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Preface

This book is concerned with production planning and control in stochastic
manufacturing systems. These systems consist of machines that are subject
to breakdown and repair. The objective is to control the rate of production
over time in order to meet the demand at a minimum long-run average
cost. The exact optimal solution of such a problem is very difficult and in
many cases impossible to obtain. To reduce the complexity, we consider
the case in which the rates at which machine failure and repair events oc-
cur are much larger than the rate of fluctuation in the product demand.
The idea behind our near-optimal decision-making approach is to derive a
limiting control problem which is simpler to solve than the given original
problem. The limiting problem is obtained by replacing the stochastic ma-
chine capacity process by the average total capacity of machines and by
appropriately modifying the objective function. We use the optimal control
of the limiting problem to construct the piecewise deterministic controls for
the original problem, and show that these constructed controls are asymp-
totically optimal under certain assumptions on the cost functions involved.

Increasingly complex and realistic models of manufacturing systems with
failure-prone machines facing uncertain demands are formulated as stochas-
tic optimal control problems. Partial characterization of their solutions are
provided when possible along with their decomposition based on event fre-
quencies. In the latter case, two-level decisions are constructed in the man-
ner described above and these decisions are shown to be asymptotically
optimal as the average time between successive short-term events becomes
much smaller than that between successive long-term events. The striking
novelty of this approach is that this is done without solving for the optimal
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solution, which as stated earlier is an insurmountable task.
This book is a sequel to Sethi and Zhang [125]. It focuses on the long-

run average-cost criteria in contrast to Sethi and Zhang who deal with
discounted cost objectives. A discounted cost criterion emphasizes near-
term system behavior, whereas a long-run average cost measures system
performance in terms of the corresponding stationary distributions. Such
criteria are often more desirable in practice for long-term production plan-
ning. In addition, from a mathematical point of view, analysis of control
policies of long-run average cost problems are typically more involved than
those with discounted cost. This book explores the relationship between
control problems with a discounted cost and those with a long-run average
cost in connection with near-optimal control.

The material covered in the book cuts across the disciplines of Applied
Mathematics, Operations Management, Operations Research, and System
and Control Theory. It is anticipated that the book would encourage de-
velopment of new models and techniques in these disciplines. The book
is written for operations researchers, system and control theorists, applied
mathematicians, operations management specialists, and industrial engi-
neers. Although some of the proofs require advanced mathematics, as a
rule the final results are accessible to most of them.

We wish to thank Wendell Fleming, John Lehoczky, Ruihua Liu, Ernst
Presman, Mete Soner, Wulin Suo, Michael Taksar, Houmin Yan, George
Yin, and Xun-Yu Zhou, who have worked with us in the area of optimal
and near-optimal controls of manufacturing systems. We are indebted to
W. Fleming for invaluable discussions and advice over the years. We want
to thank many of our students and associates including Yongjiang Guo,
Jiankui Yang, and Yuyun Yang for their careful reading of the manuscript
and assistance at various stages. We appreciate the assistance provided by
Barbara Gordon in the preparation of the manuscript. Finally, we are grate-
ful to the Natural Sciences and Engineering Research Council of Canada,
the National Natural Sciences Foundation of China, the Hundred Talents
Program of the Chinese Academy of Sciences, the Office of Naval Research,
and the University of Texas at Dallas for their support of the research on
which a large part of this book is based.

Richardson, Texas, USA Suresh P. Sethi
Beijing, China Hanqin Zhang
Athens, Georgia, USA Qing Zhang
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Notation

This book is divided into eleven chapters and a set of six appendices. Each
of the eleven chapters is divided into sections. In any given chapter, say
Chapter 4, sections are numbered consecutively as 4.1, 4.2, 4.3, and so
on. Similarly, mathematical expressions in Chapter 4, such as equations,
inequalities, and conditions, will be numbered consecutively as (4.1), (4.2),
(4.3), . . . , throughout each chapter. Also, figures and tables in that chapter
are numbered consecutively as Figure 4.1, Figure 4.2, . . . . On the other
hand, theorems are numbered consecutively in each of the sections. Thus,
in any given chapter, say Chapter 3, the third theorem in Section 4 would
be stated as Theorem 4.3. In Chapter 3, this theorem would be cited also
as Theorem 4.3, while in all other chapters, it would be referred to as
Theorem 3.4.3. The same numbering scheme is used for lemmas, corollaries,
definitions, remarks, algorithms, and examples.

Each appendix, say Appendix B, has no numbered sections. Mathemat-
ical expression in Appendix B will be numbered consecutively as (B.1),
(B.2), (B.3), . . . . Theorems are numbered consecutively as Theorem B.1,
Theorem B.2, . . . . The same numbering scheme is used for lemmas, corollar-
ies, definitions, and remarks. Items in Appendix B will be cited throughout
the book, just as labeled in that appendix.

All deterministic and stochastic processes considered in this book are
assumed to be measurable processes.

We provide clarification of some frequently used terms in this book. By
ε sufficiently small (or ε small enough), we mean an ε ∈ (0, ε0] for some
ε0 > 0. The term “Hamilton-Jacobi-Bellman equation” is abbreviated as
the “HJB equation.” The term Hamilton-Jacobi-Bellman equation in terms
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of directional derivatives is abbreviated as “HJBDD.” These terms, without
any qualification, shall mean an average cost version of the corresponding
equations. Their discounted cost version, when needed, will be so quali-
fied, or simply referred to as dynamic programming equations. The term
“open-loop controls” refers to “nonfeedback controls.” The terms “surplus,”
“inventory/shortage,” and “inventory/backlog” are used interchangeably.
The terms “control,” “policy,” and “decision” are used interchangeably.

We make use of the following notation in this book:

� indicates the end of a proof, example, definition,
or remark

# denotes “the number of”
�→ a mapping from one set to another
⇒ denotes “implies”
�n n-dimensional Euclidean space
〈x,y〉 the scalar product of any two vectors x and y in �n

|A| =
∑

i,j |aij | for a matrix A = (aij)
|x| = |x1| + · · · + |xn| for a vector x = (x1, . . . , xn)

A′ the transpose of a vector or matrix A
0 = (0, 0, . . . , 0) or (0, 0, . . . , 0)′

1 = (1, 1, . . . , 1) or (1, 1, . . . , 1)′

1F the indicator function of a set F

A,A0,Aε, . . . sets of admissible controls
{Ft} filtration {Ft, t ≥ 0}
Ft,Fε

t , . . . σ-algebras
N (x) the neighborhood of x
S set of stable controls

C1(O) set of all continuously differentiable functions on O
C, Cg, Ch, . . . positive multiplicative constants
C1, C2, . . . positive multiplicative constants
fx the gradient of a scalar function f at x if it exists
D+f(x) the superdifferential of f at x
D−f(x) the subdifferential of f at x
Eξ the expectation of a random variable ξ
F c the complement of a set F
F1 ∩ F2 the intersection of sets F1 and F2
F1 ∪ F2 the union of sets F1 and F2
L2([s, T ]) the space of all square-integrable functions on [s, T ]
P (ξ ∈ ·) the probability distribution of a random variable ξ
V the value function
W the potential function
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(a1, . . . , al) > 0 means a1 > 0,. . . , al > 0
(a1, . . . , al) ≥ 0 means a1 ≥ 0, . . . , al ≥ 0
a ≥ b means a − b ≥ 0 for any vectors a and b
a+ = max{a, 0} for a real number a
a− = max{−a, 0} for a real number a
a1 ∧ · · · ∧ a� = min{a1, . . . , a�} for any real numbers ai, i = 1, . . . , �
a1 ∨ · · · ∨ a� = max{a1, . . . , a�} for any real numbers ai, i = 1, . . . , �
a.e. almost everywhere
a.s. almost surely
diag(a) the diagonal matrix of a = (a1, . . . , an)
co(F ) the convex hull of a set F
co(F ) the convex closure of a set F
df(x0)

dx
=

df(x)
dx

∣∣∣∣
x=x0

exp(Q) = eQ for any argument Q
f−1(·) the inverse of a scalar function f(·)
ri(F ) the relative interior of a set F
log x the natural logarithm of x
lnx the logarithm of x with base e
k,u,x,z, . . . all Latin boldface italic letters stand for vectors
u(·) the process {u(t) : t ≥ 0} or simply u(t), t ≥ 0
x �→ Ax linear transformation from �n to �m; here x ∈ �n

and A is an (m × n) matrix

βg,βh, . . . positive exponential constants
λ the minimum average cost
ν equilibrium distribution vector of a Markov process
∂g(x, t)

∂x
the partial derivative of g(x, t) with respect to x

∂g(x0, t)
∂x

=
∂g(x, t)

∂x

∣∣∣∣
x=x0

∂pg(x, t) the directional derivative of g(x, t) at (x, t) in direction p
∇f(x) gradient of function f at x
(Ω,F , P ) the probability space
ε a capacity process parameter (assumed to be small)
ρ > 0 the discount rate
σ{k(s) : s≤ t} the σ-algebra generated by the process k(·) up to time t

O(y) a function of y such that supy |O(y)|/|y| < ∞
o(y) a function of y such that limy→0 o(y)/y = 0



Part I:

Introduction and Models of
Manufacturing Systems



1
Concept of Near-Optimal Control

1.1 Introduction

This book is concerned with manufacturing systems involving machines
that are subject to breakdown and repair. The systems under considera-
tion range from single or parallel-machine systems to flowshops and job-
shops. These systems exhibit an increasing complex structure of processing
of products being manufactured. The objective is to control the rate of pro-
duction over time in order to meet the demand at the minimum long-run
average cost that includes the cost of production and the cost of inven-
tory/shortage.

The exact optimal solution of such a problem is quite complex and diffi-
cult, perhaps impossible, to obtain. To reduce the complexity, we consider
the case in which the rates, at which machine failure and repair events
occur are much larger than the rate of fluctuation in the product demand.
The idea behind our near-optimal decision-making approach is to derive a
limiting control problem which is simpler to solve than the given original
problem. The limiting problem is obtained by replacing the stochastic ma-
chine capacity process by the average total capacity of machines and by
appropriately modifying the objective function. We use the optimal control
of the limiting problem to construct the piecewise deterministic controls for
the original problem, and we show these constructed controls are asymp-
totically optimal under certain assumptions on the cost functions involved.

The specific points to be addressed in this book are results on the asymp-
totic optimality of the constructed solution and the extent of the deviation
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of its average cost from the optimal average cost for the original problem.
While this approach could be extended for applications in other areas, the
purpose of this book is to model a variety of representative manufactur-
ing systems in which some of the exogenous processes, deterministic or
stochastic, are changing much faster than the remaining ones and to apply
our methodology of near-optimal decision making to them.

In Sethi and Zhang [125] we considered systems with discounted cost
criteria. Here we analyze these systems in the average-cost context. A dis-
counted cost criterion emphasizes near-term system behavior, whereas a
long-run average cost measures system performance in terms of the corre-
sponding stationary distributions. In some situations, long-run average-cost
criteria may be more appropriate. In particular, when the discount rates are
small, the average-cost optimal policies, which often have a simpler form,
may provide a good approximation of the discounted-cost optimal policies.
In addition, from a mathematical point of view, analysis of average-cost
optimal control problems is typically more involved than those with dis-
counted cost. This can been seen from the construction of the near-optimal
control from the limiting problem. This book will explore the relationship
between control problems with a discounted cost and those with a long-
run average cost in the context of optimal and near-optimal decisions of
stochastic manufacturing systems.

In Sethi and Zhang [125] we also considered multilevel systems and a hi-
erarchical decision-making approach for their near-optimal solutions. Doing
so in the case of the average-cost criteria remains a topic for further re-
search. Nevertheless, the models and analysis presented in this book form
stepping stones for analyzing such multilevel problems.

1.2 A Brief Review of the Related Literature

There are several related approaches to near-optimal decision making in an
uncertain environment. Each approach is suited to certain types of models
and assumptions. We shall review these approaches briefly.

Singular Perturbations in Markov Decision Problems
Consider a Markov decision problem (MDP) such that the states of the
underlying Markov chain are either subject to rather frequent changes or
naturally divisible to a number of groups such that the chain fluctuates
very rapidly from one state to another within a single group, but jumps
less rapidly from one group to another. The structure of the given pro-
cess corresponds to Markov processes admitting “strong and weak inter-
actions” that arise in applications such as control of a queuing network,
models of computer systems, and management of hydroelectric power gen-
eration. Strong interactions correspond to frequent transitions, while weak
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interactions correspond to infrequent transitions. For more discussions and
results, see Yin and Zhang [149].

The singular perturbation approach consists of deriving, from the given
problem, a simple problem called the limit MDP, which forms an appro-
priate asymptotic approximation to a whole family of perturbed problems
containing the given MDP. Moreover, an optimal solution to the given MDP
can be approximated by an optimal solution of the limit problem provided
the given perturbation is small.

It should be noted that the perturbation is termed singular because it
alters the ergodic structure of the Markov process. Thus, the stationary
distribution of the perturbed process has a discontinuity at the zero value
of the perturbation parameter. The cases that avoid the discontinuity, on
the other hand, are referred to as regular perturbations.

Research dealing with singularly perturbed MDPs include works of Dele-
becque and Quadrat [43] and Bielecki and Filar [19] in the discrete-time
case, and of Phillips and Kokotovic [98] in both the discrete- and continuous-
time cases. For detailed accounts of this approach and for recent develop-
ments, see Bensoussan [14] and Yin and Zhang [149], among others.

Diffusion Approximations
The next approach we shall discuss is that of diffusion approximations; see
Glynn [65] for a tutorial and a survey of the literature. The most important
application of this approach concerns the scheduling of networks of queues.
If a network of queues is operating under heavy traffic, that is, when the rate
of customers entering some of the stations in the network is very close to
the rate of service at those stations, the problem of scheduling the network
can be approximated by a dynamic control problem involving diffusion
processes. The controlled diffusion problem can often be solved, and the
optimal policies that are obtained are interpreted in terms of the original
system. A justification of this procedure is provided in Bramson and Dai
[27], Harrison [66], Harrison and Van Mieghem [67], and Wein [142], for
example. See also the surveys on fluid models and strong approximations
by Chen and Mandelbaum [31, 32] for related research.

Kushner and Ramachandran [83] begin with a sequence of systems whose
limit is a controlled diffusion process. It should be noted that the traffic
intensities of the systems in sequence converge to the critical intensity of
one. They show that the sequence of value functions associated with the
given sequence converges to the value function of the limiting problem.
This enabled them to construct a sequence of asymptotic optimal policies
defined to be those for which the difference between the associated cost and
the value function converges to zero as the traffic intensity approaches its
critical value. For recent developments, see Kushner [82] and Whitt [143].

Krichagina, Lou, Sethi, and Taksar [80], and Krichagina, Lou, and Taksar
[81] apply the diffusion approximation approach to the problem of control-
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ling the production rate of a single product using a single unreliable ma-
chine in order to minimize the total discounted inventory/backlog costs (or
to minimize long-run average total inventory/backlog costs). They embed
the given system into a sequence of systems in heavy traffic. Their purpose
is to obtain asymptotic optimal policies for the sequence of systems that
can be expressed only in terms of the parameters of the original system.

Before concluding our discussion of the diffusion approximation approach,
we should emphasize that, so far, the approach does not provide us with an
estimate of how much the policies constructed for the given original system
deviate from the optimal solution, especially when the optimal solution is
not known, which is most often the case. As we shall see later, our near-
optimal approach developed in this book enables us to provide just such
an estimate in many cases.

Time-Scale Separation in Stochastic Manufacturing
Systems and Hierarchical Decision Making
Gershwin [60] considers scheduling problems in a dynamic manufactur-
ing system with machine failures, setups, demand changes, etc., and he
proposes a hierarchical structure based on the frequency of occurrence of
different types of events; see also Chapters 9–12 in Gershwin [61], Xie [145],
and Lasserre [85]. This framework is inspired by the singular perturbation
literature reviewed briefly at the beginning of this section, and it is based
on the assumption that events tend to occur in a discrete spectrum which
defines the hierarchical levels; see also Caromicoli, Willsky, and Gershwin
[29]. In modeling the decisions at each level of the hierarchy, quantities
that vary slowly (variables that correspond to higher levels of the hierar-
chy) are treated as static, or constant. Quantities that vary much faster
(variables at lower levels of the hierarchy) are modeled in a way that ig-
nores the variations, for example, by replacing fast changing variables with
their averages. The objective of this approach is to determine an optimal
control strategy for the scheduling problem under consideration. Gershwin
[60] proposes the solution of one or two problems at each level to derive
the control strategy. These are identified as the problems of finding the
hedging point and the staircase strategies. In the hedging point strategy
problem at level i, the objective is to determine level-i controls such as pro-
duction rates. Constraints are imposed by the total capacity available and
by the decisions made at the higher levels. The staircase strategy problem
can be interpreted as the allocation of resources among activities at level
i, consistent with controls or production rates determined at the previous
level.

Sethi and Zhang [125] considered hierarchical control of manufacturing
systems with discounted cost criteria. They show that hierarchical decision
making in the context of a goal-seeking manufacturing system can lead to
a near optimization of its objective. In particular, they consider manufac-
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turing systems in which events occur at different time scales. For example,
changes in demand may occur far more slowly than breakdowns and repairs
of production machines. This suggests that capital expansion decisions that
respond to demand are relatively longer-term decisions than decisions re-
garding production. Thus, longer-term decisions such as those dealing with
capital expansion can be based on the average existing production capacity,
and can be expected to be nearly optimal even though the short-term ca-
pacity fluctuations are ignored. Having the longer-term decisions in hand,
one can then solve the simpler problem of obtaining production rates.

This completes our brief review of the existing near-optimal decision-
making approaches designed for uncertain environments. This book presents
a further development of the method given by Sethi and Zhang [125]. It is
related to the singular perturbations approach with the difference that our
framework is that of stochastic optimal control rather than the traditional
one of MDPs. Our approach is based on different event frequencies. Our em-
phasis is in proving that the near-optimal control provided by our approach
is asymptotically optimal as the frequencies of various events diverge from
one another.

1.3 Plan of the Book

This book is divided into five parts: Part I – Introduction to near-optimal
decision making and formulation of models of manufacturing systems; Part
II – Existence and characterization of optimal control of manufacturing
systems; Part III – Near-optimal decision making in manufacturing sys-
tems; Part IV – Conclusions and open research problems, and Part V – A
set of appendices providing background material.

Part I consists of this chapter and Chapter 2. In this chapter, we have
introduced our concept of near-optimal decision making in stochastic man-
ufacturing systems along with a brief review of the related literature. In
Chapter 2, we sketch the models of manufacturing systems that we study
in this book. These include single or parallel-machine systems, dynamic
flowshops, and dynamic jobshops. Machines are failure-prone and the sys-
tems face deterministic demands for their products. The purpose of these
systems is to produce in a way so as to satisfy the demands at the minimum
long-run average costs of production, inventories, and backlogs.

Part II consists of Chapters 3, 4, 5, and 6. In these four chapters we
discuss the dynamics and the optimal controls of the manufacturing systems
sketched in Sections 2.2–2.5.

In Chapter 3, we consider the optimal production control policy in the
dynamic stochastic manufacturing systems consisting of single/parallel ma-
chines that are failure prone. The object is to choose the production rate
over time in order to minimize the long-run average cost of production and
surplus. The analysis proceeds with a study of the corresponding problem
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with a discounted cost. In order to use the vanishing discount method, the
stable control policy that makes the Markov processes, describing the sys-
tem dynamic behavior to be ergodic, is constructed. It is shown that the
Hamilton-Jacobi-Bellman (HJB) equation for the average-cost problem has
a solution giving rise to the minimal average cost and a potential function.
The result helps in establishing a verification theorem. Finally, the optimal
production control policy is specified in terms of the potential function. In
this chapter, at the same time, the concept of turnpike sets is introduced
to characterize the optimal inventory levels. The structure of the turnpike
sets exhibits a monotone property with respect to the production capacity
and demand. The property helps in solving the optimal production problem
numerically and, in some cases, analytically.

In Chapter 4, we consider the stochastic manufacturing systems consist-
ing of m machines in a flowshop configuration that must meet the demand
for its product at a minimum average cost. The decision variables are input
rates to the machines. We take the number of parts in the buffers of the
first (m − 1) machines and the difference of the real and planned cumula-
tive productions at the last machine, known as the surplus, as the states of
the system. Since the number of parts in the internal buffers between any
two adjacent machines must remain nonnegative, the problem is inherently
a state-constrained problem. Our objective is to choose admissible input
rates to minimize a long-run average of expected production and surplus
costs. The stable control policy that makes the system to be ergodic is
constructed. Using the vanishing discount approach, we obtain a solution
of the HJB equation and, in consequence, a verification theorem is also
established. At the same time, the two-machines flowshop with a limited
internal buffer is also investigated.

In Chapter 5, we consider a production control problem for a general
jobshop producing a number of products and subject to breakdown and
repair of machines. The objective is to choose the production control policy
of the final products and intermediate parts on the various machines over
time, in order to meet the demand for the system’s production at the
minimum long-run average cost of production and surplus. We prove a
verification theorem and derive the optimal feedback control policy in terms
of the directional derivative of the potential function.

In Chapter 6, we consider the system with parallel machines described
in Chapter 3, but with a long-run average risk-sensitive criterion. By using
a logarithmic transformation, it is shown that the associated HJB equation
has a viscosity solution. This leads to a dynamic stochastic game interpre-
tation of the underlying risk-sensitive control problem.

It will be seen in Chapters 3, 4, 5, and 6 that explicit and exact optimal
controls for manufacturing systems are not usually available. As a result,
one must resort to obtaining near-optimal decisions. In Part III, which
contains Chapters 7, 8, 9, and 10, we turn to an alternative approach that
employs the idea of near-optimal decision making as described in Section
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1.2 to obtain asymptotic optimal controls.
In Chapter 7, a near-optimal decision approach is used to present an

asymptotic analysis of the stochastic manufacturing system consisting of
single/parallel machines subject to breakdown and repair and facing a con-
stant demand, as the rates of change of the machine states approach in-
finity. The analysis gives rise to a limiting problem in which the stochastic
machine availability is replaced by its equilibrium mean availability. It is
shown that the long-run average cost for the original problem converges to
the long-run average cost of the limiting problem. Open-loop and feedback
controls for the original problem are constructed from the optimal controls
of the limiting problem in such a way that guarantees their asymptotic op-
timality. The convergence rate of the long-run average cost for the original
problem to that of the limiting problem is established. This helps in pro-
viding an error estimate for the constructed open-loop asymptotic optimal
control.

In Chapter 8, we present an asymptotic analysis for the stochastic man-
ufacturing system consisting of machines in tandem subject to breakdown
and repair and facing a constant demand, as the rates of change of the
machine state approach infinity. We prove that the long-run average cost
for the original problem converges to the long-run average cost of the lim-
iting problem. A method of “shrinking” and “entire lifting” is introduced
in order to construct the near-optimal controls for the original problem by
using near-optimal controls of the limiting problem. The convergence rate
of the long-run average cost for the original problem to that of the limit-
ing problem is established. Finally, an error estimation for the constructed
open-loop asymptotic optimal controls is established.

In Chapter 9, we consider a production control problem for a dynamic
jobshop producing a number of products and subject to breakdown and
repair of machines. As the rates of change of the machine states approach
infinity, an asymptotic analysis of this stochastic manufacturing system is
given. The analysis results in a limiting problem. The long-run average cost
for the original problem is shown to converge to the long-run average cost of
the limiting problem. The convergence rate of the long-run average cost for
the original problem to that of the limiting problem, together with an error
estimate for the constructed asymptotic optimal control, is established.

In Chapter 10, we derive a limiting problem when the rates of machine
breakdown and repair go to infinity. It is shown that minimum cost with the
long-run average risk-sensitive criterion for the original problem converges
to the minimum risk-sensitive cost of the corresponding limiting problem.

Part IV consists of Chapter 11, where we describe various extensions of
the existing models and open problems that remain.

Part V consists of Appendices A, B, C, D, E, and F. These provide some
background material as well as technical results that are used in the book.
Specifically, we state and sometimes prove, if appropriate, the required
results on convergence of Markov chains, and viscosity solutions of HJB
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equations.
An extensive bibliography, author index, subject index, and copyright

permissions follow the appendices.
We conclude this chapter by drawing a flowchart (Figure 1.1) depicting

relationships between various chapters.

Chapter 1 � Chapter 2

�

Chapter 3 � Chapter 4 � Chapter 5 � Chapter 6

Chapter 7 � Chapter 8 � Chapter 9 � Chapter 10
� � � �

� � � �

Chapter 11
�

� � � �

A, B,..., F

I. Models

II. Optimal
control

III. Near-
optimal
control

IV. Conclusions,
open
problems

V. Appendices

Figure 1.1. Relationships Between Chapters.



2
Models of Manufacturing Systems

2.1 Introduction

The class of convex production planning models is an important paradigm
in the operations management/operations research literature. The earliest
formulation of a convex production planning problem in a discrete-time
framework dates back to Modigliani and Hohn [95] in 1955. They were
interested in obtaining a production plan over a finite horizon in order
to satisfy a deterministic demand and to minimize the total discounted
convex costs of production and inventory holding. Since then the model
has been further studied and extended in both continuous- and discrete-
time frameworks by a number of researchers, including Johnson [76], Arrow,
Karlin, and Scarf [6], Veinott [141], Adiri and Ben-Israel [1], Sprzeuzkouski
[130], Lieber [91], and Hartl and Sethi [68]. A rigorous formulation of the
problem along with a comprehensive discussion of the relevant literature
appears in Bensoussan, Crouhy, and Proth [15].

Extensions of the convex production planning problem to handle stochas-
tic demand have been analyzed mostly in the discrete-time framework. A
rigorous analysis of the stochastic problem has been carried out in Bensous-
san, Crouhy, and Proth [15]. Continuous-time versions of the model that
incorporate additive white noise terms in the dynamics of the inventory
process were analyzed by Sethi and Thompson [114], Bensoussan, Sethi,
Vickson, and Derzko [17], and Beyer [18].

In this book, we consider production planning problems with the aim
of minimizing a long-run average cost. Preceding works that relate most



12 2. Models of Manufacturing Systems

closely to problems under consideration here include Bai [8], Srivatsan, Bai,
and Gershwin [132], Basak, Bisi, and Ghosh [12], Srivatsan and Dallery
[133], Bielecki and Kumar [20], and Sethi and Zhang [125]. These works
incorporate piecewise deterministic processes (PDP) either in the dynamics
or in the constraints of the model. In the models considered by them, the
production capacity rather than the demand for production is modeled as
a stochastic process. In particular, the process of machine breakdown and
repair is modeled as a birth–death process, thus making the production
capacity over time a finite state Markov chain.

In what follows, we shall sketch the models of manufacturing systems that
are considered in this book. These models will be formulated as continuous-
time stochastic optimal control problems with a long-run average-cost cri-
terion. Their precise formulations will appear in subsequent chapters where
needed.

2.2 A Parallel-Machine, Single Product Model

Let u(t) ≥ 0 denote the rate of production, z the rate of demand, and
x(t) the difference between cumulative production and cumulative demand,
called the surplus, at time t. They satisfy the one-dimensional ordinary
differential equation

d

dt
x(t) = u(t) − z, x(0) = x, (2.1)

where x denotes the given initial surplus. Note that a positive value of
surplus denotes inventory and a negative value denotes backlog or shortage.

Assume that the production capacity consists of a single or a number
of parallel machines that are subject to breakdown and repair. Let k(·) =
{k(t) : t ≥ 0} denote the stochastic total production capacity process
assumed to be a finite state Markov chain. Then, the production rate u(t)
must satisfy the constraint

0 ≤ u(t) ≤ k(t), t ≥ 0. (2.2)

Here we are assuming without any loss in generality that a unit of capacity
is required to process one unit of the product at rate 1. Let A(k) be the
class of all admissible controls with the initial condition k(0) = k.

Given the initial surplus x(0) = x and the initial capacity k(0) = k,
the objective is to choose an admissible control u(·) = {u(t), t ≥ 0} in
A(k) so as to minimize the long-run average expected costs of surplus and
production, namely,

J(x, k, u(·)) = lim sup
T→∞

1
T

E

∫ T

0
g(x(t), u(t)) dt, (2.3)
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where g(x, u) is a convex function representing costs of surplus x and pro-
duction u.

Remark 2.1. Before proceeding further, we should clarify the use of nota-
tion x. As x(0) = x, it represents the initial condition for the state equation
(2.1). In defining the surplus cost function g(x, u), it plays the role of a
dummy variable. Finally, in the cost functional J(x, k, u(·)), it acts as a
variable representing the initial value of the state. Later, when the state is
a vector, the same remarks apply to notation x. �

Remark 2.2. In the system dynamics (2.1) and those appearing later in
the book, we treat the material that is processed in the system as though it
is continuous fluid. In addition to describing real systems with continuous
materials, such a treatment is also standard in the literature directed at
manufacturing systems with discrete parts; see Gershwin [61] and Dallery
and Gershwin [39], for example. Lou and Van Ryzin [93] consider the flow
rate approximation to be appropriate at the higher planning level as well
as necessary for tractability of the problem. Once the production rate is
determined, the detailed tracking of individual parts is considered at the
lower scheduling level. Gershwin [61] introduces a staircase strategy that
converts the production rate determined at the higher level into loading
of discrete parts at discrete times. Clearly, the operation processing times
on each machine must be much smaller than the mean time between ma-
chine failures and the mean repair time, for the fluid approximation to be
reasonable. Indeed, Alvarez, Dallery, and David [5] have shown experimen-
tally that the approximation is good in flowshops producing discrete parts
provided the machine mean uptimes and downtimes are at least one order
of magnitude larger than the processing times; see David, Xie, and Dallery
[41] for some theoretical justification for the approximation. In most real-
istic cases, this time scale condition is satisfied; see Van Ryzin, Lou, and
Gershwin [138] for a method of flow rate approximation when the condition
is not satisfied. Moreover, the results based on the flow rate control models
have been applied and have been shown to significantly outperform the
ones used in practice; see, e.g., Akella, Choong, and Gershwin [2], Gersh-
win, Akella, and Choong [62], Lou and Kager [92], and Yan, Lou, Sethi,
Gardel, and Deosthali [146]. �

Remark 2.3. In order to illustrate the formulation of the system dynamic
(2.1), we first consider a manufacturing system consisting of a reliable ma-
chine of a unit capacity producing a single product, say, a gear. Let us
assume that it takes r minutes to perform all the required operations on
the unit capacity machine to produce one gear. Let d denote the demand in
number of gears per hour. Let y(t) denote the surplus expressed in number
of gears with y(0) = y and let w(t) denote the production rate in gears per
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minute. Then it is clear that

d

dt
y(t) = w(t) − d

60
, y(0) = y, 0 ≤ w(t) ≤ 1

r
.

Define x(t) = ry(t), z = rd/60, and u(t) = rw(t), t ≥ 0. With this change
of variables, we obtain (2.1) with 0 ≤ u(t) ≤ 1. The change of variables
is equivalent to defining a “product” so that a unit of the product means
r gears. Then in (2.1), x(t) denotes the surplus expressed in units of the
product, u(t) denotes the production rate expressed in product units per
minute, and z denotes the demand in product units per minute.

Finally, as described at the beginning of this section, if the system con-
sists of a single or of a number of parallel unreliable machines and if its total
capacity is k(t) at time t, then the production rate constraint is modified
to 0 ≤ u(t) ≤ k(t), t ≥ 0, i.e., (2.2). �

Sometimes, it is desirable to obtain controls that discourage large de-
viation in the states, which, while occurring with low probabilities, are
extremely costly. Such controls are termed robust or risk-sensitive controls.
This task is accomplished by considering a risk-sensitive criterion such as

H(x, k, u(·)) = lim sup
T→∞

1
T

log E exp
(∫ T

0
g(x(t), u(t)) dt

)
, (2.4)

where u(·) is production control and x(·) is the surplus process given by

d

dt
x(t) = −ax(t) + u(t) − z, x(0) = x. (2.5)

Here a ≥ 0 is a constant, representing the deterioration rate (or spoilage
rate) of the finished product. The objective is to choose an admissible
control u(·) = {u(t), t ≥ 0} in A(k) so as to minimize H(x, k, u(·)).

Remark 2.4. In model (2.5), we assume a positive deterioration rate a
for items in storage. This corresponds to a stability condition typically im-
posed for disturbance attenuation problems on an infinite time horizon (see
Fleming and McEneaney [52]), and this assumption is essential in the anal-
ysis of the optimality for risk-sensitive control problems and constructing
near-optimal control policies. �

Many single product models found in the literature are special cases of
the model formulated here. We give one example. Bielecki and Kumar [20]
considered a stochastic model with g(x, u) = g+x+ + g−x−, and k(t), a
(two-state) birth–death process. Here g+ denotes the unit inventory carry-
ing or holding cost per unit time, g− denotes the unit backlog or shortage
cost per unit time, x+ = max{x, 0}, and x− = max{−x, 0}.

The model given by (2.1) with the long-run average-cost criterion (2.3)
has been rigorously analyzed by Sethi, Suo, Taksar, and Zhang [113], Sethi,
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Yan, Zhang, and Zhang [116], and Sethi, Zhang, and Zhang [119], and will
be studied in Chapters 3 and 7. The analyses of the model (2.5) with the
risk-sensitive criterion (2.4) in Chapters 6 and 10 are based on Fleming and
Zhang [58].

2.3 A Parallel-Machine, Multiproduct Model

Let �n denote the n-dimensional Euclidean space and let �n
+ denote the

subspace of �n with nonnegative components. Let u(t) = (u1(t), . . . , un(t))′

∈ �n
+, x(t) = (x1(t), . . . , xn(t))′ ∈ �n, z = (z1, . . . , zn)′ ∈ �n

+ denote the
rates of production of n different products, the vector of their surpluses,
and the rates of their demand, respectively. We assume that the production
rate u(t) at time t satisfies

r1u1(t) + · · · + rnun(t) ≤ k(t), t ≥ 0, (2.6)

where ri > 0 (i = 1, 2, . . . , n) is the amount of capacity required to process
one unit of the ith product at rate 1. Then

d

dt
x(t) = u(t) − z, x(0) = x, (2.7)

with x ∈ �n denoting the vector of initial surplus levels.

Remark 3.1. In the model formulated here, simultaneous continuous pro-
duction of different products is allowed. For this model to reasonably ap-
proximate a manufacturing system producing various discrete part-types,
we need setup costs and times for switching production from one product to
another to be negligible, in addition to the condition described in Remark
2.2. �

Remark 3.2. Without any loss of generality, we may set r1 = 1. With
r1 = 1, the model reduces to the single product model of Section 2.2 when
we set n = 1. �

The capacity process k(·) is assumed to be a finite state Markov chain.
Let A(k) be the class of all admissible controls. The problem is to find a
control u(·) ∈ A(k) that minimizes the cost functional

J(x, k,u(·)) = lim sup
T→∞

1
T

E

∫ T

0
g(x(t),u(t)) dt, (2.8)

where x(0) = x and k(0) = k are initial values of surplus and capacity,
respectively, and g(x,u) represent convex costs of surplus x and production
u.
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Srivatsan and Dallery [133] consider this model with n = 2,

g(x,u) = g+
1 x+

1 + g−
1 x−

1 + g+
2 x+

2 + g−
2 x−

2 ,

and k(·), a birth–death process. The parallel machines, multiproduct model
has been investigated by Sethi, Suo, Taksar, and Yan [112], and Sethi and
Zhang [117]. These works will form the basis of our analysis of the model
in Sections 3.7 and 7.6.

2.4 A Single Product Dynamic Flowshop

Assume that we have m machines in tandem, as shown in Figure 2.1, de-
voted to producing a single final product. We use k(t) = (k1(t), . . . , km(t)),
t ≥ 0, to denote the vector of random capacity processes of the m ma-
chines. Let u(t) = (u1(t), . . . , um(t))′ ∈ �m

+ denote the vector of produc-
tion rates for the m machines. Then 0 ≤ uj(t) ≤ kj(t), j = 1, 2, . . . , m.
We use x1(t), . . . , xm−1(t) to denote the inventories in the output buffers
of the first m − 1 machines and xm(t), the surplus of the final product.
We write x(t) = (x1(t), . . . , xm(t))′. Then the inventories in the internal
buffers should be nonnegative, i.e.,

x1(t) ≥ 0, . . . , xm−1(t) ≥ 0. (2.9)

Let z represent the demand rate facing the system. Then

d

dt
x1(t) = u1(t) − u2(t), x1(0) = x1,

d

dt
x2(t) = u2(t) − u3(t), x2(0) = x2,

· · · · · ·
d

dt
xm(t) = um(t) − z, xm(0) = xm,

(2.10)

with x1, x2, . . . , xm−1 denoting the initial inventory levels in the internal
buffers and xm denoting the initial surplus of the final product. Let x(t) =
(x1(t), x2(t), . . . , xm(t))′ and x(0) = x = (x1, x2, . . . , xm)′. Further, let
g(x,u) denote the convex cost of inventories x1, x2, . . ., xm−1 and surplus
xm when producing at rate u.

The manufacturing system modeled here will be termed a dynamic flow-
shop. In order to formulate the optimization problem facing the system, let
A(x,k) denote the class of admissible controls. The additional dependence
of the class on x is required because the admissible controls must satisfy
the state constraints (2.9) for all t ≥ 0, given the initial surplus x. The
class will be precisely defined in Chapter 4.
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M1 M2 Mm
� � � � � � �· · ·

u1 u2 um z

x2 xm−1 xmx1

Figure 2.1. A Single Product Dynamic Flowshop with m-Machine.

The problem is to find a control u(·) ∈ A(x,k) that minimizes the cost
functional

J(x,k,u(·)) = lim sup
T→∞

1
T

E

∫ T

0
g(x(t),u(t)) dt (2.11)

subject to (2.10) with x(0) = x and k(0) = k.
Van Ryzin, Lou, and Gershwin [139] use dynamic programming to ap-

proximately solve the problem with m = 2. Bai [8] develops a hierarchical
approach to solve the problem, and Srivatsan, Bai, and Gershwin [132] ap-
ply the approach to the scheduling of a semiconductor fabrication facility.

A rigorous analysis of the model was given in Presman, Sethi, Zhang,
and Bisi [102], and Presman, Sethi, Zhang, and Zhang [105, 106]. These
works will be taken up in Chapter 4. An asymptotic analysis of the model
carried out by Sethi, Zhang, and Zhang [122] will be reported in Chapter 8.

2.5 A Dynamic Jobshop

In this section, we generalize the models developed in Sections 2.2–2.4 and
describe a model of a dynamic jobshop. Because a general description of
dynamic jobshops is somewhat involved, this will be postponed to Section
5.2. Here we only formulate an illustrative example.

In Figure 2.2, we have four machines M1, . . . , M4, two (final) product
types, and five buffers. Machine Mi, i = 1, 2, 3, 4, has capacity ki(t) at
time t, and the jth product type j = 1, 2, has a constant rate of demand
zj . Let z = (z1, z2)′. As indicated in the figure, we use u01, u02, u14, u15,
u26, and u33 to denote the production rate and xj , j = 1, 2, . . . , 5, to denote
the surplus.

Then the system can be described by

d

dt
x1(t) = u01(t) − u14(t) − u15(t),

d

dt
x4(t) = u33(t) + u15(t) − z1,

d

dt
x2(t) = u14(t) − u26(t),

d

dt
x5(t) = u02(t) − z2,

d

dt
x3(t) = u26(t) − u33(t),

(2.12)
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Figure 2.2. A Typical Dynamic Jobshop.

with the state constraint

x ∈ {(x1, . . . , x5)′ : x1 ≥ 0, x2 ≥ 0, x3 ≥ 0}, (2.13)

and the control constraints

r1u01(t) ≤ k1(t), r2u02(t) + r5u15(t) ≤ k4(t),

r3u33(t) + r4u14(t) ≤ k3(t), r6u26(t) ≤ k2(t),
(2.14)

where rj is a given constant denoting the amount of the required machine
capacity to sustain the production rate of a unit of (intermediate) part-type
j per unit time, j = 1, 2, . . . , 6.

If each machine has only two states, say 0 or 1, then the possible states
of k, which is a vector of the states of M1, M2, M3, and M4, is 24 = 16.

Note that the state constraint is required since the inventory in each of
the internal buffers, i.e., x1, x2, and x3, must be nonnegative.

Let

x(t) = (x1(t), . . . , x5(t))′, u(t) = (u01(t), . . . , u26(t))′. (2.15)

As in the previous section, we use A(x,k) to denote the class of admissible
controls. Then our control problem of a general dynamic jobshop with
stochastic demand can be formulated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min J(x,k,u(·)) = lim sup
T→∞

1
T

E

∫ T

0
g(x(t),u(t)) dt,

s.t.
d

dt
x(t) = Au(t) + Bz,

x(0) = x, k(0) = k, and u(·) ∈ A(x,k),

minimum average cost λ∗(x,k) = inf
u(·)∈A(x,k)

J(x,k,u(·)),

(2.16)
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where matrices A and B can be defined appropriately; see Section 5.2. Note
that for the system dynamics (2.12), we have

A =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 −1 −1 0
0 0 0 1 0 −1
0 0 −1 0 0 1
0 0 1 0 1 0
0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0
0 0
0 0

−1 0
0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Bai and Gershwin [9, 10] have applied a heuristic approach to jobshops
and flowshops with multiple part-types. A rigorous analysis of the jobshop
system is carried out by Presman, Sethi, and Zhang [101]. This will be
given in Chapter 5. An asymptotic analysis of the general case is carried
out by Sethi, Zhang, and Zhang [123], and will be reported in Chapter 9.

It should be noted that it is the jobshop model that is employed in the
context of applications to wafer fabrication scheduling. Some work in this
connection appears in Srivatsan, Bai, and Gershwin [132] and Yan, Lou,
Sethi, Gardel, and Deosthali [146].



Part II:

Optimal Control of Manufacturing
Systems: Existence and
Characterization



3
Optimal Control of Parallel-Machine
Systems

3.1 Introduction

Thompson and Sethi [135] considered a deterministic single machine, single
product production planning model whose purpose is to obtain the pro-
duction rate over time to minimize an integral representing a discounted
quadratic loss function. The model is solved both with and without non-
negative production constraints. It is shown that there exists a turnpike
level of inventory, to which the optimal inventory level approaches mono-
tonically over time. The model was generalized by Sethi and Thompson
[114, 115], Bensoussan, Sethi, Vickson, and Derzko [17], and Beyer [18],
by incorporating an additive white noise term in the dynamics of the in-
ventory process. Moreover, the concept of turnpike inventory level for the
stochastic production planning problem was introduced.

Kimemia and Gershwin [79] and Fleming, Sethi, and Soner [55], on the
other hand, modeled uncertainty in the production capacity (consisting
of unreliable machines) and the demand rates, respectively, as finite state
Markov chains. Kimemia and Gershwin [79] studied a system with machines
in tandem but without internal buffers, a system known also as a no-wait
flowshop. Using the method of dynamic programming as in Rishel [108],
they characterized optimal policy to be defined by a number of thresholds
(one for each product in production) called hedging points. They used a
quadratic approximation for the “cost-to-go” and suggested a linear pro-
gramming approach that can be implemented in real time.

These Markov chain formulations have inspired a good deal of work that
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includes Akella and Kumar [3], Bielecki and Kumar [20], Boukas, Haurie,
and Van Delft [23], Haurie and Van Delft [70], Fleming, Sethi, and Soner
[55], Sethi, Soner, Zhang, and Jiang [111], Hu and Xiang [71], Morimoto
and Fujita [96], Basak, Bisi, and Ghosh [12], and Ghosh, Aropostathis,
and Marcus [63], and Sethi and Zhang [125]. Many of these papers deal
with discounted cost objectives. Exceptions are Bielecki and Kumar [20],
Basak, Bisi, and Ghosh [12], and Ghosh, Aropostathis, and Marcus [63].
Bielecki and Kumar [20] dealt with a single machine (with two states: up
and down), single product problem. They obtained an explicit solution for
the threshold inventory level, in terms of which the optimal policy is as
follows: Whenever the machine is up, produce at the maximum possible
rate if the inventory level is less than the threshold, produce on demand if
the inventory level is exactly equal to the threshold, and do not produce
at all if the inventory level exceeds the threshold. Basak, Bisi, and Ghosh
[12], and Ghosh, Aropostathis, and Marcus [63] incorporated both diffusion
and jump Markov processes in their production planning model, and thus
generalized Kimemia and Gershwin [79] as well as Sethi and Thompson
[114] and Bensoussan, Sethi, Vickson, and Derzko [17].

In this chapter, we study single or parallel machine systems produc-
ing products using machines that are subject to breakdown and repair.
The product demands are assumed to be deterministic. We generalize the
Bielecki and Kumar model [20] to incorporate general cost functions and
machine capacity processes. We assume no state constraints, which we deal
with in Chapters 4, 5, 8, and 9.

We use the vanishing discount approach to show that the average-cost
Hamilton-Jacobi-Bellman (HJB) equation has a solution that provides the
minimal average cost and a potential function. The result helps in estab-
lishing a verification theorem specifying the optimal control policy in terms
of the potential function. We define what are known as the turnpike sets in
terms of the potential function. An important result derived in this chapter
is the monotonicity of the turnpike sets in terms of the capacity level or the
demand level. By and large, the problem of solving the optimal production
planning requires that we locate the turnpike sets. The monotonicity of the
turnpike sets facilitates the solution of the production planning problem.
On the one hand, the monotonicity property can be used to solve some
optimal control problems in a closed form, which are otherwise difficult
to handle. On the other, it can greatly reduce computations needed for
numerical approaches for solving the problem.

The plan of the chapter is as follows. In Section 3.2 we precisely state
the production–inventory model under consideration. In Section 3.3 we
establish a systematic approach of constructing the ergodic (stable) control
policies. In addition, we develop some estimates for the value function of
the corresponding discounted cost problems. In Section 3.4, with the results
obtained in Section 3.3 and the use of the vanishing discount approach, a
solution of the HJB equation is shown to exist. The solution consists of the
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minimum average cost and a potential function, both of which are related to
the value function of the corresponding discounted problem. A verification
theorem is also proved. In Section 3.5 the optimal control policy is specified
in terms of the potential function. In Section 3.6 we show that the turnpike
sets possess a monotonicity property with respect to the capacity level.
In Section 3.7 we extend the results obtained in Sections 3.3 and 3.4 to
allow for multiple products. The chapter is concluded with endnotes in
Section 3.8.

3.2 Problem Formulation

In order to specify our model, let x(t), u(t), k(t), and z denote, respectively,
the surplus level (state variable), the production rate (control variable),
the capacity level, and the constant demand rate at time t ∈ [0,∞). Here,
surplus refers to inventory when x(t) ≥ 0 and to backlog when x(t) < 0.
We assume that x(t) ∈ � and u(t) ∈ �+. The capacity k(·) is a finite state
Markov chain defined on a probability space (Ω,F , P ) such that k(t) ∈
M = {0, 1, . . . , m}. The representation for M stands, usually, but not
necessarily, for the case of m identical machines, each with a unit capacity
having two states: up and down. This is not an essential assumption. In
general, M could be any finite set of nonnegative numbers representing
production capacities in the various states of the system. Let Q = (qij)
denote an (m + 1) × (m + 1) matrix such that qij ≥ 0 if i �= j and qii =
−

∑
j �=i qij . For any functions ϕ(·) on M and k ∈ M, write

Qϕ(·)(k) =
∑
j �=k

qkj [ϕ(j) − ϕ(k)]. (3.1)

We sometimes use notation Qϕ(k) to represent Qϕ(·)(k). The Markov chain
k(·) is generated by Q, i.e., for all bounded real-valued functions ϕ(·) de-
fined on M,

ϕ(k(t)) −
∫ t

0
Qϕ(·)(k(s)) ds

is a martingale. Matrix Q is known as an infinitesimal generator or simply
a generator.

Definition 2.1. A control process (production rate) u(·) = {u(t) ∈ �+ :
t ≥ 0} is called admissible with respect to the initial capacity k(0) = k, if:
(i) u(·) is adapted to the filtration {Ft} with Ft = σ{k(s) : 0 ≤ s ≤ t}, the
σ-field generated by k(·); and (ii) 0 ≤ u(t)(ω) ≤ k(t)(ω) for all t ≥ 0 and
ω ∈ Ω. �

Let A(k) denote the set of admissible control processes with the initial
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condition k(0) = k. For any u(·) ∈ A(k), the dynamics of the system is

d

dt
x(t) = u(t) − z, x(0) = x, t ≥ 0. (3.2)

Definition 2.2. A function u(·, ·) defined on � × M is called an admissi-
ble feedback control, or simply feedback control, if: (i) for any given initial
surplus x and production capacity k, the equation

d

dt
x(t) = u(x(t), k(t)) − z

has a unique solution; and (ii) the process u(·) = {u(t) = u(x(t), k(t)), t ≥
0} ∈ A(k). With a slight abuse of notation, we shall express the admissi-
bility condition (ii) simply as the function u(·, ·) ∈ A(k). �

Let h(x) and c(u) denote the surplus cost and the production cost func-
tions, respectively. For every u(·) ∈ A(k), x(0) = x, k(0) = k, define

J(x, k, u(·)) = lim sup
T→∞

1
T

E

∫ T

0
[h(x(t)) + c(u(t))] dt. (3.3)

The problem is to choose an admissible u(·) that minimizes the cost func-
tional J(x, k, u(·)). We define the average-cost function as

λ∗(x, k) = inf
u(·)∈A(k)

J(x, k, u(·)). (3.4)

We will show in the sequel that λ∗(x, k) is independent of (x, k). So
λ∗(x, k) is simply written as λ∗ hereafter. Now let us make the following
assumptions on the cost functions h(x) and c(u), generator Q, and set M.

(A1) h(x) is a nonnegative, convex function with h(0) = 0. There are
positive constants Ch1, Ch2, and βh1 ≥ 1 such that

h(x) ≥ Ch1|x|βh1 − Ch2, x ∈ �.

Moreover, there are constants Ch3 and βh2 ≥ βh1 ≥ 1 such that

|h(x) − h(y)| ≤ Ch3(1 + |x|βh2−1 + |y|βh2−1)|x − y|, x, y ∈ �.

(A2) c(u) is a nonnegative twice continuously differentiable function de-
fined on [0, m] with c(0) = 0. Moreover, for simplicity in exposition,
c(u) is either strictly convex or linear.

(A3) We assume that Q is strongly irreducible; see Definition A.1.

(A4) Let (ν0, ν1, . . . , νm) be the equilibrium distribution of k(·). The aver-
age capacity level k̄ =

∑m
j=0 jνj > z.

(A5) z �∈ M.



3.2 Problem Formulation 27

Remark 2.1. Assumption (A1) is the usual assumption on the growth
rate of the surplus cost function to ensure the existence of a solution to the
HJB equation of the optimal control problem specified in Section 3.4. From
Assumption (A2) it is clear that c(u) and dc(u)/du are nondecreasing. This
assumption is required in order for the optimal control policy to be written
explicitly in a simple form. Assumption (A4) is necessary in the sense that
if this were not true, then even if the system is always producing at its
maximum capacity, it still would not meet the demand and the backlog
would build up without bound over time, with the consequence that no
optimal solution with a finite average cost would exist. From Assumptions
(A4) and (A5), it is easily seen that there is a unique k0 ∈ M such that
0 ≤ k0 < z < k0 + 1 ≤ m. Assumption (A5) is innocuous and is used for
the purpose of ensuring the differentiability of the value function in the
discounted cost case. This would then translate into the differentiability of
the potential function in the average-cost case. �

In (3.3), we have defined our average-cost function to be the limit superior
(lim sup) of the finite horizon average costs as the horizon increases, and
our optimal control problem to be one of minimizing the cost over the class
of admissible controls. In general, the limit of the finite horizon costs may
not exist for all controls in this admissible class. Then it may be also of
interest to know the class of controls over which the optimal control also
minimizes the limit inferior (lim inf) of the finite horizon costs. For this
purpose, we define a smaller class of controls as follows:

Definition 2.3. A control u(·) ∈ A(k) is called stable if it satisfies the
condition

lim
T→∞

E|x(T )|βh2+1

T
= 0,

where x(·) is the surplus process corresponding to the control u(·) with
(x(0), k(0)) = (x, k) and βh2 is as defined in Assumption (A1). �

Let S(k) denote the class of stable controls with the initial condition
k(0) = k. It is clear that S(k) ⊂ A(k). It can be seen in the next section
that the set of stable admissible controls S(k) is nonempty.

We will show in Sections 3.4 and 3.5 that there exists a stable Markov
control policy u∗(·) ∈ S(k) such that u∗(·) is optimal, i.e., it minimizes the
average cost defined by (3.3) over all u(·) ∈ A(k) and, furthermore,

lim
T→∞

1
T

E

∫ T

0
[h(x∗(t)) + c(u∗(t))] dt = λ∗,

where x∗(·) is the surplus process corresponding to u∗(·) with (x∗(0), k(0)) =
(x, k). Moreover, for any other (stable) control u(·) ∈ S(k),

lim inf
T→∞

1
T

E

∫ T

0
[h(x(t)) + c(u(t))] dt ≥ λ∗.
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In this chapter, our main focus is on a single product manufacturing
system with stochastic machine capacity and constant demand. While the
results to be derived in Sections 3.3 and 3.4 can be extended to a multiprod-
uct framework, the monotonicity properties obtained later in Sections 3.5
and 3.6 make sense only in single product cases. It is for this reason that we
have chosen in Sections 3.2–3.6 to deal only with a single product model. It
should also be noted that the classical literature on the convex production
planning problem is concerned mainly with single product problems. The
multiproduct case will be dealt with in Section 3.7.

3.3 Estimates for Discounted Cost Value Functions

We will use the vanishing discount approach to study our problem, we begin
with an analysis of the discounted problem.

In order to derive the HJB equation for the average-cost control problem
formulated above and study the existence of its solutions, we introduce a
corresponding control problem with the cost discounted at a rate ρ > 0.
For u(·) ∈ A(k), we define the expected discounted cost as

Jρ(x, k, u(·)) = E

∫ ∞

0
e−ρt[h(x(t)) + c(u(t))] dt. (3.5)

Define the value function of the discounted cost problem as

V ρ(x, k) = inf
u(·)∈A(k)

Jρ(x, k, u(·)). (3.6)

The dynamic programming equation associated with this problem (see
Sethi and Zhang [125]) is

ρφρ(x, k) = F

(
k,

∂φρ(x, k)
∂x

)
+ h(x) + Qφρ(x, ·)(k), (3.7)

where ∂φρ(x, k)/∂x is the partial derivative of φρ(x, k) with respect to its
first variable x,

F

(
k,

∂φρ(x, k)
∂x

)
= inf

0≤u≤k

{
(u − z)

∂φρ(x, k)
∂x

+ c(u)
}

. (3.8)

Theorem 3.1. Under Assumptions (A1), (A2), (A3), and (A5), the value
function V ρ(x, k) has the following properties:

(i) V ρ(x, k) is continuously differentiable and convex for any fixed k ∈
M. Moreover, there are positive constants Cρ1, Cρ2, and Cρ3 such
that, for any k,

Cρ1|x|βh1 − Cρ2 ≤ V ρ(x, k) ≤ Cρ3(1 + |x|βh2),

where βh1, βh2 are defined in Assumption (A1).
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(ii) V ρ(x, k) is the unique solution of the HJB equation (3.7).

(iii) V ρ(x, k) is strictly convex if the cost function h(x) is also.

Proof. See Lemmas 3.1 and 3.2, and Theorem 3.1 in Chapter 3 of Sethi
and Zhang [125]. �

Remark 3.1. Note that the constants Cρ1, Cρ2, and Cρ3 may depend on
the discount rate ρ. �

Let cu(u) = dc(u)/du and V ρ
x (x, k) = ∂V ρ(x, k)/∂x. Now define

uρ(x, k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if V ρ

x (x, k) > −cu(0),

(cu(u))−1(−V ρ
x (x, k)), if − cu(k) ≤ V ρ

x (x, k) ≤ −cu(0),

k, if V ρ
x (x, k) < −cu(k),

(3.9)
when c(u) is strictly convex, and

uρ(x, k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if V ρ

x (x, k) > −c,

k ∧ z, if V ρ
x (x, k) = −c,

k, if V ρ
x (x, k) < −c,

(3.10)

when c(u) = cu for some constant c ≥ 0. It follows from the convexity of
V ρ(x, k) that uρ(x, k) is nonincreasing in x. From Lemma F.1, the differ-
ential equation

d

dt
x(t) = uρ(x(t), k(t)(ω)) − z, x(0) = x,

has a unique solution xρ(t), t ≥ 0, for each sample path of k(t)(ω), ω ∈ Ω.
Therefore, it follows from (3.8) and Theorem 3.1 that uρ(x, k) is an optimal
control policy.

In order to study the long-run average-cost control problem using the
vanishing discount approach, we must first obtain some estimates for the
value function V ρ(x, k) defined in (3.6) for small values of ρ.

Lemma 3.1. Let Assumptions (A3) and (A4) hold. Let

σ = inf
{

t :
∫ t

0
[k(s) − z] ds = ∆

}
for any fixed ∆ > 0. Then, for any r ≥ 1, there is a constant Cr independent
of ∆ such that Eσr ≤ Cr(∆r + 1).

Proof. It can be shown as Lemma B.5, that there exists a constant C1 > 0
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such that, for any t > 0,

E

[
exp

(
1√

t + 1

∣∣∣∣∫ t

0
[k(s) − k̄] ds

∣∣∣∣)]
≤ C1, (3.11)

where k̄ is the average capacity level defined in Assumption (A4).
Note by the definition of σ that

P (σ ≥ t) ≤ P

(∫ t

0
[k(s) − z] ds ≤ ∆

)
= P

(∫ t

0
[k(s) − k̄] ds + (k̄ − z)t ≤ ∆

)
.

Since k̄ > z by Assumption (A4), we have, for t ≥ ∆/(k̄ − z),

P (σ ≥ t) ≤ P

(∣∣∣∣∫ t

0
[k(s) − k̄] ds

∣∣∣∣ ≥ t(k̄ − z) − ∆
)

= P

(
1√

t + 1

∣∣∣∣∫ t

0
[k(s) − k̄] ds

∣∣∣∣ ≥ t(k̄ − z) − ∆√
t + 1

)
≤ exp

(
− t(k̄ − z) − ∆√

t + 1

)
· E exp

(
1√

t + 1

∣∣∣∣∫ t

0
[k(s) − k̄] ds

∣∣∣∣) .

In view of this and inequality (3.11), we have that, for t ≥ 2∆/(k̄ − z),

P (σ ≥ t) ≤ C1 exp
(

− t(k̄ − z)√
t + 1

+
∆√
t + 1

)
= C1 exp

{
− t(k̄ − z)

2
√

t + 1
+

(
− t(k̄ − z)

2
√

t + 1
+

∆√
t + 1

)}
≤ C1 exp

(
− t(k̄ − z)

2
√

t + 1

)
.

Therefore,

Eσr = r

∫ ∞

0
tr−1P (σ ≥ t) dt

≤ r

∫ 2∆/(k̄−z)

0
tr−1 dt + rC1

∫ ∞

2∆/(k̄−z)
tr−1 exp

(
− t(k̄ − z)

2
√

t + 1

)
dt

≤ Cr(∆r + 1),

for some constant Cr > 0, which is independent of ∆. �

Corollary 3.1. Let Assumptions (A3) and (A4) hold. Let σ̂ be a stopping
time with respect to Ft, and let

σ = inf

{
t :

∫ σ̂+t

σ̂

[k(s) − z] ds = ∆

}
,
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x̃

x̃ + K

t

x(t)

�

�

τ1 σ1 τ2 σ2

Figure 3.1. Surplus Process x(t) under Control u(·).

for any fixed ∆ > 0. Then, for any r ≥ 1, there is a constant Ĉr independent
of ∆ such that Eσr ≤ Ĉr(∆r + 1).

Proof. The proof is similar to the proof of Lemma 3.1. Here only the
inequality

E

[
exp

(
1√

t + 1

∣∣∣∣∣
∫ σ̂+t

σ̂

[k(s) − k̄] ds

∣∣∣∣∣
)]

≤ C1,

for some C1 > 0, is used instead of (3.11), which is given by Corollary B.2.
�

Lemma 3.2. Let Assumptions (A3) and (A4) hold. For any fixed r ≥ 1,
there exists a constant C̃r > 0 such that, for any (x̃, k̃), (x, k) ∈ �×M, we
can find an admissible control u(·) ∈ A(k) such that

Eτ r ≤ C̃r (1 + |x̃ − x|r) , (3.12)

where
τ = inf{t > 0 : (x(t), k(t)) = (x̃, k̃)}, (3.13)

and x(·) is the surplus process corresponding to the control u(·) and the
initial condition (x(0), k(0)) = (x, k).

Proof. We provide a proof only in the case when (x, k) = (0, 0). The
proofs in all other cases are similar. Recall that {νk : k = 0, 1, . . . , m} is
the stationary distribution of the Markov chain k(·), i.e.,

lim
t→∞ P (k(t) = k|k(0) = i) = νk, k, i ∈ M.

Notice that, by Assumption (A3), k(·) is a strongly irreducible Markov
chain, so we have νk > 0, k = 0, 1, . . . , m. Since M is a finite set, we have
a t0 > 0 such that, for all t ≥ t0,

P (k(t) = k|k(0) = i) ≥ νk/2, k, i ∈ M. (3.14)
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Take K to be a number such that K > t0z. We first consider the case when
x̃ + K > 0. For this case, Figure 3.1 is plotted for x̃ > 0 without loss of
generality. In what follows, we construct an appropriate control used in the
proof. Define

τ1 = inf {t > 0 : x(t) = x̃ + K} .

Let
u(t) = k(t), for t ≤ τ1,

so that

x(t) =
∫ t

0
[u(s) − z] ds =

∫ t

0
[k(s) − z] ds, t ≤ τ1,

and

u(t) = 0, x(t) = x̃ + K − (t − τ1)z, for τ1 < t ≤ τ1 + K/z.

For convenience in notation, we write σ1 = τ1 + K/z. Proceeding in this
manner, we can define the required control u(·) ∈ A(0) inductively:

u(t) =

⎧⎨⎩ k(t), if σn−1 < t ≤ τn,

0, if τn < t ≤ σn,

where

x(t) =
∫ t

0
[u(s) − z] ds, 0 ≤ t ≤ τn,

τn = inf{t > σn−1 : x(t) = x̃ + K} and σn = τn + K/z, n > 1.

We set σ0 = 0 and τ0 = 0. The control u(·) can be characterized as follows:
Use the maximum available production rate u(t) = k(t) to move the surplus
process from 0 or x̃ to x̃+K, and then use the zero production rate until the
surplus process drops to the level x̃. A sample path of the surplus process
for x̃ + K > 0 is graphed in Figure 3.1.

It is obvious by our construction that x(σn) = x̃, n = 1, 2, . . .. Further-
more, by the strong Markov property of k(·), we have

P (τ > σn) ≤ P (k(σn) �= k̃, k(σn−1) �= k̃, . . . , k(σ1) �= k̃)

= P (k(σ1) �= k̃)P (k(σ2) �= k̃|k(σ1) �= k̃)

× · · · × P (k(σn) �= k̃|k(σn−1) �= k̃).

(3.15)

Note that σi − σi−1 ≥ K/z > t0, i = 1, 2 . . .. By (3.14) we have

P (k(σ1) �= k̃) ≤ 1 − δ,

P (k(σi) �= k̃|k(σi−1) �= k̃) ≤ 1 − δ, i = 2, 3, . . . ,
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where δ ≡ min{νk/2 : k ∈ M}. Then from (3.15) we have

P (τ > σn) ≤ (1 − δ)n. (3.16)

Recall that σn − σn−1 = τn − σn−1 + K/z,

τ1 − σ0 = inf
{

t > 0 :
∫ t

0
[k(s) − z] ds ≥ x̃ + K

}
,

and, for n = 2, 3, ...,

τn − σn−1 = inf

{
t > 0 : x̃ +

∫ σn−1+t

σn−1

[k(s) − z] ds ≥ x̃ + K

}
.

Apply Corollary 3.1 for any r ≥ 1 to obtain that, for n ≥ 1,

E|τn − σn−1|r ≤ Cr (1 + |x̃ + K|r)

≤ C1 (1 + |x̃|r + |K|r) ,
(3.17)

where C1 > 0 is a constant independent of x̃. Consequently, there exists a
positive constant C2 such that

E|τn − τn−1|r = E|(τn − σn−1) + (σn−1 − τn−1)|r

≤ 2r−1E (|τn − σn−1|r + |σn−1 − τn−1|r)

≤ C2 (1 + |x̃|r) .

Noting that τn ≥ σ0 + σ1 + · · · + σn−1 ≥ (n − 1)K/z, therefore,

Eτ r = r

∫ ∞

0
tr−1P (τ ≥ t) dt

= r

∞∑
n=1

E

∫ τn

τn−1

tr−1P (τ ≥ t) dt

≤ r

∞∑
n=1

E

∫ τn

τn−1

tr−1P (τ ≥ τn−1) dt

≤ r

∞∑
n=1

E

∫ τn

τn−1

tr−1P (τ ≥ σ(n−2)∨0) dt

≤
∞∑

n=1

E
(
τ r
n − τ r

n−1
)
(1 − δ)(n−2)∨0

≤
∞∑

n=1

nrE

(
max

1≤j≤n
{τj − τj−1}

)r

(1 − δ)(n−2)∨0

≤ C2(1 + |x̃|r)
∞∑

n=1

nr+1(1 − δ)(n−2)∨0

≤ C3 (1 + |x̃|r) ,
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for some positive constant C3 independent of x̃. This implies the lemma
when x̃ + K > 0.

When x̃ + K ≤ 0, the proof is the same except that we define u(t) = 0
until time τ1, which in this case exactly equals |x̃ + K|/z. �

For any constant M , define the feedback policy

ũ(x, k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if x > M,

k ∧ z, if x = M,

k, if x < M,

(3.18)

and x̃(t) to be the corresponding surplus process with the initial condition
(x̃(0), k(0)) = (x, k).

Corollary 3.2. Under Assumptions (A3) and (A4), for any constant M ,
the feedback policy ũ(x, k) defined by (3.18) is stable. That is,

lim
T→∞

E|x̃(T )|βh2+1

T
= 0.

Proof. Let

u(t) = k(t), for t ≤ τ1 = inf {t > 0 : x(t) = M + K}

such that

x(t) = x +
∫ t

0
[u(s) − z] ds = x +

∫ t

0
[k(s) − z] ds, t ≤ τ1,

and

u(t) = 0, x(t) = M + K − z(t − τ1), for τ1 < t ≤ τ1 + K/z.

For convenience in notation, we write σ1 = τ1 + K/z. Proceeding in this
manner, we can define the required control u(·) ∈ A(k) inductively:

u(t) =

⎧⎨⎩ k(t), if σn−1 < t ≤ τn,

0, if τn < t ≤ σn,

where

x(t) = x +
∫ t

0
[u(s) − z] ds, 0 ≤ t ≤ τn,

τn = inf{t > σn−1 : x(t) = M + K} and σn = τn + K/z, n > 1.
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Then, we have that, for any t ≥ 0,

|x̃(t)| ≤ |x(t)| + K. (3.19)

Furthermore, for n = 1, 2, ...,

|x(t)| ≤ |M | + K, for t ∈ [τn−1, σn−1],

|x(t)| ≤ |M | + (m + z)(τn − σn−1), for t ∈ [σn−1, τn],

where τ0 = σ0 = 0. Therefore, the corollary follows from (3.17) and (3.19).
�

Theorem 3.2. Let Assumptions (A1)–(A4) hold. There exists a constant
ρ0 > 0 such that ρV ρ(0, 0) for 0 < ρ ≤ ρ0 is bounded.

Proof. By Lemma 3.2 we know that there exists a control u(·) ∈ A(0) such
that, for each r ≥ 1,

E [τ r
0 ] ≤ C1, (3.20)

where C1 > 0 is a constant (which depends on r) and

τ0 = inf {t > 0 : (x(t), k(t)) = (0, 0)} ,

with x(·) being the surplus process corresponding to the control process u(·)
and the initial condition (x(0), k(0)) = (0, 0). By the optimality principle,
we have

V ρ(0, 0) ≤ E

{∫ τ0

0
e−ρt[h(x(t)) + c(u(t))] dt

+ e−ρτ0V ρ(x(τ0), k(τ0))
}

= E

{∫ τ0

0
e−ρt[h(x(t)) + c(u(t))] dt + e−ρτ0V ρ(0, 0)

}
= E

{∫ τ0

0
e−ρt[h(x(t)) + c(u(t))] dt

}
+ V ρ(0, 0)E

[
e−ρτ0

]
.

Note that |x(t)| ≤ (m + z)t for 0 ≤ t ≤ τ0, where we recall that m is the
largest possible production capacity. Thus by Assumptions (A1) and (A2),
for 0 ≤ t ≤ τ0,

h(x(t)) ≤ Ch3(1 + |x(t)|βh2) ≤ C2(1 + tβh2),

c(u(t)) ≤ c(m),

where C2 is a positive constant. It follows from (3.20) that

[1 − Ee−ρτ0 ]V ρ(0, 0)

≤ E

∫ τ0

0
[c(m) + C2(1 + tβh2)] dt

= [c(m) + C2] Eτ0 +
C2

βh2 + 1
E
[
τβh2+1
0

]
≤ C3,

(3.21)
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for some positive constant C3 (independent of ρ). Now, using the inequality
1 − e−ρτ0 ≥ ρτ0 − ρ2τ2

0 /2, we can get

[1 − Ee−ρτ0 ]V ρ(0, 0) ≥
[
Eτ0 − ρE[τ2

0 ]
2

]
· ρV ρ(0, 0). (3.22)

From the definition of τ0 and (3.20), we know that τ0 > 0 and both Eτ0
and Eτ2

0 are finite. Therefore, we have

0 < Eτ0 < ∞ and 0 < E[τ2
0 ] < ∞.

Take ρ0 = Eτ0/E[τ2
0 ]. By (3.21) and (3.22), we have that, for 0 < ρ ≤ ρ0,

ρV ρ(0, 0) ≤ C3

Eτ0 − ρ0E[τ2
0 ]/2

=
2C3

Eτ0
,

which yields the theorem. �

Let us define the function

Ṽ ρ(x, k) = V ρ(x, k) − V ρ(0, 0), (3.23)

for which the following results can be derived.

Theorem 3.3. Let Assumptions (A1)–(A4) hold. The function Ṽ ρ(x, k) is
convex in x. For each k, it is locally uniformly bounded, i.e., there exists a
constant C > 0 such that

|Ṽ ρ(x, k)| ≤ C(1 + |x|βh2+1), (x, k) ∈ � × M, ρ ≥ 0. (3.24)

Proof. The convexity of Ṽ ρ(·, k) follows from that of V ρ(·, k). Thus, we
need only to show inequality (3.24). We first consider an upper bound for
Ṽ ρ(x, k). By Lemma 3.2, there exists a constant C1 > 0 and a control
u(·) ∈ A(k) such that

E
[
τβh2+1
0

]
≤ C1

(
1 + |x|βh2+1) , (3.25)

with

τ0 = inf {t > 0 : (x(t), k(t)) = (0, 0)} ,

where x(·) is the state corresponding to u(·) and the initial condition
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(x(0), k(0)) = (x, k). Then, from the optimality principle, we have

V ρ(x, k) ≤ E

{∫ τ0

0
e−ρt[h(x(t)) + c(u(t))] dt

+ e−ρτ0V ρ(x(τ0), k(τ0))
}

= E

{∫ τ0

0
e−ρt[h(x(t)) + c(u(t))] dt

+ e−ρτ0V ρ(0, 0)
}

≤ E

{∫ τ0

0
e−ρt[h(x(t)) + c(u(t))] dt + V ρ(0, 0)

}
.

(3.26)

Note that |x(t)| ≤ |x|+(m+ z)t for 0 ≤ t ≤ τ0. Thus by Assumptions (A1)
and (A2), for 0 ≤ t ≤ τ0,

h(x(t)) ≤ C2
(
1 + |x|βh2 + tβh2

)
,

c(u(t)) ≤ c(m),

for some positive constant C2. Therefore, by (3.25) and (3.26), there exists
a positive constant C3 (independent of ρ) such that

Ṽ ρ(x, k) = V ρ(x, k) − V ρ(0, 0)

≤ E

∫ τ0

0

[
c(m) + C2(1 + |x|βh2 + tβh2)

]
dt

≤ C3(1 + |x|βh2+1).

(3.27)

Next we consider the lower bound of Ṽ ρ(x, k). By Lemma 3.2, there
exists an admissible control u(·) ∈ A(0) such that

E
[
τβh2+1] ≤ C4

(
1 + |x|βh2+1) , x ∈ �, (3.28)

where
τ = inf{t > 0 : (x(t), k(t)) = (x, k)},

C4 > 0 is a constant independent of x, and x(·) is the surplus process
corresponding to the control u(·) and the initial condition (x(0), k(0)) =
(0, 0). Apply again the optimality principle to obtain

V ρ(0, 0) ≤ E

{∫ τ

0
e−ρt[h(x(t)) + c(u(t))] dt

+ e−ρτV ρ(x(τ), k(τ))
}

= E

{∫ τ

0
e−ρt[h(x(t)) + c(u(t))] dt + e−ρτV ρ(x, k)

}
≤ E

{∫ τ

0
e−ρt[h(x(t)) + c(u(t))] dt + V ρ(x, k)

}
.



38 3. Optimal Control of Parallel-Machine Systems

Therefore, in view of x(t) ≤ (m + z)t and Assumptions (A1) and (A2), we
have

Ṽ ρ(x, k) = V ρ(x, k) − V ρ(0, 0)

≥ E

{
(1 − e−ρτ )V ρ(x, k)

−
∫ τ

0
e−ρt[h(x(t)) + c(u(t))] dt

}
≥ E

{
−

∫ τ

0
e−ρt[h(x(t)) + c(u(t))] dt

}
≥ −E

{∫ τ

0

[
c(m) + Ch3(1 + ((m + z)t)βh2)

]
dt

}
≥ −C5(1 + |x|βh2+1),

(3.29)

for some positive constant C5 (independent of ρ). The theorem follows from
(3.27) and (3.29). �

The next corollary shows the Lipschitz continuity of Ṽ ρ(x, k).

Corollary 3.3. Let Assumptions (A1)–(A4) hold. The function Ṽ ρ(x, k),
ρ > 0, is locally uniformly Lipschitz continuous in x. That is, for any
bounded interval I ⊂ �, there exists a constant C > 0 (independent of ρ)
such that

|Ṽ ρ(x, k) − Ṽ ρ(x̃, k)| ≤ C |x − x̃|,

for all x, x̃ ∈ I, and ρ > 0.

Proof. The result follows from part (iii) of Lemma C.1 and the fact that
Ṽ ρ(x, k), ρ > 0, are locally uniformly bounded. �

Corollary 3.4. Let Assumptions (A1)–(A4) hold. For (x, k) ∈ �×M, there
is a subsequence of ρ, still denoted by ρ, such that the limits of ρV ρ(x, k)
and Ṽ ρ(x, k) exist as ρ → 0. Write

λ̂ = lim
ρ→0

ρV ρ(x, k) and V (x, k) = lim
ρ→0

Ṽ ρ(x, k). (3.30)

Moreover, the convergence is locally uniform in (x, k) and V (·, ·) is locally
Lipschitz continuous.

Proof. The proof follows immediately from Theorems 3.2 and 3.3, Corol-
lary 3.3, and Theorem F.1 (Arzelà-Ascoli theorem). �

Remark 3.2. V (x, k) is called the relative cost function. �
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3.4 Verification Theorem

The HJB equation for the optimal control problem of Section 3.2 takes the
form

λ = F

(
k,

∂φ(x, k)
∂x

)
+ h(x) + Qφ(x, ·)(k), (3.31)

where λ is a constant, φ(·, ·) is a real-valued function defined on � × M,
and F (k, ∂φ(x, k)/∂x) is defined by (3.8).

Before we define a solution to the HJB equation (3.31), we first intro-
duce some notation. Let G denote the family of real-valued functions G(·, ·)
defined on � × M such that, for each k ∈ M,

(i) G(x, k) is convex in x;

(ii) G(x, k) is continuously differentiable with respect to x; and

(iii) there is a constant C > 0 such that

|G(x, k)| ≤ C(1 + |x|βh2+1), x ∈ �,

where βh2 is given by Assumption (A1).

Definition 4.1. A solution of the HJB equation (3.31) is a pair (λ, W (·, ·))
with λ a constant and W (·, ·) ∈ G. The function W (·, ·) is called a potential
function for the control problem if λ = λ∗, the minimum long-run average
cost. �

In Theorem 4.1 we show that the limit (λ̂, V (·), ·) obtained in (3.30) is a
viscosity solution as defined in Appendix D. Then in Theorem 4.2 we show
that V (·, k) ∈ C1 and therefore (λ̂, V (·, ·)) is indeed a solution.

Theorem 4.1. Let Assumptions (A1)–(A4) hold. Then (λ̂, V (x, k)) is a
viscosity solution to the HJB equation (3.31). Moreover, the constant λ̂ is
unique in the following sense: If (λ̃, Ṽ (x, k)) is another viscosity solution
to (3.31), then λ̃ = λ̂.

Proof. By Corollary 3.4, we know that the convergence of Ṽ ρ(x, k) to
V (x, k) in (3.30) is locally uniform in (x, k). From Theorem 3.1 we know
that V ρ(x, k) is the solution, and thus a viscosity solution to (3.7). As a
result, Ṽ ρ(x, k) is a viscosity solution to

ρṼ ρ(x, k) + ρV ρ(0, 0) = F

(
k,

∂V ρ(x, k)
∂x

)
+ h(x) + QṼ ρ(x, ·)(k). (3.32)

Note that λ̂ = limρ→0 ρV ρ(0, 0) which is easy to see from the facts that
ρV ρ(x, k) → λ̂, ρṼ ρ(x, k) → 0, and V ρ(x, k) = Ṽ ρ(x, k) + V ρ(0, 0). In
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(3.32), ρṼ ρ(x, k) → 0 locally uniformly. Furthermore, ∂V ρ(x, k)/∂x =
∂Ṽ ρ(x, k)/∂x. Using the properties of viscosity solutions (Appendix D),
we can conclude that (λ̂, V (·, ·)) is a viscosity solution to (3.31).

The uniqueness of λ̂ follows from Theorem D.1. �

In the next theorem, we derive the smoothness and boundedness of
V (x, k). Before getting to the theorem, we introduce some notation. In
order to incorporate possible nondifferentiability of the value function, we
consider the superdifferential and subdifferential of the function. For any
function φ(x, k) defined on �n × M, let D+φ(x, k) and D−φ(x, k) de-
note the superdifferential and subdifferential of φ(x, k) with respect to x,
respectively, i.e.,

D+φ(x, k) =
{

r ∈ �n : lim sup
|h|→0

φ(x + h, k) − φ(x, k) − 〈h, r〉
|h| ≤ 0

}
,

(3.33)
and

D−φ(x, k) =
{

r ∈ �n : lim inf
|h|→0

φ(x + h, k) − φ(x, k) − 〈h, r〉
|h| ≥ 0

}
.

(3.34)

Theorem 4.2. Let Assumptions (A1)–(A5) hold. The relative cost function
V (x, k) defined by (3.30) is continuously differentiable in x, and (λ̂, V (x, k))
is a classical solution to the HJB equation (3.31). Moreover, V (x, k) is
convex in x and

|V (x, k)| ≤ C(1 + |x|βh2+1).

The relative cost function V (x, k) is strictly convex if the cost function h(x)
is also.

Proof. The convexity of V (x, k) follows from the convexity of Ṽ ρ(x, k).
The local boundedness of V (x, k) follows from Theorem 3.3.

Since the function V (x, k) is convex in x, to prove that (λ̂, V (x, k)) is a
classical solution to the HJB equation (3.31), it suffices to show that the
subdifferential D−V (x, k) is a singleton in view of Lemma C.2.

Note, by Assumption (A5), that the map

p → F (k, p) = inf
0≤u≤k

{(u − z)p + c(u)}

is not constant on any nontrivial interval. If V (x, k) is differentiable at xn,
then

λ̂ = F

(
k,

∂V (xn, k)
∂x

)
+ h(xn) + QV (xn, ·)(k).

Taking xn → x as n → ∞, we obtain

λ̂ = F (k, y) + h(x) + QV (x, ·)(k), y ∈ Γ(x),
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where

Γ(x) =
{

lim
n→∞

∂V (xn, k)
∂x

: V (x, k) is differentiable at xn

and lim
n→∞ xn = x

}
.

It follows from the concavity of F (k, x) and Lemma C.2 that

λ̂ ≤ F (k, y) + h(x) + QV (x, ·)(k), y ∈ D−V (x, k).

However, the viscosity solution implies that

λ̂ ≥ F (k, y) + h(x) + QV (x, ·)(k), y ∈ D−V (x, k).

Hence,
λ̂ = F (k, y) + h(x) + QV (x, ·)(k), y ∈ D−V (x, k).

Thus, for fixed (x, k), F (k, ·) is constant on the convex set D−V (x, k).
Therefore, D−V (x, k) is a singleton.

Finally, we prove that the relative cost function V (x, k) is strictly convex
if the cost function h(x) is so. By Theorem 3.1, for any fixed x1, x2 ∈ �, and
for each fixed δ ∈ (0, 1), there exists a positive constant C0 (see Lemma
3.3.1 in Sethi and Zhang [125]) such that

V ρ(δx1 + (1 − δ)x2, k) ≤ δV ρ(x1, k) + (1 − δ)V ρ(x2, k) + C0. (3.35)

This implies that

V ρ(δx1 + (1 − δ)x2, k) − V ρ(0, k)

≤ δ [V ρ(x1, k) − V ρ(0, k)] + (1 − δ) [V ρ(x2, k) − V ρ(0, k)] + C0.
(3.36)

Taking the limit with ρ → 0, we have

V (δx1 + (1 − δ)x2, k) ≤ δV (x1, k) + (1 − δ)V (x2, k) + C0. (3.37)

Consequently, V (x, k) is strictly convex. �

We now give a verification theorem.

Theorem 4.3. Let Assumptions (A1)–(A4) hold. Let (λ, W (x, k)) be a
solution to the HJB equation (3.31). Then:

(i) If there is a control u∗(·) ∈ A(k) such that

F

(
k(t),

∂W (x∗(t), k(t))
∂x

)
= (u∗(t) − z)

∂W (x∗(t), k(t))
∂x

+ c(u∗(t)),
(3.38)
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for a.e. t ≥ 0 with probability 1, where x∗(·) is the surplus process
corresponding to the control u∗(·), and

lim
T→∞

E[W (x∗(T ), k(T ))]
T

= 0, (3.39)

then
λ = J(x, k, u∗(·)).

(ii) For any u(·) ∈ A(k), we have λ ≤ J(x, k, u(·)), i.e.,

lim sup
T→∞

1
T

E

∫ T

0
[h(x(t)) + c(u(t))] dt ≥ λ. (3.40)

(iii) Furthermore, for any (stable) control u(·) ∈ S(k), we have

lim inf
T→∞

1
T

E

∫ T

0
[h(x(t)) + c(u(t))] dt ≥ λ. (3.41)

Proof. We begin with the proof of part (i). Since (λ, W (x, k)) is a solution
to the HJB equation (3.31) and u∗(·) satisfies (3.38), we have

(u∗(t) − z)
∂W (x∗(t), k(t))

∂x
+ QW (x∗(t), ·)(k(t))

= λ − h(x∗(t)) − c(u∗(t)).
(3.42)

Since W (x, k) ∈ G, we can apply Dynkin’s formula (see Fleming and Rishel
[53]) and (3.42) to get

E [W (x∗(T ), k(T ))]

= W (x, k) + E

∫ T

0

[
(u∗(t) − z)

∂W (x∗(t), k(t))
∂x

+ QW (x∗(t), ·)(k(t))
]

dt

= W (x, k) + E

∫ T

0
[λ − h(x∗(t)) − c(u∗(t))] dt

= W (x, k) + λT − E

∫ T

0
[h(x∗(t)) + c(u∗(t))] dt.

(3.43)

We can rewrite (3.43) as

λ =
1
T

{E[W (x∗(T ), k(T ))] − W (x, k)}

+
1
T

E

∫ T

0
[h(x∗(t)) + c(u∗(t))] dt,
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and the first part of the theorem is proved by taking the limit as T → ∞
and using condition (3.39).

For the proof of part (iii), if u(·) ∈ S(k), then from W (x, k) ∈ G, we
know that

lim
T→∞

E[W (x(T ), k(T ))]
T

= 0.

Moreover, from the HJB equation (3.31) we have

(u(t) − z)
∂W (x(t), k(t))

∂x
+ QW (x(t), ·)(k(t))

≥ λ − h(x(t)) − c(u(t)).

Now (3.41) can be proved similarly as before.
Finally, we apply Lemma F.3 to show part (ii), i.e., the optimality of the

control u∗(·) in the (natural) class of all admissible controls. Let u(·) ∈ A(k)
be any control and let x(·) be the corresponding surplus process. Suppose
that

J(x, k, u(·)) < λ. (3.44)

Set
f(t) = E[h(x(t)) + c(u(t))].

Without loss of generality we may assume that∫ t

0
f(s) ds < ∞,

for each t > 0, or else, we would have J(x, k, u(·)) = ∞. Note that

J(x, k, u(·)) = lim sup
T→∞

1
T

∫ T

0
f(s) ds,

while

ρJρ(x, k, u(·)) = ρ

∫ ∞

0
e−ρsf(s) ds.

Therefore, we can apply Lemma F.3 and (3.44) to obtain

lim sup
ρ→0

ρJρ(x, k, u(·)) < λ. (3.45)

On the other hand, we know from Theorem 4.1 that

lim
ρ→0

ρV ρ(x, k) = λ̂ = λ.

This equation and (3.45) imply the existence of a ρ > 0 such that

ρJρ(x, k, u(·)) < ρV ρ(x, k),



44 3. Optimal Control of Parallel-Machine Systems

which contradicts the definition of V ρ(x, k). Thus (ii) is proved. �

Remark 4.1. From Theorems 4.2 and 4.3, we know that the relative cost
function V (x, k) defined by (3.30) is also a potential function. Furthermore,
λ̂ defined by (3.30) is the minimal average cost, i.e., λ̂ = λ∗. �

Remark 4.2. In the simple special case (m = 1, c(u) = 0, h(x) = h1x
+ +

h2x
−) solved by Bielecki and Kumar [20], we note that optimality is shown

only over the class of stable controls and not over the (natural) class of
admissible controls. That is, they prove (i) and (iii) but not (ii). �

3.5 Existence and Characterization of Optimal
Policy

From Theorem 4.2, we know that the relative cost function V (x, k) ∈ G.
Moreover, it is also a potential function in view of Theorems 4.2 and 4.3. In
a way similar to (3.9) and (3.10), based on Theorem 4.3, let us now define
a control policy u∗(·, ·) via the potential function V (·, ·) given by (3.30) as
follows:

u∗(x, k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if Vx(x, k) > −cu(0),

(cu(u))−1(−Vx(x, k)), if − cu(k) ≤ Vx(x, k) ≤ −cu(0),

k, if Vx(x, k) < −cu(k),
(3.46)

when c(u) is strictly convex, and

u∗(x, k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if Vx(x, k) > −c,

k ∧ z, if Vx(x, k) = −c,

k, if Vx(x, k) < −c,

(3.47)

when c(u) = cu for some constant c ≥ 0. Therefore, the control policy
u∗(·, ·) satisfies condition (3.38). Furthermore, it follows from the discussion
after Remark 3.1 that equation

d

dt
x(t) = u∗(x(t), k(t)) − z, x(0) = x,

has a unique solution x∗(t), t ≥ 0, for each sample path k(t).
Next we devote ourselves to proving that u∗(·, ·) is a stable control. For

this, we first derive some intermediate results.

Lemma 5.1. Let Assumptions (A1)–(A5) hold. For each k ∈ M, we have

inf
x∈	

V (x, k) > −∞. (3.48)
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Proof. Let (xρ, kρ) be the minimum point of the value function V ρ(·, ·).
Then we can write

Ṽ ρ(x, k) = V ρ(x, k) − V ρ(xρ, kρ) + V ρ(xρ, kρ) − V ρ(0, 0)
≥ V ρ(xρ, kρ) − V ρ(0, 0).

By Theorem 3.3, we have

Ṽ ρ(x, k) ≥ −C
(
1 + |xρ|βh2+1) .

Since Ṽ ρ(x, k) → V (x, k), we need only to show that {xρ} is bounded.
From the definition of (xρ, kρ) and Theorem 3.1, we can see that

∂V ρ(xρ, kρ)
∂x

= 0, ρ > 0.

Recall that V ρ(·, ·) is a solution of the HJB equation (3.7). Thus,

ρV ρ(xρ, kρ) = inf
0≤u≤kρ

{
(u − z)

∂V ρ(xρ, kρ)
∂x

+ c(u)
}

+ h(xρ) + QV ρ(xρ, ·)(kρ).

Using the fact that (xρ, kρ) is the minimum point of V ρ(·, ·), we can con-
clude that QV ρ(xρ, ·)(kρ) ≥ 0. Therefore,

ρV ρ(xρ, kρ) ≥ h(xρ). (3.49)

From Theorem 3.2, we know that there exist constants C1 > 0 and ρ0 > 0
such that, for 0 < ρ ≤ ρ0,

ρV ρ(xρ, kρ) ≤ ρV ρ(0, 0) ≤ C1, ρ > 0,

where the definition of (xρ, kρ) is applied in the first inequality. Therefore,
it follows from (3.49) that h(xρ) ≤ C1, and the boundedness of {xρ} follows
from Assumption (A1). �

In order to state and prove the next lemma, define

Bk =
{

x :
∂V (x, k)

∂x
> −dc(0)

du

}
and

B̃k =
{

x :
∂V (x, k)

∂x
< −dc(k)

du

}
.
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Lemma 5.2. Let Assumptions (A1)–(A5) hold. The sets Bk and B̃k are
nonempty for each k ∈ M.

Proof. Define

B0
k =

{
x :

∂V (x, k)
∂x

> 0
}

.

By Assumption (A2) we know that −(dc(0)/du) ≤ 0. Since ∂V (x, k)/∂x is
nondecreasing, we have B0

k ⊂ Bk. Thus, in order to prove that Bk �= ∅, it
suffices to show that B0

k �= ∅. If B0
k = ∅, we will have

∂V (x, k)
∂x

≤ 0, x ∈ �. (3.50)

Using the fact that V (·, k) is a convex function bounded from below, we
can conclude that

∂V (x, k)
∂x

→ 0, as x → ∞.

Thus, we have that, as x → ∞,

F

(
k,

∂V (x, k)
∂x

)
= inf

0≤u≤k

{
(u − z)

∂V (x, k)
∂x

+ c(u)
}

→ 0.

Since V (·, ·) is a solution of the HJB equation (3.31) and h(x) → ∞ as
x → ∞, we can see that

QV (x, ·)(k) → −∞, as x → ∞. (3.51)

Note from (3.50) that V (·, k) is decreasing. Recall that

QV (x, ·)(k) =
∑
i �=k

qki(V (x, i) − V (x, k)).

Moreover, from Assumption (A3) specifying that the generator Q is strongly
irreducible, there is an i �= k such that qki > 0. Then (3.51) leads to

V (x, i) → −∞, as x → ∞,

which is a contradiction to Lemma 5.1. Therefore, we have proved that
Bk ⊃ B0

k �= ∅.
Similarly, we can show that B̃k �= ∅. If B̃k = ∅, then

∂V (x, k)
∂x

≥ −dc(k)
du

, x ∈ �,

and thus F (k, ∂V (x, k)/∂x) is bounded from below for x → −∞. By letting
x → −∞ and noting that h(x) → ∞, we can get a contradiction as above.
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�

From the convexity of the function V (·, k), there are xk and x̂k with
−∞ < x̂k < xk < ∞ such that

Bk = (xk, ∞) and B̃k = (−∞, x̂k).

The control policy u∗(·, ·) given by (3.46) and (3.47) can be written as

u∗(x, k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, x > xk,(

dc(u)
du

)−1 (
−∂V (x, k)

∂x

)
, x̂k ≤ x ≤ xk,

k, x < x̂k.

(3.52)

Theorem 5.1. Let Assumptions (A1)–(A5) hold. The control policy u∗(·, ·)
given by (3.52) is stable.

Proof. Let x∗(·) denote the surplus process corresponding to control policy
u∗(·, ·) with x∗(0) = x and k(0) = k. Let

M = max{|xk|, |x̂k| : k ∈ M}.

Then u∗(·, ·) has the following property:

u∗(x, k) =

⎧⎨⎩ 0, if x ≥ M + 1,

k, if x ≤ −(M + 1).

Let x̂(·), with x̂(0) = x and k(0) = k, be the surplus process corresponding
to the control policy defined by

û(x, k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if x > M + 1,

k ∧ z, if x = M + 1,

k, if x < M + 1.

Furthermore, let x̃(·), with x̃(0) = x and k(0) = k, be the surplus process
corresponding to the control policy defined by

ũ(x, k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if x > −(M + 1),

k ∧ z, if x = −(M + 1),

k, if x < −(M + 1).

It is easy to see that
x̃(t) ≤ x∗(t) ≤ x̂(t),
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and thus, for any r > 0, we have

E|x∗(t)|r ≤ C1 (E|x̃(t)|r + E|x̂(t)|r) ,

where C1 > 0 is a positive constant. In view of Corollary 3.2, take r =
βh2 + 1 to conclude that

lim
t→∞

E|x∗(t)|βh2+1

t
= 0,

which implies the theorem. �

Now we are in the position to state and prove the following theorem.

Theorem 5.2. Let Assumptions (A1)–(A5) hold. The control policy u∗(·, ·),
defined in (3.46) or (3.47) as the case may be, is optimal.

Proof. By Theorem 4.3, we need only to show that

lim
t→∞

E[V (x∗(t), k(t))]
t

= 0.

But this is implied by Theorem 4.2 and the fact that u∗(·, ·) is a stable
control policy. �

Remark 5.1. When c(u) = 0, i.e., there is no production cost in the model,
the optimal control policy can be chosen to be the hedging point policy,
which has the following form: There are real numbers xk, k = 1, . . . , m,
such that

u∗(x, k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x > xk,

k ∧ z, x = xk,

k, x < xk.

xk (k = 1, . . . , m) are called turnpike levels or thresholds. We will provide
a more detailed discussion in the next section. �

3.6 Turnpike Set Analysis

A major characteristic of the optimal policy in convex production plan-
ning with a sufficiently long horizon is that there exists a time-dependent
threshold or turnpike level (see Thompson and Sethi [135]), such that pro-
duction takes place in order to reach the turnpike level if the inventory level
is below the turnpike level and no production takes place if the inventory
is above that level. Once on the turnpike level, only necessary production
takes place so as to remain on the turnpike. In a finite horizon case, the
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above policy holds at every instant sufficiently removed from the horizon,
see Zhang and Yin [152]. In the infinite horizon case with the usual as-
sumption of constant demand, the turnpike level will be constant and the
policy will hold everywhere. It is the purpose of this section to characterize
the turnpike sets of the system defined in Section 3.2. It is proved, as in the
discounted case by Sethi and Zhang [125], that the turnpike sets exhibit a
monotone property with respect to production capacity. Usually, the prob-
lem of solving the optimal production planning is equivalent to the problem
of locating the turnpike sets. Therefore, the knowledge about the monotone
property of the turnpike sets definitely helps to solve some optimal control
problems in a closed form. On the other hand, it can greatly reduce the
computation needed for numerical approaches for solving optimal control
problems; see Sharifnia [128].

Now we introduce the definition of the turnpike sets.

Definition 6.1. Let V (x, k) given by (3.30) be a potential function. We
call

T (k) =
{

yk : V (yk, k) +
dc(z)
du

yk = inf
y∈	

{
V (y, k) +

dc(z)
du

y

}}
(3.53)

the turnpike set associated with the capacity level k (k ∈ M). �

From Theorem 4.2, the turnpike set given by (3.53) can be simply written
as

T (k) =
{

yk :
∂V (yk, k)

∂x
+

dc(z)
du

= 0
}

. (3.54)

Under Assumptions (A4) and (A5), we have 0 < z < m, i.e., the demand
can be met using the maximum available capacity. Define i0 ∈ M to be
such that i0 < z < i0 + 1. Observe that, for j ≤ i0,

dx(t)
dt

≤ j − z ≤ i0 − z < 0.

Therefore, x(t) → −∞ as t → ∞ provided j is absorbing. Hence, only those
i ∈ M, for which i ≥ i0 + 1, are of special interest to us. First we have the
following lemma.

Lemma 6.1. Let Assumptions (A1)–(A5) hold and let the surplus cost
function h(·) be differentiable. Define

L(i) =
dh(yi)

dx
+

∑
k �=i

qik

(
∂V (yi, k)

∂x
− ∂V (yi, i)

∂x

)
, yi ∈ T (i), i ∈ M.



50 3. Optimal Control of Parallel-Machine Systems

Then, L(i) ≥ 0 for i ≤ i0, and L(i) = 0 for i ≥ i0 + 1.

Proof. By Theorem 4.2 and Remark 4.1,

λ∗ = inf
0≤u≤i

{
(u − z)

∂V (x, i)
∂x

+ c(u)
}

+ h(x)

+
∑
k �=i

qik[V (x, k) − V (x, i)].
(3.55)

From the definition of yi given by (3.53) and the convexity of c(u) and
V (x, i), for y ≤ yi and u ≤ z,

∂V (y, i)
∂x

+
dc(u)
du

≤ 0.

Therefore, it follows from (3.55) that, for y ≤ yi and i ≤ i0,

λ∗ = (i − z)
∂V (y, i)

∂x
+ c(i) + h(y)

+
∑
k �=i

qik[V (y, k) − V (y, i)].
(3.56)

Taking the derivative on both sides at points at which ∂V (x, i)/∂x is dif-
ferentiable, we get that, for y ≤ yi and i ≤ i0,

0 = (i − z)
∂2V (y, i)

∂x2 +
dh(y)
dx

+
∑
k �=i

qik

(
∂V (y, k)

∂x
− ∂V (y, i)

∂x

)
. (3.57)

Note that

(i − z)
∂2V (y, i)

∂x2 ≤ 0, (3.58)

if ∂V (x, i)/∂x is differentiable at y. Because ∂V (x, i)/∂x is a nondecreasing
function, therefore, the set of differentiable points for ∂V (y, i)/∂x is dense
in (−∞, yi). Letting y → yi in (3.57) and using (3.58), we have L(i) ≥ 0
for i ≤ i0.

If i ≥ i0+1, from the definition of yi and the convexity of V (x, i) and c(u),
we know that for small enough δ > 0, there exists a decreasing function
f(y) of y on interval [yi − δ, yi + δ] such that

inf
0≤u≤i

{
(u − z)

∂V (y, i)
∂x

+ c(u)
}

= [f(y) − z]
∂V (y, i)

∂x
+ c(f(y)), (3.59)

and
f(y) → z, as y → yi. (3.60)

From the continuity of ∂V (x, i)/∂x (see Theorem 4.2), we know that

f(y) ≥ z, for y ≤ yi and f(y) ≤ z, for y > yi. (3.61)
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By (3.55) and (3.59), we have

λ∗ = [f(y) − z]
∂V (y, i)

∂x
+ c(f(y)) + h(y)

+
∑
k �=i

qik[V (y, k) − V (y, i)].
(3.62)

Taking derivative on both sides of (3.62) at points at which ∂V (x, i)/∂x
and f(y) are differentiable, and noting that[

∂V (y, i)
∂x

+
dc(u)
du

]
u=f(y)

= 0,

we have

−[f(y) − z]
∂2V (y, i)

∂x2

=
dh(y)
dx

+
∑
k �=i

qik

(
∂V (y, k)

∂x
− ∂V (y, i)

∂x

)
.

(3.63)

Letting y ↑ yi and using (3.60) and (3.61), we get

dh(yi)
dx

+
∑
k �=i

qik

(
∂V (yi, k)

∂x
− ∂V (yi, i)

∂x

)
≤ 0,

where we use the monotonicity of dh(x)/dx and ∂V (x, k)/∂x. In the same
way, letting y ↓ yi and using (3.60) and (3.61), we get

dh(yi)
dx

+
∑
k �=i

qik

(
∂V (yi, k)

∂x
− ∂V (yi, i)

∂x

)
≥ 0.

Therefore, L(i) = 0 for i ≥ i0 + 1. �

Theorem 6.1. Let Assumptions (A1)–(A5) hold, and let the surplus cost
function h(x) be differentiable and strictly convex. If

Q =

⎛⎜⎜⎜⎜⎝
−µ0 µ0
λ1 −(λ1 + µ1) µ1

. . . . . . . . .
λm−1 −(λm−1 + µm−1) µm−1

λm −λm

⎞⎟⎟⎟⎟⎠
with µj > 0 (0 ≤ j ≤ m − 1) and λj > 0 (1 ≤ j ≤ m), then

yi0 ≥ yi0+1 ≥ · · · ≥ ym.
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Proof. Suppose contrariwise that ym−1 < ym. First we show that from
this assumption,

ym−2 < ym−1. (3.64)

By Lemma 6.1, we have

0 =
dh(ym)

dx
+ λm

(
∂V (ym, m − 1)

∂x
− ∂V (ym, m)

∂x

)
. (3.65)

Using ym−1 < ym, we obtain

dh(ym−1)
dx

<
dh(ym)

dx
, (3.66)

and

∂V (ym, m − 1)
∂x

− ∂V (ym, m)
∂x

>
∂V (ym−1, m − 1)

∂x
− ∂V (ym, m)

∂x
. (3.67)

Noting that by (3.54), we have

∂V (ym−1, m − 1)
∂x

− ∂V (ym, m)
∂x

= −dc(z)
du

+
dc(z)
du

= 0. (3.68)

Therefore, it follows from (3.67) that

∂V (ym, m − 1)
∂x

− ∂V (ym, m)
∂x

> 0. (3.69)

Using (3.65) and (3.69), we have

dh(ym)
dx

< 0. (3.70)

It follows from Lemma 6.1 that

L(m − 1) =
dh(ym−1)

dx
+ λm−1

(
∂V (ym−1, m − 2)

∂x
− ∂V (ym−1, m − 1)

∂x

)
+ µm−1

(
∂V (ym−1, m)

∂x
− ∂V (ym−1, m − 1)

∂x

)
≥ 0.

(3.71)
Similar to (3.69), we have

∂V (ym−1, m)
∂x

− ∂V (ym−1, m − 1)
∂x

< 0. (3.72)

Combining (3.66) and (3.70)–(3.72), we get

∂V (ym−1, m − 2)
∂x

− ∂V (ym−1, m − 1)
∂x

> 0. (3.73)
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Using (3.54) again, we have

∂V (ym−2, m − 2)
∂x

− ∂V (ym−1, m − 1)
∂x

= 0. (3.74)

Similar to (3.69), in view of (3.74), it can be shown that (3.73) holds if and
only if (3.64) holds. Hence we have (3.64). Going along the same line, we
can prove that if (3.64) holds, then

ym−3 < ym−2. (3.75)

Repeating this procedure, by Lemma 6.1 with i ≥ 1, we get

y0 < y1 < · · · < ym−1 < ym. (3.76)

On the other hand, using Lemma 6.1 with i = 0, we have

0 ≤ dh(y0)
dx

+ µ0

(
∂V (y0, 1)

∂x
− ∂V (y0, 0)

∂x

)
. (3.77)

It follows from (3.76) that

dh(y0)
dx

≤ 0 and
∂V (y0, 1)

∂x
− ∂V (y0, 0)

∂x
< 0,

which contradicts (3.77).
Consequently, we have ym−1 ≥ ym. In the same way, we can prove

ym−1 ≤ ym−2 ≤ · · · ≤ yi0 .

Thus we get the theorem. �

3.7 Multiproduct Systems

For our treatment of the multiproduct problem, we begin with the cor-
responding discounted cost problem, which can be obtained by using the
methodology reported in Sethi and Zhang [125]. Their methodology utilizes
the existence of optimal piecewise-deterministic controls. They also provide
a verification theorem and the existence of an optimal feedback control
based on the HJB equation in terms of directional derivatives (HJBDD).
We simply state their results in an analogous manner as they pertain to
our problem. Then we use a vanishing discount approach to address the
average-cost problem under consideration.

We consider an n-product manufacturing system with stochastic produc-
tion capacity and constant demand for each product over time. In order to
specify the model, let x(t) ∈ �n, u(t) ∈ �n

+, and z ∈ �n
+ denote the surplus
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level, the production rate, and the constant demand rate, respectively. The
system equation is

d

dt
x(t) = u(t) − z, x(0) = x. (3.78)

Definition 7.1. A production control process u(·) = {u(t), t ≥ 0} is ad-
missible, if: (i) u(t) is adapted to the filtration {Ft} with Ft = σ(k(s), 0 ≤
s ≤ t); and (ii) 0 ≤ u1(t) + u2(t) + · · · + un(t) ≤ k(t), ui(t) ≥ 0, i =
1, . . . , n, t ≥ 0. �

Let

U(k) =

{
u : ui ≥ 0, i = 1, . . . , n,

n∑
i=1

ui ≤ k

}
denote the set of feasible controls given the machine capacity k. Let A(k)
denote the collection of all admissible controls with the initial condition
k(0) = k.

Remark 7.1. Note here that we have assumed ri = 1 (1 ≤ i ≤ n) in (2.6).
The extension of results to other cases is standard. �

Definition 7.2. A function u(·, ·) defined on �n×M is called an admissible
feedback control, or simply a feedback control, if: (i) for any given initial
surplus x and production capacity k, the equation

d

dt
x(t) = u(x(t), k(t)) − z

has a unique solution; and (ii) the control defined by u(·) = {u(t) =
u(x(t), k(t)), t ≥ 0} ∈ A(k). With a slight abuse of notation, we simply
call u(·, ·) a feedback control when no ambiguity arises. �

Let g(x,u) : �n × �n
+ �→ �+ denote the surplus and production cost.

For any u(·) ∈ A(k), define

J(x, k,u(·)) = lim sup
T→∞

1
T

E

∫ T

0
g(x(t),u(t)) dt, (3.79)

where x(0) = x is the initial surplus, and k(0) = k is the the initial
capacity. Our goal is to choose u(·) ∈ A(k) so as to minimize the cost
functional J(x, k,u(·)).

We assume that the cost function g(x,u), and the production capacity
process k(·) satisfy the following:

(A6) g(x,u) is a nonnegative convex function with g(0, 0) = 0. There are
positive constants Cg1, Cg2, and βg1 ≥ 1 such that, for any fixed u,

g(x,u) ≥ Cg1|x|βg1 − Cg2, x ∈ �n, u ∈ �n
+.
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Moreover, there are constants Cg3 > 0 and βg2 ≥ βg1 such that, for
u, ũ ∈ �n

+ and x, x̃ ∈ �n,

|g(x,u) − g(x̃, ũ)|

≤ Cg3
[(

1 + |x|βg2−1 + |x̃|βg2−1) |x − x̃| + |u − ũ|
]
.

(A7) The average capacity k̄ =
∑m

j=0 jνj >
∑n

j=1 zj , where z = (z1, . . . , zn)′

is the demand vector.

A control u(·) ∈ A(k) is called stable if the condition

lim
T→∞

E|x(T )|βg2+1

T
= 0 (3.80)

holds, where x(·) is the surplus process corresponding to the control u(·)
with (x(0), k(0)) = (x, k) and βg2 is defined in Assumption (A6). Let
S(k) ⊂ A(k) denote the class of stable controls. It will be shown in the
next section that the set of stable admissible controls S(k) is nonempty.

We will show in what follows that there exists a constant λ∗, independent
of the initial condition (x(0), k(0)) = (x, k), and a stable Markov control
u∗(·) ∈ A(k) such that u∗(·) is optimal, i.e., it minimizes the cost defined
by (3.79) over all u(·) ∈ A(k) and, furthermore,

lim
T→∞

1
T

E

∫ T

0
g(x∗(t),u∗(t)) dt = λ∗.

Moreover, for any other (stable) control u(·) ∈ S(k),

lim inf
T→∞

1
T

E

∫ T

0
g(x(t),u(t)) dt ≥ λ∗.

In order to study the average-cost control problem, we introduce the
corresponding control problem with discounted cost rate ρ > 0. For u(·) ∈
A(k), we define the expected discounted cost as

Jρ(x, k,u(·)) = E

∫ ∞

0
e−ρtg(x(t),u(t)) dt.

Define the value function of the discounted problem as

V ρ(x, k) = inf
u(·)∈A(k)

Jρ(x, k,u(·)). (3.81)

The following result is from Chapter 4 of Sethi and Zhang [125].

Theorem 7.1. Let Assumptions (A3) and (A6) hold. Then the value func-
tion V ρ(x, k) is convex, and satisfies the following Lipschitz condition:

|V ρ(x, k) − V ρ(x̂, k)| ≤ C
(
1 + |x|βg2−1 + |x̂|βg2−1) |x − x̂| (3.82)
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for some positive constant C and all x, x̂ ∈ �n, k ∈ M.

The dynamic programming equation for the discounted problem can be
written as

ρφρ(x, k) = inf
u∈U(k)

{〈
u − z,

∂φρ(x, k)
∂x

〉
+ g(x,u)

}
+ Qφρ(x, ·)(k),

(3.83)
where 〈·, ·〉 denotes the inner product, and φρ(x, k) is defined on �n × M.

Without requiring that the value function V ρ(·, k) is differentiable, we
follow a different approach. Recall that V ρ(·, k) is convex. It is convenient
to write an HJB equation in terms of directional derivatives (HJBDD).
Such notion is convenient when dealing with control problems with state
constraints, as in flowshops and jobshops. Next, we first give the notion of
these derivatives and some related properties of convex functions.

A function f(x),x ∈ �n, is said to have a directional derivative ∂pf(x)
along direction p ∈ �n, defined by

lim
δ→0

f(x + δp) − f(x)
δ

= ∂pf(x),

whenever the limit exists. If a function f(x) is differentiable at x, then
∂pf(x) exists for every p and

∂pf(x) = 〈∇f(x),p〉, (3.84)

where ∇f(x) is the gradient of f(x) at x. It is well known that a continuous
convex function defined on �n is differentiable almost everywhere.

Formally we can write the HJBDD equation for our problem as

ρφρ(x, k) = inf
u∈U(k)

{∂u−zφρ(x, k) + g(x,u)} + Qφρ(x, ·)(k). (3.85)

Similar to Theorem 3.1, we can establish the smoothness of V ρ(x, k). We
have the following result.

Theorem 7.2. Let Assumptions (A3) and (A6) hold. Then:

(i) the value function V ρ(x, k) is a viscosity solution of (3.83); and

(ii) the value function V ρ(x, k) satisfies equation (3.85) for all x ∈ �n.

In order to study the long-run average-cost control problem using the
vanishing discount approach, just as in Section 3.3, we must first obtain
some estimates for the value function V ρ(x, k).

Lemma 7.1. Let Assumptions (A3) and (A7) hold. For any r ≥ 1 and any
(x, k) ∈ �n × M, x̂ ∈ �n, there exist a control u(·), t ≥ 0, and a positive
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constant Cr, independent of (x, k) and x̂, such that

E[τ r(x, x̂, k)] ≤ Cr

⎛⎝1 +
n∑

j=1

|xj − x̂j |r
⎞⎠ ,

where
τ(x, x̂, k) = inf{t ≥ 0 : x(t) = x̂},

and x(t), t ≥ 0, is the surplus process corresponding to the control u(t),
t ≥ 0, and initial condition (x(0), k(0)) = (x, k).

Proof. We first prove the lemma for x̂ ≥ x, i.e., x̂i ≥ xi, i = 1, . . . , n. In
this case, let us define a feedback control policy

u(y, k) = (u1(y, k), . . . , un(y, k))′

by

uj(y, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x̂j − yj)k∑n
�=1(x̂� − y�)

, if y ≤ x̂, y �= x̂, k <

n∑
�=1

z�,

(k −
∑n

�=1 z�)(x̂j − yj)∑n
�=1(x̂� − y�)

+ zj , if y ≤ x̂, y �= x̂, k ≥
n∑

�=1

z�,

0, otherwise.
(3.86)

By Lemma F.1, the differential equation

d

dt
x(t) = u(x(t), k(t)) − z, x(0) = x,

has a unique solution. Furthermore, it is easy to see that, when y ≤ x̂ and
y �= x̂,

n∑
j=1

uj(y, k) = k, u(y, k) ≥ 0, (3.87)

and thus u(·, ·) defines a feedback control policy. Moreover, note that for
all j such that x̂j ≥ yj , the ratio

uj(y, k) − zj

x̂j − yj
=

k −
∑n

i=1 zi∑n
�=1(x̂� − y�)

is a constant for all k, and therefore when the machine is in the up state,
defined by k(t) ≥

∑n
i=1 zi, the corresponding surplus process moves along

the straight line joining x̂ and y.
Now let us consider

X(t) =
n∑

�=1

x�(t),
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and let X =
∑n

�=1 x�, X̂ =
∑n

�=1 x̂�, and Z =
∑n

�=1 z�. Define

τ = inf{t ≥ 0, X(t) = X̂}.

It can be shown that τ = τ(x, x̂, k). Note that under the feedback control
policy u(·, ·) defined by (3.86), we have that, for t ≤ τ ,

dX(t)
dt

= k(t) − Z, X(0) = X.

Thus, by applying Lemma 3.2, we can conclude that there exists a positive
constant Ĉr independent of X, X̂, and k such that

Eτ r ≤ Ĉr

(
1 + |X̂ − X|r

)
, (3.88)

which implies the lemma.
We now show that Lemma 7.1 holds for any x and x̂. Let

i0 ∈ arg min
i

{
x̂i − xi

zi

}
.

If x̂i0 − xi0 ≥ 0, then it reduces to the case we have just proved. Thus we
may assume

x̂i0 − xi0 < 0,

and without loss of generality, we assume i0 = 1.
Define

u0(t) = 0, 0 ≤ t ≤ t0 =
|x̂1 − x1|

z1
,

then the corresponding trajectory x(t), 0 ≤ t ≤ t0, satisfies

x1(t0) = x̂1,

xi(t0) = xi − x1 − x̂1

z1
zi

≤ xi − xi − x̂i

zi
zi = x̂i, 2 ≤ i ≤ n.

Define x̃ = x(t0). Then as we have shown before, there is a feedback control
u(·, ·) such that

E[τ̃(x̃, x̂, k(t0))]r ≤ C

(
1 +

n∑
i=1

|x̃i − x̂i|r
)

,

where
τ̃(x̃, x̂, k(t0)) = inf{t ≥ 0 : x(t0 + t) = x̂}.

Define

u(t) =

⎧⎨⎩ 0, if 0 ≤ t ≤ t0,

u(x(t), k(t)), if t > t0.
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Then we have

E[τ r(x, x̂, k)] = E [t0 + τ̃(x̃, x̂, k(t0))]
r

≤ 2r−1(tr0 + E[τ̃ r (x̃, x̂, k(t0))])

≤ C1

(
1 +

n∑
i=1

|xi − x̂i|r
)

,

for some constant C1 > 0 independent of x and x̃. The lemma is thus
proved. �

From the proof of the lemma we can prove the following theorem.

Theorem 7.3. Let Assumptions (A3) and (A7) hold. For any (x, k), (x̂, k̂) ∈
�n×M, and r ≥ 1, there exist a control u(·) ∈ A(k) and a positive constant
Ĉr independent of (x, k) and (x̂, k̂) such that

E[τ r(x, x̂, k, k̂)] ≤ Ĉr

(
1 +

n∑
i=1

|x̂i − xi|r
)

,

where
τ(x, x̂, k, k̂) = inf{t ≥ 0 : (x(t), k(t)) = (x̂, k̂)},

and x(·) is the surplus process corresponding to the control u(·) and the
initial condition (x(0), k(0)) = (x, k).

Proof. This theorem can be proved similarly as the proof of Lemma 3.2,
and so the details are omitted. �

With Theorem 7.3 in hand, we can follow the corresponding proofs of
Theorem 3.2 and Corollary 3.3 to prove the following results.

Theorem 7.4. Let Assumptions (A3) and (A6)–(A7) hold. Then:

(i) There exists a constant ρ0 > 0 such that {ρV ρ(0, 0) : 0 < ρ ≤ ρ0} is
bounded.

(ii) The function
Ṽ ρ(x, k) = V ρ(x, k) − V ρ(0, 0) (3.89)

is convex in x. It is locally uniformly bounded, i.e., there exists a
constant C > 0 such that, for (x, k) ∈ �n × M and ρ ≥ 0,

|V ρ(x, k) − V ρ(0, 0)| ≤ C
(
1 + |x|βg2+1) .

(iii) Ṽ ρ(x, k) is locally uniformly Lipschitz continuous in x with respect to
ρ > 0, i.e., for any r > 0, there exists a constant Ĉ > 0, independent
of ρ, such that

|Ṽ ρ(x, k) − Ṽ ρ(x̂, k)| ≤ Ĉ|x − x̂|
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for all k ∈ M and all |x|, |x̂| ≤ r.

Proof. Going along the lines of the proofs of Theorems 3.2 and 3.3, and
Corollary 3.3, we can prove the theorem. The details are omitted. �

The HJB equation for the optimal control problem formulated at the
beginning of the section takes the form

λ = inf
u∈U(k)

{〈
u − z,

∂φ(x, k)
∂x

〉
+ g(x,u)

}
+ Qφ(x, ·)(k), (3.90)

and the corresponding HJBDD equation can be written as

λ = inf
u∈U(k)

{∂u−zφ(x, k) + g(x,u)} + Qφ(x, ·)(k), (3.91)

where λ is a constant and φ(x, k) is a real-valued function defined on �n ×
M.

Before we define the solutions to equations (3.90) and (3.91), we first
introduce some notation. Let G denote the family of real-valued functions
G(x, k) defined on �n × M such that, for each k ∈ M,

(i) G(x, k) is convex in x; and

(ii) there is a constant C > 0 such that

|G(x, k)| ≤ C(1 + |x|βg2+1), x ∈ �n,

where βg2 is given in Assumption (A6).

Definition 7.3. A solution of the HJBDD equation (3.91) is a pair (λ, W (x,
k)) with λ a constant and W (x, k) ∈ G. The function W (x, k) is called the
potential function for the control problem, if λ is the minimum long-run
average cost. �

The next theorem is concerned with a solution (λ, W (x, k)) of the HJB
equation (3.90).

Theorem 7.5. Let Assumptions (A3) and (A6)–(A7) hold. There exists a
subsequence of ρ, still denoted by ρ, such that for (x, k) ∈ �n × M, the
limits of ρV ρ(x, k) and Ṽ ρ(x, k) exist as ρ → 0. Write

lim
ρ→0

ρV ρ(x, k) = λ̂ and lim
ρ→0

Ṽ ρ(x, k) = V (x, k). (3.92)

Furthermore, (λ̂, V (x, k)) is a viscosity solution of the HJB equation (3.90).

Proof. The proof is similar to that of Corollary 3.4 and Theorem 4.1, and
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the details are omitted here. �

Theorem 7.6. Let Assumptions (A3) and (A6)–(A7) hold. (λ̂, V (x, k))
defined in Theorem 7.5 is a solution of the HJBDD equation (3.91).

Proof. The convexity of V (x, k) directly follows from the convexity of
V ρ(x, k). Using (i) of Lemma C.3, we know that the relative interior of
a nonempty convex set, denoted by ri(D−V (x, k)), is nonempty, where
D−V (x, k) is defined by (3.34) in Section 3.4.

First we show that, for r ∈ D−V (x, k),

λ̂ = inf
u∈U(k)

{〈r,u − z〉 + g(x,u)} + QV (x, ·)(k). (3.93)

Let

Γ(x) =
{

lim
n→∞

∂V (xn, k)
∂x

: V (x, k) is differentiable at xn,

and lim
n→∞ xn = x

}
,

let co(Γ(x)) be the convex hull of Γ(x), and let co(Γ(x)) be the closure of
co(Γ(x)). From Lemma C.2 we have

co(Γ(x)) = D−V (x, k). (3.94)

Since V (x, k) is a continuous convex function (see Lemma C.1), it is differ-
entiable a.e. For any x, we can take a sequence xn → x such that V (·, k)
is differentiable at xn for each n. Thus, from Theorem 7.5, we have

λ̂ = inf
u∈U(k)

{〈
∂V (xn, k)

∂x
,u − z

〉
+ g(xn,u)

}
+ QV (xn, ·)(k)

≤
〈

∂V (xn, k)
∂x

,u − z

〉
+ g(xn,u) + QV (xn, ·)(k),

for any u ∈ U(k). Taking xn → x as n → ∞, we obtain from the continuity
of V (·, k) and g(·,u),

λ̂ ≤ 〈r,u − z〉 + g(x,u) + QV (x, ·)(k), r ∈ Γ(x). (3.95)

From the linearity of the right-hand side of (3.95) in r, we can extend
the inequality to co(Γ(x)). Taking rn ∈ co(Γ(x)) such that rn → r, the
extension can be made to co(Γ(x)). By (3.94) and (3.95), we have shown
that, for r ∈ D−V (x, k),

λ̂ ≤ inf
u∈U(k)

{〈r,u − z〉 + g(x,u)} + QV (x, ·)(k).

On the other hand, the viscosity solution property implies the opposite
inequality, and hence we get (3.93).
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We can now show that for any ŷ ∈ ri(D−V (x, k)), if we let u∗ be such
that

λ̂ = 〈ŷ,u∗ − z〉 + g(x,u∗) + QV (x, ·)(k), (3.96)

then (3.96) still holds when we replace ŷ by any y ∈ D−V (x, k). In fact,
by (ii) of Lemma C.3, for any y ∈ D−V (x, k),y �= ŷ, there exists a ỹ ∈
D−V (x, k) such that

ŷ = δy + (1 − δ)ỹ, 0 < δ < 1.

From (3.96) we can write

λ̂ = δ[〈y,u∗ − z〉 + g(x,u∗) + QV (x, ·)(k)]

+ (1 − δ)[〈ỹ,u∗ − z〉 + g(x,u∗) + QV (x, ·)(k)].

From Theorem 7.5, we have

λ̂ ≤ 〈y,u∗ − z〉 + g(x,u∗) + QV (x, ·)(k).

If
λ̂ < 〈y,u∗ − z〉 + g(x,u∗) + QV (x, ·)(k),

then we must have

λ̂ > 〈ỹ,u∗ − z〉 + g(x,u∗) + QV (x, ·)(k),

which contradicts (3.93). That is,

λ̂ = inf
u∈U(k)

{〈ỹ,u − z〉 + g(x,u)} + QV (x, ·)(k),

because ỹ ∈ D−V (x, k). From this and (3.93), we can conclude that

λ̂ = inf
u∈U(k)

{〈y,u − z〉 + g(x,u)} + QV (x, ·)(k)

= 〈y,u∗ − z〉 + g(x,u∗) + QV (x, ·)(k), y ∈ D−V (x, k).
(3.97)

Apply again Lemma C.2 to conclude that

λ̂ = ∂u∗−zV (x, k) + g(x,u∗) + QV (x, ·)(k). (3.98)

It follows directly from (3.98) that

λ̂ ≥ inf
u∈U(k)

{∂u−zV (x, k) + g(x,u)} + QV (x, ·)(k). (3.99)

On the other hand, Lemma C.2 allows us, for every u, to find a yu ∈
D−V (x, k) such that 〈yu,u−z〉 = ∂u−zV (x, k). Using this fact and (3.97),
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we obtain the opposite inequality for u ∈ U(k),

〈yu,u − z〉 + g(x,u) + QV (x, ·)(k)

= ∂u−zV (x, k) + g(x,u) + QV (x, ·)(k)

≥ 〈yu,u∗ − z〉 + g(x,u∗) + QV (x, ·)(k)

= λ̂.

(3.100)

Thus, combining (3.99) and (3.100), we have shown that

λ̂ = inf
u∈U(k)

{∂u−zV (x, k) + g(x,u)} + QV (x, ·)(k),

i.e., (λ̂, V (x, k)) is a solution of the HJBDD equation (3.91). �

The following verification theorem can now be proved.

Theorem 7.7. Let Assumptions (A3) and (A6)–(A7) hold, and let (λ, W (x, k))
be a solution of the HJBDD equation (3.91). Then:

(i) If there is a control u∗(·) ∈ A(k) such that

inf
u∈U(k(t))

{∂u−zW (x∗(t), k(t)) + g(x∗(t),u)}

= ∂u∗(t)−zW (x∗(t), k(t)) + g(x∗(t),u∗(t))
(3.101)

for a.e. t ≥ 0 with probability 1, where x∗(·) is the surplus process
corresponding to the control u∗(·) and the initial condition x∗(0) = x,
and

lim
T→∞

E [W (x∗(T ), k(T ))]
T

= 0, (3.102)

then
λ = J(x, k,u∗(·)).

(ii) For any u(·) ∈ A(k), we have λ ≤ J(x, k,u(·)), i.e.,

lim sup
T→∞

1
T

E

∫ T

0
g(x(t),u(t)) dt ≥ λ.

(iii) Furthermore, for any (stable) control u(·) ∈ S(k), we have

lim inf
T→∞

1
T

E

∫ T

0
g(x(t),u(t)) dt ≥ λ. (3.103)
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Proof. The proof can be obtained along the lines of the proof of Theo-
rem 4.3. �

Remark 7.2. From Theorems 7.6 and 7.7, we know that λ̂ defined by
(3.92) is the optimal cost, i.e., λ̂ = λ∗, and V (x, k) defined by (3.92) is a
potential function. �

In this chapter we have assumed a constant demand. Nevertheless, the
results obtained in this chapter, except the monotonicity of the turnpike
sets in Section 6.1, still hold when the demand rate is modeled as a Markov
chain.

3.8 Notes

This chapter is based on Sethi, Suo, Taksar, and Zhang [113], Sethi, Yan,
Zhang, and Zhang [116], and Sethi, Suo, Taksar, and Yan [112].

Theorems 4.1–4.3, which concern the properties of the potential functions
and the optimal controls for the single product case, are due to Sethi,
Suo, Taksar, and Zhang [113]. For the multiproduct case, Theorems 7.4–
7.7 are from Sethi, Suo, Taksar, and Yan [112]. Theorem 6.1 concerning
the monotonicity property of the turnpike sets obtained by Sethi, Yan,
Zhang and Zhang [116]. Similar results have been obtained by Hu and
Xiang [71]. The monotonicity results are extended in Hu and Xiang [72]
and Liberopoulos and Hu [90] to models with non-Markovian processes.

Eleftheriu [44] and Zhang and Yin [152] consider the problem with a finite
horizon. Eleftheriu [44] uses a stochastic maximum principle of Sworder
[134] to analyze the undiscounted version of the problem. Zhang and Yin
[152] show that the turnpike sets of the problem become turnpike curves
in the finite horizon case. They derive explicit solutions and show that
the optimal controls can be written in terms of the turnpike curves under
appropriate “traceability” conditions.

Bielecki and Kumar [20] study the problem in which there is no pro-
duction cost, the machine has two states (up and down), and the produc-
tion cost is linear. For this problem, they are able to explicitly obtain a
threshold-type policy. Furthermore, with the same cost structure and the
production machine property, when the demand process follows a Poisson
process, Feng and Yan [51] also establish the explicit solution for the prob-
lem. Sharifnia [128] deals with an extension of their work with more than
two-machine states. Liberopoulos and Caramanis [89] show that Sharif-
nia’s method for evaluating hedging point policies applies even when the
transition rates of the machine states depend on the production rate. Cara-
manis and Sharifnia [28] consider an average-cost problem with multiple
part-types. They decompose the problem to many analytically tractable
single-product problems in order to obtain near-optimal hedging points for
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the problem.
Other multiproduct systems are considered by Presman, Sethi, Zhang,

and Zhang [104], Sethi, Zhang, and Zhang [121], Srivatsan [131] and Srivat-
san and Dallery [133] for a two-product problem. Caramanis and Sharifnia
[28] decompose a multiproduct problem into analytically tractable single-
product problems in order to obtain approximately optimal hedging points
for the problem. Other existing results for multiproduct systems involve ei-
ther approximations or numerical solutions (Sethi and Zhang [118], Veatch
[140], Yan, Yin and Lou [147], Wein [142], and Liberopoulos [88]).

Manufacturing systems involving preventive maintenance are studied by
Boukas [21], Boukas and Haurie [22], Boukas, Zhang, and Zhu [25], and
Boukas, Zhu, and Zhang [26]. The maintenance activity involves lubrica-
tion, routine adjustments, etc., which reduce the machine failure rate. The
objective in these systems is to choose the rate of maintenance and the
rate of production in order to minimize the total discounted cost of sur-
plus, production, and maintenance.



4
Optimal Control of Dynamic
Flowshops

4.1 Introduction

In this chapter we consider planning of production in a stochastic m-
machine flowshop described in Chapter 2. The goal is to choose rates of
production at each machine to meet the demand for a single product facing
the system at a minimum long-run average cost. The machine capacities
process is assumed to be a finite state Markov chain. The control variables
are the input rates to these machines. We take the inventory (number of
parts) in the buffer of the first (m−1) machines and the surplus at the last
machine to be the state variables. Since the number of parts in the internal
buffers between any two machines needs to be nonnegative, the problem
is inherently a state-constrained problem. Our objective is to choose ad-
missible input rates to various machines in order to minimize the expected
long-run average surplus and production costs.

In Chapter 3, we studied average-cost systems with parallel machines us-
ing Hamilton-Jacobi-Bellman equations in terms of directional derivatives
(HJBDD). However, the flowshop problem is more complicated because of
the presence of internal buffers and of the resulting nonnegativity state
constraints. Certain boundary conditions need to be taken into account for
the associated Hamilton-Jacobi-Bellman (HJB) equation. Optimal control
policy can no longer be described simply in terms of some threshold levels
(or turnpike sets).

To rigorously deal with the general flowshop problem under considera-
tion, we use the HJBDD equation to characterize the system dynamics.
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The equation involves an infimum taken over admissible directions. If a
convex function is differentiable at an inner point of the state space, then
the HJBDD equation at this point coincides with the usual HJB equation.
If the restriction of the function on some face of the boundary of the state
space is differentiable at an inner point of this face, then the m-dimensional
gradient can be defined at this point, and the HJBDD equation at this point
gives the corresponding boundary condition.

Under the framework of HJBDD equation, we follow the vanishing dis-
count approach to prove the existence of the minimum average cost and the
potential function. Furthermore, we prove a verification theorem associated
with our dynamic programming formulation.

The plan of this chapter is as follows. In Section 4.2 we formulate the
problem under consideration. In Section 4.3 we recapitulate some proper-
ties of the value function of the corresponding discounted-cost problem, and
construct stable policies which will be used to analyze the long-run average-
cost problem. In Section 4.4 we discuss the HJBDD equation and the ver-
ification theorem. In Section 4.5, a two-machine flowshop with bounded
internal buffer is studied. The chapter is concluded in Section 4.6.

4.2 Problem Formulation

Let M = {k1, . . . ,kp} for a given integer p ≥ 1, where ki = (ki
1, . . . , k

i
m)

with ki
j denoting the capacity of the jth machine, j = 1, . . . , m. Let k(·) =

(k1(·), . . . , km(·)) denote a Markov chain with the state space M. We use
uj(t) to denote the input rate to the jth machine, j = 1, . . . , m, and xj(t)
to denote the number of parts in the buffer between the jth and (j + 1)th
machines, j = 1, . . . , m − 1. Finally, the surplus is denoted by xm(t). The
dynamics of the system can then be written as follows:

d

dt
x(t) = Au(t) + Bz, x(0) = x, (4.1)

where

A =

⎛⎜⎜⎝
1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1

⎞⎟⎟⎠ and B =

⎛⎜⎜⎜⎜⎝
0
0
...
0

−1

⎞⎟⎟⎟⎟⎠ .

Since the number of parts in the internal buffers cannot be negative, we have
to impose the state constraints xj(t) ≥ 0, j = 1, . . . , m − 1. To formulate
the problem precisely, let X = �m−1

+ ×� ⊂ �m denote the state constraint
domain. For k = (k1, . . . , km), kj ≥ 0, j = 1, . . . , m, let

U(k) = {u = (u1, . . . , um)′ : 0 ≤ uj ≤ kj , j = 1, . . . , m}, (4.2)
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and for x ∈ X , let

U(x,k) = {u : u ∈ U(k) and

xj = 0 ⇒ uj − uj+1 ≥ 0, j = 1, . . . , m − 1} .
(4.3)

Finally, let the σ-algebra Ft = σ{k(s) : 0 ≤ s ≤ t}.

Definition 2.1. We say that a control u(·) is admissible with respect to
the initial values x ∈ X and k ∈ M, if: (i) u(·) is an {Ft}-adapted process;
(ii) u(t) ∈ U(k(t)) with k(0) = k for all t ≥ 0; and (iii) the corresponding
state process x(t) = (x1(t), . . . , xm(t))′ ∈ X with x(0) = x for all t ≥ 0. �

Let A(x,k) denote the set of admissible controls with the initial condi-
tions x(0) = x and k(0) = k.

Remark 2.1. Condition (iii) of Definition 2.1 is equivalent to u(t) ∈
U(x(t),k(t)) for all t ≥ 0. �

Definition 2.2. A function u(·, ·) defined on X × M is called an admissi-
ble feedback control, or simply feedback control, if: (i) for any given initial
surplus level x and machine capacity k, the equation

d

dt
x(t) = Au(x(t),k(t)) + Bz

has a unique solution; and (ii) u(·) = {u(t) = u(x(t),k(t)), t ≥ 0} ∈
A(x,k). �

The objective of the problem is to find an admissible control u(·) that
minimizes the long-run average cost

J(x,k,u(·)) = lim sup
T→∞

1
T

E

∫ T

0
g(x(t),u(t)) dt, (4.4)

where x(0) = x, k(0) = k, and g(·, ·) is the cost of surplus and production
defined on X × �m

+ .
The minimum long-run average cost is defined as

λ∗(x,k) = inf
u(·)∈A(x,k)

J(x,k,u(·)). (4.5)

We make the following assumptions on the Markov chain

k(·) = (k1(·), . . . , km(·))

and the cost function g(x,u).

(A1) g(x,u) is a nonnegative convex function with g(0, 0) = 0. There are
positive constants Cg1, Cg2, and βg1 ≥ 1 such that, for any fixed u,

g(x,u) ≥ Cg1|x|βg1 − Cg2, x ∈ X .
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Moreover, there are constants Cg3 > 0 and βg2 ≥ βg1 such that, for
u, û ∈ �m

+ , and x, x̂ ∈ X ,

|g(x,u) − g(x̂, û)|

≤ Cg3
[(

1 + |x|βg2−1 + |x̂|βg2−1) |x − x̂| + |u − û|
]
.

(A2) The capacity process k(t) ∈ M, t ≥ 0, is a finite state Markov chain
with the infinitesimal generator Q = (qkikj )p×p with qkikj ≥ 0, i �= j,
qkiki= −

∑
j �=i q

kikj , and

Qϕ(·)(kj) =
∑
i �=j

qkjki [ϕ(ki) − ϕ(kj)], (4.6)

for any function ϕ(·) defined on M. Moreover, the Markov chain is
strongly irreducible, that is, the equations

(νk1 , ..., νkp)Q = 0 and
p∑

i=1

νki= 1

have a unique solution with νki > 0, i = 1, . . . , p.

(A3) With pj :=
∑p

i=1 νki ki
j , min1≤j≤m pj > z.

Without requiring differentiability, it is convenient to write an HJBDD
equation for the average-cost problem. Let Om ⊂ �m be a convex subset of
�m. A vector y at boundary point x of Om is called an admissible direction
if there exists a δ > 0 such that x + δy ∈ Om. Note that {Au + Bz : u ∈
U(x,k)} is the set of admissible directions at x when Om = X . Note that
a continuous convex function defined on Om is differentiable a.e., and it
has a directional derivative both along any direction at any inner point of
Om and along any admissible direction at any boundary point of Om (see
Appendix C).

Typically, under Assumptions (A1)–(A3), λ∗(x,k) does not depend on
the initial states x and k (Theorem 4.2). We can formally write the asso-
ciated HJBDD equation as follows:

λ = inf
u∈U(x,k)

{
∂(Au+Bz)φ(x,k) + g(x,u)

}
+ Qφ(x, ·)(k), (4.7)

where φ(·, ·) is defined on X ×M. Before defining a solution to the equation
(4.7), we first introduce some notation. Let G denote the family of real-
valued functions G(·, ·) defined on X × M such that:

(i) G(·,k) is convex for each k ∈ M;

(ii) G(·, ·) has polynomial growth, i.e., there exists a constant C > 0 such
that

|G(x,k)| ≤ C(1 + |x|βg2+1), x ∈ X and k ∈ M,

where βg2 is defined in Assumption (A1).
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A solution to the HJBDD equation (4.7) is a pair (λ, W (·, ·)) with λ
a constant and W (·, ·) ∈ G. The function W (·, ·) is called the potential
function for the control problem, if λ is the minimum long-run average cost
defined by (4.5).

Definition 2.3. A control u(·) ∈ A(x,k) is stable if it satisfies the condi-
tion

lim
T→∞

E|x(T )|βg2+1

T
= 0,

where x(·) is the surplus process corresponding to the control u(·) with the
initial condition (x(0),k(0)) = (x,k) and βg2 is as defined in Assumption
(A1). �

Let S(x,k) denote the class of stable controls with the initial conditions
x(0) = x and k(0) = k. Of course, S(x,k) ⊂ A(x,k). It will be seen in the
next section that the set of stable admissible controls S(x,k) is nonempty.

4.3 Estimates for Discounted Cost Value Functions

In order to study the existence of a solution to the HJBDD equation (4.7),
we introduce the corresponding discounted cost problem with the discount
rate ρ > 0. For u(·) ∈ A(x,k), we define the expected discounted cost as

Jρ(x,k,u(·)) = E

∫ ∞

0
e−ρtg(x(t),u(t)) dt, (4.8)

where x(·) is the surplus process corresponding to the control u(·) with the
initial surplus level x(0) = x, and k is the initial value of the process k(·).
The value function is defined as

V ρ(x,k) = inf
u(·)∈A(x,k)

Jρ(x,k,u(·)). (4.9)

The HJBDD equation associated with this discounted cost problem is

ρφρ(x,k) = inf
u∈U(x,k)

{∂(Au+Bz)φ
ρ(x,k) + g(x,u)} + Qφρ(x, ·)(k), (4.10)

where φρ(x,k) is defined on X × M. Then we have the following result
which can be proved as Theorem 3.1 in Chapter 4 of Sethi and Zhang
[125].

Theorem 3.1. Under Assumptions (A1) and (A2), the value function
V ρ(x,k) has the following properties:

(i) for each k ∈ M, V ρ(x,k) is convex, continuous on X , and satisfies
the condition

|V ρ(x̂,k) − V ρ(x̃,k)| ≤ C
(
1 + |x̂|βg2−1 + |x̃|βg2−1) |x̂ − x̃| , (4.11)
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for some constant C and all x̂, x̃ ∈ X , where βg2 is as given in
Assumption (A1);

(ii) V ρ(x,k) satisfies the HJBDD equation (4.10).

In order to study the long-run average-cost control problem using the
vanishing discount approach, we must first obtain some estimates for the
value function V ρ(x,k) for small values of ρ. To do this, we establish the
following theorem which concerns the stable control policies.

Theorem 3.2. Let Assumptions (A2) and (A3) hold. For any r ≥ 1,
(x̂, k̂) ∈ X ×M, and (x,k) ∈ X ×M, there exist a control u(·) ∈ A(x̂, k̂),
and a positive constant Cr, such that

E
[
τ(x̂, k̂,x,k)

]r ≤ Cr

⎛⎝1 +
m∑

j=1

|x̂j − xj |r
⎞⎠ , (4.12)

where
τ(x̂, k̂,x,k) = inf

{
t ≥ 0 : x(t) = x, k(t) = k

}
,

and x(t), t ≥ 0, is the surplus process corresponding to the control u(·) and
the initial condition (x(0),k(0)) = (x̂, k̂).

Proof. The proof of the theorem is divided into four steps involving some
intermediate results stated as lemmas. Here is an outline of the proof. We
begin by modifying the process k(·) in such a way that the modified aver-
age capacity of any machine is larger than the modified average capacity
of the machine that follows it, and the modified average capacity of the
last machine is larger than z. Then we alternate between the following
two policies. In the first policy, the production rate at each machine is
the maximum admissible modified capacity. In the second policy, we stop
producing at the first machine and have the maximum possible production
rate at other machines under the restriction that the content of each buffer
j, 1 ≤ j ≤ m − 1, is not less than xj where x = (x1, . . . , xm)′. The first
policy is used until such time when the content of the first buffer exceeds
the value x1 and the content of each buffer j, 2 ≤ j ≤ m, exceeds the value
M + xj for some M > 0. At that time we switch to the second policy. We
use the second policy until such time when the content of the last buffer
drops to the level xm. After that we revert to the first policy, and so on.
Using this alternating procedure, it is possible to specify τ(x̂, k̂,x,k) and
provide an estimate for it.

Step 1. We construct an auxiliary Markov chain k̃(·) from the Markov
chain k(·) specified by Assumptions (A2) and (A3). It follows from As-

sumption (A3) that we can select vectors k̃
i

= (k̃i
1, . . . , k̃

i
m), i = 1, . . . , p,
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such that k̃i
1 = ki

1, k̃i
j ≤ ki

j , i = 1, . . . , p, j = 2, . . . , m, and

p̃j =
p∑

i=1

νki k̃i
j > p̃j+1 =

p∑
i=1

νki k̃i
j+1 > z, j = 1, . . . , m − 1. (4.13)

Let us define the process k̃(·) as follows:

k̃(t) = k̃
i

when k(t) = ki, t ≥ 0.

Let M̃ = {k̃
1
, . . . , k̃

p
}. We know that k̃(·) is still a Markov chain with

the state space M̃. Furthermore, k̃(·) is strongly irreducible and has the
stationary distribution ν

k̃i
with ν

k̃i
= νki , i = 1, . . . , p. Let

p̃j =
p∑

i=1

k̃i
jνki . (4.14)

Then, (4.13) gives

p1 = p̃1 > p̃2 > · · · > p̃m > z. (4.15)

Step 2. We construct a family of auxiliary processes x0(t|s,x) (t ≥ s ≥ 0
and x ∈ X ), which will be used to construct the control policy u(t), t ≥ 0.
To do this, consider the function u0(x, k̃) = (u0

1(x, k̃), . . . , u0
m(x, k̃)) with

u0
1(x, k̃) = k̃1 and

u0
j (x, k̃) =

⎧⎨⎩ k̃j , if xj−1 > 0,

k̃j ∧ u0
j−1(x, k̃), if xj−1 = 0,

j = 2, . . . , m. We define x0(t|s,x), t ≥ 0, as the process which satisfies the
equation

d

dt
x0(t|s,x) = Au0(x0(t|s,x), k̃(t)) + Bz, x0(s|s,x) = x.

Clearly x0(t|s,x) ∈ X for all t ≥ s. For a fixed s, x0(t|s,x) is the state
of the system with the production rate obtained by using the maximum
admissible modified capacity at each machine.

Now define the Markov time with respect to the process k̃(·):

θ(s,x,x) = inf
{
t ≥ s : x0

1(t|s,x) ≥ x1 and

x0
j (t|s,x) ≥ M + xj , j = 2, . . . , m

}
,

(4.16)

where M > 0 is a constant specified later. By definition, θ(s,x, x) is the first
time when the state process x0(t|s,x) exceeds (x1, M + x2, . . . , M + xm)′
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under the production rate u0(x0(t|s,x), k̃(t)). Since each machine’s mod-
ified average capacity is larger than the modified average capacity of the
machine that follows it, and since the last machine’s modified average ca-
pacity is larger than the demand rate z (see (4.13)), intuitively, the following
lemma should hold. Its proof is given in Appendix B.

Lemma 3.1. Let Assumptions (A2) and (A3) hold. Then there exists a
constant Ĉr such that

E [θ(s,x,x) − s]2r
< Ĉr

⎛⎝1 +
m∑

j=1

(
(xj − xj)+

)r

⎞⎠2

.

Step 3. In this step we construct a family of auxiliary processes x1(t|s,x)
(t ≥ s ≥ 0, and x ∈ X ) that will be used to construct the control policy
u(t). Consider the following function u1(x, k̃) = (u1

1(x, k̃), . . . , u1
m(x, k̃))

with u1
1(x, k̃) = 0 and

u1
j (x, k̃) =

⎧⎨⎩ k̃j , if xj−1 > xj−1,

k̃j ∧ u1
j−1(x, k̃), if xj−1 = xj−1,

for j = 2, . . . , m. We define x1(t|s,x), t ≥ 0, as a continuous process which
coincides with x0(t|s,x) for s ≤ t ≤ θ(s,x,x), and for t ≥ θ(s,x, x),

d

dt
x1(t|s,x) = Au1(x1(t|s,x), k̃(t)) + Bz.

Clearly, x1(t|s,x) ∈ X for all t ≥ s. Furthermore, for j = 1, . . ., m − 1,

x1
j (t|s,x) ≥ xj , t ≥ θ(s,x, x). (4.17)

This process corresponds to a policy in which after the time θ(s,x,x),
we stop producing at the first machine and have the maximum possible
production rate at other machines under the restriction that the content of
each buffer j (1 ≤ j ≤ m − 1) is not less than xj .

Now define a Markov time

θ̂(s,x,x) = inf
{
t ≥ θ(s,x,x) : x1

m(t|s,x) = xm

}
. (4.18)

Then we have the following result which will be proved in Appendix B.

Lemma 3.2. Let Assumptions (A2) and (A3) hold. Then:

(i) For a given q ∈ (0, 1), a positive constant M can be chosen in such
a way that, for all s ≥ 0 and x ∈ X ,

P
(
(x1(θ̂(s,x,x)|s,x), k(θ̂(s,x, x))) = (x,k)

)
≥ 1 − q > 0.
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(ii) There exists a constant C such that

M

z
≤ θ̂(s,x, x) − s ≤ 1

z

⎛⎝ m∑
j=1

(xj − xj) + C[θ(s,x,x) − s]

⎞⎠ (4.19)

and
m∑

j=1

x1
j (θ̂(s,x,x)|s,x) ≤

m∑
j=1

xj + C[θ(s,x,x) − s]. (4.20)

Step 4. Now we construct a process x(t), t ≥ 0, and the corresponding
control policy u(t) which satisfy the statement of Theorem 3.2.

Define a sequence of Markov times {θ̂�}∞
�=0 with respect to k̃(·) and the

process x(t) for θ̂� ≤ t < θ̂�+1 (� = 1, 2, . . .) as follows:

θ̂0 = 0, θ̂1 = θ̂(0, x̂, x)

and
x(t) = x1(t|0, x̂) with 0 ≤ t < θ̂1.

If θ̂� is defined for � ≥ 1 and x(t) is defined for 0 ≤ t < θ̂�, then we let

θ̂�+1 = θ̂(θ̂�,x(θ̂�),x) and x(t) = x1(t|θ̂�,x(θ̂�)) with θ̂� ≤ t < θ̂�+1.

According to the left inequality in (4.19), x(t) is defined for all t ≥ 0. Let

θ1 = θ(0, x̂,x) and θ�+1 = θ(θ̂�,x(θ̂�),x), � = 1, 2, . . . .

Define the control u(·) as

u(t) =

⎧⎨⎩ u0(x(t), k̃(t)), if θ̂�−1 ≤ t < θ�,

u1(x(t), k̃(t)), if θ� ≤ t < θ̂�,
(4.21)

for � = 1, 2, . . . . Let x(·) be the corresponding state process. It is clear that
u(·) ∈ A(x̂, k̂).

For the process x(·), a Markov time is defined as

τ(x̂, k̂,x,k) = inf
{
t ≥ 0 : (x(t),k(t)) = (x,k)

}
.

Let
B� = {ω : (x(θ̂�)(ω),k(θ̂�)(ω)) = (x,k)}.

Using conditional probabilities (see (3.15)), we have from Lemma 3.2(i)
that

P

(
�⋂

�1=1

Bc
�1

)
≤ q�, � = 1, 2, . . . , (4.22)
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where Bc
�1

is the complement set of B�1 . Using (4.21) and the definition of
x(t) we get that

τ(x̂, k̂,x,k) =
∞∑

�=1

θ̂�I{∩�−1
�1=0Bc

�1
∩B�},

which implies

(τ(x̂, k̂,x,k))r =
∞∑

�=1

(θ̂�)rI{∩�−1
�1=0Bc

�1
∩B�}, (4.23)

where Bc
0 = Ω. Using (4.19) and (4.20) we have that, for � = 1, 2, . . .,

θ̂� − θ̂�−1 ≤ 1
z

⎛⎝ m∑
j=1

xj(θ̂�−1) −
m∑

j=1

xj + C[θ� − θ̂�−1]

⎞⎠ (4.24)

and
m∑

j=1

xj(θ̂�) ≤
m∑

j=1

xj(θ̂�−1) + C[θ� − θ̂�−1]. (4.25)

Using (4.24) and (4.25), there exists a constant C1 > 0 independent of x̂
and x such that, for � = 1, 2, . . . ,

θ̂� ≤ C1(� + 1)
z

⎡⎣ m∑
j=1

(x̂j − xj)+ +
�∑

�1=1

(θ�1 − θ̂�1−1)

⎤⎦ .

This implies that

(θ̂�)r ≤ C2(� + 1)2r

⎡⎣ m∑
j=1

(
(x̂j − xj)+

)r +
�∑

�1=1

(θ�1 − θ̂�1−1)r

⎤⎦ , (4.26)

for some C2 > 0. By (4.17) and (4.18), we know that x(θ̂�) ≥ x for � =
1, 2, . . .. Using the Schwarz inequality (Corollary 3 on page 104 of Chow
and Teicher [33]), we get from (4.22) and Lemma 3.1 that there exists a
positive constant Cr dependent on r such that

E
(
θr
1I{∩�−1

�1=1Bc
�1

∩B�}
)

≤ q(�−1)/2 (
E[θ2r

1 ]
)1/2

≤ Crq
(�−1)/2

⎛⎝1 +
m∑

j=1

(
(xj − x̂j)+

)r

⎞⎠ ,

� = 1, 2, . . . ,

(4.27)
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and
E

(
(θ�1 − θ̂�1−1)rI{∩�−1

�2=1Bc
�2

∩B�}
)

≤ q(�−1)/2
(
E(θ�1 − θ̂�1−1)2r

)1/2

≤ Crq
(�−1)/2

⎛⎝1 +
m∑

j=1

(
(xj − x̂j)+

)r

⎞⎠ ,

2 ≤ �1 ≤ � = 2, 3, . . . .

(4.28)

Substituting (4.26) into (4.23), taking expectation, and using (4.27) and
(4.28), we get (4.12). This completes the proof. �

4.4 Verification Theorem and HJBDD Equations

Our goal is to construct a pair (λ, W (·, ·)) which satisfies (4.7). To get this
pair, we use the vanishing discount approach. First, based on Theorem 3.2,
we have the following convergence results.

Theorem 4.1. Let Assumptions (A1)–(A3) hold. There exists a sequence
{ρ� : � ≥ 1} with ρ� → 0 as � → ∞ such that for (x,k) ∈ X × M, the
limits of ρ�V

ρ�(x,k) and [V ρ�(x,k) − V ρ�(0,k)] exist as � → ∞. Write

λ̂ = lim
�→∞

ρ�V
ρ�(x,k), (4.29)

V (x,k) = lim
�→∞

[V ρ�(x,k) − V ρ�(0,k)]. (4.30)

The limit V (x,k) is convex for any fixed k ∈ M.

Proof. For the value function V ρ(x,k) of the discounted cost problem, we
define the difference

Ṽ ρ(x,k) = V ρ(x,k) − V ρ(0,k).

By Theorem 3.2 we know that there exists a control u(·) ∈ A(x,k) such
that, for each r ≥ 1,

E[τ(x,k,x,k)]r ≤ C1, (4.31)

where C1 > 0 is a constant (which depends on r) and

τ(x,k,x,k) = inf{t > 0 : (x(t),k(t)) = (x,k)},

with x(·) being the surplus process corresponding to the control u(·) and
the initial condition (x(0),k(0)) = (x,k). For notational simplicity, in what
follows we write τ(x,k,x,k) as τ .
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By the optimality principle, we have

V ρ(x,k) ≤ E

{∫ τ

0
e−ρtg(x(t),u(t)) dt + e−ρτV ρ(x(τ),k(τ))

}
= E

{∫ τ

0
e−ρtg(x(t),u(t)) dt + e−ρτV ρ(x,k)

}
.

(4.32)

Note that

|x(t)| ≤
m∑

j=1

|xj | +

⎛⎝ m∑
j=1

max
1≤i≤p

ki
j + z

⎞⎠ t, for 0 ≤ t ≤ τ.

Thus, by Assumption (A1),

g(x(t),u(t)) ≤ C2
(
1 + t + tβg2

)
,

where C2 is a positive constant dependent on x. It follows from (4.31) and
(4.32) that

[1 − Ee−ρτ ]V ρ(x,k) ≤ E

∫ τ

0
C2

(
1 + t + tβg2

)
dt ≤ C3, (4.33)

for some positive constant C3 (independent of ρ). Now using the inequality
1 − e−ρτ ≥ ρτ − ρ2τ2/2, we can get[

1 − Ee−ρτ
]
V ρ(x,k) ≥ ρ

(
Eτ − ρE[τ2]/2

)
V ρ(x,k). (4.34)

From the definition of the stopping time τ(x,k,x,k), we have

0 < Eτ < ∞ and 0 < Eτ2 < ∞.

Take ρ0 = Eτ/Eτ2. By (4.33) and (4.34), we have that, for 0 < ρ ≤ ρ0,

ρV ρ(x,k) ≤ C3

Eτ − ρ0E[τ2]/2
=

2C3

Eτ
< ∞.

Consequently, there exists a sequence {ρ� : � ≥ 1} with ρ� → 0 as � → ∞
such that, for (x,k) ∈ X × M,

lim
�→∞

ρ�V
ρ�(x,k) = λ̂. (4.35)

Now we prove (4.30). To do this we first show that there is a constant
C4 > 0 such that

|Ṽ ρ(x,k)| ≤ C4
(
1 + |x|βg2+1) , (4.36)

for all (x,k) ∈ X × M and ρ > 0. Without loss of generality, we suppose
that V ρ(x,k) ≥ V ρ(0,k) (the case V ρ(x,k) ≤ V ρ(0,k) is treated in the
same way).
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By Theorem 3.2 there exists a control process u(·) such that, for any
r ≥ 1,

E(τ1)r ≤ Cr

⎛⎝1 +
m∑

j=1

|xj |r
⎞⎠ , (4.37)

where
τ1 = inf{t > 0 : (x(t),k(t)) = (0,k)},

and x(·) is the state process corresponding to u(·) with the initial condition
(x(0),k(0)) = (x,k). Using the optimality principle, we have

V ρ(x,k) ≤ E

{∫ τ1

0
e−ρtg(x(t),u(t)) dt + e−ρτ1V ρ(0,k)

}
.

Therefore,

|Ṽ ρ(x,k)| = |V ρ(x,k) − V ρ(0,k)|

≤ E

[∫ τ1

0
e−ρtg(x(t),u(t)) dt

]
.

(4.38)

By Assumption (A1), there exists a constant C5 > 0 such that

g(x(t),u(t)) ≤ C5
(
1 + |x|βg2 + t + tβg2

)
, (4.39)

where we use the fact that u(t) is bounded. Therefore, (4.37) and (4.39)
imply that

E

∫ τ1

0
e−ρtg(x(t),u(t)) dt

≤ E

∫ τ1

0
C5(1 + |x|βg2 + t + tβg2) dt

≤ C6

⎛⎝1 +
m∑

j=1

|xj |βg2+1

⎞⎠
for some C6 > 0. Thus (4.38) gives (4.36).

For δ ∈ (0, 1), let

Oδ =
[
δ,

1
δ

]m−1

×
[
−1

δ
,

1
δ

]
.

Based on (4.36) it follows from Lemma C.4 that there is a C(δ) such that,
for x, x̂ ∈ Oδ,

|Ṽ ρ(x,k) − Ṽ ρ(x̂,k)| ≤ Cδ|x − x̂|. (4.40)

Without loss of generality, we assume that Cδ is decreasing in δ. For 1 ≤
n̂ ≤ m − 1 and 1 ≤ j1 < · · · < jn̂ ≤ m − 1, let

Oj1...jn̂ = {x ∈ X : xj�
= 0 for � = 1, ..., n̂},
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and

ri(Oj1...jn̂) = {x ∈ Oj1...jn̂ : xj > 0, j �= j� and 1 ≤ � ≤ n̂}.

That is, ri(Oj1...jn̂) is the relative interior of Oj1...jn̂ relative to [0,∞)m−n̂−1×
{0}n̂ × (−∞, +∞). Note that the function V ρ(x,k) is convex also on
Oj1...jn̂ . Let

Oj1...jn̂

δ =
m−1∏
�=1

Υδ
� ×

[
−1

δ
,

1
δ

]
with

Υδ
� =

⎧⎨⎩ {0}, if � ∈ {j1, ..., jn̂},

[δ, 1/δ], if � �∈ {j1, ..., jn̂}.

Using once again Lemma C.4, in view of (4.36), there is a Cj1...jn̂

δ > 0 such
that, for x, x̂ ∈ Oj1...jn̂

δ ,

|Ṽ ρ(x,k) − Ṽ ρ(x̂,k)| ≤ Cj1...jn̂

δ |x − x̂|. (4.41)

Also we assume that Cj1...jn̂

δ is a decreasing function of δ. From the ar-
bitrariness of δ and (4.40)–(4.41), there exist V (x,k) and a sequence of
{ρ� : � ≥ 1} with ρ� → 0 as � → ∞ such that, for (x,k) ∈ X × M,

lim
�→∞

[V ρ�(x,k) − V ρ�(0,k)] = V (x,k). (4.42)

Moreover, it follows from the convexity of V ρ�(x,k) that the limit function
V (x,k) is also convex on X × M. Therefore, the proof of the theorem is
completed. �

Let ∂V ρ�(x,k)/∂x be the derivative of V ρ�(x,k) at the point x where
the derivative exists.

Theorem 4.2. Let Assumptions (A1)–(A3) hold. Then:

(i) λ∗(x,k) defined by (4.5) does not depend on (x,k).

(ii) The pair (λ, V (x,k)) defined in Theorem 4.1 satisfies the HJBDD
equation (4.7) in the interior of X .

(iii) If there exists an open subset X̂ of X such that b(X ) ⊆ b(X̂ ), where
b(X̂ ) and b(X ) are the boundaries of X̂ and X , respectively, and
{∂V ρ�(x,k)/∂x : � ≥ 1} is uniformly equi-Lipschitz continuous on
X̂ , then the pair (λ̂, V (·, ·)) defined in Theorem 4.1 is a solution of
the HJBDD equation (4.7).
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Proof. First we consider (i). Suppose to the contrary that there exist
(x̃, k̃) ∈ X × M and (x̂, k̂) ∈ X × M such that

λ∗(x̃, k̃) < λ∗(x̂, k̂). (4.43)

We choose δ > 0 and a control ũ(·) ∈ A(x̃, k̃) such that

λ∗(x̃, k̃) + δ < λ∗(x̂, k̂) (4.44)

and

lim sup
T→∞

1
T

E

∫ T

0
g(x̃(t), ũ(t)) dt ≤ λ∗(x̃, k̃) + δ, (4.45)

where
d

dt
x̃(t) = Aũ(t) + Bz, x̃(0) = x̃.

Let u(t), t ≥ 0, be the one given in Theorem 3.2, and let

τ(x̂, k̂, x̃, k̃) = inf
{
t ≥ 0 : (x(t),k(t)) = (x̃, k̃)

}
,

where
d

dt
x(t) = Au(t) + Bz, x(0) = x̂.

We define

û(t) =

⎧⎨⎩ u(t), if t ≤ τ(x̂, k̂, x̃, k̃),

ũ(t − τ(x̂, k̂, x̃, k̃)), if t > τ(x̂, k̂, x̃, k̃).

Let x̂(·) be the state process corresponding to the control û(·). It directly
follows from Theorem 3.2 that

lim sup
T→∞

1
T

E

∫ T

0
g(x̂(t), û(t)) dt = lim sup

T→∞
1
T

E

∫ T

0
g(x̃(t), ũ(t)) dt. (4.46)

On the other hand,

lim sup
T→∞

1
T

E

∫ T

0
g(x̂(t), û(t)) dt ≥ λ∗(x̂, k̂). (4.47)

Thus from (4.46), (4.47) contradicts (4.45). Consequently, (i) is proved.
Now we prove (ii). Let Om be the set of all points in the interior of X

on which V (x,k) is differentiable. From the convexity of V (x,k) we know
that Om is dense in X . It follows from the properties of convex functions
that, for x ∈ Om and for any p,

lim
�→∞

∂pṼ ρ�(x,k) = ∂pV (x,k). (4.48)
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Using Theorem 3.1, we have

ρ�V
ρ�(x,k) = inf

u∈U(x,k)
{∂Au+BzV

ρ�(x,k) + g(x,u)}

+ QV ρ�(x, ·)(k).

This implies that

ρ�V
ρ�(x,k) = inf

u∈U(x,k)

{
∂Au+BzṼ

ρ�(x,k) + g(x,u)
}

+ QṼ ρ�(x, ·)(k).
(4.49)

Taking the limit on both sides, we have that, for x ∈ Om,

λ̂ = inf
u∈U(x,k)

{∂Au+BzV (x,k) + g(x,u)} + QV (x, ·)(k). (4.50)

If x /∈ Om but x is an interior point of X , then for any direction p it follows
from Lemma C.2 that there exist a sequence {xn}∞

n=1 such that xn ∈ Om

and ∂pV (xn,k) → ∂pV (x,k). Consequently, it follows from the continuity
of V (x,k) that (4.50) holds for all x in the interior part of X . Hence we
get (ii).

Finally we prove (iii). Consider now the boundary b(X ) of X . From the
uniform equi-Lipschitzian property of {∂V ρ�(x,k)/∂x : � ≥ 1} on X̂ , we
know that (4.48) holds for all x ∈ b(X ). Therefore, we have (4.50) in b(X ).
Thus by (ii), the proof of (iii) is completed. �

Finally we establish the following verification theorem, which explains
why equation (4.7) is the HJBDD equation for our problem.

Theorem 4.3. Let Assumptions (A1)–(A3) hold, and let (λ, W (x,k)) be
a solution to the HJBDD equation (4.7). Then:

(i) For any u(·) ∈ A(x,k), we have λ ≤ J(x,k,u(·)), i.e.,

lim sup
T→∞

1
T

E

∫ T

0
g(x(t),u(t)) dt ≥ λ.

(ii) Furthermore, for any (stable) control policy u(·) ∈ S(x,k), we have

lim inf
T→∞

1
T

E

∫ T

0
g(x(t),u(t)) dt ≥ λ. (4.51)

(iii) If there is a control u∗(·) ∈ A(x,k) such that

inf
u∈U(k(t))

{∂Au+BzW (x∗(t),k(t)) + g(x∗(t),u)}

= ∂Au∗(t)+BzW (x∗(t),k(t)) + g(x∗(t),u∗(t))
(4.52)
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for a.e. t ≥ 0 with probability 1, where x∗(·) is the surplus process
corresponding to the control u∗(·), and

lim
T→∞

E[W (x∗(T ),k(T ))]
T

= 0, (4.53)

then
λ = J(x,k,u∗(·)).

Proof. We first prove (iii). Since (λ, W (·, ·)) is a solution of (4.7) and
(x∗(t),u∗(t)) satisfies condition (4.52), we have

∂Au∗(t)+BzW (x∗(t),k(t)) + QW (x∗(t), ·)(k(t))

= λ − g(x∗(t),u∗(t)).
(4.54)

Since W (x,k) ∈ G, we apply Dynkin’s formula and use (4.54) to get

E [W (x∗(T ),k(T ))]

= W (x,k) + E

∫ T

0

[
∂Au∗(t)+BzW (x∗(t),k(t))

+ QW (x∗(t), ·)(k(t))] dt

= W (x,k) + E

∫ T

0
[λ − g(x∗(t),u∗(t)] dt

= W (x,k) + λT − E

∫ T

0
g(x∗(t),u∗(t)) dt.

(4.55)

We can rewrite (4.55) as

λ =
1
T

[E(W (x∗(T ),k(T ))) − W (x,k)]

+
1
T

E

∫ T

0
g(x∗(t),u∗(t)) dt.

(4.56)

Using (4.56) and taking the limit as T → ∞, we get

λ = lim sup
T→∞

1
T

E

∫ T

0
g(x∗(t),u∗(t)) dt.

For the proof of part (ii), if u(·) ∈ S(x,k), then from W (x,k) ∈ G, we
know that

lim
T→∞

E[W (x(T ),k(T ))]
T

= 0.

Moreover, from the HJBDD equation (4.7) we have

∂(Au(t)+Bz)W (x(t),k(t)) + QW (x(t), ·)(k(t))

≥ λ − g(x(t),u(t)).
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Now (4.51) can be proved similarly as before.
Finally, we apply Lemma F.4 to show part (i). Let u(·) ∈ A(x,k) be any

control and let x(·) be the corresponding surplus process. Suppose that

J(x,k,u(·)) < λ. (4.57)

We can apply Lemma F.4 and (4.57) to obtain

lim sup
�→∞

ρ�J
ρ�(x,k,u(·)) < λ. (4.58)

On the other hand, we know from Theorem 4.1 that

lim
�→∞

ρ�V
ρ�(x,k) = λ̂ = λ.

This equation and (4.58) imply the existence of a ρ > 0 such that

ρJρ(x,k,u(·)) < ρV ρ(x,k),

which contradicts the definition of V ρ(x,k). Thus (i) is proved. �

4.5 Two-Machine Flowshop with Finite Internal
Buffer

In this section, we consider the two-machine flowshop shown in Figure 4.1
with a finite internal buffer. This imposes an upper bound constraint on
the work-in-process. Each machine has a finite number of states, resulting
in a system involving a finite state Markov chain. We use kj(t) to denote
the state of machine j at time t, j = 1, 2. We denote the number of parts in
the buffer between the first and second machines, called work-in-process, as
x1(t), and the difference of the real and planned cumulative productions,
called surplus at the second machine, as x2(t). Since the number of parts
in the internal buffer cannot be negative and buffers usually have limited
storage capacities, we impose the state constraints 0 ≤ x1(t) ≤ H, 0 <
H < ∞, where H represents the upper bound on the work-in-process. If
x2(t) > 0, we have finished goods inventories, and if x2(t) < 0, we have
backlogs. The input rates to the machines are denoted by uj(t), j = 1, 2.
Owing to the capacity constraints, uj(t) can vary from 0 to kj(t), j = 1, 2.
We assume a constant demand rate z.

Let XH = [0, H]×�1 denote the state constraint domain. The dynamics
and constraints of the system can then be written as follows:⎧⎪⎪⎨⎪⎪⎩

d

dt
x1(t) = u1(t) − u2(t),

d

dt
x2(t) = u2(t) − z,

(4.59)
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M1 M2� � � � �
u1 u2 z

x2x1

Figure 4.1. A Manufacturing System with a Two-Machine Flowshop.

where x(t) = (x1(t), x2(t))′ ∈ XH and 0 ≤ uj(t) ≤ kj(t), x(0) = x,
kj(0) = kj for j = 1, 2, t ≥ 0. For k = (k1, k2), kj ≥ 0, j = 1, 2, let

U(k) = {u = (u1, u2)′ : 0 ≤ uj ≤ kj , j = 1, 2},

and for x ∈ XH , let

U(x,k) = {u ∈ U(k) : x1 = 0 ⇒ u1 − u2 ≥ 0,

x1 = H ⇒ u1 − u2 ≤ 0}.

Furthermore, let

A =
(

1 −1
0 1

)
and B =

(
0

−1

)
.

Then (4.59) can be written as

d

dt
x(t) = Au(t) + Bz, x(0) = x. (4.60)

Let Ft denote the σ-algebra generated by the process k(·) = (k1(·), k2(·)),
i.e., Ft = σ{k(s), 0 ≤ s ≤ t}. We now define the concept of admissible
controls.

Definition 5.1. We say that a control u(·) = (u1(·), u2(·))′ is admissible
with respect to the initial state vector x = (x1, x2)′ ∈ XH if:

(i) u(·) is an Ft-adapted measurable process;

(ii) u(t) ∈ U(k(t)) for all t ≥ 0; and

(iii) x(t) = (x1 +
∫ t

0 [u1(s) − u2(s)] ds, x2 +
∫ t

0 [u2(s) − z] ds)′ ∈ XH for all
t ≥ 0. �

Let A(x,k) denote the set of admissible controls with the initial vector
x and k(0) = k. Our objective is to obtain an admissible control u(·) ∈
A(x,k) that minimizes the long-run average cost

J(x,k,u(·)) = lim sup
T→∞

1
T

E

∫ T

0
g(x(t),u(t)) dt, (4.61)
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where g(x,u) is the surplus and production cost.
As in Section 4.2, we assume (A1)–(A2) and in addition assume:

(A4) Let pj =
p∑

i=1

νkiki
j and min1≤j≤2 pj > z.

Remark 5.1. Assumption (A4) is necessary for the long-run average cost
to be finite. In addition, the buffer size H should not be too small in
some cases. For example, if H = 0, we choose the admissible control u(·)
with u1(t) = u2(t) = k1(t) ∧ k2(t), t ≥ 0. If

∑p
i=1(k

i
1 ∧ ki

2)νki< z, then
the backlog would build up over time. Consequently, the corresponding
long-run average cost would be ∞ in the case when g(x, ·) tends to ∞ as
x2 → −∞. This is also true when H is small. Later in this section, we will
show that Assumption (A4) is sufficient for having finite average cost when
H is suitably large. �

Let λ∗(x,k) denote the minimal long-run average cost, i.e.,

λ∗(x,k) = inf
u∈A(x,k)

J(x,k,u(·)). (4.62)

From Theorem 5.2 given in the following, we know that λ∗(x,k) does not
depend on the initial states x and k. We can formally write the HJBDD
equation for the problem as

λ = inf
u∈U(x,k)

{
∂(Au+Bz)φ(x,k) + g(x,u)

}
+ Qφ(x, ·)(k), (4.63)

where φ(·, ·) is defined on XH × M.
Let S(x,k) denote the class of stable controls with the initial condition

k(0) = k (see Definition 2.3). Of course, S(x,k) ⊂ A(x,k). It will be
seen in the next section that the set of stable admissible controls S(x,k)
is nonempty.

In order to study the existence of a solution to the HJBDD equation
(4.63), we introduce a corresponding control problem with the cost dis-
counted at a rate ρ > 0. For u(·) ∈ A(x,k), we define the expected dis-
counted cost as

Jρ(x,k,u(·)) = E

∫ ∞

0
e−ρtg(x(t),u(t)) dt, (4.64)

where x(·) is the state process corresponding the control u(·) with the
initial surplus level x(0) = x, and k is the initial value of the process k(·).
The value function is defined as

V ρ(x,k) = inf
u(·)∈A(x,k)

Jρ(x,k,u(·)). (4.65)
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The HJBDD equation associated with this discounted cost problem is

ρφρ(x,k) = inf
u∈U(x,k)

{∂(Au+Bz)φ
ρ(x,k) + g(x,u)}

+ Qφρ(x, ·)(k),
(4.66)

where φρ(x,k) is defined on XH × M. Then we have the following result
as in Theorem 3.1 in Chapter 4 of Sethi and Zhang [125].

Theorem 5.1. Let Assumptions (A1) and (A2) hold. Then the value func-
tion V ρ(x,k) has the following properties:

(i) For each k ∈ M, the value function V ρ(x,k) is convex and continu-
ous on XH , and satisfies the condition

|V ρ(x̂,k) − V ρ(x̃,k)|

≤ C
(
1 + |x̂|βg2−1 + |x̃|βg2−1) |x̂ − x̃|

(4.67)

for some positive constant C and all x̂, x̃ ∈ XH , where βg2 is as given
in Assumption (A1);

(ii) V ρ(x,k) satisfies the HJBDD equation (4.66).

In order to study the long-run average-cost control problem using the
vanishing discount approach, we must obtain some estimates for the value
function V ρ(x,k) for small values of ρ. To do this, we establish the following
theorem which relates to stable controls.

Theorem 5.2. Under Assumptions (A2) and (A4), for any r ≥ 1, (x̂, k̂) ∈
XH × M, and (x,k) ∈ XH × M, there exist a control u(t), t ≥ 0, and a
positive constant Cr such that

E[τ(x̂, k̂,x,k)]r ≤ Cr

⎛⎝1 +
2∑

j=1

|x̂j − xj |r
⎞⎠ , (4.68)

where
τ(x̂, k̂,x,k) = inf

{
t ≥ 0 : x(t) = x, k(t) = k

}
,

and x(t), t ≥ 0, is the surplus process corresponding to the control u(·) and
the initial condition (x(0),k(0)) = (x̂, k̂).

Proof. First we provide an outline of the proof. We begin by modifying the
process k(·) in such a way that the modified average capacity of machine
1 is larger than the modified average capacity of machine 2, and that the
modified average capacity of machine 2 is larger than z. Then, we alterna-
tively use the two policies described below. In the first policy, we use the
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maximum admissible production rate corresponding to the modified pro-
cess. In the second policy, we use a zero production rate for machine 1 and
the maximum possible production rate for machine 2 under the restriction
that the work-in-process is larger than x1. The first policy is used until
the time the work-in-process exceeds the value x1 and the surplus process
exceeds the value M + x2 for some M > 0. At this time we switch to the
second policy. We use the second policy until such time when the surplus
process drops to the level x2. After that we revert to the first policy, and so
on. Using this alternating procedure, it is possible to specify τ(x̂, k̂, x,k)
and provide an estimate for it. The proof is divided into several steps.

Step 1. We construct an auxiliary Markov chain k̃(·). It follows from

(A4) that we can select k̃
i

= (k̃i
1, k̃

i
2), i = 1, . . . , p, such that k̃i

1 ≤ ki
1,

k̃i
2 ≤ ki

2, i = 1, . . . , p, min1≤i≤p k̃i
1 < max1≤i≤p k̃i

2, and

p̃1 =
p∑

i=1

νki k̃i
1 > p̃2 =

p∑
i=1

νki k̃i
2 > z. (4.69)

Let us define the process k̃(t) = (k̃1(t), k̃2(t)) as follows:

k̃(t) = k̃
i

when k(t) = ki.

Let M̃ = {k̃
1
, . . . , k̃

p
}. We know that k̃(t) ∈ M̃, t ≥ 0, is also strongly

irreducible and has the stationary distribution ν
k̃

i (= νki ). Thus, (p̃1, p̃2)
corresponds to its stationary expectation, and (4.69) gives

p̃1 > p̃2 > z. (4.70)

Step 2. We construct a family of auxiliary processes x0(t|s,x), t ≥ s ≥ 0,

and x ∈ XH . For x = (x1, x2)′ and k̃ = (k̃1, k̃2), consider the following
function

u0(x, k̃) = (u0
1(x, k̃), u0

2(x, k̃))′

given by

u0(x, k̃) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(k̃1, k̃2)′, if 0 < x1 < H,

(k̃1, k̃1 ∧ k̃2)′, if x1 = 0,

(k̃1 ∧ k̃2, k̃2)′, if x1 = H.

(4.71)

We define x0(t|s,x) as the process which satisfies the following equation
(see (4.59)):

d

dt
x0(t|s,x) = Au0(x0(t|s,x), k̃(t)) + Bz, x0(s|s,x) = x.
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Clearly, x0(t|s,x) ∈ XH for all t ≥ s. For a fixed s, x0(t|s,x) is the state
of the system with the production rate which is obtained by using the
maximum admissible modified capacity for both machines.

Define now the Markov time

θ(s,x,x) = inf{t ≥ s : x0
1(t|s,x) ≥ x1, x0

2(t|s,x) ≥ M + x2}, (4.72)

where M > 0 is a constant specified later. It follows from this definition
that θ(s,x,x) is the first time when the state process x0(t|s,x) exceeds
(x1, M +x2)′ under the production rate u0(x0(t|s,x), k̃(t)). Since the mod-
ified average capacity of machine 1 is larger than the modified average ca-
pacity of machine 2, since the modified average capacity of machine 2 is
larger than the required rate z (see (4.69)), and since H is suitably large,
we have the following lemma.

Lemma 5.1. Let Assumptions (A2) and (A4) hold. If H is suitably large,
then there exists a constant Ĉr such that

E [θ(s,x,x) − s]r < Ĉr

[
1 +

(
2∑

j=1

(xj − xj)+
)r]

.

Proof. See Appendix B. �

Step 3. We construct a family of auxiliary processes x1(t|s,x), t ≥ s ≥ 0,
and x ∈ XH . Consider the function

u1(x, k̃) = (u1
1(x, k̃), u1

2(x, k̃))

=

⎧⎨⎩ (0, k̃2)′, if x1 > x1,

(0, 0)′, if x1 = x1.

(4.73)

defined for x such that x1 ≥ x1.
We define x1(t|s,x) as a continuous process which coincides with x0(t|s,x)

for s ≤ t ≤ θ(s,x,x), and satisfies the following equation (see (4.59)):

d

dt
x1(t|s,x) = Au1(x1(t|s,x), k̃(t)) + Bz, t ≥ θ(s,x,x).

Clearly, x1(t|s,x) ∈ XH for all t ≥ s, and x1
1(t|s,x) ≥ x1 for t ≥ θ(s,x,x).

This process corresponds to the policy in which after θ(s,x,x) we stop
production at machine 1 and have the maximum possible production rate
at machine 2 under the restriction that the work-in-process is larger than
x1.

We now define a Markov time

θ̂(s,x, x) = inf{t ≥ θ(s,x,x) : x1
2(t|s,x) = x2}. (4.74)

Lemma 5.2. Let Assumptions (A2) and (A4) hold. If H is suitably large,
then:
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(i) for a given q ∈ (0, 1), a positive constant M can be chosen in such
a way that, for all s and x ∈ XH ,

P (x1(θ̂(s,x,x)|s,x) = x, k(θ̂(s,x, x)) = k) ≥ 1 − q > 0.

(ii) there exists a constant C such that

M

z
≤ θ̂(s,x, x) − s ≤ 1

z

⎛⎝ 2∑
j=1

(xj − xj) + C[θ(s,x,x) − s]

⎞⎠ (4.75)

and

2∑
j=1

x1
j (θ̂(s,x,x)|s,x) ≤

2∑
j=1

xj + C[θ(s,x,x) − s]. (4.76)

Proof. See Appendix B. �

Step 4. We construct a process x(t), t ≥ 0, and the corresponding
control u(t), t ≥ 0, which satisfies the statement of Theorem 5.2.

Define a sequence of Markov times {θ̂�}∞
�=0 with respect to k̃(·) and the

process x(t) for θ̂� ≤ t < θ̂�+1 (� = 0, 1, . . .) as follows:

θ̂0 = 0, θ̂1 = θ̂(0, x̂, x),

and
x(t) = x1(t|0, x̂), 0 ≤ t < θ̂1.

If θ̂� is defined for � ≥ 1 and x(t) is defined for 0 ≤ t < θ̂�, then we let

θ̂�+1 = θ̂(θ̂�,x(θ̂�),x) and x(t) = x1(t|θ̂�,x(θ̂�)), θ̂� ≤ t < θ̂�+1.

According to the left inequality in (4.75), x(t) is defined for all t ≥ 0. Let

θ1 = θ(0, x̂,x) and θ�+1 = θ(θ̂�,x(θ̂�),x), � = 1, 2, . . . .

The control corresponding to the process x(·) is given by

u(t) =

⎧⎨⎩ u0(x(t), k̃(t)), if θ̂�−1 ≤ t < θ�,

u1(x(t), k̃(t)), if θ� ≤ t < θ̂�,
(4.77)

for � = 1, 2, . . . . It is clear that u(·) ∈ A(x̂, k̂).
For the process x(·), a Markov time is defined as

τ(x̂, k̂,x,k) = inf
{
t ≥ 0 : (x(t),k(t)) = (x,k)

}
.
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Let
B� = {ω : (x(θ̂�)(ω),k(θ̂�)(ω)) = (x,k)}.

Using conditional probabilities (see (3.15)), we have from Lemma 5.2(i)
that

P

(
�⋂

�1=1

Bc
�1

)
≤ q�, � = 1, 2, . . . , (4.78)

where Bc
�1

is the complement set of B�1 . Using (4.77) and the definition of
x(t) we get that

τ(x̂, k̂,x,k) =
∞∑

�=1

θ̂�I{∩�−1
�1=0Bc

�1
∩B�},

which implies

[τ(x̂, k̂,x,k)]r =
∞∑

�=1

[θ̂�]rI{∩�−1
�1=0Bc

�1
∩B�}, (4.79)

where Bc
0 = Ω. Using (4.75) and (4.76), we have, for � = 1, 2, . . .,

θ̂� − θ̂�−1 ≤ 1
z

⎛⎝ 2∑
j=1

xj(θ̂�−1) −
2∑

j=1

xj + C[θ� − θ̂�−1]

⎞⎠ (4.80)

and
2∑

j=1

xj(θ̂�) ≤
2∑

j=1

xj(θ̂�−1) + C[θ� − θ̂�−1]. (4.81)

Using (4.80) and (4.81), there exists a constant C1 > 0 independent of x̂
and x such that, for � = 1, 2, . . . ,

θ̂� ≤ C1(� + 1)
z

⎛⎝ 2∑
j=1

(x̂j − xj)+ +
�∑

�1=1

(θ�1 − θ̂�1−1)

⎞⎠ ,

which implies

(θ̂�)r ≤ C2(� + 1)2r

⎛⎝ 2∑
j=1

(
(x̂j − xj)+

)r +
�∑

�1=1

(θ�1 − θ̂�1−1)r

⎞⎠ (4.82)

for some C2 > 0. Note that x(θ̂�) ≥ x for � = 1, 2, . . .. Using the Schwarz
inequality (Corollary 3 on page 104 of Chow and Teicher [33]), we get from
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(4.78) and Lemma 5.1 that there exists a positive constant Cr dependent
on r such that

E
(
θr
1I{∩�−1

�1=1Bc
�1

∩B�}
)

≤ q(�−1)/2 (
E(θ2r

1 )
)1/2

≤ Crq
(�−1)/2

⎛⎝1 +
2∑

j=1

[
(xj − x̂j)+

]r

⎞⎠ ,

� = 1, 2, . . . ,

(4.83)

and
E

[
(θ�1 − θ̂�1−1)rI{∩�−1

�2=1Bc
�2

∩B�}
]

≤ q(�−1)/2
(
E(θ�1 − θ̂�1−1)2r

)1/2

≤ Crq
(�−1)/2

⎛⎝1 +
2∑

j=1

[
(xj − x̂j)+

]r

⎞⎠ ,

2 ≤ �1 ≤ � = 2, 3, . . . .

(4.84)

Substituting (4.82) into (4.79), taking expectation, and using (4.83) and
(4.84), we get (4.68). �

Theorem 5.3. Let Assumptions (A1), (A2), and (A4) hold. Then there
exist a sequence {ρ� : � ≥ 1} with ρ� → 0 as � → ∞, a constant λ̂, and a
convex function V (x,k), such that, for (x,k) ∈ XH × M,

lim
�→∞

ρ�V
ρ�(x,k) = λ̂,

lim
�→∞

[V ρ�(x,k) − V ρ�(0,k)] = V (x,k).

Proof. The proof is similar to the proof of Theorem 4.1 and, therefore, the
details are omitted. �

Theorem 5.4. Let Assumptions (A1), (A2), and (A4) hold. Then the fol-
lowing assertions hold:

(i) λ∗(x,k) is independent of (x,k), i.e., λ∗(x,k) = λ∗;

(ii) the pair (λ̂, V (·, ·)) defined in Theorem 5.3 is a solution of (4.63) for
0 < x1 < H.

Remark 5.2. For x1 = 0 and/or x1 = H, whether the pair (λ, V (·, ·))
satisfies equation (4.63) or not, is a question to be answered. We believe
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that the answer would be in the affirmative. �

Proof of Theorem 5.4. The proof of (i) is similar to the proof of Theorem
4.2(i), and hence it is omitted here. Now we prove (ii). Let O2

H be the set
of all points in the interior of XH on which V (x,k) is differentiable. ¿From
the convexity of V (x,k) we know that O2

H is dense in XH . It follows from
the properties of convex functions that, for x ∈ O2

H and any p,

lim
�→∞

∂p [V ρ�(x,k) − V ρ�(0,k)] = ∂pV (x,k). (4.85)

It can be seen in Lemma E.4 that for any x ∈ XH , the value function
V ρ�(x,k) of the discounted cost problem satisfies

ρ�V
ρ�(x,k) = inf

u∈U(x,k)
{∂Au+BzV

ρ�(x,k) + g(x,u)} + QV ρ�(x,k).

This implies that

ρ�V
ρ�(x,k) = inf

u∈U(x,k)
{∂Au+BzṼ

ρ�(x,k)+ g(x,u)}+QṼ ρ�(x,k), (4.86)

where Ṽ ρ�(x,k) = V ρ�(x,k) − V ρ�(0,k). Taking the limit on both sides,
we have that, for x ∈ O2

H ,

λ̂ = inf
u∈U(x,k)

{∂Au+BzV (x, k) + g(x,u)} + QV (x,k). (4.87)

Let x be any interior point of XH . If x /∈ O2
H , then for any direction p there

exist a sequence {xn}∞
n=1 such that xn ∈ O2

H and ∂pV (xn,k) → ∂pV (x,k).
From this fact and from the continuity of V (x,k), it follows that (4.87)
holds for all x in the interior of XH . �

Theorem 5.5. Under Assumptions (A1), (A2), and (A4), let (λ, W (x,k))
be a solution to the HJBDD equation (4.63). Then:

(i) for any u(·) ∈ A(x,k), we have λ ≤ J(x,k,u(·)), i.e.,

lim sup
T→∞

1
T

E

∫ T

0
g(x(t),u(t)) dt ≥ λ;

(ii) for any (stable) control policy u(·) ∈ S(x,k), we have

lim inf
T→∞

1
T

E

∫ T

0
g(x(t),u(t)) dt ≥ λ;

(iii) if there is a control u∗(·) ∈ A(x,k) such that

inf
u∈U(k(t))

{∂Au+BzW (x∗(t),k(t)) + g(x∗(t),u)}

= ∂Au∗(t)+BzW (x∗(t),k(t)) + g(x∗(t),u∗(t))
(4.88)
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for a.e. t ≥ 0 with probability 1, where x∗(·) is the surplus process
corresponding to the control u∗(·), and

lim
T→∞

E[W (x∗(T ),k(T ))]
T

= 0,

then
λ = J(x,k,u∗(·)) = λ∗.

Proof. The proof is similar to the proof of Theorem 4.3, and therefore the
details are omitted. �

Remark 5.3. In this section, we have developed a theory of dynamic pro-
gramming in terms of directional derivatives for a stochastic two-machine
flowshop with a limited internal buffer, convex cost, and the long-run
average-cost minimization criterion. Claiming the existence of a solution
to the dynamic programming equation, a verification theorem has been
established only when the upper bound on work-in-process is sufficiently
large. The above results would not hold for a small upper bound on the
internal buffer. �

4.6 Notes

This chapter is based on Presman, Sethi, and Suo [100], Presman, Sethi,
Zhang, and Zhang [103, 105, 106] and Presman, Sethi, Zhang, and Bisi
[102]. Sections 4.2–4.4 are from Presman, Sethi, Zhang, and Zhang [105].
Theorem 5.2, on the two-machine flowshop with a limited internal buffer,
is derived in Presman, Sethi, Zhang, and Bisi [102]. Establishment of these
results for an m-machine flowshop with limited buffers remains an open
problem for m > 2.

Eleftheriu [44], Eleftheriu and Desrochers [45], Bai [8], and Bai and
Gershwin [11] consider a two-machine flowshop with the objective of mini-
mizing the long-run average surplus cost; the cost of production is assumed
to be zero. They recognize the difficulty of solving the problem analytically,
and use heuristic arguments to obtain suboptimal controls. In addition to
the natural nonnegativity constraint on the inventory level in the internal
buffer, they also consider the buffer to be of limited size, which imposes an
upper bound on the inventory level in the buffer. Furthermore, Srivatsan,
Bai, and Gershwin [132] apply their results to semiconductor manufactur-
ing.

A number of papers deal with the problem of optimal control of a flow-
shop with a discounted cost objective. Van Ryzin, Lou, and Gershwin [139]
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treated a two-machine flowshop. Presman, Sethi, and Zhang [107] stud-
ied an m-machine flowshop and carried out rigorous analysis on optimal
control. Van Ryzin, Lou, and Gershwin [139] and Lou and Van Ryzin [93]
developed simple control rules for the two-machine flowshop, termed two-
boundary controls. Lou and Kager [92] constructed a robust production
control policy based on the results obtained in Van Ryzin, Lou, and Gersh-
win [139], and apply it to a VLSI wafer fabrication facility. Samaratunga,
Sethi, and Zhou [110] repeat the calculations of Van Ryzin, Lou, and Gersh-
win [139] using more refined numerical methods of solving dynamic pro-
gramming equations. Lou and Van Ryzin [93] also analyze a three-machine
flowshop and extend the two-boundary control to an m-machine flowshop.



5
Optimal Controls of Dynamic
Jobshops

5.1 Introduction

In this chapter, we consider a manufacturing system producing a variety
of products in a general network configuration, which generalizes both the
parallel and the tandem machine models. Each product follows a given
process plan or recipe that specifies the sequence of machines it must visit
and the operations performed by them. A recipe may call for multiple visits
to a given machine, as is the case in semiconductor manufacturing (Lou and
Kager [92], Srivatsan, Bai, and Gershwin [132], and Uzsoy, Lee, and Martin-
Vega [136, 137]). The machines are failure-prone and they break down and
must be repaired from time to time. A manufacturing system so described
will be termed a dynamic jobshop. The term will be made mathematically
precise in the next section.

The problem that we are interested in is how to obtain rates of production
of intermediate parts and finished products in a network of failure-prone
machines. The objective is to meet demand for finished products at the
minimum possible long-run average cost of production, inventories, and
backlogs.

In order to carry out the analysis of such a general network system as
a jobshop, one needs to address a number of major difficulties. Foremost
among these is the specification of the general dynamics. Note that a sys-
tem with m tandem machines along with their capacities, where m is a
positive integer, immediately defines a general flowshop. This is no longer
the case with jobshops. A jobshop with n machines can have many different



98 5. Optimal Controls of Dynamic Jobshops

configurations. Moreover, specifying other parameters, such as the number
of buffers, the number of processing steps, etc., still cannot uniquely define
a network system. Therefore, our first task is to establish a mathemat-
ical framework for a dynamic jobshop that appropriately describes and
uniquely determines its system dynamics along with the state and control
constraints.

Once the mathematical representation for a jobshop is in place, the next
task is to construct a control policy which takes a given system state to
any other state in a time whose rth moment has a finite expectation, this
will be the key to implement the vanishing discount approach. This plays
an essential role in analyzing our problem. In the flowshop case (Chapter
4), these tasks were accomplished by constructive proofs carried out in a
sequential manner. Indeed, in the case of a flowshop, there is an obvious
natural sequence, and the sequential step is easy to imagine: if one removes
the first machine and the first internal buffer from an m-machine flowshop,
the remaining system is an (m − 1)-machine flowshop having exactly the
same structure as its “parent.” Let us call this property the “inheritance”
property.

In a jobshop, however, one does not have a natural sequence, nor can
one easily conceive of an inheritance property. The main reasons for this
are that a machine may feed into many buffers and that there are reentrant
flows. Yet, as we shall see, we are able to define an appropriate sequence
and obtain a needed inheritance property for jobshops.

We present a graph-theoretic framework in which a dynamic jobshop is
modeled as a directed graph (digraph) with a “placement of machines”
that reflects system dynamics and the control constraints. The conceptual
framework, it should be noted, is based on the intuitive notion of what
constitutes a jobshop or a general manufacturing system with a network of
machines. We introduce a labeling procedure that defines a sequence ap-
propriate for constructing the control required in the proof of the finiteness
of the rth moment of the time required to go from a given initial system
state to any other system state. More importantly, we use graph theory
to isolate some key properties of the dynamics of a general network that
will be inherited by the subsystem obtained by removing the first internal
buffer (in the labeled sequence) from the system. It is interesting to observe
that this inheritance property, borne out of intuitive considerations in the
modeling of a dynamic jobshop, is exactly the property needed to establish
finiteness of the rth moment mentioned above.

The chapter is organized as follows. In Section 5.2 we present a graph-
theoretic framework for manufacturing systems with machines in a network,
analyze its structure, and give the system dynamics equations. At the end
of the section, we formulate the optimization problem for dynamic jobshops
with unreliable machines under the long-run average-cost criterion. Section
5.3 is devoted to analysis of the corresponding discounted cost problem.
Section 5.4 analyses the original problem. Section 5.5 concludes the chapter.
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5.2 A Graph-Theoretic Framework and Problem
Formulation

The purpose of this section is to develop a graph-theoretic framework for
general dynamic manufacturing systems. The framework allows us to de-
scribe them precisely as well as to analyze them asymptotically.

We begin with the example of a simple jobshop described in Section
2.5. For convenience in exposition, we reproduce the associated figure, the
system dynamics, and the constraints below.

System dynamics:

d

dt
x1(t) = u01(t) − u12(t) − u14(t),

d

dt
x4(t) = u14(t) + u34(t) − z4,

d

dt
x2(t) = u12(t) − u23(t),

d

dt
x5(t) = u05(t) − z5.

d

dt
x3(t) = u23(t) − u34(t),

(5.1)

Control constraints:

r01u01(t) ≤ k1(t), r05u05(t) + r14u14(t) ≤ k4(t),

r12u12(t) + r34u34(t) ≤ k3(t), r23u23(t) ≤ k2(t).
(5.2)

State constraints:
xi(t) ≥ 0, i = 1, 2, 3. (5.3)

Since we are interested in general jobshops of the type shown in Figure
5.1 and described by (5.1), (5.2), and (5.3), we must find a way to generalize
the formulation. In order to do so, note immediately that the placement of
machines in Figure 5.1 plays no role in describing the dynamics (5.1) and
constraints (5.3). Removal of machines from Figure 5.1 leaves us with the
digraph shown in Figure 5.2.

The placement of machines supplies us with the control constraints (5.2).
Note that a different placement of a possibly different number of machines
would result in a different set of control constraints. This gives us the idea
that a general dynamic jobshop of interest to us could be obtained by a
digraph with a placement of a number of machines. We pursue this idea
toward modeling a dynamic jobshop as the appropriate generalization of
Figure 5.1.

Next we define a class of digraphs to represent a general system dynamics,
analyze its structure from the viewpoint of deriving an analysis for our
problem in Sections 5.3 and 5.4, and supplement any digraph in the class
with a placement of machines to complete the model of a dynamic jobshop.
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Figure 5.1. A Typical Dynamic Jobshop.
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Figure 5.2. The Digraph Corresponding to Figure 5.1.

To do this we first introduce the digraph and some of its properties, for
more discussion on digraph theory, see Chartrand and Lesniak [30].

Definition 2.1. A digraph denoted by (V, A) is a finite nonempty set V ,
whose elements are called vertices, together with a set A of ordered pairs
(b, c) called arcs, where b and c are two distinct vertices. �

Definition 2.2. In a digraph the number of arcs beginning at the vertex
b is called the outdegree of b. The number of arcs ending at the vertex b
is called the indegree of b. A vertex is a source if its indegree is zero and
its outdegree is nonzero. A vertex is a sink if its outdegree is zero and its
indegree is nonzero. A vertex is isolated if both its indegree and outdegree
are zero. �

Definition 2.3. A walk W in a digraph is a finite sequence which con-
sists of vertices and arcs alternately and begins and ends with vertices.
Furthermore, in the walk

W = b1, (b1, b2), b2, (b2, b3), . . . , (bn−1, bn), bn,
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b1 is called its first vertex and bn its last vertex. We shall also say that W
is a walk from b1 to bn and simply express W as 〈b1b2 · · · bn〉. �

Definition 2.4. A walk whose first and last vertices coincide is called a
cycle. A walk, all of whose vertices are distinct, is called a path. A path
whose first vertex is a source and last vertex is a sink is called a complete
path. �

We define a class of digraphs that are of interest, in the sense that any
digraph in the class would correspond to the dynamics of a manufacturing
system such as the one described by (5.1) and (5.2).

Definition 2.5. A manufacturing digraph is a digraph (V, A) satisfying the
following properties:

(i) there are two nonempty sets, one containing sources and the other
containing a sink in the digraph;

(ii) no vertex in the digraph is isolated;

(iii) the digraph does not contain any cycle. �

Definition 2.6. In a manufacturing digraph, a vertex is called a supply
node if it is a source, the customer node if it is a sink, vertices immediately
proceeding the sink are called external buffers, and the others are called an
internal buffer. �

Remark 2.1. Condition (ii) in Definition 2.5 is not an essential restriction.
Inclusion of isolated vertices is merely a nuisance. This is because an iso-
lated vertex is like a warehouse that can only ship out parts of a particular
type to meet their demand. Since no machine (or production) is involved,
its inclusion or exclusion does not affect the optimization problem under
consideration. Condition (iii) in Definition 2.5 is imposed to rule out the
following two trivial situations: (a) a part of type i in buffer i gets processed
on a machine without any transformation and returns to buffer i; and (b)
a part of type i is processed and converted into a part of type j, j �= i, and
is then processed further on a number of machines to be converted back
into a part of type i. Moreover, if we had included any cycle in our man-
ufacturing system, the flow of parts that leave buffer i, only to return to
buffer i, would be zero in any optimal solution. It is unnecessary, therefore,
to complicate the problem by including cycles. �

In order to obtain the system dynamics from a given manufacturing
digraph and to get an appropriate “sequence” as mentioned in Section 5.1,
a systematic procedure is required to label the state and control variables.
To present such a procedure, we need an additional definition.

Definition 2.7. In a manufacturing digraph, let b be a vertex contained in
a complete path W = 〈b1b2 · · · b · · · bl〉. The depth of b with respect to W is
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Figure 5.3. Illustration of the Proof of Theorem 2.1.

the length of the walk 〈b1b2 · · · b〉. The depth of a vertex b, denoted by d(b),
is the maximum of the depths of b with respect to all possible complete
paths that contain b. �

Remark 2.2. The depth of any source is zero. �

Theorem 2.1. In a manufacturing digraph, the depths of all the buffers
along any complete path are in a strictly increasing order.

Proof. If not, then let us suppose that there are two buffers b and c with
depths d(b) and d(c), respectively, in a complete path 〈· · · kb · · · ce · · ·〉 (see
Figure 5.3), while d(b) ≥ d(c). By definition, there is a complete path
〈· · · fgbhij · · ·〉 with respect to which the depth of buffer b is just d(b).
We see that the depth of buffer c with respect to the complete path
〈· · · fgb · · · ce · · ·〉 is at least d(b) + 1. This implies that the depth of buffer
c is strictly greater than d(c), which is a contradiction that proves the
result. �

Let us now suppose that a given manufacturing digraph contains a total
of (n0 + n + 1) vertices including n0 sources, the sink, m internal buffers,
and (n−m) external buffers for some integers m and n with 0 ≤ m ≤ n−1
and n ≥ 1.

Theorem 2.2. We can label all the vertices from −n0 + 1 to n + 1 in a
way so that the label numbers of the vertices along every complete path are
in a strictly increasing order. In particular, the n0 sources can be labeled as
{−n0 + 1, . . . , 0}, and the external buffers (vertices immediately preceding
the sink) can be labeled as {m + 1, m + 2, . . . , n}.

Proof. We label all the vertices by the following procedure:

Step 1. Label the n0 sources arbitrarily using the numbers {−n0 +
1,−n0 + 2, . . . , 0}, label the sink as n + 1, and label the n − m vertices
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immediately preceding the sink arbitrarily using the numbers {m + 1, m +
2, . . . , n}.

Step 2. Classify the remaining m vertices, which are neither sources nor
the sink nor the vertices that immediately precedes the sink, according to
their depths. Suppose that there are m1 vertices with depth 1, m2 vertices
with depth 2, . . ., and m� vertices with depth �, where m1+m2+· · ·+m� =
m.

Step 3. Label the m1 depth-1 vertices arbitrarily from the numbers
{1, 2, . . . , m1}, then the m2 depth-2 vertices arbitrarily from the numbers
{m1 + 1, m1 + 2, . . . , m1 + m2}, . . ., and finally the m� depth-� vertices
arbitrarily from the numbers {m − m� + 1, . . . , m}.

By virtue of Theorem 2.1, it is easily seen that our labeling procedure
meets the requirement of the theorem. �

With the help of Theorem 2.2, one is able to formally write the dynamics
and the state constraints associated with a given manufacturing digraph; at
the same time, one can prove some important properties which are crucial
for the analysis later in the chapter. First let us give a few definitions.

Definition 2.8. For each arc (i, j), j �= n+1, in a manufacturing digraph,
the rate at which parts in buffer i are converted to parts in buffer j is
labeled as control ui,j . Moreover, the control ui,j associated with the arc
(i, j) is called an output of i and an input to j. In particular, outputs of
the source (i = −n0 + 1, . . . , 0) are called primary controls of the digraph.
For each arc (i, n + 1), i = m + 1, ..., n, the demand for products in buffer
i is denoted by zi. �

Remark 2.3. There is a control associated with each arc (i, j) (j �= n + 1)
in a manufacturing digraph, and there is an arc (i, j) (j �= n+1) associated
with each control. In other words, the controls and the arcs have a one-to-
one correspondence. �

Remark 2.4. Later in the section, we will associate an appropriate machine
with each arc (i, j) (j �= n + 1) that is capable of converting parts in i to
parts in j. �

In what follows, we shall also set

ui,j = 0, for (i, j) �∈ A, −n0 + 1 ≤ i ≤ m, 1 ≤ j ≤ n,

for a unified notation suggested in Presman, Sethi, and Suo [99]. In this
way, we can consider the controls as an (n0 + m) × n matrix (ui,j) of the
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following form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

u−n0+1,1 u−n0+1,2 ... u−n0+1,m+1 ... u−n0+1,n

...
...

...
...

...
...

u0,1 ... ... u0,m+1 ... u0,n

0 u1,2 ... u1,m+1 ... u1,n

...
...

...
...

...
...

0 0 ... um,m+1 ... um,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The set of all such controls is written as U , i.e.,

U = {(ui,j) : −n0 + 1 ≤ i ≤ m, 1 ≤ j ≤ n,

ui,j = 0 for (i, j) �∈ A} .
(5.4)

Now we shall write the dynamics and the state constraints corresponding to
a manufacturing digraph (V, A) containing (n0 + n + 1) vertices consisting
of n0 sources, a sink, m internal buffers, and (n − m) external buffers
associated with the (n − m) distinct final products to be manufactured.
We label all the vertices according to Theorem 2.2. For simplicity in the
sequel, we shall call the buffer whose label is j as buffer j (j = 1, 2, ..., n).
We denote the surplus at time t in buffer j by xj(t). Write it in vector form

x(t) = (x1(t), . . . , xn(t))′.

Clearly,
{1, . . . , n} = V \ {−n0 + 1,−n0 + 2, . . . , 0, n + 1}.

The control at time t associated with arc (i, j) by ui,j(t), (i, j) ∈ A and
j �= n + 1.

The dynamics of the system are therefore

d

dt
xj(t) =

j−1∑
�=−n0+1

u�,j(t) −
n∑

�=j+1

uj,�(t), 1 ≤ j ≤ m,

d

dt
xj(t) =

m∑
�=−n0+1

u�,j(t) − zj , m + 1 ≤ j ≤ n,

(5.5)

with x(0) = (x1(0), ..., xn(0))′ = (x1, ..., xn)′ = x. The state constraints
are

xj(t) ≥ 0, t ≥ 0, j = 1, ..., m,

−∞ < xj(t) < +∞, t ≥ 0, j = m + 1, ..., n.
(5.6)

Note that if xj(t) > 0, j = 1, ..., n, we have an inventory in buffer j, and
if xj(t) < 0, j = m + 1, ..., n, we have a shortage of the finished product j.
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It is convenient in the following discussion to write the control in vector
form rather than in a matrix form given earlier. To do this, for � = −n0 +
1, . . . , 0, and j = 1, . . . , m, let

u�(t) =

⎛⎜⎝ u�,1(t)
...

u�,n(t)

⎞⎟⎠ , uj(t) =

⎛⎜⎝uj,j+1(t)
...

uj,n(t)

⎞⎟⎠ , (5.7)

u(t) =

⎛⎜⎝u−n0+1(t)
...

um(t)

⎞⎟⎠ , and z(t) =

⎛⎜⎝ zm+1
...

zn

⎞⎟⎠ . (5.8)

According to the definition of vector u(·), there is a one-to-one mapping
between the control matrix (ui,j(·))(n0+m)×n and the vector u(t) given by
(5.8). Thus, hereafter, we use u(·) to represent our control. Furthermore,
for i = 1, . . . , m − 1, let Oi be an i × (n − i − 1) zero matrix, Om is an
m × (n − m) zero matrix, and for i = 1, . . . , m,

Bi =

⎛⎜⎜⎜⎜⎝
−1 −1 · · · −1
1 0 · · · 0
0 1 · · · 0
...

... · · ·
...

0 0 · · · 1

⎞⎟⎟⎟⎟⎠
(n−i+1)×(n−i)

,

and

Bm+1 =

⎛⎜⎜⎜⎜⎝
−1 0
0 −1 0

. . . . . . . . .
0 −1 0

0 −1

⎞⎟⎟⎟⎟⎠
(n−m)×(n−m)

.

Let

A−n0+1 = · · · = A0 =

⎛⎜⎜⎜⎜⎝
1 0
0 1 0

. . . . . . . . .
0 1 0

0 1

⎞⎟⎟⎟⎟⎠
n×n

,

and

A1 = B1, Aj =
(

Oj−1
Bj

)
, j = 2, . . . , m + 1.

Based on the notation introduced above, relation (5.5) can be written in
the following vector form:

d

dt
x(t) = (A−n0+1, . . . , Am+1 )

(
u(t)
z

)
, x(0) = x. (5.9)
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Figure 5.4. Another System Corresponding to the Digraph in Figure 5.2.

Note that
( A−n0+1, . . . , Am+1 )

is an n×ñ matrix with ñ = n0n+(n−m)+
∑m

�=1(n−�). Let Y = �m
+ ×�n−m.

Furthermore, we introduce a linear operator L from �ñ
+ to Y:

L (u(t),z) = (A−n0+1, . . . , Am+1 )
(

u(t)
z

)
.

Then, (5.9) can be simply written as

d

dt
x(t) = L (u(t),z) , x(0) = x.

Now we introduce the control constraints. As mentioned earlier, the control
constraints (5.2) for Figure 5.1 depend on the placement of the machines
on the digraph in Figure 5.2, and that different placements on the same
digraph will give rise to different jobshops. In other words, a jobshop cor-
responds to a unique digraph, whereas a digraph may correspond to many
different jobshops. For example, the system depicted in Figure 5.4 also cor-
responds to the digraph in Figure 5.2. Therefore, to uniquely characterize
a jobshop using graph theory, we need to introduce the concept of a “place-
ment of machines,” or simply a “placement.” Let mc denote the number of
machines to be placed. Then, mc ≤ #A − n + m, where #A denotes the
total number of arcs in A.

Definition 2.9. In a manufacturing digraph (V, A), a set K = {K1, K2, ...,
Kmc

} is called a placement of machines 1, 2, ..., mc, if K is a partition of
B = {(i, j) ∈ A : j ≤ m}, namely, ∅ �= Kj ⊂ B, Kj ∩ K� = ∅ for j �= �, and⋃mc

j=1 Kj = B. �

So far, we have been using the term dynamic jobshop loosely to refer to
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a manufacturing system of the type described in Section 2.5 or by Figure
5.1. We are now ready to specify precisely a general dynamic jobshop.

A dynamic jobshop, or simply a jobshop, can be uniquely specified by a
triple (V, A, K), which denotes a manufacturing system that corresponds to
a manufacturing digraph (V, A) along with a placement K = (K1, . . . , Kmc

)
satisfying:

(i) If b is a source, then (b, c) ∈ A if and only if there is one and only
one machine such that raw parts go to this machine for processing in
order to be stocked in buffer c; if c is not a sink, then (b, c) ∈ A if and
only if there is one and only one machine such that parts in buffer
b go to this machine for processing and are then stocked as parts of
type c (in buffer c). In either case, we will say that the machine is
associated with arc (b, c).

(ii) There are a total of mc distinct machines, and the jth machine is
associated with each of the arcs in Kj , j = 1, 2, . . . , mc.

(iii) The number of the external buffers equals the number of types of
finished products to be produced, and different external buffers store
different finished products.

Remark 2.5. Occasionally we will also say that a machine connects ver-
tices b and c if the machine is associated with arc (b, c). �

Remark 2.6. The placements for the jobshop in Figures 5.1 and 5.4 are
K1 = {(0, 1)}, K2 = {(2, 3)}, K3 = {(3, 4), (1, 2)}, K4 = {(0, 5), (1, 4)}),
and K1 = {(0, 1)}, K2 = {(2, 3), (1, 2), (3, 4)}, K3 = {(1, 4)}, K4 = {(0, 5)},
respectively. �

Consider a jobshop (V, A, K), where the dynamics of (V, A) are given
in (5.5) and K = (K1, K2, ..., Kmc

). Suppose we are given a stochastic
process k(t) = (k1(t), ..., kmc

(t)), with kj(t) representing the capacity of
the jth machine at time t, j = 1, ..., mc. Therefore, the controls ui,�(t)
with (i, �) ∈ Kj , j = 1, ..., mc, t ≥ 0, in (5.5) should satisfy the following
constraints:

0 ≤
∑

(i,�)∈Kj

ui,�(t) ≤ kj(t), for all t ≥ 0, j = 1, ..., mc, (5.10)

where we have assumed that the required machine capacity ri� (for a unit
production rate of type � from part type i) equals 1, for convenience in
exposition. Moreover, the corresponding surplus process satisfies the con-
straints (5.6). The analysis in this chapter can be readily extended to the
case when the required machine capacity for the unit production rate of
part j from part i is any given positive constant.
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We are now in a position to formulate our stochastic optimal control
problem for the jobshop defined by (5.5), (5.6), and (5.10).

For k = (k1, ..., kmc
), let

U(k) =
{

(ui,�) : (ui,�) ∈ U , 0 ≤
∑

(i,�)∈Kj

ui,� ≤ kj , 1 ≤ j ≤ mc

}
.

By (5.7) and (5.8), for each (ui,j) ∈ U(k), we can generate a unique
nonnegative ñ-dimensional vector u (ñ = n0 + (n − m) +

∑m
�=1(n − �)). In

the rest of this chapter, we use u and (ui,j) (∈ U(k)) interchangeably.
For x ∈ Y and k,

U(x,k) =

{
u : u ∈ U(k) and xj = 0

⇒
j−1∑

i=−n0+1

ui,j −
n∑

i=j+1

uj,i ≥ 0, j = 1, ..., m

}
.

Let the stochastic process k(·) = (k1(·), ..., kmc
(·)), defined on a probability

space (Ω,F , P ), denote the machine capacity process.

Definition 2.10. We say that a control u(·) is admissible with respect
to the initial state vector x = (x1, . . . , xn)′ ∈ Y and k(0) = k if: (i) u(·)
is an Ft-adapted measurable process with Ft = σ{k(s) : 0 ≤ s ≤ t};
(ii) u(t) ∈ U(k(t)) for all t ≥ 0; and (iii) the corresponding state process
x(t) = (x1(t), . . . , xn(t))′ ∈ Y for all t ≥ 0. �

Remark 2.7. Condition (iii) in the above definition is equivalent to u(t) ∈
U(x(t),k(t)), for t ≥ 0. �

We use A(x,k) to denote the set of all admissible controls with respect
to x ∈ Y and k(0) = k. The problem is to find an admissible control
u(·) ∈ A(x,k) that minimizes the long-run average-cost function

J(x,k,u(·)) = lim sup
T→∞

1
T

E

∫ T

0
g(x(t),u(t)) dt, (5.11)

where g(x,u) is the cost of surplus and production and k is the initial value
of k(t).

We impose the following assumptions on the process k(t) = (k1(t), . . . ,
kmc(t)) and the cost function g(·, ·) throughout this chapter.

(A1) Let M = {k1, . . . ,kp} for some positive integer p ≥ 1, where ki =
(ki

1, . . . , k
i
mc

), with ki
j , j = 1, . . . , mc, denoting the capacity of the

jth machine, i = 1, . . . , p. The capacity process k(t) ∈ M is a finite
state Markov chain with the following infinitesimal generator Q:

Qφ(ki) =
∑
j �=i

qkikj [φ(kj) − φ(ki)]
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for some qkikj ≥ 0 with j �= i, and any function φ(·) defined on M.
Moreover, the Markov chain is strongly irreducible and has the sta-
tionary distribution νki , i = 1, . . . , p. That is, the equations

(νk1 , . . . ,νkp)Q = 0 and
p∑

i=1

νki= 1

have a unique solution with νki> 0, i = 1, . . . , p.

(A2) Let pj =
∑p

i=1 ki
jνki and c(i, j) = � if (i, j) ∈ K� for (i, j) ∈ A and

j �= n + 1. Here pj represents the average capacity of machine j, and
c(i, j) is the machine number placed at the arc (i, j). Assume that
there exist {pij > 0 : (i, j) ∈ K�} (� = 1, ..., mc) such that∑

(i,j)∈K�

pij ≤ 1, � = 1, . . . , mc, (5.12)

m∑
i=−n0+1

pijpc(i,j) > zj , j = m + 1, ..., n, (5.13)

and
j−1∑

i=−n0+1

pijpc(i,j) >

n∑
i=j+1

pjipc(j,i), j = 1, ..., m. (5.14)

(A3) g(x,u) defined on Y × �ñ
+ is a nonnegative convex function that is

strictly convex in either x or u or both with g(0, 0) = 0. There are
positive constants Cg1, Cg2, and βg1 ≥ 1 such that, for any fixed u,

g(x,u) ≥ Cg1|x|βg1 − Cg2, x ∈ Y;

moreover, there are constants Cg3 > 0 and βg2 ≥ βg1 such that, for
u, û ∈ �ñ

+, and x, x̂ ∈ Y,

|g(x,u) − g(x̂, û)|

≤ Cg3
[(

1 + |x|βg2−1 + |x̂|βg2−1) |x − x̂| + |u − û|
]
.

Let λ∗(x,k) denote the minimal expected cost with the initial condition
(x(0),k(0)) = (x,k), i.e.,

λ∗(x,k) = inf
u(·)∈A(x,k)

J(x,k,u(·)). (5.15)

The Hamilton-Jacobi-Bellman equation in the directional derivative sense
(HJBDD) associated with the long-run average-cost optimal control prob-
lem formulated in the above takes the following form:

λ = inf
u∈U(x,z)

{
∂L(u,z)φ(x,k) + g(x,u)

}
+ Qφ(x, ·)(k), (5.16)
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where λ is a constant, and φ(·, ·) is a real-valued function defined on Y×M.
Before we define a solution to the HJBDD equation (5.16), we recall

some notation. As in Chapter 4, let G denote the family of real-valued
convex functions G(·,k) defined on Y for each k ∈ M with at most the
(βg2 +1)th degree polynomial growth. Similar to Definition 4.2.3, a control
u(·) ∈ A(x,k) is stable if its corresponding state process x(·) satisfies
limT→∞ E|x(T )|βg2+1/T = 0.

A solution to the HJBDD equation (5.16) is a pair (λ, W (·, ·)) with λ a
constant and W (·, ·) ∈ G. The function W (·, ·) is called a potential function
for the control problem, if (λ, W (·, ·)) is a solution of the HJBDD equation
(5.16) and λ is the minimum long-run average cost.

Since we will use the vanishing discount approach to study our problem,
we provide an analysis of the discounted problem in the next section. Be-
fore proceeding to the next section, it may be convenient to reiterate the
following system parameters that we have used:

mc : number of machines;

m : number of internal buffers;

n : number of buffers (internal and external);

n − m : number of external buffers; and

n0 : number of the sources.

For example, in Figure 5.1, mc = 4, m = 3, n = 5, and n0 = 1. In the
particular case of flowshop, n0 = 1 and n−m = 1. We should caution that
in Chapter 4 which deals with flowshops, we have denoted the number of
machines by m.

5.3 Estimates for Discounted Cost Value Functions

First we introduce the corresponding control problem with the cost dis-
counted at a rate ρ > 0. For u(·) ∈ A(x,k), we define the expected dis-
counted cost as

Jρ(x,k,u(·)) = E

∫ ∞

0
e−ρtg(x(t),u(t)) dt, (5.17)

where x(·) is the system state corresponding to the control u(·), and the
initial conditions x(0) = x and k(0) = k. Define the value function of the
discounted problem as

V ρ(x,k) = inf
u(·)∈A(x,k)

Jρ(x,k,u(·)).

The corresponding HJBDD equation can be written as

ρφρ(x,k) = inf
u∈U(x,k)

{
∂L(u,z)φ

ρ(x,k) + g(x,u)
}

+ Qφρ(x, ·)(k), (5.18)
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where φρ(·, ·) is defined on Y×M. Just as in the flowshop case (see Theorem
4.3.1), we have the following result:

Theorem 3.1. Under Assumptions (A1) and (A3), the value function
V ρ(x,k) has the following properties:

(i) For each k ∈ M, the value function V ρ(x,k) is convex and continu-
ous on Y and satisfies the condition

|V ρ(x̂,k) − V ρ(x̃,k)| ≤ C
(
1 + |x̂|βg2−1 + |x̃|βg2−1) |x̂ − x̃| , (5.19)

for some positive constant C and all x̂, x̃ ∈ Y.

(ii) The value function V ρ(x,k) satisfies the HJBDD equation (5.18).

In order to study the long-run average-control problem using the vanish-
ing discount approach, we must first obtain some estimates for the value
function V ρ(x,k). To get the estimates, we first construct a stable control.

Theorem 3.2. Let Assumptions (A1) and (A2) hold, and let m = n − 1.
For any r ≥ 1, (x,k) ∈ Y × M and (x̂, k̂) ∈ Y × M, there exist a positive
constant Cr independent of (x,k) and (x̂, k̂), and a control u(t), t ≥ 0,
such that

E
[
τ(x,k, x̂, k̂)

]r ≤ Cr

⎛⎝1 +
n∑

j=1

|xj − x̂j |r
⎞⎠ , (5.20)

where
τ(x,k, x̂, k̂) = inf{t ≥ 0 : x(t) = x̂, k(t) = k̂},

and x(t), t ≥ 0, is the surplus process corresponding to the control u(·) and
the initial condition (x(0),k(0)) = (x,k).

Comparing with the proof of Theorem 4.3.2, the proof of the theorem is
more complicated and sophisticated. As in Theorem 4.3.2, in order to find
τ(x,k, x̂, k̂), we alternate between the two policies described below. In the
first policy, the production rate for each input is the maximum admissible
capacity. In the second policy, we set ui,j(t) = 0, for i = −n0 +1, . . . , 0 and
j = 1, . . . , n, and set the maximum possible production rate for all outputs
that are not connected to the external buffers under the restriction that
the content of each buffer j, 1 ≤ j ≤ n − 1, is not less than x̂j . The first
policy is used until such time when the content of the first buffer exceeds
the value x̂1 and the content of each buffer j, 2 ≤ j ≤ n, exceeds the value
M + x̂j for some M > 0. At that time we switch to the second policy. We
use the second policy until such time when the content of the last buffer
drops to the level x̂n. After that we revert to the first policy, and so on.
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Using this alternating procedure, it is possible to specify τ(x,k, x̂, k̂) and
provide an estimation for it.

Proof of Theorem 3.2. We divide the proof into several steps.

Step 1. In this step, for any s ≥ 0, we construct a family of auxiliary pro-
cesses x0(t|s,x), t ≥ s ≥ 0, and x ∈ Y, which will be used to generate the
desired policy u(t) with s to be changed into a stopping time with respect to
process k(t). The function u0(x,k) = {u0

i,j(x,k) : (i, j) ∈ A and j �= n+1}
is given by

u0
i,j(x,k) = pijkc(i,j), i = −n0 + 1, . . . , 0,

u0
i,j(x,k)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pijkc(i,j), if xi > 0,[(
i−1∑

�=−n0+1

u�,i(x,k)

)
∧

(
n∑

�=i+1

pi�kc(i,�)

)]
pijkc(i,j)

n∑
�=i+1

pi�kc(i,�)

, if xi = 0,

i = 1, ..., n − 1.

For (i, j) �∈ A, let ui,j(x,k) = 0. We define x0(t|s,x) as the process
which satisfies the following equation (see (5.5)):

d

dt
x0

j (t|s,x) =
j−1∑

�=−n0+1

u0
�,j(x

0(t|s,x),k(t)) −
n∑

�=j+1

u0
j,�(x

0(t|s,x),k(t)),

1 ≤ j ≤ n − 1,

d

dt
x0

n(t|s,x) =
n−1∑

�=−n0+1

u0
�,n(x0(t|s,x),k(t)) − zn, x0(s|s,x) = x.

Clearly x0(t|s,x) ∈ Y for all t ≥ s. For fixed s, x0(t|s,x) is the state
of the system with the production rate which is obtained by using the
maximum admissible modified capacity at each machine.

Define now the stopping time with respect to the Markov chain k(·),

θ(s,x, x̂) = inf
{
t ≥ s : x0

1(t|s,x) ≥ x̂1, and

x0
j (t|s,x) ≥ M + x̂j for j = 2, . . . , n

}
,

(5.21)

where M > 0 is a constant specified in Lemma 3.2. It follows from this
definition that θ(s,x, x̂) is the first time when the state process x0(t|s,x)
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exceeds (x̂1, M + x̂2, . . . , M + x̂n) under the control u0(x0(t|s,x),k(t)).
Under Assumption (A.2), the following lemma holds. Its proof will be given
in Appendix B.

Lemma 3.1. Under Assumptions (A1) and (A2), for any r ≥ 1, there
exists a constant Ĉr such that

E [θ(s,x, x̂) − s]2r
< Ĉr

[
1 +

n∑
j=1

(
(x̂j − xj)+

)r

]2

.

Step 2. In this step, for any s ≥ 0, we construct a family of auxiliary
processes x1(t|s,x), t ≥ s ≥ 0 and x ∈ Y, which will be used to con-
struct the desired policy u(t). To do this, consider the following function
u1(x,k) = {u1

i,j(x,k), (i, j) ∈ A and j �= n + 1}.

u1
i,�(x,k) = 0, i = −n0 + 1, . . . , 0,

u1
i,j(x,k)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pijkc(i,j), if xi > x̂i,[(
i−1∑

�=−n0+1

u�,i(x,k)

)
∧

(
n∑

�=i+1

pi�kc(i,�)

)]
pijkc(i,j)

n∑
�=i+1

pi�kc(i,�)

, if xi = x̂i,

i = 1, ..., n − 1.

As the policy u0(x,k), for (i, j) �∈ A, let u1
i,j(x,k) = 0. We define x1(t|s,x)

as a continuous process which coincides with x0(t|s,x) for s ≤ t < θ(s,x, x̂),
however, for t ≥ θ(s,x, x̂), define it to be satisfied by the following equation
(see (5.5)):

d

dt
x1

i (t|s,x) =
i−1∑

�=−n0+1

u1
�,i(x

1(t|s,x),k(t)) −
n∑

�=i+1

u1
i,�(x

1(t|s,x),k(t)),

1 ≤ i ≤ n − 1,

d

dt
x1

n(t|s,x) =
n−1∑

�=−n0+1

u1
�,n(x1(t|s,x),k(t)) − zn, x1(s|s,x) = x0(s|s,x).

Clearly x1(t|s,x) ∈ Y for all t ≥ s, and x1
j (t|s,x) ≥ x̂j (1 ≤ j ≤ n − 1) for

t ≥ θ(s,x, x̂). This process corresponds to a policy in which, after θ(s,x, x̂),
we set u�,j(t) = 0 for � = −n0 + 1, . . . , 0 and any j, and set the maximum
possible production rate for all other outputs that are not connected to
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the external buffers, under the restriction that the content of each buffer j
(1 ≤ j ≤ n − 1) is not less than x̂j .

We define now a stopping time with respect to the Markov chain k(t).

θ̂(s,x, x̂) = inf{t ≥ θ(s,x, x̂) : x1
n(t|s,x) = x̂n}. (5.22)

Lemma 3.2. Let Assumptions (A1) and (A2) hold. Then:

(i) For any given q ∈ (0, 1), a constant M can be chosen in such a way
that, for all s ≥ 0 and x ∈ Y,

P
(
x1(θ̂(s,x, x̂)|s,x) = x̂, k(θ̂(s,x, x̂)) = k̂

)
≥ 1 − q > 0.

(ii) There exists a constant C such that

M

zn
≤ θ̂(s,x, x̂) − s

≤ 1
zn

⎛⎝ n∑
j=1

(xj − x̂j) + C[θ(s,x, x̂) − s]

⎞⎠ (5.23)

and
n∑

j=1

x1
j (θ̂(s,x, x̂)|s,x) ≤

n∑
j=1

xj + C[θ(s,x, x̂) − s]. (5.24)

Proof. See Appendix B. �

Step 3. Using the policies u0(x,k) and u1(x,k) given in Steps 1 and
2, now we construct a process x(t) (t ≥ 0) and the corresponding control
u(·), which satisfies the statement of Theorem 3.2.

Define a sequence of stopping times {θ̂�}∞
�=0 and the process x(t) for

θ̂� ≤ t < θ̂�+1 (� = 0, 1, 2, . . .) as follows:

θ̂0 = 0, θ̂1 = θ̂(0,x, x̂) and x(t) = x1(t|0,x) with 0 ≤ t < θ̂1.

If θ̂� is defined for � ≥ 1 and x(t) is defined for 0 ≤ t < θ̂�, then we let

θ�+1 = θ(θ̂�,x(θ̂�), x̂),

θ̂�+1 = θ̂(θ̂�,x(θ̂�), x̂).

Define a control

u(t) =

⎧⎨⎩ u0(x(t),k(t)), if θ̂�−1 ≤ t < θ�,

u1(x(t),k(t)), if θ� ≤ t < θ̂�,
(5.25)
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for � = 1, 2, . . . . Let x(·), t ≥ 0, be the corresponding trajectories with
the initial condition x(0) = x. According to the first inequality in (5.23),
θ̂� → ∞ as � → ∞. Hence, the process x(t) is defined for all t ≥ 0. It
is clear that this u(t) ∈ A(x,k). For the process x(·), a Markov time is
defined as

τ(x,k, x̂, k̂) = inf{t ≥ 0 : x(t) = x̂, k(t) = k̂}.

Let B� = {ω : (x(θ̂�),k(θ̂�)) = (x̂, k̂)}. Using conditional probabilities
(see (3.15)), we have, from Lemma 3.2(i), that there exists a positive con-
stant M such that

P

(
�⋂

�1=1

Bc
�1

)
≤ q�, � = 1, 2, . . . , (5.26)

where Bc
�1

is the complement set of B�1 . Using the definition of x(t) we get
that

[τ(x,k, x̂, k̂)]r =
∞∑

�=1

[θ̂�]rI{∩�−1
�1=0Bc

�1
∩B�}, (5.27)

where Bc
0 = Ω. Using (5.23) and (5.24) we have that, for � = 1, 2, . . .,

θ̂� − θ̂�−1 ≤ 1
zn

⎡⎣ n∑
j=1

xj(θ̂�−1) −
n∑

j=1

x̂j + C(θ� − θ̂�−1)

⎤⎦ , (5.28)

and
n∑

j=1

xj(θ̂�) ≤
n∑

j=1

xj(θ̂�−1) + C[θ� − θ̂�−1]. (5.29)

Using (5.28) and (5.29), there exists a constant C1 > 0 independent of x
and x̂ such that, for � = 1, 2, . . .,

θ̂� ≤ C1(� + 1)
zn

⎛⎝ n∑
j=1

(xj − x̂j)+ +
�∑

�1=1

(θ�1 − θ̂�1−1)

⎞⎠ ,

this implies

(θ̂�)r ≤ C1(� + 1)2r

⎡⎣ n∑
j=1

(
(xj − x̂j)+

)r +
�∑

�1=1

(θ�1 − θ̂�1−1)r

⎤⎦ . (5.30)

Note that x(θ̂�1) ≥ x̂ for �1 = 1, 2, . . .. Using the Schwarz inequality (Corol-
lary 3 on page 104 of Chow and Teicher [33]), we get, from (5.26) and
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Lemma 3.1, that there exists a positive constant Cr dependent on r such
that

E
(
θr
1I{∩�−1

�1=1Bc
�1

∩B�}
)

≤ q(�−1)/2 (
E(θ2r

1 )
)1/2

≤ Crq
(�−1)/2

[
1 +

n∑
j=1

(
(x̂j − xj)+

)r

]
,

� = 1, 2, . . . ,

(5.31)

and
E

(
(θ�1 − θ̂�1−1)rI{∩�−1

�1=1Bc
�1

∩B�}
)

≤ q(�−1)/2
[
E(θ�1 − θ̂�1−1)2r

]1/2

≤ Crq
(�−1)/2

⎡⎣1 +
n∑

j=1

(
(x̂j − xj)+

)r

⎤⎦ ,

2 ≤ �1 ≤ � = 2, 3, . . . .

(5.32)

Substituting (5.30) into (5.27), taking expectation, and using (5.31) and
(5.32), we get (5.20). The proof of the theorem is completed. �

5.4 Verification Theorem

Our goal is to construct a pair (λ, W (·, ·)) which satisfies (5.16). To get this
pair, we use the vanishing discount approach. First, based on Theorem 3.2,
we get the following limits:

Theorem 4.1. Let Assumptions (A1)–(A3) hold. There exists a sequence
{ρ� : � ≥ 1} with ρ� → 0 as � → ∞ such that for (x,k) ∈ Y × M, the
limits of ρ�V

ρ�(x,k) and [V ρ�(x,k) − V ρ�(0,k)] exist. Write

lim
�→∞

ρ�V
ρ�(x,k) = λ̂, (5.33)

lim
�→∞

[V ρ�(x,k) − V ρ�(0,k)] = V (x,k). (5.34)

The limit V (x,k) is convex for any fixed k ∈ M.

Proof. For the value function V ρ(x,k) of the discounted cost problem, we
define the relative discounted value function

Ṽ ρ(x,k) = V ρ(x,k) − V ρ(0,k).

By Theorem 3.2 we know that there exists a control policy u(·) ∈ A(x,k)
such that, for each r ≥ 1,

E [τ(x,k,x,k)]r ≤ C1, (5.35)
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where C1 > 0 is a constant (which depends on r) and

τ(x,k,x,k) = inf {t > 0 : (x(t),k(t)) = (x,k)} ,

with x(·) being the surplus process corresponding to the control u(·) and
the initial condition (x(0),k(0)) = (x,k). For notation simplicity, in the
following we write τ(x,k,x,k) as τ .

By the optimality principle, we have

V ρ(x,k) ≤ E

{∫ τ

0
e−ρtg(x(t),u(t)) dt + e−ρτV ρ(x(τ),k(τ))

}
= E

{∫ τ

0
e−ρtg(x(t),u(t)) dt + e−ρτV ρ(x,k)

}
.

(5.36)

Note that

|x(t)| ≤
n∑

j=1

|xj | +

⎛⎝ n∑
j=1

max
1≤i≤p

ki
j + zn

⎞⎠ t, for 0 ≤ t ≤ τ.

Thus, by Assumption (A3), we have

g(x(t),u(t)) ≤ C2
(
1 + t + tβg2

)
,

where C2 is a positive constant dependent on x. It follows from (5.35) and
(5.36) that[

1 − Ee−ρτ
]
V ρ(x,k) ≤ E

∫ τ

0
C2

(
1 + t + tβg2

)
dt ≤ C3, (5.37)

for some positive constant C3 (independent of ρ). Now using the inequality

1 − e−ρτ ≥ ρτ − ρ2τ2/2,

we can get[
1 − Ee−ρτ

]
V ρ(x,k) ≥

(
Eτ − ρE[τ2]/2

)
· ρV ρ(x,k). (5.38)

From (5.35), we have

0 < Eτ < ∞ and 0 < E[τ2] < ∞.

Take ρ0 = Eτ/E[τ2]. By (5.37) and (5.38), we have that, for 0 < ρ ≤ ρ0,

ρV ρ(x,k) ≤ C3

Eτ − ρ0E[τ2]/2
=

2C3

Eτ
< ∞.

Consequently, there exists a sequence {ρ� : � ≥ 1} with ρ� → 0 as � → ∞
such that, for (x,k) ∈ Y × M,

lim
�→∞

ρ�V
ρ�(x,k) = λ̂. (5.39)
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Now we prove (5.34). To do this we first show that there is a constant
C4 > 0 such that

|Ṽ ρ(x,k)| ≤ C4
(
1 + |x|βg2+1) , (5.40)

for all (x,k) ∈ Y × M and ρ > 0. Without loss of generality we suppose
that V ρ(x,k) ≥ V ρ(0,k) (the case V ρ(x,k) ≤ V ρ(0,k) is treated in the
same way).

By Theorem 3.2 there exists a control policy u(·) such that, for any
r ≥ 1,

E(τ1)r ≤ Cr

⎛⎝1 +
n∑

j=1

|xj |r
⎞⎠ , (5.41)

where
τ1 = inf{t > 0 : (x(t),k(t)) = (0,k)},

and x(t) is the state process corresponding to u(t) with the initial condition
(x(0),k(0)) = (x,k). Using the dynamic programming principle, similar to
(5.36), we have

V ρ(x,k) ≤ E

{∫ τ1

0
e−ρtg(x(t),u(t)) dt + e−ρτ1V ρ(0,k)

}
.

Therefore,

|Ṽ ρ(x,k)| = V ρ(x,k) − V ρ(0,k)

≤ E

[∫ τ1

0
e−ρtg(x(t),u(t)) dt

]
.

(5.42)

By Assumption (A3), there exists a C5 > 0 such that

g(x(t),u(t)) ≤ C5
(
1 + |x|βg2 + t + tβg2

)
, (5.43)

where we use the fact that u(·) is bounded. Therefore, (5.41) and (5.43)
imply that

E

∫ τ1

0
e−ρtg(x(t),u(t)) dt ≤ E

∫ τ1

0
C5(1 + |x|βg2 + t + tβg2) dt

≤ C6

⎛⎝1 +
n∑

j=1

|xj |βg2+1

⎞⎠ ,

for some C6 > 0. Thus (5.42) gives (5.40).
For δ ∈ (0, 1), let

Oδ =
[
δ,

1
δ

]n−1

×
[
−1

δ
,

1
δ

]
.
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Based on (5.40) it follows from Lemma C.4 that there is a Cδ such that,
for x, x̂ ∈ Oδ,

|Ṽ ρ(x,k) − Ṽ ρ(x̂,k)| ≤ Cδ|x − x̂|. (5.44)

Without loss of generality we assume that Cδ is a decreasing function in δ.
For 1 ≤ n̂ ≤ n − 1 and 1 ≤ i1 < · · · < in̂ ≤ n − 1, let

Oi1...in̂ = {x ∈ Y : xi�
= 0 for � = 1, ..., n̂}

and

ri(Oi1...in̂) = {x ∈ Oi1...in̂ : xj > 0, j �= i� and 1 ≤ j ≤ n − 1}.

That is, ri(Oi1...in̂) is the relative interior of Oi1...in̂ relative to [0,∞)n−n0−1×
{0}n0 × (−∞, +∞). Note that the function V ρ(x,k) is still convex on
Oi1...in̂ . Let

Oi1...in̂

δ =
n−1∏
�=1

Υδ
� ×

[
−1

δ
,

1
δ

]
with

Υδ
� =

⎧⎨⎩ {0}, if � ∈ {i1, ..., in̂},

[δ, 1/δ], if � �∈ {i1, ..., in̂}.

Using again Lemma C.4, in view of (5.40), there is a Ci1...in̂

δ > 0 such that,
for x, x̂ ∈ Oi1...in̂

δ ,

|Ṽ ρ(x,k) − Ṽ ρ(x̂,k)| ≤ Ci1...in̂

δ |x − x̂|. (5.45)

Also we assume that Ci1...in̂

δ is a decreasing function in δ. From the arbitrary
of δ and (5.44)–(5.45), there exist V (x,k) and a sequence of {ρ� : � ≥ 1}
with ρ� → 0 as � → ∞ such that, for (x,k) ∈ Y × M,

lim
�→∞

[V ρ�(x,k) − V ρ�(0,k)] = V (x,k). (5.46)

Moreover, it follows from the convexity of V ρ�(x,k) that the limit function
V (x,k) is also convex on Y × M. Therefore, the proof of the theorem is
completed. �

Let ∂V ρ�(x,k)/∂x be the derivative of V ρ�(x,k) at the point x when
the derivative exists.

Theorem 4.2. Let Assumptions (A1)–(A3) hold. Then:

(i) λ∗(x,k) defined by (5.15) does not depend on (x,k).

(ii) The pair (λ̂, V (x,k)) defined in Theorem 4.1 satisfies (5.16) in the
interior of Y.



120 5. Optimal Controls of Dynamic Jobshops

(iii) If there exists an open subset Ŷ of Y such that b(Y) ⊆ b(Ŷ), where
b(Y) and b(Ŷ) are the boundary of Y and Ŷ, and {∂V ρ�(x,k)/∂x :
� ≥ 1} is uniformly equi-Lipschitzian on Ŷ, then the pair (λ̂, V (·, ·))
defined in Theorem 4.1 is a solution to (5.16).

Proof. First we consider (i). Suppose contrariwise that there exist (x̃, k̃) ∈
Y × M and (x̂, k̂) ∈ Y × M such that

λ∗(x̃, k̃) < λ∗(x̂, k̂). (5.47)

We choose δ > 0 and a control ũ(t) ∈ A(x̃, k̃) such that

λ∗(x̃, k̃) + δ < λ∗(x̂, k̂), (5.48)

and

lim sup
T→∞

1
T

E

∫ T

0
g(x̃(t), ũ(t)) dt ≤ λ∗(x̃, k̃) + δ, (5.49)

where
d

dt
x̃(t) = L(ũ(t),z), x̃(0) = x̃.

Let u(t), t ≥ 0, be the one given in Theorem 3.2, and let

τ(x̂, k̂, x̃, k̃) = inf{t ≥ 0 : (x(t),k(t)) = (x̃, k̃)},

where
d

dt
x(t) = L(u(t),z), x(0) = x̂.

We define

û(t) =

⎧⎨⎩ u(t), if t ≤ τ(x̂, k̂, x̃, k̃),

ũ(t − τ(x̂, k̂, x̃, k̃)), if t > τ(x̂, k̂, x̃, k̃).

It directly follows from Theorem 3.2 that

lim sup
T→∞

1
T

E

∫ T

0
g(x̂(t), û(t)) dt = lim sup

T→∞
1
T

E

∫ T

0
g(x̃(t), ũ(t)) dt. (5.50)

On the other hand,

lim sup
T→∞

1
T

E

∫ T

0
g(x̂(t), û(t)) dt ≥ λ∗(x̂, k̂).

Thus (5.50) contradicts (5.47). Consequently, (i) is proved.
Now we consider (ii). Let On be the set of all points in the interior

part of Y on which V (x,k) is differentiable. From the convexity of V (x,k)
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we know that On is dense in Y. It follows from the properties of convex
functions that, for x ∈ On and any p,

lim
�→∞

∂pṼ ρ�(x,k) = ∂pV (x,k). (5.51)

From Theorem 3.1,

ρ�V
ρ�(x,k) = inf

u∈U(x,k)

{
∂L(u,z)V

ρ�(x,k) + g(x,u)
}

+ QV ρ�(x, ·)(k).

This implies that

ρ�V
ρ�(x,k) = inf

u∈U(x,k)
{∂L(u,z)Ṽ

ρ�(x,k) + g(x,u)}

+ QṼ ρ�(x, ·)(k).
(5.52)

Taking the limit on both sides, we have that, for x ∈ On,

λ̂ = inf
u∈U(x,k)

{
∂L(u,z)V (x,k) + g(x,u)

}
+ QV (x, ·)(k). (5.53)

If x /∈ On, x is a point of the interior of Y, then for any direction p there
exists a sequence {x�}∞

�=1 such that x� ∈ On and ∂pV (x�,k) → ∂pV (x,k).
From this fact and from the continuity of V (x,k), it follows that (5.53)
holds for all x in the interior part of Y.

Finally we prove (iii). Consider b(Y) (the boundary of Y). From the
uniformly equi-Lipschitzian of {∂V ρ�(x,k)/∂x : � ≥ 1} on Ŷ, we know
that (5.51) holds for all x ∈ b(Y). Therefore, we have (5.53) in b(Y). Thus
the proof of the theorem is completed. �

Finally, we establish the following verification theorem.

Theorem 4.3. Under Assumptions (A1)–(A3), let (λ, W (x,k)) be a so-
lution to the HJBDD equation (5.16). Then:

(i) If there is a control u∗(·) ∈ A(x,k) such that

inf
u∈U(k(t))

{
∂L(u,z)W (x∗(t),k(t)) + g(x∗(t),u)

}
= ∂L(u∗(t),z)W (x∗(t),k(t)) + g(x∗(t),u∗(t)),

(5.54)

for a.e. t ≥ 0 with probability 1, where x∗(·) is the surplus process
corresponding to the control u∗(·) with the initial conditions x∗(0) =
x and k(0) = k, and

lim
T→∞

E[W (x∗(T ),k(T ))]
T

= 0, (5.55)

then
λ = J(x,k,u∗(·)).
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(ii) For any u(·) ∈ A(x,k), we have λ ≤ J(x,k,u(·)), i.e.,

lim sup
T→∞

1
T

E

∫ T

0
g(x(t),u(t)) dt ≥ λ.

(iii) Furthermore, for any (stable) control policy u(·) ∈ S(x,k), we have

lim inf
T→∞

1
T

E

∫ T

0
g(x(t),u(t)) dt ≥ λ. (5.56)

Note that Theorem 4.3 explains why equation (5.16) is the HJB equation
for our problem and why the function W (x,k) from Theorem 4.3 is called
a potential function.

Proof of Theorem 4.3. Since (λ, W (·, ·)) is a solution to (5.16) and
(x∗(t),u∗(t)) satisfy condition (5.54), we have

∂L(u∗(t),z)W (x∗(t),k(t)) + QW (x∗(t), ·)(k(t))

= λ − g(x∗(t),u∗(t)).
(5.57)

Since W (x,k) ∈ G, we apply Dynkin’s formula and use (5.57) to get

E [W (x∗(T ),k(T ))]

= W (x,k) + E

∫ T

0

[
∂L(u∗(t),z)W (x∗(t),k(t))

+ QW (x∗(t), ·)(k(t))
]
dt

= W (x,k) + E

∫ T

0
[λ − g(x∗(t),u∗(t)] dt

= W (x,k) + λT − E

∫ T

0
g(x∗(t),u∗(t)) dt.

(5.58)

We can rewrite (5.58) as

λ =
1
T

[EW (x∗(T ),k(T )) − W (x,k)]

+
1
T

E

∫ T

0
g(x∗(t),u∗(t)) dt.

(5.59)

Using (5.59) and taking the limit as T → ∞, we get

λ = lim sup
T→∞

1
T

E

∫ T

0
g(x∗(t),u∗(t)) dt.
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For the proof of part (iii), if u(·) ∈ S(x,k), then from W (x,k) ∈ G, we
know that

lim
T→∞

E[W (x(T ),k(T ))]
T

= 0.

Moreover, from the HJBDD equation (5.16) we have

∂L(u(t),z)W (x(t),k(t)) + QW (x(t), ·)(k(t)) ≥ λ − g(x(t),u(t)).

Now (5.56) can be proved similarly as before.
Finally, we apply Lemma F.3 to show part (ii), i.e., the optimality of the

control u∗(·) in the (natural) class of all admissible controls. Let u(·) ∈
A(x,k) be any policy and let x(·) be the corresponding surplus process.
Suppose that

J(x,k,u(·)) < λ. (5.60)

We can apply Lemma F.3 and (5.60) to obtain

lim sup
ρ�→0

ρ�J
ρ�(x,k,u(·)) < λ. (5.61)

On the other hand, we know from Theorem 4.1 that

lim
ρ�→0

ρ�V
ρ�(x,k) = λ.

This equation and (5.61) imply the existence of a ρ > 0 such that

ρJρ(x,k,u(·)) < ρV ρ(x,k),

which contradicts the definition of V ρ(x,k). Thus (ii) is proved. �

5.5 Notes

This chapter is based on Presman, Sethi and Zhang [101] and Sethi and
Zhou [127]. The proof of Lipschitz continuity in Theorem 3.1 is along the
same lines as in Section 4.3 or in Presman, Sethi, and Suo [99].

Bai and Gershwin [9, 10] use a decomposition approach to solve the
problem of a jobshop. Their approach is based on slicing the machines in
the jobshop into partial machines, organizing them into a number of single-
product flowshops, and using the heuristic arguments developed for such
flowshops in Bai [8] and Bai and Gershwin [11] to obtain hedging points;
see Section 4.6. They use these hedging points as data in a linear program
in order to construct a feedback policy for the problem. They perform
simulations using a program called HIERCSIM developed by Darakananda
[40], and conclude that their procedure works well. While Bai and Gershwin
[9, 10] do not consider asymptotic optimality, it may be noted nevertheless
that their approach does not result in asymptotic optimal controls.
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Lasserre [84, 87] considers an integrated deterministic finite horizon job-
shop planning and scheduling model. He solves the problem by using a
(multipass) decomposition approach which alternates between solving a
planning problem with a fixed sequence of products on the machines, and
a jobshop scheduling problem for a fixed choice of production plan.



6
Risk-Sensitive Control

6.1 Introduction

This chapter is concerned with long-run average risk-sensitive control. The
objective of the problem is to choose the rate of production planning to
minimize a risk-sensitive cost over the infinite horizon. This consideration is
motivated by the following observations. First, since most manufacturing
systems are large complex systems, it is very difficult to establish accu-
rate mathematical models to describe these systems. Modeling errors are
inevitable. Second, in practice, an optimal policy for a subdivision of a
big corporation is usually not an optimal policy for the whole corpora-
tion. Therefore, an optimal solution with regular cost criteria may not be
desirable in many real problems. An alternative approach is to consider
robust controls. The design of robust controls emphasize system stability
rather than optimality. In some manufacturing systems, it is more desir-
able to consider controls that are robust enough to attenuate uncertain
disturbances, which include modeling errors, and therefore to achieve the
system stability. Robust control design is particularly important in man-
ufacturing systems with unwanted disturbances, such as those associated
with unwanted machine failures. The basic idea of the risk-sensitive control
is to consider a risk-sensitive cost function that penalizes heavily on costs
associated with values of state and control variables that are extreme. In
risk-sensitive control theory, typically an exponential-of-integral cost crite-
rion is considered. Such cost functions penalize heavily state and control
trajectories that spend a large amount of time in regions which are far from
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the origin.
We consider the problem of controlling a manufacturing system with

stochastic production capacity and a risk-sensitive criterion. The machine
capacity process will be assumed to be an irreducible finite state Markov
chain. For simplicity, we consider a single-product manufacturing system
facing a constant demand. The control is the production rate, which is
subject to a random machine capacity constraint. The goal is to find a
control policy which minimizes the long-term growth rate of an expected
exponential-of-integral criterion.

In Section 6.2 we formulate the model. Then, in Section 6.3, we show that
the minimum growth rate and the associated potential function satisfy the
dynamic programming equations specified as a system of partial differential
equations. The vanishing discount approach is used for solving the problem.
The approach uses a logarithmic transformation introduced by Bensoussan
and Nagai [16] to obtain an equivalent problem. In Section 6.4 we give a
verification theorem. The chapter is concluded in Section 6.5.

6.2 Problem Formulation

Let us consider a single-product and parallel-machine manufacturing sys-
tem with stochastic production capacity and constant demand for its pro-
duction over time. For t ≥ 0, let x(t), u(t), and z denote the surplus level
(the state variable), the production rate (the control variable), and the
constant demand rate, respectively. We assume x(t) ∈ �, u(t) ∈ �+, t ≥ 0,
and z a positive constant. The dynamics of the system have the following
form:

d

dt
x(t) = −ax(t) + u(t) − z, x(0) = x, (6.1)

where a > 0 is a constant, representing the deterioration rate (or spoilage
rate) of the finished product.

Let k(t) ∈ M = {0, 1, 2, . . . , m}, t ≥ 0, denote a Markov chain generated
by Q, where Q = (qij), i, j ∈ M, is an (m + 1) × (m + 1) matrix such
that qij ≥ 0 for i �= j and qii = −

∑
j �=i qij . We let k(t) represent the

maximum production capacity of the system at time t. The representation
for M usually stands for the case of m identical machines, each with a unit
capacity and having two states: up and down.

The production constraint is given by the inequalities:

0 ≤ u(t) ≤ k(t), t ≥ 0.

Definition 2.1. A production control process u(·) = {u(t) : t ≥ 0} is ad-
missible if: (i) u(t) is Ft (= σ{k(s) : 0 ≤ s ≤ t}) progressively measurable;
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and (ii) 0 ≤ u(t) ≤ k(t) for all t ≥ 0. �

Let A(k) denote the class of admissible controls with the initial condition
k(0) = k.

Let g(x, u) denote a cost function of the surplus and the production. For
every u(·) ∈ A(k), x(0) = x, and k(0) = k, define

J(x, k, u(·)) = lim sup
T→∞

1
T

[
log E exp

(∫ T

0
g(x(t), u(t)) dt

)]
, (6.2)

where x(·) is the surplus process corresponding to the production process
u(·). The objective of the problem is to choose u(·) ∈ A(k) to minimize
J(x, k, u(·)). Let

λ = inf
u(·)∈A(k)

J(x, k, u(·)). (6.3)

A motivation for choosing such an exponential cost criterion is that such
criteria are sensitive to large values of the exponent which occur with small
probability, for example, rare sequences of unusually many machine failures
resulting in shortages (x(t) < 0).

Remark 2.1. The positive spoilage rate a appears in certain crucial esti-
mates carried out in the next section. It also implies a uniform bound for
x(t). Note that the control u(·) is bounded between 0 and m. This implies
that a solution x(·) to (6.1) must satisfy

|x(t)| ≤ |x|e−at + (m + z)
∫ t

0
e−a(t−s)ds ≤ |x|e−at +

m + z

a
. � (6.4)

We assume that the cost function g(x, u) and the production capacity
process k(·) satisfy the following assumptions:

(A1) g(x, u) ≥ 0 is continuous, bounded, and uniformly Lipschitz in x.

(A2) Q is irreducible.

Remark 2.2. In manufacturing systems, the running cost function g(x, u)
is usually chosen to be of the form g(x, u) = h(x) + c(u) with piecewise
linear h(x) and c(u). Note that piecewise linear functions are not bounded
as required in (A1). However, this is not important, in view of the uniform
bounds on u(t) and on x(t) for initial state x = x(0) in any bounded set.�

In the next section, we discuss the dynamics of the system and the as-
sociated Hamilton-Jacobi-Bellman (HJB) equations.
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6.3 HJB Equations

First we can write the associated HJB equation as follows:

λ = inf
0≤u≤k

{
(−ax + u − z)

∂ψ(x, k)
∂x

+ g(x, u)
}

+ exp(−ψ(x, k))Q exp(ψ(x, ·))(k),
(6.5)

where ψ(·, ·) is defined on �×M. As in any long-run average-cost problems,
an immediate question is if the equation (6.5) has a solution in some sense.
In this chapter, we will show that (6.5) indeed has a solution in the viscosity
sense. We use a vanishing discount approach. Let ρ > 0 denote a discount
factor and let

Ĵρ(x, k, u(·)) = log
[
E exp

(∫ ∞

0
e−ρtg(x(t), u(t)) dt

)]
.

Define
V̂ ρ(x, k) = inf

u(·)∈A(k)
Ĵρ(x, k, u(·)).

Then, the associated HJB equation has the form:

ρϕρ(x, k) = inf
0≤u≤k

{
(−ax + u − z)

∂ϕρ(x, k)
∂x

+ g(x, u)
}

+ exp(−ϕρ(x, k))Q exp(ϕρ(x, ·))(k).
(6.6)

Let
ψρ(x, k) = exp (ϕρ(x, k)) .

Then, (6.6) becomes

ρψρ(x, k) log ψρ(x, k) = inf
0≤u≤k

{
(−ax + u − z)

∂ψρ(x, k)
∂x

+g(x, u)ψρ(x, k)
}

+ Qψρ(x, ·)(k).
(6.7)

We would like to get rid of the term ψρ(x, k) log ψρ(x, k). One way of
doing so is to use the transform device introduced by Bensoussan and
Nagai [16] based on the following expression:

−r log r = inf
y

{
yr + e−(y+1)

}
, for any r > 0, (6.8)

where the infimum is obtained at y + 1 = − log r. Letting r = ψρ(x, k),
(6.8) is changed into

ψρ(x, k) log ψρ(x, k) = − inf
y

{
yψρ(x, k) + e−(y+1)}.
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In view of this and (6.7), the discounted HJB equation (6.6) has the form:

0 = inf
0≤u≤k, y

{
(−ax + u − z)

∂ψρ(x, k)
∂x

+ Qψρ(x, ·)(k)

+ g(x, u)ψρ(x, k) + ρyψρ(x, k) + ρe−(y+1)
}

.

By adding ρψρ(x, k) to both sides of this equation and changing (y + 1) to
y, we obtain

ρψρ(x, k) = inf
0≤u≤k, y

{
(−ax + u − z)

∂ψρ(x, k)
∂x

+ Qψρ(x, ·)(k)

+ g(x, u)ψρ(x, k) + ρyψρ(x, k) + ρe−y

}
.

(6.9)

Let
M0 = ||g(x, u)|| = sup

x,u
|g(x, u)|. (6.10)

We consider the following control problem whose value function is a vis-
cosity solution to equation (6.9):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V ρ(x, k) = inf
u(·)∈A(k), y(·)

Jρ(x, k, u(·), y(·)),

Jρ(x, k, u(·), y(·))

= E

∫ ∞

0
e−ρt exp

(∫ t

0
[g(x(s), u(s)) + ρy(s)] ds

)
(ρe−y(t)) dt.

s.t.
dx(t)

dt
= −ax(t) + u(t) − z, x(0) = x, and

y(t) is Ft-measurable and −M0/ρ ≤ y(t) ≤ 0.
(6.11)

We next show that V ρ(x, k) is a viscosity solution to (6.9) with some a
priori estimates.

Lemma 3.1. Under Assumptions (A1) and (A2), we have the following:

(i) For all x and k ∈ M,

1 ≤ V ρ(x, k) ≤ exp
(

M0

ρ

)
.

(ii) For all x, x̂, and k ∈ M,

exp
(

−M0|x − x̂|
a

)
≤ V ρ(x, k)

V ρ(x̂, k)
≤ exp

(
M0|x − x̂|

a

)
.
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(iii) For each ∆ > 0, there is a constant C > 0 independent of ρ such
that, for all k, k̂ ∈ M, and |x| ≤ ∆,

e−C ≤ V ρ(x, k)

V ρ(x, k̂)
≤ eC .

(iv) V ρ(x, k) is a viscosity solution to (6.9).

Proof. We begin with (i). We first show that V ρ(x, k) ≥ 1. In view of the
nonnegativity of g(x, u), it suffices to show that for all deterministic Borel
measurable y(t), −M0/ρ ≤ y(t) ≤ 0, t ≥ 0,∫ ∞

0
ρ exp

(∫ t

0
ρ[y(s) − 1] ds − y(t)

)
dt ≥ 1. (6.12)

In fact, note that, for all T > 0,

exp

(∫ T

0
ρ[y(s) − 1] ds

)
− 1

=
∫ T

0
exp

(∫ t

0
ρ[y(s) − 1] ds

)
[ρ(y(t) − 1)] dt

≥
∫ T

0
exp

(∫ t

0
ρ[y(s) − 1] ds

)
[−ρe−y(t)] dt

because e−x ≥ 1 − x for all x ≤ 0. Hence,∫ ∞

0
ρ exp

(∫ t

0
ρ[y(s) − 1] ds − y(t)

)
dt

=
∫ ∞

0
exp

(∫ t

0
ρ[y(s) − 1] ds

)
(ρe−y(t)) dt

= lim
T→∞

∫ T

0
exp

(∫ t

0
ρ[y(s) − 1] ds

)
(ρe−y(t)) dt

≥ lim
T→∞

[
1 − exp

(∫ T

0
ρ[y(s) − 1] ds

)]
≥ lim

T→∞
(
1 − e−ρT

)
= 1.

Thus, the inequality (6.12) follows.
Let y(t) = −M0/ρ for all t ≥ 0. Then, for all admissible u(·),

V ρ(x, k) ≤ E

∫ ∞

0
ρ exp

(∫ t

0

([
M0 − ρ

(
M0

ρ
+ 1

)]
ds +

M0

ρ

)
dt

)
= exp

(
M0

ρ

)∫ ∞

0
ρe−ρt dt

= exp
(

M0

ρ

)
.
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This proves (i).

We now prove (ii). Let (u(·), y(·)) denote a pair of admissible controls and
let x(t) and x̂(t) denote the corresponding trajectories with initial values
x and x̂, respectively. Then

x(t) − x̂(t) = (x − x̂)e−at, for all t ≥ 0.

In view of this and the Lipschitz property of g(x, u), we have

|g(x(t), u(t)) − g(x̂(t), u(t))| ≤ C1|x − x̂|e−at,

where C1 is independent of x and x̂. For notational simplification, let

η(y(·))(t) = ρ exp
(∫ t

0
ρ[y(s) − 1] ds − y(t)

)
.

Then, we have

E

∫ ∞

0

[
exp

(∫ t

0
g(x(s), u(s)) ds

)]
η(y(·))(t) dt

≤ E

∫ ∞

0

[
exp

(∫ t

0
g(x̂(s), u(s)) ds

)
× exp

(∫ t

0
C1|x − x̂|e−as ds

)]
η(y(·))(t) dt

≤ exp
(∫ ∞

0
C1|x − x̂|e−as ds

)
×E

∫ ∞

0

[
exp

(∫ t

0
g(x̂(s), u(s)) ds

)]
η(y(·))(t) dt

= exp(C1|x − x̂|)E
∫ ∞

0

[
exp

(∫ t

0
g(x̂(s), u(s)) ds

)]
η(y(·))(t) dt.

Hence,

V ρ(x, k) ≤
[
exp

(
C|x − x̂|

a

)]
V ρ(x̂, k).

Similarly we can show the other inequality in (ii).
We now show (iii). Let k(0) = k, and let τ denote the first time k(·)

jumps to k̂. The optimality principle with the random stopping time τ (see
the end of the proof) gives

V ρ(x, k)

= inf
u(·), y(·)

E

{∫ τ

0

[
exp

(∫ t

0
[g(x(s), u(s)) + ρ(y(s) − 1)] ds

)]
ρe−y(t) dt

+
[
exp

(∫ τ

0
[g(x(s), u(s)) + ρ(y(s) − 1)] ds

)]
V ρ

(
x(τ), k̂

)}
.

(6.13)
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Using g(x, u) ≥ 0, we have

V ρ(x, k) ≥ E

{[
exp

(∫ τ

0
ρ(y(s) − 1) ds

)]
V ρ

(
x(τ), k̂

)}
. (6.14)

For x in any bounded interval [−∆, +∆], there exists a C2 > 0 such that
|x(τ) − x| ≤ C2(1 + |x|) ≤ C2(1 + ∆). It follows from (ii) that

V ρ(x(τ), k̂)

V ρ(x, k̂)
≥ exp

(
−M0C2(1 + ∆)

a

)
. (6.15)

We can assume y(t) ≥ −M0/ρ, which implies

exp
(∫ τ

0
ρ[y(s) − 1] ds

)
≥ exp(− [M0 + ρ] τ).

By Assumption (A3) there is a C3 such that

E exp(−(M0 + ρ)τ) ≥ e−C3 .

Therefore, by (6.14)–(6.15),

V ρ(x, k) ≥ V ρ
(
x, k̂

)
e−C4 ,

for some C4 > 0. Interchange k and k̂ to get the opposite inequality.
Finally, it can be shown as in Appendix D that V ρ(x, k) is a viscosity

solution to (6.9) under the constraint −M0 ≤ y ≤ 0, i.e.,

ρV ρ(x, k) = inf
0≤u≤k

−M0≤y≤0

{
(−ax + u − z)

∂V ρ(x, k)
∂x

+ g(x, u)V ρ(x, k) + QV ρ(x, ·)(k) + ρyV ρ(x, k) + ρe−y

}
.

(6.16)
Note that V ρ(x, k) ≥ 1 and the infimum in (6.16) is obtained at y =
− log V ρ(x, k) ≤ 0, V ρ(x, k) is also a viscosity solution to (6.9).

In the rest of the proof, we prove (6.13). It suffices to consider τ with
finitely many values 0 < t1 < t2 < · · · < tn, because one may approxi-
mate τ by a step function

∑
t�I{t�≤τ<t�+1}. Let Γ� = {τ = t�}. A routine
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calculation then gives

E

∫ ∞

τ

[
exp

(∫ τ

0
[g(x(s), u(s)) + ρ(y(s) − 1)] ds

)]
ρe−y(t) dt

=
n∑

�=1

E

{
IΓ�

[
exp

(∫ t�

0
[g(x(s), u(s)) + ρ(y(s) − 1)] ds

)]
×Jρ(x(t�), k(t�), u(·), y(·))

}
≥

n∑
�=1

E

{
IΓ�

[
exp

(∫ t�

0
[g(x(s), u(s)) + ρ(y(s) − 1)] ds

)]
×V ρ(x(t�), k(t�))

}
= E

{[
exp

(∫ τ

0
[g(x(s), u(s)) + ρ(y(s) − 1)] ds

)]
V ρ (x(τ), k(τ))

}
.

This implies

V ρ(x, k)

= inf
u(·), y(·)

E

{∫ τ

0

[
exp

(∫ t

0
[g(x(s), u(s)) + ρ(y(s) − 1)] ds

)]
ρe−y(t) dt

+
∫ ∞

τ

[
exp

(∫ t

0
[g(x(s), u(s)) + ρ(y(s) − 1)] ds

)]
ρe−y(t) dt

}
≥ inf

u(·), y(·)
E

{∫ τ

0

[
exp

(∫ t

0
[g(x(s), u(s)) + ρ(y(s) − 1)] ds

)]
ρe−y(t) dt

+
[
exp

(∫ τ

0
[g(x(s), u(s)) + ρ(y(s) − 1)] ds

)]
V ρ

(
x(τ), k̂

)}
.

(6.17)
It remains to show the opposite inequality. Given an initial x(0) = x,

formula (6.4) implies that |x(t)| ≤ r for some r. Given δ1 > 0, partition
{|x| ≤ r} into intervals B1, B2, . . . , B� of length < δ1 and choose xj ∈ Bj

for j = 1, . . . , �. Given δ2 > 0, choose admissible (uij(·), yij(·)) such that

Jρ(xj , i, uij(·), yij(·)) < V ρ(xj , i) + δ2.

Given admissible (u(·), y(·)), we define (ũ(·), ỹ(·)) by

ũ(t) = u(t), ỹ(t) = y(t), for 0 ≤ t < τ,

and for τ = t�1 , k(t�1) = i, x(t�1) ∈ Bj ,

ũ(t) = uij(t − tk�1), ỹ(t) = yij(t − t�1), t ≥ t�1 .

Then ũ(·) is admissible and ỹ(t) is Ft-measurable, and a routine calculation
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by using Lemma 3.1(ii) gives

V ρ(x, k) ≤ J (ρ)(x, k, ũ(·), ỹ(·))

≤ E

{∫ τ

0

[
exp

(∫ t

0
[g(x(s), u(s)) + ρ(y(s) − 1)] ds

)]
ρe−y(t) dt

+ exp
(∫ τ

0
[g(x(s), u(s)) + ρ(y(s) − 1)] ds

)
V ρ

(
x(τ), k̂

)}
+ F (δ1, δ2),

where F (δ1, δ2) → 0 as δ1 → 0 and δ2 → 0. �

Theorem 3.1. Let Assumptions (A1) and (A2) hold. Then the HJB equa-
tion (6.5) has a viscosity solution (λ, V (x, k)).

Proof. In view of the logarithmic transformation

V ρ(x, k) = exp(W ρ(x, k)),

we have W ρ(x, k) = log V ρ(x, k). It follows from Lemma 3.1 that:

(i) 0 ≤ ρW ρ(x, k) ≤ M0, uniformly in ρ;

(ii) |W ρ(x, k) − W ρ(x̂, k)| ≤ (M0/a)|x − x̂| uniformly in ρ; and

(iii) for each ∆ > 0, |x| ≤ ∆, k, k̂ ∈ M, |W ρ(x, k) − W ρ(x, k̂)| ≤ C1
uniformly in ρ for some C1 > 0.

Then in view of these and the Arzelà-Ascoli theorem, it is easy to see that
for each (x, i), there exists a sequence ρn → 0 such that ρnW ρn(0, 0) → λ,
and for each k ∈ M,

W ρn(x, k) − W ρn(0, 0)

= [W ρn(x, i) − W ρn(0, k)] + [W ρn(0, k) − W ρn(0, 0)]

→ V (x, k)

(6.18)

on any compact subset of � × M. Therefore,

ρnW ρn(x, k) = ρn[W ρn(x, k) − W ρn(0, k)]

+ ρn[W ρn(0, k) − W ρn(0, 0)] + ρnW ρn(0, 0)

→ λ.

(6.19)

Finally it can be shown, as in Lemma E.2, that the limit (λ, V (x, k)) defined
in (6.18) and (6.19) is a viscosity solution to the HJB equation (6.5). �

Remark 3.1. The proof supplies an approach to construct a viscosity
solution of (6.5). We can take the limits in (6.18) and (6.19) to get the
solution. �
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Corollary 3.1. Let Assumptions (A1) and (A2) hold. The pair (λ, V (x, k))
obtained in Theorem 3.1 satisfies the following conditions, for some positive
constant C:

(i) 0 ≤ λ ≤ C; and

(ii) |V (x, k) − V (x̂, k)| ≤ C|x − x̂|.

Proof. It is easy to check from the proof of Theorem 3.1 that (i) holds,

|W ρn(x, k) − W ρn(x̂, k)| ≤ (M0/a)|x − x̂|.

Then

|V (x, k) − V (x̂, k)| = lim
ρn→0

|W ρn(x, k) − W ρn(x̂, k)|

≤ (M0/a)|x − x̂|. �

Theorem 3.2. Let Assumptions (A1) and (A2) hold, and let (λ̂, W (x, k))
be a viscosity solution to the HJB equation (6.5). Assume that W (x, k) is
Lipschitz continuous in x. Then,

λ̂ = inf
u(·)∈A(k)

J(x, k, u(·)),

where J(x, k, u(·)) is defined in (6.2).

Proof. Since (λ̂, W (x, i)) is a viscosity solution to the HJB equation (6.5),
we have

λ̂ = inf
0≤u≤k

{
(−ax + u − z)

∂W (x, k)
∂x

+ g(x, u)
}

+ exp(−W (x, k))Q exp(W (x, ·))(k).
(6.20)

We divide the remainder of the proof into two steps.

Step 1. We prove that λ̂ ≤ infu(·)∈A(k) J(x, k, u(·)).
Let ζ(x, k) = exp(W (x, k)). Then equation (6.20) becomes

λ̂ζ(x, k) = inf
0≤u≤k

{
(−ax + u − z)

∂ζ(x, k)
∂x

+ g(x, u)ζ(x, k)

+ Qζ(x, ·)(k)
}

.

It is equivalent to

0 = inf
0≤u≤k

{
(−ax + u − z)

∂ζ(x, k)
∂x

+ [g(x, u) − λ̂]ζ(x, k)

+ Qζ(x, ·)(k)
}

.
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It is easy to see that ζ(x, k) is a viscosity solution to the following time-
dependent equation for ξ(T, x, k):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂ξ(T, x, k)
∂T

= inf
0≤u≤i

{
(−ax + u − z)

∂ξ(T, x, k)
∂x

+ [g(x, u) − λ̂]ξ(T, x, k) + Qξ(T, x, ·)(k)
}

,

ξ(0, x, k) = ζ(x, k).

(6.21)

As is shown in Appendix E, this HJB equation has a unique viscosity
solution. Moreover, if we define

ξ̂(T, x, k) = inf
u(·)∈A(k)

E

{
ζ(x(T ), k(T )) exp

(∫ T

0
[g(x(t), u(t)) − λ̂] dt

)}
,

then, using the optimality principle, it can be shown that ξ̂(T, x, k) is also a
viscosity solution to (6.21). Thus, ξ̂(T, x, k) = ζ(x, k) for all T ≥ 0, namely,

ζ(x, k) = inf
u(·)∈A(k)

E

{
ζ(x(T ), k(T )) exp

(∫ T

0
[g(x(t), u(t)) − λ] dt

)}
.

(6.22)
It follows that, for all u(·) ∈ A(k),

ζ(x, k) ≤ E

{
ζ(x(T ), k(T )) exp

(∫ T

0
[g(x(t), u(t)) − λ̂] dt

)}

= E

{
ζ(x(T ), k(T )) exp

(∫ T

0
g(x(t), u(t)) dt

)}
exp(−λ̂T ).

Taking the logarithm of both sides, we have

log ζ(x, k) ≤ log E

{
ζ(x(T ), k(T )) exp

(∫ T

0
g(x(t), u(t)) dt

)}
− λ̂T.

(6.23)
Recall the Lipschitz property of W (x, k) in x. It follows that for all x and
x̂, there is a positive constant C1 such that

ζ(x̂, k)
ζ(x, k)

= exp(W (x̂, k) − W (x, k)) ≤ exp(C1|x̂ − x|).

Replacing x̂ by x(T ) and k by k(T ), we obtain

ζ(X(T ), k(T )) ≤ ζ(x, k(T )) exp(C1|x(T ) − x|).

Note also that |x(T ) − x| ≤ C2(1 + |x|) for some positive constant C2 (see
(6.4)), we have

ζ(X(T ), k(T )) ≤
(

max
i∈M

ζ(x, i)
)

exp(C1C2(1 + |x|)). (6.24)
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Combining this inequality with (6.23), we obtain

log ζ(x, k) ≤ log
(

max
i∈M

ζ(x, i)
)

+ C1C2(1 + |x|)

+ log E exp
∫ T

0
g(x(t), u(t)) dt − λ̂T.

Dividing both sides by T and letting T → ∞ yield

λ̂ ≤ J(x, k, u(·)), for all u(·) ∈ A(k).

Step 2. We show that λ̂ ≥ infu(·)∈A(k) J(x, k, u(·)).
Let

η(T, x, k) = inf
u(·)∈A(k)

log E exp

(∫ T

0
g(x(t), u(t)) dt

)
.

We first show that
λ̂ = lim

T→∞
1
T

η(T, x, k), (6.25)

uniformly for x in any compact set.
In fact, as in (6.24), we can show that there exists a positive constant

C3 such that, for all x = x(0) and T > 0,

exp(−C3(1 + |x|)) ≤ ζ(x(T ), k(T )) ≤ exp(C3(1 + |x|)).

In view of this and (6.22), we have

exp(−C3(1 + |x|)) inf
u(·)∈A(k)

E exp

(∫ T

0
g(x(t), u(t)) dt

)
≤ ζ(x, k) exp

(
λ̂T

)
≤ exp(C3(1 + |x|)) inf

u(·)∈A(k)
E exp

(∫ T

0
g(x(t), u(t)) dt

)
.

Taking logarithm on both sides and noting that

inf
u(·)∈A(k)

log(· · ·) = log inf
u(·)∈A(k)

(· · ·),

we obtain

−C3(1 + |x|) + η(T, x, k) ≤ log ζ(x, k) + λ̂T

≤ C3(1 + |x|) + η(T, x, k).

Dividing both sides by T and letting T → ∞, we arrive at (6.25).
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In view of (6.4), for any fixed r > 0, there exists r1 > 0 such that
|x(t)| ≤ r1 for all t ≥ 0, k ∈ M, and |x| ≤ r with x(0) = x. Therefore, for
each δ > 0, there exists T0 such that∣∣∣∣λ̂ − η(T0, x, k)

T0

∣∣∣∣ ≤ δ,

for all k ∈ M and |x| ≤ r1. Hence,

η(T0, x, k) ≤ λ̂T0 + T0δ, (6.26)

for all k ∈ M and |x| ≤ r1.
On [0, T0), choose an admissible u(1)(t) such that

E exp

(∫ T0

0
g(x(t), u(1)(t)) dt

)
≤ exp(η(T0, x, k) + δT0)

≤ exp(λ̂T0 + 2δT0).

Let F̂T0 = σ{(x(t), k(t)) : t ≤ T0}. On [T0, 2T0), if we choose u(2)(t) to
be σ{k(s) : T0 ≤ s ≤ t}-measurable, then

E

{
exp

(∫ 2T0

T0

g(x(t), u(2)(t)) dt

)∣∣∣∣∣ F̂T0

}

is a function of (T0, x(T0), k(T0)). More precisely, if we let

Φ(T0, x, k, u(·)) = E

{
exp

(∫ 2T0

T0

g(x(t), u(t)) dt

)∣∣∣∣∣x(T0) = x, k(T0) = i

}
,

then

Φ(T0, x(T0), k(T0), u(2)(·)) = E

{
exp

(∫ 2T0

T0

g(x(t), u(2)(t)) dt

)∣∣∣∣∣ F̂T0

}
.

Moreover, by changing the variable t to (t − T0), we have

η(T0, x, k) = inf
u(·)∈A(k)

log Φ(T0, x, k, u(·)).

Similarly as in the proof of Lemma 3.1(ii), we can show that, for some
positive constant C4,

|η(T, x̂, k) − η(T, x, k)| ≤ C4T |x̂ − x|d,

for all T , x̂, x, and k ∈ M.
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Let B1, B2, ..., B� be a partition of {x : |x| ≤ r1}. For any given δ > 0,
if the diameter of the Bj ’s is small enough, then for all x̂ and x in Bj and
u(·) ∈ A(k),

|η(T0, x̂, k) − η(T0, x, k)| ≤ δT0

and
Φ(T0, x̂, k, u(·))
Φ(T0, x, k, u(·)) ≤ eδT0 .

For j = 1, 2, . . . , �, pick xj ∈ Bj . For each (j, i), choose u
(2)
j,i (t) on

[T0, 2T0) such that

Φ(T0, xj , k) ≤ exp(η(T0, xj , k) + δT0) ≤ exp
(
λ̂T0 + 2δT0

)
.

On [0, 2T0), define

u(t) =

⎧⎪⎪⎨⎪⎪⎩
u(1)(t), if 0 ≤ t < T0,∑
j,i

I{(x(T0),k(T0))∈Bj×{i}}u
(2)
j,i (t), if T0 ≤ t < 2T0.

(6.27)

It follows that

E

{
exp

(∫ 2T0

T0

g(x(t), u(t)) dt

)∣∣∣∣∣ F̂T0

}
=

∑
j,i

I{x(T0)∈Bj}I{k(T0)=k}Φ(T0, x(T0), k, u
(2)
j,i (t))

≤
∑
j,i

I{x(T0)∈Bj}I{k(T0)=k}Φ(T0, xj , k, u
(2)
j,i (t))eδT0

≤
∑
j,i

I{x(T0)∈Bj}I{k(T0)=k} exp
(
λ̂T0 + 3δT0

)
.

Note that

E exp

(∫ 2T0

0
g(x(t), u(t)) dt

)

= E

{
exp

(∫ T0

0
g(x(t), u(t)) dt

)
E

[
exp

(∫ 2T0

T0

g(x(t), u(t)) dt

)∣∣∣∣∣ F̂T0

]}
.

It follows that

E exp

(∫ 2T0

0
g(x(t), u(t)) dt

)
≤ exp

(
2λ̂T0 + 5δT0

)
.
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Continuing this procedure on [(N − 1)T0, NT0) for N = 3, . . ., we can
construct an admissible control u(t) as in (6.27) such that

E exp

(∫ NT0

0
g(x(t), u(t)) dt

)
≤ exp

(
NT̂0 + δ(3N − 1)T0

)
.

Hence,

1
NT0

log E exp

(∫ NT0

0
g(x(t), u(t)) dt

)
≤ λ̂ +

δ(3N − 1)T0

NT0

→ λ̂ + 3δ.

Since δ is arbitrary, the inequality λ̂ ≥ infu(·)∈A(k) J(x, k, u(·)) follows. �

This theorem implies that λ in a viscosity solution (λ, V (x, k)) is unique.

6.4 Verification Theorem

Based on the HJB equation (6.5) and its solution discussed in Theorems
3.1 and 3.2, we next give a verification theorem. In order to incorporate
nondifferentiability of the value function, we consider superdifferential and
subdifferential of the function defined in Section 3.4.

Theorem 4.1. Let Assumptions (A1) and (A2) hold, and let (µ, W (x, k))
be a viscosity solution to the HJB equation (6.5). Assume that W (x, k) is
Lipschitz continuous in x. Let ζ(x, k) = exp(W (x, k)). Suppose that there
are u∗(·), x∗(·), and r∗(t) such that

dx∗(t)
dt

= −ax∗(t) + u∗(t) − z, x∗(0) = x,

r∗(t) ∈ D+W (x∗(t), k(t)), and

µζ(x∗(t), k(t)) = (−ax∗(t) + u∗(t) − z)r∗(t)

+ g(x∗(t), u∗(t))ζ(x∗(t), k(t)) + Qζ(x∗(t), ·)(k(t)),
(6.28)

a.e. in t and with probability one. Then control u∗(·) is optimal, i.e., λ =
J(x, k, u∗(·)).

Proof. First of all, note that (λ, W (x, k)) is a solution of the HJB equation
(6.5). In view of the logarithmic transformation (6.8), equation (6.5) is
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equivalent to

µζ(x, k) = inf
0≤u≤k

{
(−ax + u − z)

∂ζ(x, k)
∂x

+ g(x, u)ζ(x, k) + Qζ(x, ·)(k)
}

.
(6.29)

The Lipschitz property of W (x, k) implies that ζ(x, k) is Lipschitz which,
in turn, implies that ζ(x(t), k) is also Lipschitz in t. For each t ≥ 0 such
that (d/dt)ζ(x(t), k) exists and∫ t+δ

t

[−ax(s) + u(s) − z] ds = [−ax(t) + u(t) − z]δ + o(δ),

we have

dζ(x(t), k)
dt

= lim
δ→0+

1
δ

[ζ(x(t + δ), k) − ζ(x(t), k)]

= lim
δ→0+

1
δ

{
ζ

(
x(t) +

∫ t+δ

t

[−ax(s) + u(s) − z] ds, k

)
− ζ(x(t), k)

}
= lim

δ→0+

1
δ

{ζ(x(t) + δ[−ax(t) + u(t) − z] + o(δ), k) − ζ(x(t), k)}

= lim
δ→0+

1
δ

{ζ(x(t) + δ[−ax(t) + u(t) − z], k) − ζ(x(t), k)}

≤ [−ax(t) + u(t) − z]r,
(6.30)

for r ∈ D+ζ(x(t), k). In view of (6.30) and the proof of the Feynman-Kac
formula (see Fleming and Soner [56]), we can show that, for any T ≥ 0,

E

{
ζ(x∗(T ), k(T )) exp

(∫ T

0
[g(x∗(t), u∗(t)) − µ] dt

)}
− ζ(x, k)

= E

∫ T

0

d

dt

{
ζ(x∗(t), k(t)) exp

(∫ t

0
[g(x∗(s), u∗(s)) − µ] ds

)
dt

}
≤ E

∫ T

0

[
exp

(∫ t

0
(g(x∗(s), u∗(s)) − µ) ds

)]
× {[g(x∗(t), u∗(t)) − µ] ζ(x∗(t), k(t))

+ [−ax∗(t) + u∗(t) − z]r∗(t) + Qζ(x∗(t), ·)(k(t))} dt = 0.

(6.31)
Note that for any given initial value x, the corresponding trajectory x(t) is
bounded. Thus, for each x, there exist positive constants C1 and C2 such
that

0 < C1 ≤ ζ(x∗(T ), k(T )) ≤ C2, for all T ≥ 0.
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Hence, it follows from (6.29) and (6.31) that

C1E

[
exp

(∫ T

0
g(x∗(t), u∗(t)) dt

)]
exp(−µT ) ≤ ζ(x, i).

Taking logarithm on both sides and dividing by T leads to

log C1

T
+

1
T

log E exp

(∫ T

0
g(x∗(t), u∗(t)) dt

)
− µ ≤ ζ(x, k)

T
.

Letting T → ∞ yields

µ ≥ lim sup
T→∞

1
T

log E exp

(∫ T

0
g(x∗(t), u∗(t)) dt

)
.

Hence, in view of Theorem 3.2, λ = J(x, k, u∗(·)). �

6.5 Notes

Theorems 3.1, 3.2, and 4.1 on the risk-sensitive control problems are due
to Fleming and Zhang [58].

In our model, we assume a positive deterioration rate a for items in
storage (formula (6.1)). This corresponds to a stability condition typically
imposed for disturbance attenuation problems on an infinite time horizon
(see Fleming and McEneaney [52]), and this assumption is used in the proof
of technical estimates in Lemma 3.1. Nevertheless, it would be interesting
to weaken the assumption that a > 0.

The risk-sensitive approach has been applied to the so-called disturbance
attenuation problem; see, for example, Whittle [144], Fleming and McE-
neaney [52], Glover and Doyle [64], and references therein. In Fleming and
McEneaney [52], risk-sensitive control problems of controlled diffusions are
considered. By using the associated dynamic programming equations, they
show that as the system noise goes to zero, the value function of the risk-
sensitive control problem converges to the value function of a differential
game problem.
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Near-Optimal Controls



7
Near-Optimal Control of
Parallel-Machine Systems

7.1 Introduction

In this chapter we consider a manufacturing system which consists of a
number of parallel machines that are subject to breakdown and repair.
The problem is to obtain the rate of production over time in order to meet
the demand at the minimum long-run average expected cost of production
and surplus over the infinite horizon. An exact optimal solution of the prob-
lem is difficult to obtain. Our goal is to find near-optimal controls to run
these systems. The idea is to derive a limiting control problem (by letting
the rate of machine breakdown and repair approach infinity), which is sim-
pler to solve than the original problem. This limiting problem is obtained
by replacing the stochastic machine availability process by the average to-
tal production capacity of machines and by appropriately modifying the
objective function. Using the optimal (or near-optimal) control for the lim-
iting problem, one can construct an approximately optimal control of the
original, more complex, problem.

We assume that the production capacity process is a fast-changing pro-
cess. By a fast-changing process, we mean a process that is changing so
rapidly that from any initial condition, it reaches its stationary distribu-
tion in a time period during which there are few, if any, fluctuations in the
other processes. For example, in the case of a fast-changing Markov process,
the state distribution converges rapidly to a distribution close to its sta-
tionary distribution. In the case of a fast-changing deterministic process,
the time-average of the process quickly reaches a value near its limiting
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long-run average value. Furthermore, it is possible to associate a time con-
stant with each of these processes, namely the reciprocal of the rate of this
convergence. The time constant is related to the time it takes the process
to cover a specified fraction of the distance between its current value and
its equilibrium value, or the time required for the initial distribution to
become sufficiently close to the stationary distribution.

We show that the minimum average cost of the original problem con-
verges to that of a limiting problem. We then construct asymptotic opti-
mal controls for the original problem by using near-optimal controls of the
limiting problem. We also derive the rate of convergence and error bounds
associated with some of the constructed controls.

The plan of this chapter is as follows. In Section 7.2 we provide a pre-
cise formulation of the parallel machines, multiproduct model introduced
in Section 2.2. The total production capacity of the machines is given by
a finite state Markov chain parametrized by a small number ε > 0. The
demand is assumed to be constant for convenience in exposition. In Section
7.3 we discuss some elementary properties of the associated minimum av-
erage cost. In Section 7.4 we consider the convergence rate of the minimum
average cost. In Section 7.5 an asymptotic optimal feedback control is con-
structed by using an optimal feedback control of the limiting problem. In
Section 7.6 we consider the minimum cost problem without attrition and
prove the convergence of the minimum average cost as ε → 0. The chapter
is concluded in Section 7.7.

7.2 Problem Formulation

Let us consider a manufacturing system that produces n distinct products
using m identical parallel machines. With the production rate u(t) ∈ �n

+,
the total surplus x(t) ∈ �n, and a constant demand rate z ∈ �n

+, the
system dynamics satisfy the differential equation

d

dt
x(t) = −diag(a)x(t) + u(t) − z, x(0) = x ∈ �n, (7.1)

where a = (a1, ..., an)′ is a constant vector with aj > 0 and diag(a) =
diag(a1, ..., an) is a diagonal matrix. Recall that surplus xj(t) of a product
type j means inventory when xj(t) > 0 and backlog when xj(t) < 0. The
attrition rate aj represents the deterioration rate of the inventory of the
product type j when xj(t) > 0, and it represents a rate of cancellation
of backlogged orders when xj(t) < 0. We assume symmetric deterioration
and cancellation rates for product j only for convenience in exposition. It
is easy to extend our results when aj is a function of x,

aj(x) =

⎧⎨⎩ âj , if xj ≥ 0,

aj , if xj < 0,
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where âj > 0 and aj > 0. âj denotes the deterioration rate and aj denotes
the order cancellation rate. We rewrite (7.1) as

d

dt
x(t) = L(x(t),u(t),z), x(0) = x,

where
L(x(t),u(t),z) = −diag(a)x(t) + u(t) − z.

We now define the random machine capacity process on the probability
space (Ω,F , P ). Let M = {0, 1, ..., m} denote the set of machine capacity
states, and let

k(ε, t) ∈ M, t ≥ 0,

denote a Markov chain generated by

Qε = Q(1) +
1
ε
Q(2),

where ε > 0 is a small parameter and Q(�) = (q(�)
ij ), i, j ∈ M, is an

(m+1)× (m+1) matrix such that q
(�)
ij ≥ 0 for i �= j and q

(�)
ii = −

∑
j �=i q

(�)
ij

for � = 1, 2. We let k(ε, t) represent the machine capacity state at time t.
Since only a finite amount of production capacity is available at any given
time t, it imposes an upper bound on the production rate u(t). Specifically,
the production rate constraints can be written as

uj(t) ≥ 0, j = 1, 2, ..., n,

n∑
j=1

uj(t) ≤ k(ε, t), t ≥ 0. (7.2)

Definition 2.1. A production process u(·) = {u(t) : t ≥ 0} is admissible if:
(i) u(t) is adapted to the filtration {Fε

t } with Fε
t = σ(k(ε, s) : 0 ≤ s ≤ t);

and (ii) uj(t) ≥ 0, j = 1, 2, ..., n, and
∑n

j=1 uj(t)(ω) ≤ k(ε, t)(ω) for all
t ≥ 0. �

We denote by Aε(k) the set of all admissible controls with the initial
condition k(ε, 0) = k.

Remark 2.1. Here we assume that the amount of capacity needed to
produce product type j at rate 1 is one. The results established in this
chapter can be easily extended to the case in which the amount of capacity
needed to produce product type j at rate 1 is any given constant rj . For
this case, the production rate constrained (7.2) can be specified as

uj(t) ≥ 0, j = 1, 2, ..., n,

n∑
j=1

rjuj(t) ≤ k(ε, t), t ≥ 0. � (7.3)

Definition 2.2. A function u(·, ·) defined on �n×M is called an admissible
feedback control or simply a feedback control, if:
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(i) for any given initial surplus x(0) = x and production capacity k(ε, 0) =
k, the equation

d

dt
x(t) = L(x(t),u(x(t), k(ε, t)),z)

has a unique solution; and

(ii) the control u(·) = {u(t) = u(x(t), k(ε, t)), t ≥ 0} ∈ Aε(k). �

Let h(x) and c(u) denote the surplus cost and the production cost, re-
spectively. For any u(·) ∈ Aε(k), define the expected long-run average cost

Jε(x, k,u(·)) = lim sup
T→∞

1
T

E

∫ T

0
[h(x(t)) + c(u(t))] dt, (7.4)

where x(·) is the surplus process corresponding to the production process
u(·) with the initial conditions x(0) = x and k(ε, 0) = k. The problem is
to obtain u(·) ∈ Aε(k) that minimizes Jε(x, k,u(·)). We summarize our
control problem as follows:

Pε:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min Jε(x, k,u(·)),

s.t.
d

dt
x(t) = L(x(t),u(t),z), x(0) = x, u(·) ∈ Aε(k),

minimum average cost λε(x, k) = inf
u(·)∈Aε(k)

Jε(x, k,u(·)).

(7.5)

We assume that the cost functions h(x), c(u), and the production ca-
pacity process k(ε, ·) satisfy the following assumptions:

(A1) h(x) is a nonnegative, convex function with h(0) = 0. There are
positive constants Ch1, Ch2, and βh1 ≥ 1 such that

h(x) ≥ Ch1|x|βh1 − Ch2, x ∈ �n.

Moreover, there are constants Ch3 and βh2 ≥ βh1 such that

|h(x) − h(y)| ≤ Ch3(1 + |x|βh2−1 + |y|βh2−1)|x − y|, x,y ∈ �n.

(A2) c(u) is a nonnegative convex function.

(A3) Q(2) is strongly irreducible.

(A4) The average capacity

k̄ =
m∑

i=0

iνi >

n∑
j=1

zj ,

where ν= (ν0, ν1, ..., νm) is the equilibrium distribution correspond-
ing to generator Q(2).
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Remark 2.2. From Theorem 3.7.3 and Lemma B.7, we know that under
Assumptions (A3) and (A4), there is an ε0 > 0 such that for ε ∈ (0, ε0],
the minimum cost λε(x, k) is independent of x and k. Therefore, in the
rest of this chapter, we write λε instead of λε(x, k). �

As in Section 6.2, the positive attrition rate a implies a uniform bound
on x(t). In view of the fact that the control u(t) is bounded between 0 and
m, this implies that any solution x(·) of (7.1) must satisfy

|xj(t)| =
∣∣∣∣xje

−ajt + e−ajt

∫ t

0
eajs[uj(s) − zj ] ds

∣∣∣∣
≤ |xj |e−ajt + (m + zj)

∫ t

0
e−aj(t−s) ds

≤ |xj |e−ajt +
m + zj

aj
, j = 1, ..., n.

(7.6)

Thus, under the positive deterioration/cancellation rate, the surplus pro-
cess x(·) remains bounded.

7.3 The Limiting Control Problem

In this section we derive the limiting control problem as ε → 0. To do this,
let

U(k) =
{

(u1, · · · , un)′ : uj ≥ 0 and
n∑

j=1

uj ≤ k

}
.

The Hamilton-Jacobi-Bellman (HJB) equation for the optimal control
problem Pε has the form:

λε = inf
u∈U(k)

{〈
L(x,u,z),

φε(x, k)
∂x

〉
+ c(u)

}
+ h(x)

+
(

Q(1) +
1
ε
Q(2)

)
φε(x, ·)(k),

(7.7)

where φε(x, k) is a function defined on �n × M, and

Qφ(·)(k) =
∑
i �=k

qki(φ(i) − φ(k))

for any function φ(·) on M.
The HJB equation in terms of directional derivatives (HJBDD) takes the

form

λε = inf
u∈U(k)

{
∂L(x,u,z)φ

ε(x, k) + c(u)
}

+ h(x)

+
(

Q(1) +
1
ε
Q(2)

)
φε(x, ·)(k).
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Our analysis begins with the proof of the boundedness of λε.

Theorem 3.1. Let Assumptions (A1)–(A4) hold. The minimum average
expected cost λε of Pε is bounded in ε, i.e., there exists a constant C > 0
such that

0 ≤ λε ≤ C, for all ε > 0.

Proof. According to the definition of λε, it suffices to show that there exist
a constant C1 and a control uε(·) ∈ Aε(0) such that for the solution xε(·)
of

d

dt
x(t) = L(x(t),uε(t),z), x(0) = 0, (7.8)

we have

lim sup
T→∞

1
T

E

∫ T

0
[h(xε(t)) + c(uε(t))] dt ≤ C1. (7.9)

In view of (7.8), we can derive that, for j = 1, . . . , n,

xε
j(t) = e−ajt

∫ t

0
eajs[uε

j(s) − zj ] ds,

which implies

|xε
j(t)| ≤ (m + zj)

aj
. (7.10)

It is clear under Assumptions (A1) and (A2) that the functions h(·) and
c(·) are continuous. Consequently, the control constraints and inequality
(7.10) imply (7.9). �

In the remainder of this section, we derive the limiting control problem
as ε → 0. To this purpose, we consider the enlarged control space

A0 =
{
U(·) = (u0(·),u1(·), ...,um(·)) : ui(t) ∈ U(i) for all t ≥ 0,

and ui(·) is a deterministic process for each i
}
.

(7.11)
Then we define the limiting control problem P0 as follows:

P0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min J(x, U(·)) = lim sup
T→∞

1
T

∫ T

0

[
h(x(s)) +

m∑
i=0

νic(ui(s))
]

ds,

s.t.
d

dt
x(t) = L

(
x(t),

m∑
i=0

νiu
i(t),z

)
, x(0) = x, U(·) ∈ A0,

minimum average cost λ = inf
U(·)∈A0

J(x, U(·)).
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The HJB equation for problem P0 has the form

λ = inf
ui∈U(i),i∈M

{〈
L
(

x,

m∑
i=0

νiu
i,z

)
,
∂φ(x)

∂x

〉
+

m∑
i=0

νic(ui)
}

+ h(x),

(7.12)
where φ(x) is a function defined on �n. The HJBDD equation takes the
form

λ = inf
ui∈U(i),i∈M

{
∂L(x,

∑m
i=0 νiui,z)φ(x) +

m∑
i=0

νic(ui)
}

+ h(x).

For the sake of notational simplicity, we only deal with the case n = 1
(i.e., the single product case) in the remainder of this chapter. In this case,
a, z, x, and u are scalars. Using the same method, one can show that all of
the results in Sections 7.4 and 7.5 except Theorem 5.2, given here for the
single product case, hold also for the multiple product case.

7.4 Convergence of the Minimum Average
Expected Cost

In this section we consider the convergence of the minimum average ex-
pected cost λε as ε goes to zero, and establish its convergence rate. Armed
with Theorem 3.1, we can derive the required convergence result.

Theorem 4.1. Let Assumptions (A1)–(A4) hold. There exists a constant
C such that, for all ε > 0,

|λε − λ| ≤ Cε1/2. (7.13)

This implies in particular that limε→0 λε = λ.

Proof. The proof is divided into two parts. First we prove λε ≤ λ + Cε1/2

by constructing an admissible control uε(t) of Pε from the optimal control
of the limiting problem P0 and by estimating the difference between the
state trajectories corresponding to these two controls. Then we establish
the opposite inequality, namely, λε ≥ λ − Cε1/2, by constructing a control
of the limiting problem P0 from a near-optimal control of Pε and then
using Assumptions (A1)–(A3).

In order to show that
λε ≤ λ + Cε1/2, (7.14)

we let U(·) = (u0(·), u1(·), ..., um(·)) ∈ A0, where A0 is given in (7.11), and
we construct the control

uε(t) =
m∑

i=0

I{k(ε,t)=i}ui(t).
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Clearly uε(·) ∈ Aε(k), where Aε(k) is given in Section 7.2. Let xε(t) and
x̄(t) denote the corresponding state trajectories of the systems Pε and P0,
respectively. Then

d

dt
x̄(t) = L

(
x̄(t),

m∑
i=0

νiu
i(t), z

)
, x̄(0) = x, (7.15)

and
d

dt
xε(t) = L

(
xε(t), uε(t), z

)
, xε(0) = x. (7.16)

Hence,

E|xε(t) − x̄(t)|2 = E

[
e−at

∫ t

0
eas

(
uε(s) −

m∑
i=0

νiu
i(s)

)
ds

]2

.

Writing the right-hand side as a double integral, we have

E

[
e−at

∫ t

0
eas

(
uε(s) −

m∑
i=0

νiu
i(s)

)
ds

]2

= e−2at
m∑

i,j=0

E

∫ t

0

∫ t

0
ea(s1+s2)

[
I{k(ε,s1}=i} − νi

]
×
[
I{k(ε,s2)=j} − νj

]
ui(s1)uj(s2) ds1 ds2

= e−2at
m∑

i,j=0

E

(∫ t

0

∫ t

0
ea(s1+s2)

[
I{k(ε,s1)=i,k(ε,s2)=j} − νjI{k(ε,s1)=i}

− νiI{k(ε,s2)=j} + νiνj

]
ui(s1)uj(s2) ds1 ds2

)

= e−2at

(
m∑

i,j=0

E

∫ t

0

∫ t

0
ea(s1+s2)

[
I{k(ε,s1)=i,k(ε,s2)=j} − νiνj

]
×ui(s1)uj(s2) ds1 ds2

−
m∑

i,j=0

E

∫ t

0

∫ t

0
ea(s1+s2)νj

[
I{k(ε,s1)=i} − νi

]
×ui(s1)uj(s2) ds1 ds2

−
m∑

i,j=0

E

∫ t

0

∫ t

0
ea(s1+s2)νi

[
I{k(ε,s2)=j} − νj

]
×ui(s1)uj(s2) ds1 ds2

)
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= e−2at

{
m∑

i,j=0

E

∫ t

0

(∫ s1

0
ea(s1+s2)

[
I{k(ε,s2)=j,k(ε,s1)=i} − νjνi

]
×uj(s2) ds2

)
ui(s1) ds1

+
m∑

i,j=0

E

∫ t

0

(∫ t

s1

ea(s1+s2)
[
I{k(ε,s2)=j,k(ε,s1)=i} − νjνi

]
×uj(s2) ds2

)
ui(s1) ds1

−
m∑

i,j=0

E

∫ t

0

∫ t

0
ea(s1+s2)νj

[
I{k(ε,s1)=i} − νi

]
×ui(s1)uj(s2) ds1 ds2

−
m∑

i,j=0

∫ t

0

∫ t

0
ea(s1+s2)νi

[
I{k(ε,s2)=j} − νj

]
×ui(s1)uj(s2) ds1 ds2

}
.

(7.17)

Note that for any s1 > s2, we can write

EI{k(ε,s2)=j,k(ε,s1)=i} = P (k(ε, s2) = j, k(ε, s1) = i)

= P (k(ε, s1) = i|k(ε, s2) = j)P (k(ε, s2) = j).

In view of this, the first term on the right-hand side of (7.17) can be written
as

E

∫ t

0

(∫ s1

0
ea(s1+s2)

[
I{k(ε,s2)=j,k(ε,s1)=i} − νiνj

]
uj(s2) ds2

)
ui(s1) ds1

= E

{∫ t

0
eas2uj(s2) ds2

∫ t

s2

eas1
[
I{k(ε,s2)=j,k(ε,s1)=i} − νjνi

]
ui(s1) ds1

}

=
∫ t

0
eas2P (k(ε, s2) = j)uj(s2)

×
∫ t

s2

eas1
[
P
(
k(ε, s1) = i|k(ε, s2) = j

)
− νi

]
ui(s1) ds1 ds2

+
∫ t

0
eas2νi

[
P (k(ε, s2) = j) − νj

]
uj(s2) ds2

∫ t

s2

eas1ui(s1) ds1.

(7.18)
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In view of Lemma B.3, we have∫ t

0
eas2P (k(ε, s2) = j)uj(s2)

×
∫ t

s2

eas1
[
P
(
k(ε, s1) = i|k(ε, s2) = j

)
− νi

]
ui(s1) ds1 ds2

≤
∫ t

0
eas2P (k(ε, s2) = j) ds2

∫ t

s2

eas1C1
[
ε + e−β0(s1−s2)/ε

]
ds1

≤
∫ t

0

C1ε

a
eas2 [eat − eas2 ] ds2 +

C1ε

|aε − β0|

∫ t

0
eateas2 ds2

≤ C1ε

a2 e2at +
C1ε

a|aε − β0|
e2at,

(7.19)

for some C1 > 0, where β0 > 0 is specified in Lemma B.3. Using Lemma
B.3 again, we can derive∫ t

0
eas2νi

[
P (k(ε, s2) = j) − νj

]
uj(s2) ds2

∫ t

s2

eas1ui(s1) ds1

≤ eat

a

∫ t

0
C1

[
ε + e−β0s2/ε

]
eas2 ds2

≤
(

C1ε

a2 +
C1ε

a|aε − β0|

)
e2at.

(7.20)

Combining (7.19)–(7.20) yields the following bound on the first term of the
right-hand side of (7.17):

E

{∫ t

0

(∫ s1

0
ea(s1+s2)

[
I{k(ε,s1)=i,k(ε,s2)=j} − νiνj

]
uj(s2) ds2

)
ui(s1) ds1

}

≤
(

2
a2 +

2
a|aε − β0|

)
C1εe

2at.

(7.21)
Similar to (7.21), we can obtain the following bound on the second, third,
and fourth terms on the right-hand side of (7.17), respectively, i.e.,

E

{∫ t

0
eas1ui(s1) ds1

∫ t

s1

eas2
[
I{k(ε,s2)=j,k(ε,s1)=i} − νiνj

]
uj(s2) ds2

}

≤
(

2
a2 +

2
a|aε − β0|

)
C2εe

2at,

(7.22)
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E

{∫ t

0

∫ t

0
ea(s1+s2)νj

[
I{k(ε,s1)=i} − νi

]
ui(s1)uj(s2) ds1 ds2

}

≤
(

2
a2 +

2
a|aε − β0|

)
C2εe

2at,

(7.23)

and

E

{∫ t

0

∫ t

0
ea(s1+s2)νi

[
I{k(ε,s2)=j} − νj

]
ui(s1)uj(s2) ds2 ds1

}

≤
(

2
a2 +

2
a|aε − β0|

)
C2εe

2at,

(7.24)

for some positive constant C2. By (7.17) and (7.21)–(7.24), there exists a
constant C3 > 0 such that, for all ε > 0 and t ≥ 0,

E|xε(t) − x̄(t)|2 ≤ (C3)2ε.

Consequently,
E|xε(t) − x̄(t)| ≤ C3ε

1/2. (7.25)

In view of (7.15) and (7.16), we know that there exists C4 > 0 such that,
for all t ≥ 0,

|xε(t)| ≤ C4 and |x̄(t)| ≤ C4. (7.26)

Now by Assumption (A1) and (7.25)–(7.26), we have∣∣∣∣ 1
T

E

∫ T

0
h(xε(t)) dt − 1

T

∫ T

0
h(x̄(t)) dt

∣∣∣∣
≤ 1

T
E

∫ T

0
Ch3

(
1 + |xε(t)|βh2−1 + |x̄(t)|βh2−1)|xε(t) − x̄(t)| dt

≤ C5ε
1/2,

(7.27)
for some C5 > 0, where Ch3 and βh2 are given by Assumption (A1). In
view of ui(t) ∈ [0, m] and the continuity of c(·), we know that the function
c(ui(t)) is bounded on [0, ∞). By Lemma B.3, we have∣∣∣∣ 1

T
E

∫ T

0
c(uε(t)) dt − 1

T

∫ T

0

m∑
i=0

νic(ui(t)) dt

∣∣∣∣
≤ 1

T

∫ T

0

m∑
i=0

∣∣P (k(ε, t) = i) − νi

∣∣ · c(ui(t)) dt

≤ C6ε,

(7.28)

for some C6 > 0. By combining (7.27)–(7.28) we get (7.14).
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We now show the opposite inequality of (7.14). First we show that for any
control uε(·) ∈ Aε(k), there exists a control U(·) = (u0(·), u1(·), ..., um(·)) ∈
A0 such that Exε(t) − x̄(t) is small, where xε(t) and x̄(t) are the respec-
tive state trajectories under controls uε(·) and U(·) with the same initial
condition x. Now we choose U(·) defined by

ui(t) = E[uε(t)|k(ε, t) = i].

Then, we have

E[xε(t)] = xe−at + e−at

∫ t

0
eas

[
m∑

i=0

P (k(ε, s) = i)ui(s) − z

]
ds,

x̄(t) = xe−at + e−at

∫ t

0
eas

[
m∑

i=0

νiu
i(s) − z

]
ds.

Similar to (7.25), by applying Lemma B.3, we obtain

|E[xε(t)] − x̄(t)| ≤ C7ε, (7.29)

for some positive constant C7. In view of the convexity and the local Lips-
chitz continuity of h(·), inequalities (7.26), (7.29), and Jensen’s inequality
(cf. Chow and Teicher [33]) yield

E[h(xε(t))] ≥ h(E[xε(t)])

= h(x̄(t)) + [h(E[xε(t)]) − h(x̄(t))]

≥ h(x̄(t)) − Ch3
(
1 + |E[xε(t)]|βh2−1 + |x̄(t)|βh2−1)

×
∣∣E[xε(t)] − x̄(t)

∣∣
≥ h(x̄(t)) − Ch3

(
1 + 2(C4)βh2−1)C7ε.

(7.30)

In the same way, using Lemma B.3, we can establish

E[c(uε(t))] =
m∑

i=0

P (k(ε, t) = i)E
[
c(uε(t))|k(ε, t) = i

]
=

m∑
i=0

P (k(ε, t) = i)c(ui(t))

≥
m∑

i=0

νic(ui(t)) − C8(ε + e−β0t/ε)

(7.31)

for some positive constants C8, where β0 is specified in Lemma B.3. By
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combining (7.30) and (7.31), we obtain

1
T

E

∫ T

0
[h(xε(t)) + c(uε(t))] dt

≥ 1
T

∫ T

0

[
h(x̄(t)) +

m∑
i=0

νic(ui(t))

]
dt − C9ε,

for some positive constant C9. The arbitrariness of uε(t) implies

λε − λ ≥ −Cε,

which completes the proof. �

7.5 Asymptotic Optimal Controls

In this section we obtain controls for Pε that are asymptotically optimal.
Both open-loop and feedback controls are studied. We first consider open-
loop controls.

Theorem 5.1 (Open-loop Control). Let Assumptions (A1)–(A4) hold. As-
sume that

U(·) = (u0(·), u1(·), ..., um(·)) ∈ A0

is an optimal control for P0 with the initial condition x̄(0) = x. Define

uε(t) =
m∑

i=0

I{k(ε,t)=i}ui(t).

Then uε(·) ∈ Aε(k), and uε(·) is asymptotically optimal for Pε, i.e.,∣∣λε − Jε(x, k, uε(·))
∣∣ ≤ Cε1/2

for some positive constant C independent of ε.

Proof. Observe that

0 ≤ Jε(x, k, uε(·)) − λε = [Jε(x, k, uε(·)) − λ] + (λ − λε).

In view of Theorem 4.1, it suffices to show that

|Jε(x, k, uε(·)) − J(x, U(·))| ≤ C1ε
1/2 (7.32)

for some positive constant C1. Using (7.27)–(7.28) in the proof of Theorem
4.1, we know that (7.32) holds, and the proof is completed. �

We next consider feedback controls. We begin with an optimal feedback
control for P0, denoted as a function U(y) = (u0(y), u1(y), ..., um(y)), y ∈
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�. This is obtained by minimizing the right-hand side of (7.12), i.e., for all
y ∈ �,(

−ay +
m∑

i=0

νiu
i(y) − z

)
· d

dx
φ(y) +

m∑
i=0

νic(ui(y)) + h(y)

= inf
0≤ui≤i,i∈M

{(
−ay +

m∑
i=0

νiu
i − z

)
· d

dx
φ(y) +

m∑
i=0

νic(ui)
}

+ h(y).

We then construct the feedback control u(·, ·) as follows:

u(y, k(ε, t)) =
m∑

i=0

I{k(ε,t)=i}ui(y), (7.33)

which is clearly feasible (satisfies the control constraints) for Pε. Further-
more, if each ui(y) is locally Lipschitz in y, then the system

d

dt
x(t) = −ax(t) + u(x(t), k(ε, t)) − z (7.34)

with the initial conditions x(0) = x̃ and k(ε, 0) = k has a unique solu-
tion xε(·), and therefore u(t) = u(xε(t), k(ε, t)), t ≥ 0, is also an admis-
sible control for Pε. According to Lemma B.7, there exists an ε0 > 0
such that Q(1) + ε−1Q(2) is strongly irreducible for 0 < ε ≤ ε0. Let
νε = (νε

0 , νε
1 , ..., νε

m) denote the equilibrium distribution of Q(1) + ε−1Q(2),
i.e.,

νε
[
Q(1) + ε−1Q(2)] = 0 and

m∑
i=0

νε
i = 1. (7.35)

We can now prove the following result, but only in the single product case
(see Remark 5.2 below).

Theorem 5.2 (Feedback Control). Let Assumptions (A1)–(A4) hold. As-
sume n = 1, and that the feedback control U(y) of the limiting problem is
locally Lipschitz in y. Furthermore, suppose that, for each ε ∈ [0, ε0], the
equation

−ay +
m∑

i=0

νε
i ui(y) − z = 0 (7.36)

has a unique solution θε, called the threshold. Moreover, suppose that, for
y ∈ (θε, ∞),

−ay +
m∑

i=0

νε
i ui(y) − z < 0, (7.37)

and for y ∈ (−∞, θε),

−ay +
m∑

i=0

νε
i ui(y) − z > 0, (7.38)



7.5 Asymptotic Optimal Controls 159

where ν0 = ν. Then the feedback control policy given by (7.33) is asymptot-
ically optimal, i.e.,

lim
ε→0

∣∣Jε(x̃, k, uε(·)) − λ
∣∣ = 0,

where uε(t) = u(xε(t), k(ε, t)), t ≥ 0.

Next we give two remarks and one example before proving the theorem.

Remark 5.1. Under the conditions given in Theorem 5.2, we know that
the equation

d

dt
x(t) = −ax(t) +

m∑
i=0

νiu
i(x(t)) − z, x(0) = x̃,

has a unique solution x̄(·). Furthermore, let x̄(t) → x̄ as t → ∞. �

Remark 5.2. The uniqueness of the solution of (7.36) satisfying (7.37)–
(7.38) guarantees that the differential equation

d

dt
zε(t) = −azε(t) +

m∑
i=0

νε
i ui(zε(t)) − z, zε(0) = x̃, (7.39)

has a solution zε(·). Moreover, let the limit of zε(t) as t → ∞ be denoted
as xε, i.e.,

xε = lim
t→∞ zε(t). (7.40)

This fact, which holds only in the single product case, will be used in the
proof of Theorem 5.2. �

Since there are several hypotheses, namely (7.36)–(7.38), in Theorem 5.2,
it is useful to provide an example.

Example 5.1. We consider the problem

Pε:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min Jε(x̃, k, uε(·)) = lim sup
T→∞

1
T

E

∫ T

0
[x(t)]2 dt,

s.t.
d

dt
x(t) = −x(t)

10
+ u(t) − 1

4
, x(0) = x̃, u(·) ∈ Aε(k),

minimum average cost λε = inf
u(·)∈Aε(k)

Jε(x̃, k, u(·)),

with M = {0, 1} and the generator for k(ε, ·) is

Qε = Q(1) +
1
ε
Q(2) =

1
ε

⎛⎝−1 1

1 −1

⎞⎠ .
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This is clearly a special case of the problem formulated in Section 7.2.
In particular, Assumptions (A1)–(A4) hold and νε = ν = (ν0, ν1) =
(1/2, 1/2). Also u0(t) ≡ 0. The limiting problem is

P0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min J(x̃, U(·)) = lim sup
T→∞

1
T

∫ T

0
[x(t)]2 dt,

s.t.
d

dt
x(t) = −x(t)

10
+

u1(t)
2

− 1
4
, x(0) = x̃, U(·) ∈ A0,

minimum average cost λ = inf
U(·)∈A0

J(x̃, U(·)).

Let us set the function

U(y) = (u0(y), u1(y)) ≡ (0, 1/2) (7.41)

to be a feedback control for P0. Clearly, the cost associated with (7.41) is
zero. Since zero is the lowest possible cost, our solution is optimal and λ = 0.
Furthermore, since U(y) is locally Lipschitz in y and satisfies hypotheses
(7.36)–(7.38), Theorem 5.2 implies that

u(y, i) =

⎧⎨⎩ 0, if i = 0,

u1(y), if i = 1,

is an asymptotically optimal feedback control for Pε. �

Remark 5.3. Note that the nearly optimal feedback control in Example
5.1 is not unique. In addition, it is possible to come up with examples
involving nonzero production cost, for which Lipschitz feedback controls
satisfy (7.36)–(7.38). �

Proof of Theorem 5.2. The proof is divided into two steps.

Step 1. We show that

Jε(x̃, k, uε(·)) = h(xε) + c

( m∑
i=0

νε
i ui(xε)

)
, (7.42)

where xε is given by (7.40). In view of (7.6), we know that for each ω ∈ Ω,
the solution xε(·)(ω) corresponding to (7.34) satisfies

|xε(·)(ω)| ≤ |x̃| +
m + z

a
.

For each x ∈ [−|x̃| − (m + z)/a, |x̃| + (m + z)/a], let

zε(x, t) = xe−at + e−at

∫ t

0
eas

[
m∑

i=0

νε
i ui(zε(x, s)) − z

]
ds. (7.43)
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Then,
lim

t→∞ zε(x̃, t) = lim
t→∞ zε(xε, t) = xε.

Since the optimal feedback control U(y) = (u0(y), ..., um(y)) for the lim-
iting problem P0 is assumed to be locally Lipschitz, for any δ > 0, there
exists an N(ε, δ) such that, for t ≥ N(ε, δ),

|zε(x, t) − xε| < δ, for x = x̃ and xε. (7.44)

By Assumption (A1) and (7.44), there is a T (ε) > N(ε, δ) such that, for
x = x̃ and xε,

1
T (ε)

∣∣∣∣∫ T (ε)

0
h(zε(x, t)) dt −

∫ T (ε)

0
h(xε) dt

∣∣∣∣
≤ 1

T (ε)

∣∣∣∣∫ N(ε,δ)

0
h(zε(x, t)) dt −

∫ N(ε,δ)

0
h(xε) dt

∣∣∣∣
+

1
T (ε)

∣∣∣∣∫ T (ε)

N(ε,δ)
h(zε(x, t)) dt −

∫ T (ε)

N(ε,δ)
h(xε) dt

∣∣∣∣
≤ 1

T (ε)

∣∣∣∣∫ N(ε,δ)

0
h(zε(x, t)) dt − N(ε, δ)h(xε)

∣∣∣∣
+

Ch3

T (ε)

∫ T (ε)

N(ε,δ)
δ
(
1 + |zε(x, t)|βh2−1 + |xε|βh2−1) dt

≤ C1

[
1 + 2

(
|x̃| +

m + z

a

)βh2−1]
δ,

(7.45)

for some C1 > 0, where Ch3 and βh2 are given by Assumption (A1). Now
define T�(ε), � = 1, 2, ..., recursively by

T0(ε) = 0, T�(ε) = T (ε) + T�−1(ε), � = 1, 2, ...,

χε,�(t) =
(
I{k(ε,T�−1(ε)+t)=0}, I{k(ε,T�−1(ε)+t)=1}, ..., I{k(ε,T�−1(ε)+t)=m}

)
,

� = 1, 2, ..., t ∈ [0, T (ε)].

Note that the process k(ε, ·) is ergodic. Thus we can select Ω0 ⊂ Ω such
that P (Ω0) = 1, and for each ω ∈ Ω0,

χε,�(ω, ·) → νε in L2[0, T (ε)]. (7.46)

Furthermore, let

xε,�(t) = xε(T�−1(ε) + t), t ∈ [0, T (ε)], � = 1, 2, ...,
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where xε(·) is defined by (7.34) with the initial condition xε(0) = x̃. This
implies that

xε,�(t) = e−at

(
x̃e−aT�−1(ε)

+
∫ T�−1(ε)

0
e−a(T�−1(ε)−s)[u(xε(s), k(ε, s)) − z

]
ds

)
+ e−at

∫ t

0
eas

[
u(xε(T�−1(ε) + s), k(ε, T�−1(ε) + s)) − z

]
ds.

(7.47)
Using (7.47), we can see that for any t1, t2 ∈ [0, T (ε)] with t1 ≤ t2, we
have

∣∣xε,�(t2) − xε,�(t1)
∣∣

≤ (e−at1 − e−at2)
(

|x̃| +
m + z

a

)

+

∣∣∣∣∣e−at2

∫ t2

t1

eas

[
m∑

i=0

I{k(ε,T�−1(ε)+s)=i}ui(xε,�(s)) − z

]
ds

∣∣∣∣∣
+ (e−at1 − e−at2)

∣∣∣∣∣
∫ t1

0
eas

[
m∑

i=0

I{k(ε,T�−1(ε)+s)=i}ui(xε,�(s)) − z

]
ds

∣∣∣∣∣
≤ C2|t2 − t1|,

(7.48)
for some positive constant C2 independent of ε. By the Arzelà-Ascoli the-
orem and (7.46), there exists a K(ε) such that for each ω ∈ Ω0 and each
� ≥ K(ε),

sup
0≤t≤T (ε)

∣∣xε,�(t)(ω) − zε(x̃, t)
∣∣ ≤ δ (7.49)

where zε(x̃, t) and δ are given in (7.43) and (7.44), respectively. Similar to
(7.45), it follows from (7.49) that, for � ≥ K(ε),

1
T (ε)

∣∣∣∣E ∫ T (ε)

0
h(xε,�(t)) dt −

∫ T (ε)

0
h(zε(x̃, t)) dt

∣∣∣∣
≤ C3

[
1 + 2

(
|x̃| +

2(m + z)
a

)βh2−1]
δ,

(7.50)
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for some C3 > 0. Combining (7.45) and (7.50) yields

1
T (ε)

∣∣∣∣E ∫ T (ε)

0
h(xε,�(t)) dt −

∫ T (ε)

0
h(xε) dt

∣∣∣∣
≤ C4

[
1 +

(
|x̃| +

2(m + z)
a

)βh2−1]
δ,

(7.51)

for some C4 > 0 and � ≥ K(ε). On the other hand, for any large T with
T = (K(ε)+L(ε))T (ε)+ T̂ (ε), where L(ε) is a positive integer, and T̂ (ε) ∈
(0, T (ε)), we have

1
T

∫ T

0
h(xε(t)) dt =

1
T

[∫ K(ε)T (ε)

0
h(xε(t)) dt

+
L(ε)∑
�=1

∫ T (ε)

0
h(xε,K(ε)+�(t)) dt +

∫ T

(K(ε)+L(ε))T (ε)
h(xε(t)) dt

]
.

(7.52)

Using the boundedness of xε(·) we can claim that

lim
T→∞

1
T

E

(∫ K(ε)T (ε)

0
h(xε(t)) dt +

∫ T

(K(ε)+L(ε))T (ε)
h(xε(t)) dt

)
= 0.

(7.53)
The arbitrariness of δ and (7.51)–(7.53) imply

lim
T→∞

1
T

E

∫ T

0
h(xε(t)) dt = h(xε), (7.54)

where xε is given by (7.40). Similarly, we have

lim
T→∞

1
T

E

∫ T

0
c (u(xε(t), k(ε, t))) dt = c

( m∑
i=0

νε
i ui(xε)

)
. (7.55)

Finally, (7.54)–(7.55) imply (7.42).

Step 2. We establish

lim
ε→0

[
h(xε) + c

( m∑
i=0

νε
i ui(xε)

)]
= λ. (7.56)

By the same method as that used in Step 1, we can show that

λ = h(x̄) + c

( m∑
i=0

νiu
i(x̄)

)
,

where x̄ is defined in Remark 5.1. It follows from limε→0 νε = ν that
limε→0 xε = x̄. Therefore we obtain (7.56).
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In view of (7.42) and (7.56) derived in Steps 1 and 2, respectively, the
result follows. �

Remark 5.4. Our results are based on the assumption that ε is small.
In practice, the structure of Qε = Q(1) + ε−1Q(2) needs to be identified
from physical considerations. When this is not possible, one could employ
numerical algorithms for grouping developed in the singular perturbation
literature; see Phillips and Kokotovic [98]. �

7.6 Parallel-Machine Systems without Attrition

Consider the manufacturing system given in Section 7.2, but without a
positive inventory deterioration/cancellation rate for each product, i.e., a =
0. Formally, the system dynamics is

d

dt
x(t) = u(t) − z, x(0) = x. (7.57)

Furthermore, we make the following assumption on the total capacity k(ε, t)
for the manufacturing system at time t ≥ 0.

(A5) The generator of k(ε, ·) is given by Qε = Q/ε, i.e., Q(1) = 0 and
Q(2) = Q, with Q being strongly irreducible.

The control problem is as follows:

Pε:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min Jε(x, k,u(·)) = lim sup
T→∞

1
T

E

∫ T

0
[h(x(t)) + c(u(t))] dt,

s.t.
d

dt
x(t) = u(t) − z, x(0) = x, u(·) ∈ Aε(k),

minimum average cost λε = inf
u(·)∈Aε(k)

Jε(x, k,u(·)).

(7.58)

To carry out an asymptotic analysis of the minimum long-run average
expected cost λε, we introduce a corresponding control problem Pε,ρ with
the cost discounted at a rate ρ > 0:

Pε,ρ:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min Jε,ρ(x, k,uε(·)) = E

∫ ∞

0
e−ρt[h(x(t)) + c(u(t))] dt,

s.t.
d

dt
x(t) = u(t) − z, x(0) = x, u(·) ∈ Aε(k),

V ε,ρ(x, k) = inf
u(·)∈Aε(k)

Jε,ρ(x, k,u(·)).

(7.59)
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The associated HJB equation is

ρφε,ρ(x, k) = min
u∈U(k)

{〈
u − z,

∂φε,ρ(x, k)
∂x

〉
+ c(u)

}

+ h(x) +
1
ε
Qφε,ρ(x, ·)(k),

(7.60)

for any k ∈ M, where φε,ρ(x, k) is defined on �n × M.
In order to study the long-run average-cost control problem using the

vanishing discount approach, just as what we did in Chapter 3, we must first
obtain some estimates for the value function V ε,ρ(x, k) in the neighborhood
of ρ = 0.

Lemma 6.1. Let Assumptions (A4) and (A5) hold. For any r ≥ 1 and any
(x, k) ∈ �n ×M, x̂ ∈ �n, there exist a control uε(·) ∈ Aε(k) and a positive
constant Cr, independent of ε, (x, k), and x̂, such that

E
[
τ(ε, x, x̂, k)

]r ≤ Cr

(
1 +

n∑
i=1

|xi − x̂i|r
)

,

where
τ(ε, x, x̂, k) = inf{t ≥ 0 : xε(t) = x̂}

and xε(t), t ≥ 0, is the surplus process corresponding to the control uε(·)
and the initial condition (xε(0), k(ε, 0)) = (x, k).

Proof. The proof is same as the proof of Lemma 3.7.1, except that here
we need to use the inequality

E exp
(

1√
t + 1

∣∣∣∣∫ t

0
[k(ε, s) − k̄] ds

∣∣∣∣) ≤ C1, for any t and ε,

instead of (3.11). �

Furthermore, we have the following lemma.

Lemma 6.2. Let Assumptions (A4) and (A5) hold. For any (x, k), (x̂, k̂) ∈
�n×M, and r ≥ 1, there exist a control policy uε(·) and a positive constant
Ĉr independent of ε, (x, k) and (x̂, k̂) such that

E
[
τ(ε, x, x̂, k, k̂)

]r ≤ Ĉr

(
1 +

n∑
i=1

|x̂i − xi|r
)

,

where
τ(ε, x, x̂, k, k̂) = inf

{
t ≥ 0 : (xε(t), k(ε, t)) = (x̂, k̂)

}
,
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and xε(·) is the surplus process corresponding to the control uε(·) and initial
condition (xε(0), k(ε, 0)) = (x, k).

Proof. The proof is same as the proof of Theorem 3.7.3, except that here
we use the inequality

P (k(ε, t) = j|k(ε, 0) = i) ≥ νj/2, for t ≥ t0 and ε ∈ (0, ε0],

instead of (3.14). �

With Lemma 6.2 in hand, we prove the following result.

Theorem 6.1. Let Assumptions (A1)–(A2) and (A4)–(A5) hold. There
exist constants ρ0 > 0 and ε0 > 0 such that:

(i) {ρV ε,ρ(0, 0) : 0 < ρ ≤ ρ0, 0 < ε ≤ ε0} is bounded;

(ii) for ε ∈ (0, ε0] and ρ ∈ (0, ρ0], the function

Ṽ ε,ρ(x, k) = V ε,ρ(x, k) − V ε,ρ(0, 0)

is convex in x; and

(iii) for ε ∈ (0, ε0] and ρ ∈ (0, ρ0], Ṽ ε,ρ(x, k) is locally Lipschitz contin-
uous in x, i.e., there exists a constant C, independent of ρ and ε,
such that∣∣Ṽ ε,ρ(x, k) − Ṽ ε,ρ(x̂, k)

∣∣ ≤ C
(
1 + |x|βh2−1 + |x̂|βh2−1)|x − x̂|,

for k ∈ M and all x, x̂ ∈ �n, where βh2 is given in Assumption (A1).

Proof. We can prove the theorem by going along the lines of the proofs of
Theorems 3.3.2 and 3.3.3. The details are omitted. �

With the help of Theorem 6.1, we are ready to deal with the convergence
of λε, the minimum average cost of the problem Pε, with respect to ε. First
we can formally write the HJB equation associated with Pε,

λε = inf
u∈U(k)

{〈
u − z,

∂φε(x, k)
∂x

〉
+ c(u)

}

+ h(x) +
1
ε
Qφε(x, ·)(k),

(7.61)

for any k ∈ M and x ∈ �n, where λε is a constant and φε(x, k) is a
real-valued function on �n × M.

According to (i) and (iii) of Theorem 6.1, for a fixed ε ∈ (0, ε0] and
any subsequence of {ρ}, denoted by {ρ�}, there is a further subsequence of
{ρ�}, still denoted by {ρ�}, such that

λε,∗ = lim
ρ�→0

ρ�V
ε,ρ�(0, 0) (7.62)
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and
Ṽ ε(x, k) = lim

ρ�→0
Ṽ ε,ρ�(x, k), (7.63)

for all (x, k) ∈ �n × M. Furthermore, we have the following lemma.

Lemma 6.3. Let Assumptions (A1)–(A2) and (A4)–(A5) hold. There exists
ε0 > 0 such that for ε ∈ (0, ε0], we have the following:

(i) the function Ṽ ε(x, k) given in (7.63) is convex in x. It is also locally
Lipschitz continuous in x, i.e., there is a constant C such that

|Ṽ ε(x, k) − Ṽ ε(x̂, k)| ≤ C(1 + |x|βh2−1 + |x̂|βh2−1)|x − x̂|,

for all x, x̂ ∈ �n and k ∈ M, where βh2 is given by Assumption (A1);

(ii) (λε,∗, Ṽ ε(x, k)) is a viscosity solution to the HJB equation (7.61);

(iii) there exists a constant Ĉ such that, for all x ∈ �n and i, k ∈ M,

1
ε

∣∣Ṽ ε(x, i) − Ṽ ε(x, k)
∣∣ ≤ Ĉ(1 + |x|βh2+1).

Proof. (i) From the convexity of V ε,ρ(x, k), we get the convexity of Ṽ ε(x, k).
According to (7.63), it follows from (iii) of Theorem 6.1 that the function
Ṽ ε(x, k) is locally Lipschitz continuous in x.

(ii) To justify (λε,∗, Ṽ ε(x, k)) to be a viscosity solution to (7.61), let x0 ∈
�n and r ∈ D−Ṽ ε(x0, k) for any fixed k ∈ M. We choose a continuously
differential function fk(·) and a neighborhood N (x0) of x0 such that

∂fk(x)
∂x

∣∣∣∣
x=x0

= r,

0 = Ṽ ε(x0, k) − fk(x0) = inf
x∈N (x0)

{
Ṽ ε(x, k) − fk(x)

}
,

and x0 is the only minimum point of Ṽ ε(x, k) − fk(x) on N (x0). Now
choose x�

0 ∈ N (x0) such that

V ε,ρ�(x�
0, k) − fk(x�

0) = inf
x∈N (x0)

{
V ε,ρ�(x, k) − fk(x)

}
.

Then, as ρ� → 0,
x�

0 → x0. (7.64)

Moreover,
∂fk(x)

∂x

∣∣∣∣
x=x�

0

∈ D−V ε,ρ�(x�
0, k). (7.65)
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Note that V ε,ρ�(x, k) is the unique viscosity solution of the HJB equation
(7.60). Then (7.65) implies

ρ�V
ε,ρ�(x0, k) ≥ inf

u∈U(k)

{〈
u − z,

∂fk(x)
∂x

〉∣∣∣∣
x=x�

0

+ c(u)
}

+ h(xρ�

0 ) +
1
ε
QV ε,ρ�(x�

0, ·)(k).

Hence, in view of the identity
∑m

i=0 qkiV
ε,ρ�(0, 0) = 0, we have

ρ�V
ε,ρ�(0, 0) + ρ�

[
V ε,ρ�(x0, k) − V ε,ρ�(0, 0)

]
≥ inf

u∈U(k)

{〈
u − z,

∂fk(x)
∂x

〉∣∣∣∣
x=x�

0

+ c(u)
}

+ h(x�
0) +

1
ε

m∑
i=0

qki

[
V ε,ρ�(x0, i) − V ε,ρ�(0, 0)

]
.

Letting ρ� → 0 and using (7.64), we obtain

λε,∗ ≥ inf
u∈U(k)

{〈u − z, r〉 + c(u)} + h(x0) +
1
ε

m∑
i=0

qkiṼ
ε(x0, i),

for all r ∈ D−Ṽ ε(x0, k). Similarly, we can show that the opposite inequality
for r ∈ D+Ṽ ε(x0, k) holds, and thus prove that (ii) holds.

(iii) First we consider the point of differentiability of Ṽ ε(x, k) for each
k. Let x0 be the differentiable point of Ṽ ε(x, k) for each k. Then by (ii),
equation (7.61) holds, and we have

∑m
i=0 qkiṼ

ε(x0, i) = εζ(x0, k), where

ζ(x0, i) = λε,∗ − inf
u∈U(k)

{〈
u − z,

∂Ṽ ε(x, k)
∂x

〉∣∣∣∣
x=x0

+ c(u)
}

− h(x0).

Observe that, due to (i) and Assumptions (A1)–(A2),

|ζ(x0, i)| ≤ C1(1 + |x0|βh2+1), i ∈ M, (7.66)

for some positive C1. Also, the irreducibility of Q implies that the kernel of
Q is the one-dimensional subspace spanned by the vector 1 = (1, ..., 1)′ ∈
�m+1. Hence, for any i, k ∈ M, we have

1
ε

∣∣Ṽ ε(x, i) − Ṽ ε(x, k)
∣∣ ≤ sup

�∈M
|ζ(x0, �)| ≤ C1(1 + |x0|βh2+1). (7.67)
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Recall that x0 is a point of differentiability of Ṽ ε(x, k) for each k. But
such points are dense because of the local Lipschitz continuity of Ṽ ε(x, k).
Hence, (7.67) holds everywhere. Thus we have (iii). �

From the uniqueness of the solution of the HJB equation (7.61), we know
that, under Assumptions (A1)–(A2) and (A4)–(A5),

lim
ρ→0

ρV ε,ρ(0, 0) = λε,∗.

We now study the limiting behavior as ε → 0. To do this, we define

U(k̄) =
{

(u1, . . . , un)′ : ui ≥ 0 and
n∑

i=1

ui ≤ k̄

}
,

where k̄ is the average machine capacity given by Assumption (A4). For
u ∈ U(k̄), define

c̄(u) = inf
{ m∑

i=0

νic(ui) : ui ∈ U(i) and
m∑

i=0

νiu
i = u

}
.

We introduce the deterministic problem:

P :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min J(x,u(·)) = lim sup

T→∞
1
T

∫ T

0
[h(x(t)) + c̄(u(t))] dt,

s.t.
d

dt
x(t) = u(t) − z, x(0) = x, u(·) ∈ A,

minimum average costλ = inf
u(·)∈A

J(x,u(·)),

(7.68)

where

A =
{
u(·) : u(t) ∈ U(k̄) and u(·)

is a deterministic measurable process
}
.

The associated HJB equation is given by

λ̂ = inf
u∈U(k̄)

{〈
u − z,

∂φ(x)
∂x

〉
+ c̄(u)

}
+ h(x). (7.69)

It follows from the definitions of U(k̄) and c̄(·) that (7.12) is equivalent
to (7.69). Here we use (7.69) to prove the following theorem.

Theorem 6.2. Under Assumptions (A1)–(A2) and (A4)–(A5), we have
λε,∗ → λ as ε → 0.

Proof. First note that (7.69) has a unique viscosity solution. Now using
(i) of Theorem 6.1 and (i) of Lemma 6.3, we have for any subsequence of
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{ε} denoted by {ε�}, a further subsequence of {ε�}, still denoted by {ε�},
such that

λ∗ = lim
ε�→0

λε�,∗ (7.70)

and
V (x, k) = lim

ε�→0
Ṽ ε�(x, k), (7.71)

for all (x, k) ∈ �n × M, where λε,∗ and Ṽ ε(x, k) are given by (7.62) and
(7.63), respectively. From (iii) of Lemma 6.3, we know that V (x, k) is inde-
pendent of k. We therefore write V (x, k) as V (x). The proof that (λ∗, V (x))
is a viscosity solution of (7.69) is similar to the proof of (ii) of Lemma
6.3. limε→0 λε = λ directly follows from the uniqueness of the solution of
(7.69). �

Remark 6.1. The results obtained in this section are asymptotic in nature.
How good the constructed control is for any given system depends on how
small the value of ε associated with the system is. At present, whether ε is
sufficiently small or not is a matter of judgment. Computational work on
this issue may help sharpen this judgment. Some work along these lines in
the discounted case was done by Samaratunga, Sethi, and Zhou [110]. �

Remark 6.2. For parallel machine systems without a positive inventory
deterioration/cancellation rate, we only prove that the minimum average
cost can be approximated by the minimum average cost of the correspond-
ing limiting problem. The problem of constructing an asymptotic optimal
control (open-loop or feedback) from an optimal control of the correspond-
ing limiting problem remains open. This assumption will be used in all
subsequent chapters. Additional comments will be given in Chapter 11. �

7.7 Notes

This chapter is based on Sethi, Zhang, and Zhang [119], and Sethi and
Zhang [117]. Theorems 4.1, 5.1, and 5.2 are derived in Sethi, Zhang, and
Zhang [119]. Theorems 6.1 and 6.2 are obtained in Sethi and Zhang [117].



8
Near-Optimal Control of Dynamic
Flowshops

8.1 Introduction

The purpose of this chapter is to obtain near-optimal open-loop controls
in dynamic flowshops, defined in Section 2.3 and studied in Chapter 4.
A dynamic flowshop consists of m ≥ 2 machines in tandem and contains
internal buffers between any two machines. Since the inventories in any of
the internal buffers cannot be allowed to become negative, we must impose
nonnegativity constraints on these inventories.

Typically, the presence of these constraints disqualifies the method of
constructing asymptotic optimal controls as in the previous chapter. More
specifically, while the limiting problem in the flowshop case can be obtained
by averaging stochastic machine capacities, the control constructed from
the solution of the limiting problem in the parallel machine case may not
be feasible for the original flowshop problem in the sense that the corre-
sponding trajectory may not satisfy the state constraints.

Thus, the main difficulty is how to construct an admissible control for
the original problem from a near-optimal control of the limiting problem
in a way which still guarantees the asymptotic optimality. To overcome
this difficulty, we introduce a method of “lifting” and “shrinking.” The
basic idea behind it is as follows. First, we modify a given near-optimal
control of the limiting problem by increasing the inventory in the buffer
by a small amount. We use this resulting control to construct a “control”
for the original problem in the same way as in Chapter 7. The constructed
control is not necessarily admissible for the original problem, so we modify
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it whenever the corresponding state does not satisfy the constraint. The
“lifting” procedure in the first step ensures that the average time over which
a modification is needed is very small. We also show that the final control
constructed in this manner is indeed nearly optimal, although the order of
the error bound we obtain is εδ for any 0 < δ < 1/2, as compared with ε1/2

in the unconstrained case of Chapter 7. The small loss in the sharpness of
the error estimate is due to the lifting and modification required to honor
the state constraints.

The plan of the rest of the chapter is as follows. In Section 8.2 we recall
the formulation of the flowshop problem with m machines under considera-
tion. In Section 8.3 we prove some properties associated with the minimum
long-run average cost, and formulate the corresponding limiting problem.
Section 8.4 is devoted to proving the asymptotic optimality of the can-
didate control constructed from the limiting problem. In Section 8.5 we
illustrate the procedure of constructing asymptotic optimal controls from
the optimal control of the limiting problem. The chapter is concluded in
Section 8.6.

8.2 Problem Formulation

Let us consider a manufacturing system producing a single finished product
using m machines in tandem that are subject to breakdown and repair; see
Figure 8.1.

M1 M2 Mm
� � � � � � �· · ·

u1 u2 um z

x2 xm−1 xmx1

Figure 8.1. A Single Product Dynamic Flowshop with an m-Machine.

We are given a stochastic process k(ε, ·) = (k1(ε, ·), . . . , km(ε, ·)) on the
standard probability space (Ω,F , P ), where kj(ε, t), j = 1, . . . , m, is the
capacity of the jth machine at time t, and ε is a small scale parameter
to be specified later. We use uε

j(t) to denote the input rate to the jth
machine, j = 1, . . . , m, and xε

j(t) to denote the number of parts in the
buffer between the jth and (j+1)th machines, j = 1, . . . , m−1. We assume
a constant demand rate z. The difference between cumulative production
and cumulative demand, called surplus, is denoted by xε

m(t). If xε
m(t) > 0,

we have finished goods inventories, and if xε
m(t) < 0, we have a backlog.
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The dynamics of the system can then be written as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d

dt
xε

j(t) = −ajx
ε
j(t) + uε

j(t) − uε
j+1(t), xε

j(0) = xj ,

j = 1, . . . , m − 1,
d

dt
xε

m(t) = −amxε
m(t) + uε

m(t) − z, xε
m(0) = xm,

(8.1)

where aj > 0, j = 1, 2, . . . , m − 1, and am are constants. The attrition
rate aj represents the deterioration rate of the inventory of the part type
j when xε

j(t) > 0 (j = 1, . . . , m − 1, m), and am represents the rate of
cancellation of backlogged orders for finished goods when xε

m(t) < 0. We
assume symmetric deterioration and cancellation rates for finished goods
only for convenience in exposition. It would be easy to extend our results
if am is a function of x,

am(x) =

⎧⎨⎩ âm, if xm ≥ 0,

am, if xm < 0,

where âm > 0 denotes the deterioration rate and am > 0 denotes the order
cancellation rate. Define a = (a1, . . . , am)′,

A =

⎛⎜⎜⎝
1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1

⎞⎟⎟⎠ and B =

⎛⎜⎜⎜⎜⎝
0
0
...
0

−1

⎞⎟⎟⎟⎟⎠ .

Equation (8.1) can be written in the following vector form:

d

dt
xε(t) = −diag(a)xε(t) + Auε(t) + Bz, xε(0) = x. (8.2)

Let
L(xε(t),uε(t), z) = −diag(a)xε(t) + Auε(t) + Bz.

Then (8.2) can be changed into

d

dt
xε(t) = L(xε(t),uε(t), z), xε(0) = x.

Since the number of parts in the internal buffers cannot be negative, we
impose the state constraints xε

j(t) ≥ 0, j = 1, . . . , m − 1. To formulate the
problem precisely, let X = [0, +∞)m−1 × (−∞, +∞) ⊆ �m denote the
state constraint domain. For k = (k1, . . . , km), kj ≥ 0, j = 1, . . . , m, let

U(k) = {u = (u1, . . . , um)′ : 0 ≤ uj ≤ kj , j = 1, . . . , m} , (8.3)
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and for x ∈ X let

U(x,k) = {u : u ∈ U(k) and xj = 0 ⇒ uj − uj+1 ≥ 0,

j = 1, . . . , m − 1} .
(8.4)

Let the σ-algebra Fε
t = σ{k(ε, s) : 0 ≤ s ≤ t}. We now define the concept

of admissible controls.

Definition 2.1. We say that a control u(·) = (u1(·), . . . , um(·))′ is admis-
sible with respect to the initial state vector x = (x1, . . . , xm)′ ∈ X , if each
of the following conditions hold:

(i) u(·) is an Fε
t -adapted measurable process;

(ii) u(t) ∈ U(k(ε, t)) for all t ≥ 0; and

(iii) the solution x(t) of

d

dt
x(t) = L(x(t),u(t), z), (8.5)

with x(0) = x satisfies x(t) = (x1(t), . . . , xm(t))′ ∈ X for all t ≥ 0.�

Remark 2.1. Condition (iii) is equivalent to u(t) ∈ U(x(t),k(ε, t)), t ≥ 0.
�

We use Aε(x,k) to denote the set of all admissible controls with respect
to x ∈ X and k(ε, 0) = k. The problem is to find an admissible control
u(·) ∈ Aε(x,k) that minimizes the cost function

Jε(x,k,u(·)) = lim sup
T→∞

1
T

E

∫ T

0
[h(x(t)) + c(u(t))] dt, (8.6)

where h(·) defines the cost of surplus and c(·) is the production cost.
We impose the following assumptions on the random process k(ε, ·) =

(k1(ε, ·), . . . , km(ε, ·)) and the cost functions h(·) and c(·) throughout this
chapter.

(A1) Let M = {k1, . . . ,kp} for some given integer p ≥ 1, where the ith
state ki = (ki

1, . . . , k
i
m), with ki

j , j = 1, . . . , m, denoting the capacity
of the jth machine in state i, i = 1, . . . , p. The capacity process
k(ε, t) ∈ M, t ≥ 0, is a Markov chain with the infinitesimal generator

Qε = Q(1) +
1
ε
Q(2),

where Q(1) = (q(1)
kikj ) and Q(2) = (q(2)

kikj ) are matrices such that

q
(�)
kikj ≥ 0 if j �= i, q(�)

kiki= −
∑

j �=iq
(�)

kikj for � = 1, 2, and ε > 0 is the
given scale parameter assumed to be small.
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(A2) Q(2) is strongly irreducible. Let ν = (νk1 , . . . ,νkp ) denote the equilib-
rium distribution of Q(2). Furthermore, we assume that the average
capacity of the least capable machine exceeds demand, i.e.,

min
1≤j≤m

{
p∑

i=1

νkiki
j

}
> z. (8.7)

(A3) h(x) is a nonnegative, convex function with h(0) = 0. There are
positive constants Ch1, Ch2, and βh1 ≥ 1 such that

h(x) ≥ Ch1|x|βh1 − Ch2, x ∈ X .

Moreover, there are constants Ch3 and βh2 ≥ βh1 such that

|h(x) − h(y)| ≤ Ch3(1 + |x|βh2−1 + |y|βh2−1)|x − y|, x,y ∈ X .

(A4) c(u) is a nonnegative convex function.

Let λε(x,k) denote the minimal expected cost, i.e.,

λε(x,k) = inf
u(·)∈Aε(x,k)

Jε(x,k,u(·)). (8.8)

Here the long-run average-cost criterion is used. Under Assumptions (A1)
and (A2), there exists a ε0 > 0 such that for ε ∈ (0, ε0], the Markov chain
k(ε, ·) is strongly irreducible, i.e.,

νε

[
Q(1) +

1
ε
Q(2)

]
= 0 and

p∑
i=1

νε
ki= 1

have a unique positive solution νε, and

min
1≤j≤m

{
p∑

i=1

νε
kiki

j

}
> z.

It follows from Chapter 4 that λε(x,k) is independent of the initial condi-
tion (x,k). Thus we will use λε instead of λε(x,k). We use Pε to denote
our control problem, i.e.,

Pε:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min Jε(x,k,u(·)) = lim sup
T→∞

1
T

E

∫ T

0
[h(x(t)) + c(u(t))] dt,

s.t.
d

dt
x(t) = L(x(t),u(t), z), x(0) = x, u(·) ∈ Aε(x,k),

minimum average cost λε = inf
u(·)∈Aε(x,k)

Jε(x,k,u(·)).
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As in Chapter 7, the positive attrition rate a implies a uniform bound
for xε(t). In view of the fact that the control uε(t) is bounded between 0
and max{|ki|, 1 ≤ i ≤ p}, this implies that any solution xε(·) of equation
(8.1) must satisfy

|xε
j(t)| =

∣∣∣∣xje
−ajt + e−ajt

∫ t

0
eajs

[
uε

j(s) − uε
j+1(s)

]
ds

∣∣∣∣
≤ |xj |e−ajt +

(
max
1≤i≤p

{|ki|} + z

)∫ t

0
e−aj(t−s) ds

≤ |xj |e−ajt +
max1≤i≤p{|ki|} + z

aj
, j = 1, . . . , m,

(8.9)

where um+1(s) = z. Thus under the positive deterioration/cancellation
rate, the surplus process xε(·) remains bounded.

8.3 The Limiting Control Problem

In this section we examine elementary properties of the potential function
and obtain the limiting control problem as ε → 0.

The average-cost Hamilton-Jacobi-Bellman (HJB) equation in the direc-
tional derivative sense (HJBDD) for the optimal control problem in Pε, as
shown in Chapter 4, takes the form

λε = inf
u∈U(x,k)

{
∂L(x,u,z)φ

ε(x,k) + c(u)
}

+ h(x)

+
(

Q(1) +
1
ε
Q(2)

)
φε(x, ·)(k),

(8.10)

where φε(·, ·) is the function defined on X × M. Our analysis begins with
the proof of the boundedness of λε.

Theorem 3.1. Let Assumptions (A1)–(A4) hold. The minimum average
expected cost λε of Pε is bounded in ε, i.e., there exists a constant C > 0
such that

0 ≤ λε ≤ C, for all ε > 0.

Proof. According to the definition of λε, it suffices to show that there exist
a constant C1 and a control u(·) ∈ Aε(0,k) such that the solution x(t) of

d

dt
x(t) = L(x(t),u(t), z), x(0) = 0, (8.11)
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along with u(·) satisfy

lim sup
T→∞

1
T

E

∫ T

0
[h(x(t)) + c(u(t))] dt ≤ C1. (8.12)

In view of (8.11), we can derive

xj(t) = e−ajt

∫ t

0
eajs[uj(s) − uj+1(s)] ds,

for j = 1, . . . , m − 1, and

xm(t) = e−amt

∫ t

0
eams[um(s) − z] ds.

Then from (8.3), we conclude that, for j = 1, . . . , m,

|xj(t)| ≤ z + max{|ki|, 1 ≤ i ≤ p}
aj

. (8.13)

It is clear under Assumptions (A3) and (A4) that the functions h(x) and
c(u) are continuous. Recall that u(t) ≥ 0, |u(t)| ≤ max{|ki|, 1 ≤ i ≤ p}.
These facts together with inequality (8.13) imply (8.12). �

In the remainder of this section, we derive the limiting control problem
as ε → 0. Intuitively, as the rates of the machine breakdown and repair
approach infinity, the problem Pε, which is termed the original control
problem, can be approximated by a simpler problem called the limiting
control problem, where the stochastic machine capacity process k(ε, ·) is
replaced by a weighted form. The limiting control problem is precisely
formulated as follows.

We consider the augmented control

U(·) = (u1(·), . . . ,up(·)),

where ui(t) = (ui
1(t), . . . , u

i
m(t))′ ∈ U(ki) for all t and ui(·) is a determin-

istic process for each i. For x ∈ X , let

A0(x) =
{

U(·) : the solution
d

dt
x(t) = L

(
x(t),

p∑
i=1

νkiui(t), z

)
,

x(0) = x satisfies that x(t) ∈ X for all t ≥ 0
}

.

The objective of the limiting control problem is to choose a control U(·) ∈
A0(x) that minimizes

J(x, U(·)) = lim sup
T→∞

1
T

∫ T

0

[
h(x(s)) +

p∑
i=1

νkic(ui(s))

]
ds.
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We use P0 to denote the above problem, and will regard this as our limiting
control problem. For ease of reference, we rewrite P0 as follows:

P0 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min J(x, U(·))

= lim sup
T→∞

1
T

∫ T

0

[
h(x(s)) +

p∑
i=1

νkic(ui(s))

]
ds,

s.t.
d

dt
x(t) = L

(
x(t),

p∑
i=1

νkiui(t), z

)
,

x(0) = x, U(·) ∈ A0(x),

minimum average cost λ = inf
U(·)∈A0(x)

J(x, U(·)).

The HJBDD equation associated with P0 is

λ = inf
ui∈U(ki),ki∈M

{
∂L(x,

∑p
i=1 νkiui,z)φ(x) +

p∑
i=1

νkic(ui)

}
+h(x), (8.14)

where φ(·) is the function defined on X .

8.4 Convergence of the Minimum Average
Expected Cost

In this section we consider the convergence of the minimum average ex-
pected cost λε as ε goes to zero, and establish its convergence rate. In
order to get the required convergence result, we need the following lemma,
which is the key to obtaining our main result.

Lemma 4.1. Let Assumptions (A3) and (A4) hold for δ ∈ (0, 1/2). Then
there exist ε0 > 0, C > 0, and x = (x1, . . . , xm)′ ∈ X , such that for each
given ε ∈ (0, ε0], we can choose a control

(u1(·), . . . ,up(·)) =
(
(ū1

1(·), . . . , ū1
m(·))′, . . . , (ūp

1(·), . . . , ūp
m(·))′) ∈ A0(x),

satisfying, for each j = 1, . . . , m, and all t ≥ 0,

εδ ≤
p∑

i=1

νki ūi
j(t) ≤

p∑
i=1

νkiki
j − εδ (8.15)

and

λ + Cεδ ≥ lim sup
T→∞

1
T

∫ T

0

[
h(x(t)) +

p∑
i=1

νkic(ui(t))

]
dt, (8.16)
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where x(·) is a solution of

d

dt
x(t) = L

(
x(t),

p∑
i=1

νkiui(t), z

)
, x(0) = x.

Proof. First for each fixed ε > 0, we select an x̃ and(
ũ1(·), . . . , ũp(·)

)
=

(
(ũ1

1(·), . . . , ũ1
m(·))′, . . . , (ũp

1(·), . . . , ũp
m(·))′) ∈ A0(x̃),

(8.17)

such that

λ + ε > lim sup
T→∞

1
T

∫ T

0

[
h(x̃(t)) +

p∑
i=1

νkic(ũi(t))

]
dt, (8.18)

where x̃(t) = (x̃1(t), . . . , x̃m(t))′ satisfies

d

dt
x̃(t) = L

(
x̃(t),

p∑
i=1

νkiũi(t), z

)
, x̃(0) = x̃.

Based on (8.17) and (8.18), we construct (u1(·), . . . ,up(·)) such that (8.15)
and (8.16) hold. Let

C(j) = {i : ki
j �= 0}, j = 1, . . . , m, (8.19)

and

C1 = min
1≤j≤m

{
p∑

i=1

νkiki
j

}
and C2 =

1∑
i∈C(1) νki

· C1

C1 − 2εδ
. (8.20)

We choose ε1 > 0 such that, for ε ∈ (0, ε1],

C2ε
δ ≤ min

i∈C(1)
{ki

1}. (8.21)

Let
ui

1(t) = ũi
1(t) ∨ (C2ε

δ), for i ∈ C(1),

ui
1(t) = 0, for i �∈ C(1),

and
ui

j(t) = ũi
j(t), for i = 1, . . . , p, j = 2, . . . , m.

Clearly, for i = 1, . . . , p, ∣∣ui(t) − ũi(t)
∣∣ ≤ C2ε

δ. (8.22)
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Let x(·) be a solution of

d

dt
x(t) = L

(
x(t),

p∑
i=1

νkiui(t), z

)
, x(0) = x̃.

Since, for i = 1, . . . , p and t ≥ 0,

ui
1(t) ≥ ũi

1(t) and ui
j(t) = ũi

j(t), j = 2, . . . , m,

we have

x1(t) = x̃1e
−a1t +

∫ t

0
e−a1(t−s)

[
p∑

i=1

νkiui
1(s) −

p∑
i=1

νkiui
2(s)

]
ds

≥ x̃1e
−a1t +

∫ t

0
e−a1(t−s)

[
p∑

i=1

νki ũi
1(s) −

p∑
i=1

νki ũi
2(s)

]
ds

= x̃1(t) ≥ 0,

(8.23)

xj(t) = x̃je
−ajt +

∫ t

0
e−aj(t−s)

[
p∑

i=1

νkiui
j(s) −

p∑
i=1

νkiui
j+1(s)

]
ds

= x̃je
−ajt +

∫ t

0
e−aj(t−s)

[
p∑

i=1

νki ũi
j(s) −

p∑
i=1

νki ũi
j+1(s)

]
ds

= x̃j(t),
(8.24)

for j = 2, . . . , m − 1, and

xm(t) = x̃me−amt +
∫ t

0
e−am(t−s)

[
p∑

i=1

νkiui
m(s) − z

]
ds

= x̃me−amt +
∫ t

0
e−am(t−s)

[
p∑

i=1

νki ũi
m(s) − z

]
ds

= x̃m(t).

(8.25)

Therefore,

(u1(·), . . . ,up(·)) = ((u1
1(·), . . . , u1

m(·))′, . . . , (up
1(ε, ·), . . . , up

m(·))′) ∈ A0(x̃).

Furthermore, from the definition of (u1(·), . . . ,up(·)), we have

0 ≤
p∑

i=1

νkiui
1(t) −

p∑
i=1

νki ũi
1(t) ≤ C2ε

δ, (8.26)
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where
∑p

i=1 νki= 1 is applied. Hence,

0 ≤ x1(t) − x̃1(t) ≤ e−a1t

∫ t

0
ea1sC2ε

δ ds

≤ C2ε
δ/a1.

(8.27)

Thus (8.24), (8.25), and (8.27) lead to

|x(t) − x̃(t)| ≤ C2ε
δ/a1. (8.28)

In view of (8.22) and (8.28), Assumptions (A3) and (A4), and the bound-
edness of x̃(t) and x(t), there is a constant C3 > 0 such that∣∣∣∣∣lim sup

T→∞
1
T

∫ T

0

[
h(x(t)) +

p∑
i=1

νkic(ui(t))

]
dt

− lim sup
T→∞

1
T

∫ T

0

[
h(x̃(t)) +

p∑
i=1

νkic(ũi(t))

]
dt

∣∣∣∣∣
≤ lim sup

T→∞
1
T

∫ T

0

∣∣∣∣∣
[
h(x(t)) +

p∑
i=1

νkic(ui(t))

]

−
[
h(x̃(t)) +

p∑
i=1

νkic(ũi(t))

]∣∣∣∣∣ dt

≤ lim sup
T→∞

1
T

∫ T

0
C3

[
C2ε

δ

a1
+ C2ε

δ

]
dt

= C3C2

(
1 +

1
a1

)
εδ.

Thus, (8.18) implies that

λ + C4ε
δ > lim sup

T→∞
1
T

∫ T

0

[
h(x(t)) +

p∑
i=1

νkic(ui(t))

]
dt, (8.29)

for some C4 > 0. For i = 1, . . . , p, define

ûi
1(t) =

ui
1(t)

1 + 2εδ/(C1 − 2εδ)

and

ûi
j(t) =

ui
j(t)

1 + 2εδ/(C1 − 2εδ)
, j = 2, . . . , m.

Then solve

d

dt
x̂(t) = L

(
x̂(t),

p∑
i=1

νkiûi(t), z

)
, x̂(0) =

x̃

1 + 2εδ/(C1 − 2εδ)
,
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to obtain

x̂j(t) =
x̃j

1 + 2εδ/(C1 − 2εδ)
e−ajt

+ e−ajt

∫ t

0
eajs

(
p∑

i=1

νki ûi
j(s) −

p∑
i=1

νki ûi
j+1(s)

)
ds

=
xj(t)

1 + 2εδ/(C1 − 2εδ)
≥ 0, for j = 1, . . . , m − 1,

and
x̂m(t) =

x̃m

1 + 2εδ/(C1 − 2εδ)
e−amt

+ e−amt

∫ t

0
eams

(
p∑

i=1

νki ûi
m(s) − z

)
ds

=
1

1 + 2εδ/(C1 − 2εδ)
xm(t) − 2zεδ

amC1
(1 − e−amt).

Therefore,

(û1(·), . . . , ûp(·))

= ((û1
1(·), . . . , û1

m(·))′, . . . , (ûp
1(·), . . . , ûp

m(·))′) ∈ A0
(

x̃

1 + 2εδ/(C1 − 2εδ)

)
.

Furthermore, from the boundedness of x(t) and (u1(·), . . . ,up(·)), we have

|x̂(t) − x(t)|

=
(

1 − 1
1 + 2εδ/(C1 − 2εδ)

) m−1∑
j=1

xj(t)

+
∣∣∣∣ 2zεδ

amC1
(1 − e−amt) +

(
1 − 1

1 + 2εδ/(C1 − 2εδ)

)
xm(t)

∣∣∣∣
≤ C5ε

δ,

(8.30)

and ∣∣ûi(t) − ui(t)
∣∣ ≤ C5ε

δ, i = 1, . . . , p, (8.31)

for some C5 > 0. Similar to (8.29), we can show by (8.30) and (8.31) that
there exists a constant C6 > 0 such that

λ + C6ε
δ > lim sup

T→∞
1
T

∫ T

0

[
h(x̂(t)) +

p∑
i=1

νkic(ûi(t))

]
dt. (8.32)
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By the definitions of C1 and C2 we know that

p∑
i=1

νki ûi
1(t) =

p∑
i=1

νki

ui
1(t)

1 + 2εδ/(C1 − 2εδ)

≥ C2ε
δ

1 + 2εδ/(C1 − 2εδ)

∑
i∈C(1)

νki

≥ εδ,

(8.33)

p∑
i=1

νki ûi
1(t) =

p∑
i=1

νki

ui
1(t)

1 + 2εδ/(C1 − 2εδ)

≤
p∑

i=1

νki

ki
1

1 + 2εδ/(C1 − 2εδ)

≤
p∑

i=1

νkiki
1 − 2εδ,

(8.34)

and, for j = 2, . . . , m,

p∑
i=1

νki ûi
j(t) =

p∑
i=1

νki

ui
j(t)

1 + 2εδ/(C1 − 2εδ)

≤
p∑

i=1

νki

ki
j

1 + 2εδ/(C1 − 2εδ)

≤
p∑

i=1

νkiki
j − 2εδ.

(8.35)

In order to obtain the left inequality of (8.15) for j = 2, . . . , m, we choose
(vi

1(t), . . . , v
i
m(t))′(≥ 0), i = 1, . . . , p. First, for j = 1, . . . , m and i �∈ C(j),

set
vi

j(t) = 0.

For i ∈ C(j), we consider two cases.

Case 1: min
1≤j≤m

{
p∑

�=1

νk� û�
j(t)

}
≥ εδ,

Case 2: min
1≤j≤m

{
p∑

�=1

νk� û�
j(t)

}
< εδ.

For Case 1, set vi
j(t) = 0. To deal with Case 2, note that for each j ∈

{1, . . . , m}, there is an l(j) (∈ {1, . . . , p}) such that k
l(j)
j > 0. Now choose
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ε2 > 0 (< ε1) such that for each ε ∈ (0, ε2] and j = 1, . . . , m, νkl(j)k
l(j)
j >

2εδ. For Case 2, choose

νkivi
j(t) =

⎧⎨⎩ 0, if i �= l(j),

εδ, if i = l(j).

Define

ūi
j(t) = ûi

j(t) + vi
j(t), i = 1, . . . , p and j = 1, . . . , m, (8.36)

and

(u1(t), . . . ,up(t)) = ((ū1
1(t), . . . , ū

1
m(t))′, . . . , (ūp

1(t), . . . , ū
p
m(t))′),

and let x(t) be defined by

d

dt
x(t) = L

(
x(t),

p∑
i=1

νkiui(t), z

)
, x(0) =

x̃

1 + 2εδ/(C1 − 2εδ)
.

Set

x =
x̃

1 + 2εδ/(C1 − 2εδ)
.

We know, in view of (8.33)–(8.35), that (u1(·), . . . ,up(·)) ∈ A0(x) satisfies
(8.15) with ε0 = ε1∧ε2. Furthermore, from the definition of (vi

1(t), . . . , v
i
m(t))

and (8.36),

xj(t) = x̂j(t), j = 1, . . . , m − 1, t ≥ 0,

xm(t) = x̂m(t) +
1 − e−amt

am
εδ, t ≥ 0.

Therefore, (8.32) gives (8.16). �

From Lemma 4.1, we can get the following result, which states that
there is an asymptotic optimal control that keeps the work-in-process in
each buffer to be bounded below by a possible quantity.

Lemma 4.2. Let Assumptions (A3) and (A4) hold for δ ∈ (0, 1/2). Then
there exist an ε0 > 0, C > 0, Ĉ > 0, and x = (x1, . . . , xm)′ ∈ X such that
for each given ε ∈ (0, ε0], we can choose a control

(u1(·), . . . ,up(·)) = ((ū1
1(·), . . . , ū1

m(·))′, . . . , (ūp
1(·), . . . , ūp

m(·))′) ∈ A0(x)

satisfying
min

1≤j≤m−1
inf

0≤t<∞
x̄j(t) ≥ Cεδ (8.37)
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and

λ + Ĉεδ ≥ lim sup
T→∞

1
T

∫ T

0

[
h(x(t)) +

p∑
i=1

νkic(ui(t))

]
dt, (8.38)

where x(·) is a solution of

d

dt
x(t) = L

(
x(t),

p∑
i=1

νkiui(t), z

)
, x(0) = x.

Proof. Let

(u1(·), . . . ,up(·)) = ((u1
1(·), . . . , u1

m(·))′, . . . , (up
1(·), . . . , up

m(·))′) ∈ A0(x)

satisfy (8.15) and (8.16) in Lemma 4.1, and let x(·) be a solution of

d

dt
x(t) = L

(
x(t),

p∑
i=1

νkiui(t), z

)
, x(0) = x.

Therefore, there exists

(u1(·), . . . ,up(·)) = ((ū1
1(·), . . . , ū1

m(·))′, . . . , (ūp
1(·), . . . , ūp

m(·))′) ∈ A0(x),

such that
p∑

i=1

νkiui
j(t) =

p∑
i=1

νkiui
j(t) +

εδ

j
, j = 1, . . . , m,

and ∣∣ui(t) − ui(t)
∣∣ ≤ εδ, i = 1, . . . , p. (8.39)

Let x(·) be a solution of

d

dt
x(t) = L

(
x(t),

p∑
i=1

νkiui(t), z

)
, x(0) = x + 1εδ.

Then, for j = 1, . . . , m − 1,

xj(t) = xj(t) + e−ajtεδ +
εδ

j(j + 1)

∫ t

0
e−aj(t−s) ds

≥ C1ε
δ,

(8.40)

for some C1 > 0, which implies (8.37). Furthermore,

xm(t) = xm(t) + e−amtεδ +
εδ

m

∫ t

0
e−am(t−s) ds. (8.41)
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It follows from the first equality of (8.40) and (8.41) that, for t ≥ 0,

|x(t) − x(t)| ≤ C2ε
δ. (8.42)

By (8.39) and (8.42), similar to (8.29), we have (8.38). �

With Lemmas 4.1 and 4.2 we can prove our main result.

Theorem 4.1. Let Assumptions (A1)–(A4) hold. Then, for any given δ ∈
(0, 1/2), there exist an ε0 > 0 and a constant C > 0 such that, for all
ε ∈ (0, ε0],

|λε − λ| ≤ Cεδ.

This implies in particular that limε→0 λε = λ.

Proof. We begin with an outline of the major steps in the proof. First
we prove λε < λ + Cεδ by constructing an admissible control uε(t) of
Pε from a near-optimal control of the limiting control problem P0 and
by estimating the difference between the state trajectories corresponding
to these two controls. Then we establish the opposite inequality, namely,
λε > λ−Cεδ, by constructing a control of the limiting control problem P0

from a near-optimal control of Pε, and then using Assumptions (A3) and
(A4).

In order to show that
λε ≤ λ + Cεδ, (8.43)

we can choose, in view of Lemma 4.2,

(u1(·), . . . ,up(·)) = ((ū1
1(·), . . . , ū1

m(·))′, . . . , (ūp
1(·), . . . , ūp

m(·))′) ∈ A0(x),

such that
min

1≤j≤m−1
inf

0≤t<∞
x̄j(t) ≥ C1ε

δ (8.44)

and

λ + C2ε
δ ≥ lim sup

T→∞
1
T

∫ T

0

[
h(x(t)) +

p∑
i=1

νkic(ui(t))

]
dt, (8.45)

for some C1 > 0 and C2 > 0, where x(·) is a solution of

d

dt
x(t) = L

(
x(t),

p∑
i=1

νkiui(t), z

)
, x(0) = x.

We construct the control

uε(t) =
p∑

i=1

I{k(ε,t)=ki}u
i(t),
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and let xε(·) be the solution of

d

dt
x(t) = L (x(t), uε(t), z) , x(0) = x.

Then, for j = 1, . . . , m − 1,

E
∣∣x̄ε

j(t) − x̄j(t)
∣∣2

= E

∣∣∣∣∣e−ajt

∫ t

0
eajs

[(
ūε

j(s) −
p∑

i=1

νki ūi
j(s)

)

−
(

ūε
j+1(s) −

p∑
i=1

νki ūi
j+1(s)

)]
ds

∣∣∣∣∣
2

≤ 2E

[
e−ajt

∫ t

0
eajs

(
ūε

j(s) −
p∑

i=1

νki ūi
j(s)

)
ds

]2

+ 2E

[
e−ajt

∫ t

0
eajs

(
ūε

j+1(s) −
p∑

i=1

νki ūi
j+1(s)

)
ds

]2

,

and

E |x̄ε
m(t) − x̄m(t)|2 = E

[
e−amt

∫ t

0
eams

(
ūε

m(s) −
p∑

i=1

νki ūi
m(s)

)
ds

]2

.

Similar to the proof of (7.21) in Chapter 7, we have

E
∣∣x̄ε

j(t) − x̄j(t)
∣∣ ≤ C3ε

1/2, j = 1, . . . , m, (8.46)

for some C3 > 0. Consequently, by the boundedness of xε(t) and x(t) and
Assumption (A3), we get∣∣∣∣∣lim sup

T→∞
1
T

E

∫ T

0
h(xε(t)) dt − lim sup

T→∞
1
T

∫ T

0
h(x(t)) dt

∣∣∣∣∣
≤ lim sup

T→∞
Ch3

T

∫ T

0
E
[(

1 + |xε(t)|βh2−1 + |x(t)|βh2−1 )
× |xε(t) − x(t)|

]
dt

≤ C4ε
1/2,

(8.47)
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for some C4 > 0. It follows from Lemma B.3 and Assumption (A4) that

∣∣∣∣∣lim sup
T→∞

1
T

E

∫ T

0
c(uε(t)) dt − lim sup

T→∞
1
T

∫ T

0

p∑
i=1

νkic(ui(t)) dt

∣∣∣∣∣
=

∣∣∣∣∣lim sup
T→∞

1
T

E

∫ T

0

p∑
i=1

I{k(ε,t)=ki}c(u
i(t)) dt

− lim sup
T→∞

1
T

∫ T

0

p∑
i=1

νkic(ui(t)) dt

∣∣∣∣∣
≤ lim sup

T→∞
1
T

∫ T

0

p∑
i=1

∣∣P (k(ε, t) = ki) − νki

∣∣ · c(ui(t)) dt

≤ C5ε,

(8.48)

for some C5 > 0. Thus, combining (8.45) and (8.47)–(8.48), we see that
there is a constant C6 > 0 such that

lim sup
T→∞

1
T

E

∫ T

0
[h(xε(t)) + c(uε(t))] dt ≤ λ + C6(ε + εδ + ε1/2). (8.49)

Note that in general, uε(·) �∈ Aε(x,k(ε, 0)). So starting from uε(·), we
must construct uε(·) ∈ Aε(x,k(ε, 0)) such that it and its corresponding
state trajectory satisfy (8.49). Consequently, we get (8.43). To do this, let

M1 = max
1≤i≤p
1≤j≤m

{
ki

j

}
and M2 = max

1≤j≤m

{
1
aj

ln
(

C1ajε
δ

5M1

)−1
}

,

where C1 is given in (8.44). There is an ε0 > 0 such that, for ε ∈ (0, ε0],
M2 > 0. We show that there exists a control uε(·) ∈ Aε(x,k(ε, 0)) such
that for t > 2M2 and j = 1, . . . , m,

E
∣∣uε

j(t) − uε
j(t)

∣∣ ≤ C7 exp
{

− M3ε
−(1−2δ)/2(1 + M2)−3/2}, (8.50)

for some C7 > 0 and M3 > 0. Let xε(·) be the solution of

d

dt
x(t) = L(x(t),uε(t), z), x(0) = x.
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Hence, Assumptions (A3) and (A4) imply that, for T > 2M2,

E

∫ T

0
|c(uε(t)) − c(uε(t))| dt

≤ C8

∫ T

0
E |uε(t) − uε(t)| dt

≤ C8

∫ 2M2

0
E |uε(t) − uε(t)| dt

+ C8C7

∫ T

2M2

exp
{

− M3ε
−(1−2δ)/2(1 + M2)−3/2}dt

(8.51)

and

E

∫ T

0
|h(xε(t)) − h(xε(t))| dt

≤ C9

∫ T

0
E |xε(t) − xε(t)| dt

≤ C9

m∑
j=1

∫ T

0
e−ajt

(∫ t

0
eajsE|uε

j(s) − ūε
j(s)| ds

)
dt

≤ C9

aj

m∑
j=1

∫ T

0
E|uε

j(s) − ūε
j(s)| ds,

(8.52)

for some C8 > 0 and C9 > 0. Therefore, we know, in view of (8.49)–
(8.50) and (8.51)–(8.52), that (8.43) holds. Thus, it suffices to show that
there is uε(·) ∈ Aε(x,k(ε, 0)) which satisfies (8.50). We will modify uε(t)
to uε(t) in such a way that (8.50) holds and uε(·) ∈ Aε(x,k(ε, 0)). This
modification is based on the estimation of

P
(
x̄ε

j(t) < 0
)
, t > 2M2, j = 1, . . . , m − 1.

Thus we use (8.44) first to establish the following inequality. For j =
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1, . . . , m − 1,

P

(
x̄ε

j(t) ≤ C1ε
δ

2

)
≤ P

(
x̄ε

j(t) ≤ x̄j(t) − C1ε
δ

2

)
(by (8.44))

= P

(
x̄j(t) − x̄ε

j(t) ≥ C1ε
δ

2

)
≤ P

(∣∣x̄j(t) − x̄ε
j(t)

∣∣ ≥ C1ε
δ

2

)

≤ P

(∣∣∣∣∫ t

0
e−aj(t−s)

[ p∑
i=1

(
I{k(ε,s)=ki} − νki

)
ūi

j(s)
]

ds

∣∣∣∣ ≥ C1ε
δ

4

)

+ P

(∣∣∣∣∣
∫ t

0
e−aj(t−s)

[
p∑

i=1

(
I{k(ε,s)=ki} − νki

)
ūi

j+1(s)

]
ds

∣∣∣∣∣ ≥ C1ε
δ

4

)
.

(8.53)
Note that, for t > 2M2 and j = 1, . . . , m,∣∣∣∣∣
∫ t

0
e−aj(t−v)

[
p∑

i=1

(
I{k(ε,v)=ki} − νki

)
ūi

j(v)

]
dv

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t−M2

0
e−aj(t−v)

[
p∑

i=1

(
I{k(ε,v)=ki} − νki

)
ūi

j(v)

]
dv

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

t−M2

e−aj(t−v)

[
p∑

i=1

(
I{k(ε,v)=ki} − νki

)
ūi

j(v)

]
dv

∣∣∣∣∣
≤ M1

∫ t−M2

0
e−aj(t−v) dv

+

∣∣∣∣∣
∫ t

t−M2

e−aj(t−v)

[
p∑

i=1

(
I{k(ε,v)=ki} − νki

)
ūi

j(v)

]
dv

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t

t−M2

e−aj(t−v)

[
p∑

i=1

(
I{k(ε,v)=ki} − νki

)
ūi

j(v)

]
dv

∣∣∣∣∣ +
C1ε

δ

5
.

(8.54)

Therefore, it follows from Corollary B.3 and (8.53)–(8.54) that, for t > 2M2
and j = 1, . . . , m − 1,

P

(
x̄ε

j(t) ≤ C1ε
δ

2

)
≤ Ĉ1 exp

{
− M3ε

−(1−2δ)/2(1 + M2)−3/2}, (8.55)
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for some Ĉ1 > 0 and M3 > 0. This implies that

P
(
x̄ε

j(t) ≤ 0
)

≤ Ĉ1 exp
{

− M3ε
−(1−2δ)/2(1 + M2)−3/2}. (8.56)

Based on (8.56), we use the induction argument to construct the desired
uε(t) from uε(t). First, for m = 2, let

Bε
1 =

{
t : x̄ε

1(t) − inf
0≤s≤t

x̄ε
1(s) = 0 and x̄ε

1(t) < 0
}
.

Define

(uε
1(t), u

ε
2(t)) =

⎧⎨⎩ (ūε
1(t), ū

ε
2(t)), t �∈ Bε

1,

(ūε
1(t) ∧ ūε

2(t), ū
ε
1(t) ∧ ūε

2(t)), t ∈ Bε
1,

(8.57)

and let

xε
1(t) = x1e

−a1t + e−a1t

∫ t

0
ea1s [uε

1(s) − uε
2(s)] ds,

xε
2(t) = x2e

−a2t + e−a2t

∫ t

0
ea2s [uε

2(s) − z] ds.

We know that (xε
1(t), x

ε
2(t))

′ ∈ X , and

E|uε(t) − uε(t)| = E
[
|uε(t) − uε(t)|I{x̄ε

1(t)<0}
]

≤ Ĉ2P (x̄ε
1(t) < 0) ,

for some Ĉ2 > 0. Thus, (8.56) implies that there is a control uε(·) such
that (8.50) is true and uε(·) ∈ Aε(x,k(ε, 0)) for m = 2. At the same time,
it follows from (8.57) that

uε
1(t) ≤ ūε

1(t), uε
2(t) ≤ ūε

2(t). (8.58)

In order to apply induction, we modify the first buffer. From the case
m = 2, there exist ûε

1(t) and ûε
2(t) with

ûε
1(t) ≤ ūε

1(t) and ûε
2(t) ≤ ūε

2(t), (8.59)

such that, for i = 1, 2,

E |ûε
i (t) − ūε

i (t)| ≤ Ĉ2P (x̄ε
1(t) < 0) , (8.60)

and

x̂ε
1(t) = x1e

−a1t + e−a1t

∫ t

0
ea1s [ûε

1(s) − ûε
2(s)] ds ≥ 0. (8.61)
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Now consider the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ûε
j(t) = ūε

j(t), j = 3, . . . , m,

x̂ε
j(t) = xje

−ajt +
∫ t

0
e−aj(t−s) [ûε

j(s) − ûε
j+1(s)

]
ds,

j = 2, . . . , m − 1,

x̂ε
m(t) = xme−amt +

∫ t

0
e−am(t−s) [ûε

m(s) − z] ds.

(8.62)

We want to use an induction on this system. For this, we need to show that
the inequality (8.56) for x̂ε(t) holds. By (8.62), we only need to show that
(8.55) holds for j = 2. Note that, for t > 2M2, by (8.59),

x̂ε
2(t) = x̄ε

2(t) +
∫ t

0
e−a2(t−s) [ûε

2(s) − ūε
2(s)] ds

= x̄ε
2(t) +

∫ t−M2

0
e−a2(t−s) [ûε

2(s) − ūε
2(s)] ds

+
∫ t

t−M2

e−a2(t−s) [ûε
2(s) − ūε

2(s)] ds

≥ x̄ε
2(t) − M1

∫ t−M2

0
e−a2(t−s) ds

+
∫ t

t−M2

e−a2(t−s) [ûε
2(s) − ūε

2(s)] I{x̄ε
1(s)<0} ds

≥ x̄ε
2(t) − C1ε

δ

5
− M1

∫ t

t−M2

e−a2(t−s)I{x̄ε
1(s)<0} ds.

(8.63)

Thus,

P

(
x̂ε

2(t) <
C1ε

δ

5

)
≤ P

(
x̄ε

2(t) − M1

∫ t

t−M2

e−a2(t−s)I{x̄ε
1(s)<0} ds ≤ 2C1ε

δ

5

)

≤ P

(
x̄ε

2(t) ≤ C1ε
δ

2

)
+ P

(
x̄ε

2(t) >
C1ε

δ

2
, x̄ε

2(t) − M1

∫ t

t−M2

e−a2(t−s)I{x̄ε
1(s)<0} ds ≤ 2C1ε

δ

5

)

≤ P

(
x̄ε

2(t) ≤ C1ε
δ

2

)
+ P

(
M1

∫ t

t−M2

e−a2(t−s)I{x̄ε
1(s)<0} ds ≥ C1ε

δ

10

)
.

(8.64)
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Note that

P

(
M1

∫ t

t−M2

e−a2(t−s)I{x̄ε
1(s)<0} ds ≥ C1ε

δ

10

)
≤ 10M1

C1εδ
E

∫ t

t−M2

e−a2(t−s)I{x̄ε
1(s)<0} ds

≤ 10M1

a2C1εδ
Ĉ1 exp

{
− M3ε

−(1−2δ)/2(1 + M2)−3/2}.

(8.65)

Combining (8.55), (8.64), and (8.65), we have

P

(
x̂ε

2(t) <
C1ε

δ

5

)
≤ Ĉ3 exp

{
− M3ε

−(1−2δ)/2(1 + M2)−3/2}d, (8.66)

for some Ĉ3 > 0 and δ ∈ (0, 1/2). By induction on (m − 1), there exist

(uε
2(t), . . . , u

ε
m(t))′

such that (8.50) holds, and for j = 2, . . . , m − 1,

xε
j(t) = xje

−ajt +
∫ t

0
e−aj(t−s) [uε

j(s) − uε
j+1(s)

]
ds ≥ 0. (8.67)

Furthermore, for j = 2, . . . , m,

uε
j(t) ≤ ûε

j(t). (8.68)

If we let uε
1(t) = ûε

1(t), then from (8.61) and (8.68), we have

xε
1(t) = x1e

−a1t +
∫ t

0 e−a1(t−s) [uε
1(s) − uε

2(s)] ds

≥ x1e
−a1t +

∫ t

0
e−a1(t−s) [ûε

1(s) − ûε
2(s)] ds ≥ 0.

(8.69)

Consequently, by combining (8.67) and (8.69), we see that there is a control
uε(·) such that (8.50) is true and uε(·) ∈ Aε(x,k(ε, 0)) holds for m.

We now show that
λε ≥ λ − Cεδ. (8.70)

Similar to Lemma 4.2, we can prove that there exists a control uε(·) ∈
Aε(x,k) such that

min
1≤j≤m−1

inf
0≤t<∞

E[xε
j(t)] ≥ Ĉ4ε

δ (8.71)

and

lim sup
T→∞

1
T

E

∫ T

0
[h(xε(t)) + c(uε(t))] dt ≤ λε + Ĉ5ε

1/2, (8.72)
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for some Ĉ4 > 0 and Ĉ5 > 0, where xε(t) is the state trajectory under the
control uε(t). Define

ui(t) = E
[
uε(t)|k(ε, t) = ki

]
, i = 1, . . . , p.

Then, for j = 1, . . . , m − 1,

E[xε
j(t)] = xje

−ajt +
∫ t

0
e−aj(t−s)

[
p∑

i=1

P (k(ε, s) = ki)ui
j(s)

−
p∑

i=1

P (k(ε, s) = ki)ui
j+1(s)

]
ds,

and

E[xε
m(t)] = xme−amt +

∫ t

0
e−am(t−s)

[
p∑

i=1

P (k(ε, s) = ki)ui
m(s) − z

]
ds.

Let x(·) be the solution of

d

dt
x(t) = L

(
x(t),

p∑
i=1

νkiui(t), z

)
, x(0) = x.

Similar to (8.46), there is a constant Ĉ6 > 0 such that∣∣E[xε
j(t)] − xj(t)

∣∣ ≤ Ĉ6ε
1/2, j = 1, . . . , m.

Consequently, it follows from (8.71) that, for sufficiently small ε,

(u1(·), . . . ,up(·)) ∈ A0(x).

In view of the convexity and the local Lipschitz continuity of h(·), Jensen’s
inequality and Assumption (A3) yield

E[h(xε(t))] ≥ h(E[xε(t)])

= h(x(t)) + [h(E[xε(t)]) − h(x(t))]

≥ h(x(t)) − Ch3
(
1 + |E[xε(t))]|βh2−1 + |x(t)|βh2−1)
× |E[xε(t)] − x(t)|

≥ h(x(t)) − Ĉ7ε
1/2,

(8.73)
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for some Ĉ7 > 0. In the same way, using Lemma B.3, we can establish

E[c(uε(t))] =
p∑

i=1

P (k(ε, t) = ki)E[c(uε(t))|k(ε, t) = ki]

≥
p∑

i=1

P (k(ε, t) = ki)c(ui(t))

≥
p∑

i=1

νkic(ui(t)) − Ĉ8(ε + e−β0t/ε),

(8.74)

for some positive constant Ĉ8, where β0 is specified in Lemma B.3. By
combining (8.73) and (8.74), we obtain

lim sup
T→∞

1
T

E

∫ T

0
[h(xε(t)) + c(uε(t))] dt

≥ lim sup
T→∞

1
T

∫ T

0

[
h(x(t)) +

p∑
i=1

νkic(ui(t))

]
dt − Ĉ9ε,

for some positive constant Ĉ9. The inequality (8.72) implies that, for a
sufficiently small ε,

λε − λ ≥ −Cε1/2,

which completes the proof. �

8.5 Construction of a Near-Optimal Control

In this section, based on the proof of Lemmas 4.1, 4.2, and Theorem 4.1, we
give a procedure to construct an asymptotic optimal control in four steps.

Step 1. Pick an ε-optimal control (ũ1(·), . . . , ũp(·)) ∈ A0(x) for P0, i.e.,

lim sup
T→∞

1
T

∫ T

0

[
h(x̃(t)) +

p∑
i=1

νkic(ũi(t))

]
dt < λ + ε,

where x̃(·) is the solution of

d

dt
x(t) = L

(
x(t),

p∑
i=1

νkiũi(t), z

)
, x(0) = x.

For j = 1, . . . , m, let C(j) = {i : ki
j �= 0}. Furthermore, let

M = min
1≤j≤m

{
p∑

i=1

νkiki
j

}
and M̂ =

M

M − 2εδ
· 1∑

i∈C(1) νki

.
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For a sufficiently small ε, define

ui
1(t) =

⎧⎨⎩ ũi
1(t) ∨ (M̂εδ), if i ∈ C(1),

0, otherwise,

ui
j(t) = ũi

j(t), i = 1, . . . , p, j = 2, . . . , m − 1.

Then we see that the control

(u1(·), . . . ,up(·)) ∈ A0(x).

This step will be called partial pathwise lifting.

Step 2. Define

ûi
j(t) =

ui
j(t)

1 + 2εδ/(M − 2εδ)
, i = 1, . . . , p, j = 1, . . . , m.

Then we can see that the control

(û1(·), . . . , ûp(·)) ∈ A0
(

x

1 + 2εδ/(M − 2εδ)

)
.

This step will be called pathwise shrinking.

Step 3. Choose (vi
1(t), . . . , v

i
m(t))′(≥ 0), i = 1, . . . , p. For j = 1, . . . , m

and i �∈ C(j), set vi
j(t) = 0. For j = 1, . . . , m and i ∈ C(j), if

min
1≤j≤m

{
p∑

i=1

νki ûi
j(t)

}
≥ εδ,

then set vi
j(t) = 0. If, on the other hand,

min
1≤j≤m

{
p∑

i=1

νki ûi
j(t)

}
< εδ,

then set

νkivi
j(t) =

⎧⎨⎩ 0, if i �= l(j),

ε, if i = l(j),

where l(j) is an index such that k
l(j)
j > 0 (j = 1, . . . , m).

Define

ui
j(t) = ûi

j(t) + vi
j(t), i = 1, . . . , p and j = 1, . . . , m,

and

(u1(t), . . . ,up(t)) = ((ū1
1(t), . . . , ū

1
m(t))′, . . . , (ūp

1(t), . . . , ū
p
m(t))′).
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We choose (ǔ1(t), . . . , ǔp(t)) such that

p∑
i=1

νki ǔi
j(t) =

p∑
i=1

νki ũi
j(t) +

εδ

j
, j = 1, . . . , m.

This step will be called total pathwise lifting.

Step 4. Set

ǔε(t) = (ǔε
1(t), . . . , ǔ

ε
m) =

p∑
i=1

I{k(ε,t)=ki}ǔ
i(t),

and

x̌ε,1
1 (t) = (x1 + εδ)e−a1t +

∫ t

0
e−a1(t−s)[ǔε

1(s) − ǔε
2(s)] ds.

Define

Bε
1 =

{
t ≥ 0 : x̌ε,1

1 (t) − inf
0≤s≤t

x̌ε,1
1 (s) = 0 and x̌ε,1

1 (t) < 0
}

.

Let

(uε,1
1 (t), uε,1

2 (t)) =

⎧⎨⎩ (ǔε
1(t), ǔ

ε
2(t)), if t �∈ Bε

1,

(ǔε
1(t) ∧ ǔε

2(t), ǔ
ε
1(t) ∧ ǔε

2(t)), if t ∈ Bε
1.

(8.75)

Set

x̌ε,2
2 (t) = (x2 + εδ)e−a2t +

∫ t

0
e−a2(t−s)[uε,1

2 (s) − ǔε
3(s)] ds.

Define

Bε
2 =

{
t ≥ 0 : x̌ε,2

2 (t) − inf
0≤s≤t

x̌ε,2
2 (s) = 0 and x̌ε,2

2 (t) < 0
}

.

Let

(uε,2
2 (t), uε,2

3 (t)) =

⎧⎨⎩ (uε,2
2 (t), ǔε

3(t)), if t �∈ Bε
2,

(uε,2
2 (t) ∧ ǔε

3(t), u
ε,2
2 (t) ∧ ǔε

3(t)), if t ∈ Bε
1.

(8.76)

Sub-step � (� = 2, . . . , m − 1): Set

x̌ε,�
� (t) = (x� + εδ)e−a�t +

∫ t

0
e−a�(t−s)[uε,�−1

� (s) − ǔε
�+1(s)] ds.

Define

Bε
� =

{
t ≥ 0 : x̌ε,�

� (t) − inf
0≤s≤t

x̌ε,�
� (s) = 0 and x̌ε,�

� (t) < 0
}

.
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Let

(uε,�
� (t), uε,�

�+1(t)) =

⎧⎨⎩ (uε,�
� (t), ǔε

�+1(t)), if t �∈ Bε
� ,

(uε,�
� (t) ∧ ǔε

�+1(t), u
ε,�
� (t) ∧ ǔε

�+1(t)), if t ∈ Bε
� .

(8.77)
Then we get uε(t) = (uε,1

1 (t), . . . , uε,m−1
m−1 (t), uε,m−1

m (t)).

8.6 Notes

This chapter is based on Sethi, Zhang, and Zhang [122]. The idea of partial
path lifting and path shrinking used in Section 7.4 is first used in Sethi,
Zhang, and Zhang [120]; see also Sethi, Zhang, and Zhou [126].

Sometimes, when buffers are of small sizes, we may need to impose upper
bounds on inventory levels. Sethi, Zhang, and Zhang [124] and Fong and
Zhou [59] treat this situation with a finite internal buffer. The extension
involves an additional procedure termed squeezing. This is achieved by
rescaling both the time and the space.

Perkins and Kumar [97] consider the problem of a deterministic dynamic
m-machine flowshop with reliable machines. They use undiscounted linear
inventory and backlog costs over the infinite horizon. They reduce the op-
timization problem to a set of quadratic programming problems under the
assumption that the inventory costs are nondecreasing along the route of
production, and obtain explicitly the form of the optimal input rate at each
of the machines. Their problem is a special case of the limiting flowshop
problem of this chapter.



9
Near-Optimal Controls of Dynamic
Jobshops

9.1 Introduction

In this chapter we revisit the jobshops discussed in Chapter 5. The problem
is to determine rates of production to meet demand for finished products at
the minimum long-run average cost of production, inventories, and back-
logs.

As in Chapter 8, the main difficulty is how to construct an admissible
control for the original problem from a near-optimal control of the limiting
problem in a way which still guarantees asymptotic optimality. To overcome
the difficulty, we still use the method of “lifting” and “shrinking.” We show
that the resulting control constructed in this manner is nearly optimal with
an error bound of order εδ for 0 < δ < 1/2.

The chapter is organized as follows. In Section 9.2 we give a mathemat-
ical description of the problem. In Section 9.3 we discuss some elementary
properties of the associated minimum long-run average cost. In Section 9.4
we consider the convergence rate of the minimum average cost. In Section
9.5 we construct asymptotic optimal open-loop controls for the original
problem. Finally, Section 9.6 concludes the chapter.

9.2 The Optimization Problem

Consider a jobshop (V, A, K) as defined in Chapter 5. Let uε
i,j(t) be a control

at time t associated with arc (i, j), (i, j) ∈ A and j �= n+1. Suppose we are
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given a stochastic process k(ε, t) = (k1(ε, t), ..., kmc
(ε, t)) on a probability

space (Ω,F , P ) with kj(ε, t) representing the capacity of the jth machine at
time t, j = 1, ..., mc, where ε is a small parameter to be precisely specified
later. The state space of k(ε, t) is

M = {k1, . . . ,kp}, ki = (ki
1, . . . , k

i
mc

), i = 1, . . . , p.

The controls uε
i,j(t) with (i, j) ∈ K� and j �= n+1 must satisfy the following

constraints:

0 ≤
∑

(i,j)∈K�

uε
i,j(t) ≤ k�(ε, t) for all t ≥ 0, � = 1, ..., mc, (9.1)

where we have assumed that the required machine capacity rij (for unit
production rate of type j from part type i) equals 1, for convenience in
exposition. The analysis in this chapter can be readily extended to the case
when the required machine capacity for the unit production rate of part
j from part i is any given positive constant. In this chapter, we still use
notation introduced in Section 5.2. In what follows, we will set

ui,j(t) = 0, for (i, j) �∈ A, −n0 + 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Let
U =

{
(ui,j)(n0+m)×n : ui,j ≥ 0, ui,j = 0 and (i, j) �∈ A

}
.

In order to simplify expressions, we introduce the following notation. For
� = −n0 + 1, . . . , 0 and j = 1, . . . , m, let

u� =

⎛⎜⎝ u�,1
...

u�,n

⎞⎟⎠ , uj =

⎛⎜⎝uj,j+1
...

uj,n

⎞⎟⎠ , (9.2)

u =

⎛⎜⎝u−n0+1
...

um

⎞⎟⎠ , and z =

⎛⎜⎝ zm+1
...

zn

⎞⎟⎠ . (9.3)

Note that u is a (n0n +
∑m

�=1(n − �))-dimensional vector. Let Û be the
set of all nonnegative vectors given by (9.2) and (9.3). It follows from the
definition of U that there is a one-to-one mapping between U and Û . In the
following, to represent the control variables, it is convenient to use vectors
in Û rather than matrices in U . Furthermore, for k = (k1, ..., kmc), let

U(k) =

⎧⎨⎩u : u ∈ Û , 0 ≤
∑

(i,j)∈K�

ui,j ≤ k�, � = 1, . . . , mc

⎫⎬⎭ ,
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and for x ∈ Y = �m
+ × �n−m and k = (k1, ..., kmc

),

U(x,k) =
{

u : u ∈ U(k) and x� = 0

⇒
�−1∑

i=−n0+1

ui,� −
n∑

i=�+1

u�,i ≥ 0, � = 1, ..., m

}
.

We denote the surplus at time t in buffer j by xε
j(t), j = 1, . . . , n. Note

that if xε
j(t) > 0, j = 1, ..., n, we have an inventory in buffer j, and if

xε
j(t) < 0, j = m + 1, ..., n, we have a shortage of the finished product j.

The dynamics of the system are⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d

dt
xε

j(t) = −ajx
ε
j(t) +

⎛⎝ j−1∑
�=−n0+1

uε
�,j(t) −

n∑
�=j+1

uε
j,�(t)

⎞⎠ , 1 ≤ j ≤ m,

d

dt
xε

j(t) = −ajx
ε
j(t) +

(
m∑

�=−n0+1

uε
�,j(t) − zj

)
, m + 1 ≤ j ≤ n,

(9.4)
with xε(0) = (xε

1(0), ..., xε
n(0))′ = (x1, ..., xn)′ = x, where aj > 0, j =

1, ..., n, are constants. The attrition rate aj has the same physical meaning
as in the case of parallel machine systems treated in Section 7.2. Here we
assume symmetric deterioration and cancellation rates for finished goods
only for convenience in exposition. It is easy to extend our results when the
deterioration rates and the order cancellation rates are different (see Chap-
ter 7). On account of (9.2) and (9.3), the control policy (ui,j(t)) appearing
in (9.4) can be expresed as the vector u(t).

The state constraints are⎧⎨⎩ xε
j(t) ≥ 0, t ≥ 0, j = 1, ..., m,

−∞ < xε
j(t) < +∞, t ≥ 0, j = m + 1, ..., n.

(9.5)

We write the relation (9.4) in the following vector form:

d

dt
xε(t) = −diag(a)xε(t) + (A−n0+1, . . . , Am+1 )

(
uε(t)

z

)
, (9.6)

with the initial condition xε(0) = x, where a = (a1, ..., an)′, diag(a) =
diag(a1, ..., an), and A� (−n0 + 1 ≤ � ≤ m + 1) are defined in Section 5.2.
Let

L (xε(t),uε(t),z) = −diag(a)xε(t) + (A−n0+1, . . . , Am+1 )
(

uε(t)
z

)
.

Then (9.6) is changed to

d

dt
xε(t) = L (xε(t),uε(t),z) , xε(0) = x. (9.7)
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We are now in a position to formulate our stochastic optimal control
problem for the jobshop defined by (9.1), (9.4), and (9.5).

Definition 2.1. We say that a control uε(·) ∈ Û is admissible with respect
to the initial state vector x = (x1, . . . , xn)′ ∈ Y and k(ε, 0) ∈ M, if:

(i) uε(·) is an Fε
t -adapted measurable process with Fε

t = σ{k(ε, s) : 0 ≤
s ≤ t};

(ii) uε(t) ∈ U(k(ε, t)) for all t ≥ 0; and

(iii) the solution of

d

dt
xε(t) = L(xε(t),uε(t),z), xε(0) = x,

satisfies xε(t) = (xε
1(t), . . . , x

ε
n(t))′ ∈ Y for all t ≥ 0. �

Clearly, the admissibility of uε(·) is also dependent on the initial con-
ditions of the corresponding state process xε(·) and the capacity process
k(ε, ·). Let Aε(x,k) denote the set of all admissible controls with initial
conditions xε(0) = x and k(ε, 0) = k.

The problem is to find an admissible control u(·) ∈ Aε(x,k) that mini-
mizes the long-run average cost

Jε(x,k,u(·)) = lim sup
T→∞

1
T

E

∫ T

0
[h(x(t)) + c(u(t))] dt, (9.8)

where h(·) defines the cost of inventory/shortage, c(·) is the production
cost, x(·) is the surplus process corresponding to u(·) with x(0) = x, and
k is the initial value of k(ε, t).

We impose the following assumptions on the random process k(ε, t) and
the cost functions h(·) and c(·) throughout this chapter.

(A1) The capacity process k(ε, t) ∈ M is a finite state Markov chain with
the infinitesimal generator

Qε = Q(1) +
1
ε
Q(2),

where Q(1) = (q(1)
kikj ) and Q(2) = (q(2)

kikj ) are matrices such that

q
(�)
kikj ≥ 0 if ki �= kj , and q

(�)
kiki = −

∑
j �=i q

(�)
kikj for � = 1, 2. Assume

that Q(2) is strongly irreducible. Let ν = (νk1 , . . . , νkp) denote the
equilibrium distribution of Q(2). That is, ν is the only nonnegative
solution to the equation

νQ(2) = 0 and
p∑

i=1

νki = 1. (9.9)
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(A2) Let p� =
∑p

i=1 ki
�νki and c(i, j) = � if (i, j) ∈ K� for (i, j) ∈ A.

Here p� represents the average capacity of machine �, and c(i, j) is
the machine number placed on the arc (i, j). Assume that there exist
{pij > 0 : (i, j) ∈ K�}, � = 1, ..., mc, such that∑

(i,j)∈K�

pij ≤ 1,

m∑
i=−n0+1

pijpc(i,j) > zj , j = m + 1, . . . , n,

(9.10)

and

j−1∑
i=−n0+1

pijpc(i,j) >

n∑
i=j+1

pjipc(j,i), j = 1, . . . , m. (9.11)

(A3) h(x) is a nonnegative, convex function with h(0) = 0. There are
positive constants Ch1, Ch2, and βh1 ≥ 1 such that

h(x) ≥ Ch1|x|βh1 − Ch2, x ∈ Y.

Moreover, there are constants Ch3 and βh2 ≥ βh1 such that

|h(x) − h(y)| ≤ Ch3(1 + |x|βh2−1 + |y|βh2−1)|x − y|, x,y ∈ Y.

(A4) c(u) is a nonnegative convex function.

Let λε(x,k) denote the minimal expected cost, i.e.,

λε(x,k) = inf
u(·)∈Aε(x,k)

Jε(x,k,u(·)). (9.12)

Since we are using a long-run average-cost criterion, we know from Chapter
5 and Assumptions (A1) and (A2) that λε(x,k) is independent of the initial
condition (x,k). Thus, we will use the notation λε instead of λε(x,k). We
use Pε to denote our control problem, i.e.,

Pε:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min Jε(x,k,u(·)) = lim sup
T→∞

1
T

E

∫ T

0
[h(x(t)) + c(u(t))] dt,

s.t.
d

dt
x(t) = L (x(t),u(t),z) , x(0) = x, u(·) ∈ Aε(x,k),

minimum average cost λε = inf
u(·)∈Aε(x,k)

Jε(x,k,u(·)).

(9.13)
As in Section 7.2, the positive attrition rate a implies a uniform bound

on the process xε(t), t ≥ 0. Formally, in view of the fact that the control
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uε(·) is bounded between 0 and (max{|ki|, 1 ≤ i ≤ p}), it follows that any
solution xε(·) of (9.4) with the initial condition xε(0) = x must satisfy, for
j = 1, . . . , m,

|xε
j(t)| =

∣∣∣∣∣∣xje
−ajt + e−ajt

∫ t

0
eajs

⎛⎝ j−1∑
�=−n0+1

uε
�,j(s) −

n∑
�=j+1

uε
j,�(s)

⎞⎠ ds

∣∣∣∣∣∣
≤ |xj |e−ajt +

(
mc · max

1≤i≤p
{|ki|}

)∫ t

0
e−aj(t−s) ds

≤ |xj |e−ajt +
mc · max1≤i≤p{|ki|}

aj
.

(9.14)
Similarly, for j = m + 1, . . . , n,

|xε
j(t)| =

∣∣∣∣∣xje
−ajt + e−ajt

∫ t

0
eajs

(
m∑

�=−n0+1

uε
�j(s) − zj

)
ds

∣∣∣∣∣
≤ |xj |e−ajt +

mc · max1≤i≤p{|ki|} + maxm+1≤�≤n{z�}
aj

.

(9.15)

Thus, under the positive deterioration/cancellation rate, the surplus pro-
cess xε(t), t ≥ 0, remains bounded.

9.3 The Limiting Control Problem

In this section, we examine elementary properties of the minimum average
cost and the potential function, and obtain the limiting control problem as
ε → 0.

The Hamilton-Jacobi-Bellman equation in the directional derivative sense
(HJBDD) for the average-cost optimal control problem Pε takes the form

λε = inf
u∈U(x,k)

{
∂L(x,u,z)φ

ε(x,k) + c(u)
}

+ h(x) +
(

Q(1) +
1
ε
Q(2)

)
φε(x, ·)(k),

(9.16)

where φε(·, ·) is a function defined on Y ×M. Our analysis begins with the
proof of the boundedness of λε.

Theorem 3.1. Let Assumptions (A1)–(A4) hold. The minimum long-run
average expected cost λε of Pε is bounded in ε, i.e., there exists a constant
C > 0 such that

0 ≤ λε ≤ C, for all ε > 0.
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Proof. According to the definition of λε, it suffices to show that

lim sup
T→∞

1
T

E

∫ T

0
[h(xε(t)) + c(uε(t))] dt ≤ C1, (9.17)

for some C1 > 0, where uε(t) ∈ Aε(0,k) and xε(t) is the solution of

d

dt
xε(t) = L (xε(t),uε(t),z) , xε(0) = 0.

In view of (9.14) and (9.15), for j = 1, . . . , n,

|xε
j(t)| ≤ max{z� : m + 1 ≤ � ≤ n} + mc · max{|ki|, 1 ≤ i ≤ p}

aj
. (9.18)

It is clear under Assumptions (A3) and (A4) that the functions h(·) and c(·)
are continuous. Consequently, uε(t) ≥ 0, |uε(t)| ≤ max{|ki|, 1 ≤ i ≤ p},
and inequality (9.18) imply (9.17). �

Next, we derive the limiting control problem as ε → 0. As the rates of the
machine breakdown and repair approach infinity, the problem Pε, which
is termed the original control problem, can be approximated by a simpler
problem called the limiting control problem, where the stochastic machine
capacity process k(ε, t) is replaced by a weighted form. The limiting control
problem can be formulated as follows.

Consider an augmented control

U(·) = (u1(·), . . . ,up(·)),

where ui(t) ∈ U(ki) and ui(t), t ≥ 0, is a deterministic process.

Definition 3.1. For x ∈ Y, let A0(x) denote the set of measurable controls
U(·) = (u1(·), . . . ,up(·)) such that the solution of

d

dt
x(t) = L

(
x(t),

p∑
i=1

νkiui(t),z

)
, x(0) = x,

satisfies x(t) ∈ Y for all t ≥ 0. �

The objective of the problem is to choose a control U(·) ∈ A0(x) that
minimizes

J(x, U(·)) = lim sup
T→∞

1
T

∫ T

0

[
h(x(s)) +

p∑
i=1

νkic(ui(s))

]
ds.

We use P0 to denote this problem, known as the limiting control problem,
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and restate it as follows:

P0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min J(x, U(·)) = lim sup
T→∞

1
T

∫ T

0
[h(x(s)) +

p∑
i=1

νkic(ui(s))] ds,

s.t.
d

dt
x(t) = L

(
x(t),

p∑
i=1

νkiui(t),z

)
,

x(0) = x, U(·) ∈ A0(x),

minimum average cost λ = inf
U(·)∈A0(x)

J(x, U(·)).

(9.19)
The HJBDD equation associated with P0 is

λ = inf
U∈U0(x)

{
∂L(x,

∑p
i=1 νkiui,z)φ(x) +

p∑
i=1

νkic(ui)

}
+ h(x), (9.20)

where φ(·) is a function defined on Y, and

U0(x) =
{

(u1, . . . ,up) : ui ∈ U(ki) and xj = 0 (1 ≤ j ≤ m)

⇒
p∑

i=1

j−1∑
�=−n0+1

ui
�,j −

p∑
i=1

n∑
�=j+1

ui
j,� ≥ 0

}
.

9.4 Convergence of the Minimum Average
Expected Cost

In this section we consider the convergence of the minimum average ex-
pected cost λε as ε goes to zero, and establish its convergence rate. In
order to get the required convergence result, we need the following auxil-
iary result, which is a key to obtaining our main result.

Lemma 4.1. Let Assumptions (A3) and (A4) hold. For δ ∈ [0, 1/2), there
exist an ε0 > 0, C > 0, x = (x1, ..., xn)′ ∈ Y, such that for each given
ε ∈ (0, ε0], we can find a control

(u1(·), ...,up(·)) ∈ A0(x)

satisfying, for j = 1, ..., mc and i = 1, ..., p,∑
(�1,�2)∈Kj

ūi
�1,�2(·) ≤ ki

j − εδ when ki
j �= 0, (9.21)
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and

λ + Cεδ ≥ lim sup
T→∞

1
T

∫ T

0

[
h(x(t)) +

p∑
i=1

νkic(ui(t))

]
dt, (9.22)

where x(t) is the solution of

d

dt
x(t) = L

(
x(t),

p∑
i=1

νkiui(t),z

)
, x(0) = x.

Proof. For each fixed ε > 0, we select x̃ ∈ Y and

(ũ1(·), ..., ũp(·)) ∈ A0(x̃) (9.23)

such that

λ + ε > lim sup
T→∞

1
T

∫ T

0

[
h(x̃(t)) +

p∑
i=1

νkic(ũi(t))

]
dt, (9.24)

where x̃(t) is the solution of

d

dt
x(t) = L

(
x(t),

p∑
i=1

νkiũi(t),z

)
, x(0) = x̃.

Define
C(j) = {i : ki

j �= 0}, j = 1, ..., mc.

Based on (9.23) and (9.24), we show that there exist x ∈ Y and

(u1(·), . . . ,up(·)) ∈ A0(x)

such that∑
(�1,�2)∈Kj

ūi
�1,�2(t) ≤ ki

j − εδ, i ∈ C(j) and j = 1, . . . , mc, (9.25)

∣∣ui(t) − ũi(t)
∣∣ ≤ C1ε

δ, i = 1, ..., p, (9.26)

and
|x(t) − x̃(t)| ≤ C1ε

δ, (9.27)

for some C1 > 0, where

d

dt
x(t) = L

(
x(t),

p∑
i=1

νkiui(t),z

)
, x(0) = x.
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Recall that Assumptions (A3) and (A4) and the boundedness of x̃(t) and
x(t) imply that there is a constant C2 > 0 such that∣∣∣∣∣lim sup

T→∞
1
T

∫ T

0

[
h(x(t)) +

p∑
i=1

νkic(ui(t))

]
dt

− lim sup
T→∞

1
T

∫ T

0

[
h(x̃(t)) +

p∑
i=1

νkic(ũi(t))

]
dt

∣∣∣∣∣
≤ lim sup

T→∞
1
T

∫ T

0

∣∣∣∣∣
[
h(x(t)) +

p∑
i=1

νkic(ui(t))

]

−
[
h(x̃(t)) +

p∑
i=1

νkic(ũi(t))

]∣∣∣∣∣ dt

≤ lim sup
T→∞

1
T

∫ T

0
C2ε

δ dt ≤ C2ε
δ.

(9.28)

Thus, (9.24) implies that

λ + C3ε
δ ≥ lim sup

T→∞
1
T

∫ T

0

[
h(x(t)) +

p∑
i=1

νkic(ui(t))

]
dt, (9.29)

for some C3 > 0. In order to complete the proof of the lemma, it suffices to
show the existence of (u1(·), . . . ,up(·)) satisfying (9.25)–(9.27). To do this,
let

C4 = min
1≤j≤mc

min
i∈C(j)

{
ki

j

}
.

For i = 1, ..., p, and (�1, �2) ∈ A with �2 �= n + 1, define

ūi
�1,�2(t) =

ũi
�1,�2

(t)
1 + 2εδ/(C4 − 2εδ)

.

Then, for j = 1, . . . , m,

xj(t) =
x̃j

1 + 2εδ/(C4 − 2εδ)
e−ajt

+ e−ajt

∫ t

0
eajs

⎡⎣ j−1∑
�=−n0+1

p∑
i=1

νkiui
�,j(s) −

n∑
�=j+1

p∑
i=1

νkiui
j,�(s)

⎤⎦ ds

=
1

1 + 2εδ/(C4 − 2εδ)
x̃j(t) ≥ 0 (by (9.23)).

(9.30)
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This implies that

(u1(·), ...,up(·)) ∈ A0
(

x̃

1 + 2εδ/(C4 − 2εδ)

)
.

Furthermore, for j = m + 1, ..., n,

x̄j(t) =
x̃j

1 + 2εδ/(C4 − 2εδ)
e−ajt

+ e−ajt

∫ t

0
eajs

[
p∑

i=1

νki

m∑
�=−n0+1

ūi
�,j(s) − zj

]
ds

=
1

1 + 2εδ/(C4 − 2εδ)
x̃j(t) − 2zjε

δ

ajC4
(1 − e−ajt).

(9.31)

Therefore, in view of the boundedness of x̃(t) and ũi(t), (9.30) and (9.31)
imply

|x(t) − x̃(t)|

=
((

1 − 1
1 + 2εδ/(C4 − 2εδ)

)
max

1≤j≤m
{x̃j(t)}

)
∨

(
max

m+1≤j≤n

{∣∣∣∣2zjε
δ

ajC4
(1 − e−ajt) +

(
1 − 1

1 + 2εδ/(C4 − 2εδ)

)
x̃j(t)

∣∣∣∣})
≤ C5ε

δ,

(9.32)
and ∣∣ui(t) − ũi(t)

∣∣ ≤ C5ε
δ, i = 1, . . . , p, (9.33)

for some C5 > 0, which give (9.26)–(9.27).
On the other hand, for i ∈ C(j) and j = 1, . . . , mc,

∑
(�1,�2)∈Kj

ūi
�1,�2(t) =

∑
(�1,�2)∈Kj

ũi
�1,�2

(t)

1 + 2εδ/(C4 − 2εδ)

≤
ki

j

1 + 2εδ/(C4 − 2εδ)

≤ ki
j − 2εδ,

(9.34)

which implies (9.25). Thus the proof of the result is completed. �

In view of Lemma 4.1, we have the following lemma.

Lemma 4.2. Let Assumptions (A3) and (A4) hold. For δ ∈ [0, 1/2), there
exist C > 0, Ĉ > 0, x = (x1, ..., xn)′ ∈ Y, and an ε0 > 0 such that for each
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given ε ∈ (0, ε0], we can find a control

(u1(·), . . . ,up(·)) ∈ A0(x)

satisfying
min

1≤j≤m
inf

0≤t<∞
x̄j(t) ≥ Cεδ, (9.35)

and

λ + Ĉεδ ≥ lim sup
T→∞

1
T

∫ T

0

[
h(x(t)) +

p∑
i=1

νkic(ui(t))

]
dt, (9.36)

where x(t) is the solution of

d

dt
x(t) = L

(
x(t),

p∑
i=1

νkic(ui(t)),z

)
, x(0) = x.

Proof. First, we introduce the concept of the parameter distribution to be
used in the proof. The set {wi,j ≥ 0 : −n0 + 1 ≤ i ≤ n and 1 ≤ j ≤ n} is
called a parameter distribution if:

(i) wi,j ≥ 0;

(ii) wi,j = 0 for (i, j) �∈ A;

(iii)
∑

(i,j)∈K�
wi,j ≤ 1 for � = 1, ..., mc.

We show that there is a parameter distribution {wi,j ≥ 0 : −n0 + 1 ≤
i ≤ m and 1 ≤ j ≤ n} such that

min
1≤j≤m

⎧⎨⎩
j−1∑

�=−n0+1

w�,j −
n∑

�=j+1

wj,�

⎫⎬⎭ > 0. (9.37)

We use the induction on the internal buffer number m to prove (9.37). First
for m = 1, let

n(1) = min{j ≤ 0 : (j, 1) ∈ A},

and

wi,j =

⎧⎨⎩ 1, if (i, j) = (−n0 + 1, 1),

0, otherwise.

We know that this {wi,j} is a parameter distribution, and

0∑
�=−n0+1

w�,1 −
n∑

�=1

w1,� = 1 − 0 > 0.
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Thus (9.37) holds for m = 1. In order to apply an induction-based proof,
let us now suppose that (9.37) is true for m−1 (m ≥ 2). Our task is to show
that (9.37) holds for m. Consider now the system (V̂ , Â, K̂) with buffer 1
removed, that is,

Â = A \A(1),

K̂ = {K̂1, . . . , K̂mc} with K̂j = Kj \A(1),

V̂ = {−n0 + 1, . . . , 0, 2, . . . , n, n + 1},

where

A(1) = {(�, 1) : � = −n0 + 1, . . . , 0} ∪ {(1, �) : � = 2, . . . , n}.

Applying the induction hypothesis, there is a parameter distribution
{ŵi,j ≥ 0 : (i, j) ∈ Â and j �= n + 1} such that

min
2≤j≤m

⎧⎨⎩
j−1∑

� �=1,�=−n0+1

ŵ�,j −
n∑

�=j+1

ŵj,�

⎫⎬⎭ > 0. (9.38)

Now we select C1 > 1 such that

n∑
�2=1

∑
(�1,�2)∈K̂c(1,�2)

ŵ�1,�2 +
0∑

�1=−n0+1

∑
(�1,�2)∈K̂c(�1,1)

ŵ�1,�2 <
C1

3
.

Let

wi,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2
3
, if (i, j) = (n(1), 1),

0, if j = 1 and i �= n(1) or i = 1,

ŵi,j

C1
, otherwise.

(9.39)

This implies that, for � = 1, . . . , mc, if (n(1), 1) ∈ K�, then

∑
(i,j)∈K�

wi,j =
2
3

+
∑

(i,j)∈K̂�

ŵi,j

C1
< 1,

and if (n(1), 1) �∈ K�, then

∑
(i,j)∈K�

wi,j =
∑

(i,j)∈K̂�

ŵi,j

C1
< 1.
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We know that {wi,j} defined in (9.39) is also a parameter distribution for
the system (V, A, K). Furthermore,

min
2≤j≤m

⎧⎨⎩
j−1∑

�=−n0+1

w�,j −
n∑

�=j+1

wj,�

⎫⎬⎭ = min
2≤j≤m

⎧⎨⎩
j−1∑

�=−n0+1

ŵ�,j

C1
−

n∑
�=j+1

ŵj,�

C1

⎫⎬⎭
> 0 (by (9.38)),

and
0∑

�=−n0+1

w�,1 −
n∑

�=2

w1,� =
2
3

− 0 =
2
3

> 0.

Thus, we know that (9.37) holds for m. Let

min
1≤j≤m

⎧⎨⎩
j−1∑

�=−n0+1

w�,j −
n∑

�=j+1

wj,�

⎫⎬⎭ := C2 > 0.

Next, let

(û1(t), . . . , ûp(t)) ∈ A0(x̂)

satisfy (9.21) and (9.22) in Lemma 4.1. Furthermore, let

x = x̂ + 1εδ,

and for (�1, �2) ∈ A with �2 �= n + 1, i ∈ C(j), j = 1, . . . , mc, let

ūi
�1,�2(t) = w�1,�2ε

δ + ûi
�1,�2(t).

Then (9.37) implies that, for i ∈ C(j) and j = 1, . . . , mc,

∑
(�1,�2)∈Kj

ūi
�1,�2(t) =

∑
(�1,�2)∈Kj

w�1,�2ε
δ +

∑
(�1,�2)∈Kj

ûi
�1,�2(t)

≤ εδ +
∑

(�1,�2)∈Kj

ûi
�1,�2(t) < ki

j .

Let x(t) be the solution of

d

dt
x(t) = L

(
x(t),

p∑
i=1

νkiui(t),z

)
, x(0) = x̂ + 1εδ.
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For j = 1, . . . , m,

x̄j(t) = (x̂j + εδ)e−ajt

+
∫ t

0
e−aj(t−s)

⎡⎣ p∑
i=1

νki

j−1∑
�=−n0+1

ūi
�,j(s) −

p∑
i=1

νki

n∑
�=j+1

ūi
j,�(s)

⎤⎦ ds

≥ x̂j(t) + εδe−ajt

+
∫ t

0
e−aj(t−s)

⎡⎣ j−1∑
�=−n0+1

w�,jε
δ −

n∑
�=j+1

wj,�ε
δ

⎤⎦ ds

≥ x̂j(t) + εδe−ajt +
1
aj

(1 − e−ajt)C2C3ε
δ

> x̂j(t) + C3ε
δ,

(9.40)
for some C3 > 0. Consequently,

(u1(t), . . . ,up(t)) ∈ A0 (
x̂ + 1εδ

)
.

Furthermore, there is a C5 > 0 such that∣∣∣ûi(t) − ui(t)
∣∣∣ ≤ C5ε

δ, i = 1, . . . , p. (9.41)

This implies that
|x̂(t) − x(t)| ≤ C6ε

δ, (9.42)

for some C6 > 0. It follows from (9.40)–(9.42) that x(t) satisfies (9.35) and
(9.36). �

Using Lemmas 4.1 and 4.2, we can show our main result that says that the
problem P0 is indeed a limiting problem in the sense that the minimum
average cost λε of Pε converges to the minimum average cost λ of the
limiting problem P0. Moreover, we can prove the following corresponding
convergence rate.

Theorem 4.1. Let Assumptions (A1)–(A4) hold. Then for any δ ∈ [0, 1/2),
there exist a constant C > 0 and ε0 > 0 such that, for ε ∈ (0, ε0],

|λε − λ| ≤ Cεδ. (9.43)

This implies in particular that limε→0 λε = λ.

Proof. First, we prove λε < λ+Cεδ by constructing an admissible control
uε(t) of Pε from the near-optimal control of the limiting problem P0 and
by estimating the difference between the state trajectories corresponding
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to these two controls. Then we establish the opposite inequality, namely,
λε > λ − Cεδ, by constructing a control of the limiting problem P0 from a
near-optimal control of Pε, and then using Assumptions (A3) and (A4).

In order to show that
λε ≤ λ + Cεδ, (9.44)

we can choose, in view of Lemma 4.2, x ∈ Y and

(u1(t), . . . ,up(t)) ∈ A0(x),

such that
min

1≤j≤m
inf

0≤t<∞
x̄j(t) ≥ C1ε

δ (9.45)

and

λ + C2ε
δ ≥ lim sup

T→∞
1
T

∫ T

0

[
h(x(t)) +

p∑
i=1

νkic(ui(t))

]
dt, (9.46)

for some constants C1 > 0 and C2 > 0, where

d

dt
x(t) = L

(
x(t),

p∑
i=1

νkiui(t),z

)
, x(0) = x.

We construct the control

uε(t) =
p∑

i=1

I{k(ε,t)=ki}u
i(t),

and let
d

dt
xε(t) = L(xε(t),uε(t),z), xε(0) = x.

Then, for j = 1, . . . , m,

E
∣∣x̄ε

j(t) − x̄j(t)
∣∣2

= E

∣∣∣∣∣e−ajt

∫ t

0
eajs

[(
j−1∑

�=−n0+1

ūε
�,j(s) −

j−1∑
�=−n0+1

p∑
i=1

νki ūi
�,j(s)

)

−

⎛⎝ n∑
�=j+1

ūε
j,�(s) −

n∑
�=j+1

p∑
i=1

νki ūi
j,�(s)

⎞⎠⎤⎦ ds

∣∣∣∣∣∣
2

≤ 2E

[
e−ajt

∫ t

0
eajs

(
j−1∑

�=−n+1

ūε
�,j(s) −

j−1∑
�=−n+1

p∑
i=1

νki ūi
�,j(s)

)
ds

]2

+ 2E

⎡⎣e−ajt

∫ t

0
eajs

⎛⎝ n∑
�=j+1

ūε
j,�(s) −

n∑
�=j+1

p∑
i=1

νki ūi
j,�(s)

⎞⎠ ds

⎤⎦2

,
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and for j = m + 1, ..., n,

E
∣∣x̄ε

j(t) − x̄j(t)
∣∣2

= E

[
e−ajt

∫ t

0
eajs

(
m∑

�=−n0+1

ūε
�,j(s) −

m∑
�=−n0+1

p∑
i=1

νki ūi
�,j(s)

)
ds

]2

.

Similar to the proof of (7.21), we have

E
∣∣x̄ε

j(t) − x̄j(t)
∣∣ ≤ C2ε

1/2, j = 1, ..., n, (9.47)

for some C2 > 0. Consequently, by the boundedness of xε(t) and x(t) and
Assumption (A3), we obtain∣∣∣∣∣lim sup

T→∞
1
T

E

[∫ T

0
h(xε(t)) dt − lim sup

T→∞
1
T

∫ T

0
h(x(t))

]
dt

∣∣∣∣∣
≤ lim sup

T→∞
Ch3

T

∫ T

0
E
[(

1 + |xε(t)|βh2−1 + |x(t)|βh2−1 )
|xε(t) − x(t)|

]
dt

≤ C3ε
1/2,

(9.48)
for some C3 > 0. It follows from the boundedness of c(·) that∣∣∣∣∣lim sup

T→∞
1
T

E

∫ T

0
c(uε(t)) dt − lim sup

T→∞
1
T

∫ T

0

p∑
i=1

νkic(ui(t)) dt

∣∣∣∣∣
=

∣∣∣∣∣lim sup
T→∞

1
T

E

∫ T

0

p∑
i=1

I{k(ε,t)=ki}c(u
i(t)) dt

− lim sup
T→∞

1
T

∫ T

0

p∑
i=1

νkic(ui(t)) dt

∣∣∣∣∣
≤ lim sup

T→∞
1
T

∫ T

0

p∑
i=1

∣∣P (k(ε, t) = ki) − νki

∣∣ c(ui(t)) dt

≤ C4ε,

(9.49)

for some C4 > 0. Thus, combining (9.46), (9.48), and (9.49), we have that
there is a constant C5 > 0 such that

lim sup
T→∞

1
T

E

∫ T

0
[h(xε(t)) + c(uε(t))] dt ≤ λ + C5(εδ + ε1/2 + ε). (9.50)

If uε(t) ∈ Aε(x,k(ε, 0)), then from (9.50) and

λε ≤ lim sup
T→∞

1
T

E

∫ T

0
[h(xε(t)) + c(uε(t))] dt,
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we have (9.44). But generally, uε(t) �∈ Aε(x,k(ε, 0)). Thus, based on uε(t)
we next construct uε(t) ∈ Aε(x,k(ε, 0)) such that it and the solution xε(t)
of

d

dt
x(t) = L(x(t),uε(t),z), x(0) = x,

satisfy (9.50). Consequently, we get (9.44). To do this, let

M1 = max
1≤i≤p

{ki
j : 1 ≤ j ≤ mc}

and

M2 = max
1≤j≤n

{
1
aj

ln
(

C1ajε
δ

5(n + n0)M1

)−1
}

,

where C1 is given in (9.45). We show momentarily that there exists a control
uε(t) ∈ Aε(x,k(ε, 0)) such that, for t > 2M2 and (i, j) ∈ A with j �= n+1,

E
∣∣uε

i,j(t) − uε
i,j(t)

∣∣ ≤ C6 exp
{

− M3ε
−(1−2δ)/2(1 + M2)−3}, (9.51)

for some C6 > 0 and M3 > 0. Hence, Assumptions (A3) and (A4) imply
that there is a constant C7 > 0 such that

E

∫ T

0
|h(xε(t)) − h(xε(t))| dt

≤ C7

∫ T

0
E |xε(t) − xε(t)| dt

≤ C7

m∑
j=1

∫ T

0

∫ t

0
e−aj(t−s)E

[
j−1∑

�=−n0+1

∣∣uε
�,j(s) − ūε

�,j(s)
∣∣

+
n∑

�=j+1

∣∣uε
j,�(s) − ūε

j,�(s)
∣∣⎤⎦ ds dt

+ C7

n∑
j=m+1

∫ T

0

∫ t

0
e−aj(t−s)E

[
m∑

�=−n0+1

|uε
�,j(s) − ūε

�,j(s)|
]

ds dt

≤ 2C7

n∑
j=1

(1/aj)
∫ T

0

∑
(�,j)∈A

E
∣∣uε

�,j(s) − ūε
�,j(s)

∣∣ ds

(9.52)
and

E

∫ T

0
|c(uε(t)) − c(uε(t))| dt ≤ C7

∫ T

0
E |uε(t) − uε(t)| dt

≤ C7

∫ T

0

∑
(�,j)∈A

E
∣∣uε

�,j(t) − ūε
�,j(t)

∣∣ dt.

(9.53)
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Therefore, we know, in view of (9.50) and (9.51)–(9.53), that

lim sup
T→∞

1
T

E

∫ T

0
[h(xε(t)) + c(uε(t))] dt ≤ λ + C8ε

δ,

for some C8 > 0, which implies that (9.44) holds.
Thus, it suffices to show that there is a control uε(·) ∈ Aε(x,k(ε, 0))

satisfying (9.51). We will modify uε(·) to uε(t) such that (9.51) holds and
uε(·) ∈ Aε(x,k(ε, 0)). This modification is based on the estimation of
P (x̄ε

j(t) < 0) for t ≥ 2M2. Thus, we first establish the following inequality
by (9.45). For t ≥ 2M2 and j = 1, . . . , m,

P
(
x̄ε

j(s) ≤ C1ε
δ/2

)
≤ P

(
x̄ε

j(t) ≤ x̄j(t) − C1ε
δ/2

)
(by (9.45))

= P
(
x̄j(t) − x̄ε

j(t) ≥ C1ε
δ/2

)
≤ P

(∣∣x̄j(t) − x̄ε
j(t)

∣∣ ≥ C1ε
δ/2

)
= P

(∣∣∣∣∣
∫ t

0
eaj(s−t)

(
j−1∑

�=−n0+1

p∑
i=1

I{k(ε,s)=ki}ū
i
�,j(s)

−
n∑

�=j+1

p∑
i=1

I{k(ε,s)=ki}ū
i
j,�(s)

)
ds

−
∫ t

0
eaj(s−t)

(
j−1∑

�=−n0+1

p∑
i=1

νki ūi
�,j(s)

−
n∑

�=j+1

p∑
i=1

νki ūi
j,�(s)

)
ds

∣∣∣∣∣ ≥ C1ε
δ/2

)

≤
j−1∑

�=−n0+1

P

(∣∣∣∣∣
∫ t

0
eaj(s−t)

×
[

p∑
i=1

(
I{k(ε,s)=ki} − νki

)
ūi

�,j(s)

]
ds

∣∣∣∣∣≥ C1ε
δ

4(n + n0)

)

+
n∑

�=j+1

P

(∣∣∣∣∣
∫ t

0
eaj(s−t)

×
[

p∑
i=1

(
I{k(ε,s)=ki} − νki

)
ūi

j,�(s)

]
ds

∣∣∣∣∣ ≥ C1ε
δ

4(n + n0)

)
.

(9.54)
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Note that, for t > 2M2,∣∣∣∣∣e−ajt

∫ t

0
eajs

(
p∑

i=1

[
I{k(ε,s)=ki} − νki

]
ūi

�,j(s)

)
ds

∣∣∣∣∣
≤

∣∣∣∣∣e−ajt

∫ t−M2

0
eajs

(
p∑

i=1

[
I{k(ε,s)=ki} − νki

]
ūi

�,j(s)

)
ds

∣∣∣∣∣
+

∣∣∣∣∣e−ajt

∫ t

t−M2

eajs

(
p∑

i=1

[
I{k(ε,s)=ki} − νki

]
ūi

�,j(s)

)
ds

∣∣∣∣∣
≤ e−ajt

∫ t−M2

0
eajsM1 ds

+

∣∣∣∣∣e−ajt

∫ t

t−M2

eajs

(
p∑

i=1

[
I{k(ε,s)=ki} − νki

]
ūi

�,j(s)

)
ds

∣∣∣∣∣
≤

∣∣∣∣∣e−ajt

∫ t

t−M2

eajs

(
p∑

i=1

[
I{k(ε,s)=ki} − νki

]
ūi

�,j(s)

)
ds

∣∣∣∣∣
+

C1ε
δ

5(n + n0)
.

(9.55)

Therefore, it follows from Corollary B.3, (9.54), and (9.55) that, for j =
1, ..., m and t ≥ 2M2,

P
(
x̄ε

j(t) ≤ C1ε
δ/2

)
≤ C9 exp

{
− M3ε

−(1−2δ)/2(1 + M2)−3/2}, (9.56)

for some C9 > 0 and M3 > 0.
Based on (9.56), we use the induction on the internal buffer number m

to construct the desired uε(t) from uε(t). First, for m = 1, define

Bε
1 =

{
t : x̄ε

1(t) − inf
0≤s≤t

x̄ε
1(s) = 0 and x̄ε

1(t) < 0
}

. (9.57)

We choose {ũε
�,1(t) : −n0 + 1 ≤ � ≤ 0} and {ũε

1,�(t) : 2 ≤ � ≤ n} such
that

ũε
�,1(t) ≤ ūε

�,1(t), � = −n0 + 1, . . . , 0,

ũε
1,�(t) ≤ ūε

1,�(t), � = 2, . . . , n,

and
0∑

�=−n0+1

ũε
�,1(t) =

n∑
�=2

ũε
1,�(t) =

(
n∑

�=2

ūε
1,�(t)

)
∧

(
0∑

�=−n0+1

ūε
�,1(t)

)
. (9.58)

For (i, j) ∈ {(�, 1) : −n0 + 1 ≤ � ≤ 0} ∪ {(1, �) : 2 ≤ � ≤ n}, define

uε
i,j(t) =

⎧⎨⎩ ūε
i,j(t), if t �∈ Bε

1,

ũε
i,j(t), if t ∈ Bε

1.
(9.59)
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For (i, j) ∈ A with j �= 1 and i �= 1, let

uε
i,j(t) = ūε

i,j(t).

Then, for (i, j) ∈ A,

uε
i,j(t) ≤ ūε

i,j(t).

Define⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

xε
1(t) = x1e

−a1t +
∫ t

0
e−a1(t−s)

(
0∑

�=−n0+1

uε
�,1(s) −

n∑
�=2

uε
2,�(s)

)
ds,

xε
j(t) = xje

−ajt +
∫ t

0
e−aj(t−s)

(
1∑

�=−n0+1

uε
�,j(s) − zj

)
ds,

j = 2, ..., n.

We know that xε(t) ∈ Y and uε(t) ∈ Aε(x,k(ε, 0)). Furthermore,

E|uε(t) − ūε(t)| = E
[
|uε(t) − ūε(t)|I{x̄ε

1(t)<0}
]

≤ Ĉ1P (x̄ε
1(t) < 0) ,

for some Ĉ1 > 0. Thus, (9.56) implies that there is a control uε(·) such
that (9.51) is true and uε(·) ∈ Aε(x,k(ε, 0)) for m = 1. In order to apply
an induction-based proof, let us now suppose that there exists a uε(·) such
that (9.51) is true and uε(·) ∈ Aε(x,k(ε, 0)) for m − 1. Then our task is
to show that this is also true for m.

The same argument, as in the case m = 1 above, yields that there exists
a ûε

i,j(t) with (i, j) ∈ {(�, 1) : −n0 + 1 ≤ � ≤ 0} ∪ {(1, �) : 2 ≤ � ≤ n} such
that, for (i, j) ∈ {(�, 1) : −n0 + 1 ≤ � ≤ 0} ∪ {(1, �) : 2 ≤ � ≤ n},

ûε
i,j(t) ≤ ūε

i,j(t), (9.60)

E|ūε
i,j(t) − ûε

i,j(t)| ≤ Ĉ1P (x̄ε
1(t) < 0) , (9.61)

and

x̂ε
1(t) = x1e

−a1t +
∫ t

0
e−a1(t−s)

(
0∑

�=−n0+1

ûε
�,1(s) −

n∑
�=2

ûε
1,�(s)

)
ds ≥ 0.

(9.62)
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Now we consider the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂ε
j(t) = xje

−ajt +
∫ t

0
e−aj(t−s)

(
j−1∑

� �=1,�=−n0+1

ūε
�j(s) + ûε

1,j(s)

−
n∑

�=j+1

ūε
j,�(s)

)
ds, j = 2, ..., m,

x̂j(t) = xje
−ajt +

∫ t

0
e−aj(t−s)

(
j−1∑

� �=1,�=−n0+1

ūε
�,j(s) + ûε

1,j − zj

)
ds,

j = m + 1, ..., n.

(9.63)
In order to apply the induction hypothesis, we also have to show that an
inequality like (9.56) is also satisfied for (x̂ε

2(t), ..., x̂
ε
m(t)). Note that, for

j = 2, ..., m, we have from (9.63) that, for t ≥ 2M2,

x̂ε
j(t) = x̄ε

j(t) +
∫ t

0
e−aj(t−s) [ûε

1,j(s) − ūε
1,j(s)

]
ds

= x̄ε
j(t) +

∫ t

0
e−aj(t−s) [ûε

1,j(s) − ūε
1,j(s)

]
I{x̄ε

1(s)<0} ds

= x̄ε
j(t) +

∫ t−M2

0
e−aj(t−s) [ûε

1,j(s) − ūε
1,j(s)

]
I{x̄ε

1(s)<0} ds

+
∫ t

t−M2

e−aj(t−s) [ûε
1,j(s) − ūε

1,j(s)
]
I{x̄ε

1(s)<0} ds

≥ x̄ε
j(t) − M1

∫ t

t−M2

e−aj(t−s)I{x̄ε
1(s)<0} ds − C1ε

δ

5(n + n0)
.

Hence, for t ≥ 2M2,

P

(
x̂ε

j(t) <
C1ε

δ

5

)

≤ P

(
x̄ε

j(t) <
C1ε

δ

2

)
+P

(
x̄ε

j(t) ≥ C1ε
δ

2
, x̄ε

j(t) − M1

∫ t

t−M2

e−a1(t−s)I{x̄ε
1(s)<0} ds <

2C1ε
δ

5

)

≤ P

(
x̄ε

j(t) <
C1ε

δ

2

)
+ P

(
M1

∫ t

t−M2

e−a1(t−s)I{x̄ε
1(s)<0} ds ≥ C1ε

δ

10

)
.

Therefore, similar to (8.66),

P
(
x̂ε

j(t) ≤ C1ε
δ/4

)
≤ Ĉ2 exp

{
− M3ε

−(1−2δ)/2(1 + M2)−3/2},

j = 2, ..., m,
(9.64)



9.4 Convergence of the Minimum Average Expected Cost 221

for some C̃2 > 0 and δ ∈ (0, 1/2). Applying the induction hypothesis to
system (9.63), there is a uε

i,j(t) ((i, j) ∈ A\{(�, 1) : −n0 +1 ≤ � ≤ 0}) such
that

uε
i,j(t) ≤ ûε

i,j(t), (9.65)

xε
j(t) = xje

−ajt +
∫ t

0
e−aj(t−s)

⎛⎝ j−1∑
�=n0+1

uε
�,j(s) −

n∑
�=j+1

uε
j,�(s)

⎞⎠ ds

≥ 0, j = 2, ..., m,

(9.66)

E|uε
i,j(t) − ûε

i,j(t)| ≤ Ĉ3

m∑
j=2

P
(
x̂ε

j(t) < 0
)
, (9.67)

for some Ĉ3 > 0. Consequently, let

uε
�,1(t) = ûε

�,1(t), � = −n0 + 1, . . . , 0.

Then, (9.62) and (9.65) yield

xε
1(t) = x1e

−a1t +
∫ t

0
e−a1(t−s)

(
0∑

�=−n0+1

uε
�,1(s) −

n∑
�=2

uε
1,�(s)

)
ds ≥ 0.

Thus, it follows from (9.66) that uε(·) ∈ Aε(x,k(ε, 0)). By (9.61), (9.64),
(9.66), and (9.67), we know that (9.51) is true.

We now show
λε > λ + Cεδ. (9.68)

First we show that for any control uε(·) ∈ Aε(x,k), there exists a control
U(·) = (u1(·), ...,up(·)) ∈ A0(x) such that E[xε(t)] − x(t) is small when ε
is small enough, where xε(·) and x(·) are the respective state trajectories
under controls uε(·) and U(·) with the same initial condition x. Now we
choose U(·) defined by

ui(t) = E
[
uε(t)|k(ε, t) = ki

]
, i = 1, ..., p.

Then, for j = 1, ..., m,

E[xε
j(t)] = xje

−ajt +
∫ t

0
e−aj(t−s)

(
p∑

i=1

P (k(ε, s) = ki)
j−1∑

�=−n0+1

ui
�,j(s)

−
p∑

i=1

P (k(ε, s) = ki)
n∑

�=j+1

ui
j,�(s)

)
ds,

xj(t) = xje
−ajt +

∫ t

0
e−aj(t−s)

×
(

j−1∑
�=−n0+1

p∑
i=1

νkiui
�,j(s) −

n∑
�=j+1

p∑
i=1

νkiui
j,�(s)

)
ds,
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and, for j = m + 1, ..., n,

E[xε
j(t)] = xje

−ajt +
∫ t

0
e−aj(t−s)

×
(

p∑
i=1

P (k(ε, s) = ki)
m∑

�=−n0+1

ui
�,j(s) − zj

)
ds,

xj(t) = xje
−ajt +

∫ t

0
e−aj(t−s)

(
p∑

i=1

νki

m∑
�=−n0+1

ui
�,j(s) − zj

)
ds.

Similar to Lemma 4.2, we can prove that there exists a control uε(·) ∈
Aε(x,k) such that

min
1≤j≤m

inf
0≤t<∞

E[xε
j(t)] > Ĉ4ε

δ (9.69)

and

lim sup
T→∞

1
T

E

∫ T

0
[h(xε(t)) + c(uε(t))] dt ≤ λε + Ĉ5ε

δ, (9.70)

for some Ĉ4 > 0 and Ĉ5 > 0, where xε(t) is the state trajectory under the
control uε(t). Similar to (9.47), we have∣∣E[xε

j(t)] − xj(t)
∣∣ ≤ Ĉ6ε

1/2, j = 1, ..., n.

Consequently, it follows from (9.69) that, for sufficiently small ε,

(u1(·), ...,up(·)) ∈ A0(x).

In view of the convexity and the local Lipschitz continuity of h(·), Jensen’s
inequality yields

E[h(xε(t))] ≥ h(E[xε(t)])

= h(x(t)) + [h(E[xε(t)]) − h(x(t))]

≥ h(x(t)) − Ch3
(
1 + |E[xε(t))]|βh2 + |x(t)|βh2

)
× |E[xε(t)] − x(t)|

≥ h(x(t)) − Ĉ7ε,

(9.71)

for some Ĉ7 > 0. In the same way, using Lemma B.3, we can establish

E[c(uε(t))] =
p∑

i=1

P (k(ε, t) = ki)E[c(uε(t))|k(ε, t) = ki]

≥
p∑

i=1

P (k(ε, t) = ki)c(ui(t))

≥
p∑

i=1

νkic(ui(t)) − Ĉ8(ε + e−β0t/ε),

(9.72)
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for some positive Ĉ8, where β0 is specified in Lemma B.3. By combining
(9.71) and (9.72), we obtain

lim sup
T→∞

1
T

E

∫ T

0
[h(xε(t)) + c(uε(t))] dt

≥ lim sup
T→∞

1
T

∫ T

0

[
h(x(t)) +

p∑
i=1

νkic(ui(t))

]
dt − Ĉ9ε,

for some positive constant Ĉ9. Inequalities (9.70)–(9.72) imply (9.68). �

9.5 Construction of a Near-Optimal Control

In this section, based on the proofs of Lemmas 4.1 and 4.2 and Theorem
4.1, we present a procedure to construct a near-optimal control from a
near-optimal control of the limiting problem P0.

Construction of a Near-Optimal Control:

Step 1. In view of Lemma 4.2, choose

(u1(t), . . . ,up(t)) ∈ A0(x)

so that
min

1≤j≤m
inf

0≤t<∞
x̄j(t) ≥ C1ε

δ (9.73)

and

λ + C1ε
δ ≥ lim sup

T→∞
1
T

∫ T

0

[
h(x(t)) +

p∑
i=1

νkic(ui(t))

]
dt, (9.74)

where x(t) is the solution of

d

dt
x(t) = L

(
x(t),

p∑
i=1

νkiui(t),z

)
, x(0) = x.

Step 2. We construct the control

uε(t) =
p∑

i=1

I{k(ε,t)=ki}u
i(t),

and let xε(t) be the solution of

d

dt
x(t) = L (x(t), uε(t),z) , x(0) = x.
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Step 3. Sub-step 1. Define

Bε
1 =

{
t : x̄ε

1(t) − inf
0≤s≤t

x̄ε
1(s) = 0 and xε

1(t) < 0
}

.

We choose {ũε
�,1(t) : −n0 + 1 ≤ � ≤ 0} and {ũε

1,�(t) : 2 ≤ � ≤ n} such
that

ũε
�,1(t) ≤ ūε

�,1(t), � = −n0 + 1, . . . , 0,

ũε
1,�(t) ≤ ūε

1,�(t), � = 2, . . . , n,

and

0∑
�=−n0+1

ũε,1
�,1(t) =

n∑
�=2

ũε,1
1,�(t) =

(
n∑

�=2

ūε
1,�(t)

)
∧

(
0∑

�=−n0+1

ūε
�,1(t)

)
. (9.75)

For (i, j) ∈ {(�, 1) : −n0 + 1 ≤ � ≤ 0} ∪ {(1, �) : 2 ≤ � ≤ n}, define

uε,1
i,j (t) =

⎧⎨⎩ ūε
i,j(t), if t �∈ Bε

1,

ũε
i,j(t), if t ∈ Bε

1.
(9.76)

Sub-step 2. Let

x̃ε,2
2 = x2e

−a2t +
∫ t

0
e−a2(t−s)

[
0∑

�=−n0+1

ūε
�,2(s) + uε,1

1,2(s) −
n∑

�=3

ūε
2,�(s)

]
ds

and define

Bε
2 =

{
t : x̃ε,2

2 (t) − inf
0≤s≤t

x̃ε,2
2 (s) = 0 and xε,2

2 (t) < 0
}

.

We choose {ũε,2
�,2(t) : −n0 + 1 ≤ � ≤ 1} and {ũε,2

2,�(t) : 3 ≤ � ≤ n} such that

ũε,2
�,2(t) ≤ ūε

�,2(t), −n0 + 1 ≤ � ≤ 1, ũε,2
1,2(t) ≤ uε,1

1,2(t),

ũε,2
2,�(t) ≤ ūε

2,�(t), 3 ≤ � ≤ n,

and

1∑
�=−n0+1

ũε,2
�,2(t) =

n∑
�=3

ũε,2
2,�(t)

=

(
n∑

�=3

ūε
2,�(t)

)
∧

(
0∑

�=−n0+1

ūε
�,2(t) + uε,1

1,2(t)

)
.

(9.77)
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For (i, j) ∈ {(�, 2) : −n0 + 1 ≤ � ≤ 0} ∪ {(2, �) : 3 ≤ � ≤ n}, define

uε,2
i,j (t) =

⎧⎨⎩ ūε
i,j(t), if t �∈ Bε

2,

ũε,2
i,j (t), if t ∈ Bε

2,
(9.78)

and

uε,2
1,2(t) =

⎧⎨⎩ uε,1
1,2(t), if t �∈ Bε

2,

ũε,2
1,2(t), if t ∈ Bε

2.

Sub-step � (3 ≤ � ≤ m):
Let

x̃ε,�
� (t) = x�e

−a�t +
∫ t

0
e−a�(t−s)

[
0∑

�1=−n0+1

ūε
�1,�(s)

+
�−1∑
�1=1

uε,�1
�1,�(s) −

n∑
�1=�+1

ūε
�,�1(s)

]
ds,

and define

Bε
� =

{
t : x̃ε,�

� (t) − inf
0≤s≤t

x̃ε,�
� (s) = 0 and x̃ε,�

� (t) < 0
}

.

We choose {ũε,�
�1,�(t) : −n0 + 1 ≤ �1 ≤ � − 1} and {ũε,�

�,�1
(t) : � + 1 ≤ �1 ≤ n}

such that

ũε,�
�1,�(t) ≤ ūε

�1,�(t), −n0 + 1 ≤ �1 ≤ 0,

ũε,�
�1,�(t) ≤ uε,�1

�1,�(t), �1 = 1, . . . , � − 1,

ũε,�
�,�1

(t) ≤ ūε
�,�1(t), � + 1 ≤ �1 ≤ n,

and

�−1∑
�1=−n0+1

ũε,�
�1,�(t) =

n∑
�1=�+1

ũε,�
�,�1

(t)

=

(
n∑

�1=�+1

ūε
�,�1(t)

)
∧

(
0∑

�1=−n0+1

ūε
�1,�(t) +

�−1∑
�1=1

uε,�1
�1,�(t)

)
.

(9.79)
For (i, j) ∈ {(�1, �) : −n0 +1 ≤ �1 ≤ 0}∪{(�, �1) : �+1 ≤ �1 ≤ n}, define

uε,�
i,j (t) =

⎧⎨⎩ ūε
i,j(t), if t �∈ Bε

� ,

ũε,�
i,j (t), if t ∈ Bε

� ,
(9.80)
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and for (i, j) ∈ {(�1, �) : 1 ≤ �1 ≤ � − 1}, define

uε,�
i,j (t) =

⎧⎨⎩ uε,�−1
i,j (t), if t �∈ Bε

� ,

ũε,�
i,j (t), if t ∈ Bε

� .
(9.81)

Finally, set
uε

i,j = uε,j
i,j (t).

We get the desired control uε(·).

9.6 Notes

This chapter is based on Sethi, Zhang, and Zhang [123]. The averaging ap-
proach used here requires computation of equilibrium measures associated
with the generator of the capacity process. Lasserre [86] has suggested how
this might be efficiently carried out for processes with a large number of
states. Furthermore, it should be noted that the limiting problem can be
solved by the software MISER3 developed by Jennings, Fisher, Teo, and
Goh [74]. Indeed, the method has been applied by Jennings, Sethi, and Teo
[75] to solve the limiting problem associated with the example of Figure
5.1 and with other more complicated jobshops.



10
Near-Optimal Risk-Sensitive Control

10.1 Introduction

In this chapter we consider near-optimal control with a risk-sensitive cost
criterion. The machine capacity process is assumed to be a finite state
Markov chain with generator Q/ε, where ε > 0 is a parameter related to
the frequency of machine breakdown and repair relative to an underlying
production time scale. For simplicity, as in Chapter 6, we consider a one-
product manufacturing system with constant demand. The control is the
production rate, which is subject to a random machine capacity constraint.
For a fixed ε > 0, the goal is to find a control policy which minimizes the
long-term growth rate of an expected exponential-of-integral criterion. We
discuss the asymptotic property of the problem as the rate of fluctuation of
the production capacity process goes to infinity (ε → 0). We show that the
risk-sensitive control problem can be approximated by a limiting problem
in which the stochastic capacity process can be averaged out and replaced
by its average. This procedure is analogous to passing in limit the distur-
bance attenuation problem from the risk-sensitive model with small noise
intensity to the deterministic robust control.

The plan of this chapter is as follows. In Section 10.2 we formulate the
model. In Section 10.3 we derive the limiting problem, and investigate the
asymptotic property of the problem as the rate of fluctuation of the pro-
duction capacity process goes to infinity (ε → 0). The chapter is concluded
in Section 10.4.
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10.2 Problem Formulation

Let us consider a one-product, parallel-machine manufacturing system with
stochastic production capacity facing a constant demand for its production.
For t ≥ 0, let x(t), u(t), and z denote the surplus level, the production
rate, and the constant demand rate, respectively. We assume x(t) ∈ �,
u(t) ∈ �+, t ≥ 0, and z > 0 a constant. They satisfy the differential
equation

d

dt
x(t) = −ax(t) + u(t) − z, x(0) = x, (10.1)

where a > 0 is a constant representing the deterioration rate (or spoilage
rate) of the finished product.

Let k(ε, t) ∈ M = {0, 1, 2, . . . , m}, t ≥ 0, denote a Markov chain gener-
ated by (1/ε)Q, where ε > 0 is a small parameter and Q = (qij), i, j ∈ M, is
an (m+1)×(m+1) matrix such that qij ≥ 0 for i �= j and qii = −

∑
j �=i qij .

We let k(ε, t) represent the maximum production capacity of the system at
time t. The representation for M usually stands for the case of m identical
machines, each with a unit capacity and having two states: up and down.

The production constraints are given by the inequalities

0 ≤ u(t) ≤ k(ε, t), t ≥ 0.

Definition 2.1. A production control process u(·) = {u(t) : t ≥ 0} is
admissible if: (i) u(t) is σ{k(ε, s) : 0 ≤ s ≤ t} progressively measurable;
and (ii) 0 ≤ u(t) ≤ k(ε, t) for all t ≥ 0. �

Let Aε(k) denote the class of admissible controls with the initial con-
dition k(ε, 0) = k. Let g(x, u) denote a cost function of the surplus and
the production. For each ε > 0, the objective of the problem is to choose
u(·) ∈ Aε(k) to minimize

Jε(x, k, u(·)) = lim sup
T→∞

ε

T
log E

[
exp

(
1
ε

∫ T

0
g(x(t), u(t)) dt

)]
, (10.2)

where x(·) is the surplus process corresponding to the production process
u(·). We summarize our control problem as follows:

Pε:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min Jε(x, k, u(·))

= lim sup
T→∞

ε

T
log E exp

(
1
ε

∫ T

0
g(x(t), u(t)) dt

)
,

s.t.
d

dt
x(t) = −ax(t) + u(t) − z, x(0) = x, u(·) ∈ Aε(k),

minimum average cost λε = inf
u(·)∈Aε(k)

Jε(x, k, u(·)).

(10.3)
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Remark 2.1. The positive spoilage rate a implies a uniform bound for
x(t); see Remark 6.2.2. �

We assume the cost function g(x, u) and the production capacity process
k(ε, ·) to satisfy the following:

(A1) g(x, u) ≥ 0 is continuous, bounded, and uniformly Lipschitz in x.

(A2) Q is strongly irreducible.

Let ν = (ν0, ν1, . . . , νm) denote the equilibrium distribution of k(ε, ·).
Formally, we can write the associated Hamilton-Jacobi-Bellman (HJB)
equation as follows:

λε

ε
= inf

0≤u≤k

{
−ax + u − z

ε

∂ψε(x, k)
∂x

+ exp
(

−ψε(x, k)
ε

)
Q

ε
exp

(
ψε(x, ·)

ε

)
(k) +

g(x, u)
ε

}
,

where ψε(x, k) is the potential function defined on � × M. By multiplying
both sides of this equation with ε, we have

λε = inf
0≤u≤k

{
(−ax + u − z)

∂ψε(x, k)
∂x

+ exp
(

−ψε(x, k)
ε

)
Q exp

(
ψε(x, ·)

ε

)
(k) + g(x, u)

}
.

(10.4)

10.3 The Limiting Problem

In this section, we analyze the asymptotic property of the HJB equation
(10.4) as ε → 0. We note that this HJB equation has an additional term
involving the exponential functions, when compared to the HJB equation
associated with an ordinary long-run average-cost problem. In order to get
rid of the exponential term, we make use of the logarithmic transformation,
as in Fleming and Soner [56, p. 275].

Let

V = {v = (v(0), . . . , v(m)) ∈ �m+1 : v(i) > 0, i = 0, 1, . . . , m}.

Define

Qv = (qv
ij) such that qv

ij = qij
v(j)
v(i)

for i �= j and qv
ii = −

∑
j �=i

qv
ij .
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Then, in view of the logarithmic transformation, we have, for each k ∈ M,

exp
(

−ψε(x, k)
ε

)
Q exp

(
−ψε(x, ·)

ε

)
(k)

= sup
v∈V

{
Qv

ε
ψε(x, ·)(k) +

Qv(·)(k)
v(k)

− Qv(log v(·))(k)
}

.

The supremum is obtained at v(k) = exp(−ψε(x, k)/ε).
The logarithmic transformation suggests that the HJB equation is equiv-

alent to an Isaacs equation of a two-player zero-sum dynamic stochastic
game. The Isaacs equation is given as follows:

λε = inf
0≤u≤k

sup
v∈V

{
(−ax + u − z)

∂ψε(x, k)
∂x

+ g̃(x, u, v, k) +
Qv

ε
ψε(x, ·)(k)

}
(10.5)

where

g̃(x, u, v, k) = g(x, u) +
Qv(·)(k)

v(k)
− Qv(log v(·))(k), (10.6)

for k ∈ M.

Remark 3.1. Note that if v = (1, . . . , 1), then g̃(x, u, v, k) = g(x, u) and
Qv = Q. �

Remark 3.2. In the results to follow, we will not give a precise description
of the stochastic dynamic game with the Isaacs equation (10.5), since this
interpretation will not be used in proving our results about the determin-
istic limit as ε → 0. In the game, u(t) and v(t) represent minimizing and
maximizing controls, based on information available at time t. Note that
the maximizing control v produces a change in transition rates, from qij

to qv
ij . This idea can be made precise using Elliott-Kalton type strategies;

see Fleming and Souganidis [57]. Since the order in (10.5) is inf(sup(· · ·))
rather than sup(inf(· · ·)), λε turns out to be the upper game value for the
game payoff

lim sup
T→∞

1
T

E

∫ T

0
g̃(x(t), u(t), v(t), k(ε, t)) dt. �

We consider the limit of the problem as ε → 0. We first define the control
sets for the limiting problem. Let

Γu = {U = (u0, . . . , um); 0 ≤ ui ≤ i, i = 0, . . . , m}

and

Γv = {V = (v0, . . . , vm); vi = (vi(0), . . . , vi(m)) ∈ V, i = 0, . . . , m}.
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For each V ∈ Γv, let Q
V

:= (qV
ij) such that

qvi

ij = qV
ij =

qijv
i(j)

vi(i)
for i �= j and qV

ii = −
∑
j �=i

qV
ij ,

and let νV = (νV
0 , . . . , νV

m) denote the equilibrium distribution of Q
V

. The
next lemma says that Q

V
is irreducible. Therefore, there exists a unique

positive νV for each V ∈ Γv. Moreover, νV depends continuously on V .

Lemma 3.1. Assume that Assumptions (A1) and (A2) hold. For each V ∈
Γv, Q

V
is irreducible.

Proof. We divide the proof into three steps.

Step 1. rank(Q
V

) = m.
First of all, it is easy to see that the irreducibility of Q implies qV

kk < 0,
for k = 0, 1, . . . , m. We multiply the first row of Q

V
by −qV

k0/qV
00 and add to

the kth row, k = 1, . . . , m, to make the first component of that row vanish.
Let QV,1 = (qV,1

ij ) denote the resulting matrix. Then, QV,1 must satisfy

qV,1
0j = qV

0j , j = 0, 1, . . . , m,

qV,1
k0 = 0, k = 1, . . . , m,

qV,1
kk ≤ 0, k = 1, . . . , m, and

m∑
j=0

qV,1
kj = 0, k = 0, 1, . . . , m.

We now show that qV,1
kk < 0 for k = 1, . . . , m. For k = 1, if qV,1

11 ≥ 0, then
it must be equal to 0, which implies

(qV
12, . . . , q

V
1m) −

(
qV
10

qV
00

)
(qV

02, . . . , q
V
0m) = 0. (10.7)

Recall that qV
11 �= 0. One must have qV

10 > 0, since otherwise qV
10 = 0 implies

qV
11 = qV,1

11 = 0, which contradicts the fact that qV
kk < 0, for k = 0, 1, . . . , m.

Thus, −qV
10/qV

00 > 0. This together with the nonnegativity of qV
ij , i �= j,

implies that both of the vectors in (10.7) must be equal to 0, i.e.,

(qV
12, . . . , q

V
1m) = 0 and (qV

02, . . . , q
V
0m) = 0.

These equations imply that a state in {2, 3, . . . , m} is not accessible from a
state in {0, 1}. They contradict the irreducibility of Q. Therefore, one must
have qV,1

11 < 0. Similarly, we can show that qV,1
kk < 0 for k = 2, . . . , m.
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We repeat this procedure in a similar way by multiplying the second
row of QV,1 by −qV,1

k1 /qV,1
11 , k = 2, . . . , m, and adding to the kth row. Let

QV,2) = (qV,2
ij ) denote the resulting matrix. Then one has

qV,2
ij = qV,1

ij , i = 0, 1, j = 0, 1, . . . , m,

qV,2
ij = 0, i = 2, . . . , m, j = 0, 1, . . . , m,

qV,2
kk ≤ 0, k = 2, . . . , m, and

m∑
j=0

qV,2
kj = 0, k = 0, 1, . . . , m.

Similarly, we can show that qV,2
kk < 0 for k = 2, . . . , m.

We continue this procedure and transform Q → QV,1 → · · · → QV,m−1

with QV,m−1 = (qV,m−1
ij ), such that

qV,m−1
ij = 0, i > j,

qV,m−1
kk < 0, k = 0, 1, . . . , m − 1,

m∑
j=0

qV,m−1
kj = 0, k ∈ M, and

qV,m−1
mm = 0.

Notice that the prescribed transformations do not change the rank of the
original matrix. Thus,

rank(Q
V

) = rank(QV,1) = · · · = rank(QV,m−1) = m.

Step 2. Q
V

is weakly irreducible.
Consider an (m + 1) row vector b = (b0, . . . , bm) such that

bQ
V

= 0 and b0 + · · · + bm = 1.

It follows from Lemma B.3 that

lim
t→∞ exp(Q

V
t) =

⎛⎜⎜⎝
νV
0 νV

0 · · · νV
0

νV
1 νV

1 · · · νV
1

...
... · · ·

...
νV

m νV
m · · · νV

m

⎞⎟⎟⎠ .

Since exp(Q
V

t) represents the transition probabilities, the limit b must
be nonnegative. Thus, b = (νV

0 , . . . , νV
m) is an equilibrium distribution of

Q
V

. Note that the kernel(Q
V

)′ = span{(νV
0 , . . . , νV

m)}, since rank(Q
V

)′ =
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rank(Q
V

) = m. Then, c = (νV
0 , . . . , νV

m) is the unique nonnegative solution
to bQ

V
= 0 and b0 + · · · + bm = 1. Hence, Q

V
is weakly irreducible.

Step 3. Q
V

is irreducible, i.e., (νV
0 , . . . , νV

m) > 0.
If not, then without loss of generality we may assume νV

0 > 0, . . . , νV
k0

> 0
and νV

k0+1 = 0, . . . , νV
m = 0, for some k0 = 0, 1, . . . , m. Note that the

equation (νV
0 , . . . , νV

m)Q
V

= 0 implies that qV
ij = 0, and thus qij = 0, for

i = 0, . . . , k0 and j = k0 +1, . . . , m. This in turn implies that Q is not irre-
ducible, since the process k(ε, ·) cannot jump from a state in {0, 1, . . . , k0}
to a state in {k0 + 1, . . . , m}. The contradiction yields the irreducibility of
Q

V
. �

Let

ĝ(x, U, V ) =
m∑

i=0

νV
i g(x, ui) +

m∑
i=0

νV
i

Qvi(·)(i)
vi(i)

−
m∑

i=0

νV
i Q

V
(log vi(·))(i).

Note that ĝ(x, U, V ) ≤ ||g||, where || · || is the sup norm. Moreover, since
g(x, u) ≥ 0, ĝ(x, U, 1) ≥ 0, where V = 1 means vi(j) = 1 for all i, j.

Theorem 3.1. Let Assumptions (A1) and (A2) hold. Let εn → 0 be a
sequence such that λεn → λ0 and ψεn(x, k) → ψ0(x, k). Then:

(i) ψ0(x, k) is independent of k, i.e., ψ0(x, k) = ψ0(x);

(ii) ψ0(x) is Lipschitz;

(iii) (λ0, w0(x)) is a viscosity solution to the following Isaacs equation:

λ0 = inf
U∈Γu

sup
V ∈Γv

{(
−ax +

m∑
i=0

νV
i ui − z

)
∂ψ0(x)

∂x
+ ĝ(x, U, V )

}
;

(10.8)

(iv) with

J0(U(·), V (·)) = lim sup
T→∞

1
T

∫ T

0
ĝ(x(t), U(t), V (t)) dt,

λ0 = inf
U(·)

(
sup
V (·)

J0(U(·), V (·))
)

,

subject to

d

dt
x(t) = −ax(t) +

m∑
i=0

ν
V (t)
i ui(t) − z, x(0) = x,

where U(·) and V (·) are Borel measurable functions and U(t) ∈ Γu

and V (t) ∈ Γv for t ≥ 0.
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Note that the equation in (10.8) is an Isaacs equation associated with a
two-player, zero-sum dynamic game with the objective J0.

Proof of Theorem 3.1. Lemma 6.3.2(iii) implies that

|ψε
ρ(x, k) − ψε

ρ(x, k̃)| ≤ ε log C3,

for x in any finite interval. Thus, the limit of ψε
ρ(x, k) must be independent

of k, i.e.,
ψ0(x, 0) = · · · = ψ0(x, m) =: ψ0(x).

The Lipschitz property of ψ0(x) follows from the Lipschitz property of
ψε(x, k).

Note that
νV Q

V
= (νV

0 , . . . , νV
m)Q

V
= 0.

It follows that
m∑

i=0

νV
i Qvi

ψε(x, ·)(i) = 0. (10.9)

The remaining proof of (iii) is standard and can be carried out in the
manner of Chapter 7.

The proof of (iv) involves the theory of viscosity solutions of differential
games. We only sketch the proof below, and refer to Fleming and Zhang
[58] for details.

Let

H(x, p) = inf
U∈Γu

sup
V ∈Γv

{(
−ax +

m∑
i=0

νViui − z

)
p +

m∑
i=0

νV
i g(x, ui)

+
( m∑

i=0

νV
i

Qvi(·)(i)
vi(i)

−
m∑

i=0

νViQ
V

(log vi(·))(i)
) }

.

Then,

|H(x̃, p) − H(x, p)| ≤
(

a|p| +
∣∣∣∣∣∣∣∣∂g(x, u)

∂x

∣∣∣∣∣∣∣∣) |x̃ − x|,

|H(x, p̃) − H(x, p)| ≤ (a|x| + m + z)|p̃ − p|.
These conditions imply the uniqueness of a viscosity solution to the follow-
ing finite-time problem:⎧⎪⎨⎪⎩

∂Ψ
∂T

= H

(
x,

∂Ψ(x, T )
∂x

)
− λ0, T > 0,

Ψ(0, x) = w0(x).

Uniqueness is in the class of continuous viscosity solutions Ψ(x, T ) such
that Ψ(·, T ) satisfies a uniform Lipschitz condition on every finite time
interval 0 ≤ T ≤ T1; see Crandall and Lions [38] and Ishii [73].
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The method of Evans and Souganidis [49] shows that the

upper value
{∫ T

0

(
ĝ(x(t), U(t), V (t)) − λ0) dt + ψ0(x(T ))

}
(10.10)

is such a viscosity solution, and ψ0(x) is also a viscosity solution. So ψ0(x) =
Ψ(T, x). Namely,

ψ0(x) = upper value
{∫ T

0

(
ĝ(x(t), U(t), V (t)) − λ0) dt + ψ0(x(T ))

}
.

Using the above equality, one can show as in Fleming and McEneaney
[52] that

λ0 = inf
U(·)

sup
V (·)

J0(U(·), V (·)). �

We would like to comment on how to use the solution to the limiting
problem to obtain a control for the original problem. Typically, an explicit
solution is not available to either of the problems. A numerical scheme
has to be used to obtain an approximate solution. The advantage of the
limiting problem is its dimensionality, which is much smaller than that of
the original problem if the number of states in M is large.

Let (U∗(x), V ∗(x)) denote a solution to the upper value problem. The
control

u(x, k(ε, t)) =
m∑

i=0

I{k(ε,t)=i}ui∗(x)

is expected to be nearly optimal for the original problem.

Remark 3.3. Note that the last term in (10.8) is nonpositive. In fact, for
each v ∈ V and i ∈ M, we have

Qv(·)(i)
v(i)

− Qv(log v(·))(i) =
∑
j �=i

qij

(
v(j)
v(i)

− 1
)

−
∑
j �=i

qij
v(j)
v(i)

log
v(j)
v(i)

=
∑
j �=i

qij

(
v(j)
v(i)

− 1 − v(j)
v(i)

log
v(j)
v(i)

)
≤ 0,

because the function (x − 1 − x log x) is nonpositive on (0,∞). It follows
that

m∑
i=0

νV
i

Qvi(·)(i)
vi(i)

−
m∑

i=0

νV
i Qvi

(log vi(·))(i) ≤ 0. �

Remark 3.4. Let I(µ) be the Donsker-Varadhan function, defined for
any probability vector µ = (µ0, . . . , µm) > 0. That is, for µi > 0 and∑m

i=0 µi = 1,
I(µ) = sup

β∈V
[−〈µ, β−1Qβ〉],



236 10. Near-Optimal Risk-Sensitive Control

see Fleming, Sheu, and Soner [54]. Then we have

−I(µ) = sup
V,νV =µ

{ m∑
i=0

νV
i

Qvi(·)(i)
vi(i)

−
m∑

i=0

νV
i Q

V
(log vi(·))(i)

}
. (10.11)

To prove this, for each V ∈ Γv, let

KV (i) = Q
V

(log vi(·))(i) − 1
vi(i)

Qvi(·)(i).

Then (10.11) can be written as I(µ) = infνV =µ〈µ, KV 〉. We first show
that

I(µ) ≥ inf
νV =µ

〈µ, KV 〉. (10.12)

It is elementary to show that there exists β∗ ∈ V such that I(µ) =
〈µ, (β∗)−1Qβ∗〉. Then, in view of Lemma 3.2 in [54], we have

µ = νV ∗
, where vi∗(j) = β∗(i)/β∗(j).

It follows that 〈µ, KV ∗〉 = −〈µ, (β∗)−1Qβ∗〉, because

〈µ,Q
V ∗

(φ)〉 = 〈νV ∗
, Q

V ∗
φ〉 = 0.

This implies (10.12).
To show the opposite inequality, note that the logarithmic transformation

e−φ(i)Q(eφ(·))(i) = sup
V ∈Γv

[Q
V

φ(·)(i) − KV (i)],

for all φ. Let φ = β∗. Then, for each V such that νV = µ, we have

1
β∗ Qβ∗ ≥ Q

V
φ − KV .

Hence, for νV = µ, we obtain〈
µ,

1
β∗ Qβ∗

〉
≥ 〈µ,Q

V
φ〉 − 〈µ, KV 〉 = −〈µ, KV 〉.

This implies that I(µ) ≤ infνV =µ〈µ, KV 〉. Thus, (10.11) is established.
It follows from (10.11) that (10.8) is equivalent to

λ0 = inf
U∈Γu

sup
µ

{(
− ax + 〈µ, u〉 − z

)∂w0(x)
∂x

+ 〈µ, g(x, u)〉 − I(µ)
}

.

Similarly, the dynamics of x(t) can be written as

d

dt
x(t) = −ax(t) + 〈µ(t), u(t)〉 − z. �
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10.4 Notes

This chapter is based on Fleming and Zhang [58]. Only a single machine
single product model is considered. It would be interesting to generalize
the results to more general manufacturing systems such as flowshops and
jobshops in Chapters 8 and 9.

In addition to the long-run average version of the risk-sensitive cost con-
sidered in this chapter, Zhang [151] studied the risk-sensitive discounted
cost criterion

Jε,ρ(x, k, u(·)) =
√

ε log E exp
(

1√
ε

∫ ∞

0
e−ρtg(x(t), u(t)) dt

)
.

The scale parameter in the cost is
√

ε instead of ε as in (6.2). This is
because the convergence involving a discounted cost is mainly affected by
the convergence rate of k(ε, ·) to its equilibrium distribution, which is of
order

√
ε.
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11
Further Extensions and Open
Research Problems

11.1 Introduction

In this book we have considered average-cost manufacturing systems in
which deterministic as well as stochastic events occur at different time
scales. In cases where rates at which production machines break down and
get repaired are large, we have presented theoretical developments devoted
to showing that properly designed decision-making procedures can lead to
near optimization of its overall objective. In other words, we have shown
that it is possible to base longer-term decisions (that respond to slower
frequency events) on the average existing production capacity and an ap-
propriately modified objective, and we expect these decisions to be nearly
optimal even though the shorter-term capacity fluctuations, because of ma-
chine breakdowns and repairs, are ignored. Furthermore, having the longer-
term decision in hand, one can then solve the simpler problem for obtaining
optimal or near-optimal production rates.

In this chapter we summarize some specific results that have been ob-
tained and related open problems. In Chapter 7 we have constructed feed-
back policies or controls for parallel-machine manufacturing systems and
have shown these policies to be asymptotically optimal as the rates of oc-
currence of machine breakdown and repair events become arbitrarily large.
Also obtained are the error estimates associated with some of the con-
structed controls. For more general manufacturing systems such as flow-
shops and jobshops, only asymptotic optimal open-loop controls have been
constructed in Chapters 8 and 9. This is because of the difficulty posed by
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the inherent presence of the state constraints requiring that the inventories
in the internal buffers (between any two machines) remain nonnegative.

The remainder of this chapter is devoted to indicating some important
open problems and to concluding remarks. In Section 11.2 we discuss pos-
sible extensions of our results to multilevel hierarchical systems. In Section
11.3, we discuss some difficulties associated with obtaining asymptotic op-
timal feedback controls for flowshops and jobshops. In Section 11.4 we
mention possibilities of relaxing the deterioration rate used in Chapter 10
in the context of risk-sensitive controls. In Section 11.5 we briefly discuss
more general systems of interest. Section 11.6 concludes the book with some
final thoughts.

11.2 Multilevel Systems

In this book, we have only considered production planning problems. It
would be interesting to extend these results to multilevel hierarchical sys-
tems. For example, one could incorporate the capacity expansion decisions,
as in Sethi and Zhang [125], into these models.

Our approach considers manufacturing firms in which events occur at
different time scales. For example, changes in demand may occur far more
slowly than breakdowns and repairs of production machines. This sug-
gests that capital expansion decisions that respond to demand are rela-
tively longer-term decisions than decisions regarding production. It is then
possible to base capital expansion decisions on the average existing pro-
duction capacity and to expect these decisions to be nearly optimal, even
though the rapid capacity fluctuations are ignored. Having the longer-term
decisions in hand, one can then solve the simpler problem of obtaining pro-
duction rates. More specifically, we shall show that the two-level decisions
constructed in this manner are asymptotically optimal as the rate of fluc-
tuation in the production capacity becomes large in comparison with the
rates at which other events are taking place.

11.3 Asymptotic Optimal Feedback Controls

As mentioned above, asymptotic optimal open-loop controls have been con-
structed for flowshops and jobshops, whereas it is only for parallel machine
systems that asymptotic optimal feedback controls have been obtained. In
single- or parallel-machine systems, either the Lipschitz property of opti-
mal control for the corresponding deterministic systems, or the monotonic-
ity property of optimal control with respect to the state variables, makes
the proof of asymptotic optimality hold. Unfortunately, neither of these
properties is available in the case of flowshops or jobshops.
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However, it is an important task to construct asymptotic optimal feed-
back policies for flowshops and jobshops and their multilevel extensions,
possibly with stochastic demand. Such control policies need to be con-
structed from optimal or near-optimal feedback controls of the appropriate
limiting problems as ε → 0. Furthermore, it is of interest to estimate how
close the cost associated with the constructed feedback policies would be
to the (theoretically) optimal cost.

There are two major obstacles in achieving this task. First, optimal feed-
back controls may not be Lipschitz in the presence of state constraints, and
the ordinary differential equation describing the evolution of the state of
the system may not have a unique solution. As Davis [42] has mentioned,
this puts a severe restriction on the class of control policies that can be con-
sidered. Second, the existing proof of asymptotic optimality of constructed
feedback controls (Theorem 7.5.2) requires the Lipschitz property.

In Theorem 7.5.2 for the single product case, the availability of the mono-
tonicity property eliminates the need for the Lipschitz property, and allows
us to obtain an asymptotic optimal feedback control.

Other possible research directions for constructing asymptotic optimal
feedback policies are: (i) to make a smooth approximation of a non-Lipschitz
feedback control; (ii) to use barrier or penalty methods to transform a state-
constrained problem to an unconstrained problem and obtain a Lipschitz
control; and (iii) to make a diffusion approximation for improving the reg-
ularity of the optimal policy. Once a candidate control policy is obtained
by any of these means, new methods still need to be developed for proving
the asymptotic optimality of the policy.

11.4 Robust Controls

In the risk-sensitive control considered in Chapter 10, it would be of in-
terest to study the stability without the deterioration condition used in
Lemma 6.3.1. One possible direction for attacking the problem is to use
a “diminishing deterioration” approach by sending the deterioration rate
a → 0. In order to obtain the desired convergence of the potential func-
tion ψε(x, k) as a → 0, it is necessary to have the uniform equicontinuity
property that is typically guaranteed by the Lipschitz condition uniform
with respect to a > 0. A major difficulty, however, is the absence of such a
uniform Lipschitz property.

In our model, we assume a positive deterioration rate a for items in
storage (formula (10.1)). This corresponds to a stability condition typically
imposed for disturbance attenuation problems on an infinite time horizon
(see Fleming and McEneaney [52]). Nevertheless, it would be interesting to
weaken the assumption that a > 0.
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11.5 General Systems

Our main concern in this book has been the construction of near-optimal
decisions in observable manufacturing systems. In particular, we have as-
sumed system dynamics to be linear and that the running cost or profit
function be separable in the relevant variables, such as surplus levels and
production rates.

For dealing with nonmanufacturing systems such as urban design sys-
tems, traffic flow systems, environmental systems, or even general systems
for that matter, one might need to consider nonlinear dynamics, non-
separable cost functions, and partially observed stochastic processes; see
Alexander [4] and Auger [7] for some nonmanufacturing systems of in-
terest. Systems may also involve several players competing against each
other. Such systems would require stochastic differential game formula-
tions. While some progress has been made in the literature along these
lines, much remains to be done. We shall now describe briefly the progress
made to date.

Zhou and Sethi [153] consider systems with nonlinear dynamics and non-
separable costs and use a maximum principle approach in order to construct
asymptotic optimal open-loop controls. In Sethi and Zhang [125], we have
also considered nonseparable costs of surplus and production and have
obtained asymptotic optimal feedback controls.

Finally, we would like to mention that it would be interesting to con-
sider models with Markov chains involving weak and strong interactions.
Quite often, the states of the underlying Markov chain are either subject
to rather frequent changes or are naturally divisible to a number of groups
such that the chain fluctuates very rapidly from one state to another within
a single group, but jumps less rapidly from one group to another. In Yin
and Zhang [149], such Markov chains are studied extensively. The results
include asymptotic expansions of the probability distributions for the sin-
gularly perturbed Markov chains, the asymptotic normality of occupation
measures, exponential error bounds, and structural properties of the un-
derlying Markov chains with weak and strong interactions. These results
can be used when dealing with more general manufacturing systems with
much larger state space in k(ε, t).

11.6 Final Thoughts

In conclusion, we have considered a variety of different manufacturing sys-
tems in this book and have constructed nearly optimal hierarchical controls
for them. Additional features can be incorporated into the models con-
sidered. These include control-dependent generators, setups and capacity
expansion, and marketing; see Sethi and Zhang [125].

In real-life systems many of these features may be simultaneously present.
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Nevertheless, it should be possible without too much difficulty to construct
candidate feedback controls that are likely to be asymptotically optimal.
Moreover, in some cases, it may be possible, although tedious, to apply the
methods presented in this book for proving asymptotic optimality of the
candidate controls. In other cases, the existing methods may need to be
supplemented with new ideas for obtaining a proof of asymptotic optimal-
ity.

While we should endeavor to develop these new ideas, we hope that the
research presented in this book and in Sethi and Zhang [125] has already
provided sufficient (at least heuristic) justification for using the candidate
feedback policies in the management of realistically complex manufacturing
systems.
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Appendix A
Finite State Markov Chains

Let k(·) = {k(t) : t ≥ 0} denote a stochastic process defined on a probability
space (Ω,F , P ) with values in M = {0, 1, 2, . . . , m}. Then {k(t) : t ≥ 0} is
a Markov chain if

P (k(t + s) = i|k(r) : r ≤ s) = P (k(t + s) = i|k(s)),

for all s, t ≥ 0 and i ∈ M. We shall also write k(·) as k(t), t ≥ 0.
Let us assume that the transition probability P (k(t + s) = j|k(s) = i)

is stationary, i.e., it is independent of s. This allows us to introduce the
notation Pij(t) = P (k(t + s) = j|k(s) = i). Then,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pij(t) ≥ 0, i, j ∈ M,
m∑

j=0

Pij(t) = 1, i ∈ M,

Pij(t + s) =
m∑

l=0

Pil(s)Plj(t), t, s ≥ 0, i, j ∈ M,

(the Chapman-Kolmogorov relation).

Let P (t) denote the (m + 1) × (m + 1) matrix (Pij(t)) of stationary
transition probabilities. We shall refer to P (t) as the transition matrix of
the Markov chain k(·). We postulate that

lim
t→0

P (t) = Im+1,

where Im+1 denotes the (m + 1) × (m + 1) identity matrix.
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Let Q denote an (m + 1) × (m + 1) matrix such that Q = (qij) with
qij ≥ 0 for j �= i and qii = −

∑
j �=i qij . Then one can constract a Markov

chain k(·) as in Lemma A.1.
The following notation is used throughout the book:

Qφ(·)(i) =
∑
j �=i

qij(φ(j) − φ(i)),

for any function φ(·) on M. The matrix Q is called the infinitesimal gen-
erator (or simply generator) of k(·).

The transition matrix P (t) is determined uniquely by the generator Q
according to the following differential equation (see Karlin and Taylor [78]):

d

dt
P (t) = P (t)Q = QP (t), P (0) = Im+1.

Thus,

qij =

⎧⎪⎪⎨⎪⎪⎩
lim

t→0+

Pii(t) − 1
t

, if j = i,

lim
t→0+

Pij(t)
t

, if j �= i,

can be interpreted as the transition rate from state i to state j when i �= j,
and as the (negative of the) transition rate out of state i when j = i.

Let {ηk : k = 0, 1, 2, . . .} be a discrete-time Markov chain in M with
initial distribution (p0, p1, . . . , pm) and transition matrix (pij)(m+1)×(m+1)
such that pii = 0 and pij = qij/(

∑
� �=i qi�). Let τ0, τ1, τ2,. . . be indepen-

dent and exponentially distributed random variables with unity density
parameter.

Lemma A.1 (Construction of Markov Chains). Let λ(i) =
∑

j �=i qij. Then

k(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
η0, if 0 ≤ t <

τ0

λ(η0)
,

η�, if
�−1∑
j=0

τj

λ(ηj)
≤ t <

�∑
j=0

τj

λ(ηj)
,

defines a Markov chain in M with initial distribution (p0, p1, . . . , pm) and
generator Q.

Proof. See Ethier and Kurtz [48] for a proof. �

Definition A.1 (Irreducibility). (i) A (m + 1) × (m + 1) matrix Q is said
to be weakly irreducible if the equations

x′Q = 0 and
m∑

i=0

xi = 1 (A.1)
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have a unique solution x and x ≥ 0.
(ii) A (m + 1) × (m + 1) matrix Q is said to be strongly irreducible, or

simply irreducible, if equations (A.1) have a unique solution x > 0. �

The solution x to equations (A.1) is termed an equilibrium distribution.

Note that the rank of a weakly irreducible matrix Q is m. The difference
between weak and strong irreducibility is that the former only requires the
unique solution x to be nonnegative and the latter requires x to be strictly
positive. In fact, the nonnegativity requirement in the weak irreducibility
is superfluous. It is shown in Yin and Zhang [149] that if x is a solution to
(A.1), then x ≥ 0. We keep the nonnegativity requirement in the definition
for the sake of clarity.



Appendix B
Convergence and Error Estimates of
Markov Chains

In this appendix we consider a Markov chain k(t) = k(ε, t), t ≥ 0, that has
a generator Q = Q(1) + ε−1Q(2), where ε > 0 is a small parameter. We
discuss several technical results that concern the asymptotic properties of
the Markov chain k(ε, ·) as ε tends to zero.

Let us assume that Q(2) is weakly irreducible throughout this appendix.
Let ν = (ν0, ν1, . . . , νm) denote the equilibrium distribution of Q(2). Then
ν is the only solution to the equations

νQ(2) = 0 and
m∑

i=0

νi = 1.

Lemma B.1. Let

P =

⎛⎝ ν0 ν1 · · · νm
...

... · · ·
...

ν0 ν1 · · · νm

⎞⎠ ,

and let P 0(t) = exp(Q(2)t). If Q(2) is weakly irreducible, then there exist
constants C and β0 > 0 such that

|P 0(t) − P | ≤ Ce−β0t.

Proof. By Chung [35, Theorem II.10.1], there exists an (m + 1) × (m + 1)
matrix P 0 such that |P 0(t) − P 0| → 0 as t → ∞. Since P 0(t) is a finite-
dimensional matrix, the convergence must be exponential, i.e., |P 0(t) −
P 0| ≤ Ce−β0t for some β0 > 0.



254 Appendix B. Convergence and Error Estimates of Markov Chains

It remains to show that P 0 = P . Note that dP 0(t)/dt → 0 as t → ∞
(see Chung [35, Theorem II.12.8]. This implies P 0Q

(2) = 0. By the weak
irreducibility of Q(2), we conclude that P 0 = P . �

Lemma B.2. Let P ε(t) = exp((εQ(1) + Q(2))t) and P 0(t) = exp(Q(2)t).
Then a constant C > 0 exists such that, for t ≥ 0,

|P ε(t) − P 0(t)| ≤ Cε.

Proof. Let Y (t) = P ε(t) − P 0(t). Then,

d

dt
Y (t) = (εQ(1) + Q(2))Y (t) + εQ(1)P 0(t), Y (0) = 0.

By solving this ordinary differential equation, we obtain

Y (t) = ε

∫ t

0
P ε(t − s)Q(1)P 0(s) ds.

Note that Q(1)P = 0. This yields

Y (t) = ε

∫ t

0
P ε(t − s)Q(1)(P 0(s) − P ) ds.

By Lemma B.1, |P 0(s) − P | ≤ C1e
−β0s, where C1 is a positive con-

stant. Since P ε(t) is a transition probability matrix, there exists a positive
constant C2 such that |P ε(t − s)Q(1)| ≤ C2 for all t ≥ s ≥ 0. Thus,

|Y (t)| ≤ ε(m + 1)
∫ t

0
|P ε(t − s)Q(1)| · |P 0(s) − P | ds

≤ εC1C2(m + 1)
∫ t

0
e−β0s ds

≤ εC1C2(m + 1)β−1
0 . �

Lemma B.3. Let P (t) denote the transition matrix of the Markov chain
k(ε, ·). Then P (t) = P ε(t/ε) and

|P (t) − P | ≤ C(ε + e−β0t/ε), (B.1)

for some constant C, where β0 is given in Lemma B.1. Moreover, for all
i ∈ M and t ≥ 0,

|P (k(ε, t) = i) − νi| ≤ C(ε + e−β0t/ε).

Proof. By Lemmas B.1 and B.2, we have

|P (t) − P | = |P ε(t/ε) − P |
≤ |P ε(t/ε) − P 0(t/ε)| + |P 0(t/ε) − P |
≤ C1(ε + e−β0t/ε),
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for some C1 > 0. Therefore, by the Markov properties of k(ε, t), t ≥ 0,

|P (k(ε, t) = i) − νi| =

∣∣∣∣∣
m∑

j=0

P (k(ε, t) = i|k(ε, 0) = j)P (k(ε, 0) = j) − νi

∣∣∣∣∣
≤

m∑
j=0

|P (k(ε, t) = i|k(ε, 0) = j) − νi|P (k(ε, 0) = j)

≤ C1(ε + e−β0t/ε). �

Lemma B.4. Positive constants ε0, θ, and C exist such that for 0 < ε ≤ ε0,
i ∈ M, and for any uniformly bounded deterministic process β(t), t ≥ 0,
on [0, ∞), we have

E

[
exp

{
θ√

ε(T + 1)3/2 sup
0≤t≤T

∣∣∣∣∫ t

0

(
I{k(ε,s)=i} − νi

)
β(s) ds

∣∣∣∣}]
≤ C. (B.2)

Proof. The proof is divided into several steps.

Step 1. In the first step, we prove (B.2) when the “sup” is absent.
Without loss of generality, we assume the uniform bound of β(·) is one.

We let
λ(t) =

(
1{k(ε,t)=0}, . . . , 1{k(ε,t)=m}

)′ and

w(t) = λ(t) − λ(0) −
∫ t

0
Q′λ(s) ds,

where Q = Q(1) + ε−1Q(2) is the generator of the process k(ε, ·). Then, it
is well known (see Elliott [47]) that w(t) = (w0(t), . . . , wm(t))′, t ≥ 0, is an
{Ft}-martingale, where Ft = σ{k(ε, s) : s ≤ t}, and

λ(t) = exp(Q′t)λ(0) +
∫ t

0
exp(Q′(t − s)) dw(s).

By Lemma B.3,

exp(Q′t) − P
′
= O(ε + e−β0t/ε) and P

′
λ(t) = ν,

where P is given in Lemma B.3. Hence,

λ(t) − ν = (exp(Q′t) − P
′
)λ(0)

+
∫ t

0
[(exp(Q′(t − s)) − P

′
) + P

′
] dw(s)

= O(ε + e−β0t/ε) +
∫ t

0
[O(ε + e−β0(t−s)/ε) + P

′
] dw(s)

= O(ε + e−β0t/ε) +
∫ t

0
[O(ε + e−β0(t−s)/ε)] dw(s),

(B.3)
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where the last equality follows from the observation that

P
′
w(t) = P

′
[
λ(t) − λ(0) −

∫ t

0
Q′λ(s) ds

]
= ν − ν −

∫ t

0
P

′
Q′λ(s) ds = 0.

Consequently,∫ t

0
(λ(s) − ν)β(s) ds

= O(ε(t + 1)) +
∫ t

0

[∫ s

0
O
(
ε + e−β0(s−r)/ε

)
dw(r)

]
β(s) ds

= O(ε(t + 1)) +
∫ t

0

(∫ t

r

O
(
ε + e−β0(s−r)/ε

)
β(s) ds

)
dw(r)

= O(ε(t + 1)) + O(ε)
∫ t

0

[
(t − s) + β−1

0

(
1 − e−β0(t−s)/ε

)]
dw(s).

Dividing both sides by (T + 1), we have

1
T + 1

∣∣∣∣∫ t

0
(λ(s) − ν)β(s) ds

∣∣∣∣ = O(ε)+O(ε)
∣∣∣∣∫ t

0
b(s, t) dw(s)

∣∣∣∣ , (B.4)

where b(s, t) is measurable and |b(s, t)| ≤ 1 for all t and s. Therefore,

E exp
{

θ√
ε(T + 1)3/2

∣∣∣∣∫ t

0
(λ(s) − ν)β(s) ds

∣∣∣∣}
≤ E exp

{
θ

√
ε
√

T + 1

[
O(ε) + O(ε)

∣∣∣∣∫ t

0
b(s, t) dw(s)

∣∣∣∣]} .

We assume that θ
√

ε0 ≤ 1. Then, for 0 < ε ≤ ε0,

E exp
{

θ√
ε(T + 1)3/2

∣∣∣∣∫ t

0
(λ(s) − ν)β(s) ds

∣∣∣∣}
≤ exp

θ
√

ε√
T + 1

E exp
{

θ
√

ε√
T + 1

∣∣∣∣∫ t

0
b(s, t) dw(s)

∣∣∣∣}
≤ eE exp

{
θ
√

ε√
T + 1

∣∣∣∣∫ t

0
b(s, t) dw(s)

∣∣∣∣} .

(B.5)

Recall that w(t) = (w0(t), . . . , wm(t))′. It suffices to show that for θ small
enough and for each i ∈ M,

E exp
{

θ
√

ε√
T + 1

∣∣∣∣∫ t

0
b(s, t) dwi(s)

∣∣∣∣} ≤ C. (B.6)



Appendix B. Convergence and Error Estimates of Markov Chains 257

Note that for any nonnegative random variable ξ,

Eeξ ≤ e + (e − 1)
∞∑

j=1

ejP (ξ ≥ j).

For each t0 ≥ 0, let b0(s) = b(s, t0). Then,

E exp
{

θ
√

ε√
T + 1

∣∣∣∣∫ t

0
b0(s) dwi(s)

∣∣∣∣}
≤ e + (e − 1)

∞∑
j=1

ejP

(
θ
√

ε√
T + 1

∣∣∣∣∫ t

0
b0(s) dwi(s)

∣∣∣∣ ≥ j

)
.

(B.7)

Now we estimate

P

(
θ
√

ε√
T + 1

∣∣∣∣∫ t

0
b0(s) dwi(s)

∣∣∣∣ ≥ j

)
.

Let p(t) =
∫ t

0 b0(s) dwi(s). Then p(t), t ≥ 0, is a local martingale. Let q(·)
denote the only solution to the equation (see Elliott [46])

q(t) = 1 + ζ

∫ t

0
q(s−) dp(s),

where q(s−) is the left-hand limit of q(·) at s and ζ is a positive constant
to be determined later. Since ζ

∫ t

0 q(s−) dp(s), t ≥ 0, is a local martingale,
we have Eq(t) ≤ 1 for all t ≥ 0. Moreover, q(t) can be written as follows
(see Elliott [46]):

q(t) = eζp(t)
∏
s≤t

(1 + ζ∆p(s))e−ζ∆p(s), (B.8)

where ∆p(s) := p(s) − p(s−), |∆p(s)| ≤ 1.
Let us now observe that there exist positive constants ζ0 and β1 such

that, for 0 < ζ ≤ ζ0 and for all s > 0,

(1 + ζ∆p(s))e−ζ∆p(s) ≥ e−β1ζ2
. (B.9)

Combining (B.8) and (B.9), we conclude

q(t) ≥ exp{ζp(t) − β1ζ
2N(t)}, for 0 < ζ ≤ ζ0, t > 0,

where N(t) is the number of jumps of p(s) in s ∈ [0, t]. Since N(·) is a
monotone increasing process, we have

q(t) ≥ exp
{
ζp(t) − β1ζ

2N(T )
}

, for 0 < ζ ≤ ζ0.
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Note also that

P

(
θ
√

ε√
T + 1

∣∣∣∣∫ t

0
b0(s)dwi(s)

∣∣∣∣ ≥ j

)
= P

(
|p(t)| ≥ j

√
T + 1
θ
√

ε

)
≤ P

(
p(t) ≥ j

√
T + 1
θ
√

ε

)
+ P

(
−p(t) ≥ j

√
T + 1
θ
√

ε

)
.

We consider the first term

P

(
p(t) ≥ j

√
T + 1
θ
√

ε

)
.

Let aj = j(T + 1)/(8β1θ
2ε). Then,

P

(
p(t) ≥ j

√
T + 1
θ
√

ε

)
≤P

(
q(t) ≥ exp

{
jζ

√
T + 1

θ
√

ε
− β1ζ

2N(T )
})

≤P

(
q(t) ≥ exp

{
jζ

√
T + 1

θ
√

ε
− β1ζ

2N(T )
}

, N(T ) ≤ aj

)
+P (N(T ) ≥ aj)

≤ P

(
q(t) ≥ exp

(
jζ

√
T + 1

θ
√

ε
− β1ζ

2aj

))
+ P (N(T ) ≥ aj)

≤ 2 exp
(

−jζ
√

T + 1
θ
√

ε
+ β1ζ

2aj

)
+ P (N(T ) ≥ aj).

The last inequality is because of the local martingale property (see Elliott
[46, Theorem 4.2]).

Now if we take ζ = 4θ
√

ε/
√

T + 1, then

exp
(

−jζ
√

T + 1
θ
√

ε
+ β1ζ

2aj

)
= e−2j .

In view of the construction of the Markov chain in Appendix A, there
exists a Poisson process N0(·) with parameter aε−1 for some a > 0, such
that N(t) ≤ N0(t). We may assume a = 1, otherwise we may take ε as
εa−1. By using the Poisson distribution of N0(t) and Stirling’s formula, we
can show that, for ε small enough,

P (N(T ) ≥ aj) ≤ 2γaj−1,

where γ = 8eβ1θ
2 ∈ (0, 1) for θ small enough.
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Thus,

P

(
θ
√

ε√
T + 1

∫ t

0
b0(s) dwi(s) ≥ j

)
≤ 2e−2j + 2γaj−1.

Repeating the same argument for the martingale (−p(·)), we get

P

(
θ
√

ε√
T + 1

(
−

∫ t

0
b0(s) dwi(s)

)
≥ j

)
≤ 2e−2j + 2γaj−1.

Combining the above two inequalities, we obtain

P

(
θ
√

ε√
T + 1

∣∣∣∣∫ t

0
b0(s) dwi(s)

∣∣∣∣ ≥ j

)
≤ 4(e−2j + γaj−1).

Then, by (B.7),

E exp
{

θ
√

ε√
T + 1

∣∣∣∣∫ t

0
b(s, t) dwi(s)

∣∣∣∣} ≤ e + 4(e − 1)
∞∑

j=1

ej(e−2j + γaj−1).

Now we choose ε small enough so that eγ1/(8β1θ2ε) ≤ 1/2. Then,

E exp
{

θ
√

ε√
T + 1

∣∣∣∣∫ t

0
b(s, t0) dwi(s)

∣∣∣∣} ≤ e + 4eγ−1.

Since t0 is arbitrary, we may take t0 = t in the above inequality. Then,

E exp
{

θ
√

ε√
T + 1

∣∣∣∣∫ t

0
b(s, t) dwi(s)

∣∣∣∣} ≤ e + 4eγ−1.

Combining this inequality with inequality (B.5), we obtain

E exp
{

θ√
ε(T + 1)3/2

∣∣∣∣∫ t

0
(λ(s) − ν)β(s) ds

∣∣∣∣} ≤ e(e + 4eγ−1).

Step 2. Let

nε(t, i) =
1√
ε

∫ t

0

(
I{k(ε,s)=i} − νi

)
β(s) ds.

Then, for each i ∈ M, nε(t, i) is nearly a martingale, i.e., for ε small enough,

|E[nε(t, i)|Fs] − nε(s, i)| ≤ O(
√

ε), for all ω ∈ Ω and 0 ≤ s ≤ t ≤ T.
(B.10)

Here O(
√

ε) is deterministic.
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To see this, note that, for all i0 ∈ M,

E

[∫ t

s

(I{k(ε,r)=i} − νi)βi(r) dr
∣∣k(ε, s) = i0

]
=

∫ t

s

(E[I{k(ε,r)=i}|k(ε, s) = i0] − νi)βi(r) dr

=
∫ t

s

[P (k(ε, r) = i|k(ε, s) = i0) − νi)]βi(r) dr

=
∫ t

s

O(ε + exp(−κ0(r − s)/ε) dr = O(ε).

So, (B.10) follows.

Step 3. We show that, for each a > 0,

E[exp{a|nε(t, i)|}|Fs] ≥ exp{a|nε(s, i)|}(1 + O(
√

ε)).

First of all, note that φ(x) = |x| is a convex function. We have, noting
that O(

√
ε) = −O(

√
ε),

E[|nε(t, i)| |Fs] ≥ |nε(s, i)| + φ′
+(nε(s, i)) · E[nε(t, i) − nε(s, i)|Fs]

≥ |nε(s, i)| + O(
√

ε),

where φ′
+ is the right-hand derivative which is bounded by 1. Moreover,

note that eax is also convex. It follows that

E[exp(a|nε(t, i)|)|Fs]

≥ exp(a|nε(s, i)|) + a exp{a|nε(s, i)|}E[|nε(t, i)| − |nε(s, i)| |Fs]

≥ exp(a|nε(s, i)|)(1 + O(
√

ε)).

Step 4. Let xε(t) = exp(a|nε(t, i)|) for a > 0. Then, for any Ft stopping
time τ ≤ T ,

E[xε(T )|Fτ ] ≥ xε(τ)(1 + O(
√

ε)). (B.11)

Note that xε(t) is continuous. Therefore, it suffices to show the above
inequality when τ takes values in a countable set {t1, t2, . . .}. To this end,
note that, for each ti,

E[xε(T )|Fti
] ≥ xε(ti)(1 + O(

√
ε)).

For all A ∈ Fτ , we have A ∩ {τ = ti} ∈ Fti
. Therefore,∫

A∩{τ=ti}
xε(T ) dP ≥

(∫
A∩{τ=ti}

xε(τ) dP

)
(1 + O(

√
ε)).

Thus ∫
A

xε(T ) dP ≥
(∫

A

xε(τ) dP

)
(1 + O(

√
ε)),
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and (B.11) follows.

Step 5. Let a = θ/
√

(T + 1)3 in Step 3. Then, for ε small enough, there
exists K such that

P

(
sup
t≤T

xε(t) ≥ x

)
≤ K

x
, (B.12)

for all x > 0.
In fact, let τ = inf{t > 0 : xε(t) ≥ x}. We adopt the convention and

take τ = ∞ if {t > 0 : xε(t) ≥ x} = ∅. Then we have

E[xε(T )] ≥ (E[xε(T ∧ τ)])(1 + O(
√

ε)),

and we can write

E[xε(T ∧ τ)] = E[xε(τ)I{τ<T}] + E[xε(T )I{τ≥T}] ≥ E[xε(τ)I{τ<T}].

Moreover, in view of the definition of τ , we have

E
[
xε(τ)I{τ<T}

]
≥ xP (τ < T ) ≤ xP

(
sup
t≤T

xε(t) ≥ x

)
.

It follows that

P

(
sup
t≤T

xε(t) ≥ x

)
≤ E[xε(T )]

(1 + O(
√

ε))x
≤ K

x
.

Thus, (B.12) follows.
Finally, to complete the proof of (B.2), note that, for 0 < κ < 1,

E exp

(
κθ√

(1 + T )3
sup
t≤T

|nε(t, i)|
)

= E

[
sup
t≤T

(xε(t))κ

]
.

It follows that

E
[
supt≤T (xε(t))κ

]
=

∫ ∞

0
P

(
sup
t≤T

(xε(t))κ ≥ x

)
dx

≤ 1 +
∫ ∞

1
P

(
sup
t≤T

(xε(t))κ ≥ x

)
dx

≤ 1 +
∫ ∞

1
P

(
sup
t≤T

xε(t) ≥ x1/κ

)
dx

≤ 1 +
∫ ∞

1
Kx−1/κ dx < ∞.

This completes the proof. �

Corollary B.1. For any Markov time τ and uniformly bounded determin-
istic process β(t), t ≥ 0, on [0, ∞), there exist positive constants ε0, θ, and
C such that for 0 < ε ≤ ε0 and i ∈ M, we have

E

[
exp

{
θ√

ε(T + 1)3/2 sup
0≤t≤T

∣∣∣∣∫ τ+t

τ

(
I{k(ε,s)=i} − νi

)
β(s) ds

∣∣∣∣}]
≤ C.
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Proof. Using the strong Markov property of k(ε, ·) and going along the
same lines of the proof of the lemma, the corollary can be proved. �

Lemma B.5. In Lemma B.4, if Q(1) = 0, i.e., Q = ε−1Q(2), then we have
the following stronger estimate:

E

[
exp

{
θ

√
ε
√

T + 1
sup

0≤t≤T

∣∣∣∣∫ t

0
(1{k(ε,s)=i} − νi)β(s) ds

∣∣∣∣}]
≤ C.

Proof. If Q(1) = 0, then equation (B.4) can be replaced by

∣∣∣∣∫ t

0
(λ(s) − ν)β(s) ds

∣∣∣∣ = εC1+εC2

∣∣∣∣∫ t

0
b(s, t) dw(s)

∣∣∣∣ .
The proof of Lemma B.5 follows in the same way as the proof of Lemma
B.4 from equation (B.4) on. �

In a same way, we have the following corollary.

Corollary B.2. In Corollary B.1, if Q(1) = 0, i.e., Q = ε−1Q(2), then we
have the following stronger estimate:

E

[
exp

{
θ

√
ε
√

T + 1
sup

0≤t≤T

∣∣∣∣∫ τ+t

τ

(1{k(ε,s)=i} − νi)β(s) ds

∣∣∣∣}]
≤ C.

Lemma B.6. For each 0 < δ < 1/2, and any deterministic process β(·)
with |β(t)| ≤ B0, for some constant B0, positive constants ε0, θ, and C
exist such that for 0 < ε ≤ ε0 and i ∈ M, we have

P

(
sup

0≤t≤T

∣∣∣∣∫ t

0
(1{k(ε,s)=i}− νi)β(s) ds

∣∣∣∣≥ε1/2−δ

)
≤C exp

{
− θ

εδ
√

(1 + T )3

}
.

(B.13)
Moreover, if Q(1) = 0, then

P

(
sup

0≤t≤T

∣∣∣∣∫ t

0
(1{k(ε,s)=i}− νi)β(s) ds

∣∣∣∣≥ε1/2−δ

)
≤C exp

{
− θ

εδ
√

1 + T

}
.

(B.14)
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Proof. Using Lemma B.4, we see

P

(
sup

0≤t≤T

∣∣∣∣∫ t

0
(1{k(ε,s)=i} − νi)β(s) ds

∣∣∣∣ ≥ ε1/2−δ

)

= P

(
exp

{
θ

√
ε
√

(1 + T )3
sup

0≤t≤T

∣∣∣∣∫ t

0
(I{k(ε,s)=i} − νi)β(s) ds

∣∣∣∣
}

≥ exp

{
θε1/2−δ

√
ε
√

(1 + T )3

})

≤ C exp

{
− θ

εδ
√

(1 + T )3

}
.

This proves (B.13). Similarly, (B.14) follows from Lemma B.5. �

Corollary B.3. In Lemma B.6, for any Markov time τ , we have

P

(
sup

0≤t≤T

∣∣∣∣∫ τ+t

τ

(1{k(ε,s)=i}− νi)β(s) ds

∣∣∣∣≥ε1/2−δ

)
≤C exp

{
− θ

εδ
√

(1 + T )3

}
.

(B.15)
Moreover, if Q(1) = 0, then

P

(
sup

0≤t≤T

∣∣∣∣∫ τ+t

τ

(1{k(ε,s)=i}− νi)β(s) ds

∣∣∣∣≥ε1/2−δ

)
≤C exp

{
− θ

εδ
√

1 + T

}
.

(B.16)

Proof. The proof is along the same lines as the proof of Corollary B.1. �

Lemma B.7. If Q(2) is irreducible (resp., weakly irreducible), then there
exists an ε0 > 0 such that Q(1) + ε−1Q(2) is irreducible (resp., weakly
irreducible) for 0 < ε ≤ ε0.

Proof. First of all, suppose that Q(2) is weakly irreducible. Let νε =
(νε

0 , . . . , νε
m) denote the equilibrium distribution of Q(1) + ε−1Q(2), i.e.,

νε
(
Q(1) + ε−1Q(2)) = 0 and

m∑
i=0

νε
i = 1. (B.17)

Equivalently, we can write the above equalities in terms of matrices as

νε
(
εQ(1) + Q(2),1

)
= (0, 1),

where 1 = (1, . . . , 1)′. This set of equations has a unique solution if and
only if the matrix (εQ(1) + Q(2),1) is of full rank (= m + 1). Equivalently,
the determinant

det
(
εQ(1) + Q(2),1

)(
εQ(1) + Q(2),1

)′
> 0. (B.18)
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But Q(2) is weakly irreducible and the above determinant is not zero at
ε = 0 in (B.18). Therefore, the continuity of the determinant with respect
to ε implies that there exists an ε0 > 0 such that the determinant is larger
than 0 for all 0 < ε ≤ ε0. Thus, Q(1) + ε−1Q(2) is weakly irreducible for
0 < ε ≤ ε0.

Next, suppose Q(2) is irreducible. Then there exists a unique ν0 =
(ν0

0 , . . . , ν0
m) > 0 that satisfies equation (B.17).

If the lemma is false, then there is a sequence of ε (still denoted by ε)
such that νε → ν, in which some components are 0. This implies that,
in view of (B.17), ν = ν0. This is a contradiction, which completes the
proof. �

Next, we prove Lemmas 4.3.1 and 4.3.2 of Chapter 4. We begin with a
lemma to be used in these proofs.

Lemma B.8. Let Assumptions (A2) and (A3) of Chapter 4 hold. Let τ̃ be
a Markov time with respect to the Markov chain k̃(·), that is, {τ̃ ≤ t} ∈
σ(k̃(s) : 0 ≤ s ≤ t). Then for any linear function L(·) defined on �m

+ , there
exists a positive constant Ĉ such that, for any T > 0,

E exp

(
1√
T

sup
0≤t≤T

∣∣∣∣∣
∫ τ̃+t

τ̃

[
L(k̃(s)) − L(p̃)

]
ds

∣∣∣∣∣
)

≤ Ĉ,

where p̃ = (p̃1, . . . , p̃m) given by (4.14).

Proof. It follows from Corollary B.2 that for any A > 0 and a Markov
time τ̃ with respect to k̃(·), there exists a CA such that, for any T > 0,

E exp

(
A√

T + 1
sup

0≤t≤T

∣∣∣∣∣
∫ τ̃+t

τ̃

[
I{k̃(s)=k̃

i} − ν̃
k̃

i

]
ds

∣∣∣∣∣
)

≤ CA. (B.19)

From the linearity of L(·), it suffices to show that there exists a constant
C1 such that, for any T > 0 and j = 1, . . . , m,

E exp

(
1√

T + 1
sup

0≤t≤T

∣∣∣∣∣
∫ τ̃+t

τ̃

[
k̃j(s) − p̃j

]
ds

∣∣∣∣∣
)

≤ C1. (B.20)

To do this, we note that

E exp

(
1√

T + 1
sup

0≤t≤T

∣∣∣∣∣
∫ τ̃+t

τ̃

(
k̃j(s) − p̃j

)
ds

∣∣∣∣∣
)

= E exp

(
1√

T + 1
sup

0≤t≤T

∣∣∣∣∣
∫ τ̃+t

τ̃

p∑
i=1

k̃i
j

[
I{k̃(s)=k̃

i} − ν̃
k̃

i

]
ds

∣∣∣∣∣
)

≤ E exp

(
1√

T + 1

p∑
i=1

k̃i
j sup

0≤t≤T

∣∣∣∣∣
∫ τ̃+t

τ̃

[
I{k̃(s)=k̃

i} − ν̃
k̃

i

]
ds

∣∣∣∣∣
)

.
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Using the Schwarz inequality we get

E exp

(
1√

T + 1

p∑
i=1

k̃i
j sup

0≤t≤T

∣∣∣∣∣
∫ τ̃+t

τ̃

[
I{k̃(s)=k̃

i} − ν̃
k̃

i

]
ds

∣∣∣∣∣
)

≤
p∏

i=1

[
E exp

(∑p
i=1 k̃i

j√
T + 1

sup
0≤t≤T

∣∣∣∣∣
∫ τ̃+t

τ̃

[
I{k̃(s)=k̃

i} − ν̃
k̃

i

]
ds

∣∣∣∣∣
)] k̃i

j∑p
i=1 k̃i

j

.

This together with (B.19) imply (B.20). �

Proof of Lemma 4.3.1. For simplicity in exposition, we will write θ, θ̂,
x�(t), and u�(t) (� = 0, 1) instead of θ(s,x, x), θ̂(s,x, x), x�(t|s,x), and
u�(x�(t|s,x), k̃(t)), respectively, in the proofs of this lemma and Lemma
4.3.2.

First we sketch the idea of the proof. Lemma 4.3.1 follows from the fact
that the probability of the event {θ − s > t} decreases exponentially as
t increases. To prove this fact, we divide the interval (s, s + t) into two
parts (s, s + δt) and (s + δt, s + t), in such a way that the behavior of
all coordinates of x0(·) is defined mainly by the behavior on the interval
(s + δt, s + t). Using Lemma B.8 we show that all coordinates are positive
on the interval (s + δt, s + t) with a probability which exponentially tends
to 1. If all coordinates are positive on the interval (s + δt, s + t), then
u0(t) = k̃(t) on this interval, and using Lemma B.8 we can estimate the
shift in process x0(t).

Let c̄j = max1≤i≤p k̃i
j (j = 1, . . . , m) and c̄m+1 = p̃m+1 = z. Noting

(4.15), we can choose δ > 0 such that

(p̃j − p̃j+1)(1 − δ) − δc̄j+1 > 0 for all 1 ≤ j ≤ m.

Let bj = (p̃j − p̃j+1)(1 − δ) − δc̄j+1 for j = 1, . . . , m, and let M1 = 0, and
Mj = M for j = 2, . . . , m. By the definition of θ(s,x, x),

P (θ − s > t) ≤
m∑

j=1

P (x0
j (s + t) < Mj + xj)

≤ P

(
inf

s+δt≤v≤s+t
x0

1(v) = 0
)

+
m−2∑
j=1

P

(
j⋂

j1=1

{
inf

s+δt≤v≤s+t
x0

j1(v) > 0
}

⋂{
inf

s+δt≤v≤s+t
x0

j+1(v) = 0
})

+
m∑

j=1

P

(
m−1⋂
j1=1

{
inf

s+δt≤v≤s+t
x0

j1(v) > 0
}

⋂{
x0

j (s + t) < Mj + xj

})
.

(B.21)
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First we estimate the first term on the right-hand side of (B.21). Note that
u0

2(v) ≤ k̃2(v). Thus using Lemma B.8 we get

P

(
inf

s+δt≤v≤s+t
x0

1(v) = 0
)

≤ P

(
inf

δt≤v≤t

∫ s+v

s

[k̃1(r) − k̃2(r)] dr ≤ 0
)

≤ P

(
inf

δt≤v≤t

∫ s+v

s

[k̃1(r) − k̃2(r) − (p̃1 − p̃2)] dr ≤ −δ(p̃1 − p̃2)t
)

≤ P

(
sup

0≤v≤t

∣∣∣∣∫ s+v

s

[(k̃1(r) − k̃2(r)) − (p̃1 − p̃2)] dr

∣∣∣∣ ≥ δ(p̃1 − p̃2)t
)

≤ C1 exp
(

− δ(p̃1 − p̃2)
√

t
)
,

(B.22)
for some positive constant C1. If

inf
s+δt≤v≤s+t

x0
j1(v) > 0, for all 1 ≤ j1 ≤ j, 1 ≤ j ≤ m − 2,

then u0
j+1(v) = k̃j+1(v) and u0

j+2(v) ≤ k̃j+2(v) for v ∈ (s + δt, s + t). So,
just as in the proof of (B.22), we can show that, for j = 1, ..., m − 2,

P

⎛⎝ j⋂
j1=1

{
inf

s+δt≤v≤s+t
x0

j1(v) > 0
}⋂{

inf
s+δt≤v≤s+t

x0
j+1(v) = 0

}⎞⎠
≤ C2 exp

{
− δ(p̃j+1 − p̃j+2)

√
t
}
,

(B.23)
for some positive constant C2. Now we consider the members of the last
sum on the right-hand side of (B.21). According to the definition of u0

j (t),

P

⎛⎝m−1⋂
j1=1

{
inf

s+δt≤v≤s+t
x0

j1(v) > 0
}

∩
{
x0

j (s + t) < Mj + xj

}⎞⎠
≤ P

(
xj − δtc̄j+1 +

∫ s+t

s+δt

[k̃j(r) − k̃j+1(r)] dr < Mj + xj

)

≤ P

(∫ s+t

s+δt

[k̃j(r) − k̃j+1(r) − (p̃j − p̃j+1)] dr < (Mj + xj − xj)+ − bjt

)
.

(B.24)
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Applying Lemma B.8 we have, from (B.24),

P

⎛⎝m−1⋂
j1=1

{
inf

s+δt≤v≤s+t
x0

j1(v) > 0
}⋂{

x0
j (s + t) < Mj + xj

}⎞⎠
≤

⎧⎪⎪⎨⎪⎪⎩
1, for t ≤ (Mj + xj − xj)+

bj
,

C3 exp
(

−bjt − (Mj + xj − xj)+√
t

)
, for t ≥ (Mj + xj − xj)+

bj
,

(B.25)
for some constant C3 > 0. Note that

E(θ − s)2r =
∫ ∞

0
t2r−1P (θ − s > t) dt. (B.26)

By substituting (B.21), (B.22), (B.23), and (B.25) into (B.26), we complete
the proof of Lemma 4.3.1. �

Proof of Lemma 4.3.2. Taking the sum of all the equations in (4.1), we
have

m∑
j=1

x1
j (t) =

m∑
j=1

xj +
∫ t

s

[u0
1(v) − z] dv, for s ≤ t ≤ θ.

Consequently,
m∑

j=1

x1
j (θ) ≤

m∑
j=1

xj + (c̄1 − z)(θ − s), (B.27)

where c̄1 is given in the proof of Lemma 4.3.1. Since u1
1(t) = 0 for t ∈ [θ, θ̂],

we have as before that
∑m

j=1 x1
j (θ̂) =

∑m
j=1 x1

j (θ) − z(θ̂ − θ). Since θ̂ > θ

and x1
j (θ̂) ≥ xj , we have

θ̂ − θ ≤ 1
z

⎛⎝ m∑
j=1

x1
j (θ) −

m∑
j=1

xj

⎞⎠ and
m∑

j=1

x1
j (θ̂) ≤

m∑
j=1

x1
j (θ). (B.28)

From the definitions of θ̂ and θ, we have

xm = x1
m(θ̂) = x1

m(θ) +
∫ θ̂

θ
[u1

m(s) − z] ds

≥ xm + M − z(θ̂ − θ),

i.e., θ̂ − θ ≥ M/z. This relation together with (B.27) and (B.28) proves
statement (ii) of Lemma 4.3.2.
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To prove statement (i), we introduce the following notations:

θ̂(j) = inf{t ≥ θ : x1
j (t) = xj}, j = 1, . . . , m,

B̃ = {ω : x1(θ̂)(ω) = x},

B(j) =

{
ω : inf

0≤t<∞

∫ θ+t

θ

[
k̃j(v) − k̃j+1(v)

]
dv > −M

2

}
,

j = 2, . . . , m − 1,

B(m) =

{
ω : inf

0≤t<∞

∫ θ+t

θ

[
k̃m(v) − z

]
dv > −M

2

}
,

B =
m⋂

j=2

B(j), B(0) = {ω : k(θ̂)(ω) = k}, B = B̃ ∩ B(0).

Note that

B̃ =
{

ω : θ̂(m)(ω) ≥ max
1≤j≤m−1

θ̂(j)(ω)
}

.

From the definition of u1(x,k) and x1(t), it follows that if ω ∈ B, then,
for j = 1, . . . , m − 1,

u1
j+1(t) =

⎧⎨⎩ k̃j+1(t), for θ < t ≤ θ̂(j),

0, for t > θ̂(j),

and, for j = 2, . . . , m,

θ̂(j) − θ̂(j − 1) ≥
x1

j (θ̂(j − 1)) − xj

c̄j
≥ M

2c̄j
, (B.29)

where c̄j is given in the proof of Lemma 4.3.1. Therefore, B ⊆ B̃ and

P (Bc) ≤
m∑

j=2

P (Bc(j)) + P (B ∩ Bc(0)). (B.30)

Note that for any q1 with 0 < q1 < 1, there is a positive constant M̂
such that for any two Markov times τ1 and τ2 with respect to k(·),

τ2 − τ1 ≥ M̂, a.s.

and
max

1≤j≤p
P (k(τ2) �= k

j |k(τ1) = k
j) < q1. (B.31)
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Taking the conditional probability with respect to θ̂(m − 1), choosing

M > 2M̂ max
1≤j≤m

c̄j ,

and using (B.29) with j = m and (B.31), we have

P (B ∩ Bc(0)) < q1 < 1. (B.32)

Applying Lemma B.8 we have

P ((B(j))c) ≤
∞∑

n=1

P

(∫ θ+n

θ

[k̃j(v) − k̃j+1(v)] dv < −M

2
+ c̄j+1

)

≤
∞∑

n=1

P

(∣∣∣∣∫ θ+n

θ

[
(k̃j(v) − k̃j+1(v)) − (p̃j − p̃j+1)

]
ds

∣∣∣∣
>

M

2
+ n(p̃j − p̃j+1) − c̄j+1

)

≤ C1

∞∑
n=1

exp
(

−M/2 + n(p̃j − p̃j+1) − c̄j+1√
n

)
≤ C2e

−C3
√

M ,

(B.33)
for some positive constants C1, C2, and C3. It follows from (B.30), (B.32),
and (B.33) that we can choose M and q such that P (Bc) ≤ q < 1. This
proves Lemma 4.3.2. �

To prove Lemmas 4.5.1 and 4.5.2, we need the following lemma.

Lemma B.9. Let ξ(t) be an ergodic Markov chain in continuous time
with the finite state space {1, 2, . . . , p} and stationary distribution ν̂j , j =
1, . . . , p. Let ζ(t) be a process which takes values on the interval [0, H] and
satisfies

d

dt
ζ(t) = f(ξ(t)) + f−(ξ(t))I{ζ(t)=0} − f+(ξ(t))I{ζ(t)=H},

where f(·) is a function defined on {1, 2, . . . , p}, a+ = max{a, 0}, and a− =
(−a)+. Then:

(i) There exist numbers πi, i = 1, . . . , p, such that

P (ζ(t) = 0, ξ(t) = i) → πi, as t → ∞.

(ii) If
∑p

i=1 ν̂if(i) > 0, then πi → 0 as H → ∞.
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(iii) If α > 0, then for any r there exists a constant C̃r such that, for any
T ≥ 0 and any b ≥ 0,

P

(
sup

0≤v≤T

∣∣∣∣∫ v

0
(I{ζ(s)=0,ξ(s)=i} − πi) ds

∣∣∣∣ > α(b + T )

)
<

C̃r

(α2(b + T ))r

(B.34)

and

P

(
sup

0≤v≤T

∣∣∣∣∣
∫ v

0

[
f(ξ(s)) −

k∑
i=1

ν̂if(i)

]
ds

∣∣∣∣∣ > α(b + T )

)
<

C̃r

(α2(b + T ))r
.

(B.35)

Proof. We begin with the proof of relation (B.35).
Let Qξ be an infinitesimal generator of Markov chain ξ(t), and let

ν̂ =

⎛⎜⎜⎝
ν̂1
ν̂2
...

ν̂p

⎞⎟⎟⎠ , λ(t) =

⎛⎜⎜⎜⎝
I{ξ(t)=1}
I{ξ(t)=2}

...
I{ξ(t)=p}

⎞⎟⎟⎟⎠ , P =

⎛⎜⎜⎝
ν̂1 ν̂2 . . . ν̂p

ν̂1 ν̂2 · · · ν̂p

...
...

... · · ·
...

ν̂1 ν̂2 · · · ν̂p

⎞⎟⎟⎠ .

It is well known (see Elliott [47]) that the process

w(t) = λ(t) − λ(0) −
∫ t

0
Q′

ξλ(s) ds, t ≥ 0,

is an {Ft}-martingale, where Ft = σ{k(s) : s ≤ t} and

λ(t) = exp(Q′
ξt)λ(0) +

∫ t

0
exp(Q′

ξ(t − s)) dw(s).

Denote f = (f(1), . . . , f(p))′ and F (t) =
∫ t

0 [exp(Qξs) − P ]f ds. Using

P
′
λ(t) = ν̂, P

′
w(t) = 0,

we have∫ t

0

[
F (ξ(s)) −

p∑
i=1

ν̂if(i)

]
ds =

∫ t

0
f ′(λ(s) − ν̂) ds

= F ′(t)λ(0) +
∫ t

0
F ′(t − s) dw(s).

(B.36)
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It follows from the exponential convergence for the Markov chain that

|F (t)| ≤ C1, (B.37)

for some constant C1 > 0. Using the Burkholder-Davis-Gundy inequality
(see Karatzas and Shreve [77, p. 166]), and (B.37), we get that, for some
C2(r) > 0,

E

(
sup

0≤v≤t

∣∣∣∣∫ v

0
F ′(t − v) dw(t)

∣∣∣∣)2r

≤ C2(r)tr. (B.38)

Relation (B.35) follows now from (B.36), (B.37), (B.38), and the Chebyshev
inequality.

For proving (i), let I+ = {i : i ∈ {1, . . . , p}, ki
2 − ki

1 ≥ 0}. It is evident
that if i /∈ I+, then πi = 0. For any fixed i ∈ I+, we define a sequence of
Markov times

α0 = inf{t : ζ(t) = 0, ξ(t) = i},

β1 = inf{t : t > α0, ξ(t) �= i},

and, for n ≥ 1,

αn = inf{t : t > βn, ζ(t) = 0, ξ(t) = i},

βn+1 = inf{t : t > αn, ξ(t) �= i}.

Next we define random variables

Xn = βn − αn−1, Yn = αn − βn for n ≥ 1.

Then α0, {Xn}∞
n=1, and {Yn}∞

n=1 are independent, both {Xn}∞
n=1 and

{Yn}∞
n=1 are identically distributed. In addition, {Xn}∞

n=1 is exponentially
distributed with parameter νj . We define the random variable

γ(t) =

⎧⎨⎩ 1, if αn ≤ t < βn+1 for some n ≥ 0,

0, otherwise.
(B.39)

Note that in the case ki
2 − ki

1 > 0, we have

Eγ(t) = P (ζ(t) = 0, ξ(t) = i)

≥ P

(
ξ(s) = i for all t − H

ki
2 − ki

1
≤ s ≤ t

)

= P

(
ξ

(
t − H

ki
2 − ki

1

)
= i

)
exp

{
νiH

ki
2 − ki

1

}
.

(B.40)
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By the renewal theorem we get

πi = lim
t→∞ P (ζ(t) = 0, ξ(t) = i)

= lim
t→∞ Eγ(t) =

EXn

EXn + EYn
, n ≥ 1.

(B.41)

It follows from (B.40) that πi > 0 for i ∈ I+. This completes the proof of
statement (i).

To prove (ii) we shall show below that there exist δ > 0 and T0 > 0 such
that, for all t ≥ T0 and 0 ≤ s ≤ t,

P (α1 − β1 > s) ≥ δ, if H > tk̂, (B.42)

where k̂ = maxi(ki
1 − ki

2). It follows from (B.42) that for any H ≥ T0k̂, we
have

EY1 = E(α1 − β1) =
∫ ∞

0
P (α1 − β1 > t) dt

≥
∫ H/k̂

0
P (α1 − β1 > s) ds ≥ δH/k̂.

This implies that EY1 → ∞ as H → ∞. Hence,

πi =
EY1

EX1 + EY1
→ 0, as H → ∞.

To compete the proof of statement (ii), it suffices to prove (B.42) with
s = t. To this end, let τ̂ = inf{s : s ≥ 0, ξ(β1 + s) /∈ I+}. From the
irreducibility of ξ(t), it follows that, for any a with 0 < a < t,

P
(
τ̂ < a/2, ξ(β1 + s) = ξ(β1 + τ̂) for all τ̂ ≤ s < τ̂ + a

)
≥ δ(a) > 0.

Note that x(β1 + a) ≥ a/k̂, and if H > t/k̂, then x(β1 + s) < H, for all
a ≤ s ≤ t. Therefore,

P (α1 − β1 > t)

≥ δ(a)P
(

inf
a≤u≤t

x(β1 + u) > 0
)

= δ(a)P
(

inf
a≤u≤t

{
x(β1 + a)

+
∫ β1+u

β1+a

[
f(ξ(s)) + f−(ξ(s))I{x(s)=0}

]
ds

}
≥ 0

)

≥ δ(a)P

(
inf

a≤u≤t

(∫ β1+u

β1+a

f(ξ(s)) ds

)
≥ −a

k̂

)

≥ δ(a)P

(
inf

a≤u≤∞

(∫ β1+u

β1+a

f(ξ(s)) ds

)
≥ −a

k̂

)
.

(B.43)
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Just as in the proof of (B.55), one can show that the probability in the
right-hand side of (B.43) tends to 1 as a → ∞. So, we can take a such that
this probability is greater than some fixed positive value. This completes
the proof of (ii).

The proof of (B.34) is analogous to the proof of (B.35). It also uses the
finiteness of all moments of Y1 and the rate of convergence in the renewal
theorem. This completes the proof of statement (iii) of Lemma B.9. �

Proof of Lemma 4.5.1. We will only consider the case s = 0. We write
θ, θ̂, x�(t), and u�(t) (� = 0, 1) instead of θ(s,x,x), θ̂(s,x, x), x�(t|s,x),
and u�(x�(t|s,x), k̃(t)), respectively.

First we sketch the idea of the proof. The lemma follows from the fact
that P (θ > t) decreases faster than any power function, as t increases. To
prove this, we divide the interval (0, t) into two parts (0, δt) and (δt, t) in
such a way that the behavior of both coordinates of x0(·) is defined mainly
by the behavior on the interval (δt, t) for some 0 < δ < 1. Using Lemma
B.9 we then estimate a shift of the process x0(·).

Let

k̄ = max
1≤i≤p,j=1,2

k̃i
j .

Using Lemma B.9 with f(i) = k̃i
1 − k̃i

2 and x(t) = x0
1(t), we have

π0 = lim
t→∞ P (x0

1(t) = 0) → 0 as H → ∞.

It follows from here and (4.70) that if H is suitably large then we can
choose 0 < δ < 1 such that

(p̃1 − p̃2)(1 − δ) − δk̄ = b1 > 0,

(p̃2 − π0k̄)(1 − δ) − z = b2 > 0.

According to the definition of θ,

P (θ > t) ≤ P

(
sup

δt≤s≤t
x0

1(s) < x1, inf
δt≤s≤t

x0
2(s) ≥ M + x2

)
+ P

(
inf

δt≤s≤t
x0

2(s) < M + x2

)
.

(B.44)

The first term on the right-hand side of (B.44) is estimated next. Note
that u0

2(s) ≤ k̃2(s) for all s, and u0
1(s) = k̃1(s) if x0

1(s) < H. Thus, we
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have

P

(
sup

δt≤s≤t
x0

1(s) < x1, inf
δt≤s≤t

x0
2(s) ≥ M + x2

)

≤ P

(
sup

δt≤s≤t
x0

1(s) < x1

)

≤ P

(
sup

δt≤s≤t

{
x1 − δtk̄ +

∫ s

δt

[k̃1(v) − k̃2(v)] dv

}
< x1

)

≤ P

(
sup

δt≤s≤t

{∫ s

δt

[k̃1(v) − k̃2(v)] dv

}
< (x1 − x1)+ + δtk̄

)

≤ P

(
sup

δt≤s≤t

{∫ s

δt

[
k̃1(v) − k̃2(v) − (p̃1 − p̃2)

]
dv

}

< (x1 − x1)+ − b1t

)

≤ P

(
sup

δt≤s≤t

∣∣∣∣∫ s

δt

[
k̃1(v) − k̃2(v) − (p̃1 − p̃2)

]
dv

∣∣∣∣
> −(x1 − x1)+ + b1t

)
.

(B.45)

Using (B.35) with

f(i) = k̃i
1 − k̃i

2, α = b1/2, and b = 0,

we have from (B.45) that, for some C1(r) > 0,

P

(
sup

δt≤s≤t
x0

1(s) < x1, inf
δt≤s≤t

x0
2(s) ≥ M + x2

)

≤

⎧⎪⎪⎨⎪⎪⎩
1, for 0 ≤ t ≤ 2(x1 − x1)+

b1
,

C1(r)
tr

, for t >
2(x1 − x1)+

b1
.

(B.46)

Now we estimate the second term on the right-hand side of (B.44).
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According to the definition of u0
2(·),

P

(
inf

δt≤s≤t
x0

2(s) < M + x2

)
≤ P

(
inf

δt≤s≤t

{
x2 − tz +

∫ s

δt

u0
2(v) dv

}
< M + x2

)
≤ P

(
inf

δt≤s≤t

∫ s

δt

[
k̃2(v) − k̄

p∑
i=1

I{x0
1(v)=0,k̃(v)=k̃

i}

]
dv

< M + x2 − x2 + tz

)
≤ P

(
sup

δt≤s≤t

∣∣∣∣∣
∫ s

δt

[
k̃2(v) − p̃2 − k̄

p∑
i=1

(
I{x0

1(v)=0,k̃(v)=k̃
i} − πi

)]∣∣∣∣∣ dv

> b2t − (M + x2 − x2)+
)

≤ P

(
sup

0≤s≤t

∣∣∣∣∫ s

0
[k̃2(v) − p̃2)] dv

∣∣∣∣ >
b2t

2
− (M + x2 − x2)+

)
+

p∑
i=1

P

(
sup

0≤s≤t

∣∣∣∣∫ s

0

[
I{x0

1(v)=0,k̃(v)=k̃
i} − πi

]
ds

∣∣∣∣ >
b2t

2k̄

)
,

(B.47)
where

πi = lim
t→∞ P

(
x0

1(t) = 0, k̃(t) = k̃
i)

, i = 1, . . . , p.

By Lemma B.9 we have from (B.47) that, for some C2(r) > 0,

P

(
inf

δt≤s≤t
x0

2(s) ≤ M + x2

)

≤

⎧⎪⎪⎨⎪⎪⎩
1, for 0 ≤ t ≤ 4(M + x2 − x2)+

b2
,

C2(r)
tr

, for t >
4(M + x2 − x2)+

b2
.

(B.48)

Note that
Eθr =

∫ ∞

0
tr−1P (θ > t) dt.

Substituting (B.44), (B.46), and (B.48) in this relation, we complete the
proof of Lemma 4.5.1. �

Proof of Lemma 4.5.2. Recall the notational convention specified in
Step 4. Taking the sum of both equations in (4.59), we have

2∑
j=1

x1
j (t) =

2∑
j=1

xj +
∫ t

0
[u0

1(v) − z] dv, 0 ≤ t ≤ θ.
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Consequently,
2∑

j=1

x1
j (θ) ≤

2∑
j=1

xj + (k̄ − z)θ, (B.49)

where k̄ is given in the proof of Lemma 4.5.1. Since u1
1(t) = 0 for t > θ, we

have as before that
2∑

j=1

x1
j (θ̂) =

2∑
j=1

x1
j (θ) − z(θ̂ − θ).

Since θ̂ > θ and x1
j (θ̂) ≥ xj , j = 1, 2, we have

θ̂ − θ ≤ 1
z

2∑
j=1

[x1
j (θ) − xj ],

2∑
j=1

x1
j (θ̂) ≤

2∑
j=1

x1
j (θ). (B.50)

From the definitions of θ and θ̂, and (4.59), we have

x2 = x1
2(θ̂) = x1

2(θ) +
∫ θ̂

θ
[u1

2(v) − z] dv

≥ x2 + M − z(θ̂ − θ),

i.e., θ̂ − θ ≥ M/z. This relation together with (B.49) and (B.50) proves
statement (ii) of Lemma 4.5.2.

To prove statement (i) we introduce the following notation:

θ̂(�) = inf{t ≥ θ : x1
�(t) = x�}, � = 1, 2,

B̃ =
{
ω : x1(θ̂) = x

}
,

B =
{

ω : inf
0≤t<∞

∫ θ+t

θ

[k̃2(v) − z] dv > −M/2
}

,

B(0) =
{
ω : k(θ̂) = k

}
, B = B̃ ∩ B(0).

Note that B̃ = {ω : θ̂(2) ≥ θ̂(1)}. From the definition of u1(x, k̃) and
x1(t), it follows that if ω ∈ B, then

u1
2(t) =

⎧⎨⎩ k̃2(t), for θ < t ≤ θ̂(1),

0, for t > θ̂(1),

and

θ̂(2) − θ̂(1) =
x1

2(θ̂(1)) − x2

z
>

M

2z
. (B.51)

Therefore, B ⊆ B̃ and

P (Bc) ≤ P (Bc
) + P (B ∩ Bc(0)). (B.52)
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Note that there exists an M̂ > 0 such that if η1 and η2 are Markov times
with respect to k̃(·) and η2 − η1 > M̂, a.s., then

max
k∈M̃

P (k̃(η2) �= k|k̃(η1) = k̃
i
) < 1. (B.53)

Taking the conditional probability with respect to θ̂(1), using (B.51) with
M > 2kM̂, and using (B.53), we have

P (B ∩ Bc(0)) < 1. (B.54)

Let M/2 > z. Applying Lemma B.9 we get that, for some C1(r) > 0,

P (Bc
) ≤

∞∑
n=1

P

(∫ θ+n

θ

[k̃2(v) − z] dv < −M

2
+ z

)

≤
∞∑

n=1

P

(∣∣∣∣∣
∫ θ+n

θ

[k̃2(v) − p̃2] dv

∣∣∣∣∣ >
M

2
+ n(p̃2 − z) − z

)

≤ C1(r)
∞∑

n=1

(
M − 2z

2(p̃2 − z)
+ n

)−r

→ 0 as M → ∞.

(B.55)

It follows from (B.52), (B.54), and (B.55), that we can choose M and q
such that P (Bc) ≤ q < 1. This completes the proof of Lemma 4.5.2. �

Proof of Lemma 5.3.1. For simplicity in exposition, we will write θ, θ̂,
x�(t), and u�(t)(� = 0, 1) instead of θ(s,x, x̂), θ̂(s,x, x̂), x�(t|s,x), and
u�(x�(t|s,x),k(t)), respectively, in the proofs of this lemma and Lemma
5.3.2.

Let k̄j = max1≤i≤p ki
j , j = 1, . . . , mc, k̄n+1 = zn. Furthermore, let

αj =
j−1∑

�=−n0+1

p�jpc(�,j), j = 1, . . . , n,

βj =
n∑

�=j+1

pj�pc(j,�), j = 1, . . . , n − 1, βn = zn.

Based on Assumption (A2), we can choose δ > 0 such that

(αj − βj) (1 − δ) − δ

n∑
�=j+1

pj�k̄c(j,�) > 0,

for all 1 ≤ j ≤ n − 1, we write the left-side as bj , and

(αn − βn)(1 − δ) − δzn > 0,
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the left-side is written as bn. Let M1 = 0 and M� = M for 2 ≤ � ≤ n. By
the definition of θ(s,x, x̂),

P (θ − s > t) ≤
n∑

j=1

P (x0
j (s + t) < Mj + x̂j)

≤ P

(
inf

s+δt≤v≤s+t
x0

1(v) = 0
)

+
n−2∑
j=1

P

(
j⋂

i=1

{
inf

s+δt≤v≤s+t
x0

i (v) > 0
}

⋂{
inf

s+δt≤v≤s+t
x0

j+1(v) = 0
})

+
n∑

j=1

P

(
n−1⋂
i=1

{
inf

s+δt≤v≤s+t
x0

i (v) > 0
}

⋂{
x0

j (s + t) < Mj + x̂j

})
.

(B.56)

First we estimate the first term on the right-hand side of (B.56). Note that

u0
1,j(v) ≤ p1jkc(1,j)(v), j = 2, ..., n.

Then, using Lemma B.8, we get

P

(
inf

s+δt≤v≤s+t
x0

1(v) = 0
)

≤ P

(
inf

δt≤v≤t

∫ s+v

s

[
0∑

j=−n0+1

pj1kc(j,1)(r) −
n∑

j=2

p1jkc(1,j)(r)

]
dr ≤ 0

)

≤ P

(
inf

δt≤v≤t

∫ s+v

s

[
0∑

j=−n0+1

pj1kc(j,1)(r) −
n∑

j=2

p1jkc(1,j)(r)

−(α1 − β1)

]
dr ≤ −δ(α1 − β1)t

)

≤ P

(
sup

δt≤v≤t

∣∣∣∣∣
∫ s+v

s

[
0∑

j=−n0+1

pj1kc(j,1)(r) −
n∑

j=2

p1jkc(1,j)(r)

−(α1 − β1)

]
dr

∣∣∣∣∣ ≥ δ(α1 − β1)t

)

≤ C1 exp
{

− δ(α1 − β1)t1/2},

(B.57)
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for some positive constant C1. If for some j (1 ≤ j ≤ n − 2) such that, for
all 1 ≤ i ≤ j,

inf
s+δt≤v≤s+t

x0
i (v) > 0,

then
i∑

j=−n0+1

u0
j,i+1(v) =

i∑
j=−n0+1

pj,i+1kc(j,i+1)(v),

and
n∑

j=i+2

u0
i+1,j(v) ≤

n∑
j=i+2

pi+1,jkc(i+1,j)(v),

for v ∈ (s + δt, s + t). So, just as in the proof of (B.57), we can show that,
for i = 1, ..., n − 2,

P

⎛⎝ i⋂
j=1

{
inf

s+εt≤v≤s+t
x0

j (v) > 0
}

∩
{

inf
s+εt≤v≤s+t

x0
i+1(v) = 0

}⎞⎠
≤ C2 exp

{
− δ(αi+1 − βi+1)t1/2},

(B.58)

for some positive constant C2.
Now we consider the members of the last sum on the right-hand side of

(B.56). According to the definition of u0
i,j(·), for i = 1, ..., n,

P

(
n−1⋂
�=1

{
inf

s+δt≤v≤s+t
x0

�(v) > 0
}⋂{

x0
i (s + t) < Mi + x̂i

})

≤ P

(∫ s+t

s+δt

(
i−1∑

�=−n0+1

p�ikc(�,i)(r) −
n∑

�=i+1

pi�kc(i,�)(r)

)
dr

+ xi − δt

n∑
�=i+1

pi�k̄c(i,�) < Mi + x̂i

)

≤ P

(∫ s+t

s+δt

[
i−1∑

�=−n0+1

p�ikc(�,i)(r) −
n∑

�=i+1

pi�kc(i,�)(r)

−(αi − βi)

]
dr < Mi + x̂i − xi − bit

)
,

(B.59)

with the notation convenience

n∑
�=n+1

pn�kc(n,�)(r) =
n∑

�=n+1

pn�k̄c(n,�) = zn. (B.60)
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Applying Lemma B.8, we have from (B.59), for j = 1, ..., n − 1,

P

(
n−1⋂
i=1

{
inf

s+εt≤v≤s+t
x0

i (v) > 0
}

∩
{
x0

j (s + t) < Mj + x̂j

})

≤

⎧⎪⎪⎨⎪⎪⎩
1, for 0 ≤ t ≤ (Mj + x̂j − xj)+

bj
,

C3 exp
{

−bjt − (Mj + x̂j − xj)+

t1/2

}
, for t ≥ (Mj + x̂j − xj)+

bj
,

for some constant C3. Using

E[θ(s,x, x̂) − s]2r =
∫ ∞

0
t2r−1P (θ(s,x, x̂) − s > t) dt.

Substituting from (B.56), (B.57), (B.58), and the above inequality in this
relation, we complete the proof of Lemma 5.3.1. �

Proof of Lemma 5.3.2. Taking the sum of all the equations in (5.5), we
have

n∑
j=1

x1
j (t) =

n∑
j=1

xj +
∫ t

s

⎡⎣ 0∑
i=−n0+1

n∑
j=1

u1
i,j(v) − zn

⎤⎦ dv,

for s ≤ t ≤ θ. Consequently,

n∑
j=1

x1
j (θ) ≤

n∑
j=1

xj +

⎛⎝ 0∑
i=−n0+1

n∑
j=1

pij k̄c(i,j) − zn

⎞⎠ (θ − s). (B.61)

Since u1
i,j(t) = 0 for t ∈ [θ, θ̂] and i = −n + 1, . . . , 0, we have as previously

that
∑n

j=1 x1
j (θ̂) =

∑n
j=1 x1

j (θ)− zn(θ̂ − θ). Since θ̂ > θ and x1
j (θ̂) ≥ x̂j , we

have

θ̂ − θ ≤ 1
zn

⎛⎝ n∑
j=1

x1
j (θ) −

n∑
j=1

x̂j

⎞⎠ ,

n∑
j=1

x1
j (θ̂) ≤

n∑
j=1

x1
j (θ). (B.62)

From the definitions of θ̂ and θ, we have that

x̂n = x1
n(θ̂) = x1

n(θ) +
∫ θ̂

θ

⎡⎣ n−1∑
j=−n0+1

u1
j,n(v) − zn

⎤⎦ dv

≥ x̂n + M − zn(θ̂ − θ),

which implies θ̂ −θ ≥ M/zn. This relation together with (B.61) and (B.62)
proves statement (ii) of Lemma 5.3.2.
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To prove statement (i), we introduce the following notations:

θ̂(j) = inf{t ≥ θ : x1
j (t) = x̂j}, j = 1, . . . , n,

B̃ = {ω : x1(θ̂)(ω) = x̂},

B(j) =

{
ω : inf

0≤t<∞

∫ θ+t

θ

[
j−1∑

�=−n0+1

p�jkc(�,j)(v)

−
n∑

�=j+1

pj�kc(j,�)(v)

]
dv > −M

2

}
,

j = 2, . . . , n − 1,

B(n) =

{
ω : inf

0≤t<∞

∫ θ+t

θ

[
n−1∑

�=−n0+1

p�nkc(�,n)(v) − zn

]
dv > −M

2

}
,

B =
n⋂

j=2

B(j), B(0) = {ω : k(θ̂)(ω) = k̂}, B = B̃ ∩ B(0).

Note that

B̃ =
{

ω : θ̂(n)(ω) ≥ max
1≤j≤n−1

θ̂(j)(ω)
}

.

From the definition of u1(x,k) and x1(t), it follows that if ω ∈ B, then,
for j = 1, . . . , n − 1,

n∑
�=j+1

u1
j,�(t) =

⎧⎨⎩
∑n

�=j+1 pj�kc(j,�)(v), for θ < t ≤ θ̂(j),

0, for t > θ̂(j),

and, for j = 2, . . . , n,

θ̂(j) − θ̂(j − 1) ≥
x1

j (θ̂(j − 1)) − x̂j∑n
�=j+1 pj�k̄c(j,�)

≥ M

2
∑n

�=j+1 pj�k̄c(j,�)
(B.63)

with the convention given by (B.60). Therefore, B ⊆ B̃ and

P (Bc) ≤
n∑

j=2

P (Bc(j)) + P (B ∩ Bc(0)). (B.64)

Note that for any q1 with 0 < q1 < 1, there is a positive constant M̂ such
that for any two Markov times τ1 and τ2 with respect to k(t) satisfying

τ2 − τ1 ≥ M̂, a.s.,



282 Appendix B. Convergence and Error Estimates of Markov Chains

max
1≤i≤p

P (k(τ2) �= k
i|k(τ1) = ki) < q1.

Taking the conditional probability with respect to θ̂(n − 1) and choosing

M > 2M̂

(
zn ∨ max

1≤j≤n−1

{
n∑

�=j+1

pj�k̄c(j,�)

})
,

and using (B.63) with j = n and (5.19), we have

P (B ∩ Bc(0)) < q1 < 1. (B.65)

Applying Lemma B.8, we have

P ((B(i))c) ≤
∞∑

�=1

P

(∫ θ+�

θ

[
i−1∑

j=−n0+1

pjikc(j,i)(v) −
n∑

j=i+1

pijkc(i,j)(v)

]
dv

< −M

2
+

n∑
j=i+1

pij k̄c(i,j)

)

≤
∞∑

�=1

P

(∣∣∣∣∣
∫ θ+�

θ

[
i−1∑

j=−n0+1

pjikc(j,i)(v) −
n∑

j=i+1

pijkc(i,j)(v)

−(αi − βi)

]
dv

∣∣∣∣∣ >
M

2
+ �(αi − βi) −

n∑
j=i+1

pij k̄c(i,j)

)

≤ C1

∞∑
�=1

exp

(
−

M + �(αi − βi) −
∑n

j=i+1 pij k̄c(i,j)

�1/2

)
≤ C2e

−C3
√

M ,

(B.66)
for some positive constants C1, C2, and C3. It follows from (B.64), (B.65),
and (4.15) that we can choose M and q such that P (Bc) ≤ q < 1. This
proves Lemma 5.3.2. �



Appendix C
Convex Sets and Functions

In this appendix we define convex functions, superdifferentials, subdiffer-
entials, and their properties.

Definition C.1. A real-valued function f(x) is convex if, for every x1 and
x2 and δ ∈ [0, 1],

f(δx1 + (1 − δ)x2) ≤ δf(x1) + (1 − δ)f(x2).

If the inequality above is strict whenever x1 �= x2 and 0 < δ < 1, then
f(x) is strictly convex. �

Definition C.2. A function f(x,y) is jointly convex if

f(δx1 + (1 − δ)x2, δy1 + (1 − δ)y2)

≤ δf(x1,y1) + (1 − δ)f(x2,y2).
(C.1)

Moreover, f(x,y) is strictly jointly convex in x if the inequality (C.1) hold-
ing as an equality for some 0 < δ < 1 implies x1 = x2. �

Lemma C.1. Let f(x) be a convex function. Then:

(i) f(x) is locally Lipschitz and therefore continuous.

(ii) f(x) is differentiable a.e.

(iii) Let {fρ(x) : ρ > 0} be a family of convex functions defined on a
convex set D ⊂ �n. If {fρ(x) : ρ > 0} is locally bounded, then it is
locally uniformly Lipschitz continuous.
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Proof. Proofs for (i) and (ii) can be found in in Clarke [34, Theorem 2.5.1].
To prove part (iii), let D1 and D2, such that D1 ⊂ D2 ⊂ �n, be balls of
radii r and r + 1 in �n, respectively. For x, x′ ∈ D1 ∩ D and 0 ≤ λ ≤ 1, we
have, by the definition of convex functions,

fρ(x) − fρ(x′) = fρ

(
λx′ +

(1 − λ)(x − λx′)
1 − λ

)
− fρ(x′)

≤ λfρ(x′) + (1 − λ)fρ

(
x − λx′

1 − λ

)
− fρ(x′)

= (1 − λ)
[
fρ

(
x − λx′

1 − λ

)
− fρ(x′)

]
.

(C.2)

Without loss of generality, we may take |x − x′| ≤ 1. Let λ = 1 − |x − x′|.
We can then write (C.2) as

fρ(x) − fρ(x′) ≤ |x − x′| [fρ(x′ + (x − x′)/|x − x′|) − fρ(x′)]

≤ |x − x′| · 2 sup
y∈D2

|fρ(y)|. �

Definition C.3. Given a function f(x) (convex or not), the superdiffer-
ential D+f(x) and the subdifferential D−f(x) of f(x) are defined, respec-
tively, as follows:

D+f(x) =
{

r ∈ �n : lim sup
h→0

f(x + h) − f(x) − 〈h, r〉
|h| ≤ 0

}
,

D−f(x) =
{

r ∈ �n : lim inf
h→0

f(x + h) − f(x) − 〈h, r〉
|h| ≥ 0

}
. �

Definition C.4. The real-valued function f(x) is said to have a directional
derivative ∂pf(x) along direction p ∈ �n, defined by

∂pf(x) = lim
δ→0

f(x + δp) − f(x)
δ

,

whenever the limit exists. �

Definition C.5. The convex hull of a set D ⊂ �n is

co(D) =

{
�∑

i=1

αixi :
�∑

i=1

αi = 1, αi ≥ 0, xi ∈ F, 0 ≤ i ≤ �

}
. �

Definition C.6. The convex closure co(D) of a set D ⊂ �n is the closure
of co(D). �

Lemma C.2. Let f(x) be a convex function. Then:
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(i) f(x) is differentiable if and only if D+f(x) and D−f(x) are both
singletons. In this case, D+f(x) = D−f(x) = {fx(x)}.

(ii) If f(x) is convex, then D+f(x) is empty unless f(x) is differentiable
and D−f(x) coincides with the subdifferential in the sense of convex
analysis, i.e.,

D−f(x) = co(Γ(x)),

where

Γ(x) =
{

r = lim
n→∞ fx(xn) : xn → x and f(·) is differentiable at xn

}
.

(iii) A convex function f(x) is differentiable at x if and only if D−f(x)
is a singleton.

(iv) If a convex function f(x) is differentiable on �n, then it is continu-
ously differentiable on �n.

(v) For every x ∈ �n and p ∈ �n,

∂pf(x) = max
r∈D−f(x)

〈r,p〉.

Proof. See Clarke [34, Theorem 2.5.1] for the proof. �

Lemma C.3. Let D be a nonempty convex set in �n. Then:

(i) ri(D) is convex in �n having the same affine hull, and hence the same
dimension as D;

(ii) z ∈ ri(D) if and only if for each x ∈ D, there exists a δ < 1 such that
(1 − δ)x + δz ∈ D.

Proof. See Rockafellar [109, Theorems 6.2 and 6.4]. �

Lemma C.4. Given a relative open convex set D, let {fi|i ∈ I} be an
arbitrary family of convex functions that are finite and pointwise bounded
on D. Let D̂ be a closed bounded subset of D. Then {fi|i ∈ I} is uniformly
bounded on D̂ and equi-Lipschitz relative to D̂. The pointwise boundedness
condition above can be replaced by these two conditions:

(i) There exists a subset D′ of D such that D ⊂ conv(D′|D) and sup{fi(x)|
i ∈ I} is finite for x ∈ D′.

(ii) There exists at least one x ∈ D such that inf{fi(x)|i ∈ I} is finite.

Proof. See Rockafellar [109, Theorem 10.6]. �



Appendix D
Viscosity Solutions of HJB Equations

When the state space in an optimal control problem is continuous, the
classical dynamic programming argument leads to an equation known as
the Hamilton-Jacobi-Bellman (HJB) equation that the value function for
the problem must satisfy. The equation involves at least the first deriva-
tive of the value function, even though such a derivative might not exist
at certain points. In these cases, a useful concept that is often used is that
of a viscosity solution of the HJB equation. (The concept was introduced
by Crandall and Lions [37].) In what follows, we briefly describe the con-
cept and some of the related results. For more information and discussion
on viscosity solutions, the reader is referred to the book by Fleming and
Soner [56].

Let Θ be a finite index set and let W (·, ·) : �n × Θ → �1 be a given
function. Let F denote a real-valued function on

ΩF := �n × Θ × � × �p × �n×p,

where p is the number of elements in Θ. We define the concept of a viscosity
solution of the following equation:

F

(
x,θ, λ, W (x, ·), ∂W (x,θ)

∂x

)
= 0. (D.1)

Definition D.1. (λ, W (x,θ)) is a viscosity solution of equation (D.1) if
the following hold:

(a) W (x,θ) is continuous in x and |W (x,θ)| ≤ C(1 + |x|β), where β is
a positive constant;
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(b) for any θ0 ∈ Θ,

F

(
x0,θ0, λ, W (x0, ·),

dφ(x0)
dx

)
≤ 0,

whenever φ(x) ∈ C1 is such that W (x,θ0) − φ(x) has a local maxi-
mum at x = x0; and

(c) for any θ0 ∈ Θ,

F

(
x0,θ0, λ, W (x0, ·),

dψ(x0)
dx

)
≥ 0,

whenever ψ(x) ∈ C1 is such that W (x,θ0) − ψ(x) has a local mini-
mum at x = x0.

If (a) and (b) (resp., (a) and (c)) hold, we say that W (x,θ) is a viscosity
subsolution (resp., viscosity supersolution). �

As defined in Appendix C, let D+W (x,θ) and D−W (x,θ) denote the
superdifferential and subdifferential of W (x,θ) for each fixed θ. We can
now provide another equivalent definition of a viscosity solution of (D.1);
see Crandall, Evans, and Lions [36].

Definition D.2. We say that (λ, W (x,θ)) is a viscosity solution of equation
(D.1) if the following hold:

(a) W (x,θ) is continuous in x and |W (x,θ)| ≤ C(1 + |x|β), where β is
a positive constant;

(b) for all r ∈ D+W (x,θ),

F (x,θ, λ, W (x, ·), r) ≤ 0; and (D.2)

(c) for all r ∈ D−W (x,θ),

F (x,θ, λ, W (x, ·), r) ≥ 0. (D.3)

Moreover, (λ, W (x,θ)) is said to be a viscosity subsolution (resp., super-
solution) of (D.1) if (a) and (b) (resp., (a) and (c)) hold. �

Since we deal mostly with convex value functions in this book (except in
Chapters 1, 2, and 11), it would be appropriate to provide an equivalent
definition of a viscosity solution in the convex case; see Crandall, Evans,
and Lions [36].

Definition D.3. We say that (λ, W (x,θ)), where W (x,θ) is convex with
respect to x for each fixed θ ∈ Θ, is a viscosity solution to equation (D.1)
if the following hold:
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(a) W (x,θ) is continuous in x and |W (x,θ)| ≤ C(1 + |x|β), where β is
a positive constant;

(b) for all r ∈ D−W (x,θ),

F (x,θ, λ, W (x, ·), r) ≥ 0; and (D.4)

(c) for all x at which W (x,θ) is differentiable,

F (x,θ, λ, W (x, ·), r) = 0.

Moreover, (λ, W (x,θ)) is said to be a viscosity subsolution (resp., super-
solution) of (D.1) if (a) and (b) (resp., (a) and (c)) hold. �

Theorem D.1. (Uniqueness Theorem). Assume, for some β > 0,

|g(x,u)| ≤ C(1 + |x|β), and

|g(x1,u) − g(x2,u)| ≤ C(1 + |x1|β + |x2|β)|x1 − x2|.

Then the HJB equation

λ = min
0≤u1+···+un≤k

{〈
(u − z),

∂W (x, k)
∂x

〉
+ g(x,u)

}
+ QW (x, ·)(k)

(D.5)
has a unique solution λ, where Q is the generator of a finite-state Markov
chain.

Proof. We shall base our proof on Ishii [73] and Soner [129]. For conve-
nience in notation, we only prove the theorem in the one-dimensional case.
The control constraint in this case is given by 0 ≤ u ≤ k.

Let (λ1, W1(x, k)) and (λ2, W2(x, k)) be two viscosity solutions to the
HJB equation (D.5). We need to show that λ1 = λ2.

Let η(x) = exp((1 + |x|2)1/2). For any 0 < δ < 1 and 0 < α < 1, we
consider a function

Φ(x1, x2, k) = [W1(x1, k) − W2(x2, k)]

−1
δ
|x1 − x2|2 − α(η(x1) + η(x2)).

Then Φ(x1, x2, k) has a global maximum at a point (x0
1, x

0
2, k0), since Φ is

continuous and lim|x1|+|x2|→+∞ Φ(x1, x2, k) = −∞ for each k ∈ M. This
means, in particular, that

Φ(x0
1, x

0
1, k0) + Φ(x0

2, x
0
2, k0) ≤ 2Φ(x0

1, x
0
2, k0).
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Therefore,

[W1(x0
1, k0) − W2(x0

1, k0)] − α[η(x0
1) + η(x0

1)]

+ [W1(x0
2, k0) − W2(x0

2, k0)] − α[η(x0
2) + η(x0

2)]

≤ 2[W1(x0
1, k0) − W2(x0

2, k0)]

− 2
δ
|x0

1 − x0
2|2 − 2α[η(x0

1) + η(x0
2)],

this implies that

2
δ
|x0

1 − x0
2|2 ≤ [W1(x0

1, k0) − W1(x0
2, k0)] + [W2(x0

1, k0) − W2(x0
2, k0)].

In view of the polynomial growth of W1(x, k) and W2(x, k) (see Definition
D.1(a)),

|x0
1 − x0

2| ≤
√

δC1(1 + |x0
1|β + |x0

2|β), (D.6)

for some C1 > 0. The choice of (x0
1, x

0
2, k0) also implies Φ(0, 0, k0) ≤

Φ(x0
1, x

0
2, k0). This yields

α[η(x0
1) + η(x0

2)] ≤ (λ1 − λ2) + W1(x0
1, k0) − W2(x0

2, k0)

− 1
δ
|x0

1 − x0
2|2 − Φ(0, 0, k0)

≤ C(1 + |x0
1|β + |x0

2|β).

Thus, there exists a constant Cα (independent of δ) such that

|x0
1| + |x0

2| ≤ Cα. (D.7)

Since x �→ Φ(x, x0
2, k0) takes its maximum at x = x0

1, we have, according
to Definition D.1 of viscosity solutions,

λ1 ≤ min
0≤u≤k0

{
(u − z) ·

(
2
δ
(x0

1 − x0
2) + α

dη(x0
1)

dx

)
+ g(x0

1, u) + QW1(x0
1, ·)(k0)

}
.

(D.8)

Similarly, since x �→ −Φ(x0
1, x, k0) takes its minimum at x = x0

2, we have

λ2 ≥ min
0≤u≤k0

{
(u − z) ·

(
2
δ
(x0

1 − x0
2) − α

dη(x0
2)

dx

)
+ g(x0

2, u) + QW2(x0
2, ·)(k0)

}
.

(D.9)
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Combining the two inequalities (D.8) and (D.9), we obtain

λ1 − λ2 ≤ min
0≤u≤k0

{
(u − z) ·

(
2
δ
(x0

1 − x0
2) + α

dη(x0
1)

dx

)
+ g(x0

1, u)

+ QW1(x0
1, ·)(k0)

}

− min
0≤u≤k0

{
(u − z) ·

(
2
δ
(x0

1 − x0
2) − α

dη(x0
2)

dx

)
+ g(x0

2, u)

+ QW2(x0
2, ·)(k0)

}
≤ sup

0≤u≤k0

{
α(u − z) ·

[
dη(x0

1)
dx

+
dη(x0

2)
dx

]
+ g(x0

1, u) − g(x0
2, u)

}
+ QW1(x0

1, ·)(k0) − QW2(x0
2, ·)(k0).

(D.10)
In view of (D.6) and (D.7), there exists a subsequence of δ → 0 (still
denoted by δ) and x0 such that x0

1 → x0 and x0
2 → x0. Using this fact, and

letting δ → 0 in (D.10), we get

λ1 − λ2 ≤ sup
0≤u≤k0

{
2α(u − z) · dη(x0)

dx

}
+ QW1(x0, ·)(k0) − QW2(x0, ·)(k0).

(D.11)

Note that, for all x and k ∈ M,

[W1(x, k) − W2(x, k)] − 2αη(x)

= Φ(x, x, k) ≤ Φ(x0
1, x

0
2, k0)

≤ [W1(x0
1, k0) − W2(x0

2, k0)] − α[η(x0
1) + η(x0

2)].

Letting δ → 0 and recalling the fact that x0
1 → x0 and x0

2 → x0, we obtain

[W1(x, k) − W2(x, k)] − 2αη(x)

≤ [W1(x0, k0) − W2(x0, k0)] − 2αη(x0).
(D.12)

In particular, taking x = x0, we have

W1(x0, k) − W2(x0, k) ≤ W1(x0, k0) − W2(x0, k0).

Thus,

QW1(x0, ·)(k0) − QW2(x0, ·)(k0)

=
∑
k �=k0

qk0k[W1(x0, k)−W1(x0, k0)−W2(x0, k)+W2(x0, k0)]≤0.
(D.13)
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Combine (D.11), (D.12), and (D.13) to obtain

λ1 − λ2 ≤ sup
0≤u≤k0

{
2α(u − z) · dη(x0)

dx

}
≤ sup

0≤u≤k0

{2α(u − z) · η(x0)} .

The second inequality above is due to the fact that ηx(x) ≤ aη(x). Letting
α → 0, we obtain

λ1 − λ2 ≤ 0.

Similarly, we can obtain the opposite inequality and conclude λ1 = λ2. �

Theorem D.2. Assume the conditions of Theorem D.1. Let V ρ(x, k) de-
note the viscosity solution to the equation

ρV ρ(x, k) = min
0≤u1+···+un≤k

{〈
(u − z),

∂V ρ(x, k)
∂x

〉
+ g(x,u)

}
+ QV ρ(x, ·)(k).

(D.14)

Assume that when ρ → 0, ρV ρ(x, k) → λ and (V ρ(x, k) − V ρ(0, 0)) →
W (x, k) locally uniformly in x. Then (λ, W ) is a viscosity solution to the
equation

λ = min
0≤u1+···+un≤k

{〈
(u − z),

∂W (x, k)
∂x

〉
+ g(x,u)

}
+ QW (x, ·)(k).

(D.15)
Moreover, λ is uniquely determined by (D.15).

Proof. We only prove the one-dimensional case, i.e., x ∈ �1 with con-
trol constraint 0 ≤ u ≤ k. Fix k0 ∈ M and let φ(x) ∈ C1 be such that
W (x, k0) − φ(x) has a strict local maximum at x0, i.e., for some neighbor-
hood N (x0) of x0,

W (x0, k0) − φ(x0) = max
x∈N (x0)

{W (x, k0) − φ(x)}.

Then, for each ρ > 0, there exists xρ ∈ N (x0) such that

V ρ(xρ, k0) − φ(xρ) = max
x∈N (x0)

{V ρ(x, k0) − φ(x)}.

Moreover, xρ → x0.
Since V ρ(·, ·) is a viscosity subsolution to (D.14), we have

ρV ρ(xρ, k0) ≤ min
0≤u≤k0

{(u − z)φx(xρ) + g(xρ, u) + QV ρ(xρ, ·)(k0)} .

Sending ρ → 0, we can show that (λ, W (x, k)) is a viscosity subsolution to
(D.15).
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We now show that (λ, W (x, k)) is a viscosity supersolution to (D.15).
Similarly as above, we fix k0 ∈ M and let ψ(x) ∈ C1 be such that
W (x, k0) − ψ(x) has a strict local minimum at x0, i.e., for some neigh-
borhood N (x0) of x0,

W (x0, k0) − ψ(x0) = min
x∈N (x0)

{W (x, k0) − ψ(x)}.

Then, for each ρ > 0, there exists xρ ∈ N (x0) such that

V ρ(xρ, k0) − ψ(xρ) = min
x∈N (x0)

{V ρ(x, k0) − ψ(x)}.

Moreover, xρ → x0.
Since V ρ(·, ·) is a viscosity supersolution to (D.14), we have

ρV ρ(xρ, k0) ≥ min
0≤u≤k0

{(u − z)ψx(xρ) + g(xρ, u) + QV ρ(xρ, ·)(k0)} .

Sending ρ → 0, we have that (λ, W (x, k)) is a viscosity supersolution to
(D.15).

Hence, we have shown that (λ, W (x, k)) is a viscosity solution to (D.15). �

Theorem D.3. Let On ⊆ �n be an open set and let η ∈ C(On) be dif-
ferentiable at x0 ∈ On. Then there exist φ+ ∈ C1(On) and φ− ∈ C1(On),
such that ∂φ+(x0)/∂x = ∂φ−(x0)/∂x = ∂η(x0)/∂x, and η − φ+ (resp., η − φ−)
has a strict local maximum (resp., minimum) value of zero at x0.

Proof. See Crandall, Evans, and Lions [36, Lemma 1.1]. �



Appendix E
Discounted Cost Problems

In this appendix we present the elementary properties of value functions
and optimal feedback controls. We present these results by considering a
simple but typical model. Results for other such models can be obtained
similarly.

Let k(t) ∈ M = {0, 1, . . . , m}, t ≥ 0, denote a Markov chain with gener-
ator Q. Let us consider the one-dimensional optimal control problem given
as follows. The system equation and the control constraints are

d

dt
x(t) = u(t) − z, x(0) = x and 0 ≤ u(t) ≤ k(t).

Definition E.1. A control process (production rate) u(·) = {u(t) ∈ �+ :
t ≥ 0} is called admissible with respect to the initial capacity k, if: (i) u(·)
is adapted to the filtration {Ft} with Ft = σ{k(s) : 0 ≤ s ≤ t}, the σ-field
generated by k(·); and (ii) 0 ≤ u(t)(ω) ≤ k(t)(ω) for all t ≥ 0 and ω ∈ Ω. �

Let A(k) denote the set of admissible control processes with the initial
condition k(0) = k.

Definition E.2. A function u(x, k) is called an admissible feedback control,
or simply feedback control, if: (i) for any given initial x, the equation

d

dt
x(t) = u(x(t), k(t)) − z, x(0) = x,

has a unique solution; and (ii) {u(t) = u(x(t), k(t)), t ≥ 0} ∈ A(k). �

Remark E.1. The class of admissible controls contains feedback controls
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and other controls termed nonfeedback controls. Nonfeedback controls can
be partial open-loop controls or open-loop controls depending on whether
they respond to some (but not all) of the states in a systematic way or
not. In this book all nonfeedback controls will be referred to as open-loop
controls. �

Remark E.2. Rather than define a set of admissible feedback control func-
tions, we shall express the admissibility condition (ii) as simply u(x, k) ∈
A(k), with a slight abuse of notation. �

The problem is to choose an admissible control u(·) so as to minimize
the objective function

Jρ(x, k, u(·)) = E

∫ ∞

0
e−ρtg(x(t), u(t)) dt,

where x and k are the initial values of x(t) and k(t), respectively, and
g(x, u) is a function of x and u.

Let V ρ(x, k) denote the value function of the problem, i.e.,

V ρ(x, k) = inf
u(·)∈A(k)

Jρ(x, k, u(·)).

Then we have the following lemma.

Lemma E.1. (i) If g(x, u) is jointly convex, then V ρ(x, k) is convex in x
for each k ∈ M.

(ii) If g(x, u) is locally Lipschitz, i.e.,

|g(x, u) − g(x̃, u)| ≤ C(1 + |x|βg + |x̃|βg )|x − x̃|

for some constant C and βg, then V ρ(x, k) is also locally Lipschitz, i.e.,

|V ρ(x, k) − V ρ(x̃, k)| ≤ C(1 + |x|βg + |x̃|βg )|x − x̃|.

Proof. To show (i), it suffices to show that Jρ(·, k, ·) is jointly convex. For
any initial values x and x̃ and any admissible controls u(·) and ũ(·), let
x1(t) and x2(t), t ≥ 0, denote the trajectories corresponding to (x, u(·))
and (x̃, ũ(·)). Then, for any δ ∈ [0, 1],

δJρ(x, k, u(·)) + (1 − δ)Jρ(x̃, k, ũ(·))

= E

∫ ∞

0
e−ρt[δg(x(t), u(t)) + (1 − δ)g(x̃(t), ũ(t))] dt

≥ E

∫ ∞

0
e−ρtg(x̂(t), û(t)) dt,
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where û(t) := δu(t)+(1−δ)ũ(t) and x̂(t), t ≥ 0, denotes the state trajectory
with initial value δx + (1 − δ)x̃ and control û(·). Thus,

δJρ(x, k, u(·)) + (1 − δ)Jρ(x̃, k, ũ(·))

≥ Jρ(δx + (1 − δ)x̃, k, δu(·) + (1 − δ)ũ(·)).

This means that Jρ(·, k, ·) is jointly convex. Therefore, V ρ(x, k) is convex.
We now show (ii). Let u(·) denote an admissible control and let x(·) and

x̃(·) denote the state trajectories under u(·) with initial values x and x̃,
respectively. Then

|x(t) − x̃(t)| = |x − x̃|, |x(t)| ≤ C1(t + |x|),

and
|x̃(t)| ≤ C1(t + |x̃|),

for some C1 > 0. In view of the local Lipschitz assumption, we can show
that there exists a constant C2 independent of u(·), x, and x̃ such that

|Jρ(x, k, u(·)) − Jρ(x̃, k, u(·))| ≤ C2(1 + |x|βg + |x̃|βg )|x − x̃|.

It follows that

|V ρ(x, k) − V ρ(x̃, k)| ≤ sup
u(·)∈A(k)

|Jρ(x, k, u(·)) − Jρ(x̃, k, u(·))|

≤ C2(1 + |x|βg + |x̃|βg )|x − x̃|. �

Lemma E.2. Assume that g(x, u) is jointly convex. Then V ρ(x, k) is the
unique viscosity solution to the Hamilton-Jacobi-Bellman (HJB) equation

ρV ρ(x, k) = min
0≤u≤k

[
(u − z)

∂V ρ(x, k)
∂x

+ g(x, u)
]

+ QV ρ(x, ·)(k). (E.1)

Proof. First of all, Theorem D.1 implies the uniqueness of V ρ(x, k). We
need to show only that V ρ(x, k) is a viscosity solution to (E.1). In view of
Definition D.1, we shall show that V ρ(x, k) is both a viscosity subsolution
and a viscosity supersolution.

For any fixed k0 and x0 ∈ �1, let φ(·) ∈ C1 be such that V ρ(x, k0)−φ(x)
attains its maximum at x = x0 in a neighborhood N (x0). Let τ denote the
first jump time of k(·). We consider the control u(t) = u for 0 ≤ t < τ ,
where u, 0 ≤ u ≤ k0, is a constant. Moreover, let θ ∈ (0, τ ] be such that
x(t) starts at x0 and stays in N (x0) for 0 ≤ t ≤ θ. Define

ψ(x, k) =

⎧⎨⎩ φ(x) + V ρ(x0, k0) − φ(x0), if k = k0,

V ρ(x, k), if k �= k0.
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Then by Dynkin’s formula and the fact that k(θ) = k0, we have, for 0 ≤
t ≤ θ,

Ee−ρθψ(x(θ), k(θ)) − V ρ(x0, k0)

= E

∫ θ

0

[
−ρψ(x(t), k0) +

dφ(x(t))
dx

· (u(t) − z) + Qψ(x(t), ·)(k0)
]

dt.

(E.2)
Note also that x(t) ∈ N (x0) for 0 ≤ t ≤ θ. Thus, by our definition of φ(·),

φ(x(t)) ≥ V ρ(x(t), k0) − (V ρ(x0, k0) − φ(x0)) , for 0 ≤ t ≤ θ. (E.3)

Then, replacing ψ(x(t), k0) in (E.2) by the right-hand side of (E.3) and
noting that V ρ(x0, k0) − φ(x0) is a constant, we have

E[e−ρθV ρ(x(θ), k0)] − V ρ(x0, k0)

≤ E

∫ θ

0

[
−ρV ρ(x(t), k0) +

dφ(x(t))
dx

· (u(t) − z) + QV ρ(x(t), ·)(k0)
]

dt.

(E.4)
Furthermore, by the optimality principle,

V ρ(x0, k0) ≤ E

[∫ θ

0
e−ρtg(x(t), u(t)) dt + e−ρθV ρ(x(θ), k(θ))

]
. (E.5)

Combining (E.4) and (E.5), we obtain

0 ≤ E

∫ θ

0
e−ρt

[
g(x(t), u(t)) − ρV ρ(x(t), k0) +

dφ(x(t))
dx

· (u(t) − z)

+ QV ρ(x(t), ·)(k0)
]

dt.

By letting θ → 0, we can conclude

min
0≤u≤k0

[
(u − z)

dφ(x0)
dx

+ g(x0, u)
]

+ QV ρ(x0, ·)(k0) − ρV ρ(x0, k0) ≥ 0.

Thus, V ρ(x, k) is a viscosity subsolution.
We next show that V ρ(x, k) is a viscosity supersolution. Suppose it is

not. Then there exist k0, x0, and δ0 > 0 such that, for all 0 ≤ u ≤ k0,

(u − z)
dφ(x)

dx
+ g(x, u) + QV ρ(x, ·)(k0) − ρV ρ(x, k0) ≥ δ0 (E.6)

in a neighborhood N (x0), where φ(·) ∈ C1 is such that V ρ(x, k0) − φ(x)
attains its minimum at x0 in the neighborhood N (x0). Then, for all x ∈
N (x0),

V ρ(x, k0) ≥ φ(x) + (V ρ(x0, k0) − φ(x0)) . (E.7)
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For any 0 ≤ u ≤ k0, let θ0 denote a small number such that x(t) starts at
x = x0 and x(t) stays in N (x0) for 0 ≤ t ≤ θ0. Note that θ0 depends on
the control u(·). However, since u(t) − z is always bounded, there exists a
constant θ1 > 0 such that θ0 ≥ θ1 > 0. Let τ denote the first jump time of
the process k(·). Then, for 0 ≤ θ ≤ min{θ0, τ},

Jρ(x0, k0, u(·))

≥ E

{∫ θ

0
e−ρtg(x(t), u(t)) dt + e−ρθV ρ(x(θ), k(θ))

}

≥ E

{∫ θ

0
e−ρt

[
δ0 − (u(t) − z) · dφ(x(t))

dx
+ ρV ρ(x(t), k0)

−QV ρ(x(t), ·)(k0)
]

dt + e−ρθV ρ(x(θ), k(θ))

}
.

(E.8)

Now we can use the differentiability of φ(x) together with (E.7) to show

V ρ(x0, k0) ≤ E

{∫ θ

0
e−ρt

[
ρV ρ(x(t), k(t)) − (u(t) − z) · dφ(x(t))

dx

−QV ρ(x(t), ·)(k0)
]

dt + e−ρθV ρ(x(θ), k(θ))
}

.

Thus,

Jρ(x0, k0, u(·)) ≥ V ρ(x0, k0) + δ0E

∫ θ

0
e−ρt dt ≥ V ρ(x0, k0) + η,

where η = δ0E
∫ θ1∧τ

0 e−ρt dt > 0. This means that

V ρ(x0, k0) ≥ V ρ(x0, k0) + η,

which is a contradiction. This shows that V ρ(x, k) is a viscosity supersolu-
tion.

Thus, V ρ(x, k) is a viscosity solution to equation (E.1). �

Lemma E.3 (Verification Theorem). Let W ρ(x, k) ∈ C1(�) such that
|W ρ(x, k)| ≤ C(1 + |x|βg ) and

ρW ρ(x, k) = min
0≤u≤k

[
(u − z)

W ρ(x, k)
∂x

+ g(x, u) + QW ρ(x, ·)(k)
]

.

Then, we have the following:

(i) W ρ(x, k) ≤ Jρ(x, k, u(·)) for any 0 ≤ u(t) ≤ k(t).

(ii) Suppose that there are u∗(t) and x∗(t) which satisfy

d

dt
x∗(t) = u∗(t) − z, with x∗(0) = x,
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r∗(t) = ∂W ρ(x∗(t), k(t))/∂x,

and

min
0≤u≤k

[(u − z)r∗(t) + g(x∗(t), u) + QW ρ(x∗(t), ·)(k(t))]

= (u∗(t) − z)r∗(t) + g(x∗(t), u∗(t)) + QW ρ(x∗(t), ·)(k(t)),

a.e. in t with probability one. Then,

W ρ(x, k) = V ρ(x, k) = Jρ(x, k, u∗(·)).

Proof. We sketch the proof here, as further details are available in Fleming
and Rishel [53].

For T < ∞, we have the usual dynamic programming relation

V ρ(x, k) ≤ E

[∫ T

0
e−ρtg(x(t), u(t)) dt + e−ρT V ρ(x(T ), k(T ))

]
. (E.9)

Note that |x(t)| = C(x + t), for some C > 0. We obtain (i) as T → ∞.
Using the polynomial growth condition assumed in the lemma, inequality
(E.9) becomes an equality. �

Lemma E.4. For any x ∈ XH , the value function V ρk(x,k) of the dis-
counted cost problem satisfies

ρ�V
ρ�(x,k) = inf

u∈U(x,k)
{∂Au+BzV

ρ�(x,k) + g(x,u)} + QV ρ�(x,k).

Proof. See Presman, Sethi, and Suo [99]. �



Appendix F
Miscellany

In this appendix we present miscellaneous results needed in this book.

Theorem F.1 ( Arzelà-Ascoli Theorem). Let N (R) = {x : |x| ≤ R}. Let
fn(x) denote a sequence of continuous functions defined on N (R). If

sup
n

sup
x∈N (R)

|fn(x)| < ∞,

and
sup

n≥1,|x−x̃|≤δ

|fn(x) − fn(x̃)| → 0 as δ → 0,

then there exists a continuous function f(x) defined on N (R) and a sub-
sequence {n�} such that

sup
x∈N (R)

|fn�
(x) − f(x)| → 0 as � → ∞.

Proof. See Yosida [150] for a proof. �

Lemma F.1. Let f(t, x) denote a Borel measurable function on [0, ∞) ×
�n. Assume

〈f(t, x̃) − f(t, x̂), (x̃ − x̂)〉 ≤ 0,

for all t ∈ [0, ∞) and x̃, x̂ ∈ �n. Then the ordinary differential equation

d

dt
x(t) = f(t, x(t)), x(0) = x,
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has at most one solution.

Proof. See Hartman [69, Theorem 6.2] for its proof. �

Lemma F.2 (Rademacher’s Theorem). Let f(x) be a Lipschitz function
on X ⊂ �n, i.e.,

|f(x̃) − f(x̂)| ≤ C|x̃ − x̂|, x̃, x̂ ∈ X,

for some C > 0. Then f(x) is differentiable at almost every interior point
of X.

Proof. See Federer [50, p. 216] for a proof. �

Lemma F.3. If f(t) is a nonnegative Borel measurable function defined
on [0,∞), then

lim sup
ρ→0

ρ

∫ ∞

0
e−ρtf(t) dt ≤ lim sup

T→∞
1
T

∫ T

0
f(t) dt. (F.1)

Proof. We write

lim sup
T→∞

1
T

∫ T

0
f(t) dt = M.

Without loss of generality, we may assume M < ∞. For each δ > 0, there
exists T0 such that, for each T > T0,∫ T

0
f(t) dt ≤ (M + δ)T.

Then,

ρ

∫ ∞

0
e−ρtf(t) dt

=
∫ ∞

0
f(t)

∫ ∞

t

ρ2e−ρs ds dt

=
∫ ∞

0
ρ2e−ρs

∫ s

0
f(t) dt ds

=
∫ ∞

T0

ρ2e−ρs

∫ s

0
f(t) dt ds +

∫ T0

0
ρ2e−ρs

∫ s

0
f(t) dt ds

≤
∫ ∞

T0

ρ2e−ρs(M + δ)s ds +
∫ T0

0
ρ2e−ρs

∫ s

0
f(t) dt ds

≤
∫ ∞

0
ρ2e−ρs(M + δ)s ds +

∫ T0

0
ρ2e−ρs

∫ s

0
f(t) dt ds

= (M + δ) +
∫ T0

0
ρ2e−ρs

∫ s

0
f(t) dt ds.

(F.2)
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Obviously the second term on the right-hand side of (F.2) goes to 0 as
ρ → 0. Therefore, the left-hand side of (F.2) does not exceed (M +δ). Since
δ can be arbitrarily small, we have inequality (F.1). �



References

[1] Adiri, I. and Ben-Israel, A. (1966). An extension and solution of Arrow-
Karlin type production models by the Pontryagin maximum principle,
Cahiers du Centre d’Etudes de Recherche Opérationnelle, 8, 147-158.

[2] Akella, R., Choong, Y.F., and Gershwin, S.B. (1984). Performance on hier-
archical production scheduling policy, IEEE Transactions on Components,
Hybrids, and Manufacturing Technology, 7, 225-240.

[3] Akella, R. and Kumar, P.R. (1986). Optimal control of production rate in
a failure-prone manufacturing system, IEEE Transactions on Automatic
Control, AC-31, 116-126.

[4] Alexander, C. (1967). Synthesis of Forms, Harvard University Press, Cam-
bridge, MA.

[5] Alvarez, R., Dallery, Y., and David, R. (1994). Experimental study of the
continuous flow model of production lines with unreliable machines and
finite buffers, Journal of Manufacturing Systems, 13, 221-234.

[6] Arrow, K.J., Karlin, S., and Scarf, H. (1958). Studies in the Mathematical
Theory of Inventory and Production, Stanford University Press, Stanford,
CA.

[7] Auger, P. (1989). Dynamics and Thermodynamics in Hierarchically Orga-
nized Systems, Pergamon Press, Oxford, England.

[8] Bai, S.X. (1989). Scheduling manufacturing systems with work-in-process
inventory control, Ph.D. Thesis, Operations Research Center, Mas-
sachusetts Institute of Technology, Cambridge, MA.



306 References

[9] Bai, S.X. and Gershwin, S.B. (1990). Scheduling manufacturing systems
with work-in-process inventory, Proceedings of the IEEE Conference on
Decision and Control, Dec. 5-7, Honolulu, HI, pp. 557-564.

[10] Bai, S.X. and Gershwin, S.B. (1994). Scheduling manufacturing systems
with work-in-process inventory control: Multiple-part-type systems, Inter-
national Journal of Production Research, 32, 365-385.

[11] Bai, S.X. and Gershwin, S.B. (1995). Scheduling manufacturing sys-
tems with work-in-process inventory control: Single-part-type systems, IIE
Transactions, 27, 599-617.

[12] Basak, G.B., Bisi, A., and Ghosh, M.K. (1997). Controlled random de-
generate diffusions under long-run average cost, Stochastic and Stochastic
Reports, 61, 121-140.

[13] Basar, T. and Bernhard, P. (1991). H∞-Optimal Control and Related Min-
imax Design Problems, Birkhäuser, Boston, MA.
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