk is that the number of wave forms
necessary to represent them is smaller than for an usual random series. The wave
form dictionaries, which are also called time–frequency atoms dictionaries, are
noted

D =
{

gγ(t)
}
γ∈Γ (6.1)

and a sub-dictionary is noted:

Dα =
{

gγ
}
γ∈Γ . (6.2)

Before this recent version, the algorithms of Matching Pursuit exploited separately
the Fourier dictionaries and the wavelet dictionaries. We provide some representa-
tions of sinusoid packets (also called cosine packets) and wavelet packets in the
following section. These collections of sinusoids and wavelets are used for the
decomposition of signals.

6.1.1 Construction of Sinusoid and Wavelet Packets

Starting from the Fourier series, we produce sinusoid collections of different types,
they are named sinusoid packets (sine or cosine packets) and will be used for the
signal decomposition. The sinusoid characteristics of a collection are indexed.

A similar methods is used for the wavelets, we generate different wavelet col-
lections, these are wavelet packets which will be used for the signal decomposition.
The wavelet characteristics of a collection are indexed. We give an example of these
sinusoid and wavelet packets in Figs. 6.1 and 6.2, first, in time, then their respective
spreads in frequency.

The figures which follow are important (Figs. 6.3 and 6.4), because they make
it possible to observe how each sinusoid and wavelet is represented in the time–
frequency plane. We observe the spread in the time–frequency plane of the Fourier

1 Until the work of Lo and MacKinlay.
2 Ref: Fama and LeBaron.
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Fig. 6.1 Left: Sinusoid packets (time). Right: Wavelet packets (time)
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Fig. 6.2 Left: Sinusoid packets (frequency). Right: Wavelet packets (frequency)

Fig. 6.3 A short sinusoid

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

|FFT(CosinePacket(3,3,6))|

F
re

qu
en

cy

F
re

qu
en

cy

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

C
os

in
eP

ac
ke

t(
3,

3,
6)

Phase Plane: CosinePacket(3,3,6)

Time

Time

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Frequency Domain

Time Domain

atom or wavelet atom, i.e. their Heisenberg box, represented by a black rectangle
in the upper right part of each group of figures. Hereafter, at the top-left of each
group of figures, we provide the representation in the frequency-space and at the
bottom-right we provide the representation in the phase-space.



482 6 The Atomic Decompositions of Signals

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
Frequency Domain

|FFT(WaveletPacket(4,7,2))|

F
re

qu
en

cy

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

W
av

el
et

P
ac

ke
t(

4,
7,

2)

Phase Plane:  WaveletPacket(4,7,2)

Time

Time

F
re

qu
en

cy

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Time Domain

Fig. 6.4 A wavelet

Let us present hereafter, just for the record, some shapes of standard wavelets,
Haar, Daubechies D4, coiflet C3 et symmlet S8:
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Now we are going to begin the presentation of the procedure of the (atomic) Match-
ing Pursuit decomposition. Let us recall the definition of a time–frequency atom
and the definition of the Matching Pursuit algorithm with redundant dictionary.
Then, we present the version described by Mallat and Zhang of the Matching Pursuit
algorithm with non-redundant time–frequency dictionaries.
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6.1.2 Reminders About the Time–Frequency Atoms

We presented previously the decompositions of signals by families of well localized
functions simultaneously in time and frequency; Such functions are called time–
frequency atoms. The (short term) Fourier and wavelet transforms are examples of
time–frequency decomposition of a signal. To extract information from complex
signals, it is necessary to adapt the decomposition to the signal structure. S. Mallat
and Z. Zhang describe an example of function with complex values belonging to a
Hilbert space L2(R).3 (See the section about the Frames, the sub-section about the
Fourier transform in L2 of square integrable functions: A discontinuous function or
a function with singularities which is not integrable, has its square integrable.) Such
a function can be noted: ‖g‖2 =

∫+∞
−∞ |g(t)|2 dt < +∞ with g(t) ∈ L2(R) ĝ(ω) is the

Fourier transform of g(t) ∈ L2(R).

ĝ(ω) =
∫ +∞

−∞
g(t)e−iωtdt. (6.3)

The inner product of (g, f ) ∈ L2(R)2 is defined by 〈g, f 〉 =
∫+∞
−∞ g(t) f̄ (t)dt, where

f̄ (t) is the complex conjugate of f (t). A family of time–frequency atoms can be gen-
erated by scaling, translation and modulation of a windows function g(t) ∈ L2(R).
It is supposed that the windows functions g(t) are real and centered at zero. One
poses ‖g‖= 1,

∫
g(t) �= 0, g(0) = 0. The atom is thus defined by:

gγ(t) =
1√
s

g
(

t− μ
s

)

eiξ t , (6.4)

s = scaling, μ = translation, ξ = frequency modulation ω . γ = (s,μ ,ξ ) = index
(The index γ is an element of the set Γ = R

+×R
2). The factor 1√

s normalizes the
norm of gγ(t) towards 1. The function gγ(t) is centered at μ . Its Fourier transform
ĝ(ω) is centered at the frequency ω = ξ and has an energy concentrated in a neigh-
borhood of ξ (for which the size is proportional to 1/s). The Fourier transform is:

ĝ(ω) =
∫ +∞

−∞
g(t)e−iωt dt and ĝγ(ω) =

√
sĝ(s(ω− ξ ))e−i(ω−ξ )u. (6.5)

The time–frequency dictionary of atoms is defined by D =
{

gγ(t)
}
γ∈Γ. A dictio-

nary thus defined is very redundant, and contains collections of Fourier and wavelets
windows. For any signal, and in particular when there exist complex structures or
non-stationarities, we have to choose a (a priori) single general framework adapted
to decompose it in a compact way by means of atom series of the dictionary. This
adaptive framework of a redundant dictionary is described in the following section.

3 See: sub-section about the “Concept of Frames” about the Fourier transform in L2 of the
square integrable functions. A discontinuous function or with singularities which is not necessary
integrable, has its square integrable.
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6.1.3 Reminders About the Matching Pursuit

Let H be an experimental signal and D a dictionary gγ(t)γ∈Γ of vectors in H such
that
∥
∥gγ
∥
∥ = 1. D is redundant and contains more vectors than necessary to build a

basis. When the dictionary is redundant the representation of the signal is not single.
An optimal approximation of f ∈H, is written:

f̃ =
N

∑
n=1

angγ n, (6.6)

N is the number of terms; an and gγ n ∈ D are selected to minimize
∥
∥ f − f̃

∥
∥. It

is impossible to calculate an optimal solution numerically, thus, one calculates by
means of a new algorithm a sub-optimal approximation of f ∈H. The purpose is the
calculation of successions of approximations of f , by means of orthogonal projec-
tions of the signal on elements of D. Given gγo ∈D, the vector f can be decomposed
into:

f =
〈

f ,gγo
〉

gγo + R f . (6.7)

Rf is the residual vector after approximation of f in the direction of gγo. gγo is
orthogonal with Rf and is normalized to 1. Thus:

‖ f‖2 =
∣
∣〈 f , gγo

〉∣∣2 +‖R f‖2 . (6.8)

to minimize ‖R f‖, we must take gγo such that
∣
∣
〈

f ,gγo
〉∣
∣ is maximum. In some cases

one finds gγo “sub-optimal”, i.e.
∣
∣〈 f ,gγo

〉∣∣� α sup
γ∈Γ

∣
∣〈 f ,gγ

〉∣∣ , (6.9)

where α is an optimal factor which satisfies 0 ≤ α ≤ 1. The iterative algorithm
decomposes the residue R f of an antecedent (former) projection by a projection of
the residue on a vector D, as carried out about f . This is repeated for each residue
of a former projection. Given R0 f = f , one supposes that the residue of the nth
order Rn f for any n (positive or zero) was calculated. Then, one chooses an element
gγn ∈ D which approximates the residue Rn f ;

∣
∣〈Rn f ,gγn

〉∣∣� α sup
γ∈Γ

∣
∣〈Rn f ,gγ

〉∣∣ , (6.10)

Rn f is decomposed into:

Rn f =
〈

f ,gγn
〉

gγn + Rn+1 f , (6.11)

which provides the residue of order n + 1. Thus Rn+1 f is orthogonal with gγn

‖Rn f‖2 =
∣
∣
〈
Rn f ,gγn

〉∣
∣2 +
∥
∥Rn+1 f

∥
∥2

. (6.12)
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if this decomposition is continuous at the order m, then f was decomposed into:

f =
m−1

∑
n=0

(
Rn f −Rn+1 f

)
+ Rm f (6.13)

replacing the equation
∣
∣
〈
Rn f ,gγn

〉∣
∣�α supγ∈Γ

∣
∣
〈
Rn f ,gγ

〉∣
∣ in the equation ‖Rn f‖2 =

∣
∣
〈
Rn f ,gγn

〉∣
∣2 +
∥
∥Rn+1 f

∥
∥2

, one obtains:

f =
m−1

∑
n=0

〈
Rn f ,gγn

〉
+ Rm f . (6.14)

‖ f‖2 is decomposed in:

‖ f‖2 =
m−1

∑
n=0

(
‖Rn f‖2−∥∥Rn+1 f

∥
∥2
)

+‖Rm f‖2 . (6.15)

The equation |Rn f | = 〈 f ,gγn
〉

gγn + Rn+1 f , provides an equation of energy conser-
vation:

‖ f‖2 =
m−1

∑
n=0

〈
Rn f , gγn

〉2 +‖Rm f‖2 . (6.16)

The decomposition of f is nonlinear, but the energy conservation is respected. We
observe when m increases how evolves the residue Rm f . Mallat and Zhang (1993)
checked that “Pursuit” converges in spaces of finite or infinite dimension.

6.1.3.1 Mallat and Zhang Theorem

Theorem 6.1 (Mallat and Zhang). Given f ∈H. The residue defined by the follow-
ing induction equation

∣
∣〈Rn f ,gγn

〉∣∣ � α supγ∈Γ
∣
∣〈Rn f ,gγ

〉∣∣ satisfies lim
m→+∞

‖Rm f‖ = 0, then it comes:

f =
+∞

∑
n=0

〈
Rn f ,gγn

〉
gγn (6.17)

then

‖ f‖2 =
n−1

∑
n=0

〈
Rn f ,gγn

〉2 (6.18)

when H has a finite dimension, ‖Rm f‖ decays exponentially towards zero.
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6.1.4 Improvement of the Algorithm

When the dictionary is very redundant, the search of the best residue-signal accord
can be limited to a sub-dictionary:

Dα = {gγ}γ∈Γ ⊂ D. (6.19)

It is supposed that Γα ⊂ Γ : ∀ f ∈ H

sup
γ∈Γα

∣
∣〈 f ,gγ

〉∣∣α � sup
γ∈Γ

∣
∣〈 f ,gγ

〉∣∣ . (6.20)

We start by calculating
(〈

f ,gγ
〉)

γ∈Γα , then after the calculation of
(〈

Rn f ,gγ
〉)

γ∈Γα ,
we search in Dα an element gγ̃n such that:

∣
∣
〈
Rn f ,gγ̃n

〉∣
∣= sup

γ∈Γα

∣
∣
〈
Rn f ,gγ

〉∣
∣ , (6.21)

where gγ̃n approximates f better than gγ̃n. We seek via the Newton method for
an index γn inside a neighborhood of γ̃n in Γ, where

∣
∣〈 f ,gγn

〉∣∣ reached a local
maximum. The optimum provides the following inequalities:

∣
∣
〈
Rn f ,gγn

〉∣
∣�
∣
∣
〈
Rn f ,gγ̃n

〉∣
∣� α sup

γ∈Γ

∣
∣
〈
Rn f ,gγ

〉∣
∣ (6.22)

when gγn (better than gγ̃n) is found, Mallat and Zhang calculate the inner product of
the new residue Rn+1 f with any gγ ∈ Dα , by means of an update formula resulting
from the equation

∣
∣〈Rn f ,gγn

〉∣∣� α supγ∈Γ
∣
∣〈Rn f ,gγ

〉∣∣ , i.e.:

〈
Rn+1 f ,gγ̃n

〉
=
〈
Rn f ,gγ

〉− 〈Rn f ,gγn
〉〈

gγn,gγ
〉

(6.23)

during the updates only the calculation of
〈
gγn,gγ

〉
is necessary. The dictionaries

are generally built with a small number of operations. It is the desired precision ε
which decides of the level and number of sub-decomposition. We write:

‖Rp f‖=

∥
∥
∥
∥
∥

f −
p−1

∑
n=0

〈
Rn f ,gγn

〉
∥
∥
∥
∥
∥

� ε ‖ f‖ , (6.24)

where p is the number of iterations. The energy conservation equation ‖ f‖2 =
∑n−1

n=0

〈
Rn f ,gγn

〉2 + ‖Rm f‖2 allows to write that the equation below is equivalent
to

‖ f‖2−
p−1

∑
n=0

∣
∣
〈
Rn f ,gγn

〉∣
∣2 � ε2 ‖ f‖ (6.25)

the residue Rn f was not calculated at each iteration, therefore we have to check if
the equation ‖Rp f‖ =

∥
∥
∥ f −∑p−1

n=0

〈
Rn f ,gγn

〉∥∥
∥� ε ‖ f‖ is verified.
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6.1.5 Mallat and Zhang Version of Matching Pursuit
with Dictionaries of Time–Frequency Atoms gγ

The objective is to proceed to an adaptive time–frequency transformation. It pro-
vides a particular decomposition in a sum of complex time–frequency atoms. The
particularity is that “the distribution of time–frequency energy results from the sum
of the Wigner distribution of each time–frequency atom”. The preceding Mallat and
Zhang theorem proves4 that the “Matching Pursuit” decomposes any function of
L2 into:

f =
+∞

∑
n=0

〈
Rn f ,gγn

〉
gγn, (6.26)

with:5

gγn(t) =
1√
sn

g
(

t− μn

sn

)

eiξnt , (6.27)

where γn = (sn,un,ξn). In the discrete mode, (for a signal length N), we have: γ =
(s,u,ξ ) = (2 j,2 j−1 p,kπ2− j), with 0 � j � log2 N, 0 � p � N 2− j−1, 0 � k � N
2 j+1. Thus, for an atom n, we have:

gγn(t) =
1√
2 jn

g
(

t−2 j−1pn

2 jn

)

eiknπ2− jnt (6.28)

( jn, pn,ξn are the values for the atom n). From this decomposition we can obtain
for each atom a Wigner distribution. Let us recall that initially the definition of the
Wigner distribution (with cross terms) for two functions f (t) and h(t):

D[ f ,h](t,ω) =
1

2π

∫ +∞

−∞
f (t + τ/2)h̄(t− τ/2)e−iωτdτ, (6.29)

and the Wigner distribution of f (t) is D f (t,ω) = D[ f , f ](t,ω):

D[ f , f ](t,ω) =
1

2π

∫ +∞

−∞
f (t + τ/2) f̄ (t− τ/2)e−iωτdτ. (6.30)

Since the Wigner distribution is quadratic, we obtain from the atomic decomposition
of f (t) the following expression:

D f (t,ω) =
∞

∑
n=0

∣
∣
〈
Rn f ,gγn

〉∣
∣2 Dgγn(t,ω) (6.31)

+
+∞

∑
n=0

+∞

∑
n=0, m�=n

〈
Rn f ,gγn

〉〈
Rm f ,gγm

〉
D[gγn,gγm](t,ω).

4 A dictionary of time–frequency atom is complete.
5
[
“an” in the equation of the “Matching Pursuit” f̃ =∑N

n=1 angγ n, corresponds to
〈
Rn f ,gγn

〉
in the

expression above of f = ∑+∞
n=0

〈
Rn f ,gγn

〉
gγn
]
.
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The double sum corresponds to the cross terms of the Wigner distribution, which
generally are removed to improve the image of the energy distribution (see sections
about Cohen’s class and Wigner distributions). This is also done here and it makes
it possible to obtain an expression which is interpreted as a new energy density

E f (t,ω) =
+∞

∑
n=0

∣
∣
〈
Rn f ,gγn

〉∣
∣2 Dgγn(t,ω). (6.32)

From the dilation and translation properties of the Wigner distribution, one can write
for γ = (s,μ ,ξ ):

Dgγ (t,ω) = Dg
(

t− μ
s

,s(ω− ξ )
)

(6.33)

thus, for γn = (sn,un,ξn):

E f (t,ω) =
+∞

∑
n=0

∣
∣
〈
Rn f ,gγn

〉∣
∣2 Dg
(

t− μn

sn
,sn(ω− ξn)

)

. (6.34)

Since the Wigner distribution also checks:
∫+∞
−∞
∫ +∞
−∞ Dg(t,ω)dtdω = ‖g‖2 = 1, the

energy conservation equation: f = ∑+∞
n=0

〈
Rn f ,gγn

〉
gγn, makes it possible to write:

∫ +∞

−∞

∫ +∞

−∞
E f (t,ω)dtdω = ‖ f‖2 . (6.35)

E f (t,ω) is analyzed as an Energy Density of f in a time–frequency plane (t,ω).
If g(t) is, for example, the following Gaussian window:

g(t) = 21/4e− πt2
, (6.36)

it comes:
Dg(t,ω) = 2e−2π(t2+(ω/2π)2). (6.37)

Mallat and Zhang explain that the time–frequency atoms gγ(t) are then called Gabor
functions and the energy distribution can be understood as “a sum of Gaussian
pulses” whose positions and spreads in the time–frequency plane depend on γn =
(sn,μn,ξn).

Illustration for an artificial signal: Figure 6.5 provides an elementary illustration of
what has just been presented previously. It is the application of the Matching Pursuit
on a simple signal and the representation of the Wigner distribution in the time–
frequency plane of the atomic decomposition of this signal. This signal is composed
of a simple sinusoid, two Gabor atoms and a Dirac function and a noise along the
entire signal;

Signal = [a short sinusoid+ two Gabor atoms+ a dirac+ noise].
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Fig. 6.5 Energy distribution of the signal in the time–frequency plane

Fig. 6.6 Meshgrid plot
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Fig. 6.7 Energy distribution of the signal (jet version)
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Fig. 6.8 Energy distribution of the signal in the time–frequency-(amplitude) space

We observe clearly the elements from the atomic decomposition of the MP in the
time frequency-(amplitude) space. We identify the images of the two Gabor atoms
which have different frequencies, the vertical line of the Dirac function, the very
localized sinusoid in the lower left part and the horizontal line in the upper half
which represents the noise along the signal (Figs. 6.6–6.8).

Application to a standard signal of transitory behavior (i.e. transient): This sample
made of 512 points is well-known and is used in many works relating to signal
processing.
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Fig. 6.9 Wigner–Ville distribution of Gabor atoms
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Fig. 6.10 Signal and energy
density (B&W)
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Fig. 6.11 Energy density or Wigner density of the atoms

Application to a sound recording: Recording of the word “greasy” with a sam-
ple of 8,192 points. The dark blobs are Wigner–Ville distributions of Gabor atoms
extracted by the matching pursuit and shown in the time–frequency plane (Fig. 6.9).

Application to the logistic equation in the chaotic field: Illustration by the logistic
equation xt+1 = αxt(1− xt) for α � 4 with a sample of 512 points. We observe the
different atoms with their respective shape and spread (Figs. 6.10–6.15).
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Fig. 6.12 Wigner density
(elevation 70◦)

Fig. 6.13 Perspective of
Wigner density of the attractor

Fig. 6.14 Wigner density of the logistic attractor (HSV colormap version)
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Fig. 6.15 Perspective (HSV)

6.2 Applications of the Different Versions of the “Matching
Pursuit” to a Stock-Exchange Index: Cac40

In this example we successively apply the following algorithms to the French stock-
exchange index:

• The atomic decomposition by the MP with Fourier dictionaries
• The atomic decomposition by the MP with Wavelet dictionaries
• The atomic decomposition by the MP developed by Mallat and Zhang with time–

frequency atom dictionaries

The first and second decompositions are applied to a sample of 2,048 daily values
of the Cac40 growth rate corresponding to more than 8 years from January 1988
(Figs. 6.16 and 6.17).

The third decomposition that applies the Mallat and Zhang version of the Matching
Pursuit (with Gabor, Fourier and Dirac atoms) is tried out on a longer sample, i.e.
11 years starting from January 1, 1988.

6.2.1 Matching Pursuit: Atomic Decomposition with Fourier
Dictionary

We apply the atomic decomposition of the matching pursuit by means of Fourier
dictionary, that means sine and cosine packets (i.e. sinusoid packets). As a pre-
liminary and by way of example, with an aim of better visualizing the Fourier
atom repertories, we present the extraction by means of the Matching Pursuit
of 50 vectors of sinusoids packets from the 256 values (taken randomly) of the
growth rate of the stock-exchange index: Cac40, we obtain the following repertories
(Fig. 6.18).
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Fig. 6.16 Left: 2,048 daily values of the stock index. Right: Distribution
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Fig. 6.17 Left: 2,048 daily growth rates. Right: Distribution

The following figure shows the Fourier dictionaries (i.e. sinusoid packets) that
decompose the signal by depth levels.
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Observe in Fig. 6.19 the representation in the time–frequency plane of the
Heisenberg boxes of the Fourier atoms resulting from the decomposition by the MP
of 2,048 daily values of the stock-exchange index. The different types of symbol
(circle, cross, point) inside the rectangles represent the intensity or the amplitude.
Then, in order to better representing the tiling of the plane by the Heisenberg boxes,
we provide various images, either through a gray scale or a jet color scale.

In order to better visualize the boxes, we provide an illustration for a shorter
sample corresponding to 512 daily values (Fig. 6.20).
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Fig. 6.18 Sample of the dictionary repertories of Fourier waveforms
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Fig. 6.19 Heisenberg boxes of Fourier atoms (left), image of Heisenberg boxes (right)

6.2.2 Matching Pursuit: Atomic Decomposition with Wavelet
Dictionary

We apply the decomposition of the matching pursuit by means of wavelet packet
dictionary. We will show neither the repertories, nor the wavelet dictionaries whose
pictures have a weak interest. On the other hand, the Heisenberg boxes are shown
in Fig. 6.21.

In order to better visualize the boxes, one provides an illustration for a shorter
sample, corresponding to 512 daily values (Fig. 6.22).
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Fig. 6.20 Heisenberg boxes of Fourier atoms for a shorter sample (512 values) (top left), image of
Heisenberg boxes (B&W) (bottom left), Jet version (bottom right)
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Fig. 6.21 Boxes of wavelet atoms (left), image of the atoms (right)
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Fig. 6.22 Heisenberg boxes of wavelet atoms for a shorter sample (top left), image of boxes
(B&W) (bottom left), Jet version (bottom right)

6.2.3 An Application of the Mallat and Zhang “Matching Pursuit”
Version: An Adaptive Atomic Decomposition of a
Stock-Exchange Index with Dictionaries of Time–Frequency
Atoms gγ

Consider again the expression of the new energy density suggested by Mallat and
Zhang and described in one of the preceding sections:

E f (t,ω) =
+∞

∑
n=0

∣
∣
〈
Rn f ,gγn

〉∣
∣2 Dg
(

t− μn

sn
,sn(ω− ξn)

)

, (6.38)

where E f (t,ω) is analyzed as an energy density of a signal f in the time–frequency
plane (t,ω). We apply this MP version to the growth rate of 2,847 daily values of
the Cac40 (see Fig. 6.24) from January 01, 1988 to June 30, 1999 (Figs. 6.25–6.30).

It is possible to observe in Figs. 6.25–6.30 the great number of atoms due to the
length of the signal which shows more than 11 years of the French stock-exchange
index. We can also observe for those which are visible in this image, the Dirac
functions, in particular, at the beginning of the signal around t = 100, then little
before the point t = 500, then around t = 1,000, then at t = 1,400, t = 1,990, t =
2,550 and especially at t = 2,710.
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Fig. 6.23 Left: 2,847 daily values. Right: Distribution
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Fig. 6.24 Left: 2,847 daily growth rate. Right: Distribution
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Fig. 6.25 Distribution of the atoms

Hereafter, in order to better visualize the energy density (i.e. the Wigner density)
in this time–frequency plane, we present it in perspective through three dimensions:
i.e. time–frequency-amplitude.
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Fig. 6.26 Wigner density (Jet)

Fig. 6.27 Wigner density
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Fig. 6.28 Density of energy [Wigner distribution] (Elevation 35◦, azimuth 0◦)

Fig. 6.29 Density of energy [Wigner distribution] (Elevation 75◦, azimuth 0◦)
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Fig. 6.30 Distribution of Time-Frequency atoms and Dirac functions.

6.3 Ramsey and Zhang Approach of Stock Market Crises by
Matching Pursuit with Time–Frequency Atom Dictionaries:
High Intensity Energy Periods

It would be interesting to test this method on a stock market index offering a continu-
ity throughout the twentieth century and compare this series and its decomposition
with the historical events which impacted this financial index and the economy. The
French index does not allow probably this experiment, indeed, it would be neces-
sary to study the continuity between the French index before and after 1988, since in
1988 a new index has been created (i.e. Cac40). The Ramsey and Zhang work (using
the Mallat and Zhang algorithm) is based on the S&P500 index of the United States
which seems to have a better structural continuity. If one evokes the growth rate of
the index, it is possible to observe that the very dense signal is traversed by fast oscil-
lations with localized bursts of very large amplitude. This type of behavior favors
the use of analysis tools such as the waveform dictionaries, i.e. the time–frequency
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atoms dictionaries. The Dirac Delta function have a particular interest in this signal
decomposition method to understand these types of behavior.

6.3.1 The Dirac Function Would Allow to Distinguish Isolated
and Intense Explosions: Internal Shocks and External
Shocks

J.B. Ramsey and Z. Zhang distinguish for a signal between “isolated impulses (i.e.
isolated bursts or explosions)” and “intense impulses” (i.e. explosions of high inten-
sity energy). The first one being able to be represented by Dirac delta functions
which indeed involve all the frequencies of the spectrum, and the second one involv-
ing almost all the frequencies but relatively less at the very high and very low
frequencies. The distinction enunciated above comes from the observation of stock
market crises. At the observation, the stock exchange crises are periods of high
intensity energy which appear “without apparent warning”, such that Ramsey and
Zhang explain it, and go up very quickly and die out equally abruptly. Nevertheless,
these bursts are not the result of isolated impulses represented by Dirac delta func-
tions. In fact, there is many cases of isolated impulses in a stock exchange index but
their occurrence is separated in general from intense bursts.

An interesting lighting is that the crisis of 1929 and that of 1987 do not show,
by means of their decomposition, significant Dirac delta functions, even if the two
periods of crises are the center of narrow zones very localized in time with many
energy bursts. This indicates that the major crises of the stock exchange and even
the smaller crises are not the result of isolated impulses. Thus, by means of the
observation, the intense bursts cannot be associated with isolated impulses, or
external shocks. Ramsey and Zhang explain that the intense bursts of high intensity
energy which are prominent in the stock-exchange times series seem to be inter-
nal to the systems. Thus, according to their own terms, it is possible “reasonably
to infer from these results that bursts of intense activity are not the result of iso-
lated, unanticipated, external shocks, but more likely the result of the operation of
a dynamical system with some form of intermittency in dynamics”. The Ramsey
and Zhang analysis conclude that the data of financial markets do not follow a ran-
dom walk, even if their structure is very complex. This observation is based on the
fact that the number of “waveforms” necessary to decompose a financial series is
smaller than to decompose a random series. This result is stronger when the period
of the financial index observed is rather stable but is traversed by some very strong
very localized bursts. That means that when these strong energy explosions occur
without possibility to anticipate them by means of the period which precedes and
when the following period shows also a strong stability. Nevertheless, these bursts
are not the result of isolated impulses which would be represented by Dirac Delta
functions. There exist however many cases of isolated impulses, but their occur-
rence generally are separated from the intense energy explosions that we mentioned
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previously. The occurrence of Dirac delta functions would represent impulses or
shocks of the system from external sources, whereas on the other hand the bursts
of high intensity energy, which are preeminent, seem to be internal to the system.
These explosions contain high energy at most frequencies, although relatively less
at very low and very high frequencies.

Even if this analysis poses many questions, the interesting result shows that
the isolated impulses which can be formalized by Dirac Delta functions could be
the expression of external shocks which cannot be anticipated. On the other hand
the explosions of intense activity are not the result of isolated, unanticipated, exter-
nal shocks, but according to the own sentence of the authors, “but more likely the
result of the operation of a dynamical system with some form of intermittency in
dynamics”.

6.4 Comments About Time–Frequency Analysis

The spectral analysis identifies the similarities of a signal and it is commonly said
that the spectrum of a series is the equivalent in the frequencies of the autocorre-
lation function in the field of time. Thus, the periodic phenomena are read by the
spectral analysis. Whereas the non-periodic, non-recurrent and localized phenom-
ena, as the shocks, the intermittencies, the turbulences, the transitory behaviors,
the abrupt variations or the chaotic regimes are better read by the wavelet anal-
ysis, although there is unfortunately no perfect tools. The spectral analysis is not
very effective to treat the abrupt variations because of in particular the error dif-
fusion in the decomposition of this type of phenomenon. However, this is also in
these localized (punctual) and singular behaviors that a dynamics (or a possible
nonlinear dynamical system) expresses its own fundamentals. Information is quite
as important there as in the periodic and recurrent aspects. Both methods, spectral
analysis and wavelet analysis are thus complementary. Hence, the hybrid techniques
of signal processing in the time–frequency planes prove their utility. In particu-
lar, it is the algorithm of the “best basis” choice and the “Pursuit” algorithm. The
“best basis” poses a problem, because it is not adapted to the non-stationary signals
composed of disparate elements. On the other hand, in such a case the “Pursuit”
algorithm appears more adapted. The last algorithm finds at each part of the sig-
nal the “wave” which resembles to it the most. It does not seek a decomposition or
optimal representation on the entire signal, but seeks it for each characteristic of the
signal.

As explained in the general introduction, the conclusions of traditional statistical
analysis about the random walk of stock markets is contested today. In particular, we
think about the Lo and MacKinlay statistical works already mentioned, but we think
also, within the atypical framework for the economists of time–frequency analysis,
about the Mallat–Ramsey–Zhang works concerning the decomposition of the stock-
exchange series by the “Pursuit” algorithm with time–frequency atom dictionaries.
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Furthermore, we know that the wavelet analysis (used among others by the “Match-
ing Pursuit” algorithm) has the ability to treat the transitory behaviors, turbulent or
the non-recurrent bursts in signals. However, there is certainly an analytical work to
carry out to identify in the stock indexes, the behaviors of this nature which poten-
tially concern nonlinear mechanics. Regarding what precedes, the methods of the
nonlinear signal processing and the statistics of nonlinear processes presented in the
first two parts of this book, have certainly an important role to play.



Chapter 7
Evolution of Economic Growth Models

The economic growth models based on linear structures masked for a long time the
instability phenomena. The nonlinearity concept seems relevant to explain many
phenomena and in particular the economic fluctuations.

In this chapter, firstly, we endeavor to describe the evolution of growth models:
The linear models, then, models that highlight unstable behaviors (which do not
necessarily result from nonlinear systems1) and finally models whose structure are
of nonlinear type.

After an evocation of neo-classical theory of the distribution and after a reminder
about the notion of macroeconomic aggregates, we endeavor to describe the evolu-
tion of growth models. This description allows to understand the progressive intro-
duction of instability phenomena into the structure of models. Instability appears
for example in the optimal growth models, such as the models of Cass–Koopmans–
Ramsey, Tobin and Benhabib–Nishimura. A basin of instability characterizes these
models where the trajectories of stable equilibrium appear as “singularities”,
immersed in a set of explosive trajectories. The instability also appears when we
introduce the externalities into the endogenous growth models. Indeed, if a lack of
externality leads to stationary trajectories, on the other hand, too much externality
leads to explosive trajectories. Consequently, the trajectory along the razor’s edge
(the “wire of the razor”) of the Romer endogenous growth model appears also as a
singularity.

The nonlinearities are gradually introduced into growth models. In this respect,
the Day model in 1982 is a kind of paradigm. In Economics, it is representative
of the epistemological revolution appeared during the 1970s, that of chaos theory.
The periodic and chaotic behaviors are highlighted in it, through dynamics of cap-
ital accumulation which is written in the same way as the logistic equation. The
dynamics of accumulation of the Day–Lin model in 1992 concerns a construction
more elaborate. It is based on the concepts of imperfect information and adap-
tive expectations. In such a model, the dynamics is also of nonlinear nature and

1 Saddle point: We think about the linear systems of order 2, having in particular a saddle point as
solution. However, the saddle point can result also from bilinear nonlinear systems as presented in
the part I of this book.
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the behaviors highlight not only a subharmonic cascade but also the presence of
a strange attractor. In the framework of overlapping generations, the structure of
models developed by Benhabib and Day (1982) and in particular by Grandmont
(1985) also allows to exhibit cyclic or chaotic dynamics. Complex dynamics and
nonlinearities are also present in the construction of the Benhabib–Nishimura opti-
mal growth model (1979). The dynamics of this model allows to admit the existence
of a limit-cycle at the equilibrium, immersed in the basin of instability of the saddle-
point mentioned previously. This leads to observe the place of chaos theory in
cycle theory (and in economic shocks) and in particular in the Real Business Cycle
theory (RBC).

One of the characteristics of financial markets is their instability. This instability
finds an expression in the model of portfolio choice, such as the Tobin model. The
trajectories of the saddle point are essentially explosive, and the stable equilibrium
of the axis of the saddle depends on restrictive initial conditions. The trajectories of
stock markets often are described as random walks by the statisticians. This obser-
vation analyzed by Paul Samuelson in 1965 led him to say that the more a market
is efficient, the more the series of prices produced by such a market is random.
This remark, which can appear contradictory, immediately raises the question of the
predictability of price trajectories of stock markets. Grossmann and Stiglitz however
considered that this efficient markets assumption was academic and in so doing such
markets considered as an unrealizable economic idealization. Deprive the stock mar-
kets of their characteristic of efficiency would be perhaps a way of restoring their
predictability. However, some recent statistical works tend to show that the New
York Stock Exchange does not follow a random walk. In particular we think about
Lo and MacKinlay works in 1988.

Another aim of this chapter is also to present the evolution of economic growth
factors and provide arguments in order to explain the growth rates of per capita
products. The recent endogenous growth models and the Romer model in particu-
lar, develop new arguments to characterize the fundamental “engine” of the growth.
These growth factors, conceived as exogenous in the different evolutions of the
Solow model, found a new legitimacy while becoming endogenous in the mod-
els. These factors can correspond (as in one of the first endogeneisation attempts
of the Ramsey model) to an intertemporal optimization mechanism of consumption
levels, or, much more recently to positive externalities (as in the Romer model),
they have directly or indirectly incorporated the heart of macroeconomic growth
models. Lastly, the Von Neumann model (1946) although anterior to the majority
of them has a particular place in all of these models. While avoiding the neo-
classical production function, it privileges the “technology” although conceived
without technical (or technological) progress in its initial version and it points
out the importance of the choice of production processes and that of the orga-
nization of technology in the perspective to maximize the global growth of the
economy.
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7.1 Growth and Distribution in the Neoclassical Framework

7.1.1 Aggregates and National Income

The main part of the arguments was developed through the concepts of distribu-
tion and allowance of the national wealth between the actors and the factors which
take part of this wealth. The GDP (Gross Domestic Product) remains the principal
aggregate which is supposed to measure the production of this national wealth; it
is expressed, at the national level, to some extent, as the cumulation of the value
of consumer goods2 and gross investments. Instead of GDP, one can approach the
domestic product or more precisely the domestic income (or domestic revenue),
through the Net Domestic Product (NDP) which is expressed as the cumulation of
the value of consumer goods and net investments; the purpose here is to eliminate
the partial depreciation of production tools and equipments still contained in the
value added which by summation provides the GDP. Thus, after the elimination
of the amortization, we obtain the NDP.3 Then, these aggregates can be written as
follows:

GDP =∑ values added
GDP = values of consumer goods and gross investments
GDP = amortization + national income + indirect taxes
NDP = value of consumer goods + value of net investments

NDP = C + I. (7.1)

After deduction of the amortization contained in the GDP, we obtain: NDP =
national income + indirects taxes. If the State is omitted and if we note Y as the
national income:

NDP = national income = Y. (7.2)

Thus, it seems that we can refer to the NDP to represent the national income4 Y of
macroeconomic models. As explained previously, this national income is expressed
as the sum of the consumption C and net investment I:

Y = C + I. (7.3)

Moreover, the portion of this national income which is not spent by means of the
purchase of consumer goods is saved by the individuals, and if the savings is denoted
S we write Y = C + S. The neo-classical analysis gives to the savings a prevalent
role, then the consumption is regarded as a residue or a remainder. Let us recall the

2 Analyzed as the final goods, and sometimes called the consumption goods.
3 The national accounting distinguishes Net Domestic Product (NDP) and the Net National Product
(NNP), due to the contribution of the nonresident agents of the considered country.
4 Let bet Y the nominal national income, the real national income Ŷ is: Y

P = Nominal national income
General index of prices .
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equality between investment and savings developed in the neo-classical theory of
the distribution:5

I = S. (7.4)

This equality expresses that there exists an equilibrium point between the savings
offer and the investment demand (arbitrated by the interest rate). In the neo-
classical models, the construction of curves of global savings offer and global invest-
ment demand result from the “aggregation” of individual behaviors and individual
choices. We will not endeavor to describe the Supply and Demand construction in
the neo-classical model, however it will be said that by convention for the neo-
classics any savings which would not be intended for the investment is eliminated.
Indeed, the purchase on credit of a good by a private individual, considered as an
individual offer of negative savings, is entered negatively in the global savings offer;
on the other hand, for a company which contracts an investment loan, considered as
an individual offer of negative savings, this investment loan is entered positively in
the global investment demand. Consequently, by this convention, the global savings
offer is the aggregation of all the individual savings offers coming from the con-
sumers. And if we then consider that the individual offers of savings are increasing
according to the interest rate, the global offer is also an increasing function of the
interest rate.

7.1.2 Neo-Classical Production Function and Diminishing Returns

The macroeconomic production function is written from the stock of capital and
labor, which are generally the only factors of production, because the others appear
only temporarily through the intermediate consumption, according to the national
accounting. The macroeconomic production function is written:

Y = F(K,L). (7.5)

This function links the stock of capital and the quantity of labor available with
the national income.6 With this production function, one generally associates the
substitutability of production factors, the decreasing returns and the property of
“constant returns to scale”.7 Such a macroeconomic production function is built
as if an economy were a kind of immense enterprise or firm. One of the questions
that preoccupies the neo-classical macroeconomists is to find the conditions of the
optimal combination of factors of production of capital and labor?

5 However, in the Keynesian assumptions, the consumption has the prevalence and the savings is a
“remainder”.
6 Y and K are expressed in monetary units, whereas L is often expressed in a number of workers.
7 The macroeconomic production function generally supposes constant returns to scale, whereas
the production function in microeconomics supposed decreasing returns to scale.
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7.1.3 Conditions of the Optimal Combination of the Factors
K and L

The optimal combination is expressed by referring to the analysis mode of micro-
economics. The method consists in the construction of a national “isorevenue”
curve. The points of this curve are composed of the capital K and the labor L and the
curve is written Y0 = F(K,L). Considering the “decreasing returns” hypothesis, it
is said that there exists on this curve only one point A0 = (K0,L0) which minimizes
the costs in capital and labor. This point verifies the equality between the technical
substitution rate at the macroeconomic level and the price ratio of the production
factors (i for the interest rate and w for the wages):

∂L
∂K

=− i
w

. (7.6)

If we consider that i and w are given, then an economy which verifies the equality
above uses “rationally” (in the neo-classical sense) its labor and capital resources.
One can wonder how this “rule”, which requires the optimal use of resources, finds
its realization in our real economies. Because, if in the microeconomic sphere, the
company can insure an optimal combination of factors of production by maximizing
its profit or minimizing its expenditure, it is not possible to say there exists, at the
level of this immense function of macroeconomic production, an “optimisator” who
rationally will use capital and labor resources of the economy; in addition, such an
approach, in relation with a form of planning, would not be really admitted in the
neo-classical field, for which it is at the microeconomic level of individuals and
enterprises that the dynamics is engendered.

Consequently, there is no reason to insure that the equality ∂L/∂K = −i/w is
verified. Thus, the economy will be able to carry out the income of the curve of
national isorevenue Y0 = F(K,L) from any combination of the production factors
K and L, and then it will not be possible to say there is the optimality. All the
points of the isorevenue curve, except for A0, are not optimal points, i.e. are not
optimal combinations of factors. In the framework of the Walrasian equilibrium at
the origin of neo-classical models, which supposes that the production functions are
given, described a rigid framework that does not favor the optimization of the model.
Indeed, when the production functions are given to the entrepreneurs, i.e. when
they are installed in given activity branches, within the framework of the Walrasian
equilibrium, they cannot reorientate their resources of these branches towards the
other branches where the distribution of the factors K and L would be different.
In other words, the transfer of resources by creation and closing of enterprises
are not allowed. A “slackness” of the Walrasian rule is brought through the Adam
Smith invisible hand which allows the producer to reorientate the resources towards
branches of activities which will enable to maximize its profit; thus, it will be possi-
ble to manufacture products on these new branches and to cease manufacturing the
other products on the old branches.
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The game of the competition which is at the center of the neo-classical basic
model must allow, freely, the entry and the exit of enterprises, but this is an attack
to Walrasian equilibrium. To resolve this contradiction, the neo-classical theory
appealed to the assumption of the tendency to zero profit in the long term. This
assumption, resulting from microeconomics, will make it possible to obtain the opti-
mal combination of the factors K and L in the macroeconomic level. We will have
to face, in fact, a kind of succession of Walrasian equilibrium, under the effect of
competition.

7.1.4 Optimal Combination of Factors, and Tendency Towards
a Zero Profit in the Long Term

In micro-economics, to determine the long run equilibrium of the enterprise, it is
to determine the optimal volume of production by combining all the factors. In a
competitive economy, the price of outputs is fixed by the market and the producer
takes it as being a given element. He will attempt to maximize his profit and to
determine the level of optimal production. The calculation of this optimum is carried
out commonly from the given price P of the output and from the curve of marginal-
cost Cm which allows to provide the optimum level of the output.8 When the price
comes from Walrasian equilibrium, the enterprise will produce in the long-run this
optimal quantity and will obtain a positive profit, because the price is higher than
the average cost in the long run: P > CM . If one introduces new enterprises into the
activity branch considered, the Walrasian equilibrium will be modified. The offer of
these enterprises will come to increase the total offer and mechanically will cause a
drop in the price. As long as the price remains higher than the average cost, there
will be always an interest for the enterprises to enter into the market until the price
reaches the minimum of the average-cost curve, point from which the profit is equal
to zero. From this point, the enterprises are not attracted any more by this branch of
activity. And one can consider that the profit will remain fixed into zero.

However, this propensity to the zero profit of the entire economy has to be
relativized; indeed, the technical innovation can lead the costs and the cost curves
to decrease and then the profit becomes again positive. Thus, the tendency towards
zero profit will depend on the capacity of innovation of the branch considered. This
is this tendency towards the zero profit, resulting from micro-economics, which
allows to conceive an optimal combination of the capital and labor factors at the
macroeconomic level.

8 Let us recall the shape of the costs curves as follows: Cm < CM ⇔CM is decreasing; Cm > CM ⇔
CM is increasing.
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Product Exhaustion Rule

A zero-profit means that the national income will be entirely shared between the
interests and the wages. When the profit is equal to zero, firstly, it is possible to
write at the level of the enterprise:

P×Q = values o f intermediate consumptions + amortization

+ iK + wL

P×Q− values o f intermediate consumptions

= amortization + iK + wL,

(where Q can be basically understood as the quantity of national product and P its
price). The equation above is equivalent to:

Value Added = amortization + iK + wL. (7.7)

The value added is denoted VA. Moreover, at the national level, the GDP = ∑VA,
thus:

GDP = amortization + iK + wL, (7.8)
GDP − amortization = iK + wL, (7.9)

NDP = iK + wL. (7.10)

In accordance with what was introduced previously, if one omits the State and the
Exterior, the NDP can be regarded as the national income Y :

Y = iK + wL. (7.11)

This equation represents the product exhaustion rule, introduced by Clark and Wick-
steed (see Clark–Wicksteed theorem9), which is also called the national income
exhaustion rule. This means that the national income is equal to the interests plus the
wages paid in 1 year. From this observation, the optimal combination of the factors
K and L will be essential. Indeed, if we use again our macroeconomic production
function by imposing this product exhaustion rule, we obtain:

F(K,L) = iK + wL. (7.12)

9 Clark–Wicksteed theorem: The Clark–Wicksteed theorem asserts that output (Q) is exactly
equal to income (Y) if each unit of a resource generates a payment to its owner precisely equal to
the value of its marginal product (MPP): Such payments are an equilibrium result if all resource and
product markets are perfectly competitive, and if production functions are linearly homogeneous. If
these conditions are verified, then the Clark–Wicksteed theorem holds and Q =Y = (MPPL× L)+
(MPPK× K)+(MPPN× N) = wL + iK + rN, where L = labor, w = the wage rate, K = capital,
I = interest payment to each unit of capital, and N = land, and r = rental rate per unit of land. The
Clark–Wicksteed theorem is named after the American economist John Bates Clark (1847–1938)
and the English economist Phillip Wicksteed (1844–1927). See also marginal productivity theory
of income distribution.
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Since by assumption the production function had constant returns to scale, this
function is also a homogeneous function of degree 1 which verifies Euler identity:

F(K,L) = K×F ′K(K,L)+ L×F ′L(K,L), (7.13)

where F ′K and F ′L are the partial derivatives of F . Consequently, after commutation,
we obtain the following equality:

iK + wL = F ′K(K,L)×K + F ′L(K,L)×L. (7.14)

However, this equation is true for any value of K and L; thus there are F ′K = i and
F ′L = w,which is written also:

∂Y
∂K

= i and
∂Y
∂L

= w. (7.15)

The first equality means that the rate of interest is equal to the marginal produc-
tivity of the capital factor, and the second equality means that the wages are equal
to the marginal productivity of the labor factor.10 These equalities are verified at
the points A0 = (K0,L0). However, near this point, if we simulate a small varia-
tion of the capital factor ∂K, we will obtain a variation of the national income ∂Y1,
and if we simulate a small variation of the labor factor ∂L we will obtain a vari-
ation of the national income ∂Y2 and it is possible to write ∂Y1

∂K = i and ∂Y2
∂L = w.

From these equalities one obtains ∂Y1
∂K × ∂L

∂Y2
= i

w ; however, the variations ∂Y1 and
∂Y2 of the national income must necessarily be compensated to preserve the same
level of national income, i.e. the same isorevenue curve. We must therefore have
∂Y1 + ∂Y2 = 0 or ∂Y2 =−∂Y1. Consequently, it is possible to write:

∂Y1

∂K
× ∂L
−∂Y1

=
i
w

, (7.16)

∂L
∂K

=− i
w

. (7.17)

They represent the condition of the optimal combination of the factors K and L.
Thus, the tendency towards the zero profit in the long term has as consequence the
product (or income) exhaustion rule which makes it possible to verify the definition
of the optimal combination of factors of production K and L. In other words, the free
entries and exits of enterprises in the branches where the profit is positive involves a
zero-profit in the long term. The profit disappearing, the “national income becomes
the unique resultant of the only incomes of the factors K and L”, which is written Y =
iK +wL. And since the returns to scale is constant, the “remuneration” of production
factors is carried out in proportion to their marginal productivity. In relation to what

10 These nominal equalities have a transcription into the national real income Ŷ : ∂Ŷ
∂K P = i and

∂Ŷ
∂L P = w.
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precedes, a distinction is emphasized between macro-economic optimum and micro-
economic optimum. Indeed, in micro-economics it is the producer who, adopting
a rational behavior, determines the optimal combination of factors, whereas in the
macro-economic level this combination is the result of the competition and the result
of the transfer of resources between branches.

7.1.5 The Ground Rent and the Ricardo Growth Model

An extension of the basic model consists in introducing a variable which repre-
sents the primary production factor, as the ground or the natural resources. This
factor, noted T , is supposed to remain invariant and the neo-classical function of
macroeconomic production is written then:

Y = F(K,L,T ). (7.18)

This configuration allows to evoke the Ricardo growth model. One of the effects
of the invariance of T is that the increasing use of the capital and labor factors is
decreasingly effective. If it is admitted that the factors K and L are used in an optimal
way such as presented in the previous sections, one can gather these variable factors
in a new variable V and the production function is written as follows:

Y = F(V,T ). (7.19)

If we note PV the price associated with the new variable V and Pm
V the marginal

productivity of the production function, we write:

Pm
V =

∂Y
∂V

. (7.20)

This marginal productivity is decreasing from its extremum.

7.1.5.1 Tendency to Zero Profit, Surplus and Ground Rent

Unlike the case of the production function with the two factors K and L, when one
introduces a fixed factor T , the enterprises progressively with their entry have pro-
ductivities which increasingly worsen, and the last enterprise will not have positive
profit. On the other hand, all the enterprises which are arrived before and which
are more productive, will have a positive profit, i.e. a “ground rent” or a “surplus”.
On the curve of marginal productivity of the factor V, the critical point “c” from
which the profit is not positive any more, is written ∂Y/∂V = PV and one can write
∂Y = PV∂V.
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On this curve, at the point “a”, a small increase in V causes a small increase in
income ∂Y. The cost of this increase being equal to PV , and the surplus which results
from this corresponds to the segment [a,b]. If one carries out the sum of all these
units of used factors V, one obtains the “global surplus of the economy”: it corre-
sponds to the surface ranging between the productivity curve and the line of price,
and this surface also represents the ground rent of the economy. It is a neo-classical
presentation of the concept of ground rent that can be connected to the Ricardian
approach.11

Ricardian Rent, Technical Progress and Stationary State

The notion of ground rent results from the fertility disparities between the grounds.
The least fertile ground does not produce a surplus, it covers only the costs. On the
other hand a more fertile ground, for a same production cost, will make it possi-
ble to obtain a higher income and this supplement of income is the ground rent.
The difference in fertility between the grounds constitutes for Ricardo and Marx
the explanation of the ground rent. In other words, it comes from the differences
in productivity resulting from fixed factors and from the decreasing returns which
result from it. If we consider again the presentation through the preceding graph,
the displacement of the point “c”, towards the straight line, on the curve of marginal
productivity of the variable factor, shows a growth trajectory of the national income
in time. However, this growth Y can be realizable only if the price PV of the variable

11 Ricardo: In 1815, Ricardo published his Essay and introduced the differential theory of rent and
the law of diminishing returns to land cultivation. (This principle was discovered independently in
the same time by Malthus, Torrens and West.) In the 1815 Essay, Ricardo formulated his theory
of distribution in a one-commodity (“corn”) economy. With wages at their “natural” level, Ricardo
argued that rate of profit and rents were determined residually in the agricultural sector. Then, he
used the concept of arbitrage to claim that the agricultural profit and wage rates would be equal to
the counterparts in industrial sectors. With this theory, Ricardo could show that a rise in wages did
not lead to higher prices, but lowered profits.



7.1 Growth and Distribution in the Neoclassical Framework 519

factor decreases, due to the decreasing form of the marginal productivity. But, the
decrease in price cannot occur indefinitely, and this price which includes wages and
interest rate will meet a critical point. From a critical interest rate the preference for
the consumption of “households” (i.e. the final consumption) will be stronger and
the savings equal to zero. Zero savings means that the investment is equal to zero
and thus the capital K remains constant. K and L thus will remain identical, it is the
beginning of a stationary state of the economy, that Ricardo had highlighted. Facing
this stationary state, the technical progress provides the solution in order to counter
this type of process, the marginal productivity rises with the technological level and
the limits of the stationary state are pushed back at the same time.

7.1.6 The Expansion Path and the Limitation of the Nominal
National Income Growth

Thus, according to the rule of the optimal combination of production factors (pre-
sented previously), for a given level of national income Y0, there is only one optimal
combination of factors denoted:

A0 = (K0,L0). (7.21)

From this observation, one can introduce the notion of expansion path of an econ-
omy, which consists in a “trajectory” which passes by zero the origin of the axes
(K,L) and by the points:

Ai = (Ki,Li) where i = 0, . . . ,n, (7.22)

which are the optima of each level of national income Yi. In microeconomics, this
notion of expansion path for the enterprise and its production function exists and
from this notion, one reaches a final concept which is that of the optimal size of the
enterprise. This concept of optimal size does not have a transposition for our path of
macroeconomic expansion, because in this case the returns to scale are regarded as
constant, thus, here is a potential cause of limitation of the national income which
disappears. In addition, the “law of markets” (attributed to Jean-Baptiste Say [1767–
1832], in French “loi des débouchés” literally “law of outlets”, in English “law of
markets”) for which “the offer creates its own demand”, excludes a limitation of the
latter and the national income. It thus seems that the only limitation of the growth
of the “nominal” national income can result only from a limitation of available
resources in L and K production factors. With this couple (K,L) usually one asso-
ciates the growth of the population and the working population in particular which
contributes to the displacement of the national income along the expansion path.
The path constructed with the set of level points of different incomes is also called
“a model of growth” and within this neo-classical framework, the paradigm is the
Solow growth model.
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GDP Price and exchange rate of 1995 % Price and current rate
(OECD) 1995 1997 1998 1999 2000 volume 1997 1998 1999 2000
Billions $ 1999/2000
USA 7,338 7,943 8,293 8,645 9,077 5 8,257 8,729 9,237 9,896
France 1,553 1,600 1,655 1,703 1,756 3.1 1,406 1,452 1,438 1,294
Germany 2,458 2,511 2,543 2,603 2,680 3 2,114 2,151 2,112 1,873

However, within the neo-classical framework, this growth of the nominal national
income contains problems related to the downward trend of the growth rate of the
per capita national income presented in the model of Solow.

Robert Solow: Solow is one of the major figures of the Neo-Keynesian synthesis
macroeconomics. With Paul Samuelson together they constituted the core of the MIT
economics department which has been viewed as the mainstream of the post-war
period. Their contribution concern in particular the von Neumann growth theory
(1953), the capital theory (1956), the linear programming (1958) and the Phillips
Curve (1960). Solow is known in particular for his work on the neo-classical growth
model (1956, 1970). His use of an aggregate production function launched the Cam-
bridge capital controversy with pitted Solow and Samuelson against Robinson and
the Cambridge Keynesians. The different papers of Solow on the issue of capital con-
firmed the importance of the subject (1963–1967). Solow had debates with Kaldor
on the issue of growth and technological progress (1957, 1960). Solow was also
one of the co-inventors of the constant elasticity of substitution (CES) production
function (1961). Solow is also responsible for exploring and popularizing the long-
run multiplier derived from a dynamic government budget constraint (1973). Robert
Solow received Nobel prize in 1987.

7.1.7 Stationary Per Capita Income of the Solow Model
in the Long Term

The main conclusion of the Solow model is that the accumulation of the “physi-
cal” capital does not explain the long periods of strong growth of the “per capita
income”. The basic model radically ignores the externalities and in particular those
generated by the capital, to justify the growth. The growth is explained from an
endogenous source, which is the capital accumulation, and from an exogenous
source, which is the available quantity of labor. If one supposes that the exoge-
nous cause is constant in order to facilitate the analysis of the growth, then, one
can observe the evolution of the production by means of the only accumulation
process. Within such a framework, if a fall of the growth is observed, it will be
the consequence of a production function with constant returns to scales and of a
decreasing marginal productivity of the capital.12 In contrast with what precedes, if
it is supposed that the returns to scales were increasing, contrary to the neo-classical

12 Inada condition (1964): The marginal productivity of the capital tends towards zero. If f (·) is
the intensive form of the production function F(·), then limk→0 f ′(k) = ∞, limk→∞ f ′(k) = 0.
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assumption,13 we could have the risk to observe explosive trajectories. Thus, the
Solow model seems to highlight in the long-term an interruption of the per capita
income growth. Then how to explain the real growth rates in our contemporary
economies?

7.2 Linear Technical Relations Outside the Neo-Classical Theory
Framework of the Distribution: Von Neumann Model
of Semi-Stationary Growth (1946)

7.2.1 Primacy of the Organization of “Technical Processes”

This model has been proposed by the mathematician John Von Neumann14 in an
article published in 1946 in Review of Economic Studies and entitled “A Model of
General Equilibrium”. The model is specifically oriented towards the production
and is written so that all the production is used for the new productions. Moreover,
the surpluses, if they exist, are eliminated without cost. The model poses technical
relations of “linear” nature. The purpose of the model is to determine the manner of
using the available techniques in order to reach the possible highest growth rate, i.e.
the optimal rate. The “Primal” operates in the space of goods, whereas the “Dual”
operates in the space of values. This model associates with its optimal trajectory in
terms of quantity, a dual trajectory of price, which is interpreted as the dual of a lin-
ear program.15 The “Primal” consists in seeking an optimal use of the vector of the
technical intensities y(G) which carries out a homothetic growth of the maximum
rate G: thus, the couple which is solution of the Primal problem is (y(G),G). The
Dual of the model consists in seeking a row vector of price p(R) and a minimal profit
rate R : thus, the couple which is solution of the dual problem is written (p(R),R).

7.2.2 Presentation of the Von Neumann Model

The economy in this model consist of n goods which can be inputs or outputs, or
both. The technical possibilities of the economy are represented by the couple of
matrices (A,B), whose columns are respectively formed by the inputs a and the
outputs b, and each one of these matrices consists of m columns and n goods.

13 See the Product exhaustion theorem.
14 John von Neumann (mathematician) has played a rather important role in post-war economic
theory through two essential pieces of work: his 1937 paper on a multi-sectoral growth model and
his 1944 book (with Oskar Morgenstern) on game theory and uncertainty.
15 Linear programming. A linear programming problem, or LP, is a problem of optimizing a given
linear objective function over some polyhedron. (The simplex method is the algorithm most com-
monly used to solve LP. In practice it runs in polynomial time, but the worst-case running time is
exponential. Two polynomial-time algorithms for solving LP are the ellipsoid method of Khachian
and the interior-point method of Karmarkar.)
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The m techniques are symbolized by two column matrices with n elements, the
first represents the inputs, it is yta j, and the second represents the outputs ytb j

obtained from the inputs. For the j-th technique, one denotes by a j the column
matrix of inputs and b j that of outputs. One thus knows that an unspecified tech-
nique consumes a certain number of inputs restricted in relation to the set of goods
in the economy and will produce only some outputs or only one, these matrices
are composed of 0 and the other components are “positive”. y is the vector of the
production technique with m elements at the period t, whose each component is pos-
itive or zero. y represents the “intensity” with which a technique is used. If y exists,
i.e. if there is an intensity vector of use of available techniques, then the system of
involved techniques is productive. What is produced by the By model is normally
equal to, or higher than, what is consumed Ay, that is written:

Ay≤ By : Minimal condition. (7.23)

It will be noted that the essential element is the selection by A and B of components
of y (carried out by the multiplication of vectors), the resultant corresponding to the
“structure” of the considered economy. This condition Ay ≤ By is the “minimal”
condition so that there is reproduction of the system. If there is equality for some
goods, the consumed quantity of these goods is equal to the produced quantity, con-
sequently the system will be reproduced exactly, i.e. it will be duplicated and even
if there is over-production (excess, surplus) of the other goods. The surpluses in the
model are supposed to be eliminated without cost. Thus, there will be a production
growth if the inequality Ay ≤ By is strict for each good, indeed, it is because there
are surpluses for all the goods that it is possible to “nourish” the growth.

7.2.2.1 Conditions and Hypotheses of the Model

From this structure oriented towards the production, the model defines its operating
framework by postulating what follows:

• The returns are supposed to be constant.
• The model admits the joint productions.
• The model admits the technique changes to produce the same good.
• The number of activities is at least equal to the number of goods, i.e. m≥ n
• The model does not incorporate technical progress.
• The model depicts a closed economy.
• The model contains only intermediate goods. This means that all the produced

goods are reintroduced in the model as factors of production.
• The surplus16 is excluded of the system.

16 Surplus: The notion of surplus generally indicates two very different concepts:
• What remains in the production when we have removed all which is necessary for its

implementation or execution.
• The set of the gains, in term of utility, gotten by the exchanges.
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• The model excludes the superprofit17 (i.e. each activity must carry out a negative
or zero superprofit).

Von Neumann makes two central hypotheses for the system perpetuation:

• Hypothesis H1: In order to perpetuate the system, each good B j must be pro-
duced by at least one activity.

• Hypothesis H2: Each activity Ai must consume at least one good.

7.2.2.2 Semi-Stationary and Homothetic Optimal Growth

The problems, corresponding to the primal of the model, are to determine the vector
of production intensities which allows the largest growth possible. If one names “g”
the rate of growth, one thus seeks a vector y(G) and a rate G which maximizes g
under the constraint:

(1 + g)Ay≤ By : Condition of “expanded reproduction”. (7.24)

We understood that this constraint allows the expanded reproduction at the rate G of
the model, the quantity of the outputs being at least as important as that of the inputs
used to produce. The model highlightsthat there exists a solution couple (G,y(G))
which satisfies the condition of the expanded reproduction and which maximizes
the growth.18 For this optimum the inequality is written:

(1 + G)Ay(G)≤ By(G) : Optimal growth. (7.25)

We observe that the inequality above is not strict for at least one of the goods, if it
was the case, this would have as consequence a surplus (excess) for each good of
the model. And it would be then possible by exploiting these surpluses to have a
stronger growth, contrary to the optimal nature of G and y(G). If Φ represents the
set of indexes of goods for which there is equality in (1 + G)Ay(G)≤ By(G) and Ψ
that of the indexes of goods for which there is inequality, one can write:

(1 + G)∑ai jy j(G) = ∑bi jy j(G), f or i ∈Φ, (7.26)

(1 + G)∑ai jy j(G) < ∑bi jy j(G), f or i ∈Ψ. (7.27)

In the set Φ the quantities of goods increase at the optimal rate G, whereas in the
set Ψ the quantities increase more quickly. In the set Ψ the goods produced beyond
the rate G, i.e. the surplus is eliminated at each period, and will not be consumed by

17 Superprofit: Extremely discussed notion for which there is many definitions. One of them
consists in saying that the superprofit is the equivalent of the economic rent, which is what the
organizations gain beyond the cost of the invested capital. The terminology is not very satisfactory.
Indeed, the reference framework was worked out by David Ricardo at the beginning of the nine-
teenth century, at the moment when agriculture dominated the economic activity. The economic
rent was then renamed “profit”, “superprofit” or “excess benefit” (or “surplus benefit”).
18 By using the fixed-point theorem and by making assumptions on the A and B matrices.
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the production process. Indeed, it should be associated with other inputs belonging
to the set Φ, which then would be “lacking” to be able to produce a new output.

Such a system develops at the optimal rate G, and corresponds to a semi-
stationary state, that means that the structure of the model is preserved exactly
during its growth. It is said that a semi-stationary state is a situation where all
the variables in quantity and level grow at the same rhythm. An economy in a
semi-stationary state has an evolution of the homothetic type where the proportions
between the different variables remain constant in the course of time. This type of
semi-stationary state is also called “permanent regime”, because the ratio of the
quantity or price variables is permanent during the growth of the economy. Note
that the stationary states are particular cases of semi-stationary states, for which the
rate of growth is equal to zero. The semi-stationary states are known as equilibria of
long term, because they are supposed to symbolize the underlying deep evolution of
the economy, except for exogenous impacts on the system.

7.2.2.3 Price and Profit Associated with the Optimal Growth

The dual program of the model associates with the optimal rate of growth, a system
of price and also a weakest possible rate of profit or interest such that (provided
with this couple: price and rate of profit) the profit unitarily in the production of
each good is negative or zero. One seeks therefore to determine a row vector of
price p(R) and a minimal profit rate R which verify the condition:

PB≤ (1 + r)PA. (7.28)

Or, unitarily for each activity j:

Pb j ≤ (1 + r)Pa j. (7.29)

Thus, for the price P the value of the goods produced with the j-th technique is
lower or equal to the value of the inputs used to produce them. One deduces from
the duality theorem that the solutions of the primal (G,y(G)) and dual (R, p(R)) are
in conformity with the following rules:

• The rate of maximal growth G is equal to the minimal profit rate R. Under H1
and H2 : (A+B) > 0⇒ R = G. (The conditions are those of the technological or
economic “indecomposability”.)

• In the optimal growth, the price of goods, whose production is surplus, is zero
(i.e. the goods belonging to the set Ψ).

Thus, it is possible to write the two following relations which are exclusion
relations, in accordance with linear programming:

(1 + G)∑ai jy j(G) <∑bi jy j(G)⇒ pi(R) = 0 (7.30)



7.2 Linear Technical Relations Outside the Neo-Classical Theory 525

the goods generating negative profit are not produced:

(1 + R)∑ai j pi(R) >∑bi j pi(R)⇒ y j(G) = 0. (7.31)

The Von Neumann model can be understood in the perspective of a planner, consid-
ering that this planner has the objective to find how to use the available techniques
in order to maximize the growth of the economy. The planner can, either:

• “To organize” the production system to obtain the strongest growth, i.e. to impose
the use intensities of available techniques, or

• On the contrary, “to display” the couple of price (R, p(R)) and to let the “produc-
tion units” determine (G,y(G)) the corresponding quantity couple. The different
units must thus find the suitable use “intensities” of techniques. There will be
only production of goods for which the profit is not negative and the goods
for which the profit is zero will be offered only. Generally, the Von Neumann
model implies that it is the “market” which “finds” the most suitable price couple
(R, p(R)), i.e. the rate of profit and vector of price.

The Von Neumann model is a general equilibrium model in a closed economy
and oriented towards the production, whence the demand is excluded from the sys-
tem. Only the postulate of the model, which poses the existence of constant returns
to scale, makes it possible “to admit a sort of neutrality of the demand”. The Von
Neumann model and its regime of homothetic growth is not very representative of
a real process of accumulation of a real economy. The accumulation processes of
“surpluses” as well as the nature of their stock (of surplus) for the concerned agents,
in a real economy have an impact on the equilibria of the model, on its solutions,
and on the phenomenon of reproduction of the system. Not only the distribution of
surpluses between the actors but also their rhythm of accumulation and their use are
sources of conflict, and modifies the construction of equilibria of the model.

7.2.3 The Optimal Path and the Golden Rule in the Von Neumann
Model

7.2.3.1 Optimal Distribution, Remuneration of Factors and Accumulation

As explained previously the Von Neumann model could be understood in the per-
spective of a planner, who would aim to find how to use the available techniques in
order to maximize the growth of the economy. As previously presented, the planner
can either organize the production system to optimize the growth or on the contrary,
“display” the couple of price and to let the production units determine the quantity
couple. Generally, one considers that it is the market which finds the price couple,
i.e. the profit rate and the vector of price. In the Von Neumann model and in the
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stationary state of the Solow model, there is homothetic growth phenomenon,19 at
the same rhythm, of all the variables in level (production, consumption, investment,
etc.). Thus, the ratio of two unspecified variables of the model is constant in the
course of time, it is for example the case of the production per capita, or consump-
tion per capita. In the initial model of Solow, the economy tends towards a stationary
state of the production and consumption per capita, thus there is not growth, except
the growth of the population, this means that it is not a model of growth strictly
speaking and is not therefore able to explain the growth phenomena.

First, it is Von Neumann who approached the problem of the growth within the
framework of a linear model, with constant technical coefficients, where all the sur-
plus is reinvested at each period. Von Neumann associate with the trajectories in
quantity (produced, consumed or reinvested) the trajectories of prices which are
interpreted as the “dual” of a linear program of quantities. The logic of the model
is that of a planner who seeks the best resource allocation, from the point of view
of the optimal growth, i.e. the strongest possible growth, the considered evolutions
being of the semi-stationary type. In this model, the trajectory of prices is deducted
by duality from the quantities and is thus not at the origin of the coordination of indi-
vidual choices, in fact, the model does not comprise individual agent. The structure
of the model, oriented towards the production, postulates in particular that:

• The model is linear.
• The returns are constant.
• The model does not incorporate technical progress.
• The model contains only intermediate goods, and all the produced goods are

reinvested in the model.

The model concludes that when the two basic hypotheses of the model are satis-
fied, at the optimum there is equality of the growth rate (maximum) and of the rate
of profit (minimum):

G = R. (7.32)

However, in Growth Theory the “golden rule” corresponds to conditions on the
parameters of the model characterizing an economy, so that the consumption per
capita is the highest possible in semi-stationary states.20 This means that it is

19 Homothetic: Two figures are homothetic if they are related by an expansion or geometric con-
traction. This means that they lie in the same plane and corresponding sides are parallel; such
figures have connectors of corresponding points which are concurrent at a point known as the
homothetic center. The homothetic center divides each connector in the same ratio k, known as
the similitude ratio. For figures which are similar but do not have parallel sides, a similitude cen-
ter exists. Also known as radially related figures. Homothetic transformation: A transformation
that leaves the origin of coordinates fixed and multiplies the distance between any two points
by the same fixed constant. Also known as transformation of similitude. In connection with the
homothetic transformation, although different, see also the notion of Similarity Transformation
which transforms objects in space to similar objects. Similarity transformations and the concept of
self-similarity are important foundations of fractals and iterated function systems.
20 Semi-stationary state: The semi-stationary states are situations during which the variables in
quantity and level grow at the same rhythm. I.e. semi-stationary economies have an evolution of a
homothetic type, where the proportions between the different variables remain constant in time.
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necessary to determine the optimal sharing between consumption and savings. The
golden rule was implemented on the Solow model, Von Neumann model and opti-
mal growth models. This step, which is of a normative nature, concludes that the
marginal productivity of the capital (noted pm

k ) is equal to the growth rate of the
economy, which is itself equal to the real interest rate:

pm
k = γgrowth = γreal interest rate. (7.33)

Such a rule applied to the Von Neumann model leads to say that it would be suf-
ficient to know the “marginal productivity of the capital” to know the growth rate
and the rate of profit of the model (and the interest rate). But, in the Von Neumann
model the marginal productivity of the capital does not appear spontaneously: there
is not explicit production function but rather technical matrices expressing at a given
moment the “technology” (A,B) of the model, i.e. the production techniques which
use all or part of the production processes of the model. The marginal productiv-
ity of the capital, which is expressed as the derivative of the production function
of a model with respect to the capital (i.e. variation of the output of the model
when one causes a variation of the capital factor) can find a transcription in the Von
Neumann model. Generally, the concept of “marginal productivity” is highlighted
when a company wishes to determine the level of production which enables it to
optimize its profit. The optimum is conditioned by the nature of the marginal pro-
ductivities which can be as well constant, as in the case of the Von Neumann model,
than decreasing, and this approach is valid for any factor of production, i.e. the
ground, the labor or the capital. Within the framework of the perfect competition, it
is said that the marginal productivity of the production factors (or inputs), evaluated
in terms of “quantity of product”, is equal to the price of factors. Based on such a
framework, one can deduce that the remuneration of production factors (or inputs)
is equal to their marginal productivity: Remuneration of production factors =
Marginal productivity of factors.

Moreover, it is known that the equilibrium of perfect competition is a Pareto opti-
mum, and it is possible to deduce that the remuneration according to the marginal
productivity is “optimal” for an economy. The remuneration of production factors
according to their marginal productivities is “optimal”. This deduction is valid
as much for the remuneration of the owners of the production tool, than for the
remuneration of the ground for example, or for the remuneration of labor, and we
are inscribed here within the neo-classical framework of Distribution Theory. This
theory, which is of a normative nature, leads implicitly to admit that the optimal
distribution is defined by the conditions of a technical nature, i.e. obviously the
structure of the production and various marginal productivities. It is possible to say
that it is the technical structure which decides the optimal distribution.

In the Von Neumann model the transition from the matrices (A,B), represent-
ing the model, to the marginal productivity of the capital is not spontaneous, but we
admit that it is possible to obtain the marginal productivity from these matrices. Con-
sequently, they are the technical conditions, i.e. the technology of the model, through
matrices (A,B), which makes it possible to determine the marginal productivity
determining then the growth rate:
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f ′(k) = G. (7.34)

The main subject is the way in which the capital factor influences the growth of the
model. Moreover, the remuneration of the capital factor corresponds also to the rate
of profit of the model and, if one considers again the equalities stated by the golden
rule, then it is possible to write:

f ′(k) = R = G = Ir. (7.35)

We are in a model in which the growth is a process of homothetic type, i.e. the
proportions between the various variables remain constant in the course of time:21

this growth is also called a semi-stationary process, in which the structure of the
economy is preserved exactly in the long-term.22 The optimal path of the model is
sometimes called the Von Neumann ray. The objective of the golden rule was thus
to determine the highest consumption per capita in the long term, which requires
implicitly to determine the best saving rate or the interest rate, i.e. to determine
the optimal distribution. In the case of the Von Neumann model, the golden rule
corresponds to the optimal growth.

7.2.4 Comments About Von Neumann and Solow Models

The Von Neumann model, of which the initial structure excludes the technical
progress, is based on linear relations and concludes that the economy converges
towards a semi-stationary state. The Solow model also concludes that there is con-
vergence towards a semi-stationary state, but it also concludes that the per capita
product is stationary in the long-term,23 with furthermore, nominal variables which
all grow at the same rhythm, which is generally the rhythm of the growth rate of
the population. The Von Neumann model made it possible to avoid the production
function and the neo-classical theory of the distribution. Such a conception proposes
the idea of the organization of production techniques (although conceived without
technical progress). By disregarding population, the model cannot conclude (like
the Solow model) that the nominal variables grow according to the (exogenous) rate
of population growth. Von Neumann centered its model on the production processes
and their remuneration, avoiding thus to incorporate the labor factor,24 as in a num-
ber of models posterior to that of Solow, which study the behavior of the (per capita)

21 And it is also said that each quantity couple (G, y(G)) solution of the model is itself a system of
Homothetic Optimal Growth.
22 The optimal path of growth (also called the Von Neumann ray) is composed by the couple of
inputs vectors xt and outputs vectors Xt , i.e. the couple (xt ,Xt) which verifies ∀t, Xt = (1+G)xt .
23 See following section.
24 Furthermore, Neumann model revised through the Sraffa contribution, submits another approach
“including the labor factor” and its remuneration.
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product by using the only criteria of the capital, technology and its remuneration,
“neutralizing” thus the effect of the population.

The Von Neumann model postulates constant returns to scale, it does not
incorporate technical progress, but it admits, however, the possibility of technique
changes to produce a good. We know that there is an optimal production technique
which produces a homothetic growth at a maximum rate G.25 The model thus seems
to show an “engine of growth” linked to the organization of the production tech-
niques and to the used technical intensity, in the whole of the economy.26 However,
the Solow model postulates the full employment of all the resources of the economy:
in the sense that in such a case the technical intensity is maximal and we cannot find
a combination of processes which would increase the level of production. Thus, in
the Solow model, it seems that we are immediately located at the end of the Von
Neumann growth maximization process. But, that means that we forget the fact that
the Von Neumann model is made of many production processes, which are, on the
other hand, completely aggregated in the Solow production function. This aspect
highlights the importance, not that of the technical progress since the Von Neumann
model excluded it in its postulate, but that of the choice of the “technology”, as if
the “flexibility” of the entire economy could increase its level of production, i.e.
the “return” of all the economy, and to maximize its growth. The model say noth-
ing about the existence of firms and focus on the only production processes, but,
unless one assimilates the economy to one large firm, or unless one assimilates the
enterprise to a process, to admit such a flexibility of an economy, implies to admit
that the organization of the production techniques is carries out, at the same time,
inside and between the firms. Implicitly, we admit that there is a planner who aims
to find the available techniques in order to maximize the growth. But, it can either
directly “organize” the production system to obtain the strongest possible growth, or
“to display” the vector of price and to let the production units determine the couple
of quantities. Generally, the model implies that the market finds the suitable price
couple. Moreover, one can wonder what covers this idea of the “organization of
the production techniques” as regards the real economy and the more recent growth
models. Because of the ability of the Von Neumann model to postulate the need for
organizing technology to maximize the growth, within the framework of a matrix
model, the model implies that there are “technical possibilities” which increase the
effectiveness of the economy (without technical progress). Beyond the model, how
to describe these global technical possibilities while the technical coefficients are
fixed? The underlying idea is that “the organization or technical possibilities are
augmentative factors of the effectiveness of the technology of the economy and
always in the absence of technological progress”. Solow model or neo-classical the-
ory imply the optimality, but, are the modern economies as optimal as the theory
suggest? Or, is it necessary to return upstream, in the optimization process and to
reconsider, as in the Von Neumann model, that this is the organization of the econ-
omy which optimizes globally the use of processes and which exploits 100% of

25 Optimal production technique: y(G).
26 Associated of course with the vector of price.
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the production tool, in order to maximize the growth? The neo-classical aggregate
production function is built as if the economy were a kind of immense company
which is always in full employment of its resources. In the Von Neumann model,
the organization27 of the economy is a source of growth, which will meet at least in
the theory, early or late, the optimum of full employment of the neo-classical aggre-
gate production function, at the end of the process of maximization of the growth.
Is Von Neumann model another manner to formalize the “neo-classical distribution
theory”? Or, is there something other? The model says little thing about the produc-
tion processes and about the global organization of processes. This indetermination
can be a source of various interpretations. In the real economy, processes and orga-
nization of processes can cover various meanings and are necessarily coupled with
the intervention of human resources which are subjacent (even if it is not always for-
malized in the models). Must we consider that the concept of process organization
in the Von Neumann model is only the manner of deeply exploiting the production
tool? Or, can we understand it as an augmentative factor of “the technology” (always
without technical progress)? And thus to introduce an “additional factor”, which is
generator of growth in relation for example with the impact of the knowledge, know-
how, or learning by doing, on the use and combination of production processes.
And to also introduce, instead of the “indetermination” of certain components of
the model, the game of interactions of production units with each other and of “hid-
den agents”28 with each other. The production units are supposed to have a role:
they can determine, for example, the price couple of the model, after the planner has
fixed the level of production (even if it is said, generally, that it is the market which
determines the price couple). In short, the production units are actors of the model
and the problems of coordination are at the center of the model. To make coexist
individually the production units in a model corresponds to potentially accepting
what occurs in the real economy, i.e. their interactions and those of agents. This
also means not excluding the role and the consequences of these interactions on the
global economy. The concept of externality, for example, developed in the models
of endogenous growth, can be considered as the consequence of the game of these
interactions. The externalities indicate all situations where the activities of one (or
several) economical agent(s) have consequences on the well-being of other agents,
without having exchanges or transactions. To admit the existence of externalities,
negative or positive, corresponds to accepting the necessity of “revisiting” from a
different viewpoint, the aggregate production function. The Von Neumann model
evokes, obviously, neither the concept of externality, nor the concepts of knowledge,
know-how or learning by doing, but its non-aggregated matrix structure, where the
production units coexist and where the organization of production processes is at
the center of the optimization diagram, offers a favorable context, to highlight and
to admit their possibility, as augmentative factors of the global effectiveness of the
economy.

27 Of the production techniques.
28 Since they are not defined explicitly in the Von Neumann model.
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7.3 Stability, Stationarity and Diminishing Returns
of the Capital: The Solow Model (1956)

7.3.1 Diminishing Returns and Stationarity of the Per Capita
Product

The model has been introduced by Robert Solow in 1956 in an article entitled “A
contribution to the theory of economic growth”, (Q J Econ 70: 65–94). It is regarded
as the reference model of neo-classical “growth”, although certain elements of its
initial construction are borrowed from the Keynesian theory, like the consumption
function. Robert Solow postulates an economy where there is the full employment of
all the resources and first the human resources. The Solow purpose is to show that an
economy based on a production function of the neo-classical type, i.e. where there
is constantly the full employment of resources, converges towards a semi-stationary
state, where all the variables grow at a same constant rate. In fact, the basic model
concludes that in the long run, there is stationarity (i.e. particular case of semi-
stationary states where there is no growth) of the product per capita, whereas the
nominal variables increase all at the same rhythm, which is generally that of the
exogenous growth rate of population. Let us describe the reference Solow model.

7.3.2 The Reference Model

The assumptions of the model are the following:

• The countries produce and consume only one homogeneous good Y .
• The production is carried out within the framework of perfect competition.
• The technology is exogenous.
• The technology can be represented by a production function of the neo-classical

type with substitutable factors which are the capital and the labor: (K,L).
• The aggregate production is represented by a Keynesian function:

C = cY ⇒ S = (1− c)Y = sY. (7.36)

• The rate of participation in the employment of the population is constant. If the
growth rate of the population is n, the offer of labor L grows at same rate n :

dLog(L)
dt

=
dL/dt

L
=

L̇
L

= n. (7.37)

In order to present the model, we will use a production function of the Cobb
Douglas type:

Y = F(K,L) = KαL(1−α). (7.38)
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Let us recall that the model postulates constant29 returns to scale. Within this frame-
work of perfect competition, the companies maximize their profit in relation to the
market prices:

maxK,LF(K,L)− rK−wL. (7.39)

With the rate of interest r and the wages w. Applied to our function, one obtains:

w =
∂F
∂L

= (1−α)
Y
L

, (7.40)

r =
∂F
∂K

= α
Y
K

. (7.41)

Since, by assumption, the production function has constant returns to scale, this
function is also a homogeneous function of degree 1 which verifies the Euler
identity,30 then it possible to write:

wL+ rL = Y. (7.42)

It is possible to write the per capita model, by knowing that
L
L

= 1, k =
K
L

, then,
the model is written (Fig. 7.1):

y =
Y
L

= f (k) =
F(K,L)

L
=

KαL(1−α)

L
=
(

K
L

)α
= kα , (7.43)

y = f (k) = kα . (7.44)

Such a production function with α ∈ [0,1] presents a form which highlights the
decreasing returns of the per capita capita. With such per capita production function
which highlights the way in which the factor K influences the production, one will
highlight the dynamics of the capital accumulation:

K̇ =
dK
dt

= I− δK (7.45)

Fig. 7.1 Cobb Douglas
function of production per
capita

f(k)

y = ka

k

29 That is, for the Cobb Douglas function: α +(1−α) = 1.
30 Euler’s identity: F(K,L) = K×F ′K(K,L)+L×F ′L(K,L).
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The way in which the capital varies is function of the difference between invest-
ment I and depreciation of the capital δK. By definition, in a closed economy, the
investment is equal to the savings (s: saving rate):

I = S = sY. (7.46)

Thus
K̇ = sY − δK. (7.47)

Furthermore, it is possible to write:

k =
K
L

, (7.48)

log(k) = log(K)− log(L), (7.49)

d log(k)
dt

=
k̇
k

=
K̇
K
− L̇

L
=

sY − δK
K

− L̇
L

. (7.50)

However, we known that
d log(L)

dt
=

dL/dt
L

=
L̇
L

= n, i.e. we know the growth rate
of the labor factor, and we write:

d log(L)
dt

= n, (7.51)

log(L) =
∫

ndt = nt +C0, (7.52)

L(t) = ent+C0 ×L(0) = eC0 = L0, (7.53)
L(t) = L0ent . (7.54)

Consequently, the equation
k̇
k

=
sY − δK

K
− L̇

L
becomes:

k̇
k

=
sY
K
− δ −n =

sy
k
− δ −n. (7.55)

Thus, we obtain the fundamental dynamical equation of the capital:

k̇ = s f (k)− (δ + n)k. (7.56)

The coefficient fitting the labor factor in this equation corresponds to the sum of the
depreciation rate of the capital with the growth rate of the labor factor.

7.3.2.1 Balanced Growth Path and Solow Diagram

In the preceding section one highlighted the two fundamental following equations,
the per capita production function and the fundamental dynamics of the capital
accumulation:
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Fig. 7.2 Solow diagram and BGP in k∗

y = f (k) = kα , (7.57)
k̇ = s f (k)− (δ + n)k. (7.58)

If one notes the initial conditions of the model k0 = K0/L0, the production function
provides the level of production, the investment, the savings and the fundamen-
tal dynamical equation of the capital provides the evolution of the capital. These
evolutions can be represented through the following dynamic diagram:

The Solow diagram is represented in Fig. 7.2.
In this diagram, the rate of variation of k is provided by the difference between

the curves: f (k) and (n + δ )k. the intersection point of these two curves is k̇ = 0,
at such a point k̇/k = 0 and this critical value of k is noted k∗,31 it designs the
stationary-state of the model (also called steady-state) for which the per capita
capital remains unchanged. (Inada conditions,32 with the conditions on the first
derivative of f insure the possibility of a k∗ such that k∗ = 0⇔ s f (k∗) = (δ +n)k∗.)
Outside this stationary state, one can have, either:

k0 < k∗ ⇔ k̇ > 0, (7.59)

where the per capita capital increases, i.e. there is an intensification of the capital,
or:

k0 > k∗ ⇔ k̇ < 0, (7.60)

where, on the other hand the per capita capital decreases.

31 In k∗ : y∗ = f (k∗), c∗ = (1− s) f (k∗).
32 Inada condition: the marginal productivity of the capital tends towards zero. If f (·) is the
intensive form of the production function F(·), then: limk→0 f ′(k) = ∞, limk→∞ f ′(k) = 0.
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Fig. 7.3 Rise in the rate of investment

7.3.2.2 Comparative Statics and Stationary-State Properties

Rise in the Rate of Investment

Let us imagine that we are located in a stationary state and that then the individuals
decide to increase their saving rate which passes from s to s′ (knowing that the
rate remains positive). Consecutively, it will result in an increase in the investment
and the goal is to observe the impact on k and y, by means of the following graph
(Fig. 7.3).

Rise in the Demographic Growth

Let us observe what occurs when the growth rate of the population increases from n
towards n′. The per capita capital retrogrades since its denominator increases. They
are represented with the stationary state in Fig. 7.4.

7.3.2.3 The Wealth Level of an Economy

The stationary state is represented by

k̇ = skα − (n + δ )k = 0. (7.61)

It gives k∗:

k∗ =
(

s
n + δ

)1/(1−α)

. (7.62)
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(n'+s)k (n +s)k

y = f(k)

s . y

kk*' k*

y*

y*'

Fig. 7.4 Rise in the growth rate of the population

And it comes for the production per capita:

y∗ = f (k∗) =
(

s
n + δ

)1/(1−α)

. (7.63)

This leads to conclude that:

• The countries which have a high rate of savings-investment, compared with other
countries, will tend to being richer.

• The countries which have a high demographic growth rate, will tend compara-
tively to being poorer.

It is an explanation attempt of the development differences existing between rich
and poor countries by the model.

7.3.2.4 Convergence and Dynamics of Transition in the Long-Term

In this model, the absolute variables (Y,C,K) increase at the same rhythm as
population (i.e. n) and the per capita variables are constant in a stationary state.

k̇
k

=
ẏ
y

= 0⇒ Ẏ
Y

=
K̇
K

=
L̇
L

= n. (7.64)

In such case, in a long-term stationary state, one observes:

• A constant rate K
Y (capital/product), because k and y are constant.

• A constant marginal productivity of the capital k, because k is constant.
• A variation of the GDP/person between different countries (corresponding to

statistical observations).
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In such a model, the economies can grow short-term but not in the long run:
indeed, if a country deviates at a given time from the stationary state, it will have a
period of transition and then will reach a new stationary state. The growth will slow
down as the economy approaches the stationary state. Indeed, let us take again the
fundamental (generic) dynamical equation of the capital:

k̇ = s f (k)− (δ + n)k. (7.65)

By introducing the per capita production function of the model, we obtain:

k̇ = skα − (δ + n)k. (7.66)

Let us pose the growth rate of the capital γk:

γk =
k̇
k

= s
f (k)

k
− (δ + n), (7.67)

γk =
k̇
k

= skα−1− (δ + n). (7.68)

From this equation, which depends in particular on α which is lower than 1, one
understands that the increase in the per capita capital factor induces a trend fall
of the growth rate of the capital γk; the growth rate of y which is written γy = ẏ/y
also decreases, since it is proportional to the growth rate k. Figure 7.5 presents the
behavior of γk and isolates the two components of the equation which are s f (k)

k and
(δ + n).

7.3.2.5 The Golden Rule of the Capital Accumulation

In the Solow model, the semi-stationary states are defined by the equality s f (k∗) =
(n+δ ) k∗. The objective is to find the value of the saving rate s to which corresponds
a maximum stationary consumption per capita. However, since f (k∗) provides the

k(0)

k
f(k)

s •

g k >0

g k <0
d + n

k*k'(0)

Fig. 7.5 γk: Growth rate of k. And convergence towards the BGP
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per capita product when the per capita capital is k∗ and since the consumed portion
of the product is (1− s), then, the stationary per capita consumption is written:

(1− s) f (k∗). (7.69)

If the growth rate n of the labor factor is given, as well as the rate of depreciation δ
of the capital, each value of s corresponds to a value k∗ > 0 :

k∗(s),
dk∗(s)

ds
> 0, (7.70)

s f (k∗(s)) = (n + δ )k∗(s), (7.71)
c∗(s) = f (k∗(s))− (n + δ )k∗(s). (7.72)

The balanced growth in the sense of c∗, first, is increasing with s, because s makes
it possible to finance the investment and the demand; then after, it is decreasing,
because s reduces the demand through reducing the consumption. And there is a
maximum for c∗ for a value of s. The optimal couple is (sGR,c∗), sGR being the value
of s which maximizes c∗. This value of sGR is written:

sGR = argmaxc∗(s), (7.73)
dc∗

ds
=
(

f ′(k∗)− (n + δ )
) dk∗

ds
= 0, (7.74)

the golden rule (Fig. 7.6) is written:

⇒ f ′(kGR) = (n + δ ) (7.75)

while knowing that kGR = k∗(sGR) and cGR = f (kGR)− (n + δ )kGR.
The golden rule of the capital accumulation is thus written: f ′(kGR) = (n+δ ). In

such a case, the variation of the per capita product compensates for exactly the total
depreciation of the per capita capital. The saving rate sGR, which is “dynamically
effective”, is the saving rate making it possible to obtain the balanced growth path
which maximizes the per capita consumption.

Fig. 7.6 The golden rule
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7.3.3 Introduction of the Technological Progress into the Solow
Model and Balanced Growth Path

In the previous model of Solow, with the per capita variables there is no growth.
This fact which was just described above can be modified if the technological
progress is included in the model of Solow. By the introduction of “A” which repre-
sents the technology evolution through a technological progress which reinforces
the labor.33 This means that production processes, or labor units become more
productive. Consider a production function such that:34

Y = F(K,AL) = Kα(AL)1−α . (7.76)

The factor “AL” is often indicated as the effective supply of labor (Aghion and
Howitt 1999), and is also called the effective population. (“AL” is sometimes indi-
cated as being the efficiency units of labor.) The technological progress which is
exogenous in the model results from A which grows at a constant rate. If one notes
g the growth rate of the technological progress A, one obtains:

Ȧ
A

= g⇔ A = A0egt . (7.77)

Let us observe the behavior of such a model. Let us recall:

I = S = sY, (7.78)
K̇ = sY − δ . (7.79)

Thus, the capital accumulation is written:

K̇
K

= s
Y
K
− δ . (7.80)

The production function becomes:

y = kαA1−α . (7.81)

And by using the logarithmic derivative:

γy =
ẏ
y

= α
k̇
k

+(1−α)
Ȧ
A

= αγk +(1−α)g. (7.82)

33 “Labor augmenting”; neutral in the sense of Harrod.
34 Let us remind the various types of technical progress:

Neutrality in the sense of Harrod: Y = F(K,AL),
Neutrality in the sense of Solow: Y = F(AK,L),
Neutrality in the sense of Hicks: Y = F(K,L).
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Based on the equation K̇
K = s Y

K −δ , the growth rate of the capital K will be constant
only if the ratio Y

K is constant, because s and δ are constant. Thus, the growth rate
of the production and growth rate of the capital are equal γY = γK and the growth
rates of the per capita production and the per capita capital are equal: γy = γk.
Consequently, there is in this case a balanced growth path (BGP) for which the
production, consumption and the population grow at the same constant rate

γy = αγy +(1−α)g ⇔ γy = γk = γA = g≥ 0. (7.83)

The consequence of such a model of technological progress is that the capital and
GDP per capita deploy and increase on a balanced growth path. This conclusion is
different from the basic Solow model.

Remark 7.1. The analysis of Solow (1957) of the “capital accumulation” notion is
founding in many respects. Indeed, the principle is that the capital accumulation
will undergo the effect of decreasing returns, if there is no technical productivity.
The technological progress and its continuous improvements make it possible to
compensate for the effects of decreasing returns by improving the productivity.

7.3.4 Evolution of the Solow Model and the Neo-Classical Models

We are interested in the various evolutions of the Solow model and in their capacity
to explain the convergences between countries.

7.3.4.1 The Solow Model with Human Capital

The model results from two articles, the first one is the paper of Mankiw et al. (1992)
and the second is the paper of Lucas (1988). The subject is to note that confronta-
tion between the model of Solow and the experimental data of the economic growth
highlights explanatory qualities of the model, which are interesting in particular if
one makes it evolve by introducing the notion of human capital. The approach con-
sists in taking into consideration the different levels of skill (or qualification) and
education (or learning, training) of countries. Thus, one considers the production
function of Cobb Douglas and one supposes that the production results from a com-
bination between physical capital and skilled labor H. The production function is
written

Y = Kα(AH)1−α . (7.84)

A is the technological progress which “reinforces” the labor and A increases at
the rate g, which is an exogenous rate. The individuals can arbitrate between the
education and labor, and use a part of their time to education rather than to the
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direct labor. “u” is the part of time that an individual devotes to education and L
is the global quantity of used labor in the production. Thus, if Nt represents the
population of the model, it is possible to write the equation:

Lt = (1−u)Nt. (7.85)

Education and training transform unskilled labor into skilled labor, this transforma-
tion is written:

Ht = eψuLt , (7.86)

where ψ is a constant ψ > 0. The shape of this function results from the analysis of
observations relating to the labor economy, which explains that every year of study
increases by 10% the wages of the individual. In the particular case where u = 0,
then H = L, i.e. the production is carried out with unskilled labor. Let us formalize
the impact of a variation of u on the skilled labor H:

logH = ψu + logL, (7.87)
∂ logH
∂u

=
∂H/∂u

H
= ψ . (7.88)

Thus, the impact of u on H comes from the positive constant ψ . As regards the
accumulation of the physical capital, it is possible to write it in the following way:

K̇ = sKY − δK, (7.89)

where sK is the exogenous rate of investment and δ the rate of depreciation of the
capital. The accumulation of the physical capital results from the level of investment
and savings. Per capita, the production function becomes:

y =
Y
L

= kα (Ah)1−α , with h = eψu. (7.90)

If we suppose that “u” is exogenous and constant, and since sK is exogenous, then
“h”is also constant and thus we are in a similar model to the Solow model with
technological progress. Inside a balanced growth path (BGP), y and k will increase
at the constant rate g. And we take into account the constant variables on the BGP,
we can write:

ỹ = y/Ah, k̃ = k/Ah, ỹ = kα . (7.91)

And we obtain: .

k̃ = sKỹ− (n + δ + g)k̃. (7.92)

Then, on the growth balanced path, we must have
.

k̃/k̃ = 0, this involves that:

.

k̃
k̃

=
sK

n + δ + g
⇒
⎛

⎝

.

k̃
k̃

⎞

⎠

α

=
(

sK

n + δ + g

)α
. (7.93)
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Since ỹ = y/Ah, k̃ = k/Ah, ỹ = kα , by dividing by ỹα , we obtain:

ỹ∗(1−α) =

⎛

⎝

.

k̃
k̃

⎞

⎠

α

=
(

sK

n + δ + g

)α
, (7.94)

ỹ∗ =
(

sK

n + δ + g

)α/(1−α)

. (7.95)

This equation gives the value of the product per effective skilled labor unit on the
BGP, whereas the per capita product on the BGP is written:

y∗t =
(

sK

n + δ + g

)α/(1−α)

hAt . (7.96)

Thus, the per capita product grows at the rate g on the BGP. The difference of wealth
between countries is better explained by the equation above:

• The countries are richer, because they have a high-rate of investment in physical
capital.

• The countries are richer, because they have a lower demographic growth rate.
• The countries are richer, because they have a strong technological progress.
• The countries are richer, because they give a lot of time and importance to the

education and training: eψu.

7.3.4.2 Convergence and Diversity of Growth Rates

If one observes the growth rates of the OECD (Organisation for Economic Co-
operation and Development) countries between 1960 and 1990, one notes a kind
of convergence between these countries: they concentrate along a (decreasing)
regression line in a plane made up of the product/per capita and growth rates of
different countries (Fig. 7.7). This observation disappears if, over the same period,
one takes into account all countries constituting the world growth: the concentration
disappears and the convergence also

.

k̃
k̃

= sK
ỹ
k̃
− (n + δ + g), with

ỹ
k̃

= k̃α−1. (7.97)

This convergence is called “absolute convergence”, which would occur between
the economies which have identical stationary-states, and, among these economies,
the poor countries should grow more quickly than the rich countries. In addition, the
more an economy is below its stationary-state, the more its growth will be fast, and
on the contrary, the more an economy is above its stationary-state, slower will be its
growth.
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Fig. 7.7 Convergence and dynamics of transition

7.4 Introduction of Externalities, and Instability: Endogenous
Growth Theory

The theory has been stated in 1986 by P. Romer (Romer 1986) and in 1988 by
R. Lucas (Lucas 1988). Theory seeks to explain the growth of the per capita pro-
duction of an economy by means of the accumulation process, without justifying
it by exogenous factors. The Solow model, neo-classical paradigm, has been used
for a long time to illustrate the works on the economic growth, but it did not make
it possible to justify the phenomena of “prolonged growth” and the disparities of
growth rates between countries. Thus, the endogenous growth theory, which claims
to adhere to neo-classics, adapts certain assumptions of the Solow model.

7.4.1 Interrupted Growth in the Solow Model and Long-Term
Stationarity

The conclusion of the model is that the accumulation of the physical capital does
not explain the long periods of strong growth of the per capita income and does
not explain either the different levels of per capita income between the different
countries. In the model, the participation of the capital in the production is direct
and this participation is remunerated according to its marginal product. The basic
model radically ignores the (positive) externalities, and in particular those which
are generated by the capital, to justify the growth. The Solow model explains the
growth by using:

• An endogenous source, which is the capital accumulation, determined by the
model

• An exogenous source, which is the quantity of available labor
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If the exogenous source is supposed to be “constant” in order to facilitate the
analysis of growth, then, one can observe how the production evolves by basing
oneself on the only accumulation process. Within such a framework, if a decrease
in the growth is observed, it will be explained by:

• A decreasing marginal productivity of the capital35

• The constant returns to scale

Having postulated that the labor quantity is constant in the course of time, its con-
tribution to the production through the quantity is also constant and only the capital
factor can contribute to the increase in the production until the impact of a decreas-
ing marginal productivity is observable and deadens the growth of the product.

7.4.2 Introduction of Positive Externalities

7.4.2.1 Excess or Lack of Externalities: Between Explosive Trajectory and
Stationary Trajectory

The endogenous growth models are mainly built on the existence of positive exter-
nalities which are the source of the growth. The introduction of these externalities
into the model is carried out by admitting that “the increase in the total quantity
of spare capital in the economy involves a rise of the labor productivity”. It is the
major assumption of the endogenous growth theory which introduces in the model
the “learning by doing” factor, which explains that the “knowledge” accumulation
is done in the course of time. The endogenous growth models are thus based on
the existence of positive externalities. “Too many externalities” generate explosive
behaviors and not enough externalities generate stationary behaviors. The writing
of the assumption is done by assigning a “multiplier” A to the labor factor L in the
production function:

A = a(∑K), (7.98)

AL = a(∑K)L, (7.99)

∑K: corresponds to the total stock of capital of the economy,
a(∑K): is the multiplier of L,
a(·): is a strictly increasing function,
a(∑K) > 1: what means that there is a positive externality.

It is possible to say that the contribution of the capital to the production is “indirect”.
The new production function is written:

Y = F(K,a(∑K)L). (7.100)

35 Inada condition (1964): The marginal productivity of the capital tends towards zero. If f (·) is
the intensive form of the production function, then limk→0 f ′(k) = ∞, limk→∞ f ′(k) = 0.
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Because of the initial assumption, the production function is homogeneous of
degree 1, then we can write:

Y
L

= F
(

K
L

,a(∑K)
)

. (7.101)

By posing y the per capita product and k the per capita capital, the equation above
can be written:

y = F(k,a(∑K)). (7.102)

With y = Y/L and k = K/L. If one writes the temporal derivative of the equation
above, one obtains the following generic writing:

ẏ = F ′K(k,a(∑K))× k̇ + F ′L(k,a(∑K))×a′(∑K)×∑ K̇. (7.103)

Moreover, in the Solow model, the growth is interrupted asymptotically, i.e.
ẏt→∞→ 0. This is the absence of externality which explains this observation. One
can come back to Solow model by posing:

a(∑K) = 1, (7.104)

a′(∑K) = 0, (7.105)

ẏ = F ′K(k,1)k̇. (7.106)

Moreover, remember that in the Solow model K̇t→∞ → 0, which is the Inada
condition of the decreasing marginal productivity of the capital.

Since we had assumed, in the initial description of the Solow model, that the
quantity of available labor was constant in the course of time, and since the marginal
productivity of the capital is decreasing, we deduce within the Solow model frame-
work that the capital per capita K/L converges towards a stationary value. Thus,
the per capita production y = Y/L tends to a stationary value in the long term.
The only possible growth comes from the increase in the population. On the other
hand, if there is externalities, the temporal derivative ẏ preserves all its components,
because a′(∑K) �= 0:

ẏ = F ′K(k,a(∑K))× k̇ + F ′L(k,a(∑K))×a′(∑K)×∑ K̇, (7.107)

Furthermore, from this equation, if we assume the following condition:

a′(∑K) > 0. (7.108)

If ∑K grows continuously, then the per capita product y = Y/L will increase
indefinitely, whereas in the Solow model, the per capita product tends to a station-
ary value. The endogenous structure of the model resides in the function a(∑K)
which represents the endogenous process of accumulation, engine of the growth.
The paradigm of the endogenous growth model described by Romer, which will be
evoked more in detail in the section which follows, chooses a “Cobb Douglas” as
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production function and writes the multiplier of the labor factor which is also the
“learning” factor, as follows:

a(∑K) = (∑K)β . (7.109)

The Romer model chooses a value β for which the growth is carried out at a con-
stant rate.36 The structure of the production function becomes then, after a rapid
transformation of the well-known form aK

Y = aK : Production function at constant rate. (7.110)

If one poses s the saving rate, in such a case, contrary to what occurs in the model
from initial Solow, the growth depends on the saving rate, because using

K̇ = sY : Investment = Savings (7.111)

and Y = aK: Trajectory at constant rate, one obtains: K̇/K = as.37 One has therefore
as solution of the linear differential equation: K(t) = K(0)east . In this economy, K
grows at the constant rate “as”, and, since the production is proportional to K, it
also grows at this rate. This generic model provides an example where the long-term
growth is endogenous and depends on the saving rate.

The determinant of the knowledge accumulation is based on the idea that while
the individuals produce goods, they find ways to progressively improve the produc-
tion processes. Moreover, this increase in the productivity is done without visible
introduction of innovation into the production process. It is possible to say that the
knowledge accumulation, which is called the learning by doing in such a case, is
a involuntary “collective” product of the economic activity itself. The learning by
doing is the fortuitous consequence of the production of new capital (Romer 1996).
Indeed, such as the model was posed, the increase in knowledge depends on the
increase in capital. And the stock of knowledge is a function of the stock of the cap-
ital. Generally, the idea of externality is analyzed as inefficient in the Pareto sense,
because of the existence of interactions between the agents, which raises the ques-
tion of the optimal remuneration of these “subjacent” externalities which do not
exist obviously as an explicit factor of production in the production function and
which are however the engines of the growth. They are supposed being remunerated
by other production factors in an indirect way.

36 The nature of the growth will depend on the β value:

• Explosive growth
• Growth → 0, as in the Solow model
• Constant growth

37 That means that the capital accumulation is controlled by K̇ = asK. The equation implies that K
grows at constant rate: as.
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7.4.2.2 Stability of the Romer Model: Self-Sustained Semi-Stationary Growth
at Constant Rate on the “Razor’s Edge”

The endogenous growth models are based on the existence of positives externali-
ties38 which are supposed to be generators of the growth. “Too many externalities”
generate explosive behaviors and “not enough” externalities generate stationary
behaviors, whereas the Romer model is of a semi-stationary nature. Paul Romer
describes a model which is used as a base of endogenous growth models. The
selected production function is a Cobb–Douglas function:39

F(K,L) = K1−αLα : Production function. (7.112)

At this stage, Romer takes into account a new factor:

a(∑Ki) = (∑Ki)β : Knowledge or learning by doing factor

(∑Ki : global capital).

This learning factor applies to all the production units and increases the skill level
of workers. If j = 1, . . . ,n indicates the companies of the model, then it is possible
to write for one company j:

F(Kj,a(∑Ki)Lj) = K1−α
j [(∑Ki)βLα

j ]α : Production function of j.

The global production of the economy is:

Aggregate production:

Y = F(∑Ki,a(∑Ki)∑Li) = (∑Ki)1−α(∑Ki)βα(∑Li)α

= (∑Ki)1−α+βα(∑Li)α .

The evolution of the model depends on the exponent of the global capital 1−α +
βα:

(a) If 1−α +βα < 1: the per capita production increases more and more slowly
as in the case of the initial Solow model.

(b) If 1−α+βα > 1: the per capita production increases more and more quickly.
(c) If 1−α+βα = 1: then, β = 1. Thus, the production becomes:

(∑Ki)(∑Li)α : Aggregate production. (7.113)

38 Positive externality: indicates any situation where the activities of one (or several) eco-
nomic agent has (have) consequences on the well-being of other agents, without exchanges or
transactions. The externalities can be positive or negative.
39 With 0 < α < 1.
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By posing a = (∑Li)α and K = (∑Ki), if the labor factor is supposed to be con-
stant, then the aggregate production grows only in proportion of the global capital
K and is written:

Y = a ·K : Aggregate production:

Self-sustained growth at constant rate.

Such a case results from strict assumptions, in particular about β , and the conse-
quence is a self-sustained growth at a “constant rate”. A β value modification will
see a change of trajectories more than proportional which can then either explode
or become stationary.

The main difficulty or “critique” concerning this type of model is related to the
question of the aggregation of the agents of the model. The Solow model, like many
models where the growth is due to exogenous factors, is an aggregate model and
the production function represents all the agents, as if it was a unique representative
agent. This conception cannot be retained as regards the endogenous growth models
since the externalities, which are (mainly40) the source of the endogenous growth,
can exist only if there are interactions between the agents. Thus, these models must
treat the question of the aggregation without doing it as in the Solow model for
which there is only a unique agent.

7.4.3 Endogenous Growth Without Externality

Certain models of endogenous growth, always constructed from the Solow model
structure, do not use the concept of externality to justify an endogenous growth.
The endogenous growth, in such a case, is always caused by the learning factor,
but one considers that this factor can create “labor factor” unities, which have the
form of the human capital. Thus, the concept of learning appears in the model and
the individuals have arbitrages to do between investment in the material capital and
investment in the learning capital.

7.5 Incentive to the Research by Profit Sharing: The Romer
Model (1986–1990)

In addition to the problem of the disparity of growth between countries, the endoge-
nous theories of growth seek to explain the origin of the technological progress,
which is economic growth factor or promoter. The endogenous growth models
introduce an idea initiated by P. Romer, which consists in saying that the techno-
logical progress results from the search of profit sharing by the researchers and the
inventors.

40 Indeed, endogenous growth can exist without externality.
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7.5.1 Basic Components of the Romer Model

The Romer model internalizes (i.e. endogenizes) the technological progress, unlike
(for example) the Solow model with human capital where the growth rate of tech-
nological progress “g” is exogenous. The novation consists in saying that the
inventors, who are involved in profit sharing, generate technological progress. Thus,
technological progress results from the Research and Development: R&D. The pur-
pose of the Romer model is to explain why the developed countries profit from a
sustained high growth. The model is described, as previously, by two fundamental
equations, i.e. the production function and the dynamics of the production factor(s).
The production function is written:

Y = Kα(ALY )1−α . (7.114)

LY is the labor devoted to the production, and A is the level of technology of the
economy. For a given level of technology “A”, the production function has constant
returns in K and in LY . But, if one then considers that the level of technology (or
ideas) A is also a factor of production, the technology has increasing returns:41

F(tK,tA,tL) = (tαKα)× (t1−αA1−α)× (t1−αL1−α
Y ), (7.115)

F(tK,tA,tL) = t2−α ×F(K,A,L) > t×F(K,A,L). (7.116)

In addition, the equations of capital and labor accumulation are similar to that of the
Solow model:

K̇ = sKY − δK, (7.117)
L̇
L

= n. (7.118)

Lastly, one must write the equation defining the evolution of the technological
progress which concerns the new production factor (we point out that, in the neo-
classical models, the growth rate of the technological progress was exogenous). The
Romer model endogenize the evolution of the production factor A. A(t) is the stock
at the instant t of the production factor, it is the stock of ideas invented previously.
Ȧ represents the evolution of the factor A and is written as follows:

Ȧ = τLA, (7.119)

where LA is the number of people which devotes their time in the search of new
ideas and τ is the rate to which they find new ideas, i.e. also the number of new
ideas. What means in particular that:

L = LY + LA. (7.120)

41 The presence of increasing returns result from the non-rival use of the ideas.
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We write also that τ depends on stock (of already found ideas):

τ = Aφ , with φ < 1. (7.121)

The return of the research activity of new ideas will depend on the number of people
involved in the R&D process. Thus, it is not possible any more to use LA, but we
will use Lλ

A where λ expresses the duplication of research efforts. Consequently, the
evolution of A (stocks of ideas or knowledge) is written:

Ȧ = ρLλ
A ×Aφ . (7.122)

The equations τ = Aφ and Ȧ = ρ Lλ
A ×Aφ are fundamental in the new economic

growth models. The individual researchers consider that τ is given and they observe
“constant returns”. However, at a global level, using the last equation Ȧ = ρ Lλ

A ×
Aφ , the production of new ideas have not necessarily constant returns, even if τ only
varies very slightly under the action of individual researchers. It is however clear
that τ varies by being subject to the influence of the global research. It is possible
to give an illustration with λ < 1 which expresses a kind of saturation or congestion
and is translated in terms of externalities associated with the duplication; another
illustration can be given by φ > 0 which is a positive externality in the research.

7.5.1.1 Growth and BGP in the Romer Model

If a constant part of the population uses its time for the production of new ideas,
the model of P. Romer concludes like the neo-classical model, i.e. “all the per
capita growth is due to technological progress”, and like in the Solow model with
technological progress, the following equalities must be verified:

γy = γk = γA. (7.123)

The purpose is to identify the growth rate of the technological progress along the
BGP and with this intention, one poses:

Ȧ
A

= ρ
Lλ

A
A1−φ (7.124)

and along the BGP, we must verify: Ȧ/A = γA = constant. However the last equality
is possible only if the numerator and the denominator of the equation, above, evolve
at the same rhythm:

0 = λ
L̇A

LA
− (1−φ)

Ȧ
A

. (7.125)

Along the BGP, we have
L̇A

LA
=

L̇
L

= n, then it is possible to write:

γA =
Ȧ
A

=
λn

(1−φ)
. (7.126)
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Thus, the growth rate of A, but also the long-term growth rate of the economy γy
depends on the growth rate of the population and depends on the parameters of the
production function of ideas:

• Let us examine the case λ = 1 (duplication of research efforts = 1) and φ = 0 : this
implies τ = ρ and Ȧ = ρLA. However, if LA is constant, the number of new ideas
at each period is constant, and the part of these new ideas, in the global stock,
decreases in the course of time, i.e. Ȧ/A = 0. Thus, one will have a sustained high
growth of the economy if the number of new ideas is increasing in the course of
time, i.e. if the population devoted to the research increases, or, if the global
population increases, which is written:

γY = γA = n. (7.127)

With this equality, once more, one notes a similarity with the Solow model with
technological progress; on the other hand, the active principles in the P.Romer
model are very different, because they use the notion of endogenous creation of
new ideas. A population growth must involve a growth of the number of new
ideas. Thus, a stop of the population growth in this model suggests a stop of the
economic growth. Furthermore, in order to have a long term growth, the effort
of research must be more than constant, i.e. increasing.

• Let us examine the particular case λ = 1 and φ = 1, which is connection with the
production function of new ideas of the Romer model in 1990, we have:

Ȧ = ρLAA⇒ Ȧ
A

= ρLA. (7.128)

In such a case, the growth rate of new ideas is equal to ρLA. Unlike the preceding
case, the economic growth will not stop even if the effort of research is constant,
and this because the productivity of the research τ = ρA is increasing, even if
the number of researcher remains constant. This interesting case is rare in eco-
nomic actuality. Indeed, we know that the efforts of research strongly increased
these last decades and, however, the growth rates did not increase proportionately,
which leads to suppose φ < 1.

Lastly, it will be emphasized that the economic policies cannot have effect on the
growth, because none of the usual levers of economic policies is operative in the
fundamental equation of the Romer model:

γA =
Ȧ
A

=
λn

(1−φ)
. (7.129)

7.5.1.2 Comparative Statics and Transitory Effect of a Permanent Increase
in the R&D Effort in the Population

Let us examine the case where, for example, the government subsidies would aim
at increasing the R&D effort in order to increase the number of researchers in the
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population, the final purpose being to know its impact on the economy within the
framework of this model. If λ = 1 and φ = 0, the growth rate of factor A is written
then:

Ȧ
A

= ρ
sRL
A

, (7.130)

where sR expresses the ratio of the population which takes part in the effort of
research and development, thus we have LA = sRL.

A

•
A

A
==

•
A

γ A

γ A

L0

Z0

Z1

LA

A0

A

n

s¢Rr

r LA
A

The initial balanced growth path is located in γA/ρ = L0/A0sR, and if sR is
increased, the part of LA increases in relation to L, and the part of LA also increases
in relation to A. However, when we are in z1, we have γA = Ȧ/A which is higher than
n, thus the ratio LA/A will tend to decrease until γA = n. In fact, the effect of a per-
manent increase in sR on the economy is transitory. The transition dynamics must
be connected to the Solow model after an increase in s.

A constant growth rate implies that y/A is constant (sK = rate of investment):

(
y
A

)∗
=
(

sK

n + γA + δ

)α/(1−α)

(1− sR). (7.131)
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On the BGP, the equation Ȧ
A = ρ sRL

A corresponds to A = ρ sRL
γA

and we obtain by
substitution in the preceding equation:

y∗(t) =
(

sK

n + γA + δ

)α/(1−α)

(1− sR)ρ
sR

γA
L(t), (7.132)

y∗(t) = θL(t). (7.133)

This formulation shows a scale effect which expresses that an economy having a
larger population is also richer. This observation can be explained by the non-rival
nature of ideas and by the fact that a larger economy has a vaster market wherein an
idea can expand and thus have a larger return (see below Figure of the Level effect).

7.5.2 Imperfect Competition, Externalities and R&D Optimality:
The Reconciliation in the Romer Model

The role of the technology is central in Solow models: From a purely exogenous
initial conception in the first models, the technology was incorporated in the more
recent approaches. The technology is the way in which the inputs are transformed
into outputs during the process of the production. It is thus logical that technological
progress must fully integrate the production function and must be modeled somehow
or other (i.e. direct or indirect). Romer leads an analysis which aims at explaining
the evolution of technological progress by the role of researchers and their financial
incentive to innovation. By explaining the technological progress by its source (i.e.
the research), we are then interested in the creation processes of “ideas” (technolog-
ical innovations, process innovations). This is what occurs in the model that we have
just studied, the ideas and their production are fundamental. Consequently, the ideas
become a Good of which it is advisable to specify the nature. This nature is partic-
ular at least for two reasons: First, the ideas considered as goods can be regarded
as having a non-exclusive use, in spite of their protection by rights of ownership;
Second, the non-exclusive use of these goods has as a consequence of increasing
returns. The cost index of a good of this nature can be defined as follows:

C(q) = F + cq, with AC(q) = F/q + c, MC(q) = c, (7.134)
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and
∂AC(q)
∂q

< 0, lim
q→∞

AC(q) = c and AC(q) > MC(q),

where p,q,C,F,AC,MC are respectively the price, quantity, global cost, fixed cost,
average cost and marginal cost. Thus, each produced additional unit is less expen-
sive than the unitary average cost of already produced units. Lastly, these increasing
returns to scale leads to reject the possibility of a perfect competition and to admit
for these goods the existence of an imperfect competition. Indeed, in perfect com-
petition one can write briefly that, since the price of the good corresponds to its
marginal cost:

p = MC(q) = c < AC(q), (7.135)

the profit is negative:
Profit = pq−AC(q)q < 0. (7.136)

It appears that the perfect competition cannot remunerate the production of this
type of good; the absence of profit is obviously not incentive. To consider the ideas
as a good requires a description of exchanges, but also of equilibria on the mar-
ket of this good. These exchange mechanisms will not be presented here whereas
we made it for the Romer model. We will simply note that, taking into account an
imperfect competition, Romer introduces, within a general equilibrium framework,
a “sector of intermediate good” for the exchanges of the good (i.e. the “ideas”)
and a sector of the “research” to express the production mechanisms of new ideas,
while preserving the sector of the final good which is produced from several capital
good which are the intermediate goods. In such a framework, a new idea corre-
sponds to the production of a new capital good. The production of ideas and goods
are dissociated and the sector of intermediate goods shows increasing returns. The
existence of increasing returns in a production function was not reconcilable with
the perfect competition and with the principle of the remuneration of production
factors to their marginal productivity. It is from this observations that Romer intro-
duced the concepts that we have described previously, on the one hand the imperfect
competition (e.g. the monopoly42) and the two new sectors, that of “ideas” and
that of the “research” which integrate now what could not be integrated before,
i.e. the increasing returns. The monopolies sell the intermediate goods at a price
higher than the marginal cost and the totality of the carried out profit remunerates
the researchers and the inventors. This observation cannot lead us to accept the
idea of optimality within this framework of imperfect competition. In the Solow

42 Imperfect competition: is a situation in any market where the conditions necessary for perfect
competition are not satisfied. Forms of imperfect competition include: (1) Monopoly, in which
there is only one seller of a good. (2) Oligopoly, in which there is a small number of sellers.
(3) Monopolistic competition, in which there are many sellers producing highly differentiated
goods. (4) Monopsony, in which there is only one buyer of a good. (5) Oligopsony, in which there
is a small number of buyers. There may also be imperfect competition in markets due to buyers or
sellers lacking information about prices and the goods being traded, etc.
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model, the price of factors is equivalent to their marginal productivity (Euler’s
Identity):

wL+ rK = Y. (7.137)

In such a framework, there does not remain any more product Y to remunerate
the researchers and their activity. This absence of remuneration within the frame-
work of competitive equilibrium makes the imperfect competition necessary, so
that the capital factor is remunerated below its marginal productivity, and the rest
of the product is assigned to the remuneration of the new ideas. Furthermore, a
major fact led to reject the idea of optimality on the R&D market, this is the
presence of positive externalities in the search of new ideas, which is not a stim-
ulating factor, because the market, globally, “under-incites” the research. Indeed, if
λ < 1, “the market does not penalize the researchers who reduce” the productiv-
ity of the other researchers, there is an over-incentive to research by the market.
On the other hand, if φ > 0 “the market does not take into account the fact that
the productivity of the research is increasing with the stock of already discov-
ered ideas, and the current researchers are not rewarded to have the productivity
of the future researchers”; there is an under-incentive to research. There is also
the question of pure innovations, i.e. the creation of new ideas producing a new
capital-good in the market of final goods, which is a real source of surplus whose
researchers do not receive the counterpart; there is here also an under-incentive to
the research.

7.5.3 Romer Model and Transfer of Technology Between Countries

The countries produce a good Y with the labor factor and a range of capital-good
x j.43 Since this range of capital-good is limited by the skill level of the labor h, the
function is written:

Y = L1−α
∫ h

0
xαj d j. (7.138)

In addition, a gross capital unit is necessary to produce one unit of capital-good,
thus one writes:

K(t) =
∫ h(t)

0
x j(t)d j. (7.139)

One will consider a small country which is still remote from the technological bor-
der of the world economy. The growth will depend on the “learning” of the use of the
advanced production tools which are already exploited in the rest of the world (the
model comprises intermediate goods: x j = x = K/h,∀ j). One obtains the following
Cobb–Douglas function, where the skill level reinforces the labor:

Y = Kα(hL)1−α . (7.140)

43 Refer to the economic mechanism of the Romer model.
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The dynamics of the capital accumulation is written:

K̇ = sKY − δK. (7.141)

The accumulation of skills (i.e. know-how) here, will be written in the following
way:

ḣ = μeψuAλh1−λ . (7.142)

With μ > 0, 0 < λ ≤ 1; u is the time devoted to the know-how accumulation; A rep-
resents the world technological border, i.e. it corresponds to the index of the most
advanced capital-good. (eψu finds an empirical justification – Nelson and Phelps
1966). And the variation of the skill Aλh1−λ is a geometric mean of the technologi-
cal border and of the skill of the country. If one writes the growth rate of the skill of
the work force:

γh =
ḣ
h

= μeψu
(

A
h

)λ
(7.143)

this equation shows that, “the more a country approaches the world technological
border, the more the growth of its level of skill slows down”. In this model, the
technological border evolves at a rate

γ =
Ȧ
A

, (7.144)

which is the consequence of worldwide investments in research and development,
and this rate is constant from the point of view of the considered country here. Along
the BGP, the growth rate of h must be constant:

γh =
ḣ
h

= μeψu
(

A
h

)λ
. (7.145)

However, h reinforces the labor in the production function of the model; thus, h will
contribute to the determination of y and k,44 and we can observe in the preceding
equation that ḣ/h depends on A/h, this means that ḣ/h will be constant only if A/h
is also constant. Thus, the following equality must be satisfied:

γy = γh = γk = γA = γ. (7.146)

At this stage, one can determine:
(

K
Y

)∗
=

sK

n + γ+ δ
, (7.147)

which, after being introduced into the production function Y = Kα(hL)1−α ,
provides:

y∗t =
(

sK

n + γ+ δ

)α/(1−α)

h∗t . (7.148)

44 Reminder: Y = Kα (hL)1−α and K̇ = sKY −δK.
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Starting from the equations γh = ḣ
h = μeψu(A

h )λ and γy = γh = γh = γA = γ one
obtains:

γh = γ ⇒
(

h
A

)∗
=
(
μ
γ

eψu
)1/λ

. (7.149)

That means that, when one devotes more time to the “know-how” accumulation, the
economy is closer to the technological border on its BGP (balanced growth path).
And if one introduces this value ( h

A)∗ in the equation:

y∗t =
(

sK

n + γ+ δ

)α/(1−α)

h∗t , (7.150)

one obtains the trajectory of y∗ on the BGP:

y∗t =
(

sK

n + γ+ δ

)α/(1−α)(μ
γ

eψu
)1/λ

At , (7.151)

γy = γh = γh = γA = γ, (7.152)

y∗t =
(

sK

n + γ+ δ

)α/(1−α)

hAt , (7.153)

thus, the factor h of the Solow model with human capital is defined within the
framework of this model. And the equation:

y∗t =
(

sK

n + γ+ δ

)α/(1−α)(μ
γ

eψu
)1/λ

At , (7.154)

appears as a new interpretation of the economic growth which aims at saying that the
economies have the growth because they learn how to use the new ideas invented in
the worldwide economies. The key element is the skill level of workers in a country
which will make it possible to optimize the exploitation of worldwide “technology”.
This exploitation is possible only if we suppose that there is a fast diffusion of
technology between the countries. The facts seem to show that this diffusion has an
effective reality through the “internationalization” of companies. It seems that all
information (ideas and technologies) is made available at the worldwide level and
the access to information does not constitute an obstacle, but that the only obstacle
is the learning capacity of new technologies by the countries. Briefly, it is said a
perfect information and an imperfect exploitation of this information. Obviously,
the cost of international patents comes to moderate this approach, and also the R&D
costs, but the set of these fixed costs is all the more quickly profitable if the market
is worldwide. Another conclusion of the equation above concerns the long-term,
indeed the economies “must” have the same growth rate which is the growth rate of
the worldwide technological border. The technology will tend in the long term to be
diffused in the countries, and the growth levels will tend to be equalized.



558 7 Evolution of Economic Growth Models

7.6 Nonlinearities and Effect of Economic Policies
in the Endogenous Growth Models

The previous developments concern the models where the economic policies such
as the increase in subsidies to research and development for example, have only
level effects and do not have a long-term growth effect. The effect is not perma-
nent, it is only temporary, because the economies come back in the long run to
their initial growth rate. These models are sometimes called the “semi-endogenous”
growth models. Indeed, even if technological progress is endogenous without the
growth of the population, which is exogenous, or without the growth of the num-
ber of researchers, the growth of the per capita product will tend to stop. However,
the “endogenous growth” expression had been created to define the policies which
must influence the growth rates in a permanent way. This dimension of the endoge-
nous growth theory, with permanent effect of economic policies, is presented in the
following sections.

7.6.1 AK Model: The Limit Case of Solow Model for α = 1

They are models which generate an endogenous growth with an influence of eco-
nomic policies on the growth rate. It is an emanation of the Solow model without
technological progress, i.e. the case Ȧ/A = 0, but with α = 1. The production
function is written:

Y = AK. (7.155)

This equation resulting from the Romer model (1986) and Rebelo (1991) provides
a production proportional to the stock of capital. The capital accumulation is still
written:

K̇ = sY − δK. (7.156)

In order to simplify the model, one poses n = 0 and K becomes the per capita capital
by normalizing the population to N = 1. One can represent the Solow’s diagram as
follows (Fig. 7.8).

If the initial conditions of the model are positioned at sY > δK, then the stock
of capital will increase and this increase will persist in the course of time, i.e. the
investment is higher than the depreciation in a permanent way. And we are supposed
to have a permanent growth. In the Solow model, due to α < 1, i.e. because of
decreasing returns, each unit of additional capital which is added by means of the
savings contributes less and less to the production. In the AK model, due to α = 1,
i.e. because of constant returns, “each unit of additional capital” added contributes
in a constant way to the production. The marginal product of each unit of additional
capital is always A. The growth rate of the capital, by using K̇ = sY −δK, is written:

γK =
K̇
K

= s
Y
K
− δ = sA− δ = Constant. (7.157)
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Fig. 7.8 Solow’s diagram in AK model

And, by the logarithmic derivative of the production, one obtains:

γY = γK = sA− δ . (7.158)

That means that the growth rate of the GDP is an increasing function of the rate
of investment “s”. Consequently, the economic policies that increase the rate of
investment are supposed to increase, at the same time, the growth rate of the GDP
of the economy and in a permanent way. The “AK” model generates the endogenous
growth even if the population (or the technology level) does not grow in the model.

• The case described in the present section is a “limit-case” of the Solow model for
α = 1, and the parameter α ∈ [0,1] indicates the bend of sY . Indeed, the more
α is weak, the more the bend of the curve is high and the more the intersection
between sY and δK is carried out quickly; on the other hand, the more α is
close to 1, the more the form of sY approaches a straight line and the more the
intersection with δK is carried out tardily. However, the intersection in K∗ of sY
and δK indicates the balanced growth path (BGP) (when sY = δ because n = 0).
The more the value of α is high, the more the transition from the initial state
K0 towards K∗ takes time and for α = 1 the dynamics of transition never stops
(Fig. 7.9).

7.6.2 Linearities and Endogenous Growth

7.6.2.1 AK Model

In the preceding “AK” model, the endogenous growth is generated because of a “lin-
earity” in the differential equation of the model. If in the Solow model, the dynamics
of the capital accumulation is associated with the production function, one obtains
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Fig. 7.9 Diagram of the Solow model with α < 1

the following differential equation K̇ = sAKα−δK. Starting from this equation, two
cases must be distinguished:

• Either, α = 1 and we are in presence of a linearity in K which is that of the “AK”
models,

• Or, α < 1 (decreasing returns of the capital) and we are in presence of a nonlin-
earity in K. Then, based on this equation, we can write the growth rate of K in
the following way: γK = K̇

K = sA
K1−α − δ . We can clearly identify the decreasing

nature of the relation.

7.6.2.2 Solow Model with Technological Progress

In this case, the linearity is present in the writing of the (exogenous) growth rate of
the technological progress Ȧ/A = g which allows to write the following differen-
tial equation Ȧ = gA which is of linear nature. A permanent increase in the rate g
impacts, in a permanent way, the growth rate of the augmented Solow model. There
is an absence of decreasing returns for A.

7.6.2.3 Lucas Model (1988)

The model uses a Cobb Douglas production function combined with a factor “h”
representing the human capital by person (i.e. per capita). The function is written:

Y = Kα(hL)1−α . (7.159)

Lucas assumes that the human capital h evolves in the following way, by knowing
that “u” is the time devoted to labor and (1−u) is the time devoted to the formation:

ḣ = (1−u)h. (7.160)
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The growth rate is written:
ḣ
h

= (1−u). (7.161)

In such a case, “h” is included in the production function, in the same way as the
technological progress “A” was included in the production function of the aug-
mented Solow model, i.e. by the introduction of a linearity. Any permanent increase
in time devoted to the education or the learning (1−u) will thus lead to the increase
in growth of the per capita product, in a permanent way

The three examples which precede illustrate the importance of linearities in
the conception of endogenous growth models. However, the endogenous growth
phenomenon can exist without linearity by using, for example, a model with two
differential equations from which the respective convexities of trajectories are dif-
ferent. Thus, in certain configurations, in the absence of linearity, one can observe
the endogenous growth.

The linearity assumption is simple to pose, write and exploit, this is why it
is so often used. The models of the type Y = AK also seem to belong to this
assumption; in this expression, the output is constantly proportional to the input
and A is taken as a parameter and not as a variable obviously. However, it proves
that this assumption undergoes some critiques, and is not necessarily relevant.
Indeed, the basic rules of the economic theory, which state the decrease of the
marginal productivity or of the marginal utility, implicitly implies that the rela-
tion between input and output is rather of a nonlinear nature. Moreover, even
within the framework of models whose construction is linear, the nature of the
“domain”,45 in particular at its limits, can be the source of nonlinearity due to the
“edge-effects”. One can evoke the variables which are expressed in the form of
rate (or ratio), like the per capita variables for example. The assumption of the
nonlinearity is probably more relevant than its opposite which, beyond its didac-
tic virtues, is often replaced by more realistic concepts relating to the nonlinearity
notion.

7.6.3 Externalities and AK Models

The introduction of ideas, knowledge or technology in the production function pro-
duces the increasing returns to scale. The “increasing returns to scale” seem to
imply the abandon of the concept of perfect competition and the introduction of
the imperfect competition notion in order to justify them. The neo-classical the-
ory and its framework of perfect competition remunerate the factors of production
by their marginal productivity, and we are led to the question of the knowledge
remuneration, because there does not remain product in order to remunerate it.

45 Domain (of a function): The term domain is most commonly used to describe the set of values D
for which a function (or map, transformation , . . . ) is defined. For example, a function f (x) that is
defined for real values x ∈ R has domain R, and is sometimes said to be a function over the reals.
The set of values to which D is sent by the function is then called the range.
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This seems to mean that the researchers cannot be rewarded for their work. The
notion which makes it possible to reconcile perfect competition and increasing
returns to scale is the existence of “externalities”, i.e. the accumulation process
of knowledge is an “involuntary” consequence of other activities in the econ-
omy. And it is possible to say that the remuneration of the knowledge accumu-
lation is “indirect”. Let us consider, for example, a Cobb Douglas function of an
enterprise:

Y = BKαL1−α . (7.162)

It is known that the returns of K and L in this equation are constant. As regards B,
which can represent the knowledge if one imagines that its accumulation process
is endogenous, the returns of B would be thus increasing. On the other hand, one
can suppose that the capital accumulation (by means of externalities) generates new
knowledge in the economy:

B = AK1−α (7.163)

with A a constant. The individual enterprise does not recognize that its effort of
investment improves the level of knowledge of the technology in the economy,
taking into consideration its size. The knowledge seems not identified by the com-
panies and is thus considered by these companies as “external”. But, at the global
level of the economy the improvement, resulting from knowledge, is appearing.
Thus, the capital is remunerated according to its marginal productivity. It is a
remarkable fact, because the companies do not identify in the accumulation of this
capital factor the “subjacent” accumulation of knowledge. The production function
becomes:

Y = AKL1−α . (7.164)

And if one removes the factor L by normalizing it to 1, the production function
becomes:

Y = AK (7.165)

which is, by definition, the writing of the production function of the “AK” model.
Thus, there exist two approaches in order to endogenize the accumulation of the
knowledge by justifying the existence of increasing returns:

• The imperfect competition
• The externalities

In the Romer model, both approaches (imperfect competition and externalities)
were taken into account. Indeed, the externalities allowed the increasing returns
of knowledge, and the imperfect competition allowed the increasing returns in the
production.
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7.6.4 Nonlinearities and Effect of Economic Policies
in Endogenous Growth Models: Transitory or Permanent
Effects

As described previously, it is possible to do a dichotomy between the endogenous
growth models according to the effects of policies on these models. It is a question
to distinguish between permanent effect and transitory effect (i.e. level effect).

Let us suppose an economy with a subsidy active policy of the R&D, one can
wonder whether the effects of this policy will last indefinitely, or in the long-term
(from 10 to 50 years), or in the mid-term (5 years for example). Furthermore, the
analysis could lead to say that an effect of long term but not undefined and thus
transitory, can be close to a permanent effect. Such an analysis suggests privileging
the “level effect” approach (M-LT). Moreover, the measured empirical elements
do not make it possible to admit the economic models as being linear, i.e. having
α = 1. On the contrary, α is close to 1/3 for the capital and even if human capital
and externalities are added to it, we are close to 4/5, thus we are always lower than 1.

The linearity does not seem either to be present in the R&D, since it is known
that the investment efforts in this field and the number of researchers over the 40
last years increased considerably, whereas the growth rate of economies did not
increase in a significant way, because it is near 1.8% during the same period. This
leads to conclude that the positive externalities (φ > 0) remain however lower than
1: (φ < 1).

7.7 Basin of Instability and Saddle-Point: Optimal Growth
Model of Ramsey without Technological Progress

This founding model in many respects, takes into account at the same time the
behavior of households and that of companies. The intertemporal choices of house-
holds consist in arbitrating between consumption and savings. Savings and
consumption are not fixed in an exogenous way, but are the consequence of a
optimization mechanism of an endogenous nature. This mechanism is the main
novation, contrary to the basic Solow model, which posed an exogenous saving rate.
The optimal growth model of Ramsey is often used to show that there is a unique
interest rate which is used as indicator for the consumption or investment decisions.

7.7.1 Intertemporal Choices and Utility Function

The choice between consumption and savings is carried out only for one good (the
corn for example). One admits that the “standard of living” of a given state of the
model can be transcribed in a “measurement” by means of the utility of the per
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capita consumption c(t). This measurement is denoted u(c), it is the utility function
which is increasing whereas its first-derivative is decreasing u′(c) > 0, u′′(c) < 0.
For the needs of the model, one considers an economy of which the lifespan is equal
to T and with consumption trajectories of the form:

(c0, . . . ,ct , . . . ,cT ). (7.166)

ct is the consumption at the moment t. The utility function of the model which
is noted U(·) is considered separable, i.e. it is of the form: U(c0, . . . ,ct , . . . ,cT ) =
u0(c0)+ · · ·+ uT (cT ). Another characteristic consists in supposing that there exists
a “discount factor” (or a rate of discount), i.e. a “positive rate of time preference”
which translates a certain preference for the present, it is denoted ρ : it is the rate of
preference for the present in the economy. The intertemporal utility function of the
model is written as follows:

U(c0, . . . ,ct , . . . ,cT ) = u0(c0)+ · · ·+ uT (cT )
(1 +ρ)T . (7.167)

This rate ρ is subjective, it corresponds to the preferences of the representa-
tive agent. After this discrete description, it is possible to provide a continuous
representation:

∫ T

0
u(ct)e−ρt dt. (7.168)

The program will seek to maximize the intertemporal utility function, such as:

max
∫ T

0
u(ct)e−ρt dt. (7.169)

In such a case, the economic horizon of the model is limited to a date T , but
the choice of this horizon is an important question because T could be selected
unlimited.

7.7.2 The Production Function

The selected production function is the neo-classical function such that:

• The firms rent the services of production factors, i.e. the capital and the labor, and
they sell their production to the households and to the other firms. The technology
of firms enables them to transform these factors into products (and if we wish, it
is possible to make evolve this technology in the course of time, but it will not be
the case in this model).

• The households possess the assets and the factors of production, and they choose
the part of their income which will be consumed.

• The markets of output and inputs exist and the exchanges determine the prices of
the output and inputs.
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The production function can be written:

Y (t) = F(K(t),L(t),t), (7.170)
Yt = F(Kt ,Lt). (7.171)

Obviously this production function will be written later Y = F(K,L). Technological
progress is not taken into account in the model and the returns to scale are con-
stant. The working population of the model, denoted Nt , grows in an exponential
way at rate n. And, since there is no unemployment in the model, one can write that
Nt = Lt = N0ent . All the variables of the model can be expressed per capita and the
intensive form of the production function will be written: y = f (k). In this model,
one takes into account the depreciation of the capital which is considered propor-
tional to the stock of capital, and the rate of depreciation is noted ω . By definition,
it is admitted that the production function respects the equilibrium condition on the
markets and thus the equality:

Y = C + I. (7.172)

C is the consumption and I the investment. (The equation can be written per capita
as follows: y = f (k) = c + i.) From this equality, one can write the equation of the
capital variation in the course of time:

dK/dt = K̇ = Y −C−ωK = F(K,L)−C−ωK. (7.173)

The per capita capital, which is written k = K/L, enables us to write by taking the
logarithm: logk = logK − logL. By taking the derivative of this expression, one
obtains:46

dk
dt

= k̇ =
1
L

dK
dt
−nk. (7.174)

Thus, one can write, by introducing the value of K̇:

k̇ =
1
L

(F(K,L)−C−ωK)−nk. (7.175)

Or:47

k̇ = f (k)− c−ωk−nk. (7.176)

This equation represents the dynamics of the per capita capital accumulation in this
economy. We can observe clearly that the level of consumption at each period plays
a very important part in the dynamics of accumulation.

46 Developed expression: 1
k

dk
dt = 1

K
dK
dt − 1

L
dL
dt ; dk

dt = k
K

dK
dt − k

L
dL
dt ; dk

dt = 1
L

dK
dt −nk.

47 Which can be also written in the following form: kt+1 = f (kt)− ct+1−ωkt −nkt .
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7.7.3 Mechanism of Optimization, and Trajectories

In order to have an optimal growth, it is necessary to carry out an arbitrage at each
period between consumption and savings. this is because the agents aim at consum-
ing later on. The division between consumption and savings, at each period, depends
on the form of the intertemporal utility function (in particular of the rate of prefer-
ence for the present) and in addition depends on the “production techniques” which
are used. To determine the optimal trajectory of consumption and thus the trajectory
of the production, one maximizes

∫ T
0 u(ct)e−ρtdt under the constraints represented

by k̇ = f (k)− c−ωk−nk. The objective is to seek an optimal c which maximizes
the utility of agents, or more exactly, of the representative agent at each moment.
With this intention, one extracts “c” from the preceding expression:

c = f (k)− (ω + n)k− k̇ (7.177)

and one introduces it into the function of utility to maximize, which is also the
objective function and which becomes:

U∗ = max
∫ T

0
u[ f (k)− (ω + n)k− k̇]e−ρtdt. (7.178)

The unknown element of this problem of maximization is k. The candidate-functions
for the resolution of this problem must satisfy the Euler condition, which is written
as follows:

g′k− ġ′̇k = 0. (7.179)

The g function is defined by:

g(t,k(t), k̇(t)) = e−ρtu( f (k(t))− (ω + n)k(t)− k̇(t)). (7.180)

Let us calculate g′k the derivative with respect to k:

g′k(t,k(t), k̇(t)) = e−ρtu′( f (k(t))− (ω + n)k(t)− k̇(t))( f ′(k(t))− (ω + n))
= e−ρtu′(c(t))( f ′(k(t))−ω−n).

Let us calculate the derivative with respect to k̇:

g′̇k(t,k(t), k̇(t)) = e−ρt u′( f (k(t))−ω−n)k(t)− k̇(t))(−1)

= e−ρt u′(c(t))(−1).

The derivative with respect to time of the preceding expression is written ġ′̇k:

ġ′̇k(t,k(t), k̇(t)) =−e−ρt(−ρu′(c(t)))− e−ρtu′′(c(t))ċ(t).

Taking into account the preceding results, the Euler condition g′k− ġ′̇
k
= 0 is written

e−ρtu′(c(t))( f ′(k(t))−ω−n)+ e−ρt(−ρu′(c(t)))+ e−ρtu′′(c(t))ċ(t) = 0
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then we can extract the expression of ċ:

ċ(t) =− u′(c(t))
u′′(c(t))

( f ′(k(t))−ω−n−ρ). (7.181)

By omitting t the simplified writing of ċ is as follows:

ċ =− u′(c)
u′′(c)

( f ′(k)−ω−n−ρ)). (7.182)

7.7.3.1 Optimal Trajectories of the Consumption

The following system of differential equations of order 2 determines the optimal
trajectory of consumption and investment, starting from the given initial conditions
(k(0),c(0)):

k̇ = f (k)− c− (ω+ n)k, (7.183)

ċ = − u′(c)
u′′(c)

( f ′(k)−ω−n−ρ). (7.184)

A brief reminder:
n: is the growth rate of the population.
ρ : is the rate of preference for the present (positive rate of time preference).
ω : is the rate of depreciation of the capital.
Starting from given initial conditions, the system thus made up will provide the

solutions of the model (if they exist). It is important now to study the behavior of
the different trajectories of the system.
The cas k̇ = 0 and ċ = 0:

From the system defined previously, one will consider the solutions of:

k̇ = 0: f (k)− c− (ω+ n)k = 0,

ċ = 0: − u′(c)
u′′(c)

( f ′(k)−ω−n−ρ) = 0.
(7.185)

By admitting that u′(c) �= 0, one obtains:

c = f (k)− (ω + n)k, (7.186)
f ′(k) = ω + n +ρ . (7.187)

From the last equation and by postulating that the marginal productivity of the
capital is strictly decreasing, and thus that the function f (·) is concave, one can
write:

k∗ = f ′ −1(ω + n +ρ). (7.188)
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Fig. 7.10 Phase diagram

Replacing this value of k in the equation c = f (k)− (ω + n)k, one obtains:

c∗ = f (k∗)− (ω + n)k∗. (7.189)

ċ = 0 corresponds to a vertical straight line which for a single value of k, noted k∗,
and k̇ = 0 corresponds to a concave curve (The conditions of Inada being respected);
both are represented on the phase diagram (Fig. 7.10).

The diagrammatic orientation of the flow (of solutions) is represented by the
arrows which help to understand that the solutions are of the saddle-point type.
Indeed, let us study the behavior of the system by analyzing the Jacobian matrix.
The Jacobian matrix is written:

J =

⎛

⎜
⎜
⎝

∂ k̇
∂k

∂ k̇
∂c

∂ ċ
∂k

∂ k̇
∂c

⎞

⎟
⎟
⎠ (7.190)

for (k∗,c∗), J is written:

J∗ =

⎛

⎝
f ′(k)−ω + n −1

− u′

u′′
f ′′(k) −

(
u′

u′′

)′
( f ′(k)−ω−ρ−n)

⎞

⎠ . (7.191)

The notations, here, are simplified. Thus, the expression48( u′
u′′ )

′represents the deriva-
tive with respect to c of the term between brackets. Moreover, the component ∂ k̇

∂c of
J∗ is zero for (k∗,c∗), due to the factor ( f ′(k)−ω − ρ − n) which is zero itself,
because f ′(k) = ω + n +ρ , when ċ = 0. Thus, the determinant of J∗ is written:

detJ∗ = [ f ′(k)−ω+ n] ·0− (−1)
(

− u′

u′′
f ′′(k)
)

, (7.192)

48 Reminder:
(

u′
u′′
)′

= u′2−u′u′′
u′′2 .
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detJ∗ = − u′

u′′
f ′′(k). (7.193)

Since the model postulated the following assumptions u′(·) > 0, u′′(·) < 0 and
f ′(·) > 0, f ′′(·) < 0, one deduces that: detJ∗ < 0. Thus, J∗ has two eigenvalues
of the opposite sign, which is symptomatic of a saddle-point. The axis of the sad-
dle is obtained by means of the eigenvector resulting from the eigenvalue of which
the real part is negative. With an aim of obtaining convergence towards the point E
(which corresponds to a balanced growth “regime” at constant rate), the capital-
consumption initial values couple (k(0),c(0)) must belong to the axis of the saddle.
The choice of initial conditions is thus crucial for the convergence of the model and
leads to the problem of the coordination of agents’ behaviors which could be the
coordination of a planner or of a unique (representative) agent.

7.8 Basin of Instability and Saddle-Point: Optimal Growth
Model of Cass Koopmans Ramsey with Technological
Progress

As in the previous case, this model49 takes into account, at the same time, the
behavior of households and that of companies, and in a competitive economy. The
intertemporal choices of the model consist in arbitrating between consumption and
investment (or savings). Unlike the Solow model, the savings and consumption are
not fixed by an exogenous fundamental rule but are the result of an optimization
mechanism of endogenous nature. Thus, unlike the basic Solow model, the sav-
ing rate is endogenous. We are thus faced with a growth model with technological
progress, without externalities, and the determination of the saving rate is endoge-
nous. The behaviors of the savings and consumption result from a maximization
program of the utility.

7.8.1 Enterprises and Production Function

From the point of view of the enterprises, the production function of the model
depends on the capital and labor factors, but also on the technological progress
whose growth rate is exogenous. The function is written:

Y = F(K,AL). (7.194)

In this aggregate production function, the population L is replaced by the “effective”
population AL. A reflects the current state of technological knowledge,50 and A can

49 Model of Ramsey (1928), Cass (1965), Koopmans (1965).
50 A could be interpreted as the number of efficiency units per unit of labor.
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be understood as a productivity parameter which grows at the constant rate g > 0.
The exogenous value of g is supposed to reflect “scientific progress”. The writing of
such a production function makes technological progress equivalent to an increase
in the the effective supply of labor AL which grows according to the growth rate
of the population n plus the productivity: (n + g). (It is possible to define all the
variables according to the “effective supply of labor” AL. Thus, for example, K/AL
would correspond to the supply of capital per “effective person”.) The companies
use work force and capital and A grows according to the exogenous rate g. One
considers that the households are the owners of companies and therefore they are
the beneficiaries of the profit which is maximized by these companies.

Taking into account the competitive framework, the factors of production are
remunerated according to their marginal productivity; since the returns to scales are
constant, the profits of companies are considered equal to zero. The marginal prod-
uct of the capital ∂F(K, AL)/∂K is equal to f ′(k). Indeed, taking into account the
assumption of the constant returns to scales, one can use the intensive form51 of
the production function f (k) (which satisfies the conditions f (0) = 0, f ′(k) > 0,
f ′′(k) < 0) and one deduces that f ′(k) is the marginal product of the capital because
F(K, AL) = AL f (K/AL),∂F(K/AL)/∂K = AL f ′(K/AL)(1/AL) = f ′(k). In the
absence of depreciation, one also writes that the real return rate of the capital is
equal to its marginal product, consequently, at moment t, the real interest rate is
equal to:

Real interest rate : :r(t) = f ′(k(t)),
or : r = f ′(k).

Moreover, the remuneration of the “effective” labor is carried out according to its
marginal product, one can write that ∂F(K,AL)/∂AL corresponds to f (k)− k f ′(k).
Therefore, the remuneration, i.e. the real wage rate per unit of labor is equal to:

w(t) = f (k(t))− k(t) f ′(k(t)), or : (7.195)
w = f (k)− k f ′(k). (7.196)

The remuneration of an individual at the moment t is written A(t)w(t), because the
marginal product of the labor in this case corresponds to A∂F(K, AL)/∂AL.

7.8.2 Households and Maximization of the Utility Function Under
the Budget Constraint

From the point of view of the households, let us consider a given standard of liv-
ing, represented by a consumption c(t) and an index of utility u(c) (knowing that

51 The intensive form is obtained as follows: F(K/AL,1) = (1/AL)F(K, AL) where K/AL is the
amount of capital per “effective” labor unit. If one notes k = K/AL, y = Y/AL and f (k) = F(k,1),
then one obtains the intensive form of the production function y = f (k).
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u′(c) > 0, u′′(c) < 0). One considers that there is a great number of identical house-
holds and the size of each household grows according to rate n. The households are
supposed to be the owners of the capital, and they loan it to the companies. Each
member of the household supplies a unit of labor per unit of time. If one notes H the
number of households and K(0) the stock of the initial capital of the model, then,
K(0)/H corresponds to the stock of initial capital of the household. In this model,
one does not take into account the depreciation of the capital to simplify the writing.
The households perceive an income for their work and for the loan of their capital,
but they can possibly perceive profits. Then, starting from the perceived income,
they arbitrate between consumption and savings in order to maximize their utility.
The utility function of each household is defined through an infinite lifespan. The
utility function is written:

U =
∫ ∞

t=0
e−ρt u(C(t))

L(t)
H

dt. (7.197)

L(t) is the global population of the model and L(t)/H is the number of person in
the household. C(t) is the consumption of each member of the household, and u(·)
is the instantaneous utility function of each member of the household. Moreover,
U(C(t))L(t)/H is the instantaneous utility at the moment t and ρ is the positive rate
of time preference (i.e. the rate of preference for the present) of the function. The
more ρ is high, the more the preference for the present is high. If one notes θ the
rate of “risk aversion”, the function of instantaneous utility is written52

u(C(t)) =
C(t)1−θ

1−θ
, with θ > 0 and ρ−n− (1−θ )g > 0. (7.198)

This function expresses a constant “risk aversion” and the coefficient of risk aversion
is written−Cu”(C)/u′(C) and is equal to a constant θ . The utility function depends
on θ . The more θ is small, the more the utility diminishes proportionally to the
increase in C(t). If θ → 0, the utility function only depend on C(t) and is even equal
to C(t). The elasticity of intertemporal substitution of the consumption is equal
to 1/θ 2.

The representative household maximizes its utility taking into account its budget.
Since we are in a logic of intertemporal choices, this budget constraint is stated as
follows: it is said that the discounted value of its global intertemporal consumption
must remain lower than the current value of its initial wealth increased by the dis-
counted value of the labor incomes of all its life. This constraint, rather heavy to
write, requires to take into account the variations of the real return of the capital r
which can be written R(t) :

∫ t
0 r(τ)dτ. And eR(t) represents the ratio at the moment

52 (a) If θ < 1, then C1−θ grows functions of C. If θ > 1, then C1−θ decreases functions of C.
Thus, while writing u(C(t)) = C(t)1−θ /1−θ it is known that the marginal utility of consumption
is positive for all θ .

(b) And if θ → 1, then u(C(t))→ logC(t).
(c) The constraint ρ − n− (1− θ)g > 0 ensures the convergence of the intertemporal utility

function, otherwise the maximization program can have no solution.
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t of an invested unit (i.e. good or capital) at the beginning of the period. The remu-
neration of labor53 of a household is equal to A(t)w(t)L(t)/H and its consumption
is written C(t)L(t)/H; thus the budget-constraint of the household is:

∫ ∞

t=0
e−R(t)C(t)

L(t)
H

dt ≤ K(0)
H

+
∫ ∞

t=0
e−R(t)A(t)w(t)

L(t)
H

dt. (7.199)

If we reason per unit of effective labor, it is possible to write the constraint as
follows:

∫ ∞

t=0
e−R(t)c(t)

A(t)L(t)
H

dt ≤ k(0)
A(0)L(0)

H
+
∫ ∞

t=0
e−R(t)w(t)

A(t)L(t)
H

dt

which can be also written (using the fact that A(t)L(t) is equal to A(0)L(0)e(n+g)t):
∫ ∞

t=0
e−R(t)c(t)e(n+g)tdt ≤ k(0)+

∫ ∞

t=0
e−R(t)w(t)e(n+g)tdt. (7.200)

This expression is difficult to use but can be simplified by expressing the budget
constraint according to the capital possessed by the household when t → ∞. The
budget constraint is written now:

lim
s→∞

e−R(s) K(s)
H

≥ 0 (7.201)

that is also written:
lim
s→∞

e−R(s)e(n+g)sk(s) ≥ 0. (7.202)

Since the per capita consumption is written A(t)c(t), one can write:

C(t)1−θ

1−θ
=

(A(t)c(t))1−θ

1−θ
=

(A(0)egt)1−θ c(t)1−θ

1−θ
= A(0)1−θe(1−θ)gt c(t)1−θ

1−θ
.

The objective-function of the household, i.e. the utility, is written per capita as
follows:

U =
∫ ∞

t=0
e−ρt C(t)1−θ

1−θ
L(t)
H

dt, (7.203)

U =
∫ ∞

t=0
e−ρt
(

A(0)(1−θ)e(1−θ)gt c(t)1−θ

1−θ

)
L(0)ent

H
dt, (7.204)

U = A(0)1−θ L(0)
H

∫ ∞

t=0
e−ρt e(1−θ)gtent c(t)1−θ

1−θ
dt, (7.205)

which can be written in a simplified form:

53 A brief reminder:
L: total population
H: number of households
L/H: number of person composing a household.
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U = B
∫ ∞

t=0
e−β t c(t)1−θ

1−θ
dt, (7.206)

where β = ρ − n− (1− θ )g is positive by definition and B = A(0)1−θ L(0)
H . The

household must choose the path c(t) which maximizes its total intertemporal utility
under the budget constraint. The Lagrangian method allows the resolution of this
maximization program under constraint (where λ is the Lagrange multiplier); it is
written:

£ = U +λ (budget constraint) : (7.207)

B
∫ ∞

t=0
e−β t c(t)1−θ

1−θ
dt

+λ
(

k(0)+
∫ ∞

t=0
e−R(t)w(t)e(n+g)tdt +

∫ ∞

t=0
e−R(t)c(t)e(n+g)tdt

)

.

The condition of the first order is:

Be−β tc(t)−θ = λe−R(t)e(n+g)t. (7.208)

If we use the logarithm, the expression becomes:

log(B)−β t−θ log(c(t)) = log(λ )−R(t)+ (n + g)t. (7.209)

Then, by applying the relation R(t) =
∫ t
τ=0 r(t)dτ and by calculating the derivative

at t of the new expression, we have the condition:

−β −θ
ċ(t)
c(t)

=−r(t)+ (n + g). (7.210)

Then, it is possible to write the following expression:

ċ(t)
c(t)

=
r(t)−n−g−β

θ
(7.211)

taking into account β = ρ−n− (1−θ )g we write:

ċ(t)
c(t)

=
r(t)−ρ−θg

θ
. (7.212)

7.8.3 Dynamics and Balanced Growth Path

7.8.3.1 Dynamics of c and k

The dynamics of c for one household is also valid for all the households, since they
are considered identical in the model. The following equation corresponds to the
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Euler equation of the maximization problem and is also the growth rate of c which
is written:

ċ(t)
c(t)

=
r(t)−n−g−β

θ
=

r(t)−ρ−θg
θ

, (7.213)

since we know that r(t) = f ′(k(t)), the expression above can be also written:

ċ(t)
c(t)

=
f ′(k(t))−ρ−θg

θ
= γc. (7.214)

A brief reminder:
g: is the exogenous growth rate of A.
n: is the growth rate of the size of households.
ρ : is the rate of preference for the present (positive rate of time preference).
θ : is the rate of “risk aversion”.
One observes immediately that, when f ′(k(t)) = ρ +θg, then ċ(t) = 0, and one

can denote k∗ the value for which this equality is satisfied. If k > k∗, then ċ < 0; by
contrast if k < k∗, then ċ > 0. c grows when k < k∗, c decreases when k > k∗, and
c = 0 (i.e. is constant) for k = k∗. The dynamics of the per capita capital is written:

k̇(t) = f (k(t))− c(t)− (n + g)k(t). (7.215)

That means that the evolution of the capital corresponds to the difference between
the current investment f (k)− c and the investment of the break-even point (n+g)k,
except the depreciation of the capital which is not taken into account in this model.
In the figures which follow, one shows the behavior and the trajectory of c, when
the variation of the capital is zero, i.e. for k̇ = 0. One observes clearly, in Fig. 7.11
for k̇ = 0, the point corresponding to the equality f (k)− c = (n + g)k, i.e. the point
for which the current investment is equal to the investment of the break-even point.

Fig. 7.11 For k̇ = 0 : c = f (k)− (n+g)k
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Fig. 7.12 Dynamics of the model

By contrast, outside the border k̇ = 0, i.e. when f (k)− c �= (n + g)k, two cases
are obviously possible: either k̇ > 0 or k̇ < 0. And the behavior of c according to
these two cases is different when k varies. The dynamics of the model is represented
in Fig. 7.12.

When k̇ = 0, the consumption c = f (k)− (n + g)k is equal to the difference
between the per capita production curve and the straight line of the investment
of the break-even point. However, the value of this consumption increases until
f ′(k) = (n + g), which corresponds to the golden rule of capital accumulation in
the model. Indeed, if k̇ = 0, then c initially will grow until a maximum, then, it will
decrease taking into account the shape of the curve of c (in relation to k) for k̇ = 0.
The maximum of c, for k̇ = 0, is reached for f ′(k) = (n + g) (what corresponds
to the golden rule of this model), then, c decreases when k grows (the golden rule
is of course different from the golden rule of the Solow model which was written
as follows: f ′(kSolow

GR ) = (n + δ ), while knowing that δ is not taken into account,
here). When c is higher than the border for which k̇ = 0, then, k decreases (k̇ < 0);
conversely, when c is lower than the border for which k̇ = 0, then k increases (k̇ > 0).

7.8.3.2 The Modified Golden Rule of the Model

Let us recall that k∗ is the level of k for which ċ = 0 and kGR corresponds to the
maximum of the curve k̇ = 0. In the different graphs, one can observe that k∗ < kGR.
Let us recall that k∗ corresponds to f ′(k∗) = ρ + θg and furthermore, the value
kGR corresponds to f ′(k∗) = n + g. And, since f ′′(k) < 0, k∗ is lower than kGR if
ρ + θg is higher than n + g. This condition is verified, because by definition in
this model (in order to prevent the divergence of the intertemporal utility), we have
ρ − n− (1− θ )g > 0, i.e. ρ + θg > n + g. Thus, k∗ is lower than kGR. Thus, one
observes that k converges towards k∗ which is lower than the per capita capital of
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Fig. 7.13 Saddle-point and phase diagram of the model

the golden rule kGR, but since k∗ is the optimal level of k towards which the model
converges, it is called the stock of capital of the modified golden rule.

Figure 7.13 gives a diagrammatic representation of the solutions of the model,
which have the shape of a saddle-point; the orientation of the flow of solutions is
also depicted, as well as the different frontiers delimiting the trajectories, except the
curve of the per capita production function to make lighter the graph.

Dynamics:
k̇ = 0⇔ f (k∗)− c∗− (n + g)k∗ = 0
c > c∗ ⇒ k̇(k∗,c) = f (k∗,c) = f (k∗)− c∗− (n + g)k∗ < 0
ċ = 0⇔ f ′(k∗)−ρ−θg = 0
k < k∗ ⇒ f ′(k) > f ′(k∗) = ρ +θg⇒ ċ(k) > 0.

Golden rule:
f ′(k∗) = ρ +θg > n + g = f ′(kGR)
k∗ < kGR (since f ′′(k) < 0)
f (k∗) < f (kGR)⇒ c∗ < cGR

The point E corresponds to the couple which verifies at the same time k̇ = 0 and
ċ = 0 (i.e. c and k are constant at such a point).
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7.8.3.3 Trajectories (k,c) when t Tends Towards the Infinite
and the Choice of c

Conditions of optimization

k̇(t) = f (k(t))− c(t)− (n + g)k(t), (7.216)
ċ(t)
c(t)

=
f ′(k(t))−ρ−θg

θ
, (7.217)

these equation define the behavior of the model and the trajectories will depend
on the initial conditions (k(0),c(0)). But, if k is given, this is not the case of c
which must be selected and defined. Let us study the main behaviors of the system
according to the initial values of c, represented in the preceding graph:

• Let us observe the case of the trajectory starting at c(0), which belongs to the
curve k̇ = 0, i.e. at the point D′′′: this trajectory (k(t),c(t)) will move towards the
upper part of the (k,c)-plane and towards the left in direction of the axis of c.

• When the trajectory starts in D′, i.e. below the border k̇ = 0, in a zone where
k̇ > 0 and ċ > 0, then the couple (k,c) initially will move towards the top and
towards the straight line, but starting from the intersection point with the curve
k̇ = 0, it will move towards the point B.

• When the trajectory starts in D′′, for a low value of c(0), the couple (k,c) is
directed asymptotically towards the axis of k, and, while coming from the zone
k̇ > 0 and ċ > 0, crosses ċ = 0 towards the zone k̇ > 0 and ċ < 0.

• The point E (where ċ = 0, k̇ = 0, i.e. c et k are constant) represents the stable
point of the model.

• Moreover, for a given value k(0), there is a value of c for which the system
converges towards the stable point. This value of c(0) is represented by the point
D, which is the critical point which allows the convergence towards E.

• Above the point D, the model always undergoes an increase in c stronger than
that of k until the intersection of the curve k̇ = 0, and then the capital decreases
whereas the consumption continues to increase.

• By contrast, if the initial consumption c(0) is below D, the trajectory crosses
initially ċ = 0 towards ċ < 0 and until values of k higher than the golden rule;
thus, the real interest rate r(t) = f ′(k) is then lower than the rate of the golden
rule f ′(kGR) = n + g. Consequently, the expression e−R(s)e(n+g)s in the bud-
getary constraint will increase and, since k also increase, the budget constraint
lims→∞ e−R(s)e(n+g)sk(s) ≥ 0 will tend towards the infinite.

• If a trajectory starts at the critical point D, then the value of k will converge
towards k∗, and thus the real interest rate r(t) will converge towards r(t) =
f ′(k∗) = ρ + θg; consequently, the expression e−R(s)e(n+g)s in the budget con-
straint will diminish until β = ρ − n− (1− θ )g which was introduced in the
objective-function and which will lead the budget constraint lims→∞ e−R(s)e(n+g)s

k(s) towards its limit value which is zero.
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Above, the search of the optimal trajectory was carried out with a fixed k: the
problem was to choose c(0). One can extend the approach and select an initial cou-
ple (k(0),c(0)), then to observe the trajectories under the constraints of the model.
The optimal trajectory is called the saddle-path (or the axis of the saddle). This
saddle-path is represented by D–F branch in the graph; it does not violate the con-
ditions of the model, in such a framework the trajectories converge towards the bal-
anced growth path (BGP), i.e. towards the equilibrium point E: it is a stable branch.

7.8.4 Comments About the Trajectories and Maximization
of the Level of Consumption

The trajectory of the model which starts at the point D′′′, i.e. for a low value of c(0),
corresponds to a behavior of the agents of the “thrifty” type (with a rather weak
preference for the present and consumption). The trajectory which begins at this
point must be completed (if the process is long enough) on the abscissa-axis when
the level of consumption will be reduced to zero.

The trajectory of the model which begins at the point D′, i.e. for a high value of
c(0), corresponds to a typical behavior of preference for the consumption (with a
high preference for the present). The trajectory which begins at that point will meet
the constraint of the production function, i.e. will have consumed all what is possible
to consume, and consequently, the per capita capital will decrease until being on the
ordinate-axis when the capital is zero. The trajectory which begins at the point D,
i.e. for a single value of c(0) (on the vertical k0 of the graph), will tend towards the
point E , which is the intersection point of the borders ċ = 0 and k̇ = 0. The point E
is the balanced growth “regime” at constant rate. In fact this point is reached only
after an infinite time, because the more one approaches E , the more ċ and k̇ become
smaller and the convergence will take an infinite number of iterations.

In the growth theory, the golden rule corresponds to conditions on the parameters
of the model characterizing an economy, so that the per capita consumption is the
highest possible. For the maximum level of consumption, the rule explains that
the marginal productivity of the capital is equal to the growth rate which is equal
to the real interest rate:

pm
K = γgrowth = γreal interest. (7.218)

The level of per capita consumption is thus maximum for a (solution) value of
k equal to kGR (which maximizes the level of consumption by definition), which
means that the rate of preference for the present ρ is zero. The value of k is that
of the golden rule of the model. Thus, when the rate of preference for the present
ρ is zero and when the level of per capita consumption is maximum, then the real
interest rate of the model which was written:

r(t) = f ′(k) (7.219)
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for the value kGR which maximizes the per capita consumption, the interest rate
becomes:

rGR(t) = f ′(kGR). (7.220)

By definition, it is equal to the growth rate, and this same interest rate is equal to the
rate of profit in an economy with only one good, thus one can write:

Interest rate = Profit rate = Growth rate

γinterest = γprofit = γgrowth. (7.221)

In the Ramsey–Cass–Koopmans model, the savings corresponds to a rational arbi-
trage of households which is made according to the utility that they obtain from
their consumption. Thus, a growth path with a consumption which would be per-
manently lower than other paths cannot be an equilibrium (i.e. a balance): indeed,
the households, in such a case, would decrease their savings with an aim of taking a
path which would increase their consumption.

In the preceding sections, we noticed that the stock of per capita capital k∗ is
lower than the stock kGR of the golden rule, which means that the model does not
converge towards the balanced growth path which in the absolute would maximize
the consumption permanently. Trajectories beginning with values k other than those
of k∗, either will diverge excluding the balanced paths or will converge towards
(k∗,c∗) because positioned on the axis of the saddle. Thus k∗, which is the optimal
level of the per capita capital towards which the economy of the model converges,
is called the stock of capital of the modified golden rule.

When g the growth rate of A is equal to zero, the marginal productivities of k∗
and kGR is written respectively f ′(k∗) = ρ , f ′(kGR) = n and, if we take into account
the initial constraint ρ −n− (1−θ )g > 0, we will observe that ρ > n. That means
that the real interest rate r∗, for which there is a BGP optimum, is equal to the rate
of preference for the present which is higher than the growth rate of the size of
households.

7.8.5 Equilibria and Instability of Solutions

Such models highlight complex solutions in which stable and unstable trajectories
but also balances and unbalances coexist. The former approaches associated stability
with balance, as in the Solow model, but also associated instability with imbalance
as in the Harrod model.

The possible behaviors, in the model presented here, are mainly unstable and
the stability has the appearance of an exception, like the axis of the saddle reached
for restricted initial values of (k(0),c(0)). Outside this trajectory, there are only
divergence, instability and unbalance. Thus, one attaches a growing interest to this
type of model and to their solutions which have the form of the saddle-point. The
trajectory of the steady-equilibrium belongs to the set of the possible trajectories
of the model which are mainly unstable. Nevertheless, the fact that the “agents”
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have the choice, characterizes the optimal growth model presented previously, i.e.
they can arbitrate between consumption and savings. This constant possibility of
arbitrage makes more complex the field of the behaviors of the model. The optimal
trajectory is “plunged” or “immersed” in a field of instability which dominates the
model. The rareness of the optima (maybe their absence) is in opposition to the
structure of many former models, such as the basic Solow model, whose conception
aimed at the convergence towards stable states, which offered little choice to the
agents, except the faculty of substitution of the production factors K and L.54 Thus,
the arbitrage possibility for the actors of a model, leads to accept a sort of prevalence
of the instability and, at the same time, leads to accept the relation between the
accuracy or fidelity of a model and the prevalence of the instability. Moreover, it is
necessary to state the fact that, within the framework of the optimal growth models,
one can generate (without external shock) cyclic or aperiodic growth paths. This
is what happens in the optimal growth model presented in 1990 by M. Boldrin and
M. Woodford, which generates cyclic and chaotic endogenous fluctuations.

7.8.6 Endogenous Growth Without Externality, and Saddle Point

The Cass–Koopmans–Ramsey model previously presented depicts an economy
with complex behaviors whose saddle-point solutions converge towards a balanced
growth path only for particular initial values of k and c. It is the principle of the
optimal growth model, in which the individual considers that it is not sufficient to
save a constant part of its income, but carries out an intertemporal choice based
on its function of utility and its budget constraint. The saddle-point solution is the
consequence of the opposite signs of the eigenvalues of the Jacobian matrix (of the
system). Nevertheless, one observes also solutions of the saddle-point type for other
growth model kinds. Indeed, while maintaining the framework of the Solow model,
certain models show endogenous growth modes without externality. In such cases,
the growth is primarily due to the “learning”, which considers that it is possible to
create labor factor in the form of human capital. The choice in this type of model
is carried out between an investment in human capital and an investment in training
capital. One associates the production function of material goods with a production
function of human capital, and the model is then represented by a system of differ-
ential equations of order 2, whereas the Solow model is of order 1. The dynamics
generated by the model is complex, and the trajectory depends on the initial condi-
tions of the model. In such a case, one observes a solution which has the saddle-point
shape for this dynamics and a major role is attached to the axis of the saddle which
is the trajectory that the economy is supposed to choose. In this type of model, the
generated dynamics is that of a saddle-point with its characteristic instability.

54 Ref: M. Kurz on the stability in the Solow model (Kurz 1968).
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7.9 Day Model (1982): Logistic Function, Periodic and Chaotic
Behaviors

The model of R. Day allows to introduce the logistic function into a model whose
structure is a continuation of the Solow model. The logistic function which is a
simple nonlinear function is of a great interest in order to study the diversity of
behaviors of a model, and in particular the chaotic regimes. The Day model is a
capital accumulation model written in discrete time. This characteristic makes it
possible to avoid the concept which states that in order to generate chaotic behav-
iors in continuous time it is necessary to have three equations (ref. to Poincaré:
“The three body problem”). Thus, the Day model with its single discrete equation
makes it possible to obtain behaviors of chaotic nature.

7.9.1 The Model

On the labor market, where the supply is equal to the demand, one can write the
following equations of the model:

Lt+1 = (1 + n)Lt and Lt = (1 + n)tL0, (7.222)

where the growth rate of the population is noted n and Lt is the labor demand at t:

St = sYt . (7.223)

The investment is immediately adapted to the saving capacity and the stock of
capital lasts only one period:

It+1 = Kt+1 = St = sYt . (7.224)

The production function55 (without technological progress), is written:

Yt = F(Kt ,Lt). (7.225)

But also:
Yt = F(Kt ,Lt) = LtF(Kt/Lt ,Lt) = Lt f (kt ). (7.226)

One can write the recurrence equation of the capital:

kt+1 =
Kt+1

Lt+1
=

sYt

(1 + n)Lt
=

s
1 + n

f (kt) (7.227)

therefore

kt+1 =
s

1 + n
f (kt ). (7.228)

55 F is homogeneous of degree 1 and satisfies the Inada conditions.
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From this writing, one deduces the convergence of k towards a fixed point k∗:

k∗ =
s

1 + n
f (k∗) or f (k∗) =

1 + n
s

k∗. (7.229)

The fixed-point can be located at the intersection of the curves kt+1 = f (kt ) and
kt+1 = 1+n

s kt . The convergence towards k∗ can be carried out in two different ways,
according to the initial value k(0), which can be either higher or lower than k∗. If a
Cobb Douglas function is selected for F(Kt ,Lt ), we obtain:

Yt = F(Kt ,Lt) = BKβL1−β . (7.230)

And it comes:
f (kt) = Bkβt . (7.231)

And by replacing in kt+1 =
s

1 + n
f (kt ) the recurrence equation for k, it comes:

kt+1 =
s

1 + n
Bkβt . (7.232)

This recurrence equation is increasing (β is positive) and it converges towards a
permanent regime of which the capital factor or the capital intensity is written as
follows:

k∗ =
s

1 + n
Bk∗β , i.e. (k∗)1−β =

sB
1 + n

, (7.233)

k∗ =
(

sB
1 + n

) 1
1−β

. (7.234)

7.9.2 From Dynamics of Capital Towards Logistic Function

At this stage, one admits that the economy undergoes a “pollution effect”: indeed,
when the capital intensity increases, the production is limited by a factor (m− k)γ

which decreases the productivity of the model. Consequently, the Cobb–Douglas
function evolves:

g(kt) = (m− k)γBkβt (7.235)

with m > k and γ > 0. the recurrence equation which corresponds to the dynamics
of k, is written:

kt+1 =
s

1 + n
(m− kt)γBkβt . (7.236)

It is increasing for k = [0,k∗ = β
β+γ m] and decreasing for k =]k∗,m]. For k∗ there is

thus a maximum:
sB

1 + n
ββ γγ

(
m

β + γ

)β+γ
= g(k∗). (7.237)
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When β = γ = m = 1 the equation kt+1 =
s

1 + n
(m− kt)γBkβt becomes:

kt+1 =
sB

1 + n
kt(1− kt), (7.238)

or:
kt+1 = akt(1− kt). (7.239)

This equation is similar to the logistic equation: it is the dynamics of k and it can
generate chaotic behaviors. Thus, to know its behavior, one can refer to the logistic
equation. The factor “a” in the logistic equation corresponds to the fertility rate and
usually varies between zero and four, the chaotic regime occurring from the value
a� 3.56.

7.9.3 Periodic and Chaotic Solutions of the Dynamics of k

The dynamics of k depends on a = sB/(1 + n); the values of n and s being exoge-
nous, only B in this expression is variable, whereas the values of kt were normalized.
Thus, the values of k will depend on B:

0 < B < (1 + n)/s : k→ 0
(1 + n)/s < B < 3(1 + n)/s : k→ 1−1/a
3(1 + n)/s < B < 3.449(1 + n)/s : k→ Period-2
3.449(1 + n)/s < B < 3.544(1 + n)/s : k→ Period-4
3.544(1 + n)/s < B < 3.57(1 + n)/s : k→ Period-n
3.57(1 + n)/s < B < 4(1 + n)/s : k→Chaotic regime

One observes about B that between 0 and 3.57, k converges towards periodic values
of which the number of period regularly increases. Starting from 3.57, one gets into
a chaotic regime without periodicity except punctually some windows of value for
B, where there are re-emergences of periodic behaviors. The dynamics of k are thus
either periodic (i.e. cyclic, from period-1 to period-n) or aperiodic (i.e. chaotic).

7.10 Day–Lin Model (1992): Imperfect Information and Strange
Attractor

At the end of the second world war, the planning questions and the strategies of
growth and investment were in the forefront. In such a framework, the optimal
growth models were significant. Today, the environment is different. The role of
planner or coordinator of the State is weakened and because of the “incertitude”
existing on the markets, the firms do not find necessarily the indicators which are
indispensable to the coherence of their choices and arbitrages. Consequently, the
accumulation processes of the capital are not, within this framework of imperfect
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market, the result of perfectly rational and efficient choices and anticipations. Con-
sequently, we have to face the temporal incoherence of decisions and to dynamical
inefficiency situations. It is also in this context that we can explain the chaotic
evolutions of the growth.

7.10.1 Imperfect Information, Price Uncertainty and Adaptive
Expectations

In this model, the State has the role of a planner and must decide investment flows
for different periods in order to maximize the discounted sum of the utility of the
consumption at each period. In such a case, unlike what occurs in the initial opti-
mal growth model, one considers that the consumption choices are carried out by
an infinite number of individual agents, which succeed one another in the course
of time and have a short two-periods lifespan, in relation to the cycle of the econ-
omy. Moreover, we postulate an imperfect information because of an increase in
the uncertainty which is justified by resorting to the last developments as regards
planning known as strategic. Within this framework, the agents consider that the
price announcement or display by the State, are not “certain” and the anticipations
or expectations of agents take into account this uncertainty, thus these expectations
are of adaptive nature.

7.10.1.1 The Equations of the Model

The planner must carry out, at each period, the sharing between consumption and
savings, in order to maximize a collective utility function. The maximization of the
utility is written:

max
∞

∑
i=0

γ iu(ct+i) (7.240)

with u′(c) > 0,u′′(c) < 0; γ = 0, . . . ,1: the discount factor expresses the preference
for the present of the decision maker. The maximization of the utility is carried
out under constraints and in particular that of the equality between savings and
investment:

I = S : (7.241)
kt+1 = yt − ct . (7.242)

Like in the Day model, one supposes that the capital is entirely renewed at each
period. The investment at t corresponds to the stock of capital at t + 1. And the
savings corresponds to the part of the income which is not consumed at t, as we can
observe it in the equation above. Furthermore the distribution equation is written:

yt+1 = wa
t+1× lt+1 + ra

t+1× kt+1 with : lt+1 = 1. (7.243)
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This equation shows at t + 1, the national distribution of income, between wages
and profits. In this fundamental equation, the prices of labor and capital factors are
anticipated and the principle of anticipation is the following:

wa
t+1 = wt : Wages anticipation at t + 1,

ra
t+1 = ra

t + μ(rt − ra
t ) : Interest rate anticipation at t + 1.

In this model the anticipation of the interest rate, i.e. the anticipation of the price
of the capital factor, is adaptive, whereas the anticipation of the wages at t + 1 is
very simple: it is carried out by means of existing wages at t; This is called naive
anticipation. The consumption can be written as follows:

ct+1 = yt+1− kt+1. (7.244)

The equations kt+1 = yt − ct and ct+1 = yt+1 − kt+1 express two different con-
straints. Indeed, kt+1 = yt − ct defines the ex-ante56 equilibrium between savings
and investment, it is the equilibrium on the market of goods, whereas the equation
ct+1 = yt+1 − kt+1 defines the ex-post57 equilibrium between savings and invest-
ment. The coexistence of the two equations expresses an equilibrium-state on the
market of goods for which the resources of the economy are entirely used. By
replacing in the equation ex-post, the expression of yt+1 = wa

t+1lt+1 + ra
t+1kt+1, it

comes:
ct+1 = wt +(ra

t+1−1)kt+1. (7.245)

Then, by using kt+1 = yt − ct , one obtains:

ct+1 = wt +ρa
t+1(yt − ct) with ρa

t+1 = (ra
t+1−1). (7.246)

We known that the lifespan of individual agents is short, i.e. two periods and one
calls a “cohort” the individuals who live the same two periods. The optimal sharing
carried out by a cohort, or by its representative agent, is carried out by maximizing
u(ct)+γu(ct+1) under the saturation of the constraint f (kt )−ct ≥ 0 with kt and kt+1
fixed.

7.10.1.2 The Accumulation Dynamics According to Price Expectations

The optimization program is carried out by means of a Lagrangian, which is written:

L(ct ) = u(ct)+ γu(ct+1)+λt(yt − ct). (7.247)

56 Definition (Ex-ante): ex-ante is Latin for “beforehand”. In models where there is uncertainty
that is resolved during the course of events, the ex-antes values (e.g. of expected gain) are those
that are calculated in advance of the resolution of uncertainty.
57 Definition (Ex-Post): Latin for “after the fact”. In models where there is uncertainty that is
resolved during the course of events, the ex-post values (e.g. of expected gain) are those that are
calculated after the uncertainty has been resolved.
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The purpose is to maximize the utility of the consumption of the current period
but also that of the following period, under the saturated constraint f (kt )− ct ≥ 0.
Replacing by the value of ct+1 = wt +ρa

t+1(yt − ct), then:

L(ct ) = u(ct)+ γu
(
wt +ρa

t+1(yt − ct)
)
+λt(yt − ct). (7.248)

The first order condition is written:

u′(ct) =
1
γ

(
wt

ρa
t+1

+ yt

)

. (7.249)

If one poses u(ct) = log(ct) and also

f (kt ) = kβt where 0 < β < 1, (7.250)

then, the expression of ct is written:

ct =
1

1 + γ

(

kβt +
(1−β )kβt
(ra

t+1−1)

)

. (7.251)

The following system defines the accumulation dynamics of the capital:

kt+1 = yt − ct = kβt −
1

1 + γ

(

kβt +
(1−β )kβt
(ra

t+1−1)

)

, (7.252)

ra
t+1 = ra

t + μ(rt − ra
t ), with rt = f ′(kt). (7.253)

We observe that the capital accumulation explicitly depends on expectations. Thus,
the optimal sharing by the agents is carried out according to their own price
anticipations. The couples (ra

t ,kt) along t constitute the growth path of the model.

7.10.2 Chaotic Growth and Intertemporal Non-Optimality

7.10.2.1 Subharmonic Cascade of the Capital, and Strange Attractor

The dynamics of the capital accumulation in the long term shows the presence of
“deterministic chaos”, like the behaviors of the logistic function and the Day model
(1982). By contrast, only the construction of the dynamics of the capital using at
least two recurrence equations, like in the model of Day and Lin (1992), creates
the conditions of existence of a strange attractor. Indeed, such an attractor can exist
only in systems with at least three variables, but their fractal dimension can only be
non-integer and here lower than three but higher than two. This type of attractor was
defined by Ruelle and Takens and one knows that the attractor is named strange if:
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• The attractor is of zero volume in the phase space.
• The dimension D of the attractor is non-integer, i.e. fractal 2 < D < n, where n

is the dimension of the phase space.
• There is sensitive dependence on initial conditions (SDIC), i.e. two trajectories

(of an attractor) initially very close will diverge.

The definition of an attractor of this type is described in the part I, one will
simply point out that their existence allows to identify the existence of dynamic
torus and self-similarity at various scales of analysis. Moreover, the bifurcation
diagram of the model which shows subharmonic cascades, is constructed in the
(γ,k)-plane of the parameter of the preference for the present (i.e. the time pref-
erence) and of the stock of capital. When the preference for the present increases,
then the period-doublings occur and quickly, starting from a critical-point γcritical
the behavior of the capital become chaotic. That means that when we are inside
the chaotic mode, the capital accumulation by the agents can be very different
from a period to another. The growth dynamics of the model depends on the
dynamics of the capital which can adopt chaotic behaviors. And, in the case of
a chaotic growth, it is not possible to say there is an intertemporal optimality.
Thus, the conclusions about this model are very different from those of the Ram-
sey optimal growth model, which let the agents choose to consume more at certain
periods to increase their standard of living than the following periods. Indeed in
the last case, the marginal rate of substitution (MRSt+1,t) between present con-
sumption and future consumption was equal to the marginal rate of technical
substitution58 (MRTSt+1,t), along the path of optimal consumption of the Ramsey
model:

1
1 +ρ

u′(ct+1)

u′(ct)
=

1 + n
1 + f ′(k)

, (7.254)

MRSt+1,t ⇔MRTSt+1,t . (7.255)

These rates are independent of the period where the choice intervenes, which is not
the case of the Day–Lin model, where these rates are different according to time
because of expectations. One will simply state that a chaotic dynamics does not
seem to allow the respect of the transversality condition of the optimal growth mod-
els. And, if this condition is necessary in a strict sense, the chaotic growth paths are

58 The marginal rate of technical substitution (MRTS) usually is the increase in productivity a
company experiences when it substitutes on unit of labor input – i.e. an hour worked by a factory
worker – for one unit of capital (i.e. a machine). A positive MRTS indicates that it is advantageous
for a company to make this substitution, and a negative MRTS implies that the company would
drop in productivity if it did this. The MRTS can also been seen as the slope of an Isoquant at the
point in question.
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not the solution of the optimization program. The equilibrium of the optimal growth
model maximized the well-being of the representative household whereas in this
model (like in the Diamond model) to define a suitable measure of the well-being is
more difficult: we are thus immersed in a dynamic inefficiency context in uncertainty
situations.

7.11 The Instability of Stock Markets, and Random Processes:
Model of Portfolio Choice

In such a model, the agents choose the destination of their savings, and can arbitrate
between savings invested directly in the production process and savings assigned to
a “portfolio”, in which there is a sub-arbitrage between the “money” and “capital-
goods”. The construction of the model is however different.59 Indeed, the agents
must arbitrate between the holding of goods and holding of money. The quantity of
money in the economy, denoted M(t), grows at an exogenous constant growth rate
θ . p is the price of a unit of good and n is the growth rate of the population. The
set of agents is in possession of the total quantity of money in the economy. The set
of assets of an agent corresponds to the sum of goods and money in possession of
the agent. The “real wealth” of agents corresponds to the sum of the value of the
stock of capital (i.e. the good) with the value of the stock of money expressed in
terms of price of the unique good (M/p: Real Money Balances,60 also called real
cash balances). Thus, the real wealth of agents is written W = K + M/p, and per
capita:

W/L = K/L+ M/pL = k + m. (7.256)

One considers that the savings in the model can not be entirely used for the invest-
ment in the production process, but can be invested in a “portfolio” inside which
one can arbitrate between the money (whose nominal income is zero) and the hold-
ing of “capital goods” whose remuneration is r. This remuneration corresponds to
the interest rate written: r = f ′(k)+ E(ṗ/p), i.e. the sum of the marginal produc-
tivity of the capital f ′(k) plus the anticipated inflation, which is written as the
expectation of the growth rate of the price of the good E(ṗ/p). One postulates
that the price expectations are perfect, as within the neo-classical framework of
rational expectations; consequently, the anticipated price is equal to the effective
price which is noted ω . Thus, the remuneration of the holding of “capital goods” is
written:

r = f ′(k)+ω . (7.257)

59 Ref: Tobin (1965); and in Burmeister (1980). And Abraham-Frois and Berrebi (1995).
60 See Pigou.
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7.11.1 Dynamics of Accumulation of k and m

7.11.1.1 The Case ṁ = 0

The accumulation dynamics of the per capita variables k and m will determine the
trajectories of the model. One will observe the behavior of the per capita real money
balances (m = M/pL) for ṁ = 0. The dynamics of m is written:

ṁ/m = Ṁ/M− ṗ/p− L̇/L (7.258)

that we can write:
ṁ/m = θ −ω−n. (7.259)

The money demand can be formalized in the following way: m = d(k,r). The inter-
est rate leads the arbitrages between per capita capital and money,61 it is written as
a function of these two factors r = Φ(k,m). Thus, one poses:

ω = r− f ′(k) = Φ(k,m)− f ′(k). (7.260)

From this equation, one can rewrite dynamics ṁ/m as follows:

ṁ/m = (θ −Φ(k,m)+ f ′(k)−n) (7.261)

or, also:
ṁ = (θ −Φ(k,m)+ f ′(k)−n)m. (7.262)

If we wish that ṁ = 0, m being positive, it is necessary that (θ −Φ(k,m)+ f ′(k)−
n) = 0. Thus, we write H(k,m) = f ′(k)−Φ(k,m)+θ−n = 0. This equation defines
the increasing trajectory of the couple (k,m).62

7.11.1.2 The Case k̇ = 0

Let us consider the income of agents, it is constituted of the income coming from
the production, but also by the increase in the value of real money balances. This
total income is written:

Y = Y +(θ −ω)M/p. (7.263)

The impact of the rise of prices was removed from the total income of agents. Taking
into account k = K/L, we obtain the following rough equation:

k̇/k = K̇/K− L̇/L. (7.264)

61 With Φ′k > 0 and Φ′m < 0.
62 Ref: in accordance with the “theorem of the implicit functions”, we obtain dm/dk =−H ′

k/H ′
m.

Since it is possible to write H ′
m =−Φ′m > 0 and H ′

k = f ′′(k)−Φ′k < 0, with the other assumptions
of the model, we obtain dm/dk > 0.
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One knows that L̇/L = n (according to the postulates of the model); the dynamics
of the capital accumulation is defined by the investment of a fraction of the income
Y which is not consumed. Then, we obtain:

k̇/k =
Y − (1− s)((θ −ω)M/p)

K
−n, (7.265)

k̇/k =
sy− (1− s)(θ−ω)m

k
−n. (7.266)

The dynamics of the per capita capital accumulation is thus written:

k̇ = s f (k)− (1− s)(θ −ω)m−nk. (7.267)

“A balanced growth at constant rate implies a constant per capita capital, i.e. k̇ = 0”,
and if the rate ω is replaced by its expression given previously, one obtains the
expression of m as follows:

m =
s f (k)−nk

(1− s)(θ −Φ(k,m)+ f ′(k))
. (7.268)

This equation expresses the behavior of real money balances according to k for
k̇ = 0. This trajectory is concave in relation to the abscissa axis and reached its
maximum for:

f ′(k) = n/s. (7.269)

When the real money balances are equal to zero at the intersection of the curve with
the abscissa axis in ks, all the savings is used for the investment, and one comes
back to the conditions of the Solow model.

7.11.2 The Solution is a Saddle-Point

Figure 7.14 in the (k,m)-plane represents the two dynamic equilibrium conditions
ṁ = 0 and k̇ = 0 of this model. The equilibrium point E : (k∗,m∗) is a saddle point
(Abraham-Frois and Berrebi 1995, p. 35).

The dynamic equations of the model, are written:

ṁ = (θ− Φ(k,m)+ f ′(k)−n)m,
k̇ = s f (k)− (1− s)(θ −ω)m−nk. (7.270)

The Jacobian matrix is written:

J =
[
∂ ṁ/∂m ∂ ṁ/∂k
∂ k̇/∂m ∂ k̇/∂k

]

. (7.271)

Let us study the components of this matrix. Firstly, we know that ∂ ṁ/∂m = θ −
n−Φ(k,m) + f ′(k)− ·mΦ′m; then, since ṁ = 0, taking into account the dynamic
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Fig. 7.14 Dynamic equilibrium in Tobin model and saddle point

equation of m, θ −n−Φ(k,m)+ f ′(k) = 0 and knowing that m > 0 and Φ′m < 0,we
obtain:

∂ ṁ/∂m =−mΦ′m > 0. (7.272)

Knowing that Φ′k > 0 and f ′′(k) < 0, then:

∂ ṁ/∂k = m(−Φ′k + f ′′(k)) < 0. (7.273)

Then, taking into account the ω = Φ(k,m)− f ′(k), we obtain: ∂ k̇/∂m = −(1−
s)θ + (1− s)ω + (1− s)mΦ′m = (1− s)(mΦ′m − n). Then, knowing that Φ′m < 0
and being at the stationary point (k∗,m∗) we know that ṁ = 0 and thus ṁ/m =
θ −ω−n = 0, which is thus written also n = θ −ω ; then we obtain:

∂ k̇/∂m < 0. (7.274)

Lastly, from ω = r− f ′(k) =Φ(k,m)− f ′(k), we can write:

∂ k̇/∂k = s f ′(K)−n− (1− s)m( f ′′(k)−Φ′k)− (1− s)(θ−ω)dm/dk. (7.275)

At the stationary point (k∗,m∗), we know that k̇ = 0 and the expression of m is
m = [s f (k)−nk]/ [(1− s)(θ −Φ(k,m)+ f ′(k))] , which, due to the equation ω =
Φ(k,m)− f ′(k), becomes m = [s f (k)−nk]/ [(1− s)(θ −ω)] . This expression of m
makes it possible to provide the expression of dm/dk, that we replace in the initial
equation of ∂ k̇/∂k, and we obtain ∂ k̇/∂k = −(1− s)m( f ′′(k)−Φ′(k))+ [(s f (k)−
nk)/(θ −ω)][ f ′′(k)−Φ′k] which disappears, taking into account the value of m =
[s f (k)−nk]/ [(1− s)(θ −ω)] , which was highlighted above. Thus, we obtain:

∂ k̇/∂k = 0. (7.276)
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The study of the sign of the components of the Jacobian matrix allows to write that:

J =
[

+ −
− 0

]

. (7.277)

The determinant of J is negative for the equilibrium point (k∗,m∗), this solution
couple is thus a saddle-point. In this model of arbitrage between “investment” and
“portfolio”, we have to face behaviors showing a saddle-point, where the only tra-
jectory leading to the equilibrium, is the axis of the saddle, i.e. any initial couple
(k0,m0) will tend towards the point E.

7.12 Goodwin’s Cyclical Growth Model

In this model the assumption of the full employment of labor is no more assumed.
The production function has fixed coefficients, constant for the capital and with
technical progress for the labor (labor productivity increased at a fixed rate):

K(t) = (1/h)Y (t) and L(t)eβ t = αY (t), h > 0,α > 0,β > 0. (7.278)

Labor supply N(t) is exogenous and increases at a constant rate v : Ṅ(t)/N(t) = v.
If the real wage rate w(t) does not exceed the labor productivity (w(t)≤ eβ t/α), the
labor demand is determined by the full employment of capital: Ld(t) =αhe−β tK(t),
and the current employment is: L(t) = Ld(t) if the labor supply is sufficient
(αhe−β tK(t)≤N(t)). The investment I(t) = K(t) is equal to profits Y (t)−w(t)L(t);
and the variation rate of the real wage: ẇ(t)/w(t) = cx(t)− γ is an increasing affine
function of the demanded employment rate: x(t) = Ld(t)/N(t), with c > 0,γ > 0.
Note that z(t) = w(t)L(t)/Y (t) the part of wages in the national income. The evolu-
tion of the economy is studied in the case: L(t) = Ld(t) = αhe−β tK(t). Therefore,
we have in this case:

K̇(t) = Y (t)−w(t)L(t) = (1− z(t))hK(t), (7.279)

x(t) = L(t)/N(t) = αhe−β tK(t)/N(t), and z(t) = αe−β tw(t), (7.280)
ẋ(t)
x(t)

=
L̇(t)
L(t)

− Ṅ(t)
N(t)

=−β +
K̇(t)
K(t)

− v = h(1− z(t))−β− v, (7.281)

ż(t)
z(t)

= −β +
ẇ(t)
w(t)

= cx(t)−β − γ. (7.282)

Then we obtain the differential system at x and z:

ẋ(t) = hx(t)(b− z(t)) and ż(t) = cz(t)(x(t)−a), (7.283)

where we have posed: α = (β + γ)/c and b = 1− (β + v)/h. Conversely, to any
solution of the above differential system that verifies 0 < x(t)≤ 1 and 0 < z(t) ≤ 1
corresponds an evolution of the economy where the wage rate w(t) = z(t)e−β t/α is
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lower or equal to the productivity e−β t/α of the labor, and where, the demand of
labor Ld(t) = x(t)N(t) does not exceed the supply N(t), the effective employment is
L(t) = x(t)N(t) = αhe−β tK(t) (this equality is verified in t = 0 and the derivatives
are equal). (1) Study of the equilibrium: Consider the evolution in E =]0,1[×]0,1[
resulting from the above differential system. This evolution has a unique equi-
librium (x∗,z∗) = (a,b) in E if and only if we have: β + γ < c and β + v < h.
These conditions on the parameters are verified by the empirical data and we made
these assumptions. The Jacobian matrix at (a,b) of the differential system above
is
(0 −ha

cb 0

)
. Its eigenvalues ±i

√
habc have zero as real parts, and it is not possible

to conclude on the stability of the equilibrium. (2) Study of the evolution: For any
solution of the differential system in E , we have

(b− z(t))
ż(t)
z(t)

= (b− z(t))cz(t)(x(t)−a) =
c
h
(x(t)−a)

ẋ(t)
x(t)

. (7.284)

However, bż(t)/z(t)− ż(t) is the derivative of f (z(t)), where f (z) = b lnz− z, and
(c/h)(ẋ(t)−aẋ(t)/x(t)) is the derivative of g(x(t)), where g(x) = (c/h)(x−a lnx).
Consequently the solution of the differential system in E such that x(0) = x0 and
z(0) = z0 verifies on any interval where the solution exists:

f (z(t)) = g(x(t))+ d0, with d0 = f (z0)+ g(x0). (7.285)

(3) Study of the curve: f (z) = g(x) + d0. The function g(x) whose derivative is:
(c/h)(1− a/x) (decreasing on ]0,a] and increasing on [a,+∞]); and f (z) whose
derivative is: b/z− 1 (increasing on ]0,b] and decreasing on [b,+∞]). There exists
two pints x̄1 and x̄2 solutions of g(x̄1) = f (b)−d0 = g(x̄2) such that 0 < x̄1 < a < x̄2,
if (x0,z0) �= (a,b) (because we have: f (b)−d0−g(a) > f (z0)−d0−g(x0) = 0).

If x /∈ [x̄1, x̄2], we have: g(x) > f (b)−d0 ≥ f (z)−d0 for any z ∈R
∗
+, and there is

no number z > 0 such that f (z) = g(x)+ d0.

If x ∈ [x̄1, x̄2], we have: g(x)+d0 < f (b), and there exists two solutions z1(x) and
z2(x) of: f (z) = g(x)+d0, such that 0 < z1(x) < b < z2(x). The minimum z̄1 of z1(x)
and the maximum z̄2 of z2(x) are obtained for x = a. Thus the curve of the equation:
f (z0) = g(x)+ d0 is a closed curve of the plane (x,z), in which when x increases
from x̄1 to x̄2, two arcs z1(x) and z2(x) start from b to return to b. This curve is
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entirely located in E if and only if the upper bounds x̄2 and z̄2 are less than 1. These
conditions equivalent to g(1) > f (b)−d0 and f (1) < g(a)+ d0, are written

f (b)− f (z0) < g(1)−g(x0) and f (1)− f (z0) < g(a)−g(x0). (7.286)

They are verified by the initial conditions (x0,z0) not too far from the equilibrium
(a,b). (4) Cyclic evolution: If the initial conditions (x0,z0) verify the equation above,
the solution of the differential system (on any interval where they exists) remains
in the compact set [x̄1, x̄2]× [z̄1, z̄2] that is included in E . This solution exists on
[0,+∞]. The solution moves along the curve: f (z) = g(x)+d0 in a finite time inter-
val, because on this curve the continuous function hx |b− z|+cz |x−a| that does not
cancel, remains higher than a positive constant δ , and therefore |ẋ(t)|+ |ż(t)| sum
of the absolute values of speeds remains higher than δ > 0. The evolution of the
economy is cyclic.

Note that the equilibrium (a,b) is not locally stable, because if (x0,z0) is different
from (a,b), the cyclic solution exhibits the curve: f (z) = g(x)+ d0, and does not
tend to the equilibrium. But if (x0,z0) tends to (a,b), x̄1and x̄2 tend to a, and z̄1
and z̄2 tend to b; therefore the solution remains in the neighborhood B((a,b),ε)
of the equilibrium if the initial conditions (x0,y0) are enough close to (a,b). The
equilibrium (a,b) is stable in the Lyapunov sense.

7.13 Catastrophe Theory and Kaldor Model

The first application of catastrophe theory to economics, and in particular to Kaldor
model (1940) probably dates back to H.R. Varian (1979). Consider an expanded
version of the Kaldor model proposed by Varian. Given the system:

Ẏ = α[I(Y,K)−S(Y,W)], (7.287)
K̇ = I(Y,K)−D, (7.288)
Ẇ = Γ(W ∗ −W), (7.289)
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Fig. 7.15 Cusp catastrophe in the Kaldor model

Fig. 7.16 Cusp catastrophe

where W denotes the “wealth”, W ∗ the equilibrium value of the wealth, D a level
of depreciation that is constant and independent. The investment function has usual
characteristics. Suppose that savings is a decreasing function of the wealth so that
when the wealth increases that leads to (1) the decreasing of the part of savings that
is independent of the income level and also to (2) the decreasing of the marginal
propensity to save.

According to the value of W , we can have one or three intersections between
savings and investment functions. In the tridimensional space (Y,W,K), we obtain a
representation of a “cusp catastrophe” (see Fig. 7.15). The equilibrium surface can
be considered as the aggregation of different layers representing Ẏ = 0 for different
values of W . Note that a representation of a cusp catastrophe in the bidimensional
space (K, Y) is shown in Fig. 7.16.
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Fig. 7.17 Unique orbit

Fig. 7.18 Self-sustained cycle

Suppose an enough high level of W . If the exogenous shock is relatively weak,
the system returns to E from F . However, when K is increased so that we reached the
point B, a catastrophe appears and the income jumps on the low branch of Ẏ = 0.
Then start a slow motion on the low branch of Ẏ = 0 until the point C where Y
jumps again to the high branch. In this case, Y tends to return to the equilibrium E
and the scenario stops. Therefore, in this case there is a single oscillation triggered
by the initial shock (see Fig. 7.17). However another scenario is also possible (see
Fig. 7.18), indeed, suppose that the long term equilibrium is locally unstable, i.e. the
curve K̇ = 0 cuts the curve Ẏ = 0 in its increasing part, then it is potentially possible
to observe endogenous cycles.

When we return to the three-dimensional representation (Y,W,K), by taking into
account the third variable (i.e. the wealth), then the exogenous shock can lead to
a change in the proper dynamic of the system. Suppose a stock market crash of a
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small importance, then we find again the previous evolution. However, if the stock
market crash is of a great importance, then there is a significant diminishing of the
wealth and then it is possible to pass from a system with three equilibria to a system
with only one equilibrium, and potentially to a system without equilibrium.

7.14 Overlapping Generations Models: Cycles, Chaos

The concept of an OLG model was devised by Allais (1947) and popularized by
Samuelson (1958) as a way of simplifying monetary economics and macroeco-
nomic models. Later, Diamond (1965) in his seminal contribution has examined
the effect of government debt on the long-run competitive equilibrium of an econ-
omy with overlapping generations. OLG models can have varying characteristics
depending on the subject of study, but most models share several key elements:
individuals receive an endowment of goods at birth, goods cannot endure for more
than one period, money endures for multiple periods, individuals must consume in
all periods, and their lifetime utility is a function of consumption in all periods.

Hereafter, the agents are placed in an economy where they have to make an
intertemporal consumption choice in order to achieve an objective subject to given
or expected prices and resource constraints. In the basic model, the population is
constant, there is a representative agent per generation and an exogenously specified
endowment stream of the consumption-good. “y” indicates the variables pertaining
to the youngs and “o” those for olds, t indicates the time. The utility function is
U(cy

t ,co
t+1), where cy

t is consumption when young of an agent born at t, and co
t+1

is the same agent’s consumption when old. The time-invariant endowment pair
is denoted (wy,wo), the price of the homogeneous good at time t is pt , so that
ρt = pt/pt+1 is the interest factor at time t. The representative agent maximizes
the utility function U(cy

t ,co
t+1) under the budget constraint:

co
t+1 = wo +ρt [wy− cy

t ]. (7.290)

In the context of the standard concavity hypothesis, an intertemporal competitive
equilibrium will be given by the triplet of vectors (ρt ,c

y
t ,co

t ) such that utility of each
generation is maximized under the equation above and the following balance con-
straint is also satisfied: [wy − cy

t ] + [wo− co
t ] = 0. The youngs can either save or

borrow and carry claims or debts into the second period. Note that the case in which
the young are impatient and borrow can be called “classical” and the opposite case
can be called “Samuelson” in accordance with Gale (1973). The shape of the utility
function U and the importance of wy,wo determine the state of the system. The no-
exchange and no-money equilibrium is a possible result and will be repeated from
the first period since we are in a time-invariant economy. Such an autarkic equilib-
rium is locally unstable in the classical cases and locally stable in the Samuelson
case (ref. to Gale).
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7.14.1 Benhabib–Day (1982)

Benhabib and Day (1982) were the first to consider such economies from the point
of view of nonlinear analysis (and previously through a first paper in 1980). They
analyzed the behaviors in the classical case. In such a model, by using the first-order
condition for utility maximization with the budget constraint we obtain the equality:

U1(c
y
t ,co

t+1)
U2(c

y
t ,co

t+1)
=

wo− co
t+1

cy
t −wy , (7.291)

where U1,U2 are the partial derivatives of U . The equation above can be solved
uniquely for co

t+1, then we have the function

co
t+1 = G(cy

t ;wy,wo). (7.292)

From this equation and from the previous equality, co
t+1 can be eliminated from

the left-hand side of the equality that must be equal to ρt (in equilibrium). The
obtained ratio can be called the constrained marginal rate of substitution (CMRS),
it is a function denoted V (cy

t ;wy,wo) where wy,wo are parameters. This function
combined with the balance constraint give the difference equation in the youngs
consumption levels:

cy
t+1 = wy +V(cy

t ;wy,wo)(cy
t −wy)≡ f (cy

t ). (7.293)

At this stage, the authors looked for conditions on f (cy
t ) to make it unimodal63 and

with a degree of steepness sufficient to generate chaotic behaviors. They looked for
chaos in the topological sense, i.e. existence of a period-three orbit, but also high-
lighted cases of utility functions and endowment pairs of stronger sort of chaos, i.e.
existence of an invariant, absolutely continuous and ergodic measure. Then V (cy

t )
can vary between wy and wy +wo and the conditions are as follows: ∃ĉ, ĉ > wy such
that:

α1 = V (ĉ) > 1 (<1)
α2 = V (α1ĉ +(1−α1)wy) > 1 (<1)
0 < α3 = α1α2V (α1α2ĉ +(1−α1α2)wy)≤ 1 (≥1).

(7.294)

Under these conditions, a topological chaos occurs for the system described pre-
viously cy

t+1 = wy +V (cy
t ;wy,wo)(cy

t −wy) ≡ f (cy
t ). The authors also considered

relevant problems such as the Pareto efficiency of the chaotic trajectories and the
role of an authority regulating the credit used by the young. In addition, they
also mentioned the Samuelson case, highlighting that, when cyclic or chaotic

63 Unimodal function: In mathematics, a function f(x) between two ordered sets is unimodal if for
some value m (the mode), it is monotonically increasing for x ≤ m and monotonically decreasing
for x≥m. In that case, the maximum value of f(x) is f(m) and there are no other local maxima (e.g.
quadratic polynomial, logistic map, tent map). In statistics, the mode is the value that occurs the
most frequently in a data set or a probability distribution.
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trajectories could be obtained, the system of the previous equation cy
t+1 = wy +

V (cy
t ;wy,wo)(cy

t −wy) ≡ f (cy
t ) would not be well defined since for cy

t there will
exist two equilibrium levels of cy

t+1. The analysis of such a system was continued
by Grandmont.

7.14.2 Grandmont (1985)

Grandmont (1985) has studied such a case, i.e. Samuelson case, in a long article that
is not possible to fully depict here. The model also considers overlapping genera-
tions. The utility function is supposed to be time separable and, instead of a fixed
endowment of consumption-good, assume each agent has a labor-time endowment
�̄i (where i corresponds to y or o) in each period of agent life. �i denotes the amount
of �̄i that each agent supplies for work and assume that agent’s utility depends both
on consumption ci and leisure time �̄i−�i, according to Uy

1 (cy, �̄y−�y)+(co, �̄o−�o),
where the utility function Ui satisfies standard differentiability monotonicity and
strict concavity hypotheses. Since we study the case where the youngs lends to
the old in exchange for “money”, we introduce the latter in a fixed amount M.
The representative individual maximizes the utility function subject to the budget
constraints:

pt(c
y
t − �y

t )+ md = 0, pe
t+1(c

o
t+1− �o

t+1) = md , (7.295)

where md is the nominal amount of money demanded by the young. In addition,
the technology is supposed to be such that a unit of labor is transformed into a unit
of consumption-good so that we are still facing a pure exchange economy. Note
that pe

t+1 indicates the expected future price as of time t. For now, the hypoth-
esis of perfect foresight concerning future prices used by Benhabib and Day is
not made. This system has again a unique solution depending on ρe

t = pt/pe
t+1

(i.e. the expected interest factor). By using a slightly different notation, it is pos-
sible to define an excess demand for the good zi(ρe) as zi(ρe) = ci − �i. The
young lends to the old in exchange money, then zi(ρe) is always negative and
md = M = −ptzy(ρe

t ) = pe
t+1zo(pt) at each t, along an equilibrium path (note that

when old, each agent will spend all of the individual money stock in exchange for
goods). In the previous equalities, M indicates the fixed amount of existing bills that
must all be demanded by the young in equilibrium.

Now we hypothesize that the agents have perfect foresight, that means pe
t+1 =

pt+1. Taking into account the balance constraint and the equilibrium condition, the
competitive equilibrium is a sequence (of pt) that results from:

zy(ρt)+ zo(ρt−1) = 0, pt+1zo(ρt) = M. (7.296)

Note that the system satisfies the Quantitative Theory of Money. If ρt is considered
as a function of ρt−1 aiming to invert zy to obtain a “forward dynamics”, this comes
down to a problem mentioned above as zy that may be backward bending. This is
an essential aspect of the model and the origin of aperiodic behaviors. When ρt
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increases, there are two opposite consequences on the demand for consumption by
the young: (1)an intertemporal substitution effect as it makes consumption more
expensive today, thus zy should decrease; (2)but, it also makes the agent richer
(wealth effect) as today labor is paid more. This will tend to increase the agent
demand for present consumption, thus zy should increase. However, this is different
for zo. Furthermore, note that when ρt−1 increases, both substitution and wealth
effect will increase the old agent demand for consumption. Thus zo can be inverted
and an artificial backward dynamics can be obtained from the first of both equations
above zy(ρt)+ zo(ρt−1) = 0:

ρt−1 = ψ(ρt)≡ (zo)−1(−zy(ρt)). (7.297)

The artifice of this equation does not allows to fully solve the problem, but it under-
lies a way along which a perfect foresight dynamics can be analyzed in an economy
of the Samuelson type. Grandmont saw the necessity to fully clarify this problem
and in particular the relation between the backward and the forward dynamics, but
also the necessity to analyze the implications that different expectation-formation
rules have for the stability of the system, see Grandmont and Laroque (1986). Sup-
pose a periodic trajectory for the backward dynamics, then it is possible to define a
forward dynamics in a neighborhood of such trajectory so that a stability analysis
can be carried out by reversing the dynamic properties of the backward paths. In this
context, Grandmont provides the conditions for which the equation above defines a
system as an iterative map and he provides a detailed analysis of bifurcations of such
a device. Grandmont refers to Collet and Eckmann (1980) outcomes concerning a
vast range of utility functions generating period-doubling bifurcations and chaos.
In this connection, when zy is not monotonic, then a large enough degree of risk
aversion on the part of the old trader (referring to a strongly concave function Uo)
leads to chaos under certain conditions. Grandmont outcomes confirms the previous
Benhabib–Day results for the classical case. The chaotic behavior results from a
conflict between the wealth and intertemporal substitution effects created by a vari-
ation in the real interest rate if the first effect is strong enough. Unlike many articles
pertaining to the optimality concept, such paths are not necessarily Pareto efficient
and the cycles may be damped, created or amplified by appropriate monetary and
fiscal policies. The Grandmont paper is regarded as a fundamental contribution on
chaos in economics.

7.15 Optimal Growth Models: Convergence, Cycles, Chaos

The previously presented optimal growth models are characterized by a saddle
point equilibrium. For a pair of initial values, an economy asymptotically converges
towards a permanent regime. For any other pair of initial values, there is an accentu-
ated divergence of trajectories without fluctuations. However, within the framework
of optimal growth models it is possible to generate, without exterior shock, cyclic
and aperiodic growth paths.
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7.15.1 Boldrin–Woodford (1990)

In an article published in the “Journal of Monetary Economics” (1990), M. Boldrin
and M. Woodford described an optimal growth model that shows cyclic and chaotic
endogenous fluctuations. In this discrete time model, all the agents have identical
behaviors and optimize the utility u(ct) of their consumption ct (with t = 0,1,2, . . .)
on an infinite horizon where the utility function u is increasing and concave. The
“state of the world” is characterized by a vector xt ∈ R

n of stocks and by a feasi-
ble set F = {(xt ,ct ,xt+1)} where xt and xt+1 are vectors of X ⊂ R

n representing
the today’s and tomorrow stocks that are technologically compatible. Boldrin and
Woodford define the function V by:

V (x,y) = max
c

u(c) such that (x,c,y) ∈ F (7.298)

and the set D∈R
2n by the projection of F along the c’s coordinates. The function V ,

called the short-run or instantaneous return function, gives the maximum achievable
utility that it is possible to obtain at time t if the state x and if we have chosen to go
into state y by tomorrow. In such a context, the maximization of the discounted sum
∑∞

t=0 u(ct)δ t such that (xt ,ct ,xt+1)⊂ F is equivalent to maximize ∑∞
t=0 V (xt ,xt+1)δ t

such that (xt ,xt+1) ∈ X×X ⊂D, where δ ⊂ [0,1] represents a factor of time prefer-
ence for the present. In other words, δ indicates the rate at which future utilities are
discounted from today’s standpoint (i.e. impatience). Note that for δ = 0 the agent
is infinitely impatient and, in a certain sense, a repeated myopic optimization of this
type can represent the results of an OLG model. The classic properties of u and F
imply: Assumption1: V (x,y) : D→ R is strictly concave and smooth (if necessary),
increasing in x and decreasing in y; Assumption2: D⊂ X ×X ⊂ R

2n is convex and
compact, with nonempty interior.

Assume that the initial state x0 is given. The solution of the previous maximiza-
tion problem ∑∞

t=0 u(ct)δ t such that (xt ,ct ,xt+1) ⊂ F , is the same as that of the
previous problem ∑∞

t=0 V (xt ,xt+1)δ t such that (xt ,xt+1) ∈ X ×X ⊂ D which boils
down to a problem of dynamic programming. For such a problem, the function W
is defined by the Bellman equation:

W (x) = maxy{V (x,y)+ δW(y)} such that (x,y) ∈ D. (7.299)

A solution to this equation is a map y = τδ (x) : X → X that depends on the param-
eter δ and determines the optimal sequence of states {x0,x1, . . . ,xt ,xt+1, . . .} as a
dynamical system xt+1 = τδ (xt) on X . The time evolution depicted by τδ gives all the
relevant information about the dynamic behavior of this model. The price vectors pt
of the stocks xt that realizes the optimal program as a competitive equilibrium over
time follows a dynamical process that is homeomorphic to the one for the stocks
and is defined by the function pt+1 = θ (pt) where θ = δW ′τ(W ′δ )−1 and W ′ is the
derivative of the value function.

The study of this model comes down to analyze the asymptotic behavior of the
dynamical system xt+1 = τδ (xt). We wonder if there is convergence towards a stable
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state as in the one-sector growth model or the apparition of other behavior types. We
wonder also where a stationary economy converges under competitive equilibrium
and perfect foresight. The Turnpike (and anti-turnpike) theorem(s) help(s) to answer
to these questions.

7.15.2 Turnpike Theorem (and Anti-Turnpike Theorem)

Turnpike theorem. Under the assumptions 1 and 2, there exists a level δ̄ of the factor
δ such that for all the δ ∈ [δ̄ ,1], the function τδ which is solution of the previous
Bellman equation has a unique attractive fixed-point x∗ = τδ (x∗) with x∗ ∈ X . Under
additional conditions, x∗ is interior to X .

The Turnpike theorem as described above dates back to Scheinkman (1976). Its
continuous-time version was proved by McKenzie (1976) and Rockafellar (1976)
and its generalization to the many-agents case was proved by Bewley (1982) and
Yano (1984).

The theorem above means that under the general assumptions 1 and 2, if the
agents are not “too impatient” under the given V and D, then it is possible to
obtain a stationary state where the state repeats itself indefinitely (and no new event
happens). Thus we can obtain a maximum balanced growth trajectory {x0,x1, . . . ,
xt ,xt+1, . . .} that converges towards a stable stationary state x∗. Such a point is a sad-
dle point as defined in the previously described optimal growth models, and there is
convergence if x∗ belongs to the stationary trajectory.

Let us note that such models deal with the level of impatience of a considered
economy and the difficulty of its evaluation. Important questions have to be con-
sidered pertaining to the sensitivity of Turnpike theorem to perturbations of its
conditions. We have to know the value of δ̄ close to 1 that makes possible the
convergence. We have also to know the behavior of the model when δ < δ̄ . The
following theorem helps to answer to the latter question.

Anti-turnpike theorem. Given a function θ : X →X of class C2 where X is a compact
and convex set of R

n. Then there exists a technological set D, a return function V and
a factor δ ∈ [0,1] such that, under these assumptions, the function θ is the function
τδ solution of the Bellman equation for V,D,δ .

This theorem allows to build a fictive economy for a given function θ = τδ
that generates the recurrent sequence {x0,x1, . . . ,xt ,xt+1} whose complex dynamic
is compatible with the assumptions of perfect competition markets, deterministic
forecasts, diminishing returns, etc.

Deneckere and Pelikan (1986) have highlighted examples of one-dimensional
models satisfying the same assumptions and with the function τδ = 4x(1− x) as
solution of the Bellman equation for specific values of δ .

Benhabib and Nishimura (1985) have studied a two-sectors model that respec-
tively produces a consumption-good and an investment-good starting from the
investment and labor goods. Once given the production functions of each good
that we suppose to be concave and homogeneous of degree one, it is possible to
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define the Production Possibility Frontier (PPF) ct = T (xt ,xt+1) that provides the
consumption level ct associated with the stock of today xt and xt+1 that of tomorrow
when the labor is completely and efficiently used.

When V and D are chosen as follows V (xt ,xt+1) = u[T (xt ,xt+1)] and D =
{xt ,xt+1} such that 0 � xt+1 � F(xt ,1) where F is the production function of the
investment-good sector (and the labor is normalized to 1). In this case, the function
τδ solution of the Bellman equation is not always of positive slope and if the capital
intensity of the consumption-good sector is higher than that of the sector that pro-
duces the investment-good, then the function τδ becomes of negative slope. In this
case, if the fixed point x∗ of the function τδ (x) verifying τδ (x∗) = x∗ is such that
the derivative of τδ (x) at the point x∗ satisfies −1 < τδ (x∗) < 0, then x∗ is a stable
fixed-point towards which the optimal growth trajectory tends. When the factor δ
varies between 0 and 1, the value of τδ (x∗) changes and can be equal to −1 for an
admissible value of δ , this gives rise to a first bifurcation. When (ceteris paribus) δ
still evolves, then an optimal cycle of order 2 appears. For other values of the factor
δ , it is possible to observe stable cycles of order 4,8, . . . and possibly optimal aperi-
odic orbits. Boldrin (1986) proved that the function τδ (x) can become unimodal for
values of δ included between 0 and 1 if the ratio of capital intensity of both sectors
is sometimes higher that 1 and sometimes lower than 1.

Boldrin and Deneckere (1987) have studied a two-sectors model where the pro-
duction function in the consumption-good sector is a Cobb–Douglas function and
the production function in the investment-good sector is a Leontief . Boldrin and
Deneckere have chosen a linear utility function and the function

V (kt ,kt+1) = (1− kt+1 + μkt)α(kt(1 + γμ)− γkt+1)1−α , (7.300)

where α is the coefficient of the Cobb–Douglas function, γ is the capital intensity
of the consumption-good and (1− μ) is the rate of depreciation of the investment-
good. They proved that for any factor δ , a stable optimal cycle of period 2n can be
obtained for values of α,γ,μ included between 0 and 1. Concerning the aperiodic
orbits, they appear for an acceptable value of α if the value of δ is chosen between
0.2 and 0.3 that corresponds to an unrealistic discount rate of 400%. However, if
0.1 < α < 0.2, the chaos appears for 0.7 < δ < 0.8, i.e. for a discount rate between
25% and 40%.

7.15.3 Benhabib–Nishimura Optimal Growth Model (1979):
Equilibrium Limit Cycle

The optimal growth model presents a solution which has the shape of a saddle-point
(it can occur in a space of dimension higher than two). However, the conver-
gence towards a unique stationary equilibrium-point does not make it possible to
depict the phenomena of equilibrium cycles. The model developed by Benhabib
and Nishimura can exhibit optimal trajectories which converge towards cycles
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(Benhabib and Nishimura 1979). One presents the model in a simplified manner.
The objective of the program is to maximize the utility function under constraint.
U(C(y,k)) is the utility function of the consumption, n is the growth rate of the pop-
ulation and δ is the rate of preference for the present (rate of time preference) or
the discount rate; y is the production and k represents the stocks of capital goods
per capita. i is the good among the capital-goods and one will note yi,ki, pi,wi some
components of y,k, p,w, by knowing that pi will express the price of the good i and
wi the remuneration for this good i.

Max
y

∫ +∞

0
e−(δ−n)tU(C(y,k))dt. (7.301)

Under the constraint: k̇i = dki
dt = yi − nki avec i = 1, . . . ,n. The conditions of

optimization on y and k give:

∂C
∂yi

=−pi,
∂C
∂ki

= wi. (7.302)

The program is solved by using the Hamiltonian H:

H = e−(δ−n)t {U(C(y,k))+ q(y−nk)} . (7.303)

The maximization implies ∂H
∂yi

= 0. And we obtain:

qi = U ′pi, (7.304)

k̇i =
∂H

∂ (qie−(δ−n)t)
= yi−nki, (7.305)

q̇i = −U ′wi + δqi. (7.306)

In the neighborhood of the permanent regime, we have:

k̇i = yi(k, p)−nki, (7.307)
ṗi = −w(k, p)+ δ pi. (7.308)

The Jacobian matrix of this system is written:

J =
[

(∂y/∂k)−nI (∂y/∂k)
−(∂w/∂k) −(∂w/∂ p)+ δ I

]

. (7.309)

For such a Jacobian matrix, under certain conditions, when δ grows there is a
Hopf bifurcation occuring for a critical value of δ (Fig. 7.19). At this stage, in the
neighborhood of the stationary state (i.e. ẏi = k̇ = 0), we observe an orbit and this
trajectory can show an equilibrium cycle.
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Fig. 7.19 Hopf bifurcation and limit-cycle

7.16 Nonlinearities and Cycle Theory

7.16.1 Nonlinearities and Chaos Theory

As observed previously, Chaos theory concerns properties of certain solutions of
differential or recurrence equations of nonlinear type. The innovation concerning
these differential equations resides in the ability to obtain unpredictable behav-
iors, whereas the equations producing them are perfectly deterministic. Indeed, the
“chaotic” behaviors can be observed by using very simple “difference equations”
of nonlinear type, and in this respect, the “logistic function” is one of the tradi-
tional demonstrations. The sensitive dependence on the initial conditions also plays
a fundamental role in the definition of chaos theory. The initial state of a system is
defined with more or less accuracy and one of the characteristics of this theory is
that the initial states represented by two different points, but as near as possible, will
produce different trajectories. In a linear system two very nearby points character-
izing two different initial conditions will provide two nearby trajectories. However,
when the systems are nonlinear, such an observation is not necessarily true. Indeed,
the respective trajectories of two initial points will be able to move away, then, to
come closer, without any “regularity”. It is thus impossible for such models to pre-
dict the trajectory or to find their initial condition starting from this trajectory. One
touches a crucial aspect which is the numerical precision of the determination of
initial conditions and the trajectory calculation. There is therefore a sort of indeter-
minism inside a model whose writing is perfectly deterministic. Thus, Chaos theory
seems to weaken certain fields of the economic modeling. However, one of its coun-
terpart is provided by the importance of the parameter setting. Indeed, a nonlinear
“deterministic” function can show according to the value of its parameter, either
monotonic behaviors (i.e. regular or periodic) or behaviors of the chaotic type. One
can observe the “unpredictable” chaotic behavior of a model whereas a very weak
variation of the value of its parameter could make it go back towards a monotonic or
periodic behavior. Moreover, we also know that the transition speed from one state
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to the other (understood that the speed of change of its parameter setting) influences
the nature of the final state of the system and its predictability.64

Chaos theory also sought to study the behavior of stock markets. The statisti-
cal analysis of stock indexes seems to prove the absence of regularity or cycle. It
is traditionally said that stock markets follow a random walk. It is also possible
to say that their behavior is chaotic. However, In fact, if the evolution of the stock
market showed “regularities”, it would be possible to admit that (if one accepts
for example the neo-classical concept of rational expectations) these ones would be
integrated by the different agents. Moreover, one can wonder how these regulari-
ties would be incorporated by the agents in the stock exchanges prices and what
would result from it on their evolution. Perhaps that any regularity would disappear
and we would face again a random walk, as if the stock exchange prices could be
only chaotic. The stock markets were often regarded as the paradigm of a market
of perfect competition, and we have to admit that they are “generator of chaos”.
By contrast, the usual economic variables do not generally show chaotic behaviors
of this kind, and one voices sometimes the idea that such a fact is due to a cer-
tain “viscosity”, “rigidity” or “adherence” of variables. This “adherence” seems
to stabilize their behavior and act as a kind of simple attractor by showing mono-
tonic trajectories. The justification of these adherences is difficult and vast: from the
accumulations of goods, until the rigidities of actors and variables, as well as the
decentralization of the establishment of equilibria.

Chaos theory also studied overlapping generations models (OLG) in which “non-
linearities” appear by selecting certain utility functions or production functions. This
type of model resulting from neo-classics is thus in contradiction, in comparison
with these chaotic behaviors, with the concept of rational expectations so important
for the neo-classics, which cannot admit chaos as balance.

7.16.2 Real Business Cycle Theory and Concept of Shock

The cycle theory had vocation to explain the economic fluctuations. Furthermore, it
is true that the different economic “shocks” since the second world war, as well
as the post-war growing interventionism of States with in particular their con-
tracyclic actions, made the analysis of these cycles more difficult because these
fluctuations proved to be irregular. The analysis of these economic fluctuations took
into account this established fact and thus attached importance to the occurrence
of “shocks” as causality. These shocks being able to be of very different nature,
i.e. from the oil crises of the 1970s until the monetary shocks. These shocks disturb
the “trajectories” of our economies which move away from their original tendencies.
Neo-classics consider that the shocks are due to the impact of various monetary poli-
cies which seek to influence the agents. However, one will describe it later within
the framework of the Lucas critique, the neo-classic model of shocks, because of

64 Ref: Works on the speed of transition applied to dynamical systems: “The bifurcation paradox”.
O.Y. Butkovskii, Y.A. Kravtsov, and J.S. Brush.
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the assumption of rational expectations (i.e. “perfect foresight”, permanent balance,
and super-neutrality of economic policies) refuses any long-run divergence of an
economy in relation to its natural original tendency (i.e. before the shock).

The Real Business Cycle theory modified this approach by means of the notion
of “real shocks”. The argumentation is contained in the idea that the modifications
of the basic parameters of the economy, such as the “households tastes, the initial
endowments, or the available techniques”, produce the shocks and cyclic evolution
of the economy. The model which is usually used is based on the intertemporal
choices of a single agent and if certain values of parameters are chosen, we obtain
“a cyclic evolution of the production”. The shock,65 resulting from the modification
of parameters, will impact the economy in the long-term as a “wave” or a “group
of waves”. In this type of representation, the money does not play part unlike the
preceding analysis.

65 Remark: (Shocks and DS & TS processes, see the definitions of TS and DS processes in the
parts I and II). At this stage, we would like to point out a statistical notion that seems to have to be
connected to the shock notion such as analyzed by economists and in particular the way in which
the shocks have an impact on the economies in the long term. The statisticians state that for the
non-stationary processes, as the TS processes (i.e. which become stationary by means of detrend),
the shocks are regarded as transitory or “transient” because the series will recover its deterministic
walk around its tendency curve. While by contrast, the shocks for the DS processes (i.e. which
become stationary by means of differentiation) infinitely impact the series, even in a decreasing
way. Then the TS processes appear to have to be connected to the neo-classical analysis, whereas
the DS process appear to have to be connected to the real business cycle theory. In fact, the real
business cycle theory justifies the business cycles by the shocks that “the fundamental structures”
of an economy can undergo. This theory selects some of neo-classics hypotheses except for the
fundamental hypothesis relating to money. Indeed, here the money does not have an influence on
the economy, insomuch that the models of this type do not express the money in their construction,
or express the money as a non-instrumental endogenous variable. Obviously, this is in opposition
to the role that the neo-classics impart to the money in the theory of cycles.



Chapter 8
Efficiency and Random Walk

This chapter, which corresponds to the second subdivision of the part, attempts to
characterize stock markets. The stock markets are known as efficient and are rep-
resentative of the perfect competition. They are also known as advanced indicators
of the global economic activity. The evolution of stock market indexes show how-
ever trajectories whose amplitudes are often considerably higher than those of gross
domestic product. The concept and the models of rational expectations (arbitrage
and stock price fixing) will give a first argument to try to explain these differences
between trajectories. One will consider the efficiency concept, in the sense of Fama,
about the stock markets and their instability.

8.1 Market Efficiency and Random Walk: Stock Market Growth
and Economic Growth

We will attempt to give the theoretical definition of stock markets given by Eco-
nomics using different concepts such as the perfect markets and the advanced
indicator of the economic activity and through the notion of “value creation” which
is transverse to Economics and Finance. Then, we will develop the economic con-
cept of rational expectations and its self-criticism. Lastly, we will analyze the
efficiency concept of financial markets.

8.1.1 Stock Exchange: Perfect Competition Market

The abstract definition of a market of perfect competition finds in the stock-
exchange an archetype satisfying the following criteria:

T. Vialar, Complex and Chaotic Nonlinear Dynamics,
c© Springer-Verlag Berlin Heidelberg 2009
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• The market atomicity is respected. Otherwise, Securities and Exchange Commis-
sion1 (CES) identifies the non-respect causes of the atomicity criterion, then they
suspend the listings and tradings on the market. This means that the CES makes
sure that no investor is price marker, i.e. does not exert power on market.

• The market transparency is respected, the listed-companies have to provide and
publish information about their activities. That means that all the potential buyers
of equities and shares must be equal in front of the information placed at the
disposal by the listed-companies. If it were not the case, i.e. if the CES detected
an illegal “insider trading”, it must sanction the originator of the offence. Indeed,
when one or more investors have access to confidential and internal information
of the company (i.e. information which is not publicized) and use the information
to obtain abnormally high and illicit profits, then we are, indeed, in the presence
of an illegal insider trading. It is said of this kind of investor who carries out such
manipulation that it is in an insider position.

• The market homogeneity is respected. This can be summarized in the following
way, whatsoever the “number” of an outstanding stock2 on the market, a share
having a different number but obviously of the same company (and of an equities
group of comparable nature) rigorously satisfied the same needs.

• The market fluidity is respected. This corresponds to the absence of barrier to
entry or exit on the market of stocks and shares or equities. Even if the cost of
transactions or tradings, nowadays minor, can be regarded as a constraint less
and less true, as these costs dropped considerably. The stock market is certainly
in vivo very close to the theoretical definition of a perfect market.

8.1.2 Stock Exchange: Advanced Indicator of Economic Activity

Generally the financial system and in particular the stock exchange contribute to
the optimization of the resource allowance in the economy. However, they are also
places where the information is privileged. The information is the key element of
decision-makings for all the actors involved in markets. During a given period, the
return or the remuneration of funds and capital (that lets predict the stock exchange
market, as well as the interest rates on the bond or monetary markets) leads the
investment strategies of companies and also leads the behaviors of individual agents
about savings and consumption. The general evolution of the prices of stock, bond,
money or currency, is supposed to contain, incorporate and integrate information
about future. The future of an economy (i.e. companies, branches of industry and

1 Securities and Exchange Commission (SEC): commonly referred to as the SEC, is the United
States governing body which has primary responsibility for overseeing the regulation of the securi-
ties industry. It enforces, among other acts, the Securities Act of 1933, the Securities Exchange Act
of 1934, the Trust Indenture Act of 1939, the Investment Company Act of 1940 and the Investment
Advisors Act. It removed regulatory authority from the Federal Trade Commission.
2 Outstanding stock: The shares of a corporation’s stock that have been issued and are in the hands
of the public. Also called shares outstanding.
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their markets) but also the relation with the foreign economies in terms of exchanges
and influence, are represented in stock market prices. Thus, the stock exchange
indexes are advanced indicators of economy activity. The supply and demand aggre-
gations of the economic agents is carried out during the fixing of prices and therefore
express the expectation of the future by agents. A stock-exchange index as for exam-
ple the French index synthesizes at a given time all information available and its
treatment by agents. Such a treatment can be rational or led by arbitrary choices.
Indeed, taking into account the market fluidity (i.e. the absence of barrier to entry)
all the types of investors can carry out their choices and anticipations, while includ-
ing sometimes choices based on a “less rational” treatment of the information. In
the stock exchange prices all information and all expectations are thus taken into
account, so that it is almost possible to say that “nothing is visible any more”. The
role of anticipations and expectations in the evolution of the stock-exchange prices
leads the economists to consider these prices as advanced indicators of the eco-
nomic situation in the future. Thus, since the markets incorporate and treat all the
data available about the future, the market is a source to use in order to make fore-
casts. Indeed, the study of stock-exchange indexes can be used to anticipate the
gross domestic product (GDP). Accordingly, the study of the French index SBF250
which integrates more companies than the Cac40 (i.e. 250 against 40) can prove to
be a considerable source of information to make short-run forecasts. In the United
states the S&P500 index, which integrates the first 500 stock-exchange companies,
is used officially in the determination of the short-term economic situation fore-
casts (i.e. conjuncture forecasts) carried out by the “National Office of Economic
Research” (NBER).

NBER (1) (2) Gap beetwen Growth of the
Recession Market Low-point of (1) and (2) Index beetwen

drop GDP cycle Month (1) and (2) (%)
1960–1961 10-1960 02-1961 4 21.25

1970 06-1970 11-1970 5 21.86
1973–1975 09-1974 03-1980 6 35.60

1980 09-1974 07-1980 4 22.60
1881–1982 07-1982 11-1982 4 33.13
1990–1991 10-1990 03-1991 5 25.13

Mean: 4.7 26.60

The strong link between economic activity and evolution of stock-exchange index
seems to be so strong only in the United States. Usually, the anticipation period of
the economic activity by the stock-exchange index varies between 1 and 5 months.
But, this status of advanced indicator has a less strong reality for the European
countries and the other industrialized countries. One of the justifications of this real-
ity seems contained in the observed phenomenon of the strong correlation of the
evolution of the world-wide stock-markets with the American stock-market. Con-
sequently, if the S&P500, as advanced indicator, is adapted to the forecasts of the
economic situation for the USA, the respective indexes for the other industrialized



612 8 Efficiency and Random Walk

countries are not necessarily appropriate, as advanced indicator of conjuncture for
the short-term economic growth (GDP).

8.1.3 Indicators of Value Creation

Two groups of indicators are used to measure the “creation of value” in a company.
These indicators are based either on the stock market performance, or on the internal
economic performance of the company.

Indicators of market performance

The Total Shareholder Return (TSR)3 measures the gains of the listed-company
shareholders by the increase in stock-exchange price and by the cash dividend paid.
This indicator, moreover very simple, provides a sort of annual average return on the
latent capital-gain after dividends reinvestment. This indicator considers the share
yield only as a ratio.

The Market Value Added (MVA) compares the stock-exchange capitalization of
a company with its net assets, i.e. its shareholder’s (consolidated) Equity. There is
creation of “market value added” if the stock-exchange price evolves more quickly
than the net assets per share, otherwise there is destruction of value by the com-
pany. This concept is ambiguous, indeed it is possible to imagine that the net assets
is not a exact measurement, at moment t, of the value of a company, because the
latent capital-gain and latent capital-loss (for assets and liabilities) are not instan-
taneously entered in the accounting of a company. Thus, at moment t, a company
can have a real (or actual) value different from its book value resulting from the net
assets.4 Indeed, this is often the case since the values of assets (and also liabilities)
can fluctuate. But we know that the accounts of a company are not permanently
(understood instantaneously5) the sincere and true image of the reality, even if the
accounting attempts to tend towards this purpose. However, one prefers to consider
the anticipation role of this indicator.

Indicators of economic performance

The “Return on Investment” (ROI) is a measurement of a corporation’s profitability,
equal to a fiscal year’s income divided by common stock and preferred stock equity
plus long-term debt. ROI measures how effectively the company uses its capital to
generate profit; the higher the ROI, the better. More generally, the income that an

3 TSR proposed by the Boston Consulting Group.
4 Note the different meanings of the following expressions: actual-value, fair-value, and present-
value.
5 In particular because of the non-instantaneous evaluation of the assets and liabilities.



8.1 Market Efficiency and Random Walk: Stock Market Growth and Economic Growth 613

investment provides in 1 year. ROI can be also expressed as the ratio of the profit
(after payment of interests and taxes) to the stockholders’ equity. It is an indicator
of the financial profitability built for the shareholders.

The “Economic Value Added” (EVA)6 is the measure of the corporate’s true
economic profit, i.e. after remuneration of all funded capital (debts and shareholder’s
equity). The objective of EVA is to understand which business units best leverage
their assets to generate returns and maximize shareholder value. EVA is a way to
determine the value created for the shareholders of a company. The basic formula
is: “EVA = NOPAT− (NOA×WACC)”, where NOPAT = Net operating profit after
taxes, NOA = Net operating assets, WACC = Weighted average cost of capital. The
shareholders of the company will receive a positive value added when the return
from the equity employed in the business operations is greater than the cost of that
capital (see Working capital management).

There is creation of value if the economic profitability is higher than the cost
of the invested capital. Furthermore, a company cannot create market value added
without creating in the long run the economic value added and conversely. The
comparison of the stock market and economic indicators is certainly a way of high-
lighting the stock market bubbles, as well as the opposite situations. Considering
only the financial theory, the Market Value Added could be taken as the sum of
“discounted values” of the future Economic Added Values.

8.1.4 Corporate Governance: Market Imperfection Factors

This possibly minor component of the explanation of behaviors of the stock mar-
ket plays however a role that we must not neglect. The motivations of company
managers must be identified as well as the nature of their strategic choices and the
incidences on the share price of their company. This approach is not recent since
Adam Smith had started to analyze the motivations which led the leaders of large
companies to use funds of which they are not the owners. A.Smith attributed an
important responsibility to these leaders in the occurrence of the 1929 economic
crisis on the stock markets. One describes three main causes for which the interests
of leaders do not converge necessarily with that of companies that they manage:

• The leaders maximize their own utility. They allot themselves benefits in kind and
prefer the investments which promote their own notoriety and their nonpecuniary
interest.

• The leaders prefer the less risky investments, even if they are less remunerative
in order to preserve their position.

• Aiming at a short-term effectiveness, taking into account their short-term pres-
ence in leadership of a firm, the leaders tend to privilege the profitable invest-
ments in the short-run.

6 EVA: The underlying concept has first been introduced by Schmalenbach, but the way EVA
is used today has been developed by Stern Stewart & Co. which also is owner of the registered
trademark EVA.
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These divergences of interest, as the “asymmetry” of the information between the
leader and the shareholders can then be controlled only by defining what is called
a set of “complete contracts”, i.e. contracts which take into account all these cases
and protect the shareholders against the possible abusive behaviors of leaders, to
which they delegated the management of the company of which they are the owners.
However, in practice these contracts seldom find their transcription. Consequently,
substitute devices were set up such as mechanisms of internal audit for the benefit
of the board of directors and shareholders, as well as external controls which are
supposed to be exerted by the financial markets.

These divergences of interest seem to have an influence on the evolution of com-
panies, their structures can be transformed, including the financial aspects obviously.
From the influence of these divergences on the financial structures of companies
to the influence on their stock-exchange prices, there is apparently only one step.
This step is however skipped too quickly. But it is necessary to wonder about their
impacts, specially because of the anticipation capacity of markets. Indeed, in spite
of what follows, one could think that the stock-exchange prices are “affected” by the
abusive decisions of the leaders of listed-companies, especially when one evokes the
external control exerted by the financial markets and the possible sanctions. How-
ever, one will explain in the following section that this approach was invalidated by
the conclusions of the Modigliani–Miller theorem which is supposed to have shown
that the value of a firm is independent of its financial structure.

8.1.5 Modigliani–Miller Theorem: Neutrality of Finance
on Market Perfection

The Modigliani–Miller7 theorem shows that the value of a company is indepen-
dent of its capitalization.8 Thus whatsoever its financial policy, i.e. whatsoever the
structure of its debt and of its financing, its intrinsic value will be unchanged. That
a company uses the issue of loan rather than the new issues of capital to finance
its activity, or, whatever its policy of dividend distribution to the shareholders, the
intrinsic value of the company remains unchanged. It is said that the intrinsic value
can depend only on real characteristics and on the strategy of the leader of firm.

A leader who will use the debt in order to increase profitability for his share-
holders is likely to have to face contrary reactions which will compensate one
another. Indeed the market will take into account the increase in the profitability of
securities,9 but the market also will react to this strategy which increases the risks

7 Theorem published in 1958 in the American Economic Review, entitled “the cost of capital,
corporation finances and the theory of investment”.
8 Postulate of Modigliani–Miller theorem: The postulate on which the theorem is based is that we
are in perfect and complete capital markets.
9 Securities: Commonly Securities are tradeable interests representing financial value. They
are represented by a certificate. They include shares of corporate stock or mutual funds,
bonds issued by corporations or governmental agencies, stock options or other options, other
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related to the ownership of these securities. The investors on the market will sub-
stitute less risky securities for these company securities which became more risked,
consequently, their price inevitably will decrease, coming to neutralize the objective
of the leader of the firm. Thus, the expected wealth creation will be a failure. It is
also possible to appeal the checking of the non-arbitrage clause to present the the-
orem and to say that if the value of a company increased with the part of shares that
the company issues in relation to the part of “bonds” that the company issues, then, a
capital-gain would be realizable by arbitrage by issuing additional shares and repur-
chasing, by means of these funds, the bonds which had been issued previously. The
theorem explains that in all the various markets (i.e. markets of goods and services,
or markets of securities), “the price incorporates all information available and it
plays perfectly its coordination role of individual choices”. If the Modigliani–Miller
theorem is generalized, the consequence of this theorem is that the capitalizations
do not have an influence on microeconomic and macroeconomic Equilibria. The
structure of the debt (and the financial leverage10) is neutral for the market, but it
does not have influence on the investment policy of the firm which is the fundament
of its strategy. Whatsoever the changes of the financial environment of agents, the
resulting portfolio re-allocations are without incidence on the fundamental struc-
tures of the economy. Thus, we understood why based on such a conclusion, the
macroeconomic models did not take into account financial components during their
conception, except for the interest rate obviously.

8.1.6 Role of Expectations on Equilibria and Markets: Expectation
Concepts

In what precedes, we began to foresee the fundamental role of expectations in the
evolution of stock market prices. The stock market tends by anticipating the future
to determine the present prices. Thus, since the anticipation of the future, on the
stock market, makes the “today’s prices”, it is difficult to say that the “adaptive
expectations” concept is a good manners to approach the behaviors of agents on the
stock market.

derivative securities, limited partnership units, and various other formal “investment instruments”.
New issues of securities, including what is known as an Initial Public Offering (IPO), for new stock
issues, are offered on the primary market. Securities that have already been issued may also be
traded. This trading is called the aftermarket or secondary market.
10 Leverage: The use of various financial instruments or borrowed capital, such as margin, to
increase the potential return of an investment. (It is the amount of debt used to finance a firm’s
assets.) A firm with significantly more debt than equity is considered to be highly leveraged. Lever-
age helps both the investor and the firm to invest or operate. However, it comes with greater risk.
If an investor uses leverage to make an investment and the investment moves against the investor,
his or her loss is much greater than it would’ve been if the investment had not been leveraged –
leverage grows both gains and losses. A company can use leverage to try to generate shareholder
wealth, but if the firm fails, the interest expense and credit risk of default destroys shareholder
value.
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8.1.6.1 Invalidated Adaptive Expectations, and Imperfect Markets

This rule which consists in envisaging the future value of a variable by using
its present value and the forecast error at the former period, explains the term
“adaptive”. The neo-classical analysis, at variance with the adaptive expectations,
explains that the individuals built their choices not according to the past but accord-
ing to the present. In the method of adaptive expectations, it is clear that it is the
adjustment carried out by the individual in relation to the forecast error which cre-
ates a systematic phenomenon of adaptation, because of the hypothesis that there is
systematic error. In the computation formula, the former errors intervene according
to a cumulative way. The method is defined by saying that the variation of the antic-
ipated value of a variable, between two periods, is proportional to the anticipation
error made at the previous period.11 The formula of adaptive expectations is written
by recurrence:

xe
t = α

∞

∑
i=0

(1−α)ixt−i. (8.1)

Therefore, the method consists in making forecasts by using a weighted sum of past
values of the variable, and the “weighting” diminishes exponentially in the course
of time.

8.1.6.2 Rational Expectations and Perfect Market

The most common definition of rational expectations concept consists in saying
that the agents use all available information as well as possible. The individuals
are supposed to know (by definition in the neo-classical sense) the true model of
the economy of which they are all the actors, and thus use information in order
to “anticipate” also the possible random shocks. This concept adopted by the neo-
classics seems more adapted to the perception of the behaviors of the actors of the
stock market than the precedent. Unlike the preceding concept (adaptative expec-
tations), the rational expectations cannot admit the systematic aspect of the errors
of forecasts. Indeed, the agent would have taken into account in its expectations its
systematic forecasts errors, which are expressed (according to a cumulative way)

11 The difference between two periods of the expected variable is written:

xe
t − xe

t−1 = α(xt − xt−1) with 0 < α < 1.

It is necessary to transform this relation in order to obtain the expected value from the last values.
One writes as a preliminary:

xe
t = λxt +(1−λ )xe

t−1.

It is a weighted average of the observed value at t and of the expected value at t − 1. Thus by
recurrence it is possible to write:

xe
t = λ

∞

∑
i=0

(1−λ )ixt−i.
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inside the adaptive formula in order to correct its forecasts. The rational expecta-
tions, in fact, are analyzed as a particular case of perfect foresight, theory for which
the random events are admitted but where the foresight is supposed to be perfect
in the sense that it is made by means of the probability laws of the considered
events.

The founder of the concept of rational expectations is John Muth (1960). The
introduction of the concept into the macroeconomic models at the beginning of the
1970s, was initiated by Robert Lucas (1972). The neo-classics adopted the notion,
which then has been broadly widespread until the 1980s among monetarists and
some Keynesians. Among these economists who integrated the rational expectations
concept, there are in particular those claiming to belong to the General Equilib-
rium model of Arrow–Debreu, for which the individual agents proceed to optimal
choices guided by the rationality principle. Thus, the principle of rational expecta-
tions appeared adapted to their analysis and their general conceptualization of the
economy, since they must integrate the concept of expectations in the preliminary
principle of rationality. Then, it was necessary to introduce the “expectations” into
the macroeconomic models. The major constraint of this rational expectations con-
cept is that it supposes that the agents have a perfect knowledge of components
and operating modes of “the economy”. The agents take, therefore, their decisions
according to the economic environment, i.e. it is necessary to know the true model
of the economy. The agents are supposed to anticipate the variables of the model, up
to a random factor.

Intertemporal Equilibrium and Rational Expectations Model of J. Muth

The rational expectations suppose the intertemporal equilibrium and the “self-
fulfilling beliefs” of agents since we are deliberately within the general framework
of the “perfect foresight”. By definition, at the equilibrium the “actors” involved in
the process do not have any reason to change their choice, behavior and expectation.
Indeed, the model to which they refer is efficient since they are at the equilibrium,
their beliefs are self-fulfilled and the rationality of their choice led them to the equi-
librium. The principle of rational expectations require that all the agents have a
representation of the whole of the economy and also requires that they formalize
this representation by a model which is the true model of the economy. It is based
on this model and the beliefs of agents that they can proceed to their rational expec-
tations. That means that the beliefs of agents are formalized in the model, and since
the model is the source of rational actions, the beliefs are thus self-fulfilled (Beliefs
⇒ Model⇒ Rational Expectations⇒ Actions⇒ Self-fulfilling beliefs).

In such a mechanism, in a certain manner, the beliefs can be regarded as the
parameters of the model.12 If one gives a simple formalization of the model of
rational expectations, it could be represented in the following way. One considers

12 The beliefs are connected to the probability distributions.
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a supply-demand model which are equal to each period, with however a shift
(i.e. delay) of one period between demand and availability. The system is written:

Demand : dt = a−bpt + εt , (8.2)
Supply : st = cpe

t−1−dσ2 e
t−1, (8.3)

with : dt = st . (8.4)

• Supply is equal to demand at each period by assumption.
• A lag of one period is necessary so that the production is available, it is a

characteristic of the model called “cobweb”.
• A lag of one period is necessary so that the production is available, it is a

characteristic of the “cobweb” model.
• a and b are strictly positive and εt represents a random element, i.e. an “arbitrary”

stochastic process.
• The supply st depends on the price which has been anticipated at the previous

period pe
t−1 and depends on the anticipated variance of this price, σ2 e

t−1.
• The price pt follows a normal law.
• σ2 e

t−1 indicate the risk aversion, indeed, the more the variance of the anticipated
price pe

t is high, the more they will restrict the supply.
• The agents by definition know the Demand equation but also the probability law

of εt which is by assumption a centered normal law N(0,v), thus one can write:

E(εt ) = 0, V (εt ) = v. (8.5)

Let us notice that the precondition E(εt ) = 0 expresses the rejection of the adap-
tive expectations idea for which there are systematic forecasts errors. Then, from
the following equality assumption dt = st the expression of price is deduced easily:

pt =
a− cpe

t−1 + dσ2 e
t−1 + εt

b
(8.6)

and we observe that it follows a normal law with the following expectation and
variance:13

E(pt) =
a− cpe

t−1 + dσ2 e
t−1

b
, (8.7)

V (pt) = v/b2. (8.8)

On the other hand, at (t−1) one does not know the value of εt at t, and one takes as
anticipated price the expectation of the price at t:

pe
t−1 = E(pt). (8.9)

13 Because it is supposed that E(pt ) = 0 and 1/b is the coefficient of εt , which is the only random
term in the expression of pt whose the variance is v.
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Replacing pe
t by E(pt) in the expression of the price expectation, it comes:

E(pt) =
a + dσ2 e

t−1

b + c
. (8.10)

Then, replacing the anticipated variance of the price σ2 e
t−1 by the value of the

variance V (pt) = v/b2, one thus knows the law of pt :

E(pt) =
a + d v

b2

b + c
, (8.11)

V (pt) = v/b2. (8.12)

The rational expectations give rise to self-fulfilling phenomena, the supply is adapt-
ing to the demand (up to a random element εt ). The price and the production
oscillate randomly around long-term values due to εt which prevents the construc-
tion of a cobweb as in the case of “perfect foresight” where εt is equal to zero by
definition. Most remarkable in the conception of the principle of rational expec-
tations is that, by postulating the perfect foresight (up to a random element εt )
and thus postulating the equilibrium, the economy explained by this type of model
excludes any coordination of the actions of agents, and thus excludes the existence
of any coordinator. The postulates, in the conception of this model, are extremely
strong, and probably excessive. In the presupposition which consists in saying that
all the agents know the true model of the economy, one admits (as described in the
Game theory) that all the agents take into account in a rational way all the inter-
dependences which connect their decisions between them. Thus, the models are
impossible to write, this is why the parameter setting of models, i.e. the beliefs of
agents, are simplified in the extreme.

Since stock markets became accessible at the same time to everybody and to
any capital, seeking the maximization of profits according to the “rationality prin-
ciple”, the expectation concept was regarded in a new way. Consequently, if the
stock-market actors admit and integrate in their decisions the principle of rational
expectations, they make of it a belief that becomes itself a self-fulfilling belief and
this phenomenon influences the evolution of stock prices.

8.1.7 The Lucas Critique of Rational Expectations
and the Superneutrality of Economic Policies

The critique14 of rational expectations was carried out by the economist Robert
Lucas (1981) who himself had introduced and applied this concept in the

14 The Lucas critique of rational expectations has been developed in Lucas (1976).
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macroeconomic models, Lucas belongs to the neo-classics.15 The critique is founded
on the principle that the economic policies are ineffective if the agents act according
to the rational expectations concept, because they integrate these policies in their
expectation outlines and divert them of their objectives towards another “equilib-
rium”. Thus, the interventionist economic policies would be not only inoperative
but would be likely to disturb the organization of spontaneous balances of the econ-
omy. The economic policies, when they are incorporated into the predeterminations
(coefficients and parameters) of the model and into the beliefs of agents, modify
their initial projections and thus the effects. It appeared important to expose step by
step how Robert Lucas, through macroeconomic model, describes the inefficiency
of economic policies.

(a) Writing of the Supply of the model after the estimate of the parameters (a,b,c).
This supply statistically estimated must be used to foresee the economic policies:16

Supply : yt = a + bmt + c t + εt , (8.13)

yt : is the logarithm of the production at t.
mt: is the Money Stock (i.e. Money Mass17) and is the instrument of the monetary
policy.
t: represents the time, this means that the estimate of parameters is carries out by
means of a regression on time.
εt : is a random element, i.e. a stochastic process.

(b) Lucas gives its “structural form” to the model and deduces a new “reduced
form”. In addition, R. Lucas considers that this supply function, which is for him
only a reduced form of the model is blind.18 He thinks that the most adapted form
of the Supply which does not appear in the function above, is its structural form,
which is by definition the expression of the subjacent economic theory, and must
take into account with their parameter setting, the following elements:

• “The forecasts of agents”
• “The variables of economic policies”

Thus, Lucas writes the structural form of the model as being constituted of:

• A Supply function based on the price expectations (this is the Lucas new supply)

15 Lucas Robert: Nobel Prize in 1995 to have “developed the assumption of rational expectations
and thus transformed the macroeconomic analysis and improved the understanding of the economic
policy”.
16 The variables are taken as logarithmic in the model.
17 That is, the equivalent of the “money supply and cash”: (M1,M2,M3).
18 Reduced form: the reduced form under which a model is written when each one of its endoge-
nous variables is expressed according to its exogenous variables. The reduced form deduced from
the “structural form”, which expresses the economic theory on which the model is based. The
reduced form is used for the estimate of the parameters, the forecasts or the tests of the effects of
the different economic policies.
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• A Demand function based on:

1. The quantitative formula [see: paragraph (d)]
2. “The rule of economic policy”
3. The rational expectations of agents

(c) The supply function by Lucas. Lucas considers that the essential determinant
of the supply is “the expectation error”, thus the Supply is rewritten in the following
way and (obviously) always fitted with a regression on time:

Lucas Supply: yt = a′+ b′(pt − pe
t )+ c′t + ε ′t , (8.14)

pe
t is the expected price at t−1 and (pt − pe

t ) is the expectation error made at t−1
concerning the price at t. The price and the production are the two endogenous
variables of our model which cannot thus be estimated since it is not a reduced
form.

(d) The Lucas quantitative formula: Instrumental relation of economic policy.
Partisan of the Quantitative Theory of Money, Lucas then introduces the quantitative
formula. Lucas thus formalizes the relations between money stock, production and
price, in order to test the impact of monetary policies on the model. He writes the
“instrumental” relation of the interventionist economic policy of this model. Let us
note that this relation is monetary, this is the Lucas choice, but it could be of another
nature, the interest rate for example in another type of model. k is the circulation
velocity of the money, the quantitative formula is written:

Quantitative formula: pt + yt = mt + k. (8.15)

(e) Instrumental rule of the economic policy. It is a simple positive linear relation
between the time and money stock, plus a random element:

Instrumental rule: mt = α+β t +ηt . (8.16)

ηt is a random variable, i.e. a stochastic process such that: E(ηt) = 0. The equa-
tion above means that the money stock increases at constant rate β , except for the
shocks ηt .

(f) Rational expectations of the money stock by the agents (by Lucas). Lucas
admits that the agents know the preceding rule perfectly, consequently they are able
to anticipate the money stock, knowing that E(ηt) = 0 and the constant rate β .
Moreover, E(·) represents the value of the mathematical expectation of the money
stock. Then it is possible to write:

Expected Money stock: ma
t = E(mt) = α +β t. (8.17)
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(g) Correlative expectation of prices. By using the quantitative formula and
their money stock expectation, the agents can proceed (by substitution) to a price
anticipation:

Expected Money stock: me
t = α +β t, (8.18)

Expected Quantitative formula: pe
t + ye

t = me
t + k, (8.19)

Expected Price: pe
t = me

t − ye
t + k = α +β t− ye

t + k. (8.20)

(h) Forecast errors about prices. By subtraction of the preceding equation with
the quantitative formula one deduces the forecast error:

Price forecast errors: pt − pe
t = me

t −α−β t− yt + ye
t . (8.21)

In the equation above appears the forecast errors about the production which can
formally be indicated by the variable et , whose construction now is known.

(i) The Lucas new supply function. In the initial supply function of Lucas, if one
replaces the expression (pt − pe

t ) by its expression obtained in the equation above,
it comes:

New Supply function: yt = a′+ b′α + b′mt +(c′ −b′β )t + b′et + ε ′t . (8.22)

R. Lucas thus obtained an “enhanced” Supply function, which is improved by the
agents’ anticipation plans about the money stock, price and production. It is possi-
ble to say that it is the “true” reduced form of the Supply function, whose approach
of coefficients and parameters is more elaborate, incorporating the quantitative for-
mula, the instrumental rule of the economic policy and the various forecasts of
agents. Let us notice that the involved variables are rigorously the same one as those
appearing in the equation of initial supply constructed from a statistical estimate,
whence the ambiguity that Lucas wished to underline. Thus, when one proceeds to
the econometric tests and to the extraction of coefficients from the observed vari-
ables, these coefficients are considered to be “rough” coefficients which will be at
the origin of forecast errors. Indeed, these rough coefficients, in fact, would have to
be the subject of a “sub-decomposition” to extract the estimate of the coefficients
α and β which are those of “the instrumental rule” of the economic policy. If a
forecast is carried out using the initial model and rough coefficients to evaluate the
consequences of an arbitrary economic policy, one will not be able to forecast the
anticipations that the agents will carry out concerning this economic policy, which
will modify the effects of this economic policy. Only the estimate of the parameters
α and β could make it possible (in a second step) to carry out good forecasts, having
estimated the response of agents about the economic policies in the past, then only
it will be possible to allow oneself to forecast their anticipations of the given future
economic policies.

( j) The “superneutrality” of economic policies. Lucas extends the analysis, since
he concludes that the coefficients of the instrumental rule do not have an influ-
ence on the supply, because they disappear from its writing. Indeed, we know that
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these coefficients are used in the equations of the instrumental rule, quantitative
formula, expected money stock, expected prices, price forecast errors and in the
“true” reduced form of the Lucas supply function (i.e. the new supply function). In
fact, these coefficients can disappear by substitution of the “price forecast errors”
expression which are one of the components of the “new supply function”.19 The
coefficients disappearing completely, they thus do not have any more impact, this
means that the instrumental rule does not act any more on supply. Consequently,
it is said that there is superneutrality of the money stock on the Good-supply. The
supply is thus written20

Supply function: yt = a′+ c′t + ε ′t + b′et + b′ηt . (8.23)

Within this specific framework, the effectiveness of monetary policies is contested
by Lucas. The Lucas conclusion is valid within the precise framework of this model.
But beyond the developed example here, which aims at a model where the “lever-
age” is the money, in a more general way, it is the belief of agents which plays
a fundamental role. And in particular the belief in the observed economic policy
which will determine its efficiency.

8.1.8 Rational Bubbles and Sunspots Models

The Equilibrium is a situation where the agents are not tempted to change behav-
ior because they achieve their projects (at the equilibrium) in the manner that they
had envisaged. Their forecasts based on beliefs are completely confirmed (at the
equilibrium), thus the agents do not have any reason to modify their choices. This
self-fulfilling prophecy21 concept had already been highlighted by Keynes in its
“General theory”. But it is the rational expectation concept, which integrating the
idea of self-fulfilling belief, which allowed its full accomplishment in economics.
The game theory reinforced the importance of the belief of agents in their choices,

19 The price forecast errors are written:
pt − pe

t = me
t −α−β t− yt + ye

t
and replacing me

t by mt in the equation above, it comes:
mt = α +β t +ηt .
The price forecast errors are written:
pt − pe

t = ηt + et .
Moreover, substituting the equation above in the following quantitative formula:
pt + yt = mt + k,
one obtains:
yt = a′+ c′t + ε ′t +b′et +b′ηt .

20 The random variable ηt which appeared in the instrumental rule still appears in the supply
function and is not predictable by definition.
21 Self-fulfilling prophecy: The notion dates back to ancient Greece, but it is Robert K. Merton
(sociologist) who created the expression “self-fulfilling prophecy”. Merton gives the following def-
inition: “The self-fulfilling prophecy is, in the beginning, a false definition of the situation evoking
a new behavior which makes the original false conception come true”.
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and the self-fulfilling nature of the equilibrium reinforces furthermore the agents in
their beliefs. A typical case of phenomenon of self-fulfilling belief is pointed out in
the rational bubbles models. In such a case, the beliefs of agents on the stock market
lead to the rises or falls almost instantaneously after the purchase or sale decisions
because there is not (price) adherence on markets.

The most symptomatic construction of what can be a model of rational bubble is
symbolized through the models of “sunspots”. In these significant simulations, the
agents believe (it is a postulate) in the influence on the economy of the evolution
of sunspots. This belief of agents will predetermine their choices and their ratio-
nal expectations, thus they will act according to this belief and therefore will create
systematically, by their behaviors, correlations in the economy between sunspots
and economic variables. Thus, we can observe how the self-fulfilling belief phe-
nomenon happens, whereas there is no relation in the fact between the economy and
the sunspots. The most symptomatic is that the action of agents creates a relation
between two events which at the beginning do not have any reason to be connected
a priori. In short, it is possible to say that “the agents act in order to make true
their belief”. Moreover, such phenomena are identifiable on the financial markets. A
bubble on a stock market appears only because the agents believe that it represents a
reality. The agents act in order to make real the beliefs, even if the phenomenon itself
does not exist. When the divergence between the value of stock-exchange prices (i.e.
stock-exchange capitalization) and the economic value of listed-companies is large,
if there is no likely element to justify the future value-creation, then indeed we are
faced with a financial rational bubble. The word “rational” does not seem to be suit-
able, taking into account the weakness of concrete bases of the overvaluation of
prices. But in such a case we must refer to the “Perfect Foresight theory” based on
the “rationality principle”.

As in the case of preceding rational expectations and that of the Lucas critique,
we will use the same type of presentation to identify the various interactions in the
model. The model of rational bubbles is based on the principle of the permanent self-
fulfilling belief which induces the permanent equilibrium (Permanent self-fulfilling
beliefs⇒ Permanent Equilibrium).

Let us write the first variables of the model:
pt is the price of a share at moment t.
dt is the dividend for a share at t.
rt is the rate of return at moment t.
(a) The “non-arbitrage” condition of a share. Since the permanent equilibrium

is supposed, the arbitrage between the shares is permanent, and the rate rt is the
same for all shares (according to the homogeneity principle of a perfect competition
market). Thus, the considered share must verify the non-arbitrage condition:

Non-arbitrage condition: rt =
pe

t − pt + dt

pt
. (8.24)



8.1 Market Efficiency and Random Walk: Stock Market Growth and Economic Growth 625

The share return corresponds to ratio of the dividend plus the expected capital-gain
(i.e. appreciation) to the purchase price of the share.22

(b) The “rationality” assumption transforms the expectation into perfect fore-
sight. The rationality assumption in the sense of the partisans of the rational
expectation, is to suppose that the anticipated and expected price pe

t is the “true”
price at t + 1 (according to perfect foresight):

Price perfect foresight : pe
t = pt+1. (8.25)

(c) This same assumption (through perfect foresight) implies that the future div-
idends and returns are known. Thus, due to the equation above, the non-arbitrage
condition can be written:

rt =
pt+1− pt + dt

pt
(8.26)

or in an equivalent way, resolving in pt , one can extract the expression of the share
price:

Share price: pt =
pt+1 + dt

1 + rt
. (8.27)

This is a typical equation of rational expectations. We will notice that the price of
the share at t is expressed according to the price of the share at t + 1, what is a
symptomatic mechanism of the perfect foresight, the “expected future” determining
perfectly the present. Therefore, theoretically it is possible to extend the reasoning
to an infinite horizon, what is carried out during the two following steps and in
particular to avoid to have to calculate the ultimate value of the model.

(d) Extension of the price expectation by recurrence. At the step t +1 the price is
written:

Future share price at t + 1: pt+1 =
pt+2 + dt+1

1 + rt+1
. (8.28)

As described above in (c) the price of the share at t was expressed according to the
price of the share at t + 1, but if one replaces pt+1 in the equation highlighted in (c)
by the second member of the equation above of the price in t + 1, it comes:

pt =
pt+2 + dt+1

(1 + rt)(1 + rt+1)
+

dt

1 + rt
+

dt+1

(1 + rt)(1 + rt+1)
. (8.29)

Which is a new expression of the price at t. During the following step, one pushes
the term of the horizon until t + T .

(e) The general expression of the price at the (t + T ) horizon, also called the
Fundamental value, is written:

pt =
pt+T

(1 + rt) · · · (1 + rt+T−1)
+

dt

1 + rt
+ · · ·+ dt+T−1

(1 + rt) · · · (1 + rt+T−1)
. (8.30)

22 Gross return: If one considers a gross return in which the dividend is not reinvested, which is
not necessarily the case.
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The price at t is expressed in terms of dividends flows from t to t + T and in terms
of price at t + T , i.e. at the horizon. Moreover, since one considers that “at infinite
horizon the present value of the price is zero”, then the price at the period T is
expressed only according to the “discounted (future) dividend flow”.

pt � dt

1 + rt
+ · · ·+ dt+T−1

(1 + rt) · · · (1 + rt+T−1)
. (8.31)

(f) An infinity of solutions. If the initial price expressed in (c) is selected and if a
constant k is associated, that is written:

pt + k =
pt+1 + dt

1 + rt
+ k. (8.32)

By giving at the second part of this equation the same common denominator, then it
comes:

pt + k =
pt+1 + k(1 + rt)+ dt

1 + rt
. (8.33)

Moreover, it is possible to add to “fundamental value” a suitable term such as
k(1 + r)T−1 with rt = r and T � t, (and by posing rt−1 = 0), which represents the
rational bubble. The fundamental value plus this additional term makes it possible
to represent the solutions of the equation above. The “rational bubble” expression
is used when k is positive and different from zero, because the agents consider
that the value of the share will grow continuously and they anticipate this belief.
There will be absence of rational bubble when k is equal to zero, i.e. when the
agents do not envisage increase in prices. Thus, we observe that the model high-
lights the multiplicity of possible solutions, i.e. balances of which each one depends
on the beliefs of agents that predetermine the model. There will be as many bal-
ances as beliefs. This analysis can be connected to (even if the concepts used are of
different nature obviously) the concept (described in the section about the indica-
tors of value-creation) which concluded that, in the theory, the Market Value Added
(MVA) is the expression of the discounted value of the (future) Economic Value
Added (EVA). The discounted value of the Economic Value Added is not obviously
the discounted value of future dividends flows, and the Market Value Added is not
either the simple expression of the share price at the current period, but it is however
possible to say that a present stock-market value is expressed as the discounting of
(future) income flows. What tends to show that the analysis of rational expectations
finds transcriptions in the financial sphere. Furthermore, the most recent methods
of firms evaluation emphasize the discounting of ( future) profit flows in the mid or
long-term from which the present value of a firm is calculated.23 The Business plans

23 Intrinsic value: It is possible to present the way in which the traditional financial analysis
calculates the share prices. It is based on the future performances and on the “rate of discount”
which makes it possible to calculate the present value of these flows. The intrinsic value of a share
is equal to the discounted value at the market interest rate of the anticipated future dividends.

V I0 = ∑∞
t=1

E(dt )
(1+Ea(r))t
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of the economic activity of a firm are built on the income statements based on the
evolution of the structure of the company, then the profit flows are discounted. By
knowing that a company in a given sector must provide a given “Return On Equi-
ties” (ROE) to show its competitiveness, we inevitably return to the price of the
company since the investors request a refund of their purchase on a fixed duration
(10 years for example depending on industrial branches). Otherwise, obviously, the
investors do not buy and the shareholders can sell the shares for the same reason.

If we go back to the model described in this section, it concludes that there is
an infinity of possible solutions which depend obviously all on the nature of the
beliefs of agents which predetermine the solutions and predetermine different bal-
ances which can result from the application (in the individual projects of agents) of
their beliefs and rational expectations. There is another type of model which high-
lights the role of the self-fulfilling prophecies, in an exemplary way, this is the model
of “sunspots”. The model postulates that, without scientific fundament, the sunspots
apparition are the cause of business cycles. In this type of models, one admits that
“the agents believe that the evolution of sunspots has an impact on business cycles”.
Since the agents act based on this postulate and this belief, the model by the actions
of agents gives a reality to the “relation” between sunspots and economic activity.
Consequently, the agents “observe” the existence of this link between the sunspots
and the economic activity and then conclude that their beliefs are valid and there-
fore “confirmed”, whereas there is no tangible bond. It is the same principle as in the
model of rational bubbles, where the belief has an impact on the share prices, i.e. on
their market values, but not on their “(real) economic values”, i.e. the “fundamental
values”.

The concept of rational bubbles which is a development of the former theory of
the perfect foresight, makes it possible to highlight the way in which a “gap” can
be created between “market values” and “economic values” (i.e. between trading
values and economic values based on the fundamental economic analysis), then to
grow according to rational principles whereas the fundament rests on the belief. The
rationality of choices is obviously postulated by the model, but if the choices are
rational the question to be posed is that of the “rationality of beliefs”. The absence
of rationality in the beliefs which will predetermine the model, during the apparition
of rational bubbles, will create a gap, or a shift, between real economy and exchange
values, and will increase the explosion risk of bubbles which is also a way for the
economy of bringing back the prices to their fundamental values. However, it is
necessary to emphasize that the fundamental values are not always able to take
into account the value creation of a company and an economy by extension. Here
is the main difficulty, the value creation of today (technological innovation, new
markets, . . .) is rarely quantified instantaneously for its real value, i.e. for the value

The intrinsic value today of the share is noted V I0.
The discounted value of the market rate Ea(r).
The anticipated future dividends are noted E(dt ).
The value of the share today is expressed as the sum of the flows which will be generated by

this one in the future, but after having discounted them in order to give of it a value in monetary
units of today.
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that it will represent in the future. The current innovations will make the companies
of future. This is why the evaluation techniques which tend to measure the value
by using the past, i.e. the sum of “past incomes” risk to be blind about the future
and its innovations.24 In addition, the fundamental value in the sense of rational
expectations theory must incorporate all available information. In a symmetrical
way, the reasoning which consists in observing how a company in the past could
show adaptation and innovation on its market is also a key indicator of its capacity
to create value, such indicators must be taken into account obviously.

The construction of an evaluation, before the exchange happens and before the
price fixation, must thus combine techniques of discounting of the past and its flows
with techniques of discounting of the future and its flows (belonging to the rational
expectations framework). But anticipations of future flows will result from postu-
lates and thus from beliefs, which will generate a multiplicity of projections. That
is also during the “choice” of the belief that a rational act must be done which first
consists in taking into account the history of the company and its evolution must
themselves be evaluated and incorporated in the “belief”. But there are obviously
other less mastered elements which will incorporate the belief and will induce the
anticipations. Therefore, it is also in the elaboration of the belief that the past must
join the future in a conviction which will first take shape in the establishment of the
belief itself and in all the decisions which will result from this. If an analyst has
the conviction that a company which always proved in the past its ability to antici-
pate the technological developments and to incorporate in its R&D investments in a
continuous way the cost of the innovation, the analyst will integrate this past reality
in its conviction and can provide favorable anticipations, whatever the context of
technological change. In the previous paragraphs a confusion is present (obviously)
between the pure concept of “rational expectations” within the perfect foresight
framework and the “rational anticipations” within an empirical framework where
the concept lost its essence.

8.1.9 Efficiency and Instability of Financial Markets:
A Non-Probabilisable Universe

From the concept of rational bubble to the empirical notion of speculative bubble
there is obviously a conceptual abyss. However the concept have to face the empir-
ical reality. This reality finds one of its expressions through financial crises which
weaken the efficiency concept of financial markets, which at the same time can lose
some of the prerogatives that one had been able to grant to them. The efficiency
concept invested many works concerning the financial markets. By definition, it is
said that a financial market is efficient “if the prices (of assets) instantaneously and
fully reflect all available information”. In such a market the price will be always

24 Except for the initial vested capital. A company at the moment t (represented by its balance
sheet structure) is also the expression of the sum of past incomes, except for its potential dividend
distributions.
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equal to the fundamental value, up to negligible elements (of friction) as the cost of
entry or exit for shares. Thus, by definition “the share price must take into account,
at any moment, all information concerning the current state of a listed-company and
its future evolution perspectives”. The efficiency concept (Fama E25) was decom-
posed into three forms according to the information nature used in the mechanism
of price setting of a share. The velocity of incorporation by the market of the infor-
mation is emphasized in all the cases, whatsoever it is. Fama proposed three types
of Efficiency:

(1) Weak form. In such a case, “the prices of assets reflect instantaneously and
fully all information contained in the past of price”. It is said commonly that the
prices incorporate so quickly the information contained in the past that it is impos-
sible to define profitable rules of negotiation for the agents. Thus, all the rules of
negotiation and arbitrage which would rest on the past cannot be profitable and
would be without fundament.

(2) Semi-strong form. In such a case, the prices of assets reflect instantaneously
and fully all information available publicly. This type of information is incorporated
in the price by the agents so quickly that it is impossible for an operator to make
profitable arbitrages. One can even wonder whether the effects of the publication
of results of a company are not already incorporated in the price even before their
publications, by anticipation, so that, the day of the publication, the market prices
can remain unchanged.

(3) Strong form. In such a case, the prices of assets reflect instantaneously and
fully all information as much private as public. The strong assumption in this case,
consists in considering that, when an agent benefits from information of a private
nature, and taking into account the reaction velocity of markets, this information
cannot generate capital-gains or “profits” which would be regarded as “abnormally
high”.

Such an academic case, often contradicted by the facts, seems to exclude all
the assumptions where there is an (illegal) insider trading, by considering that the
“Securities and Exchange Commission” makes sure to prevent them. Furthermore,
this is a way of emphasizing the conceptual limit of the efficiency such as posed
by Fama, because one considers in the case where an agent benefits from informa-
tion of a private nature, accomplishing “abnormal” profits, that it is the rejection
condition of the hypothesis of market efficiency. Consequently, in the last case,

25 Fama E is known for his work on portfolio theory and asset pricing. Fama thought that stock
price movements are unpredictable and follow a random walk (ref: Ph.D published in the Journal
of business, 1965, entitled “The behavior of stock market prices”, and in the 1966 article, “Random
walks in stock market prices”, published in Financial Analysts Journal and Institutional Investor in
1968. The last article inaugurated a new era in financial research: the empirical financial research.
Fama is considered as the father of efficient market theory (ref: 1970, Journal of Finance, “Efficient
Capital Markets”: A Review of Theory and Empirical Work). Fama enunciated two fundamen-
tal concepts, the first one, enunciated three types of efficiency: (1) strong-form; (2) semi-strong
form; and (3) weak efficiency. the second one, Fama proved that the notion of efficient market was
rejected only if the model of market equilibrium was rejected too (for example, the price setting
mechanism). This concept is known as the “joint hypothesis problem”. The fundamental issue is
to explain the differences in stock returns between “market capitalization” and “value”.
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the “speculative exchanges” notion appears. They seem to be able to happen only
if some agents have different information, which are representative of situations
where there is uncertainty. Consequently, one leaves the framework of NeoClassical
economics (NCE) which tends to conceptualize a universe where the risk is “prob-
abilisable” and leaves aside the situations of uncertainty. It is said that there is
uncertainty when the agents do not assign any probability to the possible future
events, and this because they are unable to do it, or because they are indifferent or
because they ignore them.

The uncertainty is a concept which does not belong to the universe of Neoclas-
sical economics but belongs to a context taken into account first by Keynes, then,
developed by the Keynesian school and which continued to be described by Neo-
Keynesian economics (NKE). The speculative exchanges on the financial markets
can exist only if there is not perfect information. Thus, the “speculative exchanges”
and “speculative bubbles” concepts would concern the universe described in Neo-
Keynesian economics rather than the universe of Neoclassical economics. The
exclusion of the inefficiency of markets involves the rejection of the speculation
by the framework of the classical school, whereas the Keynesian framework would
incorporate it better.

Things seem to be as if Neo-Keynesian economics could take over to Neoclassi-
cal economics in the comprehension of financial markets to pass from a probabilis-
able universe, where the concepts are defined, towards a non-probabilisable space
where the uncertainty prevails. (In a speculative way, we could regard this approach
as a synthesis of both schools apprehending thus any aspects of behaviors of finan-
cial markets. But this would imply the existence of a third school which would
combine these two incompatible schools.) The speculative bubble is often analyzed
as a “drift” in the long term, or a deviation of stock exchange prices in relation to the
fundamental values (as if we could assert that there are “true prices”, what would
suppress any polemic and facilitate the work of economists and financiers).

From the point of view of the increase of these speculative bubbles, it is possible
to consider that the agents do not systematically adopt a behavior dictated by the
principle of rational expectations. But would be directed for example by short-term
choices where notably the accentuation of tendency (rise or fall) are the resultant
of a lack of discernment which reproduces the decisions of the greatest number
of agents. One can observe frequently these phenomena during the euphoria or
depression periods of stock markets, even if these tendency exaggeration phenom-
ena by the market have not been analyzed in a significant way by the statisticians
(to our knowledge). We would like to point out a distinction for better apprehend-
ing the efficiency concept. Indeed, usually, one suggests that the rejection of the
efficiency hypothesis could be consecutive to the existence of speculative rises, or
consecutive to the explosion of speculative bubbles. In fact, as described before,
the efficiency is to be rejected only if “anomalies” are observed on markets, which
would make it possible to obtain profits or capital-gains “abnormally” high. Con-
sequently (and this represent a contradiction in relation to what was stated above),
the speculative bubble notions would not be a demonstration of the rejection of the
market efficiency assumption, except if one provides the proof that they result from
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abnormal practices, which make it possible to obtain abnormally high profits. (And
we could also wonder if the capital-gain of some agents obtained during the increas-
ing of the speculative bubble would not be compensated, in the long term, by the
capital-losses realized by other agents during the explosion of the speculative bub-
ble. As if the equilibrium of the market itself were an intertemporal equilibrium
gravitating around the tendency curve of fundamental values.) In other words the
insider trading is a proof of non-efficiency but not a proof of speculative bubbles. It
seems to us that there is a sort of contradiction, these speculative bubbles being able
to exist only if the financial markets do not have perfect information. In any event,
except for the historical shocks, many stock market crises occur due to the bursting
of speculative bubbles, during which the prices collapse.

This type of bubble occurs if the assets prices move away (upward) from their
intrinsic values. The operators which are wrongly informed about the tendency of
fundamental values are going to disrupt, by their purchase acts, the choices of the
other agents, which are supposed to use better the available information. Conse-
quently, many agents can lead the prices upwards and lead to a situation where the
rise happens not because the agents anticipate a rise rationally, but because the dif-
ferent actors invested the market with buying orders which imply a rise of prices.
The crisis intervenes when the risk related to the difference between fundamental
values and exchange values is realized through a collapse of prices.

8.1.10 The Question of the Imperfection, Inefficiency
and Non-Random Walk of Stock Markets

Paul Samuelson in an article entitled “Proof that Properly Anticipated Prices Fluc-
tuate Randomly (1965)” explains that in an efficient market, about information, the
price changes are unpredictable if they are properly anticipated, i.e. if they fully
incorporate the expectations and information of all market participants. In 1970,
Fama summarizes what precedes in a rather explicit sentence: “the prices fully
reflect all available information”.

In contrast with many applications of the random walk hypothesis in the natu-
ral phenomena for which the randomness is assumed almost by default, because
of the absence of any natural alternatives, Samuelson argues that the randomness
is achieved only through the active participation of many investors seeking the
increase in their wealth. They try to take advantage from the smallest information at
their disposal. And while doing so, “they incorporate their information into market
prices and quickly eliminate the capital-gain and profit opportunities”. If we imag-
ine an “ideal” market without friction and without trading cost, then “the prices
must always reflect all available information” and no profits can be garnered from
information-based trading, because “such profits have already been captured”. Thus,
in a contradictory way, the more efficient the market, the more random the time-
series of price changes generated by such a market, and “the most efficient market
of all is one in which the price changes are completely random and unpredictable”.
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Thus, the random walk hypothesis and the efficient markets hypothesis became
emblematic in Economics and Finance, although more recently, in 1980, Grossman
and Stiglitz considered that the efficient markets hypothesis is an idealization eco-
nomically unrealizable. Moreover, more than 15 years ago, a collection of new
statistical articles (Lo 1991; Lo and MacKinlay 1989, 1990) appeared and empha-
sized a new approach aiming to reject this random walk hypothesis. The statistical
studies conducted by Lo and MacKinlay (since 1988) about the US stock-exchange,
lead to reject the random walk hypothesis for weekly values courses of the New
York Stock Exchange (NYSE), using a simple test based on the volatility of courses
(Lo and MacKinlay 1988). By specifying however that the rejection of the random
walk hypothesis does not imply necessarily the inefficiency of the price formation.



Conclusion

The introduction of nonlinearities is an infinite source of behavior diversity for
the comprehension of natural or economic realities. Many phenomena previously
adverse to any modeling can find an algebraic formalization today through the
epistemological rupture of nonlinear theory.

The economic growth models built on linear structures masked the phenomena of
instability, persistence, hysteresis1 and asymmetry, which are symptomatic of eco-
nomic fluctuations. The concept of nonlinearity seems relevant to model business
cycles. The first initiatives prior to this epistemological breaking that explained the
cycles in an endogenous way date back to Kaldor in 1940, Hicks in 1950, Goodwin
in 1951 and Rose in 1967. Afterwards, the approach was extended and applied to the
growth paths of macroeconomic models: And this is what is called the Equilibrium
cycle.

In the endogenous growth theory, linearities do not seem to be often present
either, except in AK models. These AK models are constructed around a linearity
in the differential equation of the model and around a constant return of capi-
tal. In spite of didactic qualities of this construction type, the models described
as semi-endogenous, built on nonlinearities from decreasing returns of the capital,
seem more realistic. A dichotomy is established within endogenous growth mod-
els according to the effects of their policy. The purpose is to distinguish between
permanent, transitory or level effects. The stake is to know if for example an active
policy of R&D subsidy in an economy will have durable and permanent effects on
growth, or if its effects will be only transitory. A temporary effect depicts an econ-
omy that will revert to its original growth rate. But to dissociate a long-term effect
and a permanent effect is a difficult objective. Such an observation suggests to favor
the level effect or transitory effect approach and therefore to favor semi-endogenous
models. In this type of model, even if technological progress is endogenous, with-
out the growth of the population which is exogenous, or without the growth of the
number of researchers, the growth of the per capita product will be interrupted.

1 Hysteresis: We can say that there is hysteresis when an effect persists whereas its cause has
disappeared.
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Moreover, in the economies of developed countries the available empirical
elements do not allow us to admit the economic models as linear, i.e. with constant
returns of capital for α equal to 1. On the contrary, α seems close to 1

3 concerning
the capital and even if we add human capital and externalities, the value is close
to 4

5 , which is always less than 1. Linearities do not seem to be present in research
and development either, since we know that investment efforts in this field and the
number of researchers has considerably increased over the last 40 years, whereas the
growth rate of economies has not increase proportionally in a significant way, as we
know that this growth rate is close to 1.8% over the same period. This tends to show
that positive externalities remain lower than 1.

Finally we would like to mention a phenomenon that has been highlighted in the
mid-1990s by O.Y. Butkovkii, Y.A. Kravtov and J.S. Brush,2 and could be general-
ized to a number of nonlinear models in macroeconomics. This phenomenon shows
a new perspective about state transition phases during the occurrence of bifurca-
tions. Called “the bifurcation paradox” by the above mentioned authors, it could
reach an interesting dimension, in economic policy in particular. In short, we can
say that the final state of a system is predictable if the transition phase is sufficiently
fast. In fact, the occurrence probability of a final state depends on two components:
the transition speed and the noise level from the considered system. A fast change
of the control parameter of a system is particularly recommended in order to get
from a stable state to another stable state. Otherwise, if the parameter evolves too
slowly, i.e. for a speed that is less than a critical value, the final state of the system
corresponds to a chaotic regime. In fact, the probability to forecast the final state of
a system after a bifurcation point depends on a relation between the speed of change
of the control parameter and the “noise level” of the system. Within this framework,
the concept of background noise level emphasizes the relevance of methods brought
together under the name of nonlinear signal processing as well as the relevance of
spectral analysis methods and derived methods.

The transition from the linear to the nonlinear field can also find a transcription
in signal processing at the time of the transition from traditional spectral analy-
sis to time-frequency analysis, notably through wavelet analysis and hybrid atomic
decompositions (i.e. time-frequency atoms and waveforms dictionaries). In such a
particular time-frequency analysis framework, the localized nonrecurring phenom-
ena such as singularities, shocks, intermittencies, turbulences escape traditional
spectral analysis that looks for similarity. Spectral analysis deals unsatisfactorily
with abrupt variations because of error diffusion in the decomposition of this type
of phenomenon. It is interesting to notice that singularities can be the expression
of fundamental elements of a dynamics. Simple and sudden impulses in a dynam-
ics can contain crucial information, as an anomaly in an electrocardiogram for
example. Time-frequency analysis has evolved in order to identify within a complex
signal these singularities which make it possible to anticipate risks and, potentially,
the future. To push back the limits of the “unpredictable” requires to deal both with
the signal and with the modeling simultaneously, i.e. from an empirical point of

2 “The bifurcation paradox”. O.Y. Butkovkii, Y.A. Kravtvov and J.S. Brush. NAG300. 1996.
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view and a theoretical point of view through the dynamic modeling of these complex
phenomena, preferably described as being nonlinear but which unfortunately tend
to escape dynamic modeling. It is also in these specific and singular behaviors that a
dynamics expresses its own “foundations”. Information is as important in these sin-
gularities as in periodic and recurrent aspects. Abrupt or sudden variations can for
example correspond to “level effects” in economics, often described as “transitory
effects” in the endogenous growth theory.

Thus, in Signal Processing (and more generally in information transformation
methods), hybrid techniques make sense; the algorithm of the best basis choice is in
this respect very interesting.3 In order to lose nothing of the original signal, periodic-
ities must be identified, but singular nonrecurring events must be identified also, as
the many elements that characterize a “deterministic” dynamics. However, the best
basis algorithm will not be adapted to non-stationary signals composed of disparate
elements. In such a case, the “Matching Pursuit” algorithm seems more adapted.
For each segment of the signal, it finds the wave which resembles it the most. It
does not seek an optimal representation on the entire signal, but it seeks an opti-
mal representation of each characteristic of the signal. S. Mallat explains that this
is a question of “finding the best correspondence for each word of the signal, while
the best basis algorithm gives the best homologous of the entire sentence”. Yves
Meyer explains that, whereas only one algorithm (i.e. Fourier analysis) is appropri-
ate for all stationary signals, transitory signals (or transient signals) represent such
a rich and complex universe that a unique analysis method cannot win through.
The hybrid methods are currently very advanced, but they will probably be able to
evolve in the future towards new tools to improve approximation and reconstruction
methods and signal forecast. Construction of an imaging documentary base in time-
frequency planes, calibrated on standard academic signals, could be elaborated in
such an objective; for example, in order to isolate standard form structures to obtain
the reference frameworks that appears so direly absent, in particular in Economics
and Finance.

Obviously, we can wonder about the relevance and advisability of signal repre-
sentations in time-frequency planes or via imaging methods. However, we have to
explain that direct reading of a signal or an arbitrary time series shows seldom its
content and its “secrets”, except for simple signals. This is particularly due to the
facts that complex signals generally are non-gaussian and traditional statistics looks
for new probability laws beyond the well-known Gauss law. We think in particular
about the U-shape (arc-sine) law which characterizes more likely the densities of
chaotic nonlinear dynamics. But the statistical or econometric approach does not
show all the information contained in a time series either. If we choose the examples
of radar signals or medical imaging (magnetic resonance imaging: MRI), indeed, it
is only after their decomposition in time-frequency planes or via imaging methods
that these signals make sense, whereas they were illegible in their original states.
And we could multiply examples in geophysics and even in vocal analysis where
the objective is not to decompose an image. Consequently, systematically testing

3 See Meyer or Coifman bases.
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this type of method on financial or economic original time series, whose charac-
teristics permit it (i.e. length of the series, discretization mode, . . .), seems to be
necessary, also to relativize their relevance. Moreover, we can also note that a sta-
tistical theory of time-frequency analysis must be completed. This aspect certainly
hinders the use of these methods in economics that look for necessary academic
validations in order to carry out competence transfers from other scientific fields.



Postface

Why the “Nonlinear”? This postface attempts to propose a non-exhaustive set of
reasons to be involved in the nonlinear field:

(1) From the point of view of the Modeling of Dynamical Systems
(2) From the point of view of the Time-Series or Signal

(1) to analyze and model Economics as a complex dynamical system of nonlinear
nature, the “qualitative approach” feeds the analysis and the model; (2) to analyze
Economics in accordance with signal theory and mathematics or statistics of com-
plex nonlinear series, where one of the stakes is Qualitative Extraction and even
reconstruction of Dynamics.

The irruption of Nonlinear theory has led to a profound transformation of many
scientific fields. Economics takes part in this revolution. The diversity of possi-
ble dynamical behaviors coming from nonlinearities makes it possible to better
understand natural and complex phenomena. Henceforth, we better understand the
mechanisms at work when the trajectories of dynamics become more and more com-
plex, thus making it possible to better reproduce them, model them and explain
them. The items of this set are:

1. The “Nonlinear” is adapted to the description of natural, complex or chaotic
phenomena.

2. The “Nonlinear” depicts possible periodic and quasi-periodic structures, i.e.
oscillatory structures, an essential characteristic of the context. It also depicts
chaotic behaviors resulting from the loss, disappearance or transformation of
these oscillatory behaviors.

3. In the framework of “Stability Boundaries”, the “Nonlinear” makes it possible to
describe the different known transitions towards chaotic regimes (i.e. canonical
“routes to chaos”):

• Saddle-connections (i.e. blue-sky catastrophes)
• Period-doubling and cascade of bifurcations, (ddl � 1)
• Intermittency (i.e. explosion)

T. Vialar, Complex and Chaotic Nonlinear Dynamics,
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with as a corollary, the Coupling of frequency, sometimes called the quasiperi-
odic route to chaos (i.e. resonance) [see KAM, Landau, Ruelle–Takens], (ddl � 3).

4. The possible oscillatory structures of the “Nonlinear” and the methods of time-
series decomposition allow and lead to the use of the following “Representation
Spaces”.1

• Complex space (complex Field, complex and Gauss planes)
• Fourier space (Frequency-Amplitude)
• Hilbert space (Banach space, . . .) conceived at the origin for the “oscillating

functions” (Complex exponentials, circular functions, trigonometric func-
tions, etc.). Space where we treat questions of convergence, development into
series (i.e. Taylor series, Laurent series), analytic or holomorphic functions,
norms, differentiability, . . .

• Time-frequency space (and time-scale plane)

5. Fourier analysis shows that “any function (or signal), even discontinuous, can
be approximated by Fourier series, i.e. by trigonometric functions”. (It is an
evolution of the Weierstrass theorem of function polynomial approximation.)

• What allows the reconstruction methods of signals and leads to their repre-
sentation in certain Spaces quoted above

• However, classical Fourier analysis hides time and phases

6. In the same way, methods of signal reconstruction by wavelets are stable and
complete representations and allow representations in certain spaces mentioned
above. Wavelets do not hide time and phases.

7. In a similar way, “Hybrid methods” of reconstruction which use different “wave-
forms” (Fourier atoms, Gabor atoms, wavelet atoms, Dirac functions and time-
frequency atoms, . . .) allow representations in certain Spaces mentioned above
(i.e. time-frequency planes).

8. Polyspectra (e.g. Bicoherence) are also more adapted to the study of (non-
Gaussian) nonlinear signals and turbulence phenomena than traditional spectra.
There is also the “wavelet Bicoherence” of which we know (because it does
not hide the phases) that it highlights “Coupling of Phases” in the turbulence
phenomena and associated “Coherent Structures” (ref. Milligen).

9. The nonlinear field concerns Topological Invariants (and concepts associated
with the differentiable topologies, differentiable manifolds, Riemannian mani-
folds [i.e. non-Euclidean], etc.).

10. In the nonlinear field, the (isolated or essential**) singularities and the excep-
tional points (in this oscillatory and complex nonlinear context), which concern
the analytical functions and the fields of series convergence, make sense and
are a major question. They are better described in such a framework, i.e.
within the framework of complex continuation rather than the framework of

1 The framework used in such a case is more general than the framework of the Representation
theory in Mathematics. Representation theory: this theory is composed of three subcategories:
(C) Clifford algebras, (I) Invariant theory, (R) Representation theory of groups.
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functions of the real variable (see Cauchy, Laurent, Weierstrass, Riemann). Sin-
gularities: There is an equivalence between the holomorphic functions and the
functions expandable in entire series. The study of the fields of convergence of
the entire series has led (among other things) to the concept of “singularity”,
which corresponds to exceptional points where the holomorphic continuation
is not possible. Among the singularities of a function, some can disappear if
one extends in a suitable way the concept of function, in contrast with the
singularities where this is not possible, they are called **Essential Singularity.

11. The concept of Singularity is in connection with the following concepts: The
(Lipschitz) Regularity, Self-similarity, MBf, LRD, Process with memory, Multi-
fractals, . . ..

12. This leads to the notion of Measurement, which is more relevant and open
within the preceding framework (i.e. From the Euclidean point towards the com-
plex point or towards the point of a differentiable Manifold, etc. See also Hilbert
space, Time-frequency space).

13. In Economics, we often meet systems with very high degrees of freedom (even
infinite) but with attractors of limited dimension. Thus, while working in recon-
structed systems of low dimensions, we can obtain relevant information by
observing geometrical objects of low dimension (see Takens, Poincaré, . . .).

• Equilibrium Cycles, Overlapping Models, Optimal Growth, . . .

14. In Finance, in an analogous way, stock market signals have non-integer “capac-
ity dimensions” lower than the (probably infinite) degree of freedom of the
system. Thus, we are often faced with an attractor (see Hausdorff, Poincaré,
Mandelbrot, . . .).

The reader will be able to improve and develop this incomplete open list, which,
moreover, highlights the importance of certain disciplines to promote them in
Economics and Finance.



Appendix A
Mathematics

A.1 Relations, Metrics, Topological Structures

In this section, devoted to the topological relations and structures, are presented
in particular: Homeomorphisms, diffeomorphisms, adherent points, accumulation
points, connected sets, collineations (or correlations), projective planes, orthogonal
and orthonormal systems, metric spaces, Hausdorff measure, Hausdorff–Besivitch
dimension (i.e. fractal dimension), etc.

The Bourbakist conception of mathematics made it possible to highlight the com-
partmentation which existed between the different mathematical disciplines. The
study of axiomatic constructions of the different theories shows common funda-
mental structures. The traditional disciplines develop then from these fundamental
structures and from the mixed structures (also called multiple structures) themselves
built from the fundamental structures.

Fundamental structures: The three fundamental structures are the algebraic struc-
ture, the order structure and the topological structure. The multiple structures (also
called mixed structures) are made up of several of the three fundamental struc-
tures. Examples of multiple structures are the topological groups, topological vector
spaces, ordered fields.

(1) Algebraic structure: A set can be provided with an algebraic structure if one or
several composition laws (internal or external) are defined on this set, such as
addition and multiplication in the number set, or the multiplication of a vector
with a scalar. The most important algebraic structures are the semigroup, the
group, the ring, the field, the module and the vector space. A module is a vector
space in which the scalars are a ring rather than a field.

(2) Order structure: A set can be provided with an order structure if an order rela-
tion is defined on this set. This means that in this set there are comparable
elements in accordance with a predefined rule, as for example in the real num-
ber set by means of the relation “�”. Examples of order structures are: partially
ordered sets (ordered sets), totally ordered sets, well ordered sets, inductive sets.

T. Vialar, Complex and Chaotic Nonlinear Dynamics,
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(3) Topological structures: A set can be provided with a topological structure if we
have chosen in this set a system F of subsets verifying different properties. The
topological structure is very important to define the concept of convergence. A
set endowed with a topological structure is called topological space.

System of relations: The fundamental structures can be understood by means of
relations which produce these structures. Then, a structured set is a set S on which
is defined a relations family {Ri}. If S is provided with relations R1, . . . ,Rn, then
the associated space is written {S;R1, . . . ,Rn}. And the couple made with S and
R1, . . . ,Rn is called a system of relations. The relations which provide the structures,
when n � 2, must be compatible between them. The conditions of compatibility
must be carefully chosen to construct a theory (see distributivity to construct the
rings).

A.1.1 Relations and Diffeomorphisms

Before giving the definitions of maps until the diffeomorphism, we recall an
extremely useful elementary notion of the set theory which is the partition.

Definition A.1 (Partition). If
⋃

i∈I
Ai = F and if all the Ai are assumed �= ∅ and

pairwise disjoint (i.e. mutually disjoint), the set {Ai} is called a partition of F.

The main partitions in mathematics are obtained in the form of equivalence
classes1 according to an equivalence relation.2 Thus, the vectors or the rational
numbers and many others mathematical objects are defined in the form of equiv-
alence classes that we will describe in a next section. Thus, in the geometrical
constructions, it is simply essential to put in place a representative of a class of
given congruent figures.

The algebraic operations on sets exist in all the mathematical fields. In algebra,
the set of solutions of an equation system is the intersection of the set of solutions of
each equation. There exists a graphical method which makes it possible to visualize
this principle. Indeed, the graphical method visualizes the intersection of solutions
sets of each equation as a common section of the graphs of functions associated
with each equation. A simple way to define a map can be given by the following
definition:

Map (or Mapping): A way of associating single objects to every point in a given set.
So a map f : A→ B from A to B is a function f such that for every a ∈ A, there is

1 Equivalence classes: The equivalence classes are the collection of pairwise disjoint subsets
determined by an equivalence relation on a set. Thus, two elements are in the same equiva-
lence class if and only if they are equivalent under the given relation. Definition (Equivalence
class). The set of all elements of the set S related to x ∈ S is called equivalence class [[x]] of
x : [[x]] = {z|x ∈ S∧ z ∈ S∧ xRz}.
2 Equivalence relation: A relation is called an equivalence relation, if and only if, this relation is
reflexive, symmetric and transitive.
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a single object f (a) ∈ B. The terms function (sometimes improperly) and mapping
are taken as synonymous for map.

Definition A.2 (Map). A relation f ⊆ E×F left-surjective and univocal is called a
map.

Definition A.3 (Surjective map). f : E → F is said surjective (i.e. f is a surjection)
if f [E] = F.

Definition A.4 (Injective map). f : E → F is said injective (i.e. f is an injection) if
for any y ∈ F, f−1[{y}] = {x}, i.e. is a un singleton or f−1[{y}] = /0.

Definition A.5 (Bijective map). f : E → F is said bijective, if f is surjective and
injective. The isomorphisms are bijective maps particularly important.

Isomorphisms: Two spaces of similar structures are regarded as equivalents, relative
to the considered structures, if there is between them a bijective morphism, whose
reciprocal map is also a morphism. Then we are faced with an isomorphism, and
two spaces are known as isomorphic.

Automorphisms: The isomorphisms of a structured set on itself is called an auto-
morphism. The set of all automorphisms of a structured set, provided with the
composition of maps, is a Group (i.e. group of automorphisms). For example in
Galois theory this type of group is important.

Topological Invariants: In geometry the objective of the topology is to study
the classes of topologically equivalent points sets (see figures hereafter giving
some basic examples) and to describe their representatives using properties which
remain unchanged by homeomorphism (topological invariants). The invariants by
continuous map, i.e. the continuous invariants are also very important.

Set of topologically equivalent points Set of topologically non-equivalent points

A function f (x,y,z, . . .) of n variables with real values can be taken as a map
of a part of the space with n dimensions noted R

n, in the set of Real numbers R,
f : R

n −→ R. One can consider for example j functions of n variables, thus the
elaborated map would be from R

n to R
j.
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Definition A.6 (Homeomorphism). A map f from a part A of R
n to a part B of R

j

is a homeomorphism from A to B, if it is invertible and bicontinuous i.e. continuous
for f and for the f−1 inverse function from B to A.

Another manner of providing a homeomorphism definition is as follows:

Definition A.7 (Homeomorphism). A map f is a homeomorphism from A to B if
it is injective and continuous and if its inverse function is itself continuous.

In short, the idea of continuity concerning the topology of a space with n dimen-
sions (defined from the Euclidean distance) requires that the parts A and B include
a neighborhood of each one of their points. Thus, let us imagine a circle inside an
equilateral triangle with C a center of gravity which is confused with the center of
the circle. It is logical of saying that any half-line starting from C cuts the circle in
M and the triangle in M′. Thus the map f : M −→M

′
is such that at each point of

the circle corresponds a point of the triangle and reciprocally (see Fig. A.2a). Two
neighbor points of a figure will correspond to two neighbor points of the other figure.
The map f is said to be a homeomorphism. Thus the circle and triangle are homeo-
morphic. Then a homeomorphism is defined as an invertible map and bicontinuous.
The function g : {(t,0)|x ∈ R

1} → {(x,y)|x2 + (y− 1)2 = 1∧ y �= 2} defined by
(t,0) �→

(
4t

t2+4 , 2t2

t2+4

)
, verifies: (1) g is bijective (2) g is continuous (3) g−1 is contin-

uous, then this function is a homeomorphism. A straight-line in R
2 is topologically

equivalent to a circumference deprived of one of its points (see Fig. A.2b).
A diffeomorphism is more restrictive than a homeomorphism (A diffeomorphism

is an abbreviation for transformation which is one-to-one, unique, C1 and of which
the inverse exists and is also C1).

Definition A.8 (Diffeomorphism). The f map is a diffeomorphism from A to B if
it is invertible and admits on A continuous partial-derivatives of order 1 (and the
same on B for the reciprocal map f−1).

Briefly, it is possible to say that a diffeomorphism is a map between manifolds
which is differentiable and has a differentiable inverse. Another manner of giving a
definition is as follows:

(0,2)

(0,0) (t,0)

(x,y)

(a) (b)

Fig. A.2 (a) Homeomorphism f , (b) Homeomorphism g
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Definition A.9 (Diffeomorphism). The map f is a diffeomorphism from A to B, if
it is a homeomorphism and if f and the inverse function f−1 are differentiable. Any
diffeomorphism is a homeomorphism, but the converse is false.

A function f of a real variable defined on an interval I, for which it admits a
continuous derivative and of a constant sign, is a diffeomorphism of I on the image
interval f (I). We notice that the map from a circle �−→ a triangle ( f : M �−→M′),
mentioned above is not a diffeomorphism because of discontinuities in the derivative
at the passing of the vertices of the triangle. The map from a circle towards an
ellipse is by contrast a diffeomorphism. The bijective mapping of the circle towards
a segment [0;1[ is a diffeomorphism.

A.1.2 Metric Spaces and Topological Spaces

A.1.2.1 Preamble: From Adherent Points Towards Compact Sets

If a subset E ⊂R
p is provided with the topology induced by R

p and if A is a part of
E, the topological situation of a point P of E in relation to A can be specified in the
following way:

Definition A.10 (Adherent point). P is an adherent point of A, if any neighborhood
of P meets A; in particular any point of A adheres to A, but there can be different
ones.3

Definition A.11 (Exterior point). A point P, which is not an adherent point of A,
is an exterior point of A.

Definition A.12 (Interior point). A point P is an interior point of A if P has a
neighborhood included in A.

Definition A.13 (Isolated point). A point P is an isolated point of A if there exists
a neighborhood of P which meets A only in P.

Definition A.14 (Accumulation point, or cluster point, or limit point). A point
P is an accumulation point of A if any neighborhood of P meets A elsewhere than
in P.

Definition A.15 (Frontier point, or boundary point). A point P is a frontier point
of A if any neighborhood of P meets A and E\A.4

Definition A.16 (Open set). A set only constituted of interior points is called an
open set (e.g. a disc without its circumference).

3 An adherence is taken and called more usually as a closure.
4 In mathematical logic: A\B : {x | x ∈ A ∧ x /∈ B}, knowing that ∧,∨ mean: “and”, “or”.
(e.g. E ∧d(x,m) < ε , means that E is provided with a distance d(x,m) < ε).
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Definition A.17 (Closed set). A set is called a closed set if its complementary set
in E is an open set.5 (By contrast “closed” is not equivalent to “non-opened”.)

Definition A.18 (Frontier set). The set of frontier points of A, called frontier ∂A of
A, is exactly the set of points of A which are neither interior nor exterior of A. i.e.
there is ∂A = ∂ (E\A). A frontier is closed.

Definition A.19 (Connected set).

1. Two parts A and B of R
p are separated parts if there is simultaneously A∩B = /0

and A∩B = /0.
2. A part N of R

p is a non-connected part if we can write it under the following form
N = A∪B, where A and B are separated non-empty parts.

3. A part C of R
p is connected in the contrary case.

On R the only connected (set) are the intervals (bounded or non-bounded) and
the singletons. The image of an interval (e.g. I = [0,1]) by the continuous map f
will be still a connected set. The image f [I] constitutes a connected link between
the points f (0) and f (1). It is possible to say there is an arc between the points f (0)
and f (1) and a closed arc if f (0) = f (1).

Remark A.1 (Set Closure). The closure of a set A is the smallest closed set contain-
ing A. Closed sets are closed under arbitrary intersection, so it is also the intersection
of all closed sets containing A. In particular, it is just A with all of its accumulation
points. The term “closure” is also used to refer to a “closed” version of a given set.
The closure of a set can be defined in several equivalent ways, including: (1) The
set plus its “limit points”, also called “boundary points”, the union of which is also

5 Complementary set of A in E, i.e. the complement of A in E. Since A is a subset of the set E,
the complementary set of A is also a subset of E. Therefore, the complementary set of A is the
complement of A in E.
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Fig. A.3 Convexity

Fig. A.4 Simply and not simply connected

called the “frontier”. (2) The single smallest “closed set” containing the given set.
(3) The complement of the interior of the complement of the set. (4) The collection
of all points such that every neighborhood of these points intersects the original set
in a nonempty set Figs. A.3, A.4 show resp. convex and simply connected sets.

Connected: Connectivity properties respect the following hierarchy: (a) Convex ⇒
(b) Star convex⇒ (c) Pathwise-connected⇒ (d) Connected.

Definition A.20 (Compact subset). The subsets of R
p which are at the same time

closed and bounded are called compact.

Continuous invariant: The property “closed-bounded” in R
p is a continuous invari-

ant. If we consider the image by a continuous map f of a segment I in R or more
generally in R

p, this image is connected but is also closed bounded; A part of R
p is

bounded if it is contained in an open ball.

Theorem A.1 (Compact of R
n). A part of (Rn,Rn) is a compact if and only if it is

closed bounded.

Jordan curve: Also called closed Jordan curve. A Jordan curve is a plane curve
which is topologically equivalent to a homeomorphic image of the unit circle, i.e. it
is simple6 and closed7 curve.

A.1.2.2 Topological Spaces

Definition A.21 (Topological spaces). (E,T) is a topological space if T is a subset
of B(E) having the following properties:

6 Simple curve: A curve is simple if it does not cross itself.
7 Closed curve: In the plane, a closed curve is a curve with no endpoints and which completely
encloses an area.
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(1) : /0 ∈ T,E ∈ T, (A.1)
(2) : O1,O2 ∈ T⇒ O1∩O2 ∈ T, (A.2)

(3) : T′ ⊆ T⇒
⋃

O∈T′
O ∈ T. (A.3)

T is called a topology on E. The elements of T are called “open”, the elements of E
are called “points”.

Definition A.22 (Neighborhood). V is called neighborhood of x if V ⊆ E and if
there exists one O ∈ T such that x ∈ O ⊆ V. One indicates by B(x) the set of all
neighborhoods of x. Moreover it is known that B(x) �= /0, because E ∈B(x).

A topological space can be also defined using axioms on the neighborhood, and
the concept of open set results from this approach. With the neighborhood concept
we can define the convergence of a sequence:

Definition A.23 (Convergence of a sequence). Let (a0,a1, . . .) be a sequence in
a topological space (E,T). It is said that the sequence converges towards a ∈ E
(noted lim

n→∞
an = a) if for any neighborhood V ∈B(x) there exists one n0 ∈ N such

that n � n0 ⇒ an ∈V.

In a topological space the limit is not necessarily unique. However if for any
couple of distinct points of E it is possible to find two disjoint “open sets” containing
them (separated space in the Hausdorff sense), then the limit is single. Metric spaces
are separated spaces.

Metric spaces: The metric spaces are a generalization of Euclidean spaces. Like
Euclidean spaces they admit a “topology” defined by a metric.

A.1.2.3 Metric Spaces: Distance, Ball, Convergence and Haussdorff Measure

Definition A.24 (Metric space). A set E is a metric space if one defined a distance
on E, i.e. if there is a map d : E×E → R+ verifying the properties:

(1) : d(x,y) = 0⇔ x = y, (A.4)
(2) : d(x,y) = d(y,x), (A.5)
(3) : d(x,y)+ d(y,z)≥ d(x,z). (A.6)

The spaces Q and R are metric spaces for the distance defined by the following
absolute value:

d(x,y) := |x− y| . (A.7)

Definition A.25 (Transformation of a metric space into topological space). Any
metric space can become a topological space. To this end does, one defines an open
ball of center m and radius ε > 0 by:8

8 Logic: ∧,∨: “and”, “or”. (e.g. E ∧ d(x,m) < ε , means that E is provided with a distance
d(x,m) < ε).
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B(m,ε) := {x | x ∈ E ∧d(x,m) < ε}, (A.8)

and it is said that a non-empty subset of E is open if it contains at least a centered
open ball at each one of its points.

Remark A.2 (Topological spaces, Balls and neighborhoods). The open balls have
a particular property in such a space, indeed they are themselves open sets, and
thus it is possible to say that: “Any non-empty open set is a union of open balls”.
Consequently, rather than the set of neighborhoods of a point, it suffices to consider
the set of open-balls centered at this point. Taking into account what was just stated,
we can rewrite the definition of the convergence of a sequence by means of balls.

Definition A.26 (Convergence of a sequence by means of balls). Let (a0,a1, . . .)
be a sequence in a topological space (E,T). It is said that sequence converges
towards a ∈ E, as soon as for any open ball B(a,ε) there exists a n0 ∈ N such that
n � n0 ⇒ an ∈ B(a,ε), i.e. if we have:

∀ε(ε ∈R
∗
+ ⇒∃n0∀n(n � n0 ⇒ d(an,a) < ε)). (A.9)

Any metric space is separated.

The oriented plane as a topological space: The set of intersections of a finite number
of open half-planes constitutes a sub-basis in the topological sense, which makes it
possible to provide any oriented plane with a topological structure called a natural
topology. (Any natural topology satisfies the Hausdorff axiom of separation.)

It is possible to use this simple topological space, i.e. the oriented plane, to
present some fundamental concepts that we can then transpose in more complex
spaces such as the vector spaces.

The metric plane: The point and the straight line correspond to elementary geo-
metrical concepts appearing in the axioms where they are implicitly defined. Let
Π be the set of points and Γ the set of straight-lines (and respectively the points
themselves are noted P and the straight-lines noted g).

We define the relation I (i.e. incident to) in Π×Γ, and the relation⊥ (i.e. orthog-
onal or perpendicular to) in Γ×Γ. And if we note g an arbitrary line, we can write
PIg which means that P is on g or that p passes by P.

Definition A.27 (Projective plane). A set of points and lines are called “incidence
projective plane” when it satisfies:

1. For any pair of distinct points A and B, there exists one and only one line g
incident to A and B.

2. For any pair of distinct lines g and h, there exists one and only one point A incident
to g and h.

3. There are four points whose three unspecified which are not incident to a same
line.

Theorem A.2 (Single projective transformation). There is one and only one pro-
jective transformation of a rectilinear division into itself or into another rectilinear
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division, transforming three given points pairwise distinct into three given points
pairwise distinct.

Definition A.28 (Orthogonal collineation). A bijective map σ from Π∪Γ on itself
such that σ [Π] = Π and σ [Γ] = Γ is called orthogonal collineation when it is
compatible with the relations I and ⊥, i.e. PIg ⇒ σ [P]Iσ [g] and a ⊥ b ⇒ σ [a] ⊥
σ [b].

Definition A.29 (Collineation). A bijective map σ is called a collineation when it
is compatible with the relations I and verifies only σ [Π] = Π and σ [Γ] = Γ.

Definition A.30 (Collineation, or correlation, of a projective plane). If Π and
Γ are respectively the set of points and the set of lines of a projective plane,
a collineation (or correlation) of this one is a transformation which applies in a
bijective way Π on Π and Γ on Γ by preserving the incidence.

Orientation: Given an Ordered Field K of co-ordinates, there are two order relations
≤,9 and only two, ordering the points of an unspecified line noted g. Consequently
it is possible to say that the line is oriented, it is noted (g,≤). The orientation of
lines makes possible to orient the plane.

The oriented plane as a topological space: The set of intersections of a finite number
of open half-planes constitutes a subbasis in the topological sense, which makes it
possible to provide any oriented plane with a topological structure called natural
topology.

A.1.2.4 Elements of Analytical Geometry

Canonical Scalar Product in the Vector Space R
n

Given x = (x1, . . . ,xn), y = (y1, . . . ,yn) elements of R
n, the map from R

n×R
n to R

n:

(x,y)→ 〈x,y〉=
n

∑
i=1

xiyi (A.10)

is bilinear symmetrical. 〈x,y〉 corresponds to the canonical scalar product of two
vectors x,y. It is possible to pose |x|=√〈x,x〉, a vector x is called unit if |x|= 1.

Theorem A.3. The absolute value of the product of the two unit vectors is≤ 1. From
(|xi|− |yi|)2 ≥ 0⇔ x2

i − y2
i ≥ 2 |xiyi| we obtain: 2 = ∑n

i=1(x
2
i − y2

i )≥ 2∑n
i=1 |xiyi| ≥

2 |x · y| , and we obtain: ∀(x,y) ∈R
n×R

n |〈x,y〉| ≤√(x,x)(y,y) which corresponds
to the Cauchy–Schwartz inequality.

9 Order relation is equivalent to ordering.
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Canonical Euclidean Norm

It is said that the map x→ |x| is a (Euclidean) norm on the vector space R
n and the

map (x,y)→ |x− y| is thus a (Euclidean) distance on affine space R
n : R

n is a metric
space. From |x · y| ≤ |x| · |y| we obtain x2 + y2 + 2xy ≤ x2 + y2 + 2 |x| |y| , and then
(x + y)2 ≤ (|x|+ |y|)2.

Angle Measures and Orthogonal Vectors

The inequality of Cauchy–Schwarz
|x · y|
|x| |y| ≤ 1 for non-null values of x and y makes

it possible to define one and only one angle θ ∈ [0,π ] such that:

cos(θ ) =
|x · y|
|x| |y| , (A.11)

where θ is the angle of two non-null vectors x and y. And the relation x ·y = 0 means
that either one of the two vectors is null or that the angle (x,y) = π/2, thus (x,y) are
orthogonal.

A.1.2.5 Similitudes, Homotheties and Orthogonal Systems

Definition A.31 (Homothety). A homothety is a collineation π which verifies π(g) ‖
g for any line g and having at least a fixed-point Z, called center of the homothety.10

From π(g) ‖ g it is deduced that π is an orthogonal collineation, and that a point and
its image are aligned with Z.

Definition A.32 (Similitudes and homothetic figures). Two figures are known as
homothetic when one is the image of the other by at least a homothety.

Definition A.33 (Orthogonal system). A family of vectors (v1,v2, . . . ,vs) of R
n is

known as an orthogonal system if for all (i, j), i �= j, vi · v j = 0.

Definition A.34 (Orthonormal system). A family of vectors (v1,v2, . . . ,vs) of R
n

is known as an orthonormal system if ∀i, j, vi · v j = δi j (The Kronecker symbol:
δi j = 0 if i �= j, δi j = 1 if i = j).

The canonical basis of R
n is orthonormal. Any orthogonal system of non-null

vectors is free. It contains at most n vectors. If (v1,v2, . . . ,vs) is a basis of a vectorial
subspace of R

n, we can by means of successive operations carried out on the vi to
construct an orthonormal basis of this subspace (i.e. Schmidt Orthonormalization).

10 ‖ : Parallel.



A.1 Relations, Metrics, Topological Structures 653

A.1.2.6 Metric Spaces, Hausdorff Measure and Fractal Dimension

Metric spaces constitute an important class of topological spaces:

Definition A.35 (Metric space). Let M be a non-empty set, (M,d) is metric space
if d is a map of M×M in R

+ (called a metric on M) verifying the properties:

(1) : d(x,y) = 0⇔ x = y, (A.12)
(2) : ∀(x,y),d(x,y) = d(y,x), (A.13)
(3) : ∀(x,y,z),d(x,y)+ d(y,z) ≥ d(x,z), (A.14)

where d(x,y) is the distance of x and y.

• It is possible to provide R
n with the distance:

dE(x,y) =
√

∑n
v=1 (xv− yv)2, (A.15)

between two points x = (x1, . . . ,xn) and y = (y1, . . . ,yn) : dE is the Euclidean
canonical metric. And in R one finds dE = |x− y| .

• Other distances on R
n:

d1(x,y) =
n

∑
v=1
|xv− yv|2 , (A.16)

d∞(x,y) = sup{|xv− yv| | v = 1, . . . ,n} . (A.17)

As explained previously, any metric space can become a topological space.

Definition A.36 (Separation). Let (E,T) be a topological space. The parts A and
B of E are known as separated if A∩B = /0 and A∩B = /0.

Definition A.37 (Non-connection). Let (E,T) be a topological space, this space is
known as non-connected if it is the union of two separated non-empty parts.

Definition A.38 (Connection). A subset of a topological space is known as con-
nected if it is connected for the induced topology.

Theorem A.4 (Connected topological space). A topological space (E,T) is con-
nected if and only if it contains exactly two subsets which are at the same time open
and closed (E and /0).

Theorem A.5 (Connected image). The image of a connected space by a continuous
map is connected.

Any metric space provided with a metric topology is known as a Hausdorff space.

Definition A.39 (Internal homothety). A subset F of an Euclidean space is known
as a internal homothety if there is a partition of F of which all the parts are similar
to F.
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Definition A.40 (Hausdorff measure). Let F be a non-empty bounded part of a
metric space and a real number α > 0. One designates by “Hausdorff exterior α-

measure” of F the real mα(F) = lim
ε→0

(

inf ∑
i∈I

dα
i

)

, where “inf” is taken on all the

(indexed) coverings of F by the balls of diameter di ≤ ε.

Hausdorff–Besicovitch dimension (or fractal dimension): For F the real mα(F) =
+∞ if α < α0 and mα(F) = 0 si α > α0. It is Besicovitch which showed the exis-
tence of such a real number α0 for any bounded part F of an Euclidean space. (When
F is a regular injective nappe11 in an Euclidian space, the fractal dimension coin-
cides with the topological dimension and is equal to 2. When F is a regular Jordan
arc, the fractal dimension coincides with the topological dimension and is equal
to 1.)

Any bounded part of a metric space whose fractal dimension is strictly higher than
its topological dimension is a fractal set.

Theorem A.6 (Fractal dimension). If F is a bounded subset of an Euclidean space
of finite size with internal homothety for a regular finite partition, then the following
expression is equal to its fractal dimension: − logn

log r .

The fractal dimension of a rectangular solid (i.e. a rectangular parallelepiped
or a cuboid) for example is equal to its topological dimension, whereas the fractal
dimension of the Von Koch curve is equal to 1.26. which is higher than its topolog-
ical dimension. We are thus faced with a fractal set. The Cantor set is also a fractal
set and its dimension is equal to: log2

log3 = 0.63 . . ..

Fractal Geometry

In fractal geometry the Mandelbrot set is compact and connected, and the fractal
dimension of its frontier is 2 (see Shishikura). This Mandelbrot set corresponds to a
filled Julia set. It is written by the following complex sequence: zn+1 = z2

n +c,z0 = 0,
c is fixed, element of C.

11 Nappe: one of the two pieces of a double cone, i.e. two cones placed apex to apex:

(Remark: Hyperbolic plane is a differentiable manifold which can be provided with a Riemannian
structure).
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A.2 PreHilbert, Hilbert and Banach Spaces

A.2.1 Normed Spaces

In order to use the methods of the functional analysis in a vector space, it is nec-
essary to provide it with a topological structure. The normed spaces are a major
illustration of such vector spaces.

Definition A.41 (Normed vector space). (E,‖ ‖) is called normed vector space if
E is vector space on K (with K = R or K = C, i.e. K is either the field R or the
field C) and if one defined on E a norm, i.e. a function ‖ ‖ : E → R, verifying the
following properties:

‖x‖= 0⇒ x = 0, (A.18)
∀α ∈K,∀x ∈ E,‖αx‖= |α| ‖x‖ , (A.19)
∀x,y ∈ E,‖x+ y‖ ≤ ‖x‖+‖y‖ . (A.20)

Provided with this norm, we can define a distance dN(x,y) := ‖x− y‖. The
normed spaces are thus metrics in which we can define continuity and “compact-
ness” by means of sequences.

A.2.2 PreHilbert Spaces

In R
n, it is possible to introduce the Euclidean norm ‖ ‖2 by means of the scalar

product ‖x‖2 =
√〈x,x〉. And more generally, it is defined:

∀x,y ∈ E,〈x,y〉= 〈x,y〉, (A.21)

∀x1,x2,y ∈ E,〈x1 + x2,y〉= 〈x1,y〉+ 〈x2,y〉, (A.22)
∀x,y ∈ E,∀α ∈K,〈αx,y〉= ᾱ 〈x,y〉 , (A.23)

∀x �= 0,〈x,x〉 ∈ R
∗
+, (A.24)

where ᾱ is the complex conjugate of α if K = C. (R∗+ is the set of real numbers
> 0, whereas R+ is the set of real numbers≥ 0 or � 0.)

Theorem A.7 (Norm of a vector space). In any vector space provided with a scalar
product, it is possible to define a norm by:

‖x‖ :=
√
〈x,x〉. (A.25)

Definition A.42 (PreHilbert Space). A space provided with a scalar product is
called PreHilbert space. It is normed space whose norm is defined using the scalar
product.

It is possible to give the following example: C
n with 〈x,y〉=

∞

∑
v=1

x̄vyv.
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A.2.3 Banach Spaces and Hilbert Spaces

In a normed space, it is possible to define the convergence of a sequence. We indicate
x ∈ E as the limit of the sequence (x) if ∀ε ∈ R

∗
+, ∃n0 ∈N such that ‖xm−xn‖< ε

as soon as n ≥ n0. It is possible also to define Cauchy sequences, which are given
by the following properties: ∀ε ∈ R

∗
+,∃n1 ∈ N such that ‖xm−xn‖ < ε as soon as

n≥ n1 and m≥ n1.
Any convergent sequence is a Cauchy sequence, by contrast the converse is not

true in any normed space.

Cantor process and complete spaces: In spite of what precedes, by means of a pro-
cess which is called the process of Cantor, it is possible from any normed space to
build a complete space which is its closure12 (in the topological sense).

Definition A.43 (Banach space and Hilbert space). A complete normed vector
space (i.e. a normed space in which any Cauchy sequence converges) is called
Banach space; a complete PreHilbert space (with the associated norm with the scalar
product) is called Hilbert space.

For example, the space C0[a,b] can be normed by means of:

‖ f‖∞ := sup({| f (t)| t ∈ [a,b]}) (A.26)

which is the uniform convergence norm. This space C0[a,b] provided with this norm
is complete, it is thus a Banach space.

A.2.3.1 Cn[a,b] Space

It is possible to build Banach spaces whose elements are functions on [a,b] which
are continuous and differentiable.

Definition A.44. The space of functions f on [a,b] ⊂ R, with real values, n con-
tinuously differentiable times (n ∈ N\{0}), provided with the internal addition and
with the external multiplication by an element of R, is a vector space on R which
is possible to norm by means of: ‖ f‖n := sup

({∥
∥
∥ f (k)
∥
∥
∥

0
k ∈ {0,1, . . . ,n}

})
. This

space is noted Cn[a,b], where f (k) indicates the k-th derivative of f .

Theorem A.8. The spaces Cn[a,b] are Banach spaces.

A.2.3.2 Lp[a,b] Space

Definition A.45. The space of the functions f on [a,b]⊂R, with value in K (where
K = R or K = C), whose Lebesgue integral exists for a given p ∈ R

∗
+, i.e. the

12 (adherence).
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Lebesgue integral:

∫ b

a
| f (t)|p dt (A.27)

exists for p ∈ R∗+, and is noted Lp[a,b].

A.2.4 Differentiable Operators

In Banach spaces, since they are vector spaces, it is possible to define a linear map
from a Banach space to another (with same field R and C).

Definition A.46 (Linear operator). A linear F : B1 → B2 (B1,B2 are two Banach
spaces) is called linear operator. F is known as bounded if there exists c ∈ R+ such
that ∀x ∈ B1, ‖F(−→x )‖ ≤ c‖−→x ‖ .

Definition A.47 (Operator). Any map F : DF → B2, where DF ⊆ B1(B1,B2 being
two Banach spaces) is called operator. (This definition contains obviously the linear
operators.)

Definition A.48 (Differentiable operator). An operator F : DF → B2, where DF ⊆
B1 is known as differentiable at the point a ⊆ DF if a belongs to the interior of DF

and if there exists a bounded linear operator
δF
δx

(a) ∈ [B1,B2] such that we have,
if a+ s ∈ DF :

lim
‖s‖→0

∥
∥
∥
∥F(a + s)−F(a)− δF

δx
(a)(s)

∥
∥
∥
∥

‖s‖ = 0. (A.28)

The numerator corresponds to the norm of B2, and the denominator corresponds to
the norm of B1.

A.2.5 Banach Fixed-Point Theorem

Let F be an operator applying a Banach space B on itself. For the functional analysis
and in particular for the approximation problems, the existence of at least a fixed-
point x0 under F (F(x0) = x0) is important. The theorems of the fixed-point insure
under conditions its existence. We have in particular:

Theorem A.9 (Banach fixed-point). Given F : B → B (B is a Banach space), if
there exists c ∈ ]0,1[ such that ∀x1,x2 ∈ B,‖F(x2)−F(x1)‖ ≤ c‖x2−x1‖ , F have
one and only one fixed point x0.
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To show it we select a fixed x1 ∈ D and we construct a sequence xn+1 = F(xn)
(n ∈ N), then we show that for n≥ 2:

‖xn+1−xn‖= ‖F(xn)−F(xn−1)‖ ≤ cn−1 · ‖x2−x1‖ , (A.29)

then by applying several times the triangular inequality, and by comparing with a
geometrical sequence

‖xn+1−xn‖ ≤ cn−1 · ‖x2−x1‖
1− c

(A.30)

for any m > n. Thus {xn} form a Cauchy sequence, i.e. it converges in the Banach
space B and the limit is a fixed-point. (It is then only necessary to demonstrate the
uniqueness of this fixed-point.)

A.2.6 Differential and Integral Operators

Many applications of the functional analysis are based on the fact that it is possi-
ble to interpret the differentiation and integration of a function as linear operators
applied to this function:

• One defines the differential operator noted D : C1[a,b]→C0[a,b] by D( f ) = f ′.
The linearity of D results from the linearity of the derivation.

• One defines the integral operator noted K, which transforms a function f into a
function K( f ) by integration. Let Φ : [a,b]2 → R be a continuous function: it is
possible consequently to define an integral operator K: C0[a,b]→C1[a,b] by:

K( f )h =
∫ b

aΦ(h,t) · f (t)dt. (A.31)

Such an operator is linear and bounded. Function Φ is called kernel of K.
• Hermitian integral operators: The set C0([a,b],C) of continuous functions on

[a,b] with complex values is vectorial C-space that one can provide with Hermi-
tian scalar product:

〈 f ,g〉 =
∫ b

a f (t)g(t)dt. (A.32)

The Hermitian norm for a continuous function is
√〈

f , f̄
〉
.

A.3 Complex Number Field, Holomorphic Functions
and Singularities

The branch of mathematics called theory of Analytic functions is interested in
the functions with complex values and complex arguments. The property of lin-
ear approximation for the real functions of the real variable, makes it possible to
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define the class of differentiable functions, the integrability, the classes of Riemann-
integrable functions (respectively Lebesgue-integrable).

By passing from R to C, in the same way, classes of functions were researched.
Thus were introduced for the complex functions of the complex variable: The
entire series13 (Weierstrass), the property of integrability (Cauchy), the topologi-
cal properties and complex derivation (Riemann), and the definition of particular
geometrical transformations (Abel).

The set of all these constructions led to only one class of functions, that of holo-
morphic functions. The theory of holomorphic functions is remarkable, indeed this
theory appeared complete, and provides solutions to many problems that the the-
ory of the functions of the real variable did not make it possible to solve. Often
only a complex continuation14 of a function of real variable can give satisfactory
information on its behavior.

The holomorphy is in particular defined as a complex derivability. Since the func-
tions from C to C are identifiable to functions from R

2 to R
2, a function whose

real components are continuously derivable can be holomorphic (Cauchy–Riemann
derivates conditions).

Singularities: The study of the convergence domains of entire series led (amongst
other things) to the singularity concept, which corresponds to exceptional points
where the holomorphic continuation is not possible. Among the singularities of a
function, some can disappear if one extends in a suitable way the function notion.
For those where it is not possible, then, they are called essential singularities.

The meromorphic function concept in the compactified complex plane and the
extension of the domain to the sets of points of dimension 2, superposed to the com-
plex plane, provide powerful tools for these continuations (i.e. Riemann surface).
Only the concept of Analytic function on a Riemann surface really makes it possible
to define the functions which are the object of the theory of functions. Based on this
approach, then the generalized series appear, such as the Laurent series. Within this
framework, through examples about the set of periodic and algebraic functions, the
importance of the theory of functions is emphasized. In particular, we emphasize
the remarkable properties of the complex analytic continuation of the real exponen-
tial function which proves to be periodic and in close relationship to the circular
functions. Lastly, the doubling periodic functions (i.e. period doubling15) make it
possible to discover fundamental new properties which cannot not appear (in a
classical way) in the case of the real variable functions.

13 Entire series: (i.e. a finite polynomial function). A power series which converges for all values
of its variable; a power series with an infinite radius of convergence.
14 The term “Continuation” is used as “Extension”. More generally, the term continuation is used
in the framework of the “Analytic functions”. Analytic continuation (which is sometimes called
simply continuation) provides a way of extending the domain over which a complex function is
defined. The most common application is a complex analytic function determined near a point zc
by a power series continuation: ϕ(z) = ∑∞

i=0αi(z− zc)i. Power series: a power series in a variable
z is an infinite sum of the form: ∑∞

i=0αizi, where αi are integers, real numbers, complex numbers,
or any other quantities.
15 See also nonlinear functions.
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A.3.1 Complex Number

The complex number Field C was built as an extension field of R. The numbers
z ∈ C are written in the form z = x+ iy where x and y ∈ R and i2 =−1. x is the real
part and y the imaginary part of the number z. This complex number z = x + iy is
represented in a Gauss plane by the point (x,y) in R

2.

Moivre formula: The complex numbers make it possible to avoid using the sines
or cosine and to have one coefficient for each frequency. The Moivre formula is
written:

eiθ = cosθ + isinθ . (A.33)

When the value of the angle θ increases, the number eiθ moves along the circumfer-
ence of a circle of radius 1. One defines a modulus or the absolute value of z = x+ iy
by posing:

|z|=
√

x2 + y2. (A.34)

C is defined as a metric space by means of the norm:

d(z,z′) =
∣
∣z− z′

∣
∣ (A.35)

by knowing that: |z|2 = zz̄. In the Gauss plane, the ε-neighborhoods of z are open
disks with center z and radius ε. C provided with a metric associated with d is a
locally compact space (but non-compact). Moreover C is a complete space, i.e. in
C any Cauchy sequence converges. (In the following paragraph it is explained how
to compactified C.)

Compactification of C:16 If one adds a complementary point to C, which is called a
point ad infinitum (i.e. at infinity) and is noted ∞, it is possible to compactify C the
locally compact topological space. It is noted generally: Ĉ = C∪{∞}. The metric
topology of Ĉ is defined by the distance:

d̂(∞,z) =
1

√
1 + |z|2

, (A.36)

where the distance d̂ is called the chordal distance. All parts of Ĉ which contain ∞
and the exterior of a circle with center 0 in C belong to the set of neighborhoods of
∞ (which is noted ↑↓(∞)), because:

|z|> r⇔ d̂(z,∞) <
1√

1 + r2
. (A.37)

When it is said that the sequence (zn) defined in C, tends to ∞ in Ĉ, i.e. |zn| is
strongly divergent in R

+, this explains the choice of this term “point at infinity” or

16 Compactification: A compactification of a topological space E is a larger space F containing E
which is also compact. The smallest compactification is the one-point compactification (e.g. the
real line is not compact. It is contained in the circle, which is obtained by adding a point at infinity.
In a same way, the plane is compactified by adding one point at infinity, providing the sphere).
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point “ad infinitum”, or in an equivalent way d̂(zn,∞)→ 0. (It is important to say
that∞ cannot be to handle as a complex number.) An open part of (C,d) respectively
(Ĉ,d) is connected if it is not the union of two disjoint non-empty “open sets”.

Definition A.49 (Domain). Such a part is called Domain.

A.3.2 Construction of the Field C of Complex Numbers

The extension of the algebraic structure of R highlights a crucial property of
algebraic closure.

Algebraic closure: The field F is called an algebraic closure of F if F is algebraic
over F and if every polynomial f (x) ∈ F [x] splits completely over F , so that F can
be said to contain all the elements that are algebraic over F . For example, the field
of complex numbers C is the algebraic closure of the field of reals R.

There are expressions which have no meaning in R, e.g.
√−1 cannot be defined

as a real number, i.e. the polynomial X2 + 1 of the ring of polynomials which is
denoted R[X ] (refer to “Ring of polynomials” in Algebra), does not admit real root,
it is irreductible. In Algebra, It is possible to show how starting from an irreducible
polynomial of the ring of polynomials R[X ] over an arbitrary commutative field R,
it is possible to build an extension field in which the aforesaid polynomial admits a
root. By implementing this result to the present particular case, it is possible to form
the quotient ring of R[X ] by the equivalence relation “modulo X2 + 1”. To this end,
first we define the equivalence of two polynomials f (X) and g(X) of R[X ] by:

Definition A.50 (Equivalence of two polynomials). f (X)Rg(X) :⇔∃h(X),h(X)∈
R[X ]∧ f (X)− g(X) = h(X)(X2 + 1).

Definition A.51 (C by Ring of polynomials). C := R[X ]/R = {[[ f (X)]] | f (X) ∈
R[X ]}.
Remark A.3. Instead of R[X ]/R it is also written: R[X ]/(X2 + 1).

It is possible to define in C an addition and a multiplication of equivalence classes
independently of chosen representatives:

Definition A.52 (Addition, multiplication in the field C). [[ f (X)]] + [[g(X)]] =
[[ f (X)+ g(X)]]. [[ f (X)]] · [[g(X)]] = [[ f (X) ·g(X)]].

(C,+, ·) is a commutative field. The existence of an inverse can be demonstrated
for the multiplication [[ f (X)]] �= [[0]] in the following way: From the irreducibility
of X2 +1, one deduces that the Greatest Common Denominator (GCD) of f (X) and
X2 + 1 is 1. Since R[X ] is an Euclidean entire ring, also called Euclidean integral
domain (refer to Number theory and basic concept of the divisibility), there exist
polynomials h(X) and k(X) verifying: f (X)h(X)+(X2 +1)k(X) = 1, and therefore,
[[ f (X) ·h(X)]] = [[1]]. Hence [[ f (X)]]−1 = [[h(X)]].
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Each class contains exactly one polynomial of the form a+bX with a,b∈R, and
is consequently determined by a given couple of real numbers, with: (a+bX)R(c+
dX)⇔ a = c∧b = d and f (X) = q(X)(X2 +1)+ r(X) with a degree of (r(X))≤ 1
and f (X)Rr(X). One deduces that the set of polynomials of the form a + bX with
a,b ∈R is a system of representatives of C, with the laws: [[a+bX ]]+ [[c+dX ]] =
[[(a+c)+(b+d)X ]], [[a+bX ]] · [[c+dX ]] = [[(ac+bdX2)+(ad +bc)X ]]= [[(ac−
bd)+ (ad + bc)X ]].

In C
∗ we have: [[a + bX ]]−1 =

[[
a

a2+b2 − b
a2+b2 X

]]
. We embed R in C by means

of the map f : R→ C defined by: a �→ [[a]]. [[a]] can be identified to a. Let us pose
i := [[X ]]. Then i is root of the polynomial X2 + 1, and we obtain the following
representation of an element of C:

[[a + bX ]] = a + b [[X ]] = a + bi with a,b ∈ R.

It follows: i2 = −1. The elements of C are called complex numbers. The construc-
tion process implies that C is the smallest extension field of R in which X2 + 1 has
roots. The complex numbers are often taken as couples of real numbers with the
corresponding operations of the addition and multiplication described above. Fur-
thermore, the numbers bi are called pure imaginary number (with b ∈ R

∗) and i is
the imaginary unit equal to the square of −1 :

√−1. When a single letter z = a+bi
is used to denote a complex number, it is sometimes called an “affix”. In component
notation, z = a+bi can be written (a,b). The field of complex numbers includes the
field of real numbers as a subfield.

A.3.3 Geometrical Representation of Complex Numbers

The exponentiation is the process of taking a quantity b (i.e. the base) to the power
of another quantity e (i.e. the exponent); this operation most commonly denoted
be. Before studying in C the exponentiation and its reciprocal function, we are
going to see the geometrical representation of complex numbers. The field C can
be regarded as a two-dimensional vector space over R, of base {1, i}. In the writing
z = a + bi (i.e. Euler formula) we interpret the real numbers “a” (i.e. real part) and
“b” (i.e. imaginary part) as coordinates in a coordinate system (i.e. Cartesian coor-
dinates). In the Descartes treatise (1637), which introduced the use of coordinates
for describing plane curves, the axes were omitted, and only positive values of the
x- and y-coordinates were considered, since they were defined as distances between
points. For an ellipse this meant that, instead of the full picture which we would plot
nowadays, Descartes drew only the upper half.

To each complex number corresponds a point of the plane and conversely. The
Abscissa represents the reals and the Ordinate represents the pure imaginary num-
bers; Such a representation system is called Gauss complex plane (see Fig. A.5 left).
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Fig. A.5 Gauss complex plane (left), Complex conjugate and opposite (right)

Modulus of a complex number: In C it is possible to define an absolute value which
is called a modulus: |z|= |a + bi| :=√a2 + b2; (z1,z2) �→ |z1− z2| is then a distance
on C.

Complex conjugate: z = a− bi is the complex conjugate of the complex number
z = a + bi (see Fig. A.5 right).

We obtain then zz = |z|2 and z−1 = z/ |z|2 for z �= 0. Calculation rules are written:

z1 + z2 = z1 + z2, z1− z2 = z1− z2, z1 · z2 = z1 · z2,
(

z1

z2

)

=
z1

z2
.

Polar coordinates: In the Gauss complex plane one uses also the polar coordinates r
and θ with 0≤ θ < 2π , so that, for z �= 0, it is possible to write z = r(cosθ + isinθ ).
We deduce then r = |z|. θ is called the principal argument of z and is denoted
arg(z). Sometimes, it is said that the principal argument corresponds to θ ∈]−π ,π [.
Furthermore, for any k ∈ Z, θ + 2kπ is an argument of z which is denoted arg(z) =
θ +2kπ . In the theory of functions it can be demonstrated that cosθ + isinθ = eiθ ;
we obtain then that the normal representation of the nonzero complex numbers:
z = reiθ . And ∀k ∈ Z, e2kiπ = 1.

A.3.4 Operations in the Gauss Complex Plane

The addition and subtraction are carried out in the Gauss complex plane in a
vectorial manner (Fig. A.6). The multiplication and division are carried out geo-
metrically by means of similar triangles (Fig. A.7). These operations are made
by using a normal representation, i.e. representations of the form z1 = r1eiθ1 and
z2 = r2eiθ2, z1,z2 �= 0; then we have z1z2 = r1r2ei(θ1+θ2) and z1

z2
= r1

r2
ei(θ1−θ2). The

sum and subtraction of arguments must be reduced (modulo 2π) to a value include
between 0 and 2π to obtain a normal representation, i.e. a representation of the form
“z = reiθ ”.
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Fig. A.6 Addition and subtraction of complex numbers

Fig. A.7 Multiplication and division of complex numbers

Fig. A.8 Left: Rise to a power. Right: Extraction of a root nth

A.3.5 Algebraic Closure of C

We know that the rise to a power is equivalent to multiplications, then it is possible
to carry out the rise of a complex number to a whole power: z = reiθ ∧ n ∈ N ⇒
zn = rn · eiθn (z �= 0). We obtain also |zn| = |z|n and arg(zn) = n · arg(z) mod(2π)
with 0 ≤ arg(zn) < 2π . In a similar way the extraction of the root of z �= 0 can
be reduced to a calculation in R: for z = reiθ ∧ n ∈ N\{0} it is possible to define:
n
√

z = n
√

z ·ei θn (θ = arg(z)). We have here | n
√

z|= n
√|z| and arg( n

√
z) = 1

n arg(z); see
Fig. A.8 depicting the rise to a whole power and the extraction of the root nth of a
complex number, with n belonging to N\{0}.

Figure A.8 (left) corresponds to zn = rn ·eiθn = rn(cos(nθ )+ isin(nθ )); Fig. A.8
(right) corresponds to n

√
z = n

√
z · ei θn = n

√
z · (cos θ

n + isin θ
n ). n

√
z is a zero of the

polynomial Xn− z; such a polynomial have n distinct roots which are written xk =
n
√

z ·ei 2π
n k with k∈ {0,1,2, . . . ,n−1}. Furthermore, the symbol n

√
z indicates, among

the n roots, the smallest arguments. The roots of Xn− 1 is called the root nth of
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the unity. They correspond in the Gauss complex plane to the vertex of a regular
polygon included in the unit circle; a polygon whose one of the vertices is placed on
the half-axis of positive reals. It is possible to deduce from the previous properties
that (beyond X2− 1) any polynomial X2− z with z ∈ C admits roots. Following
theorem is a fundamental generalization.

A.3.6 Alembert–Gauss Theorem

Theorem A.10 (Alembert–Gauss). Every polynomial of C[X ] of degree n > 0
admits at least one root in C (refer to Polynomial Ring in Algebra).

This theorem is also called the Fundamental theorem of Algebra, It was first
proven by Gauss. It is equivalent to the statement that a polynomial P(z) of degree
n has n values zi (some of them possibly degenerate) for which P(zi) = 0. Such
values are called polynomial roots. An example of a polynomial with a single root
of multiplicity >1 is z2 − 2z + 1 = (z− 1)(z + 1), which has z = 1 as a root of
multiplicity 2.

There are several demonstrations of this theorem, however it is not possible to
demonstrate it by using purely algebraic means. Nevertheless one obtains a very
simple proof as consequence of the Liouville theorem in theory of functions. The
field C is then algebraically closed. (A field F is said to be algebraically closed if
every polynomial with coefficients in F has a root in F .) Indeed, one deduces from
the theorem that every polynomial of C[X ] of degree n > 0 is decomposed into a
product of n factors of the first degree. When all coefficients of the polynomial are
real numbers, if xi is root, then xi is also root, and the polynomial is decomposed
in R[X ] into product of linear and quadratic factors. If n is odd, then we must have
xi = xi for at least one root, and the polynomial admits a real root.

A.3.7 Exponential, Logarithm in C

By using the normal representation of complex numbers, it is possible to extend
the calculation of powers to complex exponents by conserving the calculation rules
used until now. For z = reiθ , r > 0, 0≤ θ < 2π , and w = x + iy, we have

zw = (reiθ )x+iy := rxriyeiθx−θy = (rxe−θy)ei(y ln r+θx). (A.38)

The extraction of root corresponds to a calculation of power like for the real num-
bers, one poses: w

√
z := z

1
w for z ∈ C and w ∈ C\{0}. The normal representation is

used to search for the logarithm, in particular for the logarithm of base e. It is possi-
ble to write lnz := lnr+ iθ for z = reiθ , z �= 0, r > 0, θ = arg(z). lnz is a solution of
the equation ex = z. Since e2iπ = 1, there is an infinity of solutions for this equation,
i.e. lnr+ iθ +2iπk, k ∈Z. However lnz is the only one verifying 0≤ θ +2kπ < 2π .
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A particular solution of the equation wx = z is ln z
lnw (for z �= 0 w �= 0 w �= 1), this

solution will be denoted logw z and is called the logarithm of base w of z. Like for
the inverse operation of the multiplication where the division by zero is excluded,
it is not possible to resolve the exclusions indicated by the root extraction and the
logarithm search.

A.3.8 Others Properties of C, and Topology Theorem of C

In the extension of the algebraic structure of R to the algebraic structure of C, we
lose the order structure. It is possible to provide C with an order structure, e.g. a
strict order like: z1 < z2 :⇔{|z1|< |z2|∨(|z1|= |z2| �= 0∧argz1 < argz2)}. However
there is no order on C compatible with the algebraic structure, i.e. verifying the
monotony laws for the addition and multiplication, e.g. a < 0∨a > 0⇒ a2 > 0⇒
a2 + 1 > 0. By contrast, it is possible to extend the real topology to a complex
topology by means of the modulus, which extends the absolute value on R. We
deduce then the following theorem:

Theorem A.11 (Topology of complex numbers). Every Cauchy sequence of com-
plex numbers is convergent in C. (C is thus complete.)

A.3.9 Riemann Sphere (Compactification)

Let us pose the sphere whose diameter is equal to 1 in the Gauss complex plane
at the origin, it is possible by using a stereographic projection from the North pole
to make the complex plane homeomorphic to the sphere deprived of North pole
(see Fig. A.9a of Riemann sphere and Gauss complex plane). Figure A.9b shows
the distance between two points z1 and z2 of Gauss complex plane (C) which is
|z1− z2|, i.e. d(z1,z2) = |z1− z2|; the distance of their homologous points P1 and P2

is given by d̂(z1,z2) = |z1−z2|√
(1+|z1|2)·(1+|z2|2)

. The equator of this sphere (see Fig. A.9a)

which is called the Riemann sphere corresponds by this projection to the circle of
the plane whose center is the origin and the radius is equal to 1. The North pole
corresponds to a new point which is denoted ∞, we obtain then a compact space
by the adjunction of this point to the complex plane. The exterior domains of this
circle centered at the origin form a fundamental system of neighborhoods of this
point ∞. The adjunction of a special point is not the only manner to compactify the
plane (refer to Projective geometry), but this adjunction is fundamental in the theory
of complex functions. In the compact space which is then formed, the behavior of
holomorphic and meromorphic functions is particularly clear, because one obtains
a “Riemann surface” by means of this process of compactification.

Riemann sphere: A one-dimensional complex manifold denoted Ĉ, which is the
one-point compactification of the complex numbers Ĉ = C∪ {∞}, together with
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Fig. A.9 Riemann sphere

two charts (here ∞ complex infinity). For all points in the complex plane, the chart
is the identity map from the sphere (with infinity removed) to the complex plane. For
the point at infinity, the chart neighborhood is the sphere (with the origin removed),
and the chart is given by sending infinity to 0 and all other points to 1/z. (Instead
of the notation Ĉ, the following notation C

∗ is also used, but this notation is also
used to denote the punctured plane C-{0}.) Furthermore Ĉ is a Riemann surface.
A Riemann surface is a surface-like configuration that covers the complex plane
with several, and in general infinitely many, “sheets”. These sheets can have very
complicated structures and interconnections. Riemann surfaces are one way of rep-
resenting multiple-valued functions; another is branch cuts. Riemann sphere is also
known as complex sphere.

A.3.10 Holomorphic Function, Cauchy–Riemann Conditions
and Harmonic Function

Definition A.53 (C-differentiable). The C−C function f : D f →C is known as C-
differentiable at a point a∈C if a is an accumulation point of D f and if lim

z→a

f (z)− f (a)
z−a

exists.

Definition A.54 (Holomorphic function). 17 The C−C function f : D f → C is
known as holomorphic on the domain D⊆D f (resp. at a point a interior to Df ) if f

17 Holomorphic function is a synonym for analytic function, regular function, differentiable func-
tion, complex differentiable function, and holomorphic map. The word “holomorphic” is derived
from the Greek word “holos” which means “whole”, and from the word “morphe” which means
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is C-differentiable at any point of D (resp. at a point a). The limit value lim
z→a

f (z)− f (a)
z−a

is called derivative of f at a and is noted f ′(a).

Cauchy–Riemann conditions: If f is holomorphic at a point a, lim
z→a

f (zn)− f (a)
zn−a = f ′(a)

for any sequence zn → a = a1 + ia2, zn �= a. we take successively zn = a + hn, zn =
a + ihn, where hn ∈R

∗, hn → 0.

(1)
f (a + hn)− f (a)

hn

=
[u(a1 + hn,a2)−u(a1,a2)]+ i[v(a1 + hn,a2)− v(a1,a2)]

hn
→ f ′(a).

Thus, ∂u
∂x1

and ∂v
∂x1

exist at a point a and f ′(a) = ∂u
∂x1

(a1,a2)+ i ∂v
∂x1

(a1,a2).

(2)
f (a + ihn)− f (a)

ihn

=
[u(a1,a2 + hn)−u(a1,a2)]+ i[v(a1,a2 + hn)− v(a1,a2)]

ihn
→ f ′(a).

Thus, ∂u
∂x2

and ∂v
∂x2

exist at a point a and f ′(a)=−i ∂u
∂x2

(a1,a2)+ ∂v
∂x2

(a1,a2). And
by bringing closer the two preceding writings, we obtain the Cauchy–Riemann
conditions which are written:

∂u
∂x1

(a1,a2) =
∂v
∂x2

(a1,a2), (A.39)

∂u
∂x2

(a1,a2) = − ∂v
∂x2

(a1,a2). (A.40)

Thus, it is possible to write that f : D f → C is holomorphic at a point a interior
to Df if and only if u and v are differentiable at a point a and satisfy the Cauchy–
Riemann conditions.

Harmonic functions: Since the real and imaginary parts of the holomorphic func-
tions are twice continuously differentiable, the Cauchy–Riemann equalities imply
that:

∂ 2u
∂x2

1
=

∂ 2v
∂x1∂x2

and
∂ 2u
∂x2

2
=− ∂ 2v

∂x1∂x2
, (A.41)

hence:

∂ 2u
∂x2

1
+
∂ 2u
∂x2

2
= 0 and

∂ 2v
∂x2

1
+
∂ 2v
∂x2

2
= 0. (A.42)

“form” or “appearance”. Like the analytic functions, the holomorphic functions are functions
which can be represented by a convergent Taylor series.
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Definition A.55 (Harmonic functions). A R
2−R-function φ twice continuously

differentiable on a domain D is known as harmonic function on D if it verifies in
any point of D the condition ∂ 2ϕ

∂x2
1

+ ∂ 2ϕ
∂x2

2
= 0.

Proposition A.1. The real and imaginary parts of a holomorphic function are har-
monic. Any harmonic function u on a simply connected domain D corresponds to a
harmonic function v defined except for an additive constant, such that u and v can be
regarded as the holomorphic parts respectively real and imaginary of a holomorphic
function.

Proposition A.2 (Morera). Let be D⊆C a simply connected domain and f : D→C

continuous. If along of any rectifiable oriented Jordan curve k ⊂ D we have∫
k f (z)dz = 0, then f is holomorphic on D.

Series expansion: The derivability at a point “a” for any order is a necessary con-
dition but non-sufficient so that a real function admits a Taylor series expansion
around a. Thus, one can wonder whether a holomorphic function is expandable in a
series similar to the Taylor series. To this end it is necessary to study properties of
complex entire series.

Proposition A.3. If the series ∑∞
v=0 av(z1−a)v converges for the points z1 �= a, the

same applies to the series ∑∞
v=0 av(z−a)v for any z such that |z−a|< |z1−a| .

Proposition A.4. If the series ∑∞
v=0 av(z− a)v converges for points z different from

a, but does not converge on any C, there exists r ∈R+ such that this series converges
for any z such that |z−a|> r; r is defined by:

r =
1

lim
v→∞

v
√|av|

. (A.43)

r is the radius of convergence of the series.

Proposition A.5. The function defined by z �→ f (z) = ∑∞
v=0 av(z− a)v is holomor-

phic on the interior of the disk of convergence. By derivation term by term, it is
obtained the derivative f ′(z) =∑∞

v=1 vav(z−a)v−1(same open disk of convergence).

Proposition A.6. Let be f : D→ C a holomorphic function on the domain D ⊆ C.
f is developable in entire series around any point a ∈ D and we have:

f (z) = ∑∞
v=0

f (v)(a)
v!

(z−a)v. (A.44)

The series necessarily converges towards f on the largest open disk centered at a
on which f is holomorphic.

Holomorphic continuation: A real analytic function18 is expandable in entire series
around a. The definition of the radius of convergence of a entire series is the same

18 Analytic function (i.e. Holomorphic function): A function which can be represented by a
convergent Taylor series. Also known as holomorphic function.
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one in the two real and complex cases. The expansion of a real analytic function
in entire series, taken as an expansion in series on C, is thus convergent on the
interior of a disk centered at a and have as radius the radius of convergence of the
real series. This series defines on this disk a holomorphic function, the holomorphic
continuation of the real function. For entire series converging everywhere on R, as it
is the case for the functions sine, cosine, exponential,. . . we obtain, by means of such
a continuation, holomorphic functions on any C. If we compares the expansions
to series, we find the following relations: eiz = cosz + isinz, e−iz = cosz− isinz,
cosz = 1

2 (eiz + e−iz), sinz = 1
2i (e

iz− e−iz), . . .. This shows that in the complex case,
the exponential and hyperbolic functions are periodic, and their period is complex
and is equal to 2 iπ .

Definition A.56 (Analytic continuation). 19 Given f : D f →C and g : Dg →C two
holomorphic functions respectively on the D f and Dg domains. If D f ∩Dg �= ∅ and
f (z) = g(z) for any z ∈D f ∩Dg then g is called an analytic continuation of f and f
is an analytic continuation of g.

Theorem A.12 (Monodromy theorem). If a complex function f is analytic in a
disk contained in a simply connected domain D and f can be analytically continued
along every polygonal arc in D, then f can be analytically continued to a single-
valued analytic function on all of D!

Definition A.57 (Monodromy group). A group (technically defined) characteriz-
ing a system of linear differential equations q′j = ∑n

k=1α jk(x)qk for j = 1, . . . ,n,
where α jk are “complex analytic function” of x in a given complex domain.

Definition A.58 (Complex differentiable). Given z = x + iy and f (z) = u(x,y)+
iv(x,y) on some region S containing the point z0. If f (z) satisfies the Cauchy–
Riemann equations and has continuous first partial derivatives in the neighborhood
of z0, then f ′(z0) exists and is given by f ′(z0) = limz→z0

f (z)− f (z0)
z−z0

, and the function
is said to be complex differentiable (or, equivalently, “analytic” or “holomorphic”).

A.3.11 Singularity of Holomorphic Functions, Laurent Series
and Meromorphic Function

Given a holomorphic function on a domain D of C. If D = C, f is an entire function,
i.e. f is the sum of an entire series ∑∞

v=0 avzv of infinite radius. If D �= C, D have at
least a frontier point. Let be such a point a. If there exists an entire series in (z−a)
with non-zero radius, of the sum S(z) =∑∞

v=0 av(z−a)v, and an open neighborhood
Φ of a such that f and S coincide on (Φ\{a})∩D, then f can have a continuation
to a holomorphic function on D∪Φ, which is a domain larger than D.

19 Analytic continuation: The process of extending an analytic function to a domain larger than the
one on which it was originally defined.
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Definition A.59 (Singular point and Isolated singular point). A frontier point
“a” which does not have the property which precedes is known as a Singular point.
It is “isolated” if it is the center of an open disk Ω such that ∀b ∈ Ω\{a}, there
exists a continuation of f to a domain Db, containing b. It is “simple isolated” if it
is the center of an open disk Ω such that f admits a holomorphic “continuation” to
D∪ (Ω\{a}).

Around a simple isolated singular point there exists a series expansion which
generalizes an expansion in Taylor series.

Laurent series: Let f be the holomorphic function on a open disk Ω where we have
suppressed the center “a” (i.e. “blunted”, such a center “a” being a “simple isolated
singular point” of f . Given K1 and K2 two circles centered at a contained in Ω. K1
indicating the smallest of both, we are located at a point z of the open disk exterior
to K1, interior to K2 (see figure below). It is possible to write the following formula:

f (z) =
1

2iπ

∫

K+
2

f (ζ )
ζ − z

dz− 1
2iπ

∫

K+
1

f (ζ )
ζ − z

dζ . (A.45)

This expression can be transformed, in particular in the first integral 1
ζ−z =

∑∞
v=0

(z−a)v

(ζ−a)v+1 . Since z is exterior to K1, in the second integral it can be written

1
ζ−z = −∑∞

v=1
(ζ−a)v−1

(z−a)v = −∑−∞v=−1
(z−a)v

(ζ−a)v+1 . After an integration term by term, it is

possible to write a series of the form:

f (z) =
−∞
∑

v=−∞
av (z−a)v with av =

1
2iπ

∫

K+

f (ζ )

(ζ −a)v+1 dζ , (A.46)

v ∈ Z, where K is an arbitrary circle centered at “a” located in the disk. Such a
series is called Laurent series admitting “a” as point of expansion. Figure A.10
corresponds to f (z) = 1

2iπ
∫

K3

f (ζ )
ζ−z dζ = 1

2iπ
∫

K2

f (ζ )
ζ−z dζ − 1

2iπ
∫

K1

f (ζ )
ζ−z dζ because of

∫
−K1−K3+K2

f (ζ )
ζ−z dζ = 0.

K1

K3

2

Fig. A.10 Integral representation of a holomorphic function in a Disk
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Singularities of analytic functions: All points around which a function can be
expanded in a Laurent series according to a suitable parameter of uniformisation,
containing only one finite number of terms having a negative power, will be inte-
grated in the domain of the corresponding Riemann surface (points of holomorphy,
poles, . . .). The following examples give points which appear as frontier points of
the Riemann surface:

Function Point
(1) Non-isolated singularities : f (z) = ∑∞

v=0 zv! {z| |z|= 1}
(2) Simple isolated singularities : f (z) = e1/z2

0
(3) Isolated singularities on k- sheets : f (z) = k

√
z ∞

(4) Isolated logarithmic singularities : f (z) = z
√

2 = (e
√

2)ln z 0
f (z) = e

1
z lnz 0

Proposition A.7 (Picard). Let be f : Df →C a holomorphic function on a “blunted”
neighborhood of U(z)\{z} where z is an “essential isolated singular point” of f :
then f take, in any blunted neighborhood of z, any value of C except at most only
one value.

A pole: This term “pole” is used prominently in a number of very different branches
of mathematics. Certainly, the most important and widespread usage is to denote a
singularity of a complex function.

In complex analysis, an analytic function (i.e. an holomorphic function) f is said
to have a pole of order n at a point z = z0 if, in the Laurent series, am = 0 for m <−n
and a−n �= 0. Equivalently, f has a pole of order n at z0 if n is the smallest positive
integer for which (z− z0)n f (x) is holomorphic at z0. A analytic function f has a
pole at infinity if limz→∞ f (z) = ∞. (A non-constant polynomial P(z) has a pole ad
infinitum of order degP, i.e. the polynomial degree of P.) The basic example of a
pole is f (z) = 1/zn, which has a single pole of order n at z = 0 (Fig. A.11).

Meromorphic function: A holomorphic function whose only singularities are
“poles” is called a meromorphic function. (The word derives from the Greek μερoς
(meros), meaning “part”, and μoρϕη (morphe), meaning “form” or appearance.)

Fig. A.11 Plots of 1/z and 1/z2 are shown above in the complex plane
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Definition A.60 (Meromorphic function). A holomorphic function f on a domain
D of C, except at isolated points of D which are poles, is known as “meromorphic”
on D. If E is the set of poles, we can pose for any a ∈ E, f (a) = ∞: then f is a
continuous map from D to C, the restriction of this meromorphic function on the
D\E domain being holomorphic.

Theorem A.13 (Residue theorem). Given a domain D of C of which the frontier
∂D is a finite union of rectifiable Jordan curves. Given a holomorphic function f on
D except for a finite number of points zv, which are “poles” or “essential isolated
singular points” and of which the set is noted E . If f is continuous on (D\E)∪∂D
we have:

1
2iπ

∫

∂D+
f (z)dz =∑n

v=1(res f )(zv). (A.47)

A.4 Surfaces and Manifolds

A.4.1 Closed Surfaces, Surfaces with Boundary

Before describing closed surfaces and surfaces with boundary let us define some
important notions (orientable surface, . . . , simplicial complex, . . . ):

Orientable surface: A surface for which an object resting on one side of it cannot be
moved continuously over it to get to the other side without going around an edge.

Non-orientable surface (one-sided surface): A surface such that an object resting on
one side of it cannot be moved continuously over the surface to reach the other side
without going around an edge; the Moëbius strip and the Klein bottle are examples.

Triangulation: Triangulation is the division of a surface or plane polygon into a set
of triangles, usually with the restriction that each triangle side is entirely shared by
two adjacent triangles. It was proved that every surface has a triangulation, but it
might require an infinite number of triangles and the proof is difficult. A surface
with a finite number of triangles in its triangulation is called compact.

Span (see also Hull): (1) For a set A, the intersection of all sets that contain A and
have some specified property. Also known as “hull”. (2) for a set of vectors, the
set of all possible linear combinations of those vectors. Also known as linear span.
(3) The difference between the highest value and the lowest value in a range of
value.

Convex Hull: The smallest convex set containing a given collection of points in a
real linear space. Also known as convex linear hull. The convex hull of a set of
points in dimensions is the intersection of all convex sets containing.

Polytope: This word is used to mean a number of related, but slightly different
mathematical objects. A convex polytope may be defined as the convex hull of a
finite set of points (which are always bounded), or as a bounded intersection of a
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finite set of half-spaces. A polytope can also be defined as the general term of the
sequence “point, line segment, polygon, polyhedron, . . .”, or more specifically as a
finite region of n-dimensional space enclosed by a finite number of hyperplanes.
The special name polychoron is sometimes given to a four-dimensional polytope.
However, in algebraic topology, the underlying space of a simplicial complex is
sometimes called a polytope.

Polyhedron: (1) A solid bounded by planar polygons. (2) The set of points that
belongs to the simplexes of a simplicial complex. (3) See triangular space. The
word polyhedron has slightly different meanings in geometry and algebraic geom-
etry. In geometry, a polyhedron is simply a three-dimensional solid which consists
of a collection of polygons, usually joined at their edges. A polyhedron is the three-
dimensional version of the more general polytope (in the geometric sense), which
can be defined in arbitrary dimension. The plural of polyhedron is polyhedra or poly-
hedrons. The term “polyhedron” is used differently in algebraic topology, where it
is a space that can be constructed from such building blocks as line segments, trian-
gles, tetrahedra, and their higher dimensional analogs by gluing them together along
their faces. More specifically, it can be defined as the underlying space of a simpli-
cial complex (with the additional constraint sometimes imposed that the complex
be finite). In the usual definition, a polyhedron can be viewed as an intersection of
half-spaces, while a polytope is a bounded polyhedron.

Tetrahedron: The regular tetrahedron, often simply called “the tetrahedron”, is
the Platonic or regular solid with four polyhedron vertices, six polyhedron edges,
and four equivalent equilateral triangular faces. It is also uniform polyhedron. The
tetrahedron has seven axes of symmetry.

Simplex (Simplexes, Simplices): An n-dimensional in an Euclidean space consists
of n + 1 linearly independent points x0,x1, . . . ,xn together with all the points given
by a0x0 + a1x1 + · · ·+ anxn where the ai ≥ 0 and a0 + a1 + · · ·+ an = 1; a trian-
gle with its interior and a tetrahedron with its interior are examples. A simplex,
sometimes called a hypertetrahedron, is the generalization of a tetrahedral region of
space to n dimensions. The boundary of a k-simplex has k + 1 0-faces (polytope
vertices), k(k + 1)/2 1-faces (polytope edges), and

(k+1
i+1

)
i-faces, where

(n
k

)
is a

binomial coefficient. An n-dimensional simplex can be denoted using the Schläfli
symbol as follows {3,...,3}

n−1 . The simplex represents the simplest possible polytope in
any given space. The content (i.e. hypervolume) of a simplex can be computed using
the Cayley–Menger determinant. In one dimension, the simplex is the line segment.
In two dimensions, the simplex {3} is the convex hull of the equilateral triangle. In
three dimensions, the simplex {3,3} is the convex hull of the tetrahedron.

Simplicial complex: A simplicial complex is a space with a triangulation
(Fig. A.12). Formally, a simplicial complex K in R

n is a collection of simplices in
R

n such that: (1) Every face of a simplex of K is in K, and (2) The intersection of
any two simplices of K is a face of each of them. In other words, a set consisting
of finitely many simplices where either two simplices are disjoint or intersect in a
simplex which is a face common to each. Also known as geometric complex.
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Fig. A.12 Not a simplicial complex (left), Simplicial complexes (right)

Objects in the space made up of only the simplices in the triangulation of the space
are called simplicial subcomplexes. When only simplicial complexes and simplicial
subcomplexes are considered, defining homology is particularly easy and, in fact,
combinatorial because of its finite-counting nature. This type of homology is called
simplicial homology.

Homology group: Associated to a topological space X , one of a sequence of
“Abelian groups”20 Hn(X) that reflect how n-dimensional simplicial complexes can
be used to fill up X and also help determine the presence of n-dimensional holes
appearing in X . Also known as Betti group.

Homology theory: Theory attempting to compare topological spaces and investigate
their structures by determining the algebraic nature and interrelationships appearing
in the various homology groups.

Simplicial homology: A homology for a topological space where the nth group
reflects how the space may be filled out by n-dimensional simplicial complexes
and detects the presence of analogs of n-dimensional holes.

Simplicial Mapping: A map of one simplicial complex into another in which the
images of the simplexes of one complex are simplexes of the other complex.

The term “surface” has several interpretations. The definition which is used here,
within the framework of the algebraic topology is the one which makes it possible
to construct a homeomorphism of the surface on a polyhedron of dimension 2 sim-
plified as much as possible, i.e. connected, with a triangulation of which all faces
are included in triangular surfaces. A surface will be therefore a compact of dimen-
sion 2, this double dimension having to be perceptible at the neighborhood of any
point.

Definition A.61 (Closed surface). A connected compact part of (Rn,Rn) is called a
“closed surface” if any point of this one possesses for the induced topology an open
neighborhood homeomorphic to an open disk; It is called “surface with boundary”
if it possesses, on the one hand, points having an open neighborhood homeomor-
phic to an open disk, on the other hand, points which are often called “bordering
points”: A bordering point is a point which, for the induced topology, possesses
an open neighborhood homeomorphic to the union of an open disk and a Jordan
arc (deprived of its extremities) included in its circumference, the homeomorphic
image of the bordering point is inside the arc. ((Rn,Rn) denotes R

n provided with
its natural topology defined by dE ; Rn is its topology.)

20 Definition (Abelian group, or Commutative group). A group (E;() is called an Abelian
group if ( is commutative, i.e. if ( verifies ∀a,b∈E, a(b = b(a. ((: internal composition law).
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Remark A.4 (Closed surfaces are particular manifolds). The closed surfaces are
particular two-dimensional manifolds. The boundary (or edge) of a surface with
boundary is the set of its bordering points. The edge can be constituted of a Jordan
Curve (e.g. closed disk; Moëbius strip; see figure hereafter) or two Jordan curves
(e.g. part of revolution cylinder included between two distinct planes perpendicular
to its axis), etc.

A closed surface, respectively a surface with boundary, is arcwise connected,
because it is connected and each one of its points possesses a neighborhood arcwise-
connected (i.e. locally arcwise-connected or locally connected by arc). It is then
possible to show that a closed surface, respectively a surface with boundary, is
homeomorphic to a polyhedron denoted |K|where K is “simplicial complex” whose
faces are of dimension ≤2, comprising at least a triangular simplex, the edges and
the vertices being the ones of the triangular simplexes. In the case of a closed surface
(n ≥ 3) an edge belongs to two triangular simplexes (and only 2): such a property
helps to explain the term “closed”. It is possible to describe the fundamental group of
a closed surface, respectively a surface with boundary. It is that of a homeomorphic
polyhedron.

A.4.2 Classification of Closed Surfaces

The homeomorphic relation between closed surfaces of R
n (n ≥ 3) is an equiva-

lence relation, and each class admits a polyhedral representative. The problem of
this classification is completely resolved. If we represent a class by a polyhedron, it
is interesting to choose a polyhedron whose number of triangular faces is minimum.
Then in R

3, the skeleton of dimension 2 of the tetrahedron is convenient to repre-
sent the class of S

2 (S2 corresponds to a sphere of R
3, subspace of (R3,R3), i.e. in

such a case a surface). This is the only one to have four faces, and it is the necessary
minimum (a cube, which makes possible to define the same class, requires twelve
triangular faces). About the class of the torus, it requires a polyhedron with eigh-
teen triangular faces. Therefore the polyhedral representation is not necessarily the
most simple. In spite of this aspect, the construction of classes can be carried out
in a remarkable way. The involved identification processes are associated with the
quotient topology notion.21

21 Quotient topology: If X is a topological space, X/R the quotient space by some equivalence
relation on X, the quotient topology on X/R is the smallest topology which makes the function
which assigns to each element of X its equivalence class in X/R a continuous function.
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Fig. A.13 Classification of closed surfaces

First we show that any closed surface on R
n with n ≥ 3 is homeomorphic to a

topological space obtained from a convex polygon of R
2 with 2 p sides (p > 2),

by identifying these pairwise in an appropriate way (see Fig. A.13). If we mark
by the same letter, two sides which have to be identified, and if we indicate by
an arrow each one of them, in such a way to indicate the sense of their super-
position, it is possible to represent the succession of oriented segments met by
carrying out a complete turn of the frontier by means of a sequence of the form:
a . . .b−1 . . .c . . .a . . .c−1 . . .b−1 . . . , the exponents −1 mean that the corresponding
segment was traversed in opposite direction (such a sequence obviously must be
compatible with the vertices: Then the sequence abb−1a is not possible as we can
see by drawing the process). Closed surface of R

n (n ≥ 3) can be classified by the
following primitive forms:
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(1) a1a−1
1 b1b−1

1 (S2 ⊂ R
n, n≥ 3)

(2) a1b1a−1
1 b−1

1 . . .agbga−1
g b−1

g , with g∈N\{0} (S2 endowed with g handles⊂R
n,

n≥ 3, in the figure g = 1,2)
(3) a1b1a1b1 . . .akbkakbk, with k ∈ N\{0} (S2 endowed with k cross-caps ⊂ R

n,
n≥ 4)

Fundamental homotopy groups obtained from these primitive forms are pairwise
non isomorphic, then the surfaces are pairwise non homeomorphic (refer to one of
the topological invariant theorems).

Remark A.5 (Genus). When g = 1 in the form (2), we have a surface homeomorphic
to a torus; The surface S

2 endowed with g handles is also called a torus of “genus g”
(or a torus with g holes). An ordinary torus is a surface having genus one, and there-
fore possessing a single “hole”. The single-holed “ring” torus can be constructed
from a rectangle by gluing both pairs of opposite edges together with no twists. In
general, tori can also have multiple holes, with the term n-torus used for a torus
with n holes. One of the more common uses of n-dimensional tori is in “dynamical
systems”. A fundamental result states that the phase space trajectories of a “Hamil-
tonian system” with n degrees of freedom and possessing n integrals of motion lie
on an n-dimensional manifold which is topologically equivalent to an n-torus.

The form (3) is carried out in R
4 and not in R

3. But its representation can be done
only in R

3 or R
2 (e.g. an affine projection from the real affine space of dimension 3

to an affine plane is a representation of the visual space). Then if we represent the
form (3) for k = 1 starting from the sequence a1,b1,a1,b1 we obtain a surface which
is called a “surface with multiple points”: Two nappes of the surface cross each other
at any point interior of the segment which we can observe on the last surface on the
right of the figure. Relative to each nappe, considered independently of the other,
a point interior of the segment possesses an open neighborhood homeomorphic to
an open disk. About the extremities of the segment, it is more complicated. In the
same way, it is possible to show that the Klein bottle, introduced by the sequence
a1,b1,a1,b−1

1 , which is also a surface with multiple points, is the representation of
the form (3) for k = 2.

A.4.3 Orientability and Topological Invariance

Orientability can be defined by using the polyhedra. The Moëbius strip (see previ-
ous figure) is a non-orientable surface, it is possible to draw on this strip a Jordan
curve J, whose “route” is symbolized by the almost rectilinear arrows of the draw-
ing, along which we move continuously on the surface a curve homeomorphic to
an oriented circle symbolized by a circular arrow: a complete rotation on J changes
the orientation of the circular arrow to its opposite. Any surface containing a Jor-
dan curve for which we have this property is said “non-orientable”. A surface is
orientable if it contains no Jordan curve J for which this orientation change occurs.

The orientability, respectively the non orientability, is a topological invariant.
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Example A.1. S
2, all tori of genus g ∈N\{0} are orientable. By contrast the spheres

S
2 endowed with k cross-caps, k∈N\{0}, are non-orientable. Moëbius strip belongs

to the set of the most important non-orientable surfaces with boundary.

By knowing what precedes it is possible to show that a surface is non orientable
if and only if it contains a subspace homeomorphic to a Moëbius strip.

A.4.4 Connectivity Number

Another important topological invariant about the surfaces is the connectivity num-
ber Z. It is the maximal number of Jordan curves (which can cut each other
moreover) that we can draw on a closed surface without dividing this one into two
disjoint parts. For an orientable closed surface Z = 2g, where g denotes the genus
(g = 0 for S

2). For a non-orientable closed surface Z = k (number of cross-caps).

A.4.5 Riemann Surfaces

The passage from C to Ĉ makes it possible to eliminate a certain number of excep-
tional points of a function, like the poles with the proviso that we pass from the
holomorphy concept to that of ”meromorphy”. Other singularities, appearing in the
analytic continuation, are sometimes suppressed by an extension different from the
domain.

(1) First example: The expression
√

z has no precise meaning on C
∗ without addi-

tional convention, because a nonzero complex number has two square roots. If x
is a real ≥ 0,

√
x is (by definition) the positive square root of x. By writing for

0 ≤ x ≤ 2,
√

x =
√

1 +(x−1) = 1 +
∞
∑
1

( 1
2
n

)

(x− 1)n, it is possible to define the

complex analytic continuation:

f (z) = 1 +
∞

∑
1

( 1
2
n

)

(z−1)n (A.48)

which is a square root function of the complex number z on the closed disk
|z−1| ≤ 1 (normal convergence on this disk). Along the circle |z| = 1 it is possi-
ble to extend the restriction of f to the open disk |z−1|< 1 which is holomorphic,
by means of entire series of the form:

e
ϕ
i 2

[

1 +
∞

∑
1

( 1
2
n

)
(
ze−iϕ −1

)n
]

(A.49)
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by varying continuously ϕ from the value 0: for ϕ = π we obtain

i

[

1 +
∞

∑
1

( 1
2
n

)

(−1)n (z+ 1)n

]

(A.50)

and the opposite series for ϕ =−π . It is easy to observe that there are two possible
roots. Such an ambiguity is not compatible with the usual function notion. It is
possible to resolve this problem if (according to the Riemann process) we take as
domain (no more a domain of C or Ĉ) but a surface which covers the plane or
Riemann sphere. In the example of the square root, where we come back to the
same function after two turns around 0, we place two planes called sheets on the
complex plane. Then we have to imagine that we carried out a cut of these two
planes by following the axis of negative reals and (that) we identified the edges
defined then crosswise. We pass from the higher plane towards the lower plane and
conversely. We could have carried out the cut along any half-line going from 0 to
∞. The identification is possible in R

3 only by the introduction of multiple points
(for a general framework refer to “closed surfaces, surfaces with boundary”). Any
point of Ĉ, except for 0 and ∞, is covered by two points of the new “surface”: The
points 0 and ∞, called “branch points”, are covered by only one point. The surface
that we have then constructed is a Riemann surface. We can now define z �→ √

z on
this “surface”:

√
0 = 0,

√
∞ = ∞ and for two points, located one above the other,

the values are taken as opposite by respecting the continuity on each sheet. The
function then defined is everywhere continuous and, except for the “branch points”,
is holomorphic. To define the function f (z) =

√
(z−a)(z−b), we have to consider

a surface with two sheets like the precedent but whose branch points are a and
b. If we interest in roots of higher order, we have to introduce a Riemann surface
having a number of sheets in relation with this order whose edges are identified in
an appropriate way. Branch points of order higher than two occur (e.g. in order to
define z �→ n

√
z we need n sheets connecting along the axis of negative reals, 1 to 2,

2 to 3,. . . , n−1 to n, n to 1). In the Fig. A.14, topologically the surface corresponds
to the surface engendered by two spheres in which we would have carried out a cut
along an arc of circle and of which we would have identified the edges 2 by 2, i.e.
to a sphere or a complete plane (branch points 0 and ∞ included). The Riemann
surface of the square root function is shown in the Fig. A.14.

(2) Second example: We have to show a Riemann surface of a sphere with han-
dle. Let f be the function defined by f (z) =

√
(z−a)(z−b)(z− c)(z−d), where

a,b,c,d are pairwise distinct. Except for the points a,b,c,d where the function will
be 0 and except for the point ad infinitum (i.e. at infinity) where the function will be
∞, there will exist two values for f . We introduce then a surface with two sheets,
which possesses four branch points. If we cut both sheets along the supposed seg-
ments [a,b] [c,d], what is permissible, without common points, and if we identify
crosswise the edges thus created, we obtain a Riemann surface which covers Ĉ (see
Fig. A.15) on which f is holomorphic except for the branch points. At branch points
the function is continuous. Figure A.15 shows a Riemann surface corresponding
topologically to a sphere with a handle, i.e. a torus (branch points included).
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Fig. A.14 Riemann surface of the square root function

Fig. A.15 Riemann surface for a sphere with a handle (i.e. a torus)

Topological structure of Riemann surfaces of both previous examples: The Riemann
surfaces constructed until now have, except for the branch points, locally a structure
identical to that of the part of the complex plane that they cover. Locally these sur-
faces, reduced of their branch points, are then everywhere bidimensional but their
global topological structure is very different that of a space with two dimensions.
For example there exists on the surface, defined in the second example above, closed
simple curves which do not separate the surface in two parts. By means of specific
methods (used for the closed surfaces, surfaces with boundary and their classifica-
tion) we observe that the introduced surfaces are respectively homeomorphic to a
sphere (or a complete plane) with its two branch points, or to a real plane (or to a
sphere deprived of a point), or to a torus with its four branch points.

A.4.6 Manifolds and Differentiable Topology

Atlas: An atlas for a manifold is a collection of coordinate patches22 that covers23

the manifold.

22 Patch (or local surface): A “patch”, also called a “local surface”, is a differentiable mapping
x: U → R

n, where U is an open subset of R
2. More generally, if A is any subset of R

2, then a map
x: A→R

n is a patch provided that x can be extended to a differentiable map from U into R
n, where

U is an open set containing A. Here, x(U) (or more generally, x(A)) is called the map trace of x.
23 Cover: An element x of a partially ordered set covers another element y if x is greater than y,
and the only elements that are both greater than or equal to y and less than or equal to x are x and
y themselves. Covering: For a set E, a collection of sets whose union contains E.



682 Appendix A: Mathematics

Differentiable atlas: A family of embeddings hi : En →M of Euclidian space into a
topological space M with the property that h−1

i h j : En → En is a differentiable map
for each pair of indices i, j.

Differentiable manifold: Topological space with a maximal differentiable atlas;
roughly speaking, a smooth surface.
Manifold: A topological space which is locally Euclidean; there are four types:
topological, piecewise linear, differentiable, or complex analytic functions of those
in Euclidean space; intuitively, a surface. (Furthermore, a manifold can have global
topological properties, such as non-contractible loops, that distinguish it from the
topologically trivial R

n.)
Differential topology: The branch of mathematics dealing with differential man-
ifolds. The motivating force of topology, consisting of the study of smooth (dif-
ferentiable) manifolds. Differential topology deals with non-metrical notions of
manifolds, while differential geometry deals with metrical notions of manifolds.
Differential geometry: Differential geometry is the study of Riemannian manifolds.
Differential geometry deals with metrical notions on manifolds, while differential
topology deals with those nonmetrical notions of manifolds.
Differential operator: is an operator on a space of functions which maps a function
f into a linear combination of higher-order derivatives of f ;
Riemannian manifold: A differentiable manifold where the tangent vectors about
each point have inner product so defined as to allow a generalized study of distance
and orthogonality.
Riemann space: A Riemannian manifold or subset of a Euclidean space where
tensors24 can be defined to allow a general study of distance, angle, and curvature.25

Riemann surfaces: A Riemann surface is a surface-like configuration that covers the
complex plane with several, and in general infinitely many, “sheets”. These sheets
can have very complicated structures and interconnections. Riemann surfaces are
one way of representing multiple-valued functions; another is branch cuts.
Riemann sphere: The two-sphere whose points are identified with all complex
numbers by a stereographic projection. Also known as complex sphere.
Riemann tensors: Various types of tensors used in the study of curvature for a
Riemann space.26

Riemann geometry (i.e. elliptic geometry): The geometry obtained from Euclidean
geometry by replacing the parallel line postulate with the postulate that no line may

24 Tensor: (1) A tensor is an object relative to a locally Euclidean space which possesses a specified
system of components for every coordinate system and which changes under a transformation of
coordinates. (2) Or a tensor is a multilinear function on the Cartesian product of several copies of
a vector space and the dual of the vector space to the field of scalars on the vector space.
25 Curvature: The reciprocal of the radius of the circle which most nearly approximates a curve at
a given point; the rate of change of the unit tangent vector to a curve with respect to arc length of
the curve.
26 Riemann curvature: A general notion of space curvature at a point of Riemann space which is
directly obtained from orthonormal vectors there.
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be drawn through a given point, parallel to a given line. Also known as elliptic
geometry.
Hyperbolic Riemann surface (i.e. Hyperbolic type): A type of simply connected
Riemann surface that can be mapped conformally on the interior of the unit circle.

A.5 Topology

Here is a brief overview. In topology (Fig. A.16), one distinguishes the point-set
topology (also known as set-theoretic topology, general topology or set topology)
and the algebraic topology. The algebraic topology uses algebraic processes to
resolve topological problems. The point-set topology originates in real analysis.
Note that it is possible to purely develop the theory of the convergence by means of
the properties of point sets, without resorting to an algebraic structure or an ordered

Fig. A.16 Topology
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structure. Then a third type of structure appears, i.e. the topological structure. It is
based on the notions of neighborhood, closed set, open set, adherent point, accu-
mulation point, convergence, connectedness, compactness, etc. Its purpose is in
particular the study and the classification of point sets via such concepts.

Initially, the difficulty was to extract a simple axiomatic system. In fact, two start-
ing points (incidentally equivalent) are possible. As in geometry, one distinguishes
certain sets of points by a suitable choice of axioms. For example, starting from
the “neighborhoods axiom” (sometimes also called “axiom of neighborhoods”), it
is possible to associate with each point of a set, a system of subsets, the system of
its neighborhoods. This construction of a topological space is mainly due to Hauss-
dorff. By using the essential notion of neighborhood, we build the notion of “open
set”. It is this notion of open set that (axiomatically reconsidered) leads to the other
introduction of topological spaces, equivalent to that of neighborhoods. It simply
allows to consider a topology on a set S as a subset of B(S) that has certain prop-
erties independent of the points of S: it is possible to axiomatically define certain
parts of S as “open sets”, and the “neighborhoods” are then defined by means of
“open sets”. This second definition of a topological space by its open sets is often
better suited to conduct demonstrations. The set of all the open sets (whatever their
construction) is called topology, and the set S is the underlying set of the topology.

It is possible to compare two topological spaces by means of a map that links
the open sets of both topologies. If there exists a bijective map between the under-
lying sets, that induces a bijection between the sets of open sets of both spaces,
then we say that both topological spaces are homeomorphic (it is not possible to
distinguish them by topological means). And the map is called topological map or
homeomorphism.

Let us point out that the main properties of topological spaces are those that are
invariant by homeomorphism. Then it is possible to speak of topological invari-
ants (that we can compare for example with the invariants by displacements in
geometry).

In addition, there are also a group of topological notions that are preserved by a
class of more extended maps, i.e. the continuous maps. All the homeomorphisms are
included in this class, but any continuous map is not a homeomorphism: a homeo-
morphism is a continuous map whose reciprocal exists and is also continuous. Since
any invariant by a continuous map is also a topological invariant, then the contin-
uous maps in topology (like in real analysis) are particularly important. Thus the
topology of an Euclidean space is named continuous geometry.

Any set that has at least two elements admits more than one topology. The choice
of a topology is based on the theory to develop. Therefore, the Euclidean space for
example will be in general endowed with its natural topology. For the definition of
the open sets of this topology, we use the property of the “distance” between two
points, i.e. the fact that the space is metric. The measure of this distance is described
by the properties of a map called Euclidean metric in the case of an Euclidean space.

The metric spaces are a generalization of Euclidean spaces. Like the Euclidean
spaces, they admit a topology defined by a metric. The class of metric spaces can
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be studied only by means of its topological properties, i.e. without using the metric
(the measurability).

A topology is often defined on a set by means of a known topology defined on
another given set. A particular map that links both sets allows to “transport” the
topology of a set towards the other set, e.g. this is the case for the topology of
subsets, quotient sets, cartesian products and sum spaces.

One purpose of the topology is to extend the notion of convergence in classical
analysis to the notion of convergence in a topological space. To this end, one gener-
alizes the notion of sequence, and one introduces bases of filters. Nevertheless, this
theory is satisfactory only for particular spaces, as for example Hausdorff spaces.

Hausdorff spaces are representatives of spaces verifying the “separation
axiom”.27 The most important of these spaces are (in particular for metrization ques-
tions) the regular spaces, completely regular and normal spaces. The metric spaces
are examples of such spaces.

Via the property of “open cover”, it is possible to define the paracompact and
compact spaces. The compact spaces (like all the metric spaces) verify the sepa-
ration axiom. Nevertheless any metric space is not necessarily compact. However,
any metric space will be paracompact that is an intermediate notion between com-
pactness and normality, essential notion for metrization questions. The topology
provides the bases of many disciplines of the analysis, e.g. differential geometry,
theory of functions and functional analysis.

A.6 Geometry and Axioms

The construction of the geometry by means of axioms is shown in Fig. 1.17.

A.6.1 Absolute Geometry

Euclid’s postulates: (1) A straight line may be drawn joining any point to any other
point. (2) Any straight line segment can be extended indefinitely in a straight line.
(3) Given any straight line segment, a circle can be drawn having the segment as
radius and one endpoint as center. (4) All right angles are equal to one another (also
written, all right angles are congruent). (5) If a straight line (the transversal) meets
two other straight lines so that the sum of the two interior angles on one side of
the transversal is less than two right angles, then the straight lines, extended indefi-
nitely if necessary, will meet on that side of the transversal. (i.e. parallel postulate).
[Euclid’s fifth postulate cannot be proven as a theorem. Euclid himself used only
the first four postulates (called “Absolute geometry”) for the first 28 propositions of
the Elements but was forced to invoke the parallel postulate on the 29th.]

27 Separation axioms: Properties of topological spaces such as Haussdorff, regular, and normal
which reflect how points and closed sets may be enclosed in disjoint neighborhoods.
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A.6.1.1 Metric Plane

The point and the straight line are the elementary geometrical concepts appearing in
the axioms. Let Π be the set of points and Γ the set of straight-lines (and respectively
the points are denoted p and the straight-lines denoted l). We define the relation I
(i.e. incident to) in Π×Γ, and the relation ⊥ (i.e. orthogonal or perpendicular to)
in Γ×Γ. And if we note l an arbitrary line, it is possible to write pIl which means
that “p is on l” or “l passes by p”.

Definition A.62 (Orthogonal collineation). A bijective map g from Π∪ Γ onto
itself such that g[Π] = Π and g[Γ] = Γ is called orthogonal collineation when it is
compatible with the relations I and⊥, i.e. pIl⇒ g(p)Ig(l) and a⊥b⇒ g(a)⊥g(b).

Definition A.63 (Collineation). A bijective map g is called a collineation when it
is compatible with the relations I and verifies simply g[Π] = Π and g[Γ] = Γ.

Definition A.64 (Reflection). A reflection gL with respect to a straight line L
(or reflection of axis L) is an orthogonal collineation different from the identity
map IdΠ∪Γ, which verifies g2

L = gL ◦ gL = IdΠ∪Γ (i.e. an involution, or involutive
transformation), and makes L invariant point by point.

Definition A.65 (Isometry). A transformation composed of reflections is an
isometry.

An isometry is regarded as a bijective map between two metric spaces that pre-
serves distances, i.e. d( f (x), f (y)) = d(x,y) where f is a map and d(·, ·) is the
distance function. Isometries are sometimes also called congruence transformations
and two figures that can be transformed into each other by an isometry are said to
be congruent.

Definition A.66 (Metric plane). A metric plane is the set of points and straight-
lines such that: (M1) There exists at least one straight line. Any straight line contains
at least three points. One and only one straight line denoted l(p1, p2) passes by two
distinct points p1 and p2. (M2) If a is orthogonal to b, then b is orthogonal to a and
there exists one and only one common point to both straight lines. For any point
p and (straight) line l, a line perpendicular to l passes by p and is unique if p is
on l. (M3) Any line is the axis of at least one reflection. The composition of three
reflections with respect to three lines having in common a point or a perpendicular
is a reflection with respect to a line.

The set of theorems derived from these definitions is called the absolute geometry
in the sense of Bachmann. A generalization of the definitions above allows to define
the geometric metric spaces of dimension higher than that of metric planes.

A.6.2 Euclidean and Non-Euclidean Metrics

A.6.2.1 Rectangle Axiom

The introduction of new axioms are needed to classify metric planes.
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Rectangle axiom (R): There exist two distinct lines, which have two distinct perpen-
diculars in common. Axiom ¬R: This axiom means that any pair of distinct lines has
at most one common perpendicular.

A quadrilateral also said quadrangle (tetragon) is a four-sided polygon. In a
quadrilateral with three right angles the fourth angle is also a right angle.

Definition A.67 (Euclidean or non-Euclidean metric plane). A metric plane ver-
ifying R is said to be Euclidean metric plane. A metric plane verifying ¬R is said
to be non-Euclidean metric plane.

Theorem A.14. In an Euclidean metric plane, two lines having a common perpen-
dicular have all their perpendiculars in common.

Definition A.68 (Parallel lines). Two lines l1, l2 of an Euclidean metric plane which
have a common perpendicular are said to be parallel, denoted l1 ‖ l2.

Definition A.69 (Translation). If l1 ‖ l2, the composition gl2 ◦ gl1 is called a
translation.

Theorem A.15. In an Euclidean metric plane, the composition of three central sym-
metries is a central symmetry: Given three “points” A,B,C there exists D such that
gC ◦ gB ◦ gA = gD.

A.6.2.2 Axiom of Connection

Two parallel lines in a plane are seen as two non-concurrent (or non-concur) lines.
Axiom of connection (C): Two lines have always one point or one perpendicular in
common.

Definition A.70 (Euclidean plane, non-Euclidean plane). An Euclidean metric
plane where C is satisfied is said to be Euclidean plane. If ¬C is satisfied the plane
is said to be non-Euclidean.

Remark: There exists an infinity of non-isomorphic Euclidean metric planes whose
metric planes having a finite number of points. Let us recall that the term “iso-
morphic” means “having the same form”. Objects which may be represented (or
embedded) differently but which have the same essential structure are often said to
be “identical up to an isomorphism”.

A.6.2.3 Axiom of Polar Trilateral

The Axiom of connection (C) helps to specify the non-Euclidean metric plane. If (C)
is satisfied it is possible to find a triangle with three right angles.

Axiom of the polar trilateral (P): There exist l1, l2, l3 three lines orthogonal two by
two (i.e. pairwise orthogonal).
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The lines l1, l2, l3 are pairwise orthogonal if and only if gl3 ◦gl2 ◦gl1 = Id. Then
the central symmetry gl2 ◦ gl1 = gl3 is a reflection with respect to a line. In metric
planes where P is satisfied, C and ¬R are valid and every central symmetry is also
a reflection.

Definition A.71 (Elliptic metric plane). A metric plane where P is satisfied is said
elliptic. When ¬R, C and ¬P are satisfied, the plane is said semi-elliptic.

An elliptic plane can be described as the projective plane with elliptic metric
where the distance between two points is defined as the radian angle between the
projection of the points on the surface of a sphere (which is tangent to the plane at a
point T ) from the antipode of the tangent point.

Theorem A.16 (Polar triangle). If the lines l1, l2, l3 are pairwise perpendicular,
then l1l2l3 = 1, and conversely.

A.6.2.4 Hyperbolic Axiom

We have to study the case of non-Euclidean metric planes where¬C is satisfied, that
means that there exist lines which are non connectable. Let l and l1 be two lines in
accordance with the previous assumption. If the line l2 passing by the point P ∈ l1 is
perpendicular to l, then gl2(l1) �= l1 and both lines gl2(l1) and l are non connectable.
However, it is not possible to deduce from the previous axioms that there do not
exist more than two lines passing by P and non connectable with l, whence the need
to introduce a new axiom:
Hyperbolic Axiom (H): It passes through a point at most two lines non-
connectable with a given line.

Definition A.72 (Hyperbolic metric plane). A metric plane where ¬C and H are
satisfied is hyperbolic. (In addition, from ¬C and H it results ¬R).

A.6.2.5 Triangle in Different Spaces

Elliptic & Hyperbolic geometries (non-Euclidean geometries): (1) In plane elliptic
geometry there are no parallels to a given line through a given point. This can be
regarded as the geometry of a spherical surface on which antipodal points have been
identified and all lines are great circles. (2) The hyperbolic geometry is a geometry
in which there is more than one parallel to a given line through a given point. A
helpful model to visualize this geometry presents the hyperbolic plane as the interior
of a circle, in which straight lines take the form of arcs of circles perpendicular to the
circumference. In Fig. A.18 triangles are shown in Euclidean, elliptic and hyperbolic
spaces.
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Fig. A.18 Representations of triangles in Euclidean, Elliptic, Hyperbolic spaces

Fig. A.19 A triangle in a saddle-shape plane (a hyperbolic paraboloid), and “two diverging parallel
lines” (sometimes called “hyperparallel”)

Example (Triangle in hyperbolic plane). It is possible to immerse a triangle in a
hyperbolic space, which has the form of a saddle-shape plane (Fig. A.19). The two
limiting lines can be said asymptotic and lines sharing a common perpendicular are
sometimes called “hyperparallel”.

Definition A.73 (Hyperparallel). Two lines in hyperbolic geometry which diverge
from each other in both directions.

Definition A.74 (Ideal point). An ideal point is a type of point at infinity in which
parallel lines in the hyperbolic plane intersect at infinity in one direction, while
diverging from one another in the other.

Remark (Non-Euclidean geometry). After unsuccessful attempts had been made
at proving that the parallel postulate could be deduced from the other Euclid’s
postulates, the matter was settled by the discovery of non-Euclidean by Gauss,
Lobachevsky and Bolyai. In these, all Euclid’s axioms hold except the parallel pos-
tulate. (1) In the so-called hyperbolic geometry, given a point not on a given line,
there are at least two lines through the point parallel to the line. (2) In elliptic geom-
etry, given a point not on a given line, there are no lines through the point parallel to
the line.
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A.6.2.6 Classification of Metric Planes

The metric planes are classified through the axioms: R,C,P,H, ¬R, ¬C, ¬P, ¬H:

It is possible to write that P implies (¬R and C); (¬C and H) implies ¬R; ¬H
implies ¬C.

A.6.3 Affine and Projective Planes

A.6.3.1 Affine Planes

Definition A.75 (Affine plane of incidence). An affine plane of incidence is any
set of points and lines which verifies: (A1) For any pair of distinct points A and B,
there exists one and only one line l incident to A and B. (A2) For any line l there
exists at least one point A which is not incident to l. (A3) Given a line l and a point
D which is non incident to l, there exists one and only one line m which is incident
to l, (m is parallel to l passing through D).

To introduce the coordinates, consider the axioms described in Desargues and
Pappus–Pascal theorems (also called “closure theorems”), which are not necessarily
verified in an affine plane of incidence:

Theorem A.17 ((A4′) Desargues theorem – Affine version). Given l1, l2, l3 three
distinct lines concurrent at the point O or parallel, and the point P1 and Q1 of l1, P2
and Q2 of l2, P3 and Q3 of l3, all distinct from O; if the lines �(P1,P2) and �(Q1,Q2)
are parallel, as well as �(P2,P3) and �(Q2,Q3), then �(P3,P1) and �(Q3,Q1) are also
parallel.

Theorem A.18 ((A4) Pappus–Pascal theorem – Affine version). Given l and m
two distinct lines and the points P1,P3,P5 on l, and P2,P4,P6 on m; if the lines
�(P1,P2) and �(P5,P4) are parallel, as well as �(P2,P3) and �(P6,P5), then �(P3,P4)
and �(P1,P6) are also parallel.

Hessenberg stated that the Pappus–Pascal theorem leads to the Desargues the-
orem, whereas the converse is false, indeed there are affine planes of incidence
satisfying only the Desargues theorem. When Desargues theorem is verified, then
the plane is said “Arguesian plane” (of incidence), i.e. a Desargues’s plane.
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Definition A.76 (Affine plane). An affine plane is an affine plane of incidence
verifying (A4).

A.6.3.2 Projective Planes

An affine geometry is a geometry in which properties are preserved by parallel pro-
jection from one plane to another. However, others are not, indeed in an affine
geometry, the third and fourth of Euclid’s axioms do not hold or become mean-
ingless. Affine geometry is regarded as the study of geometry using the methods
of linear algebra. The affine transformations preserve collinearity and therefore the
straightness and parallel nature of lines and the ratios of distances. In affine geome-
try, the distinction between secants and parallels is a problem. But by an appropriate
completion of the set of points and lines, it is possible to ensure that two lines have
always a common point. Any sheaf of parallel lines is regarded as an “improper
point” incident to all lines of the sheaf. Any line of the (completed) affine plane
possesses one and only one improper point (see also point at infinity, line at infin-
ity). Two parallel lines of the affine plane possess in common a unique point, which
is their improper point. An affine plane completed in such a way is said projective
in accordance with the definition:

Definition A.77 (Projective plane). A set of points and lines is called a projective
plane of incidence if it verifies: (P1) For any pair of distinct points A and B, there
exists one and only one line l incident to A and B. (P2) For any pair of distinct lines
l and m, there exists one and only one point A incident to l and m. (P3) There exists
four points of which three arbitrary ones are not incident to a same line.

If we replace the pair of parallel aside by the pairs aside whose intersections are
collinear, that means on a same line, it is possible to write, for the projective plane,
Desargues and Pappus–Pascal theorems already written for the affine plane.

Theorem A.19 ((P4′) Desargues theorem – Projective version). Given l1, l2, l3
three distinct lines concurrent at the point O or parallel, and the point P1 and Q1 of
l1, P2 and Q2 of l2,P3 and Q3 of l3, all distinct from O; then the intersection points of
the lines �(P1,P2) and �(Q1,Q2), �(P1,P3) and �(Q1,Q3), �(P3,P2) and �(Q3,Q2),
are collinear.

Theorem A.20 ((P4) Pappus–Pascal theorem – Projective version). Given l and
m two distinct lines and the points P1,P3,P5 on l, and P2,P4,P6 on m: then the lines
of intersection of the lines �(P1,P2) and �(P5,P4), �(P5,P6) and �(P3,P2), �(P3,P4)
and �(P1,P6) are collinear.

Definition A.78 (Projective plane). A projective plane is a projective plane of
incidence verifying (P4).

By introducing a new line and adding a point to each line, we can complete an
affine plane (of incidence) in order to obtain a projective plane (of incidence). This
can be reversed to transform a projective plane into an affine plane.
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A.6.3.3 Metric, Affine, Projec. Planes

These three concepts can be connected:

• An Euclidean plane is always affine.
• An Euclidean plane can always be completed.
• An Elliptic plane is always projective.
• A Hyperbolic plane is not affine nor projective.

A.6.4 Projective Metric

A.6.4.1 Fano’s Axiom

Definition A.79 (Quadrangle). A plane figure consisting of four points, each of
which is joined to two other points by a line segment (where the line segments may
intersect). A quadrangle can therefore be concave or convex; if it is convex, it is
called a quadrilateral.

Definition A.80 (Complete quadrangle). A complete quadrangle is formed of
four points (the vertices) of which three arbitrary points are not aligned (i.e. not
collinear). These vertices define pairwise six lines (the sides). Two sides which
do not have a vertex in common are said opposite and their intersection point is
said diagonal; there is therefore three diagonals. (An equivalent definition can be
provided by using sides.)

The ideal plane of a metric plane is a projective plane. Let us present the
following axiom or property that is not necessarily satisfied in a projective plane:

(P5) (Fano’s axiom): The diagonal points of a complete quadrangle are not col-
linear (i.e. non aligned).

Definition A.81 (Metric projective plane). A projective plane satisfying the Fano’s
axiom (P5) is called metric projective plane.

An axiom equivalent to (P5) is written: (P5′) The diagonal points of a com-
plete quadrangle are not concurrent. A metric affine plane can be defined by
means of (P5), and it is possible to write the proposition: (A5) The diagonals of
a parallelogram intersect.

A.6.5 Order and Orientation

A.6.5.1 Bisector Axiom

Euclidean planes can be endowed with a metric. Given u,v two vectors where u =(u1
u2

)
, v =
(v1

v2

)
. The vectors u and v are said orthogonal when they cancel the bilinear
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form u1v1 + ρu2v2 where −ρ is not a square in the field K of coordinates. Note
that the factor ρ is named orthogonality constant. In such planes, an angle does not
have necessarily a bisector (even if the angle is a right angle). K must possess some
properties so that the following axioms are satisfied: (A∗) regarding the right angles
and (A) regarding all type of angles (see below).

Axiom (A). For any pair of lines l and l′ incident to a point M there exists a line
d such that l is transformed into l′ by the reflection of axis d.

Axiom (A∗). For any pair of orthogonal lines l and l′, there exists a line d such
that l is transformed into l′ by the reflection of axis d.

The plane is therefore endowed with an orthogonal coordinate system. Given
the set of points that we get starting from the point (1,0) by all reflections of axis
passing through the origin. Such a set is called a unit circle and is made of the points
which have as coordinates the couple (x,y) satisfying the equation x2 + ρy2 = 1.
Then the axiom (A∗) is equivalent to consider that the unit circle meets the axis
of coordinates, i.e. ρ is a square in the field K. Then it is possible to place in a
new coordinate system in which the intersection of the unit circle and the axis of
ordinates possesses as coordinates (0,1) and in which the unit circle is defined by
the equation x2 + y2 = 1 (ρ = 1). We can say that (A∗) is satisfied if and only if −1
is not a square in K.

The axiom (A) requires that any line passing through the origin meets the unit
circle. That means: ∀m ∈ K, the set of solutions of x2 + y2 = 1 and y = mx must
be a nonempty set, i.e. the axiom (A) is equivalent to notice that the field K is
Pythagorean. And because any Pythagorean field can be ordered, it results that
remarkable properties for the Euclidean planes satisfy this axiom.

A.6.5.2 Orientation

In an ordered field K of coordinates there are two and only two order relations ≤
which order the points of an arbitrary line l. Then it is an oriented line, called axis,
and can be denoted (l,≤). A point split a line into two half-lines. Furthermore, when
on an oriented line l the points A,B,C are as follows A < B and B < C then B is said
to be between A and C. (Such a statement is also valid for the inverse order on the
line l).

The orientation of lines makes possible to orient the plane. Given an axis (l,≤)
it is possible to split all points (of the plane) non-incident to l into two classes called
open half-planes. Two distinct points A,B belong to the same class if the line l does
not meet the line �(A,B) between A and B. (The union of l and one of both open half-
planes defines an half-plane.) One of both half-planes (separated by l) is arbitrarily
defined as positive, and the other is negative. So if the axis (l′,≤) is the image of
(l,≤) by an isometry (i.e. by the composition of a pair number of reflections), then
the image of the positive half-plane determined by (l,≤) is the positive half-plane
determined by (l′,≤) (ibid for the negative half-plane). So all axes possess a unique
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positive (resp. negative) “side” and the plane is said to be oriented. There are two
ways to orient a plane. At this stage, let us recall the definition of a flag:

Definition A.82 (Flag). A flag is a triplet (a,A,P) where a is a point, A is an axis
passing through the point a, and P is an oriented plane containing this axis.

If the axiom (A) is verified in Euclidean planes, by an isometry two flags are
always reciprocally images (which is the definition of the free mobility). Flags also
exist in three-dimensional spaces and in higher dimensions. In multidimensional
geometry, a flag is a collection of faces of an n-dimensional polytope or simplicial
complex, one of each dimension 0,1, . . . ,n−1, which all have a common nonempty
intersection. In normal three dimensions, the flag consists of a half-plane, its bound-
ing ray, and the ray’s endpoint. In geometry, a ray is usually taken as a half-infinite
line (also said half-line) with one of the two points and taken to be at infinity.

Definition A.83 (Ray). A ray is a straight-line segment emanating from a point.
Also known as half-line.

Definition A.84 (Orientation-preserving). A nonsingular linear map Φ : R
n →R

n

is orientation-preserving if det(Φ) > 0.

A.6.5.3 Oriented Plane as Topological Space

The set of intersections of a finite number of open half-planes constitutes a sub-basis
in the topological sense, which makes possible to provide any oriented plane with a
topological structure called a natural topology (such a natural topology satisfies the
Hausdorff axiom of separation).

A.6.5.4 Completion

(1) From a geometrical point of view, in Euclidean geometry the field of coordinates
corresponds to the field of real numbers R. Note that (R,≤) is archimedean and is
also complete (see Algebraic structure of R). In geometry the completion is made
possible by the Dedekind axiom:

Axiom (D). When a set of points of an axis (l,≤) is bounded from above, then
it has a smallest upper bound.

When the axioms (A) and (D) are verified by the field of coordinates of an
Euclidean plane, this field possesses an archimedean order and is also isomorphic
to R. Then we have an Euclidean plane R

2 In such a plane R
2 it is possible to

associate with any line segment [PQ] its length PQ (see distance in an Euclidean
plane) and also to associate with any polygon the area of its surface (or lamina),
since length, distance and area are positive reals. (2) From a more general point of
view, the completion is defined as follows:

Definition A.85 (Completion). For a metric space X , a complete metric space
obtained from X by formally adding limits to Cauchy sequences.
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A.7 Series Expansions

A.7.1 Taylor Polynomials and Remainders

To approach a function f differentiable at the neighborhood of a point a, we can
use the expression f (a) + (x− a) f ′(a). In fact one improves the precision of the
approximation if one knows the values of derivatives of higher order at a. If such
a function is defined by f : x �→ f (x) = ∑n

v=0 avxv then f (0) = a0, f ′(0) = a1,

f ′′(0) = 2!a2, . . . , f (n)(0) = n!an and one can write:

f (x) =
n

∑
v=0

f (v)(0)
v!

xv. (A.51)

More generally we can write for an unspecified point a:

f (x) =
n

∑
v=0

f (v)(a)
v!

(x−a)v. (A.52)

The error which is made during the approximation can be canceled: The function
is entirely determined by the values of its derivates at one single point a. Since the
values of derivatives at the point a of an unspecified function are known until the
order n, we have to wonder if the sum defined above is an appropriate approximation
of the function at the neighborhood of a.

Definition A.86 (Taylor polynomial). If f : Df →R is n-times differentiable at the
point a ∈ D f (n ∈ N), the expression:

pn,a(x) =
n

∑
v=0

f (v)(a)
v!

(x−a)v, (A.53)

is called nth Taylor polynomial of f expanded at the point a, and the expression;

rn,a(x) = f (x)− pn,a(x), (A.54)

is called nth Taylor remainder of f expanded at the point a.

The approximation polynomial f (a)+(x−a) f ′(a) introduced previously is thus
the first Taylor polynomial of f . The nth Taylor remainder defines a function which
is canceled at the point a and continue at a.

Furthermore there exists a stronger property:

Theorem A.21 (Taylor polynomial). If f : Df → R is n-times differentiable at the
point a ∈ Df (n ∈ N

∗), if a is an interior point of D f , and if f is (n− 1)-times

differentiable on a neighborhood of a, then lim
x→a

rn,a(x)
(x−a)n = 0.



A.7 Series Expansions 697

One says then also that (1) the nth Taylor remainder is an infinitely small order
strictly higher than n at a, or also (2) pn,a(x) is an approximation of f (x) of order
strictly higher than n at a. Therefore the nth Taylor polynomial is in general an
approximation which becomes better when n increases. To obtain approximation
statements more precise, we have to study the nth Taylor remainder. In the case
of (n + 1)-times differentiable functions, this study is made easier by means of the
following results (coming from the application of the mean-value theorem resulting
from an extension of the Rolle theorem).

Theorem A.22. If f : Df → R is (n + 1)-times differentiable on an open interval
containing a (n ∈N), then for any x of this interval:

rn,a(x) =
f (n+1)(a +ϑ(x−a))

n!
(1−ϑ)n(x−a)n+1 (A.55)

(Cauchy writing of the Taylor remainder).

rn,a(x) =
f (n+1)(a +ϑ(x−a))

(n + 1)!
(x−a)n+1

(Lagrange writing of the Taylor remainder), where ϑ ,ϑ ∈ ]0,1[.

When a = 0, we obtain the particular cases:

rn,0(x) =
f (n+1)(ϑx)

n!
(1−ϑ)nxn+1,

rn,0(x) =
f (n+1)(ϑx)
(n + 1)!

xn+1.

The following theorem shows that the nth Taylor polynomial associated with a
function (satisfying the conditions hereafter) can be characterized as the unique
polynomial of degree n approaching this function at an order >n:

Theorem A.23. If f : Df → R is n-times differentiable on a neighborhood of the
point a ∈ D f (n ∈ N

∗) and if there exists a polynomial of degree n, p(x), such that
f (x)− f (a)
(x−a)n define a continuous function verifying lim

x→a

f (x)− p(x)
(x−a)n = 0, then p(x)=

pn,a(x).

By contrast if we take other approximation criteria (e.g. uniform convergence of
a sequence of polynomials towards the function on an interval), we obtain different
polynomials.
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A.7.2 Applications to Local Extrema

In order to have a local extremum at a point c, it is necessary to satisfy the following
condition: f ′(c) = 0 (refer to Rolle theorem). If we know likewise the derivatives
of higher order at the point c, it is possible to formulate sufficient conditions which
insure that f ′(x) changes its sign at the point c.

Theorem A.24. Given f : Df → R n-times continuously differentiable on a neigh-
borhood of the point c, such that ∀k ∈ {1,2, . . . ,n−1}, f (k)(c) = 0 and f (n)(c) �= 0.
If n is even and f (n)(c) > 0 then f admits at c a strict local minimum. If n is even
and f (n)(c) < 0 then f admits at c a strict local maximum. If n is odd, f does not
admit a local extremum at c.

In order to show this result, we consider the Taylor polynomial pn−1, c(x) = f (c)

and the Taylor remainder rn−1, c(x) = f (x)− f (c) = f (n)(c+ϑ (x−c))
n! (x− c)n and we

note that on a neighborhood of c f (n)(c +ϑ(x− c)) has the same sign as f (n)(c)
whereas (x− c)n changes its sign at c only if n is odd.

A.7.3 Taylor Series

Any function at least one time differentiable can be approached by one of its Taylor
polynomials; We wonder if for an infinitely differentiable function, the approxima-
tion by pn,a(x) can be improved ad libitum (at will), i.e. if for any ε ∈ R

∗
+ and any

interval I of D f containing a, we can find n ∈ N such that ∀x ∈ I, |rn,a(x)| < ε.
(Generally when such a property is not satisfied, this characterizes a particularly
important class of functions.)

Definition A.87 (Taylor series). If f : Df → R is indefinitely differentiable at the
point a ∈ Df , the following expression:

pa(x) =
n

∑
v=0

f (v)(a)
v!

(x−a)v, (A.56)

is called Taylor series of f expanded at the point a.

The Taylor polynomial pn,a(x) represents for any n ∈ N the partial sum of the
Taylor series. The Taylor series converges towards f (a) at x = a, but the series is
not necessarily convergent elsewhere. Moreover, if the series converges at x, this is
not always towards f (x) as we can see hereafter: Let f : R→ R defined by

x �→ f (x) =
{

e−1/x2
for x �= 0,

0 for x = 0,
(A.57)
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f is indefinitely differentiable on R with f (v)(0) = 0 for any v∈N. The Taylor series
expanded at the point a = 0 converges for any x ∈ R towards the value 0, therefore
p0(x) �= f (x) for any x �= 0. rn,0(x) coincides here with f (x) for any x, and does not
converge towards 0 when n increases indefinitely.

A.7.4 Analytic Functions

In order to characterize the functions which do not have such a singular behavior, it
is necessary first to note that Taylor series are entire series.

Definition A.88 (Analytic function). Let us denote D◦ f the interior28 of D f , f :
Df → R is said analytic at a ∈ D◦ f if f is expandable in entire series around the
point a, i.e. if there exists an entire series ∑∞

v=0 cv(x− a)v converging towards f (x)
on a neighborhood of a. f is said “analytic” on D◦ f if f is analytic at any point
a ∈ D◦ f .

If f is analytic at a, the entire series at (x− a) which expands f around a in a
sum which coincides with f on an open interval J containing a, with J included at
the same time in D◦ f and in the convergence interval of the series. It is possible to
show that at any point of J, f is analytic.

Theorem A.25 (Entire series with a nonnull radius of convergence defines a
differentiable function). An entire series f (x) = ∑∞

v=1 cv(x− a)v whose radius of
convergence is different from zero defines a differentiable function f , such that:
f ′(x) =∑∞

v=1 vcv(x−a)v−1. Both series have the same radius of convergence.

Therefore an analytic function is differentiable, its derivative is obtained by
derivating term by term its entire series, and this is also an analytic function. Finally,
any analytic function is indefinitely differentiable, and it is possible to associate with
it its Taylor series at any point a ∈D◦ f . It comes the uniqueness theorem:

Theorem A.26 (Expansion of an entire series coincides with Taylor series). The
expansion in entire series of an analytic function f around a point a ∈D f coincides
with its expansion in Taylor series at the point a.

For an analytic function a singular behavior analogous to the example hereafter
(see figure) is excluded.

Example A.2 (Non-analytic function; Singular behavior of a particular function).
Given f : R→ R defined by x �→ f (x) = e−1/x2

for x �= 0 and 0 for x = 0,

28 Interior: The interior of a set is the union of all its open subsets. A set constituted only with
interior points is an open set, e.g. a disk without its circumference in R

2.
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the differentiations give f ′(x) = 2/x3 · f (x), f ′′(x) = ((4/x6) − (6/x4)) · f (x),
f (v)(x) = Pv(1/x) · f (x) for r x �= 0, where Pv(1/x) is a polynomial of degree3 v
at 1/x. f (v)(0) = 0 for any v ∈ N. This function is indefinitely differentiable at the
point 0, but does not admit expansion in entire series at this point. The Taylor series
expanded at 0 is p0(x) = 0. Except for the point 0, its value does not coincide with
that of the function. By extending the function on the complexes, one obtains a non
holomorphic function at x = 0.

As said previously, for an analytic function a singular behavior analogous to
the example above is excluded. Such a function is not analytic at the point x = 0,
although it is indefinitely differentiable. It is however analytic at all other points
a ∈ R, but the radius of convergence of the corresponding entire series is |a|, thus
the point x = 0 is located at the frontier of the convergence interval. This behavior
can be explained in a satisfactory way only by the study of complex functions (refer
to theory of functions). Real analysis provides however sufficient conditions for the
analysis of a function, for example:

Theorem A.27. If successive derivatives of a function f indefinitely differentiable
on an interval [a,b] are uniformly “minorized”, i.e. if there exists m ∈ R such that
f (n)(x) > m for any n ∈ N and any x ∈ [a,b], then f is analytic on ]a,b[.

The hypotheses are verified in particular if all derivatives are positives. An anal-
ogous theorem can be stated for an uniform majorization.

A.7.5 Binomial Series

The function f : R→ R defined by x �→ (1 + x)n is expanded easily in entire series

around 0 for n ∈ N. We have (1+ x)n =
∞
∑

v=0

f (v)(0)
v!

xv =
∞
∑

v=0

(
n
v

)

xv. Binomial coef-

ficients
(

n
v

)

are defined by induction by
(

n
0

)

:= 1,
(

n
v + 1

)

:=
(

n
v

)

· n− v
v + 1

, v∈N.

Since
(

n
v

)

= 0 for v > n, only the n + 1 first terms of the series are different from

zero and the radius convergence is infinite. A simple calculation states the follow-

ing property:
(

n
v

)

+
(

n
v + 1

)

=
(

n + 1
v + 1

)

, illustrated by the Pascal’s triangle. When

we extend the definition of binomial coefficients to any real number r, we observe

that for r ∈ R\N we have always
(

r
v

)

�= 0. By using the definition of the power
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function for an unspecified real exponent, it is possible to show that we have still

(1 + x)r =
∞
∑

v=0

(
r
v

)

xv for |x| < 1 (binomial series). The radius of convergence is

moreover equal to 1 for r ∈R\N.

Example A.3. Example for r ∈R\N: (1+x)−1 =
1

1 + x
= 1−x+x2−x3 +x4 + · · · ,

(1 + x)1/2 =
√

1 + x = 1 +(1/2)x− (1/8)x2+(1/16)x3− (5/128)x4 + · · · .
A generalization is written:

(a + b)r =
∞
∑

v=0

(
r
v

)

ar−vbv, with r ∈R, |b|< |a| . (A.58)

A.8 Distribution Theory

Distribution theory, created in the 1950s by Laurent Schwartz, made possible to
make rigorous certain heuristic process (i.e. symbolic calculation of Heaviside, delta
of Dirac), to clarify the notion of weak solution of a partial differential equation
(PDE), and lastly to provide a general framework to Fourier transform. Distribution
theory is a vast generalization of the function notion (of several variables); The fun-
damental idea is that of duality: Distributions are, by definition, linear forms on a
space of functions, named test functions,29 which are indefinitely differentiable; this
makes possible to define, by transposition, partial derivatives of distributions and
their product with indefinitely differentiable functions, then consequently, to apply
a linear differential operator (with coefficients C∞) to a distribution, and therefore
to search distribution-solutions for linear partial differential equations (with coef-
ficients C∞). Then the “elementary solution” notion of such a partial differential
equation emerges, this notion plays a fundamental part in the resolution of the equa-
tion by means of the convolution operation of distributions. Let us note that the
multiplication operation of functions does not extend to distributions.

Distributions are defined on open parts denotedΩ,Ω′, . . . spaces R
n, the test func-

tions on Ω are the functions with complex values, defined on Ω, of class C∞ and
with compact support;30 They form a complex vector space denoted D(Ω). (Nota-
tion: for any multi-index α = (α1, . . . ,αn) ∈ N

n , we pose |α| = α1 + · · ·+αn and
we denote Dα the differential operator which consists in derivating α1 times with
respect to the variable x1, α2 times with respect to the variable x2, etc.)

Definition A.89 (Distribution). A distribution u on Ω is a linear form on the space
D(Ω), denoted ϕ → (u,ϕ), satisfying the following continuity condition: If a
sequence (ϕk) of “test functions” is such that:

29 Test function: An infinitely differentiable function of several real variables used in studying
solutions of partial differential equations.
30 Support: A support “supp ϕ” of a function ϕ is the closure of the set of points where ϕ is
nonzero.
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• supp ϕk is included in a “compact”, included in Ω and independent on k.
• For any α , the sequence (Dαϕk) converges uniformly towards 0, then (u,ϕk)

tends towards 0.

Distributions on Ω form a vector space denoted D′(Ω).

Example A.4. A function f on Ω, locally integrable (i.e. integrable on any “com-
pact” included in Ω), defines a distribution u by the formula:

〈 f ,ϕ〉 =
∫

Ω
ϕ(x) f (x)dx.

Then it is possible to say that u is the function f . This applies (in particular) in the
case n = 1 to a Heaviside function H, to a characteristic function on the interval
[0,+∞], and also to the function log[x]; By contrast the function 1

x is not locally
integrable; however we can associate with it a distribution denoted pv 1

x (for Cauchy
“principal value”: pv); See table hereafter:

(a) 〈 f ,ϕ〉 =
∫
Ωϕ(x) f (x)dx,

(b) H(x) =
{

1 if x≥ 0,
0 if x < 0,

(c)
〈

pv
1
x
,ϕ
〉

= lim
ε=0

∫
|x|≥ε

ϕ(x)
x

dx,

(d) 〈δa,ϕ〉= ϕ(a), 〈δ ,ϕ〉= ϕ(0).

When Ω contains the point 0, the distribution δ of Dirac, defined by 〈δ ,ϕ〉 =
ϕ(0), plays a fundamental part; but this is not a function in the previous sense above.
In an analogous way, we define the distributions δa, where a ∈Ω.

A next step will be the distributions ϕ → Dαϕ(0).

Remark A.6. A convolution is known as an integral that expresses the amount of
overlap of one function g as it is shifted over another function f . It therefore blends
one function with another. For example, it is possible to blend a singularity with
a stationary curve, or a waveform (e.g. a gauss-curve, or a wavelet,. . .) with an
arbitrary signal while varying the size of the waveform. A convolution is defined
as a product of functions f and g and that are objects in the algebra of Schwartz
functions in R

n. The continuous writing of a convolution of two functions over an
infinite range is written: f ∗ g ≡ ∫ +∞

−∞ f (τ)g(t − τ)dτ =
∫ +∞
−∞ g(τ) f (t − τ)dτ. f ∗ g

is also written f ⊗ g. There is also a definition of the convolution which arises in
probability theory given by F(t)∗G(t) =

∫
F(t−x)dG(x) where

∫
F(t−x)dG(x) is

a Stieltjes integral.
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A.8.1 Derivation of Distributions

Definition A.90 (Derivation of distributions). For any multi-index such that α =
(α1, . . . ,αn) ∈ N

n and any distribution u ∈D′(Ω), we define Dαu by the formula

〈Dαu,ϕ〉= (−1)|α | 〈u,Dαϕ〉 . (A.59)

We notice that, for the distributions, the derivation is an operation always possible.
When n = 1, we write also u′, u′′, etc., like for the functions.

Example A.5. • If u is a function f of class C|α |, Dαu is the function Dα f (we carry
out an integration by parts which explains the sign (−1)|α |).

• (Case n = 1). We have H ′ = δ . More generally if a function is of class C1 on R

deprived of a sequence of “isolated points” ai (i = 1,2, . . .) where this function
admits left-limits and right-limits f (ai−) and f (ai+), its derivative as distri-
bution is equal to its derivative as function (defined only almost everywhere)
augmented of the distribution ∑

i
( f (ai+)− f (ai−))δai (formula of jumps).

• (Case n = 1) log |x| has the following derivative pv
1
x

. See table hereafter:

(a) 〈Dαu,ϕ〉= (−1)|α | 〈u,Dαϕ〉,
(b) (log |x|)′ = pv

1
x

.

A.8.2 Multiplication

The product of a distribution u ∈D′(Ω) by a function f ∈C∞(Ω) is defined by the
formula 〈 f u,ϕ〉= 〈u, fϕ〉. For example: fδa = f (a)δa, fδ ′ = f (0)δ ′ − f (0)δ , x pv
1
x = 1.

A.8.3 Support of Distributions

A distribution u∈D′(Ω) is equal to zero on an open set Ω′ ⊂Ω if we have 〈u,ϕ〉= 0
for any ϕ ∈D(Ω), with its support included in Ω′. Furthermore, if a distribution is
equal to zero on each one of the open sets of an unspecified family, this distribution
is equal to zero on their union. This makes it possible to define the support of a dis-
tribution as being the complement of the largest “open set” on which the distribution
is equal to zero. See table hereafter:

supp Dαδα = {a}, (A.60)

supp pv
1
x

= supp log |x|= R. (A.61)
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A.8.4 Convolution of Distributions

In such a framework, we pose Ω = R
n, and if we have to show the variable on

which depend u and ϕ , we will write 〈u(x),ϕ(x)〉 instead of 〈u,ϕ〉. The product of
convolution u ∗ v of two distributions u,v ∈D′(Rn) is defined formally by:

〈u ∗ v,ϕ〉= 〈u(x),〈v(y),ϕ(x + y)〉〉 , (A.62)

such an expression has a meaning only if certain hypotheses are respected, e.g.
(1) If for any compact K ⊂ R

n, the set of couples (x,y) ∈ supp u× supp v verifying
x + y ∈ K is compact, then it is said that supp u and supp v are convolutive; (2) If u
and v are the integrable functions f and g, then in such a case u ∗ v is the function
defined almost everywhere

( f ∗ g)(x) =
∫

f (x− y)g(y)dy. (A.63)

Therefore, the convolution is an operation which is not defined everywhere. (Distri-
bution is always commutative, but associative only if certain conditions are verified.)
See table hereafter concerning the convolution:

( f ∗ g)(x) =
∫

f (x− y)g(y)dy, (A.64)

δ ∗u = u∗ δ = u, (A.65)
Dαδ ∗u = Dαu. (A.66)

A.8.5 Applications to Partial Differential Equations with Constant
Coefficients

Let A =∑|α |≤m aαDα be a differential operator of order m where the coefficients aα
are constants; The operator extends to a map from D′(Rn) to itself:

A(u) = ∑
|α |≤m

aαDαu. (A.67)

It is possible to write A(u) = A(δ ) ∗ u, so that a partial differential equation of the
form A(u) = v can be considered as an algebraic equation: A(δ ) ∗ u = v in the set
D′(Rn), which is not however an algebra for the convolution.

The Malgrange–Ehrenpreis theorem states that there exist always elementary
solutions, i.e. distributions E verifying A(E) = δ .
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Example A.6 (Convolutions).
(a) (n = 1):

A =
dm

dxm + an−1
dm−1

dxm−1 + · · ·+ a0,

E = zH,

where z is the unique solution of the differential equation A(z) = 0 with initial
conditions

z(0) = · · ·= z(m−2)(0) = 0, z(m−1)(0) = 1.

(b) (“Wave operator” in R
3, also called “Alembert operator” in R

3):

A =
∂ 2

∂ t2 −
∂ 2

∂x2
1
− ∂ 2

∂x2
2
− ∂ 2

∂x2
3
,

〈E,ϕ〉 =
∫

R3

ϕ (|x| ,x)
4π |x| dx,

where x = (x1,x2,x3) and |x|= (x2
1 + x2

2 + x2
3)

1/2.
(c) (“Cauchy–Riemann operator”, n = 2):

A = ∂ =
1
2

(
∂
∂x

+ i
∂
∂y

)

,

〈E,ϕ〉 =
∫

R2

ϕ (x,y)
π(x + iy)

dxdy.

(d) (“Laplace operator” in R
3):

A = �=
∂ 2

∂x2
1

+
∂ 2

∂x2
2

+
∂ 2

∂x2
3
,

〈E,ϕ〉 =
∫

R3

−ϕ (x)
4π |x| dx.

A.8.6 Use of Elementary Solutions

If E is an elementary solution of a differential operator A, usually we have to look
for a solution of an equation A(u) = v under the form u = E ∗ v, but this has a sense
only if certain conditions are satisfied, for example if the supports of E and v are
convolutive.

Example A.7. If we use the previous example (a) with m = 2, and we look for the
resolution of the Cauchy problem

(1): A( f ) = g, f (0) = b0, f ′(0) = b1, (A.68)
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where g is a given function on [0,+∞[, b0 and b1 are constants, f is an unknown
function on [0,+∞[. The previous system (1) is equivalent to A( f H) = gH +(b1 +
a1b0)δ + b0δ ′ and admits the unique solution f H = (zH) ∗ (gH + b1 + a1b0)δ +
b0δ ′), which gives (for x≥ 0) the following formula:

f (x) =
∫ x

0
z(x− y)g(y)dy +(b1 + a1b0)z(x)+ b0z′(x). (A.69)

A.9 Approximation Theory

This section gives a brief overview of basic methods of approximation.31 In short,
the principle of an approximation can be described as follows. Let f : [a,b]→R be a
function and ε a positive real number, the purpose is to approach f by a function p of
a particular set of functions, such a set is generally the set of polynomial functions,
so that we have | f (x)− p(x)| < ε for any x ∈ [a,b] (see a symbolic example in
Fig. A.20). The value at x of a function f , n-times continuously differentiable on an
interval I = [a−α,a +α] can be approached by pn,a(x). i.e. we have ∀x ∈ I,

| f (x)− pn,a(x)| ≤ 2
αn

n!
Mn = μn, (A.70)

with Mn = sup
I

∣
∣
∣ f (n)(x)

∣
∣
∣. And the error made by replacing f by pn,a on I is uniformly

“majorized” by μn.

Definition A.91 (Uniformly approachable map). f : [a,b]→R is uniformly appro-
achable by functions of a set F if for any ε ∈ R

∗
+ there is p ∈ F such that:

| f (x)− p(x)|< ε for any x ∈ [a,b]. (A.71)

p is then called a uniform approximation of f on [a,b]. The polynomial func-
tions can be used to calculate these approximations. Approximations by polynomial
functions are particularly important.

Theorem A.28 (Weierstrass approximation). Any continuous function f : [a,b]→
R is uniformly approachable by polynomial functions.

Fig. A.20 Approximation

31 Approximation theory belongs to Differential calculus.
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It is possible to apply this theorem to the functions f defined on [0,1] by choosing
particular approximation functions bn( f ):

bn( f )(x) =
n

∑
v=0

f
( v

n

)
·
(n

v

)
xv(1− x)n−v, (A.72)

which corresponds to Bernstein polynomials, (such approximation functions are
polynomial and converge uniformly towards f on [0,1]). We can use this approach
for the functions f defined on [a,b], ϕ(t) : [0,1]→ [a,b] by t → ϕ(t) = t(b−a)+q
then f ◦ϕ is approachable by the functions bn( f ◦ϕ) thus f is approachable by the
functions bn( f ◦ϕ)◦ϕ−1 which verify bn( f ◦ϕ)◦ϕ−1(x) = bn( f ◦ϕ)

(x−a
b−a

)
and are

then polynomial.

A.9.1 Best Approximations

The convergence of the sequence bn( f ) towards f can be relatively slow. We can
wonder if there are better sequences of polynomial functions to build better approx-
imations of f . In this aim, it is preferable to be located within the more general
framework of normed vector spaces.

Definition A.92 (Best approximation). Let (V,‖ ‖) be a normed vector space and
U ⊆ V. f̄ ∈ U is called best approximation of f ∈ V relative to U and ‖ ‖ if∥
∥ f − f̄

∥
∥≤ ‖ f −g‖ for any g ∈U.

The best approximation thus depends on the choice of U and the norm ‖ ‖ . The
theorem which follows gives a condition of existence.

Theorem A.29 (Condition of existence). If U is a vector subspace of finite dimen-
sion of (V,‖ ‖), then for any f ∈V there exists a best approximation f̄ of f relative
to U and ‖ ‖ .

A.9.1.1 Tchebychev Polynomials

Let C0[a,b] be a vector space of real continuous functions defined on [0,1], on which
one defines a norm ‖ ‖∞ by

‖ f‖∞ := sup
x∈[a,b]

(| f (x)|) (A.73)

which is the Tchebychev norm. The polynomial functions of degree at the most
(n-2) constitute a vectorial subspace Sn−1 of C0[a,b] of dimension n. It is possible
to wonder what is the best approximation of the power function fn(x) = xn relative
to Sn−1 and ‖ ‖∞ . If one denotes f̄n this best approximation of fn, then tn = fn−
f̄n is among all the polynomial functions gn of degree n (whose coefficient of the
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monomial of degree n is 1), the one for which the maximum of |gn(x)| is the smallest
on [a,b]. The tn(x) are Tchebychev polynomials, and one can write:

tn(x) =
(b−a)n

22n−1 cos
(

n · arccos
(

2x
b−a

− b + a
b−a

))

. (A.74)

With a maximum for their absolute value at (b−a)n

22n−1 . In particular for the interval
[−1,1] we have tn(x) = 21−n cos(n · arccosx).

A.9.1.2 Legendre Polynomials

If we use the set C0[a,b] with the Euclidean norm (and not the Tchebychev norm)
which is written:

‖ f‖2 :=

√
∫ b

a
[ f (x)]2dx, (A.75)

the previous method leads to the definition of Legendre polynomials ln(x). ln is
among all the polynomial functions gn of degree n (whose coefficient of the mono-
mial of degree n is 1) the one for which

∫ b
a [gn(x)]2dx is the smallest. In particular

for the interval [−1,1] we have:

ln(x) =
n!

(2n)!
dn

dxn (x2−1)n. (A.76)

The norms ‖ ‖∞ and ‖ ‖2 do not provide the same result.

A.9.1.3 Least-Square Methods

(Gauss) Least-square methods: The approximation f̄ of f must be a linear combi-
nation of n linearly independent functions gv:

f̄ =
n

∑
v=1

αvgv, (A.77)

with αv ∈ R. The coefficients αv minimize the value of (∑n
μ=1(∑

n
v=1αvgv(xμ)−

yμ)2)1/2. To do this, we have to equalize to zero (for any i ∈ {1, . . . ,m}) the partial
derivatives: ∂

∂αi
∑m
μ=1(∑

n
v=1αvgv(xμ)−yμ)2. Consequently, one obtains a system of

n equations with n unknowns α1, . . . ,αn, which generally admits a solution. This
technique presented quickly is that of least squares.
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A.10 Interpolation Theory

Let (n+1) be the points Pμ(xμ ,yμ),(μ ∈ {0, . . . ,n}, pairwise distinct abscissas xμ ),
the purpose is to find a polynomial function pn of degree n which takes the value yμ
at each point xμ . Then we determine the coefficients αv of the expression:

pn(x) =
n

∑
v=0

αvxv, (A.78)

in order to have: ∑n
v=0αvxv

μ = yμ ,∀μ ∈ {0, . . . ,n}. It is a system of linear equa-
tions whose unknowns are α0, . . . ,αn and which admits a single solution. The
associated homogeneous system is written: ∑n

v=0αvxv
μ = 0, which corresponds to

pn(xμ)= 0 with μ ∈ {0, . . . ,n}. If this system had a solution (a0, . . . ,an) �= (0, . . . ,0)
the polynomial pn would have (n+1) roots (while not being identically null), what
is impossible since it is of degree n at most. Therefore, the homogeneous sys-
tem admits only the trivial solution (0, . . . ,0), this proves that the determinant of
the associated matrix is nonzero and demonstrates the (previous) announced result
according to Weierstrass approximation theorem. There are several methods which
allow to construct interpolation polynomials.

A.10.1 Lagrange Method

This method is also called Lagrange interpolation polynomial. The interpolation
polynomial associated with the points Pμ(xμ ,yμ), can be written in the form:

pn(x) =
n

∑
v=0

n

∏
μ=0
μ �=v

x− xμ
xv− xμ

yv. (A.79)

Calculations resulting from this method are often rather long. Furthermore, if one
adds new points to the set to be interpolated, it is necessary to restart all calculations.
Unlike Lagrange method, the Newton–Gregory method avoids such a problem.

A.10.2 Newton–Gregory method

By using the following writing:

pn(x) = c0 + c1(x− x0)+ · · ·+ cn(x− x0)(x− x1) · · · (x− xn−1), (A.80)

then the coefficient cv are easily calculated starting from the equations Pn(xμ) =
yu,μ ∈ {0, . . . ,n}. Indeed, pn(x0) = y0 leads to c0 = y0 and by resolving suc-
cessively the equations after having replaced the unknowns already determined
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by their values, we have then: c1 = y1−y0
x1−x0

, c2 =
y2−y1
x2−x1

− y1−y0
x1−x0

x2−x0
, etc. Formally, if we

define by recurrence for all μ ,ν ∈ N, μ ≥ ν : [xμ ] := yμ (Increase of order 0),
[xμ xμ−1,...,xμ−ν+1]−[xμ−1,...,xμ−ν ]

xμ−xμ−ν (increase of order ν with ν > 0), then we get cv =

[xvxv−1, . . . ,x0] for any ν ∈ {0, . . . ,n}. Therefore, it is possible to evaluate all coef-
ficients starting from a simple calculation method. If we add new points to the set
to be interpolated, it only suffices of calculating new coefficients. The order of the
abscissas of points to be interpolated does not play any part. The method is particu-
larly useful when these abscissas are equidistant. If x0 is the smallest abscissa, and
if xμ+1− xμ = h for any μ ∈ {0, . . . ,n− 1}, we write, instead of the increases of
order ν , the differences of order ν defined by:

�0yμ := yμ ,

�νyμ := �ν−1yμ+1−�ν−1yμ , ν > 0,

Then cν = [xνxν−1, . . . ,x0] =
1
ν!
· �

νy0

hν
for any ν ∈ {0, . . . ,n}.

Remark A.7. We obtain an analogous interpolation formula if (always in the case of
equidistant abscissas) x0 is not the smallest but the greatest abscissa or the median
abscissa.

A.10.3 Approximation by Interpolation Polynomials

To approach a continuous function f , it is possible to choose on its graph n + 1
pairwise distinct interpolation points (x0 < · · ·< xν < · · ·xn) and construct the cor-
responding interpolation polynomial pn. At each interpolation abscissa we have then
f (xv) = pn(xv). The error (=ε) made during the interpolation is denoted:

Error = f (x)− pn(x) =
f (n+1)(ξ )
(n + 1)!

(x− x0), . . . ,(x− xn), (A.81)

where ξ corresponds to a suitable value belonging to an interval containing [x0,xn]
and {x}. Taylor polynomials appear thus as borderline cases of interpolation poly-
nomials, when all interpolation points are confused.

It is possible to generalize the approximation principle by interpolation (pre-
sented previously) to sets of points non necessarily pairwise distinct. If k points are
confused (k > 1), to define a single interpolation polynomial it is necessary to give
itself k independent conditions which will be obtained by writing the equality of suc-
cessive derivatives of the function to be approached and interpolation polynomial
until the order k− 1. Lastly, we wonder how choose interpolation abscissas in an
appropriate way, on a segment [a,b] so that the polynomial interpolation of a given
(sufficiently differentiable) function is most precise possible. The answer depends
on the norm of the space of considered functions. If we take Tchebychev norm,
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the interpolation which leads to the best approximation is the one which uses the
abscissas of zeros of the Tchebychev polynomial tn+1(x). In a similar way, for the
Euclidean norm, we have to use the abscissas of zeros of the Legendre polynomial
ln+1(x).

A.11 Numerical Resolution of Equations

A.11.1 Simple Iterative Methods

A main purpose of the numerical calculation is to resolve the equation f (x) = 0,
x ∈ [a,b]. If we pose g(x) = x+h(x) · f (x), where h(x) is a function can be selected
arbitrarily (only condition: h different from zero on [a,b]); resolve the previous
problem is equivalent to resolve: g(x) = x with x ∈ [a,b]. To approach solutions
of this type of equation we use a well-known iterative method, with an initial value
x0, and we can write xv+1 = g(xv),∀v ∈ N. Under certain conditions the sequence
represented by (xv) converges and its limit denoted ξ is a solution of f (x) = 0.

Theorem A.30 (Convergence criterion). If g : [a,b]→ [a,b] defined by x→ g(x) is
continuously differentiable on [a,b] and if |g′(x)|< 1 for any x∈ [a,b], then g(x) = x
admits exactly a solution ξ and ξ = lim

v→∞
xv where the sequence (xv) is defined by

x0 ∈ [a,b] and xv+1 := g(xv), ∀v ∈N.

Speed of convergence: In fact the convergence speed can be evaluated even starting
from the first iteration by means of the equality:

|ξ − xv| ≤ Lv

1−L
|x1− x0| , (A.82)

with L = supx∈[a,b] |g′(x)| . If f is continuously differentiable on [a,b], to apply the
method to f (x) = 0 we choose g = 1R + f · h with h satisfying the convergence
criterion (e.g. if−2 < f ′(x) < 0, we will choose h = 1, and if 0 < f ′(x) < 2, h =−1
will be adapted).

A.11.2 Newton–Raphson Method

We assume that f ′ does not cancel itself, we want to choose h such that g′(ξ ) = 0.
From g′(x) = 1 + h′(x) · f (x)+ h(x) · f ′(x), then it comes h(ξ ) = −1/ f ′(ξ ), and it
seems appropriate to choose h(x) = −1/ f ′(x). In the case of a twice continuously
differentiable function, the convergence criterion of a sequence which satisfies the
recurrence relation: xv+1 = xv− f (xv)

f ′(xv)
, is written ∀x ∈ [a,b] :

∣
∣ f (x) f ′′(x)

[ f ′(x)]2
∣
∣ < 1. Such

a method admits a simple geometrical interpretation: If we draw the tangent to the
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graph of f at the point (xv, f (xv)), xν+1 is the abscissa of the intersection point of
this tangent with the axis of abscissas.

A.11.3 Linear Interpolation Method (Regula Falsi)

If we replace, in Newton–Raphson method, the slope of the tangent f ′(xv) by the
slope of the secant passing by the points (xv, f (xv)) and (xv−1, f (xv−1)), we get

the recurrence relation xν+1 = xν − xv− xν−1

f (xv)− f (xv−1)
f (xv) for ν ≥ 1. xν+1 is the

abscissa of the intersection point of the considered secant with the axis of abscissas.
The coefficient before f (xv) not depending only on xv, the convergence criteria of
this method are more complicated.

A.11.4 Horner’s Schema

To evaluate numerically the expressions f (xv) or f ′(xv) which intervene for example
in the previous methods, it is possible to use, in the case of a polynomial function f ,
the Horner schema. It is based on the relation: anxn + an−1xn−1 + · · ·+ a1x + a0 =
((· · · (anx+an−1)x+ · · ·+a2)x+a1)x+a0. The figure hereafter explains briefly the
calculation method of f (xv), which uses additions and only n multiplications by xv.
Calculation method explained briefly is as follows: Given f : R → R defined by
x �→ f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0, we look for the value of f (xv),

The iteration of this process makes possible to calculate the coefficients 1
μ! f (μ)(xν)

of the Taylor expansion of f at the point xν . The repetition of this method makes
possible to calculate f ′(xν ). Indeed, the n first numbers of the sixth row of the table
above are the coefficients of the polynomial defining the continuous extension of
the increase rate function mxv(x) = f (x)− f (xv)

x−xν
that verifies mxv(xν ) = f ′(xν).

Remark A.8. More generally, the iteration of this method makes possible to calculate
the coefficients 1

μ! f (μ)(xν ) of Taylor expansion of f at the point xν .
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Example A.8. Given f (x) = x4−2x3 + x2−7x + 3, we look for f (3), f ′(3), f ′′(3),
f ′′′(3):

A.11.5 Graeffe Method

When we consider a polynomial function f0 of degree n defined by x �→ anxn +
an−1xn−1 + · · ·+ a1x + a0 as a function on C, the fundamental theorem of the com-
plex algebra insures that its expression is decomposed into the product of a constant
with n factors of the form an(x− ξ1)(x− ξ2) · · · (x− ξn). By developing this prod-
uct and by identifying the coefficients of the obtained polynomial with those of the
initial polynomial, we show that (for 1≤ m≤ n):

∑
v1<v2<···<vm

(−ξv1)(−ξv2) · · ·(−ξvm) =
an−m

an
. (A.83)

This property of roots (also called Vieta th.) makes possible to evaluate them
when their absolute values are pairwise distinct. Indeed, if for example |ξ1| >
|ξ2| > · · · > |ξn|, the absolute values of roots being distant to each other, we have
ξv ≈ − an−ν

an−ν+1
for any ν ∈ {1, . . . ,n}. This approximative calculation is possible

only if all coefficients aυ are nonzero. Otherwise, or if we want to improve the preci-
sion of results, we build by recurrence fk(x2k

) = (−1)n · fk−1(x2k−1
) · fk−1(−x2k−1

) =
ak,nx2k·n + ak,n−1x2k·(n−1) + · · ·+ ak,0. For values of k sufficiently large, the coeffi-

cients ak,ν are all nonzero and lim
k→∞

2k
√
− ak,n−ν

ak,n−ν+1
= ±ξν for any ν ∈ {1, . . . ,n} with

an appropriate choice of the sign.

A.12 Second-Order Differential Equations

Second-order differential equations (by using explicit representation) can be writ-
ten y′′ = f (x,y,y′), where f is a function defined on G ⊂ R

3 having real values.
A function F : Ix → R defined by x �→ y = F(x) is a solution of the differential
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equation if it is twice differentiable and if for any x ∈ Ix, (x,F(x),F ′(x)) ∈ G and
F ′′(x) = f (x,F(x),F ′(x)). A solution denoted FA is said solution of the problem of
initial values (x0,y0,y′0) ∈G, if (x0,FA(x0),F ′A(x0)) = (x0,y0,y′0). Resolve a second-
order differential equation is usually more difficult than a first-order equation. There
are many methods to resolve particular types of equation. Generally we look for
to reduce an equation of second-order to a system of first-order equations by a
change of variables. Within this framework, differential equations of order 2 are
very important.

A.12.1 General Resolution of Linear Differential
Equations of Second-Order

A linear second-order differential equation can be written y′′+a1(x) ·y′+a0(x) ·y =
s(x), where a0, a1, s are continuous functions on Ix having real values. If s = 0
on any Ix, the equation becomes homogeneous; By contrast it is said to be non-
homogeneous in the opposite case. For the general resolution we use the notion of
linear independence of two functions f1 : Ix → R and f2 : Ix → R: Both functions
f1 and f2 are said linearly independent if the functional relation on Ix c1 · f1 +
c2 · f2 = 0 where (c1,c2) ∈ R

2 requires c1 = c2 = 0. We define the Wronskian32

of two functions by W (F1,F2)(x) = F1(x) · F ′2(x)− F ′1(x) · F2(x). We show that
two solutions (of the homogeneous equation) defined on Ix, F1 and F2 are linearly
independent if for any x ∈ Ix, W (F1,F2)(x) �= 0 and

Proposition. (1) There exist two linearly independent solutions F1 and F2 defined
on Ix for the homogeneous equation y′′ + a1(x) · y′ + a0(x) · y = 0. The set of
solutions of the homogeneous equation is the set of Fh(x) = α1F1(x) + α2F2(x)
with (α1,α2) ∈ R

2. (2) There exists one solution Fp defined on Ix for the non-
homogeneous equation. The set of solutions of the non-homogeneous equation is
the set of Fnh(x) = Fp(x)+α1F1(x)+α2F2(x) with (α1,α2) ∈R

2. (Furthermore we
know that any problem of initial conditions admits a single solution.)

A.12.2 Resolution of Linear Homogeneous Equations

Then we are looking for two linearly independent solutions. If we do not know at
the beginning the nonzero solution, the problem becomes very difficult; this is why
we often use in practice approached solutions (when the tables or intuitions are not

32 Wronskian: An n×n matrix whose ith row is a list of the (i−1)st derivatives of a set of functions
f1, . . . , fn; ordinarily used to determine linear independence of solutions of linear homogeneous
differential equations.
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sufficient). By contrast, if we know already a solution F1 (which furthermore is not
canceled on Ix) the following method makes it possible to calculate another solution
F2 independent of F1. We pose F2(x) = v(x) ·F1(x), and v is then solution of the
differential equation: v′′ = −

(
2 F ′1(x)

F1(x)
+ a1(x)

)
· v′. The integration is easy and we

take for example F2(x) = F1(x)
∫ x

x0
1

|F1(t)|2
exp
(
−∫ t

x0
a1(u)du

)
dt with x0 ∈ Ix.

A.12.3 Particular Solution of a Non-Homogeneous Equation

If F1 and F2 are two linearly independent solutions of the corresponding homoge-
neous equation, it is possible to find a particular solution of the non-homogeneous
equation by the method of variation of constants by posing Fp(x) = v1(x) ·F1(x)+
v2(x) · F2(x). Then it suffices to resolve both differential equations: v′1(x) =
− s(x)F2(x)

W(F1,F2)(x) and v′1(x) = + s(x)F1(x)
W(F1,F2)(x) .

A.12.4 Linear Differential Equations of Second-Order
with Constant Coefficients

We are interested here in the equations of the type: y′′+ p ·y′+q ·y = s(x) where p,q
are two real numbers. First, we resolve the homogeneous equation y′′+ p ·y′+q ·y =
0. So, we consider the characteristic equation z2 + pz + q = 0: its resolution leads
to distinguish three cases (see Fig. A.21):

(a) p2−4q > 0: two distinct real solutions z1 and z2.
(b) p2−4q = 0: a single real solutions z.
(c) p2−4q < 0: two complex (conjugate) solutions z1 and z2.

The solutions of the homogeneous equation are then:

(a) Fh(x) = α1ez1x +α2ez2x.
(b) Fh(x) = (α1 +α2x)ezx.
(c) Fh(x) = eRez1x (α1 cos(Imz1x)+α2 sin(Imz1x)).

In order to find a particular solution of the non-homogeneous equation, it is
possible to use the methods of variation of constants. However there exist simpler
methods if s is a trigonometric function, exponential or an entire series.

Let us consider a (standard) linear homogeneous equation of second order with
constant coefficients (p≥ 0, q > 0), y′′+ p ·y′+q ·y = 0 where p = r

m , q = D
m , x = t

(r ∈ R
+,m ∈ R

∗
+,D ∈R

∗
+).
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Fig. A.21 Qualitative graph of solutions

General solution For initial conditions (0,0,v0)

(a) p2−4q > 0, i.e. r2 > 4mD:
F(x) = α1ez1x +α2ez2x,

with z1/2 =
−r±√r2−4mD

2m
,

where z2 < z1 < 0

α1 +α2 = 0∧α1z1 +α2z2 = v0

⇔ α1 =
v0

z1− z2
∧α2 =

v0

z2− z1
FA(x) =

v0

z1− z2
(ez1x− ez2x)

(b) p2−4q = 0, i.e. r2 = 4mD:
F(x) = (α1 +α2x)ezx,

with z =− r
2m

α1 = 0∧α1z+α2 = v0
⇔ α1 = 0∧α2 = v0

FA(x) = v0 x e−
r

2m x

(c) p2−4q < 0, i.e. r2 < 4mD:
F(x) = eRez1x(α1 cosImz1x

+α2 sin Imz1x),

with z1/2 =
−r± i

√
4mD− r2

2m

α1 = 0∧α1 Rez1 +α2 Imz1 = v0

⇔ α1 = 0∧α2 =
v0

Imz1

FA(x) =
2mv0√

4mD− r2
e−

r
2m x

× sin

√
4mD− r2

2m
x

Particular solution: r = 0
(without friction) FA(x) = v0

√
m
D

sin
√

m
D

x
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A.13 Other Reminders

A.13.1 Basic Reminders in Mathematics and Statistics

A.13.1.1 Matrix Diagonalization

The matrix diagonalization is the process of taking a square matrix and convert-
ing it into a diagonal matrix. Matrix diagonalization is equivalent to transforming
the underlying system of equations into a (special) set of coordinate axes in which
the matrix takes this canonical form. Matrix diagonalization is also equivalent to
finding the matrix’s eigenvalues, which turn out to be the “entries” of the diagonal-
ized matrix. Similarly, the eigenvectors make up the new set of axis corresponding
to the diagonal matrix. A “change of basis” in a vector space E on K (i.e. a lin-
ear map from E to E) of dimension n. The matrix which allows to pass from a
basis (V1, . . . ,Vn) to a basis (V̂1, . . . ,V̂n) is the square matrix H of order n whose
terms of the ith column are the coordinates of V̂i in the basis (V1, . . . ,Vn) , 1 � i � n.
Given (x1. . .xn)T ,(x̂1. . .x̂n)T , the column vectors X and X̂ , coordinates of a vector
belonging to E in these two bases verify: X = HX̂ and X̂ = H−1X . Matrices A and
Â associated with an endomorphism of E in these bases verify:

A = HÂH−1 and Â = H−1AH. (A.84)

Here is a diagram of the diagonalization:

An endomorphism f of E is diagonalizable if there exists a basis (V̂1, . . . ,V̂n) of
E in which the matrix associated with f is the diagonal matrix Â, i.e. such that.:
f (V̂k) = λkV̂k, 1 � k � n; (V̂1, . . . ,V̂n) is a basis of eigenvectors of f and λ1, . . . ,λn
are eigenvalues of f . The subspace F (λ ) = Ker( f −λ I) = {V ∈ E; f (V ) = λV} is
of dimension higher or equal to 1, if and only if λ is an eigenvalue of f ; it is the
Eigen-subspace associated with the eigenvalue λ . The same notions are applied to a
square matrix A of order n with elements in K associated with an endomorphism, in
particular associated canonically with the endomorphism A (in the canonical basis
of Kn). Vectorial equality: (A−λ1)(V ) = 0 is equivalent to the matrix equality:

(A−λ I)(V ) = 0. (A.85)

The characteristic polynomial of f and A (A matrix associated with f ) is:

PA (λ ) = det(A−λ I) (A.86)
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is a polynomial of degree n on λ which depends only on f . The eigenvalues of f and
on A are the roots of PA. If A has real (or complex) elements, the n roots (distinct or
not) of PA are the eigenvalues of A and f ; their sum is equal to the trace of A (which
is the sum of n elements of the main diagonal, also called principal diagonal) and
their product is equal to det(A). These quantities depend only on f and are known
as trace of f and determinant of f . In the particular case where n roots of PA are
all distinct, A is diagonalizable, and by choosing for each eigenvalue λk a non-zero
eigenvector which is solution of (A−λkI)V = O, we obtain a basis of eigenvectors.
The roots of PA are thus the eigenvalues of A and f . Trace(A)=∑k λk or Trace( f ) =
∑k λk, det(A) =∏K λk or det( f ) =∏K λk with (A−λkI)V = O we obtain a basis of
eigenvectors. PA (λ ) = det(A−λ I) and f (V̂k) = λkV̂k ⇔ f V̂k−λkV̂k = 0. Thus λk
are the eigenvalues of f and (V̂1, . . . ,V̂n) is a basis of eigenvectors of f .

A.13.1.2 Some Statistical Definitions

Definition A.93 (Process). A process is a sequence (Xn,n ∈ I) of random vectors
defined on a same space (Ω,a,P) with values in R

p.33 The set of indexes I is gen-
erally N,N∗ or Z. Thus “for each state of the nature” ω corresponds an element
(Xn(ω),n ∈ I) of [RpI]; such an element is called trajectory of the process. A pro-
cess admits a law. One can show that this one is characterized by the knowledge of
the laws of all finite subfamily (Xn1, . . . ,Xnk) extracted from the sequence (Xn,n∈ I).
From this characterization it is possible to define particular classes of process.

Definition A.94 (Gaussian Vector). A random vector X with value in R
p is known

as Gaussian, if any linear combination of its co-ordinates α ′X = ∑p
i=1αiXi, follows

a normal law on R.

Law of large numbers: In one of its versions (Gourieroux and Monfort 1989) the
law of large numbers ensures that under the assumption of independence and equal-
distribution the empirical averages converge towards the corresponding theoretical
averages.

Definition A.95 (Strong law of large numbers). Let (Xn, n ∈ N
∗) be a sequence

of random vectors (with value in R
p) which are integrable, independent and with a

same law, then: X̄ = 1
n ∑

n
j=1 Xj

as→ E(Xj), when n→ ∞. Such a convergence is valid
also when each variable Xj is replaced by g(Xj) where g is a given function such
that E

∥
∥g(Xj)

∥
∥< +∞.

Definition A.96 (Central limit theorem). If Xn,n ∈ N
∗ are random independent

vectors of the same law of average m, with variance-covariance matrix ∑, the law of
large numbers shows that X̄n−m converges strongly towards zero. (We can wonder

33 (Ω, a,P), where Ω is the set of the possible results, a is a σ -algebra, i.e. a set of parts of Ω
(called events), containing the parts φ and Ω, and P is a function of set, i.e. a map from a to R

+,
which satisfies P(Ω) = 1.
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what is the speed of convergence and seek a simple equivalent of the difference
between empirical and theoretical average.) In the case of an independent sample,
the sequence

√
n(X̄n−m) “converges in law” towards a vector according to a normal

law N [0,∑] :
√

n(X̄n−m)→ N [0,∑] .

Definition A.97 (Characteristic function). The law of X is characterized by the
values taken by:34 E [exp(itX)] = E [cos(tX)]+ iE [sin(tX)] , where E is the expected
value and i indicates the pure imaginary number and t ∈R. A characteristic function
of (the law of) X is the map ϕx defines as follows: ϕx(t) = E [exp(itX)].

Definition A.98 (White noise). A white noise is an infinite stationary random signal
whose function of autocorrelation is proportional to a Dirac. i.e. a constant complex
spectrum on all the frequency band.

This means that the values of a time series, at two different moments, are non-
correlated, even if the moments are very close. (From this definition, it is possible
to say that two centered Gaussian white-noises w(t) and v(t) are entirely defined by
means of the spectral densities ŵ(t) and v̂(t) : E

[
w(t)w(t + τ)T

]
= ŵ(t)δ (τ) and

E
[
v(t)v(t + τ)T

]
= v̂(t)δ (τ). And if it is postulated (ref: Calman theory) that the

Gaussian white noises w(t) and v(t) are stationary and independent, then it is pos-
sible to write E

[
w(t)w(t + τ)T

]
= ŵδ (τ), E

[
v(t)v(t + τ)T

]
= v̂δ (τ), E[v(t)w(t +

τ)T ] = 0.)

Definition A.99 (Markov chain). A sequence (xn) of random variables is a Markov
chain, if the conditional law of xt knowing xt−1,xt−2, . . . is the same one as that of
xt knowing xt−1.

Definition A.100 (Homogeneous Markov chain). The chain is homogeneous if the
law of (xt1 , . . . ,xtk ) knowing xt0 is the same one as that of (xt1−t0 ,xt2−t0 , . . . , xtk−t0)
knowing x0 for any k and any (k + 1)-tuple t0 ≤ t1 ≤ ·· · ≤ tk.

An interesting technique in the area of nonlinear state space is the Monte Carlo
Markov Chain (MCMC), which is an important numerical technique for Bayesian
statistics (Gelfand and Smith 1990). Typically rooted in conditional probability
computation, it is a very powerful numerical technique, which has completely
transformed the Bayesian statistics in practice.

Definition A.101 (Monte Carlo Markov Chain). One calls the MCMC algorithm
any method producing an ergodic Markov chain (x(t)) of stationary law, the distri-
bution of interest. (The rediscovery of MCMC methods by the statisticians in the
year 1990 allowed a very significant development of the inference by simulation.)

34 The integrals.
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A.13.1.3 Fourier Series and Fourier Transform

Fourier Series

A Fourier series can be defined in the following way: Let εn be a map such that:

εn : t −→ eiωt , (R→ C). (A.87)

Let cn be Fourier coefficients of order n ∈ Z, such that:

cn =
1

2π

∫ α+2π

α
eiωt f (t)dt, (A.88)

then a Fourier series can be written as follows:

∑cnεn. (A.89)

Any periodic function f (x) can be decomposed into several intervals in the period-
icity domain −π ≤ x ≤ π . If f (x) can be replaced in this interval by a continuous
curve, f (x) can be represented by a convergent series of the form:

f (x) =
a0

2
+

∞
∑

n=1
[an cos(nx)+ bn sin(nx)]. (A.90)

With: x = ωt.

fp =
+∞
∑

k=−∞
ake2π ikt/p. (A.91)

The coefficients for k = 0,1,2, . . . are calculated by means of formulas:

ak =
1
π

∫ π

−π
f (x)cos(kx)dx, (A.92)

bk =
1
π

∫ π

−π
f (x)sin(kx)dx. (A.93)

Fourier Transform

Continuous Writing

In the Fourier transform F {s(t)}, through the Fourier integral, the function s(t) is
replaced by a continuous spectral function S (ω) (i.e. Spectral density) where the fre-
quencyω corresponds to the density of the spectrum. Inverse transform F−1 {S (ω)}
is the function s(t) .

F {s(t)}= S(ω) =
∫ +∞

−∞
s(t)e−iωt dt; with

(
i =
√−1
)
. (A.94)

F−1 {S (ω)}= s(t) =
1

2π

∫ +∞

−∞
S(ω) eiωt dω ; with

(
i =
√−1
)
. (A.95)
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Spectral energy:
∫ +∞

−∞
|s(t)|2 dt =

1
2π

∫ +∞

−∞
|S(ω)|2 dω . (A.96)

Furthermore, we notice that F {s(t− τ)} = S(ω) ·e−iωτ with (i =
√−1). Another

type of notations:

F(ω) =
∫ +∞

−∞
e−2π iωt f (t)dt, (A.97)

f (t) =
∫ +∞

−∞
e2π iωtF(ω)dω . (A.98)

Discrete Writing

If we write fp = f (t), −P
2 < t < P

2 .

fp =
A0

2
+

+∞
∑

k=1

(

An cos
2πkt

p
+ Bn sin

2πkt
p

)

. (A.99)

Taking into account the Moivre formula we write:

fp =
+∞
∑

k=−∞
ake2π ikt/p, (A.100)

ak =
+∞
∑

k=−∞
fp(t)e−2π ikt/p. (A.101)

Three Continuous Writings of the Fourier transform

There are three different writings for the Fourier transform according to the location
of the “2π”. Each one of these writings comprises two alternatives according to the
sign. Here are the various writings:
(1) ω is measured in Hertz and the 2π are in the exponent:

f̂ (ω) =
∫ +∞

−∞
f (t)e2π iωt dt and f (t) =

∫ +∞

−∞
f̂ (ω)e−2π iωtdω ,

f (ω) =
∫ +∞

−∞
f (t)e−2π iωt dt and f (t) =

∫ +∞

−∞
f̂ (ω)e2π iωt dω .

(2) ω are measured in radian (per second) and the 2π are in the inverse transform:

f̂ (ω) =
∫ +∞

−∞
f (t)eiωt dt and f (t) =

1
2π

∫ +∞

−∞
f̂ (ω)e−π iωtdω ,

f̂ (ω) =
∫ +∞

−∞
f (t)e−iωt dt and f (t) =

1
2π

∫ +∞

−∞
f̂ (ω)eπ iωt dω .
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(3) ω are measured in radian (per second) and the 2π are distributed between the
direct transform and the inverse transform:

f̂ (ω) =
1√
2π

∫ +∞

−∞
f (t)eiωt dt and f (t) =

1√
2π

∫ +∞

−∞
f̂ (ω)e−π iωt dω ,

f̂ (ω) =
1√
2π

∫ +∞

−∞
f (t)e−iωt dt and f (t) =

1√
2π

∫ +∞

−∞
f̂ (ω)eπ iωt dω .

Commonly, the following writings are used:

f̂ (ω) =
∫ +∞

−∞
e−2π iωt f (t)dt, (A.102)

f (t) =
∫ +∞

−∞
e2π iωt f̂ (ω)dω , (A.103)

fp =
A0

2
+

+∞
∑

k=1

(

An cos
2πkt

p
+ Bn sin

2πkt
p

)

, (A.104)

fp =
+∞
∑

k=−∞
ake2π ikt/p. (A.105)
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Goergen A (1994a) Chaos Macro-économique. Revue d’Economie Politique 104.
Goergen A (1994b) Générations imbriquées, optimisation et chaos. Revue

d’Economie Politique 104.
Goergen A (1999) Reswitching: a null measure phenomenon. The Current State of

Economic Science 1:195–203.
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Hale J, Koçak H (1991) Dynamics and bifurcations. Springer, Berlin.
Haller G, Iacono R (2003) Stretching, alignment, and shear in slowly varying

velocity fields. Phys Rev E 68:056304.
Hamilton JD (1994) Times Series Analysis. Princeton University Press, Princeton.
Hramov A, Koronovskii A, Ponomarenko V, Prokhorov M (2006) Detecting

synchronization of self-sustained oscillators by external driving with varying
frequency. Phys Rev E 73:026208.

Hubbard BB (1998) The world according to wavelets. A.K. Peters, Wellesley, MA.
Hubbard BB (2000) Ondes et ondelettes. La Saga d’un outil mathématique. Pour la
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Abrupt variation, 346
Abry & Veitch, 317
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of the fluid, 97

Accumulation of capital, 520
Adam Smith, 513
Adaptative expectations, 616
ADF, 265
Advanced indicator, 610
Aerodynamic, 91
Agent, 227, 228
Aggregates, 511
Algebraic closure, 661
Algebraic closure of C, 664
Algorithm

Matching pursuit, 480
with threshold, 417

Aliasing, 373
Allais, 597
Amplitude of cycle, 34
Analysis

bayesian, 418
by wavelet, 343
multi-resolution, 319, 413
of Fourier, 343
parametric, 277
polyspectral

of non linearity, 462
R/S, 299
traditional statistics, 262

Analytic continuation, 670
Analytic function, 669, 699
Andronov–Hopf bifurcation, 193
Angular frequency, 385
Anosov diffeomorphism, 158

Anti-persistence, 250
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linear by projection

on orthonormal basis, 409
nonlinear, 410

on orthonormal basis, 409
of coefficients, 322
optimal, 484

Approximation by interpolation polynomial,
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Approximation theory, 706
Arnold, 170
Arnold tongue, 79
Arrowsmith–Place, 168
Asymptotically stable, 21
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in the time–frequency plane, 456
of Fourier, 352, 377, 380, 406, 414, 456
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of Chirikov–Taylor, 64
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of Colpitts, 62
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of Mackay–Glass, 63
of Mandelbrot, 66
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of Rayleigh, 63
of standard map, 64
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simple, 233
strange, 16, 71, 91, 92, 201, 583, 586

Augmented Solow model, 560
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of residuals, 274
Automorphism, 644
Autonomous

flow, 20
Average

spatial, 332
temporal, 332

Axiom
hyperbolic, 689
of connection, 688
of Fano, 693
of polar trilateral, 688
of rectangle, 688

Axis
imaginary, 66
real, 66

Bachelier, 305
Background

noise, 227, 243
Balanced growth path, 573
Ball, 95, 650
Banach fixed point, 657
Band-pass filter, 362
Basin of attraction, 60, 66, 332
Basin of instability, 563
Basis, 236

adaptative, 410
best, 411
biorthogonal, 402
canonical, 652
dual, 402
ideal, 412
of Karhumen-Loéve, 409
of local sinusoidal functions, 411

of projection, 238
of Riesz, 320, 399, 401
of time–frequency atoms, 407
orthogonal, 236, 400
orthonormal, 399, 401

Bayes, 419
Bayesian approach, 419
Beam of the orbits, 149
Beam of the trajectories, 20
Behavior

chaotic, 137
conservative, 71
periodic, 100
stable, 51
unstable, 51

Bendixson Criterion, 55
Benhabib–Day, 598
Benhabib–Nishimura, 602
Bernoulli, 159
Bernoulli shift, 158, 159
Bernstein polynomial, 707
Best

basis, 411
of local Fourier, 412
of local sinusoidal functions, 411

Best approximation, 707
Betti group, 675
Bewley, 602
Bifurcation, 33, 192

flip, 194
fold, 194
Hopf, 34, 36

supercritical, 37
Hopf

supercritical, 51
Hopf subcritical, 37
node-saddle, 33
of fixed points, 33
of periodic orbits, 35
period-doubling, 194
pitchfork, 34, 50
saddle node, 32, 194
subcritical, 35
subharmonic, 36
supercritical, 33
transcritic, 125
transcritical, 33

Bifurcation diagram, 196
Bifurcation point, 135
Bilinear

system, 49
Binomial series, 700
Biorthogonality, 402
Birkhoff, 329
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Birth of an invariant torus, 192
Bispectral, 275
Blackened, 148
BLUE (estimator), 253
Blue sky catastrophe, 188, 191–193
Boldrin–Deneckere, 603
Boldrin–Woodford, 601
Box counting, 147
Box–Jenkins, 263
Boxes of Heisenberg, 345, 376, 414

of Fourier atoms, 496
of time–frequency atoms, 380
of wavelet atoms, 497

Branch points, 680
Break-even point, 574
Brownian motion, 16, 244, 251, 252, 300, 442

fractional, 254
Brush, 16
Burst

intense, 504
very localized, 504

Butkovskii, 16

Cac40, 244, 416
Cac40 (French stock market index), 207
Cantor set, 147
Capital-good, 588
Cardiovascular system (CVS), 218
Carmona, 388
Carmona, Hwang, Torrésani, 349, 388
Cascade subharmonic, 134, 586
Case

archipelago
Isolated , 68

chaotic attack , 68
Complex loop, 68
Hilborn, 68

Cass, Koopmans, Ramsey, 569
Cauchy sequence, 658
Cauchy–Riemann equalities, 668
Cayley–Menger determinant, 674
Cells, 287

associative, 287
of decision, 287

Center, 45, 214
Center manifold, 194
Center manifold theorem, 56
Central limit theorem, 718
Change of basins, 189
Change of topology

of trajectories, 33
Change of variables, 714
Chaos, 80

almost complete, 68

deterministic, 120, 146
Chaotic

regime, 16
Chaotic attack, 81
Chaotic mode, 116
Chaotic systems

ergodic, 332
Chaotic zone, 117
Characteristic equation, 715
Chillingworth, 170
Choice

intertemporal, 563
of an optimal basis, 409

Chua autonomous circuit, 62
Circle

unit, 31
Circle map, 78
Class, 163, 293
Classification of closed surfaces, 676
Classification of metric planes, 691
Classificator, 286
Closed surfaces, 673, 675
Cobweb, 136
Codimension-1, 33
Coefficient

details, 318, 402
discrete, 318
of Fourier, 351
technical, 526

Coefficient of the negative linear damping, 216
Cohen’s class distribution, 459
Coifmann, Meyer and Wickerhauser, 414
Collineation, 651, 687

orthogonal, 651, 687
Collision, 192
Colpitts oscillator, 62
Combinaison

of linear complex exponentials, 393
Commutative diagram, 170
Commutative field, 661
Compact, 648
Compact space, 666
Compact subset, 648
Compact support, 701
Compactification of C, 660
Comparison BB and MP, 426
Complementary set, 647
Complete vectorial space, 399
Completion, 695
Complex, 25

plane, 31
Complex analytic continuation, 659
Complex atom, 425
Complex conjugate, 663
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Complex number Field, 658
Complex plane, 31
Complex topology, 666
Concave function of utility, 72
Concavity, 72
Concept of window, 225
Condition

good wavelet, 356
initial, 81
of Lipschitz, 26
of optimization, 577

Conditional expectation, 281, 283
Conditions

initiales, 26
of Cauchy–Riemann, 668

Cone of influence, 374, 436
Conjugacy, 105, 165
Connected, 648
Connected image, 653
Connectivity number, 679
Conservation of energy, 401
Conservative, 70
Constant

universal, 141
Constant return to scale, 520
Constante

de Feigenbaum, 141
Construction

of orthonormal basis, 399
of Riesz basis, 399

Continuous invariant, 648
Continuous spectrum, 91
Continuous transform, 352
Continuously differentiable, 163
Contraction, 70, 164

of trajectories, 150
of volume, 103

Contradiction, 150
Control of process, 23
Convection, 90
Convergence, 115

hyperbolic, 297
of a sequence, 649
towards limit density, 339

Convergence criterion, 711
Convergence of a sequence, 650
Convex, 648
Convex Hull, 673
Convolution, 229, 251, 701

circular, 370
kernels and Wigner–Ville distribution, 459

Convolution kernel, 459
Convolution of distributions, 704
Coordinate

polar, 51
Correlation, 199, 287

of order higher than 2, 465
Correlogram, 263, 270
Coupled logistic map, 126
Coupling of frequencies, 36, 102, 149, 216
Cr-map, 163
Creation of value, 612
Crises, 503
Crisis, 503
Criterion of Bendixson, 55
Criterion of stability, 125
Critical value, 146
Cross terms, 457
Cross-caps, 678, 679
Cumulant, 463

of order n, 463
Curry-Yorke, 76
Curvature, 683

of Riemann, 683
Curve

closed, 55
continue, 73

of average cost, 514
of isorevenue, 513

CWT: Continuous Wavelet Transformation,
317

Cycle
economic, 275
limit, 31, 34, 55
stable of p-order, 136
unstable, 136

Cycle theory, 605
Cycloid, 102

Daubechies, 325
Decision, 286
Decomposition, 240, 480

“hybrid”, 348
atomic, 479
of a signal, 348
of Lebesgue, 389
of singular value, 234

Decrease
geometric, 263
hyperbolic, 299, 301, 304

Definition
of chaos, 57
of quasiperiodic functions, 32

Degrees of freedom, 264
Delay, 227

discrete, 228
Dendrite, 66
Deneckere–Pelikan, 602
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Denoised, 238
Denoising, 477
Dense, 73, 82, 251, 320
Dense orbit, 174
Density, 97, 261

conditional, 281
invariant, 335, 336

associated with a dynamical system, 337
of energy, 488, 499
of non-conditional probability , 282
of Wigner–Ville, 456
spectral, 398
theoretical, 337

Dependent variable, 18, 23
Derivation of distributions, 703
Derivative

partial, 71
Detail, 320
Detection

of chaotic processes, 294
of deterministic chaos, 296
of singularity, 436

Determinant, 46
Determinist, 244
Deterministic chaos, 15
Deterministic component, 243
Deterministic directions, 243
Devaney, 57
Deviation, 22
Diagonalization

of the covariance matrices, 409
Diameter, 102
Diamond, 597
Dickey–Fuller, 263

augmented, 265
of joint hypotheses, 268
simple, 264

Dictionary
of Gabor, 424
of local sinusoidal functions, 412
of locale Fourier bases, 412
of time–frequency atoms, 480
of wavelet atoms, 423
of wavelet packets, 412
of windowed Fourier atom, 423
redundant, 411, 420
time–frequency

non-redundant, 482
Diffeomorphism, 93, 154, 645
Difference

equations, 18
Difference stationary [DS], 253
Differentiability, 169
Differentiable atlas, 682

Differentiable manifold, 166, 168, 682
Differential

equations, 18
Differential equation

of second-order, 713
Differential geometry, 682
Differential operator, 682, 701
Differential topology, 682
Differentiation, 169
Diffusion

of discontinuities, 475
of error, 475
of peak, 475

Dilate, 357
Dilation, 322
Dimension

de Kolmogorov, 149
Euclidian, 147
fractal, 61, 148, 249, 251, 654
non integer, 61
of capacity, 15
of Hausdorff–Besicovitch, 654
of Haussdorff, 94
of information, 91, 95
of the attractor, 61, 235

Dirac, 92, 206, 229, 373, 457, 701
Directions

deterministic, 243
significant, 243
stochastic, 243

Dirichlet norm, 98
Disappearance of saddle-node, 197
Discontinuity, 476
Discounted dividend flow, 626
Discrete Fourier transform [DFT], 392
Discrimination, 286
Dissipation of energy, 96
Distance, 158, 159

chordal, 660
Distance of Hamming, 287
Distribution, 701

“U”-shape, 331
empirical, 247
gaussian, 250
normal, 264
of Cohen’s class, 459
of energy, 376, 425
of Levy, 249
of probability, 228
of Wigner

of time–frequency atoms, 487
of Wigner and Matching Pursuit, 462
of Wigner–Ville, 376, 456

Distribution theory, 701
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Divergence speed, 110
Drift of low frequency, 251
Dual basis, 402
Duffing attractor, 178
Duffing equation, 62
Dust of Fatou, 66
DWT: Discrete Wavelet Transform, 318
Dyadic grid, 317
Dynamic

of transition, 536
Dynamical

system, 18
Dynamics

biperiodic, 102
of accumulation, 573, 589
of capital, 586

Econometrics of nonlinear processes, 274
Economic Growth, 509
Economic value added (EVA), 613
Efficiency, 609, 628

semi-strong, 629
strong, 629
weak, 629

Eigenspace, 172
Eigenvalue, 25, 31, 41–43, 56, 101, 164, 238
Eigenvector, 25, 42, 56, 234, 238

fast, 50
slow

unstable, 50
Electrocardiogram (ECG), 218
Ellipse

twisted, 102
Elliptic, 85
Embedding, 221
Embedding space, 221
Endogenize, 549
Endogenous growth theory, 543
Energy, 70

constant, 477
of a signal, 209
of model, 70

Energy conservation, 362, 401
Energy manifold, 181
Entire series, 670

with nonnull radius, 699
Entropy, 113, 412
Epistemological rupture, 2
Equation

logistic, 114, 123, 230, 493
of Duffing, 62
of energy conservation, 362, 485
of Frobénius–Perron, 337
of Navier–Stokes, 89

of reproducing kernel, 363
of Verhulst, 115
partial derivative, 89

Equilibrium
intertemporal, 617
non trivial, 49
trivial, 49

Equilibrium cycle, 604
Equilibrium limit cycle, 604
Equipropability, 146
Equivalence class, 643
Equivalence relation, 643
Ergodic quantity, 96
Ergodic theory, 92, 329
Error of approximation, 409, 696
Estimator

by the power spectrum, 315
by the radial basis, 285
consistent, 385
nonlinear of Donoho and Johnstone, 417
of Abry–Veitch, 317, 323
of conditional mode, 283
of d, 314
of Geweke, Porter-Hudak, 313
of Janacek, 315
of nearest neighbors, 284
of the density, 280, 281, 285
of the fractional integration parameter, 312
of the Hurst exponent, 312
of the spectral density, 385

Euclidean entire ring, 661
Euler formula, 662
Euler identity, 555
Event, 261
Expansion, 164
Expectation

adaptative, 584
Expectation concept, 615
Expectations

adaptative, 616
rational, 616

Explosion, 186
intense, 504
very localized, 504

Exponent
characteristic, 93
of Hölder, 432
of Hurst, 249, 250
of Lipschitz, 432
of Lyapunov, 295

of logistic equation, 128
Exponential, 25
Exponential divergence, 110
Exponentiation, 662
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Extension field, 661
External forcing, 213
Externality, 543

positive, 543
Extrema, 375

Family
of maps, 19
of vectors, 401
of wave form, 377
of wavelets, 359

Fast Fourier Transform, 370
Fatou, 66
FFT, 370
Field, 19

of speed, 89, 90
of vectors, 19, 20
square integrable, 97

Field C, 661
Filament, 66
Filter

band-pass, 370
differences, 254
low-pass, 322
mirror, 416

Filtering, 243
Filtre

miroir
quadratique, 427

Financial markets, 305, 391
Finite energy, 404
Finite random signals, 398
First differences, 271
Fixed

point, 21
Floquet characteristic multiplier, 30
Floquet matrix, 29, 31, 36
Flow, 19, 20, 59, 71, 89

convective, 89
laminar, 89
of a fluid, 19, 23
turbulent, 89

Flow on the torus, 108
Fluid, 89
Fluid flow, 19
Fluidity, 610
Folding, 149, 150

of beam of the orbits, 149
Forced pendulum, 191
Forced van der Pol oscillator, 215
Forcing parameter, 216
Formula

of Bayes, 419
of inversion, 393

of Parseval, 405
of Plancherel, 379, 401, 405
of transfer of Plancherel, 378
quadratic, 43

Formulas
of Moivre, 660
of reconstruction, 383

Fourier analysis, 91
Fourier atom, 352, 377
Fourier coefficient, 84, 720
Fourier series, 84, 350, 720
Fourier transform, 16, 377, 720

three writings, 721
windowed, 383
with sliding window, 350

Fractal, 437
Fractional integration, 249
Frame, 403, 405

of Fourier, 406
of wavelets, 406

Frequency
angular, 385
central, 375
low, 251
of Gegenbauer, 303

Frequency of the external driving, 216
Frequential decomposition, 91
Friction, 214
Friction parameter, 216
Frisch–Slutsky, 274
Frobénius–Perron, 333
Function

C-differentiable, 667
characteristic, 719
characteristic (indicator), 260
circular, 659
concave cost, 411
delta of Dirac, 92, 504
dilated, 320
dilating, 320
Eulerian, 300
Gamma, 300, 318
Hamiltonian, 72
hard-limit, 289
harmonic, 669
heaviside, 289
holomorphic, 659, 667
indicator, 279, 331
integrable, 399
iterated, 142
log-sigmoid, 289
logistic, 582
meromorphic, 659
of autocorrelation, 16, 262
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partial, 384
of autocovariance, 262, 384
of Cobb–Douglas, 603
of concave cost, 411
of cumulative distribution, 260
of density, 333
of Dirac, 233
of finite energy, 403
of flow, 90
of Gabor, 347, 354, 488
of Hölder, 433
of Leontief, 603
of Lipschitz, 433
of production

neo-classical, 564
of Cobb Douglas, 540
per capita, 532

of the production
macroeconomic, 512

of transfer, 370
of utility, 563

concave, 72
one-hump, 142, 143
one-variable, 347
ot transfer, 289
radial basis, 286
real exponential, 659
reciprocal, 337
scaling, 320, 322
square integrable, 404
test, 701
translated, 320
translating, 320
trigonometric, 392

orthogonal, 393
two-variables, 347
unimodal, 598
weighting, 229, 285

Gabor wavelet, 356
Gaborette (or Gaboret), 347, 354
Game theory, 623
Gauss complex plane, 662
Gauss plane, 660
Gaussian pulse, 488
Gaussian risk, 207
Gaussian vector, 718
Gaussianity, 306, 445
Gavrilov and Shilnikov, 196
GDP, 511

per capita, 537
per person, 537
per worker, 537

GDP/Capita, 537

GDP/Person, 537
Gegenbauer, 302
Genus, 678
Geometric complex, 674
Geometry

absolute, 685
elliptic, 689
hyperbolic, 689
non-Euclidean, 690

Global bifurcation, 188, 192
Golden rule, 525, 575

modified, 575
of the capital accumulation, 537

Goodwin, 274
Governance, 613
Gradient, 89, 97
Graeffe method, 713
Grandmont, 599
Granger, 275, 298
Grassbeger, Procaccia, (1983b), 92
Grid

of adaptative approximation, 410
of Fourier, 376
of Gabor, 376

Gross Domestic Product (GDP), 511
Grossman, 306
Grossmann and Morlet, 477
Ground rent, 517
Growth

homothetic, 521
of Solow, 519
of stock-market, 609
self-sustained, 548

Guckenheimer and Holmes, 179

Hénon–Heiles, 80
Half period, 134
Hamiltonian system, 71, 81, 179
Hamming, 287
Handle, 678, 680
Harmonic

frequencies, 17
Harmonic component, 391
Harmonics

of oscillations, 16
Hartman–Grobman, 166, 167
Haussman, 305
Heart rate variability (HRV), 218
Heisenberg boxes, 345, 414

of Fourier atoms, 496
of wavelet atoms, 497

Heisenberg rectangles, 345
Hermitian symmetry, 400
Heteroclinic, 175
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Heteroclinic saddle connection, 188
Heteroscedasticity, 306

of increments, 310
Hicks, 274
Histogram, 247
Hole, 55
Holomorphic continuation, 669
Holomorphic function, 659, 667, 669
Holomorphy, 659
Homeomorphic, 199
Homeomorphism, 33, 169, 645
Homoclinic loop of homoclinic saddle

connection, 188
Homoclinic saddle connection, 176, 188, 190
Homoclinic tangle, 167
Homogeneity, 610
Homogeneous equation, 714
Homology, 675
Homology group, 675
Homology theory, 675
Homoscedasticity, 306

of increments, 306
Homothetic growth, 521
Homothety, 652
Homotopic, 197
Homotopy groups, 678
Hopf bifurcation, 214
Hopfield, 287
Horner’s schema, 712
Horseshoe, 154, 168
Horseshoe diffeomorphism, 168
Horseshoe map, 181
Hosking, 298, 302
Hull, 673
Human capital, 540
Hwang, 388
Hwang, Mallat, 437
Hydrodynamic, 91
Hyperbolic, 85
Hyperbolic attractor, 193
Hyperbolic fixed point, 166, 188
Hyperbolic invariant circle, 168
Hyperbolic invariant set, 173
Hyperbolic linear diffeomorphism, 164, 165
Hyperbolic linear flow, 165
Hyperbolic linear map, 154
Hyperbolic non-wandering set, 174
Hyperbolic nonlinear fixed points, 168
Hyperbolic periodic orbit, 167, 168
Hyperbolic Riemann surface, 683
Hyperbolic set, 157, 168
Hyperbolic space, 375
Hyperbolic structure, 168
Hyperbolicity, 151, 168

Hypercube, 147
Hyperparallel, 690
Hyperplane, 30
Hypersurface, 30, 68
Hypertetrahedron, 674
Hypervolume, 674
Hypothesis

ergodic, 329
of diminishing returns, 513
of random walk, 305

Hysteresis phenomenon, 191

i-faces, 674
Idd: (Independent and Identically Distributed),

306
Ideal basis, 412
Ideal point, 690
Identity of Euler, 555
Illegal insider trading, 610
Imperfect competition, 553
Imperfect information, 584
Impulse

intense, 504
isolated, 504

Impulse response, 322, 362
Incentive, 548
Incentive to research, 548
Incertitude, 584
Incompressibility, 97
Increases, 247
Increments, 306
Indecomposable, 92
Independent

variable, 18
Indicator, 260
Indifferent, 136
Inequality

of Cauchy–Schwartz, 400, 651
of Schwartz, 389

Infinite collection of independent oscillators,
91

Infinite number of modes, 91
Infinite oscillations of sinusoids, 346
Initial

condition, 81
variation, 30

input, 289
Input variable, 23
Insets and invariant manifolds, 174
Insider, 610
Insider trading, 610
Instability, 579

subharmonic, 36
Integrable, 81
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Integral with respect to a measure, 260
Interior, 699
Intermittency, 182
Intermittent regimes, 184
Internet Traffic, 318, 437
Interpolation theory, 709
Intrinsic value, 614
Invariant, 56, 59

by translation, 319
Invariant manifold, 166, 188
Invariant measure of probability, 332
Invariant operator, 459
Invariant set, 168
Inverted U-shape

of the golden rule, 538
Investment, 72, 511
Inward perturbation, 190
Isolated logarithmic singularity, 672
Isolated singular point, 671
Isolated singularities on k-sheets, 672
Isomorphism, 644
Isotropic, 250

Jordan Curve, 648, 676
Joyeux, 298
Jump of Levy, 249

k-nearest neighbors method, 284
k-simplex, 674
KAM

Kolmogorov–Arnold–Moser, 80
Keenan, 275
Kernel, 278, 363

bisquare, 279
cubic, 279
Epanechnicov, 279
gaussian, 279
of convolution, 459

Keynes General Theory, 623
Klein bottle, 199, 673
Know-how, 556
Kolmogorov, 305
Kolmogorov–Arnold–Moser, 80
Kravtsov, 16
Kronecker symbol, 236

Labor Augmenting, 539
Lagrange interpolation, 709
Lagrange method, 709
Lagrangian, 585
Laminar, 89
Laminarization, 186
Lardic, 295
Laurent series, 671

Law
“U”, 335
a posteriori, 419
a priori, 419
arc-sine, 335, 635
conditional, 283, 419
continuous, 261
discrete, 261
gaussian, 307
marginal, 419
normal, 264
of Levy, 249
of probability, 259, 261, 378

discrete, 259
U-shape, 635

Law of large numbers, 718
Layer, 287
Layers

hidden, 287
Least-square, 708
Lebesgue decomposition, 389
Legendre polynomial, 708
Legendre transformation, 441
Length of delay, 228
Level effect, 633
Level of resolution, 357
Levy, 305
Li–Yorke, 58
Lift, 104
Limit cycle, 30, 34, 36, 214, 472
Limit of decision, 289

bayesian, 293
of perceptron, 294

Limit-cycle, 16, 31
Linear differential operator, 701
Linear interpolation method, 712
Linearization, 22, 24, 56
Linearly independent, 400
Lipschitz condition, 26
Lipschitz constant, 26
Lipschitz uniform, 435
Lipschitz-1, 437
Lo and MacKinlay, 305
Lobachevsky & Bolyai, 690
Local extrema, 698
Local sinusoids, 420
Local–global bifurcation, 192
Long distance jump, 248
Long memory, 318, 327
Long memory process, 296
Long Range Dependence : LRD, 317
Loop, 251
Loss

of internal similarity, 200
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of memory, 200
Lotka, 71
Low-pass filter, 373
Lucas R, 540, 543, 617
Lyapunov characteristic exponent (Lce), 109

Maladaptation
of Fourier analysis, 346

Mallat, 375
Mallat and Zhang, 376, 421, 424, 479, 483,

499
Mandelbrot.B, 250
Manifold, 56, 681

center, 56
stable, 60

Manifolds, 168
Mankiw, 540
Map, 59, 71, 644

bijective, 644
of the first return, 103, 123
quadratic, 115, 124
surjective, 644
tangent, 93

Map winding number, 77
Maps, 18
Marginal productivity

of capital, 520
of factors, 527

Marginal rate of substitution (MRS), 587
Marginal rate of technical substitution

(MRTS), 587
Market value added (MVA), 612
Markov chain, 719

homogeneous, 719
Mass, 257

of “unit point”, 390
Mass of Dirac, 389
Matching pursuit, 420, 479

and Fourier dictionary, 495
and wavelet dictionary, 495
applied to stock-exchange index, 495
applied to the Cac40, 495
orthogonal, 422
with time–frequency atoms, 495

Matlab
Neural network, 290

Matrix
Jacobian, 41, 43, 56
of correlation, 237
of Floquet, 101
of transforms, 454
rectangular, 231, 235
trajectory, 226, 238, 239

Matrix diagonalization, 717

Maxima of modulus of wavelet transform, 436
May, 124, 228
McKenzie, 602
Measure, 257, 330, 563

discrete, 261
ergodic, 93
invariant, 92, 93, 96, 329

ergodic, 94
limit, 95
of “pure point”, 389
of a deterministic chaos, 329
of entropy, 94
of flow, 89
of Hausdorff, 654
of Lebesgue, 260

positive, 329
of probability

invariant, 92
of regularity by wavelets, 435
spectral, 389

Measurement, 257, 330
Mechanism of optimization, 566
Medio.A, 227, 228, 243
Melnikov method, 175
Memory, 299

long, 327, 392
short, 327, 392

Meromorphic function, 659, 673
Merton, 305
Method

bayesian, 293
by wavelets, 313
non parametric, 286
of the aggregate variance, 313
of the aggregated absolute value, 312
of the periodogram, 313
of the variance of the residuals, 313
of variation of constants, 715
R/S, 313
spectral, 313
Whittle, 313

Method of the SSA, 234
Metric, 159, 399
Metric plane, 687
Mignon, 295
Minimax, 418, 420
Minsky, 286
Moëbius strip, 673, 676
Mode, 91
Mode locking, 77
Model

AK, 558, 559, 633
ARCH, 275
ARMA, 275



744 Index

delay, 227
deterministic, 277
linearized, 50
of Boldrin–Woodford, 580
of Day, 581
of Day–Lin, 583
of growth

semi-stationary, 521
of Lucas, 560
of optimal growth, 72

of Benhabib Nishimura, 603
with technological progress, 569
without technological progress, 563

of portfolio choice, 588
of Romer, 546, 548
of Solow, 520, 531
of Solow with technical progress, 560
of Von Neumann, 521
rational bubbles, 623
semi-endogenous, 633
stochastic, 277
sunspots, 623

Model of windows, 367
Modeling

linear, 274
non linear, 274
stochastic, 277

Modulation of frequency, 483
Modulus, 164, 185

of complex number, 663
Moivre formulas, 660
Momentum, 344
Monodromy group, 670
Monte Carlo Markov Chain, 719
Moon pendulum, 63
Morlet.J, 346
Motion

of particles, 90
transitory, 42, 43, 138

MRA, 427
MRA : Multi-Resolution Analysis, 319
Multifractal, 432
Multiplier, 193
Multiplier of cycle, 136
Multiresolution analysis, 427
Muth.J, 617

n-tuple, 82
Nappe, 654
National income, 511
Natural topology, 650, 675
Navier–Stokes, 89
NDP, 511
Nearest neighbors, 284

Neighborhood, 60, 649, 650
Neo-Keynesian Economics (NKE), 630
Neoclassical Economics (NCE), 630
Net domestic product (NDP), 511
Network of Hopfield, 287
Network of neurons, 286
Neural network, 292
Neurons, 287
Neutrality in the sense of

Harrod, 539
Hicks, 539
Solow, 539

Neutrality of the Finance, 614
Newbold, 275
Newton–Gregory method, 709
Newton–Raphson method, 711
Newton–Rapson, 26
Node

attracting, 44
center, 45
sink, 44

Noise, 417, 477
background, 227, 244
fractal, 442
gaussian, 326
white, 250, 254, 266, 298

gaussian, 254
Noise level, 143
non autonomous

flow, 20
Non intersection of trajectories, 149
Non linear dynamical system, 30
Non parametric

model, 22
Non-arbitrage, 624
Non-Forced van der Pol oscillator, 213
Non-homogeneous equation, 714
Non-isolated singularity, 672
Non-orientable surface, 673
Nonlinear bilinear

system, 49
Nonlinear coupling, 472
Nonlinear diffeomorphism, 166
Nonlinear dynamical system, 166
Nonlinear interactions, 467
Nonlinear phase coupling, 467
Nonlinear signal processing, 15, 224
Nonlinear transformation, 154
Nonlinearities, 563
Norm, 172, 399, 405

associated with a scalar product, 400
Euclidean, 652
hermitian, 658
of Dirichlet, 98



Index 745

Normal law, 264
Normality, 264
Number

complex, 660
infinite of modes, 91
of characteristic exponents, 91
of degree of freedom, 92
of excited modes, 91
of frequencies, 390
of irrational rotation, 83
of modes, 91
of Reynolds, 89
of rotation, 82

Number of harmonics, 216
Numerical resolution of equation, 711
NYSE, 306

Object of low dimension, 2, 15
Octave, 323, 327, 357
Odd harmonics, 219
One-hump function, 143
One-sided surface, 673
Operator, 362

differentiable, 657
differential, 658
integral, 658
invariant, 459
linear, 96, 224, 657
nonlinear, 96, 418, 420
of Frobénius–Perron, 333
optimal, 419

Optimal combination
of factors, 512, 513
of production factors, 513

Optimal growth
semi-stationary

homothetic, 523
Optimal path, 525
Optimality of the R&D, 553
Optimization mechanism, 566
Orbit, 19

asymptotically stable, 27
closed, 102

dense, 231
dense, 60
heteroclinic, 59, 154
homoclinic, 59, 154
invariant, 83, 84
periodic, 30, 55
unstable chaotic, 112

Orbit dense, 60
Orbit non perturbated, 27
Orbit slightly perturbated, 27
Ordinary differential equations

second-order, 46
Orientable surface, 673
Orientation, 651, 694
Orientation-preserving, 695
Orientation-preserving diffeomorphism, 107
Orthogonal, 97
Oscillation, 138
Oscillators, 472

independent, 91
Oscillatory, 25
Oseledec, 93
Output variable, 23
Outward perturbation, 190, 191
Overlapping generations model, 597

P.F. Verhulst, 115
Packet

of sinusoids, 480
of wavelets, 350, 411, 480

Papert, 286
Parabolic

form, 143
Parabolic fixed point, 188
Paradigm, 114

neo-classic, 543
Parameter, 19

of dilatation, 359
of fertility, 119
of fractional integration, 317

Partial derivative, 71, 164
Partition, 643
Pascal’s triangle, 700
Patch, 172
Path

of balanced growth, 540, 573
of expansion, 519
optimal, 525

Paving
of the time–frequency plane, 408

Peak, 476
frequency, 394

Peak of frequency, 296
Perceptron

multi-layer, 286
simple, 289
three layers, 291

Perfect foresight, 625
Period doubling, 116, 659
Period of intense energies, 503
Period-1, 131
Period-2, 129
Period-4, 131
Period-doubling, 182
Period-doubling (flip) bifurcation, 192
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Period-k, 133
Period-q, 104
Periodic, 82
Periodicity, 16
Periodogram, 392
Perpendicular plane, 31
Perron–Frobénius, 333
Persistence, 247, 251
Persistent

fairly, 251
feebly, 251
very, 250

Perturbated, 83
Perturbation, 22, 82, 175

small, 94
Phase coupling, 467, 469
Phase space, 21

cylindric, 19
spheric, 19
toric, 19

Phase-plane, 50
Phenomena of diffusion, 248
Plane, 31

complex, 31, 53, 66
metric, 650, 687
oriented, 650
perpendicular, 31
projective, 650
time–frequency, 375, 376
time-scale, 228

Poincaré cut, 100
Poincaré map, 83, 108, 224
Poincaré plane, 73
Poincaré section, 29, 73, 82, 100, 102
Point

“ad infinitum” (at infinity), 660
“pure”, 390
accumulation, 59, 646
adherent, 646
exterior, 646
fixed, 56, 124
interior, 646
isolated, 646
of bifurcation, 135
of equilibrium, 50
of Poincaré–Birkhoff, 85
saddle, 50

Polar coordinates, 663
Pole, 672
Polyhedron, 674
Polynomial

of Bernstein, 707
of Legendre, 708, 711
of Tchebychev, 707

quadratic
complex, 66

trigonometrical, 390
Polynomial ring, 661
Polyspectra, 275
Polytope, 673, 674
Polytope edges, 674
Polytope vertices, 674
Porter-Hudak, 302
Portfolio, 588
Power of signal, 388
Power spectrum, 16, 91
Predictibility, 16

of final state, 144
Preservation of areas, 82
Pressure

hydrostatic, 89
Primal, 521
Principle

asymptotic, 258
of invariance, 258
of without bias, 258

Probability, 257
a posteriori, 281
of forecast, 146

Process, 259, 718
ARCH, 303
ARFIMA, 250, 275, 298, 312
ARMA, 263, 272, 304
autoregressive, 263
chaotic, 329
convergent, 297
DS

with drift, 269
without drift, 269

ergodic, 398
FIGARCH, 303, 304
GARCH

integrated, 303
GARMA, 302
Gaussian, 464
gaussian

stationary, 300
heteroscedastic, 277
IGARCH, 303
long memory, 296
moving average, 263
non-Gaussian, 465
non-stationary

locally stationary, 395
of Markov, 326
of white noise, 274
of Wiener, 300
random, 246
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short memory, 296
stationary, 262, 297, 388

deterministic, 388
random, 388

stochastic, 274
technical, 521
TS, 264
turbulent, 463
with changes of regimes, 277
with changes of states, 277
with long memory, 277, 327
with self-similarity, 327

Product
inner, 400, 404
scalar, 400

Product exhaustion rule, 515
Product exhaustion theorem, 515
Production function, 512
Productivity

marginal, 555
Profit-sharing, 548
Projection

orthogonal, 97, 402, 421
Projector, 363, 402
Property of scale, 318
Pulses, 216

Gaussian, 488
Pure point, 389
Pure rotation, 104
Pursuit algorithm, 376

q-cycle, 104
Quadratic terms, 457
Quantitative formula

of Lucas, 621
Quantitative Money Theory, 621
Quantity of motion, 344
Quasi-periodic, 16, 82
Quasiperiodic route to chaos, 182
Quasiperiodicity, 36
Quotient ring, 661
Quotient topology, 676

R.M. May, 115
R&D, 550
Radial basis, 285
Radial basis function, 285
Radius, 95
Radius of convergence, 699
Ramsey, 563
Ramsey and Zhang, 503
Random experiment, 257
Random superposition

of complex exponentials, 391

Random walk, 246, 251, 254, 609
Rate

discount, 72
Ratio, 73

irrational, 73, 102, 149
rational, 73, 102, 149

Ratio signal/noise: SNR, 145
Rational expectations, 588, 616, 621
Rational rotation number, 106
Rayleigh oscillator, 63
Rayleigh–Bénard, 75, 204
RBC, 606
Real business cycle, 606
Real money balances, 588
Real topology, 666
Reconciliation, 151
Reconstruction

by the wavelet transform, 383
by the windowed Fourier transform, 383
of signal, 383
of time series, 15

Rectangle, 481
Reduction, 100
Reflection, 687
Regime

chaotic, 116, 120
laminar, 89
turbulent, 89

Region of attraction, 333
Regression

of Nadaraya–Watson, 283
polynomial, 284

Regula falsi, 712
Regularity, 410, 432

in the Hölder sense, 433
in the Lipschitz sense, 433
local, 410
pointwise, 433
pointwise Lipschitz, 443

Relaminarization, 186
Remuneration of factors, 525
Repelling, 136
Repelling focus, 214
Resemblance, 16
Residue, 484
Residue-signal accord, 486
Resolution, 347

generalized, 43
low, 321

Restriction, 158
Return on equity (ROE), 627
Return on investment (ROI), 612
Returns to scale, 512
Reynolds experiment, 89
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Reynolds number, 89
Ricardo, 517
Riemann curvature, 683
Riemann geometry, 682
Riemann space, 682
Riemann sphere, 682
Riemann sphere (Compactification), 666
Riemann surfaces, 679, 682

of sphere with handle, 680
of square root function, 680

Riemann tensors, 682
Riemannian manifold, 682
Riemannian structure, 172
Risk

bayesian, 419
minimax, 420
of the estimator, 418

Robotics, 293
Rockafellar, 602
Romer, 540, 543
Rosenblatt, 286
Rotation number, 36, 82, 106
Rotation number of pure rotation, 106
Route to chaos, 129, 182
Ruelle, 60
Ruelle–Takens, 75, 206
Rule

of product exhaustion, 515
Runge–Kutta, 26

Saddle, 44
Saddle periodic orbit, 176
Saddle point, 44, 563, 576, 590
Saddle-connection, 176, 182, 188, 191
Saddle-connection bifurcation, 188
Saddle-loop, 175
Saddle-node, 193
Saddle-node (fold) bifurcation, 192
Saddle-node bifurcation, 194
Saddle-node periodic orbit, 195
Saddle-type, 165
Samuelson, 305, 597, 631
Scale, 357, 359

dyadic, 402
fine, 403
of frequencies, 357

Scaling function, 320
Scalogram, 382
Scheinkman, 602
Scheinkman and Lebaron, 294
Schwartz inequality, 389
Schwartz Laurent, 701
SDIC, 61, 68, 150
Section of Poincaré, 69, 101

Securities and Exchange Commission (CES),
610

Seed of simulator, 250
Self-affine, 318
Self-fulfilling, 617
Self-fulfilling beliefs, 624
Self-similarity, 318, 432, 437, 587
Self-sustained growth, 548
Self-sustained oscillator, 218
Sensitive dependence on initial conditions, 61,

68
Separator

linear, 286
non linear, 287

Separatrices, 188
Separatrix, 188
Sequence of Cauchy, 399
Series

of Fourier, 350
Series expansion, 669, 696
Set

attracting, 60
closed, 647
closed compact, 60
connected, 647
frontier, 647
invariant, 59, 60

compact, 60
of Cantor, 116, 147, 148
of Julia, 654
of Lebesgue, 389
of Mandelbrot, 654
open, 60, 646
repulsive, 60

Set Closure, 647
Set of Cantor, 116
Sharkovskii, 58
Shilnikov and Turaev, 193, 194
Shilnikov phenomenon, 180
Shilnikov.A Shilnikov.L Turaev.D, 197
Shock, 266, 606

external, 505
internal, 505

Short memory, 327
Short memory process, 296
Sigma-algebra, 257, 330
Signal

homogeneous multifractal, 441
of finite energy, 399, 403

Signals
finite random, 398

Significant directions, 243
Simple isolated singularity, 672
Simple pendulum, 212
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Simplex, 674
Simplices, 674
Simplicial complex, 674
Simplicial homology, 675
Simplicial Mapping, 675
Simplicial subcomplexes, 675
Singular point, 671
Singular Spectrum Analysis, 227, 234
Singularities of analytic functions, 672
Singularity, 117, 346, 410, 432, 483, 659

isolated, 433, 437
non-isolated, 433
of a complex function, 672
of holomorphic functions, 670

Singularity of a complex function, 672
Sink, 44
Smale, 154
Smale–Birkhoff homoclinic theorem, 162
Small amplitudes, 213
Small angles, 212
Smallest convex set, 673
Smooth, 164
Smooth surface, 682
Solenoid, 199
Solow, 531
Solow diagram, 533
Solow growth model, 519
Solution, 19

aperiodic, 103
periodic, 29, 30, 55, 134
quasi-periodic, 72
stable, 25, 51
unstable, 51

Source, 44
Space

”intrinsic”, 220
complete, 400
embedding, 221
hyperbolic, 375
locally compact, 660
metric, 649, 653, 660
normed, 400, 655
of Banach, 399, 656
of Fourier, 344
of Hilbert, 97, 323, 400, 405, 656

Orthogonal, 400
of the integrable functions, 399
preHilbert, 400, 655

complete, 400
state, 70
tangent, 93
time–frequency, 343
topological, 648, 653

Span, 673

Spatial average, 92
Spectral analysis, 16
Spectral background noise, 17
Spectral density, 398
Spectral energy, 721
Spectral measure, 389
Spectral theory

of stationary random process, 396
Spectrogram, 376, 381
Spectrum, 216

continuous, 91
of aperiodic signal, 206
of periodic signal, 204
of quasiperiodic signal, 205
of singularity, 440

Speed
of transition, 143

Speed of convergence, 711
Speed of transition, 143
Spiral, 44
Spiral source, 45
Stability

asymptotic, 27
at Lyapunov sense, 27
dynamical system, 27

Stability Boundaries, 192
Stability in the Romer model, 547
Stable, 50
Stable fixed

point, 21
Stable-node, 214
Standard deviation, 379
State space, 18
State variable, 23
Stationarity, 264

in the strict sense, 396
in the wide sense, 397

Stationary income per capita, 520
Statistic

of Hurst, 244, 299
of Jarque–Bera, 263
of Ljung–Box, 271
R/S, 245
Rescaled range, 245

Step, 238
Stereographic projection, 170, 666
Stiglitz, 306
Stochastic directions, 243
Stock

of capital, 72, 512
of Labor, 512

Stock-exchange, 391, 609
Stock-exchange market, 631
Strange attractor, 91
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Strength of the driving, 216
Stretching, 149

of window, 347
Stroboscopically sample, 109
Strong Stable Manifold, 194, 198
Sub-density, 335
Sub-dictionaries, 480
Subset

compact, 648
Subspace

of wavelets, 320
rapid, 41
slow, 41
stable, 42
stochastic, 243
unstable, 42

Super-attracting, 136
Supercritical Andronov–Hopf bifurcation, 196
Superneutrality

of economic policies, 622
Superposition

of amplitudes, 16
of oscillations, 16, 201
of periodic motions, 91

Support of distributions, 703
Surface

closed, 673
hyperbolic Riemann, 683
of Riemann, 679, 682
smooth, 682
with boundary, 673

Surplus, 517
Suspension, 109
Symbolic calculation

of Heaviside , 701
Symbolic dynamics, 158
Synaptic weights, 288
Synchronization, 217
Synchronization and van der Pol oscillator, 217
System

bilinear, 49
conservative, 70
differential, 231
dissipative, 70
linear, 24, 50
nonlinear bilinear, 49
orthogonal, 652
orthonormal, 652

Takens, 60
Takens theorem, 220
Tangent

vector, 19
Tangent space, 169

Tangle
of curves, 100

Taylor expansion, 26
Taylor polynomial, 696
Taylor remainder, 696

Cauchy writing, 697
Lagrange writing, 697

Taylor series, 22, 698
Tchebychev norm, 710
Tchebychev Polynomial, 707
Technical coefficient, 526
Technical progress, 539
Telecommunications, 292
Temporal average, 92
Temporal correlation, 246
Tendency towards zero-profit, 514
Tensor, 683
Test

Brock, Dechert, Scheinkman: BDS, 275
non parametric

of the non linearity, 275
of Brock, 294
of Dickey–Fuller, 254
of Durbin–Watson, 273
of Kurtosis (Flattening), 263
of random mixture, 294
of Skewness (Asymmetry), 263
of the unit root, 254

Test function, 701
Tetrahedron, 674
Theorem

anti-turnpike, 602
Banach fixed point, 657
central limit, 718
ergodic, 92

multiplicative, 93
Hopf bifurcation, 38
of Alembert–Gauss, 665
of Birkhoff, 329
of Bochner, 395
of Broomhead and King, 95
of center manifold, 56
of divergence, 70
of Heisenberg, 376
of Heisenberg uncertainty, 377
of Hwang and Mallat, 436
of integration

of Lebesgue, 399
of Liouville, 70, 665
of Malgrange–Ehrenpreis, 704
of Mallat and Zhang, 485
of Modigliani–Miller, 614
of monodromy, 670
of Poincaré–Bendixson, 55
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of product exhaustion, 515
of residues, 673
of Riesz, 401
of Rolle, 698
of sampling, 345
of Shannon, Whittaker, 373
of Sharkovskii, 58
of stability, 124
of Takens, 15, 17, 220, 222
of Whitney, 221
of Wiener–Kintchine, 200
Oseledec, 113
Smale–Birkhoff homoclinic, 162
Turnpike, 602

Theory
ergodic, 329
neo-classical

of the distribution, 512
of approximation, 706
of deterministic signal, 388
of distribution, 701
of Floquet, 28, 36, 93
of Fourier, 403
of interpolation, 709
of KAM, 81
of the endogenous growth, 543
of the time–frequency analysis, 343
of Wiener, 384

of random signals, 391
spectral

of stationary random process, 396
spectral of Wiener, 388
statistics of time–frequency analysis, 348

Threshold, 417
Thresholding, 418
Tiling

of the time–frequency plane, 408
by Fourier bases, 408
by Heisenberg boxes, 408
by wavelets bases, 408

Time–frequency localization, 377
Time-scale plane, 374
Tobin, 588
Topological equivalence, 15, 33, 224
Topological invariant, 644
Topological Markov Chain, 158
Topologically conjugate, 166
Topologically conjugate diffeomorphisms,

105, 165
Topologically equivalent flows, 107
Topology, 158, 649, 683

of complex numbers, 666
complex, 666
real, 666

transitive, 60
Topology change, 33
Toric, 70
Toric structure, 81
Torrésani, 375, 388
Torus, 72, 587

invariant, 80
Torus of KAM, 83
Total shareholder return (TSR), 612
Trace, 43, 46
Training, 288
Trajectory, 19

dense, 102
dual, 521
optimal, 580

Trajectory matrix, 226
Transfer of technology, 555
Transform

by wavelets, 377
continuous, 352
continuous by wavelet of the Cac, 447
of Fourier, 200, 343, 350, 377

of short term, 354
with adaptative window, 350
with sliding window, 350
with variable window, 350

of Gabor, 354
of Morlet, 456

Transformation
adaptative, 487
by matching pursuit

with Gaussian adaptative window, 350
hybrid, 478
of Legendre, 441
projective, 650

Transient, 414, 423, 490
Transitions to chaos, 182
Translated

solution, 19
Translation, 322
Transparency, 610
Transpose, 240
Transverse homoclinic points, 174
Transversely, 167
Tree, 412
Tree structure, 412
Trend curve, 266
Trend stationary [TS], 253
Triadic Cantor set, 155
Triangular simplex, 676
Triangulation, 673
True model of the economy, 617
Truncation, 317
Turbulence burst, 32



752 Index

Turbulence phenomena, 91, 434, 440
Turbulent process, 463
Type-1 intermittency, 32, 185
Type-2 intermittency, 187
Type-3 intermittency, 187

U-shape
of the distribution, 331

Uncertainty, 584
Unfolding, 37

versal, 37
Uniformly approachable map, 706
Unit circle, 193
Universe

probabilisable, 628
Unperturbated, 175
Unstable, 50
Unstable eigenvalues, 181
Unstable separatrix, 188
Unstable-node, 214

Value
absolute, 135
non integer, 233

Value creation, 612
Van der Pol oscillator, 212
Van der Pol oscillator case, 191
Van der Pol system, 191
Vanishing moment, 327, 434

of a wavelet, 321
Variable

angular, 82, 84
delay, 200
dependent, 23
input, 23
linearized, 24
measured, 24
output, 23
random, 261
state, 23

Variance, 379
Variance of the increments, 306
Variation, 30
Variations, 476

abrupt, 346
Vector

linearly independent, 236
orthogonal, 236, 400
reconstructed, 226

Vector space
normed, 655

Vectorial subspace, 56
Velocity, 97
Viscosity, 89

kinematic, 97
Volterra, 71
Volume

null, 60
Von Neumann, 329, 521

Walk
deterministic, 266
random, 251, 305

Walrasian equilibrium, 513
Wave forms, 377, 480, 503
Wavelet, 432, 437

adapted to non-stationary signal, 477
cubic spline, 365
dyadic, 362
mother, 317, 374
of Gabor, 347, 355
of Malvar, 350
of Morlet, 372
sombrero, 373
with constant shape, 476

Wavelet atom, 377
Wavelet maxima (extrema), 364
Wavelet packet, 350
Wavelet transform, 356, 377

dyadic, 362
Wavelet vanishing moment, 321
Weierstrass approximation, 706
Weil, 540
White noise, 250, 266, 274, 276, 719
Wiener, 305
Wiener Deterministic spectral theory, 349
Wiener spectral theory, 388
Wiener theory

deterministic spectral, 388
of random signals, 391

Wigner–Ville distribution, 456
Window, 278, 357

Blackman, 387
centered, 347
Gaussian, 387
Hamming, 387
Hanning, 387

Windowed Fourier transform, 383
Wronskian, 714

Yano, 602
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