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Preface

In the last two decades, Mechanics of Materials as a discipline has experienced a
type of revival. The main reason for this has been a continuing introduction of new
materials (or even their classes) with extraordinary microstructures, properties and
performance. Carbon nanotubes, quantum dots, bulk metallic glasses and graphene
are some of the examples. This revival process was additionally enhanced by an
application-related drive to expose these—as well as previously known and used—
materials to harsher conditions: high strains, strain rates, loads and temperatures as
well as combinations of various loading and environmental factors. Recent devel-
opments in aerospace, energy, automotive and defence industries as well as in
microelectronics were possible thanks to extended usability envelopes for various
components and structures.

Another important factor was the introduction of technologies allowing the
production of materials and even final parts with precise control of their micro-
structural features, and, hence, properties and performances. A typical example is
additive manufacturing—more known as 3d printing—that can reproduce detailed
microstructural patterns, developed by researchers in silico; it currently also has a
capability to use multiple materials, gradual changes in properties—and with
continuously improving spatial resolution.

This progress affected significantly Mechanics of Materials that its broadly used
classical formulations does not fully meet the new challenges. This volume presents
some of the current developments and trends in this field covering experimental,
theoretical and numerical approaches and results. The examined materials include
established ones such as metals and alloys (including, i. a., pure indium), or
polymeric fibrous networks as well as new types of materials: bulk metallic glasses,
smart materials and metamaterials with a negative Poisson’s ratio. Properties and
deformation behaviours of composites with various types of constituents are also
discussed.

Among the theoretical matters presented are the use of a phase-field formalism
and its finite-element realisation for analysis of crack initiation and propagation in
brittle materials; a statistical scheme for mechanics of composites with random
reinforcement employing correlation functions of the second and higher orders and
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a variational formulation for quasi-harmonic vibrations of an electro-viscoelastic
smart material consisting of elastic, viscoelastic and piezoelectric elements. All
these theoretical schemes are also accompanied by examples of their numerical
implementations for various case studies. Some dedicated numerical approaches
and algorithms are also offered in other parts of the volume.

A wide range of experimental methods are discussed: tests at small scale
(nanoindentation and micropillar compression); creep at various temperatures;
wedge indentation etc. These tests were performed on specimens of various shapes
and dimensions, for different stress/strain states and microstructures.

Thus, this volume would be of interest to researchers and engineers working on
links between microstructures of advanced materials and their mechanical proper-
ties and performance.

Loughborough, UK Vadim V. Silberschmidt
Perm, Russia Valery P. Matveenko
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Finite Element Modelling of 2D Brittle
Fracture: The Phase-Field Approach

H.A.F.A. Santos and V.V. Silberschmidt

Abstract The prevention of fracture-induced failure is a major constraint in
engineering design, and numerical simulations of fracture processes often play a
key role in design decisions. Although huge efforts have been made to develop
novel and more accurate models of fracture and an enormous progress has been
achieved in the recent years, the development of an adequate scheme for the
numerical simulation of crack initiation and propagation is still a significant chal-
lenge for the scientific community. The goal of this paper is twofold: (i) to give an
overview of current numerical methods available in the literature for the analysis of
brittle fracture problems; (ii) to present a finite element phase-field scheme for the
analysis of brittle fracture problems. This scheme relies on recently developed
strategies for incorporating an additional phase-field to account for fracture. The
spatial finite element discretization is formulated by means of the classical Galerkin
method, whereas an implicit Euler method with adaptive time-stepping is adopted
for the temporal discretization. To demonstrate the capabilities of the model, some
numerical experiments are modelled.

1 Introduction

The development of an adequate scheme for the numerical simulation of crack
initiation and propagation is still a significant challenge for the Computational
Mechanics community. Huge efforts have already been made to develop novel
and accurate models for fracture and an enormous progress has been achieved.
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A particularly successful approach is provided by the Linear Elastic Fracture
Mechanics (LEFM) theory based on Griffith’s theory for brittle fracture, which
relates crack nucleation and propagation to a critical value of the energy release
rate.

The efforts to model brittle fracture focus essentially on two broad approaches:
(i) the discrete methods, such as the element deletion method [2], the embedded
finite element method [13] or the extended finite element method [23, 27], which
use the finite element method in conjunction with Griffith’s-type LEFM models to
incorporate discontinuities into the displacement field, and (ii) the continuum-
damage (CD) methods [12], which incorporate a damage parameter into the model
that describes the material’s deterioration and controls its strength. Some of these
methods are already available in commercial CAE software packages and can be
used for various design applications. However, it has long been recognized that,
while discrete methods are well suited mostly for static fracture and for a moderate
number of cracks, CD methods are not effective when modelling large dominant
cracks, since the damage zone tends to widen in a direction normal to the crack
initiation as the simulation proceeds. Another shortcoming of the CD methods is
that regularization algorithms are needed to overcome mesh dependency. Addi-
tionally, current methods for predicting crack propagation, in particular for dynamic
loading conditions and 3D problems, still lack accuracy and robustness, even when
applied to relatively simple benchmark tests [26]. Due to these reasons, several
efforts were made in the last decade for the development of alternative schemes.
Recently, a new method for the numerical simulation of fracture has emerged—the
Variational Phase-Field Method [14, 21].

Variational methods are a relatively new development in the field of Fracture
Mechanics. The underlying theory was introduced in [14] for quasi-static brittle
fracture, and is based on the idea that cracks should propagate along a path of least
energy. The goal of variational methods is to circumvent several weaknesses of the
classical LEFM theory of Griffith. As pointed out in [14], the inverse proportion-
ality of the critical stress to the square root of the initial crack length indicates that
the classical LEFM theory is unable to predict crack initiation. Indeed, for a solid
without an initial crack, the stress required for crack propagation becomes infinite.
Other important weaknesses of this theory are the inadequacy for predicting the
direction of crack propagation and its inability to handle crack jumps.

Later, Bourdin et al. [5, 6] carried out numerical tests based on this method, and
introduced a phase-field approximation of the energy functional in order to facilitate
the determination of the numerical solution of the variational method. The phase-
field was included in the energy functional in addition to the primary displacement
field in order to regularize the jumps of the displacement field representing the
cracks. The phase-field parameter models the continuous change in stiffness
between broken and undamaged parts of the material on a small lengthscale con-
trolled by a regularization parameter. This regularization allows for the treatment of
the global energy minimization as a standard variational problem, for which clas-
sical finite element methods are adequate. In the variational phase-field approach,
the evolution of fracture surfaces follows from the solution of a coupled system of
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partial differential equations. Due to this—and contrarily to many discrete methods
—its implementation does not require fracture surfaces to be tracked
algorithmically.

The variational phase-field approach has been recently applied in a dynamic
setting by Bourdin et al. [7] and Larsen et al. [19, 20].

Alternative phase-field models of fracture were proposed by Miehe et al. [21,
22]. An important addition to the existing theory was the modelling of anisotropic
degradation, which allows the analysis of tensile fracture, thus resolving the issue of
interpenetration encountered in [7] for crack branching simulations. This model has
been extended by Borden et al. [4] to the dynamic case.

In the phase-field approach to fracture, a crack is a small region in which damage
accumulates, as quantified by the order parameter. This description is conceptually
similar to the ones employed within the framework of continuum gradient theories
for damage [25], wherein the damage gradient is considered as an independent
constitutive variable. The phase-field approach to fracture may be viewed as a
continuum gradient theory for damage with an alternative derivation for the
equation governing damage evolution.

The goal of this paper is to give an overview of current numerical methods
proposed for analysis of brittle fracture problems and to present a finite element
phase-field model to deal with such problems. Additionally, some numerical
experiments are presented, which demonstrate that, unlike many of the current
numerical methods based on the classical theory of Griffith, the presented phase-
field fracture model is able to reproduce various complex phenomena, such as
deflection or branching of pre-existing cracks, as well as the nucleation of new
cracks in originally undamaged domains.

2 Literature Review

2.1 General Considerations

The prevention of fracture-induced failure is a major constraint in engineering
designs, and the numerical simulation of fracture processes often plays a key role in
design decisions. A successful model is provided by the LEFM theory based on
Griffith’s theory for brittle fracture. A general concept in this theory is that, upon the
attainment of a critical energy release rate, a fully opened crack is nucleated or
propagated. As a result, the process zone, i.e., the zone in which the material
changes from an undamaged state to a damaged one, is lumped into a single point at
the crack tip. In the dynamic setting, crack growth velocity is selected based on the
balance between the mechanical energy that flows within the process zone per unit
time and the dissipated energy within the process zone over the same period.
Although LEFM predictions agree well with observations for a sufficiently slow
crack growth, large discrepancies may be found at high loading speeds.

Finite Element Modelling of 2D Brittle Fracture … 3



Due to the complexity of fracture processes in engineering applications,
numerical methods play a crucial role in fracture analyses. Efforts to model crack
propagation were focused mainly on two broad approaches: (i) discrete methods,
which use the FEM in conjunction with Griffith’s-type LEFM models in order to
incorporate discontinuities into the displacement field, and (ii) continuum-damage
methods, which incorporate a damage parameter into the model that controls the
strength of the material.

Among the most commonly used methods in the first category are: the Element
Deletion Method (EDM) [2], the Interelement Separation Method (ISM) [9], the
Embedded Element Method (EFEM) [13], the Cohesive Zone Method (CZM) [24],
and the Extended Finite Element Method (XFEM) [23, 27]. All of these approaches
represent cracks as discrete discontinuities, either by inserting discontinuity lines by
means of remeshing strategies, or by enriching the displacement field with dis-
continuities using the partition of unity method. Continuum-Damage methods were
particularly adopted to model diffusive fracture processes [12].

Some of the aforementioned methods are already available in commercial CAE
software packages and can be used for various applications. However, it has long
been recognized that discrete methods are only well suited for static fracture, and
when a moderate number of cracks occurs. The EDM, for instance, suffers from
extreme mesh dependency and is not well suited for dynamics. In the case of the
ISM, cracks are only allowed to develop along existing interelement edges, which
also leads to strong mesh dependency. Also, the EFEM may be sensitive to the
orientation of the discontinuity surface. As for the XFEM, it requires an algorithm
to ensure crack path continuity, which is particularly challenging in 3D. Addi-
tionally, and unlike the EFEM, the enrichment parameters used in the XFEM
cannot be condensed at the element level, yielding computationally demanding
algorithms, mostly when dealing with an increasing number of cracks and crack
branches. Another important shortcoming of XFEM is that numerical integration
requires special attention, particularly around the crack tip when employing non-
polynomial enrichment functions, where several thousand Gauss-points may be
needed to reduce the integration error. These shortcomings, together with those for
CD methods mentioned in Sect. 1, resulted in many efforts, in particular in the last
decade, to develop novel, efficient, and accurate computational methods for brittle
dynamic fracture.

2.2 Extended Finite Element Method

Simulating the propagation of cracks using traditional finite element methods is
challenging since the topology of the domain changes continuously. XFEM has
been very successfully employed to model cracks, since the finite element mesh can
be created independently from the crack geometry, and, in particular, since the
domain does not have to be remeshed as the crack propagates. Remeshing is
particularly cumbersome in dynamic crack propagation problems. Indeed, as the
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crack advances over a large part of the mesh, remeshing needs to be performed
many times, leading unavoidably to computationally expensive simulations.

The basic idea behind the XFEM is to decompose the displacement field into
continuous and discontinuous parts. The continuous part is the standard finite
element interpolation, while the discontinuous, or enrichment, part is introduced
into the finite element interpolation by means of the local partition of unity method.
This enrichment is carried out with additional degrees of freedom introduced into
the discretization of the test and trial functions, which are multiplied by the so-
called enrichment shape functions incorporating the near tip asymptotic solutions
and allowing displacements to be discontinuous across the crack face.

Application of the XFEM to cracks began with Belytschko and Black in [1]. In
[23], the XFEM was used to create a technique for simulating crack propagation in
two dimensions without the need to remesh the domain. The extension to three
dimensions was initiated in [27].

However, the XFEM approach carries technical challenges: assembling the
stiffness matrix requires integration of singular/discontinuous functions, and
implementing enrichment requires resolving material connectivity (often using a
level set representation). As for the integration issue, as noted in [11], the use of
Gauss quadrature or Monte Carlo integration techniques is unstable. Indeed, since
the crack path through a given triangle is a priori unknown, the singularities can
move very close to quadrature points. Regarding the material connectivity issue, in
a region unambiguously separated into two pieces (i.e., away from the crack tip),
the enrichment is provided by a Heaviside function, defined to be 1 on one side of
the crack and −1 on the other side. This is easy for the case of a single straight
crack, but more challenging for more complex crack geometries.

The XFEM was mainly applied to problems involving the growth of a single
crack or a few cracks; there are only a few contributions dealing with fracture
problems that involve the growth of numerous (several hundreds of) cracks [8, 30].
The case of complex crack patterns such as branching and merging cracks was dealt
with in [11], with separate enrichments used for each crack, and an additional
enrichment function used to represent the junction itself. However, the formulation
becomes cumbersome with increasing number of cracks and crack branches.
Moreover, those methods suffer (in practice) from the absence of a reliable crack
branching criteria.

In the last few years, several implementations of the XFEM have been presented
in the literature. Bordas et al. in [3] developed object-oriented libraries for the
XFEM. The implementation of the XFEM within a general-purpose Fortran finite
element code was discussed in [28]. Wyart et al. in [29] proposed a substructuring
approach to decompose a cracked domain into a safe subdomain and a cracked
subdomain analyzed separately by FEM and XFEM codes, respectively. An
alternative approach was pursued in [15], where the XFEM was implemented in the
commercial finite element software Abaqus. Although Abaqus is a very general and
well known finite element software tool, its XFEM package can handle only static
analyses. Another important limitation of the XFEM in Abaqus is that only linear
continuum elements are allowed.

Finite Element Modelling of 2D Brittle Fracture … 5



2.3 Variational Approach: Phase-Field Models

Macroscopic continuum models for fracture can be classified into two main groups:
(i) sharp-crack models, where crack surfaces are zero-traction boundaries extending
to a sharp tip, and (ii) smeared-crack approaches, where the change in stiffness
between broken and undamaged parts of an elastic material is modelled continu-
ously with a damage parameter. The classical Griffith theory, as well as the vari-
ational approach to brittle fracture, belongs to the first group. In both theories the
evolution of cracks results from a competition between a release of elastic energy
and an increase of the surface energy. Thus, the energy release rate plays an
important role in the determination of crack propagation. A numerical treatment of
sharp-crack models is always faced with the difficulty of dealing with discontinuous
displacement fields across the cracks. Phase-field models avoid these difficulties by
introducing a continuous scalar field—the phase-field parameter—which smoothly
interpolates between undamaged and failed states.

The reasons for introduction of variational approaches as a means to overcome
limitations of LEFM were presented in Sect. 1 together with some models.

Standard approaches for dynamic crack propagation represent cracks as discrete
discontinuities, either by inserting discontinuity lines, by means of remeshing
techniques, or by enriching the displacement field with discontinuities using the
partition of unity method. Tracing the evolution of complex fracture surfaces has,
however, proven to be a tedious task, particularly in 3D. Contrarily, within the
framework of a variational approach, discontinuities are not introduced into the
solid. Instead, the fracture surface is approximated by a phase-field, which smoo-
thens the boundary of the crack over a small region. The evolution of fracture
surfaces follows from the solution of a coupled system of partial differential
equations. From an implementation point of view, it does not require the fracture
surfaces to be tracked algorithmically, which is particularly advantageous when
multiple branching and merging cracks are considered in 3D. The numerical
solution of the strong form of the equations of motion requires both spatial and
temporal discretizations. The spatial discretization was carried out by means of the
Galerkin method, either using the standard C0-continuous finite elements [21], or,
more recently, Non-Uniform Rational Basis Splines (NURBS) and T-Spline basis
functions used within the framework of the Isogeometric Analysis [4]. For the
temporal discretization, two different schemes were adopted: the monolithic
scheme, which requires to solve the coupled system of equations simultaneously,
and the staggered scheme, in which the displacements and the phase-field are
solved for separately [19, 20].

A challenge that emerges with the use of phase-field models for fracture is their
computational cost associated with mesh size requirements. Indeed, the use of a
mesh with a characteristic length that is not small enough compared to the crack
regularization parameter yields erroneous results with regard to the energy.

The variational approach is a robust technique for dealing with dynamic crack
propagation problems. Still, it might be anticipated that, combining the advantages
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of partition of discrete methods (such as XFEM) and the variational approach will
not be an easy task, although it could lead to a new efficient and reliable pathway to
model complex fracture patterns.

One of the simplest two-dimensional isoparametric C0-continuous finite ele-
ments is the four-node quadrilateral element, with three degrees of freedom per
node, i.e. two displacement degrees of freedom and one phase-field degree of
freedom per node. The discretization of arbitrarily shaped structures also requires an
approximation of the geometry. The isoparametric concept makes use of the same
shape functions to represent both the element geometries and the unknown dis-
placement fields.

The presence of the transient term in the phase-field evolution equation requires
the application of a time integration scheme in addition to the spatial discretization.
For the temporal discretization, two different schemes can be adopted: (i) the
monolithic scheme, based on the generalized-alpha method introduced in [10],
which requires to solve the coupled system of equations simultaneously using a
Newton-Raphson method, and (ii) the staggered scheme, in which the displacements
and the phase-field are solved for separately [19, 20]. In the staggered time inte-
gration scheme, the momentum equation is solved first, at a given time step, in order
to get the updated displacements. Using these updated displacements, the phase-field
equation is solved subsequently. In addition to reducing the problem of solving two
(possibly linear) systems, this scheme also allows greater flexibility in terms of how
the momentum equation is solved, i.e., either implicit or explicit schemes can be
used. This scheme can also be generalized to a predictor/multi-corrector format
where additional Newton-Raphson iterations can be performed within a time step.

To be physically consistent, phase-field fracture models have to enforce irre-
versibility of the fracture process. In other words, all cracks must only grow with
time. Different approaches were proposed in the literature to enforce irreversibility.
The approach suggested in [6] constrains a subset of the discrete phase-field control
variables that meet a minimum threshold value. This approach is easy to solve
numerically but it requires the selection of an additional numerical parameter. An
alternative approach, based on a strain-history functional was introduced in [21].
One advantage of this approach is its computational efficiency. The only compu-
tational cost is a floating point comparison, and it only requires storing one history
variable per integration point. Another advantage of this approach is that an initial
strain-history functional can be used to model initial cracks. Furthermore, the initial
cracks can be located anywhere in the domain without reference to the mesh, which
may prove highly advantageous in specifying complex surface cracks, in particular
in three-dimensional bodies.

The width of the transition zone, where the phase-field interpolates between 1
and 0, is controlled by a length scale parameter. In order to obtain reasonable
results, without overestimating the influence of the fractured zone, this length
parameter should be chosen sufficiently small compared to the global dimensions of
the considered sample. The mesh size has to be chosen sufficiently small in order to
accurately resolve steep gradients and high curvatures of the crack field in the
transition zones between cracked and uncracked areas. The accurate approximation

Finite Element Modelling of 2D Brittle Fracture … 7



of the crack field is important to capture the surface energy and, thus, the thresholds
and dynamics of crack propagation correctly. However, small values of the length
parameter require a high level of mesh refinement, which is numerically demanding
in terms of computation time and required memory. Several approaches were
proposed in the literature in order to meet the requirements for a sufficiently fine
resolution, on the one hand, and to keep the computation time within bounds, on the
other hand. In an effort to accomplish this, Kuhn and Muller [17, 18] introduced
specially engineered finite element shape functions of an exponential nature to
discretize the phase-field. These shape functions are parametrized by the ratio
between the element size and the phase-field regularization parameter. Their results
showed that, with these special shape functions, an accurate prediction of the
surface energy associated with the phase-field is possible with a much lower level
of refinement when compared to the standard finite element shape functions. The
drawback of this approach is that some information regarding crack orientation is
necessary for the proper construction of the exponential shape functions. Also, the
choice of a good quadrature method is crucial for the performance of this approach.

3 Griffith’s Theory of Brittle Fracture

Consider an arbitrary body X 2 R2 with external boundary @X and an internal
discontinuity boundary Γ. Let @X ¼ @XN [ @XD, with @XN and @XD being the
Neumann and Dirichlet boundaries, respectively, such that @XN \ @XD ¼ ;. The
displacement of a point x 2 X at time t is denoted by u(x, t). u may be a result of
either the applied body forces b, tractions �t, prescribed boundary displacements �u,
or a combination of these actions. The body is assumed linear elastic, homoge-
neous, and isotropic with Young’s modulus E, Poisson’s ratio ν and mass density ρ.

According to the Griffith’s theory of brittle fracture, the energy required to create
a unit area of fracture surface is equal to the critical energy release rate Gc.

The Lagrangian for the discrete fracture problem is

Lðu; _u;CÞ ¼ Pkð _uÞ �Ppðu;CÞ ð1Þ

where

Pk ¼
Z
X

1
2
q _u � _u

� �
dX ð2Þ

is the kinetic energy functional, and

Pp ¼
Z
X

WðeÞ dXþ
Z
C

Gc dC ð3Þ
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is the potential energy functional, with

e ¼ Du ð4aÞ

WðeÞ ¼ 1
2
eTCe ð4bÞ

r ¼ @W
@e

¼ Ce ð4cÞ

Here, W represents the strain energy density. ε and σ are the infinitesimal strain
vector and the Cauchy stress vector, respectively, represented in Voigt’s notation as
follows

r ¼
rxx
ryy
rxy

2
4

3
5; e ¼ exx

eyy
2exy

2
4

3
5 ð5Þ

In (4a, 4b, 4c), D is the compatibilty operator and C is the constitutive matrix,
defined as

D ¼
@
@x1

0
0 @

@x2
@
@x2

@
@x1

2
64

3
75 and C ¼ 1

E0

1 �m0 0
�m0 1 0
0 0 2ð1þ m0Þ

2
4

3
5

where E0 ¼ E; m0 ¼ m for plane-stress problems, and E0 ¼ E=ð1� m2Þ; m0 ¼ m=ð1�
mÞ for plane-strain problems.

The Euler-Lagrange equations of this functional determine the motion of the
body.

3.1 Phase-Field Approximation

In this approach, the fracture energy is approximated as

Z
C

Gc dC �
Z
X

Gc
ð1� cÞ2

4e
þ erc

 !
dX ð6Þ

where c is the phase-field, taking values from 0 to 1. c = 0 inside the crack and c = 1
away from the crack. ε is the regularization parameter that controls the width of the
smooth approximation of the crack.

Finite Element Modelling of 2D Brittle Fracture … 9



To model the loss of material stiffness in the failure zone, the strain energy
density is redefined as

Wðe; cÞ ¼ 1
2
ðc2 þ gÞeTCe ð7Þ

where η is the small dimensionless parameter 0\ g� 1 introduced to avoid
numerical difficulties where the material is broken (i.e., where c ¼ 0). The degra-
dation of stiffness in the broken phase is modelled by the factor ðc2 þ gÞ.

Substitution of the phase-field approximation for the fracture energy (6) and the
elastic energy density (7) into the Lagrange energy functional (1) yields

Lðu; _u; cÞ ¼
Z
X

1
2
q _u � _u� 1

2
ðc2 þ gÞeTCe

� �
dX�

Z
X

Gc
ð1� cÞ2

4�
þ �rc

 !
dX

ð8Þ

Note that, in order to conserve mass, the kinetic energy term is unaffected by the
phase-field approximation.

The Euler-Lagrange equations of the problem can be used to arrive at the fol-
lowing strong form of the equations of motion in a Cartesian reference system
ðx1; x2Þ to be solved in Ω

DTrþ b ¼ qu
:: ð9aÞ

_c ¼ �M ceTCe� Gc 2�Dcþ 1� c
2�

� �� �
ð9bÞ

with

r ¼ ðc2 þ gÞCe

Here, M is the mobility parameter, taken as constant and positive (classical
Ginzburg-Landau equation).

The equations of motion are coupled with the phase-field c. Since c varies
continuously, the singularity at the crack tip is replaced with a smooth region where
c varies rapidly from 1 to 0.

It should also be emphasized that, within the framework of this model, the
irreversibility condition CðtÞ � Cðt þ DtÞ needs to be enforced.

Additionally, the following sets of boundary conditions

u ¼ �u; on @XD

Nr ¼ �t; on @XN

10 H.A.F.A. Santos and V.V. Silberschmidt



with

N ¼ n1 0 n2
0 n2 n1

� �

where nj are the components of the external unit normal n of @XN , and initial
conditions

uðx; 0Þ ¼ u0ðxÞ; x 2 X

_uðx; 0Þ ¼ v0ðxÞ; x 2 X

must hold, where u0 and v0 are the initial displacements and velocities, respectively.

4 Finite Element Formulation

An implementation of the initial boundary-value problem into a finite element
scheme is given in this section. The numerical solution of the initial boundary-value
problem requires both a spatial and temporal discretization. In this work, the spatial
discretization is formulated by means of the Galerkin method, whereas an implicit
Euler method is adopted for the temporal discretization. In particular, for the dis-
cretization in space, four-node quadrilateral (bilinear Lagrangian) elements with
three degrees of freedom per node, i.e., two displacement and one phase-field
degrees of freedom per node, and a 2 × 2 Gauss quadrature rule are adopted in this
work. The nonlinear coupled system of equations is solved using a Newton-
Raphson algorithm.

4.1 Weak Form of the BVP

The trial solution spaces are defined as

Uu ¼ fuðtÞ 2 ðH1ðXÞÞdju ¼ �u on @XDg ð10aÞ

Uc ¼ fcðtÞ 2 H1ðXÞg ð10bÞ

Similarly, the weighting function spaces are defined as

Vu ¼ fw 2 ðH1ðXÞÞd jw ¼ 0 on @XDg ð11aÞ

Vc ¼ fq 2 H1ðXÞg ð11bÞ

Finite Element Modelling of 2D Brittle Fracture … 11



Multiplying Eqs. 9a, 9b by the appropriate weighting functions and applying
integration by parts leads to the following weak formulation: given �u, �t, b, u0, v0
and c0 find uðtÞ 2 Uu and cðtÞ 2 Uc; t 2 ½0; T �, such that for all w 2 Vu and q 2 Vc,
the following conditions holdZ

X

ðrTDwþ qu
::TwÞ dX�

Z
X

bTw dX�
Z

@XN

t�Tw d@X ¼ 0 ð12aÞ

Z
X

ceTCe� Gc

�
ð1� cÞ

� �
q� _c

M
qþ nTrq

� �
dX ¼ 0 ð12bÞ

Z
X

qðuTð0Þ � uT0 Þw dX ¼ 0 ð12cÞ

Z
X

qðvTð0Þ � vT0 Þw dX ¼ 0 ð12dÞ

Z
X

qðcð0Þ � c0Þq dX ¼ 0 ð12eÞ

4.2 Discrete Weak Form

Following the Galerkin method, the finite-dimensional approximations to the
function spaces are assumed as Uh

u 2 Uu; Uh
c 2 Uc; Vh

u 2 Vu and Vh
c 2 Vc, leading

to the discrete form of the problem as: given �u, �t, b, u0, v0 and c0 find uhðtÞ 2 Uh
u

and chðtÞ 2 Uh
c ; t 2 ½0; T �, such that for all wh 2 Vh

u and qh 2 Vh
c , the following

conditions holdZ
X

ðrhTDwh þ qu
::hTwhÞ dX�

Z
X

bTwh dX�
Z

@XN

t�Twh d@X ¼ 0 ð13aÞ

Z
X

ceh
T
Ceh � Gc

�
ð1� chÞ

� �
qh � _ch

M
qh þ nh

Trqh
� �

dX ¼ 0 ð13bÞ

Z
X

qðuhT ð0Þ � uT0 Þwh dX ¼ 0 ð13cÞ
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Z
X

qðvhT ð0Þ � vT0 Þwh dX ¼ 0 ð13dÞ

Z
X

qðchð0Þ � c0Þqh dX ¼ 0 ð13eÞ

The explicit representations of the approximations for the displacement and
phase-field variables in terms of the basis functions and nodal variables are

uh ¼
X
I

NIuI ð14aÞ

ch ¼
X
I

NIcI ð14bÞ

with I ¼ 1; 2; 3; 4. Similarly, assuming that both the finite-dimensional trial solution
and weighting function spaces are defined by the same set of basis functions, the
approximations for the weighting functions are defined as

wh ¼
X
I

NIwI ð15aÞ

qh ¼
X
I

NIqI ð15bÞ

where the NI are the global basis functions and uI, cI, wI and qI are the nodal
degrees of freedom.

Making use of these approximations, eh and rch can be written as

eh ¼
X
I

Bu
I uI ð16aÞ

rch ¼
X
I

Bc
I cI ð16bÞ

with

Bu
I ¼

NI;x 0
0 NI;y

NI;y NI;x

2
4

3
5 and Bc

I ¼
NI;x

NI;y

� �
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4.3 Element Residuals and Their Derivatives

To solve the resulting coupled nonlinear system of equations, an incremental
iterative Newton-Raphson solution strategy based on a consistent linearization of
the governing equations is used. The element residuals can be written as

Ru
I ¼ �Fu

int;I þ Fu
ext;I ð17aÞ

Rc
I ¼ �Fc

int;I ð17bÞ

with

Fu
int;I ¼

Z
X

ðqNIu
::h þ BuT

I rhÞ dX ð18aÞ

Fu
ext;I ¼

Z
X

NIbh dXþ
Z
C

NI t�h dX ð18bÞ

Fc
int;I ¼

Z
X

NI
_ch

M
þ BcT

I nh þ NI cheh
T
Ceh � Gc

2�
ð1� chÞ

� �� �
dX ð18cÞ

where nh ¼ 2Gc�rch.
The derivatives of the element residuals with respect to the nodal degrees of

freedom come out as

Kuu
IJ ¼ @Ru

I

@uJ
¼
Z
X

BuT
I ðc2 þ gÞCBu

J dX ð19aÞ

Kuc
IJ ¼ @Ru

I

@cJ
¼ 2

Z
X

BuT
I cCeNJ dX ð19bÞ

Kcc
IJ ¼ @Rc

I

@cJ
¼
Z
X

2BcT
I Gc�Bc

J þ NIðeTCeþ Gc

2�
ÞNJ

� �
dX ð19cÞ

Dcc
IJ ¼ @Rc

I

@ _cJ
¼
Z
X

NI
1
M

NJ dX ð19dÞ

Muu
IJ ¼ @Ru

I

@u
::
J
¼
Z
X

NIqNJ dX ð19eÞ
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4.4 Time Discretization: Quasi-static Regime—Implicit Euler
Method

The global residual vector that results from the assembly of the element residuals is
defined as

Rðd; _dÞ ¼ Fext � Fintðd; _dÞ :¼ 0 ð20Þ

Let dn and _dn denote the global vector of degrees of freedom for time step n and
its time derivative, respectively, defined as follows

d ¼
d1
d2
..
.

2
64

3
75; _d ¼

_d1
_d2
..
.

2
64

3
75 ð21Þ

with

dI ¼ uI
cI

� �
; _dI ¼ _uI

_cI

� �
ð22Þ

The implicit (or backward) Euler method is stated as follows: given ðdn; _dnÞ, find
ðdnþ1; _dnþ1Þ such that

Rðdnþ1; _dnþ1Þ ¼ 0 ð23Þ

with

_dnþ1 ¼ dnþ1 � dn
Dt

ð24Þ

where Dt is the time step. This problem can be redefined as

Rðdn; dnþ1Þ ¼ 0 ð25Þ

At each time step, the solution to this problem is obtained using a Newton-
Raphson method to solve the non-linear system of equations. Letting k be the k-th
Newton iteration step, the linearized system of equations that needs to be solved is

RðkÞ
nþ1 � TðkÞ

nþ1Dd
ðkÞ
nþ1 ¼ 0 ð26Þ

with T the global tangent matrix, formed by assembly of the element matrices given
by
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TIJ ¼ KIJ þ 1
Dtn

DIJ ð27Þ

with

KIJ ¼ Kuu
IJ Kuc

IJ

KucT
IJ Kcc

IJ

� �
ð28Þ

and

DIJ ¼ O O
O Dcc

IJ

� �
ð29Þ

being the element stiffness and damping matrices, respectively.
The problem is initialized with

dð0Þnþ1 ¼ dn ð30Þ

and the solution is computed iteratively using the update formula given by

dðkþ1Þ
nþ1 ¼ dðkÞnþ1 þ DdðkÞnþ1 ð31Þ

where the increment DdðkÞnþ1 is determined from the linearized system of Eq. 26. The
iteration procedure continues until convergence of the residual vector is achieved.

4.5 Irreversibility of Cracking

Perhaps the most significant drawback of variational phase-field models is that they
typically allow for crack healing. To rule out such unphysical behavior, Hakim and
Karma proposed constraining the time-rate of the phase field to be less than or equal
to zero at all points and times [16]. In simulations of quasi-static fracture processes
in anti-plane shear and plane strain, they observed that, while slightly larger loads
appear to be required when their irreversibility criterion is imposed, crack paths
were essentially unaffected. Alternatively, following the approach proposed in [5],
the irreversibility of cracking can be guaranteed by imposing homogeneous Di-
richlet boundary conditions on the phase-field once a crack as been detected. The
latter formulation is adopted in this work.
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5 Numerical Results

5.1 Square Plate Under Quasi-static Prescribed Displacement

The square plate under quasi-static prescribed displacement depicted in Fig. 1 was
considered. A uniform 64 × 64 mesh was adopted. The material parameters
(assumed to be dimensionally consistent) were set to E ¼ 106; m ¼ 0:3 and
Gc ¼ 0:01, and plane stress was assumed. The regularization, viscosity and mobility
parameters were chosen to be � ¼ 0:02; g ¼ 10�5 and M ¼ 109, respectively. The
prescribed displacement was set to �u ¼ 4:5� 10�4. The problem was solved in an
incremental-iterative fashion by resorting to the Newton-Raphson method. An
adaptive time-stepping scheme was used, for which the convergence tolerance was
set to 1:0� 10�9 and the optimal number of iterations to 4. For a larger number of
iterations, the adaptive scheme automatically decreases the time step size, whereas
for a smaller number of iterations the adaptive scheme increases it.

The obtained distributions of stresses and phase-field are shown in Fig. 2. Two
cracks initiate from the corners of the built-in edge at a displacement of
�u ¼ 2:9� 10�4. At �u ¼ 4:1� 10�4 the cracks start deviating from the vertical
edge. As expected, high stress gradients can be observed at the crack tips.

The undeformed and deformed configurations of the plate are plotted in Fig. 3.

5.2 Pre-notched Square Plate Under Quasi-static Prescribed
Displacement

The pre-notched square plate under quasi-static prescribed displacement depicted in
Fig. 4 is considered in this section. The same 64 × 64 mesh and material parameters
were employed. The regularization, viscosity and mobility parameters remained at

1

1

x

y

ū

Fig. 1 Square plate under
quasi-static tensile load:
problem definition
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the same level. The prescribed displacement in this case was set to �u ¼ 1:5� 10�4.
The problem was solved in an incremental-iterative fashion similar to the previous
example.

The obtained distributions of stresses and phase-field are shown in Fig. 5.
The obtained results indicate that the proposed phase-field fracture model is

capable to reproduce various complex phenomena, such as deflection or branching
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Fig. 2 Square plate under quasi-static prescribed displacement: stresses and phase-field obtained
on a 64 × 64 mesh for �u ¼ 4:5� 10�4

Fig. 3 Square plate under
quasi-static prescribed
displacement: deformed
(scaled) and undeformed
configurations of the plate
obtained for �u ¼ 4:5� 10�4
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of pre-existing cracks, as well as the nucleation of new cracks in originally
undamaged domains. However, a high resolution of the crack is needed, leading to
computationally expensive simulations.

1

1 x

y

ū

Fig. 4 Pre-notched square
plate under quasi-static
prescribed displacement:
problem definition
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Fig. 5 Pre-notched square plate under quasi-static prescribed displacement: stresses and phase-
field obtained on a 64 × 64 mesh for �u ¼ 1:5� 10�4
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6 Conclusions

The numerical simulation of brittle fracture is still a significant challenge for the
Computational Mechanics community. An overview of the main current numerical
methods available in the literature for the analysis of brittle fracture problems was
given. It can be concluded that discrete methods are well suited only for static
fracture and a moderate number of cracks. On the other hand, continuum damage
methods are not effective when modelling large dominant cracks. The recently
introduced variational approach circumvents the implementation of complex crack-
tracking algorithms and the need to describe the topology of the crack surface.

A finite element phase-field scheme relying on the variational approach to model
brittle fracture problems was presented and some numerical experiments were
implemented with this scheme. It was demonstrated that the presented model is
capable to reproduce various complex phenomena, although it requires a high
resolution of the crack, which may lead to computationally expensive simulations.
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Crystalline Deformation in the Small Scale

Murat Demiral, Anish Roy and Vadim V. Silberschmidt

Abstract In the last two decades, experimental observations demonstrated—and
numerical simulations confirmed—that plastic deformation in the small scale, i.e. at
the micron or sub-micron scales, is different from that at the macro-scale; this
phenomenon is known as size effect. It was observed mostly in indentation, torsion
and bending experiments, being ascribed to strong gradients of strain in such
deformation processes. The size effect was also reported in uniaxial micro- and
nano-pillar compression experiments in spite of their inherent lack of (or limited)
macroscopic strain gradients. In the present study, we first review some critical and
essential experimental studies that were conducted over the years to analyse various
mechanisms that govern deformation in the small scale. In the second part, different
modelling approaches describing this phenomenon are briefly reviewed.

1 Introduction

Modern high-technology applications such as medical devices, thermal barrier
coatings, micro- and nano-electro mechanical systems and semiconductors as well
as gems industry increasingly use components with sizes down to a few micro-
metres and even smaller. The respective manufacturing processes can thus include
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forming and shaping at a small scale. Plastic deformations in such a scale are
known to differ from those at the macro-scale, resulting in a so-called ‘size effects’.

Understanding deformation mechanisms and assessing mechanical performance
at small scales are necessary to realize the full potential of emerging nano- and
micro-technologies and to design new products with superior characteristics. Also,
knowledge of links between the microstructural and geometrical factors can provide
additional ways to enhance component performance and clarify their design
constraints.

The phenomena of size effect can be separated into two groups—“intrinsic” and
“extrinsic”. Intrinsic size effects are related to strengthening due to microstructural
constraints such as grain size and second-phase particles and have been studied by a
materials science community for more than a century. Extrinsic size effects arise
from dimensional constraints, e.g. due to a sample size and were discovered in the
last two decades; hence, they are currently a topic of rigorous investigations [1].

An extrinsic size effect was mostly observed in indentation, torsion and bending
experiments, where it was ascribed to a higher dislocation density due to the
generation of geometrically necessary dislocations (GNDs), which, in turn, led to
strong gradients of strain in a deformation process. To understand the underlying
physics for this phenomenon, uniaxial compression experiments of surface-domi-
nated micro-pillars, eliminating the effect of strain gradients, were performed.
However, the size effect was still reported, with the ultimate tensile strength and
yield strength scaling with an external sample size in a power-law fashion, some-
times attaining a significant fraction of material’s theoretical strength. Several
different explanations were proposed in the literature to elucidate it.

Alongside with experimental studies, various numerical simulations were used
to investigate the size effect. Though they are in many cases less cumbersome to
implement than detailed test at microscale, these methods have their own limita-
tions. For instance, quantum and atomistic simulations cannot be performed on
realistic time scale and structures while classical continuum plasticity theories
cannot explain the dependence of mechanical response on size as no length scale
enters the constitutive description. Multi-scale continuum theories incorporating
spatial gradients and/or volume integrals accounting for non-local interactions
provide an alternative for this.

The purpose of the present review is to survey crystalline deformation in the
small scale. Both experimental and numerical applications of size effects are briefly
reviewed.

2 Experimental Observations

In this section we review some critical and essential experimental studies that were
conducted over the years and paved the way for theoretical and modelling work to
characterise and study various mechanisms that govern deformation in the small
scale.
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2.1 Indentation Size Effects

Experiments carried out in the past few decades demonstrated strong indentation
size effects (ISEs) in crystalline materials. Stelmashenko et al. [2] and [3] reported
that the measured hardness values were observed to increase with a decreasing
indentation size, especially in the sub-micrometre depth regime. Figure 1 demon-
strates a typical ISE observed in single-crystal copper and a cold worked poly-
crystalline copper.

This observation is not surprising as hardness measurements have been recog-
nized to be size-dependent since early experiments by Tabor [4]. The research into
the ISE gained prominence partly motivated by the development of large-scale
application of thin films in electronic components and partly by the availability of
novel methods of probing mechanical properties in very small volumes. Different
physical and geometric mechanisms were suggested for ISE. Some of the proposed
mechanisms or factors are: (1) a pile-up or a sink-in of the deformed surface during
indentation; (2) a loading rate of the indenter; (3) a grain size, or the Hall-Patch
effect; (4) presence of an oxidation layer or a work-hardened surface layer and (5) a
geometric effect of indenter’s tip (e.g. its radius) [5].

Some authors argued that the size dependence of material’s mechanical properties
resulted from an increase in strain gradients inherent to localized zones, which
necessitated the presence of geometrically necessary dislocations resulted in addi-
tional hardening [6]. The characteristic features of deformation in metals are for-
mation, motion and storage of dislocations. According to a Taylor’s hardening rule,
dislocation storage is responsible for material hardening. Stored dislocations can be
divided into two groups: statistically stored dislocations (SSDs) and GNDs. SSDs are
generated by trapping each other in a random way and believed to be dependent on
effective plastic strain. On the other hand, GNDs are the stored dislocations that
relieve plastic-deformation incompatibilities within the material caused by non-
uniform dislocation slip. The density of GNDs is directly proportional to the gradients
of effective plastic strain, and their presence causes additional storage of defects and,

Fig. 1 Indentation size effect
in crystalline materials.
Reprinted with permission
from [3]
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hence, increases the deformation resistance by acting as obstacles to SSDs [6]. The
dependency of SSDs and GNDs, respectively, on the effective plastic strain and its
gradients is responsible for the size effect. The smaller the length scale, the larger the
density of GNDs relative to that of SSDs and, consequently, the higher the plastic
strain gradients compared to average plastic strains. An important and often misun-
derstood caveat is that SSDs and GNDs are essentially identical and simply labelled
differently for convenience. Such an approach inevitably leads to the requirement for
additional phenomenological laws with non-physical parameters to account for the
interaction between GNDs and SSDs (e.g. in the form of annihilation and generation
rules). A physically reasonable and accurate model of continuum dislocation
mechanics should account for all dislocations consistently. Such an approach was
proposed by Acharya [7] and developed to model most of the well-known benchmark
problems in small-scale plasticity [8, 9].

Different indenter types were also used to study ISE. For instance, Qu et al. [10]
used five different spherical indenter tips with radius ranging from 14 to 1600 μm to
measure hardness. It was observed that indentation hardness H increased with an
increase in the ratio of contact radius a to the indenter radius R (Fig. 2). Swadener
and George [11] also observed that H increased continuously with an increase in the
indentation depth using a spherical indenter, i.e., the so-called reversed size effect,
contrary to the usual size effect observed in sharp indentation. The reverse
dependence of hardness on indentation depth is explained by different dislocation
densities underneath the indenters. In the case of a sharp indenter, the average
density of SSDs is independent of the indentation depth, while the density of GNDs
is inversely proportional to it (Fig. 3a). On the other hand, in the case of a spherical
indenter, although the density of SSDs increases with an increase in the indentation
depth (through a contact radius) the density of GNDs becomes essentially inde-
pendent (Fig. 3b). The total dislocation density, therefore, displays a reversed depth
dependence for sharp and spherical indenters; so does the magnitude of indentation

Fig. 2 Effect of ratio of
contact radius (a) to spherical
indenter radius (R) on
indentation hardness of
iridium. Reprinted with
permission from [10]
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hardness [5]. On the other hand, the experimental study of [12] with a sharp
indenter demonstrated that the total GND density below the indents decreased with
decreasing indentation depth. This observation contradict the strain-gradient theo-
ries attributing size-dependent material properties to GNDs. Abu Al-Rub and
Voyiadjis [13] interpreted the size effect in hardness experiments with a spherical
indenter in a different way. It was explained that to get ISE in spherical indentation
similar to that in sharp indentation, plastic strain should be independent of the
sphere size to provide independence of plastic strain on indentation depth. In that
study, the hardness values obtained with different spherical indenters were com-
pared for the same a=R ratio representing the same plastic strain value. A decrease
in hardness with an increasing spherical indenter size was reported, which can be
also interpreted based on Fig. 2.

2.2 Size Effect in Pillar Compression

Recently, Uchic and co-workers [14] developed a testing methodology to measure
the flow behaviour of miniature samples in compression. In this test micro-scale
cylindrical samples fabricated using a focused-ion-beam (FIB) milling technique
(for instance Fig. 4a) were uniaxially compressed in a nano indentation system
equipped with a flat punch [15]. This method was specifically designed to probe
mechanical properties as a function of the decreasing sample size. Later this
technique was extended by [16] to perform uniaxial compression tests on Au nano-
pillars.

Uchic et al. [14] tested three different materials with a pillar size from 1 to
40 μm: Ni, Ni3Al-1 %Ta and a Ni-based super alloy with a (269) orientation. These
experiments showed an increase in the strength of crystals by up to 15 times
compared to bulk Ni with a decrease in the sample size. However, no significant
increase in the work-hardening rate of the crystals was observed. It was also
reported that frequent strain bursts—avalanches of dislocations—and finite discrete

Fig. 3 Schematic plot of variations in GND and SSD densities with indentation depth using a
sharp (a) and spherical indenter (b)
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slip bands along the gauge length of the crystal were observed when its size
diminished. In contrast to a smooth stress-strain curve obtained during compression
of a bulk material, the stress-strain curves of small-size pillars contained several
discrete strain bursts, with strain jumping discontinuously to an increased value
while the stress value remained constant or decreased. Figure 5 demonstrates
typical strain bursts, more frequent in small-size pillars, observed on a stress-strain
curve of f.c.c. nano pillars. Greer and Nix [17] performed similar tests on (001)-
oriented Au crystals with dimensions of less than 1 μm. The study showed a trend
of an increase in the strength of the pillar with a decrease in its size. It was also
revealed that the flow-stress value of *800 MPa was observed in compression of
200 nm Au specimens, which was extraordinarily high compared to its bulk
counterpart with a corresponding value around 25 MPa at 10 % strain.

Fig. 4 SEM images of Ti-15-333 single-crystal micro-pillars with circular (a) and square (b) cross
sections after compression

Fig. 5 Typical stress-strain
curves in compression of Au
pillars with various diameters.
Reprinted with permission
from [34]
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Recently, Kiener et al. [18] reported a newmethod to measure tensile behaviour of
single-crystals at the micro- and nano-scales using the samples fabricated with FIB.
The mechanical test was performed inside a scanning electron microscope (SEM)
and a transmission electron microscope (TEM). In this experiment, f.c.c. Single-
crystal Cu samples with diameters ranging from 500 nm to 8 μm with an aspect ratio
ranging from 1 to 13.5 were tested. This study revealed the presence of a size effect,
which strongly depended on the sample’s aspect ratio; however, the reported size
effect was less pronounced than its compression counterpart. It was reported that
size-dependent hardening was linked to dislocation pile-ups due to their constrained
glide in the sample. Jennings and Greer [19] performed an in situ tensile-deformation
test with (111)-oriented single-crystal Cu nano-pillars with diameters ranging from
75 to 165 nm fabricated with e-beam lithography and electroplating. A power-law
relationship between strength and diameter of nano-pillar was reported similar to that
for fabricated with FIB machining. In that study, inhomogeneous deformation was
explained by annihilation of dislocations at free surfaces of the pillar.

Most studies of size effects deal with f.c.c. Materials with only recent studies
investigating b.c.c. Crystalline materials. In the following section we discuss studies
in f.c.c. and b.c.c. crystals. The relevant reviews for more complex microstructures
such as non-cubic single-crystals, shape memory alloys, nano-crystalline metals,
nano-laminate composites and metallic glasses are available elsewhere [1] and the
references therein).

2.2.1 Face-Centred Cubic Metals

Several mechanisms have been proposed for deformation of nano- and micron-size
f.c.c. pillar structures. Among the suggested theories “hardening by dislocation
starvation” is the mostly accepted one to explain the size effects in f.c.c. nano-
pillars. The basic premise of the theory is as follows: Owing to smaller dimensions
of the nano-size pillars, dislocations present at the onset of plastic deformation
leave the specimen before they multiply. Having reached this “dislocation starva-
tion” state, new dislocations are necessary to nucleate both at the sample surface
and in the bulk of the crystal in the course of deformation since the movement of
dislocations is required for compatible plastic deformation. As the nucleation of
these new dislocations requires high stresses approaching near-theoretical strength,
the strength of nano-size pillars is observed to increase with a decreasing sample
size. This theory appears to be in good agreement with in situ TEM performed by
[20]. Figure 6a demonstrates the FIB micro-fabricated (111) Ni pillar with 160 nm
of diameter in this study. It is apparent that there is a high initial dislocation density
in the pillar. However, the pre-existing dislocations progressively leave the pillar
during the initial compression stage, and a completely dislocation-free pillar is
finally obtained (Fig. 6b). Computational atomistic simulations performed by dif-
ferent research groups also justify this theory [21].

A prominent deformation mechanism for micron-sized pillars (larger than
500 nm) is described in terms of a single-arm source theory proposed and
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developed by [22]. In this theory, creation of dislocations occurred as a result of
operation of partial Frank-Read sources or truncated sources also known as single-
arm sources. This approach suggested that a random distribution of dislocation
sources either existed initially in pillars or generated by interaction of initially
present dislocations, and the average source strength ss was related with the average
source length k by the following equation:

ss ¼ ksl
lnðk=bÞ
ðk=bÞ ; ð1Þ

where ks is a source-hardening rate, μ is the shear modulus and b is the Burgers
vector. According to this equation, with a decrease in the diameter of pillar, the
source length became smaller, hence overall strength increased. Ng and Nyan [23]
studied the size effect of Al micro-pillars with diameters ranging from 1.2 to 6 μm
either coated or centre-filled with a tungsten-based compound. A higher strain-
hardening rate and a much smoother stress-strain curve suggested suppression of
dislocation avalanches and a lack of nucleation-controlled plasticity. The TEM
analysis revealed higher dislocation densities in the post-deformed specimens
confirming the trapping of dislocations inside the micro-pillars rather than annihi-
lating at the free surface in contrast to nano-sized pillars [1].

Maass and co-workers studied the role of strain gradients on plastic deformation
of micron-size pillars using a synchrotron micro-diffraction technique [24]. These
studies demonstrated that geometrically necessary dislocations were generated
during the deformation process leading to strain gradients. The assumed dislocation
starvation theory, therefore, was not applicable to micron-size pillars since it was
impossible to squeeze all the dislocations to the surface of the pillar. Likewise, [25]
argued that although deformation in a pillar-compression test was macroscopically
homogenous, it was heterogeneous microscopically, i.e. GNDs vanished macro-
scopically but were presented locally. Akarapu et al. [26] numerically demonstrated

Fig. 6 Dark-field TEM image of Ni pillar before tests (a) and after first compression (b).
Reprinted with permission from [20]
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that deformation was heterogeneous from its onset and was confined to the discrete
slip bands. On the other hand, SEM images of micron-sized pillars taken after their
compression in [27] suggested that deformation evolved in an inhomogenous
manner, though it was applied homogeneously since the end regions of the pillars
appeared non-deformed while the sample’s centre was sheared by multiple slip
zones.

The FIB technique is currently the most prevalent method for producing small-
size pillars to investigate the influence of sample’s dimensions on mechanical
properties. In this method Ga+ ions are bombarded and implanted to fabricate the
pillars. This process inevitably introduces surface dislocation loops, and precipitates
also instigate surface amorphization. The presence of FIB-induced defects led
several researchers to infer that the fabrication process may play a significant role in
the observed size effects. On the one hand, [28] proposed that increasing strength of
pillars with a decrease in their size would be a consequence of the increased volume
fraction of a FIB-damaged layer with a decreasing pillar diameter. Kiener et al. [29]
investigated Ga+ ion-induced damage with TEM and Monte Carlo simulations,
where a non-negligible influence of the ion damage in the order of 100 MPa
(assuming Taylor hardening) was reported for submicron-sized samples. In order to
understand importance of the fabrication technique on the size effects, [30]
developed a FIB-less method to produce nano-pillars. In this method, arrays of
vertically oriented gold and copper nano-pillars were created based on patterning
polymethylmethacrylate with electron beam lithography and subsequent electro-
plating into the prescribed template. In this technique, pillars were produced
intentionally with non-zero dislocation densities to compare and contrast them with
those produced with the FIB method; otherwise, pillars without dislocations would
render theoretical strengths regardless of size. That study demonstrated that nano-
size pillars created without Ga+ bombardment and containing initial dislocations
with density comparable with that for pillars created with Ga+ bombardment
exhibited an identical size effect with the FIB-produced pillars. The study evidently
suggested that the observed size effect in small-size pillars was a function of
microstructure rather than the fabrication technique.

2.2.2 Body-Centred Cubic Structures

Experimental and computational studies of compression of single-crystal Mo
nano-pillars showed that the deformation mechanism in b.c.c. nano-pillars was
fundamentally different from that of f.c.c. nano-pillars. Brinckmann et al. [31]
reported a comparison of uniaxial compression results for Mo and Au nano-pillars.
That study revealed that size-dependent strengths, stochastic discrete bursts in
stress-strain curves, fractions of attained theoretical strength as well as extents of
strengthening were different. These discrepancies were attributed to profound dif-
ferences in the plasticity mechanisms of f.c.c. and b.c.c. metals as also confirmed by
atomistic simulations [32]. In b.c.c. metals, glide of screw components of a dis-
location loop is not restricted to any particular single plane and can also cross-slip
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on any other favourable crystallographic plane during shearing of the crystal,
whereas the edge components glide on a specific plane. In b.c.c. metals mobility of
screw dislocations is estimated at around one fortieth of the motion of edge dis-
locations. The dislocations in b.c.c. nano-pillars, therefore, are likely to have a
higher residence time inside a pillar rather than leaving it, significantly increasing
the probability of interaction of individual dislocations, their multiplication and
formation of junctions, which, in turn, lead to new dislocation sources. As the
junction size is proportional to the size of the pillar, the junctions are shorter for
small-size b.c.c. pillars. It is therefore harder to break through the gliding mobile
dislocations leading to an increase in strength of the pillar. On the other hand, as the
increase in temperature greatly increases mobility of screw dislocations, the number
of formed junctions is reduced requiring nucleation of new dislocations. The size
effect, therefore, in b.c.c. metals would be expected to become closer to that in f.c.c.
metals at higher temperatures. However, the b.c.c. pillars never become dislocation
starved as in the f.c.c. nano-pillars; instead, a complex networks of short dislocation
segments are formed [32]. This is also consistent with molecular-dynamics (MD)
and dislocations-dynamics (DD) simulations of [33].

Kim and Greer [34] reported size-dependent strengths of (001) oriented Mo
nano-pillars in compression and tension. The observed higher flow stresses were
explained by an increase in yield strength rather than strain-hardening. It was also
reported that the amount of strain-hardening under tension was much lower com-
pared to that under compression demonstrating a tension-compression asymmetry.
This observed asymmetry was attributed to the differences in the Peierls stress, i.e.
lattice resistance to dislocation motion, in twinning and anti-twinning direction. It is
worth mentioning that friction stress or intrinsic lattice resistance, accounting for
the flow-stress indirectly related to dislocation activities, is negligibly small in f.c.c.
metals but it is significant in b.c.c. metals [35]. In [34], TEM images of Mo nano-
pillars with diameter of 100 nm before and after the deformation were analysed.
The results indicated formation of an entangled dislocation substructure and justi-
fied differences in the deformation behaviour of f.c.c. and b.c.c. metals. The effect
of crystal orientation on the tension-compression asymmetry of Mo nano-pillars
was also studied by Kim and Greer [34]. It was shown that compressive flow
stresses were higher in (001) orientation and smaller in (011) orientation compared
to tensile flow-stresses. This study revealed that tension-compression asymmetry
was a function of size of the pillar for sizes less than 800 nm, whereas strength for
larger pillars approached size-independent bulk values.

The influence of applied strain-rate on the size effect in b.c.c. single crystals was
investigated by [36]. Under a constant displacement rate, the imposed strain-rate
varied by around one order of magnitude between the largest and smallest Mo pillar
ranging from 200 to 800 nm. In that study, differences in the yield stress of around
50 % for the smallest and around 20 % for the largest pillars were reported. The
study revealed that the strain rate had an influence on the observed size effects in
nano-size pillars. Kim et al. [36] also studied different b.c.c. metals in addition to
Mo. (011)-oriented single-crystal nano-size pillars of Ta, W, Nb and Mo were
subjected to uniaxial compression and tension. A power-law for size-dependent
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flow-stress of pillars was found together with size-dependency of observed tension-
compression asymmetry. However, the authors did not observe any consistent
correlation between the strain-hardening exponent and the material’s type or size.
That implied that strain-hardening was more likely to be a function of the initial
microstructure rather than the pillar size, whereas the yield and flow-stress funda-
mentally depended on the size of nano-pillar [1].

The deformation mechanism in micron-sized b.c.c. pillars is similar to that in
nano-sized pillars, unlike the different mechanism in f.c.c. nano- and micro-pillars.
Therefore, the mechanisms explained above for b.c.c. single-crystal nano-pillars
can be generalized to micron-size pillars.

In summary, it is justified that in b.c.c. single-crystals a single dislocation can
generate multiple new dislocations. Dislocation segments will further interact and
form Frank-Read sources leading to an increase in dislocation density and requiring
significant levels of flow stress due to inherent characteristic of screw dislocation
gliding at different slip planes. The hardening mechanism of b.c.c. single crystals
via entanglement of dislocation segments is similar to the forest-hardening model in
bulk crystal plasticity [31].

3 Modelling Approaches

3.1 Models Developed for ISE

A classical continuum plasticity theory cannot explain the size dependence of
mechanical response as no length scale enters the constitutive description.
However, strain-gradient plasticity schemes have been successful in characterizing
the size effect in components subjected to inhomogeneous loading states. This
success is related to the inclusion of a microstructural length-scale parameter in the
governing equations for deformation. Gradient approaches typically retain terms in
the constitutive equations of higher- or lower-order gradients with coefficients that
characterize length-scale measures of the deformation microstructure associated
with the non-local continuum [13]. Therefore, classical continuum plasticity theo-
ries including strain gradients represent a collective behaviour of dislocations and
their interactions at the micro-scale. However, there exists a lower limit on the
length scale, below which the continuum plasticity theories are not applicable. In
other words, the continuum plasticity theories are only applicable at scales larger
than spacing between individual dislocations. This is similar to the relation between
the elasticity and lattice theories; where the elasticity theory is applicable to a few
lattice spacing (atomic spacing), below which the lattice theory governs. Gao et al.
[37] identified that the lower limit for applicability of a strain-gradient plasticity
theory was around 100 nm. In other words, only when the characteristic length of
deformation is larger than 100 nm, strain-gradient plasticity theories can be used.
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In gradient-plasticity theories, a constitutive length-scale parameter l is used to
scale the effects of strain gradients and is thought of as an internal material length,
related to storage of GNDs. The strain-gradient effects become important when the
characteristic length associated with deformation becomes comparable to the
intrinsic material length-scale parameter l. In other words, if the representative
length of non-uniform deformation is much larger than l, strain-gradient effects are
negligible, and the strain-gradient theories degenerate to classical plasticity theories
[37]. The study of [38] indicated that indentation experiments might be the most
effective way of measuring the length-scale parameter as a typical tension test
cannot be effectively used to determine the material properties of gradient theories
due to uniform deformation, whereas in indentation significant work-hardening
evolves due to severe and non-uniform plastic deformation and damage concen-
trates in the localized region directly below the indenter.

Nix and Gao [39] modelled the indentation size effect for crystalline materials.
The following characteristic form explaining the depth dependence of hardness was
obtained from this model:

H
H0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h�

h

r
; ð2Þ

where H is hardness for a given indentation depth h, H0 is hardness in the limit of
infinite depth and h* is the characteristic length depending on the indenter shape,
shear modulus and H0. They estimated the material length scale parameter l from
the micro-indentation experiments of [3] to be 12 and 5.84 μm for annealed single-
crystal copper and for cold-worked polycrystalline copper, respectively. Yuan and
Chen [40] proposed that the unique intrinsic material length parameter l could be
computationally determined by fitting the [39] model from micro-indentation
experiments, and they identified l = 6 μm for poly-crystal copper and l = 20 μm for
single-crystal copper using the finite element (FE) method. Begley and Hutchinson
[38] estimated that the material length-scale associated with the stretch gradients
ranged from 1=4 to 1 μm, while the material lengths associated with rotation
gradients were on the order of 4 μm by fitting micro-indentation hardness data.

Strain-gradient plasticity theories can be attributed to two frameworks: higher-
order and lower-order continuum theories. The higher-order theories belong to the
Mindlin’s framework. In this framework, higher-order stresses are involved as a
work conjugate of the strain gradient described with the following equation:

dw ¼ r0ijdeij þ s0ijkdgijk; ð3Þ

where dw is the work increment per unit volume of an incompressible solid due to a
variation of displacement, r0ij is the deviatoric part of the Cauchy stress, deij is the
variation of strain, s0ijk is the deviatoric part of higher-order Cauchy stress and dgijk
is the variation of strain gradient. Here, the order of equilibrium equations is higher
than that of the conventional continuum theories requiring additional boundary
conditions. On the other hand, in the lower-order strain gradient plasticity theory,
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the higher-order stresses are not incorporated in the constitutive equations; hence,
no additional boundary conditions are required. In this type of non-local plasticity
theory, the strain gradient effects come into play through the incremental plastic
modulus.

Huang et al. [41] compared the solutions obtained using higher-order and lower-
order strain gradient theories for a one-dimensional hypothetical problem, where a
bar was fixed at one end and subjected to a constant body force and a uniform stress at
the free end along the main axis of the bar (Fig. 7). The distribution of strain gradient
in the bar using lower-order and higher-order strain gradient theories is shown in
Fig. 7. It is clearly visible that both theories agree very well except the area near the
ends of the bar. As the higher-order stresses become significant at the boundaries,
different strain-gradient distributions are obtained using different frameworks of the
theories.

Various numerical simulation techniques are also used to study the underlying
mechanics in indentation experiments in the small scale. For instance, deformation-
induced lattice rotations below an indent have attracted attention as there exists a
close connection between crystallographic shear, the main mechanism governing
deformation, and the resulting lattice spin.

Some studies have attempted to characterize the observed phenomena, with the use
of different experiments such as non-destructive 3D synchrotron diffraction, 3D
electron backscattered diffraction (EBSD) and transmission electron microscopy
(TEM). A limited number of numerical studies attempted to analyse physical defor-
mation mechanisms leading to lattice rotations. For instance, Wang et al. [42] dem-
onstrated lattice rotations for a single crystal of Cu with different orientations using a
3D crystal-plasticity (CP) FE method. Zaafarani et al. [43] proposed a physically
based CP model based on dislocation-rate formulations to explain likely reasons for
deformation-induced patterns consisting of multiple narrow zones with alternating
crystalline reorientation. However, themodel consistently overestimated the extent of
lattice rotations observed in experiments. Recently, Demiral et al. [44, 45] developed a

Fig. 7 Distribution of strain
gradients in bar predicted by
lower-order (conventional
theory of mechanism-based
strain gradient) and higher-
order (mechanism-based
strain gradient theory)
theories. Reprinted with
permission from [41]
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3D elastic–viscoplastic enhanced modelling of strain-gradient crystal-plasticity
(EMSGCP) (its details are given in Sect. 3.2) FE model for nano-indentation of Ti
alloy to demonstrate the influence of strain gradients on the resulting deformation
patterns. The study demonstrated that the introduction of strain gradients changed the
activity of the slip systems as well as a relative contribution to the overall plastic
slip. The EMSGCP theory predicted that plasticity occurred due to activity ofmultiple
slip systems when compared to that of the CP theory.

3.2 Modelling Size Effect in Pillar Compression Experiment

Numerical modelling and simulations of pillar-compression experiments have been
performed by several research teams. Among these, Zhang et al. [46] presented a
parametric study of design of accurate pillar-compression experiments using 2D
and 3D isotropic plasticity FE modelling. In that study, geometric factors such as
the curvature at the area of pillar’s connection to the substrate, the aspect ratio and
taper of the pillar, misalignment between the indenter tip and the pillar, different
material characteristics and plastic bucking phenomena were analysed extensively.
Schuster et al. [47] followed that work and studied the effect of specimen taper on
compressive strength of metallic glass. On the other hand, Chen et al. [48] focused
on local stress concentration in metallic-glass pillars using an isotropic plasticity
model. Raabe et al. [49] used a CP FE model to investigate the influence of stability
of the initial crystal orientation, aspect ratio and contact conditions between the
indenter tip and the pillar on anisotropy and changes in crystallographic orientation
during the deformation. That study revealed that the evolution of orientation
changes was in part due to a shape change owing to buckling rather than crystal-
lographic orientation solely. Shade et al. [50] performed a combined experimental
and CP FE study to examine lateral constraint effects on compression of single
crystals. It was reported there that the degree of lateral constraint in a compression
test system could influence the behaviour of the material tested.

Recently, Demiral et al. [51] proposed the EMSGCP theory, which accounts for
geometric effects in addition to intrinsic properties in capturing the size effect. In the
following section this theory is briefly explained.

In the EMSGCP theory, the initial strength of a slip systems ðgaT jt¼0Þ, i.e. the
critical resolved shear stress (CRSS), was governed by pre-existing GNDs in the
workpiece together with SSDs, i.e. gaT jt¼0 ¼ gaSjt¼0 þ gaGjt¼0. In this theory, gaSjt¼0
and gaGjt¼0 were linked with initial densities of SSDs ðqSjt¼0Þ and GNDs ðqGjt¼0Þ as
gaSjt¼0 ¼ K

ffiffiffiffiffiffiffiffiffiffiffi
qsjt¼0

p
, gaGjt¼0 ¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qjt¼0 S=V

� �2r
via the constant K, similar to the

Taylor relation. The GND density term was expressed as a function of the nor-
malized surface-to-volume ratio S=V (hence, dimensionless) for the component
under study. In the study, the surface-to-volume ratio of the workpiece materials was
normalized with an idealised workpiece geometry corresponding to S=V ¼ 1 lm�1.
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The evolution of slip resistance during loading was the result of hardening due to
the SSDs ðDgaSÞ and GNDs ðDgaGÞ on the slip system, which followed:

gaT ¼ gaSjt¼0 þ gaGjt¼0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DgaS
� �2 þ DgaG

� �2q
; ð4aÞ

where

a
S ¼

XN
b¼1

habDc
b;DgaG ¼ aTl

ffiffiffiffiffiffiffiffi
bnaG

p
: ð4bÞ

Here, hab, aT, μ, b and naG correspond to the slip-hardening modulus, the Taylor
coefficient, the shear modulus, the Burgers vector and the effective density of
geometrically necessary dislocations, respectively.

The hardening model was used to represent hab, as follows:

haa ¼ h0sech2
h0~c

gaT jsat � gaT jt¼0

����
����; hab ¼ qhaa a 6¼ bð Þ;

~c ¼
X
a

Zt

0

_caj jdt;
ð5Þ

where h0 is the initial hardening parameter, gaT jsat is the saturation stress of the slip
system α, q is the latent hardening ratio, and ~c is the Taylor cumulative shear strain
on all slip systems. The effective GND density naG was given by

naG ¼ ma �
X
b

sabrcb �mb

�����
�����; ð6Þ

where sa is the slip direction, ma is the slip-plane normal, sab ¼ sa � sb and rcb is
the gradient of shear strain in each slip system. To calculate rcb the scheme
proposed in [44] was followed. The model was implemented in the implicit FE code
ABAQUS/Explicit using the user-defined material subroutine (VUMAT).

This model is consistent with the model proposed by Hurtado and Ortiz [52],
where the self-energy of dislocations and the energy of dislocation steps at the
boundary of the solid in the context of surface effects were accounted for in the CP
theory. Horstemeyer et al. [53] performed atomistic simulations of plasticity via the
embedded atom method (EAM) for single-crystal f.c.c. metals. The results of
molecular-dynamics simulations indicated that plastic deformation was intrinsically
inhomogeneous and the yield strength scaled inversely with the volume-to-surface
area ratio, even in the absence of strain gradients. This model also complies with the
EMSGCP theory. Higher-order strain-gradient models for single-crystal micro-
pillars were also developed by Zhang and Aifantis [54] to describe the deformation
behaviour of single-crystal micro-pillars.
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Experimental data in micro-pillar deformation typically show several discrete
slip bursts (Fig. 5), where the stress remains almost constant while the strain jumps
discontinuously to increasing values. Zhang and Shang [55] formulated a contin-
uum model accounting for strain bursts observed in the experiments by considering
the intermittent space and time displaying in displacements of the pillar and con-
structing the microscopic boundary conditions in the hybrid loading mode. Zhang
and Aifantis [54] used strain gradients to capture strain bursts that were experi-
mentally observed in single-crystal Ni micro-pillars under compression. In that
study, plastic deformation was realised through slip zones in a gauge region, where
they were divided into elastic and plastic zones, and a strain burst occurred when
two adjacent zones deformed plastically. The predicted results were in good
agreement with the experimental stress-strain curves. On the other hand, Ng and
Nyan [56] developed a Monte Carlo model, which could predict statistical aspects
of the deformation process, including the stochastic nature of the stress-strain
relation and the power-law distribution of the burst size.

FE implementations of phenomenological models such as dislocation starvation
and dislocation nucleation have been employed to investigate the effect of physics
on micro-pillar deformation. For instance, Greer and Nix [17] proposed a phe-
nomenological model for sub-micron sized pillars, where initially present mobile
dislocations annihilated in the vicinity of a free surface. It was given as

sstarv ¼ 0:5 lb
ffiffiffi
q

p þ 1:4
lb

4pað1� #Þ ln
aa
b

� �
; ð7Þ

where # and α are the Poisson’s ratio and constant of order unity, and where the

instantaneous pillar diameter a ¼ a0ð1� eÞ0:5 and density q ¼ q0 þ ðd�1
aÞ

b
ep
M with a0

and q0 being the pillar diameter and the initial dislocation density, e and ep are the
overall engineering strain and plastic strain, M is the Schmid factor and d is the
breeding coefficient, representing the inverse of the distance a dislocation travels
before replicating itself. This model captured one single strain burst followed by
elastic loading. Following that work, Jérusalem et al. [57] characterized starvation
of pre-existing dislocations and nucleation of new ones independently by two
references with S0,starv being initial starvation CRSS and S0,nucl a reference
nucleation CRSSs for each slip system i as follows:

si0 ¼ Min 1� ep
estarvp

 !
s0;starv þ �p

�starvp
s0;nucl; s0;nucl

 !
; ð8Þ

where

sstarv ¼ 0:5 lb
ffiffiffiffiffi
q0

p þ 1:4
lb

4pa0ð1� #Þ ln
aa0
b

� �
:

In this equation, �starvp is a model parameter corresponding to plastic strain, for
which nucleation dislocation was more favourable than dislocation starvation and at
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which the nucleation CRSS s0;nucl was reached. Here, the CRSS equalled to s0;starv at
initial yielding and then linearly increased as a function of �p as the mobile dis-
locations moved towards the free surface, while nucleation processes became
increasingly more prevalent. Once all mobile dislocations were annihilated, plas-
ticity was fully nucleation-driven.

4 Concluding Remarks

In this chapter we have reviewed some of the critical experimental studies in the
past decades that have helped to quantify and qualify some of the essential features
of deformation in the small scale. The effects of extrinsic and intrinsic parameters
on the overall deformation behaviour of micro- and meso-size components have
paved the way for advanced numerical modelling frameworks, which attempt to
capture the deformation behaviour across length scales for given boundary con-
straints. With an ever-increasing capacity in computational power, numerical
simulations of physically reasonable component sizes under complex loading states
can now be attempted. However, much work is yet to be done, especially with the
regard to developing models, which are computationally efficient and physically
sound.
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Methods of Stochastic Mechanics
for Characterization of Deformation
in Randomly Reinforced Composite
Materials

Mikhail A. Tashkinov

Abstract This chapter reveals certain aspects of theoretical statistical approach to
studying mechanical behavior of randomly reinforced composite materials, partic-
ularly focusing on microstructural characterization and methods of description of
stress and strain fields in components of material. Mechanical properties of
microstructural components are defined with conventional phenomenological
equations and criteria while the effective properties of composite and characteristics
of microscopic deformation fields are computed using the solutions of stochastic
boundary value problems (SBVPs). Microstructural description is based on a
concept of the representative volume elements (RVE) and is implemented with the
correlation functions of the second and higher orders. Statistical moments of
microstructural fields are used as the characteristic of deformation and fracture
processes and analytically connect the microstructural correlation functions with the
SBVP solution. Using the Green’s functions these solutions have been obtained in
elastic and elastoplastic formulations. The numerical calculations for a case study of
porous composites with different microstructural properties were obtained for
various loading conditions. Some milestones of emerging and development of the
described methods are also addressed.

1 Introduction

Composite materials are being increasingly used in modern technologies and
industry. Their main advantage is in ability to create a material with unique physical
and mechanical characteristics, most appropriate for every application. The key
tasks in designing of new composites are the choice of components, definition of
the parameters of internal microstructure of material as well as prediction of its
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deformation and fracture under operational loading conditions and environmental
effects. Significant costs and efforts required for the experimental investigation of
the properties can be saved by development of multi-scale mathematical models
taking into account the microstructural features and allowing not only to calculate
the effective characteristics of the composites, but also to predict response of each
phase of the material during deformation.

One of the main features of the composites is randomness of the geometrical and
physical parameters of their internal microstructure. Recent research in computa-
tional and experimental mechanics have shown that such parameters as volume
fraction of the phases, orientation, shape, size and spatial distribution of inclusions
play an important role in behavior of multicomponent materials (the results of these
studies are reviewed in the works of Torquato [1], Buryachenko [2], Kaminski [3],
Kanoute [4], Silberschmidt [5] and others). Thus, an urgent question in mechanics
of composites is creation of non-linear multi-scale models that can take into account
the peculiarities of the non-periodic random heterogeneous microstructure and can
be used for developing recommendations for the optimal design of composite
structures as well as for their reliability assessing.

Multi-scale hierarchy of heterogeneous materials is typically investigated using
the representative volume element (RVE) concept when parameters of larger scale
models are measured or calculated on a smaller scale [6–8]. However, application
of traditional methods (e.g. finite elements analysis) for determination of micro-
scale stress and strain fields may be challenging when reinforcement particles are
distributed randomly inside the RVE, as each time the result depends on position of
the inhomogeneities. The alternative methodology for investigation of the non-
periodic randomly reinforced composites is based on statistical methods and the
theory of random functions. It implies that mechanical properties of microstructural
components are defined with conventional phenomenological equations and criteria
while the effective properties of composite and characteristics of microscopic
deformation fields are computed using the solutions of stochastic boundary value
problems (SBVPs) with piecewise constant coefficients equations; the multipoint
statistical moments of the stochastic stress and strain fields are used as the char-
acteristics of the deformation processes in the components of the material.

The SBVPs can be formulated in realizations of the random structure [9] and in
the correlation functions [10–13], when averaging over the number of realizations is
replaced by volume averaging. The solution of the BVP in the latter formulation
can be reduced to the integral-differential equation containing the Green’s function
[13]. The equation can be solved with various methods, each of which is based on a
particular simplifying assumption regarding the statistical properties of the com-
posite’s material characteristics fields, which allows to enclose an infinite chain of
stochastic equations formed by consecutive statistical averaging of local constitu-
tive relations for the phases of inhomogeneous media [14].

According to the stochastic approach, the indicator function kCð~rÞ is used in
physical and phenomenological equations to define the properties of each phase of a
multicomponent material on a microscopic scale [2, 10, 14]. Value of this function
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depends on position of the radius-vector~r inside the RVE. Thus kCð~rÞ ¼ 1 if the
radius-vector indicates phase C, and kCð~rÞ ¼ 0 if it is in any different phase.

Micro-scale fields of the structural parameters of a deformation process are
presented in the form of statistically homogeneous coordinate functions, so that
they take into account randomness of the relative position of elements in the
structure as well as statistical dispersion of the components’ properties. These
functions depend on the radius-vector and can be developed as a sum of a mean and
a fluctuation:

rij ~rð Þ ¼ rij ~rð Þ� �þ r0ij ~rð Þ ð1Þ

eij ~rð Þ ¼ eij ~rð Þ� �þ e0ij ~rð Þ ð2Þ

umð~rÞ ¼ umð~rÞh i þ u0mð~rÞ; ð3Þ

Cijkl ~rð Þ ¼ Cijkl ~rð Þ� �þ C0
ijkl ~rð Þ; ð4Þ

kCð~rÞ ¼ kCð~rÞh i þ k0Cð~rÞ ð5Þ

where angle brackets hi denote a volume average, Eq. (1) is a stress field, Eq. (2) is
a strain field, Eq. (3) is a field of displacements, Eq. (4) is a field of structural
elasticity modulus, Eq. (5) is the indicator function. Such representation of the fields
allows taking into account randomness of the structural elements as well as the
statistical dispersion of the components properties. It is usually supposed that
random function kCð~rÞ is ergodic. It means that averaging by realizations is equal to
the averaging by volume and kCð~rÞh i ¼ kCð~r1Þh i for every~r and~r1.

As the characteristics of deformation processes the multipoint statistical
moments of stochastic stress and strain fields in the microstructural components of
composite can be introduced. The first order moments (or mean values) are usually
suitable only for prediction of the effective elastic properties. The higher order
moments are used in elastic and elastoplastic models for the fracture processes
studying [10, 12, 13].

The major contribution to development of stochastic approach for composites
was made by the representatives of the Russian and other post-Soviet countries’
schools of mechanics, however, some of them were not acknowledge properly. The
short review of these works is presented below.

The study of behavior of composites with random structures in the framework of
the statistical methodology was established by works of Lifshitz and Rosenzweig
[15, 16], which were devoted to SBVPs of elasticity theory for polycrystalline
media. Subsequently, this approach was developed by Bolotin [17], Lomakin and
Sheinin [18], Shermergor [13], Volkov and Stavrov [10], Stavrov et al. [19], Vanin
[9], as well as Beran [14], Sokolkin and Tashkinov [12], Maslov [20] and others.
Depending on the SBVP solution, the following statistical methods can be distin-
guished: a method based on the hypothesis of strong isotropy; method of condi-
tional moments; method of periodic components; local approximation method;
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method based on the hypothesis of limiting locality of the correlation functions;
singular and generalized singular approximation; correlation and full correlation
approximation.

If composite components are isotropic and distributed inside the RVE in such a
way that it can be macroscopically considered an isotropic medium, the strong
isotropy hypothesis can be used [18]. It assumes that for calculation of two-point
moments of deformation fields, the components that depend on a choice of direction
between the two considered points of can be neglected. This means that macro-
scopic properties of the composite do not depend on the multipoint correlation
functions of the structural elastic moduli. In various interpretations this approach
was implemented by Bolotin and Moskalenko [17], Savin and Khoroshun [21],
Stavrov and Volkov [10].

Method of conditional moments [22] is based on an assumption that the fluc-
tuations of random fields within a component are quite small. This allows perform
the integration and reduce the problem to a system of linear algebraic equations for
the one-point conditional moments. Such modified problem is solved in two-point
approximation using the statistical information and a number of simplifying
hypotheses concerning the nature of the distribution of inclusions in the matrix
volume.

For a wide class of stochastic heterogeneous media models deterministic periodic
structure can be regarded as a realization of a random structure. The method of
periodic components [12] suggests the decomposition of random fields into deter-
ministic and random parts. The deterministic components in this case correspond to
the periodic structure. This decomposition allows taking into account such param-
eters as fractional content, connectivity and geometric shape of components that are
common both to the random and periodic structures. The mutual arrangement of the
elements is taken into account in the solution of the SBVP for the random media.

Local approximation method [12] is based on the features of short-range inter-
actions of inclusions in matrix composites, according to which the problem of
deformation of the composite is reduced to the simpler problem of deformation of
an unbounded domain with an ensemble of a small number of inclusions. Feature of
local interactions is not related to the specific nature of the mutual arrangement of
the inclusions as well as to their shape, so the method has been applied for the
composites with random structures [23]. The hypothesis of limiting locality of
correlation functions [24] allows obtaining a single-point approximation of SBVPs
and avoiding computation of the integrals over the field of statistical dependence of
the correlation functions.

Many stochastic methods are based on the assumption of statistical indepen-
dence of random fields of physical and mechanical properties of composites, which
means that each geometric point is identified with a grain of heterogeneity, the
fluctuations of properties in the neighboring grains are not correlated, and, thus only
the one-point statistical characteristics of a random structure are taken into account.
For the composite with deterministic properties of the structural elements all
one-point structural statistical characteristics are determined by relative volume
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concentration of elements in the assumption of homogeneity and ergodicity of the
random fields [10, 13].

In the singular approximation [13], the integral stress equilibrium equations,
which contain second derivatives of the Green function for a homogeneous
unbounded medium, retain only the singular component of these derivatives. In the
correlation approximation the equations also contain the formal component.
However, only pair interactions are considered, so the correlation functions of a
higher order than binary are discarded. In general, the correlation theory can be
applied when the standard deviations of the structural elastic moduli are quite small
in relation to their mathematical expectation [13]. Correlation approximation was
developed by Shermergor [13], Volkov [10], Sokolkin and Tashkinov [12, 24],
Pankov [25] and others. Beran [14] and Kroner [26, 27] attempted to consider
moments and correlation functions up to third order. Stochastic methods in corre-
lation approximation, for example those that are described in the monographs [10]
and [13], lead to good results for a small difference in the elastic modulus of the
composite or for a weak anisotropy of the polycrystal grains.

The full correlation approximation assumes that all the terms, obtained in
solution of the SBVP in the first approximation, are being taken into account,
including those containing correlation functions of order higher than the second.
The statistical characteristics in the full correlation approximation and second
approximation of the solution of the SBVP were calculated by Volkova and So-
kolkin [28] and Tashkinov [29–31]. Convergence of the method of successive
approximations of the BVP was studied by Volkov [32].

Despite the large number of existing stochastic approaches for the composite
materials study, sometimes there are significant differences can be observed in the
results obtained by various methods. This is due to the statistical nonlinearity of the
problem and approximate solutions which at a different extent correspond to
physical models of composites and, in particular, to their microstructure. Thus, in
the statistical mechanics of composites the questions of precise description and
formalization of heterogeneous microstructure as well as interactions of its com-
ponents are still open. Hence there is a need to obtain a more accurate approxi-
mation of the solution that can be obtained by taking into account the structural
correlation functions of higher order.

This work is related to development of stochastic models of nonlinear mechanics
of composites with random structure on the basis of higher-order approximations of
SBVPs solutions.

2 Statistical Description of Micro-scale Stress and Strain

2.1 Conditional and Unconditional Statistical Moments

The stochastic methodology will be illustrated on the example of obtaining of the
first two moments of microstructural fields for two-component matrix composites.
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In case of two-component material both phases can be described by the only
indicator function kð~rÞ:

kIð~rÞ ¼ kð~rÞ; kIh i ¼ kh i ¼ p; k0I ~rð Þ ¼ k0 ~rð Þ
kIIð~rÞ ¼ 1� kð~rÞ; kIIh i ¼ 1� kh i ¼ 1� p; k0II ~rð Þ ¼ �k0 ~rð Þ;

where p ¼ kð~rÞh i is the inclusions volume concentration.
Statistical information about the geometry of the structure is formalized by in the

multipoint correlation functions, which can be obtained from experiments or from
modelling [2, 22, 24, 33]. The required moments of stress and strain fields are
determined from the solution of boundary value problems.

The formulas for mean values and second order moments (dispersions) in matrix
M and inclusions I in general form were obtained in [10] and [24] and are expressed
through the fluctuations of the stochastic fields (1)–(5):

eij
� �

I¼ eij þ 1
p

k0 ~rð Þe0ij ~rð Þ
D E

ð6Þ

eij
� �

M¼ eij � 1
1� p

k0 ~rð Þe0ij ~rð Þ
D E

ð7Þ

e0ijð~rÞe0abð~rÞ
D E

I
¼ e0ijð~rÞe0abð~rÞ
D E

þ eijeab � eij
� �

I eab
� �

I

þ 1
p

k0ð~rÞe0ijð~rÞe0abð~rÞ
D E

þ eij k0ð~rÞe0abð~rÞ
D E

þ eab k0ð~rÞe0ijð~rÞ
D E� �

ð8Þ

e0ijð~rÞe0abð~rÞ
D E

M
¼ e0ijð~rÞe0abð~rÞ
D E

þ eijeab � eij
� �

M eab
� �

M

� 1
1� p

k0ð~rÞe0ijð~rÞe0abð~rÞ
D E

þ eij k0ð~rÞe0abð~rÞ
D E

þ eab k0ð~rÞe0ijð~rÞ
D E� �

;

ð9Þ

rij
� �

I¼ rij
� �þ 1

p
k0 ~rð Þr0ij ~rð Þ
D E

ð10Þ

rij
� �

M¼ rij
� �� 1

1� p
k0 ~rð Þr0ij ~rð Þ
D E

ð11Þ

r0ijð~rÞr0abð~rÞ
D E

I
¼ r0ijð~rÞr0abð~rÞ
D E

þ rij
� �

rab
� �� rij

� �
I rab
� �

I

þ 1
p

k0ð~rÞr0ijð~rÞr0abð~rÞ
D E

þ rij
� �

k0ð~rÞr0abð~rÞ
D E

þ rab
� �

k0ð~rÞr0ijð~rÞ
D E� �

ð12Þ
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r0ijð~rÞr0abð~rÞ
D E

M
¼ r0ijð~rÞr0abð~rÞ
D E

þ rij
� �

rab
� �� rij

� �
M rab
� �

M

� 1
1� p

k0ð~rÞr0ijð~rÞr0abð~rÞ
D E

þ rij
� �

k0ð~rÞr0abð~rÞ
D E

þ rab
� �

k0ð~rÞr0ijð~rÞ
D E� �

ð13Þ

where p is inclusions’ volume fraction, eij is constant tensor of small deformation
defining the boundary conditions on the surface of a RVE:

ui ~rð Þj~r2CV
¼ eijrj: ð14Þ

The principal difference between conditional and unconditional moments is

that unconditional moments r0ij ~rð Þr0ab ~rð Þ
D E

; e0ij ~rð Þe0ab ~rð Þ
D E

characterize RVE as

homogenous, while conditional moments eijð~rÞ
� �

C; rijð~rÞ
� �

C; r0ij ~rð Þr0ab ~rð Þ
D E

C
;

e0ij ~rð Þe0ab ~rð Þ
D E

C
are characteristics of fields in phases, where C denotes a specific

constituent.

2.2 Method of Successive Approximations for the SBVP

The stochastic boundary volume problem statement for the RVE with boundary
conditions in displacements can be defined as follows:

rij;jð~rÞ ¼ 0; ð15Þ

eijð~rÞ ¼ 1
2

ui;j ~rð Þ þ uj;i ~rð Þ� �
; ð16Þ

rij ~rð Þ ¼ Cijkl ~rð Þeklð~rÞ; ð17Þ

ui ~rð Þj~r2CV
¼ eijrj; ð18Þ

where Eq. (15) is stress equilibrium equation, ; j stands for the derivative @
�
@xj,

Eq. (16) is Cauchy relations, Eq. (17) is state equation, Cijkl ~rð Þ is tensor of structural
elasticity modulus. The boundary conditions (18) on the RVE surface are set in
displacements and provide uniformity of the macroscopic deformation, ~r is
radius-vector with components ðx1; x2; x3Þ, rj are coordinates of points on the RVE
surface CV .

The ideal adhesion type of interface between two phases of the material will be
considered. In mathematical terms:
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uðMÞ
i ~rð Þ ~r2CVM

¼ uðIÞi ~r2CVI

			 ~rð Þ
			 ;

where CVM is the inner surface of the matrix, CVI is the outer surface of an inclusion.
The problem is solved in fluctuations of displacements field u0ið~rÞ. The equation

system (15)–(18) can be transformed to the following differential equation:

Cijklð~rÞ 12 uk;lð~rÞ þ ul;kð~rÞ
� �
 �

;j ¼ 0:

From the symmetry of the tensor of elasticity modulus Cijklð~rÞ ¼ Cijlkð~rÞ
follows:

Cijklð~rÞuk;lð~rÞ
� �

;j ¼ 0: ð19Þ

Taking into account decompositions (3) and (4), Eq. (19) is represented as:

Cijkl
� �þ C0

ijklð~rÞ
� �

ukð~rÞh i;l þ u0k;lð~rÞ
� �h i

;j ¼ 0; ð20Þ

Since the mean value of displacements ukð~rÞh i is defined from the boundary
conditions (18), the Eq. (20) can be solved regarding fluctuations of displacements
u0kð~rÞ. Taking into account ekl ¼ 1=2 ukð~rÞh i;l þ ulð~rÞh i;kð Þ

Cijkl
� �

u0k;lð~rÞ
� �

;j ¼ � C0
ijklð~rÞekl þ C0

ijklð~rÞu0k;lð~rÞ
h i

;j ð21Þ

The right part of this equation can be denoted as the tensor Pij;jð~rÞ:
Cijkl
� �

u0k;ljð~rÞ ¼ �Pij;jð~rÞ: ð22Þ
Equation (22) can be formally considered as a boundary value problem with

modulus of elasticity tensor Cijmnð~rÞ
� �

, displacements u0ið~rÞ and body forces Pij;jð~rÞ.
If the RVE sizes are considerably larger than structural elements sizes, this heter-
ogeneous differential equation can be solved with Green’s function method [2, 12,
13, 15, 24]. If the tensor Cijkl

� �
is a constant, the Green’s function Gkn ~r;~r1ð Þ and its

derivatives is equal zero for the infinite arguments. The Green’s function also
satisfies the following differential equation:

Cijkl
� �

Gkn;jlð~r;~r1Þ ¼ �dindð~r �~r1Þ; ð23Þ

where dð~r �~r1Þ is the delta-function, din is the Kronecker delta.
The solution of the SBVP for the indeterminate field of displacements’ fluctu-

ations takes a form of the integral-differential equation containing the Green’s
function:

u0ið~rÞ ¼
Z
V1

Gij ~r;~r1ð Þ @Pjnð~r1Þ
@x1n

dV1: ð24Þ
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Equation (24) contains the displacements u0ið~rÞ both in its left and right parts, so the
equation has the recurrent form:

@u0ðvÞi ð~rÞ
@xj

¼
Z
V1

@Gim ~r;~r1ð Þ
@xj

C0
mnkl ~r1ð Þekl þ C0

mnkl ~r1ð Þ @u
0ðv�1Þ
k ~r1ð Þ
@xl

" #
;1n dV1 ð25Þ

where v is approximation order. Selection of the appropriate form of the Green’s
function depends on the type of the considered heterogeneous media. There is a

specific Green function for an isotropic tensor Cijmn ~rð Þ
D E

. Thus, if RVE dimensions

are much smaller than the solid body, the Kelvin-Somigliana tensor is used as the
Green’s function [9]:

Gmk ~r;~r1ð Þ ¼ A
dmk

~r �~r1j j þ B
ðrm � r1mÞðrk � r1kÞ

~r �~r1j j3 ; ð26Þ

In the first approximation fluctuations of displacements in the right part of
Eq. (25) are being neglected:

u0ð1Þi;j ð~rÞ ¼ ekl

Z
V1

Gim;j ~r;~r1ð Þ C0
mnklð~r1Þ

� �
;1n dV1: ð27Þ

The solution in this form with some assumptions is used in correlation and sin-
gular approximation methods [13, 24, 28, 29]. In the second approximation, result
obtained from the first approximation is substituted into the right part of the equation.

u0ð2Þi;j ð~rÞ ¼ ekl

Z
V1

Gim;j ~r;~r1ð Þ C0
mnkl ~r1ð Þ� �

;1n dV1

þ eoq

Z
V1

Z
V11

Gim;j ~r;~r1ð Þ C0
mnkl ~r1ð ÞGkf ;l ~r1;~r11ð Þ C0

fsoqð~r11Þ
� �

;11s

h i
;1n dV11dV1:

ð28Þ

In further numerical examples in this work the solution in the second approxi-
mation (28) will be used. The solution of the SBVP is applied to form the equations
for the moments of stress and strain fields as a superposition of multidimensional
integrals.

2.3 SBVP Solution in Elastic Case

For elastic two-component materials the field of structural elasticity modulus can be
expressed with the indicator function:

Methods of Stochastic Mechanics for Characterization … 51



Cijkl ~rð Þ ¼ kð~rÞCI
ijkl þ ð1� kð~rÞÞCM

ijkl; ð29Þ

where CðIÞ
ijkl и CðMÞ

ijkl are tensors of elasticity modulus of matrix and inclusions, which
in isotropic case can be represented as:

CðIÞ
ijkl ¼ kIdijdkl þ lI dikdjl þ dildjk

� �
; CðMÞ

ijkl ¼ kMdijdkl þ lM dikdjl þ dildjk
� �

;

where kI ; kM ; lI ; lM are Lame constants of inclusions and matrix which are defined
as kI ¼ EImI

ð1þmI Þð1�2mIÞ, lI ¼
EI

2ð1þmIÞ, EI is coefficient of elasticity of inclusion, vI is

Poisson’s ratio. Similarly for kM and lM .
Averaging Eq. (29) gives a constant isotropic tensor:

Cijkl ~rð Þ
D E

¼ Cijkl

D E
¼ pCI

ijkl þ ð1� pÞCM
ijkl; ð30Þ

where p ¼ kð~rÞh i is the inclusions volume concentration.
By combining Eqs. (5), (29) and (30), the fluctuation C0

ijkl ~rð Þ can be linked with
fluctuation of the indicator function:

C0
ijkl ~rð Þ ¼ k0ð~rÞðCI

ijkl � CM
ijklÞ; ð31Þ

The SBVP solution in the second approximation (28) then can be brought to the
integral over the first derivatives of the Green’s function and indicator function
fluctuation:

u0ð2Þi;j ð~rÞ ¼ ekl�Cmnkl

Z
V1

Gim;j ~r;~r1ð Þ k0 ~r1ð Þð Þ;n dV1

þ eoq �Cmnkl�Cfsoq

Z
V1

Z
V11

Gim;j ~r;~r1ð Þ k0 ~r1ð ÞGkf ;l ~r1;~r11ð Þ k0ð~r11Þð Þ;11s
� 

;1n dV11dV1;

ð32Þ

where �Cmnkl ¼ CI
mnkl � CM

mnkl.
The coefficients A and B of the Green’s function (26) are connected with Lame

constants of the components:

A ¼ kh i þ 3lh i
8p lh i kþ 2lh i ; B ¼ kh i þ lh i

8p lh i kþ 2lh i ;

where kh i ¼ kIpþ kMð1� pÞ; lh i ¼ lIpþ lMð1� pÞ.
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2.4 SBVP Solution in Elastoplastic Case

In the elastoplastic case the field of structural elasticity modulus has the following
representation [31]:

Cijkl ~r; eð Þ ¼ 3Kð~r; jð1Þe ; jð2Þe ÞVijkl þ 2lð~r; jð1Þe ; jð2Þe ÞDijkl; ð33Þ

where K ~r; jð1Þe ; jð2Þe

� �
¼ kð~rÞKIðjð1Þe ; jð2Þe Þ þ ð1� kð~rÞÞKMðjð1Þe ; jð2Þe Þ is the nonlinear

bulk modulus, l ~r; jð1Þe ; jð2Þe

� �
¼ kð~rÞlIðjð1Þe ; jð2Þe Þ þ ð1� kð~rÞÞlMðjð1Þe ; jð2Þe Þ is the

shear modulus. Both of them are material functions of the invariants j 1ð Þ
e ; j 2ð Þ

e of
microstrain tensor. Vijkl and Dijkl are volumetric and deviator parts of the identity
tensor Iijkl ¼ Vijkl þ Dijkl.

The invariants of stress and strain tensors are functions of deviator parts of the
tensors:

jð2Þr ¼
ffiffiffiffiffiffiffiffiffiffi
r^ijr

^

ij

q
; jð2Þe ¼

ffiffiffiffiffiffiffiffiffi
e
^

ije
^

ij

q
; jð1Þr ¼ rijdij; j

ð1Þ
e ¼ eijdij:

where dij is the Kronecker delta, e^ij ¼ eij � 1=3ekkdij; r
^

ij ¼ rij � 1=3rkkdij.
The deviator parts can be decomposed into the mean and the fluctuation. For the

strain tensor: e^ij ¼ e
^

ij

D E
þ e

^0
ij. The mean values of the invariants of tensors will be

further used:

jð2Þe

D E
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
^

ije
^

ij

D Er
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
^

ij

D E
e
^

ij

D E
þ e

^0
ije
^0
ij

D Er
; ð34Þ

jð1Þe

D E
¼ eij
� �

dij ¼ eiih i: ð35Þ

The fluctuations e
^0
ije
^0
ij

D E
in Eq. (34) can be considered negligible. Then the mean

values of shear and bulk modulus for the matrix and inclusions are in general
expressed as follows:

lI;M ~r; jð1Þe ; jð2Þe

� �
¼ lI;M eiih iI;M ;KI;M

� �
; ð36Þ

KI;M ~r; jð1Þe ; jð2Þe

� �
¼ KI;M eiih iI;M ;KI;M

� �
; ð37Þ

where KI;M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
^

ij

D E
I;M

e
^

ij

D E
I;M

r
.

The second approximation of the solution (25) in elastoplastic case looks as
follows:
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u0ð2Þi;j ð~rÞ ¼ ekl

Z
V1

Gim;j ~r;~r1ð Þ C0
mnklk

0 ~r1ð Þ� �
;n dV1

þ eoq

Z
V1

Z
V11

Gim;j ~r;~r1ð Þ C0
mnklk

0 ~r1ð ÞGkf ;l ~r1;~r11ð Þ C0
fsoqk

0ð~r11Þ
� �

;11s

h i
;1n dV11dV1;

ð38Þ

where C0
mnklð~rÞ ¼ CI

mnklð ekkh iI ;KIÞ � CM
mnklð ekkh iM ;KMÞ

� �
k0ð~rÞ:

The coefficients A and B in of the Green’s function (26) depend on nonlinear
shear and bulk moduli:

A ¼
3K ~r; jð1Þe ; jð2Þe

� �
� 7l ~r; jð1Þe ; jð2Þe

� �h iD E
24p l ~r; jð1Þe ; jð2Þe

� �D E
3K ~r; jð1Þe ; jð2Þe

� �
� 4l ~r; jð1Þe ; jð2Þe

� �h iD E ;

B ¼
3K ~r; jð1Þe ; jð2Þe

� �
� l ~r; jð1Þe ; jð2Þe

� �h iD E
24p l ~r; jð1Þe ; jð2Þe

� �D E
3K ~r; jð1Þe ; jð2Þe

� �
� 4l ~r; jð1Þe ; jð2Þe

� �h iD E ;

where K ~r; jð1Þe ; jð2Þe

� �D E
¼ p KIðjð1Þe ; jð2Þe Þ
D E

þ ð1� pÞ KMðjð1Þe ; jð2Þe Þ
D E

, l ~r; jð1Þe ; jð2Þe

� �D E
¼

p lIðjð1Þe ; jð2Þe Þ
D E

þ ð1� pÞ lMðjð1Þe ; jð2Þe Þ
D E

.

2.5 Analytical Expressions for the Statistical Characteristics

For both elastic and elastoplastic cases, the solutions of the SBVP are used for
defining the analytical expressions for the moments of stress and strain fields.
Random fields of strain and stress fluctuations depend on fluctuation of displace-
ments u0i;jð~rÞ:

e0ijð~rÞ ¼
1
2

u0i;jð~rÞ þ u0j;ið~rÞ
� �

; ð39Þ

The moments e0ijð~rÞe0abð~rÞ
D E

, k0ð~rÞe0ijð~rÞ
D E

and k0ð~rÞe0ijð~rÞe0abð~rÞ
D E

, which are

part of Eq. (6)–(9), can be analytically constructed using the SBVP solution in
fluctuations of displacements u0mð~rÞ and multipoint correlation functions of indi-
cator function fluctuation k0ð~rÞ.

Thus, using the solution in the first approximation:
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k0ð~rÞe0ijð~rÞe0abð~rÞ
D Eð1Þ

¼ 1
4
ekle/h�Cmnkl �Ccg/h

Z
V1

Z
V2

Gim;jð~r;~r1Þ þ Gjm;ið~r;~r1Þ
� �

Gac;bð~r;~r2Þ þ Gbc;að~r;~r2Þ
� �

� @3Kð3Þ
k ð~r;~r1;~r2Þ
@x1n@x2g

dV2dV1;

ð40Þ

k0ð~rÞe0ijð~rÞ
D Eð1Þ

¼ 1
2
ekl �Cmnkl

Z
V1

Gim;j ~r;~r1ð Þ þ Gjm;i ~r;~r1ð Þ� � @Kð2Þ
k ð~r;~r1Þ
@x1n

dV1 ð41Þ

k0ð~rÞe0ijð~rÞe0abð~rÞ
D Eð1Þ

¼ 1
4
ekle/h�Cmnkl �Ccg/h

Z
V1

Z
V2

Gim;jð~r;~r1Þ þ Gjm;ið~r;~r1Þ
� �

Gac;bð~r;~r2Þ þ Gbc;að~r;~r2Þ
� �

� @3Kð3Þ
k ð~r;~r1;~r2Þ
@x1n@x2g

dV2dV1;

ð42Þ

where KðnÞ
k ð~r;~r1; . . .;~rnÞ are multipoint correlation functions.

With the second approximation of SBVP solution the other expressions has been
obtained:

MðeÞð2Þ
ijab ¼ e0ijð~rÞe0abð~rÞ

D Eð2Þ

¼ 1
4
�Cmnkl �Ccg/h ekle/h

Z
V1

Z
V2

Gim;jð~r;~r1Þ þ Gjm;ið~r;~r1Þ
� �

Gac;bð~r;~r2Þ þ Gbc;að~r;~r2Þ
� �0

@

� @2Kð2Þ
k ð~r1;~r2Þ

@x1n@x2g
dV2dV1

þ eklebd �Cvwbd

Z
V1

Z
V2

Z
V21

Gim;jð~r;~r1Þ þ Gjm;ið~r;~r1Þ
� �

Gac;bð~r;~r2Þ þ Gbc;að~r;~r2Þ
� �

� G/v;h ~r2;~r21ð Þ @
3Kð3Þ

k ð~r1;~r2;~r21Þ
@x1n@x2g@x21w

dV21dV2dV1

þ e/heoq�Cfsoq

Z
V1

Z
V2

Z
V11

Gim;jð~r;~r1Þ þ Gjm;ið~r;~r1Þ
� �

Gac;bð~r;~r2Þ þ Gbc;að~r;~r2Þ
� �

� Gkf ;l ~r1;~r11ð Þ @
3Kð3Þ

k ð~r1;~r2;~r11Þ
@x1n@x2g@x11s

dV11dV2dV1

þ eoqebd �Cfsoq�Cvwbd

Z
V1

Z
V2

Z
V11

Z
V21

Gim;jð~r;~r1Þ þ Gjm;ið~r;~r1Þ
� �

Gac;bð~r;~r2Þ þ Gbc;að~r;~r2Þ
� �

�Gkf ;l ~r1;~r11ð ÞG/v;h ~r2;~r21ð Þ @
4Kð4Þ

k ð~r1;~r2;~r11;~r21Þ
@x1n@x2g@x11s@x21w

dV21dV11dV2dV1

!
;

ð43Þ

Methods of Stochastic Mechanics for Characterization … 55



k0ð~rÞe0ijð~rÞ
D Eð2Þ

¼ 1
2

ekl �Cmnkl

Z
V1

Gim;j ~r;~r1ð Þ þ Gjm;i ~r;~r1ð Þ� � @Kð2Þ
k ð~r;~r1Þ
@x1n

dV1

0
@

þ eoq �Cfsoq �Cmnkl

Z
V1

Z
V11

Gim;j ~r;~r1ð Þ þ Gjm;i ~r;~r1ð Þ� �
Gkf ;l ~r1;~r11ð Þ

� @2Kð3Þ
k ð~r;~r1;~r11Þ
@x1n@x11s

dV11dV1

!
;

ð44Þ

k0ð~rÞe0ijð~rÞe0abð~rÞ
D Eð2Þ

¼ 1
4
�Cmnkl�Ccg/h ekle/h

Z
V1

Z
V2

Gim;jð~r;~r1Þ þ Gjm;ið~r;~r1Þ
� �

Gac;bð~r;~r2Þ þ Gbc;að~r;~r2Þ
� �0

@

� @2Kð3Þ
k ð~r;~r1;~r2Þ
@x1n@x2g

dV2dV1

þ eklebd �Cvwbd

Z
V1

Z
V2

Z
V21

Gim;jð~r;~r1Þ þ Gjm;ið~r;~r1Þ
� �

Gac;bð~r;~r2Þ þ Gbc;að~r;~r2Þ
� �

G/v;h ~r2;~r21ð Þ

� @3Kð4Þ
k ð~r;~r1;~r2;~r21Þ

@x1n@x2g@x21w
dV21dV2dV1

þ e/heoq�Cfsoq

Z
V1

Z
V2

Z
V11

Gim;jð~r;~r1Þ þ Gjm;ið~r;~r1Þ
� �

Gac;bð~r;~r2Þ þ Gbc;að~r;~r2Þ
� �

Gkf ;l ~r1;~r11ð Þ

� @3Kð4Þ
k ð~r;~r1;~r2;~r11Þ
@x1n@x2g@x11s

dV11dV2dV1

þ eoqebd �Cfsoq �Cvwbd

Z
V1

Z
V2

Z
V11

Z
V21

Gim;jð~r;~r1Þ þ Gjm;ið~r;~r1Þ
� �

Gac;bð~r;~r2Þ þ Gbc;að~r;~r2Þ
� �

�Gkf ;l ~r1;~r11ð ÞG/v;h ~r2;~r21ð Þ @
4Kð5Þ

k ð~r;~r1;~r2;~r11;~r21Þ
@x1n@x2g@x11s@x21w

dV21dV11dV2dV1

!
;

ð45Þ

where �Cmnkl ¼ CI
mnkl � CM

mnkl in elastic case, �Cmnkl ¼ CI
mnklð ekkh iI ;KIÞ � CM

mnkl

�
ð ekkh iM ;KMÞÞ in elastoplastic case, KðnÞ

k ~r;~r1;~r2; . . .ð Þ ¼ k0ð~rÞk0ð~r1Þ. . .k0ð~rnÞh i are
normalized structural correlation functions of order n.

To determine the statistical moments in elastoplastic case it is necessary to
establish relation between microstructural strain characteristics in the phases eij

� �
I;M

and macroscopic strain tensor eij. The Eqs. (6) and (7) contain mean values of
microstructural strain both in their left and right parts, so the iteration procedure can
be organized to determine macroscopic strain:

eij
� �ðnÞ

M ¼ eij � 1
1� p

k0ð~rÞe0ijð~rÞ
D Eðn�1Þ

; eij
� �ðnÞ

I ¼ eij þ 1
p

k0ð~rÞe0ijð~rÞ
D Eðn�1Þ

;
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where

k0ð~rÞe0ijð~rÞ
D E

¼ 1
2

ekl �Cmnkl

Z
V1

Gim;j ~r;~r1ð Þ þ Gjm;i ~r;~r1ð Þ� � @Kð2Þ
k ð~r;~r1Þ
@x1n

dV1

0
@

þ eoq�Cfsoq �Cmnkl

Z
V1

Z
V11

Gim;j ~r;~r1ð Þ þ Gjm;i ~r;~r1ð Þ� �

� Gkf ;l ~r1;~r11ð Þ@
2Kð3Þ

k ð~r;~r1;~r11Þ
@x1n@x11s

dV11dV1

!
;

At the first iteration the random values for components of tensor are chosen. The

procedure stops when eij
� �ðnÞ

I;M � eij
� �ðn�1Þ

I;M

			 			\10�9. The values of eij
� �

I;M and eij

obtained after this procedure are used for further calculations of mean values and
dispersions of microstructural stress.

The mixed moments k0ð~rÞr0ijð~rÞ
D E

and k0ð~rÞr0ijð~rÞr0abð~rÞ
D E

that forms the sta-

tistical characteristics for the stress field in components (10)–(13) are expressed
with the same moments of stress fields (40)–(45) using the formula:

r0ijð~rÞ ¼ rijð~rÞ � rij
� � ¼ C0

ijklð~rÞekl � C0
ijklð~rÞe0klð~rÞ

D E
þ Cijklð~rÞe0klð~rÞ: ð46Þ

Thus, the conditional moments of strain and stress fields are determined from the

mixed moments e0ijð~rÞe0abð~rÞ
D E

; k0ð~rÞe0ijð~rÞ
D E

and k0ð~rÞe0ijð~rÞe0abð~rÞ
D E

:

k0ð~rÞr0ijð~rÞ
D E

¼ ekl�CijklD
ð2Þ
k � �Cijkl k0ð~rÞk0ð~rÞe0klð~rÞ

� �þ Cijkl
� �

k0ð~rÞe0klð~rÞ
� �

; ð47Þ

k0ð~rÞr0ijð~rÞr0abð~rÞ
D E

¼ ekle/h�Cijkl �Cab/hD
3
k þ ekl�Cijkl Cab/h

� �
k0ð~rÞk0ð~rÞe0/hð~rÞ
D E

þ e/h�Cab/h Cijkl
� �

k0ð~rÞk0ð~rÞe0klð~rÞ
� �

þ Cijkl
� �

Cab/h
� �

k0ð~rÞe0/hð~rÞe0klð~rÞ
D E

� ekl�Cijkl �Cab/h k0ð~rÞk0ð~rÞk0ð~rÞe0/hð~rÞ
D E

� e/h�Cijkl �Cab/h k0ð~rÞk0ð~rÞk0ð~rÞe0klð~rÞ
� �

� �Cab/h Cijkl
� �

k0ð~rÞk0ð~rÞe0/hð~rÞe0klð~rÞ
D E

� �Cijkl Cab/h
� �

k0ð~rÞk0ð~rÞe0/hð~rÞe0klð~rÞ
D E

þ �Cijkl �Cab/h k0ð~rÞk0ð~rÞk0ð~rÞe0klð~rÞe0/hð~rÞ
D E

:

ð48Þ
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The moments k0ð~rÞk0ð~rÞe0klð~rÞ
� �

and k0ð~rÞk0ð~rÞk0ð~rÞe0klð~rÞ
� �

are connected with

the moments k0ð~rÞe0klð~rÞ
� �

and k0ð~rÞe0klð~rÞe0/hð~rÞ
D E

:

k0ð~rÞk0ð~rÞe0klð~rÞ
� � ¼ 1� 2pð Þ k0ð~rÞe0klð~rÞ

� �
;

k0ð~rÞk0ð~rÞk0ð~rÞe0klð~rÞ
� � ¼ 1� 3Dð2Þ

k

� �
k0ð~rÞe0klð~rÞ
� �

;

k0ð~rÞk0ð~rÞe0klð~rÞe0/hð~rÞ
D E

¼ ð1� 2pÞ k0ð~rÞe0klð~rÞe0/hð~rÞ
D E

þ Dð2Þ
k e0klð~rÞe0/hð~rÞ
D E

;

k0ð~rÞk0ð~rÞk0ð~rÞe0klð~rÞe0/hð~rÞ
D E

¼ ð1� 3Dð2Þ
k Þ k0ð~rÞe0klð~rÞe0/hð~rÞ
D E

þ Dð3Þ
k e0klð~rÞe0/hð~rÞ
D E

;

where Dn
k ¼ ð1� pÞnpþ ð�pÞnð1� pÞ is the central n-order moment.

One of the techniques which is used in different variations of the stochastic
approach assumes that the integrals of the SBVP solution can be expressed via
second derivatives of the Green’s function using Stieltjes transformation. The
Stieltjes equal transformation of two functions f ðxÞ и gðxÞ over an interval a; bð Þ is
defined as [34]:

WðtÞ �
Zb
a

f ðt � xÞg0ðxÞdx �
Zb
a

gðt � xÞf 0ðxÞdx:

The elastic case solution in the second approximation will take the following
form:

u0ð2Þi;j ð~rÞ ¼ ekl�Cmnkl

Z
V1

Gim;jn ~r;~r1ð Þk0 ~r1ð ÞdV1

þ eoq�Cmnkl �Cfsoq

Z
V1

Z
V11

Gim;jn ~r;~r1ð ÞGkf ;ls ~r1;~r11ð Þk0ð~r1Þk0ð~r11ÞdV11dV1:

ð49Þ

Such transformation was performed in [13] in order to decompose the Green’s
function second derivative into singular and formal parts Gkf ;lsð~r;~r1Þ ¼
GðsÞ

kf ;lsð~r;~r1Þ þ Gðf Þ
kf ;lsð~r;~r1Þ, for which exact expressions were obtained:

GðsÞ
kf ;lsð~r;~r1Þ ¼ � dð~r �~r1Þ

3 lh i dkf dls � 1
5
jdkfls


 �
¼ dð~r �~r1Þgkfls; ð50Þ
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Gðf Þ
kf ;lsð~r;~r1Þ ¼

1

8p lh i~r �~r1j j3 ð2� jÞdkf ð3nf ns � dfsÞ
�

� j 3ðnkf nls þ nklnfs þ nksnfl þ nfsnkl þ nflnksÞ � 2Ikfls � 15nknf nlns
� �

;

ð51Þ

where j ¼ kþlh i
kþ2lh i, ni ¼ ri�r1i

~r�~r1j j, nij ¼ ninj, Ikfls ¼ 1=2 dkldfs þ dksdfl
� �

.

Then the integrals with the Green’s function can be represented as a sum, for
example: Z

V

Gkf ;ls ~r ;~r1ð ÞKð2Þ
k ð~r;~r1ÞdV ¼

Z
V0

GðsÞ
kf ;ls ~r;~r1ð ÞKð2Þ

k ð~r;~r1ÞdV

þ
Z

V�V0

Gðf Þ
kf ;ls ~r;~r1ð ÞKð2Þ

k ð~r;~r1ÞdV ;

where V0 is singularity area.
Using the definition of the generalized Dirac function

R
dð~r �~r1Þf ð~r1Þd~r1 ¼

f ð~rÞ, the singular summand becomes a constant value:Z
V

Gkf ;ls ~r;~r1ð ÞKð2Þ
k ð~r;~r1ÞdV ¼ gkflsD

ð2Þ
k þ

Z
V�V0

Gðf Þ
kf ;ls ~r;~r1ð ÞKð2Þ

k ð~r;~r1ÞdV : ð52Þ

This technique is used in the singular approach [13], which assumes the formal
part of Eq. (52) negligible, leaving only the singular part and thus avoiding mul-
tidimensional integration.

3 Description of Stochastic Microstructure

3.1 Correlation Functions

Many publications were devoted to investigation of dependence of mechanical and
physical properties of composites on the parameters of their microstructure [35–42].
The statistical methods, which employ the multi-point correlation functions for
description of inhomogeneities’ interaction, have become widespread in the mi-
cromechanics of composites with random structure. Accuracy of the statistical
characteristics depends on the order of the structural moment functions used in the
equations and the SBVPs solution.

The methodology based on correlation functions is also widely used for resto-
ration and verification of microstructure models with the results of the analysis of
the real materials samples. For example, Baniassadi and Ahzi [43] proposed a
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mathematical relationship of the correlation functions of different orders among
themselves. The results of three-dimensional composites and nanocomposites
models reconstruction using correlation functions were presented in the works of
Sheidaei et al. [44–46], Li et al. [47], Liu and Ghosal [48], Liu et al. [39], Torquato
[49–52] and others.

The n-order correlation function for the two-phase indicator function pulsation
has the following expression:

KðnÞ
k ð~r;~r1; . . .;~rnÞ ¼ k0ð~rÞk0ð~r1Þ. . .k0ð~rnÞh i: ð53Þ

Indicator function kð~rÞ is statistically homogeneous and isotropic; thus, the
correlation functions Kn

kð~r;~r1; . . .;~rnÞ depend only on a distance between points
~r �~rnj j. Values of correlation functions can be obtained in dependence of steps
~r �~rnj j, ~rm �~rnj j with mesh methods: the modeled or experimentally analyzed
stochastic structure fragment is patterned with a mesh, values of indicator function
possess 0 or 1 depending on presence of the matrix or one of the inclusions in mesh
point.

While obtaining values of correlation functions all the distances between points
are accepted equal and increasing proportionally:

~r �~r1j j ¼ ~r �~r2j j ¼ ~r1 �~r2j j ¼ � � � ¼ ~rm �~rnj j ¼ D~r

In order to accomplish this condition, the cubic mesh (Fig. 1a) is used for the
second and fourth order correlation functions, the hexagonal mesh (Fig. 1b) is
suitable for third order functions, the fifth order correlation functions (Fig. 1c) were
built on the centered cubic mesh.

In further calculations it is more convenient to use normalized by the central n-
order moment correlation functions:

f nk ~r;~r1;~r2; . . .ð Þ ¼ Kn
k ~r;~r1;~r2; . . .ð Þ

Dn
k

; ð54Þ

The step D~r is normalized by the averaged minimal distance between inclusions
havg.

Fig. 1 Schematic representation of a mesh cell
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Theoretically, the infinite number of the correlation functions completely char-
acterizes the geometry of the random structure of composites. Besides, some of the
functions have the geometrical sense. For instance, a second-order function
describes relative positions of inclusions; a third-order function characterizes the
form of inclusions; a fourth-order function characterizes clustering of inclusions as
well as their size distribution. In other words, the correlation functions allow
understanding of influence of inclusions on each other.

3.2 Modeling of Two-Component Polydisperse
Microstructure with Spherical Inclusions

There are two main types of structure of the two-component composite material.
First is a statistical mixture, when the components of the composite form inter-
penetrating frameworks, each of which has its own individual bearing capacity.
Second is when the composite materials are formed by matrix reinforced with
spherical, lamellar, fibrous, elliptic inclusions. Multicomponent composite may also
have mixed types of structures.

The problem of modeling of heterogeneous structures is historically based on the
mechanics of liquids and is tightly connected with the problem of statistical
description of behavior of a system of particles [53, 54]. Structures with random
arrangement of spheres had been studied actively since they can create models of
simple liquids, concentrated suspensions, amorphous and powder materials.

The advances in modeling dense disordered structures were achieved with the
two main groups of methods: sequential synthesis and dynamic methods. For
example, [55] describes a consistent method when each new inclusion (sphere) is
placed at the point closest to the first so that it comes into contact with the existing
inclusions. Intersection is controlled by testing the distance between the centers.
Later this method was modified by introduction of a parameter characterizing the
filling of the area bounded by the tetrahedron [56]. In [57] an algorithm that allows
to control the ordering of growing clusters of inclusions was proposed. Another
type of sequential methods is based on a model when each new inclusion is
“thrown” on a top of an arbitrary point on the surface of existing inclusions located
at the “bottom” of the virtual box. This method of synthesis is used in [58–60].

The methods described above belong to a class of static method that presumes
that inclusions are not being moved after having been generated. Dynamic models
propose reorganization of the entire structure, depending on interaction of inclu-
sions with each other [61]. According to the regrouping method, to each of N
randomly distributed in the volume points a radius of the sphere as well as an
arbitrary vector are assigned. Each sphere is moved upwards until it reaches the
other. Then, the radius is increased and the process is being repeated until further
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increase in the radius or the movement leads to intersection of spheres. Various
modifications of this method are found, for example, in [62–65].

A dense structures generation method is proposed in [55]. According to it each
successive sphere “moves” in the direction of the initial one along a straight line
connecting their centers, until contacting the already existing ones. In more com-
plex models a system of differential equations is solved for specifying movements
and detecting intersections [64].

There is also a group of algorithms of dynamic synthesis of polydisperse
structures in which the desired density of inclusions is achieved by changing the
radii of spheres. In some models, each inclusion is subject to small random
movements, regardless of position of the neighbor inclusions. Thus the best posi-
tion for inclusions can be found in order to achieve the denser packing [66, 67].

In addition, the models of inhomogeneous structures can be obtained by Monte
Carlo methods. Some models of random structures are based on periodic lattices.
Two of them are described in [68]: according to the first, inclusion centers are
aligned with randomly selected lattice nodes, while in the second the physical-
mechanical properties of each cell at random were assigned to the phases of the
composite.

In this study geometry of the microstructure has been defined using 3D mod-
elling. Structures with polydisperse spherical inclusions were synthesized in Wol-
fram Mathematica. Several algorithms of synthesis ensuring that generated spheres
don’t overlap were used. First is Hard-Core Model, also called random sequential
adsorption model [69]. Spheres with radius ri are placed one by one with the centre
positions X ¼ ðxi; yi; ziÞ. Coordinates of the centre are distributed uniformly inside
the cubic region with side a, radius of the spheres are distributed uniformly inside
the fixed region rmin; rmax½ �. If the new sphere doesn’t overlap any existing one, its
position becomes fixed. Otherwise, it is rejected and another random centre position
is generated. The process is finished when either assigned volume fraction is
achieved or when no more particles can be added. This method generates 3D
structures with volume fraction up to 38 % [70].

The Hard-Core Model can be modified for dense packing structures. The dif-
ference is that radii of new generated spheres are not being distributed randomly
within the specified range but are assigned consequently from the maximum value
of the range to the minimum one. When new sphere of the current radius can’t be
added, the radius is being reduced and the procedure continues. As in the first
model, the process finishes when either assigned volume fraction is achieved or
when no more particles of the smallest radius of the range can be added.

The explicit forms of normalized correlation functions are used for the formulas
of the statistical characteristics. The analysis of different approximating expressions
has been performed and the following expression types were chosen for second-
order and higher-order correlation functions:
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f ðnÞk ~r;~r1;~r2; . . .;~rnð Þ ¼ exp �c1
Rn

havg


 �
cos c2

Rð2Þ
n

h2avg

 !" #
; ð55Þ

where Rn ¼ ~r �~r1j j þ ~r �~r2j j þ � � � þ ~r �~rnj j þ ~r1 �~r2j j þ � � � þ ~rn�1 �~rnj j;
Rð2Þ
n ¼ ~r �~r1j j2þ~r �~r2j j2þ � � � þ ~r �~rnj j2þ~r1 �~r2j j2þ � � � þ ~rn�1 �~rnj j2, ci are

approximation coefficients, which are being calculated for the correlation functions
of every order for each realization of 3D composite structure, havg is averaged by a
number of inclusions distance between the centre of the inclusion to the nearest
inclusion.

Computational experiments have shown that the deviation between obtained
values for correlation functions of third order (and higher) and the diagram of
approximating expressions for them is about 1–1.5 %, while for second order
correlation function it reaches 7 %. Diagrams for second order functions for some
structures may have a region of negative values which indicates the periodicity of
the structure. This feature is well approximated by the class of expressions [10, 24]
with two periodic functions and three approximating coefficients:

f ð2Þk ~r;~r1ð Þ ¼ exp c1;~r;~r1ð Þ cos c2;~r;~r1ð Þ þ c3 sin c2;~r;~r1ð Þ½ �;

The following expression is offered in this work for the second order correlation
functions:

f ð2Þk ~r;~r1ð Þ ¼ exp �c1
~r �~r1j j
havg


 �
cos c2

~r �~r1j j
havg

 !
þ c3 sin c2

~r �~r1j j2
h2avg

 !" #
ð56Þ

4 Examples of the Methodology Implementation

4.1 Numerical Integration Techniques

The mixed moments in (43)–(45) form a superposition of multidimensional inte-
grals, which were calculated in Wolfram Mathematica using parallel computations.

Integration over the RVE in the formulas containing the Green’s function can be
replaced by integration over the statistical dependence of the random field of
structural elastic moduli, or, in other words, the region where the values of the
correlation functions are nonzero. Therefore, the upper limit of integration is equal
to the radius of statistical dependence.

Integrals containing the Green’s function and correlation functions in general
can be denoted as follows:
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Ið~r;~r1;~r2;~r11;~r21Þ1;2;11;21 ¼Dð5Þ
k

Z
V1

Z
V2

Z
V11

Z
V21

Gðf Þ
im;jnð~r;~r1Þ þ Gðf Þ

jm;inð~r;~r1Þ
� �

� Gðf Þ
ac;bgð~r;~r2Þ þ Gðf Þ

bc;agð~r;~r2Þ
� �

Gðf Þ
kf ;lsð~rx;~r11Þ

� Gðf Þ
/v;hwð~rx;~r21Þf ð5Þk ~r;~r1;~r2;~r11;~r21ð ÞdV21dV11dV2dV1;

ð57Þ

where the subscripts in parentheses indicate the presence of the corresponding
factors containing the Green’s function in the integral, superscripts determine the
order and the argument of the correlation functions. The lower index~rx of the radius
vector is uniquely determined by the integrands factors and the rules of the Dirac
compression. The multiplicity of the integral is determined by the number of
independent variables~r. The absence of variables in brackets means that there are
no correlation functions under the integral.

Calculation of the statistical characteristics and their constituent integrals was
performed in Wolfram Mathematica, which offers a number of different techniques
for advanced numerical integration. Each method is defined with strategy and
integration rules, combination of which specifies the appropriate method for the
integrand.

Integration strategies determine partitioning the integration domain into subdo-
mains. Each element can have its integrand and the corresponding integration rule
defining the points in which the value of the integral is calculated. Integration rules
are used for calculation of the integral value and the error estimation in subdomains
using usually weighted sums. For each point xi a weighting coefficient wi is
assigned, then the integral error estimation is performed using a weighted sumP

wif ðxiÞ.
There are adaptive and non-adaptive integral strategies [71, 72]. Adaptive

strategies are aimed to find the problem areas of integration and concentrate
computing effort (partition into subdomains) on them. Non-adaptive strategies
consequently increase the number of elements in the entire integration region.
Adaptive strategies include the following components: integration rule for calcu-
lating the value of the integral and error estimation in the region; method that
defines a partition of the domain into subregions; criterion for the termination of the
integration.

Global adaptive strategy presumes that from all of the subdomains of the original
domain of integration the subregion with the highest error estimation is selected and
is divided in half. Then the value of the integral and error estimation are being
calculated for each half, and the procedure is repeated for the entire set of subre-
gions. After a bisection of a region and the subsequent integration over the new
subregions, new global integral and global error estimates are computed, which are
sums of the integral and error estimates of all regions. The procedure stops when
the following condition is true:
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global error estimation � global integral value� 10�pg

_ global error estimation� 10�ag;

where pg is given precision, ag is given accuracy. The procedure is also being
interrupted when the number of consecutive partitions exceeds a predetermined
number, or when the global error begins to fluctuate wildly. It is expected that the
global error should decrease monotonically with increasing of the number of areas.

Local adaptive strategy has an initial and recursive procedure. The initial pro-
cedure computes the error in subregions, obtained from division of the region of
integration on the first step. Recursive procedure computes the value of the integral
and the error in each subdomain using the specified rule of integration. If the error
in subregions significantly larger than the initial error, the recursive procedure
continues, but only for the specific subdomain. The error for each of the primary
subregions is defined as the sum of errors obtained by implementing the recursive
procedure in the subregion. Recursive procedure stops when the maximum number
of steps of the partition division is reached, or if an integral error in the subdomain
is negligible.

To calculate the integrals in the expressions for the statistical characteristics and
containing the first derivative or a formal part of the second derivative of the
Green’s function, the possibility of using a combination of global or local adaptive
strategy in conjunction with the trapezoidal rule or multidimensional integration
was investigated. Formal integration region in the calculation of integrals with the
second derivative of the Green’s function was set by excluding the integration
points in which the integrand has a singularity.

The first derivatives of the Green’s function also have the region of the singu-
larity. For the integration of expressions with the first derivatives the Duffy coor-
dinate transformation was implemented [73]. Its principle is that the integral over
the square, cube or hypercube with the singularity in one corner, is replaced by an
integral with a singularity along the line.

With global adaptive strategy the integrals convergence has been slow or
oscillatory; increasing the number of partitions of an integrable region did not
improve it. Local adaptive strategy achieved better convergence of the integral, but
with applying trapezoidal rule the integrals converged slower than with the multi-
dimensional rule, while the result within the specified accuracy was equal. Thus, for
the class of integrands containing derivatives of the Green’s function with singu-
larity and the correlation functions, the method combining local adaptive strategy
and multi-dimensional integration rule has been chosen.

4.2 Numerical Results in Elastic Case

As an example of the method implementation in the elastic case, the porous
composites with different inclusions volume concentration (p = 0.15, 0.20, 0.25,
0.30) have been studied with the following properties of the matrix:
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Em ¼ 2� 1011 Pa, mm ¼ 0:3. Geometrical parameters of the model microstructures
are shown in Table 1. All the widths and sizes are presented in some conditional
values as the considered method and all the equations don’t depend on a scale of
structures. The matrix was considered to be homogenous and isotropic.

Figure 2 shows some examples of synthesized polydisperse structures of the
composite with different inclusions volume concentration. Figures 3, 4, 5 and 6
contain the correlation functions for these structures.

Coefficients of correlations functions’ approximating expressions for the con-
sidered structures are presented in the Table 2. Automated procedure using non-
linear conjugate gradient method for calculation of the coefficients was
implemented in Wolfram Mathematica.

The following states of strain of the RVE were studied: uniform extension,
simple shear and uniaxial tension. Calculations were performed using the second
approximation of the SBVP solution.

In the case of uniform extension, non-zero components of the tensor of mac-
roscopic deformations eij has been defined in the following way: e11 ¼ e22 ¼
e33 ¼ 10�6. The numerical results for deformation fields’ statistical characteristics
in the matrix are presented in the Table 3. Here and further only non-zero com-
ponents of the tensors are shown.

Table 1 Geometrical parameters of synthesized structures

Inclusions volume
concentration, P

Number of
inclusions, N

Minimal radius
of inclusion

Maximal radius
of inclusion

havg
value

0.15 1400 4.0003 7.9927 17.2833

0.20 1047 4.0005 11.9985 18.9941

0.25 1193 4.0043 15.9450 18.2389

0.30 976 4.0029 27.3491 19.5464

Fig. 2 Synthesized structures with various inclusions volume concentration: a p = 0.15,
b p = 0.25
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Components of macroscopic deformation tensor in the simple shear case has
been set as follows: e12 ¼ e21 ¼ a, a ¼ 10�6. The results are demonstrated in
Table 4.

In the case of uniaxial tension the state of strain is defined by components of the
macroscopic stresses tensor: r�11 ¼ 1� 106 Pa. In order to set the boundary

Fig. 3 Second order
normalized correlation
functions

Fig. 4 Third order
normalized correlation
functions

Fig. 5 Fourth order
normalized correlation
functions
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Fig. 6 Fifth order normalized
correlation functions

Table 2 Coefficients of approximating expressions for the correlation functions

Second-order
correlation
function

Third-order
correlation
function

Fourth-order
correlation
function

Fifth-order
correlation
function

Structure
with
p = 0.15

c1 51.4459 5.4650 5.5720 5.7638

c2 60.8700 7.6007 6.4085 6.6567

c3 4.8205 – – –

Structure
with
p = 0.20

c1 52.5380 4.1242 4.7187 4.9281

c2 63.0195 3.1281 3.8203 3.9610

c3 6.1731 – – –

Structure
with
p = 0.25

c1 52.3713 3.8509 4.2839 4.5152

c2 55.3549 2.0138 2.5263 2.6647

c3 6.5165 – – –

Structure
with
p = 0.30

c1 57.4423 3.5150 4.0205 4.2141

c2 53.8207 1.2450 1.5240 1.5690

c3 8.0559 – – –

Table 3 Statistical characteristics of stress and strain fields in the matrix in the case of uniform
extension

Statistical characteristics in matrix p = 0.15 p = 0.20 p = 0.25 p = 0.30

Average strains, �10�6

\e11 [M ¼ \e22 [M ¼ \e33 [M 0.98664 0.98126 0.97533 0.96833

Average stresses, MPa

\r11 [M ¼ \r22 [M ¼ \r33 [M 0.38843 0.49063 0.32426 0.29471

Dispersions of strains, �10�12

\e011e
0
11 [M ¼ \e022e

0
22 [M ¼ \e033e

0
33 [M 0.03203 0.04029 0.05089 0.06907

\e012e
0
12 [M ¼ \e013e

0
13 [M ¼ \e023e

0
23 [ 3M 0.23549 0.30662 0.38246 0.50065

Dispersions of stresses, MPa2

\r011r
0
11 [M ¼ \r022r

0
22 [M ¼ \r033r

0
33 [M 0.00730 0.01426 0.02267 0.06907

\r012r
0
12 [M ¼ \r013r

0
13 [M ¼ \r023r

0
23 [M 0.00274 0.00263 0.00229 0.00193
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conditions in displacements it is necessary to obtain the strain tensor from the stress
tensor using the tensor of effective elasticity modulus C�:

e11 ¼ r�11ðC�
1111 þ C�

1122Þ
ðC�2

1111 þ C�
1111C

�
1122 � 2C�2

1122Þ
; e22 ¼ e33

¼ � r�11C
�
1122

ðC�2
1111 þ C�

1111C
�
1122 � 2C�2

1122Þ
;

The results for the calculation of uniaxial tension case are shown in Table 5.

Table 4 Statistical characteristics of stress and strain fields in the matrix in the case of simple
shear

Statistical characteristics in matrix p = 0.15 p = 0.20 p = 0.25 p = 0.30

Average strains, �10�6

\e12 [M 0.98991 0.98507 0.98078 0.97561

Average stresses, MPa

\r12 [M 0.13254 0.12535 0.11805 0.11070

Dispersions of strains, �10�14

\e012e
0
12 [M 1.78269 2.32009 2.90176 3.79986

Dispersions of stresses, MPa2 �10�2

\r012r
0
12 [M 0.04742 0.09379 0.15996 0.23979

Table 5 Statistical characteristics of stress and strain fields in the matrix in the case of uniaxial
tension

Statistical characteristics in matrix p = 0.15 p = 0.20 p = 0.25 p = 0.30

Average strains, �10�6

\e11 [M 6.85339 7.70482 8.72686 9.96099

\e22 [M ¼ \e33 [M −1.93234 −2.12747 −2.35795 −2.63307

Average stresses, MPa

\r11 [M 1.17675 1.2500 1.33300 1.42800

\r22 [M ¼ \r33 [M 0 0 0 0

Dispersions of strains, �10�12

\e011e
0
11 [M 0.26113 0.42816 0.70831 1.2568

\e012e
0
12 [M ¼ \e013e

0
13 [M 0.76951 1.29773 2.14182 3.76175

\e023e
0
23 [M 0.36306 0.62213 1.02754 1.79149

\e022e
0
22 [M ¼ \e033e

0
33 [M 0.00057 0.00118 0.00173 0.00859

Dispersions of stresses, MPa2

\r011r
0
11 [M 0.03985 0.11527 0.25570 0.56425

\r012r
0
12 [M ¼ \r013r

0
13 [M 0.00894 0.01111 0.01275 0.01437

\r023r
0
23 [M 0.00421 0.00531 0.00609 0.00681

\r022r
0
22 [M ¼ \r033r

0
33 [M 0.00161 0.00215 0.00284 0.00417
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4.3 Numerical Results in Elastoplastic Case

As an example of solution in elastoplastic case, the porous composites with
spherical polydisperse inclusions and physically nonlinear isotropic matrix with
linear hardening were considered.

Nonelastic behaviour of the matrix of such composites is modelled using the
relations of the theory of small elastoplastic deformations. In the framework of the
theory, the shear modulus is a function only of the second invariant of the
microscopic stress tensor. Matrix has the elastic region and the region with linear
hardening, the transition point corresponds to the yield stress:

lMðjð2Þe Þ ¼
jð2Þe \jð2ÞeT ; GM

jð2Þe [ jð2ÞeT ; GM
G0

M
GM

� ðG0
M�GMÞ
GM

jð2ÞeT

jð2Þe

� �8<
: ð58Þ

where GM is shear modulus of matrix, G0
M is hardening modulus of matrix, jð2ÞeT is the

limiting value of the second invariant of strain tensor, which is corresponding to the
elastic limit.

It was assumed that the matrix is incompressible, thus the bulk modulus KM

remains constant during the deformation process.
The simple shear state of strain has been chosen as the macroscopic loading

conditions. The following values of non-zero components of the tensor e�ij in the

boundary conditions (18) were defined: e�12 ¼ e�21 ¼ 10�6. Taking into account the
formulas for deviator parts, invariants of stress and strain tensors for the simple
shear case can be expressed through the mean values of stress and strain fields in
matrix:

KM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 e12h iM e12h iM

q
; jð2Þr ðKMÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 r12h iM r12h iM

q
;

The following properties of the matrix were taken:
GM ¼ 44:2 GPa, G0

M ¼ 14:3 GPa,

KM ¼ 132:2 GPa, jð2ÞeT ¼ 6:37� 10�4.
Geometrical parameters of the considered microstructures are shown in Table 6.

All the widths and sizes are presented in some conditional values as the considered
method and all the equations don’t depend on a real scale of structures. The
structures are visualized on Fig. 7.

Coefficients of approximating expressions for the correlations functions are
presented in Table 7. Automated procedure using nonlinear conjugate gradient
method for calculation of the coefficients was implemented in Wolfram
Mathematica.

Result of stress-strain diagram for mean stress in matrix is presented on Fig. 8
for all the studied structures.
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Figures 9 and 10 display diagrams for dispersions of stress and strain in matrix in
dependence of macroscopic stress.

Figure 11 shows how the shear modulus of matrix changes during deformation
process.

With the increasing of volume fraction the value of stress in matrix decreases
(Fig. 8). According to Fig. 11, materials with higher porosity undergo less plastic
deformations as the value of the shear modulus increases with growth of volume
fraction.

Table 6 Geometrical parameters of the synthesized structures

Inclusions
volume
fraction, p

Number of
inclusions,
N

Minimal
radius of
inclusion

Maximal
radius of
inclusion

Average distance to
centre of nearest
inclusion, havg

0.20 1047 4.0 12.0 18.9941

0.30 976 4.0 27.0 19.5463

0.40 1456 5.0 9.0 18.8490

0.50 2000 4.0 14.0 16.0692

0.60 1164 4.0 39.0 17.8466

0.70 3959 5.0 99.0 22.0742

Fig. 7 Synthesized structures with various inclusions volume concentration: a p = 0.20,
b p = 0.30, c p = 0.40, d p = 0.50, e p = 0.60, f p = 0.70
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Materials with different hardening modulus G0
m have been studied for elasto-

plastic matrix of composites with inclusions volume fraction p = 0.30. Figure 12
shows the different behaviour of mean values of stress in matrix for these materials.
As predictable, the material with higher hardening reveals less nonlinearity.

These numerical results demonstrate the possibility of applying the methods of
stochastic mechanics for analyzing the microscopic stress and strain fields in the

Table 7 Coefficients of approximating expressions for the correlation functions

Second-order
correlation
function

Third-order
correlation
function

Fourth-order
correlation
function

Fifth-order
correlation
function

Structure
with
p = 0.20

c1 45.5468 89.7127 88.2568 17.7135

c2 −51.0195 −1692.1167 −1321.4202 −281.2605

c3 6.2077 – – –

Structure
with
p = 0.30

c1 44.4819 60.3032 61.2485 12.2292

c2 38.9160 312.6635 32.0872 −37.3740

c3 11.0466 – – –

Structure
with
p = 0.40

c1 52.0550 85.5348 88.2012 17.8265

c2 −68.1599 −2432.3143 −973.9423 −230.8578

c3 −7.4854 – – –

Structure
with
p = 0.50

c1 38.8580 59.7961 63.8917 12.9324

c2 −45.6168 −859.4112 −349.0060 −97.3925

c3 −5.1808 – – –

Structure
with
p = 0.60

c1 37.8191 114.0797 58.8228 19.2026

c2 41.4580 −5593.5067 −5.8723 −517.9125

c3 15.4891 – – –

Structure
with
p = 0.70

c1 30.1759 117.2362 92.0882 22.0314

c2 −38.6264 −4373.0674 6.4212 −6.3527

c3 11.9840 – – –

Fig. 8 Dependence of mean
stress in matrix on
macroscopic strain
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components of structurally inhomogeneous materials. The obtained statistical
characteristics allow defining the characteristics of a certain class of materials
without having to calculate large number of realizations of material’s random
microstructure, which may reduce the computational cost required to solve the
problems of the composites micromechanics.

Fig. 9 Dependence of stress
dispersion in matrix on
macroscopic strain

Fig. 10 Dependence of strain
dispersion in matrix on
macroscopic strain

Fig. 11 Dependence of shear
modulus of matrix on
macroscopic strain
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5 Conclusions

This work contains the results of development of stochastic methods based on the
Green’s function and statistical moments approach. The analytical expressions for
microstructural stresses and strains moments in components of heterogeneous solid
media were obtained using the first and second approximation of the SBVP solution
in elastic and elastoplastic case. It has been shown that the integral equations
depend on multipoint structural correlation functions up to fifth order. Two types of
the approximating expressions were offered for the correlation functions.

The porous composites were studied to demonstrate the implementation of
methodology. Their matrix was considered isotropic and physically nonlinear. In
order to obtain values of the correlation functions, 3D random structures with
spherical inclusions have been synthesized. The inclusions volume fraction of the
considered structures ranges from 20 to 70 %. The correlation functions values as
well as the coefficients of their approximating expressions were calculated for each
of these structures. In the elastic case numerical results for statistical characteristics
were presented in different states of strain. In the elastoplasitc case the diagrams of
dependence of mean value and dispersion of stress in matrix on macroscopic stress,
as well as other diagrams characterising the deformation process, have been
obtained for a simple shear loading.

The developed methods of microstructure modelling and stochastic mechanics
boundary value problem solution can be used for a comparative analysis of the
impact of various structural parameters on the statistical characteristics of the stress
field in order to create materials with predetermined set of properties and to assess
their failure probability.

Acknowledgments This work was supported by the Russian Foundation for Basic Research
(project 14-01-96024) and grant of the President of Russian Federation for state support of young
Russian scientists (MK-5172.2015.1).

Fig. 12 Dependence of mean
stress in matrix on
macroscopic strain for
materials with different
hardening modulus
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Optimization of the Damping Properties
of Electro-Viscoelastic Objects
with External Electric Circuits

V.P. Matveenko, M.A. Yurlov and N.A. Yurlova

Abstract The paper deals with optimization of dynamic characteristics of smart
structures based on piezoelectric materials with external electric circuits comprising
resistance, capacitance and inductance. The dynamic parameters to be optimized are
resonance frequencies and damping properties. For numerical estimation of the
dynamic characteristics of the model system, a natural vibration problem of an
electroviscoelastic solid with differing external electric circuits is proposed. Model
examples are given to demonstrate the efficiency of the natural vibration problem in
finding dynamically optimum piezoelectric smart structures with external electric
circuits.

1 Introduction

In recent years, the relatively new concept of smart materials or smart structures has
been much addressed in scientific research and various applications. The prospects
of smart materials can be judged, for example, from the report “New Materials for
Next-Generation Commercial Transport” prepared jointly by the USA Committee
on New Materials for Advanced Civil Aircraft, Commission on Engineering and
Technical Systems and National Research Council in 1996 [1]. These institutions
came to following conclusions:

• in the nearest 15–20 years, structures containing adaptive elements will become
accessible and, being feasible and rather efficient, will allow their use in cargo
and passenger aircrafts;

• research in smart materials is intensive, but fast developing technologies will do
allow implementation of development products in the field;
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• capabilities of smart materials will find application primarily in monitoring the
state of constructions and environment;

• first application of smart materials will be in the simplest form—passive
systems.

More than 15 years has passed since this report and analysis of available data
shows that the conclusions made are close to present day reality.

Smart materials or smart structures, which are also known as intelligent, sensi-
tive, multifunctional or adaptive, can be characterized as systems capable of
changing their properties in response to a change of the surroundings. A quite
appropriate analogy for smart systems is with biological objects: they contain, like
the nervous system, sensing elements often called detectors or sensors, actuating
mechanisms or actuators similar to those of the muscular system, and real-time data
processing units or processors similar to individual brain functions.

Smart systems that comprise only sensors are termed passive systems. Embed-
ment of sensors in a smart material which, in essence, is a composite material,
makes it possible to monitor the state of constructions. Successful development of
passive smart structures depends on the availability of suitable sensors, principles of
their operation, signal processing methods, and technologies by which they are
embedded in a composite material. Now, attention of researchers is concentrated on
two types of materials that are most convenient to embed in smart structures as
sensors or detectors. These are optical fibers and piezoelectric materials.

Manufacturing active controlled or responsive smart structures requires actuators
or actuating mechanisms capable of inducing deformation of a basic construction.
At present, the materials used as actuators are shape memory alloys, piezoelectric
materials, electrostrictive and magnetostrictive materials, and electrorheological
liquids.

The methods of application of materials as actuators can be divided into two
groups. Methods of the first group consist in making certain structural elements of
these materials: for example, a truss construction section of controllable length.
Methods of the second group are associated with embedding of elements made of
actuator materials inside a construction: for example, a piezoelectric patch joint
with a construction by either embedding in its inside or fixing on its surface can
create local strains.

The most widely used materials in manufacturing smart composites are piezo-
electric materials. This, in particular, owes to their direct and inverse piezoelectric
effects allowing the use of piezoelectric elements both as sensors and as actuators.

Smart materials perform the following functions: object profile control, damage
detections, including early detection, dynamic process control, micropositioning,
geometry control, and spurious noise to useful energy conversion.

Examples of practical applications of smart materials are their use in aviation for
counteraction against aeroelastic and vibrational effects [2–7] and damping of
vibrations of aircraft cabins [8–10], in space technologies for control of dynamic
behavior of satellite constructions [11, 12], in rail transport for detection of wear of
railcar wheels [13, 14] and suppression of vibrations of railcar bodies [15], in
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automotive industry for elimination of vibrations [13], in fine optics [16], in high-
precision devices [17, 18], and in new generation sports goods: rock skis, tennis and
golf racquets, and baseball bats [4, 8, 19].

One of the main factors that determine the application of smart materials is their
type. Now, a wide range of piezomaterials for various technological purposes are
produced: piezoceramics [20], piezopolymers [21, 22], piezoelectric polymer films
[23], multilayer piezoelements [24, 25], piezoelectric fibers of varying cross-section
[26], piezocomposites based piezoelectric fibers [8, 27–34].

According the available data [27], there are about 1500 materials with piezo-
electric properties known to date. The most well-known classes of piezoelectric
materials in this variety are piezoceramics and piezopolymers of which the former
is more efficient in piezoelectric properties but less technological due to its high
brittleness and rigidity.

The objective of the work is to inquire into the most widely used function of
smart structures with piezoelements—control of dynamic behavior of constructions.
Piezoelectric elements connected by a shunt circuit and joined to a mechanical
construction are elements at which energy is dissipated with attendant additional
vibration damping. Due to the piezoelectric effect, part of the mechanical energy
involved in vibration can be converted to electric energy and merely dissipated
through the shunt circuit which is just the mechanism of passive damping [4].

Among shunt circuits, resonant circuits deserve special attention. These circuits,
as a rule, comprise an inductor and a resistor and allow tuning to any damped
frequency. Moreover, improvement of the circuit topology makes possible simul-
taneous damping of several vibration modes. In mechanical terms, the system as a
whole (a piezoelectric element and a resonant shunt circuit) is similar to a dynamic
damper. Because the piezoelectric element is a capacitor, the use of shunt circuits is
the simplest way to provide energy dissipation. This fact was first demonstrated
experimentally in [35], and later, in [36]. A detailed review of methods used to
shunt piezoelectric elements by electric circuits for vibration damping can be found
in [37].

The shunt circuits can be made either series, or parallel, or series-parallel. A
series resonant shunt circuit was proposed in [36]. The same circuit was considered
in [9, 37–39], etc. A parallel shunt resonant circuit was proposed for the first time in
[40] in attempt to overcome troubles with realization of the series circuit.

The advantage of passive piezoelectric damping to compare with traditional
damping (i.e., with viscoelastic inclusions) is in the possibility to tune a damper in a
wider frequency range and in better thermal stability.

However, there is a significant difference in the mechanics of piezoelectric and
classical damping. The addition of passive piezoelectric layers in a construction
allows not only energy dissipation due to resistive heating (i.e., electric energy
generation) but, which is no less important, a change in the main resonance of the
construction due to electromechanical coupling [7].

The passive vibration damping has the following shortcomings:
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• damping a certain vibration mode requires that the passive external electric
circuit be tuned to an appropriate resonance frequency; simultaneous damping
of several vibration modes requires elaborate hybrid circuits, and this decreases
the circuit efficiency;

• damping the lowest and, as a rule, most dangerous vibration modes of frequency
up to 100 Hz requires that the circuit inductance be tens and hundreds of Henry,
and this necessitates the use of rather heavy and sizable coils; electronic devices
like gyrators (inductance emulators), though being an alternative to inductance
coils, are not deprive of specific flaws;

• leakage currents at low frequencies decrease the efficiency of electric-to-
mechanical energy conversion in piezoelements.

Despite the shortcomings of passive vibration damping, it is widely used being
steadily improved in response to the progress in microelectronics and analysis
techniques.

The dynamic behavior of constructions can be controlled, along with the passive
method, by an active method of vibration damping. The active method consists in
the following: certain of piezoelements (sensors) provide information on the
mechanical state of a system, while the others (actuators) are brought to an electric
potential, depending on the sensor potential, with the use of special relations
(feedback equations). If the actuator potential is proportional to the sensor potential,
the integral stiffness characteristics of the system are changed; and if the actuator
potential is proportional to the first or second derivative of the sensor potential, the
changed characteristics are damping or inertial characteristics of the construction.
This allows correction of dynamic properties of an object over a wide range.

One of the key problems of vibration damping by external electric circuits is in
finding the simplest shunt circuit that provides efficient vibration control of a
particular construction.

Assessment of the potentials of smart systems with piezoelements to control
vibrations gives the following scenarios of their use. In the first scenario, piezo-
elements are used as sensors and actuators that realize passive or active vibration
control, or their combination. In the second scenario, a piezoelement is an energy
source for external electric circuits; in this case, passive and active control is
possible. It is also possible to combine the first and second scenarios.

Because of the rich variety of patterns used to control dynamic characteristics of
smart structures with piezoelements, the search for optimum patterns is almost
impossible without mathematical simulation. In the majority of available papers, the
simulation is based on the ANSYS package or algorithms realized to one or another
extent in commercial program packages.

The most significant dynamic characteristics are resonance frequencies and
parameters responsible for damping properties of a model system. With the ANSYS
package or other well-known algorithms, the damping properties of smart systems
are estimated from the vibration amplitude in resonant modes or from the rate of
transient processes. In the first case, the problem of forced steady-state vibrations is
solved; in the second, the dynamic problem with initial conditions. These problems
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provide little for optimization of dynamic characteristics for the following reasons.
The problem of forced steady-state vibrations requires a multiple solution for dif-
ferent frequencies to obtain amplitudes in resonant modes; the optimum solutions
found with the latter problem or the problem with initial conditions have to do with
the loading type to be modeled for a system under study.

In the present work, a natural vibration problem is proposed for optimization of
dynamic characteristics of smart systems with piezoelements and external electric
circuits. Based on this problem, efficient numerical procedures for optimization are
derived in which the control parameters are mechanical characteristics of the
materials of a smart composite, geometry and position of piezoelements, and
characteristics governing the boundary conditions. The presence of external RLC
circuits connecting the electrodes of piezoelements increases the number of opti-
mization parameters.

2 Mathematical Statement of the Natural Vibration
Problem

The object under study is a piecewise homogeneous system of volume
V ¼ V1 þ V2, where the volume V1 consists of homogeneous elastic and visco-
elastic elements, and the volume V2, of piezoelectric elements. The piezoelectric
elements can be connected via an electrodized surface (electrodes) to current or
voltage generators, or to arbitrarily structured RLC circuits with resistances,
capacitances, and inductances.

The variational equation of motion of the system consisting of elastic and pie-
zoelectric elements is formulated using relations of the linear theory of elasticity
and quasistatic Maxwell equations [41–43]:

Z
V1

rijdeij þ qu
::

idui
� �

dV þ
Z
V2

rijdeij � DidEi þ qu
::
idui

� �
dV

�
Z
Xr

duiPidX�
Z
Xel

qedudX ¼ 0
ð1Þ

where D, E are the inductance and electric field vectors; rij are the symmetric
Cauchy stress tensor components; ui are the displacement vector components; Pi

are the load vector components; ei j ¼ 1
2 ui;j þ uj;i
� �

are the linear strain tensor
components (a semicolon stands for a partial derivative with respect to an appro-
priate coordinate); Xel is the surface bounding a piezoelectric element; qe and u are
the surface charge density and electric potential. Equation (1) is in rectangular
Cartesian coordinates. The electric field is assigned the equipotentiality condition:
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u; i ¼ �Ei ð2Þ

For isothermal processes in linear electroelastic media, the following physical
relations hold true:

rij ¼ Cijklekl for V1 ð3Þ

rij ¼ Cijklekl � bijkEk

Dk ¼ bijkeij þ ekiEi

�
for V2 ð4Þ

where Cijkl is the elastic constant tensor; bijk and eki are the piezoelectric and
dielectric constant tensors.

If the element V1 or V2 of the system possesses viscoelastic properties, the elastic
constant tensor Cijkl should be replaced by an appropriate viscoelastic operator. The
dissipative properties of the material are taken into account using relations of the
Boltzmann-Volterra hereditary theory:

rij tð Þ ¼ Cijklekl tð Þ �
Z t

0

Rijkl t � sð Þekl sð Þds ð5Þ

Here Cijkl are the instantaneous modulus tensor components; Rijkl are the
relaxation kernel tensor components. Notice that the relaxation kernel tensors are of
the same symmetry as the instantaneous modulus tensors. Equation (5) can be
written in the tensor operator form:

rij tð Þ ¼ C�
ijklekl tð Þ: ð6Þ

Let us consider the mechanical natural vibration problem for solutions of the
form:

ui x; tð Þ ¼ �ui xð Þe�ixt; ð7Þ

where x ¼ xR þ ixI is the complex natural frequency; xR corresponds to the
natural frequency; xI characterizes the rate of vibration damping, �ui xð Þ is the
eigenvibration.

If the model system has viscoelastic elements, physical relations (4) in the
natural vibration problem are replaced by their approximate complex analogue [44]:

rij � Cijkl � Qc
ijkl xRð Þ þ iQs

ijkl xRð Þ
h i

ekl ¼ �Cijkl xRð Þekl ð8Þ

where �Cijkl are the complex dynamic modulus tensor components; Qc
ijkl; Q

s
ijkl are

the Fourier cosine and sine transforms of relaxation kernels:
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Qc
ijkl ¼

Z1

0

Rijkl sð Þ cos xRsð Þ ds

Qs
ijkl ¼

Z1

0

Rijkl sð Þsin xRsð Þ ds

The complex dynamic modulus tensor components can be represented as follows:

�Cijkl xRð Þ ¼ Cijkl � Qc
ijkl xRð Þ þ iQs

ijkl xRð Þ
h i

¼ CR
ijkl xRð Þ þ iCI

ijkl xRð Þ; ð9Þ

where CR
ijkl xRð Þ; CI

ijkl xRð Þ are the accumulation and loss moduli, respectively.
In electroelastic problems, the boundary conditions can be divided into two

groups: mechanical and electrical.
The mechanical boundary conditions in the natural vibration problem have the

following form:

Sr : rijnj ¼ 0; Sn : ui ¼ 0; ð10Þ

where S ¼ Sr þ Sn is the surface bounding the volume V of the system under study.
The physically realizable electric boundary conditions are formulated depending

on the way of electric energy transfer to a piezoelectric. The energy is delivered to
and removed from a deformed piezoelectric with the use of electrode coatings
deposited on part of its surface. The coatings are assumed to be rather thin perfect
conductors of negligibly small mass. The presence of a conducting layer on the
surface Xel (electrodizing) makes the surface equipotential:

Z
Xel

du qe dX ¼ du
Z
Xel

qe dX ¼ Qel ð11Þ

Here Qel is the total electrode charge.
Of interest to us are boundary conditions for connection of external circuits to

piezoelements.
Let us consider a variant of electric boundary conditions when one part of the

electrodized piezoelement surface Xm
el is connected to the point of zero potential via

a series RLC circuit and the other part Xk
el is assigned a zero potential. In this case,

the potential across the ungrounded electrode is calculated by the formula:

um ¼ Qm

C
þ RIm þ L_Im ¼ Qm

C
þ R _Qm þ LQ

::

m; ð12Þ

where um and Qm ¼ R
Xm

el
qedX are the electric potential and the total charge at

Xm
el; Im ¼ _Qm is the conductor current; R is the resistance; C is the capacitance; L is
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the inductance. Then, the integral over the surface Xm
el in Eq. (1) determines the

electric boundary conditions for piezoelectric zones:

Z
Xm

el

qedu dX ¼ �dumQm ð13Þ

Equation (13) takes into account that the electrodized surface Xm
el is equipotential

and the circuit is an external element for the examined system (a change of sign
preceding the integral). In this statement, Eq. (1) with no external load Pi ¼ 0ð Þ is
homogeneous:

Z
V1

rijdeij þ qu
::
idui

� �
dV þ

Z
V2

rijdeij � DidEi þ qu
::
idui

� �
dV

þ dumQm ¼ 0:

ð14Þ

Equation (12), in view of the form of the solution of natural vibration problem
(7), can be solved for the total charge:

QmðtÞ ¼ �um � eixt
C�1 � x2 � Lþ i � x � R ð15Þ

Clearly apparent transformations give the variational equation for the natural
vibration problem (the bar above the variable is omitted) [45, 46]:

Z
V2

deij Cijklekl � bijkEk
� �� dEk bijkeij þ ekiEi

� �� x2qduiui
� �

dV

þ
Z
V1

deijCijklekl � x2qduiui
� �

dV þ umdum

C�1 � Lx2 þ ixR
¼ 0:

ð16Þ

Thus, we have derived the variational equation of quasi-harmonic vibrations
with dissipative terms due to the energy loss in external electric circuits with
resistance R for an electroviscoelastic solid. The external circuit inductance L and
capacitance C are analogues of sort to mechanical mass and rigidity with which we
can control the natural frequencies.

For a parallel RLC circuit, the current through the circuit is equal to the total
current through its elements:

Im ¼ IRm þ ILm þ ICm ¼ um

R
þ C _um þ

R
umdt
L

ð17Þ
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In view of the quasi-harmonic process, we obtain

Im ¼ �um
1
R
þ ixC � i

Lx

� �
� eixt

Time integration of the latter equation gives the total electrode charge:

Qm ¼ �um � i
xR

þ C � 1
Lx2

� �
� eixt ð18Þ

After transformations similar to those applied to the series RLC circuit, we obtain
the variational equation for the natural vibration problem (the bar above the variable
is omitted) with parallel external electric circuits:

Z
V2

deij Cijklekl � bijkEk
� �� dEk bijkeij þ ekiEi

� �� x2qduiui
� �

dV

þ
Z
V1

deijCijklekl � x2qduiui
� �

dV þ umdum � i
xR

þ C � 1
Lx2

� �
¼ 0:

ð19Þ

If the RLC circuit lacks some or other elements, appropriate terms in Eqs. (16)
and (19) should be omitted. More complex circuits can be synthesized by com-
bining Eqs. (16) and (19).

The use of smart systems with piezoelements and external electric circuits makes
possible controlled nonconservative systems. To provide more efficient damping
and control of constructions and a wider range of their dynamic stability, feedbacks
are applied to the electric potential and/ or its time derivatives. The circuits provided
with feedbacks of digital signal processing elements makes feasible efficient
automatic control systems. Calculation of active systems within the framework of
the continual electroviscoelastic problem requires formulation of new types of
boundary conditions.

Let us rewrite Eq. (1) with a more concretely defined surface integral:
Z
V1

rijdeij þ qu
::

idui
� �

dV þ
Z
V2

rijdeij � DidEi þ qu
::
idui

� �
dV

�
Z
Sr

PiduidS�
Xn
k¼1

dukQk ¼ 0
ð20Þ

Here uk and Qk ¼
R
Xk

el
qedX are the potential and charge of the k-th electrode;

Xel ¼
Pn

k¼1 X
k
el is the electrodized surface consisting of n zones. Without violating

the generality of the approach, let us consider the case when the charge Qi ¼ aijuj,
where aij is the feedback factor, is transferred to the i-th electrode. Then, Eq. (20)
takes the form:
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Z
V1

rijdeij þ qu
::

idui
� �

dV þ
Z
V2

rijdeij � DidEi þ qu
::
idui

� �
dV

�
Z
Sr

PiduidS�
Xn
k¼3

dukQk � duiaijuj � dujQj ¼ 0
ð21Þ

The modern electronic element base allows measuring the electric potential
across an electrode almost with no variation in the electrode charge, i.e., Qj ¼ 0:

Z
V1

rijdeij þ qu
::

idui
� �

dV þ
Z
V2

rijdeij � DidEi þ qu
::
idui

� �
dV

�
Z
Sr

PiduidS�
Xn
k¼3

dukQk � duiaijuj ¼ 0

If an object is free from external loads, variational Eq. (21) becomes homoge-
neous and can be treated as an eigenvalue problem:

Z
V1

rijdeij þ qu
::

idui
� �

dV þ
Z
V2

rijdeij � DidEi þ qu
::
idui

� �
dV

�
Xn
k¼3

dukQk � duiaijuj ¼ 0:

ð22Þ

3 Numerical Realization

The formulated problem can be solved using the finite element method. For this
purpose, variational Eq. (16) can be written in the matrix form:

Z
V1

d e1f gT D1½ � e1f g � x2d u1f gT q1½ � u1f g� �
dV

þ
Z
V2

d e2f gT D2½ � e2f g � x2d u2f gT q2½ � u2f g� �
dV

þ dum um

C�1 � x2Lþ i xR
¼ 0

ð23Þ
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By analogy, for Eq. (19) we have

Z
V1

d e1f gT D1½ � e1f g � x2d u1f gT q1½ � u1f g� �
dV

þ
Z
V2

d e2f gT D2½ � e2f g � x2d u2f gT q2½ � u2f g� �
dV

þ umdum � i
xR

þ C � 1
Lx2

� �
¼ 0

ð24Þ

Here, the generalized displacement, strain and stress vectors and the density
matrix u1f g; e1f g; r1f g; q1½ �; u2f g; e2f g; r2f g; q2½ � are related to the regions
V1 and V2, respectively.

Physical relations (4) for piezoelectric ceramics have the following matrix form:

fr2g ¼ ½D2�fe2g ¼ C b
bT �e

� �
fe2g; ð25Þ

where C½ �; b½ �; e½ � are the matrices of elastic, piezoelectric and dielectric constants.
For the region V2 in each point of system the vector u2f g contains not only

components of the displacement vector but also the electric potential φ and vector
of strain e2f g:

ex; ey; ez; exy; eyz; ezx;
@/
@x

;
@/
@y

;
@/
@z

	 �
:

With the finite element method, variational problem (23) is reduced to the
algebraic eigenvalue problem:

K½ � � x2 M½ � þ G xð Þ½ �� �
Xf g ¼ 0; ð26Þ

where {X} is the complex vector of nodal parameters; ω is the complex natural
frequency; [K] is the stiffness matrix (generally complex); [M] is the mass matrix;
[G] is the matrix of coefficients of external RLC circuits. The complex frequencies
x ¼ xR þ ixI obtained from the solution of eigenvalue problem (26) determines
the resonance frequencies ðxRÞ and the damping indices ðxIÞ of the system. The
complex eigenvectors determine the vibration modes and phases.

Equation (26) differs greatly from the generalized eigenvalue problem in the
presence of the matrix G xð Þ½ �. The condition for the existence of a nontrivial
solution is

DðxÞ ¼ det K½ � � x2 M½ � þ G xð Þ½ �� � ¼ 0 ð27Þ
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For solving the vibration problems for an arbitrary system with RLC circuits in
the general form, a universal finite difference scheme is proposed. The scheme
consists in the following.

As known from electrical engineering, the behavior of passive R, L and C ele-
ments in AC circuits is described by the dependences:

I ¼ R�1 ui � uj

� �
; I ¼ L�1

Z
ui � uj

� �
dt and I ¼ C _ui � _uj

� �

Here: I is the current; R is the resistance; φ is the electric potential; L is the
inductance; C is the capacitance.

In terms of the finite element method, the behavior of one-dimensional R, L and
C elements is determined as:

resistance R
Ii
Ij

	 �
¼ R�1 1 �1

�1 1

� �
ui
uj

	 �

inductance L
_Ii
_Ij

	 �
¼ L�1 1 �1

�1 1

� �
ui
uj

	 �

capacitance C
Ii
Ij

	 �
¼ C

1 �1
�1 1

� �
_ui
_uj

	 � ð28Þ

Here Ii; Ij and ui; uj are the current and potential in the i-th and j-th nodes of
an element. This representation form is equivalent to introduction of one-dimen-
sional finite elements.

Relations (28) is transformed with regard for the identities I ¼ _q or q ¼ R t
�1 Idt:

qRf g ¼ R�1 G½ �
Z

uf gdt ¼ KR½ �
Z

uf gdt

qLf g ¼ L�1 G½ �
Z Z

uf gdtdt ¼ KL½ �
Z Z

uf gdtdt
qCf g ¼ C G½ � uf g ¼ KC½ � uf g

ð29Þ

where qf g ¼ qi
qj

	 �
; uf g ¼ ui

uj

	 �
; G½ � ¼ 1 �1

�1 1

� �
:

Here qi; qj is the charge in the i-th and j-th nodes of an element;
KR½ �; KL½ �; KC½ � are the stiffness matrices of circuit elements.
For convenient construction of arbitrary electric circuits (parallel, series, parallel-

series, etc.), we introduce a generalized element being a parallel connection of
resistance, capacitance, and inductance.

By combining the nodes of individual elements and using formula (29), we obtain

qf g ¼ KC½ � uf g þ KR½ �
Z

uf gdt þ KL½ �
Z Z

uf gdtdt: ð30Þ
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This expression describes a parallel RLC circuit. Equating the corresponding ele-
mentary stiffness matrices to zero allows us to obtain any of the circuit elements [46].

Let us consider a finite element model for systems with active feedbacks.
Let an electrode i gain a charge proportional to the electrode potential

j Qi ¼ aijuj, where aij is the feedback factor, which is generally complex. The
presence of electrodized and, hence, equipotential surfaces in an electroelastic solid
makes it possible to relate each of them to one electrical degree of freedom
(potential), irrespective of the finite element grid.

Applying the finite element procedure to variational problem (22) gives the
equation

d Xf gT K½ � Xf g þ M½ � X
::n o
 �

� dxiaijxj ¼ 0;

where [K] is the complex stiffness matrix; [M] is the mass matrix; {X} is the
eigenvector (eigenmode). It is taken here that the potential of the i-th electrode
corresponds to the variable xi, and that of the j-th electrode, to xj in the state vector
{X}. This equation can be written in terms of the modified stiffness matrix K�½ � with
a changed element K�

ij ¼ Kij � aij.
The solution is sought for in the form X tð Þf g ¼ Uf gext. This gives the algebraic

eigenvalue problem for complex asymmetric matrices:

K�½ � þ x2 M½ �� �
Uf g ¼ 0:

4 Experimental Demonstration of the Possibility
of Damping Mechanical Vibrations by Means of External
Electric Circuits

In order to provide evidence for the effect of damping mechanical vibrations by
means of piezoelectric elements and external electric circuits, we have performed an
experiment, the scheme of which is given in Fig. 1.

In the experiment, cross-polarized rectangular piezoelectric rod 1 was mounted
on rigid base units. One half of the rod length was electrodized. Piezoelement 2 was
used to generate longitudinal vibrations, and this led to the occurrence of electrical
potential difference on electrodes 3 located on the lateral surfaces. To damp
mechanical vibrations, the electrical circuit in which the electrical energy was
dissipated as heat was connected to electrodes 3.

The mechanical vibration amplitude level was determined indirectly via the
electric potential U1, which occurred on the free end of the rod.

The two electric circuits, one purely resistive (R) and one resistive-inductive
(RL), were considered. By changing resistance R and inductance L, it is possible to
gain maximum damping of vibrations.

Optimization of the Damping Properties of Electro-Viscoelastic … 91



Because the inductance coil is bulky, poorly modified, inconvenient to use and,
as a rule, of large size, it is replaced, for the sake of compactness and convenience,
by a gyrator. With the electric diagram of a gyrator, large inductance values can be
achieved in a small-sized, light and cheap case. A gyrator is an electric circuit,
which inverts impedance. The essence of the gyrator is the following: by using a
capacitor voltage, it allows the voltage and current at the diagram entrance to
behave like the voltage and current in the inductance coil.

The electrical diagram of the gyrator is given in Fig. 2.
The impedance of such an inductive circuit is given by

Z ¼ C4
R1R3

R2

� �
R5;

there C4 is the capacitor, R1;R2;R3 are the resistances, and R5 is the variable
resistance.

Due to the variable resistance R5, the inductance of the gyrator can vary over a
broad range. For operational amplifiers, OP07CP precision amplifiers were used.

Figure 3 presents the plots of voltage at the end of the piezoceramic rod versus
active resistance of the external circuit at fixed inductance values for the second
vibration mode.

Fig. 1 Scheme of the experiment

Fig. 2 Electrical diagram of the gyrator
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Our experiment produced the following results:

• vibration damping by means of a resistive circuit alone is not an optimal
strategy, and what is more at R = 0 or R ¼ 1 the existence of the external
electric circuit has no influence on the vibrations of the system, and thus no
additional vibration damping takes place;

• in the case of only resistive circuit, the maximum vibration damping at R = 4 kΩ
is 30 %;

• with an increase of the inductive component in the external electric circuit up to
11 mH, the damping of the longitudinal vibrations of the rod increases as well,
yet a further growth of the inductance value leads to reduction in the degree of
vibration damping.

5 Examples of Numerical Analysis and Optimization
of Dissipative Properties of Smart Structures

Let us consider an oblique elastic plate of volume V1 with an adjoint piezoelectric
element of volume V2 (Fig. 4). The plate has a length b = 15 m, parallel faces
h1 ¼ 9 m and h2 ¼ 3 m, and thickness t = 0.3 m and is made of aluminum alloy
with the following mechanical characteristics: E ¼ 0:7� 1011 N=m2,
m ¼ 0:3; q ¼ 2600 kg=m3. The piezoelectric layer of length a = 3 m and thickness

Fig. 3 Voltage at the end of
the piezoceramic rod versus
active resistance of the
external circuit at fixed
inductance values
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t1 ¼ 0:15 m is made of PZT-5 piezoceramics with the following mechanical and
piezoelectric characteristics:

C11 ¼ 13:9� 1010 N=m2; C12 ¼ 7:78� 1010 N=m2;

C13 ¼ 7:43� 1010 N=m2; C33 ¼ 11:5� 1010 N=m2;

C44 ¼ 2:56� 1010 N=m2; b13 ¼ �52 C=m2;

b33 ¼ 151 C=m2; b15 ¼ 127 C=m2;

e11 ¼ 6:45� 10�7 F=m; e33 ¼ 5:62� 10�7 F=m;

q ¼ 7700 kg=m3:

The left edge of the plate is rigidly fixed.
The model under consideration imitates an aircraft wing.
The electric circuits under consideration are individual R, L and C elements as

well as series and parallel R and L elements.
Figure 5 shows diagrams of the natural frequencies f ¼ xR=2p and damping

factors N ¼ xI for elementary R, L and C circuits (containing only one element) for
the first vibration mode. In this case, damping takes place only for the R circuit. The
maximum damping of the first eigenmode is found at R1 ¼ 63,100 Ω. For com-
parison, at R2 ¼ 15,850 Ω, the second mode will be damped to a maximum.

Figure 6 shows the damping factor of the first mode in relation to the resistance
R at varying inductance L for series and parallel RL circuits.

With the series circuit, the maximum damping is reached at L = 6340 H, and
with the parallel circuit, at L = 6500 H.

It is seem from comparison of the damping factors for the elementary R and
series RL circuits that the latter provides much higher damping. This is because the
piezoelement self-capacitance and inductance form a resonant LC circuit, resulting
in a considerable increase in the current through the RL circuit. The natural fre-
quency of the LC circuit thus coincides with the corresponding mechanical reso-
nance frequency of the electroelastic system fi ¼ 1

2p
ffiffiffiffiffiffi
LiC

p . Diagrams for higher

vibration modes are no different in character from those for the first mode.

Fig. 4 Computational model
of a trapezoidal plate with a
piezoelement (a) the
geometry of the
computational model (b) the
first mode of vibrations

94 V.P. Matveenko et al.



Fig. 5 Natural frequencies
and damping factors of the
first mode versus the
parameters of the external
electric circuit for the aircraft
wing model
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The second example is optimization of damping properties of a parabolic shell
(Fig. 7a) in the form of an ellipse with semiaxes a = 1 m, b = 0.75 m and thickness
of 1 mm. The shell is made of AD1M aluminum alloy and is supported by two pairs
of stiffeners made of P-5-13N unidirectional composite based on carboxylic fibers.
The shell material was taken to be elastic with E ¼ 0:7� 1011N=m2,
m ¼ 0:3; q ¼ 2600 kg=m3. The stiffeners were taken to be viscoelastic with a loss
tangent v ¼ 10�5 and E ¼ 1:5� 1011N=m2, m ¼ 0:2; q ¼ 1000 kg=m3. The cross-
sections of the vertical and horizontal stiffeners were taken equal to 25 × 30 and
25 × 20 mm, respectively.

Fig. 6 Damping factor of the
first mode versus the
resistance R at varying
inductance L for the series
(a) and parallel (b) RL circuits
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The possibility to enhance the damping effect with the use of piezoelectric
materials was studied by calculating this shell with four transversely isotropic
piezocomposite patches of thickness 1 mm in its central part the electrodes of which
can be connected to external RLC circuits.

The piezocomposite with crosswise polarization has the following electrome-
chanical characteristics:

C11 ¼ 13:9� 1010 N=m2; C12 ¼ 7:78� 1010 N=m2;

C13 ¼ 7:43� 1010 N=m2; C33 ¼ 11:5� 1010 N=m2;

C44 ¼ 2:56� 1010 N=m2; b13 ¼ �52C=m2;

b33 ¼ 151C=m2; b15 ¼ 127 C=m2;

e11 ¼ 6:45� 10�7 F=m; e33 ¼ 5:62� 10�7 F=m;

q ¼ 7700 kg=m3:

The problem is solved to find circuit parameters that provide the highest
vibration damping of the system. By way of illustration, Fig. 7b shows the first
resonance frequency xR and corresponding damping index xI versus resistance for
a circuit with only one component R. In this case, the maximum damping is found
at R = 36 kΩ.

Fig. 7 Schematic of the parabolic shell (a), first resonance frequency xR and corresponding
damping index xI versus resistance for a circuit with only one component R (b)
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6 Conclusion

Thus, we considered the problem of simulation and optimization of dynamic
characteristics, namely, the resonance frequencies and the parameters responsible
for damping properties of smart systems based on piezoelectric materials with
external electric circuits comprising resistance, capacitance and inductance. To
determine the specified dynamic characteristics, the natural vibration problem of
electroviscoelastic solids with external electric circuits was proposed. The boundary
conditions for passive external circuits with different connections of circuit ele-
ments and for active external circuits were formulated.

The main aspects of numerical realization of the problem by the finite element
method were considered. Numerical examples were given to demonstrate efficient
application of the natural vibration problem of an electroviscoelastic solid with
external electric circuits to optimize damping properties of smart systems based on
piezoelectric materials.
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Bulk Metallic Glasses: Mechanical
Properties and Performance

V. Nekouie, G. Abeygunawardane-Arachchige, A. Roy
and V.V. Silberschmidt

Abstract In this paper, a history of development of bulk metallic glasses (BMGs)
was presented, followed by a review of fundamental mechanisms of their defor-
mation and fracture. In this study, observations of fracture surfaces of the Zr-Cu-
based BMG exposed to a 3-point test revealed features that are different from those
observed in crystalline materials. Indentation techniques were extensively used to
characterise elastic deformation of the studied BMG alloy, followed by a systematic
analysis of initiation and evolution of shear-band localisation in the indented
material. Our results, obtained with the suggested wedge-indentation technique,
demonstrated initiation of shear bands in the material volume. This technique can
be particularly useful for development of appropriate constitutive models to analyse
plastic events in amorphous materials in the small-length scale. A current state of
constitutive models of deformation and fracture behaviour of BMGs are presented
together with modelling challenges. Simulation of simple tensile and compressive
tests were conducted with JH-2, JHB and Drucker-Prager constitutive models by
employing identical boundary conditions, type of element and specimen’s geom-
etry. Based on the obtained simulation results, the JH-2 model was considered as
not suitable for quasi-static analysis due to ambiguity of the data produced with it
for uniaxial tensile and compressive conditions. However, it is concluded that the
extended Drucker-Prager and JHB models can be used to study deformation modes
in BMGs.
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1 Introduction

1.1 Motivation

Bulk metallic glasses (BMGs) are relatively new materials under that are increas-
ingly for various applications due to their unique and remarkable properties. These
properties make them ideal candidate for such applications as MEMS (Micro-
electromechanical systems), miniaturised biomedical devices and implants as well
as micro-robotics devices. In the last few decades, researches have led to the
discovery and development of new BMGs in a variety of multi-component alloy
systems including those on rare earths based with easy verification during con-
ventional solidification resulting in thicknesses of several centimetres and weigh up
to several kilograms [20, 28]. BMGs have received much scientific and techno-
logical attention due to their prominent mechanical properties such as a high ratio of
elastic limit to the Young’s modulus and higher fracture toughness, when compared
to their crystalline counterparts of similar composition. On average specific strength
of metallic glasses is more than twice of their crystalline counterparts. Metallic
glasses also absorb less energy in stress-induced deformation compared with
crystalline materials. This is typically attributed to the absence of a long-range order
in their atomic structure and lack of defects such as dislocations, which control
ductility in traditional metallic materials. Typically, inorganic glasses are brittle at
room temperature, exhibiting a smooth fracture surface as a result of mode-I brittle
fracture. BMGs have nearly no plasticity in the macro-scale under tensile and
compressive deformations and their mechanical behaviour is very sensitive to
internal and surface flaws such as microcracks and voids. The cause of this limited
macroscopic plasticity in BMGs is the absence of grain structure and an extreme
localisation of plastic flow into narrow shear bands that initiate strain-softening.
As shown in Fig. 1, metallic glasses fail on the plane of maximum shear stress
under tension loading, which is roughly at 45 °C to the tension axis. The resulting
fracture surfaces have two distinct regions smooth and veined. For BMGs, at

Fig. 1 a Shear band
formation in metallic glass
samples in uniaxial tension.
b Fracture process of BMG
by which specimen in tension
with formation of smooth and
veined regions [20]
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temperatures significantly lower than the glass transition (Tg), observed plastic
deformation is spatially and temporally inhomogeneous and carried by highly
localised, narrow shear bands [20].

Significant efforts have been made to develop glassy metal, capable to distribute
shear bands uniformly or to hinder their propagation in order to enhance their
deformability. Some recent experiments on sub-micron and nano-sized metallic
glass specimens showed that a process of shear localisation became more stable and
less catastrophic, when compared to that in large-size samples [7]. In this chapter,
we will first describe the manufacturing history of BMGs including important
factors, which influence their manufacture. Subsequently, the deformation main
mechanisms of metallic glasses will be analysed, highlighting the theories proposed
for inhomogeneous plastic flow and explaining the effect of temperature and strain
rate on the plastic flow. This will be followed by discussion about length-scale
dependency of mechanical behaviour of BMGs under loading conditions. Finally,
the current understanding of the constitutive models of deformation and fracture
behaviour will be presented together with modelling challenges.

1.2 Historical Background

Natural glass existed from the early times of the Earth and man-made (non-metallic)
glasses were fabricated in Egypt and Eastern Mesopotamia from 3500 BC. In
contrast, amorphous metal or metallic glasses were first reported only around
1960s. These could be processed using solid-state amorphisation [30] via hydrogen
absorption [56, 62], mechanical alloying [1], or heat treatment enabling anomalous
diffusion in crystalline bi-layers [50]. In 1960, Klement et al. [32] fabricated a
metallic glass (Au-Si alloy) by rapid quenching from 1300 °C to room temperature
with high cooling rate of 106 Ks�1 [32]. From late 1980s, metallic glasses were
manufactured in a variety of multi-component alloys with cooling rates less than
100 Ks�1 and thickness of several centimetres. The first commercial metallic glass,
Zr41.2Cu12.5Ni10Ti13.8Be22.5 alloy named Vitreloy 1, was produced by Johnson and
Peker in 1992 with a critical cooling rate of 1Ks�1. Over the last 40 years, critical
casting thickness was increased by more than three orders of magnitude, and high
quantity of amorphous components was formed, as shown in Fig. 2. Inoue et al.
[25] suggested three empirical rules to stabilise a supercooled metallic liquid.
Firstly, the multi-component system should include three or more elements as the
presence of several elements causes a significant extension of the supercooled
liquid region before crystallization. Secondly, there should be a considerable dif-
ference (greater than *12 %) in the atomic sizes of the main constituent elements.
The atomic size differences result in a highly dense random packed structure in
amorphous phases. Finally, the elements should have negative heats of mixing with
each other; these increase the energy barrier at the solid-liquid interface and
accelerate atomic diffusivity. Hence, the supercooled liquid temperature is extended
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due to slowing local atomic rearrangement and crystal nucleation rate. A variety of
BMGs such as Fe-based, Cu-based etc. were synthesized employing these rules.

Elastic properties of metallic glasses can be derived from the properties of
constituent metallic element using a modified rule of mixture as suggested by Liu
[37]; it was shown that the elastic properties of metallic glass cannot be predicted
with the conventional rule of mixture in individual alloy systems. This approach
originated from the motion of disordered atomic structures in metallic glasses and
their intrinsic local heterogeneities. In general, metallic glasses can be considered as
having short- and medium- range orders in the matrix with excess of solvent atoms.
Systems with short-range orders can be modelled as solute-centred clusters while
those medium-range orders are always characterized as interconnected clusters. Liu
et al. [37] proposed that metallic glasses can be treated as hybrids composed of dual
phases of clusters/superclusters and solvent matrix.

As shown in Fig. 3, a stiff phase ðSÞ represents the clusters/superclusters and ðMÞ
shows a solvent matrix with lower stiffness. In Fig. 3b, BMG is considered as a
homogenous material, in which the local stress is distributed uniformly among dif-
ferent constitute atoms. As shown in Fig. 3d, the two phases are supposed to sustain
equal stress under an applied elastic loading; however, their strain responses may
differ. As a result, the global elastic moduli of metallic glasses ðGÞ can be calculated
according to the modified “rule of mixture” under iso-stress conditions [37]:

1
G
¼ VM

m f M

GMVm
þ VS

mf
S

GSVm
;

where VM
m and VS

m are the molar volumes of the matrix and clustres/superclusters,
respectively, GM and GS are their elastic moduli and f M and f S are the fractions of
the two phases which is considered that f M þ f S ¼ 1. Unlike the conventional “rule
of mixture”, the hybrid model with dual phases, provides a relation to validate the

Fig. 2 Increase in critical
casting thickness for various
glass-forming alloys over
50 years [39]
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calculated value of the elastic modulus with its experimental value. The model
helps to predict and design the elasticity of metallic glasses much more precisely
based on their alloy compositions. In addition, it is capable to describe softening
phenomena in BMGs when the global ðGÞ decreases due to increasing base metal
contents.

Poisson’s ratio ðtÞ of BMGs is closely related to some factors such as fragility a
the liquid and its glass-forming ability. Pt-based metallic glass with a high Poison’s
ratio of 0.42 shows high plastic strain in compression and high fracture toughness
[47]. Lewandowski et al. [35] proposed a general relation between t of BMGs and
fracture energy for a variety of as-cast metallic glasses based on Ce, Cu, Fe, Mg,
Pd, Pt as well as a Zr-based glass in different annealing conditions. These metallic
glass showed significant toughness only when the t value was higher than a critical
value of 0.31–0.32. The measured toughness value was considered as an intrinsic
property of metallic glasses; however, they could be affected by extrinsic factors,
such as the presence of brittle oxide inclusions [38]. The choice of composition can
significantly influence the pattern of shear banding and, consequently, mechanical
properties of the metallic glasses. It is obvious that the shear bands spacing and

Fig. 3 Schematics ideally homogeneous BMG (a) and (b), and, dual- phases BMG (c) as well as
their strain responses to an applied elastic shear stress τ (d). The compliant solvent matrix M and
stiff clusters/superclusters S are supposed to sustain equal stress s, but display different strain γ,
which conforms to the iso-stress condition [37]
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shear offset are important factors in shear bands pattern and they were typically
decreased with higher value of m of BMGs. This prediction was verified in a limited
number of experiments.

2 Deformation and Failure Mechanism

2.1 Deformation Behaviour

A number of mechanistic theories have been proposed to describe the plastic flow
and deformation behaviour of metallic glasses. The plastic deformation in BMGs
was described using free-volume and shear transformation zones (STZs) proposed
in Argon and Spaepen’s model, based on the atomic motion [2, 52]. A free volume
mechanism includes the redistribution of free volumes, where a single crystal atom
jumps from an area of low free volume to an area of high free volume, as illustrated
in Fig. 4. As can be seen, shear transformation takes place by reorganization of a
local cluster of randomly closed-packed atoms referred to as “shear transformation
zones (STZs)”, which are thermally activated around high free volume regions
under inelastic transition.

At macro-scale, the deformation mechanism of metallic glasses based on the free
volume and STZs theory can occur homogenously or inhomogeneously depending
on the values of strain rate, temperature and applied stress. Thus, the deformation
map for metallic glasses was developed based on that for crystalline materials
proposed by Ashby and Frost [17]. Spaepen [52] suggested a deformation map
showing a transition from a homogeneous behaviour to inhomogeneous one as a

Fig. 4 Schematics of deformation mechanism: a STZ; b free volume [2]
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function of temperature and strain rate. Based on this deformation map, homoge-
neous deformation happens at low stresses and high temperatures considering also
that stress is a strong function of strain rate, as indicated by strain rate contours.
Moreover, inhomogeneous deformation takes place at high stress levels and low
temperature, and it is insensitive to the strain rate. The suggested deformation map
can be used for melt-spun metallic glass ribbons as BMGs show wide-range
supercooled- liquid regions.

Schuh et al. [48] modified the previous deformation-mechanism map to incor-
porate other observations. They indicated the deformation modes with two com-
plementary deformation maps using the concept of STZ. Figure 5a represents
normalised stress as a function of temperature similar to that proposed by Spaepon
[52]. Figure 5b is in a coordinates of shear strain rate and temperature and follows
the analysis suggested by Megusar et al. [40]. The most important aspect is that the
deformation map presents a boundary, at which a transition occurs from the
homogeneous mode at high temperature and low stresses and strain rates to the
inhomogeneous mode of deformation at low temperature and higher levels of stress
and strain rate. As shown in Fig. 5, Schuh et al. [48] modified the deformation map
with inclusion of strain rate contours instead of putting a single dividing line to
show this transition. In the map, the homogeneous regime is divided into “elastic”,
“Newtonian”, and “non-Newtonian” sub regions. The transition Newtonian to non-
Newtonian occurs at 10�5 s�1; the non-Newtonian flow is observed at strain rate
below this value. However, it is important to mention that at high enough shear
rates, the non-Newtonian flow as well as shear localisation can happen at high
temperatures even in the supercooled region. The pressure dependence is also
shown in Fig. 5a as iso-pressure contours for a single value of shear stress. The
pressure effect on inhomogeneous behaviour can be more clearly observed in
Fig. 5b with iso-pressure contours for various applied shear stresses. This figure
presents the effect of shear strain rate on shear banding and serrated flow patterns as
the high strain rate and lower temperature result in shear bands of smaller offset that
are more finely spaced. The deformation map developed by Schuh et al. [48] does
not consider the evolution of glass structure during the deformation and cannot be
used to explain the fracture behaviour. However, this map can be employed to
compare the mechanical response of different metallic glasses at same absolute
temperature (e.g. room temperature) but at different homologous temperatures.

2.2 Length Scale Effect

Modern advanced manufacturing processes often need to control component’s
dimensions and material’s microstructure down to a nanometre level. In addition,
recent advances such as focused ion beam (FIB), which a technique for specimen
preparation or nanoindentation allowed materials characterisation at micron and
sub-micron length scales. These developments help to achieve or design new
material systems at micron and sub-micron scales as an alternative to traditional
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strengthening techniques (Fig. 6) and it is necessary to investigate mechanical
properties and deformation mechanism of MGs to understand their length-
dependency and its effect on structural integrity.

Various research groups produced contradicting conclusions on the length-scale
effect, based on different experiments performed on various BMG systems. The
magnitude of yield stress measured for a large number of Cu-based and Zr-based
micropillars are plotted in Fig. 7 as a function of the effective pillar diameter [21].
Apparently, the yield stress is independent of pillar diameter over the studied size
scale due to a lack of dislocation sliding. In addition, it was claimed that MG
strength is controlled by interatomic bonding, and there is a rarely linear relation-
ship with the elastic modulus. However, it was shown that there was a considerable

Fig. 5 Deformation maps for a normalised stress and b strain rate and various normalised
temperatures [48]
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size effect leading to increase yield stress of micrometre sized specimens of Mg-
based and Zr-based metallic glasses. Other groups carried out micro-compression
experiments on metallic glass micropillars and reported a correlation between a
reduced size and several mechanical properties including maximum plastic strain
before failure, yield strength and deformation mode; however, most of them were
inconsistent as can be seen in Table 1. An imperfect geometry, including tapering
and top curvature of cylindrical pillars, is the main reason for the lack of agreement
in micro-compression tests [20]. Moreover, when the sample size is reduced to
nanometre scale, surface diffusion may contribute to plastic deformation and
yielding, resulting in a decrease in strength. Schuster et al. [49] also confirmed that

Fig. 6 Micro-truss structure at various length scales as concept of “architectured” material [21]

Fig. 7 Yield stress versus
pillar diameter for Cu- and Zr-
based metallic glasses with
trend line indicated [21]
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there was no size-dependent strength and deformation mode in compression of a
Pd-based metallic glass. However, this finding is in contrast to other studies
showing dramatic size effects in increasing the yield stress of micrometer sized Mg-
based and Zr-based metallic glasses [21].

As reported by Shimizu [21] that the critical lengths to nucleate and develop
shear bands is 100 nm. If the specimen length is smaller than the critical length,
shear bands are localised in the form of necking during plastic deformation of MG
samples are in tension. Greer et al. [20] showed that Zr-based MG nano-pillars with
100 nm diameter could attain ceramic-like strength (2.25 GPa) and metal like
ductility (25 %) simultaneously for non-tapered, free stranding nano-tension
specimens for their in situ uniaxial tension [28]. Shear banding developed and
distributed deformation was observed in the form of non-localised flow followed by
necking. However, it was found that the yield strength of metallic glass nanopillars
showed size independency up to 500 nm diameters with changing deformation
modes.

As results a phenomenological model of two competing processes was proposed
to explain the unique size-dependency including highly localised and homogeneous
deformation mechanisms, related to the micro pillar diameter and the level of
applied stress. These characteristics of plasticity impart distinct features to the
mechanical behaviour of BMGs, such as flow softening, pressure sensitivity and
ductile-to-brittle transition [57]. Thus, studying the influence of plasticity at
microscopic length scales becomes essential for the development of robust mod-
elling frameworks for BMGs.

2.3 Modelling of Deformation in BMGs

Degradation of elastic properties is related to accumulation of damage in brittle
materials and primarily caused by evolution of micro cracks. Degradation of
mechanical properties is a unique feature of brittle material behaviour. Both mode
and stability of crack growth in brittle materials strongly depend on the sign and
magnitude of applied stress. Weakening of effective elastic properties of a solid by a

Table 1 Literature on size effect of strength in metallic glasses [21]

References BMGs Strength size dependence

Lee et al. [34] Mg-based metallic glass Dramatic increase

Lai et al. [33] Zr-based metallic glass Dramatic increase

Volkert et al. [58] Pd-based metallic glass Slight reduction

Schuster et al. [49] Pd-based metallic glass Slight reduction

Dubach et al. [13] Zr-based metallic glass No change

Jang and Greer [28] Zr-based metallic glass Small increase

Bharathula et al. [3] Zr-based metallic glass Yes

De Hosson et al. [12] Zr-Cu-based metallic glass No change
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distribution of micro cracks and other defects was accounted in several analytical
models by Nemat-Nasser and Li [43]. Various models were proposed for brittle
fracture of materials [60] by Glucklich [19], Brace and Bombolaski [5], Brandtzaeg
et al. [6] namely; energy model, stress model, sliding crack model and lattice
model, respectively. In all these approaches the material was assumed to be linear
elastic and the analyses were limited to static or quasi-static conditions. Continuum
damage mechanics models have were also used to study brittle materials with some
critical drawbacks (see [59]), while micromechanical damage models are often
computationally inefficient and impractical.

For metallic glasses, regardless of the experimental evidences of shear band
initiation, the origin of shear band remains ambiguous. Theoretical investigations
were conducted for shear -band initiation and evolution by Steif et al. [53], Huang
et al. [24] and Jiang and Dai [29]. Ruan et al. [47] suggested a new model incor-
porating atomic structural change and free-volume generation but it lacks experi-
mental validation. In this, the material was assumed to be viscoelastic to derive
high- temperature stress–strain relationships and extension to low temperature
scheme is a significant challenge.

Most acclaimed modelling strategies for BMG, mentioned in previous sections,
such as free- volume theory of Argon and Spaepen and the STZ-based deformation
mechanism are formulated for the atomistic domain and could not be employed in
the continuum approach. For instance, as mentioned by Argon et al. [2] that the
theory was based on free-volume regions typically conceived to be 5 atoms
diameters across and Ghosh and Cheng [10] proposed a free volume-based con-
stitutive model that accounts for transition from inhomogeneous to homogeneous
deformation and non-Newtonian to Newtonian viscosity. The simulation results
exhibit hydrostatic pressure dependence but for a certain range of temperature and
strain rates. However, it does not clarify the size effect exhibited by metallic glasses.
Molecular dynamics (MD) based simulations also provide deeper understanding of
deformation mechanisms of metallic glasses, but for the nano scale. For instance
Chu et al. [11] employed the MD scheme to conduct nano-indentation simulations
of Cu47Zr47Al6 metallic glass and Wang [59] used it to simulate nano-indentation of
(Cu50Zr50)100-xAlx thin film to study the effect of different Al content on material
properties. Shi and Falk [51] also adopted MD to perform 2D and 3D simulations of
nano-indentation of metallic glasses. However, MD analysis is limited to high
deformation rates (>107 s−1) and requires a considerable computational time. So,
the use of continuum based constitutive models can support a study of the size
effect exhibited by metallic glasses [54].

Finite-element analysis also contributed to the analysis of mechanical behaviour
of BMG by Gao [18] and Chen et al. [9] and several contributors. Based on their
studies, deformation of BMG was simulated at room temperature employing the
free-volume method and considered only the effect of free volume on deformation.
Later, Yang et al. [61] induced the evolution temperature into the study, while some
researchers considered the effect of hydrostatic stress as well. Still, these works
focused only on some facts of mechanical behaviour of BMGs and under certain
deformation conditions. As mentioned by Thamburaja et al. [54]; these models
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were limited to relatively low strain rates and neglected the material failure of more
advanced scheme with contributions of free volume, temperature, and hydrostatic
stress was considered by Li et al. [36] as it also incorporated a failure criterion
based on a critical free-volume concentration. However, as mentioned earlier, a
single simulation still struggles to represent the entire pattern of deformation and
failure in BMG [36].

3 Mechanical Characterisation of Bulk Metallic Glasses

3.1 Introduction

In 1970s and 1980s, it was difficult to measure mechanical properties of metallic
glasses due to the limitations linked to small specimen volumes, which made
implementation of conventional test techniques quite difficult. During that period,
standard microhardness measurement was a common method to measure the
mechanical strength of thin ribbons or powder of metallic glass. Advances in
indentation technique allowed for researchers to performmechanical characterisation
at small scale such indentation experiments play a major role in analysis of mech-
anisms of plastic flow in metallic glasses. As explained previously, there are different,
sometimes contradicting hypotheses about the deformation mechanisms of MGs at
microscale. Hence, further studies are required to understand initiation and propa-
gation of shear bands in the volume and at surface of metallic glasses. In this section,
characterisation of a Zr-Cu-based metallic glass Zr48Cu36Al8Ag8 (at.%) across dif-
ferent length scales is discussed. Three different experimental tests were employed to
assess the mechanical behaviour. First, macroscopic three-point bending tests were
carried out in order to determine its Young’s modulus and Poisson’s ratio. The
simplicity of determining the elastic modulus using bending test is worth considering
in comparison to tensile test, which often suffers from fixation, gripping and align-
ment problems. Secondly, indentation tests were conducted to characterise shear
bands with a Nano Test system (Micro Materials Ltd.) employing with a spherical
and Vickers indenters. Finally, wedge-indentation experiments developed in house
was performed to study shear-band evolution in the volume of the material and
support for simplified analytical and numerical modelling schemes. The micro-
structure of samples was identified using transmission electron microscopy (TEM)
and X-ray diffraction (XRD), scanning electron microscopy (SEM) was used to
observe evolution of shear bands on the deformed surfaces.

3.2 XRD and TEM

The amorphous nature of the supplied beam samples of MG was initially investi-
gated using X-ray diffraction. As shown in Fig. 8, the structure exhibited a broad
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diffuse peak without any detectable crystalline peaks on the XRD pattern showing
the amorphous state. The microstructure of the as-cast BMG was further charac-
terised with TEM. The TEM results confirmed the amorphous nature of the alloy as
the first halo ring of a selected area electron diffraction (SAED) pattern did not
show any presence of nanocrystals.

3.3 Bending Test

To perform the three-point bending test, beam samples with a length of 40 mm and
a cross section of 10mm� 2mm were prepared. The bending tests were conducted
using a universal testing machine Instron 3345. A biaxial strain gauge was attached
to the specimen to measure the strains along the axial and transverse direction
during the loading process. The load was applied by the mechanical test system
operating with a displacement rate of 0.5 mm/min. The macroscale bending tests
consistently led to an elastic modulus ðEÞ of 95 GPa with a Poisson’s ratio ðmÞ of
0.35.

Figure 9 shows SEM images of fracture surface morphology for Zr-Cu-based
BMG. In compression mode, the fracture surface is typically smooth with periodic
bands in the direction of fracture. Formation of a vein pattern indicates that fracture
occurred via shear mode II in compression mode and a river patterns are related to a
fast tensile fracture mode in tension mode. The differences in fracture surfaces
character are associated with the influence of normal stress and the dominance of
shear stress in tension and compression modes, respectively. Shear-band zones can
be found in both tension and compression sides as shown in Fig. 9. Apparently,
when shear bands appeared initially, the loading curve did not show any pop-in,
suggesting that the stress level at shear band initiation was smaller than flexural
yield strength. Usually shear bands play the weakening role in materials and lead to
lower strength and stiffness compared to that of undeformed BMG “matrix”. In
addition, it was also reported that shear bands often dilated and produced heat

Fig. 8 XRD pattern of Zr-
Cu-based metallic glass
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during plastic shearing, which provided a mechanism for work-softening. The
obtained shear bands were characterised using nano-indentation.

3.4 Nanoindentation Results

The NanoTest 600 system, manufactured by Micro Materials Wrexham UK, was
used for the depth-sensing indentation (DSI) experiments. Specimens of BMG were
cut and polished to mirror-like finish with the roughness around 5 nm. A series of
nanoindentation were conducted on the polished surface under loading rate of 0.1
and 2 mN/s.

Fig. 9 SEM images of fracture surfaces of Zr-Cu-based metallic glass due to 3-point bending test.
a Schematic of fracture surface observation. b High magnification images show presence of vein
pattern and shear steps on fracture surface
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To characterise the elastic deformation, a maximum load of 7 mN was applied
incrementally from 3 to 7 mN at a load rate of 0.1 mN/s (Fig. 10). The estimated
yielding load was 3 mN for the typical Zr-based BMGs for a to 5 μm spherical tip
following the work of Packard et al. [44]. Below 3 mN load, no evidence of plastic
deformation was observed, as confirmed by the initial experiments as shown as AB
in Fig. 10. With the increase in the peak load, the first ‘pop-in’ event occurred at
*4 mN indicating plastic deformation (represented by CD in Fig. 10), followed by
an another pop-in event at around 5.5 mN. All the experiments show close corre-
lation for the first pop-in events; the presented load-displacement plot (Fig. 10) is a
typical example from several tests. One major drawbacks of this experiment is the
fact that nucleation and initiation of shear band cannot be observed directly as it
occurs under the indenter.

The loading-unloading cycles were also carried out at higher load magnitudes
with the aim of observing shear-band steps on the material’s surface and evaluating
their propagation in the studied Zr-based metallic glass. The loading rate was 2 mN/
s with 5 µm spherical indenter. Shear bands appeared at the surface at loads in
excess of 100 mN; the features of shear bands at various loads from 130 to 275 mN
are shown in Fig. 11. The shear bands exhibited some symmetry, which probably
was due to indenter shape. A fractographic analysis also revealed the evolution of
shear bands on the surface with increasing magnitude of load/displacement
(Fig. 11). The magnitude of elastic modulus obtained from the unloading part of the
load-displacement curves indicated that E ¼ 86 GPa as characterised earlier via
bending test was accurate.

3.5 Micro-indentation

Micro-indentation experiments were conducted using spherical indenter with
diameter 50 μm at three different loading rates of 1, 2 and 10 mN/s. While shear

Fig. 10 Typical load-
displacement responses at
loading rate 0.1 mN/s for
purely elastic deformation
line (AB) and first pop-in line
(CD)
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band slips on the surface were observed around 100 mN in nanoindentation test, the
shear bands slips in spherical micro-indentation were found at loads in excess of
10 N (Fig. 12). Based on the Herztain elastic equation for a spherical indenter, the
mean pressure is inversely related to the contact radius and hence, the radius affects

Fig. 11 Shear band evolution on surface indentation with spherical indenter with increasing load
(a). (b) Indentation load-displacement curve for Zr-Cu-based BMG for incremental loading-
unloading (loading rate 2 mN/s)
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the initial yield pressure, which is revealed on the pressure-depth curve as pop-in
events that occur at yield load and corresponding displacement. In addition,
yielding of metallic glasses is initiated at location of maximum shear stress ðsmaxÞ in
the volume. As proposed by Greer et al. [20], the normalised yield pressure is
increased with decreasing the indenter tip radius (Fig. 12). They found that the
plastic-flow mechanism was changed by using indenter tips with various radii, with
deformation controlled by heterogeneous nucleation of shear bands for small ind-
enters changing to propagation of already nucleated shear bands at a large scale. A
clear size effect can be observed (Fig. 12b) as smaller radius gives higher level of
normalised yield pressure.

These subsequent cycles of loading-unloading in indentation implemented with
aim of assessing the evolution of shear bands at different loading rates including are
exhibited in Fig. 14 with the maximum load was 15 N. The features of shear band
steps at 15 N are shown in Fig. 14. The shear bands around the indent increased
with load rate without any generation of cracks. As can be seen in Fig. 13, the shear
band moving from the top right corner (denoted A in Fig. 14) crossed the shear
band coming from the top left corner (denoted B); however, the subsequent
nucleated shear bands were arrested by the same shear bands originating from the
top left to top right corner. Instability of the shear bands were observed in the form
of nucleation of several secondary shear bands from the primary ones during the
course of deformation. As shown in Fig. 14, the load-displacement curves became
increasingly serrated as the loading rate decreases, as single shear bands are acti-
vated. At high-rate loading, the overall plastic response became homogeneous in
time, since multiple shear bands operated simultaneously; this is confirmed in
Fig. 13 as the density of shear bands observed at high indentation rates is increased
noticeably. In order to determine the level of hardness and elastic modulus of such

Fig. 12 a SEM micrograph of the micro-indents of the Zr48Cu36Al8Ag8. There are no shear
bands around the indent with 10 N load b and normalised yield pressure versus indenter tip radius
for various metallic glasses [20]
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stiff materials as BMGs, frame compliance should also be taken into account during
calculation.

The depth measured during indentation process includes the depth of penetration
of the indenter into the specimens along with any displacement of the instrument
due to deflection. The compliance Cf , of the system is defined as deflection of the

Fig. 13 Representative load-displacement curves for various loading rates (maximum load 15 N)

Fig. 14 SEM images of micro-indentation in Zr48Cu36Al8Ag8. Loading rates: a 1 mN/s and;
b 10 mN/s
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instrument divided by the load. Compliance effects become important when a
relatively large radius indenter is used at high indentation loads. The compliance of
the indenter material 1

S is included in the composite modulus, where the stiffness of
the contact S is rearranged as:

dh
dp

¼ 1
S
þ Cf ð1Þ

see Fisher-Cripps [16] for full details. Equation (1) demonstrates that higher frame
compliance values leads to lower stiffness. Hence, an important question was
whether the loading rate in indentation studies had an effect on the measured frame
compliance as this might affect significantly the measured value of material’s
stiffness. Tungsten was used as a standard calibration material. It was observed that
the calculated frame compliance varies with loading rates for each load (Fig. 15).
These results indicate that the calculated frame compliance values are relatively
close to each other for loads up to 15 N and higher values were measured for higher
loading rates. Based on this experiment, mechanical properties hardness and elastic
modulus of the Zr-Cu-based material were determined in the micro-indentation test.

3.6 Wedge Indentation

A wedge indentation experiments was designed to overcome limitation of nano-
and micro-indentation to observe the initiation and propagation of shear bands
under the indenter surface. In nano- and micro- indentation experiments by the very
nature of the experiment, shear bands could be observed only after they exit to the
surface observation can be made.

Fig. 15 Frame compliance as
function of load for different
load rates including
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In 1989, Donovan used serial sectioning and etching in order to investigate the
plastic flow and fracture of Pd-based metallic glass loaded with spherical and
Vickers indenters. In that study, it was explained that the plastic zone (shear bands)
had a core region immediately beneath the contact zone, where the shear bands
typically terminated before they reached the free surface. The cracks seen in the
etched section were related to the regions of high tensile strain with excess of free
volume [45]. Ramamurty et al. [4, 26, 27, 45] proposed a technique named ‘Bonded
interface’ to investigate the shear-band propagation on a plane along the indentation
axis in BMGs. In this technique, a pre-cut specimen is loaded along the direction in
the plane of the cut with two halves of the specimen bonded along this interface by
frictional forces. This technique was employed for brittle materials such as ceramics
and oxide glasses in order to study the deformation mechanism underneath the
indenter [8, 15]. Zhang et al. [63] employed the bonded interface technique on
Vitreloy 106 in order to study the effect of increasing the load on shear bands
propagation. At small indentation loads, plastic deformation was primarily
accommodated by semi-circular mostly shear bands surrounding the indentation. At
higher loads, secondary and tertiary shear bands were formed inside the plastic
zone. The same technique was used to observe the primary shear bands (PSBs) and
secondary shear bands (SSBs) caused by the indentation in Zr-based metallic
glasses. As presented in Fig. 16, PSBs with a high intensity were formed near the
tip of the indenter. The SSBs emanated radially from the tip. It was suggested that
SSBs were formed because the tip of the indenter was not perfectly spherical and
the load applied on the sample’s surface was not exactly perpendicular to it. SSBs
intersected with the PSBs, but rarely approached the top surface of the indent.

Fig. 16 Primary and secondary shear bands created during the indentation of Zr52.5Cu7.9-
Ni14.6Al10Ti5 BMG [63]
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Based on the above observation, it was reasonable to claim that hemispherical
region of shear bands with different pattern was formed beneath the indentation.

The bonded interface technique was also employed at high temperatures on a Zr-
based BMG to study plastic deformation characteristics in a subsurface deformation
zone under a Vickers indenter and to find the reason for increased pressure sen-
sitivity of plastic flow with the temperature [14]. Unlike the constant deformation
zone, the shear-band spacing in the deformation zone increased with temperature as
larger shear bands were formed due to the movement of a large number of STZs. As
STZ formation is pressure sensitive, the overall plastic deformation of BMG was
more sensitive to pressure with increasing temperature. The advantage of the
“bonded interface” technique is its ability to image the deformation morphology,
especially for metallic glasses that undergo inhomogeneous deformation. However,
the “bonded interface” technique has an inherent problem with traction-free sur-
faces created when the specimen was split. As noted by Ramamurty et al. [4], the
adhesive layer joining the sections together may relieve the elastic constraint for
plastic flow, which would otherwise be present in bulk indentations. This may alter
the size or shapes of the deformed zone and even the indentation mechanism itself
[63]. This was noted by Mulhearn [41], who found that the relaxation could affect
the size of the deformed zone and the slope of the strain gradient but would not
affect the contours of equal strain significantly. It can be concluded that the shear
bands observed in indentation using the “bonded interface” method represent the
true behaviour of the material below the indenter, but the obtained sizes and shapes
could be inaccurate. In this respect, the wedge indentation test has an advantage
over the “bonded interface” technique, since it requires no adhesive and completely
eliminates limitation due to the presence of interface [42]. In addition, wedge
indentation can be used to apply incremental loading on any material to study
evolution of the deformation mechanism under materials by increasing the load.

A wedge indenter made of high-speed steel, with nominal angle of 60º and an
edge radius of 19.5 µm and height of 9.5 µm was designed and manufactured in-
house. A special fixture was manufactured to attach the indenter to the testing
machine (Fig. 17). Testing was carried out on the beam-shaped samples in a
compression mode with a constant displacement rate of 0.05 mm/min. load was
applied from 1 to 3 kN in increments of 1 kN. A Scanning Electron Microscope
(SEM) 360 was used to observe shear-band propagation at the top and front sur-
faces as shown Fig. 17c. The indentation tests reported here were conducted at
ambient temperature.

Figure 18 compares the indentation width measured on the top surface for
incremental and single loading modes. As shown in Fig. 18a, b, the measured
indentation imprints for single and incremental loading for 2 kN for both modes
prove that the wedge indenter in the former targeted the same location that was used
at the applied load of 1 kN. The difference in the indentation widths for two modes
of loading was less than 5 %. A similar situation occurred for single and incre-
mental loading of 3 kN. Contrary to micro- and nano-indentation, the described
results demonstrate that wedge indentation is able to provide an incremental study
of the shear- band propagation.
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Evolution of deformation patterns on the front surface of the wedge indented
sample are presented in Fig. 19. In all figures, several serrated semi-circular slip-
steps formed by shear bands were observed. Apart the serrated slip-steps, numerous
smooth semi-circular slip-steps of shear bands were seen, when the load was
increased to above 2 kN. These serrated and smooth semi-circular slip-steps are
named ‘primary shear bands’ in order to discriminate them from other slip-steps of
the shear bands form at higher loads. The number of the slip-steps from these PSBs
increased dramatically with the growing load but the spacing between them seems
to remain constant. Interestingly, the slip-steps of the semi-circular PSBs seem to
vanish as they approach the indentation surface. Above 1 kN, new types of shear
bands, as mentioned previously, were formed inside the zone of primary shear
bands, as shown in Fig. 19. These shear bands originated radially from the indenter
tip. From our observations, few slip lines of the shear bands reached the top surface.

4 Modelling of Metallic Glasses: Some Challenges

A better understanding of deformation processes in BMGs and their localization in
the form of shear bands, especially in bulk materials, is only possible with
numerical simulation. A number of studies have demonstrated that plastic

Fig. 17 Designed fixture (a), and experimental setup for wedge indentation (b). (Inset image:
wedge indenter and its dimension) (c) Schematic of shear band observation
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deformation of BMGs is different to the von–Mises (J2) type which is independent
of pressure [55]. The deviation of the shear-band’s inclination angle (SBIA) from
classical 45° is due to the effect of shear stress and the normal stress component.
Several well-established macro scale models of brittle materials already exist.
Additionally, the SBIA predicted by the MC model is symmetric for both tension
and compression whereas tests show large differences of it for BMGs [64].

Johnson and Holmquist proposed a constitutive relation for brittle material
known as JH-2. This model requires an explicit definition of strength for both intact
and fractured materials, pressure—volume relationship and a damage model.
Details of this model could be found in Johnson Hulmquiest et al. [31]. Johnson-
Holmquist-Beissel (JHB) model is an extension of the JH-2 model and its primary
distinctive feature is the ability to include the effect of pre-stress and phase changes
[23]. The JH-2 model poses for damage accumulation and progressive increase bulk
pressure. In contrast, the JHB model does not include any bulking pressure until the

(a)

(c) (d)

(b)2 kN

3 kN 2-3 kN

1-2 kN

Fig. 18 SEM images of top surface (a and c) indentation width for single loading; (b and
d) incremental loading. Load levels are shown in respective figures
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material is completely damaged. Another suitable model for brittle material is the
Drucker—Prager one that is widely used for frictional materials that exhibit pres-
sure–dependent yield stress and materials with higher compressive yield strength
than that in tension.

Simple tensile and compressive test simulations were conducted for the above
constitutive models by imposing identical boundary conditions, type of elements
and specimen’s geometry. The aim of the study was to analyse the relative merits
and deficiencies these models with in the context of simulations of brittle materials
with the ultimate goal of modelling BMGs. FE analysis based on those models was
conducted in ABAQUS/Explicit Material properties for all the simulations were for
silicon carbide that are readily available in the literature; this justified by the fact
that both materials exhibit pressure dependency of strength and characteristics in
macro scale at room temperature under compression and tension exhibit similar
trends [23].

For simulation of uniaxial tests, boundary conditions were imposed as shown in
Fig. 20. For displacement-control tests, amplitude of the displacement was smooth

Fig. 19 Evolution of shear bands pattern with load on the front surface of the BMG sample under
wedge indentation: a 1 kN, b 1–2 kN, c 1–2–3 kN
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and linearly. To preserve the quasi–static conditions in explicit analysis, an average
loading velocity of 0.5 mm/s was adopted [22]. Simulations of both tensile and
compression tests were conducted for all the above mentioned models; initially, FE
results were compared for both dog-bone-shape and cubic specimens for the JH-2
model.

4.1 FE Analysis of Tensile and Compressive Tests: JH-2
Model

Originally, displacement controlled with a linear and smooth amplitude version was
considered. It was found that the dog-bone shape specimen was not suitable for
further analysis as it deviate from the constraints of the JH-2 model. A specimen
with constant cross section along its axis would resolve this issue and the analysis is
presented in the following section. To distinguish the behaviours of the models with
the smooth and linear amplitudes, velocity distributions of along the direction of
applied displacement were analysed. For both models were observed distribution
along the loading direction is exceptionally large velocity levels that was slightly
reduced in the case of linear amplitude displacement. It can be concluded that the
smooth-amplitude definition induces unrealistic velocity into the model and should
be avoided in further analysis.

Field plots in Fig. 21 are for the cases with the imposed velocity boundary
condition. The maximum velocity is still large for a quasi–static assumption
although it is drastically reduced compared to that for the displacement boundary
conditions. A peculiar shape of the deformed cubic specimen could be observed as
the side with the imposed boundary condition dilated significantly; Fig. 21b
demonstrates this situation. With these observations, the JH-2 model fails to rep-
resent adequately a quasi–static uniaxial tensile behaviour of the brittle material for
the ranges of displacement and strain rates studied. The velocity along the loading
direction was considerably large for quasi–static conditions even though the dis-
placement was controlled at 0.5 mm/s.

Fig. 20 Boundary conditions
for FE simulation of uniaxial
tensile test
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In Fig. 22 results of compression simulations on velocity boundary conditions
exemplify similar plots for fields of velocity and displacement along the loading
direction with dilation as in above studies for the JH-2 model.

Fig. 21 a Velocity distribution along loading direction; b displacement field along lateral
direction; c distribution of volumetric strain for tensile simulation based on velocity boundary
condition

Fig. 22 a Maximum velocity attained in compression analysis; b displacement for compression
simulation based on velocity boundary condition
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4.2 FE Analysis of Tensile and Compressive Tests: (JHB
Model)

The JHB-based analysis was conducted in a similar manner. Our studies show that
the JHB model is somewhat representative of quasi–static loading conditions.
Tensile simulations with displacement boundary conditions were considered ini-
tially. Unlike simulations with JH-2 model, extensive dilatation of a portion of the
specimen was not observed in this study. As apparent from Fig. 23a, volumetric
strain did not change until the damage was initiated; it remained at a zero level. This
value is acceptable with the pressure—volume realtion of the model as l� 0 for the
expansion. Considering Figs. 22a and 23b, the maximum velocity in the JHB model
along the loading direction drastically reduced to 0.33 mm/s; this distribution is
suitable for the quasi–static conditions. As seen in Fig. 23c, the displacement field
is uniform and failure occurred in a brittle mode (Fig. 23d).

The state of the deformed specimen near the onset of damage including volumetric
strain, velocity and displacement along the loading direction is shown in Fig. 24.
Although the maximum velocity is slightly higher compared to that in Fig. 24b; it is
still acceptable to represents quasi–static conditions. The displacement field is

Fig. 23 Tension simulation displacement boundary condition a Volumetric strain; b maximum
velocity attained; c displacement distributions for close failure; d damage initiation at failure
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uniform as it should be for displacement boundary condition, and the failure mode is
identical to that tension simulation with displacement boundary condition.

Regarding Fig. 25, it could be mentioned that the JHB model does not reproduce
quasi–static conditions as velocity level are still considerable. The model did not
dilate, and the displacement along the loading direction is uniform, as before.

4.3 FE Analysis of Tensile and Compressive Tests:
Drucker-Prager Model

In contrast to the above mentioned models, Drucker-Prager model demonstrated
rather acceptable solutions. Initially, a case of displacement boundary condition
with a linear was considered. All the presented field plots are for a state close to
complete failure of the specimen. In the compression simulations with displacement
boundary conditions, the calculated velocity components are reasonably within the

Fig. 24 Results of tension simulation with velocity boundary condition a Volumetric strain;
b maximum velocity; c displacement distribution close to failure
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limits while the displacements are uniformly distributed. Notable features of Fig. 26
are close to failure, the lateral displacement of the specimen was slightly reduced in
the middle portion of the specimen while increasing at either ends. This behaviour
slightly forms a shrink domain at that portion.

For compression test with velocity boundary conditions (as shown in Fig. 27),
the response to loading did not changed. The specimen seemed to expand in the
middle portion. Even though the direct stress exceeded the compressive yield
strength, the specimen was not damaged. Additional analysis should be carried out
to find the cause of the unexpected behaviour.

Fig. 25 aMaximum velocity attained during compression analysis b displacement distribution for
compression simulation on velocity boundary condition

Fig. 26 Lateral displacement
of cubic specimen close to
failure under compression
(displacement boundary
condition)
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5 Summary and Conclusion

The manufacturing development of bulk metallic glasses by the use the science and
technology of supercooled metallic glasses made it possible to consider BMGs for
advanced structural applications. These materials demonstrate unique mechanical
properties including a combination of high hardness, specific strength, large elastic
elongation and high corrosion resistance. In absence of dislocation-mediated plastic
deformation of crystalline materials, metallic glasses undergo highly heterogeneous
deformation by formation of localised shear bands, which can lead to catastrophic
behaviours.

The fundamental mechanisms of deformation and fracture of metallic glasses
were reviewed in this paper. These include the effect of low and high strain rates,
temperature and pressure on the deformation mechanisms. The length-scale
dependency of BMGs was studied to understand their deformation mechanism and
mechanical properties at small scale.

In this study, observation of fracture surface of the Zr-Cu-based BMG under 3-
point test revealed brittle failures that are different from those observed in

Fig. 27 Distributions of velocity, displacement and direct stress (a–c) at the time step without
response to velocity boundary condition for compression test
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crystalline materials. Indentation techniques were extensively used to first study the
elastic deformation of the studied BMG alloy, followed by a systematic analysis of
initiation and evolution of shear-band localisation in the indented material. Our
results, obtained with the suggested wedge-indentation technique, demonstrated the
initiation of shear bands in the material volume. This technique is particularly
useful for materials scientists for development of appropriate constitutive models
that characterise plastic events in amorphous materials in the small-length scale.

Continuum-based approaches to study the deformation behaviour of metallic
glasses are essential for the macro scale engineering applications. Since metallic
glass shows pressure- dependency, many studies were carried out to elucidate the
mechanical deformation of the MG with available continuum approaches that are
pressure-dependent. It was shown that most common pressure-dependent contin-
uum models in the literature did not agree with the macro scale behaviour of the
BMG and the molecular dynamics approaches with the free volume theory is not
adequate for the macro scale problems. Among the available continuum models for
brittle materials including JH-2, JHB and Extended Drucker Prager model were
studied. Prior to the detailed study of these models with respect to metallic glass, it
is important to test them. Hence, uniaxial tensile and compression simulations were
conducted for the specimens with the material properties for silicon carbide. All
uniaxial compression and tensile tests were conducted by utilising both velocity and
displacement boundary conditions.

Based on the obtained simulation results, the JH-2 model has decided as not
suitable for quasi-static analysis due to ambiguity of the data for the uniaxial tensile
and compressive conditions. Compared to the JH-2, the JHB model presented main
features of typical brittle-mode failure under tension whereas under compression
the velocity distribution deviated from the quasi-static conditions. The use of the
extended Drucker-Prager model provided results similar to those obtaining with the
JHB model reasonable reproducing brittle favourable fracture in tension. Still, the
level of velocity was large for quasi-static conditions. Thus, it can be conducted that
the extended Drucker-Prager and JHB models can be used to study deformation
modes in BMGs whereas the JH-2 model is not suitable for both quasi-static tension
and compression.
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Constitutive Properties of Pure Indium
in Wide Temperature Range

Xiaojin Cheng, Changqing Liu and Vadim V. Silberschmidt

Abstract For microelectronic devices used in low-temperature applications,
understanding of their reliability and performance has become an important
research subject covering their service under severe or extreme conditions. Along
with challenges due to continuing miniaturisation of such devices, various prop-
erties and relevant thermo-mechanical response of interconnection materials to
temperature excursions at micro-scale became a critical factor that can affect reli-
able performance of microelectronics in various applications. Pure indium, as an
excellent interconnection material, has been used in the pixellated detector systems,
functioning at cryogenic temperatures. The properties and behaviour of indium
joints determine the functionality and performance of the detector system directly
since higher resolution of the sensor is achieved by bonding it with a readout
assembly via ultra-fine indium bumps. In this study, deformation behaviour of
indium joints was investigated by considering effects of its microstructure,
including the joint size (thin and thick joints) and substrate type (In/Cu and In/Ni/
Cu joints), and temperature. A constitutive relationship was thus established to
describe the deformation properties of indium joints under a wide range of
homologous temperatures.

1 Introduction

One serious concern in development of microelectronics for low-temperature
applications is assessment of performance and reliability issues of an electronic
system subjected to various temperature changes. For example, in extreme service
conditions, a hybrid pixel detector [1] can undergo a temperature excursion from a
low of 76 K to a high of 300 K. Another example of extreme temperatures is a
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space exploration rover, as recorded by Apollo 17 [2], with a range from 76 to
420 K. Apparently, thermal stresses and deformations of microelectronics arising
from temperature changes are defined by constitutive properties of interconnection
materials and bonding strength of under-bump-metallisation, and should be limited
by threshold values related to the permissible loads for electronic components.
Thus, it is essential to gain the knowledge of the deformation behaviour of inter-
connection materials for a wide range of temperatures as well as of characteristic
features of bonding interface between solder and its under-bump-metallisation.

One typical application for low-temperature microelectronic interconnections is
indium joints used in pixellated detector systems. Large facilities, for instance, the
Diamond Light Source in Didcot, UK, the European Synchrotron Facility in Gre-
noble, France and the European X-ray Free Electron Laser in Hamburg, Germany
devote considerable efforts to develop pixellated silicon and germanium detectors
used in cryogenic temperatures. Also, other imaging detectors include high-reso-
lution thermal imaging cameras and near-infrared detectors [1]. Since each indium
joint represents a single pixel in detector systems by interconnecting a signal line of
the sensor to a hybrid detector assembly (i.e. ASIC, see Fig. 1), the properties and
behaviour of an individual joint play an important role in determining their func-
tionality. Thus, as the pixel density determines the sensor’s resolution, one of the
main challenges linked with the development of finer bumps (i.e. higher pixel
density) is to minimise thermal stresses in indium joints under various in-service
conditions. Due to its extreme service temperature range, thermally-induced stresses
in indium joints in low-temperature microelectronics are linked to a larger tem-
perature change, for example, from room temperature (298 K) to liquid-nitrogen
temperature (76 K). Hence, in this paper, the deformation behaviour of indium
joints is investigated by considering the effect of such temperature change, as well
as the effects of joint size and substrate material used as under-bump-metallisation
(UBM).

Since deformation under external forces or temperature changes is a kinetic
process, the constitutive properties related to each deformation mechanism are often
determined by the levels of applied stress and homologous temperature
(Th ¼ T=Tm) [3, 4]. As a result of a low melting temperature of indium
(Tm = 429 K), even the room temperature (298 K) represents a homologous tem-
perature greater than 0.6. Hence, indium joints in service can be susceptible to

Fig. 1 Schematic of hybrid
pixel detector system (after
[1]): ASIC application-specific
integrated circuit; MCM
multichip modules
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creep. For some strain-rate-sensitive metals and alloys with relatively low strain-
hardening, the experimental results [5] have indicated that creep could occur at
homologous temperatures of 0.1–0.3. It means that indium serving as intercon-
nection at cryogenic temperatures, for example, is already close to 0.3 Tm at 120 K.
The studies of creep for bulk indium [6] indicated that a steady-state creep strain
rate predominantly increased with the increase in applied stress at 76 K. Hence,
creep is an important feature of deformation properties of indium in its low-tem-
perature applications.

In this study, the stress-strain data and creep behaviour of indium joints were
obtained with consideration of joint size, substrate type and different homologous
temperatures. A methodology was developed to predict deformation mechanisms
with respect to a wide range of homologous temperatures, and a constitutive
relationship for indium joints was proposed to cover the range of homologous
temperatures between 0.18 and 0.96 based on the experimental data and the
developed methodology.

2 Deformation Properties of Indium

2.1 Available Data from Literature

2.1.1 Elasticity

Kim and Ledbetter [7] investigated the elastic moduli of polycrystalline indium for
a temperature range from 5 to 300 K. The elastic constants of pure indium showed a
regular temperature-dependent behaviour for pure metals. However, a comparison
among these constants showed that the Young’s and shear moduli presented the
largest change, increasing approximately 55 % when the temperature fell from 300
to 5 K. Thus, the temperature-dependent elasticity of pure indium should be an
important factor to be considered in thermal stress analysis of electronic packaging
if an indium joint is exposed to a wide range of temperatures.

2.1.2 Plasticity

The yield, plastic flow and fracture characteristics of metals and alloys can be
distinct due to different microscopic deformation systems, which are attributed to
various lattice structures. Although the crystal structure of indium is commonly
known as face-centred tetragonal, it actually behaves like f.c.c. metals with respect
to the strain-hardening behaviour. In the study of the tensile behaviour of indium,
Reed et al. [8] compared the strain-hardening rate during deformation at 4, 10, and
76 K. It was identified that the stress-strain characteristics of pure indium at low
temperatures followed a power-law form with the strain-hardening exponent (N)
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being 0.64 at 4 and 10 K, and 0.51 at 76 K. This corresponded very closely to the
value for f.c.c. metals (e.g. copper and aluminum) at equivalent homologous
temperature. Their stress-strain curves showed, under the same strain rate, the
average yield stress was 0.93 MPa at 295 K, 2.8 MPa at 76 K and 3.09 MPa at 4 K.
Accordingly, ultimate strength was 1.6, 15.0 and 32.0 MPa, respectively.

2.1.3 Viscoplasticity and Creep

Various researchers have carried out experimental studies to investigate the rate-
and temperature-dependent stress-strain response of indium in bulk as well as in the
form of solder joints [9, 10]. A wide range of strain rates and temperatures has been
applied to evaluate their effects on the properties of indium, such as the Young’s
modulus, yield stress and ultimate strength. All of these experimental results
showed similar effects: an increase in the Young’s modulus, yield stress and ulti-
mate strength with the increase in strain rate, while an increase in temperature
indicates, generally, an opposite effect.

The magnitude of creep depends strongly on temperature since it is a thermally
activated process. At temperatures below around 0.3 Tm, no thermal recovery
process could be observed [4, 5]. From a cryogenic point of view, creep is negli-
gible at ambient temperatures low enough for metals around 0.3 Tm and for alloys
about 0.4 Tm [4, 11, 12]. Steady-state creep is not reached as it is achieved when
hardening is balanced by a thermal recovery processes, in addition to the strain
induced in primary creep is small. However, failures were verified in the application
of pure indium as an interconnection material at low temperatures due to a com-
bination of steady-state creep and the differential coefficient of thermal expansion
[8, 13, 14].

Reed et al. [6] measured tensile creep strain of pure indium under constant loads
at 4 and 76 K. A comparison of initial creep strain at 4 and 76 K showed yield stress
was insensitive to temperature in the tested range since the same stress was
approached at zero strain for both temperatures. The effect of applied stresses on
primary creep at 76 K implied that primary strain required more time to stabilize at
higher loads. In contrast, the primary strain region was completed earlier at 4 than at
76 K with less transient creep at equivalent stress. Their results also suggested that
the steady-state creep could dominate the deformation process of pure indium even
at low temperatures due to the observed linear relationships between the steady-
state creep rate and applied stress.

The relevant and available data for indium in the literature verified that the
deformation behaviour of pure metals and alloys, including indium, is strongly
dependent on the following macroscopic variables: the applied stress level, strain
rate, temperature and microstructure of the material. The particular equations, also
known as constitutive equations, should be stated for each deformation mechanism
with regard to these variables. Since deformation under external stress or temper-
ature change is a kinetic process, the correlation of stress with homologous tem-
perature should be implemented schematically in order to describe the possible
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dominance of the deformation mechanism(s) for a material [4]. Hence, the defor-
mation properties of indium joints were investigated, especially the inelastic
properties concerned with these factors. In regard to the microstructure-dependent
behaviour, the effect of microstructure features (e.g. IMC) on deformation of
indium joints was included by taking into account of different joint sizes and
substrate types. Furthermore, a constitutive equation was proposed based on the
experimental data and the developed methodology to describe the deformation
behaviour of indium joints for its low-temperature applications.

2.2 This Study

2.2.1 Sample Preparation

The deformation properties of indium joints were measured at room temperature by
considering various joint sizes (thin and thick joints) and substrate types (Cu and
Ni/Cu). The temperature- and stress-dependent creep behaviours of the indium
joints for both joint sizes were also examined. The specimen’s configuration
employed in experimental testing is schematically shown in Fig. 2. For the thin
joints, the dimension of indium joints along the Y axis was 120 ± 30 µm; it was
close to 1 mm on average for the thick joints. For the Ni/Cu substrate, nickel was
electroplated on a Cu substrate before bonding indium on it (thus forming a In/Ni/
Cu joint) in order to compare the effect of the interfacial microstructure (e.g.
intermetallic compound (IMC)) on the deformation behaviour and bonding strength
of the indium joints. All the joints were formed by reflow in air with a peak
temperature of 500 K (227 °C) for 400 s. The cooling rate of the reflow process was
about 0.2 K/s. All the specimens were stored at room temperature for 1–3 days to
allow stress relaxation before testing.

30 30 

Gauge length = 10 

Indium joint

CopperCopper

1 

10

X 

Y 
Cu or Ni/Cu 

bonding surface

A 

A’

Fig. 2 Specimen configuration for testing: top view (left); section A-A’ in direction of arrow
(right). All dimensions are in mm
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2.2.2 Mechanical Behaviour at Room Temperature

All the stress-strain relationships for the studied indium joints were obtained in
tension at a constant displacement rate, 0.08 mm/s (the strain rate approximately
0.0075 s−1), at room temperature (298 K). One set of tests with two displacement
rates, 0.0013 and 0.08 mm/s, was conducted on the In/Ni/Cu joints for both joint
sizes to understand the effect of strain rate on the mechanical response of indium
joints. All the stress-strain characteristics of the indium joints are presented using
the engineering stress-strain curve.

The typical curves of the indium joints on both the Cu substrate and Ni/Cu
metallization are presented in Fig. 3 for the thin and thick joints. The stress-strain
curves demonstrate the plastic deformation associated with strain hardening and
necking in indium joints after a limited elastic range. Under the same displacement
rate, the stress-strain response of the indium joints on Ni/Cu metallization is less
sensitive to joint sizes. In contrast, for the In/Cu joints, higher strengthening was
observed in the thin joints compared to the thick ones. To explain this, a reference
can be made to the well-known Hall-Petch relationship [15, 16], according to which
different mechanical properties of a material can be attributed to the feature of grain
size, determined generally by a cooling rate during the solidification process. In the
present study, the same cooling rate was adopted in the fabrication of all the
samples. Due to the significant volume difference between the thin and thick joints,
the cooling process is expected to be much quicker in the former than in the latter,

Fig. 3 Stress-strain curves of indium joints with two types of substrates: thick (solid line) and thin
(dashed line) joints with Cu substrate; thick (-�-) and thin (dotted line) joints with Ni/Cu substrate
(298 K, displacement rate 0.08 mm/s)
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resulting in a finer grain structure. It subsequently led to different strengthening
behaviours.

Compared to the In/Cu joints, the stress-strain characteristic of the indium joints
on Ni/Cu substrate indicated less difference with regard to the joint size. As can be
seen, indium joints of both sizes behaved similarly in both elastic and strain-
hardening regions. The thin joints exhibited a slightly higher ultimate strength than
the thick ones, which could be attributed to the grain-size effect discussed above.
However, regarding the different response of indium joints between In/Cu and In/
Ni/Cu to joint size, the microstructural difference is believed to be responsible for
this: A number of faceted and large particles were found near the In/Ni interface,
which EDX analysis revealed a composition of the Ni10In27 IMC phase; such
dispersed IMC particles were only observed in the In/Ni/Cu thick joints as given in
Fig. 4. Hence, the contribution of a dispersion-strengthening by IMCs as reported in
many researches [17–20] is believed to be attributed to the different response
between two substrate types to joint size.

For the indium joints on Ni/Cu substrate, the effect of the displacement rate was
compared for joints of different sizes. The values of yield stress and ultimate
strength were obtained for each rate; the stress offset method was used to estimate
the yield stress. Figure 5 presents the effect of displacement rate on the yield stress
(Fig. 5a) and ultimate strength (Fig. 5b). The comparison of the two parameters
showed that the yield stress is less sensitive to the increase in displacement rate in
comparison with the ultimate strength, especially for the thin joints.

2.2.3 Creep

The study of the effects of temperature and applied load on the creep behaviour of
the indium joints was carried out on the In/Cu specimen for both joint sizes. The
creep tests were performed at 298, 343 and 386 K corresponding to homologous
temperature of 0.7, 0.8 and 0.9, respectively. A comparison of creep behaviour
between the In/Cu and In/Ni/Cu joints is also investigated. In terms of the applied

Fig. 4 SEM images of cross section of a In/Cu and b In/Ni/Cu interface of thick joints

Constitutive Properties of Pure Indium in Wide Temperature Range 141



load, it is generally selected between 20 and 80 % of the yield stress. However,
based on the obtained yield stress listed in Fig. 5, three loads—7.5, 10 and 15 N
were chosen by considering the sensitivity of the extensometer (with a resolution of
0.2 µm) and being capable to obtain enough creep data at higher temperature (e.g.
386 K). These magnitudes correspond to 19.0, 25.1 and 37.7 % of the yield stress
for the In/Ni/Cu thick joints at 0.08 mm/s displacement rate (the strain rate
approximately 0.0075 s−1), respectively.

Fig. 5 Effect of displacement rate on yield stress a and ultimate strength b of thin and thick joints
(Ni/Cu metallization, 298 K)
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Effect of Joint Size and Substrate Material

Typical creep strain—time plots of the In/Cu specimen are shown in Fig. 6 for both
thin and thick joints under an applied load of 10 N at 298 K. Both curves dem-
onstrate three stages of creep deformation as showed in Fig. 6: primary creep
(transient creep), the secondary stage representing steady-state creep, and the ter-
tiary stage resulting from necking or cracking.

The creep strain rate in the tests started at a high level and decreased to a steady-
state value. It is apparent that the indium joints exhibited a normal, decelerated
primary creep region, which is typical for pure metals. The onset of secondary creep
in the thin joints started earlier than in the thick ones, which is believed to attribute
to a higher strain-hardening rate taking place in the thin joints as observed in the
stress-strain behaviour of the indium joints (see Figs. 3 and 5) since the decreasing
strain rate in the primary creep is proportional to the strain-hardening rate. Overall,
the creep data obtained at room temperature imply that the thin joints are more
creep-resistant than the thick ones under a given loading level, which showed a
consistent result with the constant-displacement-rate tests.

In order to understand the effect of microstructure on the creep behaviour of the
studied indium joints, some typical strain-time plots for both types of substrate—In/
Cu and In/Ni/Cu—were compared. The results are shown in Fig. 7 for the thin and
thick joints. Since there was a significant difference in duration of test for both
substrates, the steady-state strain rate, which is determined from the slope of the
linear part of the plot, was calculated and compared as given in Fig. 7. This rate for
the In/Ni/Cu joints is, on average, one order of magnitude lower than the In/Cu
joints at the same loading level and temperature. These findings are in agreement
with the found stress-strain behaviour of the indium joints as given in Fig. 3,
demonstrating higher compliance of the In/Cu joints.

Fig. 6 Typical creep curves of indium joints on Cu substrate under load of 10 N (298 K)
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Effect of Temperature

In general, creep can be expressed using a power-law relationship to describe the
stress-dependent behaviour and an Arrhenius relationship for the temperature-
dependent behaviour [17, 21]:

_ess ¼ A1r
n exp � Qc

RT

� �
; ð1Þ

where, according to [22],

Fig. 7 Typical creep curves of indium joints on Cu and Ni/Cu substrates at 298 K: a thin joint,
10 N; b thick joint, 15 N
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A1 ¼ AEb
RT

b
d

� �p 1
E

� �n

D0; ð2Þ

Qc is the activation energy for creep, R is the Boltzmann’s constant, T is the
absolute temperature, A is a material constant, E is the Young’s modulus, b is the
magnitude of Burgers vector, d is the material’s grain size, p and n are constant
exponents, D0 is a frequency factor.

Thus, creep at a given stress can be expressed as

_ess ¼ A2 exp � Qc

RT

� �
; ð3Þ

where A2 ¼ A1rn. So, using Eq. 3, the steady-state creep rates of the In/Cu thick
joints at 298, 343 and 386 K were plotted as a function of 1000/T for an applied load
of 15 N, as given in Fig. 8. From the slope of the fitting curve, the activation energy
for creep Qc was obtained as 68.35 kJ/mol for the temperature range of 298–386 K.
The activation energy for lattice self-diffusion of pure indium is 74.9 kJ/mol [23], so
the obtained activation energy for creep is close to that for the lattice self-diffusion
mechanism in the analysed temperature range with the tested stress level.

All the creep data obtained at different temperatures and stress levels were
plotted as the steady-state strain rate versus the applied stress for both thin and thick
joints in Fig. 9. The stress exponent, n, was calculated by using a linear fit of the
creep data obtained under different stress levels at a given temperature for both

Fig. 8 Determination of activation energy using creep data at 298, 343 and 386 K (In/Cu thick
joints, 15 N)
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types of joints. Apparently, this exponent varies between 5 and 9 for all the test
conditions.

When the steady-state creep is the dominant process, the map of deformation
mechanisms for most metals and alloys can be schematically presented with four
distinct straight-line segments on a plot of steady-state strain rate versus applied
stress as regions I, II, III and IV (see Fig. 10) [24, 25]. Regions I to III occur at low
and intermediate stresses: The creep usually occurs in this regime through a dif-
fusion-controlled dislocation movement. It is also called power-law creep since a
power-law form can generally describe plasticity of materials under this regime. At
high stresses, the steady-state creep rate increases more rapidly, and the power-law

Fig. 9 Steady-state creep rate versus applied stress for various In/Cu joints at different temperatures

Fig. 10 Schematic of steady-
state creep strain rate versus
applied stress diagram (gap
between solid and dashed
lines in stage III presents the
range of stress exponent for
this stage) [25]
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behaviour breaks down as presented by region IV. The first three regions have
stress exponents of approximately 3, 2, 3–7, respectively, while region IV has an
exponent close to 10 or above [17, 25, 26]. Therefore, the creep deformation
mechanisms of the indium joints in the present study are in the power-law creep
regime including breakdown, which is normally described with a hyperbolic sine
law [5, 17, 25]; the stress exponents higher than 7 (n > 7) were found mainly for
homologous temperatures in excess of 0.8 (i.e. 343 K), at which the power-law
breakdown is expected.

3 Constitutive Properties for Homologous-Temperature
Range 0.18–0.96

Creep deformation of the indium joints was studied under constant loads at tem-
peratures of 0.7, 0.8 and 0.9 Tm of indium formed on Cu substrate. The activation
energy obtained for creep and the stress exponent for all testing conditions suggest
that dislocation climb controls the deformation mechanism followed by the power-
law breakdown at higher temperatures. In addition, steady-state creep is emphasized
more than primary or tertiary creep due to a relatively large fraction of creep life
within this regime. Taking all these factors into account, a hyperbolic sine function,
widely used in analysis of steady-state creep of solders, was employed to describe
both the power-law and power-law-breakdown (PLB) stages as

_ess ¼ A3 exp � Qc

RT

� �
½sinh arð Þ�n; ð4Þ

where _ess is the steady-state creep strain-rate, A3 and a are constants, and σ is the
steady-state stress. The value of n is related to the dominant creep mechanism. For
example, for pure metals and alloys, the value of n generally varies from 3 to 7 over
wide ranges of stresses and temperatures when the deformation is dominated by
power-law creep [27–30]. It has been well established that Qc seems to be essen-
tially equal to the activation energy for lattice self-diffusion Qsd or 0.6 Qsd for a
large class of materials over certain temperatures (>0.6 Tm) [17, 24, 25, 29, 30].
This is related to the deformation mechanisms which are temperature-dependent,
and the lattice-diffusion climbing is dominant in the materials when the temperature
is above 0.6 Tm. However, below this, many investigations [31–33] observed that
the activation energy for creep is not always constant (for instance, near to the value
of Qsd). The study on silver [34] and aluminium [35] demonstrated a potential trend
for the activation energy for creep with a possible transition for atomic diffusion
mechanisms: with one regime where Qc ffi Qsd between around 0.6 and 1.0 Tm.
Additionally, Qc decreased continuously when the temperature is in the range of 0.3
and 0.6 Tm, where PLB may occur. Hence, Qc showed a stress- and temperature-
dependent character, which could be another parameter to link with the dominant

Constitutive Properties of Pure Indium in Wide Temperature Range 147



deformation mechanism, apart from the stress exponent n. So, the activation energy
for creep in indium was analysed and calculated based on the obtained creep data,
then a methodology with regard to Qc was proposed as a basis for establishment of
a constitutive equation for indium joints used in a larger temperature range.

3.1 Activation Energy for Creep

As well known, parameters of the flow behaviour of metals and alloys, for example,
their yield stress and ultimate strength can change with temperature. Hence, the
applied stress for creep tests needs to have an equivalent magnitude at different
temperatures to account for the change of strength with temperature. By introducing
the modulus-compensated stress, r=E, as the equivalent stress at different tem-
peratures [5], the data in Fig. 9 were re-plotted by considering the equivalent stress
for the corresponding temperature, as given in Fig. 11. The activation energy for
creep was calculated by using the following procedure: (i) with reference to Eq. 1,
creep at a given temperature can be simplified to a linear relationship between the
steady-state creep rate and modulus-compensated stress. As given in Fig. 11, for
example, two relationships (dashed lines) were obtained by curve-fitting for creep
data of the thick joints under different stresses at 386 and 298 K, respectively; (ii)
the steady-state creep strain rate at a given value of r=E was calculated via the
relationships obtained at the respective temperature, 386 and 298 K; (iii) the acti-
vation energy for creep Qc of the thick joints between 386 and 298 K was obtained

Fig. 11 Dependence of steady-state strain-rate on modulus-compensated stress of indium joints
for three temperatures: square marks – thick indium joints; round marks – thin indium joints.
Dashed lines are obtained by curve-fitting for creep data of thick joints at 386 and 298 K
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by substituting the calculated steady-state creep strain rate and the corresponding
temperature into the following equation (for the details of the original equation
see [36]):

Qc ¼ R � ln _e298Kss

� �� ln _e386Kss

� �
1=298ð Þ � 1=386ð Þ

" #
: ð5Þ

Thus, the magnitude of Qc can be obtained using this method at a given stress
level and for a given temperature range. Taking the creep data for the thick joints as
an example, the magnitude of the activation energy varies from 40 to 59 kJ/mol for
the range of modulus-compensated stress r=E from 8.5 × 10−5 to 1.2 × 10−4 within
298–386 K (see Fig. 11).

Referring to the creep data for pure indium [6, 23], the steady-state creep rate
versus the modulus-compensated stress for seven temperatures that cover the range
of homologous temperature between 0.01 and 0.96 is given in Fig. 12. For a
specified modulus-compensated stress, the activation energy Qc can be calculated
according to Eq. 5 based on the procedures stated above. Regarding the level of von
Mises stress in indium joints obtained from simulations of a cooling-heating pro-
cess with different ramp rates, the activation energies at different temperature ranges
were calculated for the corresponding modulus-compensated stress range of
4.0 × 10−5 and 4.6 × 10−4 (see a hatched area in Fig. 12).

Within the targeted stress range, the activation energies for creep of indium
joints were obtained between the two specified temperatures. For pure indium, the

Fig. 12 Dependence of steady-state strain rate on modulus-compensated stress of indium for
seven temperatures: triangle markers – pure indium [6, 23]; square markers – thick indium joints
from this study. The activation energies for creep were calculated and denoted between any two
fitted lines (in kJ/mol)
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magnitude varies from 52 to 34 kJ/mol between 413 (curve 1) and 318 K (curve 2)
with the increase in the level of applied stress, while it is in the range of 82–31 kJ/
mol between 318 and 273 K (curve 3). For the indium joints, the activation energy
of creep is between 20 and 110 kJ/mol in the temperature range 386–298 K (curves
6, 7). In contrast, the magnitude at temperatures below 273 K is extremely small
within the targeted stress range (i.e. 2–15 kJ/mol), as given between 273 (curve 3)
and 76 K (curve 4). Taking the averaged value for each temperature range as a
reference, it is evident that the activation energy of creep is generally either equal to
the energy for the lattice self-diffusion (Qsd = 74.8 kJ/mol) or close to 0.6 Qsd when
the temperature is above 0.6 Tm. As the slope of the fitting graph represents the
stress exponent n, all the data fall within the range of n = 5–11 for temperatures
between 413 and 273 K; the exceptions are for 76 and 4 K. This explains why Eq. 5
is not suitable for cryogenic temperatures. Hence, the suggested method was
applied to calculate the activation energy for temperatures above 0.6 Tm. The values
obtained from the data for the indium joints (curves 7 and 6) were chosen and
averaged; as a result, the activation energy at high temperatures (denoted as Qc-HT)
was found to be 65.5 kJ/mol.

For the data obtained at temperatures below 273 K (Fig. 12), the activation
energy of creep was established as a function of homologous temperature using the
following procedures:

(i) the value of Qc = 24.36 kJ/mol, at 76 K (*0.18 Tm) was obtained by means
of a non-linear regression of creep data at 76 K from Reed et al. [6] with
Eq. 4; it is denoted as Qc-LT;

(ii) the levels of activation energy for creep at 173 K (*0.4 Tm) and 223 K
(*0.5 Tm) were determined by regression of the creep data from Rui and
McCluskey [37];

(iii) a relationship was obtained by means of interpolation and curve-fitting these
data points obtained between the homologous temperatures of 0.18 and 0.6
Tm associated with Qc-HT and Qc-LT.

Below 0.2 Tm, the activation energy for creep was assumed to be equal to
Qc-LT. Thus, a function of the activation energy for creep in indium QcðTÞ was
developed for a wide range of temperature as shown in Fig. 13. The activation
energy for Qc-HT—65.5 kJ/mol—in this study with this method agrees well with
the value (69 kJ/mol) reported by Frenkel et al. [38].

3.2 Constitutive Equation

By employing the developed function of activation energy for creep, a master plot
of the creep data was fitted to the hyperbolic-sine relationship (Eq. 4 using software
DataFit [39] and manual calculations), as given in Fig. 14. These creep data are for
the temperature range 76–413 K corresponding to 0.18–0.96 Tm. The modified
hyperbolic-sine relationship is in good agreement with the experimental data for a
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large temperature range. However, there are a few significant deviations of some
data points (marked in Fig. 14), which were obtained from the deformation of
indium under compression whilst all the rest of the data were obtained under
tension.

Fig. 13 Activation energy of creep versus temperature Qc(T) (dotted line) presents the fitted
relationship between 0.18 and 0.6 Tm; Qsd is activation energy of lattice self-diffusion [23]

Fig. 14 Master plot of all creep data: 1 data for pure indium by Weertman [23]; 2 data for pure
indium by Rui (compression) [37]; 3 data for pure indium by Reed [6]; 4 data for indium joint
from this study
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Overall, the proposed constitutive relationship shown in Fig. 14 produces a
reasonable agreement with the experimental data, covering a wide range of
homologous temperatures at certain stress levels. This provides confidence in the
model’s capability to predict the deformation behaviour of indium joints for large
temperature changes, including cryogenic temperatures. This methodology, with
respect to the activation energy, offers an approach to establish a constitutive
relationship that is not only stress-dependent but also temperature-dependent, with
the enhanced capability to describe a wide range of homologous temperatures.

4 Conclusions

Numerous tests of constant displacement-rate tension and creep were conducted to
characterise the deformation behaviour of indium joints. According to the results
obtained from these tests, the main conclusions can be drawn as follows:

1. With regard to the effect of the joint size, strain hardening during loading was
more pronounced in the thin joints in comparison with that in the thick ones.
The test results for the specimens formed with two different types of the sub-
strates (i.e. Cu and Ni/Cu) demonstrated that the indium joints on Ni/Cu sub-
strate exhibit a higher strain hardening and creep resistance than the joints on the
Cu substrate.

2. Comparing the mechanical parameters, the yield stress was found to be less
sensitive to the increase in the displacement rate than the ultimate strength,
especially for the thin joints. The results showed that the stress-strain charac-
teristics of the indium joints were not only size-dependent but also micro-
structure-dependent.

3. The stress exponent and the activation energy for creep obtained from all the
creep data in this study allowed identification of the deformation mechanism of
the indium joints as the power-law creep regime, which can be described by a
hyperbolic sine law.

4. Employing the obtained experimental results alongside with the creep data
available in the literature, a methodology for the assessment of activation energy
for creep was developed to characterise the behaviour of the indium joints in a
broad thermal range—from 0.18 to 0.96 of homologous temperature.

5. Finally, a constitutive relationship using varying activation energies for creep was
proposed that can be used in numerical simulations of the deformation behaviour
of the indium joints under thermal changes, involving low temperatures.

Acknowledgments The authors would like to acknowledge the 7th European Community
Framework Programme for financial support through a Marie Curie International Research Staff
Exchange Scheme (IRSES) Project entitled “Micro-Multi-Material Manufacture to Enable
Multifunctional Miniaturised Devices (M6)” (Grant No. PIRSES-GA-2010-269113).

152 X. Cheng et al.



References

1. Stevens, B.: Internal report. Science and Technology Facilities Council (STFC), Rutherford
Appleton Laboratory, UK (2007)

2. Chang, R.W., McCluskey, F.P.: Reliability assessment of indium solder for low temperature
electronic packaging. Cryogenics 49(11), 630–634 (2009)

3. Lau, J.H.: Thermomechanics for electronics packaging. In: Lau, J.H., Reinhold, V.N. (eds.)
Thermal Stress and Strain in Microelectronics Packaging, pp. 1–72. Springer, New York
(1993)

4. Frost, H.J.: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics.
Pergamon Press, Oxford (1982)

5. Kassner, M.E.: Introduction. In: Fundamentals of Creep in Metals and Alloys, pp. 1–8.
Elsevier, Amsterdam; London (2009)

6. Reed, R.P., Walsh, R.P.: Creep of indium at low temperature. Adv. Cryogen. Engin. (Mater)
38, 117–126 (1992)

7. Kim, S., Ledbetter, H.: Low-temperature elastic coefficients of polycrystalline indium. Mater.
Sci. Eng. A 252(1), 139–143 (1998)

8. Reed, R.P., McCowan, C.N., Walsh, R.P., Delgado, L.A., McColskey, J.D.: Tensile strength
and ductility of indium. Mater. Sci. Eng. A 102, 227–236 (1988)

9. Darveaux, R., Turlik, I.: Shear deformation of indium solder joints. IEEE Trans. Compon.
Hybrids Manuf. Technol. 13(4), 929–939 (1990)

10. Darveaux, R., Hwang, L.-T., Reisman, A., Turlik, I.: Thermal analysis of a multichip package
design. J. Electron. Mater. 18(2), 267–274 (1989)

11. Weertman, J.: Steady-state creep of crystals. J. Appl. Phys. 28(10), 1185–1189 (1957)
12. Weertman, J.: Dislocation model of low-temperature creep. J. Appl. Phys. 29(12), 1685–1689

(1958)
13. Wigley, D.A.: Deformation processes in pure metals. In: Mechanical Properties of Materials at

Low Temperatures, pp. 1–42. Plenum Press, New York (1971)
14. Hands, B.A.: Cryogenic Engineering, 1st edn. Academic Press, Harcourt Brace Jovanovich,

London (1986)
15. Hall, E.O.: The deformation and ageing of mild steel 3: discussion of results. Proc. Phys. Soc.

London Sect. B 64(381), 747–753 (1951)
16. Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953)
17. Darveaux, R.: Mechanical evaluation of indium for die attachment in a multichip package. Ph.

D. thesis, North Carolina State University, USA, (1993)
18. Jang, J.W., Silva, A.P.D., Lee, T.Y., Lin, J.K., Frear, D.R.: Direct correlation between

microstructure and mechanical tensile properties in Pb-free solders and eutectic SnPb solder
for flip chip technology. Appl. Phys. Lett. 79(4), 482–484 (2001)

19. Lin, J.K., Jang, J.W.: Interfacial reactions and performance of lead-free solder joints. In: Pecht,
M., Ganesan, S. (eds.) Lead-Free Electronics, pp. 406–410. Wiley, Hoboken (2006)

20. Mccormack, M., Jin, S., Kammlott, G.W., Chen, H.S.: New Pb-free solder alloy with superior
mechanical properties. Appl. Phys. Lett. 63(1), 15–17 (1993)

21. Frost, H.J., Ashby, M.F.: Rate-equations. In: Frost, H.J., Ashby, M.F. (eds.) Deformation-
Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, pp. 6–16. Pergamon
Press, Oxford (1982)

22. Stocker, R.L., Ashby, M.F.: On the empirical constants in the Dorn equation. Scr. Metall. 7(1),
115–120 (1973)

23. Weertman, J.: Creep of indium, lead, and some of their alloys with various metals. Trans. Am.
Inst. Min. Metall. Eng. 218(2), 207–218 (1960)

24. Schubert, A., Walter, H., Dudek, R., Michel, B., Lefranc, G., Otto, J., Mitic, G.: Thermo-
mechanical properties and creep deformation of lead-containing and lead-free solders. In:
International Symposium on Advanced Packaging Materials: Processes, Properties and
Interfaces, Braselton, 11–14 March 2001

Constitutive Properties of Pure Indium in Wide Temperature Range 153



25. Zhang, Q., Dasgupta, A.: Constitutive properties and durability of selected lead-free solders.
In: Pecht, M., Ganesan, S. (eds.) Lead-Free Electronics, pp. 237–373. Wiley, Hoboken (2006)

26. Hacke, P.L., Sprecher, A.F., Conrad, H.: Thermomechanical fatigue of 63Sn-37Pb solder
joints. In: Lau, J.H., Reinhold, V.N. (eds.) Thermal Stress and Strain in Microelectronics
Packaging, pp. 467–489. Springer, New York (1993)

27. Garofalo, F.: Fundamentals of Creep and Creep-Rupture in Metals. The University of
California, Macmillan (1965)

28. Hertzberg, R.W., Vinci, R.P., Hertzberg, J.L.: Deformation and Fracture Mechanics of
Engineering Materials, 5th edn. Wiley, Hoboken (2012)

29. Weertman, J.: Steady-state creep through dislocation climb. J. Appl. Phys. 28(3), 362–364
(1957)

30. Weertman, J.: Theory of steady-state creep based on dislocation climb. J. Appl. Phys. 26(10),
1213–1217 (1955)

31. Raj, S.V., Langdon, T.G.: Creep behaviour of copper at intermediate temperatures—I.
Mechanical characteristics. Acta Metallurgica 37(3), 843–852 (1989)

32. Ruano, O.A., Wadsworth, J., Sherby, O.D.: Harper-Dorn creep in pure metals. Acta Metall. 36
(4), 1117–1128 (1988)

33. Spingarn, J.R., Barnett, D.M., Nix, W.D.: Theoretical descriptions of climb controlled steady
state creep at high and intermediate temperatures. Acta Metall. 27(9), 1549–1561 (1979)

34. Kassner, M.: The rate dependence and microstructure of high-purity silver deformed to large
strains between 0.16 and 0.30 Tm. Metall. Mater. Trans. A 20(10), 2001–2010 (1989)

35. Luthy, H., Miller, A.K., Sherby, O.D.: The stress and temperature dependence of steady-state
flow at intermediate temperatures for pure polycrystalline aluminium. Acta Metall. 28(2),
169–178 (1980)

36. Cheng, X., Liu, C., Silberschmidt, V.V.: Numerical analysis of thermo-mechanical behaviour
of indium micro-joint at cryogenic temperatures. Comput. Mater. Sci. 52(1), 274–281 (2011)

37. Rui, W., McCluskey, F.P.: Constitutive relations of indium solder joint in cold temperature
electronic packaging based on Anand model. J. Electron. Mater. 38(9), 1855–1859 (2008)

38. Frenkel, R.E., Sherby, O.D., Dorn, J.E.: Activation energies for creep of cadmium, indium,
and tin. Acta Metall. 3(5), 470–472 (1955)

39. Datafit: http://www.oakdaleengr.com/ (2014). Accessed 20 Nov 2014

154 X. Cheng et al.

http://www.oakdaleengr.com/


Metamaterials with Negative Poisson’s
Ratio: A Review of Mechanical Properties
and Deformation Mechanisms

Xiaonan Hou and Vadim V. Silberschmidt

Abstract Compared to conventional materials, materials with a negative Poisson’s
ratio are endowed with many specific mechanical features; consequently, there are
many potential applications for them. For the last two decades, many efforts have
been made on this sort of metamaterial both experimentally and theoretically. This
paper provides a brief review of those studies with a focus on mechanical properties
and deformation mechanisms of the metamaterials. The latter are explained using a
structure of a multi-phase metamaterial system for a more comprehensive under-
standing and as an inspiration for future works. Additionally, respective manufac-
turing methods and applications are also summarised.

1 Introduction

With the progress in modern engineering, requirements for engineering materials
are becoming more specific and stringent. For centuries, many efforts have been
made to improve mechanical properties of engineering materials. For example,
ancient blacksmiths are known to have used different steels in the core region and
sharp edge of a sword to achieve a harmonious balance of hardness and ductility.
Different lamination methods of the cross section of the blades were also known to
have led to different degrees of overall mechanical performance [1]. This example
indicates two most important factors affecting mechanical properties of an engi-
neering material: constituents and microstructure. In modern engineering,
mechanical behaviour of composite, or multi-phase, materials is well understood.
Designers employ different materials, fine-tuning their work together to achieve
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specific properties of composites. Recently, the concept of mechanical metamate-
rials has been introduced, which places more emphasis on the effects of a material’s
deliberate microstructure on its overall (effective) properties [2]. These recent
developments demonstrate that a study of mechanical properties of materials
underpins control and understanding of a “bottom-up” material development pro-
cess. It means that engineering materials with novel mechanical properties could be
designed from a concept by manipulating their constituents and microstructures.
The developed concept could be applied at various—and multiple—scales
according to potential applications and manufacturing techniques. Such a trend may
gradually form a new research direction based on a combination of mechanics of
materials, materials science and manufacturing technologies. One of the seminal
directions for such studies is to develop new metamaterials with a negative Pois-
son’s ratio (NPR).

Within the last 20 years, a variety of NPR materials and structures have been
discovered, fabricated, or synthesized, ranging from macroscopic down to molec-
ular levels, and spanning nearly all major classes of materials, such as polymers,
metals, ceramics, composites, laminates and fibres, etc. [3, 4]. The present paper
attempts to review the development of NPR materials using their intrinsic princi-
ples, rather than to provide a list of them, for a better understanding of this type of
material. Then, special mechanical properties of such materials are summarised on
basis of their specific structures. Finally, a discussion and a perspective are pro-
vided to inspire their future development.

2 Poisson’s Ratio

2.1 Definition

A Poisson’s ratio is named after Siméon Denis Poisson, who defined the ratio ν
between transverse strain εt and longitudinal strain εl in elastic loading as shown in
the following equation [5, 6]:

m ¼ � et
el
: ð1Þ

Tensile deformation is considered positive while compressive is negative. The
minus sign in the definition confirms that most of traditional materials have a
positive Poisson’s ratio [7]. From the continuum point of view, it can be explained
as most materials resist a change in their volume more than they resist a change in
shape [8]. From a microstructural point of view, the reason is that inter-atomic
bonds tend to realign with increasing external deformation [9].

In the early development of the theory of elasticity, the Poisson’s ratio was
believed to be an elastic constant with the same magnitude −0.25—for all isotropic
materials, according to a so called uniconstant theory [10–12]. Then, development
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of the classical elasticity theory unveiled the fact that the elastic behaviour of
isotropic materials is characterized by two independent parameters: elastic modulus
and Poisson’s ratio, and the value of the Poisson’s ratio can differ from one
materials to another [6, 11]. Now, the classical elasticity theory places limits on the
Poisson’s ratio for isotropic materials of −1 ≤ ν ≤ 0.5 [13]. The bounds are defined
by the fact that, for an unconstrained block of an isotropic material to be stable, its
elastic moduli must be positive. Using the standard interrelations depending on
assumptions of isotropy, linearity and elasticity, a positive bulk modulus B

B ¼ E
3ð1� 2mÞ ð2Þ

implies the Poisson’s ratio less than 0.5; a positive shear modulus G

G ¼ E
2ð1þ mÞ ð3Þ

determines that the Poisson’s ratio is greater than −1 [14, 15].
Therefore, these two magnitudes are usually used to present the Poisson’s ratio

as Fig. 1 that illustrates the window of Poisson’s ratio for various materials [6, 16].
For most of common solid materials, such as metals, polymers and isotropic
composites, 0.25 < ν < 0.35. When G ≤ B, ν is approaching to 0.5. Such materials
readily undergo shear deformations but resist volumetric deformation. One well
known example is rubber. The plot also reminds that the theory of elasticity allows
materials with negative Poisson’s ratios, and the limit is −1. According to the
definitions of G and B, it implies that such materials are extremely compressible,

Fig. 1 Window of Poisson’s ratio as function of ratio of bulk and shear moduli B/G for wide
range of materials. Figure adapted from Ref. [6]
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when the Poisson’s ratio is negative, i.e. they tend to deform volumetrically rather
than shear (G ≥ B). Such a novel and counterintuitive mechanical behaviour have
attracted significant attention for the last two decades.

2.2 Negative Poisson’s Ratio

Actually, a material with a negative Poisson’s ratio (NPR) was first reported in the
1870s. According to the experimental work of W. Voigt (1887) the Poisson’s ratio
of pyrites was calculated as m � � 1

7 [17]. Nearly 90 years later, Gibson (1982)
demonstrated that the negative Poisson’s effect could be found in two-dimensional
cellular structures that deform by flexure of their beam elements [18, 19]. The first
intentional designed material with a negative Poisson’s ratio was developed by
Lakes [20, 21]. In the pioneering work, the developed re-entrant polymer foam
materials exhibited a negative Poisson’s ratio m � �0:7. Later, another research was
published by Evans [22, 23]; it focused on fabrication of microphagous polyeth-
ylene with the NPR and started the use of a term “auxetics” [24]. The latter is
derived from the Greek word auxetikos (αυχητικoς), which is a noun form of
“increase”. Although the term is well received by many researchers, it seems to
describe a tensile behaviour of the NPR materials only. In fact, more and more
researches focus on special compressive behaviours of these materials. Therefore,
in this paper, the material is called straightforwardly as negative Poisson’s ratio
material. However, the mentioned landmark studies actually laid a foundation of
the fast development of NPR materials.

Although the Poisson’s ratio is scale-independent, it generally describes a
“global” effect, i.e. the ratio is determined for the overall strains of a material in its
principal directions. When the Poisson’s ratio is negative, the material exhibits a
counterintuitive behaviour in contrast to that of conventional materials. For instance,
when a tensile loading is applied in one direction, the NPR material expands
laterally (Fig. 2b), instead of contracting as conventional materials (Fig. 2a).

The special behaviour of this sort of material is usually explained by a specific
deformation mechanism related to its internal structure (microstructure). Figure 3
shows one of a typical negative Poisson’s ratio structures, which is called
re-entrant honeycomb [20, 25–27]. Under a global tensile loading in x-direction,

Fig. 2 Typical deformation mechanism of conventional (a) and NPR (b) materials [3]. Figures
adapted from Ref. [3]
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points a and b of this rib-hinging structure move apart, while c and d maintain
their separation. Consequently, the overall structure expands in y-direction, and
the overall Poisson’s ratio of this structure is negative. It is the reason for the
NPR materials to be usually classified by their deformations and microstructures
[7, 11, 28].

Besides the description from a structural view, the deformation mechanism could
also be explained using a change of area in the 2D plane. The basic unit of this 2D
structure is a re-entrant hexagon, its area apparently expands while the structure is
stretched (Fig. 3). The “expansion effect” actually compensates lateral contraction
occurring in conventional materials. In other words, extension or increase in the
area indicates a very low bulk modulus B that results in a negative Poisson’s ratio,
as discussed using Fig. 1.

3 Effective Structures and Deformation Mechanisms

Although many NPR materials were developed during the last ten years, there are
three well-established basic structures, which could explain deformation mecha-
nisms of most of the existing NPR materials: re-entrant structures [18, 20, 22, 24,
25, 27], chiral structures [11, 29–34] and rotating rigid (semi-rigid) structures [31,
35–39].

3.1 Re-entrant Structures

The deformation mechanism of a typical re-entrant structure is presented in Fig. 3,
as the first geometry model for this type of structure. The mechanism is dominated
by re-alignment of ribs, based on the assumption of rigid ribs with free pivots. In
reality, the mechanism is more complicated, including also deflection and axial
deformation of ribs [40, 41]. This deformation mechanism is valid for nearly all re-
entrant structures (Fig. 4). The double-arrowhead structure exhibits a significant

Fig. 3 Re-entrant NPR structure: a non deformed; b deformed. Figures adapted from Ref. [3]
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NPR effect in one principal direction at both tensile and compressive loadings [42].
A star-shape re-entrant structure shows a NPR effect in both of its principal
directions, and an in-plane isotropic structure could be configured on its basis
[43, 44]. The structure in Fig. 4c is called missing rib structure, which can be used
to describe auxetic foams [29, 45]. The extension of ribs of its representative unit
(shown with bold lines) leads to an overall NPR effect in both in-plane orthotropic
directions. Another in-plane orthotropic NPR structure is presented in Fig. 4d. Its
study is important due to introduction of an elastic instability (buckling) effect into
the research of NPR materials, which is an extension of the concept of re-entrant
structures. Under compressive loading, the nature of the re-entrant structure leads
actually to implementation of a geometry imperfection, which can cause an insta-
bility effect. Further to obtaining structures with the NPR in certain directions,
researches have also been performed to gain an isotropic NPR effect [46–48]. For
instance, by introducing hollow re-entrant shell inclusions randomly in a composite
system, the overall Poisson’s ratio is statistically isotropic (Fig. 4e).

Besides 2D structures, the principle of re-entrant structure can be also utilized in
a 3D space. A 3D re-entrant structure was firstly fabricated in a form of foam

Fig. 4 Schemetic of typical re-entrant NPR structures: a arrowhead [7, 42]; b star shape [7, 43];
c missing rib structure [7, 29]; d 2D porous soft material [49, 50]; e 2D composite with re-entrant
hollow inclusions [46]. Figures a–c adapted from Ref. [7]
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[20, 51, 52]. Its deformation mechanism was then explained using the idealized
tetrakaidecahedra model as shown in Fig. 5. Under tensile loading, the stretching of
folding ribs causes expansion in three orthotropic directions, and the overall
structure shows the NPR effect. It is easy to deduce that the structure could contract
under compressive loading due to flexure of folding ribs.

A comprehensive study of 3D NPR structure is called “Bucklicrystals” (Fig. 6)
[55]. A symmetry order is used as an analytical parameter to study its effect on
deformation mechanism of polyhedrons, although it was explained by a number of
holes in a crystal. Instead of re-entrant (folding) structures, a geometrical imper-
fection is introduced as struts with uneven thickness. Under compressive loading,
buckling of struts leads to an overall contraction (Fig. 6b). Additionally, the
importance of this study is also related to analysis of rotation as one of the dominant
deformation mechanisms for this type of structures [55, 56].

Alongside the structures based on ribs and struts, the concept of re-entrant
structure can also be utilised in shell structures. One of the studies deals with a 3D
hollow re-entrant shell tetrahedron as shown in Fig. 7b. The structure was treated as
an inclusion of a composite structure. When the overall composite structure is

Fig. 5 Tetrakaidecahedron: a conventional cell model; b re-entrant cell model [53, 54]

Fig. 6 NPR structure (a) based on 6-hole Bucklicrystal (b) [55]
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compressed, the embedded inclusion shrinks due to buckling of its surfaces. It is so
a called closure effect [57] (Fig. 7). Based on this deformation mechanism, the
matrix materials is dragged by the inclusion into its internal void, closing it.
Consequently, the Poisson’s ratio of the overall composite is reduced. Moreover,
the density of inclusion can be treated as a controlling parameter for the global
Poisson’s ratio. For a composite with a higher density of this sort of inclusions, the
overall Poisson’s ratio could become negative.

3.2 Chiral Structures

Figure 4c shows a missing-rib NPR structure. Interestingly, its deformation
mechanism can be explained not only by flexure of re-entrant ribs but also by
rotation of its representative unit. Such structures with deformation dominated by
rotational reflection that exhibit the NPR effect are called chiral structures. The
earliest study on this sort of structure was a lattice model of hexagonal molecules
[34, 58, 59]. Later, the concept was implemented as a two-dimensional periodic
structure (Fig. 8a), which is the well-established baseline of all chiral NPR struc-
tures [11, 30]. Its basic chiral unit (highlighted in Fig. 8a) is composed of a central
disc (or node) with six tangentially attached ligaments. The ligaments are arranged
in such a way that this basic unit exhibits rational symmetry of order six
(mechanical in-plane isotropy), which is also the number of its ligaments [30]. The
basic rotation unit could be “left-handed” or “right-handed”, and the structure is
globally chiral, once it is formed by basic units with the same chirality [31]. When a
uniaxial load is applied in the axial direction, the central disc rotates accompanied
by flexure of the ligaments. The rotational mechanism results in folding or
unfolding behaviours of the ligaments around the disc under tensile and com-
pressive loadings, respectively. Consequently, the global Poisson’s ratio is reduced.
When proper geometry features are introduced into the structure, the Poisson’s ratio

Fig. 7 Deformation mechanism of a 3D NPR composite (a) and its inclusion (b) [57]
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could be close to −1, and the NPR effect could be maintained over a relatively large
range of strain [30]. Different from the structures with the same chirality, NPR
structures containing both “left-handed” and “right-handed” chiral units were also
developed [60]. Thus, the overall structures exhibit reflective symmetry, and are
known as non-chiral structures [31, 61] (Fig. 8b). Besides their in-plane behaviour,
the flatwise compressive behaviours of the chiral structures were also analysed by
both elastic and anelastic buckling modes [33, 61–63].

However, there is one major limitation of development of chiral structures based
on chiral units: the constraint of rotational symmetry. For each basic chiral unit, the
rotational symmetry of order n is constrained to be equal to the number of ligaments
attached to each node [64, 65]. In fact, unless the symmetry constraint is relaxed,
only chiral units with n = 3, 4 and 6 could be used to construct space-filling periodic
structures, and only five such structures can exist [31]. Once the constraint of
rotational symmetry is relaxed, meta-chiral structures could be developed [31]. As
shown in Fig. 8c, the node of basic chiral unit is rectangular with four attached
ligaments, which is not equal to the rotational symmetry of the unit. According to
this concept, it became possible to construct various other NPR structures based on
chiral units.

3.3 Rotating Rigid (Semi-rigid) Structures

A rotating structure was first studied to explain the NPR effect in various zeolites
[35, 66] (Fig. 9a). The idealized structure is assumed to contain rigid squares (grey in
the figure) connected through simple hinges at their vertices (Fig. 9b) [67]. When a
loading is applied to the structure, the squares rotate at the vertices, and exhibits
global expansion or contraction with respect to tensile or compressive loadings. The
ideal system is isotropic, irrespective of the direction of loading and dimensions of
the squares, and with a constant Poisson’s ratio of −1 [67]. On the basis of this
concept, intensive researches have been implemented by using congruent rectangles
[37, 68–70], equilateral triangles [35, 37, 71, 72], rhombi [31, 73, 74] and

Fig. 8 Typical chiral structures with: a mono chirality and constrained rotational symmetry;
b non-chirality and constrained rotational symmetry; c non-chirality block and relaxed rotational
symmetry [31]
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parallelograms [68, 74–76]. The effects of shape, size, connectivity and arrangement
of rotation units on the overall mechanical behaviour have been widely studied.
Moreover, the concept was also validated in a 3D space (Fig. 9c and d) [39, 77–79].

In fact, there are two main assumptions of the rotation structures—the rigid unit
and the hinge connection. Some of the mentioned studies also considered defor-
mation of some rotation units [72, 80, 81], so called semi-rigid units. However, the
constraints of connections in the units are rarely analysed. Since the deformation of
this sort of structure is highly dependent on high rotational freedom of the con-
nections, a very large strain could be generated at connections during such rotation
[72]. Thus, it is cumbersome to produce NPR materials with rotation structures.

4 Deformation Mechanisms

4.1 Expansion and Closure

The NPR effect is generally determined by deformation mechanisms of specific
structures, and they are usually classified accordingly. However, with the fast
development of this sort of materials, there are some structures that cannot be

Fig. 9 Schemetic of typical NPR structures based on rotatioal units: a zeolite structure and b its
idealized model [35]; c 3D tetrahedral [78] and d hexahedron structures [77]
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categorised using the notions of re-entrant, chiral and rotation structures. Consider
an example of a triangular cell unit shown in Fig. 10, which consists of a truss and
an elastic unit [82]. A network composed of such units could exhibit a global
isotopic NPR effect. Although it is an idealised structure and very complicated, it
reveals another view on the nature of all the NPR structures. In 2D, the trusses of
this structure form a triangular area that changes with axial deformation of the
trusses. When the trusses are compressed, the area starts to shrink (close), when the
trusses are stretched, it expands. The closure and expansion mechanisms determine
the global NPR effect of the material.

This principle can actually explain all the existing 2D NPR structures. Typical
2D re-entrant, chiral and rotation structures are shown in Fig. 11 The common
feature of those structures is that their Poisson’s ratio is determined by a change of
internal areas (patterned in Fig 11), regardless of the cause of this change. When the
overall structure is in tension, the expansion effect results in the overall negative
Poisson’s ratio. Under compressive loading, the closure of the microstructure
predominates the NPR effect. Accordingly, a similar explanation can also be used
for disordered 2D NPR structures [83–85].

In a 3D space, the principle could be described in terms of the change of volume.
For example, a classical 3D re-entrant structure can be treated as a polyhedral cell

Fig. 10 Deformation of triangular elastic unit [82]

Fig. 11 Schematic of deformation mechanisms for re-entrant (a), chiral (b) and rotating (c) units
of NPR stuctures. Figures adapted from: a Ref. [3]; b Ref. [31]; c Ref. [35]
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with re-entrant surface (Fig. 5) [20]. Under an external loading, the deformation of
the re-entrant surface could expand or close the internal volume of the cell, thus
causing a global negative Poisson’s ratio. A more direct example is the composite
with shell inclusions (Fig. 7) [57], where the closure of the embedded inclusion in
compression results in a decrease in the global volume. Such a volume change
affects the global Poisson’s ratio, which agrees with the classic theory. A volume of
a conventional material with a positive Poisson’s ratio of less than 0.5 changes
under an external loading. It is indicated by bulk modulus B. For a material with a
closure and expansion element, its deformation causes an additional change in its
volume. As shown in the example (Fig. 7), the increased volume change of the
inclusion can be treated as an additional change in the overall volume beside the
change contributed by the matrix material, which is indicated by the lower B. When
the material deforms volumetrically rather than in shear (G ≥ B), its Poisson’s ratio
decreases and can change from positive values to negative ones [6, 14]. Apparently,
the change in the Poisson’s ratio is related to the extent of the volume change: a
higher extent means a larger change in the Poisson’s ratio. In addition, linearity of
the change in the Poisson’s ratio with strain was observed to be indicated by the
linearity of the extent of volume changes [57].

4.2 Multi-phase Systems

If the negative Poisson’s ratio effect can be related to the change in area (2D) or
volume (3D), it is possible to treat the material with the NPR as a multi-phase
structure. As shown for the typical idealized NPR structures (re-entrant, chiral and
rotation), they generally consist of ribs (ligaments), rigid (semi-rigid) units and
voids [11, 30, 35] (Fig. 11). Compared to the voids, two other types of constituents
are much stiffer, with voids having vanishing levels of stiffness. Due to this contrast
in stiffness, the stiffer phase(s) of the structure could deform freely and change the
area of low stiff phase significantly, causing the NPR effect. This mechanism may
be insignificant in the cases of skeleton structures; however, it is important for
developing composite material with the NPR. When a NPR structure is embedded
into a matrix, a composite material is formed [16, 43, 86, 87]. Figure 12 shows two
examples of such materials) the shaded areas are the matrix, assumed to be a
compressible material with low stiffness. The remaining parts are inclusions, which
are assumed to be rigid (or with high stiffness). In this case, the soft matrix will not
hinder deformation of the inclusions, resulting in the global NPR effect [16, 86].
Besides the two-phase systems, this principle can also be used in higher order
multi-phase systems. For instance, the in-plane isotropic NPR material shown in
Fig. 4e can be considered as a three-phase composite system with the following
constituents: (i) inclusions with high stiffness, (ii) matrix with low stiffness and (iii)
voids with zero stiffness [46]. The three-phase composite structure allows a random
and discontinuous distribution of inclusions. The inclusions, with closure and
expansion behaviours under external loadings are the effective component in NPR
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composites [46]. On basis of this research, the effect of the stiffness contrast of the
components was also studied. A larger contrast generally causes an increased NPR
effect [47, 48, 88]. For 3D composite structures, this principle is also valid [57], as
shown in Fig. 7. When the stiffer shell inclusion deforms under an external com-
pressive loading, it drags less stiff matrix material into the void space. This
deformation mechanism consequently causes a significant reduction in the global
Poisson’s ratio.

5 Some Specific Properties

The studies on exotic NPR materials is not meant for amusement of researchers;
their peculiar deformation behaviours actually can provide materials with specific,
rare, useful and tuneable mechanical properties [8, 89]. The properties usually
contradict to those of conventional materials, demonstrating great potential for
many engineering applications.

5.1 Elastic Moduli

As a consequence of the negative Poisson’s ratio, there are significant changes in
the Young’s modulus E and shear modulus G of NPR materials. As shown in Eq. 3,
the shear resistance can be immediately enhanced, when the Poisson’s ratio changes
from positive to negative values. It is caused by twisting or tearing forces [90].
Theoretically, the shear resistance can become infinitely high, when the Poisson’s
ratio approaches −1.

Fig. 12 2D NPR composite with a re-entrant honycomb [86], b hexanonal inclusion [16]
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For conventional isotropic materials, the Young’s modulus E is at least twice the
shear modulus, according to

E ¼ 2G 1þ tð Þ ð4Þ

When the Poisson’s ratio is negative, the magnitudes of two moduli become
closer. When the Poisson’s ratio is −0.5, they become equal. When the Poisson’s
ratio is approaching to −1, the shear modulus exceeds the elastic modulus. Con-
sequently, the material would become highly compressible, but difficult to shear.
However, it must be noticed that the Young’s modulus of NPR materials is not
always constant. It is affected by the density ratio or volumetric change ratio
[52, 91, 92]. Generally, the Young’s modulus decreases with the increase in the
volumetric compression ratio, when the material is under tension. Under com-
pression, the Young’s modulus increases with the increase in the volumetric
compression ratio. This could be explained in a simpler way: materials with higher
density usually show higher stiffness. Hence, correlation of the bulk modulus, shear
modulus and Poisson’s ratio can be formulated [93, 94].

5.2 Indentation Hardness

According to the theory of elasticity, the material’s hardness (H) can be describes
using the following equation [20, 51, 95]:

H / E
ð1� m2Þ

� �c
; ð5Þ

where γ is a constant that depends on the load applied. For uniform pressure γ = 1,
and γ = 2/3 for Hertzian indentation. On the basis of this equation, the indentation
resistance of a material increases with increase in the magnitude of the (negative)
Poisson’s ratio. Since the classic elasticity theory places limits on ν for isotropic
materials −1 ≤ ν ≤ 0.5, (1 − ν2) approaches 0 as ν approaches −1. For a given value
of E, the indentation resistance increases towards infinity with an increasing
magnitude of the negative Poisson’s ratio. A schematic explanation is shown in
Fig. 13b. When a NPR material is under an impact loading, the material flows into
the vicinity of the impact as a result of lateral contraction due to its negative
Poisson’s ratio. Hence, the material densifies under the impact in both longitudinal
and transverse directions, leading to increased indentation resistance. The phe-
nomenon is certainly different from that in conventional materials (Fig. 13a): when
an impact loading is applied to them, the material generally moves away from the
direction of loading, and the hardness is consequently lower than that of NPR
materials. Supporting such theoretical considerations, the phenomenon has been
validated by using many synthetic NPR materials: polymeric and metallic foams
[96–99], fibre-reinforced composite laminates [100–102] and polymers [103–106].
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5.3 Toughness

At the early stage of the research of NPR materials, their toughness was described
using the following equation [20, 107]:

r ¼ pET
2rð1� t2Þ ; ð6Þ

where σ is the critical tensile stress, T is the surface tension and r is the circular
crack radius. According to this equation, the material is expected to become
extremely tough, when its Poisson’s ratio approaches −1. Consequently, many
efforts have been made to analyse toughness of various artificial NPR materials,
such as re-entrant foams and composite laminates [91, 92, 102, 108, 109], since
they can be fabricated using different methods.

For foams, the behaviour was studied by subjecting them to volumetric com-
pression ratios under both compressive and tensile loadings [91, 92]. With the
increase in the volumetric compression ratio, toughness of the studied materials
increased. Since the microstructure of NPR foams is very sensitive to the fabrica-
tion method and post-processing, such as annealing, the results from different
researches are sometimes inconsistent. However, generally, the NPR foams show
higher toughness, energy absorption and lower rigidity loss than conventional
foams.

For composite materials, the research focus is usually on the effects of the type
and orientation of their reinforcement, fibres in most cases. However, the correla-
tions are complicated, since the deformation mechanisms are also affected by
delamination and inter-laminate shearing [109]. Besides simple quasi-static loading,
behaviours of NPR materials under cyclic loading and varying strain-rate loadings
were also investigated using both numerical and experimental methods [100, 101,
109–118]. Generally, the obtained results indicate higher toughness of NPR com-
posite materials than that of conventional ones.

Fig. 13 Indentation
resistance of conventional
(a) and NPR (b) materials.
Figures reproduced from [3]
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Moreover, NPR materials also have higher resistance to fracture than their
conventional counterparts [109]. Alongside with low propensity to crack propa-
gation, more energy is required to expand them than conventional materials [117].
Both theoretical and experimental methods were used to evaluate the mechanisms
of such special properties [91, 92, 100, 116, 117, 119, 120]. However, due to the
irregular and complex microstructure of NPR materials, especially foams, slight
differences in fabrication methods and conditions may cause fluctuating mechanical
performances [4]. Thus, it is not easy to describe their behaviours using idealized
models. Fortunately, the phenomena are easy to explain employing the concept of
NPR. When a NPR material is under tension, its volume expands globally and
locally. Hence, when a crack is formed, the expansion of the surrounding materials
tends to close it.

5.4 Other Specific Properties

Due to their specific microstructures, NPR materials also show other interesting
properties. For example, beside the good energy absorption capability when sub-
jected to mechanical loads, NPR structures also show excellent ultrasonic and
acoustic damping [121–125]. When a NPR material is under an out-of-plane
bending, it could form a synclastic, or double-curvature, shape instead of anticlastic
curvature, or saddle shape, of conventional materials [126–128]. It provides a way
to fabricate dome-like complicated structures without the necessity of using com-
plex techniques or additional machining. Moreover, NPR materials also exhibit
variable permeability [129–131], shape memory [112, 132–134], abrasive wear
resistance [135], etc.

6 Remarks

For the last two decades, NPR materials have been intensively studied. The
researches cover the areas of continuum mechanics, engineering mechanics,
materials science and manufacturing. Certainly, this paper cannot present results of
all the efforts. However, after a brief introduction of the development of this
research direction, some remarks could be added for a comprehensive
understanding.

6.1 Development of NPR Structures

To date, a large number of NPR materials or structures have been developed.
However, some limitations also start to unveil. So far, there are three well received
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NPR structures as foundational concepts: re-entrant, chiral and rotating units—and
many successful researches have been performed accordingly. However, it seems
that research is also constrained by those three concepts. Therefore, two generalized
concepts are proposed in this paper: 3D volume (area in 2D) change and stiffness
contrast.

To develop new NPR materials, a change in material’s volume could be treated
as a basic mechanism of the NPR effect, which is discussed in Sect. 3. Such a
mechanism could be implemented not only by designing a specific microstructure
for the proposed material, but also by defining proper envelopes for material
properties of the components. For instance, it is easy to obtain the NPR effect using
skeletal structures based on perfectly rigid components with free pivots at mutual
points of the components [136]. Since the skeleton is surrounded by zero-stiffness
voids, which do not apply any constraints on deformation of the structure, the
desired type of deformation could be achieved easily. When a material with non-
zero stiffness is introduced to replace the void phase, the structure then transfers
from a skeleton to a two-phase composite material with a continuous skeleton
component. Moreover, when a higher-order (≥3) multi-phase system is imple-
mented, materials with disordered and discontinuous microstructures could be
obtained. In those multi-phase materials, the interactions between different com-
ponents (phases) become important. They are generally determined by the contrast
of stiffness of different phases of the multi-phase material. The stiffness contrasts
have to be designed to provide stability of the overall material and allow the
necessary deformation behaviour for components.

On the basis of the proposed principles, more novel NPR materials could be
suggested. In such a multi-phase material system, the overall mechanical properties
can be tailored by controlling the shape, structure, distribution (density and ori-
entation), fraction and stiffness contrasts of its components. This is important to
modern engineering, which often requires materials with desired and non-con-
ventional properties. Moreover, when the concept of multi-phase system is further
extended, the research can be applied to other types of materials [6, 14, 137–140].

6.2 Fabrication Methods

The theory of elasticity is scale-independent, so research of the NPR effect was
performed at macroscopic, mesoscopic and microscopic levels and even at
molecular levels. As a result, numerous conceptual structures were developed [3, 4,
7, 28, 41, 141]. However, only a few types of NPR materials were successfully
fabricated: skeletal materials [136], foam-like materials [4], composite laminates
[100] and a particular helical yarn [142–144]. Since they were developed on the
basis of existing materials and generally can be fabricated with conventional
component materials and processing technologies. In the meantime, there are many
proposed NPR materials, which are still at a theoretical stage because they are hard
to fabricate due to their complicated microstructures, especially, in the case of 3D
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disordered structures. However, with the development of modern manufacturing
methods, additive manufacturing techniques can provide a promising possibility to
fabricate complex NPR structures. In fact, some efforts have already been made at
both macroscale [48–50, 55, 145, 146] and microscale [147–150], but the works are
still limited to periodic skeleton structures, which are generally two-phase com-
posite systems. In fact, the latest additive manufacturing techniques could fabricate
a component with different materials, which implies that fabrication of 3D disor-
dered graded multi-phase metamaterials becomes possible.

6.3 Perspectives

Due to specific properties of NPR materials, there are multiple potential applica-
tions for automotive, defence, sports and aerospace industries [9, 41, 65, 151, 152].
Accompanied by the development of manufacturing techniques, it is not hard to
foresee development and production of more novel NPR materials with tailored
properties. Besides the impact on engineering, the research of NPR materials also
attracts more attention to careful reviews of the classical mechanics. Firstly, as
discussed in this paper, novel concepts can still be generated based on the well-
known principles of classic elasticity, for instance, a negative Poisson’s ratio,
negative stiffness, and a negative bulk modulus. Secondly, NPR materials usually
have complex microstructures. Under external loading, they generally deform with
very large strains and change significantly in volume, which may contradict to some
assumptions of classical continuum mechanics. This can potentially require new
theories to explain such types of mechanical behaviour beyond current homoge-
nization concepts. This is also enhanced by increased fuzziness of the boundary
between materials and structures becomes as in the case of metamaterials.
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Deformation and Damage of Thermally
Bonded Nonwoven Networks

Farukh Farukh, Emrah Demirci, Memiş Acar, Behnam Pourdeyhimi
and Vadim V. Silberschmidt

Abstract Nonwovens, composed of randomly-oriented polymer-based fibres,
possess unique properties, with features common to paper, plastic and textile
materials. From various types of bonding technologies used in the nonwovens
industry. This chapter focuses on thermal bonding and respective fabrics as it is one
of the most widely used techniques. Understanding a mechanical behaviour of
polymer-based nonwoven materials that includes large-strain deformation and
damage can help to evaluate a response of nonwoven fibrous networks to various
loading conditions. The main deformation and damage mechanisms are analysed by
means of experimental assessment of fabrics in tension alongside damage evolution
based on progressive failure of fibres. Finite-element simulation strategies to gain
insight into their behaviour and to achieve quantitative exploration of a design
space for these materials are also discussed in this chapter.

1 Introduction

Nonwoven networks of engineered fabrics can be designed to provide particular
characteristics according to their specific purpose. These characteristics are defined
by a combination of various properties of nonwoven (e.g. strength, absorbency,
flame retardancy) while maintaining a balance between the cost and expected
product life, related e.g. to single-use (disposable) products or durable products.
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The term nonwoven may not be very old, but such materials are oldest known
textile to the man; they existed long before the weaving and knitting processes were
developed. Nonwovens were used in times of great antiquity both in Asia and
Europe in form of felts.1 The invention and perfection of felt-making process can be
attributed to Asiatic nomads who exploited the possibilities of its use to their
maximum. The earliest felt remnant was found during excavations conducted by
James Mellaart in 1965 at Catal Hüyük in Turkey. The painting on the interior wall
of a shrine with its pattern and edging technique was a strong reminiscent of felt
applique suggesting that this material was known to Neolithic people around 6000
B.C. This suggestion was supported by the finds of actual felt among the textiles
from graves in Level VI by Harold Burnham [9]. For centuries, felt manufacturing
remained manual in various parts of the world. In the 19th century, the invention of
steam machinery brought the industrial revolution which led to manufacturing of
various products including felt on industrial scale.

Returning to the issue of modern-day nonwovens, with the advent of new
technologies, such fabrics are manufactured with different techniques depending on
the type of constituent fibres, their applications and required characteristics. Various
kinds of nonwovens are available in the market these days; their classification is
given in the next section.

2 Classification of Nonwovens

Nonwovens can be divided into many sub-groups depending on their fibres, planar
density, web forming and web bonding conditions as well as fibre geometric
characteristics, as shown in Fig. 1.

A mechanical behaviour of nonwovens depends on many factors such as
manufacturing parameters, material of constituent fibres etc. Changes in any of
these factors can bring enormous variation in the behaviour of the fabric [2, 4, 6, 14,
32, 40, 49]. As a result, different types of nonwovens possess different character-
istics and exhibit distinct behaviours. Hence, in order to define a nonwoven a
complete set of information including web-forming and web-bonding technique,
geometric and material properties of fibres, a type of their distribution and planar
density is required. This chapter is focused mostly on low-density calendered
bonded nonwovens manufactured with staple monocomponent polypropylene
based fibres. A brief introduction of thermal bonding and its parameters affecting
mechanical properties of the end product is given in the following sections.

1Information in this section on history of nonwovens is taken from Burkett [9] and Laufer [38].
The reader is referred to these works for more details.
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3 Thermally Bonded Nonwovens

Thermal bonding is a process exploiting thermoplastic properties of synthetic fibres
to form bonds under controlled heating. Thus, a thermoplastic component must be
present in the constituent fibre or in the form of powder, film or as a sheath part of
bicomponent fibres. In practice, heat is applied during thermal bonding until the
thermoplastic component becomes viscous and melts. As a result, the polymer
flows by surface tension and capillary action to form fibre-to fibre crossover points
at localized areas of heating. These localized regions are fixed with subsequent
cooling forming the bond points [5, 41, 42, 53]. Thus, the thermal bonding process
converts a web of fibres with weak bonds between them into a tenacious fabric.
Nowadays, thermal bonding is one of the most widely used technologies to man-
ufacture nonwovens [6, 42, 43]. The viability of thermal bonding lies in its several
advantages compared to other manufacturing processes of nonwovens. The most
important of them are:

• less capital investment [47];
• lower manufacturing cost [6];
• higher production rate [1, 6];
• better control of nonwoven properties [1];
• lower environmental impact (material can be 100 % recyclable) [53];

There are several types of thermal bonding processes, such as hot calendering,
through-air bonding, ultrasonic bonding, and radiant bonding [24]. Since thermally
calendered nonwovens are used as a representative material for fibrous networks in
this study, a further discussion is focused on this type of thermal bonding process.

During calender bonding, fibres are joined together by applying certain condi-
tions, i.e. temperature and pressure; these external conditions are provided by two
hot rolls pressed against each other. The surface design of these rolls can be smooth
or have an embossed pattern. When the fibres are passed through these rolls, the
temperature and pressure involved cause the fibres to melts and diffuse with other
fibres resulting in bonding of a fabric. The process of transferring a fibre web into
the nonwoven fabric is shown in Fig. 2.

Fig. 1 Classification of nonwovens
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Smooth rollers are designed to heat the entire surface of the web. Therefore,
binder fibres produce bonding at all crossover points resulting in thin and stiff
fabric. In contrast, engraved rollers result in localised melting and diffusion of the
fibres only at their raised areas resulting in bonded spots on subsequent cooling (see
Fig. 2) [7, 27]. Therefore, nonwovens manufactured with thermal bonding consist
of two distinct regions: a fibrous web and bond points (Fig. 2). Bond points formed
by partial melting of fibres in regions with a raised pattern on the calender surface
are connected by fibrous matrix in calendered bonded nonwovens.

4 Mechanical Anisotropy

Due to the nature of web-formation and bonding processes, fibres in a nonwoven
are not completely randomly distributed but predominantly oriented along the
direction, in which the fabric was produced. This preferential orientation of fibres in
nonwoven materials causes their anisotropic mechanical properties [32, 42] and it is
the most prominent feature of their mechanical behaviour. Mechanical anisotropy
of nonwovens due to a preferential orientation distribution of their fibres affect a
relation between neighbouring bond points connected by fibrous matrix and, thus,
the overall behaviour of the fabric [46]. Therefore, accurate determination and
implementation of fibre orientation and a bond pattern into a computational model
have vital importance for successful prediction of deformational behaviour as well
as damage initiation and evolution processes of nonwovens.

Fig. 2 Typical hot calendering process
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The level of anisotropy in nonwovens is much higher than those of their woven
counterparts, which have different mechanical properties in two principal directions,
namely, warp and weft [48]. In the case of nonwovens, two principle directions—
machine direction (MD) and cross direction (CD)—are used to characterise the
anisotropy. MD is a longitudinal direction of a fabric corresponding to the manu-
facturing direction of the nonwoven. CD is perpendicular to MD in the plane of web.

The orientation distribution of fibres is one of the main factors defining specific
features of mechanical behaviour of nonwoven materials. A “fibres’ distribution
function” was introduced for the first time to represent the fibre orientation in the
fibrous media by Cox [13]. After this, the orientation distribution function (ODF)
became a common way to deal with the character of distribution of fibres. The ODF
quantifies the level of anisotropy of fibre matrix within the nonwoven material.
Since, the randomness in a fabric’s microstructure characterises its anisotropic
behaviour, determination of its ODF is essential for predicting a direction-depen-
dent mechanical behaviour of the fabric [62, 64].

Many studies were done to determine the ODF of fibrous networks. Initially, the
phenomenon of dichroism and birefringence was suggested to determine the ODF.
Then, the development of computers and imaging devices made it possible to
determine ODF directly from the images of the fibrous network. The development
of different techniques is presented in Table 1 in a chronological order.

Currently, two main methods are used to determine ODF of textiles: Fast Fourier
Transform (FFT) and Hough Transform (HT). A Fast Fourier Transform is one of
the most useful techniques in the field of image processing [64]. It is an indirect
method, which decomposes the image from its spatial domain of intensities into a
frequency domain. There are some drawbacks associated with this technique, e.g.
lighting conditions can affect the results or binarized image may give a false ODF.
Using the HT method, fibres in a fabric could be detected via straight-line segments
[65]. The main advantage of HT over FFT is that the results are relatively less
affected by the image noise [25].

Table 1 Techniques used for computing ODF

Technique Author(s) Year

Visual method based on directional phenomena of dichroism
and birefringence, directly from the fibrous media

Hearle and Stevenson [28]

Zero-span tensile testing method Kallmes [31]

Optical method based on illumination of fibres in a known
direction with light microscopy

Chudleigh [10]

Computer system based on a light-diffraction phenomenon Stenemur [58]

Random sampling algorithm and software to pick random
fibres and trace them

Huang and Bresee [26]

Skeletonization algorithm to extract the ODF from the
images taken with a CCD camera

Xu and Ting [64]

Software based on Fast Fourier Transform (FFT) Kim and Pourdeyhimi [34]

Hough Transform of images Demirci et al. [16]
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In addition to randomness of the microstructure and a type of bond-point
geometry, crimp of fibres also contributes to mechanical behaviour of nonwovens.
Crimp is defined as a successive waviness of fibres induced mechanically or
chemically [8]. Unlike natural fibres, synthetic fibres such as polymer-based ones
are straight when they are extruded. These fibres do not have sufficient cohesion
between them to form a web. Hence, crimp is introduced in these fibres to provide
appropriate fibre-to-fibre cohesion and make it possible to process these fibres with
the machinery originally developed for natural fibres. Fibre crimp is beneficial
not only for manufacture of fabrics but also improves their desirable properties
such as wrinkle resistance, moisture absorption, wear comfort due to porosity,
warmness etc. [3].

Due to crimp and a random spatial distribution, not all the fibres are under the
same loading even under externally uniform load. Crimped fibres cause consider-
able variations in mechanical behaviour compared to their uncrimped (straight)
counterparts [56]. Therefore, crimp is an important factor in determining the
mechanical behaviour of nonwovens, especially during their initial deformation.

The effect of fibre crimp on the properties of fibrous network was first studied by
Hearle and Stevenson [28]. A micromechanical model to predict the behaviour of
nonwoven was developed by Rawal [49] based on the earlier work by Adanur and
Liao [2]. In this model, a fibre curl factor was introduced to develop the under-
standing of the effect of loading on a single curled fibre.

5 Deformation and Damage Behaviour

Nonwoven fabrics have unique and complex deformation and damage behaviours.
Many researchers have endeavoured to investigate deformation of nonwovens,
which combines features of other engineering materials, e.g. anisotropy similar to
that of woven materials and viscoelasticity as in polymers. Two distinct regions of a
calendar-bonded nonwoven material—bond points and fibrous matrix—have dif-
ferent microstructures and both regions play their role in overall deformation of, as
well as damage initiation and propagation in, the fabric.

Under loading, fibres in the fabric start to re-orient and straighten themselves
along the loading direction immediately after application of tensile deformation. As
strain increases, they become aligned along the loading direction resulting in
gradual transverse contraction from the grips on both sides of the fabric to the area
of maximum contraction in the middle of the specimen. Once the fibres are
uncurled and aligned along the loading direction, they undergo large elastic-plastic
deformation and the maximum load was attained under this condition without any
evidence of fibre fracture. As soon as fibres reach their stress or strain threshold,
they fail resulting in localization of damage and development of fracture zones.
These fracture zones are formed by surviving straight fibres aligned along the
loading direction. Further fibre failures cause a growth of such fracture zones
followed by the ultimate failure of the fabric. In tensile tests, rotation of bond-points
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was observed without significant deformation of them. Still, it should be noted that
they play an important role in damage behaviour of thermally bonded nonwovens
since fibres mostly break at the bond-point periphery. The phenomena of defor-
mation and damage initiation as well as progression were found to be the same in
both MD and CD, with the only difference that rotation of fibres before participating
in load bearing was very large in CD as compared to that in MD. The sequence of
these phenomena is presented in Fig. 3, demonstrating images of nonwovens at
increasing levels of the overall strain.

Deformation characteristics of nonwoven materials vary with the direction of
loading, due to their anisotropic behaviour. Usually, the MD and CD directions are
used to explain these characteristics of nonwovens [32, 33, 36].

Fig. 3 Deformation and damage mechanisms in low-density thermally bonded nonwoven in
tensile tests at various levels of macroscopic strain a 0 %; b 25 %; c 50 %; d 80 %. Loading
direction was vertical (Arrows in d indicate fracture zones) (Faruhk et al. [19])
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Deformation and damage processes of nonwovens involve many mechanisms
that affect the overall behaviour of nonwovens, e.g. reorientation of fibres along the
loading direction, straightening of crimped fibres, fibre sliding and stretching etc.
[33, 50]. The complexity of deformation and damage behaviours of nonwoven
materials until their failure can be referred to the fact that these mechanisms act
simultaneously [51]. The deformation behaviour of a nonwoven is governed mostly
by the loading direction with respect to the preferred orientation of constituent
fibres. The type of the load acting on individual fibres during the deformation and
damage processes of the fabric depends on their orientation with regard to the
direction of loading [32]. Thus, a random microstructure of a nonwoven results in
direction dependency of its deformation and damage behaviours. The extent of
mechanical anisotropy of deformation behaviour of thermally bonded nonwovens is
depicted in Fig. 4.

According to Fig. 3, the extent of deformation of the nonwoven materials in MD
is less than that in CD at any load value. Thus, nonwoven materials have higher
strength along MD than CD. This is a typical behaviour of spunlaid nonwovens that
are manufactured by direct conversion of polymers into endless filaments and laid
directly on a conveyor belt. This tend to have the filaments oriented along the
conveyor belt resulting in a fabric with fibres preferentially orientation along MD.
Thus, a relatively small reorientation of fibres occurs when such nonwoven mate-
rials are deformed along MD, while the loading of material in CD results in sig-
nificant rotations of a large number of fibres towards the loading direction and
subsequent repositioning of bond points.

As a result, a very gradual growth of damage was observed until failure of fabric
along MD after small-scale reorientation of fibres. In contrast, large reorientation of
fibres without damage initiation defined a large part of deformation along CD,
followed by a rapid growth of damage and failure of the fabric. The preferential
orientation of fibres in fabrics results in different shapes of failure loci as shown in

Fig. 4 Force—extension curves for rectangular specimen in tension at strain rate of 0.1 s−1 along
MD (a) and CD (b) (20 g/m2) [22]
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Fig. 4. The fabric’s mechanical response along MD presents a stiffer behaviour,
usually with smaller elongation at break as compared to CD as shown in Fig. 3. For
loading in MD, the maximum load is attained at lower fabric’s extension as
compared to that in CD followed by a gradual process of fibre failure resulting in a
bell-shaped force-extension curve. In contrast, a rapid fibre-failure process fol-
lowing large fabric’s extension observed in CD results in a sudden drop on the
force-extension curve. Failure loci in the specimen stretched along MD and CD are
practically similar; however, loading along directions between these two principal
ones results in different failure loci. Thus, due to anisotropic behaviour, not only
deformation and damage initiation but damage evolution and ultimate failure of
nonwovens have directional dependency. Heterogeneity in the microstructure of
nonwoven fabrics causes anisotropic failure behaviour as shown in Fig. 5. The
fabric failure occurs by tearing of fibres in MD and CD, while for the test at angles
between MD and CD, it fails by shearing at preferred fibre direction [32, 42].

6 Factors Affecting Properties of Nonwovens

As discussed, a point bonded nonwoven consists of bond points and a fibrous web
linking these bond points; both regions important roles in the overall mechanical
behaviour of nonwovens [11]. The properties of both regions are affected by a
number of manufacturing parameters, which ultimately define the deformation and

Fig. 5 Failure of nonwovens
in various loading directions
[32]
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damage behaviours of nonwovens. Besides, the material properties and composition
of constituent fibres are prominent in determining the mechanical behaviour of
nonwovens. Some important parameters that affect the mechanical behaviour of
nonwoven are briefly described in this section.

The mechanical behaviour of thermally bonded nonwovens is affected by the
following parameters [1]:

• bonding temperature;
• fibre composition and material properties;
• calendering pressure;
• web speed;
• morphology and form of fibres;
• orientation distribution of fibres;
• crimp in fibres;

Details on the effect of this parameters on the behaviour of nonwovens is given
below.

6.1 Bonding Temperature

During thermal bonding, fibres are heated up to a certain temperature under pres-
sure resulting in melting of fibres locally and produce a rigid bond on solidification.
The ultimate tensile strength of a fabric structure increases with increase in bonding
temperature until the temperature reaches its certain threshold value after that the
fabric is load-bearing capacity decreases with a further increase in temperature [18,
23, 42, 53]. Thus, bond points of nonwovens bonded at temperatures below a
certain level are immature, and fabric failure starts with disintegration of bond
points because of insufficient fusion of fibres; this is known as under-bonding.
Conversely, if nonwovens are bonded at temperature higher than the mentioned
threshold, fabric failure starts with breaking of fibres at bond periphery leaving the
bonds intact called over-bonding. The difference between these temperature values
are referred as an optimum temperature window of a fabric. The optimal temper-
ature range varies for fabrics composed of different materials [1]. The optimal
temperature window for polypropylene-based nonwovens is 150–160 °C. The
fabric bonded at optimal temperature is called well-bonded fabric.

6.2 Fibre Structure and Properties

Thermoplastic materials and blends containing fibres can be used to manufacture
thermally bonded fabrics. According to the composition of fibres, two of their main
types are used for the thermal bonding: monocomponent and bicomponent.
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In monocomponent fibres, the entire fabric structure is produced from a single
type of material. In other words, this single material determines the properties of
both parts of the fabric: the fibrous network and bond points. The major disad-
vantage of the use of monocomponent fibres is a narrow bonding-temperature
window, which is difficult to realize in the manufacturing process. Furthermore, the
fibrous structure is discontinuous as formation of bond points is succeeded with the
melting of fibres [14]. These problems can be rectified by using bicomponent fibres.
Such fibres are composed of two different polymer components, one of which with
a lower melting point that serves for bonding, while the other has a higher melting
point and improves for tensile strength. When these fibres are exposed to the
manufacture temperature between the melting points of two polymers, the one with
the lower melting point melts and joins the neighbouring polymer under pressure
and solidifies with cooling resulting in bond points. The material with the higher
melting point does not melt and maintains its structure during the manufacturing
process. Thus, bicomponent fibres retain their continuity in bond points, and the
fabric can withstand higher stresses due to its increased strength [60]. Various types
of cross-sections of bicomponent fibres are given in Table 2.

6.3 Calendering Pressure

During thermal bonding, a fibrous web is passed between two hot calenders; as a
result fibres melt locally under high temperature and pressure to form the bonds on
subsequent cooling. Such compression is related to the melting point of fibres
forming nonwovens. The pressure applied in the bonding process performs the
following tasks [1]:

Table 2 Types of bicomponent fibres

Fibre type Schematic diagram

Side by side

Sheath core

Islands in the sea
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• to augment heat transfer from rollers to the fibres through conduction;
• to increase the contact area of fibres by assisting in plastic flow of fibre material

at bonding temperature;
• to restrict the flow of material at a bond spot.

Therefore, appropriate compression pressure is one of the pre-requisites for
optimal bonding. Michielsen et al. [42] found that beyond a certain minimum value
of pressure, fabric’s performance was affected slightly or not at all. The minimum
appropriate pressure value adequate for rigid bonding depends on the contact
geometry, thermodynamic conditions and web speed in the bonding process.

6.4 Web Speed

The web speed is the speed at which a nonwoven is produced. In order to reduce the
manufacturing cost of nonwovens, a high web speed is desired. As the web speed is
increased, the time available to melt the material sufficiently to form rigid bond
points on subsequent cooling is decreased. This issue can be resolved by increasing
the bonding temperature. This approach is applicable only up to a certain point,
after which an increase in speed does not provide satisfactory bonding regardless of
the level of calendering temperature. Thus, the web-processing speed is defined by
the optimal temperature window of nonwovens. At higher processing speeds, the
calendering temperature window gets narrower and ultimately vanishes. That is the
point after which no further processing of nonwovens with adequate bonding is
possible [42].

6.5 Morphology and Form of Fibres

A form and morphology of fibres have a significant effect on the overall properties
of nonwovens. There are many parameters defining the form and morphology of a
fibre, e.g. molecular weight, linearity and orientation of the molecules, length of
fibres, and presence of crystalline and amorphous zones. A length of fibres is also
considered as parameters related to the form of fibres. A length of polymer mole-
cules affects the attraction forces between the molecules during bonding, which is
responsible for mechanical characteristics of nonwovens. Longer molecules can
associate closer together during bonding and produce stronger bonds [59].

Ultimate tensile strength of fibres can be associated with molecular orientation
and is determined by their birefringence [23]. Mechanical properties of polymer-
based fibres also depend on a temperature history, which they were exposed to
during their manufacturing process. Thus, any change in temperature during
manufacturing stages can affect deformation and damage behaviours of nonwovens.
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Hence, in order to accurately predict their mechanical behaviour up to the onset of
fracture, temperature variations which the fibres were exposed to during formation
of web must be known.

6.6 Orientation Distribution of Fibres

Orientation distribution of fibres plays a vital role in determining the most promi-
nent feature of nonwovens—their mechanical anisotropy. Due to the nature of web
formation and bonding processes, fibres in a nonwoven are not oriented fully
randomly but predominantly aligned along the direction, in which the fabric is
being produced. This preferential orientation of fibres in nonwoven materials causes
their anisotropic mechanical properties [32, 42] and it is the most prominent feature
of their mechanical behaviour. Mechanical anisotropy of nonwovens due to the
preferential orientation distribution of their fibres affect the relation between
neighbouring bond points connected by fibrous matrix and, thus, the overall
behaviour of the fabric [46]. Fibres are predominantly orientated along MD in
thermally bonded nonwovens offering higher resistance to deformation as compared
to CD. Due to this orientation of fibres, the maximum extension at failure along CD
is higher than MD.

6.7 Crimp in Fibres

When dealing with anisotropy and determination of the orientation distribution
function, an important factor is the crimp in fibres. It has effects on both: it can
define the ODF feature, especially for small window sizes, and an initial defor-
mation behaviour of the fabric. Defined as successive waviness of fibres induced
mechanically or chemically [8], crimp can be a dominant factor at small levels of
stretching as shown in Fig. 6.

Crimp in fibres result in geometrical non-linearity of nonwovens and makes it
more difficult to simulate their actual mechanical behaviour. Still, it is important for
processing of fibres responsible e.g. for appropriate fibre-to-fibre cohesion for
carding, drawing and can enhance some desirable properties in fabrics such as
fabric bulk [12]. A mechanical behaviour of a crimped fibre is different from that of
a straight fibre as shown in Fig. 6. A load-elongation curve of the crimped fibre
consists of a crimp-removal part (A–B in Fig. 6) and tensile part (B–C in Fig. 6).
Crimp-removal part defines a less stiff initial behaviour of fibres. In order to predict
the behaviour of nonwovens accurately, the crimp should be considered.
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6.8 Geometry of Bond Points

In thermally calendered bonded nonwovens, shape, size and pattern of bond points
affect the overall properties of fibres such as tensile breaking strength, drapability
and softness [23, 26]. Due to the cost and lead time associated with engraved
calender rolls, it is very difficult to establish a relation between bond-point
geometry and fabric properties. Almost $1.5 M dollar and minimum 4 months’ time
is required to test the effect of each new bond-point geometry [63]. Therefore, most
of thermally bonded fabrics available commercially are not optimally designed.
Very few studies were performed to use computer simulations to predict the
mechanical behaviour of nonwovens as a function of bond point geometry [26, 29,
55]. However, all of these models predicted the effect of bond point geometry only
on the initial deformation behaviour of the fabric, without considering damage
initiation and propagation. Thus, there is a need for parametric computational
models that could incorporate elastic-plastic and viscous properties of the constit-
uent fibres and their randomness alongside with shape and pattern of bond points to
simulate the realistic deformation and damage behaviours of nonwovens.

7 Finite-Element Modelling of Nonwovens

Several attempts were made to simulate the behaviour of nonwoven materials using
a finite-element method. These models were developed using different approaches
for idealization of fabric’s network geometry. A brief overview of various
approaches in the literature to simulate the behaviour of nonwovens using finite-
element modelling is given in this section.

Fig. 6 Initial portion of load-
elongation curve of straight
and crimped fibre [8]
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A first type of models presented nonwovens as continuum to analyse their
macroscopic mechanical response. Demirci et al. [15–17] idealized the geometry of
nonwoven fabrics with a continuum model based on orthotropic symmetric planes.
Randomness of the fabric’s microstructure in terms of the orientation distribution
function was introduced as orthotropic parameters calculated by using specially
developed software. This scheme was very useful for predicting a stress-strain
behaviour of high-density nonwovens accurately but damage was not introduced
into the model. Since the model was based on the continuum approach, it was
incapable to account for mechanisms involved in deformation and damage of
nonwovens. Ridruejo et al. [52] introduced a continuum model to predict the meso-
level response of the fabric but fibres were not explicitly introduced into that model;
rather, a constitutive relation concerning with fibre orientation distribution was
developed. Such a continuum model was unable to mimic the actual microstructure;
and hence mechanisms of fabric’s deformation. Besides, damage was implemented
into the model in a phenomenological way.

The second approach, based on a composite laminate model, incorporating the
effect of non-uniform fibre orientation distribution, was used in [4, 39]. A non-
woven, assumed as continuum, was made of several layers of fibres. Within each
layer fibres were parallel oriented to each other. The layers of different fibre ori-
entation were stacked and bonded along the entire contacting interface. All the
fibres in one layer were oriented in the same direction. These fibres were bound
together at nodal points of finite-elements mesh. The model deals with deformation
of fabric and breaking of individual fibres incrementally. Such models were found
to produce satisfactory results in agreement with experimental data including
aspects of fibre anisotropy arising from a non-uniform orientation distribution of
fibres, particularly in a small-strain regime. However, their representation of real
deformation mechanisms such as non-uniform deformation and reorientation of
fibres was inadequate since fibres were fixed within the layers, which could not
slide on top of each other.

In an effort to incorporate the realistic effect of non-uniform microstructure of
nonwovens into the model, the third approach based on homogenization of the
model using a representative volume element (RVE) was used in literature. Pett-
erson [45] introduced a model to predict the macroscopic response of the fabric by
homogenizing the behaviour of a unit-cell incorporating a random distribution of
fibres’ orientation. This model was later modified by Hearle and Stevenson [28] and
again by Kothari and Patel [37] to include the effects of fibre and a creep response
of individual fibres, respectively. Still, in these models, some inelastic deformation
mechanisms such as irrecoverable textural evolution were missing. More recently,
Silberstein et al. [57] introduced a model based on a similar RVE-based technique
to predict a macroscopic behaviour of the fabric. The model consists of a multilayer
triangular network and uses a homogenization technique to predict a response to
monotonic and cyclic loading. Such models based on the homogenization technique
do not predict localization of damage and changes in material’s microstructure
caused by this damage.
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The fourth approach incorporates the randomness of a nonwoven material into
the model by direct introduction of fibres to simulate realistic deformation and
damage behaviours of nonwovens. In this context, Mueller and Kochmann [44]
proposed a FE model to simulate the behaviour of thermally bonded nonwovens. In
that model, bond points were modelled as an element consisting of two regions: a
bond core and a boundary zone. The boundary zone represents the deformed fibres
and partly bonded fibres at the periphery of the bond points. The fibres were
modelled as truss elements; each truss element represented a fibre bundle as the
behaviour of several fibres was combined and mapped onto these elements. These
truss elements combined the bond points in a unit cell. With this model, the effects
of geometry of bond points on the behaviour of nonwovens were also investigated.
However, it was almost impossible to incorporate the randomness in the micro-
structure of the nonwoven into the model as the model was composed of symmetric
unit cells, and there was limited number of nodes on the bond point. Moreover, it
failed to mimic the microstructure of nonwoven fabrics. Advancement of this
approach was used by Hou et al. [30]; Sabuncuoglu et al. [54]; Farukh et al.
[19–21]. A finite-element model based on direct introduction of fibres according to
a realistic orientation distribution function was developed. This model is compu-
tationally expensive but can provide insight of deformation and damage behaviour
of thermally bonded nonwoven network.

8 Conclusions

This paper summarises information on deformation behaviour of, as well as damage
initiation and propagation in, thermally bonded fibrous networks. Nonwovens
demonstrate complex deformation patterns and damage scenarios due to the pres-
ence of two regions with different structure—bond points and fibrous networks. The
dominant deformation and damage phenomena under tensile loading involve rota-
tion of fibres along the loading direction and progressive failure of fibres upon
reaching their failure threshold. This process of fibre failure results in localized
fracture zones, which ultimately lead to rupture of the fabric. The deformation and
damage mechanisms are affected by a specific character of oriented microstructure
responsible for the anisotropic nature of this type of networks. The relation between
mechanical anisotropy of these nonwovens and random orientation of their fibres
can be described using the fibres’ orientation distribution function. Random orien-
tation of individual fibres is quantified in terms of this ODF in order to determine the
material’s anisotropy. Several techniques are available in literature to determine
ODF; however, the most recent technique is based on Hough Transform. Along with
preferential orientation offibres, there are several other factors that affect mechanical
behaviour of thermally bonded fibrous networks and are described in this paper.

In order to predict the complex deformation behaviour, many modelling schemes
have been suggested in the literature. These models are based on different simu-
lation strategies and suitable for different conditions. The continuous modelling
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technique is best suited for macro-scale modelling of dense nonwovens, whereas
the RVE-based schemes and complex fibre-network techniques are appropriate for
meso- and micro-scale modelling.
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