WWW,

i SR RN o Y - -.-'.II-

B T ‘¥ 1 Yiaele
. Richard O. Duda

gl e — | - L
§ oy e 1‘|'. "'If_|;_|—\.- o
i |'L"'“."'ﬂ? | S g dall
1 & __ = N
- e T s — .

Rl nd G. . |

.ﬂl.' i 1

L
PN
b i
.'-l-:-q, T ™

h:.‘u..‘{.'-l'ld lfdit 101

CONTENTS

PREFACE xvii

1 | INTRODUCTION 1

I.1 Machine Perception, |
1.2 An Example, 1
1.2.1 Relaied Fields, E
[.3 Pattern Recognition Systems, 9
1.3.1 Sensing, 9
1.3.2 Segmentation and Grouping, 9
1.3.3 Feawre Extraction, 11
1.3.4 Classificaton, 12
1.3.5 Post Processing, 13
|.4 The Design Cycle, 14
1.4.1 Data Collection, 14
1.4.2 Feature Chaoice, 14
1.4.3 Model Choice, 15
1.4.4 Training. 15
1.4.5 Evaluation, 15
1.4.6 Computational Complexity, 16
|.5 Leaming and Adaptation, 16
1.5.1 Supervised Learning, 16
1.5.2 Unsupervised Leaming, 17
1.5.3 Reinforcement Learning, 17
1.6 Conclusion, 17
Summary by Chaplers, 17
Bibliographical and Historical Remarks, 18
Bibliography, 19

i_Z | BAYESIAN DECISION THEORY 20

s

2.1 Introduction, 20
2.2 Bavesian Decision Theory—Continuous Features, 24
2.2 1 Two-Caregory Classification, 25
2.3 Minimum-Ermor-Rate Classification, 26
*2.3.1 Minimax Criterion, 27

vili CONTENTS

*2.3.2 Neyman-Pearson Critenon, 28
2.4 Classifiers, Discnminant Functions, and Decision Surfaces, 29
2.4.1 The Multicategory Case, 29
2.4.2 The Two-Category Case, 30
2.5 The Normal Density, 31
2.5.1 Umivanate Density, 32
2.5.2 Multivariate Density, 33
2.6 Discriminant Functions for the Normal Density, 36
260 Case 1: X, =a’l, 36
262 Case2: X, mX 19
2.6.3 Case 3: X, = arbitrary, 41
Example | Decision Regions for Two-Dimensional
Gaussian Data, 41
*2.7 Emaor Probabilities and Integrals, 45
*2 8 Error Bounds for Normal Densities, 46
2.8.1 Chemoff Bound, 46
2.8.2 Bhattacharyya Bound, 47
Example 2 Ermor Bounds for Gawssian Distributions, 48
2.8.3 Signal Detection Theory and Operating Characteristics, 48
2.9 Bayes Decition Theory—Discrete Features, 51
2.9.1 Independent Binary Features, 52
Example 3 Bayesian Decisions for Three-Dimensional
Binary Data, 53
*2.10 Missing and Noisy Features, 54
2.10.1 Missing Features, 54
2.10.2 Noisy Features, 55
*2.11 Bayesian Beliel Networks, 56
Exvample 4 Beliefl Network for Fish, 59
*2.12 Compound Bayesian Decision Theory and Context, 62
Summary, 63
Bibliographical and Histonical Remarks, 64
Problems, 65
Computer excreises, B0

Bibliography, 82

~ MAXIMUM-LIKELIHOOD AND BAYESIAN
. 3 PARAMETER ESTIMATION

3.1 Introduction, 84
1.2 Maximum-Likelihood Estimation, 85
3.2.1 The General Principle. 85
3.2.2 The Gauszian Case: Unknown p, B8
3.2.3 The Gaussian Case: Unknown pu and X, 88
3.2.4 Bias, 89
3.3 Bayesian Estimation, 90
3.3.1 The Class-Conditional Densities, 91
3.3.2 The Parameter Distribution, 91
1.4 Bayesian Parameter Extimation: Gaussian Case, 92
1.4.1 The Univariate Case: plu |0, 92
1.4.2 The Univariate Case; p(x|T), 95
1.4.3 The Multivanate Case, 95

N

CONTENTS X

3.5 Bavesian Parameter Estimation: General Theory, 97
Example | Recursive Bayves Leaming, 98
15.1 When Do Maximum-Likelihood and Bayes Methods Differ?, 100
1.5.2 Noninformative Priors and Invanance, 101
1.5.3 Gibbs Algonithm, 102
*3.6 Sufficient Statistics, 102
1.6.1 Sufficient Statistics and the Exponential Family, 106
3.7 Problems of Dimensionality, 107
1.7.1 Accuracy, Dimension, and Training Sample Size, 107
1.7.2 Computational Complexity, 111
3.7.3 Overfinting, 113
*31.% Component Analysis and Discriminants, 114
3.8.1 Principal Componem Analysis (PCA), 115
3.8.2 Fisher Lincar Discriminant, 117
3.8.3 Multiple Discriminant Analysis, 121
*31.0 Expectation-Maximization (EM), 124
Example 2 Expectation-Maximization for a 2D Normal Model, 126
310 Hidden Markov Models, 128
3.10.1 First-Order Markov Models, 128
1.10.2 First-Order Hidden Markov Models, 129
3.10.3 Hidden Markov Model Computation, 129
1,104 Evaluation, 131
Example 3 Hidden Markov Model, 133
3.10.5 Decoding. 135
Example 4 HMM Decoding. 136
3106 Learning, 137
Summary, 139
Bibliographical and Historical Remarks, 139
Problems, 140
Computer exercises, 155

Bibliography, 159

NONPARAMETRIC TECHNIQUES 161

4.1 Introduction, 161
4.2 Density Estimation, 161
4.3 Parzen Windows, 164
4.3.1 Convergence of the Mean, 167
4.3.2 Convergence of the Variance, 167
433 Nustrations, 168
4.3.4 Classification Example, 163
4.3.5 Probabilistic Neural Networks (PNNs), 172
4.3.6 Choosing the Window Function, 174
4.4 k,=Nearest-Neighbor Estimation, 174
4.4.1 k,=Nearest-Neighbor and Parzen-Window Estimation, 176
4.4.2 Estimation of A Posteriori Probabilities, 177
4.5 The Nearest-Neighbor Rule, 177
4.5.1 Convergence of the Nearest Neighbor, 179
4.5.2 Eror Rate for the Nearest-Neighbor Rule, 180
4.5.3 Error Bounds, 180
4,54 The k-Nearest-Neighbor Rule, 182

X

CONTENTS

@n |

4.5.5 Compuiational Complexity of ihe k-Nearesi-Neighbor Rule, 184

4.6 Metnics and Nearest-Meighbor Classification, 187
4.6.1 Properties of Metrics, 187
4.6.2 Tangemt Distance, 188
*4.7 Fuzzy Classification, 192
4.8 Reduced Coulomb Energy Networks, 195
4.9 Approximations by Series Expansions, 197
Summary, 199
Bibliographical and Historical Remarks, 200
Problems, 201
Computer exercises, M0
Bibliography, 213

LINEAR DISCRIMINANT FUNCTIONS

215

5.1 Introduction, 215
5.2 Linear Discnminant Functions and Decision Surfaces, 216
5.2.1 The Two-Category Case, 216
5.2.2 The Muhicategory Case, 218
5.3 Generalized Linear Discriminant Functions, 219
5.4 The Two-Category Lincarly Separable Case, 223
5.4.1 Geometry and Terminology, 224
54.2 Gradient Descent Procedures, 224
5.5 Minimizing the Perceptron Criterion Function, 227
5.5.1 The Perceptron Criterion Function, 227

5.5.2 Convergence Proof for Single-Sample Comection, 229

5.5.3 Some Direct Generalizations, 232
5.6 Eelaxation Procedures, 235
5.6.1 The Descent Algonithm, 235
5.6.2 Convergence Proof, 237
5.7 Monseparable Behavior, 238
5.8 Minimum Squared-Error Procedures, 239

5.8.1 Minimum Squared-Error and the Pseudoinverse, 240
Example | Constructing a Linear Classifier by Matrix

Pseudoinverse, 241
5.8.2 Helation to Fisher's Lincar Discriminant, 242

5.8.3 Asymptotic Approximation to an Optimal Discriminam, 243

5854 The Widrow-Holl or LMS Procedure, 245
53.5 Stochastic Approximation Methods, 246
5.9 The Ho-Kashyap Procedures, 249
5001 The Descent Procedure, 250
5.9.2 Convergence Proof, 251
5.9.3 Nonseparable Behavior, 253
594 Some Related Procedures, 253
*5.10 Lincar Programming Algorithms, 256
5.10.1 Lincar Programming, 256
5.10.2 The Linearly Separable Case, 257
5.10.3 Minimizing the Perceptron Criternion Function, 258
*5.11 Suppont Vector Machines, 259
S5.101.1 5¥M Training, 263
Example 2 SVM for the XOR Problem, 264

COMTERTS Xi

5.12 Multicategory Generalizations, 265
5.12,1 Kesler's Construction, 266
5.12.2 Convergence of the Fixed-Increment Rule, 266
5.12.3 Generalizations for MSE Procedures, 268
Summary, 269
Bibliographical and Historical Remarks, 270
Problems, 271
Computer exercises, 278

Bibliography, 281

| 6 | MULTILAYER NEURAL NETWORKS 282

6.1 Introduction, 282
6.2 Feedforward Operation and Classification, 2184
6.2.1 General Feedforward Operation, 286
6.2.2 Expressive Power of Mululayer Networks, 287
6.3 Backpropagation Algorithm, 288
6.3.1 Network Learming, 289
6.3.2 Training Protocols, 293
6.3.3 Leaming Curves, 295
6.4 Emor Surfaces. 296
6.4.1 Some Small Networks, 296
6.4.2 The Exclusive-OR (XOR), 298
6.4.3 Larger Networks, 298
6.4.4 How Importamt Are Muliiple Minima?, 299
6.5 Backpropagation as Feature Mapping, 199
6.5.1 Representations at the Hidden Layer—Weights, 302
6.6 Backpropagation, Bayes Theory and Probability, 303
6.6.1 Bayes Discriminants and Neural Networks, 303
6.6.2 Outpuis as Probabilities, 34
*6.7 Related Statistical Techniques, 305
6.8 Practical Techniques for Improving Backpropagation, 306
6.8.1 Activation Function, 307
6.8.2 Parameters for the Sigmoid, 108
6.8.3 Scaling Inpur, 308
6.8.4 Target Values, 39
6.8.5 Training with Noise, 310
6.8.6 Manufacturing Data, 310
6.8.7 Number of Hidden Units, 310
688 Initializing Weights, 311
6.8.9 Leaming Rates, 312
6.8.10 Momentum, 313
6.8.11 Weight Decay, 314
6.8.12 Himts, 315
6.8.13 On-Line. Stochastic or Batch Training?, 316
6.8.14 Stopped Training. 316
6.8.15 Number of Hidden Layers, 317
6.8.16 Critcrion Function, 318
*6.9 Second-Order Methods, 318
6.9.1 Hessian Marix, 318
6.9.2 Newton's Method, 319

xii CONTENTS

6.9.3 Quickprop, 320
6.9.4 Conjugate Gradient Descent, 321
Example | Conjugate Gradient Descent, 122

*6.10 Addirional Networks and Training Methods, 324

6.10.1 Kadial Basis Function Networks (RBFs), 324
6.10.2 Special Bases, 325
6.10.3 Matched Filters, 325
6. 104 Convolutional Netwaorks, 326
6.10.5 Recurrent Networks, 128
6.10.6 Cascade-Comelation, 329
6.11 Regulanization, Complexity Adjustment and Pruning, 330
Summary, 333
Bibliographical and Historical Remarks, 333
Problems, 335
Compuler exercises, 343
Bibliography, 347

STOCHASTIC METHODS

350

1.1 Introduction, 350
7.2 Stochastic Search, 351

1.2.1 Simulated Anncaling, 351

7.2.2 The Boltzmann Factor, 352

7.2.3 Deterministic Simulated Annealing, 357
7.3 Bolizmann Learning, 360

7.3.1 Stochastic Boltzmann Leamning of Visible States, 360

7.3.2 Missing Features and Category Constraints. 365
7.3.3 Deterministic Boltzmann Leaming, 366
7.34 Initialization and Setting Parameters, 367
*1.4 Boltizmann Networks and Graphical Models, 370
7.4.1 Other Graphical Models, 372
*7.5 Evolutionary Methods, 373
7.5.1 Genetic Algorithms, 373
1.5.2 Further Heuristics, 377
7.5.3 Why Do They Work?, 378
*7.6 Genetic Programming, 378
Summary, 381
Bibliographical and Historical Remarks, 381
Problems, 383
Computer exercises, IS8
Bibliography, 391

NONMETRIC METHODS

8.1 Introduction, 394
8.2 Decision Trees, 395
8.3 CART, 396
8.3.1 Number of Splits, 397
8.3.2 Query Selection and Node Impurity, 398
8.3.3 When 10 Stop Splitting, 402
E.3.4 Pruning, 403

394

CONTENTS Xl

8.3.5 Assignment of Leaf Node Labels, 404
Example | A Simple Tree, 404
£.3.6 Computational Complexity, 206
8.3.7 Feature Choice, 407
8.3.8 Muliivariate Decision Trees, 408
8.3.9 Priors and Costs, 409
£.3.10 Missing Auributes, S04
Example 2 Surogate Splits and Missing Aunbutes, 410
8.4 Other Tree Methods, 411
84.1 ID3, 411
B4.2 C45, 411
%.4.3 Which Tree Classifier Is Best?, 412
*8.5 Recognition with Strings, 413
8.5.1 String Matching, 415
8.5.2 Edit Distance, 418
8.5.3 Computational Complexity, 420
8.5.4 String Matching with Erors, 420
8.5.5 String Matching with the “Don’t-Care”™ Symbaol, 421
8.6 Grammatical Methods, 421
8.6.1 Grammars, 422
8.6.2 Types of String Grammars, 424
Example 3 A Grammar for Pronouncing Numbers, 423
8.6.3 Recognition Using Grammars, 426
8.7 Grammatical Inference, 429
Example 4 Grammatical Inference, 431
*3.8 Rule-Based Methods, 431
£.8.1 Leamning Rules, 433
Summary, 434
Bibliographical and Historical Remarks, 435
Problems, 437
Computer exercises, 446
Bibliography. 450

| 9 | ALGORITHM-INDEPENDENT MACHINE LEARNING 453

9.1 Introduction, 453
9.2 Lack of Inherent Superiority of Any Classifier, 434
9.2.1 No Free Lunch Theorem, 454
Example | No Free Lunch for Binary Data, 437
#9.2.2 Ugly Duckling Theorem, 458
9.2.3 Minimum Description Length (MDL), 461
9.2.4 Minimum Description Length Principle, 463
9.2.5 Overfiting Avoidance and Occam'’s Razor, 464
9.3 Bias and Vanance, 465
9.3.1 Bias and Variance for Regression, 466
9,32 Bias and Variance for Classification, 468
9.4 Resampling for Estimating Statistics, 471
9.4.1 Jackknife, 472
Example 2 Jackknife Estimate of Bias and Variance of the Mode, 473
9.4.2 Bootstrap, 474
9.5 Resampling for Classifier Design, 473

xiv CONTENTS

951 Bagging, 475
9.5.2 Boosting. 476
9.5} Leaming with Querics, 480
954 Arcing, Learning with Quenes. Bias and Vanunce, 452
9.6 Estimating and Comparing Classitiers, 482
92.6.1 Parametnc Models, 483
96,2 Cross-Validation, 483
96,3 Jackknife and Bootstrap Estimation of Classification Accuracy, 483
96,4 Maximum:Likelihood Model Companson, 486
9.6.5 Bayesian Model Comparison, 487
9.6,6 The Problem-Average Error Rate, 4589
9.6.7 Predicting Final Performance from Learning Curves, 497
96,8 The Capacity of a Separating Plane, 494
9.7 Combining Clissafiers, 495
9.7.1 Componcnt Classificrs with Discnminant Functions, 49
9.7.2 Component Classifiers without Discriminant Functions, 498

Summary, S99
Bibliographical and Histonical Remarks, 504
Problems, 502
Computer exercises, 508
Bibliography, 513
10 UNSUPERVISED LEARNING AND CLUSTERING 517

10,0 Inroduction, 517
10.2 Mixture Densities and [dentibiabaliny, 518
10,3 MaximumeLikelihood Estimates, 519
10,4 Application 1o Normal Mixwres, 521

10.4.1 Case 1: Unknown Mean Viectors, 522

10.4.2 Caxe 2: All Parameters Unknown, 5234

1043 £-Means Clustenng, 526

*10.4.9 Furey k-Mecans Clustering, 528
10,5 Unsupervised Bayesian Leaming, 530

10.5.1 The Bayes Classifier. 530

10.5.2 Leaming the Parameter Vector. 531

Exwmple | Unsupervised Leaming of Gaussian Data, 534

10.5.3 Decision-Dirceted Approximation, 536
10.6 Data Descniption and Clustening. 537

10.6.1 Sumilanty Measures. 5338
10,7 Criterion Functions for Clustening, 542

10.7.1 The Sum-of-Squared-Ermor Criterion, 542

10.7.2 Related Minimum Vanance Critenia, 543

10.7.3 Scaner Critena, 344

Example I Clustering Criteria. 546
*10.8 herative Optimization, 548

10.% Hierarchical Clustening, 550

10.9.1 Definitions, 551

10,9.2 Agglomerative Hicrarchical Clustening, 552

10,93 Stepwise-Optimal Hierarchical Clustering, 555

10,94 Hierarchical Clusiering and Induced Metnics, 556

*10.10 The Problem of Validity, 557

CONTENTS XW

10,11 On-line clustering. 559
10.11.1 Unknown Number of Clusters, 561
10.11.2 Adaptive Resonance, 563
10.11.3 Leaming with a Critic, 565
*10.12 Graph-Theoretic Methods, 566
10.13 Component Analysis, 568
10.13.1 Principal Component Analysis (PCA). 568
10.13.2 Nonlinear Component Analysis (SLCA), 569
*10.13.3 Independent Component Analysis (ICA), 570
10.14 Low-Dimensional Representations and Multidimensional Scaling
(MDS5), 573
10.14.1 Self-Organizing Featare Maps, 576
10.14.2 Clustering and Dimensionality Redoction, 580
Summary, 581
Bibliographical and Historical Remarks, 582
Problems, 583
Computer exercises, 393
Bibliography, 398

MATHEMATICAL FOUNDATIONS 601

Al Motation, 60
A2 Lincar Algebra, 604
A.2.1 Notation and Preliminaries, 604
A2 Inner Product, 603
A 2.3 Outer Product, 606
A2.4 Dervatives of Matrices, 606
A25 Determinant and Trece, 608
A.26 Matnx Inversion, 60F
A.2.7 Eigenvectors and Eigenvalues, 609
A3 Lagrange Optimization, 610
A4 Probability Theory, 611
A 4.1 Discrete Random Variables, 611
A.4.2 Expected Values, 611
A.4.3 Pairs of Discrete Random Variables, 612
A44 Swatistical Independence, 613
A4.35 Expected Values of Functions of Two Vanables. 613
A4.6 Conditional Probabality, 614
A.4.7 The Law of Total Probability and Bayes® Rule, 615
A48 Vector Random Variables, 616
A.4.9 Expectations, Mean Vectors and Covariance Matrices, 617
A4.10 Continuous Random Vanables, 618
A4 11 Distributions of Sums of Independent Random Variables, 620
A4.12 Normal Distnbutions, 621
A5 Gaussian Denivatives and Integrals. 623
A5 1 Muluvariate Normal Densities, 624
A5.2 Bivariate Normal Densities, 626
A Hypothesis Testing, 628
A6.] Chi-Squared Test, 629
AT Information Theory. 630
A.7.1 Entropy and Information, 630

v CONTENTS

A.7.2 Relative Entropy, 632
A7.3 Mutual Information, 632
AR Computational Complexity, 633

Bibliography, 635
INDEX

637

Contents

1 Introduction 3
1.1 Machine Perception 3
1.2 AnExample. 3

1.2.1 Related fields 11
1.3 The Sub-problems of Pattern Classification 11
1.3.1 Feature Extraction oL 11
1.3.2 Noise e 12
1.3.3 Overfitting 12
1.3.4 Model Selection 12
1.3.5 Prior Knowledge 12
1.3.6 Missing Features oL 13
1.3.7 Mereology 13
1.3.8 Segmentation 13
1.3.9 Context 14
1.3.10 Invariances o 14
1.3.11 Evidence Pooling 15
1.3.12 Costsand Risks oL 15
1.3.13 Computational Complexity 16
1.4 Learning and Adaptation 16
1.4.1 Supervised Learning oL 16
1.4.2 Unsupervised Learning 17
1.4.3 Reinforcement Learning 17
1.5 Conclusion 17
Summary by Chapters L 17
Bibliographical and Historical Remarks 19
Bibliography L 19
Index 22

CONTENTS

Chapter 1

Introduction

he ease with which we recognize a face, understand spoken words, read handwrit-

ten characters, identify our car keys in our pocket by feel, and decide whether
an apple is ripe by its smell belies the astoundingly complex processes that underlie
these acts of pattern recognition. Pattern recognition — the act of taking in raw
data and taking an action based on the “category” of the pattern — has been crucial
for our survival, and over the past tens of millions of years we have evolved highly
sophisticated neural and cognitive systems for such tasks.

1.1 Machine Perception

It is natural that we should seek to design and build machines that can recognize
patterns. From automated speech recognition, fingerprint identification, optical char-
acter recognition, DNA sequence identification and much more, it is clear that reli-
able, accurate pattern recognition by machine would be immensely useful. Moreover,
in solving the myriad problems required to build such systems, we gain deeper un-
derstanding and appreciation for pattern recognition systems in the natural world —
most particularly in humans. For some applications, such as speech and visual recog-
nition, our design efforts may in fact be influenced by knowledge of how these are
solved in nature, both in the algorithms we employ and the design of special purpose
hardware.

1.2 An Example

To illustrate the complexity of some of the types of problems involved, let us consider
the following imaginary and somewhat fanciful example. Suppose that a fish packing
plant wants to automate the process of sorting incoming fish on a conveyor belt
according to species. As a pilot project it is decided to try to separate sea bass from
salmon using optical sensing. We set up a camera, take some sample images and begin
to note some physical differences between the two types of fish — length, lightness,
width, number and shape of fins, position of the mouth, and so on — and these suggest
features to explore for use in our classifier. We also notice noise or variations in the

4 CHAPTER 1. INTRODUCTION

images — variations in lighting, position of the fish on the conveyor, even “static”
due to the electronics of the camera itself.

Given that there truly are differences between the population of sea bass and that

MODEL of salmon, we view them as having different models — different descriptions, which
are typically mathematical in form. The overarching goal and approach in pattern
classification is to hypothesize the class of these models, process the sensed data
to eliminate noise (not due to the models), and for any sensed pattern choose the
model that corresponds best. Any techniques that further this aim should be in the
conceptual toolbox of the designer of pattern recognition systems.

Our prototype system to perform this very specific task might well have the form
shown in Fig. 1.1. First the camera captures an image of the fish. Next, the camera’s

PRE- signals are preprocessed to simplify subsequent operations without loosing relevant
PROCESSING information. In particular, we might use a segmentation operation in which the images
of different fish are somehow isolated from one another and from the background. The
SEGMENTATION:) formation from a single fish is then sent to a feature extractor, whose purpose is to
FEATURE reduce the data by measuring certain “features” or “properties.” These features
EXTRACTION (0T, more precisely, the values of these features) are then passed to a classifier that
evaluates the evidence presented and makes a final decision as to the species.

The preprocessor might automatically adjust for average light level, or threshold
the image to remove the background of the conveyor belt, and so forth. For the
moment let us pass over how the images of the fish might be segmented and consider
how the feature extractor and classifier might be designed. Suppose somebody at the
fish plant tells us that a sea bass is generally longer than a salmon. These, then,
give us our tentative models for the fish: sea bass have some typical length, and this
is greater than that for salmon. Then length becomes an obvious feature, and we
might attempt to classify the fish merely by seeing whether or not the length [of
a fish exceeds some critical value [*. To choose [* we could obtain some design or

TRAINING training samples of the different types of fish, (somehow) make length measurements,

SAMPLES and inspect the results.

Suppose that we do this, and obtain the histograms shown in Fig. 1.2. These
disappointing histograms bear out the statement that sea bass are somewhat longer
than salmon, on average, but it is clear that this single criterion is quite poor; no
matter how we choose [*, we cannot reliably separate sea bass from salmon by length
alone.

Discouraged, but undeterred by these unpromising results, we try another feature
— the average lightness of the fish scales. Now we are very careful to eliminate
variations in illumination, since they can only obscure the models and corrupt our
new classifier. The resulting histograms, shown in Fig. 1.3, are much more satisfactory
— the classes are much better separated.

So far we have tacitly assumed that the consequences of our actions are equally
costly: deciding the fish was a sea bass when in fact it was a salmon was just as

COST undesirable as the converse. Such a symmetry in the cost is often, but not invariably
the case. For instance, as a fish packing company we may know that our customers
easily accept occasional pieces of tasty salmon in their cans labeled “sea bass,” but
they object vigorously if a piece of sea bass appears in their cans labeled “salmon.”
If we want to stay in business, we should adjust our decision boundary to avoid
antagonizing our customers, even if it means that more salmon makes its way into
the cans of sea bass. In this case, then, we should move our decision boundary z* to
smaller values of lightness, thereby reducing the number of sea bass that are classified
as salmon (Fig. 1.3). The more our customers object to getting sea bass with their

1.2. AN EXAMPLE 5

Preprocessing

v |

Feature extraction

o

Classification

a

"salmon" "sea bass"

Figure 1.1: The objects to be classified are first sensed by a transducer (camera),
whose signals are preprocessed, then the features extracted and finally the classifi-
cation emitted (here either “salmon” or “sea bass”). Although the information flow
is often chosen to be from the source to the classifier (“bottom-up”), some systems
employ “top-down” flow as well, in which earlier levels of processing can be altered
based on the tentative or preliminary response in later levels (gray arrows). Yet others
combine two or more stages into a unified step, such as simultaneous segmentation
and feature extraction.

salmon — i.e., the more costly this type of error — the lower we should set the decision
threshold z* in Fig. 1.3.

Such considerations suggest that there is an overall single cost associated with our
decision, and our true task is to make a decision rule (i.e., set a decision boundary)
so as to minimize such a cost. This is the central task of decision theory of which
pattern classification is perhaps the most important subfield.

Even if we know the costs associated with our decisions and choose the optimal
decision boundary x*, we may be dissatisfied with the resulting performance. Our
first impulse might be to seek yet a different feature on which to separate the fish.
Let us assume, though, that no other single visual feature yields better performance
than that based on lightness. To improve recognition, then, we must resort to the use

DECISION
THEORY

6 CHAPTER 1. INTRODUCTION

salmon sea bass
Count
22
20
18
16
12t
10+

O N b~ OO

Length

Figure 1.2: Histograms for the length feature for the two categories. No single thresh-
old value [* (decision boundary) will serve to unambiguously discriminate between
the two categories; using length alone, we will have some errors. The value [* marked
will lead to the smallest number of errors, on average.

Count

14 salmon sea bass
12

10

1
0 : L 1 Lightness

2 4 X" 6 8 10

Figure 1.3: Histograms for the lightness feature for the two categories. No single
threshold value z* (decision boundary) will serve to unambiguously discriminate be-
tween the two categories; using lightness alone, we will have some errors. The value
2* marked will lead to the smallest number of errors, on average.

1.2. AN EXAMPLE 7

Width
22 salmon sea bass
21

20
19
18
17
16

15

14 Lightness
2 4 6 8 10

Figure 1.4: The two features of lightness and width for sea bass and salmon. The
dark line might serve as a decision boundary of our classifier. Overall classification
error on the data shown is lower than if we use only one feature as in Fig. 1.3, but
there will still be some errors.

of more than one feature at a time.

In our search for other features, we might try to capitalize on the observation that
sea bass are typically wider than salmon. Now we have two features for classifying
fish — the lightness x; and the width x5. If we ignore how these features might be
measured in practice, we realize that the feature extractor has thus reduced the image
of each fish to a point or feature vector x in a two-dimensional feature space, where

Our problem now is to partition the feature space into two regions, where for all
patterns in one region we will call the fish a sea bass, and all points in the other we
call it a salmon. Suppose that we measure the feature vectors for our samples and
obtain the scattering of points shown in Fig. 1.4. This plot suggests the following rule
for separating the fish: Classify the fish as sea bass if its feature vector falls above the
decision boundary shown, and as salmon otherwise.

This rule appears to do a good job of separating our samples and suggests that
perhaps incorporating yet more features would be desirable. Besides the lightness
and width of the fish, we might include some shape parameter, such as the vertex
angle of the dorsal fin, or the placement of the eyes (as expressed as a proportion of
the mouth-to-tail distance), and so on. How do we know beforehand which of these
features will work best? Some features might be redundant: for instance if the eye
color of all fish correlated perfectly with width, then classification performance need
not be improved if we also include eye color as a feature. Even if the difficulty or
computational cost in attaining more features is of no concern, might we ever have
too many features?

Suppose that other features are too expensive or expensive to measure, or provide
little improvement (or possibly even degrade the performance) in the approach de-
scribed above, and that we are forced to make our decision based on the two features
in Fig. 1.4. If our models were extremely complicated, our classifier would have a
decision boundary more complex than the simple straight line. In that case all the

DECISION
BOUNDARY

GENERAL-
IZATION

8 CHAPTER 1. INTRODUCTION

Width
22 salmon sea bass

21
20
19
18
17
16
15
14

Lightness

2 4 6 8 10

Figure 1.5: Overly complex models for the fish will lead to decision boundaries that are
complicated. While such a decision may lead to perfect classification of our training
samples, it would lead to poor performance on future patterns. The novel test point
marked ? is evidently most likely a salmon, whereas the complex decision boundary
shown leads it to be misclassified as a sea bass.

training patterns would be separated perfectly, as shown in Fig. 1.5. With such a
“solution,” though, our satisfaction would be premature because the central aim of
designing a classifier is to suggest actions when presented with nowvel patterns, i.e.,
fish not yet seen. This is the issue of generalization. It is unlikely that the complex
decision boundary in Fig. 1.5 would provide good generalization, since it seems to be
“tuned” to the particular training samples, rather than some underlying characteris-
tics or true model of all the sea bass and salmon that will have to be separated.

Naturally, one approach would be to get more training samples for obtaining a
better estimate of the true underlying characteristics, for instance the probability
distributions of the categories. In most pattern recognition problems, however, the
amount of such data we can obtain easily is often quite limited. Even with a vast
amount of training data in a continuous feature space though, if we followed the
approach in Fig. 1.5 our classifier would give a horrendously complicated decision
boundary — one that would be unlikely to do well on novel patterns.

Rather, then, we might seek to “simplify” the recognizer, motivated by a belief
that the underlying models will not require a decision boundary that is as complex as
that in Fig. 1.5. Indeed, we might be satisfied with the slightly poorer performance
on the training samples if it means that our classifier will have better performance
on novel patterns.* But if designing a very complex recognizer is unlikely to give
good generalization, precisely how should we quantify and favor simpler classifiers?
How would our system automatically determine that the simple curve in Fig. 1.6
is preferable to the manifestly simpler straight line in Fig. 1.4 or the complicated
boundary in Fig. 1.57 Assuming that we somehow manage to optimize this tradeoff,
can we then predict how well our system will generalize to new patterns? These are
some of the central problems in statistical pattern recognition.

For the same incoming patterns, we might need to use a drastically different cost

* The philosophical underpinnings of this approach derive from William of Occam (1284-13477), who
advocated favoring simpler explanations over those that are needlessly complicated — Entia non
sunt multiplicanda praeter necessitatem (“Entities are not to be multiplied without necessity”).
Decisions based on overly complex models often lead to lower accuracy of the classifier.

1.2. AN EXAMPLE 9

Width
22 salmon sea bass

21
20
19
18
17
16

15

14 Lightness
2 4 6 8 10

Figure 1.6: The decision boundary shown might represent the optimal tradeoff be-
tween performance on the training set and simplicity of classifier.

function, and this will lead to different actions altogether. We might, for instance,
wish instead to separate the fish based on their sex — all females (of either species)
from all males if we wish to sell roe. Alternatively, we might wish to cull the damaged
fish (to prepare separately for cat food), and so on. Different decision tasks may
require features and yield boundaries quite different from those useful for our original
categorization problem.

This makes it quite clear that our decisions are fundamentally task or cost specific,
and that creating a single general purpose artificial pattern recognition device — i.e.,
one capable of acting accurately based on a wide variety of tasks — is a profoundly
difficult challenge. This, too, should give us added appreciation of the ability of
humans to switch rapidly and fluidly between pattern recognition tasks.

Since classification is, at base, the task of recovering the model that generated the
patterns, different classification techniques are useful depending on the type of candi-
date models themselves. In statistical pattern recognition we focus on the statistical
properties of the patterns (generally expressed in probability densities), and this will
command most of our attention in this book. Here the model for a pattern may be a
single specific set of features, though the actual pattern sensed has been corrupted by
some form of random noise. Occasionally it is claimed that neural pattern recognition
(or neural network pattern classification) should be considered its own discipline, but
despite its somewhat different intellectual pedigree, we will consider it a close descen-
dant of statistical pattern recognition, for reasons that will become clear. If instead
the model consists of some set of crisp logical rules, then we employ the methods of
syntactic pattern recognition, where rules or grammars describe our decision. For ex-
ample we might wish to classify an English sentence as grammatical or not, and here
statistical descriptions (word frequencies, word correlations, etc.) are inapapropriate.

It was necessary in our fish example to choose our features carefully, and hence
achieve a representation (as in Fig. 1.6) that enabled reasonably successful pattern
classification. A central aspect in virtually every pattern recognition problem is that
of achieving such a “good” representation, one in which the structural relationships
among the components is simply and naturally revealed, and one in which the true
(unknown) model of the patterns can be expressed. In some cases patterns should be
represented as vectors of real-valued numbers, in others ordered lists of attributes, in
yet others descriptions of parts and their relations, and so forth. We seek a represen-

ANALYSIS
BY
SYNTHESIS

10 CHAPTER 1. INTRODUCTION

tation in which the patterns that lead to the same action are somehow “close” to one
another, yet “far” from those that demand a different action. The extent to which we
create or learn a proper representation and how we quantify near and far apart will
determine the success of our pattern classifier. A number of additional characteris-
tics are desirable for the representation. We might wish to favor a small number of
features, which might lead to simpler decision regions, and a classifier easier to train.
We might also wish to have features that are robust, i.e., relatively insensitive to noise
or other errors. In practical applications we may need the classifier to act quickly, or
use few electronic components, memory or processing steps.

A central technique, when we have insufficient training data, is to incorporate
knowledge of the problem domain. Indeed the less the training data the more impor-
tant is such knowledge, for instance how the patterns themselves were produced. One
method that takes this notion to its logical extreme is that of analysis by synthesis,
where in the ideal case one has a model of how each pattern is generated. Con-
sider speech recognition. Amidst the manifest acoustic variability among the possible
“dee”’s that might be uttered by different people, one thing they have in common is
that they were all produced by lowering the jaw slightly, opening the mouth, placing
the tongue tip against the roof of the mouth after a certain delay, and so on. We
might assume that “all” the acoustic variation is due to the happenstance of whether
the talker is male or female, old or young, with different overall pitches, and so forth.
At some deep level, such a “physiological” model (or so-called “motor” model) for
production of the utterances is appropriate, and different (say) from that for “doo”
and indeed all other utterances. If this underlying model of production can be deter-
mined from the sound (and that is a very big if), then we can classify the utterance by
how it was produced. That is to say, the production representation may be the “best”
representation for classification. Our pattern recognition systems should then analyze
(and hence classify) the input pattern based on how one would have to synthesize
that pattern. The trick is, of course, to recover the generating parameters from the
sensed pattern.

Consider the difficulty in making a recognizer of all types of chairs — standard
office chair, contemporary living room chair, beanbag chair, and so forth — based on
an image. Given the astounding variety in the number of legs, material, shape, and
so on, we might despair of ever finding a representation that reveals the unity within
the class of chair. Perhaps the only such unifying aspect of chairs is functional: a
chair is a stable artifact that supports a human sitter, including back support. Thus
we might try to deduce such functional properties from the image, and the property
“can support a human sitter” is very indirectly related to the orientation of the larger
surfaces, and would need to be answered in the affirmative even for a beanbag chair.
Of course, this requires some reasoning about the properties and naturally touches
upon computer vision rather than pattern recognition proper.

Without going to such extremes, many real world pattern recognition systems seek
to incorporate at least some knowledge about the method of production of the pat-
terns or their functional use in order to insure a good representation, though of course
the goal of the representation is classification, not reproduction. For instance, in op-
tical character recognition (OCR) one might confidently assume that handwritten
characters are written as a sequence of strokes, and first try to recover a stroke rep-
resentation from the sensed image, and then deduce the character from the identified
strokes.

1.3. THE SUB-PROBLEMS OF PATTERN CLASSIFICATION 11

1.2.1 Related fields

Pattern classification differs from classical statistical hypothesis testing, wherein the
sensed data are used to decide whether or not to reject a null hypothesis in favor of
some alternative hypothesis. Roughly speaking, if the probability of obtaining the
data given some null hypothesis falls below a “significance” threshold, we reject the
null hypothesis in favor of the alternative. For typical values of this criterion, there is
a strong bias or predilection in favor of the null hypothesis; even though the alternate
hypothesis may be more probable, we might not be able to reject the null hypothesis.
Hypothesis testing is often used to determine whether a drug is effective, where the
null hypothesis is that it has no effect. Hypothesis testing might be used to determine
whether the fish on the conveyor belt belong to a single class (the null hypothesis) or
from two classes (the alternative). In contrast, given some data, pattern classification
seeks to find the most probable hypothesis from a set of hypotheses — “this fish is
probably a salmon.”

Pattern classification differs, too, from image processing. In image processing, the
input is an image and the output is an image. Image processing steps often include
rotation, contrast enhancement, and other transformations which preserve all the
original information. Feature extraction, such as finding the peaks and valleys of the
intensity, lose information (but hopefully preserve everything relevant to the task at
hand.)

As just described, feature extraction takes in a pattern and produces feature values.
The number of features is virtually always chosen to be fewer than the total necessary
to describe the complete target of interest, and this leads to a loss in information. In
acts of associative memory, the system takes in a pattern and emits another pattern
which is representative of a general group of patterns. It thus reduces the information
somewhat, but rarely to the extent that pattern classification does. In short, because
of the crucial role of a decision in pattern recognition information, it is fundamentally
an information reduction process. The classification step represents an even more
radical loss of information, reducing the original several thousand bits representing
all the color of each of several thousand pixels down to just a few bits representing
the chosen category (a single bit in our fish example.)

1.3 The Sub-problems of Pattern Classification

We have alluded to some of the issues in pattern classification and we now turn to a
more explicit list of them. In practice, these typically require the bulk of the research
and development effort. Many are domain or problem specific, and their solution will
depend upon the knowledge and insights of the designer. Nevertheless, a few are of
sufficient generality, difficulty, and interest that they warrant explicit consideration.

1.3.1 Feature Extraction

The conceptual boundary between feature extraction and classification proper is some-
what arbitrary: an ideal feature extractor would yield a representation that makes
the job of the classifier trivial; conversely, an omnipotent classifier would not need the
help of a sophisticated feature extractor. The distinction is forced upon us for practi-
cal, rather than theoretical reasons. Generally speaking, the task of feature extraction
is much more problem and domain dependent than is classification proper, and thus
requires knowledge of the domain. A good feature extractor for sorting fish would

IMAGE
PROCESSING

ASSOCIATIVE
MEMORY

12 CHAPTER 1. INTRODUCTION

surely be of little use for identifying fingerprints, or classifying photomicrographs of
blood cells. How do we know which features are most promising? Are there ways to
automatically learn which features are best for the classifier? How many shall we use?

1.3.2 Noise

The lighting of the fish may vary, there could be shadows cast by neighboring equip-
ment, the conveyor belt might shake — all reducing the reliability of the feature values
actually measured. We define noise very general terms: any property of the sensed
pattern due not to the true underlying model but instead to randomness in the world
or the sensors. All non-trivial decision and pattern recognition problems involve noise
in some form. In some cases it is due to the transduction in the signal and we may
consign to our preprocessor the role of cleaning up the signal, as for instance visual
noise in our video camera viewing the fish. An important problem is knowing some-
how whether the variation in some signal is noise or instead to complex underlying
models of the fish. How then can we use this information to improve our classifier?

1.3.3 Overfitting

In going from Fig 1.4 to Fig. 1.5 in our fish classification problem, we were, implicitly,
using a more complex model of sea bass and of salmon. That is, we were adjusting
the complexity of our classifier. While an overly complex model may allow perfect
classification of the training samples, it is unlikely to give good classification of novel
patterns — a situation known as overfitting. One of the most important areas of re-
search in statistical pattern classification is determining how to adjust the complexity
of the model — not so simple that it cannot explain the differences between the cat-
egories, yet not so complex as to give poor classification on novel patterns. Are there
principled methods for finding the best (intermediate) complexity for a classifier?

1.3.4 Model Selection

We might have been unsatisfied with the performance of our fish classifier in Figs. 1.4
& 1.5, and thus jumped to an entirely different class of model, for instance one based
on some function of the number and position of the fins, the color of the eyes, the
weight, shape of the mouth, and so on. How do we know when a hypothesized model
differs significantly from the true model underlying our patterns, and thus a new
model is needed? In short, how are we to know to reject a class of models and try
another one? Are we as designers reduced to random and tedious trial and error in
model selection, never really knowing whether we can expect improved performance?
Or might there be principled methods for knowing when to jettison one class of models
and invoke another? Can we automate the process?

1.3.5 Prior Knowledge

In one limited sense, we have already seen how prior knowledge — about the lightness
of the different fish categories helped in the design of a classifier by suggesting a
promising feature. Incorporating prior knowledge can be far more subtle and difficult.
In some applications the knowledge ultimately derives from information about the
production of the patterns, as we saw in analysis-by-synthesis. In others the knowledge
may be about the form of the underlying categories, or specific attributes of the
patterns, such as the fact that a face has two eyes, one nose, and so on.

1.3. THE SUB-PROBLEMS OF PATTERN CLASSIFICATION 13

1.3.6 Missing Features

Suppose that during classification, the value of one of the features cannot be deter-
mined, for example the width of the fish because of occlusion by another fish (i.e.,
the other fish is in the way). How should the categorizer compensate? Since our
two-feature recognizer never had a single-variable threshold value z* determined in
anticipation of the possible absence of a feature (cf., Fig. 1.3), how shall it make the
best decision using only the feature present? The naive method, of merely assuming
that the value of the missing feature is zero or the average of the values for the train-
ing patterns, is provably non-optimal. Likewise we occasionally have missing features
during the creation or learning in our recognizer. How should we train a classifier or
use one when some features are missing?

1.3.7 Mereology

We effortlessly read a simple word such as BEATS. But consider this: Why didn’t
we read instead other words that are perfectly good subsets of the full pattern, such
as BE, BEAT, EAT, AT, and EATS? Why don’t they enter our minds, unless
explicitly brought to our attention? Or when we saw the B why didn’t we read a P
or an I, which are “there” within the B? Conversely, how is it that we can read the
two unsegmented words in POLOPONY — without placing the entire input into a
single word category?

This is the problem of subsets and supersets — formally part of mereology, the
study of part/whole relationships. It is closely related to that of prior knowledge and
segmentation. In short, how do we recognize or group together the “proper” number
of elements — neither too few nor too many? It appears as though the best classifiers
try to incorporate as much of the input into the categorization as “makes sense,” but
not too much. How can this be done?

1.3.8 Segmentation

In our fish example, we have tacitly assumed that the fish were isolated, separate
on the conveyor belt. In practice, they would often be abutting or overlapping, and
our system would have to determine where one fish ends and the next begins — the
individual patterns have to be segmented. If we have already recognized the fish then
it would be easier to segment them. But how can we segment the images before they
have been categorized or categorize them before they have been segmented? It seems
we need a way to know when we have switched from one model to another, or to know
when we just have background or “no category.” How can this be done?
Segmentation is one of the deepest problems in automated speech recognition.
We might seek to recognize the individual sounds (e.g., phonemes, such as “ss,” “k,”
...), and then put them together to determine the word. But consider two nonsense
words, “sklee” and “skloo.” Speak them aloud and notice that for “skloo” you push
your lips forward (so-called “rounding” in anticipation of the upcoming “00”) before
you utter the “ss.” Such rounding influences the sound of the “ss,” lowering the
frequency spectrum compared to the “ss” sound in “sklee” — a phenomenon known
as anticipatory coarticulation. Thus, the “00” phoneme reveals its presence in the “ss”
earlier than the “k” and “1” which nominally occur before the “00” itself! How do we
segment the “00” phoneme from the others when they are so manifestly intermingled?
Or should we even try? Perhaps we are focusing on groupings of the wrong size, and
that the most useful unit for recognition is somewhat larger, as we saw in subsets and

OCCLUSION

ORIENTATION

SIZE

14 CHAPTER 1. INTRODUCTION

supersets (Sect. 1.3.7). A related problem occurs in connected cursive handwritten
character recognition: How do we know where one character “ends” and the next one
“begins”?

1.3.9 Context

We might be able to use context — input-dependent information other than from the
target pattern itself — to improve our recognizer. For instance, it might be known
for our fish packing plant that if we are getting a sequence of salmon, that it is highly
likely that the next fish will be a salmon (since it probably comes from a boat that just
returned from a fishing area rich in salmon). Thus, if after a long series of salmon our
recognizer detects an ambiguous pattern (i.e., one very close to the nominal decision
boundary), it may nevertheless be best to categorize it too as a salmon. We shall see
how such a simple correlation among patterns — the most elementary form of context
— might be used to improve recognition. But how, precisely, should we incorporate
such information?

Context can be highly complex and abstract. The utterance “jeetyet?” may seem
nonsensical, unless you hear it spoken by a friend in the context of the cafeteria at
lunchtime — “did you eat yet?” How can such a visual and temporal context influence
your speech recognition?

1.3.10 Invariances

In seeking to achieve an optimal representation for a particular pattern classification
task, we confront the problem of invariances. In our fish example, the absolute
position on the conveyor belt is irrelevant to the category and thus our representation
should also be insensitive to absolute position of the fish. Here we seek a representation
that is invariant to the transformation of translation (in either horizontal or vertical
directions). Likewise, in a speech recognition problem, it might be required only that
we be able to distinguish between utterances regardless of the particular moment they
were uttered; here the “translation” invariance we must ensure is in time.

The “model parameters” describing the orientation of our fish on the conveyor
belt are horrendously complicated — due as they are to the sloshing of water, the
bumping of neighboring fish, the shape of the fish net, etc. — and thus we give up hope
of ever trying to use them. These parameters are irrelevant to the model parameters
that interest us anyway, i.e., the ones associated with the differences between the fish
categories. Thus here we try to build a classifier that is invariant to transformations
such as rotation.

The orientation of the fish on the conveyor belt is irrelevant to its category. Here
the transformation of concern is a two-dimensional rotation about the camera’s line
of sight. A more general invariance would be for rotations about an arbitrary line in
three dimensions. The image of even such a “simple” object as a coffee cup undergoes
radical variation as the cup is rotated to an arbitrary angle — the handle may become
hidden, the bottom of the inside volume come into view, the circular lip appear oval or
a straight line or even obscured, and so forth. How might we insure that our pattern
recognizer is invariant to such complex changes?

The overall size of an image may be irrelevant for categorization. Such differences
might be due to variation in the range to the object; alternatively we may be genuinely
unconcerned with differences between sizes — a young, small salmon is still a salmon.

1.3. THE SUB-PROBLEMS OF PATTERN CLASSIFICATION 15

For patterns that have inherent temporal variation, we may want our recognizer
to be insensitive to the rate at which the pattern evolves. Thus a slow hand wave and
a fast hand wave may be considered as equivalent. Rate variation is a deep problem
in speech recognition, of course; not only do different individuals talk at different
rates, but even a single talker may vary in rate, causing the speech signal to change
in complex ways. Likewise, cursive handwriting varies in complex ways as the writer
speeds up — the placement of dots on the i’s, and cross bars on the t’s and f’s, are
the first casualties of rate increase, while the appearance of I’s and e’s are relatively
inviolate. How can we make a recognizer that changes its representations for some
categories differently from that for others under such rate variation?

A large number of highly complex transformations arise in pattern recognition,
and many are domain specific. We might wish to make our handwritten optical
character recognizer insensitive to the overall thickness of the pen line, for instance.
Far more severe are transformations such as non-rigid deformations that arise in three-
dimensional object recognition, such as the radical variation in the image of your hand
as you grasp an object or snap your fingers. Similarly, variations in illumination or
the complex effects of cast shadows may need to be taken into account.

The symmetries just described are continuous — the pattern can be translated,
rotated, sped up, or deformed by an arbitrary amount. In some pattern recognition
applications other — discrete — symmetries are relevant, such as flips left-to-right,
or top-to-bottom.

In all of these invariances the problem arises: How do we determine whether an
invariance is present? How do we efficiently incorporate such knowledge into our
recognizer?

1.3.11 Evidence Pooling

In our fish example we saw how using multiple features could lead to improved recog-
nition. We might imagine that we could do better if we had several component
classifiers. If these categorizers agree on a particular pattern, there is no difficulty.
But suppose they disagree. How should a “super” classifier pool the evidence from the
component recognizers to achieve the best decision?

Imagine calling in ten experts for determining if a particular fish is diseased or
not. While nine agree that the fish is healthy, one expert does not. Who is right?
It may be that the lone dissenter is the only one familiar with the particular very
rare symptoms in the fish, and is in fact correct. How would the “super” categorizer
know when to base a decision on a minority opinion, even from an expert in one small
domain who is not well qualified to judge throughout a broad range of problems?

1.3.12 Costs and Risks

We should realize that a classifier rarely exists in a vacuum. Instead, it is generally
to be used to recommend actions (put this fish in this bucket, put that fish in that
bucket), each action having an associated cost or risk. Conceptually, the simplest
such risk is the classification error: what percentage of new patterns are called the
wrong category. However the notion of risk is far more general, as we shall see. We
often design our classifier to recommend actions that minimize some total expected
cost or risk. Thus, in some sense, the notion of category itself derives from the cost
or task. How do we incorporate knowledge about such risks and how will they affect
our classification decision?

RATE

DEFORMATION

DISCRETE
SYMMETRY

16 CHAPTER 1. INTRODUCTION

Finally, can we estimate the total risk and thus tell whether our classifier is ac-
ceptable even before we field it? Can we estimate the lowest possible risk of any
classifier, to see how close ours meets this ideal, or whether the problem is simply too
hard overall?

1.3.13 Computational Complexity

Some pattern recognition problems can be solved using algorithms that are highly
impractical. For instance, we might try to hand label all possible 20 x 20 binary pixel
images with a category label for optical character recognition, and use table lookup
to classify incoming patterns. Although we might achieve error-free recognition, the
labeling time and storage requirements would be quite prohibitive since it would
require a labeling each of 220%20 ~ 10'2° patterns. Thus the computational complexity
of different algorithms is of importance, especially for practical applications.

In more general terms, we may ask how an algorithm scales as a function of the
number of feature dimensions, or the number of patterns or the number of categories.
What is the tradeoff between computational ease and performance? In some prob-
lems we know we can design an excellent recognizer, but not within the engineering
constraints. How can we optimize within such constraints? We are typically less
concerned with the complexity of learning, which is done in the laboratory, than the
complexity of making a decision, which is done with the fielded application. While
computational complexity generally correlates with the complexity of the hypothe-
sized model of the patterns, these two notions are conceptually different.

This section has catalogued some of the central problems in classification. It has
been found that the most effective methods for developing classifiers involve learning
from examples, i.e., from a set of patterns whose category is known. Throughout this
book, we shall see again and again how methods of learning relate to these central
problems, and are essential in the building of classifiers.

1.4 Learning and Adaptation

In the broadest sense, any method that incorporates information from training sam-
ples in the design of a classifier employs learning. Because nearly all practical or
interesting pattern recognition problems are so hard that we cannot guess classifi-
cation decision ahead of time, we shall spend the great majority of our time here
considering learning. Creating classifiers then involves posit some general form of
model, or form of the classifier, and using training patterns to learn or estimate the
unknown parameters of the model. Learning refers to some form of algorithm for
reducing the error on a set of training data. A range of gradient descent algorithms
that alter a classifier’s parameters in order to reduce an error measure now permeate
the field of statistical pattern recognition, and these will demand a great deal of our
attention. Learning comes in several general forms.

1.4.1 Supervised Learning

In supervised learning, a teacher provides a category label or cost for each pattern
in a training set, and we seek to reduce the sum of the costs for these patterns.
How can we be sure that a particular learning algorithm is powerful enough to learn
the solution to a given problem and that it will be stable to parameter variations?

1.5. CONCLUSION 17

How can we determine if it will converge in finite time, or scale reasonably with the
number of training patterns, the number of input features or with the perplexity of
the problem? How can we insure that the learning algorithm appropriately favors
“simple” solutions (as in Fig. 1.6) rather than complicated ones (as in Fig. 1.5)?

1.4.2 Unsupervised Learning

In unsupervised learning or clustering there is no explicit teacher, and the system forms
clusters or “natural groupings” of the input patterns. “Natural” is always defined
explicitly or implicitly in the clustering system itself, and given a particular set of
patterns or cost function, different clustering algorithms lead to different clusters.
Often the user will set the hypothesized number of different clusters ahead of time,
but how should this be done? How do we avoid inappropriate representations?

1.4.3 Reinforcement Learning

The most typical way to train a classifier is to present an input, compute its tentative
category label, and use the known target category label to improve the classifier. For
instance, in optical character recognition, the input might be an image of a character,
the actual output of the classifier the category label “R,” and the desired output a “B.”
In reinforcement learning or learning with a critic, no desired category signal is given;
instead, the only teaching feedback is that the tentative category is right or wrong.
This is analogous to a critic who merely states that something is right or wrong, but
does not say specifically how it is wrong. (Thus only binary feedback is given to the
classifier; reinforcement learning also describes the case where a single scalar signal,
say some number between 0 and 1, is given by the teacher.) In pattern classification,
it is most common that such reinforcement is binary — either the tentative decision
is correct or it is not. (Of course, if our problem involves just two categories and
equal costs for errors, then learning with a critic is equivalent to standard supervised
learning.) How can the system learn which are important from such non-specific
feedback?

1.5 Conclusion

At this point the reader may be overwhelmed by the number, complexity and mag-
nitude of these sub-problems. Further, these sub-problems are rarely addressed in
isolation and they are invariably interrelated. Thus for instance in seeking to reduce
the complexity of our classifier, we might affect its ability to deal with invariance. We
point out, though, that the good news is at least three-fold: 1) there is an “existence
proof” that many of these problems can indeed be solved — as demonstrated by hu-
mans and other biological systems, 2) mathematical theories solving some of these
problems have in fact been discovered, and finally 3) there remain many fascinating
unsolved problems providing opportunities for progress.

Summary by Chapters
The overall organization of this book is to address first those cases where a great deal

of information about the models is known (such as the probability densities, category
labels, ...) and to move, chapter by chapter, toward problems where the form of the

CRITIC

18 CHAPTER 1. INTRODUCTION

distributions are unknown and even the category membership of training patterns is
unknown. We begin in Chap. 7?7 (Bayes decision theory) by considering the ideal case
in which the probability structure underlying the categories is known perfectly. While
this sort of situation rarely occurs in practice, it permits us to determine the optimal
(Bayes) classifier against which we can compare all other methods. Moreover in some
problems it enables us to predict the error we will get when we generalize to novel
patterns. In Chap. ?? (Maximum Likelihood and Bayesian Parameter Estimation)
we address the case when the full probability structure underlying the categories
is not known, but the general forms of their distributions are — i.e., the models.
Thus the uncertainty about a probability distribution is represented by the values of
some unknown parameters, and we seek to determine these parameters to attain the
best categorization. In Chap. ?? (Nonparametric techniques) we move yet further
from the Bayesian ideal, and assume that we have no prior parameterized knowledge
about the underlying probability structure; in essence our classification will be based
on information provided by training samples alone. Classic techniques such as the
nearest-neighbor algorithm and potential functions play an important role here.

We then in Chap. ?? (Linear Discriminant Functions) return somewhat toward
the general approach of parameter estimation. We shall assume that the so-called
“discriminant functions” are of a very particular form — viz., linear — in order to de-
rive a class of incremental training rules. Next, in Chap. ?? (Nonlinear Discriminants
and Neural Networks) we see how some of the ideas from such linear discriminants
can be extended to a class of very powerful algorithms such as backpropagation and
others for multilayer neural networks; these neural techniques have a range of use-
ful properties that have made them a mainstay in contemporary pattern recognition
research. In Chap. ?? (Stochastic Methods) we discuss simulated annealing by the
Boltzmann learning algorithm and other stochastic methods. We explore the behavior
of such algorithms with regard to the matter of local minima that can plague other
neural methods. Chapter ?? (Non-metric Methods) moves beyond models that are
statistical in nature to ones that can be best described by (logical) rules. Here we
discuss tree-based algorithms such as CART (which can also be applied to statistical
data) and syntactic based methods, such as grammar based, which are based on crisp
rules.

Chapter ?? (Theory of Learning) is both the most important chapter and the
most difficult one in the book. Some of the results described there, such as the
notion of capacity, degrees of freedom, the relationship between expected error and
training set size, and computational complexity are subtle but nevertheless crucial
both theoretically and practically. In some sense, the other chapters can only be
fully understood (or used) in light of the results presented here; you cannot expect to
solve important pattern classification problems without using the material from this
chapter.

We conclude in Chap. ?? (Unsupervised Learning and Clustering), by addressing
the case when input training patterns are not labeled, and that our recognizer must
determine the cluster structure. We also treat a related problem, that of learning
with a critic, in which the teacher provides only a single bit of information during
the presentation of a training pattern — “yes,” that the classification provided by the
recognizer is correct, or “no,” it isn’t. Here algorithms for reinforcement learning will
be presented.

1.5. BIBLIOGRAPHICAL AND HISTORICAL REMARKS 19

Bibliographical and Historical Remarks

Classification is among the first crucial steps in making sense of the blooming buzzing
confusion of sensory data that intelligent systems confront. In the western world,
the foundations of pattern recognition can be traced to Plato [2], later extended by
Aristotle [1], who distinguished between an “essential property” (which would be
shared by all members in a class or “natural kind” as he put it) from an “accidental
property” (which could differ among members in the class). Pattern recognition can
be cast as the problem of finding such essential properties of a category. It has been a
central theme in the discipline of philosophical epistemology, the study of the nature
of knowledge. A more modern treatment of some philosophical problems of pattern
recognition, relating to the technical matter in the current book can be found in
[22, 4, 18]. In the eastern world, the first Zen patriarch, Bodhidharma, would point
at things and demand students to answer “What is that?” as a way of confronting the
deepest issues in mind, the identity of objects, and the nature of classification and
decision. A delightful and particularly insightful book on the foundations of artificial
intelligence, including pattern recognition, is [9].

Early technical treatments by Minsky [14] and Rosenfeld [16] are still valuable, as
are a number of overviews and reference books [5]. The modern literature on decision
theory and pattern recognition is now overwhelming, and comprises dozens of journals,
thousands of books and conference proceedings and innumerable articles; it continues
to grow rapidly. While some disciplines such as statistics [7], machine learning [17]
and neural networks [8], expand the foundations of pattern recognition, others, such
as computer vision [6, 19] and speech recognition [15] rely on it heavily. Perceptual
Psychology, Cognitive Science [12], Psychobiology [21] and Neuroscience [10] analyze
how pattern recognition is achieved in humans and other animals. The extreme view
that everything in human cognition — including rule-following and logic — can be
reduced to pattern recognition is presented in [13]. Pattern recognition techniques
have been applied in virtually every scientific and technical discipline.

20

CHAPTER 1. INTRODUCTION

Bibliography

[1]

[10]

[11]

[12]

Aristotle, Robin Waterfield, and David Bostock. Physics. Oxford University
Press, Oxford, UK, 1996.

Allan Bloom. The Republic of Plato. Basic Books, New York, NY, 2nd edition,
1991.

Bodhidharma. The Zen Teachings of Bodhidharma. North Point Press, San
Francisco, CA, 1989.

Mikhail M. Bongard. Pattern Recognition. Spartan Books, Washington, D.C.,
1970.

Chi-hau Chen, Louis Frangois Pau, and Patrick S. P. Wang, editors. Handbook
of Pattern Recognition € Computer Vision. World Scientific, Singapore, 2nd
edition, 1993.

Marty Fischler and Oscar Firschein. Readings in Computer Vision: Issues, Prob-
lems, Principles and Paradigms. Morgan Kaufmann, San Mateo, CA, 1987.

Keinosuke Fukunaga. Introduction to Statistical Pattern Recognition. Academic
Press, New York, NY, 2nd edition, 1990.

John Hertz, Anders Krogh, and Richard G. Palmer. Introduction to the Theory
of Neural Computation. Addison-Wesley Publishing Company, Redwood City,
CA, 1991.

Douglas Hofstadter. Gddel, Escher, Bach: an Eternal Golden Braid. Basic
Books, Inc., New York, NY, 1979.

Eric R. Kandel and James H. Schwartz. Principles of Neural Science. Elsevier,
New York, NY, 2nd edition, 1985.

Immanuel Kant. Critique of Pure Reason. Prometheus Books, New York, NY,
1990.

George F. Luger. Cognitive Science: The Science of Intelligent Systems. Aca-
demic Press, New York, NY, 1994.

Howard Margolis. Patterns, Thinking, and Cognition: A Theory of Judgement.
University of Chicago Press, Chicago, 1L, 1987.

Marvin Minsky. Steps toward artificial intelligence. Proceedings of the IEEE,
49:8-30, 1961.

21

22

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

BIBLIOGRAPHY
Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of Speech Recognition.
Prentice Hall, Englewood Cliffs, NJ, 1993.

Azriel Rosenfeld. Picture Processing by Computer. Academic Press, New York,
1969.

Jude W. Shavlik and Thomas G. Dietterich, editors. Readings in Machine Learn-
ing. Morgan Kaufmann, San Mateo, CA, 1990.

Brian Cantwell Smith. On the Origin of Objects. MIT Press, Cambridge, MA,
1996.

Louise Stark and Kevin Bower. Generic Object Recognition using Form & Func-
tion. World Scientific, River Edge, NJ, 1996.

Donald R. Tveter. The Pattern Recognition basis of Artificial Intelligence. IEEE
Press, New York, NY, 1998.

William R. Uttal. The psychobiology of sensory coding. HarperCollins, New York,
NY, 1973.

Satoshi Watanabe. Knowing and Guessing: A quantitative study of inference and
information. John Wiley, New York, NY, 1969.

Index

analysis by synthesis, 10
anticipatory coarticulation, see coartic-
ulation, anticipatory

beanbag chair
example, 10
BEATS example, see subset /superset

camera
for pattern recognition, 4
classification, see pattern recognition
cost, 4, 15
model, 4
risk, see classification, cost
clustering, see learning, unsupervised,
17
coarticulation
anticipatory, 13
complexity
computational, see computational
complexity
computational complexity, 16
and feature dimensions, 16
and number of categories, 16
and number of patterns, 16
context, 14

decision
boundary, 7, 8
complex, 8
simple, 10
decision theory, 5
deformations
non-rigid, 15
distribution, see probability, distribu-
tion
DNA sequence identification, 3

evidence pooling, 15

feature
extraction, 4, 11

23

missing, 13
robust, 10
space, 7
continuous, 8
vector, 7
fingerprint identification, 3
fish
categorization example, 3-9

generalization, 8
grammar, 9

hardware, 3
hypothesis

null, see null hypothesis
hypothesis testing, 11

image
processing, 11
threshold, 4
information
loss, 11
invariance, 14-15
illumination, 15
line thickness, 15

jeetyet example, 14

knowledge
incorporating, 10
prior, 12

learning
and adaptation, 16
reinforcement, 17
supervised, 16
unsupervised, 17

machine perception, see perception, ma-
chine
memory
associative, 11

24

mereology, 13
missing feature, see feature, missing
model, 4

selection, 12

noise, 12
null hypothesis, 11

Occam
William of, 8
OCR, see optical character recognition
optical character recognition, 3
exhaustive training, 16
handwritten, 10
rate variation, 15
segmentation, 14
orientation, 14
overfitting, 8, 12

pattern classification, see pattern recog-
nition

pattern recognition, 3
general purpose, 9
information reduction, 11
neural, 9
statistical, 8
syntactic, 9

perception
machine, 3

phoneme, 13

POLOPONY example, see subset/superset

preprocessing, 4
prior knowledge, see knowledge, prior
probability

density, 9

distribution, 8

rate variation, 15
recognition
chair example, 10
reinforcement learning, see learning, re-
inforcement
representation, 9

scatter plot, 7

segmentation, 4, 13
speech, 13

shadow, 15

significance threshold, 11

size, 14

sklee

INDEX

coarticulation in, 13
skloo

coarticulation in, 13
speech recognition

rate variation, 15

rounding, 13
subset/superset, 13
supervised learning, see learning, su-

pervised

symmetry

discrete, 15

unsupervised learning, see learning, un-
supervised

William of Occam, see Occam, William
of

Contents

2 Bayesian decision theory
2.1 Imtroduction
2.2 Bayesian Decision Theory — Continuous Features
2.2.1 Two-Category Classification
2.3 Minimum-FError-Rate Classification
2.3.1 *Minimax Criterion
2.3.2 *Neyman-Pearson Criterion
2.4 Classifiers, Discriminants and Decision Surfaces
2.4.1 The Multi-Category Case
2.4.2 The Two-Category Case
2.5 The Normal Density
2.5.1 Univariate Density
2.5.2 Multivariate Density oL,
2.6 Discriminant Functions for the Normal Density
26.1 Casel: B, =02Lo
2.6.2 Case2: X, =3
2.6.3 Case 3: X; =arbitrary.
Example 1: Decisions for Gaussian data
2.7 *Error Probabilities and Integrals
2.8 *Error Bounds for Normal Densities
2.8.1 Chernoff Bound 0oL
2.8.2 Bhattacharyya Bound 00000
Example 2: Error bounds o
2.8.3 Signal Detection Theory and Operating Characteristics
2.9 Bayes Decision Theory — Discrete Features
2.9.1 Independent Binary Features
Ezample 3: Bayes decisions for binary data
2.10 *Missing and Noisy Features
2.10.1 Missing Features
2.10.2 Noisy Features oo L.
2.11 *Compound Bayes Decision Theory and Context
Summary oL e
Bibliographical and Historical Remarks
Problems
Computer eXercisSes i i e
Bibliography e
Index

—_
O © o~ w W

CONTENTS

Chapter 2

Bayesian decision theory

2.1 Introduction

ayesian decision theory is a fundamental statistical approach to the problem of
B pattern classification. This approach is based on quantifying the tradeoffs be-
tween various classification decisions using probability and the costs that accompany
such decisions. It makes the assumption that the decision problem is posed in proba-
bilistic terms, and that all of the relevant probability values are known. In this chapter
we develop the fundamentals of this theory, and show how it can be viewed as being
simply a formalization of common-sense procedures; in subsequent chapters we will
consider the problems that arise when the probabilistic structure is not completely
known.

While we will give a quite general, abstract development of Bayesian decision
theory in Sect. 7?7, we begin our discussion with a specific example. Let us reconsider
the hypothetical problem posed in Chap. ?? of designing a classifier to separate two
kinds of fish: sea bass and salmon. Suppose that an observer watching fish arrive
along the conveyor belt finds it hard to predict what type will emerge next and that
the sequence of types of fish appears to be random. In decision-theoretic terminology
we would say that as each fish emerges nature is in one or the other of the two possible
states: either the fish is a sea bass or the fish is a salmon. We let w denote the state
of nature, with w = w; for sea bass and w = ws for salmon. Because the state of
nature is so unpredictable, we consider w to be a variable that must be described
probabilistically.

If the catch produced as much sea bass as salmon, we would say that the next fish
is equally likely to be sea bass or salmon. More generally, we assume that there is
some a priori probability (or simply prior) P(w;) that the next fish is sea bass, and
some prior probability P(ws) that it is salmon. If we assume there are no other types
of fish relevant here, then P(w;) and P(ws) sum to one. These prior probabilities
reflect our prior knowledge of how likely we are to get a sea bass or salmon before
the fish actually appears. It might, for instance, depend upon the time of year or the
choice of fishing area.

Suppose for a moment that we were forced to make a decision about the type of
fish that will appear next without being allowed to see it. For the moment, we shall

STATE OF
NATURE

PRIOR

DECISION
RULE

4 CHAPTER 2. BAYESIAN DECISION THEORY

assume that any incorrect classification entails the same cost or consequence, and that
the only information we are allowed to use is the value of the prior probabilities. If a
decision must be made with so little information, it seems logical to use the following
decision rule: Decide wy if P(w1) > P(ws); otherwise decide ws.

This rule makes sense if we are to judge just one fish, but if we are to judge many
fish, using this rule repeatedly may seem a bit strange. After all, we would always
make the same decision even though we know that both types of fish will appear.
How well it works depends upon the values of the prior probabilities. If P(wy) is very
much greater than P(ws), our decision in favor of wy will be right most of the time.
If P(w1) = P(wq), we have only a fifty-fifty chance of being right. In general, the
probability of error is the smaller of P(w;) and P(ws), and we shall see later that
under these conditions no other decision rule can yield a larger probability of being
right.

In most circumstances we are not asked to make decisions with so little informa-
tion. In our example, we might for instance use a lightness measurement x to improve
our classifier. Different fish will yield different lightness readings and we express this
variability in probabilistic terms; we consider x to be a continuous random variable
whose distribution depends on the state of nature, and is expressed as p(z|w;).* This
is the class-conditional probability density function. Strictly speaking, the probabil-
ity density function p(z|w;) should be written as px(x|w;) to indicate that we are
speaking about a particular density function for the random variable X. This more
elaborate subscripted notation makes it clear that px () and py (-) denote two differ-
ent functions, a fact that is obscured when writing p(x) and p(y). Since this potential
confusion rarely arises in practice, we have elected to adopt the simpler notation.
Readers who are unsure of our notation or who would like to review probability the-
ory should see Appendix ??). This is the probability density function for given that
the state of nature is wy. (It is also sometimes called state-conditional probability
density.) Then the difference between p(x|w;) and p(x|ws) describes the difference in
lightness between populations of sea bass and salmon (Fig. 2.1).

Suppose that we know both the prior probabilities P(w;) and the conditional
densities p(z|w;). Suppose further that we measure the lightness of a fish and discover
that its value is . How does this measurement influence our attitude concerning the
true state of nature — that is, the category of the fish? We note first that the (joint)
probability density of finding a pattern that is in category w; and has feature value x
can be written two ways: p(w;,z) = P(wj|z)p(z) = p(z|w;)P(w;). Rearranging these
leads us to the answer to our question, which is called Bayes’ formula:

p(z|w;) P(w;)
Pwj|lr) = ————=, 1
(wsle) = TS (1)
where in this case of two categories
2
p(x) =Y plalw;) Pw)). (2)
j=1

Bayes’ formula can be expressed informally in English by saying that

. likelihood x prior
posterior =

(3)

* We generally use an upper-case P(-) to denote a probability mass function and a lower-case p(-)
to denote a probability density function.

evidence

2.1. INTRODUCTION 5

Bayes’ formula shows that by observing the value of z we can convert the prior
probability P(w;) to the a posteriori probability (or posterior) probability P(w;|z)
— the probability of the state of nature being w; given that feature value = has
been measured. We call p(z|w;) the likelihood of w; with respect to z (a term
chosen to indicate that, other things being equal, the category w; for which p(z|w;)
is large is more “likely” to be the true category). Notice that it is the product of the
likelihood and the prior probability that is most important in determining the psterior
probability; the evidence factor, p(z), can be viewed as merely a scale factor that
guarantees that the posterior probabilities sum to one, as all good probabilities must.
The variation of P(w;|z) with z is illustrated in Fig. 2.2 for the case P(w;) = 2/3 and
P(WQ) = 1/3

p(x|o)
0.4}

03r
02f

9 10 11 12 13 14 15

X

Figure 2.1: Hypothetical class-conditional probability density functions show the
probability density of measuring a particular feature value x given the pattern is
in category w;. If x represents the length of a fish, the two curves might describe
the difference in length of populations of two types of fish. Density functions are
normalized, and thus the area under each curve is 1.0.

If we have an observation x for which P(w|z) is greater than P(ws|x), we would
naturally be inclined to decide that the true state of nature is wy. Similarly, if P(ws|z)
is greater than P(wi|z), we would be inclined to choose wy. To justify this decision
procedure, let us calculate the probability of error whenever we make a decision.
Whenever we observe a particular z,

| P(wilx) if we decide wo
Plerror|z) = { P(ws|x) if we decide w;. ()
Clearly, for a given x we can minimize the probability of error by deciding w; if
P(wi|x) > P(wz|z) and we otherwise. Of course, we may never observe exactly the
same value of = twice. Will this rule minimize the average probability of error? Yes,
because the average probability of error is given by

POSTERIOR

LIKELIHOOD

BAYES’
DECISION
RULE

EVIDENCE

6 CHAPTER 2. BAYESIAN DECISION THEORY

Ple;[x)

9 10 11 12 13 14 15
Figure 2.2: Posterior probabilities for the particular priors P(w;) = 2/3 and P(ws) =
1/3 for the class-conditional probability densities shown in Fig. 2.1. Thus in this case,
given that a pattern is measured to have feature value x = 14, the probability it is

in category ws is roughly 0.08, and that it is in wy is 0.92. At every x, the posteriors
sum to 1.0.

P(error) = /P(ermr, x) dx = /P(ermr|x)p(x) dx (5)

and if for every z we insure that P(error|z) is as small as possible, then the integral
must be as small as possible. Thus we have justified the following Bayes’ decision
rule for minimizing the probability of error:

Decide wy if P(wy|z) > P(wz|x); otherwise decide ws, (6)

and under this rule Eq. 4 becomes

P(error|x) = min [P(wq|z), P(ws|x)]. (7)

This form of the decision rule emphasizes the role of the posterior probabilities.
By using Eq. 1, we can instead express the rule in terms of the conditional and prior
probabilities. First note that the evidence, p(x), in Eq. 1 is unimportant as far as
making a decision is concerned. It is basically just a scale factor that states how
frequently we will actually measure a pattern with feature value x; its presence in
Eq. 1 assures us that P(w;|z) + P(ws|z) = 1. By eliminating this scale factor, we
obtain the following completely equivalent decision rule:

Decide wy if p(z|w1)P(w1) > p(a|w2)P(w2); otherwise decide ws. (8)

Some additional insight can be obtained by considering a few special cases. If
for some x we have p(z|w;) = p(z|ws), then that particular observation gives us no

2.2. BAYESIAN DECISION THEORY — CONTINUOUS FEATURES 7

information about the state of nature; in this case, the decision hinges entirely on the
prior probabilities. On the other hand, if P(w) = P(ws), then the states of nature are
equally probable; in this case the decision is based entirely on the likelihoods p(z|w;).
In general, both of these factors are important in making a decision, and the Bayes
decision rule combines them to achieve the minimum probability of error.

2.2 Bayesian Decision Theory — Continuous Fea-
tures

We shall now formalize the ideas just considered, and generalize them in four ways:
e by allowing the use of more than one feature
e by allowing more than two states of nature
e by allowing actions other than merely deciding the state of nature
e by introducing a loss function more general than the probability of error.

These generalizations and their attendant notational complexities should not ob-
scure the central points illustrated in our simple example. Allowing the use of more
than one feature merely requires replacing the scalar = by the feature vector x, where
X is in a d-dimensional Euclidean space R?, called the feature space. Allowing more
than two states of nature provides us with a useful generalization for a small notational
expense. Allowing actions other than classification primarily allows the possibility of
rejection, i.e., of refusing to make a decision in close cases; this is a useful option if
being indecisive is not too costly. Formally, the loss function states exactly how costly
each action is, and is used to convert a probability determination into a decision. Cost
functions let us treat situations in which some kinds of classification mistakes are more
costly than others, although we often discuss the simplest case, where all errors are
equally costly. With this as a preamble, let us begin the more formal treatment.

Let wy,...,w. be the finite set of ¢ states of nature (“categories”) and aq, ..., aq
be the finite set of a possible actions. The loss function A(a;|w;) describes the loss
incurred for taking action a; when the state of nature is w;. Let the feature vector
x be a d-component vector-valued random variable, and let p(x|w;) be the state-
conditional probability density function for x — the probability density function for
x conditioned on w; being the true state of nature. As before, P(w;) describes the
prior probability that nature is in state w;. Then the posterior probability P(w,|x)
can be computed from p(x|w;) by Bayes’ formula:

p(x|w;) P(w;)

Pleyh) = PR

; (9)

where the evidence is now

C
p(x) = Y p(x|w;) P(w;). (10)
j=1
Suppose that we observe a particular x and that we contemplate taking action
a;. If the true state of nature is w;, by definition we will incur the loss A(a;|w;).
Since P(wj|x) is the probability that the true state of nature is w;, the expected loss
associated with taking action «; is merely

FEATURE
SPACE

LOSS
FUNCTION

RISK

DECISION
RULE

BAYES RISK

8 CHAPTER 2. BAYESIAN DECISION THEORY

c
R(aifx) =Y Ma|w;) P(wyx). (11)
j=1

In decision-theoretic terminology, an expected loss is called a risk, and R(c;|x) is
called the conditional risk. Whenever we encounter a particular observation x, we can
minimize our expected loss by selecting the action that minimizes the conditional risk.
We shall now show that this Bayes decision procedure actually provides the optimal
performance on an overall risk.

Stated formally, our problem is to find a decision rule against P(w;) that mini-
mizes the overall risk. A general decision rule is a function «(x) that tells us which
action to take for every possible observation. To be more specific, for every x the
decision function a(x) assumes one of the a values ay, ..., aq. The overall risk R is the
expected loss associated with a given decision rule. Since R(«;|x) is the conditional
risk associated with action «;, and since the decision rule specifies the action, the
overall risk is given by

R= /R(a(x)|x)p(x) dx, (12)

where dx is our notation for a d-space volume element, and where the integral extends
over the entire feature space. Clearly, if a(x) is chosen so that R(«;(x)) is as small
as possible for every x, then the overall risk will be minimized. This justifies the
following statement of the Bayes decision rule: To minimize the overall risk, compute
the conditional risk

Rlail) = 3 Maules) Pl) (13)

for i = 1,...,a and select the action «; for which R(c;|x) is minimum.* The resulting
minimum overall risk is called the Bayes risk, denoted R*, and is the best performance
that can be achieved.

2.2.1 Two-Category Classification

Let us consider these results when applied to the special case of two-category classifi-
cation problems. Here action « corresponds to deciding that the true state of nature
is wy, and action as corresponds to deciding that it is wo. For notational simplicity,
let \;; = A(evi|w;) be the loss incurred for deciding w; when the true state of nature
is w;. If we write out the conditional risk given by Eq. 13, we obtain

R(aa|x) = A1P(wi|x) + A2 P(ws2lx) and
R(QQ|X) = /\le(wl‘x) + AQQP(CUQ‘X). (14)
There are a variety of ways of expressing the minimum-risk decision rule, each

having its own minor advantages. The fundamental rule is to decide w; if R(aq|x) <
R(az|x). In terms of the posterior probabilities, we decide wy if

()\21 — /\11)P(W1|X) > (/\12 — /\22)P(UJ2|X). (15)

* Note that if more than one action minimizes R(c|x), it does not matter which of these actions is
taken, and any convenient tie-breaking rule can be used.

2.3. MINIMUM-ERROR-RATE CLASSIFICATION 9

Ordinarily, the loss incurred for making an error is greater than the loss incurred for
being correct, and both of the factors A\o; — A1 and A2 — Ao are positive. Thus in
practice, our decision is generally determined by the more likely state of nature, al-
though we must scale the posterior probabilities by the loss differences. By employing
Bayes’ formula, we can replace the posterior probabilities by the prior probabilities
and the conditional densities. This results in the equivalent rule, to decide wy if

(A21 = A1)p(x|wr) P(w1) > (A2 — A22)p(x|w2) P(we), (16)

and wy otherwise.
Another alternative, which follows at once under the reasonable assumption that
A21 > Aq1, is to decide wq if

p(x|wi) _ A2 — Aaa P(wo)
p(x|w2) A21 — A1 P(Wl)-

This form of the decision rule focuses on the x-dependence of the probability densities.
We can consider p(x|w;) a function of w; (i.e., the likelihood function), and then form
the likelihood ratio p(x|w1)/p(x|ws). Thus the Bayes decision rule can be interpreted
as calling for deciding w; if the likelihood ratio exceeds a threshold value that is
independent of the observation x.

(17)

2.3 Minimum-Error-Rate Classification

In classification problems, each state of nature is usually associated with a different
one of the ¢ classes, and the action «; is usually interpreted as the decision that the
true state of nature is w;. If action o is taken and the true state of nature is w;, then
the decision is correct if ¢ = j, and in error if i # j. If errors are to be avoided, it is
natural to seek a decision rule that minimizes the probability of error, i.e., the error
rate.

The loss function of interest for this case is hence the so-called symmetrical or
zero-one loss function,

0 1=7 .
Mag|wjy) = { 1 Iy i,j=1,..c (18)
This loss function assigns no loss to a correct decision, and assigns a unit loss to any
error; thus, all errors are equally costly.* The risk corresponding to this loss function
is precisely the average probability of error, since the conditional risk is

R(a]x) Z AMailwy) P(w;|x)

= > P(wjlx)
j#i
= 1- P(wix) (19)

* We note that other loss functions, such as quadratic and linear-difference, find greater use in
regression tasks, where there is a natural ordering on the predictions and we can meaningfully
penalize predictions that are “more wrong” than others.

LIKELIHOOD
RATIO

ZERO-ONE
LOSS

10 CHAPTER 2. BAYESIAN DECISION THEORY

and P(w;|x) is the conditional probability that action «; is correct. The Bayes decision
rule to minimize risk calls for selecting the action that minimizes the conditional
risk. Thus, to minimize the average probability of error, we should select the 7 that
mazximizes the posterior probability P(w;|x). In other words, for minimum error rate:

Decide w; if P(w;|x) > P(w,|x) for all j # 4. (20)

This is the same rule as in Eq. 6.

We saw in Fig. 2.2 some class-conditional probability densities and the posterior
probabilities; Fig. 2.3 shows the likelihood ratio p(z|w1)/p(z|ws2) for the same case. In
general, this ratio can range between zero and infinity. The threshold value 6, marked
is from the same prior probabilities but with zero-one loss function. Notice that this
leads to the same decision boundaries as in Fig. 2.2, as it must. If we penalize mistakes
in classifying wy patterns as wo more than the converse (i.e., Aa; > A12), then Eq. 17
leads to the threshold 0, marked. Note that the range of x values for which we classify
a pattern as wi gets smaller, as it should.

p(:v|w1)
p(m|w2)

Figure 2.3: The likelihood ratio p(x|w;)/p(x|ws) for the distributions shown in Fig. 2.1.
If we employ a zero-one or classification loss, our decision boundaries are determined
by the threshold 6,. If our loss function penalizes miscategorizing wo as wi patterns
more than the converse, (i.e., A\j2 > A21), we get the larger threshold 6, and hence
R1 becomes smaller.

2.3.1 *Minimax Criterion

Sometimes we must design our classifier to perform well over a range of prior proba-
bilities. For instance, in our fish categorization problem we can imagine that whereas
the physical properties of lightness and width of each type of fish remain constant, the
prior probabilities might vary widely and in an unpredictable way, or alternatively
we want to use the classifier in a different plant where we do not know the prior
probabilities. A reasonable approach is then to design our classifier so that the worst
overall risk for any value of the priors is as small as possible — that is, minimize the
maximum possible overall risk.

2.3. MINIMUM-ERROR-RATE CLASSIFICATION 11

In order to understand this, we let Ry denote that (as yet unknown) region in
feature space where the classifier decides wy and likewise for Ro and wo, and then
write our overall risk Eq. 12 in terms of conditional risks:

R - / Dt Plwr) p(xfwn) + MaPlws) p(xfwn)] dx
R1

n / a1 P(w1) p(xlwr) + Aoz Plwn) p(xlwn)] dx. (21)

R2

We use the fact that P(ws) =1 — P(wy) and that [p(x|wr) dx =1— [p(x|w1) dx
R R
to rewrite the risk as: 1 ’

= R,,m, minimax risk

R(P(wl)) =)\22 + ()\12 -)\22) /p(X|LL)2) dx (22)
R1

© P | = As) — (ot — Aur) /p<x\w1) dx — (A1 — Aso) /p<x|w2> dx

Rz 7?—1

= 0 for minimax solution

This equation shows that once the decision boundary is set (i.e., Ry and Ro
determined), the overall risk is linear in P(wq). If we can find a boundary such that
the constant of proportionality is 0, then the risk is independent of priors. This is the

minimaz solution, and the minimaz risk, R,,., can be read from Eq. 22: MINIMAX
RISK
Rym = Aoz 4+ (A2 — A22) /p(x|w2) dx
R1
= A1+ ()\21 —)\11) /p(X|(U1) dx. (23)
R

Figure 2.4 illustrates the approach. Briefly stated, we search for the prior for which
the Bayes risk is mazimum, the corresponding decision boundary gives the minimax
solution. The value of the minimax risk, R,,.,, is hence equal to the worst Bayes risk.
In practice, finding the decision boundary for minimax risk may be difficult, partic-
ularly when distributions are complicated. Nevertheless, in some cases the boundary
can be determined analytically (Problem 3).

The minimax criterion finds greater use in game theory then it does in traditional
pattern recognition. In game theory, you have a hostile opponent who can be expected
to take an action maximally detrimental to you. Thus it makes great sense for you to
take an action (e.g., make a classification) where your costs — due to your opponent’s
subsequent actions — are minimized.

12 CHAPTER 2. BAYESIAN DECISION THEORY

P(error)
4 1 4
3 _-" 43
2 -7 2
At 1
' ' ' ' P(0)
0 0.2 0.4 0.6 0.8 1

Figure 2.4: The curve at the bottom shows the minimum (Bayes) error as a function of
prior probability P(w;) in a two-category classification problem of fixed distributions.
For each value of the priors (e.g., P(wy) = 0.25) there is a corresponding optimal
decision boundary and associated Bayes error rate. For any (fixed) such boundary, if
the priors are then changed, the probability of error will change as a linear function of
P(w;) (shown by the dashed line). The maximum such error will occur at an extreme
value of the prior, here at P(w;) = 1. To minimize the maximum of such error, we
should design our decision boundary for the maximum Bayes error (here P(w;) = 0.6),
and thus the error will not change as a function of prior, as shown by the solid red
horizontal line.

2.3.2 *Neyman-Pearson Criterion

In some problems, we may wish to minimize the overall risk subject to a constraint;
for instance, we might wish to minimize the total risk subject to the constraint
J R(a;]x) dx < constant for some particular i. Such a constraint might arise when
there is a fixed resource that accompanies one particular action a;, or when we must
not misclassify pattern from a particular state of nature w; at more than some limited
frequency. For instance, in our fish example, there might be some government regu-
lation that we must not misclassify more than 1% of salmon as sea bass. We might
then seek a decision that minimizes the chance of classifying a sea bass as a salmon
subject to this condition.

We generally satisfy such a Neyman-Pearson criterion by adjusting decision bound-
aries numerically. However, for Gaussian and some other distributions, Neyman-
Pearson solutions can be found analytically (Problems 5 & 6). We shall have cause
to mention Neyman-Pearson criteria again in Sect. 2.8.3 on operating characteristics.

2.4. CLASSIFIERS, DISCRIMINANTS AND DECISION SURFACES 13

2.4 Classifiers, Discriminant Functions and Deci-
sion Surfaces

2.4.1 The Multi-Category Case

There are many different ways to represent pattern classifiers. One of the most useful
is in terms of a set of discriminant functions g;(x), ¢ = 1,...,c. The classifier is said
to assign a feature vector x to class w; if

9i(x) > g;(x) for all j # . (24)

Thus, the classifier is viewed as a network or machine that computes ¢ discriminant
functions and selects the category corresponding to the largest discriminant. A net-
work representation of a classifier is illustrated in Fig. 2.5.

Action
(e.g., classification)

Discriminant
functions

Figure 2.5: The functional structure of a general statistical pattern classifier which
includes d inputs and ¢ discriminant functions g;(x). A subsequent step determines
which of the discriminant values is the maximum, and categorizes the input pat-
tern accordingly. The arrows show the direction of the flow of information, though
frequently the arrows are omitted when the direction of flow is self-evident.

A Bayes classifier is easily and naturally represented in this way. For the gen-
eral case with risks, we can let g;(x) = —R(«;|x), since the maximum discriminant
function will then correspond to the minimum conditional risk. For the minimum-
error-rate case, we can simplify things further by taking g;(x) = P(w;|x), so that the
maximum discriminant function corresponds to the maximum posterior probability.

Clearly, the choice of discriminant functions is not unique. We can always multiply
all the discriminant functions by the same positive constant or shift them by the same
additive constant without influencing the decision. More generally, if we replace every
9i(x) by f(gi(x)), where f(-) is a monotonically increasing function, the resulting
classification is unchanged. This observation can lead to significant analytical and
computational simplifications. In particular, for minimum-error-rate classification,
any of the following choices gives identical classification results, but some can be
much simpler to understand or to compute than others:

DECISION
REGION

14 CHAPTER 2. BAYESIAN DECISION THEORY

gi(X) _ P(wl\x) _ Cp(xlwi)P(wi) (25)
;p(XM)P(%)

9i(x) = p(x|w;) P(w;) (26)

gi(x) = In p(x|w;) + In P(w;), (27)

where In denotes natural logarithm.

Even though the discriminant functions can be written in a variety of forms, the
decision rules are equivalent. The effect of any decision rule is to divide the feature
space into ¢ decision regions, Ri,...,Rc. If gi(x) > gj(x) for all j # ¢, then x is in
R;, and the decision rule calls for us to assign x to w;. The regions are separated
by decision boundaries, surfaces in feature space where ties occur among the largest
discriminant functions (Fig. 2.6).

p(X|o,)P(w,)

Figure 2.6: In this two-dimensional two-category classifier, the probability densities
are Gaussian (with 1/e ellipses shown), the decision boundary consists of two hyper-
bolas, and thus the decision region R is not simply connected.

2.4.2 The Two-Category Case

While the two-category case is just a special instance of the multicategory case, it has
traditionally received separate treatment. Indeed, a classifier that places a pattern in

2.5. THE NORMAL DENSITY 15

one of only two categories has a special name — a dichotomizer.” Instead of using two
discriminant functions ¢g; and g» and assigning x to wy if g; > gs, it is more common
to define a single discriminant function

9(x) = g1(x) — 92(x), (28)

and to use the following decision rule: Decide wy if g(x) > 0; otherwise decide ws.
Thus, a dichotomizer can be viewed as a machine that computes a single discriminant
function g(x), and classifies x according to the algebraic sign of the result. Of the
various forms in which the minimume-error-rate discriminant function can be written,
the following two (derived from Egs. 25 & 27) are particularly convenient:

9(x) = P(wi[x) — P(wa|x) (29)

p(x|wr)
p(x|ws) P(wz)

g(x) =In

2.5 The Normal Density

The structure of a Bayes classifier is determined by the conditional densities p(x|w;)
as well as by the prior probabilities. Of the various density functions that have
been investigated, none has received more attention than the multivariate normal or
Gaussian density. To a large extent this attention is due to its analytical tractability.
However the multivariate normal density is also an appropriate model for an important
situation, viz., the case where the feature vectors x for a given class w; are continuous
valued, randomly corrupted versions of a single typical or prototype vector ;. In this
section we provide a brief exposition of the multivariate normal density, focusing on
the properties of greatest interest for classification problems.

First, recall the definition of the expected value of a scalar function f(x), defined
for some density p(z):

Elf ()] = / f(@)p(x)da. (31)

If we have samples in a set D from a discrete distribution, we must sum over all
samples as

E[f(@)] = f(z)P(x), (32)

z€D

where P(x) is the probability mass at z. We shall often have call to calculate expected
values — by these and analogous equations defined in higher dimensions (see Appendix
Secs. 77,77 & 77).*

* A classifier for more than two categories is called a polychotomizer.

* We will often use somewhat loose engineering terminology and refer to a single point as a “sample.”
Statisticians, though, always refer to a sample as a collection of points, and discuss “a sample of
size n.” When taken in context, there are rarely ambiguities in such usage.

DICHOTOMIZER

EXPECTATION

VARIANCE

MEAN

ENTROPY

NAT

BIT

16 CHAPTER 2. BAYESIAN DECISION THEORY

2.5.1 Univariate Density

We begin with the continuous univariate normal or Gaussian density,

pla) = ;UWp%§<xa“f], (33)

for which the expected value of x (an average, here taken over the feature space) is

o0

pw=Ex)= /xp(x) dx, (34)

— 00

and where the expected squared deviation or variance is

o =E&[(x —p)? = /(x — 1)*p(z) d. (35)

— 00

The univariate normal density is completely specified by two parameters: its mean
p and variance 0. For simplicity, we often abbreviate Eq. 33 by writing p(z) ~
N(u,0?) to say that z is distributed normally with mean y and variance o2. Samples
from normal distributions tend to cluster about the mean, with a spread related to
the standard deviation o (Fig. 2.7).
p(x)

A

L—-26 Uu-o 1) u+o6 w+2c

Figure 2.7: A univariate normal distribution has roughly 95% of its area in the range
|z —] < 20, as shown. The peak of the distribution has value p(u) = 1/v/270.

There is a deep relationship between the normal distribution and entropy. We
shall consider entropy in greater detail in Chap. 7?7, but for now we merely state that
the entropy of a distribution is given by

H@w»:—/fuﬂnMMdm (36)

and measured in nats. If a log, is used instead, the unit is the bit. The entropy is a non-
negative quantity that describes the fundamental uncertainty in the values of points

2.5. THE NORMAL DENSITY 17

selected randomly from a distribution. It can be shown that the normal distribution
has the maximum entropy of all distributions having a given mean and variance
(Problem 20). Moreover, as stated by the Central Limit Theorem, the aggregate
effect of a large number of small, independent random disturbances will lead to a
Gaussian distribution (Computer exercise ?7). Because many patterns — from fish
to handwritten characters to some speech sounds — can be viewed as some ideal or
prototype pattern corrupted by a large number of random processes, the Gaussian is
often a good model for the actual probability distribution.

2.5.2 Multivariate Density

The general multivariate normal density in d dimensions is written as

2
where x is a d-component column vector, p is the d-component mean vector, 3 is the
d-by-d covariance matriz, || and X! are its determinant and inverse, respectively,
and (x — p)? is the transpose of x — p.* Our notation for the inner product is

) = Gy |5k~ = (37)

d
a'b=>ab;, (38)
i=1

and often called a dot product.
For simplicity, we often abbreviate Eq. 37 as p(x) ~ N(u, ¥). Formally, we have

p=_Ex = /xp(x) dx (39)

and

® = £l wx -)] =[x p)x -)'plx) dx, (40)

where the expected value of a vector or a matrix is found by taking the expected
values of its components. In other words, if z; is the ith component of x, u; the ith
component of p, and o0;; the ijth component of X, then

i = Ela;] (41)

and

oij = E[(wi — pi)(xj —)] (42)

The covariance matrix ¥ is always symmetric and positive semidefinite. We shall
restrict our attention to the case in which X is positive definite, so that the deter-
minant of X is strictly positive.! The diagonal elements o;; are the variances of the
respective z; (i.e., 07), and the off-diagonal elements o;j are the covariances of z; and
x;. We would expect a positive covariance for the length and weight features of a
population of fish, for instance. If z; and x; are statistically independent, o;; = 0. If

* The mathematical expressions for the multivariate normal density are greatly simplified by em-

ploying the concepts and notation of linear algebra. Readers who are unsure of our notation or
who would like to review linear algebra should see Appendix 77.

T If sample vectors are drawn from a linear subspace, |X| = 0 and p(x) is degenerate. This occurs,
for example, when one component of x has zero variance, or when two components are identical
or multiples of one another.

CENTRAL
LiviT
THEOREM

COVARIANCE
MATRIX

INNER
PRODUCT

COVARIANCE

STATISTICAL
INDEPEN-
DENCE

WHITENING
TRANSFORM

MAHALANOBIS
DISTANCE

18 CHAPTER 2. BAYESIAN DECISION THEORY

all the off-diagonal elements are zero, p(x) reduces to the product of the univariate
normal densities for the components of x.

Linear combinations of jointly normally distributed random variables, independent
or not, are normally distributed. In particular, if A is a d-by-k matrix and y = A’x
is a k-component vector, then p(y) ~ N(Afu, A3 A), as illustrated in Fig. 2.8. In
the special case where k = 1 and A is a unit-length vector a, y = ax is a scalar that
represents the projection of x onto a line in the direction of a; in that case a’Xa is the
variance of the projection of x onto a. In general then, knowledge of the covariance
matrix allows us to calculate the dispersion of the data in any direction, or in any
subspace.

It is sometimes convenient to perform a coordinate transformation that converts
an arbitrary multivariate normal distribution into a spherical one, i.e., one having a
covariance matrix proportional to the identity matrix I. If we define ® to be the ma-
trix whose columns are the orthonormal eigenvectors of 3, and A the diagonal matrix
of the corresponding eigenvalues, then the transformation A, = ®A /2 applied to
the coordinates insures that the transformed distribution has covariance matrix equal
to the identity matrix. In signal processing, the transform A, is called a whiten-
ing transformation, since it makes the spectrum of eigenvectors of the transformed
distribution uniform.

The multivariate normal density is completely specified by d + d(d + 1)/2 pa-
rameters — the elements of the mean vector g and the independent elements of the
covariance matrix X. Samples drawn from a normal population tend to fall in a single
cloud or cluster (Fig. 2.9); the center of the cluster is determined by the mean vector,
and the shape of the cluster is determined by the covariance matrix. If follows from
Eq. 37 that the loci of points of constant density are hyperellipsoids for which the
quadratic form (x —p)'3 7! (x —) is constant. The principal axes of these hyperellip-
soids are given by the eigenvectors of ¥ (described by ®); the eigenvalues (described
by A) determine the lengths of these axes. The quantity

r?=(x - p) B (x - p) (43)

is sometimes called the squared Mahalanobis distance from x to p. Thus, the contours
of constant density are hyperellipsoids of constant Mahalanobis distance to g and the
volume of these hyperellipsoids measures the scatter of the samples about the mean. It
can be shown (Problems 15 & 16) that the volume of the hyperellipsoid corresponding
to a Mahalanobis distance r is given by

V = Va| S| (44)

where Vj is the volume of a d-dimensional unit hypersphere:

72 /(d/2)! d even
. (45)
Qdﬂ(dq)/z(d%l)g/(d)! d odd.

Thus, for a given dimensionality, the scatter of the samples varies directly with |2|1/ 2

(Problem 17).

2.6. DISCRIMINANT FUNCTIONS FOR THE NORMAL DENSITY 19

X
2 N(A . 1)

10

A

6
4
N(Alp, AT A)
2
0 X1
2 4 6 8 10

Figure 2.8: The action of a linear transformation on the feature space will convert an
arbitrary normal distribution into another normal distribution. One transformation,
A, takes the source distribution into distribution N(A’u, A’ A). Another linear
transformation — a projection P onto line a — leads to N(u,0?) measured along a.
While the transforms yield distributions in a different space, we show them super-
imposed on the original 1 — xo space. A whitening transform leads to a circularly
symmetric Gaussian, here shown displaced.

2.6 Discriminant Functions for the Normal Density

In Sect. 2.4.1 we saw that the minimum-error-rate classification can be achieved by
use of the discriminant functions

gi(x) = In p(x|w;) + In P(w;). (46)

This expression can be readily evaluated if the densities p(x|w;) are multivariate nor-
mal, i.e., if p(x|w;) ~ N(p;,3;). In this case, then, from Eq. 37 we have

1 _ d 1
9i(x) = —§(X —) T (x) - B In 27 — 3 In [3] +1In Plw;). (47)

3
Let us examine the discriminant function and resulting classification for a number of
special cases.
2.6.1 Case 1l: ¥, =1

The simplest case occurs when the features are statistically independent, and when
each feature has the same variance, o2. In this case the covariance matrix is diagonal,

EUucLIDEAN
NORM

LINEAR
DISCRIMINANT

20 CHAPTER 2. BAYESIAN DECISION THEORY

X2

:Xl

Figure 2.9: Samples drawn from a two-dimensional Gaussian lie in a cloud centered on
the mean p. The red ellipses show lines of equal probability density of the Gaussian.

being merely o2 times the identity matrix I. Geometrically, this corresponds to the
situation in which the samples fall in equal-size hyperspherical clusters, the cluster
for the ith class being centered about the mean vector p;. The computation of the
determinant and the inverse of 3, is particularly easy: | ;| = 02? and ;' = (1/02)I.
Since both |X;| and the (d/2) In 27 term in Eq. 47 are independent of 4, they are
unimportant additive constants that can be ignored. Thus we obtain the simple
discriminant functions

o — g
i) =~ 1 Pw) (15)
where || - || is the Fuclidean norm, that is,
e = pll* = (x = 1) (x = m1y).- (49)

If the prior probabilities are not equal, then Eq. 48 shows that the squared distance
|x — p||* must be normalized by the variance o2 and offset by adding In P(w;); thus,
if x is equally near two different mean vectors, the optimal decision will favor the a
priori more likely category.

Regardless of whether the prior probabilities are equal or not, it is not actually
necessary to compute distances. Expansion of the quadratic form (x — p;)*(x — ;)
yields

gi(x) = —Tﬂ[xtx —2pix + pip;] +In P(w;), (50)

which appears to be a quadratic function of x. However, the quadratic term x'x is
the same for all ¢, making it an ignorable additive constant. Thus, we obtain the
equivalent linear discriminant functions

g; (X) = WfX + W;0, (51)

where

2.6. DISCRIMINANT FUNCTIONS FOR THE NORMAL DENSITY 21

P(X|wj)
0.4 2

Figure 2.10: If the covariances of two distributions are equal and proportional to the
identity matrix, then the distributions are spherical in d dimensions, and the boundary
is a generalized hyperplane of d — 1 dimensions, perpendicular to the line separating
the means. In these 1-, 2-, and 3-dimensional examples, we indicate p(x|w;) and the
boundaries for the case P(w;) = P(wz). In the 3-dimensional case, the grid plane
separates R from Ro.

1
Wi = 5 M (52)
and
wip = . +1n P(w;) (53)
0= 5oz Hik i)

We call w;g the threshold or bias in the ith direction.

A classifier that uses linear discriminant functions is called a linear machine. This
kind of classifier has many interesting theoretical properties, some of which will be
discussed in detail in Chap. ??7. At this point we merely note that the decision
surfaces for a linear machine are pieces of hyperplanes defined by the linear equations
gi(x) = g;j(x) for the two categories with the highest posterior probabilities. For our
particular case, this equation can be written as

w'(x —xg) =0, (54)
where
W= H; — |y (55)
and
1 0'2 P(wl)
xo = 5(K; + 1) — In (i — 1y)- (56)
2 7l = l2 T P(wy) !

This equation defines a hyperplane through the point x¢ and orthogonal to the
vector w. Since w = u,; — p;, the hyperplane separating R; and R; is orthogonal to
the line linking the means. If P(w;) = P(w,), the second term on the right of Eq. 56
vanishes, and thus the point xg is halfway between the means, and the hyperplane is
the perpendicular bisector of the line between the means (Fig. 2.11). If P(w;) # P(w;),
the point xq shifts away from the more likely mean. Note, however, that if the variance

THRESHOLD

BIAS

LINEAR
MACHINE

MINIMUM
DISTANCE
CLASSIFIER

TEMPLATE-
MATCHING

22 CHAPTER 2. BAYESIAN DECISION THEORY

p(x|o)

R\ "
.%\\ i

\

W O
AR
X 2

Figure 2.11: As the priors are changed, the decision boundary shifts; for sufficiently
disparate priors the boundary will not lie between the means of these 1-, 2- and
3-dimensional spherical Gaussian distributions.

o? is small relative to the squared distance ||p; — p; ||, then the position of the decision

boundary is relatively insensitive to the exact values of the prior probabilities.

If the prior probabilities P(w;) are the same for all ¢ classes, then the In P(w;)
term becomes another unimportant additive constant that can be ignored. When this
happens, the optimum decision rule can be stated very simply: to classify a feature
vector x, measure the Euclidean distance ||x — ;|| from each x to each of the ¢
mean vectors, and assign x to the category of the nearest mean. Such a classifier is
called a minimum distance classifier. If each mean vector is thought of as being an
ideal prototype or template for patterns in its class, then this is essentially a template-
matching procedure (Fig. 2.10), a technique we will consider again in Chap. ?? Sect. 7?7
on the nearest-neighbor algorithm.

2.6. DISCRIMINANT FUNCTIONS FOR THE NORMAL DENSITY 23

2.6.2 Case 2: X, =X

Another simple case arises when the covariance matrices for all of the classes are
identical but otherwise arbitrary. Geometrically, this corresponds to the situation in
which the samples fall in hyperellipsoidal clusters of equal size and shape, the cluster
for the ith class being centered about the mean vector p,;. Since both |3;| and the
(d/2) In 27 term in Eq. 47 are independent of i, they can be ignored as superfluous
additive constants. This simplification leads to the discriminant functions

i) = — 5 0 —) =7 x) + I (). (57)
If the prior probabilities P(w;) are the same for all ¢ classes, then the In P(w;)
term can be ignored. In this case, the optimal decision rule can once again be stated
very simply: to classify a feature vector x, measure the squared Mahalanobis distance
(x — p;)'E7 (x — p;) from x to each of the ¢ mean vectors, and assign x to the
category of the nearest mean. As before, unequal prior probabilities bias the decision
in favor of the a priori more likely category.
Expansion of the quadratic form (x — ;)37 !(x — ;) results in a sum involving
a quadratic term x*3~'x which here is independent of i. After this term is dropped
from Eq. 57, the resulting discriminant functions are again linear:

gi(x) = wWix + wjp, (58)
where
w; = E_lui (59)
and
1
wip = —5.‘152_1“1‘ +1n P(w;). (60)

Since the discriminants are linear, the resulting decision boundaries are again
hyperplanes (Fig. 2.10). If R; and R; are contiguous, the boundary between them
has the equation

w!(x —x¢) =0, (61)
where
w=3""(p; —) (62)
and

In [P(w;)/P(w;)]
By — 1) S (= g

1

Xg = 5(/%‘"‘#]‘)— ()(“i_“j)' (63)

Since w = X! (u; —uj) is generally not in the direction of pt; —p;, the hyperplane
separating R; and R, is generally not orthogonal to the line between the means.
However, it does intersect that line at the point xy which is halfway between the
means if the prior probabilities are equal. If the prior probabilities are not equal, the
optimal boundary hyperplane is shifted away from the more likely mean (Fig. 2.12).
As before, with sufficient bias the decision plane need not lie between the two mean
vectors.

24 CHAPTER 2. BAYESIAN DECISION THEORY

Figure 2.12: Probability densities (indicated by the surfaces in two dimensions and
ellipsoidal surfaces in three dimensions) and decision regions for equal but asymmetric
Gaussian distributions. The decision hyperplanes need not be perpendicular to the
line connecting the means.

2.6. DISCRIMINANT FUNCTIONS FOR THE NORMAL DENSITY 25

2.6.3 Case 3: X; = arbitrary

In the general multivariate normal case, the covariance matrices are different for each
category. The only term that can be dropped from Eq. 47 is the (d/2) In 27 term,
and the resulting discriminant functions are inherently quadratic:

gi(x) = x'W;x + wix + w;o, (64)

where

|
W, =57, (65)
wi =37, (66)
and
1,y 1

wip = _51‘1'21' w; — §ln |2+ In P(w;). (67)

The decision surfaces are hyperquadrics, and can assume any of the general forms
— hyperplanes, pairs of hyperplanes, hyperspheres, hyperellipsoids, hyperparaboloids,
and hyperhyperboloids of various types (Problem 29). Even in one dimension, for
arbitrary covariance the decision regions need not be simply connected (Fig. 2.13).
The two- and three-dimensional examples in Fig. 2.14 & 2.15 indicate how these
different forms can arise. These variances are indicated by the contours of constant
probability density.

The extension of these results to more than two categories is straightforward
though we need to keep clear which two of the total ¢ categories are responsible for
any boundary segment. Figure 2.16 shows the decision surfaces for a four-category
case made up of Gaussian distributions. Of course, if the distributions are more com-
plicated, the decision regions can be even more complex, though the same underlying
theory holds there too.

p(x|o)
04

()

0.3

1

R, R, R,

Figure 2.13: Non-simply connected decision regions can arise in one dimensions for
Gaussians having unequal variance.

HYPER-
QUADRIC

26 CHAPTER 2. BAYESIAN DECISION THEORY

Figure 2.14: Arbitrary Gaussian distributions lead to Bayes decision boundaries that
are general hyperquadrics. Conversely, given any hyperquadratic, one can find two
Gaussian distributions whose Bayes decision boundary is that hyperquadric.

27

DISCRIMINANT FUNCTIONS FOR THE NORMAL DENSITY

2.6.

20

Nk
AN

-20

10
0
10

s
SRR
R

o)

101

ield Bayes decis
There are even degenerate ca

ions y

ibut

Arbitrary three-dimensional Gaussian distr

boundaries that are two-d

Figure 2.15

Ses

1CS.

ional hyperquadr

imens
ion boundary is a line.

1S

hich the dec

m w.

28 CHAPTER 2. BAYESIAN DECISION THEORY

Figure 2.16: The decision regions for four normal distributions. Even with such a low
number of categories, the shapes of the boundary regions can be rather complex.

2.6. DISCRIMINANT FUNCTIONS FOR THE NORMAL DENSITY 29

Example 1: Decision regions for two-dimensional Gaussian datal

To clarify these ideas, we explicitly calculate the decision boundary for the two-
category two-dimensional data in the Example figure. Let w; be the set of the four
black points, and ws the red points. Although we will spend much of the next chapter
understanding how to estimate the parameters of our distributions, for now we simply
assume that we need merely calculate the means and covariances by the discrete
versions of Eqgs. 39 & 40; they are found to be:

3 1/2 0 3 2
2] B 8) e 4] 5o (3

The inverse matrices are then,

21_1:(3 192) and 251:<162 1(/)2>'

We assume equal prior probabilities, P(w1) = P(w2) = 0.5, and substitute these into
the general form for a discriminant, Eqs. 64 — 67, setting ¢1(x) = g2(x) to obtain the
decision boundary:

Ty = 3.514 — 1.125x; + 0.1875z7.

This equation describes a parabola with vertex at (1_35’53). Note that despite the
fact that the variance in the data along the x5 direction for both distributions is the
same, the decision boundary does not pass through the point (g)7 midway between
the means, as we might have naively guessed. This is because for the w; distribution,
the probability distribution is “squeezed” in the x;-direction more so than for the wo
distribution. Because the overall prior probabilities are the same (i.e., the integral over
space of the probability density), the distribution is increased along the zo direction
(relative to that for the wo distribution). Thus the decision boundary lies slightly
lower than the point midway between the two means, as can be seen in the decision

boundary.
Xz

10
75

5

25

-25

The computed Bayes decision boundary for two Gaussian distributions, each based
on four data points.

30 CHAPTER 2. BAYESIAN DECISION THEORY

2.7 Error Probabilities and Integrals

We can obtain additional insight into the operation of a general classifier — Bayes or
otherwise — if we consider the sources of its error. Consider first the two-category
case, and suppose the dichotomizer has divided the space into two regions R; and Ro
in a possibly non-optimal way. There are two ways in which a classification error can
occur; either an observation x falls in Ry and the true state of nature is wq, or x falls
in R and the true state of nature is wo. Since these events are mutually exclusive
and exhaustive, the probability of error is

P(error) = P(x € Ro,wi)+ P(x € Rqy,wa)
P(X S R2|w1)P(w1) + P(X S R1|LU2)P(C¢)2)

= /p(x|w1)P(w1) dx + /p(x|wz)P(w2) dx. (68)

Ra R1

This result is illustrated in the one-dimensional case in Fig. 2.17. The two in-
tegrals in Eq. 68 represent the pink and the gray areas in the tails of the functions
p(x|w;)P(w;). Because the decision point z* (and hence the regions R and Rs) were
chosen arbitrarily for that figure, the probability of error is not as small as it might
be. In particular, the triangular area marked “reducible error” can be eliminated if
the decision boundary is moved to xp. This is the Bayes optimal decision boundary
and gives the lowest probability of error. In general, if p(x|wy)P(w1) > p(x|wsz) P(w2),
it is advantageous to classify x as in R; so that the smaller quantity will contribute
to the error integral; this is exactly what the Bayes decision rule achieves.

P(x|wj)P(w;)

‘
|

(1 | Q)
|

reducible
error

A

Ry X5 X* K R,
j P(xlo,) P)dx j p(Xlo,)P(e,)dx
ﬂl ‘ﬂz

Figure 2.17: Components of the probability of error for equal priors and (non-optimal)
decision point x*. The pink area corresponds to the probability of errors for deciding
wy when the state of nature is in fact wo; the gray area represents the converse, as
given in Eq. 68. If the decision boundary is instead at the point of equal posterior
probabilities, x5, then this reducible error is eliminated and the total shaded area is
the minimum possible — this is the Bayes decision and gives the Bayes error rate.

In the multicategory case, there are more ways to be wrong than to be right, and
it is simpler to compute the probability of being correct. Clearly

P(correct) = ZP(xeRi,wi)
i=1

2.8. *ERROR BOUNDS FOR NORMAL DENSITIES 31

Z P(X € Rz|wz)P(wl)

i=1

Z/p(x\wi)P(wi) dx. (69)

i:lRi

The general result of Eq. 69 depends neither on how the feature space is partitioned
into decision regions nor on the form of the underlying distributions. The Bayes
classifier maximizes this probability by choosing the regions so that the integrand is
maximal for all x; no other partitioning can yield a smaller probability of error.

2.8 Error Bounds for Normal Densities

The Bayes decision rule guarantees the lowest average error rate, and we have seen
how to calculate the decision boundaries for normal densities. However, these results
do not tell us what the probability of error actually is. The full calculation of the error
for the Gaussian case would be quite difficult, especially in high dimensions, because
of the discontinuous nature of the decision regions in the integral in Eq. 69. However,
in the two-category case the general error integral of Eq. 5 can be approximated
analytically to give us an upper bound on the error.

2.8.1 Chernoff Bound

To derive a bound for the error, we need the following inequality:

minfa, b] < a®v' =P fora,b>0and 0< 3 <1. (70)

To understand this inequality we can, without loss of generality, assume a > b. Thus
we need only show that b < a?b'=F = (%)5 b. But this inequality is manifestly valid,
since (%)ﬁ > 1. Using Eqgs. 7 & 1, we apply this inequality to Eq. 5 and get the bound:

P(error) < PP(w)) PP (wy) /pﬁ(x|w1)p1*’6(x|w2) dx for0<p<1. (71)

Note especially that this integral is over all feature space — we do not need to impose
integration limits corresponding to decision boundaries.

If the conditional probabilities are normal, the integral in Eq. 71 can be evaluated
analytically (Problem 35), yielding:

/ PP (x|)pt P (x|ws) dix = e=KB) (72)
where
k) = PO) 188 4 (- 8)Zal (y—) +

2 |3]8|31 A

The graph in Fig. 2.18 shows a typical example of how e *) varies with 3. The
Chernoff bound, on P(error) is found by analytically or numerically finding the value

32 CHAPTER 2. BAYESIAN DECISION THEORY

of B that minimizes e *(®) and substituting the results in Eq. 71. The key benefit
here is that this optimization is in the one-dimensional 3 space, despite the fact that
the distributions themselves might be in a space of arbitrarily high dimension.

ek®
08

0.6 { Bhattacharyya bound

Chernoff bound I |
0.4 : |
L
0.2 : I
L
ok : ! ' : - B
0 0.25 0.5 0.75 1

Figure 2.18: The Chernoff error bound is never looser than the Bhattacharyya bound.
For this example, the Chernoff bound happens to be at f* = 0.66, and is slightly
tighter than the Bhattacharyya bound (8 = 0.5).

2.8.2 Bhattacharyya Bound

The general dependence of the Chernoff bound upon shown in Fig. 2.18 is typical
of a wide range of problems — the bound is loose for extreme values (i.e., § — 1 and
B — 0), and tighter for intermediate ones. While the precise value of the optimal
([depends upon the parameters of the distributions and the prior probabilities, a
computationally simpler, but slightly less tight bound can be derived by merely asing
the results for 4 = 1/2. This result is the so-called Bhattacharyya bound on the error,
where Eq. 71 then has the form

Plerror) < VPn)Plwa) [Volhenplxion) dx
= /P(w)P(ws)e k1/2), (74)

where by Eq. 73 we have for the Gaussian case:

¥+

5 }71(1‘2_#1)‘*‘

B/2) = 1/8(my—)|
) ’21+22
2
—ln ———. (75)
2 VI3][%
The Chernoff and Bhatacharyya bounds may still be used even if the underlying

distributions are not Gaussian. However, for distributions that deviate markedly from
a Gaussian, the bounds will not be informative (Problem 32).

2.8. *ERROR BOUNDS FOR NORMAL DENSITIES 33

Example 2: Error bounds for Gaussian distributions. I

It is a straightforward matter to calculate the Bhattacharyya bound for the two-
dimensional data sets of Example 1. Substituting the means and covariances of Exam-
ple 1 into Eq. 75 we find k(1/2) = 4.11 and thus by Eqs. 74 & 75 the Bhattacharyya
bound on the error is P(error) < 0.016382.

A tighter bound on the error can be approximated by searching numerically for the
Chernoff bound of Eq. 73, which for this problem gives 0.016380. One can get the best
estimate by numerically integrating the error rate directly Eq. 5, which gives 0.0021,
and thus the bounds here are not particularly tight. Such numerical integration is
often impractical for Gaussians in higher than two or three dimensions.

2.8.3 Signal Detection Theory and Operating Characteristics

Another measure of distance between two Gaussian distributions has found great
use in experimental psychology, radar detection and other fields. Suppose we are
interested in detecting a single weak pulse, such as a dim flash of light or a weak
radar reflection. Our model is, then, that at some point in the detector there is an
internal signal (such as a voltage) x, whose value has mean 15 when the external signal
(pulse) is present, and mean p; when it is not present. Because of random noise —
within and outside the detector itself — the actual value is a random variable. We
assume the distributions are normal with different means but the same variance, i.e.,
p(z|w;) ~ N(u;,0?), as shown in Fig. 2.19.

p(X]e;)

Wy ,

Figure 2.19: During any instant when no external pulse is present, the probability
density for an internal signal is normal, i.e., p(x|wi) ~ N(u1,0?); when the external
signal is present, the density is p(z|ws) ~ N(uz2,0?). Any decision threshold z* will
determine the probability of a hit (the red area under the wy curve, above z*) and of
a false alarm (the black area under the w; curve, above z*).

The detector (classifier) employs a threshold value 2* for determining whether the
external pulse is present, but suppose we, as experimenters, do not have access to this
value (nor to the means and standard deviations of the distributions). We seek to
find some measure of the ease of discriminating whether the pulse is present or not, in
a form independent of the choice of £*. Such a measure is the discriminability, which
describes the inherent and unchangeable properties due to noise and the strength of
the external signal, but not on the decision strategy (i.e., the actual choice of z*).
This discriminability is defined as

DISCRIMIN-
ABILITY

RECEIVER
OPERATING
CHARACTER-
ISTIC

34 CHAPTER 2. BAYESIAN DECISION THEORY

d = M (76)
o
A high d’ is of course desirable.
While we do not know pq, pe, 0 nor ¥, we assume here that we know the state
of nature and the decision of the system. Such information allows us to find d’. To
this end, we consider the following four probabilities:

e P(x > x*|x € wy): a hit — the probability that the internal signal is above z*
given that the external signal is present

e P(x > x*|x € wi): a false alarm — the probability that the internal signal is
above x* despite there being no external signal is present

e P(x < z*|z € wa): a miss — the probability that the internal signal is below z*
given that the external signal is present

e P(x < x*|z € wy): a correct rejection — the probability that the internal signal
is below z* given that the external signal is not present.

If we have a large number of trials (and we can assume z* is fixed, albeit at an
unknown value), we can determine these probabilities experimentally, in particular
the hit and false alarm rates. We plot a point representing these rates on a two-
dimensional graph. If the densities are fixed but the threshold x* is changed, then our
hit and false alarm rates will also change. Thus we see that for a given discriminability
d’, our point will move along a smooth curve — a receiver operating characteristic or
ROC curve (Fig. 2.20).

hit

P(x > X € @)

false darm
1

Pix<x*]xe)

Figure 2.20: In a receiver operating characteristic (ROC) curve, the abscissa is the
probability of false alarm, P(z > z*|z € wy), and the ordinate the probability of hit,
P(x > z*|x € wy). From the measured hit and false alarm rates (here corresponding
to z* in Fig. 2.19, and shown as the red dot), we can deduce that d’ = 3.

The great benefit of this signal detection framework is that we can distinguish
operationally between discriminability and decision bias — while the former is an
inherent property of the detector system, the latter is due to the receiver’s implied
but changeable loss matrix. Through any pair of hit and false alarm rates passes
one and only one ROC curve; thus, so long as neither rate is exactly 0 or 1, we
can determine the discriminability from these rates (Problem 38). Moreover, if the
Gaussian assumption holds, a determination of the discriminability (from an arbitrary
x*) allows us to calculate the Bayes error rate — the most important property of any

2.8. *ERROR BOUNDS FOR NORMAL DENSITIES 35

classifier. If the actual error rate differs from the Bayes rate inferred in this way, we
should alter the threshold z* accordingly.

It is a simple matter to generalize the above discussion and apply it to two cate-
gories having arbitrary multidimensional distributions, Gaussian or not. Suppose we
have two distributions p(x|w;) and p(x|wz) which overlap, and thus have non-zero
Bayes classification error. Just as we saw above, any pattern actually from ws could
be properly classified as wy (a “hit”) or misclassified as w; (a “false alarm”). Unlike
the one-dimensional case above, however, there may be many decision boundaries
that give a particular hit rate, each with a different false alarm rate. Clearly here we
cannot determine a fundamental measure of discriminability without knowing more
about the underlying decision rule than just the hit and false alarm rates.

In a rarely attainable ideal, we can imagine that our measured hit and false alarm
rates are optimal, for example that of all the decision rules giving the measured hit
rate, the rule that is actually used is the one having the minimum false alarm rate.
If we constructed a multidimensional classifier — regardless of the distributions used
— we might try to characterize the problem in this way, though it would probably
require great computational resources to search for such optimal hit and false alarm
rates.

In practice, instead we eschew optimality, and simply vary a single parameter
controlling the decision rule and plot the resulting hit and false alarm rates — a
curve called merely an operating characteristic. Such a control parameter might be
the bias or nonlinearity in a discriminant function. It is traditional to choose a
control parameter that can yield, at extreme values, either a vanishing false alarm
or a vanishing hit rate, just as can be achieved with a very large or a very small x*
in an ROC curve. We should note that since the distributions can be arbitrary, the
operating characteristic need not be symmetric (Fig. 2.21); in rare cases it need not
even be concave down at all points.

hit
p(x|oj)

PX<X* | X € @)

faseadarm

PX<X* [X €) 1

Figure 2.21: In a general operating characteristic curve, the abscissa is the probability
of false alarm, P(z € Ra|r € wy), and the ordinate the probability of hit, P(z €
Rolr € wsy). As illustrated here, operating characteristic curves are generally not
symmetric, as shown at the right.

Classifier operating curves are of value for problems where the loss matrix A;;
might be changed. If the operating characteristic has been determined as a function
of the control parameter ahead of time, it is a simple matter, when faced with a new
loss function, to deduce the control parameter setting that will minimize the expected
risk (Problem 38).

OPERATING
CHARACTER-
ISTIC

36 CHAPTER 2. BAYESIAN DECISION THEORY

2.9 Bayes Decision Theory — Discrete Features

Until now we have assumed that the feature vector x could be any point in a d-
dimensional Euclidean space, R?. However, in many practical applications the com-
ponents of x are binary-, ternary-, or higher integer valued, so that x can assume only
one of m discrete values vy, ..., v,,. In such cases, the probability density function
p(x|w;) becomes singular; integrals of the form

/p(x\wj) dx (77)

must then be replaced by corresponding sums, such as
> P(x|w;), (78)

where we understand that the summation is over all values of x in the discrete
distribution.” Bayes’ formula then involves probabilities, rather than probability den-
sities:

P(x|w;)P(w;)

P(wjlx) = o)

(79)

where

C

P(x) = 3 P(xlw;)P(w;)- (80)

j=1

The definition of the conditional risk R(a|x) is unchanged, and the fundamental
Bayes decision rule remains the same: To minimize the overall risk, select the action
o for which R(oy;|x) is minimum, or stated formally,

o = argmax R(q;]x). (81)

The basic rule to minimize the error-rate by maximizing the posterior probability is
also unchanged as are the discriminant functions of Egs. 25 — 27, given the obvious
replacement of densities p(-) by probabilities P(-).

2.9.1 Independent Binary Features

As an example of a classification involving discrete features, consider the two-category
problem in which the components of the feature vector are binary-valued and condi-
tionally independent. To be more specific we let x = (21, ..., z4)%, where the compo-
nents x; are either 0 or 1, with

p; = Prob (z; = 1jw) (82)

and

¢i = Prob (z; = 1jwa). (83)

* Technically speaking, Eq. 78 should be written as Zk P(vi|w;) where P(v|w;) is the conditional
probability that x = v, given that the state of nature is w;.

2.9. BAYES DECISION THEORY — DISCRETE FEATURES 37

This is a model of a classification problem in which each feature gives us a yes/no
answer about the pattern. If p; > ¢;, we expect the ith feature to give a “yes” answer
more frequently when the state of nature is wy; than when when it is we. (As an
example, consider two factories each making the same automobile, each of whose d
components could be functional or defective. If it was known how the factories differed
in their reliabilities for making each component, then this model could be used to judge
which factory manufactured a given automobile based on the knowledge of which
features are functional and which defective.) By assuming conditional independence
we can write P(x|w;) as the product of the probabilities for the components of x.
Given this assumption, a particularly convenient way of writing the class-conditional
probabilities is as follows:

P(x|wi) = Hp (1—p)t™ (84)

and

P(x|ws) = H g)t (85)
Then the likelihood ratio is given by

d \Ti 71— py\ -
e~ () (G=5) 0

qi

and consequently Eq. 30 yields the discriminant function

d

g(x) = Z [ml In % +(1—2)In 1_1;} +In P(wl). (87)

We note especially that this discriminant function is linear in the z; and thus we can
write

d
= Z w;T; + W, (88)
i=1
where
(1—a)
wj 1= i=1,...d (89)
and
d
1-— Di P(wl)
= 1 1 .
wo ;nl_qi—i—np(u&) (90)

Let us examine these results to see what insight they can give. Recall first that
we decide wy if g(x) > 0 and ws if g(x) < 0. We have seen that g(x) is a weighted
combination of the components of x. The magnitude of the weight w; indicates the
relevance of a “yes” answer for x; in determining the classification. If p; = ¢;, x; gives
us no information about the state of nature, and w; = 0, just as we might expect.
If p; > q;, then 1 — p; < 1 — ¢; and w; is positive. Thus in this case a “yes” answer

38 CHAPTER 2. BAYESIAN DECISION THEORY

for x; contributes w; votes for wy. Furthermore, for any fixed ¢; < 1, w; gets larger
as p; gets larger. On the other hand, if p; < ¢;, w; is negative and a “yes” answer
contributes |w;| votes for ws.

The condition of feature independence leads to a very simple (linear) classifier;
of course if the features were not independent, a more complicated classifier would
be needed. We shall come across this again for systems with continuous features in
Chap. 77, but note here that the more independent we can make the features, the
simpler the classifier can be.

The prior probabilities P(w;) appear in the discriminant only through the thresh-
old weight wy. Increasing P(w;) increases wy and biases the decision in favor of wy,
whereas decreasing P(w;) has the opposite effect. Geometrically, the possible values
for x appear as the vertices of a d-dimensional hypercube; the decision surface defined
by g(x) = 0 is a hyperplane that separates w; vertices from wy vertices.

Example 3: Bayesian decisions for three-dimensional binary features I

Suppose two categories consist of independent binary features in three dimensions
with known feature probabilities. Let us construct the Bayesian decision boundary if
P(w1) = P(wz) = 0.5 and the individual components obey:

{5?:8'2 i=1,2,3.

By Eqs. 89 & 90 we have that the weights are

8(1—.5)

)~ 1.3863
5(1—.8)

’wi:hl

and the bias value is

1-—. .
wO:Zml_ §+1n—§:1.2.

The decision boundary for the Example involving three-dimensional binary features.
On the left we show the case p; = .8 and ¢; = .5. On the right we use the same values
except p3 = g3, which leads to ws = 0 and a decision surface parallel to the x3 axis.

2.10. *MISSING AND NOISY FEATURES 39

The surface g(x) = 0 from Eq. 88 is shown on the left of the figure. Indeed, as we
might have expected, the boundary places points with two or more “yes” answers into
category wq, since that category has a higher probability of having any feature have
value 1.

Suppose instead that while the prior probabilities remained the same, our individ-
ual components obeyed:

p1=p2=038, p3=05
G =¢=gq3=05

In this case feature x3 gives us no predictive information about the categories, and
hence the decision boundary is parallel to the x3 axis. Note that in this discrete case
there is a large range in positions of the decision boundary that leaves the categoriza-
tion unchanged, as is particularly clear in the figure on the right.

2.10 Missing and Noisy Features

If we know the full probability structure of a problem, we can construct the (optimal)
Bayes decision rule. Suppose we develop a Bayes classifier using uncorrupted data,
but our input (test) data are then corrupted in particular known ways. How can we
classify such corrupted inputs to obtain a minimum error now?

There are two analytically solvable cases of particular interest: when some of the
features are missing, and when they are corrupted by a noise source with known
properties. In each case our basic approach is to recover as much information about
the underlying distribution as possible and use the Bayes decision rule.

2.10.1 Missing Features

Suppose we have a Bayesian (or other) recognizer for a problem using two features,
but that for a particular pattern to be classified, one of the features is missing.* For
example, we can easily imagine that the lightness can be measured from a portion of
a fish, but the width cannot because of occlusion by another fish.

We can illustrate with four categories a somewhat more general case (Fig. 2.22).
Suppose for a particular test pattern the feature z; is missing, and the measured value
of x5 is Zo. Clearly if we assume the missing value is the mean of all the x; values,
i.e., T1, we will classify the pattern as ws. However, if the priors are equal, wy would
be a better decision, since the figure implies that p(&s|ws) is the largest of the four
likelihoods.

To clarify our derivation we let x = [x,4, x|, where x, represents the known or
“good” features and x; represents the “bad” ones, i.e., either unknown or missing. We
seek the Bayes rule given the good features, and for that the posterior probabilities
are needed. In terms of the good features the posteriors are

p(wi, Xg) _ J p(wi,xg,%p) dxy
p(xg) p(xg)

* In practice, just determining that the feature is in fact missing rather than having a value of zero
(or the mean value) can be difficult in itself.

Plwilxg)

MARGINAL

40 CHAPTER 2. BAYESIAN DECISION THEORY

>

T > X1
X1

Figure 2.22: Four categories have equal priors and the class-conditional distributions
shown. If a test point is presented in which one feature is missing (here, 1) and the
other is measured to have value &2 (red dashed line), we want our classifier to classify
the pattern as category wq, because p(#2|ws) is the largest of the four likelihoods.

J P(wi|xg,xp)p(%g,%5) dxy
p(xg)
J 9i(x)p(x) dxs
J p(x) dxp

(91)

where g;(x) = gi(Xg4, %) = P(w;i|xg, %) is one form of our discriminant function.

We refer to [p(wi,x,,Xp) dxp, as a marginal distribution; we say the full joint
distribution is marginalized over the variable x;. In short, Eq. 91 shows that we must
integrate (marginalize) the posterior probability over the bad features. Finally we
use the Bayes decision rule on the resulting posterior probabilities, i.e., choose w; if
P(wi|x4) > P(w;|x4) for all i and j. We shall consider the Expectation-Maximization
(EM) algorithm in Chap. ??, which addresses a related problem involving missing
features.

2.10.2 Noisy Features

It is a simple matter to generalize the results of Eq. 91 to the case where a particular
feature has been corrupted by statistically independent noise.* For instance, in our
fish classification example, we might have a reliable measurement of the length, while
variability of the light source might degrade the measurement of the lightness. We
assume we have uncorrupted (good) features x4, as before, and a noise model, ex-
pressed as p(x;|x;). Here we let x; denote the true value of the observed x;, features,
i.e., without the noise present; that is, the x; are observed instead of the true x;. We
assume that if x; were known, x; would be independent of w; and x,. From such an
assumption we get:

fp(wZ',Xg,Xb,Xt) dxt
p(Xg,Xp)

P(w;|xg,%xp) = (92)

* Of course, to tell the classifier that a feature value is missing, the feature extractor must be designed
to provide more than just a numerical value for each feature.

2.11. *COMPOUND BAYES DECISION THEORY AND CONTEXT 41

Now p(w;, Xg, Xp, x¢) = P(w;i|xg, Xp, X¢)p(Xg, Xp, X¢), but by our independence assump-
tion, if we know x;, then x;, does not provide any additional information about w;.
Thus we have P(w;|Xg,%Xp,X¢) = P(wilxg,x¢). Similarly, we have p(x4,%p, %) =
P(Xp|Xg, X¢)D(Xg, X¢), and p(Xp|Xg, X¢) = p(Xp|x¢). We put these together and thereby
obtain

fP(Wi|x97xt)p(xg7xt)p(xb|xt) dxy
fp(xgaxt)P(XHXt) dx;

_J 9i(x)p(x)p(xs|xe) dx

T TpepCelx) dxg (93)

Plwilxg,xp) =

which we use as discriminant functions for classification in the manner dictated by
Bayes.

Equation 93 differs from Eq. 91 solely by the fact that the integral is weighted
by the noise model. In the extreme case where p(x;|x;) is uniform over the entire
space (and hence provides no predictive information for categorization), the equation
reduces to the case of missing features — a satisfying result.

2.11 Compound Bayesian Decision Theory and Con-
text

Let us reconsider our introductory example of designing a classifier to sort two types
of fish. Our original assumption was that the sequence of types of fish was so unpre-
dictable that the state of nature looked like a random variable. Without abandoning
this attitude, let us consider the possibility that the consecutive states of nature might
not be statistically independent. We should be able to exploit such statistical depen-
dence to gain improved performance. This is one example of the use of context to aid
decision making.

The way in which we exploit such context information is somewhat different when
we can wait for n fish to emerge and then make all n decisions jointly than when
we must decide as each fish emerges. The first problem is a compound decision prob-
lem, and the second is a sequential compound decision problem. The former case is
conceptually simpler, and is the one we shall examine here.

To state the general problem, let w = (w(1),...,w(n))* be a vector denoting the n
states of nature, with w(é) taking on one of the ¢ values wy, ...,w.. Let P(w) be the
prior probability for the n states of nature. Let X = (x1,...,X,) be a matrix giving
the n observed feature vectors, with x; being the feature vector obtained when the
state of nature was w(7). Finally, let p(X|w) be the conditional probability density
function for X given the true set of states of nature w. Using this notation we see
that the posterior probability of w is given by

p(Xw)Pw) p(X|w)Pw)
PelX) ==Xy = S, (X P@)

In general, one can define a loss matrix for the compound decision problem and
seek a decision rule that minimizes the compound risk. The development of this
theory parallels our discussion for the simple decision problem, and concludes that
the optimal procedure is to minimize the compound conditional risk. In particular, if
there is no loss for being correct, and if all errors are equally costly, then the procedure

(94)

42 CHAPTER 2. BAYESIAN DECISION THEORY

reduces to computing P(w|X) for all w and selecting the w for which this posterior
probability is maximum.

While this provides the theoretical solution, in practice the computation of P(w|X)
can easily prove to be an enormous task. If each component w(i) can have one of
c values, there are ¢ possible values of w to consider. Some simplification can be
obtained if the distribution of the feature vector x; depends only on the corresponding
state of nature w(7), not on the values of the other feature vectors or the other states of
nature. In this case the joint density p(X|w) is merely the product of the component
densities p(x;|w(7)):

n
p(X|w) = [p(xilw (D). (95)

i=1
While this simplifies the problem of computing p(X|w), there is still the problem
of computing the prior probabilities P(w). This joint probability is central to the
compound Bayes decision problem, since it reflects the interdependence of the states
of nature. Thus it is unacceptable to simplify the problem of calculating P(w) by
assuming that the states of nature are independent. In addition, practical applications
usually require some method of avoiding the computation of P(w|X) for all ¢ possible

values of w. We shall find some solutions to this problem in Chap. ?7.

Summary

The basic ideas underlying Bayes decision theory are very simple. To minimize the
overall risk, one should always choose the action that minimizes the conditional risk
R(«a|x). In particular, to minimize the probability of error in a classification problem,
one should always choose the state of nature that maximizes the posterior probability
P(wj|x). Bayes’ formula allows us to calculate such probabilities from the prior prob-
abilities P(w;) and the conditional densities p(x|w;). If there are different penalties
for misclassifying patterns from w; as if from w;, the posteriors must be first weighted
according to such penalties before taking action.

If the underlying distributions are multivariate Gaussian, the decision boundaries
will be hyperquadrics, whose form and position depends upon the prior probabilities,
means and covariances of the distributions in question. The true expected error
can be bounded above by the Chernoff and computationally simpler Bhattacharyya
bounds. If an input (test) pattern has missing or corrupted features, we should form
the marginal distributions by integrating over such features, and then using Bayes
decision procedure on the resulting distributions. Receiver operating characteristic
curves describe the inherent and unchangeable properties of a classifier and can be
used, for example, to determine the Bayes rate.

For many pattern classification applications, the chief problem in applying these
results is that the conditional densities p(x|w;) are not known. In some cases we may
know the form these densities assume, but may not know characterizing parameter
values. The classic case occurs when the densities are known to be, or can assumed
to be multivariate normal, but the values of the mean vectors and the covariance
matrices are not known. More commonly even less is known about the conditional
densities, and procedures that are less sensitive to specific assumptions about the
densities must be used. Most of the remainder of this book will be devoted to various
procedures that have been developed to attack such problems.

2.11. BIBLIOGRAPHICAL AND HISTORICAL REMARKS 43

Bibliographical and Historical Remarks

The power, coherence and elegance of Bayesian theory in pattern recognition make
it among the most beautiful formalisms in science. Its foundations go back to Bayes
himself, of course [3], but he stated his theorem (Eq. 1) for the case of uniform
priors. It was Laplace [25] who first stated it for the more general (but discrete) case.
There are several modern and clear descriptions of the ideas — in pattern recognition
and general decision theory — that can be recommended [7, 6, 26, 15, 13, 20, 27].
Since Bayesian theory rests on an axiomatic foundation, it is guaranteed to have
quantitative coherence; some other classification methods do not. Wald presents a
non-Bayesian perspective on these topics that can be highly recommended [36], and
the philosophical foundations of Bayesian and non-Bayesian methods are explored in
[16]. Neyman and Pearson provided some of the most important pioneering work
in hypothesis testing, and used the probability of error as the criterion [28]; Wald
extended this work by introducing the notions of loss and risk [35]. Certain conceptual
problems have always attended the use of loss functions and prior probabilities. In
fact, the Bayesian approach is avoided by many statisticians, partly because there are
problems for which a decision is made only once, and partly because there may be no
reasonable way to determine the prior probabilities. Neither of these difficulties seems
to present a serious drawback in typical pattern recognition applications: for nearly
all critical pattern recognition problems we will have training data; we will use our
recognizer more than once. For these reasons, the Bayesian approach will continue
to be of great use in pattern recognition. The single most important drawback of the
Bayesian approach is its assumption that the true probability distributions for the
problem can be represented by the classifier, for instance the true distributions are
Gaussian, and all that is unknown are parameters describing these Gaussians. This
is a strong assumption that is not always fulfilled and we shall later consider other
approaches that do not have this requirement.

Chow[10] was among the earliest to use Bayesian decision theory for pattern recog-
nition, and he later established fundamental relations between error and reject rate
[11]. Error rates for Gaussians have been explored by [18], and the Chernoff and
Bhattacharyya bounds were first presented in [9, 8], respectively and are explored in
a number of statistics texts, such as [17]. Computational approximations for bound-
ing integrals for Bayesian probability of error (the source for one of the homework
problems) appears in [2]. Neyman and Pearson also worked on classification given
constraints [28], and the analysis of minimax estimators for multivariate normals is
presented in [5, 4, 14]. Signal detection theory and receiver operating characteristics
are fully explored in [21]; a brief overview, targetting experimental psychologists, is
[34]. Our discussion of the missing feature problem follows closely the work of [1] while
the definitive book on missing features, including a great deal beyond our discussion
here, can be found in [30].

Entropy was the central concept in the foundation of information theory [31] and
the relation of Gaussians to entropy is explored in [33]. Readers requiring a review of
information theory [12], linear algebra [24, 23], calculus and continuous mathematics,
[38, 32] probability [29] calculus of variations and Lagrange multipliers [19] should
consult these texts and those listed in our Appendix.

44 CHAPTER 2. BAYESIAN DECISION THEORY
Problems

P Section 2.1

1. In the two-category case, under the Bayes’ decision rule the conditional error
is given by Eq. 7. Even if the posterior densities are continuous, this form of the
conditional error virtually always leads to a discontinuous integrand when calculating
the full error by Eq. 5.

(a) Show that for arbitrary densities, we can replace Eq. 7 by P(error|x) = 2P (w;|x)P(ws|z)
in the integral and get an upper bound on the full error.

(b) Show that if we use P(error|z) = aP(wi|z)P(wz|z) for a < 2, then we are not
guaranteed that the integral gives an upper bound on the error.

(¢) Analogously, show that we can use instead P(error|z) = P(wi|z)P(ws|x) and
get a lower bound on the full error.

(d) Show that if we use P(error|x) = GP(w1|z)P(wz|x) for 5 > 1, then we are not

guaranteed that the integral gives an lower bound on the error.

P Section 2.2

2. Consider minimax criterion for the zero-one loss function, i.e., A1 = Aoo = 0 and
Mg = Ao = 1.

(a) Prove that in this case the decision regions will satisfy

[pxlonax = [plxiwaix

7?,2 Rl
(b) Is this solution always unique? If not, construct a simple counterexample.

3. Consider the minimax criterion for a two-category classification problem.

(a) Fill in the steps of the derivation of Eq. 22.

(b) Explain why the overall Bayes risk must be concave down as a function of the
prior P(wy), as shown in Fig. 2.4.

(c) Assume we have one-dimensional Gaussian distributions p(x|w;) ~ N(u;,0?),
1 = 1,2 but completely unknown prior probabilities. Use the minimax criterion
to find the optimal decision point z* in terms of y; and o; under a zero-one risk.

(d) For the decision point z* you found in (?7?), what is the overall minimax risk?
Express this risk in terms of an error function erf(-).

(e) Assume p(z|wi) ~ N(0,1) and p(z|ws) ~ N(1/2,1/4), under a zero-one loss.
Find z* and the overall minimax loss.

(f) Assume p(z|wi) ~ N(5,1) and p(z|ws) ~ N(6,1). Without performing any
explicit calculations, determine z* for the minimax criterion. Explain your
reasoning.

2.11. PROBLEMS 45

4. Generalize the minimax decision rule in order to classify patterns from three
categories having triangle densities as follows:

0; — v — p; 52-2 for |x — ;| < 6;
p(zlwi) = T(pi, 6;) = { (() | wib/ oth(LrwiSZ,|

where 0; > 0 is the half-width of the distribution (i = 1,2,3). Assume for convenience
that p; < ps < p3, and make some minor simplifying assumptions about the ¢§;’s as
needed, to answer the following:

(a) In terms of the priors P(w;), means and half-widths, find the optimal decision
points z§ and z} under a zero-one (categorization) loss.

(b) Generalize the minimax decision rule to two decision points, =7 and x5 for such
triangular distributions.

(¢) Let {u;,6;} = {0,1},{.5,.5}, and {1,1}. Find the minimax decision rule (i.e.,
xF and a3) for this case.

(d) What is the minimax risk?

5. Consider the Neyman-Pearson criterion for two univariate normal distributions:
p(z|w;) ~ N(pi,o?) and P(w;) = 1/2 for i = 1,2. Assume a zero-one error loss, and
for convenience o > pi1.

(a) Suppose the maximum acceptable error rate for classifying a pattern that is
actually in w; as if it were in wo is Ej. Determine the decision boundary in
terms of the variables given.

(b) For this boundary, what is the error rate for classifying ws as wy?
(¢) What is the overall error rate under zero-one loss?

(d) Apply your results to the specific case p(x|w1) ~ N(—1,1) and p(z|ws) ~ N(1,1)
and F; = 0.05.

(e) Compare your result to the Bayes error rate (i.e., without the Neyman-Pearson
conditions).

6. Consider Neyman-Pearson criteria for two Cauchy distributions in one dimension

1 1

= i=1,2.
o ()

p(z|w;)
Assume a zero-one error loss, and for simplicity as > a, the same “width” b, and
equal priors.

(a) Suppose the maximum acceptable error rate for classifying a pattern that is
actually in w; as if it were in wo is Ej. Determine the decision boundary in
terms of the variables given.

(b) For this boundary, what is the error rate for classifying ws as wq?
(¢) What is the overall error rate under zero-one loss?

(d) Apply your results to the specific case b =1 and a1 = —1, as = 1 and F; = 0.1.

46 CHAPTER 2. BAYESIAN DECISION THEORY

(e) Compare your result to the Bayes error rate (i.e., without the Neyman-Pearson
conditions).

P Section 2.4

7. Let the conditional densities for a two-category one-dimensional problem be given
by the Cauchy distribution described in Problem 6.

(a) By explicit integration, check that the distributions are indeed normalized.

(b) Assuming P(w;) = P(ws), show that P(w;|z) = P(ws|x) if = (a1 +a2)/2, i.e.,
the minimum error decision boundary is a point midway between the peaks of
the two distributions, regardless of b.

(¢) Plot P(w;]x) for the case a1 =3, a2 =5 and b= 1.
(d) How do P(wq|x) and P(wsz|z) behave as & — —o0? o — +00? Explain.

8. Use the conditional densities given in Problem 6, and assume equal prior proba-
bilities for the categories.

(a) Show that the minimum probability of error is given by

P(error) = *1’(12 —_— ‘

2

1
— —tan
™

DN | =

(b) Plot this as a function of |az — ay|/b.

(¢) What is the maximum value of P(error) and under which conditions can this
occur? Explain.

9. Consider the following decision rule for a two-category one-dimensional problem:
Decide wy if x > 0; otherwise decide wo.

(a) Show that the probability of error for this rule is given by

6 o)

P(error) = P(w1) / p(z|wy) doz + P(ws) /p (z|we) d

—00 6

(b) By differentiating, show that a necessary condition to minimize P(error) is that
0 satisfy

p(Olwr) P(w1) = p(Olw2) P(w2).

(¢) Does this equation define 6 uniquely?

(d) Give an example where a value of 6 satisfying the equation actually mazimizes
the probability of error.

10. Consider

(a) True or false: In a two-category one-dimensional problem with continuous fea-
ture x, a monotonic transformation of x leave the Bayes error rate unchanged.

2.11. PROBLEMS 47

(b) True of false: In a two-category two-dimensional problem with continuous fea-
ture x, monotonic transformations of both x; and x5 leave the Bayes error rate
unchanged.

11. Suppose that we replace the deterministic decision function «(x) with a ran-
domized rule, viz., the probability P(a;|x) of taking action «; upon observing x.

(a) Show that the resulting risk is given by

R= / [iR(ai|x)P(ai|x) p(x) dx.
i=1

(b) In addition, show that R is minimized by choosing P(«;|x) = 1 for the action
«; associated with the minimum conditional risk R(«;|x), thereby showing that
no benefit can be gained from randomizing the best decision rule.

(c) Can we benefit from randomizing a suboptimal rule? Explain.

12. Let wiqq(x) be the state of nature for which P(wpaz|x) > P(w;|x) for all i,
1=1,..,c

(a) Show that P(wpqz|x) > 1/c.

(b) Show that for the minimum-error-rate decision rule the average probability of
error is given by

P(error) =1 — /P(wmm\x)p(x) dx.

(c¢) Use these two results to show that P(error) < (¢ —1)/c.

(d) Describe a situation for which P(error) = (¢ — 1)/c.

13. In many pattern classification problems one has the option either to assign the
pattern to one of ¢ classes, or to reject it as being unrecognizable. If the cost for
rejects is not too high, rejection may be a desirable action. Let

0 i=j d,j=1,..,c
Maglwj) =1 Ar i=c+1
As otherwise,

where A, is the loss incurred for choosing the (¢+ 1)th action, rejection, and Ay is the
loss incurred for making a substitution error. Show that the minimum risk is obtained
if we decide w; if P(w;|x) > P(wj|x) for all j and if P(w;|x) > 1 — A,./As, and reject
otherwise. What happens if A\, = 07 What happens if A, > A7

14. Consider the classification problem with rejection option.

(a) Use the results of Problem 13 to show that the following discriminant functions
are optimal for such problems:

p(x|w;) P(w;) 1=1,...,c
gi(x) = Aasie le(x|wj)P(wj) i=c+ 1.
=

48 CHAPTER 2. BAYESIAN DECISION THEORY

(b) Plot these discriminant functions and the decision regions for the two-category
one-dimensional case having

* p(xfwi) ~ N(1,1),

o p(z|ws) ~ N(—1,1),

e P(w;) = P(wy) =1/2, and

o \./As=1/4.
(c¢) Describe qualitatively what happens as A,./\s is increased from 0 to 1.
(d) Repeat for the case having

* p(xfwi) ~ N(1,1),

* p(zlwy) ~ N(0,1/4),

e P(wy)=1/3,P(wg) =2/3, and

o)./ =1/2.

P Section 2.5

15. Confirm Eq. 45 for the volume of a d-dimensional hypersphere as follows:
(a) Verify that the equation is correct for a line (d = 1).
(b) Verify that the equation is correct for a disk (d = 2).

(c) Integrate the volume of a line over appropriate limits to obtain the volume of a
disk.

(d) Consider a general d-dimensional hypersphere. Integrate its volume to obtain
a formula (involving the ratio of gamma functions, I'(+)) for the volume of a
(d + 1)-dimensional hypersphere.

(e) Apply your formula to find the volume of a hypersphere in an odd-dimensional
space by integrating the volume of a hypersphere in the lower even-dimensional
space, and thereby confirm Eq. 45 for odd dimensions.

(f) Repeat the above but for finding the volume of a hypersphere in even dimensions.

16. Derive the formula for the volume of a d-dimensional hypersphere in Eq. 45 as
follows:

(a) State by inspection the formula for V;.

(b) Follow the general procedure outlined in Problem 15 and integrate twice to find
Vi as a function of V.

(¢) Assume that the functional form of Vj is the same for all odd dimensions (and
likewise for all even dimensions). Use your integration results to determine the
formula for V for d odd.

(d) Use your intermediate integration results to determine V; for d even.

(e) Explain why we should expect the functional form of Vj; to be different in even
and in odd dimensions.

2.11. PROBLEMS 49

17. Derive the formula (Eq. 44) for the volume V of a hyperellipsoid of constant
Mahalanobis distance r (Eq. 43) for a Gaussian distribution having covariance X.
18. Consider two normal distributions in one dimension: N(p1,07) and N(uz,03).
Imagine that we choose two random samples x; and zo, one from each of the normal
distributions and calculate their sum z3 = 21 + z2. Suppose we do this repeatedly.

(a) Consider the resulting distribution of the values of x3. Show from first principles
that this is also a normal distribution.

(b) What is the mean, 3, of your new distribution?
(c) What is the variance, 03?

(d) Repeat the above with two distributions in a multi-dimensional space, i.e.,
N(py,31) and N(py, Xz).

19. Starting from the definition of entropy (Eq. 36), derive the general equation for
the maximum-entropy distribution given constraints expressed in the general form

/b}€ dx—ak, k= 1,2,...,(]

as follows:

(a) Use Lagrange undetermined multipliers A1, Ag, ..., A\, and derive the synthetic
function:

q
HSZ—/ ([hlp Z/\kbk ‘| dx—Z)\kak.
k=0

State why we know ag = 1 and by(z) =1 for all .

(b) Take the derivative of Hg with respect to p(z). Equate the integrand to zero,
and thereby prove that the minimum-entropy distribution obeys

x) = exp [Z b () — 11 ,
k=0

where the ¢ + 1 parameters are determined by the constraint equation.
20. Use the final result from Problem 19 for the following.

(a) Suppose we know only that a distribution is non-zero in the range z; < = < z,,.
Prove that the maximum entropy distribution is uniform in that range, i.e.,

1/|x, — r <x<uxz,
p(x) ~ Uz,) = { 0/‘ ! o‘éherwise.

50 CHAPTER 2. BAYESIAN DECISION THEORY

(b) Suppose we know only that a distribution is non-zero for > 0 and that its
mean is . Prove that the maximum entropy distribution is

p() = { ie’z/” for x >0

0 otherwise.

(¢) Now suppose we know solely that the distribution is normalized, has mean p,
and standard deviation ¢2, and thus from Problem 19 our maximum entropy
distribution must be of the form

p(z) = exp[Ao — 1 + A1z +)\2,232].

Write out the three constraints and solve for \g, A1, and A2 and thereby prove
that the maximum entropy solution is a Gaussian, i.e.,

() 1 —(l‘ - I'L)2

T) = ex :

b V2T P 202

21. Three distributions — a Gaussian, a uniform distribution, and a triangle dis-
tribution (cf., Problem 4) — each have mean zero and standard deviation o2. Use

Eq. 36 to calculate and compare their entropies.
22. Calculate the entropy of a multidimensional Gaussian p(x) ~ N(u,).

P Section 2.6

23. Consider the three-dimensional normal distribution p(x|w) ~ N(p,X) where
uz(%)andi]:(é g g)

Find the probability density at the point xg = (.5,0,1)%.

—

a

g

Construct the whitening transformation A,. Show your A and ® matrices.
Next, convert the distribution to one centered on the origin with covariance
matrix equal to the identity matrix, p(x|w) ~ N(0,I).

—
=

(¢) Apply the same overall transformation to xg to yield a transformed point x,,.

(d) By explicit calculation, confirm that the Mahalanobis distance from xg to the
mean g in the original distribution is the same as for x,, to 0 in the transformed
distribution.

(e) Does the probability density remain unchanged under a general linear transfor-
mation? In other words, is p(xo|N(u, X)) = p(Ttxo|N(T*u, T'ET)) for some
linear transform T? Explain.

(f) Prove that a general whitening transform A, = ®A~/2? when applied to a

Gaussian distribution insures that the final distribution has covariance propor-
tional to the identity matrix I. Check whether normalization is preserved by the
transformation.

2.11. PROBLEMS o1

24. Consider the multivariate normal density for which o;; = 0 and o;; = o?, ie.,
¥ = diag(0?,03,...,0%).

(a) Show that the evidence is

d

-t w45 (552)]
i=1

(b) Plot and describe the contours of constant density.
(c) Write an expression for the Mahalanobis distance from x to p.

25. Fill in the steps in the derivation from Eq. 57 to Egs. 58-63.

26. Let p(x|w;) ~ N(u;, %) for a two-category d-dimensional problem with the
same covariances but arbitrary means and prior probabilities. Consider the squared
Mahalanobis distance

7= (x =) ETHx -).
(a) Show that the gradient of r? is given by

Vr? =28 Hx — ;).

b) Show that at any position on a given line through p, the gradient Vr? points
(y g gh p; the g 5
in the same direction. Must this direction be parallel to that line?

(c) Show that Vr? and Vr3 point in opposite directions along the line from p, to
Ha.

(d) Show that the optimal separating hyperplane is tangent to the constant prob-
ability density hyperellipsoids at the point that the separating hyperplane cuts
the line from p; to p,.

(e) True of False: For a two-category problem involving normal densities with ar-
bitrary means and covariances, and P(w;) = P(w2) = 1/2, the Bayes decision
boundary consists of the set of points of equal Mahalanobis distance from the
respective sample means. Explain.

27. Suppose we have two normal distributions with the same covariances but different
means: N(pq,3) and N(py, X). In terms of their prior probabilities P(w;) and
P(ws), state the condition that the Bayes decision boundary not pass between the
two means.

28. Two random variables x and y are called “statistically independent” if p(x,y|w) =

p(x|w)p(ylw).

(a) Prove that if x; — p; and z; — p1; are statistically independent (for i # j) then
0;j as defined in Eq. 42 is 0.

(b) Prove that the converse is true for the Gaussian case.

(¢) Show by counterexample that this converse is not true in the general case.

52 CHAPTER 2. BAYESIAN DECISION THEORY

29. Consider the Bayes decision boundary for two-category classification in d dimen-
sions.

(a) Prove that for any arbitrary hyperquadratic in d dimensions, there exist normal

distributions p(x|w;) ~ N(w;,%;) and priors P(w;), i = 1,2, that possess this
hyperquadratic as their Bayes decision boundary.

(b) Is the above also true if the priors are held fixed and non-zero, e.g., P(w;) =
P(wq) =1/27

P Section 2.7

30. Let p(x|lw;) ~ N(u;,0?) for a two-category one-dimensional problem with
P(wl) = P(WQ) == 1/2

(a) Show that the minimum probability of error is given by

oo
P, :L/efuz/2 du
e /_27'(' b)

where a = |2 — u1]/(20).

(b) Use the inequality

1 7 2 1 2
P=—— [t Pat< e~ /2
\/27r/ T V2ma

a

to show that P, goes to zero as |us — p1|/o goes to infinity.

31. Let p(x|w;) ~ N(p;,0?I) for a two-category d-dimensional problem with P(w) =
P(ws) =1/2.

(a) Show that the minimum probability of error is given by

%)
P, = L/67“2/2 du
e \/% ’

where a = |5 — p]|/(20).

(b) Let gy = 0 and p = (p1, ..., a)’. Use the inequality from Problem 30 to show
that P, approaches zero as the dimension d approaches infinity.

(¢) Express the meaning of this result in words.

32. Show that if the densities in a two-category classification problem differ markedly
from Gaussian, the Chernoff and Bhattacharyya bounds are not likely to be informa-
tion by considering the following one-dimensional examples. Consider a number of
problems in which the mean and variance are the same (and thus the Chernoff bound
and the Bhattacharyya bound remain the same), but nevertheless have a wide range
in Bayes error. For definiteness, assume the distributions have means at p; = —p and

po = +p, and 0F = 05 = .

2.11. PROBLEMS 93

(a) Use the equations in the text to calculate the Chernoff and the Bhattacharyya
bounds on the error.

(b) Suppose the distributions are both Gaussian. Calculate explicitly the Bayes
error. Express it in terms of an error function erf(-) and as a numerical value.

(¢) Now consider a another case, in which half the density for w; is concentrated
at a point x = —2p and half at x = 0; likewise (symmetrically) the density for
wo has half its mass at * = +2pu and half at x = 0. Show that the means and
variance remain as desired, but that now the Bayes error is 0.5.

(d) Now consider yet another case, in which half the density for wy is concentrated
near x = —2 and half at x = —e, where € is an infinitessimally small positive
distance; likewise (symmetrically) the density for ws has half its mass near
x = 42 and half at +e. Show that by making e sufficiently small, the means
and variances can be made arbitrarily close to x and p?, respectively. Show,
too, that now the Bayes error is zero.

(e) Compare your errors in (b), (c) and (d) to your Chernoff and Bhattacharyya
bounds of (a) and explain in words why those bounds are unlikely to be of much
use if the distributions differ markedly from Gaussians.

33. Suppose we know exactly two arbitrary distributions p(x|w;) and priors P(w;)
in a d-dimensional feature space.

(a) Prove that the true error cannot decrease if we first project the distributions to
a lower dimensional space and then classify them.

(b) Despite this fact, suggest why in an actual pattern recognition application we
might not want to include an arbitrarily high number of feature dimensions.

@D Section 2.8

34. Show for non-pathological cases that if we include more feature dimensions
in a Bayesian classifier for multidimensional Gaussian distributions then the Bhat-
tacharyya bound decreases. Do this as follows: Let Py(P(w1), 1, X1, P(wa), e, Xa),
or simply P;, be the Bhattacharyya bound if we consider the distributions restricted
to d dimensions.

(a) Using general properties of a covariance matrix, prove that k(1/2) of Eq. 75
must increase as we increase from d to d + 1 dimensions, and hence the error
bound must decrease.

(b) Explain why this general result does or does not depend upon which dimension
is added.

(¢c) What is a “pathological” case in which the error bound does not decrease, i.e.,
for which Py1q1 = Py?

(d) Isit ever possible that the ¢rue error could increase as we go to higher dimension?

(e) Prove that as d — oo, P; — 0 for non-pathological distributions. Describe
pathological distributions for which this infinite limit does not hold.

54 CHAPTER 2. BAYESIAN DECISION THEORY

(f) Given that the Bhattacharyya bound decreases for the inclusion of a particular
dimension, does this guarantee that the true error will decrease? Explain.

35. Derive Eqs. 72 & 73 from Eq. 71 by the following steps:

(a) Substitute the normal distributions into the integral and gather the terms de-
pendent upon x and those that are not dependent upon x.

(b) Factor the term independent of x from the integral.
(c) Integrate explicitly the term dependent upon x.

36. Cousider a two-category classification problem in two dimensions with p(x|w;) ~
N(0,1I), p(x|ws) ~ N ((}),I), and P(wy) = P(ws) = 1/2.

(a) Calculate the Bayes decision boundary.
(b) Calculate the Bhattacharyya error bound.

(c) Repeat the above for the same prior probabilities, but p(x|wi) ~ N (O, (25 g))
and p(x|wn) ~ N (), (3 5))-

37. Derive the Bhattacharyya error bound without the need for first examining the
Chernoff bound. Do this as follows:

(a) If a and b are nonnegative numbers, show directly that minfa,b] < v/ab.

(b) Use this to show that the error rate for a two-category Bayes classifier must
satisfy

P(error) < y/P(w1)P(w2) p < p/2,

where p is the so-called Bhattacharyya coefficient

p= / V/pon) p(xfw) dx.

38. Use the signal detection theory, the notation and basic Gaussian assumptions
described in the text to address the following.

(a) Prove that P(z > x*|z € wy) and P(x < x*|x € wy), taken together, uniquely
determine the discriminability d’.

(b) Use error functions erf(-) to express d’ in terms of the hit and false alarm rates.
Estimate d’ if P(z > 2*|z € wy) = 0.8 and P(z < z*|z € wy) = 0.3. Repeat for
P(z > a*|z € we) = 0.7 and P(x < z*|z € we) = 0.4.

(¢) Given that the Gaussian assumption is valid, calculate the Bayes error for both
the cases in (b).

(d) Determine by a trivial one-line computation, which case has the higher d’:

case A: P(x > a*|z € wy) = 0.8, P(x < ™|z € wy) = 0.3 or
case B: P(x > z*|z € wy) = 0.9, P(z < 2*|z € wq) = 0.7.

2.11. PROBLEMS 95

Explain your logic.

39. Suppose in our signal detection framework we had two Gaussians, but with dif-
ferent variances (cf., Fig. 2.20), that is, p(x|w; ~ N(u1,0%) and p(z|ws) ~ N(u2,03)
for po > py and o3 # of. In that case the resulting ROC curve would no longer be
symmetric.

(a) Suppose in this asymmetric case we modified the definition of the discriminabil-
ity to be d], = |p2 — p11]/\/7102. Show by non-trivial counterexample or analysis
that one cannot determine d], uniquely based on a single pair of hit and false
alarm rates.

(b) Assume we measure the hit and false alarm rates for two different, but unknown,
values of the threshold z*. Derive a formula for d,, based on measurements.

(c¢) State and explain all pathological values for which your formula does not give
a meaningful value for d,.

(d) Plot several ROC curves for the case p(x|wi) ~ N(0,1) and p(z|wz) ~ N(1,2).

40. Consider two one-dimensional triangle distributions having different means, but
the same width:

N sy @O == p]) /0% for |z — | <6
palwi) =T(ps, 0) = { 0 otherwise,
with pg > p1. We define a new discriminability here as d» = (u2 — p1)/0;.

(a) Write an analytic function, parameterized by d’., for the operating characteristic
curves.

(b) Plot these novel operating characteristic curves for d}. = {.1,.2,...,1.0}. Inter-
pret your answer for the case d7, = 1.0.

(¢) Suppose we measure P(x > z*|z € wy) = .4 and P(x > z*|z € wy) = .2. What
is d’.? What is the Bayes error rate?

(d) Infer the decision rule. That is, express z* in terms of the variables given in the
problem.

(e) Suppose we measure P(z > x*|x € wy) = .9 and (x > z*|x € wy) = .3. What is
d’.? What is the Bayes error rate?

(f) Infer the decision rule. That is, express z* in terms of the variables given in the
problem.

41. Equation 70 can be used to obtain an upper bound on the error. One can
also derive tighter analytic bounds in the two-category case — both upper and lower
bounds — analogous to Eq. 71 for general distributions. If we let p = p(z|w;), then
we seek tighter bounds on Min[p, 1 — p] (which has discontinuous derivative).

(a) Prove that

1 14e 4
n|——T
Jé] e—Bpr 1 ¢—B(1-p)

for any 3 > 0 is a lower bound on Min[p, 1 — p].

br(p) =

56 CHAPTER 2. BAYESIAN DECISION THEORY

(b) Prove that one can choose (3 in (a) to give an arbitrarily tight lower bound.

(¢) Repeat (a) and (b) for the upper bound given by

bu(p) = br(p) + [1 —29.(0.5)]bc(p)

where bg(p) is any upper bound that obeys

ba(p) > Min[p,1— p)

ba(p) = be(l—p)

ba(0) = bg(l)=0
be(0.5) = 0.5.

(d) Confirm that bg(p) = 1/2sin[mp] obeys the conditions in (c).

(e) Let bg(p) = 1/2sin[mp], and plot your upper and lower bounds as a function of
p, for 0 < p<1and g =1,10,50.

P Section 2.9

42. Let the components of the vector x = (21, ..., 24)* be binary valued (0 or 1) and
P(wj) be the prior probability for the state of nature w; and j = 1,...,c. Now define

pij = Prob(z; = 1|wy)

with the components of z; being statistically independent for all x in w;.
(a) Interpret in words the meaning of p;;.

(b) Show that the minimum probability of error is achieved by the following decision
rule: Decide wy, if gi(x) > g;(x) for all j and k, where

d d
gj(x) = le In . ?l; Jern (1 —pij)+1In P(w,).
i=1 =1

43. Let the components of the vector x = (z1,...,24)" be ternary valued (1, 0 or
—1), with

pij = Prob(z; = 1 |w,)
¢i;j = Prob(z; = 0 |w;)
rij = Prob(z; = —1jw;),

and with the components of x; being statistically independent for all x in w;.

(a) Show that a minimum probability of error decision rule can be derived that
involves discriminant functions g;(x) that are quadratic function of the compo-
nents x;.

(b) Suggest a generalization to more categories of your answers to this and Prob-
lem 42.

2.11. PROBLEMS o7

44. Let x be distributed as in Problem 42 with ¢ = 2, d odd, and

Pi1
Pi2

p>1/2 i=1,.d
1—p i=1,..d

and P(wy) = P(wq) = 1/2.
(a) Show that the minimum-error-rate decision rule becomes:

d
Decide wq if in > d/2 and wy otherwise.

i=1

(b) Show that the minimum probability of error is given by

(d=1)/2
P.(dp)= > (Z)pk(l—p)d"“~

k=0
where (Z) = d!/(k!(d — k)!) is the binomial coefficient.
(¢) What is the limiting value of P,(d,p) as p — 1/2? Explain.
(d) Show that P.(d,p) approaches zero as d — co. Explain.

45. Under the natural assumption concerning losses, i.e., that Aoy > A11 and Ao >
Aog, show that the general minimum risk discriminant function for the independent
binary case described in Sect. 2.9.1 is given by g(x) = w!x+wg, where w is unchanged,
and

d
1—p; P(wr) A21 — A1g
wy = In +1In +1In .
0 zzzl 1—q P(w2) A2 — A2z

46. The Poisson distribution for a discrete variable z = 0,1, 2, ... and real parameter
s

N

z!

P(z|\) =e

(a) Prove that the mean of such a distribution is E[z] = A.
(b) Prove that the variance of such a distribution is £[z — Z] = \.

(¢) The mode of a distribution is the value of x that has the maximum probability.
Prove that the mode of a Poisson distribution is the greatest integer that does
not exceed A, i.e., the mode is [A]. (If A is an integer, then both A and A\ — 1
are modes.)

(d) Consider two equally probable categories having Poisson distributions but with
differing parameters; assume for definiteness A\; > Ao. What is the Bayes clas-
sification decision?

(e) What is the Bayes error rate?

o8 CHAPTER 2. BAYESIAN DECISION THEORY
P Section 2.10

47. Suppose we have three categories in two dimensions with the following underlying
distributions:

* p(x|wr) ~ N(0,T)

o p(xlw) ~ N ((1).1)

o p(xlws) ~ 3N ((3),0) + 3N ((75).7)
with P(w;) = 1/3,i=1,2,3.

(a) By explicit calculation of posterior probabilities, classify the point x = (g) for
minimum probability of error.

(b) Suppose that for a particular test point the first feature is missing. That is,

classify x = (7).

(¢) Suppose that for a particular test point the second feature is missing. That is,
classify x = (7).

(d) Repeat all of the above for x = (7).

48. Show that Eq. 93 reduces to Bayes rule when the true feature is p,; and
p(xp|x¢) ~ N(x¢, X). Interpret this answer in words.

P Section 2.11

49. Suppose we have three categories with P(w;) = 1/2, P(wg) = P(w3) = 1/4 and
the following distributions

e p(z|wy) ~ N(0,1)
o p(alws) ~ N(.5,1)
* p(zfws) ~ N(1,1),
and that we sample the following four points: x = 0.6,0.1,0.9,1.1.

(a) Calculate explicitly the probability that the sequence actually came from wy, w3, w3, wa.
Be careful to consider normalization.

(b) Repeat for the sequence wq,wa,ws, ws.

(¢) Find the sequence having the maximum probability.

2.11. COMPUTER EXERCISES 99

Computer exercises

Several of the computer exercises will rely on the following data.

w1 w9 w3
sample T xT9 T3 T €T9 I3 Ty i) T3
1 —5.01 —-8.12 -3.68 | —-091 —-0.18 —0.05 5.35 2.26 8.13
2 —5.43 —348 —-3.54 1.30 —-2.06 —3.53 5.12 3.22 —2.66
3 1.08 —5.52 1.66 | =7.75 —4.54 —-095 | —-1.34 —-5.31 —9.87
4 0.86 —3.78 —4.11 || —5.47 0.50 3.92 4.48 3.42 5.19
5 —2.67 0.63 7.39 6.14 5.72 —4.85 7.11 2.39 9.21
6 4.94 3.29 2.08 3.60 1.26 4.36 7.17 4.33 —0.98
7 —2.51 2.09 -2.59 5.37 —4.63 —3.65 5.75 3.97 6.65
8 —-2.25 =213 —-6.94 7.18 1.46 —6.66 0.77 0.27 2.41
9 5.56 2.86 —2.26 || —7.39 1.17 6.30 0.90 -043 -8.71
10 1.03 —-3.33 433 || =7.50 —6.32 —0.31 3.52 —-0.36 6.43

B Section 2.2

1. You may need the following procedures for several exercises below.

(a) Write a procedure to generate random samples according to a normal distribu-
tion N(p,X) in d dimensions.

(b) Write a procedure to calculate the discriminant function (of the form given in
Eq. 47) for a given normal distribution and prior probability P(w;).

(¢) Write a procedure to calculate the Euclidean distance between two arbitrary
points.

(d) Write a procedure to calculate the Mahalanobis distance between the mean p
and an arbitrary point x, given the covariance matrix 3.

P Section 2.5

2. Use your classifier from Problem 77 to classify the following 10 samples from
the table above in the following way. Assume that the underlying distributions are
normal.

(a) Assume that the prior probabilities for the first two categories are equal (P(wq) =
P(ws) =1/2 and P(w3) = 0) and design a dichotomizer for those two categories
using only the x; feature value.

(b) Determine the empirical training error on your samples, i.e., the percentage of
points misclassified.

(¢) Use the Bhattacharyya bound to bound the error you will get on novel patterns
drawn from the distributions.

(d) Repeat all of the above, but now use two feature values, x1, and 5.
(e) Repeat, but use all three feature values.

(f) Discuss your results. In particular, is it ever possible for a finite set of data that
the empirical error might be larger for more data dimensions?

60 CHAPTER 2. BAYESIAN DECISION THEORY

3. Repeat Computer exercise 2 but for categories wy and ws.
4. Repeat Computer exercise 2 but for categories wo and ws.
5. Consider the three categories in Computer exercise 2, and assume P(w;) = 1/3.

(a) What is the Mahalanobis distance between each of the following test points and
each of the category means in Computer exercise 2: (1,2,1)%, (5,3,2)%, (0,0,0)?,
(1,0,0)".

(b) Classify those points.

(¢) Assume instead that P(w;) = 0.8, and P(wz) = P(ws) = 0.1 and classify the
test points again.

6. Ilustrate the fact that the average of a large number of independent random
variables will approximate a Gaussian by the following:

(a) Write a program to generate n random integers from a uniform distribution
U(zy,z,). (Some computer systems include this as a single, compiled function
call.)

(b) Now write a routine to choose z; and x, randomly, in the range —100 < z; <
2y < 4100, and n (the number of samples) randomly in the range 0 < n < 1000.

(c) Generate and plot a histogram of the accumulation of 10* points sampled as
just described.

(d) Calculate the mean and standard deviation of your histogram, and plot it

(e) Repeat the above for 10° and for 10°. Discuss your results.

D Section 2.8

7. Explore how the empirical error does or does not approach the Bhattacharyya
bound as follows:

(a) Write a procedure to generate sample points in d dimensions with a normal
distribution having mean p and covariance matrix 3.

(b) Consider p(x|w1) ~ N (((1)),1) and p(x|ws) ~ N ((_01), I) with P(w) = P(ws) =

1/2. By inspection, state the Bayes decision boundary.

(¢) Generate n = 100 points (50 for wy and 50 for wy) and calculate the empirical
error.

(d) Repeat for increasing values of n, 100 < n < 1000, in steps of 100 and plot your
empirical error.

(e) Discuss your results. In particular, is it ever possible that the empirical error is
greater than the Bhattacharyya or Chernoff bound?

8. Consider two one-dimensional normal distributions p(zjwi) ~ N(—.5,1) and
p(z|lwz) ~ N(+.5,1) and P(wy) = P(ws) = 0.5.

(a) Calculate the Bhattacharyya bound for the error of a Bayesian classifier.

(b) Express the true error rate in terms of an error function, erf(-).

2.11. COMPUTER EXERCISES 61
(¢) Evaluate this true error to four significant figures by numerical integration (or
other routine).

(d) Generate 10 points each for the two categories and determine the empirical error
using your Bayesian classifier. (You should recalculate the decision boundary
for each of your data sets.)

(e) Plot the empirical error as a function of the number of points from either dis-
tribution by repeating the previous part for 50, 100, 200, 500 and 1000 sample
points from each distribution. Compare your asymptotic empirical error to the
true error and the Bhattacharyya error bound.

9. Repeat Computer exercise 8 with the following conditions:
(a) p(x|wy) ~ N(—.5,2) and p(z|wz) ~ N(.5,2), P(w1) =2/3 and P(wz) = 1/3.
(b) p(z|w1) ~ N(—.5,2) and p(x|wz) ~ N(.5,2) and P(w;) = P(ws) = 1/2.
(¢) plafwr) ~ N(~5,3) and p(alwn) ~ N(5,1) and P(wr) = P(ws) = 1/2.

62

CHAPTER 2. BAYESIAN DECISION THEORY

Bibliography

[1]

Subutai Ahmad and Volker Tresp. Some solutions to the missing feature problem
in vision. In Stephen J. Hanson, Jack D. Cowan, and C. Lee Giles, editors, Neural
Information Processing Systems, volume 5, pages 393—400, San Mateo, CA, 1993.
Morgan Kaufmann.

Hadar Avi-Itzhak and Thanh Diep. Arbitrarily tight uppoer and lower bounds
on the Bayesian probability of error. IEEE Transaction on Pattern Analysis and
Machine Intelligence, PAMI-18(1):89-91, 1996.

Thomas Bayes. An essay towards solving a problem in the doctrine of chances.
Philosophical Transactions of the Royal Society (London), 53:370-418, 1763.

James O. Berger. Minimax estimation of a multivariate normal mean under
arbitrary quadratic loss. Journal of Multivariate Analysis, 6:256-264, 1976.

James O. Berger. Selecting a minimax estimator of a multivariate normal mean.
Annals of Statistics, 10:81-92, 1982.

James O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer-
Verlag, New York, NY, 2nd edition, 1985.

José M. Bernardo and Adrian F. M. Smith. Bayesian Theory. John Wiley, New
York, NY, 1996.

Anil Bhattacharyya. On a measure of divergence between two statistical popu-
lations defined by their probability distributions. Bulletin of the Calcutta Math-
ematical Society, 35:99-110, 1943.

Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations. Annals of Mathematical Statistics, 23:493-507,
1952.

Chao K. Chow. An optimum character recognition system using decision func-
tions. IRE Transactions, pages 247-254, 1957.

Chao K. Chow. On optimum recognition error and reject tradeoff. IEEE Trans-
actions on Information Theory, IT-16:41-46, 1970.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley
Interscience, New York, NY, 1991.

Morris H. DeGroot. Optimal Statistical Decisions. McGraw Hill, New York, NY,
1970.

63

64
[14]

[15]

[16]

[17]

[18]

[19]

BIBLIOGRAPHY

Bradley Efron and Carl Morris. Families of minimax estimators of the mean of
a multivariate normal distribution. Annals of Statistics, 4:11-21, 1976.

Thomas S. Ferguson. Mathematical Statistics: A Decision Theoretic Approach.
Academic Press, New York, NY, 1967.

Simon French. Decision Theory: An introduction to the mathematics of rational-
ity. Halsted Press, New York, NY, 1986.

Keinosuke Fukunaga. Introduction to Statistical Pattern Recognition. Academic
Press, New York, NY, 2nd edition, 1990.

Keinosuke Fukunaga and Thomas F. Krile. Calculation of Bayes recognition error
for two multivariate Gaussian distributions. IFEE Transactions on Computers,
(C-18:220-229, 1969.

Izrail M. Gelfand and Sergei Vasilevich Fomin. Calculus of Variations. Prentice-
Hall, Englewood Cliffs, NJ, translated from the Russian by Richard A. Silverman
edition, 1963.

Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian
Data Analysis. Chapman & Hall, New York, NY, 1995.

David M. Green and John A. Swets. Signal Detection Theory and Psychophysics.
Wiley, New York, NY, 1974.

David J. Hand. Construction and Assessment of Classification Rules. Wiley,
New York, NY, 1997.

Thomas Kailath. Linear Systems. Prentice-Hall, Englewood Cliffs, NJ, 1980.

Bernard Kolman. Elementary Linear Algebra. MacMillan College Division, New
York, NY, fifth edition, 1991.

Pierre Simon Laplace. Théorie Analytique des Probabiltiés. Courcier, Paris,
France, 1812.

Peter M Lee. Bayesian Statistics: An Introduction. Edward Arnold, London,
UK, 1989. there is no period after the M in his name.

Dennis V. Lindley. Making Decisions. Wiley, New York, NY, 1991.

Jerzy Neyman and Egon S. Pearson. On the problem of the most efficient tests of
statistical hypotheses. Philosophical Transactions of the Royal Society, London,
231:289-337, 1928.

Sheldon M. Ross. Introduction to Probability and Statistics for Engineers. John
Wiley and Sons, New York, NY, 1987.

Donald B. Rubin and Roderick J. A. Little. Statistical Analysis with Missing
Data. John Wiley, New York, NY, 1987.

Claude E. Shannon. A mathematical theory of communication. Bell Systems
Technical Journal, 6:379-423, 623656, 1948.

George B. Thomas, Jr. and Ross L. Finney. Calculus and Analytic Geometry.
Addison-Wesley, New York, NY, ninth edition, 1996.

BIBLIOGRAPHY 65

[33]

[34]

[35]

[36]

[37]

[38]

Julius T. Tou and Rafael C. Gonzalez. Pattern Recognition Principles. Addison-
Wesley, New York, NY, 1974.

William R. Uttal. The psychobiology of sensory coding. HarperCollins, New York,
NY, 1973.

Abraham Wald. Contributions to the theory of statistical estimation and testing
of hypotheses. Annals of Mathematical Statistics, 10:299-326, 1939.

Abraham Wald. Statistical Decision Functions. John Wiley, New York, NY,
1950.

C. T. Wolverton and T. J. Wagner. Asymptotically optimal discriminant func-
tions for pattern classifiers. IEFE Transactions on Information Theory, IT-
15:258-265, 1969.

C. Ray Wylie and Louis C. Barrett. Advanced Engineering Mathematics. McGraw
Hill, New York, NY, sixth edition, 1995.

Index

A+, +), see loss

w, see state of nature, 3
d', 34, see discriminability
R4, see Euclidean space
Ri, see decision, region

action, 7
action (a), 7
average, see mean

Bayes
decision rule, 6
Bayes’ formula, 4, 7
Bayesian decision theory, see decision
theory, Bayesian
Bhattacharyya
bound, 32
coefficient (p), 54
bias, 21, 38
binary feature, see feature, binary
binomial coefficient, 57
bit, 16
bound
Bhattacharyya, see Bhattacharyya,
bound
boundary, see decision, boundary

category symbol (w), 3
Central Limit Theorem, 17
Chernoff bound, 31
class-conditional probability, see prob-
ability, class-conditional
classification
fish example, 3
classifier
linear, 38
coeflicient
Bhattacharyya, see Bhattacharyya,
coefficient
conditional independence, 36, 37
conditional probability, see probabil-
ity, conditional

66

conditional risk, see risk, conditional
constraint
risk, 12
context
statistical dependence, 41
correct rejection, see rejection, correct
covariance, 17
covariance matrix, see matrix, covari-
ance
criterion

Neyman-Pearson, see Neyman-Pearson

criterion

decision, 7
Bayes, 6, 8, 36
binary features, 36
bias, 34
boundary, 14
hyperquadratic, 25
compound, 41
missing feature, 39
noisy feature, 39
randomized, 47
region, 14
rule, see rule
sequential, 41
decision theory
Bayes, 7
discrete features, 36
Bayesian, 3
continuous features, 7
dichotomizer, 15
discriminability, 54
discriminability (d’), 33, see receiver
operating characteristic
discriminant function, 37
discrete, 36
distance
Fuclidean, 20
Mahalanobis, 18
distribution

INDEX

and missing data, 39
marginal, 40
Poisson, 57
triangle, 55
dot product, see inner product

entropy, 16
error
Bayes, 5
probability, 4
discrete case, 38
minimal, 5
error function, 44
Euclidean norm, see distance, Euclidean
Euclidean space (R%), 36
evidence, 6
Expectation-Maximization algorithm, 40
expected value, 15, see mean
feature, 16

false alarm, 34
feature
binary, 36
good (uncorrupted), 40
independence, 38
integer valued, 36
missing, 39
noisy, 39-42
space, 7
ternary, 36
vector
binary, 36
continuous, 7
fish
classification example, 41
occlusion, 39

game theory, 11
Gaussian
distribution, 42
multidimensional, 17
one-dimensional, 16
univariate, 16

hit, 34

hypercube, 38
hyperellipsoid, 25
hyperparaboloid, 25
hyperplane, 25, 38
hyperquadric, 25
hypersphere, 25

67
independence
conditional, see conditional inde-
pendence

statistical, 17, 41
inner product, 17

joint probability, see probability, joint

knowledge
prior, 3

likelihood, 5, 37
ratio, 37

loss
classification, 9
expected, 7
function, 7
matrix, 7, 34
minimal, 8
symmetric, 9
zero-one, 9

Mahalanobis distance, see distance, Ma-
halanobis
marginal distribution, see distribution,
marginal
marginalize, 40
matching
template, see template matching
matrix
covariance, 17
mean, 16, 39
minimax risk, see risk, minimax
miss, 34
mode, 57

nat, 16
Neyman-Pearson criterion, 12
noise
model, 40, 41
norm, see distance or metric

omega (w), see state of nature or cat-
egory symbol
operating characteristic, 33-35

Poisson distribution, see distribution
Poisson

polychotomizer, 15

posterior probability, see probability,
posterior

)

68

prior, 3, 4, 7, 38
probability, 36
a posteriori, 5
a priori, 3
class-conditional, 37
conditional, 4, 6
density, 4, 36
singular, 36
state-conditional, 7
joint, 4
prior, 4

random variable, see variable, random

randomized decision rule, see decision
rule, randomized

receiver operating characteristic (ROC),

34
reject option, 7, 47
rejection
correct, 34

risk, 8
conditional, 8, 36
minimax, 11
overall, 36
ROC, see receiver operating character-
istic
rule
decision, 4

signal detection theory, 33
space
Euclidean (R%), 7
state of nature (w), 3
state-conditional probability density, see
probability density, see prob-
ability density, state conditional
statistical
dependence, 41
independence, 17
noise, 40

template matching, 22
ternary feature, see feature, ternary
threshold, 21, see bias
threshold weight, 38
transform
whitening, 18

variable
random, 41
variance, 16

INDEX

whitening transform, see transform, whiten-
ing

zero-one loss, see loss, zero-one

Contents

3 Maximum likelihood and Bayesian estimation

3.1
3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

Introduction
Maximum Likelihood Estimation
3.2.1 The General Principle 0.
3.2.2 The Gaussian Case: Unknown g
3.2.3 The Gaussian Case: Unknown pand ¥
324 Bilas
Bayesian estimationo Lo Lo
3.3.1 The Class-Conditional Densities
3.3.2 The Parameter Distribution
Bayesian Parameter Estimation: Gaussian Case
3.4.1 The Univariate Case: p(u|D)
3.4.2 The Univariate Case: p(z|D)
3.4.3 The Multivariate Case
Bayesian Parameter Estimation: General Theory
Example 1: Recursive Bayes learning and maximum likelthood
3.5.1 When do Maximum Likelihood and Bayes methods differ? . . .
3.5.2 Non-informative Priors and Invariance
*Sufficient Statisticso
Theorem 3.1: Factorization
3.6.1 Sufficient Statistics and the Exponential Family
Problems of Dimensionality
3.7.1 Accuracy, Dimension, and Training Sample Size.
3.7.2 Computational Complexity
3.7.3 Overfitting
*Expectation-Maximization (EM)
Algorithm 1: Ezpectation-Mazimization
Ezxample 2: Ezxpectation-Mazimization for a 2D normal model
*Bayesian Belief Networks
Example 3: Belief network for fish
*Hidden Markov Models
3.10.1 First-order Markov models
3.10.2 First-order hidden Markov models
3.10.3 Hidden Markov Model Computation
3.10.4 Evaluation oo
Algorithm 2: Forward
Algorithm 8: Backward
Ezxample 4: Hidden Markov Model

1

O © 00~ N W W

= e e e e e e
O© N === O

CONTENTS

3.10.5 Decoding 49
Algorithm 4: HMM decode, 49
Ezxample 5: HMM decoding 50
3.10.6 Learning e 51
Algorithm 5: Forward-Backward 52
SUMMATY . . o o o e e e e e 53
Bibliographical and Historical Remarks 54
Problems 54
Computer eXerciseso 68
Bibliography 72

Index e 75

Chapter 3

Maximum likelihood and
Bayesian parameter
estimation

3.1 Introduction

n Chap. 7?7 we saw how we could design an optimal classifier if we knew the prior
Iprobabilities P(w;) and the class-conditional densities p(x|w;). Unfortunately, in
pattern recognition applications we rarely if ever have this kind of complete knowledge
about the probabilistic structure of the problem. In a typical case we merely have
some vague, general knowledge about the situation, together with a number of design
samples or training data — particular representatives of the patterns we want to
classify. The problem, then, is to find some way to use this information to design or
train the classifier.

One approach to this problem is to use the samples to estimate the unknown prob-
abilities and probability densities, and to use the resulting estimates as if they were
the true values. In typical supervised pattern classification problems, the estimation
of the prior probabilities presents no serious difficulties (Problem 3). However, es-
timation of the class-conditional densities is quite another matter. The number of
available samples always seems too small, and serious problems arise when the di-
mensionality of the feature vector x is large. If we know the number of parameters in
advance and our general knowledge about the problem permits us to parameterize the
conditional densities, then the severity of these problems can be reduced significantly.
Suppose, for example, that we can reasonably assume that p(x|w;) is a normal density
with mean p,; and covariance matrix ¥;, although we do not know the exact values
of these quantities. This knowledge simplifies the problem from one of estimating an
unknown function p(x|w;) to one of estimating the parameters p; and ;.

The problem of parameter estimation is a classical one in statistics, and it can be
approached in several ways. We shall consider two common and reasonable proce-
dures, mazimum likelihood estimation and Bayesian estimation. Although the results
obtained with these two procedures are frequently nearly identical, the approaches

TRAINING
DATA

MAXIMUM
LIKELIHOOD

BAYESIAN
ESTIMATION

BAYESIAN
LEARNING

4 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

are conceptually quite different. Maximum likelihood and several other methods view
the parameters as quantities whose values are fixed but unknown. The best estimate
of their value is defined to be the one that maximizes the probability of obtaining
the samples actually observed. In contrast, Bayesian methods view the parameters as
random variables having some known a priori distribution. Observation of the sam-
ples converts this to a posterior density, thereby revising our opinion about the true
values of the parameters. In the Bayesian case, we shall see that a typical effect of
observing additional samples is to sharpen the a posteriori density function, causing
it to peak near the true values of the parameters. This phenomenon is known as
Bayesian learning. In either case, we use the posterior densities for our classification
rule, as we have seen before.

It is important to distinguish between supervised learning and unsupervised learn-
ing. In both cases, samples x are assumed to be obtained by selecting a state of nature
w; with probability P(w;), and then independently selecting x according to the proba-
bility law p(x|w;). The distinction is that with supervised learning we know the state
of nature (class label) for each sample, whereas with unsupervised learning we do not.
As one would expect, the problem of unsupervised learning is the more difficult one.
In this chapter we shall consider only the supervised case, deferring consideration of
unsupervised learning to Chap. 77.

3.2 Maximum Likelihood Estimation

Maximum likelihood estimation methods have a number of attractive attributes.
First, they nearly always have good convergence properties as the number of train-
ing samples increases. Further, maximum likelihood estimation often can be simpler
than alternate methods, such as Bayesian techniques or other methods presented in
subsequent chapters.

3.2.1 The General Principle

Suppose that we separate a collection of samples according to class, so that we have ¢
sets, D1, ..., D., with the samples in D; having been drawn independently according to
the probability law p(x|w;). We say such samples are i.i.d. — independent identically
distributed random variables. We assume that p(x|w;) has a known parametric form,
and is therefore determined uniquely by the value of a parameter vector ;. For
example, we might have p(x|w;) ~ N(p;, X;), where 6; consists of the components of
p; and 3;. To show the dependence of p(x|w;) on 8; explicitly, we write p(x|w;) as
p(x|w;,0;). Our problem is to use the information provided by the training samples
to obtain good estimates for the unknown parameter vectors 604, ..., 8. associated with
each category.

To simplify treatment of this problem, we shall assume that samples in D; give no
information about 6; if ¢ # j — that is, we shall assume that the parameters for the
different classes are functionally independent. This permits us to work with each class
separately, and to simplify our notation by deleting indications of class distinctions.
With this assumption we thus have ¢ separate problems of the following form: Use a
set D of training samples drawn independently from the probability density p(x|80) to
estimate the unknown parameter vector 6.

Suppose that D contains n samples, x1, ..., X,. Then, since the samples were drawn
independently, we have

3.2. MAXIMUM LIKELIHOOD ESTIMATION 5

p(D16) = [] p(xi16). (1)
k=1

Recall from Chap. ?? that, viewed as a function of 8, p(D|0) is called the likelihood
of @ with respect to the set of samples. The mazimum likelihood estimate of @ is, by
definition, the value 6 that maximizes p(D|0). Intuitively, this estimate corresponds
to the value of @ that in some sense best agrees with or supports the actually observed
training samples (Fig. 3.1).

— < ~ -
//</\\\// N
SR AVERNEENAN N
/// y\\ \
/// J \\\ \
/// _ \\\ \\
=z~ - S>>

p(D|o) ¢
12x107}
8x107} 5
4x107}

Y . . >0

1(6)
20F

, , Y0
1 2 3 4 5 6 7

-100 ¢

Figure 3.1: The top graph shows several training points in one dimension, known or
assumed to be drawn from a Gaussian of a particular variance, but unknown mean.
Four of the infinite number of candidate source distributions are shown in dashed
lines. The middle figures shows the likelihood p(D|0) as a function of the mean. If
we had a very large number of training points, this likelihood would be very narrow.
The value that maximizes the likelihood is marked 6; it also maximizes the logarithm
of the likelihood — i.e., the log-likelihood I(6), shown at the bottom. Note especially
that the likelihood lies in a different space from p(az:|(§)7 and the two can have different
functional forms.

For analytical purposes, it is usually easier to work with the logarithm of the like-
lihood than with the likelihood itself. Since the logarithm is monotonically increasing,
the 6 that maximizes the log-likelihood also maximizes the likelihood. If p(D|@) is a
well behaved, differentiable function of 6, 6 can be found by the standard methods of
differential calculus. If the number of parameters to be set is p, then we let 8 denote

LOG-
LIKELIHOOD

MAXIMUM A
POSTERIORI

MODE

6 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION
the p-component vector 8 = (61, ...,6,)", and Vg be the gradient operator

i

01

VG = . (2)
0
a6,

We define 1(0) as the log-likelihood function™

1(6) = In p(D)|0). (3)

We can then write our solution formally as the argument € that maximizes the log-
likelihood, i.e.,

0 = arg mOaXZ(B), (4)

where the dependence on the data set D is implicit. Thus we have from Eq. 1

1(6) =) In p(x|0) (5)
k=1

and

Vol = _ Vg In p(xx[0). (6)
k=1

Thus, a set of necessary conditions for the maximum likelihood estimate for € can be
obtained from the set of p equations

"

A solution 8 to Eq. 7 could represent a true global maximum, a local maximum or
minimum, or (rarely) an inflection point of [(#). One must be careful, too, to check
if the extremum occurs at a boundary of the parameter space, which might not be
apparent from the solution to Eq. 7. If all solutions are found, we are guaranteed
that one represents the true maximum, though we might have to check each solution
individually (or calculate second derivatives) to identify which is the global optimum.
Of course, we must bear in mind that 6 is an estimate; it is only in the limit of an
infinitely large number of training points that we can expect that our estimate will
equal to the true value of the generating function (Sec. 3.5.1).

We note in passing that a related class of estimators — maxzimum a posteriori or
MAP estimators — find the value of 6 that maximizes [(8)p(0). Thus a maximum
likelihood estimator is a MAP estimator for the uniform or “flat” prior. As such,
a MAP estimator finds the peak, or mode of a posterior density. The drawback of
MAP estimators is that if we choose some arbitrary nonlinear transformation of the
parameter space (e.g., an overall rotation), the density will change, and our MAP
solution need no longer be appropriate (Sec. 3.5.2).

* Of course, the base of the logarithm can be chosen for convenience, and in most analytic problems
base e is most natural. For that reason we will generally use In rather than log or log,.

3.2. MAXIMUM LIKELIHOOD ESTIMATION 7

3.2.2 The Gaussian Case: Unknown p

To see how maximum likelihood methods results apply to a specific case, suppose
that the samples are drawn from a multivariate normal population with mean g and
covariance matrix 3. For simplicity, consider first the case where only the mean is
unknown. Under this condition, we consider a sample point x; and find

In plxil) = —5n [(20)[S] — 3 0xe —)5 (k1) (8)

and

Vo In p(xilp) = 7 (x — p). 9)

Identifying 6 with p, we see from Eq. 9 that the maximum likelihood estimate for p
must satisfy

S5 g i) = 0, (10)
k=1

that is, each of the d components of £t must vanish. Multiplying by ¥ and rearranging,
we obtain

n
fr="">" xy. (11)
k=1

This is a very satisfying result. It says that the maximum likelihood estimate for
the unknown population mean is just the arithmetic average of the training samples
— the sample mean, sometimes written fi,, to clarify its dependence on the number
of samples. Geometrically, if we think of the n samples as a cloud of points, the
sample mean is the centroid of the cloud. The sample mean has a number of desirable
statistical properties as well, and one would be inclined to use this rather obvious
estimate even without knowing that it is the maximum likelihood solution.

S|

3.2.3 The Gaussian Case: Unknown p and ¥

In the more general (and more typical) multivariate normal case, neither the mean p
nor the covariance matrix 3 is known. Thus, these unknown parameters constitute
the components of the parameter vector 6. Consider first the univariate case with
0, = p and 6, = 0. Here the log-likelihood of a single point is

1 1
In p(zx|0) = -5 In 270, — E(azk —01)? (12)

and its derivative is

7, (xk = 61)
Vgl =Vg In p(x;]|0) = _% n (xk2—921)2 (13)

Applying Eq. 7 to the full log-likelihood leads to the conditions

n

Zi(xk—él)zo (14)

k=1 "2

SAMPLE
MEAN

BIAS

8 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

and

1 n 70" 2
4 M —0, (15)
03

where 6; and 6, are the maximum likelihood estimates for 6; and 65, respectively. By
substituting i = 91, 62 = 6, and doing a httle rearranging, we obtain the following
maximum likelihood estimates for p and o2:

% Zn: (16)
and

1
~2 L 2
6= =3 -) (1)
k=1
While the analysis of the multivariate case is basically very similar, considerably
more manipulations are involved (Problem 6). Just as we would predict, though, the
result is that the maximum likelihood estimates for p and 3 are given by

=3 (18)

and

— Xk — Xk — ﬂ)t (19)

Thus, once again we find that the maximum likelihood estimate for the mean
vector is the sample mean. The maximum likelihood estimate for the covariance
matrix is the arithmetic average of the n matrices (xx — ft)(xx — ft)*. Since the true
covariance matrix is the expected value of the matrix (x — 1) (x — f1)?, this is also a
very satisfying result.

3.2.4 Bias

The maximum likelihood estimate for the variance o2 is biased; that is, the expected
value over all data sets of size n of the sample variance is not equal to the true
variance:*

1< o m=1 5,

5[722(@ x)}— —o® # 0% (20)

We shall return to a more general consideration of bias in Chap. 7?7, but for the

moment we can verify Eq. 20 for an underlying distribution with non-zero variance,

02, in the extreme case of n = 1, in which the expectation value £[-] = 0 # 2. The

maximum likelihood estimate of the covariance matrix is similarly biased.
Elementary unbiased estimators for o2 and ¥ are given by

* There should be no confusion over this use of the statistical term bias, and that for an offset in
neural networks and many other places.

3.3. BAYESIAN ESTIMATION 9

-

Il
— =

1
5{71—1

C:

(x; — f)Q] =o? and (21)

7

1 > (k=) (x — 1), (22)

k=1

n —

where C is the so-called sample covariance matriz, as explored in Problem 33. If
an estimator is unbiased for all distributions, as for example the variance estimator
in Eq. 21, then it is called absolutely unbiased. If the estimator tends to become
unbiased as the number of samples becomes very large, as for instance Eq. 20, then
the estimator is asymptotically unbiased. In many pattern recognition problems with
large training data sets, asymptotically unbiased estimators are acceptable.

Clearly, & = [(n—1)/n]C, and 3} is asymptotically unbiased — these two estimates
are essentially identical when n is large. However, the existence of two similar but
nevertheless distinct estimates for the covariance matrix may be disconcerting, and it
is natural to ask which one is “correct.” Of course, for n > 1 the answer is that these
estimates are neither right nor wrong — they are just different. What the existence of
two actually shows is that no single estimate possesses all of the properties we might
desire. For our purposes, the most desirable property is rather complex — we want
the estimate that leads to the best classification performance. While it is usually both
reasonable and sound to design a classifier by substituting the maximum likelihood
estimates for the unknown parameters, we might well wonder if other estimates might
not lead to better performance. Below we address this question from a Bayesian
viewpoint.

If we have a reliable model for the underlying distributions and their dependence
upon the parameter vector €, the maximum likelihood classifier will give excellent
results. But what if our model is wrong — do we nevertheless get the best classifier in
our assumed set of models? For instance, what if we assume that a distribution comes
from N(p,1) but instead it actually comes from N (u,10)? Will the value we find for
0 = p by maximum likelihood yield the best of all classifiers of the form derived from
N(p,1)? Unfortunately, the answer is “no,” and an illustrative counterexample is
given in Problem 7 where the so-called model error is large indeed. This points out
the need for reliable information concerning the models — if the assumed model is
very poor, we cannot be assured that the classifier we derive is the best, even among
our model set. We shall return to the problem of choosing among candidate models
in Chap. 77.

3.3 Bayesian estimation

We now consider the Bayesian estimation or Bayesian learning approach to pattern
classification problems. Although the answers we get by this method will generally
be nearly identical to those obtained by maximum likelihood, there is a conceptual
difference: whereas in maximum likelihood methods we view the true parameter vector
we seek, 6, to be fixed, in Bayesian learning we consider 8 to be a random variable,
and training data allows us to convert a distribution on this variable into a posterior
probability density.

SAMPLE
COVARIANCE

ABSOLUTELY
UNBIASED

ASYMPTOT-
ICALLY
UNBIASED

10 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

3.3.1 The Class-Conditional Densities

The computation of the posterior probabilities P(w;|x) lies at the heart of Bayesian
classification. Bayes’ formula allows us to compute these probabilities from the prior
probabilities P(w;) and the class-conditional densities p(x|w;), but how can we proceed
when these quantities are unknown? The general answer to this question is that the
best we can do is to compute P(w;|x) using all of the information at our disposal.
Part of this information might be prior knowledge, such as knowledge of the functional
forms for unknown densities and ranges for the values of unknown parameters. Part
of this information might reside in a set of training samples. If we again let D denote
the set of samples, then we can emphasize the role of the samples by saying that our
goal is to compute the posterior probabilities P(w;|x,D). From these probabilities we
can obtain the Bayes classifier.
Given the sample D, Bayes’ formula then becomes

p(x|wi, D) P(wi|D)

5~ plxles. D)P(s[D)

P(wi|x,D) = (23)

As this equation suggests, we can use the information provided by the training samples
to help determine both the class-conditional densities and the a priori probabilities.

Although we could maintain this generality, we shall henceforth assume that the
true values of the a priori probabilities are known or obtainable from a trivial calcu-
lation; thus we substitute P(w;) = P(w;|D). Furthermore, since we are treating the
supervised case, we can separate the training samples by class into ¢ subsets Dy, ..., D,
with the samples in D; belonging to w;. As we mentioned when addressing maximum
likelihood methods, in most cases of interest (and in all of the cases we shall consider),
the samples in D; have no influence on p(x|w;, D) if i # j. This has two simplifying
consequences. First, it allows us to work with each class separately, using only the
samples in D; to determine p(x|w;, D). Used in conjunction with our assumption that
the prior probabilities are known, this allows us to write Eq. 23 as

p(x|ws, D;) P(w;)

C

P(w;|x,D) =

. (24)
1p(X|wj7 Dj)P(w;)

J

Second, because each class can be treated independently, we can dispense with need-
less class distinctions and simplify our notation. In essence, we have ¢ separate prob-
lems of the following form: use a set D of samples drawn independently according to
the fixed but unknown probability distribution p(x) to determine p(x|D). This is the
central problem of Bayesian learning.

3.3.2 The Parameter Distribution

Although the desired probability density p(x) is unknown, we assume that it has a
known parametric form. The only thing assumed unknown is the value of a parameter
vector 6. We shall express the fact that p(x) is unknown but has known parametric
form by saying that the function p(x|0) is completely known. Any information we
might have about @ prior to observing the samples is assumed to be contained in a
known prior density p(0). Observation of the samples converts this to a posterior
density p(0|D), which, we hope, is sharply peaked about the true value of 6.

3.4. BAYESIAN PARAMETER ESTIMATION: GAUSSIAN CASE 11

Note that we are changing our supervised learning problem into an unsupervised
density estimation problem. To this end, our basic goal is to compute p(x|D), which
is as close as we can come to obtaining the unknown p(x). We do this by integrating
the joint density p(x,0|D) over 6. That is,

p(x|D) = / p(x,0|D) 6, (25)

where the integration extends over the entire parameter space. Now as discussed in
Problem 12 we can write p(x, 8|D) as the product p(x|@, D)p(6|D). Since the selection
of x and that of the training samples in D is done independently, the first factor is
merely p(x|@). That is, the distribution of x is known completely once we know the
value of the parameter vector. Thus, Eq. 25 can be rewritten as

p(x|D) = / p(x/0)p(6]D) d6. (26)

This key equation links the desired class-conditional density p(x|D) to the posterior
density p(@|D) for the unknown parameter vector. If p(@|D) peaks very sharply
about some value 0, we obtain p(x|D) ~ p(x|), i.e., the result we would obtain by
substituting the estimate 6 for the true parameter vector. This result rests on the
assumption that p(x|0) is smooth, and that the tails of the integral are not important.
These conditions are typically but not invariably the case, as we shall see in Sect. 77.
In general, if we are less certain about the exact value of 6, this equation directs us to
average p(x|0) over the possible values of 8. Thus, when the unknown densities have
a known parametric form, the samples exert their influence on p(x|D) through the
posterior density p(@|D). We should also point out that in practice, the integration
in Eq. 26 is often performed numerically, for instance by Monte-Carlo simulation.

3.4 Bayesian Parameter Estimation: Gaussian Case

In this section we use Bayesian estimation techniques to calculate the a posteri-
ori density p(0|D) and the desired probability density p(x|D) for the case where

p(x|p) ~ N(p,%).

3.4.1 The Univariate Case: p(u|D)

Consider the case where p is the only unknown parameter. For simplicity we treat
first the univariate case, i.e.,

p(:c|,u) ~ N(u’ 02)7 (27)

where the only unknown quantity is the mean pu. We assume that whatever prior
knowledge we might have about p can be expressed by a known prior density p(u).
Later we shall make the further assumption that

p(p) ~ N (o, 05), (28)

where both 9 and o032 are known. Roughly speaking, po represents our best a priori
guess for g, and of measures our uncertainty about this guess. The assumption
that the prior distribution for p is normal will simplify the subsequent mathematics.

REPRODUCING
DENSITY

12 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

However, the crucial assumption is not so much that the prior distribution for u is
normal, but that it is known.

Having selected the a priori density for u, we can view the situation as follows.
Imagine that a value is drawn for p from a population governed by the probability
law p(u). Once this value is drawn, it becomes the true value of 1 and completely
determines the density for . Suppose now that n samples x1, ..., x,, are independently
drawn from the resulting population. Letting D = {1, ..., 2, }, we use Bayes’ formula
to obtain

p(D|u)p()
S p(Dlp)p(p) du

n

a [T p(xlwp(n),

k=1

p(u|D)

(29)

where « is a normalization factor that depends on D but is independent of p. This
equation shows how the observation of a set of training samples affects our ideas about
the true value of y; it relates the prior density p(u) to an a posteriori density p(u|D).
Since p(zg|u) ~ N(u,0?) and p(u) ~ N(po,08), we have

p(n)

%(mko—uf} \/%JO exp [_ %(%)2}

S)

(G2 (Em)] |
k=1

where factors that do not depend on p have been absorbed into the constants «,
o/, and o”. Thus, p(u|D) is an exponential function of a quadratic function of pu,
i.e., is again a normal density. Since this is true for any number of training samples,
p(p|D) remains normal as the number n of samples is increased, and p(u|D) is said
to be a reproducing density and p(u) is said to be a conjugate prior. If we write
p(u|D) ~ N(jin,02), then p, and o2 can be found by equating coefficients in Eq. 30
with corresponding coefficients in the generic Gaussian of the form

p(zk|p)

p(u/D) exp | -

2
1 1 = ,un)
D)= —— ex — | — . 31
p(ul)manplQ(gn] @1
Identifying coeflicients in this way yields
1 n 1
= 4= 32
o2 o2 o} (32)
and
L=t (33)
o2 09 0§

where Z,, is the sample mean

3.4. BAYESIAN PARAMETER ESTIMATION: GAUSSIAN CASE 13

PR > (34)

We solve explicitly for u,, and o2 and obtain

2 2
nog _ o
Hn (77,0'8 T 02> Tn + na(g) n 0_2 Ho ()
and
2 2
2 0p0
= . 36
In nod + o2 (36)

These equations show how the prior information is combined with the empirical
information in the samples to obtain the a posteriori density p(u|D). Roughly speak-
ing, u, represents our best guess for u after observing n samples, and o2 measures
our uncertainty about this guess. Since o2 decreases monotonically with n — ap-
proaching o2 /n as n approaches infinity — each additional observation decreases our
uncertainty about the true value of p. As n increases, p(u|D) becomes more and
more sharply peaked, approaching a Dirac delta function as n approaches infinity.

This behavior is commonly known as Bayesian learning (Fig. 3.2).

(X, --. s Xo)

20\
0

M
N

(KAXIN
“:‘\‘ “‘«.‘3!

77
5

30
10

5
2 4

-4 2

Figure 3.2: Bayesian learning of the mean of normal distributions in one and two di-
mensions. The posterior distribution estimates are labelled by the number of training
samples used in the estimation.

In general, pu,, is a linear combination of Z, and pug, with coefficients that are
non-negative and sum to one. Thus u,, always lies somewhere between z,, and pg. If
o # 0, u, approaches the sample mean as n approaches infinity. If oo = 0, we have
a degenerate case in which our a priori certainty that u = pg is so strong that no
number of observations can change our opinion. At the other extreme, if og > o, we
are so uncertain about our a priori guess that we take u,, = %,, using only the samples
to estimate p. In general, the relative balance between prior knowledge and empirical
data is set by the ratio of 02 to o, which is sometimes called the dogmatism. If the
dogmatism is not infinite, after enough samples are taken the exact values assumed
for y19 and o2 will be unimportant, and g, will converge to the sample mean.

BAYESIAN
LEARNING

DOGMATISM

14 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

3.4.2 The Univariate Case: p(z|D)

Having obtained the a posteriori density for the mean, p(u|D), all that remains is to
obtain the “class-conditional” density for p(z|D).* From Egs. 26, 27 & 31 we have

palD) = [plelu)p(ulD) dn
= [oe (50] v [o () T
- 27Ti0’n exp [_ %%MZ;LZ} flo,on), (37)
where

102+ g2 2 2, \2
F(o,0m) = exp[__a +an(u_anx+ou) } dp.
2 o202 o2+ o2

That is, as a function of z, p(z|D) is proportional to exp[—(1/2)(z — u,)?/(c? +02)],
and hence p(z|D) is normally distributed with mean f,, and variance o2 + o2:

p(@|D) ~ N(pin, 0% + 7). (38)

In other words, to obtain the class-conditional density p(z|D), whose parametric
form is known to be p(x|u) ~ N(u,0?), we merely replace p by p, and o2 by 02+ o2.
In effect, the conditional mean u, is treated as if it were the true mean, and the
known variance is increased to account for the additional uncertainty in = resulting
from our lack of exact knowledge of the mean p. This, then, is our final result:
the density p(z|D) is the desired class-conditional density p(z|w;, D;), and together
with the prior probabilities P(w;) it gives us the probabilistic information needed to
design the classifier. This is in contrast to maximum likelihood methods that only
make points estimates for {1 and o2, rather that estimate a distribution for p(z|D).

3.4.3 The Multivariate Case

The treatment of the multivariate case in which 3 is known but p is not, is a di-
rect generalization of the univariate case. For this reason we shall only sketch the
derivation. As before, we assume that

p(x|p) ~ N(p, %) and p(p) ~ N(pg, o), (39)

where X, 3, and p, are assumed to be known. After observing a set D of n inde-
pendent samples x1, ..., X,, we use Bayes’ formula to obtain

p(uD) = o] pxklwp(n) (40)
k=1
= dexp [—% (ut(nE_l + X5 —2u (E_l Zxk + 251;1,0)) ,
k=1

* Recall that for simplicity we dropped class distinctions, but that all samples here come from the
same class, say w;, and hence p(x|D) is really p(x|w;, D;).

3.4. BAYESIAN PARAMETER ESTIMATION: GAUSSIAN CASE 15

which has the form

p(p|D) = aexp —%(u =)' S (=) | (41)

Thus, p(pu|D) ~ N(u,,, 3,), and once again we have a reproducing density. Equating
coeflicients, we obtain the analogs of Eqgs. 35 & 36,

l=n2 43t (42)
and
2y, =02 iy, + B0 g, (43)
where f1,, is the sample mean
=23 ()
==Y Xp.
Ky n £ k

The solution of these equations for pu and ¥,, is simplified by knowledge of the matrix
identity

(A7'+B)"'=A(A+B) 'B=B(A+B) A, (45)

which is valid for any pair of nonsingular, d-by-d matrices A and B. After a little
manipulation (Problem 16), we obtain the final results:

-1

=3 (20 + %2)_1,1” + %2(20 + %2) 1o (46)

(which, as in the univariate case, is a linear combination of f,, and p,) and

1_\-11
» =3, (20 n —2) >} (47)
n n

The proof that p(x|D) ~ N(u,,, X+ X,,) can be obtained as before by performing
the integration

p(x|D) = / p(x|0)p(/D) dp. (48)

However, this result can be obtained with less effort by observing that x can be viewed
as the sum of two mutually independent random variables, a random vector p with
p(p|D) ~ N(p,, X,) and an independent random vector y with p(y) ~ N(0,X).
Since the sum of two independent, normally distibuted vectors is again a normally
distributed vector whose mean is the sum of the means and whose covariance matrix
is the sum of the covariance matrices (Chap. ?? Problem ?7?), we have

p(x|D) ~ N(p,,, Z + X)), (49)

and the generalization is complete.

16 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

3.5 Bayesian Parameter Estimation: General Theory

We have just seen how the Bayesian approach can be used to obtain the desired density
p(x|D) in a special case — the multivariate Gaussian. This approach can be gener-
alized to apply to any situation in which the unknown density can be parameterized.
The basic assumptions are summarized as follows:

e The form of the density p(x|0) is assumed to be known, but the value of the
parameter vector 8 is not known exactly.

e Our initial knowledge about 6 is assumed to be contained in a known a priori
density p(0).

e The rest of our knowledge about 0 is contained in a set D of n samples X1, ..., X,
drawn independently according to the unknown probability density p(x).

The basic problem is to compute the posterior density p(€|D), since from this we
can use Eq. 26 to compute p(x|D):

p(xID) = [p(xi8)p6[D) do. (50)
By Bayes’ formula we have

_ _ »(D|9)p(6)
PO Tamiomte) @ o

and by the independence assumption

p(D16) =] p(x116). (52)
k=1

This constitutes the solution to the problem, and Eqs. 51 & 52 illuminate its
relation to the maximum likelihood solution. Suppose that p(D|@) reaches a sharp
peak at @ = 0. If the prior density p(6) is not zero at 8 = 6 and does not change
much in the surrounding neighborhood, then p(8|D) also peaks at that point. Thus,
Eq. 26 shows that p(x|D) will be approximately p(x\é), the result one would obtain
by using the maximum likelihood estimate as if it were the true value. If the peak
of p(D|0) is very sharp, then the influence of prior information on the uncertainty in
the true value of @ can be ignored. In this and even the more general case, though,
the Bayesian solution tells us how to use all the available information to compute the
desired density p(x|D).

While we have obtained the formal Bayesian solution to the problem, a number
of interesting questions remain. Omne concerns the difficulty of carrying out these
computations. Another concerns the convergence of p(x|D) to p(x). We shall discuss
the matter of convergence briefly, and later turn to the computational question.

To indicate explicitly the number of samples in a set for a single category, we shall
write D" = {x1,...,X, }. Then from Eq. 52, if n > 1

p(D"(0) = p(x,|0)p(D"1|6). (53)

Substituting this in Eq. 51 and using Bayes’ formula, we see that the posterior density
satisfies the recursion relation

3.5. BAYESIAN PARAMETER ESTIMATION: GENERAL THEORY 17

p(6]D") = - PORlOp(OID")

= [p(x.|0)p(6]D" 1) d6° (54)

With the understanding that p(6]D°) = p(@), repeated use of this equation pro-
duces the sequence of densities p(@), p(0]x1), p(0]x1,X2), and so forth. (It should be
obvious from Eq. 54 that p(@|D") depends only on the points in D™, not the sequence
in which they were selected.) This is called the recursive Bayes approach to param-
eter estimation. This is, too, our first example of an incremental or on-line learning
method, where learning goes on as the data is collected. When this sequence of den-
sities converges to a Dirac delta function centered about the true parameter value —
Bayesian learning (Example 1). We shall come across many other, non-incremental
learning schemes, where all the training data must be present before learning can take
place.

In principle, Eq. 54 requires that we preserve all the training points in D"~! in
order to calculate p(6|D™) but for some distributions, just a few parameters associated
with p(@|D" 1) contain all the information needed. Such parameters are the sufficient
statistics of those distributions, as we shall see in Sect. 3.6. Some authors reserve the
term recursive learning to apply to only those cases where the sufficient statistics are
retained — not the training data — when incorporating the information from a new
training point. We could call this more restrictive usage true recursive Bayes learning.

Example 1: Recursive Bayes learning

Suppose we believe our one-dimensional samples come from a uniform distribution

1706 0<z<@0
) ~v0.0)={ o0 OS]

but initially we know only that our parameter is bounded. In particular we assume
0 <0 <10 (a non-informative or “flat prior” we shall discuss in Sect. 3.5.2). We
will use recursive Bayes methods to estimate # and the underlying densities from the
data D = {4,7, 2,8}, which were selected randomly from the underlying distribution.
Before any data arrive, then, we have p(6|D°) = p() = U(0,10). When our first data
point x1 = 4 arrives, we use Eq. 54 to get an improved estimate:

1/0 for4 <60 <10
p(0|D") o p(z|0)p(6|D°) = { ()/ otherwise,

where throughout we will ignore the normalization. When the next data point o =7
arrives, we have

1/6% for 7<6 <10
p(0|D?) o p(x|0)p(6|D") = { 0/ otherwise,

and similarly for the remaining sample points. It should be clear that since each
successive step introduces a factor of 1/ into p(z|#), and the distribution is nonzero
only for x values above the largest data point sampled, the general form of our solution
is p(A|D™) x 1/6™ for m;;ix[D"} < 0 <10, as shown in the figure. Given our full data

RECURSIVE
BAYES

INCREMENTAL
LEARNING

IDENTIFI-
ABILITY

18 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

Cl2p)

0.6

0.4
1
0.2 \

2 6 10

6

The posterior p(8|D™) for the model and n points in the data set in this Example.
The posterior begins p(6) ~ U(0, 10), and as more points are incorporated it becomes
increasingly peaked at the value of the highest data point.

set, the maximum likelihood solution here is clearly 6= 8, and this implies a uniform
p(z|D) ~ U(0,8).

According to our Bayesian methodology, which requires the integration in Eq. 50,
the density is uniform up to x = 8, but has a tail at higher values — an indication
that the influence of our prior p(f) has not yet been swamped by the information in

the training data.
p(x|D)

0.2

ML

0.1f Bayes

X

0 2 4 6 8 10
Given the full set of four points, the distribution based on the maximum likelihood
solution is p(z|0) ~ U(0,8), whereas the distribution derived from Bayesian methods
has a small tail above & = 8, reflecting the prior information that values of x near 10
are possible.

Whereas the maximum likelihood approach estimates a point in 6 space, the
Bayesian approach instead estimates a distribution. Technically speaking, then, we
cannot directly compare these estimates. It is only when the second stage of inference
is done — that is, we compute the distributions p(z|D), as shown in the above figure
— that the comparison is fair.

For most of the typically encountered probability densities p(x|0), the sequence of
posterior densities does indeed converge to a delta function. Roughly speaking, this
implies that with a large number of samples there is only one value for 8 that causes
p(x]0) to fit the data, i.e., that @ can be determined uniquely from p(x|@). When this
is the case, p(x|0) is said to be identifiable. A rigorous proof of convergence under
these conditions requires a precise statement of the properties required of p(x|6) and
p(0) and considerable care, but presents no serious difficulties (Problem 21).

There are occasions, however, when more than one value of @ may yield the same
value for p(x|@). In such cases, 8 cannot be determined uniquely from p(x|0), and
p(x|D™) will peak near all of the values of 8 that explain the data. Fortunately, this
ambiguity is erased by the integration in Eq. 26, since p(x|€) is the same for all of

3.5. BAYESIAN PARAMETER ESTIMATION: GENERAL THEORY 19

these values of 8. Thus, p(x|D™) will typically converge to p(x) whether or not p(x|0)
is identifiable. While this might make the problem of identifiabilty appear to be moot,
we shall see in Chap. 77 that identifiability presents a genuine problem in the case of
unsupervised learning.

3.5.1 When do Maximum Likelihood and Bayes methods differ?

In virtually every case, maximum likelihood and Bayes solutions are equivalent in the
asymptotic limit of infinite training data. However since practical pattern recognition
problems invariably have a limited set of training data, it is natural to ask when
maximum likelihood and Bayes solutions may be expected to differ, and then which
we should prefer.

There are several criteria that will influence our choice. Omne is computational
complexity (Sec. 3.7.2), and here maximum likelhood methods are often to be pref-
ered since they require merely differential calculus techniques or gradient search for 9,
rather than a possibly complex multidimensional integration needed in Bayesian esti-
mation. This leads to another consideration: interpretability. In many cases the max-
imum likelihood solution will be easier to interpret and understand since it returns the
single best model from the set the designer provided (and presumably understands).
In contrast Bayesian methods give a weighted average of models (parameters), often
leading to solutions more complicated and harder to understand than those provided
by the designer. The Bayesian approach reflects the remaining uncertainty in the
possible models.

Another consideration is our confidence in the prior information, such as in the
form of the underlying distribution p(x|@). A maximum likelihood solution p(x|6)
must of course be of the assumed parametric form; not so for the Bayesian solution.
We saw this difference in Example 1, where the Bayes solution was not of the para-
metric form originally assumed, i.e., a uniform p(z|D). In general, through their use
of the full p(@|D) distribution Bayesian methods use more of the information brought
to the problem than do maximum likelihood methods. (For instance, in Example 1
the addition of the third training point did not change the maximum likelihood so-
lution, but did refine the Bayesian estimate.) If such information is reliable, Bayes
methods can be expected to give better results. Further, general Bayesian methods
with a “flat” or uniform prior (i.e., where no prior information is explicitly imposed)
are equivalent to maximum likelihood methods. If there is much data, leading to a
strongly peaked p(@|D), and the prior p(0) is uniform or flat, then the MAP estimate
is essentially the same as the maximum likelihood estimate.

When p(0|D) is broad, or asymmetric around 97 the methods are quite likely to
yield p(x|D) distributions that differ from one another. Such a strong asymmetry
(when not due to rare statistical irregularities in the selection of the training data)
generally convey some information about the distribution, just as did the asymmetric
role of the threshold 6 in Example 1. Bayes methods would exploit such information;
not so maximum likelihood ones (at least not directly). Further, Bayesian methods
make more explicit the crucial problem of bias and variance tradeoffs — roughly
speaking the balance between the accuracy of the estimation and its variance, which
depend upon the amount of traning data. This important matter was irrelevant in
Chap. 7?7, where there was no notion of a finite training set, but it will be crucial in
our considerations of the theory of machine learning in Chap. 77.

When designing a classifier by either of these methods, we determine the posterior
densities for each category, and classify a test point by the maximum posterior. (If

SCALE
INVARIANCE

IMPROPER
PRIOR

20 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

there are costs, summarized in a cost matrix, these can be incorporated as well.)
There are three sources of classification error in our final system:

Bayes or indistinguisability error: the error due to overlapping densities p(x|w;
for different values of ¢. This error is an inherent property of the problem and
can never be eliminated.

Model error: the error due to having an incorrect model. This error can only be
eliminated if the designer specifies a model that includes the true model which
generated the data. Designers generally choose the model based on knowledge
of the problem domain rather than on the subsequent estimation method, and
thus the model error in maximum likelihood and Bayes methods rarely differ.

Estimation error: the error arising from the fact that the parameters are estimated
from a finite sample. This error can best be reduced by increasing the training
data, a topic we shall revisit in greater detail in Chap. ?7.

The relative contributions of these sources depend upon problem, of course. In the
limit of infinite training data, the estimation error vanishes, and the total classification
error will be the same for both maximum likelihodd and Bayes methods.

In summary, there are strong theoretical and methodological arguments supporting
Bayesian estimation, though in practice maximum likelihood estimation is simpler,
and when used for designing classifiers, can lead to classifiers nearly as accurate.

3.5.2 Non-informative Priors and Invariance

Generally speaking, the information about the prior p(6) derives from the designer’s
knowledge of the problem domain and as such is beyond our study of the design of
classifiers. Nevertheless in some cases we have guidence in how to create priors that
do not impose structure when we believe none exists, and this leads us to the notion
of non-informative priors.

Recall our discussion of the role of prior category probabilities in Chap. 77, where
in the absense of other information, we assumed each of ¢ categories equally likely.
Analogously, in a Bayesian framework we can have a “non-informative” prior over a
parameter for a single category’s distribution. Suppose for instance that we are using
Bayesian methods to infer from data the mean and variance of a Gaussian. What
prior might we put on these parameters? Surely the unit of spatial measurement —
meters, feet, inches — is an historical accident and irrelevant to the functional form
of the prior. Thus there is an implied scale invariance, formally stated as

p(0) = ap(0/a) (55)

for some constant a. Such scale invariance here leads to priors such as p(u) oc p=*

for some undermined constant k& (Problem 20). (Such a prior is improper; it does
not integrate to unity, and hence cannot strictly be interpreted as representing our
actual prior belief.) In general, then, if there is known or assumed invariance — such
as translation, or for discrete distributions invariance to the sequential order of data
selection — there will be constraints on the form of the prior. If we can find a prior
that satisfies such constraints, the resulting prior is “non-informative” with respect
to that invariance.

It is tempting to assert that the use of non-informative priors is somehow “ob-
jective” and lets the data speak for themselves, but such a view is a bit naive. For

3.6. *SUFFICIENT STATISTICS 21

example, we may seek a non-informative prior when estimating the standard deviation
o of a Gaussian. But this requirement might not lead to the non-informative prior
for estimating the variance, 2. Which should we use? In fact, the greatest benefit
of this approach is that it forces the designer to acknowledge and be clear about the
assumed invariance — the choice of which generally lies outside our methodology. It
may be more difficult to accommodate such arbitrary transformations in a maximum
a posteriori (MAP) estimator (Sec. 3.2.1), and hence considerations of invariance are
of greatest use in Bayesian estimation, or when the posterior is very strongly peaked
and the mode not influenced by transformations of the density (Problem 19).

3.6 *Sufficient Statistics

From a practical viewpoint, the formal solution provided by Egs. 26, 51 & 52 is not
computationally attractive. In pattern recognition applications it is not unusual to
have dozens or hundreds of parameters and thousands of training samples, which
makes the direct computation and tabulation of p(D|@) or p(@|D) quite out of the
question. We shall see in Chap. ?? how neural network methods avoid many of the
difficulties of setting such a large number of parameters in a classifier, but for now we
note that the only hope for an analytic, computationally feasible maximum likelihood
solution lies in being able to find a parametric form for p(x|@) that on the one hand
matches the characteristics of the problem and on the other hand allows a reasonably
tractable solution.

Consider the simplification that occurred in the problem of learning the parameters
of a multivariate Gaussian density. The basic data processing required was merely
the computation of the sample mean and sample covariance. This easily computed
and easily updated statistic contained all the information in the samples relevant to
estimating the unknown population mean and covariance. One might suspect that
this simplicity is just one more happy property of the normal distribution, and that
such good fortune is not likely to occur in other cases. While this is largely true,
there are distributions for which computationally feasible solutions can be obtained,
and the key to their simplicity lies in the notion of a sufficient statistic.

To begin with, any function of the samples is a statistic. Roughly speaking, a
sufficient statistic is a (possibly vector-valued) function s of the samples D that con-
tains all of the information relevant to estimating some parameter 8. Intuitively, one
might expect the definition of a sufficient statistic to involve the requirement that
p(0]s,D) = p(O|s). However, this would require treating 6 as a random variable,
limiting the definition to a Bayesian domain. To avoid such a limitation, the conven-
tional definition is as follows: A statistic s is said to be sufficient for 0 if p(D|s,0) is
independent of 6. If we think of 6 as a random variable, we can write

p(Dls, 0)p(6]s)

p(0ls, D) = B0

; (56)

)
whereupon it becomes evident that p(8|s,D) = p(0]s) if s is sufficient for 8. Con-
versely, if s is a statistic for which p(0[s, D) = p(0]s), and if p(0]s) # 0, it is easy to
show that p(Dls,) is independent of @ (Problem 27). Thus, the intuitive and the
conventional definitions are basically equivalent. As one might expect, for a Gaussian
distribution the sample mean and covariance, taken together, represent a sufficient
statistic for the true mean and covariance; if these are known, all other statistics

22 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

such as the mode, range, higher-order moments, number of data points, etc., are
superfluous when estimating the true mean and covariance.

A fundamental theorem concerning sufficient statistics is the Factorization Theo-
rem, which states that s is sufficient for 6 if and only if p(D|@) can be factored into
the product of two functions, one depending only on s and €, and the other depend-
ing only on the training samples. The virtue of the Factorization Theorem is that it
allows us to shift our attention from the rather complicated density p(D|s, @), used
to define a sufficient statistic, to the simpler function

p(D16) = [T »(x116). (57)
k=1

In addition, the Factorization Theorem makes it clear that the characteristics of a
sufficient statistic are completely determined by the density p(x|8), and have nothing
to do with a felicitous choice of an a priori density p(@). A proof of the Factorization
Theorem in the continuous case is somewhat tricky because degenerate situations are
involved. Since the proof has some intrinsic interest, however, we include one for the
simpler discrete case.

Theorem 3.1 (Factorization) A statistic s is sufficient for @ if and only if the
probability P(D|0) can be written as the product

P(D|6) = g(s, 0)h(D), (58)
for some function h(-).

Proof:

(a) We begin by showing the “if” part of the theorem. Suppose first that s is sufficient
for 0, so that P(D|s, 0) is independent of 6. Since we want to show that P(D|@) can
be factored, our attention is directed toward computing P(D|0) in terms of P(D|s, 0).
We do this by summing the joint probability P(D,s|@) over all values of s:

P(D®) = Y P(D,s|6)
= Y P(Dls,0)P(sl6). (59)

But since s = ¢(D) for some ¢(-), there is only one possible value for s for the given
data, and thus

P(D|@) = P(Dls, 0)P(s]0). (60)

Moreover, since by hypothesis P(D]s, 8) is independent of 6, the first factor depends
only on D. Identifying P(s|@) with g(s, 8), we see that P(D|0) factors, as desired.
(b) We now consider the “only if” part of the theorem. To show that the ability to
factor P(D|0) as the product g(s,0)h(D) implies that s is sufficient for 8, we must
show that such a factoring implies that the conditional probability P(D|s, 0) is inde-
pendent of 8. Because s = ¢(D), specifying a value for s constrains the possible sets
of samples to some set D. Formally, D = {D|o(D) = s}. If D is empty, no assignment
of values to the samples can yield that value of s, and P(s|@) = 0. Excluding such
cases, i.e., considering only values of s that can arise, we have

3.6. *SUFFICIENT STATISTICS 23

P(D,s|0)
P(Dl|s,0) = ————~ 61
(Dls.0) =~ ey (61)
The denominator can be computed by summing the numerator over all values of D.
Since the numerator will be zero if D ¢ D, we can restrict the summation to D € D.
That is,

 P(Dls6) PDE) gs0hD) hD)
PDIs.8) = ~~pp6) ~ S PO S 9= 0hD) S h(D)
DeD DeD DeD DeD

which is independent of 6. Thus, by definition, s is sufficient for 6. |

It should be pointed out that there are trivial ways of constructing sufficient
statistics. For example we can define s to be a vector whose components are the
n samples themselves: x1,...,x,. In that case g(s,0) = p(D|#) and h(D) = 1. One
can even produce a scalar sufficient statistic by the trick of interleaving the digits
in the decimal expansion of the components of the n samples. Sufficient statistics
such as these are of little interest, since they do not provide us with simpler results.
The ability to factor p(D|0) into a product g(s,0)h(D) is interesting only when the
function g and the sufficient statistic s are simple. It should be noted that sufficiency
is an integral notion. That is, if s is a sufficient statistic for 6, this does not necessarily
imply that their corresponding components are sufficient, i.e., that sy is sufficient for
01, or s9 for O3, and so on (Problem 26).

An obvious fact should also be mentioned: the factoring of p(D|0) into g(s, 8)h(D)
is not unique. If f(s) is any function of s, then ¢'(s,0) = f(s)g(s,0) and h'(D) =
h(D)/ f(s) are equivalent factors. This kind of ambiguity can be eliminated by defining
the kernel density

(s, 0)

g(s,0) = Tg(s.0) do (63)

which is invariant to this kind of scaling.

What is the importance of sufficient statistics and kernel densities for parameter
estimation? The general answer is that the most practical applications of classical
parameter estimation to pattern classification involve density functions that possess
simple sufficient statistics and simple kernel densities. Moreover, it can be shown
that for any clasification rule, we can find another based solely on sufficient statistics
that has equal or better performance. Thus — in principle at least — we need only
consider decisions based on sufficient statistics. It is, in essence, the ultimate in data
reduction: we can reduce an extremely large data set down to a few numbers — the
sufficient statistics — confident that all relevant information has been preserved. This
means, too, that we can always create the Bayes classifier from sufficient statistics, as
for example our Bayes classifiers for Gaussian distributions were functions solely of
the sufficient statistics, estimates of pu and X.

In the case of maximum likelihood estimation, when searching for a value of @
that maximizes p(D]0) = g(s, 0)h(D), we can restrict our attention to g(s,). In this
case, the normalization provided by Eq. 63 is of no particular value unless g(s, 0) is
simpler than g(s, @). The significance of the kernel density is revealed however in the
Bayesian case. If we substitute p(D|0) = g(s, 0)h(D) in Eq. 51, we obtain

KERNEL
DENSITY

24 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

9(s,0)p(0)

p(OID) = [g(s,0)p(6) d6°

(64)
If our prior knowledge of 0 is very vague, p(0) will tend to be uniform, or changing
very slowly as a function of 8. For such an essentially uniform p(0), Eq. 64 shows
that p(@|D) is approximately the same as the kernel density. Roughly speaking, the
kernel density is the posterior distribution of the parameter vector when the prior
distribution is uniform. Even when the a priori distribution is far from uniform, the
kernel density typically gives the asymptotic distribution of the parameter vector. In
particular, when p(x|0) is identifiable and when the number of samples is large, ¢(s, 0)
usually peaks sharply at some value 8 = 6. If the a priori density p(0) is continuous
at @ = 0 and if p(@) is not zero, p(8|D) will approach the kernel density g(s, 6).

3.6.1 Sufficient Statistics and the Exponential Family

To see how the Factorization Theorem can be used to obtain sufficient statistics,
consider once again the familiar d-dimensional normal case with fixed covariance but
unknown mean, i.e., p(x|0) ~ N(0,X). Here we have

n

1 1 _
p(D|0) = H (27T)d/2|2|1/2 CXp |: - E(Xk - o)tz 1(Xk - 9):|
k=1
S ex [— 1 0’2710 - 20" 'x, +x{ X 1x)}
@myrdz[snz P [T g kT Xp k

e [_(zxkﬂ

XW exp l Zxkz Xk (65)

This factoring isolates the 8 dependence of p(D|0) in the first term, and hence from
the Factorization Theorem we conclude that Y;'_, xy is sufficient for 8. Of course,
any one-to-one function of this statistic is also sufficient for 6; in particular, the sample
mean

1 n
= n Z Xk (66)
k=1

is also sufficient for 6. Using this statistic, we can write
9(j1,,,0) = exp { - g(0t2*19 - 20t2*1gn)]. (67)
From using Eq. 63, or by completing the square, we can obtain the kernel density:

7it.0) = G o0 [~ 50—) (32) @) (@)

These results make it immediately clear that f,, is the maximum likelihood estimate
for 8. The Bayesian posterior density can be obtained from g(f,,,0) by performing

3.6. *SUFFICIENT STATISTICS 25

the integration indicated in Eq. 64. If the a priori density is essentally uniform,
p(8ID) = (.).

This same general approach can be used to find sufficient statistics for other density
functions. In particular, it applies to any member of the exponential family, a group
of probability and probability density functions that possess simple sufficient statis-
tics. Members of the exponential family include the Gaussian, exponential, Rayleigh,
Poisson, and many other familiar distributions. They can all be written in the form

p(x|0) = a(x) exp [a(8) + b(8)'c(x)]. (69)
If we multiply n terms of the form in Eq. 69 we find

n

p(DIO) = exp [na(6) +b(6)" > c(xi)| [T alx) = (s, 0)n(P). (70)

k=1 k=1

where we can take

and

hD) = a(xp).

The distributions, sufficient statistics, and unnormalized kernels for a number of
commonly encountered members of the exponential family are given in Table ?77.
It is a fairly routine matter to derive maximum likelihood estimates and Bayesian
a posteriori distributions from these solutions. With two exceptions, the solutions
given are for univariate cases, though they can be used in multivariate situations if
statistical independence can be assumed. Note that a few well-known probability
distributions, such as the Cauchy, do not have sufficient statistics, so that the sample
mean can be a very poor estimator of the true mean (Problem 28).

26 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

Table 3.1: Common Exponential Distributions and their Sufficient Statistics.

Name | Distribution | Domain S [[g(s,0)]'/"
p(z|0) = . =D T)
Normal B —(1/2)02(a—61)? 0y >0 kil \/@6_592(82_20151+0§)
ﬁe 2 1 ! l Z x2
\V , = H
k=1
n
Multi- p(x|0) = O, % kzl Xk |@2‘1/267§[tr®252
variate 192112 _(1/2)(x—01)' O (x—6) positive wo 20'® 0'0.0
Normal @marz € 1 2 1 dofinite % Z kaz 20,0):s,+0,0,0,]
=
. p(x|0) = 1 65
Exponential et >0 6>0 =];::1 T fe
0 otherwise
. p(x|9) = 1 < 9 —0
leigh = s
Rayleig 29ze 0 1> 0 0>0 - ch::1 x% Oe
0 otherwise
p(x|0) = 1S 2
1 3/2,—0s
Maxwell %93/21'2670‘752 £>0 0>0 - kgl xy 0°/“e
0 otherwise
I/n
0) = . K
G 0;’1+1 ﬁ)(x_‘g)t 91 > _1 1 0,=-2 (knl xk) 0§1+1 01 —0252
amma Fenre " x>0 0y > 0 h Lo T+ %1 €
0 otherwise T : n kZ Tk
=1
o5 (1)
Beta et (1= 0™ 01> -1 =) Tt 01 0o
0<z<l1 02 > —1 n Yo TODT0:+D 7L 72
0 otherwise (kljl(l - Ik))
Poisson P(z|0) = i—fe‘e x=0,1,2,.. 6>0 LS ay, gse="?
' k=1
Bernoulli P(zl0) =6*(1—0)'* 2=0,1 |0<O<]1 P -— LSy 05(1—)1
k=1
P(z|0) = . n
Binomial I!(;”iz)ﬂ“”(l —o)ym-e 0<f<1 o LS ay, 6*(1—0)"°
_ ae C k=1
x—O,l,...,m 4o . .
P(x|0) =
Ml | m!ﬁg?i 93;:071, M 12,3 ﬁa
ultinomia. el = X, I
- dori=m k=1 i=1

d
i=1

3.7. PROBLEMS OF DIMENSIONALITY 27

3.7 Problems of Dimensionality

In practical multicategory applications, it is not at all unusual to encounter problems
involving fifty or a hundred features, particularly if the features are binary valued.
We might typically believe that each feature is useful for at least some of the discrim-
inations; while we may doubt that each feature provides independent information,
intentionally superfluous features have not been included. There are two issues that
must be confronted. The most important is how classification accuracy depends upon
the dimensionality (and amount of training data); the second is the computational
complexity of designing the classifier.

3.7.1 Accuracy, Dimension, and Training Sample Size

If the features are statistically independent, there are some theoretical results that
suggest the possibility of excellent performance. For example, consider the two-class
multivariate normal case with the same covariance where p(x|w;) ~ N(p;, %), j =
1,2. If the a priori probabilities are equal, then it is not hard to show (Chap. ??,
Problem ?7?) that the Bayes error rate is given by

Ple) = ¢L2—7T / /2 gy, (71)

r/2

where 72 is the squared Mahalanobis distance (Chap. ??, Sect. 77?):

2 = (g — o) B (e — o). (72)

Thus, the probability of error decreases as r increases, approaching zero as r ap-
proaches infinity. In the conditionally independent case, ¥ = diag(o?, ..., 0'3), and

d
2 Hi1 — Mz‘2)2

r ; (7@ . (73)
This shows how each feature contributes to reducing the probability of error.
Naturally, the most useful features are the ones for which the difference between the
means is large relative to the standard deviations. However no feature is useless if its
means for the two classes differ. An obvious way to reduce the error rate further is to
introduce new, independent features. Each new feature need not add much, but if r
can be increased without limit, the probability of error can be made arbitrarily small.
In general, if the performance obtained with a given set of features is inadequate,
it is natural to consider adding new features, particularly ones that will help separate
the class pairs most frequently confused. Although increasing the number of features
increases the cost and complexity of both the feature extractor and the classifier, it
is often reasonable to believe that the performance will improve. After all, if the
probabilistic structure of the problem were completely known, the Bayes risk could
not possibly be increased by adding new features. At worst, the Bayes classifer would
ignore the new features, but if the new features provide any additional information,

the performance must improve (Fig. 3.3).
Unfortunately, it has frequently been observed in practice that, beyond a certain
point, the inclusion of additional features leads to worse rather than better perfor-
mance. This apparent paradox presents a genuine and serious problem for classifier

ORDER

BIG OH

28 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

Figure 3.3: Two three-dimensional distributions have nonoverlapping densities, and
thus in three dimensions the Bayes error vanishes. When projected to a subspace —
here, the two-dimensional 1 — x5 subspace or a one-dimensional x; subspace — there
can be greater overlap of the projected distributions, and hence greater Bayes errors.

design. The basic source of the difficulty can always be traced to the fact that we
have the wrong model — e.g., the Gaussian assumption or conditional assumption
are wrong — or the number of design or training samples is finite and thus the dis-
tributions are not estimated accurately. However, analysis of the problem is both
challenging and subtle. Simple cases do not exhibit the experimentally observed phe-
nomena, and more realistic cases are difficult to analyze. In an attempt to provide
some rigor, we shall return to topics related to problems of dimensionality and sample
size in Chap. 77.

3.7.2 Computational Complexity

We have mentioned that one consideration affecting our design methodology is that of
the computational difficulty, and here the technical notion of computational complex-
ity can be useful. First, we will will need to understand the notion of the order of a
function f(x): we say that the f(z)is “of the order of h(z)” — written f(z) = O(h(z))
and generally read “big oh of h(x)” — if there exist constants ¢o and xg such that
|f(x)] < colh(z)| for all & > xg. This means simply that for sufficiently large z,
an upper bound on the function grows no worse than h(z). For instance, suppose
f(x) = ag + a12 + azx?; in that case we have f(x) = O(2?) because for sufficiently
large x, the constant, linear and quadratic terms can be “overcome” by proper choice
of ¢y and xy. The generalization to functions of two or more variables is straightfor-
ward. It should be clear that by the definition above, the big oh order of a function is
not unique. For instance, we can describe our particular f(z) as being O(z?), O(z3),
O(z*), O(2® In z).

Because of the non-uniqueness of the big oh notation, we occasionally need to be

3.7. PROBLEMS OF DIMENSIONALITY 29

more precise in describing the order of a function. We say that f(z) = @(h(z)) “big
theta of h(z)” if there are constants xg, ¢; and c¢o such that for = > xz¢, f(z) always
lies between ¢1h(x) and cah(z). Thus our simple quadratic function above would obey
f(x) = ©(z?), but would not obey f(x) = ©(z*). (A fuller explanation is provided
in the Appendix.)

In describing the computational complexity of an algorithm we are generally inter-
ested in the number of basic mathematical operations, such as additions, multiplica-
tions and divisions it requires, or in the time and memory needed on a computer. To
illustrate this concept we consider the complexity of a maximum likelihood estimation
of the parameters in a classifier for Gaussian priors in d dimensions, with n training
samples for each of ¢ categories. For each category it is necessary to calculate the
discriminant function of Eq. 74, below. The computational complexity of finding the
sample mean 1 is O(nd), since for each of the d dimensions we must add n component
values. The required division by n in the mean calculation is a single computation,
independent of the number of points, and hence does not affect this complexity. For
each of the d(d + 1)/2 independent components of the sample covariance matrix %
there are n multiplications and additions (Eq. 19), giving a complexity of O(d?*n).
Once 3 has been computed, its determinant is an O(d?) calculation, as we can easily
verify by counting the number of operations in matrix “sweep” methods. The inverse
can be calculated in O(d®) calculations, for instance by Gaussian elimination.* The
complexity of estimating P(w) is of course O(n). Equation 74 illustrates these indi-
vidual components for the problem of setting the parameters of normal distributions
via maximum lielihood:

O(dn) O(nd?) o(1) O(d®n) o(n)
1 J ! A d 1 ~ ——
g(x):—i(x— p)t X (x—u)—i In 271'—5 In [¥|+1In P(w). (74)

Naturally we assume that n > d (otherwise our covariance matrix will not have a
well defined inverse), and thus for large problems the overall complexity of calculating
an individual discriminant function is dominated by the O(d?n) term in Eq. 74. This
is done for each of the categories, and hence our overall computational complexity
for learning in this Bayes classifer is O(cd?n). Since c is typically a constant much
smaller than d? or n, we can call our complexity O(d?n). We saw in Sect. 3.7 that it
was generally desirable to have more training data from a larger dimensional space;
our complexity analysis shows the steep cost in so doing.

We next reconsider the matter of estimating a covariance matrix in a bit more
detail. This requires the estimation of d(d+1)/2 parameters — the d diagonal elements
and d(d—1)/2 independent off-diagonal elements. We observe first that the appealing
maximum likelihood estimate

by ! i(x m,,)(x; — m,)" (75)

= - k — Hlp k — Hlp),
"=

is an O(nd?) calculation, is the sum of n — 1 independent d-by-d matrices of rank one,
and thus is guaranteed to be singular if n < d. Since we must invert 3 to obtain the
discriminant functions, we have an algebraic requirement for at least d + 1 samples.
To smooth our statistical fluctuations and obtain a really good estimate, it would not
be surprising if several times that number of samples were needed.

* We mention for the afficionado that there are more complex matrix inversion algorithms that are
O(d?376+), and there may be algorithms with even lower complexity yet to be discovered.

SPACE
COMPLEXITY

TIME
COMPLEXITY

30 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

The computational complexity for classification is less, of course. Given a test
point x we must compute (x — f1), an O(d) calculation. Moreover, for each of the
categories we must multiply the inverse covariance matrix by the separation vector,
an O(d?) calculation. The max;g;(x) decision is a separate O(c) operation. For small
c then, recall is an O(d?) operation. Here, as throughout virtually all pattern clas-
sification, recall is much simpler (and faster) than learning. The complexity of the
corresponding case for Bayesian learning, summarized in Eq. 49, yields the same com-
putational complexity as in maximum likelihood. More generally, however, Bayesian
learning has higher complexity as a consequence of integrating over model parameters
6.

Such a rough analysis did not tell us the constants of proportionality. For a finite
size problem it is possible (though not particularly likely) that a particular O(n?)
algorithm is simpler than a particular O(n?) algorithm, and it is occasionally necessary
for us to determine these constants to find which of several implemementations is the
simplest. Nevertheless, big oh and big theta analyses, as just described, are generally
the best way to describe the computational complexity of an algorithm.

Sometimes we stress space and time complexities, which are particularly relevant
when contemplating parallel implementations. For instance, the sample mean of a
category could be calculated with d separate processors, each adding n sample values.
Thus we can describe this implementation as O(d) in space (i.e., the amount of memory
or possibly the number of processors) and O(n) in time (i.e., number of sequential
steps). Of course for any particular algorithm there may be a number of time-space
tradeoffs, for instance using a single processor many times, or using many processors
in parallel for a shorter time. Such tradeoffs are important considerations can be
important in neural network implementations, as we shall see in Chap. ?7.

A common qualitative distinction is made between polynomially complex and ez-
ponentially complex algorithms — O(a¥) for some constant a and aspect or variable k
of the problem. Exponential algorithms are generally so complex that for reasonable
size cases we avoid them altogether, and resign ourselves to approximate solutions
that can be found by polynomially complex algorithms.

3.7.3 Overfitting

It frequently happens that the number of available samples is inadequate, and the
question of how to proceed arises. One possibility is to reduce the dimensionality,
either by redesigning the feature extractor, by selecting an appropriate subset of the
existing features, or by combining the existing features in some way (Chap ??). An-
other possibility is to assume that all ¢ classes share the same covariance matrix, and
to pool the available data. Yet another alternative is to look for a better estimate for
3. If any reasonable a priori estimate 3 is available, a Bayesian or pseudo-Bayesian
estimate of the form AXg + (1 — A)X might be employed. If g is diagonal, this
diminishes the troublesome effects of “accidental” correlations. Alternatively, one can
remove chance correlations heuristically by thresholding the sample covariance matrix.
For example, one might assume that all covariances for which the magnitude of the
correlation coefficient is not near unity are actually zero. An extreme of this approach
is to assume statistical independence, thereby making all the off-diagonal elements be
zero, regardless of empirical evidence to the contrary — an O(nd) calculation. Even
though such assumptions are almost surely incorrect, the resulting heuristic estimates
sometimes provide better performance than the maximum likelihood estimate of the
full parameter space.

3.7. PROBLEMS OF DIMENSIONALITY 31

Here we have another apparent paradox. The classifier that results from assuming
independence is almost certainly suboptimal. It is understandable that it will perform
better if it happens that the features actually are independent, but how can it provide
better performance when this assumption is untrue? The answer again involves the
problem of insufficient data, and some insight into its nature can be gained from
considering an analogous problem in curve fitting. Figure 3.4 shows a set of ten data
points and two candidate curves for fitting them. The data points were obtained
by adding zero-mean, independent noise to a parabola. Thus, of all the possible
polynomials, presumably a parabola would provide the best fit, assuming that we are
interested in fitting data obtained in the future as well as the points at hand. Even
a straight line could fit the training data fairly well. The parabola provides a better
fit, but one might wonder whether the data are adequate to fix the curve. The best
parabola for a larger data set might be quite different, and over the interval shown
the straight line could easily be superior. The tenth-degree polynomial fits the given
data perfectly. However, we do not expect that a tenth-degree polynomial is required
here. In general, reliable interpolation or extrapolation can not be obtained unless
the solution is overdetermined, i.e., there are more points than function parameters
to be set.

f(x)
A

10

-10

Figure 3.4: The “training data” (black dots) were selected from a quadradic function
plus Gaussian noise, i.e., f(z) = az? + bz + ¢ + € where p(e) ~ N(0,02%). The 10th
degree polynomial shown fits the data perfectly, but we desire instead the second-order
function f(x), since it would lead to better predictions for new samples.

In fitting the points in Fig. 3.4, then, we might consider beginning with a high-
order polynomial (e.g., 10th order), and successively smoothing or simplifying our
model by eliminating the highest-order terms. While this would in virtually all cases
lead to greater error on the “training data,” we might expect the generalization to
improve.

Analogously, there are a number of heuristic methods that can be applied in
the Gaussian classifier case. For instance, suppose we wish to design a classifier
for distributions N (p, 1) and N(u,, o) and we have reason to believe that we
have insufficient data for accurately estimating the parameters. We might make the
simplification that they have the same covariance, i.e., N(uq,3) and N(pu,, X), and
estimate X accordingly. Such estimation requires proper normalization of the data

SHRINKAGE

32 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

(Problem 36).

An intermediate approach is to assume a weighted combination of the equal and
individual covariances, a technique known as shrinkage, (also called regularized dis-
criminant analysis) since the individual covariances “shrink” toward a common one.
If 7 is an index on the ¢ categories in question, we have

(1—a)n;X; +anX
(I —a)n; +an

Zi(a) = (76)
for 0 < a < 1. Additionally, we could “shrink” the estimate of the (assumed) common
covariance matrix toward the identity matrix, as

2(B) = (1-p)E+4IL (77)

for 0 < 8 < 1 (Computer exercise 8). (Such methods for simplifying classifiers have
counterparts in regression, generally known as ridge regression.)

Our short, intuitive descussion here will have to suffice until Chap. 7?7, where we
will explore the crucial issue of controlling the complexity or expressive power of a
classifer for optimum performance.

3.8 *Expectation-Maximization (EM)

We saw in Chap. 77 Sec. 7?7 how we could classify a test point even when it has miss-
ing features. We can now extend our application of maximum likelihood techniques
to permit the learning of parameters governing a distribution from training points,
some of which have missing features. If we had uncorrupted data, we could use maxi-
mum likelihood, i.e., find @ that maximized the log-likelihood I(@). The basic idea in
the expectation maximization or EM algorithm, is to iteratively estimate the likeli-
hood given the data that is present. The method has precursors in the Baum-Welch
algorithm we will consider in Sec. 3.10.6.

Consider a full sample D = {x, ..., X, } of points taken from a single distribution.
Suppose, though, that here some features are missing; thus any sample point can
be written as x; = {Xiq, Xgp}, 1.€., comprising the “good” features and the missing,
or “bad” ones (Chapt. ??, Sect. ??). For notational convenience we separate these
individual features (not samples) into two sets, Dy and D, with D = D, U Dy, being
the union of such features.

Next we form the function

Q(6; 0") = Ep,[In p(Dy, Dy; 0)[Dy; 67), (78)

where the use of the semicolon denotes, for instance on the left hand side, that
Q(0; 0") is a function of O with 0" assumed fixed; on the right hand side it de-
notes that the expected value is over the missing features assuming 8" are the true
parameters describing the (full) distribution. The simplest way to interpret this, the
central equation in expectation maximization, is the following. The parameter vector
0" is the current (best) estimate for the full distribution; 6 is a candidate vector for
an improved estimate. Given such a candidate 8, the right hand side of Eq. 78 calcu-
lates the likelihood of the data, including the unknown feature D, marginalized with
respect to the current best distribution, which is described by 8°. Different candidate
0s will of course lead to different such likelihoods. Our algorithm will select the best
such candidate 0 and call it 7' — the one corresponding to the greatest Q(6; Hi).

3.8. *EXPECTATION-MAXIMIZATION (EM) 33

If we continue to let i be an interation counter, and now let T" be a preset conver-
gence criterion, our algorithm is as follows and illustrated in Fig. 3.5:

Algorithm 1 (Expectation-Maximization)

1 begin initialize 6°,7,i = 0

2 doi—i+1 '

3 E step : compute Qe; 6" 4

5 M step: 07! — arg max Q(6; 6"
6 until Q(0'; 0°) — Q0" 6 < T

0i+1

7 return 0 «—
s end

Figure 3.5: The search for the best model via the EM algorithm starts with some
initial value of the model parameters, §°. Then, via the M step the optimal 6!
is found. Next, 0! is held constant and the value §? found which optimizes Q(-,-).
This process iterates until no value of 6 can be found that will increase Q(-,-). Note
in particular that this is different from a gradient search. For example here 6! is
the global optimum (given fixed 6°), and would not necessarily have been found via
gradient search. (In this illustration, Q(-,) is shown symmetric in its arguments; this
need not be the case in general, however.)

This so-called Expectation-Maximization or EM algorithm is most useful when the
optimization of Q(-,-) is simpler than that of I(-). Most importantly, the algorithm
guarantees that the log-likelihood of the good data (with the bad data marginalized)
will increase monotonically, as explored in Problem 37. This is not the same as
finding the particular value of the bad data that gives the maximum likelihood of the
full (completed) data, as can be seen in Example 2.

‘ Example 2: Expectation-Maximization for a 2D normal modell

Suppose our data consists of four points in two dimensions, one point of which

is missing a feature: D = {x1,X9,X3,X4} = {(g), (é), (3), (%)}, where x represents

the unknown value of the first feature of point x4. Thus our bad data D, consists of

34 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

the single feature x4;, and the good data D, all the rest. We assume our model is a
Gaussian with diagonal covariance and arbitrary mean, and thus can be described by
the parameter vector

We take our initial guess to be a Gaussian centered on the origin having ¥ = I, that
is:

0° =

-0 O

In finding our first improved estimate, 8", we must calculate Q(0, 00) or, by Eq. 78,

Q6; 0°) = Euplinp(xg,x0; 66 Dy)]

r 3

/[Z Inp(xx|0) + lnp(x40)1 P(241]6°; a2 = 4) dayy
((1)16°)

k=1
) oo
!
/ p ((Zl) 90> dx’yy

=K
where x4 is the unknown first feature of point x4, and K is a constant that can be
brought out of the integral. We focus on the integral, substitute the equation for a
general Gaussian, and find

—00

i[lnp(kuG)} +ﬁnp <<le>

k=1

dzyy,

— 00

Q(6; 0°)

Sl 6] + /Ofn b ((4) |e> PETITTE C R] F

1 o 01

£
Il

T+pf (4—po)?
[In p(x4|0)] — Zé‘l—(20‘2;2) —In (2n0109).

[
NE

£
I
-

This completes the expectation or E step. Through a straightforward calculation,
we find the values of 8 (that is, p1, u2, 01 and o that maximize Q(, -), to get the next
estimate:

0.75
2.0
0.938
2.0

3.8. *EXPECTATION-MAXIMIZATION (EM) 35

This new mean and the 1/e ellipse of the new covariance matrix are shown in the figure.
Subsequent iterations are conceptually the same, but require a bit more extensive
calculation. The mean will remain at us = 2. After three iterations the algorithm

converges at the solution p = (;:8), and ¥ = (0'%67 2_8)
X2
A
142
[}
° > X
0 1 2 .

The four data points, one of which is missing the value of x7 component, are shown
in red. The initial estimate is a circularly symmetric Gaussian, centered on the
origin (gray). (A better initial estimate could have been derived from the three
known points.) Each iteration leads to an improved estimate, labelled by the iteration
number 7; here, after three iterations the algorithm has converged.

We must be careful and note that the EM algorithm leads to the greatest log-
likelihood of the good data, with the bad data marginalized. There may be particular
values of the bad data that give a different solution and an even greater log-likelihood.
For instance, in this Example if the missing feature had value z4; = 2, so that
Xy = (i), we would have a solution

1.0
2.0
0.5
2.0

9:

and a log-likelihood for the full data (good plus bad) that is greater than for the good
alone. Such an optimization, however, is not the goal of the canonical EM algorithm.
Note too that if no data is missing, the calculation of Q(0; ") is simple since no
integrals are involved.

Generalized Fxpectation-Mazimization or GEM algorithms are a bit more lax than
the EM algorithm, and require merely that an improved "' be set in the M step
(line 5) of the algorithm — not necessarily the optimal. Naturally, convergence will
not be as rapid as for a proper EM algorithm, but GEM algorithms afford greater
freedom to choose computationally simpler steps. One version of GEM is to find the
maximum likelihood value of unknown features at each iteration step, then recalculate
0 in light of these new values — if indeed they lead to a greater likelihood.

GENERALIZED
EXPECTATION-
MAXIMIZATION

36 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

In practice, the term Expectation-Maximization has come to mean loosely any
iterative scheme in which the likelihood of some data increases with each step, even if
such methods are not, technically speaking, the true EM algorithm as presented here.

3.9 Bayesian Belief Networks

The methods we have described up to now are fairly general — all that we assumed,
at base, was that we could parameterize the distributions by a feature vector 8. If we
had prior information about the distribution of 8, this too could be used. Sometimes
our knowledge about a distribution is not directly of this type, but instead about
the statistical dependencies (or independencies) among the component features. Re-
call that for some multidimensional distribution p(x), if for two features we have
(x4, z5) = p(z;)p(x;), we say those variables are statistically independent (Fig. 3.6).

X3

Figure 3.6: A three-dimensional distribution which obeys p(x1, z3) = p(z1)p(z3); thus
here 1 and x3 are statistically independent but the other feature pairs are not.

There are many cases where we know or can safely assume which variables are
or are not independent, even without sampled data. Suppose for instance we are
describing the state of an automobile — temperature of the engine, pressures of the
fluids and in the tires, voltages in the wires, and so on. Our basic knowledge of cars
includes the fact that the oil pressure in the engine and the air pressure in a tire are
functionally unrelated, and hence can be safely assumed to be statistically indepen-
dent. However the oil temperature and engine temperature are not independent (but
could be conditionally independent). Furthermore we may know several variables that
might influence another: the coolant temperature is affected by the engine tempera-
ture, the speed of the radiator fan (which blows air over the coolant-filled radiator),
and so on.

We will represent these dependencies graphically, by means of Bayesian belief nets,
also called causal networks, or simply belief nets. They take the topological form of a
directed acyclic graph (DAG), where each link is directional, and there are no loops.
(More general networks permit such loops, however.) While such nets can represent
continuous multidimensional distributions, they have enjoyed greatest application and

3.9. *BAYESIAN BELIEF NETWORKS 37

success for discrete variables. For this reason, and because the formal properties are
simpler, we shall concentrate on the discrete case.

Pl

Figure 3.7: A belief network consists of nodes (labelled with upper case bold letters)
and their associated discrete states (in lower-case). Thus node A has states a1, as,
..., denoted simply a; node B has states by, b2, ..., denoted b, and so forth. The
links between nodes represent conditional probabilities. For example, P(c|a) can be
described by a matrix whose entries are P(c;|a;).

Each node (or unit) represents one of the system variables, and here takes on
discrete values. We will label nodes with A, B, ..., and the variables at each node
by the corresponding lower-case letter. Thus, while there are a discrete number of
possible values of node A — here two, a; and as — there may be continuous-valued
probabilities on these discrete states. For example, if node A represents the state of
a binary lamp switch — ay = on, as = off — we might have P(a1) = 0.739, P(az) =
0.261, or indeed any other probabilities. A link joining node A to node C in Fig. 3.7
is directional, and represents the conditional probabilities P(c;|a;), or simply P(cl|a).
For the time being we shall not be concerned with how these conditional probabilities
are determined, except to note that in some cases human experts provide the values.

Suppose we have a belief net, complete with conditional probabilities, and know
the values or probabilities of some of the states. Through careful application of Bayes
rule or Bayesian inference, we will be able to determine the maximum posterior value
of the unknown variables in the net. We first consider how to determine the state
of just one node from the states in units with which it is connected. The connected
nodes are the only ones we need to consider directly — the others are conditionally
independent. This is, at base, the simplification provided by our knowledge of the
dependency structure of the system.

In considering a single node X in the simple net of Fig. 3.8, it is extremely useful
to distinguish the set of nodes before X — called its parents P — and the set of those
after it — called its children C. When we evaluate the probabilities at X, we must
treat the parents of X differently from its children. Thus, in Fig. 3.8, A and B are in
P of X while C and D are in C.

The belief of a set of propositions x = (x1, x2, ...) on node X describes the relative
probabilities of the variables given all the evidence e throughout the rest of the net-
work, i.e., P(x|e).* We can divide the dependency of the belief upon the parents and

* While this is sometimes denoted BEL(x), we keep a notation that clarifies the dependencies and
is more similar to that in our previous discussions.

NODE

PARENT

CHILD

BELIEF

CARDINALITY

38 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

° e Parents of X

P(x[a) P(x|b)

P(c|x) P(d |x)

@ @ Children of X

Figure 3.8: A portion of a belief network, consistsing of a node X, having variable
values (z1, 23, ...), its parents (A and B), and its children (C and D).

the children in the following way:

P(x|e) o< P(e€|x)P(x|e”), (79)

where e represents all evidence (i.e., values of variables on nodes other than X), e”
the evidence on the parent nodes, and €€ the children nodes. In Eq. 79 we show only
a proportionality — at the end of our calculation we will normalize the probabilities
over the states at X.

The first term in Eq. 79 is quite simple, and is a manifestation of Bayes’ formula.
We can expand the dependency upon the evidence of the children nodes as follows:

P(ec\x) = P(ecl,ecz,...,ecm\x)
P(eC1|X)P(eC2|X) e 'P(ec\q |X)
|

= H P(ec,|x), (80)

where C; represents the jth child node and ec; the values of the probabilities of
its states. Note too our convention that |C| denotes the cardinality of set C — the
number of elements in the set — a convenient notation for indicating the full range of
summations or products. In the last step of Eq. 80 we used our knowledge that since
the child nodes cannot be joined by a line, then they are conditionally independent
given x. Equation 80 simply states that the probability of a given set of states
throughout all the children nodes of X is the product of the (independent) probabilities
in the individual children nodes. For instance, in the simple example in Fig. 3.8, we
have

P(ec,ep|x) = P(ec|x)P(eplx). (81)

Incorporating evidence from parent nodes is a bit more subtle. We have:

P(x|le”) = P(xlep,,ep,,....,ep)
= Z P(X|'P1i,7)2j,...,'P|p‘k)P('P1i,'P2j7...,'P‘p‘k‘epl,...,ep‘p‘)
all i,j,....,k

> P(x|P1i,Pajs e, Ppp) P(Prilep,) - P(Pipiilep,,), (82)
all ik

3.9. *BAYESIAN BELIEF NETWORKS 39

where the summation is over all possible configurations of values on the different
parent nodes. Here P,,, denotes a particular value for state n on parent node P,,.
In the last step of Eq. 82 we have again used our assumption that the (unconnected)
parent nodes are statistically independent.

While Eq. 82 and its unavoidable notational complexities may appear intimidating,
it is actually just a logical consequence of Bayes’ rule. For the purposes of clarity and
for computing x, each term at the extreme right, P(Py;|ep,) can be considered to be
P(Py;) — the probability of state ¢ on the first parent node. Our notation shows that
this probability depends upon the evidence at P;, including from its parents, but for
the sake of computing the probabilities at X we temporarily ignore the dependencies
beyond the parents and children of X.

Thus we rewrite Eq. 82 as

P

P(xle”) = Y Px[Pui) [[P(Piler,) (83)

all Ppn i=1

We put these results together for the general case with |P| parent nodes and |C|
children nodes, Egs. 80 & 83, and find

c| |P|
P(xle) o< [[Plec,1x) | D> Px[Pmn) [[P(Piler,)| - (84)
=1 all Ppn i=1
=
P(e€|x) P(x|eP)

In words, Eq. 84 states that the probability of a particular values for node X is
the product of two factors. The first is due to the children (the product of their
independent likelihoods). The second is the sum over all possible configurations of
states on the parent nodes of the prior probabilities of their values and the conditional
probabilities of the x variables given those parent values. The final values must be
normalized to represent probabilities.

Example 3: Belief network for fish I

Suppose we are again interested in classifying fish, but now we want to use more
information. Imagine that a human expert has constructed the simple belief network
in the figure, where node A represents the time of year, and can have four values:
a1 = winter, ag = spring, as = summer and ay = autumn. Node B represents the
geographical area where the fish was caught: b; = north Atlantic and by = south
Atlantic. A and B are the parents of the node X, which represents the fish and has
just two possible values: x1 = salmon and zo = sea bass. Similarly, our expert tells
us that the children nodes represent lightness, C, with ¢; = dark, co = medium and
c3 = light as well as thickness, D, with d; = thick and do = thin. The direction of the
links (from A and B to X and likewise from X to C and D) is meant to describe the
influences among the variables, as shown in the figure.

(c
40 CHAPTER 3. MAXIMUM LIKH

c, = light
c = medium
c = dark

A simple belief net for the fish example. The season and the fishing locale are statisti-
cally independent, but the type of fish caught does depend on these factors. Further,
the width of the fish and its color depend upon the fish.

The following probability matrixes (here, given by an expert) describe the influence
of time of year and fishing area on the identity of the fish:

salmon sea bass

winter 9 1 salmon sea bass
|\ . spring 3 .7 4y . north .65 .35
Plwilas) summer 4 .6 ’ P(wi[b;) south < .25 75
autumn 8 2

Thus salmon are best found in the north fishing areas in the winter and autumn,
sea bass in the south fishing areas in the spring and summer, and so forth. Recall
that in our belief networks the variables are discrete, and all influences are cast as
probabilites, rather than probability densities. Given that we have any particular
feature value on a parent node, we must have some fish; thus each row is normalized,
as for instance P(z1|a1) + P(x2lar) = 1.

Suppose our expert tells us that the conditional probabilities for the variables in
the children nodes are as follows:

light medium dark wide thin

salmon .33 .33 .34 salmon 4 .6
Pleilrs) - sea bass (.8 1 1 >’ P(difa;) - sea bass (.95 .05)

Thus salmon come in the full range of lightnesses, while sea bass are primarily light
in color and are primarily wide.

Now we turn to the problem of using such a belief net to infer the identity
of a fish. We have no direct information about the identity of the fish, and thus
P(x1) = P(xz2) = 0.5. This might be a reasonable starting point, expressing our lack
of knowledge of the identity of the fish. Our goal now is to estimate the probabilities
P(z1]e) and P(zz]e). Note that without any evidence we have

P(xl) = Z P(ml,ai,bj70k7dl)
i,7,k,l

= Y P(a;)P(bj)P(x1|a;, b;)P(ck|z1) P(di|z1)

.5,k

= ZP a;)P(b;)P(x1|a;, b))

= (0.25)(0.5) > " P(x1]as, b;)
]
(0.25)(0.5)(0.9 + 0.3 4+ 0.4 + 0.7+ 0.8 + 0.2 + 0.1 + 0.6)
= 0.5,

and thus P(x1) = P(x2), as we would expect.

3.9. *BAYESIAN BELIEF NETWORKS 41

Now we collect evidence for each node, {ea,en,ec,ep}, assuming they are in-
dependent of each other. Suppose we know that it is winter, i.e., P(ajlea) = 1 and
P(ailea) =0 fori =2,3,4. Suppose we do not know which fishing area the boat came
from but found that the particular fishing crew prefers to fish in the south Atlantic;
we assume, then, that P(b;leg) = 0.2 and P(bs]eg) = 0.8. We measure the fish and
find that it is fairly light, and set by hand to be P(ec|c1) = 1, P(ec|ez) = 0.5, and
P(ecl|es) = 0. Suppose that due to occlusion, we cannot measure the width of the
fish; we thus set P(ep|d;) = P(ep|ds).

By Eq. 82, we have the estimated probability of each fish due to the parents P is,
in full expanded form

P’p(iL’l) o P($1|a1,b1) (al)P(b

|

A similar calculation gives Pp(x5) = 0.18.
We now turn to the children nodes and find by Eq. 84

Pe(z1) o« Pleclzi)P(ep|zy)
— [Pleclen) Plerfer) + Plecles) Pleslas) + Plecles) Plcalar)]
x[P(epld1)P(di]x1) + P(ep|dz) P(dz|r1)]
= [(1.0)(0.33) + (0.5)(0.33) + (0)(0.34)] x [(1.0)(0.4) + (1.0)(0.6)]
= 0.495.

A similar calculation gives Pe(x2) o 0.85. We put these estimates together by Eq. 79
as products P(z;) < Pe(x;)Pp(x;) and renormalize (i.e., divide by their sum). Thus
our final estimates for node X are

(0.82)(0.495)
(0.82)(0.495) + (0.18)(0.85)

(0.18)(0.85)
(0.82)(0.495) + (0.18)(0.85)

P(z1le) = =0.726

= 0.274.

P(asle) =

Thus given all the evidence throughout the belief net, the most probable outcome is
x1 = salmon.

A given belief net can be used to infer any of the unknown variables. In Example
3, we used information about the time of year, fishing location and some measured

NAIVE
BAYES
RULE

42 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

properties of the fish to infer its identity (salmon or sea bass). The same network could
instead be used to infer the probability that a fish is thin, or dark in color, based on
probabilities of the identity of the fish, time of year, and so on (Problem 42).

When the dependency relationships among the features used by a classifier are
unknown, we generally proceed by taking the simplest assumption, i.e., that the
features are conditionally independent given the category, i.e.,

d

p(wg|x) Hp(xi|wk). (85)

i=1

In practice, this so-called naive Bayes rule or idiot Bayes rule often works quite well
in practice, and can be expressed by a very simple belief net (Problem 43).

In Example 3 our entire belief net consisted of X, its parents and children, and
we needed to update only the values on X. In the more general case, where the
network is large, there may be many nodes whose values are unknown. In that case
we may have to visit nodes randomly and update the probabilites until the entire
configuration of probabilities is stable. It can be shown that under weak conditions,
this process will converge to consistent values of the variables throughout the entire
network (Problem 44).

Belief nets have found increasing use in complicated problems such as medical
diagnosis. Here the upper-most nodes (ones without their own parents) represent a
fundamental biological agent such as the presence of a virus or bacteria. Intermediate
nodes then describe diseases, such as flu or emphysema, and the lower-most nodes
the symptoms, such as high temperature or coughing. A physician enters measured
values into the net and finds the most likely disease or cause. Such networks can be
used in a somewhat more sophisticated way, automatically computing which unknown
variable (node) should be measured to best reveal the identity of the disease.

We will return in Chap. 77 to address the problem of learning in such belief net
models.

3.10 Hidden Markov Models

While belief nets are a powerful method for representing the dependencies and inde-
pendencies among variables, we turn now to the problem of representing a particular
but extremely important dependencies. In problems that have an inherent temporal-
ity — that is, consist of a process that unfolds in time — we may have states at time
t that are influenced directly by a state at ¢ — 1. Hidden Markov models (HMMSs)
have found greatest use in such problems, for instance speech recognition or gesture
recognition. While the notation and description is aunavoidably more complicated
than the simpler models considered up to this point, we stress that the same underly-
ing ideas are exploited. Hidden Markov models have a number of parameters, whose
values are set so as to best explain training patterns for the known category. Later, a
test pattern is classified by the model that has the highest posterior probability, i.e.,
that best “explains” the test pattern.

3.10.1 First-order Markov models

We consider a sequence of states at successive times; the state at any time ¢ is denoted
w(t). A particular sequence of length T is denoted by w! = {w(1),w(2),...,w(T)} as

3.10. *HIDDEN MARKOV MODELS 43

for instance we might have w® = {w;,ws,ws,ws,w1,ws}. Note that the system can
revisit a state at different steps, and not every state need be visited.

Our model for the production of any sequence is described by transition probabil-
ities P(w;(t + 1)|w;(t)) = a;; — the time-independent probability of having state w;
at step t + 1 given that the state at time ¢ was w;. There is no requirement that the
transition probabilities be symmetric (a;; # aj;, in general) and a particular state
may be visited in succession (a;; # 0, in general), as illustrated in Fig. 3.9.

)

3

Figure 3.9: The discrete states, w;, in a basic Markov model are represented by nodes,
and the transition probabilities, a;;, by links. In a first-order discrete time Markov
model, at any step ¢ the full system is in a particular state w(t). The state at step
t+1 is a random function that depends solely on the state at step ¢t and the transition
probabilities.

Suppose we are given a particular model 8 — that is, the full set of a;; — as well
as a particular sequence w”. In order to calculate the probability that the model
generated the particular sequence we simply multiply the successive probabilities.
For instance, to find the probability that a particular model generated the sequence
described above, we would have P(w?|0) = ajjasaseasiays. If there is a prior
probability on the first state P(w(1) = w;), we could include such a factor as well; for
simplicity, we will ignore that detail for now.

Up to here we have been discussing a Markov model, or technically speaking, a
first-order discrete time Markov model, since the probability at ¢4+ 1 depends only on
the states at t. For instance, in a Markov model for the production of spoken words,
we might have states representing phonemes, and a Markov model for the production
of a spoken work might have states representing phonemes. Such a Markov model for
the word “cat” would have states for /k/, /a/ and /t/, with transitions from /k/ to
/a/; transitions from /a/ to /t/; and transitions from /t/ to a final silent state.

Note however that in speech recognition the perceiver does not have access to the
states w(t). Instead, we measure some properties of the emitted sound. Thus we will
have to augment our Markov model to allow for wisible states — which are directly
accessible to external measurement — as separate from the w states, which are not.

3.10.2 First-order hidden Markov models

We continue to assume that at every time step ¢ the system is in a state w(t) but now
we also assume that it emits some (visible) symbol v(t). While sophisticated Markov
models allow for the emission of continuous functions (e.g., spectra), we will restrict
ourselves to the case where a discrete symbol is emitted. As with the states, we define

TRANSITION
PROBABILITY

ABSORBING
STATE

44 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

a particular sequence of such visible states as VI = {v(1),v(2), ...,v(T)} and thus we
might have Vb = {vs, vy, v1, v5, 02, v3}.

Our model is then that in any state w(t) we have a probability of emitting a par-
ticular visible state vy (t). We denote this probability P(vj(t)|w;(t)) = bjr. Because
we have access only to the visible states, while the w; are unobservable, such a full
model is called a hidden Markov model (Fig. 3.10)

Figure 3.10: Three hidden units in an HMM and the transitions between them are
shown in black while the visible states and the emission probabilities of visible states
are shown in red. This model shows all transitions as being possible; in other HMMs,
some such candidate transitions are not allowed.

3.10.3 Hidden Markov Model Computation

Now we define some new terms and clarify our notation. In general networks such as
those in Fig. 3.10 are finite-state machines, and when they have associated transition
probabilities, they are called Markov networks. They are strictly causal — the prob-
abilities depend only upon previous states. A Markov model is called ergodic if every
one of the states has a non-zero probability of occuring given some starting state. A
final or absorbing state wy is one which, if entered, is never left (i.e., agg = 1).

As mentioned, we denote the transition probabilities a;; among hidden states and
for the probability bj; of the emission of a visible state:

a;j P(w;(t + 1)]wi(t))
bk = Plog(t)w;(t)). (86)

We demand that some transition occur from step ¢t — ¢ + 1 (even if it is to the same
state), and that some visible symbol be emitted after every step. Thus we have the
normalization conditions:

Zaii = 1 forall 7 and
J

3.10. *HIDDEN MARKOV MODELS 45
ijk = 1 for all j, (87)
e

where the limits on the summations are over all hidden states and all visible symbols,
respectively.

With these preliminaries behind us, we can now focus on the three central issues
in hidden Markov models:

The Evaluation problem. Suppose we have an HMM, complete with transition
probabilites a;; and b;;. Determine the probability that a particular sequence
of visible states VT was generated by that model.

The Decoding problem. Suppose we have an HMM as well as a set of observations
VT, Determine the most likely sequence of hidden states w” that led to those
observations.

The Learning problem. Suppose we are given the coarse structure of a model (the
number of states and the number of visible states) but not the probabilities a;;
and bj,. Given a set of training observations of visible symbols, determine these
parameters.

We consider each of these problems in turn.

3.10.4 Evaluation
The probability that the model produces a sequence V7 of visible states is:

POVT) = ST PIVTIWT) P, (38)

r=1

where each r indexes a particular sequence w? = {w(1),w(2),...,w(T)} of T hidden
states. In the general case of ¢ hidden states, there will be 7,4, = ¢ possible
terms in the sum of Eq. 88, corresponding to all possible sequences of length 7". Thus,
according to Eq. 88, in order to compute the probability that the model generated the
particular sequence of T visible states VT, we should take each conceivable sequence
of hidden states, calculate the probability they produce V7', and then add up these
probabilities. The probability of a particular visible sequence is merely the product
of the corresponding (hidden) transition probabilities a,;; and the (visible) output
probabilities bj;, of each step.

Because we are dealing here with a first-order Markov process, the second factor
in Eq. 88, which describes the transition probability for the hidden states, can be
rewritten as:

P(w;) = [Plw(®)w(t - 1)) (89)
t=1

that is, a product of the a;;’s according to the hidden sequence in question. In
Eq. 89, w(T') = wyp is some final absorbing state, which uniquely emits the visible state
vp. In speech recognition applications, wy typically represents a null state or lack of
utterance, and vg is some symbol representing silence. Because of our assumption
that the output probabilities depend only upon the hidden state, we can write the
first factor in Eq. 88 as

46 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

T
PVT|wT H (90)

that is, a product of b;;’s according to the hidden state and the corresponding visible
state. We can now use Egs. 89 & 90 to express Eq. 88 as

Tmax
= HP)P(w(t)|w(t —1)). (91)
r=1 t=1
Despite its formal complexity, Eq. 91 has a straightforward interpretation. The
probability that we observe the particular sequence of T visible states V7T is equal to
the sum over all r,,,, possible sequences of hidden states of the conditional probability
that the system has made a particular transition multiplied by the probability that
it then emitted the visible symbol in our target sequence. All these are captured in
our paramters a;; and by, and thus Eq. 91 can be evaluated directly. Alas, this is an
O(c™'T) calculation, which is quite prohibitive in practice. For instance, if ¢ = 10 and
T = 20, we must perform on the order of 10?! calculations.
A computationaly simpler algorithm for the same goal is as follows. We can
calculate P(VT) recursively, since each term P(v(t)|w(t))P(w(t)|w(t — 1)) involves
only v(t), w(t) and w(t — 1). We do this by defining

0 t = 0 and ¢ # initial state
a;(t)y =141 t = 0 and 7 = initial state (92)
> ot —Daijbjkv(t) otherwise,

where the notation b;;v(t) means the transition probability b, selected by the visible
state emitted at time t. thus the only non-zero contribution to the sum is for the
index k& which matches the visible state v(t). Thus «;(t) represents the probability
that our HMM is in hidden state w; at step ¢t having generated the first ¢ elements of
VT, This calculation is implemented in the Forward algorithm in the following way:

Algorithm 2 (HMM Forward)

1 initialize w(1),t = 0,a;;,b;x, visible sequence VT, a(0) = 1
2 fort—t+1

s oyl < Xl - Dayby,

4 untilt=T
5 return P(VT) «— ag(T)
6 end

where in line 5, ay denotes the probability of the associated sequence ending to the
known final state. The Forward algorithm has, thus, a computational complexity of
O(c*T) — far more efficient than the complexity associated with exhaustive enumer-
ation of paths of Eq. 91 (Fig. 3.11). For the illustration of ¢ = 10, T' = 20 above, we
would need only on the order of 2000 calculations — more than 17 orders of magnitude
faster than that to examine each path individually.

We shall have cause to use the Backward algorithm, which is the time-reversed
version of the Forward algorithm.

Algorithm 3 (HMM Backward)

3.10. *HIDDEN MARKOV MODELS v, 47

y(2) by

SNCRC

Figure 3.11: The computation of probabilities by the Forward algorithm can be vi-
sualized by means of a trellis — a sort of “unfolding” of the HMM through time.
Suppose we seek the probability that the HMM was in state wy at ¢ = 3 and gener-
ated the observed visible up through that step (including the observed visible symbol
vg). The probability the HMM was in state w;(t = 2) and generated the observed
sequence through ¢ = 2 is «;(2) for j = 1,2,...,c. To find ay(3) we must sum these
and multiply the probability that state ws emitted the observed symbol v;. Formally,

C
for this particular illustration we have as(3) = bar, Y a;(2)ajo.
j=1

1 initialize w(7T),t =T, a;j, bjy, visible sequence V7
2 fort—t—1;
4 Bi(t) — X2 Bi(t + D)ai;bjrv(t + 1)

i=1

5 untilt=1
7 return P(VT) « 3;(0) for the known initial state
s end

Example 4: Hidden Markov Model I

To clarify the evaluation problem, consider an HMM such as shown in Fig. 3.10,
but with an explicit absorber state and unique null visible symbol Vj with the following
transition probabilities (where the matrix indexes begin at 0):

1 0 0 0
oo 020301 04
W= {02 05 02 01

0.8 0.1 00 0.1

1 0 0 0 0
. 0 03 04 0.1 0.2
ko= 0 0.1 01 0.7 0.1
0 05 02 0.1 0.2

48 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

What is the probability it generates the particular sequence V° = {v3, v1, v3, v2,v0}?
Suppose we know the initial hidden state at t = 0 to be wy. The visible symbol at
each step is shown above, and the «;(t) in each unit. The circles show the value for
a;(t) as we progress left to right. The product a,;b; is shown along each transition
link for the step t = 1 to t = 2. The final probability, P(V7|0) is hence 0.0011.

)

®

;

03

t=
The HMM (above) consists of four hidden states (one of which is an absorber state,
wp), each emitting one of five visible states; only the allowable transitions to visible
states are shown. The trellis for this HMM is shown below. In each node is «;(t) — the
probability the model generated the observed visible sequence up to t. For instance,
we know that the system was in hidden state w; at ¢ = 1, and thus «1(0) = 1 and
;(0) = 0 for ¢ # 1. The arrows show the calculation of «;(1). for instance, since
visible state v; was emitted at ¢ = 1, we have ap(1) = a1(0)aipbor = 1[0.2 x 0] = 0.
as shown by the top arrow. Likewise the nest highest arrow corresponds to the
calculation oy (1) = a1(0)a11b11 = 1[0.3 x0.3] = 0.09. In this example, the calculation
of «;(1) is particularly simple, since only transitions from the known initial hidden
state need be considered; all other transitions have zero contribution to «;(1). For
subsequent times, however, the caculation requires a sum over all hidden states at
the previous time, as given by line 3 in the Forward algorithm. The probability
shown in the final (absorbing) state gives the probability of the full sequence observed,
P(VT|0) = 0.0011.

If we denote our model — the a’s and b’s — by 8, we have by Bayes’ formula that
the probability of the model given the observed sequence is:

P(V'|6)P(6)

POIVT) = POVT)

(93)

3.10. *HIDDEN MARKOV MODELS 49

In HMM pattern recognition we would have a number of HMMSs, one for each category
and classify a test sequence according to the model with the highest probability. Thus
in HMM speech recognition we could have a model for “cat” and another one for
“dog” and for a test utterance determine which model has the highest probability. In
practice, nearly all HMMSs for speech are left-to-right models (Fig. 3.12).

Figure 3.12: A left-to-right HMM commonly used in speech recognition. For instance,
such a model could describe the utterance “viterbi,” where w; represents the phoneme
/v/, wa represents /i/, ..., and wp a final silent state. Such a left-to-right model is

more restrictive than the general HMM in Fig. 3.10, and precludes transitions “back”
in time.

The Forward algorithm gives us P(V7|@). The prior probability of the model,
P(0), is given by some external source, such as a language model in the case of speech.
This prior probability might depend upon the semantic context, or the previous words,
or yet other information. In the absence of such information, it is traditional to assume
a uniform density on P(0), and hence ignore it in any classification problem. (This
is an example of a “non-informative” prior.)

3.10.5 Decoding

Given a sequence of visible states V7', the decoding problem is to find the most
probable sequence of hidden states. While we might consider enumerating every
possible path and calculating the probability of the visible sequence observed, this is
an O(c!'T) calculation and prohibitive. Instead, we use perhaps the simplest decoding
algorithm:

Algorithm 4 (HMM decoding)

1 begin initialize Path = {},t =0

2 for t —t+1
4 k= 0, ap =0
5 for k—k+1
(&
7 ak(t) — bij(t) Cki(t — 1)aij
i=1

8 until £ = ¢
10 j' — argmax a;(t)

J
11 AppendT'o Path wj
12 until t =T
18 return Path
14 end

A closely related algorithm uses logarithms of the probabilities and calculates total
probabilities by addition of such logarithms; this method has complexity O(c*T)
(Problem 48).

LEFT-TO-
RIGHT
MODEL

50 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

Oa(T)

(1)

®
Yo oNoRoNo

2 3 4 T-1

Figure 3.13: The decoding algorithm finds at each time step ¢ the state that has the
highest probability of having come from the previous step and generated the observed
visible state vg. The full path is the sequence of such states. Because this is a
local optimization (dependent only upon the single previous time step, not the full
sequence), the algorithm does not guarantee that the path is indeed allowable. For
instance, it might be possible that the maximum at ¢ = 5 is w; and at ¢ = 6 is ws, and
thus these would appear in the path. This can even occur if aj1g = P(wa(t+1)|w; (t)) =
0, precluding that transition.

The red line in Fig. 3.13 corresponds to Path, and connects the hidden states with
the highest value of «; at each step t. There is a difficulty, however. Note that there
is no guarantee that the path is in fact a valid one — it might not be consistent with
the underlying models. For instance, it is possible that the path actually implies a
transition that is forbidden by the model, as illustrated in Example 5.

Example 5: HMM decodingl

We find the path for the data of Example 4 for the sequence {wy,ws,ws, w1, wp}-
Note especially that the transition from ws to ws is not allowed according to the tran-
sition probabilities a;; given in Example 4. The path locally optimizes the probability
through the trellis.

3.10. *HIDDEN MARKOV MODELS 51

V3 Vi V3 2

. ONONO
ONCYC

t= 1 2 3 4
The locally optimal path through the HMM trellis of Example 4.

SONCRORGE

HMDMs address the problem of rate invariance in the following two ways. The first
is that the transition probabilities themselves incorporate probabilistic structure of
the durations. Moreover, using postprocessing, we can delete repeated states and just
get the sequence somewhat independent of variations in rate. Thus in post-processing
we can convert the sequence {wi,wr,ws, ws,ws,ws} to {w1,ws,ws}, which would be
appropriate for speech recognition, where the fundamental phonetic units are not
repeated in natural speech.

3.10.6 Learning

The goal in HMM learning is to determine model parameters — the transition prob-
abilities a;; and bj; — from an ensemble of training samples. There is no known
method for obtaining the optimal or most likely set of parameters from the data, but
we can nearly always determine a good solution by a straightforward technique.

The Forward-backward Algorithm

The Forward-backward algorithm is an instance of a generalized Expectation-Maximization
algorithm. The general approach will be to iteratively update the weights in order to
better explain the observed training sequences.

Above, we defined «;(t) as the probability that the model is in state w;(¢) and has
generated the target sequence up to step t. We can analogously define (;(t) to be
the probability that the model is in state w;(t) and will generate the remainder of the
given target sequence, i.e., from t + 1 — T. We express [3;(t) as:

0 w;(t) # sequence’s final state and t =T
Bi(t) = 1 w;(t) = sequence’s final state and t =T

>oaijbjpv(t +1)8;(t+1) otherwise,

J

(94)
To understand Eq. 94, imagine we knew «;(t) up to step T'— 1, and we wanted to
calculate the probability that the model would generate the remaining single visible

52 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

symbol. This probability, 3;(T), is just the probability we make a transition to state
w; (T) multiplied by the probability that this hidden state emitted the correct final visi-
ble symbol. By the definition of 5;(T") in Eq. 94, this will be either 0 (if w;(T') is not the
final hidden state) or 1 (if it is). Thus it is clear that 5;(T'—1) = 3, a;;bi;0(T) 8;(T).
Now that we have determined 3;(T — 1), we can repeat the process, to determine
B;(T — 2), and so on, backward through the trellis of Fig. ?7.

But the «;(t) and 3;(t) we determined are merely estimates of their true values,
since we don’t know the actual value of the transition probabilities a;; and b;; in
Eq. 94. We can calculate an improved value by first defining ;;(t) — the probability
of transition between w; (t—1) and w;(t), given the model generated the entire training
sequence VT by any path. We do this by defining 75 (t), as follows:

_ it = Dai;bi; Bi(t)
5 () = P(VT|0) ’

where P(V10) is the probability that the model generated sequence VI by any path.
Thus 7;;(t) is the probability of a transition from state w;(t — 1) to w;(t) given that
the model generated the complete visible sequence V7.

We can now calculate an improved estimate for a;;. The expected number of
transitions between state w;(t — 1) and w;(t) at any time in the sequence is simply
EtT:l vi; (t), whereas at step ¢ it is Zthl >k Yik(t). Thus a;; (the estimate of the
probability of a transition from w;(t — 1) to w;(t)) can be found by taking the ratio
between the expected number of transitions from w; to w; and the total expected
number of any transitions from w;. That is:

(95)

T
; iz (t)

t=1

5 5t

t=1

(96)

aij =

In the same way, we can obtain an improved estimate l;ij by calculating the ratio
between the frequency that any particular symbol v is emitted and that for any
symbol. Thus we have

A ikt
e = S0 o
> vik(t)
=1
In short, then, we start with rough or arbitrary estimates of a;; and by, calculate
improved estimates by Eqs. 96 & 97, and repeat until some convergence criterion
is met (e.g., sufficiently small change in the estimated values of the parameters on

subsequent iterations). This is the Baum-Welch or Forward-backward algorithm —
an example of a Generalized Expectation-Maximumization algorithm (Sec. 3.8):

Algorithm 5 (Forward-backward)

1 begin initialize a;;,bj, training sequence VT, convergence criterion 6
do z+—2z+1
Compute a(z) from a(z — 1) and b(z — 1) by Eq. 96
Compute b(z) from a(z — 1) and b(z — 1) by Eq. 97
aij(z) — aij(z —1)
bjk(z) — bjk(Z — 1)

QA A L

3.10. SUMMARY 53

7 until mag[aij (2) —a;j(z — 1),bj,(2) — bjr(z — 1)] < 6; convergence achievedin : ForBackstop
i.J,

s return a;; < a;(2); bjk < bjr(2)

9 end

The stopping or convergence criterion in line 7?7 halts learning when no estimated
transition probability changes more than a predetermined amount, 6. In typical
speech recognition applications, convergence requires several presentations of each
training sequence (fewer than five is common). Other popular stopping criteria are
based on overall probability that the learned model could have generated the full
training data.

Summary

If we know a parametric form of the class-conditional probability densities, we can
reduce our learning task from one of finding the distribution itself, to that of find-
ing the parameters (represented by a vector 0; for each category w;), and use the
resulting distributions for classification. The maximum likelihood method seeks to
find the parameter value that is best supported by the training data, i.e., maximizes
the probability of obtaining the samples actually observed. (In practice, for com-
putational simplicity one typically uses log-likelihood.) In Bayesian estimation the
parameters are considered random variables having a known a priori density; the
training data convert this to an a posteriori density. The recursive Bayes method
updates the Bayesian parameter estimate incrementally, i.e., as each training point
is sampled. While Bayesian estimation is, in principle, to be preferred, maximum
likelihood methods are generally easier to implement and in the limit of large training
sets give classifiers nearly as accurate.

A sufficient statistic s for 6 is a function of the samples that contains all infor-
mation needed to determine 8. Once we know the sufficient statistic for models of a
given form (e.g., exponential family), we need only estimate their value from data to
create our classifier — no other functions of the data are relevant.

Expectation-Maximization is an iterative scheme to maximize model parameters,
even when some data are missing. Each iteration employs two steps: the expectation
or E step which requires marginalizing over the missing variables given the current
model, and the maximization or M step, in which the optimum parameters of a new
model are chosen. Generalized Expectation-Maximization algorithms demand merely
that parameters be improved — not optimized — on each iteration and have been
applied to the training of a large range of models.

Bayesian belief nets allow the designer to specify, by means of connection topology,
the functional dependences and independencies among model variables. When any
subset of variables is clamped to some known values, each node comes to a proba-
bility of its value through a Bayesian inference calculation. Parameters representing
conditional dependences can be set by an expert.

Hidden Markov models consist of nodes representing hidden states, interconnected
by links describing the conditional probabilities of a transition between the states.
Each hidden state also has an associated set of probabilities of emiting a particular
visible states. HMMs can be useful in modelling sequences, particularly context depen-
dent ones, such as phonemes in speech. All the transition probabilities can be learned
(estimated) iteratively from sample sequences by means of the Forward-backward or
Baum-Welch algorithm, an example of a generalized EM algorithm. Classification

54 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

proceeds by finding the single model among candidates that is most likely to have
produced a given observed sequence.

Bibliographical and Historical Remarks

Maximum likelihood and Bayes estimation have a long history. The Bayesian ap-
proach to learning in pattern recognition began by the suggestion that the proper
way to use samples when the conditional densities are unknown is the calculation
of P(w;|x,D), [6]. Bayes himself appreciated the role of non-informative priors. An
analysis of different priors from statistics appears in [21, 15] and [4] has an extensive
list of references.

The origins of Bayesian belief nets traced back to [33], and a thorough literature
review can be found in [8]; excellent modern books such as [24, 16] and tutorials [7]
can be recommended. An important dissertation on the theory of belief nets, with
an application to medical diagnosis is [14], and a summary of work on diagnosis of
machine faults is [13]. While we have focussed on directed acyclic graphs, belief nets
are of broader use, and even allow loops or arbitrary topologies — a topic that would
lead us far afield here, but which is treated in [16].

The Expectation-Maximization algorithm is due to Dempster et al.[11] and a thor-
ough overview and history appears in [23]. On-line or incremental versions of EM are
described in [17, 31]. The definitive compendium of work on missing data, including
much beyond our discussion here, is [27].

Markov developed what later became called the Markov framework [22] in order
to analyze the the text of his fellow Russian Pushkin’s masterpiece Eugene Onegin.
Hidden Markov models were introduced by Baum and collaborators [2, 3], and have
had their greatest applications in the speech recognition [25, 26], and to a lesser extent
statistical language learning [9], and sequence identification, such as in DNA sequences
[20, 1]. Hidden Markov methods have been extended to two-dimensions and applied
to recognizing characters in optical document images [19]. The decoding algorithm is
related to pioneering work of Viterbi and followers [32, 12]. The relationship between
hidden Markov models and graphical models such as Bayesian belief nets is explored
in [29].

Knuth’s classic [18] was the earliest compendium of the central results on com-
putational complexity, the majority due to himself. The standard books [10], which
inspired several homework problems below, are a bit more accessible for those with-
out deep backgrounds in computer science. Finally, several other pattern recognition
textbooks, such as [28, 5, 30] which take a somewhat different approach to the field
can be recommended.

Problems

P Section 3.2

1. Let = have an exponential density

fe— 0% x>0
p(z|0) = { 0 otherwise.

(a) Plot p(z|f) versus x for § = 1. Plot p(z|f) versus 0, (0 < 6 < 5), for x = 2.

3.10. PROBLEMS 95

(b) Suppose that n samples 1, ..., x,, are drawn independently according to p(z|6).
Show that the maximum likelihood estimate for € is given by

é:

Sl
M| —
8
ol

k

Il
_

(¢) On your graph generated with @ = 1 in part (a), mark the maximum likelihood
estimate 6 for large n.

2. Let x have a uniform density

p(z|6) ~ U(0,0) :{ 1/ 0<z<¥

0 otherwise.

(a) Suppose that n samples D = {x1, ..., 2, } are drawn independently according to
p(x]f). Show that the maximum likelihood estimate for 6 is max[D], i.e., the
value of the maximum element in D.

(b) Suppose that n = 5 points are drawn from the distribution and the maximum
value of which happens to be max zj, = 0.6. Plot the likelihood p(D|#) in the

range 0 < # < 1. Explain in words why you do not need to know the values of
the other four points.

3. Maximum likelihood methods apply to estimates of prior probabilities as well.
Let samples be drawn by successive, independent selections of a state of nature w;
with unknown probability P(w;). Let z;;, = 1 if the state of nature for the kth sample
is w; and z;; = 0 otherwise.

(a) Show that

n
P(zi1, ..., zin|P(w;)) H)Zik (1 — Pw;)) %k,

(b) Show that the maximum likelihood estimate for P(w;) is

. 1 <
P(wl) = E Zzik.
k=1

Interpret your result in words.

4. Let x be a d-dimensional binary (0 or 1) vector with a multivariate Bernoulli
distribution

P(x|6) = Hﬁg“l—)

where 6 = (61, ...,04) is an unknown parameter vector, 6; being the probability that
x; = 1. Show that the maximum likelihood estimate for 0 is

56 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

5. Let each component z; of x be binary valued (0 or 1) in a two-category problem
with P(w;) = P(wg) = 0.5. Suppose that the probability of obtaining a 1 in any
component is

pi1 =
pi2 = 1-—p,

and we assume for definiteness p > 1/2. The probability of error is known to approach
zero as the dimensionality d approaches infinity. This problem asks you to explore the
behavior as we increase the number of features in a single sample — a complementary
situation.

(a) Suppose that a single sample x = (1, ...,24)" is drawn from category w;. Show
that the maximum likelihood estimate for p is given by

d
E ;.
i=1

ﬁ:

Ul

(b) Describe the behavior of p as d approaches infinity. Indicate why such behavior
means that by letting the number of features increase without limit we can
obtain an error-free classifier even though we have only one sample from each
class.

d
(c) Let T = 1/d " x; represent the proportion of 1’s in a single sample. Plot
j=1
P(T|w;) vs. T for the case P = 0.6, for small d and for large d (e.g., d = 11 and
d = 111, respectively). Explain your answer in words.

6. Derive Egs. 18 & 19 for the maximum likelihood estimation of the mean and
covariance of a multidimensional Gaussian. State clearly any assumptions you need
to invoke.

7. Show that if our model is poor, the maximum likelihood classifier we derive
is not the best — even among our (poor) model set — by exploring the following
example. Suppose we have two equally probable categories (i.e., P(wy) = P(w2) =
0.5). Further, we know that p(z|wi) ~ N(0,1) but assume that p(x|ws) ~ N(u,1).
(That is, the parameter § we seek by maximum likelihood techniques is the mean of
the second distribution.) Imagine however that the ¢rue underlying distribution is
p(z|we) ~ N(1,106).

(a) What is the value of our maximum likelihood estimate i in our poor model,
given a large amount of data?

(b) What is the decision boundary arising from this maximum likelihood estimate
in the poor model?

(c) Ignore for the moment the maximum likelihood approach, and use the methods
from Chap. ?? to derive the Bayes optimal decision boundary given the true
underlying distributions — p(x|w;) ~ N(0,1) and p(x|w) ~ N(1,105). Be
careful to include all portions of the decision boundary.

(d) Now consider again classifiers based on the (poor) model assumption of p(z|ws) ~ N (u, 1).
Using your result immediately above, find a new value of p that will give lower
error than the maximum likelihood classifier.

3.10. PROBLEMS o7

(e) Discuss these results, with particular attention to the role of knowledge of the
underlying model.

8. Consider an extreme case of the general issue discussd in Problem 7, one in
which it is possible that the maximum likelihood solution leads to the worst possible
classifier, i.e., one with an error that approaches 100% (in probability). Suppose our
data in fact comes from two one-dimensional distributions of the forms

p(zlwr) ~ [(1—=k)d(x—1)+kd(x+ X)] and
plzlws) ~ [(1=k)o(z + 1) + ké(x — X],

where X is positive, 0 < k < 0.5 represents the portion of the total probability mass
concentrated at the point =X, and §(-) is the Dirac delta function. Suppose our poor
models are of the form p(z|wy,p1) ~ N(u1,07) and p(x|ws, u2) ~ N(pg,03) and we
form a maximum likelihood classifier.

(a) Consider the symmetries in the problem and show that in the infinite data case
the decision boundary will always be at © = 0, regardless of k and X.

(b) Recall that the maximum likelihood estimate of either mean, fi;, is the mean
of its distribution. For a fixed k, find the value of X such that the maximum
likelihood estimates of the means “switch,” i.e., where fi1 > [is.

(¢) Plot the true distributions and the Gaussian estimates for the particular case
k= .2 and X = 5. What is the classification error in this case?

(d) Find a dependence X (k) which will guarantee that the estimated mean fi; of
p(z|wy) is less than zero. (By symmetry, this will also insure fis > 0.)

(e) Given your X (k) just derived, state the classification error in terms of k.

(f) Suppose we constrained our model space such that o7 = 03 = 1 (or indeed any
other constant). Would that change the above results?

(g) Discuss how if our model is wrong (here, does not include the delta functions),
the error can approaches 100% (in probability). Does this surprising answer
arise because we have found some local minimum in parameter space?

9. Prove the invariance property of maximum likelihood estimators, i.e., that if 0 is
the maximum likelihood estimate of @, then for any differentiable function 7(:), the
maximum likelihood estimate of 7(6) is 7(6).

10. Suppose we employ a novel method for estimating the mean of a data set
D = {x1,Xa, ..., X, }: we assign the mean to be the value of the first point in the set,

ie., X1.
(a) Show that this method is unbiased.
(b) State why this method is nevertheless highly undesirable.

11. One measure of the difference between two distributions in the same space is the
Kullback-Leibler divergence of Kullback-Leibler “distance”:

= X le(X) X
DKL<p1<x>7pz<x>>—/p1< i 2

58 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

(This “distance,” does not obey the requisite symmetry and triangle inequalities for a
metric.) Suppose we seek to approximate an arbitrary distribution ps(x) by a normal
p1(x) ~ N(p,3). Show that the values that lead to the smallest Kullback-Leibler
divergence are the obvious ones:

po= &[]
o= Slx-p)(x—p)],

where the expectation taken is over the density pa(x).

P Section 3.3

12. Justify all the statements in the text leading from Eq. 25 to Eq. 26.
P Section 3.4

13. Let p(x|X) ~ N(p,X) where p is known and ¥ is unknown. Show that the
maximum likelihood estimate for 3 is given by

R 1 n
¥=- — —)t
- > (xk = p)(x —)
k=1
by carrying out the following argument:

(a) Prove the matrix identity a’Aa = tr[Aaa’], where the trace, tr[A], is the sum
of the diagonal elements of A.

(b) Show that the likelihood function can be written in the form

n

2 (ke —) (xi —)

k=1

1
P(X1, .y Xp|X) = |=71 " 2exp [—itr

b
(27)nd/2

(c) Let A = 'S and A1, ..., Ap be the eigenvalues of A; show that your result
above leads to

1

(A2 LS VET AY
(Qﬂ)nd/2‘2‘n/2(l d) exp[g (ALt d)}

p(X1, . Xp|X) =

(d) Complete the proof by showing that the likelihood is maximized by the choice
A1 = --- = Ag = 1. Explain your reasoning.

14. Suppose that p(x|p;, X, w;) ~ N(pu;, ¥), where X is a common covariance matrix
for all ¢ classes. Let n samples x1,...,X, be drawn as usual, and let [y, ..., 1, be their
labels, so that [, =i if the state of nature for x; was w;.

(a) Show that

DXty ooy Xy U1y oy Ly ooy ey 2) =

[T Plwr)

k=1 I _
G@rmarzpe P T 300 (k=)BT (e — uzk)]

3.10. PROBLEMS 99

(b) Using the results for samples drawn from a single normal population, show that
the maximum likelihood estimates for p; and ¥ are given by

> Xk

lp=1

r= S 1
k=1

and

3

1 " o
k=1

Interpret your answer in words.

15. Consider the problem of learning the mean of a univariate normal distribution.
Let ng = 02/0? be the dogmatism, and imagine that yq is formed by averaging ng
fictitious samples zp, k = —ng + 1, —ng + 2, ..., 0.

(a) Show that Eqs. 32 & 33 for u,, and o2 yield

Hn = E Tk
n—+n
+ Ok——n +1
and

2
Y

o, = .

n -+ no

(b) Use this result to give an interpretation of the a priori density p(u) ~ N (g, 03).
16. Suppose that A and B are nonsingular matrices of the same order.

(a) Prove the matrix identity

AT'+B H'=AA+B)"'B=B(A+B) 'A.

(b) Must these matrixes be square for this identity to hold?

(¢) Use this result in showing that Eqs. 46 & 47 do indeed follow from Egs. 42 &
43.

P Section 3.5

17. The purpose of this problem is to derive the Bayesian classifier for the d-
dimensional multivariate Bernoulli case. As usual, work with each class separately,
interpreting P(x|D) to mean P(x|D;,w;). Let the conditional probability for a given
category be given by

d

P(x|6) =[] o (1 -6,

i=1

and let D = {x1,...,x,} be a set of n samples independently drawn according to this
probability density.

60 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

(a) If s = (s1,...,84)" is the sum of the n samples, show that
P(D|6) = He& 1— ;)" .

(b) Assuming a uniform a priori distribution for @ and using the identity

1
1!
/9’”170 -
T (mtn+)
0
show that
d
(n+1)! s,
0|D) =[] — 25 (1 — ;)"
ploID) =T = o -9

(c) Plot this density for the case d = 1,n = 1, and for the two resulting possibilities
for sq.

(d) Integrate the product P(x|0)p(6|D) over 8 to obtain the desired conditional
probability

d
si+1 S+ 11—z
e =11() (- T5)

=1

(e) If we think of obtaining P(x|D) by substituting an estimate 6 for 8 in P(x|0),
what is the effective Bayesian estimate for 67

18. Consider how knowledge of an invariance can guide our creation of a prior in the
following case. Suppose we have a binary (0 or 1) variable z, chosen independently
with a probability p(f) = p(x = 1). Imagine we have observed D™ = {z1,xa, ..., Tp },
and now wish to evaluate the probability that z,4+; = 1, which we express as a ratio:

P(wpsy = 1|D7)
P((En+1 = O‘Dn) '

(a) Define s = 1 + -+ 4+ x, and p(t) = P(x1 + -+ + py1 = t). Assume now
invariance of exchangeability, i.e., that the samples in any set D™ could have
been selected in an arbitrary order and it would not affect any probabilities.
Show how this assumption of exchangeability implies the ratio in question can

be written
p(s+1)/(2)
p(s)/ (") 7
where (";"1) = % is the binomial coefficient.

(b) Evaluate this ratio given the assumption p(s) ~ p(s+ 1), when n and n — s and
s are not too small. Interpret your answer in words.

3.10. PROBLEMS 61

(¢) In the binomial framework, we now seek a prior p(f) such that p(s) does not
depend upon s, where

p(s) = / (7)orta =0 —n(0) a0,

Show that this requirement is satisfied if p(6) is uniform, i.e., p(6) ~ U(0,1).

19. Assume we have training data from a Gaussian distribution of known covari-
ance % but unknown mean p. Suppose further that this mean itself is random, and
characterized by a Gaussian density having mean mg and covariance 3.

(a) What is the MAP estimator for p?

(b) Suppose we transform our coordinates by a linear transform x’ = Ax, for non-
singular matrix A, and accordingly for other terms. Determine whether your
MAP estimator gives the appropriate estimate for the transformed mean p’.
Explain.

20. Suppose for a given class with parameter s the density can be written as:

plalo) = 27 ().

In such a case we say that « is a scale parameter. For instance, the standard deviation
o is a scale parameter for a one-dimensional Gaussian.

(a) Imagine that we measure 2/ = ax instead of x, for some constant . Show that
the density now can be written as

1 '
sl =1 ().
Find o'.

(b) Find the non-informative prior for o/, written as p’(a’). You will need to note
that for any interval A € (0, 00) the following equation should hold:

[platda = [va) da

A A
21. State the conditions on p(x|@), on p(0), and on D™ that insure that the estimate
p(0]D™) in Eq. 54 converges in the limit n — oo.
@D Section 3.6
22. Employ the notation of the chapter and suppose s is a sufficient statistic statis-

tics for which p(0]s,D) = p(0|s). Assume p(0|s) # 0 and prove that p(D]s,) is
independent of 6.

62 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

23. Using the results given in Table 3.1, show that the maximum likelihood estimate
for the parameter 6 of a Rayleigh distribution is given by

= ——
1

2
v L,
k

M2

Il
—

24. Using the results given in Table 3.1, show that the maximum likelihood estimate
for the parameter 6 of a Maxwell distribution is given by

A 3/2

T
>}

k=1

3=

25. Using the results given in Table 3.1, show that the maximum likelihood estimate
for the parameter 6 of a multinomial distribution is given by

~ sl

b=
> 8
j=1

where the vector s = (s, ..., 54)" is the average of the n samples x1, ..., X,

26. Demonstrate that sufficiency is an integral concept, i.e., that if s is sufficient for
0, then corresponding components of s and 8 need not be sufficient. Do this for the
case of a univariate Gaussian p(z) ~ N(u,0?) where § = (1) is the full vector of
parameters.

(a) Verify that the statistic

T

wn
|
ey
@» »
[
~_
I
3=
=
3 3
NENN
>

2
L

S|
~
Il
—

is indeed sufficient for 6, as given in Table 3.1.

(b) Show that s; taken alone is not sufficient for p. Does your answer depend upon
whether o2 is known?

(c) Show that sy taken alone is not sufficient for 0. Does your answer depend upon
whether p is known?

27. Suppose s is a statistic for which p(8|x, D) = p(0]s).
(a) Assume p(0|s) # 0, and prove that p(D|s, 8) is independent of 6.

(b) Create an example to show that the inequality p(0|s) # 0 is required for your
proof above.

28. Consider the Cauchy distribution,

1 1

MO

for b > 0 and arbitrary real a.

3.10. PROBLEMS 63

(a) Confirm that the distribution is indeed normalized.

(b) For a fixed a and b, try to calculate the mean and the standard deviation of the
distribution. Explain your results.

(¢) Prove that this distribution has no sufficient statistics for the mean and standard
deviation.

@D Section 3.7

29. In the following, suppose a and b are constants and n a variable parameter.
(a) Is a1 = O(a™)?
(b) Is a’™ = O(a™)?

(c) Is a"*t? = O(a™)?

)

(d) Prove f(n) = O(f(n)).

30. Consider the evaluation of a polynomial function f(x) = Y. a;2%, where the n
i=0
coefficients a; are given.

(a) Write pseudocode for a simple @(n?)-time algorithm for evaluating f(z).

(b) Show that such a polynomial can be rewritten as:

flz) = Zaixi = (- (an—1Z +an_2)r + -+ a1)r + aog,

and so forth — a method known as Horner’s rule. Use the rule to write pseu-
docode for a ©(n)-time algorithm for evaluating f(x).

31. For each of the short procedures, state the computational complexity in terms
of the variables N, M, P, and K, as appropriate. Assume that all data structures
are defined, that those without indexes are scalars and that those with indexes have
the number of dimensions shown.

Algorithm 6

1 begin for i «— i+ 1
2 5 §+1i°
s untili=N

4 return s

5 end

Algorithm 7
1 begin for i «— i+ 1

2 S S+ x; X
s untili=N
4 return./s

5 end

64 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

Algorithm 8

1 begin for j «— j+1

2 fori—i+1

3 Sj < 85 + wijT;
4 until i =1

5 until j =J

6 fork«—Fk+1

7 for j—j+1

8 Tk < Tk + WjkS;

9 until j = J

170 until k = K

11 end

32. Consider a computer having a uniprocessor that can perform one operation per
nanosecond (1079 sec). The left column of the table shows the functional dependence
of such operations in different hypothetical algorithms. For each such function, fill in
the number of operations n that can be performed in the total time listed along the
top.

| f(n) | Isec| 1hour | 1day |1 year |
logyn
NZD
n

nlogyn

77,2

n3

2"1
en
n!

33. Show that the estimator of Eq. 21 is indeed unbiased for:

a) Normal distributions.

(a)

(b) Cauchy distributions.

(¢) Binomial distributions.
)

(d) Prove that the estimator of Eq. 20 is asymptotically unbiased.

34. Let the sample mean fi,, and the sample covariance matrix C,, for a set of n
samples X1, ..., X, (each of which is d-dimensional) be defined by

and

Cn =

1 X X
n—1 Z(Xk - l"’n)(xk - Mn)t
k=1

We call these the “non-recursive” formulas.

3.10.

(a)

(b)

()

(d)

PROBLEMS 65

What is the computational complexity of calculating fi,, and C,, by these for-
mulas?

Show that alternative, “recursive” techniques for calculating fi,, and C,, based
on the successive addition of new samples x,,+1 can be derived using the recur-
sion relations

Hpi1 = By + m(xn-‘rl - /l’n)
and
n—1 1
Cn = Cn n — [n — [t-
+1 i + n+1(x +1 = f) (Xng1 — fby,)

What is the computational complexity of finding fi,, and C,, by these recursive
methods?

Describe situations where you might prefer to use the recursive method for com-
puting f,, and C,,, and ones where you might prefer the non-recursive method.

35. In pattern classification, one is often interested in the inverse of the covariance
matrix, for instance when designing a Bayes classifier for Gaussian distributions. Note
that the non-recursive calculation of C,;! (the inverse of the covariance matrix based
on n samples, cf., Problem 34) might require the O(n?) inversion of C,, by standard
matrix methods. We now explore an alternative, “recursive” method for computing

C,L

(a)

(b)

()
(d)

Prove the so-called Sherman-Morrison-Woodbury matrix identity

A lxy!A—!

Agxyl)y l=Aato Y2
(A +xy7) 1+ytA-1x

Use this and the results of Problem 34 to show that

C—l _ n -1 C;I(Xn-i-l B [I’n)(xn+l B p’n)tcgl
n+1 7 n—1 n n2—1 o~ tC*I o~
T (Xn41 = f,)'Cr " (Xnt1 — f1y,)

What is the computational complexity of this calculation?

Describe situations where you would use the recursive method, and ones where
you would use instead the non-recursive method.

36. Suppose we wish to simplify (or regularize) a Gaussian classifier for two categories

by means of shrinkage. Suppose that the estimated distributions are N (u, 1) and
N(py,32). In order to employ shrinkage of an assumed common covariance toward
the identity matrix as given in Eq. 77, show that one must first normalize the data
to have unit variance.

P Section 3.8

37. Consider the convergence of the Expectation-Maximization algorithm, i.e., that
if 1(68,Dy) = Inp(Dy,; 0) is not already optimum, then the EM algorithm increases it.
Prove this as follows:

66 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

(a) First note that
1(6; Dy) =Inp(Dy, Dy; 0) — Inp(Dy|Dy; 0).

Let &[] denote the expectation with respect to the distribution p(Dy|D,; 6').
Take such an expectation of 1(0; D), and express your answer in terms of
Q(0,0") of Eq. 78.

(b) Define ¢(Dy) = p(Dy|Dy; 0)/p(Dy|Dy; 6') to be the ratio of expectations as-
suming the two distributions. Show that &'[lng(Dy)] < E'[¢(Dp)] — 1 = 0.

(c) Use this result to show that if Q(8"™,8") > Q(6",8"), achieved by the M step
in Algorithm ??, then 1(8'™"; D,) > 1(6"; D).

38. Suppose we seek to estimate 8 describing a multidimensional distribution from
data D, some of whose points are missing features. Consider an iterative algorithm in
which the maximum likelihood value of the missing values is calculated, then assumed
to be correct for the purposes of restinating 0 and iterated.

(a) Is this always equivalent to an Expectation-Maximization algorithm, or just a
generalized Expectation-Maximization algorithm?

(b) If it is an Expectation-Maximization algorithm, what is Q(0,8"), as described
by Eq. 787

39. Consider data D = {(;), (f), (i), (i), (Z)}, sampled from a two-dimensional
uniform distribution

1 ifopn <z <m0
U . [Tu1—zi1]|Tu2—T12] and x2 < 29 < T2
p(X) ~ (Xlaxu) -
0 otherwise,

where * represents missing feature values.

(a) Start with an initial estimate

and analytically calculate Q(6,0") — the E step in the EM algorithm.
(b) Find the @ that maximizes your Q(6,0") — the M step.
(¢) Plot your data and the bounding rectangle.

(d) Without having to iterate further, state the estimate of 8 that would result after
convergence of the EM algorithm.

40. Consider data D = {(}), (g), (i) }, sampled from a two-dimensional (separable)
distribution p(x1,x9) = p(x1)p(as), with

3.10. PROBLEMS 67

L=tz jf 0 >0

p(z1) ~ {81
and

p(r2) ~ U(0792):{ 8%

otherwise,

o<z <4
otherwise.

As usual, * represents a missing feature value.

(a) Start with an initial estimate % = (i) and analytically calculate Q(6,6") —
the E step in the EM algorithm. Be sure to consider the normalization of your
distribution.

(b) Find the 0 that maximizes your Q(6,60") — the M step.

(¢) Plot your data on a two-dimensional graph and indicate the new parameter
estimates.

41. Repeat Problem 40 but with data D = {(}), (g), ()}
P Section 3.9

42. Use the conditional probability matrices in Example 3 to answer the following
separate problems.

(a) Suppose it is December 20 — the end of autumn and the beginning of winter
— and thus let P(a;) = P(a4) = 0.5. Furthermore, it is known that the fish
was caught in the north Atlantic, i.e., P(b1) = 1. Suppose the lightness has not
been measured but it is known that the fish is thin, i.e., P(ds) = 1. Classify the
fish as salmon or sea bass. What is the expected error rate?

(b) Suppse all we know is that a fish is thin and medium lightness. What season is
it now, most likely? What is your probability of being correct?

(¢) Suppose we know a fish is thin and medium lightness and that it was caught in
the north Atlantic. What season is it, most likely? What is the probability of
being correct?

43. One of the simplest assumptions is that of the naive Bayes rule or idiot Bayes
rule expressed in Eq. 85. Draw the belief net for a three-category problem with five
features x;, i = 1, 2, ...5.

44. Consider a Bayesian belief net with several nodes having unspecified values.
Suppose that one such node is selected at random, the probabilities of its nodes
computed by the formulas described in the text. Next another such node is chosen at
random (possibly even a node already visited), and the probabilities similarly updated.
Prove that this procedure will converge to the desired probabilities throughout the
full network.

@D Section 3.10

45. Consider training an HMM by the Forward-backward algorithm, for a single
sequence of length T where each symbol could be one of ¢ values. What is the
computational complexity of a single revision of all values a;; and Ejk?

46. The standard method for calculating the probability of a sequence in a given
HMM is to use the forward probabilities c;(t).

68 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

(a) Show by a simple substitution that a symmetric method can be derived using
the backward probabilities 3;(t).

(b) Prove that one can get the probability by combining the forward and the back-
ward probabilities at any place in the middle of the sequence. That is, show

that
T/
P(w™) =Y ai(t)Bi(t),
i=1
where w?” is a particular sequence of length 77 < T.

(¢) Show that your formula reduces to the known values at the beginning and end
of the sequence.

47. Suppose we have a large number of symbol sequences emitted from an HMM
that has a particular transition probability a, j; = 0 for some single value of i’ and
j'. We use such sequences to train a new HMM, one that happens also to start
with its a; ;v = 0. Prove that this parameter will remain 0 throughout training by
the Forward-backward algorithm. In other words, if the topology of the trained model
(pattern of non-zero connections) matches that of the generating HMM, it will remain

so after training.
48. Consider the decoding algorithm (Algorithm 4) in the text.

(a) Take logarithms of HMM model parameters and write pseudocode for an equiv-
alent algorithm.

(b) Explain why taking logarithms is an O(n) calculation, and thus the complexity
of your algorithm in (a) is O(c*T).

49. Explore the close relationship between Bayesian belief nets and hidden Markov
models as follows.

(a) Prove that the forward and the backward equations for hidden Markov models
are special cases of Eq. 84.

(b) Use your answer to explain the relationship between these two general classes

of models.

Computer exercises

Several exercises will make use of the following three-dimensional data sampled from
three categories, denoted w;.

3.10. COMPUTER EXERCISES 69

w1 wa w3

point | xq To T3 T To T3 T To T3
1 0.42 -0.087 0.58 | -0.4 0.58 0.089 0.83 1.6 -0.014
2 -0.2 -3.3 -3.4 | -0.31 0.27 -0.04 1.1 1.6 0.48
3 1.3 -0.32 1.7 0.38 0.055 -0.035 | -0.44 -0.41 0.32
4 0.39 0.71 0.23 | -0.15 0.53 0.011 0.047 -0.45 1.4
5 -1.6 -5.3 -0.15 | -0.35 0.47 0.034 0.28 0.35 3.1
6 -0.029 0.89 -4.7 | 0.17 0.69 0.1 -0.39 -0.48 0.11
7 -0.23 1.9 2.2 -0.011 0.55 -0.18 0.34 -0.079 0.14
8 0.27 -0.3 -0.87 | -0.27 0.61 0.12 -0.3 -0.22 2.2
9 -1.9 0.76 -2.1 -0.065 0.49 0.0012 | 1.1 1.2 -0.46
10 0.87 -1.0 -2.6 | -0.12 0.054 -0.063 | 0.18 -0.11 -0.49

P Section 3.2

1. Consider Gaussian density models in different dimensions.

(a) Write a program to find the maximum likelihood values fi and 2. Apply your
program individually to each of the three features x; of category w; in the table
above.

(b) Modify your program to apply to two-dimensional Gaussian data p(x) ~ N (u,).
Apply your data to each of the three possible pairings of two features for w;.

(¢) Modify your program to apply to three-dimensional Gaussian data. Apply your
data to the full three-dimensional data for wj.

(d) Assume your three-dimensional model is separable, so that ¥ = diag(c%, 03, 03).

Write a program to estimate the mean and the diagonal components of 3. Apply
your program to the data in ws.

(e) Compare your results for the mean of each feature u; calculated in the above
ways. Explain why they are the same or different.

(f) Compare your results for the variance of each feature o7 calculated in the above
ways. Explain why they are the same or different.

P Section 3.3

2. Consider a one-dimensional model of a triangular density governed by two scalar
parameters:

0— |z — 6% for lw—pl <o
plole) = 1) = { 7TV s

where 6 = (g) Write a program to calculate a density p(z|D) via Bayesian methods
Eq. 26) and apply it to the x5 feature of category wo. Plot your resulting posterior
(y gory y g

density p(z|D).

P Section 3.4

3. Consider Bayesian estimation of the mean of a one-dimensional Gaussian. Suppose
you are given the prior for the mean is p(u) ~ N(ug,00).

70 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

(a) Write a program that plots the density p(z|D) given ug, 0g, o and training set
D = {xla T2, ?‘rn}

(b) Estimate o for the x2 component of ws in the table above. Now assume pg = —1
and plot your estimated densities p(z|D) for each of the following values of the
dogmatism, o2 /o3: 0.1, 1.0, 10, 100.

P Section 3.5

4. Suppose we have reason to believe that our data is sampled from a two-dimensional
uniform density

1

Tm—anlFe—rn] for o <21 < @y and 23 < 29 < Tup

p(x[0) ~ U(x, xy) =
0 otherwise,

where x;1 is the £1 component of the “lower” bounding point x;, and analogously for
the x5 component and for the upper point. Suppose we have reliable prior information
that the density is zero outside the box defined by x; = (:2) and x, = (ig) Write
a program that calculates p(x|D) via recursive Bayesian estimation and apply it to
the 1 — 2 components of wy, in sequence, from the table above. For each expanding

data set D™ (2 < n < 10) plot your posterior density.
P Section 3.6

5. Write a single program to calculate sufficient statistics for any members of the
exponential family (Eq. 69). Assume that the x3 data from w3 in the table come from
an exponential density, and use your program to calculate the sufficient statistics for
each of the following exponential forms: Gaussian, Rayleigh and Maxwell.

P Section 3.7

6. Consider error rates in different dimensions.

(a) Use maximum likelihood to train a dichotomizer using the three-dimensional
data for categories wy and wo in the Table above. Numerically integrate to
estimate the classification error rate.

(b) Now consider the data projected into a two-dimensional subspace. For each of
the three subspaces — defined by 1 = 0 or x5 = 0 or x3 = 0 — train a Gaussian
dichotomizer. Numerically integrate to estimate the error rate.

(¢) Now consider the data projected onto one-dimensional subspaces, defined by
each of the three axes. Train a Gaussian classifier, and numerically integrate to
estimate the error rate.

(d) Discuss the rank order of the error rates you find.

(e) Assuming that you resestimate the distribution in the different dimensions, log-
ically must the Bayes error be higher in the projected spaces.

3.10. COMPUTER EXERCISES 71

7. Repeat the steps in Exercise 6 but for categories wy and ws.
8. Consider the classification of Gaussian data employing shrinkage of covariance
matrixes to a common one.

(a) Generate 20 training points from each of three equally probable three-dimensional
Gaussian distributions N(u,, 3;) with the following parameters:

= (O?O7O)t7 3 = dzag[3, 5, 2}
1 0 0
o= (1,5,-3), Zp=| 0 4 1
0 1 6
ps = (0,0,0)", 3 = 10L

(b) Write a program to estimate the means and covariances of your data.

(¢) Write a program that takes o and shrinks these estimated covariance matrixes
according to Eq. 76.

(d) Plot the training error as a function of «, where 0 < o < 1.

(e) Use your program from part (a) to generate 50 test points from each category.
Plot the test error as a function of «.

P Section 3.8

9. Suppose we know that the ten data points in category wy in the table above come
from a three-dimensional Gaussian. Suppose, however, that we do not have access to
the x3 components for the even-numbered data points.

(a) Write an EM program to estimate the mean and covariance of the distribution.
Start your estimate with u® = 0 and X° = I, the three-dimensional identity
matrix.

(b) Compare your final esimate with that for the case when there is no missing data.

10. Suppose we know that the ten data points in category ws in the table above
come from a three-dimensional uniform distribution p(x|ws) ~ U(x;,X,). Suppose,
however, that we do not have access to the x3 components for the even-numbered
data points.

(a) Write an EM program to estimate the six scalars comprising x; and x,, of the dis-
tribution. Start your estimate with x; = (=2, -2, —2)% and x,, = (+2, +2, +2)*.

(b) Compare your final esimate with that for the case when there is no missing data.

P Section 3.9

Write a program to evaluate the Bayesian belief net for fish in Example 3, including
the information in P(x;|a;),P(x;|b;), P(cilx;), and P(d;|z;). Test your program on
the calculation given in the Example. Apply your program to the following cases, and
state any assumptions you need to make.

72 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

(a) A dark, thin fish is caught in the north Atlantic in summer.
probability it is a salmon?

What is the

(b) A thin, medium fish is caught in the north Atlantic. What is the probability it
is winter? spring? summer? autumn?

(¢) A light, wide fish is caught in the autumn. What is the probability it came from

the north Atlantic?

P Section 3.10

11. Consider the use of hidden Markov models for classifying sequences of four visible
states, A-D. Train two hidden Markov models, each consisting of three hidden states
(plus a null initial state and a null final state), fully connected, with the following
data. Assume that each sequence starts with a null symbol and ends with an end null

symbol (not listed).

sample | wy wo
1 AABBCCDD DDCCBBAA
2 ABBCBBDD DDABCBA
3 ACBCBCD CDCDCBABA
4 AD DDBBA
5 ACBCBABCDD | DADACBBAA
6 BABAADDD CDDCCBA
7 BABCDCC BDDBCAAAA
8 ABDBBCCDD BBABBDDDCD
9 ABAAACDCCD | DDADDBCAA
10 ABD DDCAAA

(a) Print out the full transition matrices for each of the models.

(b) Assume equal prior probabilities for the two models and classify each of the

following sequences: ABBBCDDD, DADBCBAA, CDCBABA, and ADBBBCD.

(c) Asabove, classify the test pattern BADBDCBA. Find the prior probabilities for your
two trained models that would lead to equal posteriors for your two categories
when applied to this pattern.

Bibliography

1]

[4]

[5]

[10]

[11]

Pierre Baldi, Sgren Brunak, Yves Chauvin, Jacob Engelbrecht, and Anders
Krogh. Hidden Markov models for human genes. In Stephen J. Hanson, Jack D.
Cowan, and C. Lee Giles, editors, Neural Information Processing Systems, vol-
ume 6, pages 761-768, San Mateo, CA, 1994. Morgan Kaufmann.

Leonard E. Baum and Ted Petrie. Statistical inference for probabilistic functions
of finite state Markov chains. Annals of Mathematical Statistics, 37:1554—1563,
1966.

Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss. A maximiza-
tion technique occurring in the statistical analysis of probabilistic functions of
Markov chains. Annals of Mathematical Statistics, 41(1):164-171, 1970.

José M. Bernardo and Adrian F. M. Smith. Bayesian Theory. John Wiley, New
York, NY, 1996.

Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford Uni-
versity Press, Oxford, UK, 1995.

David Braverman. Learning filters for optimum pattern recognition. IRE Trans-
actions on Information Theory, I'T-8:280-285, 1962.

Wray L. Buntine. Operations for learning with graphical models. Journal of
Artificial Intelligence Research, 2:159-225, 1994.

Wray L. Buntine. A guide to the literature on learning probabilistic networks
from data. IEEE Transactions on Knowledge and Data Engineering, 8(2):195—
210, 1996.

Eugene Charniak. Statistical Language Learning. MIT Press, Cambridge, MA,
1993.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. MIT Press, Cambridge, MA, 1990.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm (with discussion). Journal of the
Royal Statistical Society, Series B, 39:1-38, 1977.

G. David Forney, Jr. The Viterbi algorithm. Proceedings of the IEEFE, 61:268-278,
1973.

Peter E. Hart and Jamey Graham. Query-free information retrieval. IEFEE Ez-
pert: Intelligent Systems and Their Application, 12(5):32-37, 1997.

73

74

[14]

[15]

[16]

[17]

[18]

[19]

[22]
23]

[24]

BIBLIOGRAPHY

David Heckerman. Probabilistic Similarity Networks. ACM Doctoral Dissertation
Award Series. MIT Press, Cambridge, MA, 1991.

Harold Jeffreys. Theory of Probability. Oxford University Press, Oxford, UK,
1961 reprint edition, 1939.

Michael 1. Jordan, editor. Learning in Graphical Models. Kluwer, Dortrecht,
Netherlands, 1998.

Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and
the EM algorithm. Neural Computation, 6:181-214, 1994.

Donald E. Knuth. The Art of Computer Programming, volume 1. Addison-
Wesley, Reading, MA, 1 edition, 1973.

Gary E. Kopec and Phil A. Chou. Document image decoding using Markov
source models. IEEE Transactions on Pattern Analysis and Machine Intelligence,

16(6):602-617, 1994.

Anders Krogh, Michael Brown, I. Saira Mian, Kimmen Sjdlander, and David
Haussler. Hidden Markov models in computational biology: Applications to
protein modelling. Journal of Molecular Biology, 235:1501-1531, 1994.

Dennis Victor Lindley. The use of prior probability distributions in statistical
inference and decision. In Jerzy Neyman and Elizabeth L. Scott, editors, Pro-
ceedings Fourth Berkeley Symposium on Mathematical Statistics and Probability,
Berkeley, CA, 1961. U. California Press.

Andrei Andreivich Markov. xxx. zzz, xxx(xxX):xxx-XxxX, 1907.

Geoffrey J. McLachlan and Thiriyambakam Krishnan. The EM Algorithm and
Extensions. Wiley Interscience, New York, NY, 1996.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausi-
ble Inference. Morgan Kaufmann, San Mateo, CA, 1988.

Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of Speech Recognition.
Prentice Hall, Englewood Cliffs, NJ, 1993.

Lawrence R. Rabiner. A tutorial on hidden Markov models and selected appli-
cations in speech recognition. Proceedings of IEEE, T7(2):257-286, 1989.

Donald B. Rubin and Roderick J. A. Little. Statistical Analysis with Missing
Data. John Wiley, New York, NY, 1987.

Jiirgen Schiirmann. Pattern Classification: A unified view of statistical and neural
approaches. John Wiley and Sons, New York, NY, 1996.

Padhraic Smyth, David Heckerman, and Michael Jordan. Probabilistic inde-
pendence networks for hidden Markov probability models. Neural Computation,
9:227-269, 1997.

Charles W. Therrien. Decision Estimation and Classification: An Introduction
to Pattern Recognition and Related Topics. Wiley Interscience, New York, NY,
1989.

BIBLIOGRAPHY 75

[31] D. Michael Titterington. Recursive parameter estimation using incomplete data.
Jounal of the Royal Statistical Society series B, 46:257-267, 1984.

[32] Andrew J. Viterbi. Error bounds for convolutional codes and an asymptotically
optimal decoding algorithm. IEEE Transactions on Information Theory, IT-
13:260-269, 1967.

[33] Sewal Wright. Correlation and causation. Journal of Agricultural Research,
20:557-585, 1921.

Index

O(+), see big oh

0(+), see Dirac delta (6(+))
O(-), see big theta

0, see vector, parameter

Baum-Welch Algorithm, see Forward-
backward Algorithm
Bayes
maximum likelihood comparison,
see maximum likelihood, Bayes
comparison
Bayes error
dependence on number of features,
27
Bayes estimation
maximum likelihood comparison,
19
Bayes’ formula, 10
density estimation, 16
Bayesian
learning, see learning, Bayesian
Bayesian belief networks, see Belief net-
works
Bayesian estimation, see learning, Bayesian
Gaussian
multidimensional, 16
Bayesian learning, see learning, Bayesian
BEL(:), see belief, function
belief
function, 37
belief net
node, 37
Belief networks, 36
Bernoulli, see distribution, Bernoulli
Beta, see distribution, Beta
bias-variance
tradeoff, 19
big oh
non-uniqueness, 28
notation, 28
big theta, 29

76

Binomial, see distribution, Binomial

cardinality, 38
Cauchy distribution, see distribution,
Cauchy
causal network, see belief network
child (belief net), 37
class
independence, 4, 10
classifier
Bayes, 10
complexity
computational, 28
maximum likelihood classifier, 29
exponential, 30
polynomial, 30
space, 30
time, 30
computational complexity, see complex-
ity, computational, 28-32
of estimation, 19
conjugate prior, see prior, conjugate
covariance
matrix
sample, 9
of sum distribution, 15

DAG, see directed acyclic graph
data
training, 3
density
class-conditional, 11
estimation, 3
estimation, 11
sequence, 17
Gaussian, 3
joint
estimate, 11
design sample, see sample, design
determinant
complexity, 29

INDEX

Dirac delta, 13, 17
directed acyclic graph (DAG), 36
discriminant
regularized, 32
distance
Mahalanobis, 27
distribution
Bernoulli, 26
Beta, 26
Binomial, 26
Cauchy, 62
exponential, 26
Gamma, 26
Gaussian, 26
identifiable, 18
Maxwell, 26
multinomial, 26
normal, see distribution, Gaussian,
26
Poisson, 26
Rayleigh, 26
uniform, 17
dogmatism, 59

EM algorithm, see Expectation-Maximization

error
Bayes, 20
Gaussian, 27
dependence on number of features,
27
estimation, 20
indistinguisability, see error,Bayes
model, 9, 20
estimation
complexity, 19
estimation error, see error, estimation
estimator
absolutely unbiased, 9
asymptotically unbiased, 9
unbiased, 8
exchangeability
invariance, 60
Expectation-Maximization, 32—-36
Algorithm, 33
Example, 33
exponential, see distribution, exponen-
tial

Factorization Theorem, 22
feature

7

independent, 27

related to error, 27
Forward-backward Algorithm, 52
function

Dirac delta, 13

Gamma, see distribution, Gamma
Gaussian, see distribution, Gaussian
Gaussian elimination, 29

GEM algorithm, see Expectation-Maximization,

generalized

generalized expectation maximization,
see Expectation-Maximization,
generalized

generalized Expectation-Maximization,
51

gradient

operator, 6

hidden Markov model
Example, 47
causal, 44
computation, 44
decoding, 49-51
ergodic, 44
evaluation, 45-49
learning, 51-53
Forward-backward Algorithm, 52
state
absorber, 44
final, 44
HMM
decoding
Ezxample, 50
left-to-right, 49
Horner’s rule, 63

iid., 4
identifiable, 18
idiot Bayes rule, see naive Bayes rule
improper prior, see prior, improper
independence

class, 10
independent features, 27
indistinguisability error, see error, Bayes
invariance

exchangeability, 60

scale, 20, 61

translation, 20

knowledge

78

prior, 10
Kullback-Leibler divergence
Gaussian, 57

learning
Bayesian, 4, 17
pattern classification, 9
degenerate, 13
incremental
recursive Bayes, 17
supervised, 4
unsupervised, 4
likelihood, 5
extremum, 6
in belief net, 39
smoothness assumption, 11
log-likelihood, 5
function, 6

MAP, see maximum a posteriori
matrix
covariance
complexity, 29
estimates, 9
inversion
complexity, 29
sweep methods, 29
trace, 58
maximum a posteriori (MAP), 6
estimator, 6
maximum likelihood, 3, 5
Bayes comparison, 4, 19
Gaussian
mean, 7
mean and covariance, 7
solution non-uniqueness, 18
Maxwell distribution, see distribution

)

Maxwell
mean
sample, see sample mean
mode

MAP estimation, 6
model error, see error, model
Monte-Carlo, 11
multinomial, see distribution, multino-
mial

naive Bayes rule, 42, 67
node
belief net, see belief net, node

INDEX

node (belief net), 38
child, 38
parent, 37
normal, see distribution, normal

on-line learning, see learning, incremen-
tal

order of a function, 28

overdetermined solution, 31

parameter

estimation, 3

space, 11
parameter estimation

Bayesian

Gaussian case, 15

recursive Bayes, 17
parent (belief net), 37
Poisson distribution, see distribution,

Poisson

posterior

convergence, 18

delta function, 18
prior

conjugate, 12

determination, 10

estimation, 3

improper, 20
probability

density

estimation, 3

Rayleigh distribution, see distribution,
Rayleigh
recursive Bayes, 17
Example, 17
true, 17
regression
ridge, 32
ridge regression, see regression, ridge

sample
design, 3
mean, 7
Sherman-Morrison-Woodbury formula,
65
shrinkage, 32, 65
state of nature (w), 4
stopping criterion, 53
sufficient statistic, 17
sufficient statistics, 21-27

INDEX

integral nature, 23, 62

temporality, 42
trace, 58
training data, see data, training
transition probability
Markov model, 43

uniform distribution, see distribution,
uniform

variance
addition, 14
bias, 8
vector
parameter (0), 4, 11
true, 11

79

Contents

4 Nonparametric techniques
4.1 Introduction L L
4.2 Density estimationo L Lo
4.3 Parzen Windows
4.3.1 Convergence of the Mean
4.3.2 Convergence of the Variance
4.3.3 Dlustrations Lo
4.3.4 Classification example 0.
4.3.5 Probabilistic Neural Networks (PNNs)
Algorithm 1: PNN training e
Algorithm 2: PNN classification
4.3.6 Choosing the window function
4.4 k,—Nearest-Neighbor Estimation
4.4.1 Estimation of a posteriori probabilities
4.5 The Nearest-Neighbor Rule
4.5.1 Convergence of the Nearest Neighbor
4.5.2 Error Rate for the Nearest-Neighbor Rule
453 ErrorBoundso oo
4.5.4 The k-Nearest-Neighbor Rule
4.5.5 Computational Complexity of the k—Nearest-Neighbor Rule . .
Algorithm 3: Nearest-neighbor editing
4.6 *Metrics and Nearest-Neighbor Classification
4.6.1 Tangent distanceo oL
4.7 *Fuzzy Classification
4.7.1 Are Fuzzy Category Memberships just Probabilities?
4.8 *Relaxation methods L
Algorithm 4: RCE training
Algorithm 5: RCFE classification
4.9 *Approximations by Series Expansions
4.10 *Fisher Linear Discriminant
4.11 *Multiple Discriminant Analysis
Summaryo ...
Bibliographical and Historical Remarks
Problems
Computer eXerciSes i i e
Bibliography
Index

O W w W

CONTENTS

Chapter 4

Nonparametric techniques

4.1 Introduction

n Chap. 7?7 we treated supervised learning under the assumption that the forms
I of the underlying density functions were known. Alas, in most pattern recognition
applications this assumption is suspect; the common parametric forms rarely fit the
densities actually encountered in practice. In particular, all of the classical parametric
densities are unimodal (have a single local maximum), whereas many practical prob-
lems involve multimodal densities. Further, our hopes are rarely fulfilled that a high-
dimensional density might be simply represented as the product of one-dimensional
functions. In this chapter we shall examine nonparametric procedures that can be
used with arbitrary distributions and without the assumption that the forms of the
underlying densities are known.

There are several types of nonparametric methods of interest in pattern recogni-
tion. One consists of procedures for estimating the density functions p(x|w;) from
sample patterns. If these estimates are satisfactory, they can be substituted for the
true densities when designing the classifier. Another consists of procedures for directly
estimating the a posteriori probabilities P(w;|x). This is closely related to nonpara-
metric design procedures such as the nearest-neighbor rule, which bypass probability
estimation and go directly to decision functions. Finally, there are nonparametric
procedures for transforming the feature space in the hope that it may be possible to
employ parametric methods in the transformed space. These discriminant analysis
methods include the Fisher linear discriminant, which provides an important link be-
tween the parametric techniques of Chap. 7?7 and the adaptive techniques of Chaps. 77

& 77

4.2 Density estimation

The basic ideas behind many of the methods of estimating an unknown probability
density function are very simple, although rigorous demonstrations that the estimates
converge require considerable care. The most fundamental techniques rely on the fact
that the probability P that a vector x will fall in a region R is given by

4 CHAPTER 4. NONPARAMETRIC TECHNIQUES

P= [) ax. (1)

R

Thus P is a smoothed or averaged version of the density function p(x), and we can
estimate this smoothed value of p by estimating the probability P. Suppose that n
samples X1, ..., X,, are drawn independently and identically distributed (i.i.d.) accord-
ing to the probability law p(x). Clearly, the probability that k of these n fall in R is
given by the binomial law

P, = (Z) Pk(1— Pk, (2)

and the expected value for k is

E[k] =nP. (3)

Pf 100
8
6
4 50
2

20
n > k/n
0 P=.7 1

Figure 4.1: The probability Py of finding k£ patterns in a volume where the space
averaged probability is P as a function of k/n. Each curve is labelled by the total
number of patterns n. For large n, such binomial distributions peak strongly at
k/n = P (here chosen to be 0.7).

Moreover, this binomial distribution for k£ peaks very sharply about the mean, so that
we expect that the ratio k/n will be a very good estimate for the probability P, and
hence for the smoothed density function. This estimate is especially accurate when n
is very large (Fig. 4.1). If we now assume that p(x) is continuous and that the region
R is so small that p does not vary appreciably within it, we can write

/ p(x) dx' =~ p(x)V, (4)

where x is a point within R and V' is the volume enclosed by R. Combining Eqs. 1,
3 & 4, we arrive at the following obvious estimate for p(x):

4.2. DENSITY ESTIMATION 5

o) ~ M o)

There are several problems that remain — some practical and some theoretical.
If we fix the volume V and take more and more training samples, the ratio k/n will
converge (in probability) as desired, but we have only obtained an estimate of the
space-averaged value of p(x),

[p(x") dx’

P
V:R Jax! (©)

If we want to obtain p(x) rather than just an averaged version of it, we must be
prepared to let V' approach zero. However, if we fix the number n of samples and let
V' approach zero, the region will eventually become so small that it will enclose no
samples, and our estimate p(x) ~ 0 will be useless. Or if by chance one or more of
the training samples coincide at x, the estimate diverges to infinity, which is equally
useless.

From a practical standpoint, we note that the number of samples is always limited.
Thus, the volume V' can not be allowed to become arbitrarily small. If this kind of
estimate is to be used, one will have to accept a certain amount of variance in the
ratio k/n and a certain amount of averaging of the density p(x).

From a theoretical standpoint, it is interesting to ask how these limitations can
be circumvented if an unlimited number of samples is available. Suppose we use the
following procedure. To estimate the density at x, we form a sequence of regions
Ri1,Ra, ..., containing x — the first region to be used with one sample, the second
with two, and so on. Let V,, be the volume of R,,, k,, be the number of samples falling
in R, and p,(x) be the nth estimate for p(x):

_ kn/n
=5

If pn(x) is to converge to p(x), three conditions appear to be required:

pn(x) (7)

e limV, =0

n—oo

e limk, =

n—oo

e limk,/n=0.

The first condition assures us that the space averaged P/V will converge to p(x),
provided that the regions shrink uniformly and that p(-) is continuous at x. The
second condition, which only makes sense if p(x) # 0, assures us that the frequency
ratio will converge (in probability) to the probability P. The third condition is clearly
necessary if p,(x) given by Eq. 7 is to converge at all. It also says that although a
huge number of samples will eventually fall within the small region R,,, they will form
a negligibly small fraction of the total number of samples.

There are two common ways of obtaining sequences of regions that satisfy these
conditions (Fig. 4.2). One is to shrink an initial region by specifying the volume V,
as some function of n, such as V;, = 1/y/n. It then must be shown that the random
variables k, and k,/n behave properly, or more to the point, that p,(x) converges to

6 CHAPTER 4. NONPARAMETRIC TECHNIQUES

p(x). This is basically the Parzen-window method that will be examined in Sect. 4.3.
The second method is to specify k,, as some function of n, such as k,, = /n. Here
the volume V,, is grown until it encloses k,, neighbors of x. This is the k,-nearest-
neighbor estimation method. Both of these methods do in fact converge, although it
is difficult to make meaningful statements about their finite-sample behavior.

3 10
e o o . .°. L]
«o® °d
(9] o e Q..o o o o o o
«o® °d o2 °d e e® * «o®

Figure 4.2: Two methods for estimating the density at a point x (at the center of
each square) are to xxx.

4.3 Parzen Windows

The Parzen-window approach to estimating densities can be introduced by temporar-
ily assuming that the region R, is a d-dimensional hypercube. If h,, is the length of
an edge of that hypercube, then its volume is given by

Vo, = h. (8)
We can obtain an analytic expression for k,, the number of samples falling in the
WINDOW hypercube, by defining the following window function:
FUNCTION
! lujl <1/2 j=1,...d
() = { 0 otherwise. (9)

Thus, ¢(u) defines a unit hypercube centered at the origin. It follows that ¢((x — x;)/hy,)
is equal to unity if x; falls within the hypercube of volume V,, centered at x, and is
zero otherwise. The number of samples in this hypercube is therefore given by

=2 (52), (10)

and when we substitute this into Eq. 7 we obtain the estimate

w0 =1 Y e (552 (1)

This equation suggests a more general approach to estimating density functions.
Rather than limiting ourselves to the hypercube window function of Eq. 9, suppose
we allow a more general class of window functions. In such a case, Eq. 11 expresses
our estimate for p(x) as an average of functions of x and the samples x;. In essence,

4.3. PARZEN WINDOWS 7

the window function is being used for interpolation — each sample contributing to
the estimate in accordance with its distance from x.

It is natural to ask that the estimate p,(x) be a legitimate density function, i.e.,
that it be nonnegative and integrate to one. This can be assured by requiring the
window function itself be a density function. To be more precise, if we require that

p(x) 20 (12)

and

/go(u) du =1, (13)

and if we maintain the relation V,, = h¢, then it follows at once that p,(x) also
satisfies these conditions.

Let us examine the effect that the window width h,, has on p,(x). If we define the
function 0,(x) by

)= g0 (). (14)

then we can write p,(x) as the average

n

Pn(x) = %Zén(xfxi). (15)

i=1

Since V;, = h?, h,, clearly affects both the amplitude and the width of 6, (x) (Fig. 4.3).
If h,, is very large, the amplitude of §, is small, and x must be far from x; before
dn(x — x;) changes much from §,,(0). In this case, p,(x) is the superposition of n
broad, slowly changing functions and is a very smooth “out-of-focus” estimate of
p(x). On the other hand, if &, is very small, the peak value of ¢, (x — x;) is large and
occurs near X = x;. In this case p(x) is the superposition of n sharp pulses centered
at the samples — an erratic, “noisy” estimate (Fig. 4.4). For any value of h,,, the
distribution is normalized, i.e.,

/5n(x—xi) dx:/vin<p (Xl;xi) dx:/ga(u) du = 1. (16)

Thus, as h,, approaches zero, J,,(x —x;) approaches a Dirac delta function centered at
x;, and p,(x) approaches a superposition of delta functions centered at the samples.

Clearly, the choice of h, (or V,,) has an important effect on p,(x). If V, is too
large, the estimate will suffer from too little resolution; if V,, is too small, the estimate
will suffer from too much statistical variability. With a limited number of samples, the
best we can do is to seek some acceptable compromise. However, with an unlimited
number of samples, it is possible to let V,, slowly approach zero as n increases and
have p,(x) converge to the unknown density p(x).

In discussing convergence, we must recognize that we are talking about the con-
vergence of a sequence of random variables, since for any fixed x the value of p, (x)
depends on the random samples x1,...,X,. Thus, p,(x) has some mean p,(x) and
variance o2 (x). We shall say that the estimate p,(x) converges to p(x) if

lim py, (x) = p(x) (17)

n—oo

8 CHAPTER 4. NONPARAMETRIC TECHNIQUES

Figure 4.3: Examples of two-dimensional circularly symmetric normal Parzen windows
o(x/h) for three different values of h. Note that because the i (-) are normalized,
different vertical scales must be used to show their structure.

Figure 4.4: Three Parzen-window density estimates based on the same set of five
samples, using the window functions in Fig. 4.3. As before, the vertical axes have
been scaled to show the structure of each function.

and

lim 2 (x) = 0. (18)
n—oo
To prove convergence we must place conditions on the unknown density p(x), on
the window function ¢(u), and on the window width h,. In general, continuity of
p(+) at x is required, and the conditions imposed by Egs. 12 & 13 are customarily
invoked. With care, it can be shown that the following additional conditions assure
convergence (Problem 1):

sup p(u) < oo (19)

4.3. PARZEN WINDOWS 9

limV,, = 0 (21)
and
lim nV,, = oc. (22)

Equations 19 & 20 keep ¢(+) well behaved, and are satisfied by most density functions
that one might think of using for window functions. Equations 21 & 22 state that the
volume V,, must approach zero, but at a rate slower than 1/n. We shall now see why
these are the basic conditions for convergence.

4.3.1 Convergence of the Mean

Consider first p,(x), the mean of p,(x). Since the samples x; are i.i.d. according to
the (unknown) density p(x), we have

Pn(X) Elpn(x)]
22l (5]
/Vinw(xh_nv) p(v) dv

/6n(x —v)p(v) dv. (23)

This equation shows that the expected value of the estimate is an averaged value
of the unknown density — a convolution of the unknown density and the window
function (Appendix ??). Thus, p,(x) is a blurred version of p(x) as seen through the
averaging window. But as V,, approaches zero, ¢, (x — v) approaches a delta function
centered at x. Thus, if p is continuous at x, Eq. 21 ensures that p,(x) will approach
p(x) as n approaches infinity.

4.3.2 Convergence of the Variance

Equation 23 shows that there is no need for an infinite number of samples to make
Pn(x) approach p(x); one can achieve this for any n merely by letting V,, approach
zero. Of course, for a particular set of n samples the resulting “spiky” estimate is
useless; this fact highlights the need for us to consider the variance of the estimate.
Since p,,(x) is the sum of functions of statistically independent random variables, its
variance is the sum of the variances of the separate terms, and hence

X =) €

(e (552 2r0)) |
=1
- el (5] -

= o [7P (5 s dv - R, (24)

n

CONVOLUTION

10 CHAPTER 4. NONPARAMETRIC TECHNIQUES

By dropping the second term, bounding ¢(-) and using Eq. 21, we obtain

su . X
72 o) < TLA Pol) (25)
Clearly, to obtain a small variance we want a large value for V,,, not a small one —
a large V,, smooths out the local variations in density. However, since the numerator
stays finite as n approaches infinity, we can let V,, approach zero and still obtain zero
variance, provided that nV;,, approaches infinity. For example, we can let V,, = V1 /y/n
or Vi/In n or any other function satisfying Eqgs. 21 & 22.

This is the principal theoretical result. Unfortunately, it does not tell us how to
choose ¢(+) and V;, to obtain good results in the finite sample case. Indeed, unless we
have more knowledge about p(x) than the mere fact that it is continuous, we have no
direct basis for optimizing finite sample results.

4.3.3 Illustrations

It is interesting to see how the Parzen window method behaves on some simple ex-
amples, and particularly the effect of the window function. Consider first the case
where p(x) is a zero-mean, unit-variance, univariate normal density. Let the window
function be of the same form:

o) = = e (26)

Finally, let h,, = h1/y/n, where h; is a parameter at our disposal. Thus p,(x) is an
average of normal densities centered at the samples:

pa@) = 13 Lo (P), (21)

i=1

While it is not hard to evaluate Eqs. 23 & 24 to find the mean and variance of
pn(x), it is even more interesting to see numerical results. When a particular set of
normally distributed random samples was generated and used to compute p,,(z), the
results shown in Fig. 4.5 were obtained. These results depend both on n and hy. For
n = 1, p,(x) is merely a single Gaussian centered about the first sample, which of
course has neither the mean nor the variance of the true distribution. For n = 10
and h; = 0.1 the contributions of the individual samples are clearly discernible; this
is not the case for hy = 1 and h; = 5. As n gets larger, the ability of p,(z) to resolve
variations in p(z) increases. Concomitantly, p,(x) appears to be more sensitive to
local sampling irregularities when n is large, although we are assured that p,,(z) will
converge to the smooth normal curve as n goes to infinity. While one should not judge
on visual appearance alone, it is clear that many samples are required to obtain an
accurate estimate. Figure 4.6 shows analogous results in two dimensions.

As a second one-dimensional example, we let ¢(x) and h, be the same as in
Fig. 4.5, but let the unknown density be a mixture of two uniform densities:

1 25 <r< -2
plr) =4 1/4 0<zr<2 (28)
0 otherwise.

Figure 4.7 shows the behavior of Parzen-window estimates for this density. As before,
the case n = 1 tells more about the window function than it tells about the unknown

4.3. PARZEN WINDOWS 11

h=1 h=.5 h=.1
n=1
-2 0 2 -2 0 2 -2 0 2
n=10 R
-2 0 2 -2 O 2 -2 0 2
n =100 ﬂ\
-2 0 2 -2 O 2 -2 0 2
-2 0 2 -2 O 2 -2 0 2

Figure 4.5: Parzen-window estimates of a univariate normal density using different
window widths and numbers of samples. The vertical axes have been scaled to best
show the structure in each graph. Note particularly that the n = co estimates are the
same (and match the true generating function), regardless of window width h.

CHAPTER 4. NONPARAMETRIC TECHNIQUES

12

~ ” o0,

:
gt
R Urgtig i
I R
ettty SO BT
TN 2
LIRS
AR
e
D
LRk
2050020080,
SCHSERARL
%

it

z:
e
e
%

‘.ﬁﬁ.ﬁ

o2
N
R -
s
~ I LRL AT

S
2eereoi e
i
looteers

L

ae,
2
2

o
.
&

v,
22
2

e
s
L
DALY
ALY e,
LR
S,
X

h=2
0
LA
2, 00,0y,
LR
% o,
LR

ZE

2

e
A0
Ly

=
N
X

‘.\b 2
V%

\
\si
..
S
5

5 N

s

%
5%
RS

%2522
AR
B
e
LI
AT
AL

T o
%

5555
ks
5%

2555

:
2552557
oase
252,
1%
2L

2
Ll

s
2

o,

A

oy,
I

"%
ST
e
Serasteons

%
5202

2
2
25
LA
Seostoon
SR
B

2
5%,
rseostte
e
SRR
KRS

s

2555
6%

25
e,
L

%

S

AR
7%
2

oo

LI
%

ALr
G

e,

i,
R
&%

2

2

s
SRS
S

'S,

R

4>
N
52

27

e,

22

27
S

2
>
220

o
2

o,
3
o

2

2L

52
5555
SR

Z
&

LR

2>

IS
2

ooty

22>

...
SRR
R
LR
oo et edy)
R
ARLLLALTH
S sy e e,
ERR R
S

o

S
LR
25

ases,
R
LR
QR
2%

iate normal density using different

tes of a bivar

indow estima

Parzen-w
idths and numbers of samples. The vertical axes have been scaled to best

4.6

Figure
window w

oo estimates are the

regardless of window width h.

Note particularly that the n

in each graph.

show the structure

)

)

distribution

same (and match the true generating

4.3. PARZEN WINDOWS 13

density. For n = 16, none of the estimates is particularly good, but results for n = 256
and hy = 1 are beginning to appear acceptable.

14 CHAPTER 4. NONPARAMETRIC TECHNIQUES

=]
1
i
=
1
i
f =
=
e
1
w”
f =
=
1
[N

(=)
P
N
w
N
(=)
P
N
w
£y
o
-
N
w
£y

E
i

o
P
[N}
w
N
o
P
N
w
I
o
P
[N}
w
S

n=256

-
E

o
P
[N}
w
N
o
P
[N}
w
S
o
P
[N}
w
I

E
E
E

o
P
N
w
N
o
P
N
w
N
o
R
[N}
w
N

Figure 4.7: Parzen-window estimates of a bimodal distribution using different window
widths and numbers of samples. Note particularly that the n = oo estimates are the
same (and match the true generating distribution), regardless of window width h.

4.3.4 Classification example

In classifiers based on Parzen-window estimation, we estimate the densities for each
category and classify a test point by the label corresponding to the maximum poste-
rior. If there are multiple categories with unequal priors we can easily include these
too (Problem 4). The decision regions for a Parzen-window classifier depend upon
the choice of window function, of course, as illustrated in Fig. 4.8. In general, the
training error — the empirical error on the training points themselves — can be made
arbitrarily low by making the window width sufficiently small.* However, the goal of
creating a classifier is to classify novel patterns, and alas a low training error does
not guarantee a small test error, as we shall explore in Chap. ?7. Although a generic
Gaussian window shape can be justified by considerations of noise, statistical inde-
pendence and uncertainty, in the absense of other information about the underlying
distributions there is little theoretical justification of one window width over another.

These density estimation and classification examples illustrate some of the power
and some of the limitations of nonparametric methods. Their power resides in their
generality. Exactly the same procedure was used for the unimodal normal case and
the bimodal mixture case and we did not need to make any assumptions about the

* We ignore cases in which the same feature vector has been assigned to multiple categories.

4.3. PARZEN WINDOWS 15

Figure 4.8: The decision boundaries in a two-dimensional Parzen-window di-
chotomizer depend on the window width h. At the left a small A leads to boundaries
that are more complicated than for large A on same data set, shown at the right.
Apparently, for this data a small A would be appropriate for the upper region, while
a large h for the lower region; no single window width is ideal overall.

distributions ahead of time. With enough samples, we are essentially assured of
convergence to an arbitrarily complicated target density. On the other hand, the
number of samples needed may be very large indeed — much greater than would be
required if we knew the form of the unknown density. Little or nothing in the way of
data reduction is provided, which leads to severe requirements for computation time
and storage. Moreover, the demand for a large number of samples grows exponentially
with the dimensionality of the feature space. This limitation is related to the “curse of
dimensionality,” and severely restricts the practical application of such nonparametric
procedures (Problem 11). The fundamental reason for the curse of dimensionality is
that high-dimensional functions have the potential to be much more complicated than
low-dimensional ones, and that those complications are harder to discern. The only
way to beat the curse is to incorporate knowledge about the data that is correct.

4.3.5 Probabilistic Neural Networks (PNNs)

A hardware implementation of the Parzen windows approach is found in Probabilistic
Neural Networks (Fig. 4.9). Suppose we wish to form a Parzen estimate based on n
patterns, each of which is d-dimensional, randomly sampled from c classes. The PNN
for this case consists of d input units comprising the input layer, each unit is connect
to each of the n pattern units; each pattern unit is, in turn, connected to one and
only one of the ¢ category units. The connections from the input to pattern units
represent modifiable weights, which will be trained. (While these weights are merely
parameters and could be represented by a vector €, in keeping with the established
terminology in neural networks we shall use the symbol w.) Each link from a pattern
unit to its associated category unit is of a single constant magnitude.

The PNN is trained in the following way. First, each pattern x of the training set is

INPUT UNIT

PATTERN
UNIT

CATEGORY
UNIT

WEIGHT

16 CHAPTER 4. NONPARAMETRIC TECHNIQUES

category

pattern

input

Figure 4.9: A probabilistic neural network (PNN) consists of d input units, n pattern
units and ¢ category units. Each pattern unit forms the inner product of its weight
vector and the normalized pattern vector x to form z = w'x, and then emits exp[(z —
1)/0?]. Each category unit sums such contributions from the pattern unit connected
to it. This insures that the activity in each of the category units represents the Parzen-
window density estimate using a circularly symmetric Gaussian window of covariance
0?1, where I is the d x d identity matrix.

d
normalized to have unit length, i.e., is scaled so that > 22 = 1.* The first normalized

training pattern is placed on the input units. The moldilﬁable weights linking the input
units and the first pattern unit are set such that w; = x;. (Note that because of the
normalization of x1, w; is normalized too.) Then, a single connection from the first
pattern unit is made to the category unit corresponding to the known class of that
pattern. The process is repeated with each of the remaining training patterns, setting
the weights to the successive pattern units such that wp = x; for £ = 1,2,...,n.
After such training we have a network that is fully connected between input and
pattern units, and sparsely connected from pattern to category units. If we denote
the components of the jth pattern as x;; and the weights to the jth pattern unit wjy,
for j=1,2,...,nand k =1,2,...,d, then our algorithm is:

Algorithm 1 (PNN training)

1 begin initialize j = 0,n = #patterns

2 doj«—j+1

4 1/2
3 normalize : z;, — x;i/ (Z x?z>

i
4 train : wj, «— T

if x € w; then a;. + 1
until j =n

* Such normalization collapses two vectors having the same direction but different magnitude. In
order to avoid this, we can augment the pattern with a feature of magnitude 1.0, making it (d+1)-
dimensional, and then normalize.

4.3. PARZEN WINDOWS 17

7 end

The trained network is then used for classification in the following way. A nor-
malized test pattern x is placed at the input units. Each pattern unit computes the
inner product

2E = WX, (29)

and emits a nonlinear function of zz; each output unit sums the contributions from
all pattern units connected to it. The nonlinear function is e(*—1)/ "2, where o is a
parameter set by the user and is equal to v/2 times the width of the effective Gaussian
window. To understand this choice of nonlinearity, consider an (unnormalized) Gaus-
sian window centered on the position of one of the training patterns wi. We work
backwards from the desired Gaussian window function to infer the nonlinear transfer
function that should be employed by the pattern units. That is, if we let our effective
width h,, be a constant, the window function is

desired Gaussian

2 (w) X e_(X—Wk)t(X—Wk‘)/Q"Q

_ e—(xtx+wzwk—2xtwk)/202 _ e(zk—l)/az7 (30)
—

transfer

function
where we have used our normalization conditions x'x = w}wj, = 1. Thus each pattern
unit contributes to its associated category unit a signal equal to the probability the
test point was generated by a Gaussian centered on the associated training point.
The sum of these local estimates (computed at the corresponding category unit) gives
the discriminant function g¢;(x) — the Parzen window estimate of the underlying
distribution. The max g;(x) operation gives the desired category for the test point

K3

(Algorithm 2).
Algorithm 2 (PNN classification)

1 begin initialize k = 0, x = test pattern
dok—k+1

2
3 2 — WiX

4 if arc = 1 then gc < gc + exp|(zx — 1)/0?]
5 until £ =n

6 return class <+ arg max g;(x)

2

7 end

One of the benefits of PNNs is their speed of learning, since the learning rule
(i.e., setting wj = x;,) is simple and requires only a single pass through the training
data. The space complexity (amount of memory) for the PNN is easy to determine by
counting the number of wires in Fig. 4.9 — O((n + 1)d). This can be quite severe for
instance in a hardware application, since both n and d can be quite large. The time
complexity for classification by the parallel implementation of Fig. 4.9 is O(1), since
the n inner products of Eq. 29 can be done in parallel. Thus this PNN architecture

PROTOTYPES

18 CHAPTER 4. NONPARAMETRIC TECHNIQUES

could find uses where recognition speed is important and storage is not a severe
limitation. Another benefit is that new training patterns can be incorporated into
a previously trained classifier quite easily; this might be important for a particular
on-line application.

4.3.6 Choosing the window function

As we have seen, one of the problems encountered in the Parzen-window/PNN ap-
proach concerns the choice of the sequence of cell volumes sizes Vi, Vb, ... or overall
window size (or indeed other window parameters, such as shape or orientation). For
example, if we take V,, = Vi /y/n, the results for any finite n will be very sensitive to
the choice for the initial volume V;. If V; is too small, most of the volumes will be
empty, and the estimate p,(x) will be very erratic (Fig. 4.7). On the other hand, if
V1 is too large, important spatial variations in p(x) may be lost due to averaging over
the cell volume. Furthermore, it may well be the case that a cell volume appropriate
for one region of the feature space might be entirely unsuitable in a different region
(Fig. 4.8). In Chap. ?? we shall consider general methods, including cross-validation,
which are often used in conjunction with Parzen windows. Now, though, we turn to an
important alternative method that is both useful and has solvable analytic properties.

4.4 k,—Nearest-Neighbor Estimation

A potential remedy for the problem of the unknown “best” window function is to
let the cell volume be a function of the training data, rather than some arbitrary
function of the overall number of samples. For example, to estimate p(x) from n
training samples or prototypes we can center a cell about x and let it grow until it
captures k, samples, where k,, is some specified function of n. These samples are
the k,, nearest-neighbors of x. It the density is high near x, the cell will be relatively
small, which leads to good resolution. If the density is low, it is true that the cell will
grow large, but it will stop soon after it enters regions of higher density. In either
case, if we take

_kn/n
=5

we want k, to go to infinity as n goes to infinity, since this assures us that k,/n
will be a good estimate of the probability that a point will fall in the cell of volume
V... However, we also want k, to grow sufficiently slowly that the size of the cell
needed to capture k, training samples will shrink to zero. Thus, it is clear from
Eq. 31 that the ratio k,,/n must go to zero. Although we shall not supply a proof,
it can be shown that the conditions lim k, = co and lim k,/n = 0 are necessary

n—oo n—oo

and sufficient for p, (x) to converge to p(x) in probability at all points where p(x) is
continuous (Problem 5). If we take k, = /n and assume that p,(x) is a reasonably
good approximation to p(x) we then see from Eq. 31 that V,, ~ 1/(y/np(x)). Thus,
V,, again has the form V;//n, but the initial volume V; is determined by the nature
of the data rather than by some arbitrary choice on our part. Note that there are
nearly always discontinuities in the slopes of these estimates, and these lie away from
the prototypes themselves (Figs. 4.10 & 4.11).

It is instructive to compare the performance of this method with that of the
Parzen-window/PNN method on the data used in the previous examples. With n =1

Pn(x) (31)

4.4. Kny-NEAREST-NEIGHBOR ESTIMATION 19

p()

SN
/\/

Figure 4.10: Eight points in one dimension and the k-nearest-neighbor density esti-
mates, for k = 3 and 5. Note especially that the discontinuities in the slopes in the
estimates generally occur away fom the positions of the points themselves.

Figure 4.11: The k-nearest-neighbor estimate of a two-dimensional density for & = 5.
Notice how such a finite n estimate can be quite “jagged,” and that discontinuities in
the slopes generally occur along lines away from the positions of the points themselves.

20 CHAPTER 4. NONPARAMETRIC TECHNIQUES

E]
W
P
N
_—
N

o
[y
N
w
N

0

1 2 3 4
1 1
n=16
k,=4
1 2 3 4

0

1 1 V
n=256

k,=16

=

o
[u
N
w
N

;

o
-
N
w
Sy
o
-
N
w
IS

1l
8

x>
1"
8

)

o
[
N
w
S
o
-
N
w
IS

Figure 4.12: Several k-nearest-neighbor estimates of two unidimensional densities: a
Gaussian and a bimodal distribution. Notice how the finite n estimates can be quite
“Spiky.”

and k,, = y/n = 1, the estimate becomes

1

- 2
2|z — a1 (32)

Pn(x)

This is clearly a poor estimate of p(x), with its integral embarrassing us by diverging
to infinity. As shown in Fig. 4.12, the estimate becomes considerably better as n gets
larger, even though the integral of the estimate remains infinite. This unfortunate fact
is compensated by the fact that p,(x) never plunges to zero just because no samples
fall within some arbitrary cell or window. While this might seem to be a meager
compensation, it can be of considerable value in higher-dimensional spaces.

As with the Parzen-window approach, we could obtain a family of estimates by
taking k, = k14/n and choosing different values for k1. However, in the absense of
any additional information, one choice is as good as another, and we can be confident
only that the results will be correct in the infinite data case. For classification, one
popular method is to adjust the window width until the classifier has the lowest error
on a separate set of samples, also drawn from the target distributions, a technique we
shall explore in Chap. 77.

4.5. THE NEAREST-NEIGHBOR RULE 21

4.4.1 Estimation of a posteriori probabilities

The techniques discussed in the previous sections can be used to estimate the a pos-
teriori probabilities P(w;|x) from a set of n labelled samples by using the samples
to estimate the densities involved. Suppose that we place a cell of volume V' around
x and capture k samples, k; of which turn out to be labelled w;. Then the obvious
estimate for the joint probability p(x,w;) is

pn(x,wi) = v (33)

and thus a reasonable estimate for P(w;|x) is

Polwif) = 220k (34)

C
Pn (X, wj)
=1

J
That is, the estimate of the a posteriori probability that w; is the state of nature is
merely the fraction of the samples within the cell that are labelled w;. Consequently,
for minimum error rate we select the category most frequently represented within the
cell. If there are enough samples and if the cell is sufficiently small, it can be shown
that this will yield performance approaching the best possible.

When it comes to choosing the size of the cell, it is clear that we can use either
the Parzen-window approach or the k,,-nearest-neighbor approach. In the first case,
V,, would be some specified function of n, such as V,, = 1/y/n. In the second case,
V,, would be expanded until some specified number of samples were captured, such
as k = y/n. In either case, as n goes to infinity an infinite number of samples will fall
within the infinitely small cell. The fact that the cell volume could become arbitrarily
small and yet contain an arbitrarily large number of samples would allow us to learn
the unknown probabilities with virtual certainty and thus eventually obtain optimum
performance. Interestingly enough, we shall now see that we can obtain comparable
performance if we base our decison solely on the label of the single nearest neighbor
of x.

4.5 The Nearest-Neighbor Rule

While the k-nearest-neighbor algorithm was first proposed for arbitrary k, the crucial
matter of determining the error bound was first solved for £ = 1. This nearest-
neighbor algorithm has conceptual and computational simplicity. We begin by letting
D" = {x1, ..., X, } denote a set of n labelled prototypes, and x” € D" be the prototype
nearest to a test point x. Then the nearest-neighbor rule for classifying x is to assign
it the label associated with x’. The nearest-neighbor rule is a sub-optimal procedure;
its use will usually lead to an error rate greater than the minimum possible, the Bayes
rate. We shall see, however, that with an unlimited number of prototypes the error
rate is never worse than twice the Bayes rate.

Before we get immersed in details, let us try to gain a heuristic understanding of
why the nearest-neighbor rule should work so well. To begin with, note that the label
0" associated with the nearest neighbor is a random variable, and the probability
that 6’ = w; is merely the a posteriori probability P(w;|x’). When the number of
samples is very large, it is reasonable to assume that x’ is sufficiently close to x that
P(w|x’) ~ P(w;|x). Since this is exactly the probability that nature will be in state
wj, the nearest-neighbor rule is effectively matching probabilities with nature.

VORONOI
TESSELATION

22 CHAPTER 4. NONPARAMETRIC TECHNIQUES

If we define w,,(x) by

P(wnmlx) = max P(w;|x), (35)

then the Bayes decision rule always selects w,,. This rule allows us to partition the
feature space into cells consisting of all points closer to a given training point x’ than
to any other training points. All points in such a cell are thus labelled by the category
of the training point — a so-called Voronoi tesselation of the space (Fig. 4.13).

Figure 4.13: In two dimensions, the nearest-neighbor algorithm leads to a partitioning
of the input space into Voronoi cells, each labelled by the category of the training point
it contains. In three dimensions, the cells are three-dimensional, and the decision
boundary resembles the surface of a crystal.

When P(w.,|x) is close to unity, the nearest-neighbor selection is almost always
the same as the Bayes selection. That is, when the minimum probability of error
is small, the nearest-neighbor probability of error is also small. When P(w,,|x) is
close to 1/¢, so that all classes are essentially equally likely, the selections made by
the nearest-neighbor rule and the Bayes decision rule are rarely the same, but the
probability of error is approximately 1 — 1/¢ for both. While more careful analysis
is clearly necessary, these observations should make the good performance of the
nearest-neighbor rule less surprising.

Our analysis of the behavior of the nearest-neighbor rule will be directed at ob-
taining the infinite-sample conditional average probability of error P(e|x), where the
averaging is with respect to the training samples. The unconditional average proba-
bility of error will then be found by averaging P(e|x) over all x:

P(e) = /P(e|x)p(x) dx. (36)

In passing we should recall that the Bayes decision rule minimizes P(e) by minimizing
P(e|x) for every x. Recall from Chap. ?? that if we let P*(e|x) be the minimum
possible value of P(e|x), and P* be the minimum possible value of P(e), then

Pr(e|x) =1 — P(wm|x) (37)

4.5. THE NEAREST-NEIGHBOR RULE 23

and
P = /P*(e|x)p(x) dx. (38)

4.5.1 Convergence of the Nearest Neighbor

We now wish to evaluate the average probability of error for the nearest-neighbor
rule. In particular, if P,(e) is the n-sample error rate, and if

P = lim P,(e), (39)
then we want to show that
P*ngP*(z— Clp*). (40)

We begin by observing that when the nearest-neighbor rule is used with a par-
ticular set of n samples, the resulting error rate will depend on the accidental char-
acteristics of the samples. In particular, if different sets of n samples are used to
classify x, different vectors x” will be obtained for the nearest-neighbor of x. Since
the decision rule depends on this nearest-neighbor, we have a conditional probability
of error P(e|x,x’) that depends on both x and x’. By averaging over x’, we obtain

Plelx) = /P(e|x7x')p(x'\x) dx’. (41)

where we understand that there is an implicit dependence upon the number n of
training points.

It is usually very difficult to obtain an exact expression for the conditional density
p(x’|x). However, since x’ is by definition the nearest-neighbor of x, we expect this
density to be very peaked in the immediate vicinity of x, and very small elsewhere.
Furthermore, as n goes to infinity we expect p(x’|x) to approach a delta function
centered at x, making the evaluation of Eq. 41 trivial. To show that this is indeed the
case, we must assume that at the given x, p(-) is continuous and not equal to zero.
Under these conditions, the probability that any sample falls within a hypersphere S
centered about x is some positive number P;:

P, = /p(x') dx’. (42)
x'eS

Thus, the probability that all n of the independently drawn samples fall outside
this hypersphere is (1 — P;)™, which approaches zero as n goes to infinity. Thus x’
converges to X in probability, and p(x’|x) approaches a delta function, as expected. In
fact, by using measure theoretic methods one can make even stronger (as well as more
rigorous) statements about the convergence of x’ to x, but this result is sufficient for
our purposes.

4.5.2 Error Rate for the Nearest-Neighbor Rule

We now turn to the calculation of the conditional probability of error P, (e|x,x’).
To avoid a potential source of confusion, we must state the problem with somewhat

24 CHAPTER 4. NONPARAMETRIC TECHNIQUES

greater care than has been exercised so far. When we say that we have n inde-
pendently drawn labelled samples, we are talking about n pairs of random variables
(x1,61), (x2,02), ..., (Xn, 0,), where ; may be any of the c states of nature wy, ..., we.
We assume that these pairs were generated by selecting a state of nature w; for 6; with
probability P(w;) and then selecting an x; according to the probability law p(x|w;),
with each pair being selected independently. Suppose that during classification nature
selects a pair (x,0), and that x’;, labelled 7, is the training sample nearest x. Since
the state of nature when x;. was drawn is independent of the state of nature when x
is drawn, we have

P(8,6)]x,x}) = P(6]x) P(¢|x}). (43)

Now if we use the nearest-neighbor decision rule, we commit an error whenever 0 # 93.
Thus, the conditional probability of error P, (e|x,x}) is given by

Pu(elx,x}) = 1- ZP(H = w;, 0 = wilx, x))
=1
= 1-)Y Pwilx)P(wilx}). (44)
i=1

To obtain P, (e) we must substitute this expression into Eq. 41 for P,(e|x) and
then average the result over x. This is very difficult, in general, but as we remarked
earlier the integration called for in Eq. 41 becomes trivial as n goes to infinity and
p(x'|x) approaches a delta function. If P(w;|x) is continuous at x, we thus obtain

lim P, (e|x)

n—00

/ [1 - Z P(wi|x)P(wi|x')} 5(x' — x) dx’

1= P (wilx). (45)
i=1

Therefore, provided we can exchange some limits and integrals, the asymptotic nearest-
neighbor error rate is given by

P = lim P,(e)

n—oo

= lim [P,(e|x)p(x) dx

n—oo

/ [1 - Z PQ(wi|x)} p(x) dx. (46)

4.5.3 FError Bounds

While Eq. 46 presents an exact result, it is more illuminating to obtain bounds on P in
terms of the Bayes rate P*. An obvious lower bound on P is P* itself. Furthermore,
it can be shown that for any P* there is a set of conditional and prior probabilities
for which the bound is achieved, so in this sense it is a tight lower bound.

4.5. THE NEAREST-NEIGHBOR RULE 25

The problem of establishing a tight upper bound is more interesting. The basis
for hoping for a low upper bound comes from observing that if the Bayes rate is
low, P(w;|x) is near 1.0 for some 4, say ¢ = m. Thus the integrand in Eq. 46 is
approximately 1 — P?(w,,|x) ~ 2(1 — P(w,,|x)), and since

P*(e]x) =1 — P(wml|x), (47)

integration over x might yield about twice the Bayes rate, which is still low and
acceptable for some applications. To obtain an exact upper bound, we must find out
how large the nearest-neighbor error rate P can become for a given Bayes rate P*.

Thus, Eq. 46 leads us to ask how small >_ P?(w;|x) can be for a given P(w,,|x). First
i=1

we write

ZPQ(MX) = P(wm|x) +) P2 (wilx), (48)

i#m
and then seek to bound this sum by minimizing the second term subject to the
following constraints:

e P(w;|x) >0

° ; P(wilx) =1 = P(wn|x) = P*(e|x).

C
With a little thought we see that Y. P?(w;|x) is minimized if all of the a posteriori

=1
probabilities except the mth are equal. The second constraint yields

P (e]x) 7 7& m
P(w; — c—a 49
(k) { 1— P(elx) i=m. (49)
Thus we have the inequalities
c P*Q
> Puil) 2 (1 P(eho)? + T (50)
=1
and
1= P (wilx) < 2P*(e|x) — CTClP*2(e|x). (51)

i=1
This immediately shows that P < 2P*, since we can substitute this result in
Eq. 46 and merely drop the second term. However, a tighter bound can be obtained
by observing that the variance is:

Var[P*(e[x)] = / [P*(e]x) — P*Pp(x) dx

/P*2(6|x)p(x) dx — P** >0,

so that

26 CHAPTER 4. NONPARAMETRIC TECHNIQUES

/ P2(ex)p(x) dx > P2, (52)

with equality holding if and only if the variance of P*(e|x) is zero. Using this result
and substituting Eq. 51 into Eq. 46, we obtain the desired bounds on the nearest-
neighbor error P in the case of an infinite number of samples:

P*ngP*(Q— Clp*). (53)

c—

It is easy to show that this upper bound is achieved in the so-called zero-information
case in which the densities p(x|w;) are identical, so that P(w;|x) = P(w;) and further-
more P*(e|x) is independent of x (Problem 17). Thus the bounds given by Eq. 53 are
as tight as possible, in the sense that for any P* there exist conditional and a priori
probabilities for which the bounds are achieved. In particular, the Bayes rate P* can
be anywhere between 0 and (¢ —1)/c and the bounds meet at the two extreme values
for the probabilities. When the Bayes rate is small, the upper bound is approximately
twice the Bayes rate (Fig. 4.14).

c-1

c

=

cl

Figure 4.14: Bounds on the nearest-neighbor error rate P in a c-category problem
given infinite training data, where P* is the Bayes error (Eq. 53). At low error rates,
the nearest-neighbor error rate is bounded above by twice the Bayes rate.

Since P is always less than or equal to 2P*, if one had an infinite collection of data
and used an arbitrarily complicated decision rule, one could at most cut the error rate
in half. In this sense, at least half of the classification information in an infinite data
set resides in the nearest neighbor.

It is natural to ask how well the nearest-neighbor rule works in the finite-sample
case, and how rapidly the performance converges to the asymptotic value. Unfor-
tunately, despite prolonged effort on such problems, the only statements that can
be made in the general case are negative. It can be shown that convergence can
be arbitrarily slow, and the error rate P, (e) need not even decrease monotonically
with n. As with other nonparametric methods, it is difficult to obtain anything other
than asymptotic results without making further assumptions about the underlying
probability structure (Problems 13 & 14).

4.5.4 The k-Nearest-Neighbor Rule

An obvious extension of the nearest-neighbor rule is the k-nearest-neighbor rule. As
one would expect from the name, this rule classifies x by assigning it the label most
frequently represented among the k nearest samples; in other words, a decision is made

4.5. THE NEAREST-NEIGHBOR RULE 27

by examining the labels on the &k nearest neighbors and taking a vote (Fig. 4.15). We
shall not go into a thorough analysis of the k-nearest-neighbor rule. However, by
considering the two-class case with k odd (to avoid ties), we can gain some additional
insight into these procedures.

X2

X1

Figure 4.15: The k-nearest-neighbor query starts at the test point and grows a spher-
ical region until it encloses k training samples, and labels the test point by a majority
vote of these samples. In this £ = 5 case, the test point x would be labelled the
category of the black points.

The basic motivation for considering the k-nearest-neighbor rule rests on our ear-
lier observation about matching probabilities with nature. We notice first that if
k is fixed and the number n of samples is allowed to approach infinity, then all of
the k nearest neighbors will converge to x. Hence, as in the single-nearest-neighbor
cases, the labels on each of the k-nearest-neighbors are random variables, which in-
dependently assume the values w; with probabilities P(w;|x),i = 1,2. If P(w;,|x)
is the larger a posteriori probability, then the Bayes decision rule always selects wy,.
The single-nearest-neighbor rule selects w,,, with probability P(w,,|x). The k-nearest-
neighbor rule selects w,, if a majority of the k nearest neighbors are labeled w,,, an
event of probability

k

S ()Pt - Pl 4
)/2

i=(k+1

In general, the larger the value of k, the greater the probability that w,, will be
selected.

We could analyze the k-nearest-neighbor rule in much the same way that we
analyzed the single-nearest-neighbor rule. However, since the arguments become more
involved and supply little additional insight, we shall content ourselves with stating
the results. It can be shown that if k is odd, the large-sample two-class error rate for
the k-nearest-neighbor rule is bounded above by the function Cy(P*), where Cy(P*)
is defined to be the smallest concave function of P* greater than

(k—1)/2

> (k) [(P)HL (L= PPt (P — P+ (53)

- (2
=0

28 CHAPTER 4. NONPARAMETRIC TECHNIQUES

Here the summation over the first bracketed term represents the probability of error
due to 7 points coming from the category having the minimum probability and k—i > @
points from the other category. The summation over the second term in the brackets
is the probability that & — i points are from the minimum-probability category and
i+ 1 < k — i from the higher probability category. Both of these cases constitute
errors under the k-nearest-neighbor decision rule, and thus we must add them to find
the full probability of error (Problem 18).

Figure 4.16 shows the bounds on the k-nearest-neighbor error rates for several
values of k. As k increases, the upper bounds get progressively closer to the lower
bound — the Bayes rate. In the limit as k goes to infinity, the two bounds meet and
the k-nearest-neighbor rule becomes optimal.

Figure 4.16: The error-rate for the k-nearest-neighbor rule for a two-category problem
is bounded by Cj(P*) in Eq. 55. Each curve is labelled by k; when k = oo, the
estimated probabilities match the true probabilities and thus the error rate is equal
to the Bayes rate, i.e., P = P*.

At the risk of sounding repetitive, we conclude by commenting once again on the
finite-sample situation encountered in practice. The k-nearest-neighbor rule can be
viewed as another attempt to estimate the a posteriori probabilities P(w;|x) from
samples. We want to use a large value of k to obtain a reliable estimate. On the
other hand, we want all of the k& nearest neighbors x’ to be very near x to be sure
that P(w;|x’) is approximately the same as P(w;|x). This forces us to choose a
compromise k that is a small fraction of the number of samples. It is only in the limit
as n goes to infinity that we can be assured of the nearly optimal behavior of the
k-nearest-neighbor rule.

4.5.5 Computational Complexity of the k—Nearest-Neighbor

Rule
The computational complexity of the nearest-neighbor algorithm — both in space
(storage of prototypes) and time (search) — has received a great deal of analy-

sis. There are a number of elegant theorems from computational geometry on the
construction of Voronoi tesselations and nearest-neighbor searches in one- and two-
dimensional spaces. However, because the greatest use of nearest-neighbor techniques
is for problems with many features, we concentrate on the more general d-dimensional
case.

Suppose we have n labelled training samples in d dimensions, and seek to find
the closest to a test point x (kK = 1). In the most naive approach we inspect each
stored point in turn, calculate its Euclidean distance to x, retaining the identity only
of the current closest one. Each distance calculation is O(d), and thus this search

4.5. THE NEAREST-NEIGHBOR RULE 29

Figure 4.17: A parallel nearest-neighbor circuit can perform search in constant —
i.e., O(1) — time. The d-dimensional test pattern x is presented to each box, which
calculates which side of a cell’s face x lies on. If it is on the “close” side of every face
of a cell, it lies in the Voronoi cell of the stored pattern, and receives its label.

is O(dn?). An alternative but straightforward parallel implementation is shown in
Fig. 4.17, which is O(1) in time and O(n) in space.

There are three general algorithmic techniques for reducing the computational
burden in nearest-neighbor searches: computing partial distances, prestructuring, and
editing the stored prototypes. In partial distance, we calculate the distance using some
subset r of the full d dimensions, and if this partial distance is too great we do not
compute further. The partial distance based on r selected dimensions is

r 1/2
D,(a,b) = (Z(ak — bk)2> (56)

k=1

where r < d. Intuitively speaking, partial distance methods assume that what we
know about the distance in a subspace is indicative of the full space. Of course, the
partial distance is strictly non-decreasing as we add the contributions from more and
more dimensions. Consequently, we can confidently terminate a distance calculation
to any prototype once its partial distance is greater than the full » = d Euclidean
distance to the current closest prototype.

In presturcturing we create some form of search tree in which prototypes are selec-
tively linked. During classification, we compute the distance of the test point to one
or a few stored “entry” or “root” prototypes and then consider only the prototypes
linked to it. Of these, we find the one that is closest to the test point, and recursively
consider only subsequent linked prototypes. If the tree is properly structured, we will
reduce the total number of prototypes that need to be searched.

Consider a trivial illustration of prestructuring in which we store a large number
of prototypes that happen to be distributed uniformly in the unit square, i.e., p(x) ~

PARTIAL
DISTANCE

SEARCH
TREE

EDITING

30 CHAPTER 4. NONPARAMETRIC TECHNIQUES

U ((8), (1)) Imagine we prestructure this set using four entry or root prototypes —

at (}?j), (é?i), (??i) and (;;i) — each fully linked only to points in its corresponding
quadrant. When a test pattern x is presented, the closest of these four prototypes
is determined, and then the search is limited to the prototypes in the corresponding

quadrant. In this way, 3/4 of the prototypes need never be queried.

Note that in this method we are no longer guaranteed to find the closest prototype.
For instance, suppose the test point is near a boundary of the quadrants, e.g., x =
(8:338). In this particular case only prototypes in the first quadrant will be searched.
Note however that the closest prototype might actually be in one of the other three
quadrants, somewhere near (g:g). This illustrates a very general property in pattern
recognition: the tradeoff of search complexity against accuracy.

More sophisticated search trees will have each stored prototype linked to a small
number of others, and a full analysis of these methods would take us far afield. Nev-
ertheless, here too, so long as we do not query all training prototypes, we are not
guaranteed that the nearest prototype will be found.

The third method for reducing the complexity of nearest-neighbor search is to
eliminate “useless” prototypes during training, a technique known variously as editing,
pruning or condensing. A simple method to reduce the O(n) space complexity is to
eliminate prototypes that are surrounded by training points of the same category
label. This leaves the decision boundaries — and hence the error — unchanged, while
reducing recall times. A simple editing algorithm is as follows.

Algorithm 3 (Nearest-neighbor editing)

1 begin initialize j = 0, D = data set,n = #prototypes

2 construct the full Voronoi diagram of D

3 do j « j+1; for each prototype x;

4 Find the Voronoi neighbors of X;

5 if any neighbor is not from the same class as X;- then mark x;
6 until j =n

7 Discard all points that are not marked

8

9

Construct the Voronoi diagram of the remaining (marked) prototypes
end

The complexity of this editing algorithm is O(d*nl%/?/Inn), where here the “floor”
operation (|-]) implies |d/2] = k if d is even, and 2k — 1 if d is odd (Problem 10).

According to Algorithm 3, if a prototype contributes to a decision boundary (i.e.,
at least one of its neighbors is from a different category), then it remains in the set;
otherwise it is edited away (Problem 15). This algorithm does not guarantee that the
minimal set of points is found (Problem 16), nevertheless, it is one of the examples in
pattern recognition in which the computational complexity can be reduced — some-
times significantly — without affecting the accuracy. One drawback of such pruned
nearest neighbor systems is that one generally cannot add training data later, since
the pruning step requires knowledge of all the training data ahead of time (Computer
exercise 7?7). We conclude this section by noting the obvious, i.e., that we can com-
bine these three complexity reduction methods. We might first edit the prototypes,
then form a search tree during training, and finally compute partial distances during
classification.

4.6. *METRICS AND NEAREST-NEIGHBOR CLASSIFICATION 31

4.6 Metrics and Nearest-Neighbor Classification

The nearest-neighbor classifier relies on a metric or “distance” function between pat-
terns. While so far we have assumed the Euclidean metric in d dimensions, the notion
of a metric is far more general, and we now turn to the use alternate measures of
distance to address key problems in classification. First let us review the properties of
a metric. A metric D(-,-) is merely a function that gives a generalized scalar distance
between two argument patterns. A metric must have four properties: for all vectors
a, b and c

non-negativity: D(a,b) >0

reflexivity: D(a,b) =0if and only ifa=D>b
symmetry: D(a,b) = D(b,a)

triangle inequality: D(a,b) + D(b,c) > D(a,c).

It is easy to verify that if the Euclidean formula for distance in d dimensions,

d 1/2
D(a,b) = <Z(ak - bk)2> : (57)

k=1
obeys the properties of metric. Moreover, if each coordinate is multiplied by an
arbitrary constant, the resulting space also obeys a metric (Problem 19), though it
can lead to problems in nearest-neighbor classifiers (Fig. 4.18).

Xp X2

x
x

Xp Xy

Figure 4.18: Even if each coordinate is scaled by some constant, the resulting space
still obeys the properties of a metric. However, a nearest-neighbor classifier would
have different results depending upon such rescaling. Consider the test point x and
its nearest neighbor. In the original space (left), the black prototype is closest. In
the figure at the right, the x; axis has been rescaled by a factor 1/3; now the nearest
prototype is the red one. If there is a large disparity in the ranges of the full data in
each dimension, a common procedure is to rescale all the data to equalize such ranges,
and this is equivalent to changing the metric in the original space.

One general class of metrics for d-dimensional patterns is the Minkowski metric

d 1/k
Li(a,b) = (ZW bi|’“> , (58)

also referred to as the Ly norm (Problem 20); thus, the Euclidean distance is the Lo
norm. The L; norm is sometimes called the Manhattan or city block distance, the
shortest path between a and b, each segment of which is parallel to a coordinate axis.

MINKOWSI
METRIC

MANHATTAN
DISTANCE

TANIMOTO
METRIC

32 CHAPTER 4. NONPARAMETRIC TECHNIQUES

(The name derives from the fact that the streets of Manhattan run north-south and
east-west.) Suppose we compute the distances between the projections of a and b
onto each of the d coordinate axes. The L., distance between a and b corresponds
to the maximum of these projected distances (Fig. 4.19).

Figure 4.19: Each colored surface consists of points a distance 1.0 from the origin,
measured using different values for k in the Minkowski metric (k is printed in red).
Thus the white surfaces correspond to the L; norm (Manhattan distance), light gray
the Lo norm (Euclidean distance), dark gray the L4 norm, and red the Lo, norm.

The Tanimoto metric finds most use in taxonomy, where the distance between two
sets is defined as

n1 +ng — 2n19

DTanimoto(Sla 82) = ’
ny +ng — N2

(59)
where n1 and ngy are the number of elements in sets S; and Ss, respectively, and nqs is
the number that is in both sets. The Tanimoto metric finds greatest use for problems
in which two patterns or features — the elements in the set — are either the same or
different, and there is no natural notion of graded similarity (Problem 27).

The selection among these or other metrics is generally dictated by computational
concerns, and it is hard to base a choice on prior knowledge about the distributions.
One exception is when there is great difference in the range of the data along different
axes in a multidmensional data. Here, we should scale the data — or equivalently
alter the metric — as suggested in Fig. 4.18.

4.6.1 Tangent distance

There may be drawbacks inherent in the uncritical use of a particular metric in
nearest-neighbor classifiers, and these drawbacks can be overcome by the careful use
of more general measures of distance. On crucial such problem is that of invariance.
Consider a 100-dimensional pattern x” representing a 10 x 10 pixel grayscale image of
a handwritten 5. Consider too the Euclidean distance from x’ to the pattern repre-
senting an image that is shifted horizontally but otherwise identical (Fig. 4.20). Even
if the relative shift is a mere three pixels, the Euclidean distance grows very large —

4.6. *METRICS AND NEAREST-NEIGHBOR CLASSIFICATION 33

much greater than the distance to an unshifted 8. Clearly the Euclidean metric is of
little use in a nearest-neighbor classifier that must be insensitive to such translations.

Likewise, other transformations, such as overall rotation or scale of the image,
would not be well accommodated by Euclidean distance in this manner. Such draw-
backs are especially pronounced if we demand that our classifier be simultaneously
invariant to several transformations, such as horizontal translation, vertical transla-
tion, overall scale, rotation, line thickness, shear, and so on (Computer exercise 7 &
8). While we could preprocess the images by shifting their centers to coalign, then
have the same bounding box, and so forth, such an approach has its own difficulties,
such as sensitivity to outlying pixels or to noise. We explore here alternatives to such
preprocessing.

Xg X'
I

D(xX(s))

D(X' Xg]
2.58 =

Figure 4.20: The uncritical use of Euclidean metric cannot address the problem of
translation invariance. Pattern x’ represents a handwritten 5, and x'(s = 3) the same
shape but shifted three pixels to the right. The Euclidean distance D(x/,x/(s = 3)) is
much larger than D(x’, xs), where xg represents the handwritten 8. Nearest-neighbor
classification based on the Euclidean distance in this way leads to very large errors.
Instead, we seek a distance measure that would be insensitive to such translations, or
indeed other known invariances, such as scale or rotation.

Ideally, during classification we would like to first transform the patterns to be
as similar to one another and only then compute their similarity, for instance by
the Euclidean distance. Alas, the computational complexity of such transformations
make this ideal unattainable. Merely rotating a k& x k image by a known amount and
interpolating to a new grid is O(k?). But of course we do not know the proper rotation
angle ahead of time and must search through several values, each value requiring a
distance calculation to test the whether the optimal setting has been found. If we must
search for the optimal set of parameters for several transformations for each stored
prototype during classification, the computational burden is prohibitive (Problem 25).

The general approach in tangent distance classifiers is to use a novel measure of
distance and a linear approzimation to the arbitrary transforms. Suppose we believe
there are r transformations applicable to our problem, such as horizontal translation,
vertical translation, shear, rotation, scale, and line thinning. During construction of

TANGENT
VECTOR

34 CHAPTER 4. NONPARAMETRIC TECHNIQUES

the classifier we take each stored prototype x’ and perform each of the transformations
Fi(x'; «;) on it. Thus F;(x’; «;) could represent the image described by x’, rotated
by a small angle «;. We then construct a tangent vector TV for each transformation:

TV,L = fi(X/; Oél') — X/. (60)

While such a transformation may be compute intensive — as, for instance, the line
thinning transform — it need be done only once, during training when computational
constraints are lax. In this way we construct for each prototype x’ an r x d matrix
T, consisting of the tangent vectors at x’. (Such vectors can be orthonormalized, but
we need assume here only that they are linearly independent.) It should be clear, too
that this method will not work with binary images, since they lack a proper notion
of derivative. If the data are binary, then, it is traditional to blur the images before
creating a tangent distance based classifier.

Each point in the subspace spanned by the r tangent vectors passing through
x’ represents the linearized approximation to the full combination of transforms, as
shown in Fig. 4.21. During classification we search for the point in the tangent space
that is closest to a test point x — the linear approximation to our ideal. As we shall
see, this search can be quite fast.

Now we turn to computing the tangent distance from a test point x to a particular
stored prototype x’. Formally, given a matrix T consisting of the r tangent vectors
at x’, the tangent distance from x’ to x is

Dion(x',x) = minf]| (x' + Ta) — x|, (61)

i.e., the Euclidean distance from x to the tangent space of x’. Equation 61 describes
the so-called “one-sided” tangent distance, because only one pattern, x’, is trans-
formed. The two-sided tangent distance allows both x and x’ to be transformed but
improves the accuracy only slightly at a large added computational burden (Prob-
lem 23); for this reason we shall concentrate on the one-sided version.

During classification of x we will find its tangent distance to x’ by finding the
optimizing value of a required by Eq. 61. This minimization is actually quite simple,
since the argument is a paraboloid as a function of a, as shown in pink in Fig. 4.22.
We find the optimal a via iterative gradient descent. For gradient descent we need
the derivative of the (squared) Euclidean distance. The Euclidean distance in Eq. 61
obeys

D*(x' + Ta,x) = ||(x' + Ta) — x|, (62)

and we compute the gradient with respect to the vector of parameters a — the pro-
jections onto the tangent vectors — as

VaD?(x' + Ta,x) = 2T(x' + Ta — x). (63)

Thus we can start with an arbitrary a and take a step in the direction of the negative
gradient, updating our parameter vector as

a(t+1) =a(t) — nTH(Ta(t) + x' — x), (64)

where 7 is the scalar step size controlling the rate of convergence. So long as the step
is not too large, we will reduce the squared Euclidean distance. When the minimum
of such Euclidean distance is found, we have our tangent distance (Eq. 61). The

4.6. *METRICS AND NEAREST-NEIGHBOR CLASSIFICATION 35

2
|

154

TV

2
(thinning)
0.54
0-
prototype -
0 05 15 &

(rotation)

Figure 4.21: The pixel image of the handwritten 5 prototype at the lower left was
subjected to two transformations, rotation, and line thinning, to obtain the tangent
vectors TV, and TV ,; images corresponding to these tangent vectors are shown out-
side the axes. Each of the 16 images within the axes represents the prototype plus
linear combination of the two tangent vectors with coefficients a; and as. The small
red number in each image is the FEuclidean distance between the tangent approxi-
mation and the image generated by the unapproximated transformations. Of course,
this Euclidean distance is 0 for the prototype and for the cases a; = 1,a2 = 0 and
a; = 0,a3 = 1. (The patterns generated with a; + as > 1 have a gray background
because of automatic grayscale conversion of images with negative pixel values.)

optimal a can also be found by standard matrix methods, but these generally have
higher computational complexities, as is explored in Problems 21 & 22. We note that
the methods for editing and prestructuring data sets described in Sec. 4.5.5 can be
applied to tangent distance classifers too.

Nearest-neighbor classifiers using tangent distance have been shown to be highly
accurate, but they require the designer to know which invariances and to be able to
perform them on each prototype. Some of the insights from tangent approach can
also be used for learning which invariances underly the training data — a topic we
shall revisit in Chap. 77.

CONJUNCTION
RULE

36 CHAPTER 4. NONPARAMETRIC TECHNIQUES

Figure 4.22: A stored prototype x’, if transformed by combinations of two basic
transformations, would fall somewhere on a complicated curved surface in the full
d-dimensional space (gray). The tangent space at x’ is an r-dimensional Euclidean
space, spanned by the tangent vectors (here TV, and TV;). The tangent distance
Dyn (%', %) is the smallest Euclidean distance from x to the tangent space of x’, shown
in the solid red lines for two points, x; and x5. Thus although the Euclidean distance
from x’ to x; is less than to xo, for the tangent distance the situation is reversed. The
Euclidean distance from x5 to the tangent space of x’ is a quadratic function of the
parameter vector a, as shown by the pink paraboloid. Thus simple gradient descent
methods can find the optimal vector a and hence the tangent distance Dy, (X', X2).

4.7 Fuzzy Classification

Occassionally we may have informal knowledge about a problem domain where we
seek to build a classifier. For instance, we might feel, generally speaking, that an
adult salmon is oblong and light in color, while a sea bass is stouter and dark. The
approach taken in fuzzy classification is to create so-called “fuzzy category member-
ships functions,” which convert an objectively measurable parameter into a subjective
“category memberships,” which are then used for classification. We must stress im-
mediately that the term “categories” used by fuzzy practitioners refers not to the final
class as we have been discussing, but instead just overlapping ranges of feature values.
For instance, if we consider the feature value of lightness, fuzzy practitioners might
split this into five “categories” — dark, medium-dark, medium, medium-light and
light. In order to avoid misunderstandings, we shall use quotations when discussing
such “categories.”

For example we might have the lightness and shape of a fish be judged as in
Fig. 4.23. Next we need a way to convert an objective measurement in several features
into a category decision about the fish, and for this we need a merging or conjunction
rule — a way to take the “category memberships” (e.g., lightness and shape) and
yield a number to be used for making the final decision. Here fuzzy practitioners have

4.7. *FUZZY CLASSIFICATION 37

Figure 4.23: “Category membership” functions, derived from the designer’s prior
knowledge, together with a lead to discriminants. In this figure z might represent an
objectively measureable value such as the reflectivity of a fish’s skin. The designer
believes there are four relevant ranges, which might be called dark, medium-dark,
medium-light and light. Note, the memberships are not in true categories we wish to
classify, but instead merely ranges of feature values.

at their disposal a large number of possible functions. Indeed, most functions can be
used and there are few principled criteria to preference one over another. One guiding
principle that is often invoked is that that in the extreme cases the membership
functions have value 0 or 1, the conjunction reduces to standard predicate logic;
likewise, symmetry in the arguments is virtually always assumed. Nevertheless, there
are no strong principled reasons to impose these conditions, nor are they sufficient to
determine the “categories.”

Suppose the designer feels that the final category based on lightness ahd shape can
be described as medium-light and oblong. While the heuristic category membership
function (u(+)) converts the objective measurements to two “category memberships,”
we now need a conjunction rule to transform the component “membership values”
into a discriminant function. There are many ways to do this, but the most popular
is

1 — Min|py (), 1y (y)]- (65)

and the obvious extension if there are more then two features.

It must be emphasized that fuzzy techniques are completely and thoroughly sub-
sumed by the general notion of discriminant function discussed in Chap. ?? (Prob-
lem 29).

4.7.1 Are Fuzzy Category Memberships just Probabilities?

Even before the introduction of fuzzy methods and category membership functions,
the statistics, pattern recognition and even mathematical philosophy communities ar-
gued a great deal over the fundamental nature of probability. Some questioned the
applicability of the concept to single, non-repeatable events, feeling that statements
about a single event — what was the probability of rain on Tuesday? — were mean-
ingless. Such discussion made it quite clear that “probability” need not apply only
to repeatable events. Instead, since the first half of the 20th century, probability has
been used as the logic of reasonable inference — work that highlighted the notion of
subjective probability. Moreover, pattern recognition practitioners had happily used

CONJUNCTION
RULE

38 CHAPTER 4. NONPARAMETRIC TECHNIQUES

X2

o

X1

X1

Figure 4.24: “Category membership” functions and a conjunction rule based on the
designer’s prior knowledge lead to discriminant functions. Here x; and x5 are objec-
tively measurable feature values. The designer believes that a particular class can be
described as the conjunction of two “category memberships,” here shown bold. Here
the conjunction rule of Eq. 65 is used to give the discriminant function. The resulting
discriminant function for the final category is indicated by the grayscale in the middle:
the greater the discriminant, the darker. The designer constructs discriminant func-
tions for other categories in a similar way (possibly also using disjunctions). During
classification, the maximum discriminant function is chosen.

discriminant functions without concern over whether they represented probabilities,
subjective probabilities, approximations to frequencies, or other fundamental entities.

While a full analysis of these topics would lead us away from our development of
pattern recognition techniques, it pays to consider the claims of fuzzy logic proponents,
since in order to be a good pattern recognition practitioner, we must understand what
is or is not afforded by any technique. Proponents of fuzzy logic are adamant that
category membership functions do not represent probabilities — subjective or not.
Fuzzy practitioners point to examples such as when a half teaspoon of sugar is placed
in a cup of tea, and conclude that the “membership” in the category sweet is 0.5, and
that it would be incorrect to state that the probability the tea was sweet was 50%.
But this situation be viewed simply as some sweetness feature value is 0.5, and there
is some discriminant function, whose arguments include this feature value. One need
not entertain xxx

Rather than debate the fundamental nature of probability, we should really be
concerned with the nature of inference, i.e., how we take measurements and infer a
category. Cox’s axioms — sometimes called Cox jaynesazrioms — — — are

1. If P(a|ld) > P(b|d) and P(b|d) > P(c|d) then P(a|d) > P(c|d). That is, degrees
of belief have a natural ordering, given by real numbers.

2. P(not ald) = F1[P(ald)]. That is, the degree of belief that a proposition is not
the case is some function of the degree of belief that it is the case. Note that

4.8. *RELAXATION METHODS 39

such degrees of belief are graded values.
3. P(a,b|d) = F3[P(a|d), P(bla,d)]

The first axiom states merely that the probability of not having proposition b
given a, is some function F; of the probability of b given a. The second, though not
as evident, is

From these two, along with classical inference, we get the laws of probability. Any
consistent inference method is formally equivalent to standard probabilistic inference.

In spite of the arguments on such foundational issues, many practitioners are happy
to use fuzzy logic feeling that “whatever works” should be part of their repertoire. It
is important, therefore, to understand the methodological strengths and limitations
of the method. The limitations are formidable:

e Fuzzy methods are of very limited use in high dimensions or on complex prob-
lems. Pure fuzzy methods contribute little or nothing to problems with dozens
or hundreds of features, and where there is training data.

e The amount of information the designer can be expected to bring to a problem
is quite limited — the number, positions and widths of “category memberships.”

e Because of their lack of normalization, pure fuzzy methods are poorly suited to
problems in which there is a changing cost matrix A;; (Computer exercise 9).

e Pure fuzzy methods do not make use of training data. When such pure fuzzy
methods (as outlined above) have unacceptable performance, it has been tradi-
tional to try to graft on adaptive (e.g., “neuro-fuzzy”) methods.

If there is a contribution of fuzzy approaches to pattern recognition, it would lie
in giving the steps by which one takes knowledge in a linguistic form and casts it
into discriminant functions. It is unlikely that the verbal knowledge could extend to
problems with dozens — much less hundreds — of features, the domain of the majority
of real-world pattern recognition problems. A severe limitation of pure fuzzy methods
is they do not rely on data, and when unsatisfactory results on problems of moderate
size, it has been traditional to try to use neural or other adaptive techniques to
compensate. At best, these are equivalent to maximum likelihood methods.

4.8 Relaxation methods

We have seen how the Parzen-window method uses a fixed window throughout the
feature space, and that this could lead to difficulties: in some regions a small window
width was appropriate while elsewhere a large one would be best. The k-nearest-
neighbor method addressed this problem by adjusting the region based on the density
of the points. Informally speaking, an approach that is intermediate between these
two is to adjust the size of the window during training according to the distance to the
nearest point of a different category. This is the method of some relaxation techniques.
(The term “relaxation” refers to the underlying mathematical techniques for setting
the parameters; we will consider only such relaxation issues, and concentrate instead
on their effects.)

The simplest method is that of potential functions — which merely consists of an
interpolation function. The difference with Parzen windows is that the magnitude

POTENTIAL
FUNCTION

40 CHAPTER 4. NONPARAMETRIC TECHNIQUES

of each is adjusted so as to properly classify the training data. One representative

method — called the reduced coulomb energy or RCE network — has the form shown REDUCED

in Fig. 4.25, which has the same topology as a Probabilistic neural network (Fig. 4.9). COULOMB
ENERGY

category

pattern

input

Figure 4.25: An RCE network is topologically equivalent to the PNN of Fig. 4.9. Dur-
ing training the wghts are adjusted to have the same values as the pattern presented,
just as in a PNN. However, pattern units in an RCE network also have a modifiable
“radius” parameter A\. During training, each A\ is adjusted so that the region is as
large as possible without containing training patterns from a different category.

The primary difference is that in an RCE network each pattern unit has an ad-
justable parameter that corresponds to the radius of the d-dimensional sphere. During
training, each radius is adjusted so that each pattern unit covers a region as large as
possible without containing a training point from another category.

Algorithm 4 (RCE training)

1 begin initialize j = 0,n = #patterns, e = small param, A\,, = max radius
2 doj—j+1

3 train weight: w;;, < .

4 find nearest pt not in w;: X < arg r%in D(x,x’)
x¢w;

5 set radius: \; « Min[D(X,x') — €, \p,]

6 if x € w; then a;. 1

7 until j =n

s end

There are several subtleties that we need not consider right here. For instance, if
the radius of a pattern unit becomes too small (i.e., less than some threshold A..:p),
then it indicates that different categories are highly overlapping. In that case, the
pattern unit is called a “probabilistic” unit, and so marked.

During classification, a test point is classified by the label of any point is by
presenting the unit, getting activation. If probabilistic units overlap, Any region that
is overlapped is considered ambiguous. Such ambiguous regions can be useful, since
the teacher can be queried as to the identity of points in that region. If we continue
to let \; be the radius around stored prototype X;- and now let D; be the set of stored
prototypes in whose hypershperes test point x lies, then our classification algorithm
is written as:

Algorithm 5 (RCE classification)

4.8. *RELAXATION METHODS 41

1 begin initialize j = 0,k = 0, x = test pattern, D; = {}

. doj—j+1

3 if D(x,x})<A; then D; D, UX]

4 until j =n

5 if cat of all x;- € D; is the same then return label of all x; € D;
6 else return “ambiguous” label
7 end

Ll 5
10 "15 : 0 o

Figure 4.26: During training, each pattern has a parameter — equivalent to a radius
in the d-dimensional space — that is adjusted to be as large as possible, without
enclosing any points from a different category. As new patterns are presented, each
such radius is decreased accordingly (and can never increase). In this way, each
pattern unit can enclose several prototypes, but only those having the same category
label. The number of points is shown in each component figure. The figure at the
bottom shows the final complicated decision regions, colored by category.

POLYNOMIAL
DISCRIMINANT

42 CHAPTER 4. NONPARAMETRIC TECHNIQUES

4.9 Approximations by Series Expansions

The nonparametric methods described thus far suffer from the requirement that in
general all of the samples must be stored or that the designer have extensive knowledge
of the problem. Since a large number of samples is needed to obtain good estimates,
the memory requirements can be severe. In addition, considerable computation time
may be required each time one of the methods is used to estimate p(x) or classify a
new X.

In certain circumstances the Parzen-window procedure can be modified to reduce
these problems considerably. The basic idea is to approximate the window function
by a finite series expansion that is acceptably accurate in the region of interest. If
we are fortunate and can find two sets of functions 1;(x) and x;(x) that allow the
expansion

W(X Xl) Za1¢j x)x; (%), (66)

then we can split the dependence upon x and x; as

) Zajwj ZXJ X;). (67)

n

Yo%,

i=1

Then from Eq. 11 we have

where

bj = n—Vn Z X (%) (69)

If a sufficiently accurate expansion can be obtained with a reasonable value for
m, this approach has some obvious advantages. The information in the n samples
is reduced to the m coefficients b;. If additional samples are obtained, Eq. 69 for
bj can be updated easily, and the number of coefficients remains unchanged. If the
functions v;(-) and x;(-) are polynomial functions of the components of x and x;,
the expression for the estimate p,(x) is also a polynomial, which can be computed
relatively efficiently. Furthermore, use of this estimate p(x|w;)P(w;) leads to a simple
way of obtaining polynomial discriminant functions.

Before becoming too enthusiastic, however, we should note one of the problems
with this approach. A key property of a useful window function is its tendency
to peak at the origin and fade away elsewhere. Thus ¢((x — x;)/h,) should peak
sharply at x = x;, and contribute little to the approximation of p,(x) for x far from
x;. Unfortunately, polynomials have the annoying property of becoming unbounded.
Thus, in a polynomial expansion we might find the terms associated with an x; far
from x contributing most (rather than least) to the expansion. It is quite important,
therefore, to be sure that the expansion of each windown function is in fact accurate
in the region of interest, and this may well require a large number of terms.

There are many types of series expansions one might consider. Readers familiar
with integral equations will naturally interpret Eq. 66 as an expansion of the kernel

EIGEN-
FUNCTION

4.9. *APPROXIMATIONS BY SERIES EXPANSIONS 43

©(x,%;) in a series of eigenfunctions. (In analogy with eigenvectors and eigenvalues,
eigenfunctions are solutions to certain differential equations with fixed real-number
coefficients.) Rather than computing eigenfunctions, one might choose any reasonable
set of functions orthogonal over the region of interest and obtain a least-squares fit
to the window function. We shall take an even more straightforward approach and
expand the window function in a Taylor series. For simplicity, we confine our attention
to a one-dimensional example using a Gaussian window function:

Vr) = e
ZO(_I)JT'

Jj=

Ju

R

This expansion is most accurate near u = 0, and is in error by less than u?™/m!. If
we substitute u = (x — x;)/h, we obtain a polynomial of degree 2(m — 1) in z and ;.
For example, if m = 2 the window function can be approximated as

T —xi\2
(50

h

2 1 5, 1 5
1+ﬁxxi—ﬁx—ﬁxi,

A{75)

and thus

Vapa(e) = = S V(T2 w b+ byt b (70)

where the coefficients are

1 11)
bo = ﬁ*m;%
21
b= gEy, 2

=1
1
bg =5 7?

This simple expansion condenses the information in n samples into the values,
by, b1, and be. It is accurate if the largest value of |z — ;| is not greater than h.
Unfortunately, this restricts us to a very wide window that is not capable of much
resolution. By taking more terms we can use a narrower window. If we let be the
largest value of |z — x;| and use the fact that the error is the m-term expansion of
VT p((z — 2;)/h) is less than (r/h)?™m!, then using Stirling’s approximation for m!
we find that the error in approximating p, (x) is less than

S 93])

Thus, the error becomes small only when m > e(r/h)?. This implies the need for
many terms if the window size h is small relative to the distance r from x to the most

44 CHAPTER 4. NONPARAMETRIC TECHNIQUES

distant sample. Although this example is rudimentary, similar considerations arise
in the multidimensional case even when more sophisticated expansions are used, and
the procedure is most attractive when the window size is relatively large.

4.10 Fisher Linear Discriminant

One of the recurring problems encountered in applying statistical techniques to pat-
tern recognition problems has been called the “curse of dimensionality.” Procedures
that are analytically or computationally manageable in low-dimensional spaces can be-
come completely impractical in a space of 50 or 100 dimensions. Pure fuzzy methods
are particularly ill-suited to such high-dimensional problems since it is implausible
that the designer’s linguistic intuition extends to such spaces. Thus, various tech-
niques have been developed for reducing the dimensionality of the feature space in
the hope of obtaining a more manageable problem.

We can reduce the dimensionality from d dimensions to one dimension if we merely
project the d-dimensional data onto a line. Of course, even if the samples formed
well-separated, compact clusters in d-space, projection onto an arbitrary line will
usually produce a confused mixture of samples from all of the classes, and thus poor
recognition performance. However, by moving the line around, we might be able to
find an orientation for which the projected samples are well separated. This is exactly
the goal of classical discriminant analysis.

Suppose that we have a set of n d-dimensional samples x1, ..., X, n; in the subset
D, labelled w; and ny in the subset Dy labelled wy. If we form a linear combination
of the components of x, we obtain the scalar dot product

y=w'x (72)

and a corresponding set of n samples 1, ..., ¥y, divided into the subsets); and).
Geometrically, if ||w| = 1, each y; is the projection of the corresponding x; onto a
line in the direction of w. Actually, the magnitude of w is of no real significance,
since it merely scales y. The direction of w is important, however. If we imagine
that the samples labelled wy fall more or less into one cluster while those labelled wo
fall in another, we want the projections falling onto the line to be well separated, not
thoroughly intermingled. Figure 4.27 illustrates the effect of choosing two different
values for w for a two-dimensional example. It should be abundantly clear that if the
original distributions are multimodal and highly overlapping, even the “best” w is
unlikely to provide adequate seaparation, and thus this method will be of little use.

We now turn to the matter of finding the best such direction w, one we hope will
enable accurate classification. A measure of the separation between the projected
points is the difference of the sample means. If m; is the d-dimensional sample mean
given by

m; = ni > x, (73)

v xeD;

then the sample mean for the projected points is given by

mi = nizy

" yey

4.10. *FISHER LINEAR DISCRIMINANT 45

2@ L 2le °
N
. o i °
NN e ’] [
15 N Z 1.
(] N N ° 9 ! 14
N N v !
SN N e K4 °
\\\ \1(i !
1 o ° LV . sk ./ [
N
NS N L] S ! []
N /
S N Iz)
05 ’ . N 1 o5 J °
w L] IRX J []
L] 1 J ®
Ao i 1
X = : X1
05 1 15 * kS 1 15!
w R 0 [
3
-05

Figure 4.27: Projection of samples onto two different lines. The figure on the right
shows greater separation between the red and black projected points.

1
= — Z wix = wim,;. (74)
T
yeV;
and is simply the projection of m;.
It follows that the distance between the projected means is
[y — 7ig| = [w'(my — my)|, (75)

and that we can make this difference as large as we wish merely by scaling w. Of
course, to obtain good separation of the projected data we really want the difference
between the means to be large relative to some measure of the standard deviations for
each class. Rather than forming sample variances, we define the scatter for projected

samples labelled w; by
(76)

5 = Z (y —mq)?.

yeY:

Thus, (1/n)(5% + 53) is an estimate of the variance of the pooled data, and §% + 33
is called the total within-class scatter of the projected samples. The Fisher linear
discriminant employs that linear function w’x for which the criterion function

[y — s
J = —
W) =13

is maximum (and independent of ||w||). While the w maximizing J(-) leads to the
best separation between the two projected sets (in the sense just described), we will
also need a threshold criterion before we have a true classifier. We first consider how
to find the optimal w, and later turn to the issue of thresholds.

To obtain J(-) as an explicit function of w, we define the scatter matrices S; and

SW by

(77)

S, = Z (x —m;)(x —m;)* (78)

xED;

and

SCATTER

WITHIN-
CLASS
SCATTER

SCATTER
MATRICES

WITHIN-
CLASS
SCATTER

BETWEEN-
CLASS
SCATTER

46 CHAPTER 4. NONPARAMETRIC TECHNIQUES

Sy =S; +So. (79)

Then we can write

57 = Z (wix — w'm,)?

x€D;

Z wi(x —m;)(x —m;)'w

x€eD;

= w'S;w; (80)

therefore the sum of these scatters can be written

524+ 52 =w'Syw. (81)

Similarly, the separations of the projected means obeys

(M1 —m2)? = (w'm; — w'my)?
= w'(m; —my)(m; — my)'w
= WtSBW, (82)
where
SB = (m1 — m2)(m1 - mg)t. (83)

We call Sy, the within-class scatter matriz. It is proportional to the sample co-
variance matrix for the pooled d-dimensional data. It is symmetric and positive
semidefinite, and is usually nonsingular if n > d. Likewise, Sp is called the between-
class scatter matriz. It is also symmetric and positive semidefinite, but because it is
the outer product of two vectors, its rank is at most one. In particular, for any w,
Spw is in the direction of m; — ms, and Sp is quite singular.

In terms of Sp and Sy, the criterion function J(-) can be written as

wiSpw

J(w) = (84)

wiSyw’

This expression is well known in mathematical physics as the generalized Rayleigh
quotient. It is easy to show that a vector w that maximizes J(-) must satisfy

Spw = ASyw, (85)

for some constant A, which is a generalized eigenvalue problem (Problem 36). This
can also be seen informally by noting that at an extremum of J(w) a small change in
w in Eq. 84 should leave unchanged the ratio of the numerator to the denominator.
If Sy is nonsingular we can obtain a conventional eigenvalue problem by writing

Sy Spw = Aw. (86)

In our particular case, it is unnecessary to solve for the eigenvalues and eigenvectors
of S;VISB due to the fact that Spw is always in the direction of m; — ms. Since the

4.11. *MULTIPLE DISCRIMINANT ANALYSIS 47

scale factor for w is immaterial, we can immediately write the solution for the w that
optimizes J(-):

w =S,/ (m; — my). (87)

Thus, we have obtained w for Fisher’s linear discriminant — the linear function
yielding the maximum ratio of between-class scatter to within-class scatter. (The
solution w given by Eq. 87 is sometimes called the canonical variate.) Thus the
classification has been converted from a d-dimensional problem to a hopefully more
manageable one-dimensional one. This mapping is many-to-one, and in theory can not
possibly reduce the minimum achievable error rate if we have a very large training set.
In general, one is willing to sacrifice some of the theoretically attainable performance
for the advantages of working in one dimension. All that remains is to find the
threshold, i.e., the point along the one-dimensional subspace separating the projected
points.

When the conditional densities p(x|w;) are multivariate normal with equal co-
variance matrices 3, we can calculate the threshold directly. In that case we recall
(Chap. ??, Sect. ??) that the optimal decision boundary has the equation

wix +wy =0 (88)

where

w=3""(p; — py), (89)

and where wy is a constant involving w and the prior probabilities. If we use sample
means and the sample covariance matrix to estimate p; and 3, we obtain a vector
in the same direction as the w of Eq. 89 that maximized J(-). Thus, for the normal,
equal-covariance case, the optimal decision rule is merely to decide wy if Fisher’s linear
discriminant exceed some threshold, and to decide we otherwise. More generally, if
we smooth the projected data, or fit it with a univariate Gaussian, we then should
choose wy where the posteriors in the one dimensional distributions are equal.

The computational complexity of finding the optimal w for the Fisher linear dis-
criminant (Eq. 87) is dominated by the calculation of the within-category total scatter
and its inverse, an O(d?n) calculation.

4.11 Multiple Discriminant Analysis

For the c-class problem, the natural generalization of Fisher’s linear discriminant
involves ¢ — 1 discriminant functions. Thus, the projection is from a d-dimensional
space to a (¢ — 1)-dimensional space, and it is tacitly assumed that d > c¢. The
generalization for the within-class scatter matrix is obvious:

Sw =38, (90)
1=1

where, as before,

and

TOTAL
MEAN
VECTOR

TOTAL
SCATTER
MATRIX

48 CHAPTER 4. NONPARAMETRIC TECHNIQUES

m; = ni Z X. (92)

" xeD;

The proper generalization for Sg is not quite so obvious. Suppose that we define
a total mean vector m and a total scatter matriz St by

1 1o
x =1

and

St = Z(X —m)(x —m)". (94)

X

Then it follows that

Sr = Z Z(X—mi—i—mi—m)(x—mi—f—mi—m)t
i=1 x€D;
= Z Z (x —my)(x —m;)" + Z Z (m; — m)(m; — m)?
1=1x€D; i=1x€D;
= Sw+ Zm(mZ —m)(m; —m)". (95)
i=1

It is natural to define this second term as a general between-class scatter matrix,
so that the total scatter is the sum of the within-class scatter and the between-class
scatter:

S = an(mz —m)(m; —m)" (96)
i=1
and
S+ =Sw + Sg. (97)

If we check the two-class case, we find that the resulting between-class scatter matrix
is nyny/n times our previous definition.*

The projection from a d-dimensional space to a (¢ — 1)-dimensional space is ac-
complished by ¢ — 1 discriminant functions

Y = wWix i=1,..,c—1. (98)

If the y; are viewed as components of a vector y and the weight vectors w; are viewed
as the columns of a d-by-(¢ — 1) matrix W, then the projection can be written as a
single matrix equation

y = Wix. (99)

* We could redefine Sp for the two-class case to obtain complete consistency, but there should be
no misunderstanding of our usage.

4.11. *MULTIPLE DISCRIMINANT ANALYSIS 49

The samples x1, ..., X, project to a corresponding set of samples y1, ..., y,, which
can be described by their own mean vectors and scatter matrices. Thus, if we define

mi= =Yy (100)

b yey

D
m= - Z;nimi (101)

Sw =1 > (y—my)(y —)’ (102)

1=1y€eY;

and

Sp =) _ni(; — 1) (rh; — m)’, (103)
i=1
it is a straightforward matter to show that

Sw = WSy W (104)

and

Sp = W!SpW. (105)

These equations show how the within-class and between-class scatter matrices are
transformed by the projection to the lower dimensional space (Fig. 4.28). What we
seek is a transformation matrix W that in some sense maximizes the ratio of the
between-class scatter to the within-class scatter. A simple scalar measure of scatter
is the determinant of the scatter matrix. The determinant is the product of the
eigenvalues, and hence is the product of the “variances” in the principal directions,
thereby measuring the square of the hyperellipsoidal scattering volume. Using this
measure, we obtain the criterion function

(W) — Szl _ [W'SpW]|
|Sw‘ ‘WtSWW|.

(106)

The problem of finding a rectangular matrix W that maximizes J(-) is tricky,
though fortunately it turns out that the solution is relatively simple. The columns of
an optimal W are the generalized eigenvectors that correspond to the largest eigen-
values in

SBWi =)\zSWWz (107)

A few observations about this solution are in order. First, if Sy, is non-singular,
this can be converted to a conventional eigenvalue problem as before. However, this
is actually undesirable, since it requires an unnecessary computation of the inverse of
Sw . Instead, one can find the eigenvalues as the roots of the characteristic polynomial

IS5 — ASw| =0 (108)

and then solve

50 CHAPTER 4. NONPARAMETRIC TECHNIQUES

Figure 4.28: Three three-dimensional distributions are projected onto two-dimensional
subspaces, described by a normal vectors w; and wsy. Informally, multiple discrimi-
nant methods seek the optimum such subspace, i.e., the one with the greatest sepa-
ration of the projected distributions for a given total within-scatter matrix, here as
associated with wy.

(Sp — \iSw)w; =0 (109)

directly for the eigenvectors w;. Because Sp is the sum of ¢ matrices of rank one or
less, and because only ¢— 1 of these are independent, Sg is of rank ¢— 1 or less. Thus,
no more than ¢ — 1 of the eigenvalues are nonzero, and the desired weight vectors
correspond to these nonzero eigenvalues. If the within-class scatter is isotropic, the
eigenvectors are merely the eigenvectors of Sp, and the eigenvectors with nonzero
eigenvalues span the space spanned by the vectors m; — m. In this special case the
columns of W can be found simply by applying the Gram-Schmidt orthonormalization
procedure to the ¢ — 1 vectors m; —m, ¢ = 1,...,c — 1. Finally, we observe that in
general the solution for W is not unique. The allowable transformations include
rotating and scaling the axes in various ways. These are all linear transformations
from a (¢ — 1)-dimensional space to a (¢ — 1)-dimensional space, however, and do not
change things in any significant way; in particular, they leave the criterion function
J(W) invariant and the classifier unchanged.

If we have very little data, we would tend to project to a subspace of low dimen-
sion, while if there is more data, we can use a higher dimension, as we shall explore
in Chap. 7?7. Once we have projected the distributions onto the optimal subspace
(defined as above), we can use the methods of Chapt. ?? to create our full classifier.

As in the two-class case, multiple discriminant analysis primarily provides a reason-
able way of reducing the dimensionality of the problem. Parametric or nonparametric
techniques that might not have been feasible in the original space may work well in
the lower-dimensional space. In particular, it may be possible to estimate separate
covariance matrices for each class and use the general multivariate normal assump-
tion after the transformation where this could not be done with the original data. In
general, if the transformation causes some unnecessary overlapping of the data and
increases the theoretically achievable error rate, then the problem of classifying the
data still remains. However, there are other ways to reduce the dimensionality of

4.11. SUMMARY o1

data, and we shall encounter this subject again in Chap. ??7. We note that there are
also alternate methods of discriminant analysis — such as the selection of features
based on statistical sigificance — some of which are given in the references for this
chapter. Of these, Fisher’s method remains a fundamental and widely used technique.

Summary

There are two overarching approaches to non-parametric estimation for pattern clas-
sification: in one the densities are estimated (and then used for classification), in the
other the category is chosen directly. The former approach is exemplified by Parzen
windows and their hardware implementation, Probabilistic neural networks. The lat-
ter is exemplified by k-nearest-neighbor and several forms of relaxation networks. In
the limit of infinite training data, the nearest-neighbor error rate is bounded from
above by twice the Bayes error rate. The extemely high space complexity of the
nominal nearest-neighbor method can be reduced by editing (e.g., removing those
prototypes that are surrounded by prototypes of the same category), prestructuring
the data set for efficient search, or partial distance calculations. Novel distance mea-
sures, such as the tangent distance, can be used in the nearest-neighbor algorithm for
incorporating known tranformation invariances.

Fuzzy classification methods employ heuristic choices of “category membership”
and heuristic conjunction rules to obtain discriminant functions. Any benefit of such
techniques is limited to cases where there is very little (or no) training data, small
numbers of features, and when the knowledge can be gleaned from the designer’s prior
knowledge.

Relaxation methods such as potential functions create “basins of attraction” sur-
rounding training prototypes; when a test pattern lies in such a basin, the corre-
sponding prototype can be easily identified along with its category label. Reduced
coloumb energy networks are one in the class of such relaxation networks, the basins
are adjusted to be as large as possible yet not include prototypes from other categories.

The Fisher linear discriminant finds a good subspace in which categories are best
separated; other techniques can then be applied in the subspace. Fisher’s method
can be extended to cases with multiple categories projected onto subspaces of higher
dimension than a line.

Bibliographical and Historical Remarks

Parzen introduced his window method for estimating density functions [32], and its
use in regression was pioneered by Ndaraya and Watson [?, ?]. Its natural application
to classification problems stems from the work of Specht [39], including its PNN
hardware implementation [40].

Nearest-neighbor methods were first introduced by [16, 17], but it was over fifteen
years later that computer power had increased, thereby making it practical and re-
newing interest in its theoretical foundations. Cover and Hart’s foundational work
on asymptotic bounds [10] were expanded somewhat through the analysis of Devroye
[14]. The first pruning or editing work in [23] was followed by a number of related al-
gorithms, such as that described in [5, 3]. The k-nearest neighbor was explored in [33].
The computational complexity of nearest neighbor (Voronoi) is described in [35]; work
on search, as described in [27], has proven to be of greater use, in general. Much of
the work on reducing the computational complexity of nearest-neighbor search comes

52 CHAPTER 4. NONPARAMETRIC TECHNIQUES

from the vector quantization and compression community; for instance partial dis-
tance calculation are described in [21]. Friedman has an excellent analysis of some of
the unintuitive properties of high dimensional spaces, and indirectly nearest neighbor
classifiers, an inspiration for several problems here [19]. The definitive collection of
seminal papers in nearest-neighbor classification is [12].

The notion of tangent distance was introduced by Simard and colleagues [38], and
explored by a number of others [24]. Sperduti and Stork introduced a prestructuring
and novel search criterion which speeds search in tangent based classifiers [41]. The
greatest successes of tangent methods have been in optical character recognition, but
the method can be applied in other domains, so long as the invariances are known.
The study of general invariance has been most profitable when limited to a particular
domain, and readers secking further background should consult [31] for computer
vision and [34] for speech. Background on image transformations is covered in [18].

The philosophical debate concerning frequency, probability, graded category mem-
bership, and so on, has a long history [29]. Keynes espoused a theory of probability as
the logic of probable inference, and did not need to rely on the notion of repeatability,
frequency, etc. We subscribe to the traditional view that probability is a conceptual
and formal relation between hypotheses and conclusions — here, specifically between
data and category. The limiting cases of such rational belief are certainty (on the
one hand), and impossibility (on the other). Classical theory of probability cannot be
based solely on classical logic, which has no formal notions for the probability of an
event. While the rules in Keynes’ probability [26] were taken as axiomatic, Cox [11]
and later Jayne[?] sought to place a formal underpinning.

Many years after these debates, “fuzzy” methods were proposed from the com-
puter science [43]. A formal equivalence of fuzzy category membership functions and
probability is given in [22], which in turn is based on Cox [11]. Cheeseman has made
some remarkably clear and forceful rebuttals to the assertions that fuzzy methods
represent something beyond the notion of subjective probability [7, 8]; representative
expositions to the contrary include [28, 4]. Readers unconcerned with foundational
issues, and whether fuzzy methods provide any representational power or other ben-
efits above standard probability (including subjective probability) can consult [25],
which is loaded with over 3000 references. , many connectives for fuzzy logic [2]

Early reference on the use of potential functions for pattern classification is [1, 6].
This is closely allied with later work such as the RCE network described in [37, 36].

Fisher’s early work on linear discriminants [15], is well described in [30] and a
number of standard textbooks [9, 13, 20, 30, 42].

Problems

P Section 4.3
1. Show that Eqs. 19-22 are sufficient to assure convergence in Egs. 17 & 18.

2. Consider a normal p(x) ~ N(u,0?) and Parzen-window function o(z) ~ N(0,1).
Show that the Parzen-window estimate

1 <« T — T
pn(‘T):ﬁZ(P(h
ni:1 n

has the following properties:

4.11. PROBLEMS 93

(a) pn(z) ~ N(p,0% + h7)

(b) Var[p,(z)] =~ gpto=p()

s

(©) p(@) ~ Pule) = (%) [t — (552)7]ple)

for small h,,. (Note: if h,, = hq/+/n, this shows that the error due to bias goes to zero
as 1/n, whereas the standard deviation of the noise only goes to zero as /n.)

3. Let p(x) ~ U(0,a) be uniform from 0 to a, and let a Parzen window be defined
as p(x) = e * for > 0 and 0 for x <0.

(a) Show that the mean of such a Parzen-window estimate is given by

o

<0
Pa(a) = q (1 —e /) 0<z<a
L(et/hn —1)e=2/hn <.

is}

(b) Plot p,(x) versus z for a = 1 and h,, = 1,1/4, and 1/16.

(¢) How small does h,, have to be to have less than one percent bias over 99 percent
of the range 0 < x < a?

(d) Find h,, for this condition if @ = 1, and plot p,,(z) in the range 0 < 2 < 0.05.

4. Suppose in a c-category supervised learning environment we sample the full
distribution p(x), and train a PNN classifier according to Algorithm ?7.

(a) Show that even if there are unequal category priors and hence unequal numbers
of points in each category, the recognition method gives the right solution.

(b) Suppose we have trained a PNN with the assumption of equal category priors,
but later wish to use it for a problem having the cost matrix A;;, representing
the cost of choosing category w; when in fact the pattern came from w;. How
should we do this?

(c) Suppose instead we know a cost matrix \;; before training. How shall we train
a PNN for minimum risk?

B Section 4.4

5. Show that Eq. 31 converges in probability to p(x) given the conditions lim k, —

n—oo

oo and lim k,/n — 0.

6. Let D = {x1,...,X,} be a set of n independent labelled samples and let Dy (x) =
{x1,...,x},} be the k nearest neighbors of x. Recall that the k-nearest-neighbor rule
for classifying x is to give x the label most frequently represented in Dy (x). Consider
a two-category problem with P(wq) = P(w2) = 1/2. Assume further that the condi-
tional densities p(x|w;) are uniform within unit hyperspheres a distance of ten units
apart.

(a) Show that if k is odd the average probability of error is given by

(k—1)/2

o= £'8°()

Jj=0

54 CHAPTER 4. NONPARAMETRIC TECHNIQUES

(b) Show that for this case the single-nearest neighbor rule has a lower error rate
than the k-nearest-neighbor error rate for k£ > 1.

(c) If k is allowed to increases with n but is restricted by k < ay/n, show that
P,(e) — 0 as n — oo.

P Section 4.5

7. Prove that the Voronoi cells induced by the single-nearest neighbor algorithm
must always be convex. That is, for any two points x; and x5 in a cell, all points on
the line linking x; and x5 must also lie in the cell.

8. It is easy to see that the nearest-neighbor error rate P can equal the Bayes rate
P* if P* = 0 (the best possibility) or if P* = (¢ —1)/c (the worst possibility). One
might ask whether or not there are problems for which P = P* when P* is between
these extremes.

(a) Show that the Bayes rate for the one-dimensional case where P(w;) = 1/c and

1 0<z< 5
Pzlw;) =< 1 i<zr<it+l—--=

c—1
0 elsewhere

is P* =r.
(b) Show that for this case that the nearest-neighbor rate is P = P*.

9. Consider the following set of two-dimensional vectors:

w1 w2 w3
L1 T2 | X1 T2 | T1 X2
10 0 5 10| 2 8
0 -10| O 5 | -5 2
5 -2 5 5 |10 -4

(a) Plot the decision boundary resulting from the nearest-neighbor rule just for
categorizing wy and ws. Find the sample means m; and ms and on the same
figure sketch the decision boundary corresponding to classifying x by assigning
it to the category of the nearest sample mean.

(b) Repeat part (a) for categorizing only wy and ws.
(c¢) Repeat part (a) for categorizing only wy and ws.
(d) Repeat part (a) for a three-category classifier, classifying w, ws and ws.

10. Prove that the computational complexity of the basic nearest-neighbor editing
algorith (Algorithm ??) for n points in d dimension is O(d®nl%/?/1nn).

11. To understand the “curse of dimensionality” in greater depth, consider the
effects of high dimensions on the simple nearest-neighbor algorithm. Suppose we
need to estimate a density function f(x) in the unit hypercube in RY based on n
samples. If f(x) is complicated, we need dense samples to learn it well.

4.11. PROBLEMS 95

(a) Let n; denote the number of samples in a “dense” sample in R*. What is the
sample size for the “same density” in R?? If n; = 100, what sample size is
needed in a 20-dimensional space?

(b) Show that the interpoint distances are all large and roughly equal in R¢, and
that neighborhoods that have even just a few points must have large radii.

(¢) Find l4(p), the length of a hypercube edge in d dimensions that contains the
fraction p of points (0 < p < 1). To better appreciate the implications of your
result, calculate: [5(0.01), I5(0.1), l20(0.01), and I39(0.1).

(d) Show that nearly all points are close to an edge of the full space (e.g., the unit
hypercube in d dimensions). Do this by calculating the L., distance from one
point to the closest other point. This shows that nearly all points are closer to
an edge than to another training point. (Argue that L, is more favorable than
Lo distance, even though it is easier to calculate here.) The result shows that
most points are on or near the convex hull of training samples and that nearly
every point is an “outlier” with respects to all the others.

12. Show how the “curse of dimensionality” (Problem 11) can be “overcome” by
choosing or assuming that your model is of a particular sort. Suppose that we are
estimating a function of the form y = f(x) + N(0,0?).

n
(a) Suppose the true function is linear, f(x) = a;x;, and that the approximation
j=1
. n

is f(x) = > ajx;. Of course, the fit coefficients are:
=1

2

n d
Gj; = arginin E Yi — E ;T4 y
aj X
=1 Jj=1

for j = 1,...,d. Prove that £[f(x) — f(x)]?> = do?/n, i.e., that it increases
linearly with d, and not exponentially as the curse of dimensionality might
otherwise suggest.

(b) Generalize your result from part (a) to the case where a function is expressed
n

in a different basis set, i.e., f(z) = > a;B;(x) for some well-behaved basis set
i=1

B;(x), and hence that the result does not depend on the fact that we have used
a linear basis.

13. Consider classifiers based on samples from the distributions

(wlor) = 20 for0<z <1
p Vo= 0 otherwise,
and

(wlws) = 2—2r for0<zx<1
p 2= 0 otherwise.

(a) What is the Bayes decision rule and the Bayes classification error?

56 CHAPTER 4. NONPARAMETRIC TECHNIQUES

(b) Suppose we randomly select a single point from wy and a single point from wa,
and create a nearest-neighbor classifier. Suppose too we select a test point from
one of the categories (w; for definiteness). Integrate to find the expected error
rate Py (e).

(¢) Repeat with two training samples from each category and a single test point in
order to find Py(e).

(d) Generalize to find the arbitrary P,(e).

(e) Compare lim P,(e) with the Bayes error.

n—oo

14. Repeat Problem 13 but with

B 3/2 for0<az<2/3
plalwr) = { 0 otherwise,
and
_ 3/2 for1/3<z<1
p(alwn) = { 0 otherwise.

15. Expand in greater detail Algorithm 3 and add a conditional branch that will
speed it. Assuming the data points come from ¢ categories and there are, on average,
k Voronoi neighbors of any point x, on average how much faster will your improved
algorithm be?

16. Consider the simple nearest-neighbor editing algorithm (Algorithm 3).

(a) Show by counterexample that this algorithm does not yield the minimum set of
points. (Hint: consider a problem where the points from each of two-categories
are constrained to be on the intersections of a two-dimensional Cartesian grid.)

(b) Create a sequential editing algorithm, in which each point is considered in turn,
and retained or rejected before the next point is considered. Prove that your
algorithm does or does not depend upon the sequence the points are considered.

17. Consider classification problem where each of the ¢ categories possesses the same
distribution as well as prior P(w;) = 1/c. Prove that the upper bound in Eq. 53, i.e.,

P<P*(2— ¢ P*>7
c—1

is achieved in this “zero-information” case.
18. Derive Eq. 55.

P Section 4.6

19. Consider the Euclidean metric in d dimensions:

4.11. PROBLEMS o7

Suppose we rescale each axis by a fixed factor, i.e., let x}, = ayzy for real, non-zero
constants o, k = 1,2, ...,d. Prove that the resulting space is a metric space. Discuss
the import of this fact for standard nearest-neighbor classification methods.

20. Prove that the Minkowski metric indeed possesses the four properties required
of all metrics.

21. Consider a non-iterative method for finding the tangent distance between x’ and
x, given the matrix T consisting of the r (column) tangent vectors TV; at x'.

(a) As given in the text, take the gradient of the squared Euclidean distance in the
a parameter space to find an equation that must be solved for the optimal a.

(b) Solve your first derivative equation to find the optimizing a.

(c) Compute the second derivative of D?(-,-) to prove that your solution must be
a minimum squared distance, and not a maximum or inflection point.

(d) If there are r tangent vectors (invariances) in a d-dimensional space, what is the
computational complexity of your method?

(e) In practice, the iterative method described in the text requires only a few
(roughly 5) iterations for problems in handwritten OCR. Compare the com-
plexities of your analytic solution to that of the iterative scheme.

22. Consider a tangent-distance based classifier based on n prototypes, each rep-
resenting a k X k pixel pattern of a handwritten character. Suppose there are r
invariances we believe characterize the problem. What is the storage requirements
(space complexity) of such a tangent-based classifier?

23. The two-sided tangent distance allows both the stored prototype x’ and the test
point x to be transformed. Thus if T is the matrix of the r tangent vectors for x’ and
S likewise at x, the two-sided tangent distance is

Datan(x',x) = min||(x’ + Ta) — (x + Sb)|].
(a) Follow the logic in Problem 21 and calculate the gradient with respect to the a
parameter vector and to the b parameter vector.

(b) What are the two update rules for an iterative scheme analogous to Eq. 647

(¢) Prove that there is a unique minium as a function of a and b. Describe this
geometrically.

(d) In an iterative scheme, we would alternatively take steps in the a parameter
space, then the b parameter space. What is the computational complexity to
this approach to the two-sided tangent distance classifier?

(e) Why is the actual complexity for classification in a 2-sided tangent distance
classifier even more sever than your result in (d) would suggest?

24. Consider the two-sided tangent distance described in Problem 23. Suppose we
restrict ourselves to n prototypes x’ in d dimensions, each with an associated matrix
T of r tangent vectors, which we assume are linearly independent. Determine whether
the two-sided tangent distance does or does not satisfy each of the requirements of a
metric: non-negativity, reflexivity, symmetry and the triangle inequality.

58 CHAPTER 4. NONPARAMETRIC TECHNIQUES

25. Consider the computational complexity of nearest neighbor classifier for k x
k pixel grayscale images of handwritten digits. Instead of using tangent distance,
we will search for the parameters of full nonlinear transforms before computing a
Euclidean distance. Suppose the number of operations needed to perform each of our
r transformations (e.g., rotation, line thinning, shear, and so forth) is a;k?, where
for the sake of simplicity we assume a; ~ 10. Suppose too that for the test of each
prototype we must search though A ~ 5 such values, and judge it by the Euclidean
distance.

(a) Given a transformed image, how many operations are required to calculate the
Euclidean distance to a stored prototype?

(b) Find the number of operations required per search.

(¢) Suppose there are n prototypes. How many operations are required to find the
nearest neighbor, given such transforms?

(d) Assume for simplicity that no complexity reduction methods have been used
(such as editing, partial distance, graph creation). If the number of prototypes
is n = 10° points, and there are r = 6 transformations, and basic operations on
our computer require 10~? seconds, how long does it take to classify a single
point?

26. Explore the effect of r on the accuracy of nearest-neighbor search based on
partial distance. Assume we have a large number n of points randomly placed in a
d-dimensional hypercube. Suppose we have a test point x, also selected randomly
in the hypercume, and find its nearest neighbor. By definition, if we use the full
d-dimensional Euclidean distance, we are guaranteed to find its nearest neighbor.
Suppose though we use the partial distance

- 1/2

D,(x,x') = (Z(ml - x;)2> .
i=1

(a) Plot the probability that a partial distance search finds the true closest neighbor
of an arbitrary point x as a function of r for fixed n (1 < r < d) for d = 10.

(b) Consider the effect of r on the accuracy of a nearest-neighbor classifier. Assume
we have have n/2 prototypes from each two categories in a hypercube of length 1
on a side. The density for each category is separable into the product of (linear)
ramp functions, highest at one side, and zero at the other side of the range.
Thus the density for category w; is highest at (0,0, ...0)" and zero at (1,1, ..., 1),
while the density for ws is highest at (1,1,...,1)! and zero at (0,0,...0)t. State
by inspection the Bayesian decision boundary.

(¢) Calculate the Bayes error rate.

(d) Calculate the probability of correct classification of a point x, randomly selected
from one of the category densities, as a function of r in a partial distance metric.

(e) If n =10, what must r be for the partial distance nearest neighbor classifier to
be within 1% of the Bayes rate?

4.11. PROBLEMS 99

27. Consider the Tanimoto metric applied to sets having discrete elements.

(a) Determine whether the four properties of a metric are obeyed by Dranimoto(,)
as given in Eq. 59.

(b) Consider the following six words as mere sets of unordered letters: pattern,
pat, pots, stop, taxonomy and elementary. Use the Tanimoto metric to rank
order all (g) = 30 possible pairings of these sets.

(c) Is the triangle inequality obeyed for these six patterns?

P Section 4.7

28. Suppose someone asks you whether a cup of water is hot or cold, and you respond
that it is warm. Explain why this exchange in no way indicates that the membership
of the cup in some “hot” class is a graded value less than 1.0.

29. Consider the design a fuzzy classifier for three types of fish based on two features:
length and lightness. The designer feels that there are five ranges of length: short,
medium-short, medium, medium-large and large. Similarly, lightness falls into three
ranges: dark, medium and light. The designer uses the traingle function

. 1= el g < — 64
Tl i, 00) = o LSl
(3 43,00) { 0 otherwise.

for the intermediate values, and an open triangle function for the extremes, i.e.,

1 T > i
Cla,piyd)) =q 1-52 w—-d <<y
0 otherwise,

and its symmetric version.

Suppose we have for the length §; = 5 and uy = 5,0 = T,us = 9,y = 11
and pus = 13, and for lightness 6; = 30, u1 = 30, u2 = 50, and p3 = 70. Suppose
the designer feels that wi; = medium-light and long, wo = dark and short and wz =
medium dark and long, where the conjunction rule “and” is defined in Eq. 65.

(a) Write the algebraic form of the discriminant functions.

(b) If every “category membership function” were rescaled by a constant, would
classification change?

(c) Classify the pattern x = 7.5, 60.

(d) Suppose that instead we knew that pattern is w,. Would we have any principled
way to know whether the error was due to the number of category membership
functions? their functional form? the conjunction rule?

P Section 4.8

60 CHAPTER 4. NONPARAMETRIC TECHNIQUES

30. Suppose that through standard training of an RCE network (Algorithm 4), all
the radii have been reduced to values less than \,,. Prove that there is no subset of
the training data that will yield the same category decision boundary.

P Section 4.9

31. Consider a window function ¢(z) ~ N(0,1) and a density estimate

Approxnnate this estimate by factoring the window function and expanding the factor
er=wi/h in a Taylor series about the origin as follows:

(a) Show that in terms of the normalized variable v = x/h,, the m-term approxi-
mation is given by

m—1
1 2 .
— —u/2 § :b- J
m\Z) = & w
Pn L() /_27Thn = J

where

_IN L i
g] '

(b) Suppose that the n samples happen to be extremely tightly clustered about
u = ug. Show that the two-term approximation peaks at the two points where
u? +ufupg —1=0.

3

(¢) Show that one peak occurs approximately at u = ug, as desired, if uy < 1, but
that it moves only to u = 1 for ug > 1.

(d) Confirm your answer to part (c) by plotting p,2(u) versus u for uy = 0.01,1,
and 10. (Note: you may need to rescale the graphs vertically.)

P Section 4.10

32. Let p,(x|w;) be arbitrary densities with means p; and covariance matrices X;

— not necessarily normal — for ¢ = 1,2. Let y = w’x be a projection, and let the

induced one-dimensional densities p(y|w;) have means y; and variances 2.

(a) Show that the criterion function
(11 — p2)?
Jy(w) = LT K2
= oo

is maximized by

W= (31 + o) (g — o)

4.11. PROBLEMS 61

(b) If P(w;) is the prior probability for w;, show that

_ (11 — po)?
Talw) = P(wy)o? + Pz(wg)ag and
w = [P(w)Z1 + Pw)Zo] (g — po).

(¢) To which of these criterion functions is the J(w) of Eq. 7?7 more closely related?
Explain.

33. The expression

1
Ji = . Z Z (yi —y;)°

Yi €Y1 y;€V2
clearly measures the total within-group scatter.

(a) Show that this within-group scatter can be written as

1 1
T — _ 2, 12, 12
1= (m1 —mo)* + - sT+ - 85
(b) Show that the total scatter is
1 1
Jo = —st + —s3.
2 n1 ! * no 2

(c) If y = wix, show that the w optimizing J; subject to the constraint that Jo = 1

is given by

1 1 -1

w = /\(—81 + —Sz) (m; —msy),

ny no

where
1 1 1/2
_ _ tf_— _ _
A= |:(1’I’11 mg) (nl Sl + T Sg) (1’1’11 mg):| 5
1
xeD;

and

S, = Z ni(m; — m)(m; — m)".

xeD;

34. If Sp and Syy are two real, symmetric, d-by-d matrices, it is well known that there

exists a set of n eigenvalues A1, ..., A, satisfying |Sp — ASy/| = 0, and a corresponding
set of n eigenvectors ey, ..., e, satisfying Spe; = \;Sye;. Furthermore, if Sy is
positive definite, the eigenvectors can always be normalized so that e!Sy e; = §;; and
elSpe; = \idij. Let Sy = WISy W and Sp = W!SpW, where W is a d-by-n
matrix whose columns correspond to n distinct eigenvectors.

62 CHAPTER 4. NONPARAMETRIC TECHNIQUES

(a) Show that Sy is the n-by-n identity matrix I, and that Sp is a diagonal ma-
trix whose elements are the corresponding eigenvalues. (This shows that the
discriminant functions in multiple discriminant analysis are uncorrelated.)

(b) What is the value of J = [Sp|/|Sw| ?

(c) Let y = Wix be transformed by scaling the axes with a nonsingular n-by-n
diagonal matrix D and by rotating this result with an orthogonal matrix Q
where y’ = QDy. Show that .J is invariant to this transformation.

35. Consider two normal distributions with arbitrary but equal covariances. Prove
that the Fisher linear discriminant, for suitable threshold, can be derived from the
negative of the log-likelihood ratio.

36. Consider the criterion function J(w) required for the Fisher linear discriminant.

(a) Fill in the steps leading from Eqgs. 77, 79 & 83 to Eq. 84.

(b) Use matrix methods to show that the solution to Eq. 84 is indeed given by
Eq. 85.

(c) At the extreme of J(w), a small change in w must leave J(w) unchanged.
Consider a small perturbation away from the optimal, w + Aw, and derive the
solution condition of Eq. 85.

P Section 4.11

37. Consider multidiscriminant versions of Fisher’s method for the case of ¢ Gaussian
distributions in d dimensions, each having the same covariance 3 (otherwise arbitrary)
but different means. Solve for the optimal subspace in terms of 3 and the d mean
vectors.

Computer exercises

Several exercises will make use of the following three-dimensional data sampled from
three categories, denoted w;.

w1 wao w3

sample X1 €T9 T3 T X9 I3 T €To T3
1 028 131 -6.2 0.011 1.03 -0.21 | 1.36 2.17 0.14
2 0.07 0.58 -0.78 | 1.27 1.28 0.08 | 1.41 145 -0.38
3 1.54 2.01 -1.63 | 0.13 3.12 0.16 | 1.22 0.99 0.69
4 -0.44 118 -4.32|-0.21 1.23 -0.11 | 246 2.19 1.31
5 -0.81 0.21 573 |-218 139 -0.19 | 0.68 0.79 0.87
6 1.52 3.16 2.77 | 0.34 1.96 -0.16 | 2561 3.22 1.35
7 220 242 -0.19 |-1.38 094 0.45 | 0.60 2.44 0.92
8 091 194 6.21 |-0.12 082 0.17 | 0.64 0.13 0.97
9 0.65 193 438 |-144 231 0.14 | 0.85 0.58 0.99
10 -0.26 0.82 -0.96 | 0.26 1.94 0.08 | 0.66 0.51 0.88

P Section 4.2

1. Explore some of the properties of density estimation in the following way.

4.11. COMPUTER EXERCISES 63

a) Write a program to generate points according to a uniform distribution in a uni
‘Writ t t int ding t if distribution i it
cube, —1/2 < x; < 1/2 for i = 1,2,3. Generate 10* such points.

(b) Write a program to estimate the density at the origin based on your 10* points as
a function of the size of a cubical window function of size h. Plot your estimate
as a function of h, for 0 < h < 1.

(c) Evaluate the density at the origin using n of your points and the volume of a
cube window which just encloses n points. Plot your estimate as a function of
n=1,..10%

(d) Write a program to generate 10* points from a spherical Gaussian density (with
3 =1) centered on the origin. Repeat (b) & (¢) with your Gaussian data.

(e) Discuss any qualitative differences between the functional dependencies of your
estimation results for the uniform and Gaussian densities.

P Section 4.3

2. Consider Parzen-window estimates and classifiers for points in the table above.
Let your window function be a spherical Gaussian, i.e.,

((x = x;)/h) o Exp[—(x — %) (x — x;)/(2h%)].

(a) Write a program to classify an arbitrary test point x based on the Parzen window
estimates. Train your classifier using the three-dimensional data from your three
categories in the table above. Set h = 1 and classify the following three points:
(0.50,1.0,0.0), (0.31,1.51, —0.50)" and (—0.3,0.44, —0.1)*.

(b) Repeat with h = 0.1.

B Section 4.4

3. Consider k-nearest-neighbor density estimations in different numbers of dimen-
sions

(a) Write a program to find the k-nearest-neighbor density for n (unordered) points
in one dimension. Use your program to plot such a density estimate for the x
values in category ws in the table above for k = 1,3 and 5.

(b) Write a program to find the k-nearest-neighbor density estimate for n points
in two dimensions. Use your program to plot such a density estimate for the
r1 — T values in wy for £ = 1,3 and 5.

(c) Write a program to form a k-nearest-neighbor classifier for the three-dimensional
data from the three categories in the table above. Use your program with k& =

1,3 and 5 to estimate the relative densities at the following points: (—0.41,0.82,0.88)¢,

(0.14,0.72,4.1)t and (—0.81,0.61, —0.38)¢.

P Section 4.5

4. Write a program to create a Voronoi tesselation in two dimensions as follows.

CHAPTER 4. NONPARAMETRIC TECHNIQUES

First derive analytically the equation of a line separating two arbitrary points.

Given the full data set D of prototypes and a particular point x € D, write a
program to create a list of line segments comprising the Voronoi cell of x.

Use your program to form the Voronoi tesselation of the x1 — x5 features from
the data of w; and w3 in the table above. Plot your Voronoi diagram.

Write a program to find the category decision boundary based on this full set
D.

Implement a version of the pruning method described in Algorithm 3. Prune
your data set from (c) to form a condensed set.

Apply your programs from (c) & (d) to form the Voronoi tesselation and bound-
ary for your condensed data set. Compare the decision boundaries you found
for the full and the condensed sets.

5. Explore the tradeoff between computational complexity (as it relates to par-
tial distance calculations) and search accuracy in nearest-neighbor classifiers in the
following exercise.

(a)

Write a program to generate n prototypes from a uniform distributions in a
6-dimensional hypercube centered on the origin. Use your program to generate
10° points for category wy, 106 different points for category ws, and likewise for
ws and wy. Denote this full set D.

Use your program to generate a test set D; of n = 100 points, also uniformly
distributed in the 6-dimensional hypercube.

Write a program to implement the nearest-neighbor neighbor algorithm. Use
this program to label each of your points in D; by the category of its nearest
neighbor in D. From now on we will assume that the labels you find are in fact
the true ones, and thus the “test error” is zero.

Write a program to perform nearest-neighbor classification using partial dis-
tance, based on just the first r features of each vector. Suppose we define the
search accuracy as the percentage of points in D; that are associated with their
particular closest prototype in D. (Thus for » = 6, this accuracy is 100%, by
construction.) For 1 < r < 6 in your partial distance classifier, estimate the
search accuracy. Plot a curve of this search accuracy versus r. What value of r
would give a 90% search accuracy? (Round r to the nearest integer.)

Estimate the “wall clock time” — the overall time required by your computer
to perform the search — as a function of r. If T is the time for a full search
in six dimensions, what value of r requires roughly 7'/2? What is the search
accuracy in that case?

Suppose instead we define search accuracy as the classification accuracy. Esti-
mate this classification accuracy for a partial distance nearest-neighbor classifier
using your points of D;. Plot this accuracy for 1 < r < 6. Explain your result.

Repeat (e) for this classification accuracy. If T is the time for full search in d
dimensions, what value of r requires roughly 7'/27 What is the classification
search accuracy in this case?

4.11. COMPUTER EXERCISES 65

P Section 4.6

6. Consider nearest-neighbor classifiers employing different values of k in the Lj
norm or Minkowski metric.

a rite a program to implement a nearest-neighbor classifier for ¢ categories, using
Writ to impl t t-neighbor classifier f t i i
the Minkowski metric or L norm, where k can be selected at classification time.

(b) Use the three dimensional data in the table above to classify the following points
using the Ly norm for k = 1,2,4 and oco: (2.21,1.9,0.43)%, (—0.15,1.17,6.19)*
and (0.01,1.34,2.60)".

7. Create a 10 x 10 pixel grayscale pattern x’ of a handwritten 4.

(a) Plot the Euclidean distance between the 100-dimensional vectors corresponding
to x’ and a horizontally shifted version of it as a function of the horizontal offset.

(b) Shift x’ by two pixels to the right to form the tangent vector TV;. Write a
program to calculate the tangent distance for shifted patterns using your TV7.
Plot the tangent distance as a function of the displacement of the test pattern.
Compare your graphs and explain the implications.

8. Repeat Computer exercise 7 but for a handwritten 7, and vertical translations.

P Section 4.7

9. Assume that size, color and shape are appropriate descriptions of fruit, and
use fuzzy methods to classify fruit. In particular, assume all “category membership”
functions are either triangular (with center p and full half-width §) or, at the extremes,
are left- or right-open triangular functions.

Suppose the size features (measured in cm) are: small (u = 2), medium (p =
4), large (1 = 6), and extra-large (u = 8). In all cases we assume the category
membership tions have § = 3. Suppose shape is described by the excentricity, here
the ratio of the major axis to minor axis lengths: thin (. = 2,0 = .6), oblong
(n = 16,6 = .3), oval (u = 1.4,6 = .2) and spherical (u = 1.1,6 = .2). Suppose
color here is represented by some measure of the mixture of red to yellow: yellow
(p=.1,0 = .1), yellow-orange (¢ = 0.3, = 0.3), orange (u = 0.5, = 0.3), orange-
red (u=0.7,0 = 0.3) and red (u = 0.9, = 0.3). The fuzzy practitioner believes the
following are good descriptions of some common fruit:

e w; = cherry = {small and spherical and red}

e wy = orange = {medium and spherical and orange}

e w3 = banana = {large and thin and yellow}

e wy = peach = {medium and spherical and orange-red}
e w5 = plum = {medium and spherical and red}

e wg = lemon = {medium and oblong and yellow}

e w7 = grapefruit = {medium and spherical and yellow}

(a) Write a program to take any objective pattern and classify it.

66 CHAPTER 4. NONPARAMETRIC TECHNIQUES

(b) Classify each of these {size, shape, color}: {2.5,1.0,0.95}, {7.5,1.9,0.2} and
{5.0,0.5,0.4}.

(c) Suppose there is a cost associated with classification, as described by a cost
matrix A;; — the cost of selecting w; given that the true category is w;. Suppose
the cost matrix is

£>/

I
NN O - =O
= O o NN O -
OO~ ONN
NN O - DNNO
== O N O ON
DO = DNNO O N
O N DN DN ==

Reclassify the patterns in (b) for minimum cost.

P Section 4.8
10. Explore relaxation networks in the following way.

(a) Write a program to implement an RCE classifier in three dimensions. Let the
starting radius be \,, = 0.5. Train your classifier with the data from the three
categories in the table above. For this data, how many times was any sphere
reduced in size? (If the same sphere is reduced two times, count that as twice.)

(b) Use your classifier to classify the following: (0.53,—0.44,1.1)%, (—0.49,0.44,1.11)*
and (0.51,—0.21,2.15)". If the classification of any point is ambiguous, state
which are the candidate categories.

P Section 4.9

11. Consider a classifier based on a Taylor series expansion of a Gaussian window
function. Let k& be the highest power of x; in a Taylor series expansion of each of the
independent features of a two-dimensional Gaussian. Below, consider just the x1 — x4
features of categories wy and ws in the table above.

(a) For each value k = 2,4, and 6, classify the following three points: (0.56,2.3,0.10)¢,
(0.60,5.1,0.86)" and (—0.95,1.3,0.16)".

P Section 4.10

12. Consider the Fisher linear discriminant method.

(a) Write a general program to calculate the optimal direction w for a Fisher linear
discriminant based on three-dimensional data.

(b) Find the optimal w for categories wo and ws in the table above.

(c) Plot a line representing your optimal direction w and mark on it the positions
of the projected points.

4.11. COMPUTER EXERCISES 67
(d) In this subspace, fit each distribution with a (univariate) Gaussian, and find the
resulting decision boundary.

(e) What is the training error (the error on the training points themselves) in the
optimal subspace you found in (b)?

(f) For comparison, repeat (d) & (c) using instead the non-optimal direction w =

(1.0,2.0, —1.5)*. What is the training error in this non-optimal subspace?

P Section 4.11

13. Consider the multicategory generalization of the Fisher linear discriminant,
applied to the data in the table above.

(a) Write a general program to calculate the optimal w for multiple discriminant.
Use your program to find the optimal two-dimensional plane (described by nor-
mal vector w) for the three-dimensional data in the table.

(b) In the subspace, fit a circularly symmetric Gaussian to the data, and use a
simple linear classifier in each to find the decision boundaries in the subspace.

(¢) What is the error on the training set?
(d) Classify following points : (1.40, —0.36, —0.41)*, (0.62,1.30,1.11)* and (—0.11, 1.60, 1.51)".

(e) For comparison, repeat (b) & (c) for the non-optimal direction w = (—0.5, —0.5,1.0)".
Explain the difference between your training errors in the two cases.

68

CHAPTER 4. NONPARAMETRIC TECHNIQUES

Bibliography

1]

Mark A. Aizerman, E. M. Braverman, and L. I. Rozonoer. The Robbins-Monro
process and the method of potential functions. Automation and Remote Control,
26:1882-1885, 1965.

C. Alsina, E. Trillas, and L. Valverde. On some logical connectives for fuzzy set
theory. Journal of Mathematical Analysis and Applications, 93(1):15-26, 1983.

David Avis and Binay K. Bhattacharya. Algorithms for computing d-dimensional
Voronoi diagrams and their duals. In Franco P. Preparata, editor, Advances in
Computing Research: Computational Geometry, pages 159-180, Greenwich, CT,
1983. JAI Press.

James C. Bezdek and Sankar K. Pal, editors. Fuzzy Models for Pattern Recog-
nition: Methods that search for structures in data. IEEE Press, New York, NY,
1992.

Binay K. Bhattacharya, Ronald S. Poulsen, and Godfried T. Toussaint. Appli-
cation of proximity graphs to editing nearest neighbor decision rules. Proc. 16th

Symposium on the Interface Between Computer Science and Statistics, pages
97-108, 1984.

E. M. Braverman. On the potential function method. Automation and Remote
Control, 26:2130-2138, 1965.

Peter Cheeseman. In defense of probability. In Proceedings of the Ninth Inter-
national Joint Conference on Artificial Intelligence, pages 1002-1009. Morgan
Kaufmann, 1985.

Peter Cheeseman. Probabilistic versus fuzzy reasoning. In Laveen N. Kanal and
John F. Lemmer, editors, Uncertainty in Artificial Intelligence, Amsterdam, The
Netherlands, 1986. Elsevier Science Publishers.

Herman Chernoff and Lincoln E. Moses. FElementary Decision Theory. John
Wiley, New York, NY, 1959.

Thomas M. Cover and Peter E. Hart. Nearest neighbor pattern classification.
IEEFE Transactions on Information Theory, 1T-13:21-27, 1967.

Richard T. Cox. Probability, frequency, and reasonable expectation. American
Journal of Physics, 14:1-13, 1946.

Belur V. Dasarathy. Nearest Neighbor (NN) Norms: NN Pattern Classification
Techniques. IEEE Computer Society, Washington, DC, 1991.

69

70

[13]

[14]

[15]

[16]

[20]

[21]

[22]

[23]

[24]

[26]

[27]

[28]

BIBLIOGRAPHY

Pierre A. Devijver and Josef Kittler. Pattern Recognition: A Statistical Approach.
Prentice-Hall, London, UK, 1982.

Luc P. Devroye. On the inequality of Cover and Hart in nearest neighbor dis-
crimination. IEEE Transactions on Pattern Analysis and Machine Intelligence,

PAMI-3:75-78, 1981.

Ronald A. Fisher. The use of multiple measurements in taxonomic problems.
Annals of Fugenics, 7 Part 11:179-188, 1936.

Evelyn Fix and Joseph L. Hodges, Jr. Discriminatory analysis: Nonparamet-
ric discrimination: Consistency properties. USAF School of Aviation Medicine,
4:261-279, 1951.

Evelyn Fix and Joseph L. Hodges, Jr. Discriminatory analysis: Nonparametric
discrimination: Small sample performance. USAF School of Aviation Medicine,
11:280-322, 1952.

James D. Foley, Andries Van Dam, Steven K. Feiner, and John F. Hughes. Fun-
damentals of Interactive Computer Graphics: Principles and Practice. Addison-
Wesley, Reading, MA, 2 edition, 1990.

Jerome H. Friedman. An overview of predictive learning and function approx-
imation. In Vladimir Cherkassky, Jerome H. Friedman, and Harry Wechsler,
editors, From Statistics to Neural Networks: Theory and Pattern Recognition
Applications, New York, NY, 1994. Springer-Verlag, NATO ASI.

Keinosuke Fukunaga. Introduction to Statistical Pattern Recognition. Academic
Press, New York, NY, 2nd edition, 1990.

Allen Gersho and Robert M. Gray. Vector Quantization and Signal Processing.
Kluwer Academic Publishers, Boston, MA, 1992.

Richard M. Golden. Mathematical Methods for Neural Network Analysis and
Design. MIT Press, Cambridge, MA, 1996.

Peter Hart. The condensed nearest neighbor rule. IEEE Transactions on Infor-
mation Theory, IT-14(3):515-516, 1968.

Trevor Hastie, Patrice Simard, and Eduard Séckinger. Learning prototype models
for tangent distance. In Gerald Tesauro, David S. Touretzky, and Todd K. Leen,
editors, NIPS, volume 7, pages 999-1006, Cambridge, MA, 1995. MIT Press.

Abraham Kandel. Fuzzy Techniques in Pattern Recognition. Wiley, New York,
NY, 1982.

John Maynard Keynes. A treatise on probability. Macmillan, New York, NY,
1929.

Donald E. Knuth. The Art of Computer Programming, volume 1. Addison-
Wesley, Reading, MA, 1 edition, 1973.

Bart Kosko. Fuzziness vs. probability. International Journal of General Systems,
17:211-240, 1990.

BIBLIOGRAPHY 71

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

[43]

Jan Lukasiewicz. Logical foundations of probability theory. In L. Berkowski,
editor, Jan Lukasiewicz: Selected works. North-Holland, Amsterdam, 1970.

Geoffrey J. McLachlan. Discriminant Analysis and Statistical Pattern Recogni-
tion. Wiley Interscience, New York, NY, 1992.

Joseph L. Mundy and Andrews Zisserman, editors. Geometric Invariance in
Computer Vision. MIT Press, Cambridge, MA, 1992.

Emanuel Parzen. On estimation of a probability density function and mode.
Annals of Mathematical Statistics, 33:1065-1076, 1962.

E. A. Patrick and F. P. Fischer, III. A generalized k-nearest neighbor rule.
Information and Control, 16:128-152, 1970.

Joseph S. Perkell and Dennis H. Klatt, editors. Invariance and Variability in
Speech Processes. Lawrence Erlbaum, Hillsdale, NJ, 1986.

Franco P. Preparata and Michael lan Shamos. Computational Geometry: An
Introduction. Springer-Verlag, New York, NY, 1985.

Douglas L. Reilly and Leon N Cooper. An overview of neural networks: Early
models to real world systems. In Steven F. Zornetzer, Joel L. Davis, Clifford
Lau, and Thomas McKenna, editors, An Introduction to Neural and Electronic
Networks, pages 229-250. Academic Press, New York, NY, 2nd edition, 1995.

Douglas L. Reilly, Leon N Cooper, and C. Elbaum. A neural model for category
learning. Biological Cybernetics, 45:35-41, 1982.

Patrice Simard, Yann Le Cun, and John Denker. Efficient pattern recognition
using a new transformation distance. In Stephen José Hanson, Jack D. Cowan,
and C. Lee Giles, editors, NIPS, volume 5, pages 50-58, San Mateo, CA, 1993.
Morgan Kaufmann.

Donald F. Specht. Generation of polynomial discriminant functions for pattern
recognition. IEEFE Transactions on Electronic Computers, EC-16:308-319, 1967.

Donald F. Specht. Probabilistic neural networks. Neural Networks, 3:109-118,
1990.

Alessandro Sperduti and David G. Stork. A rapid graph-based method for arbi-
trary transformation-invariant pattern classification. In Gerald Tesauro, David S.
Touretzky, and Todd K. Leen, editors, NIPS, volume 7, pages 665-672, Cam-
bridge, MA, 1995. MIT Press.

Charles W. Therrien. Decision Estimation and Classification: An Introduction
to Pattern Recognition and Related Topics. Wiley Interscience, New York, NY,
1989.

Lotfi Zadeh. Fuzzy sets. Information and Control, 8:338-353, 1965.

Index

Lo norm, 32
Lo norm, 33
Lj, norm, 32
k—nearest neighbor
Bayes relation, 23
k—nearest neighbor
Bayes relation, 22
k-nearest neighbor, 8, 19-22

accuracy
complexity tradeoff, 31

Bayes
nearest-neighbor relation, 23
between-class scatter, see scatter, between-
class
binomial distribution, see distribution,
binomial

category unit
PNN, 16
computational complexity
accuracy tradeoff, see accuracy, com-
putational complexity trade-
off
conjunction rule, 37
convolution
Parzen, 11
curse of dimensionality, 16

decision function
direct estimation, 5
density
estimation
convergence, 7
divergence, 7
nonparametric, 5
Parzen, 8-19
function
average, 6
multimodal, 5
space average, 7

72

unimodal, 5
dimensionality
curse of, see curse of dimensional-
ity
discriminant
multiple, 48-51
distance, see metric
city block, see distance, Manhat-
tan
tangent
two-sided, 58
distribution
binomial, 6
separable, 5

eigenfunction expansion, 43
eigenvalue
Fisher discriminant, 47
error
test, 15
training
Parzen window, 15
minimum
k—nearest neighbor
error, 22
estimation
Parzen, 8, 22
convergence, 9
illustration, 12
expansion
eigenfunction, 43
series, 44
Taylor series, 43
expected value
probability, 6

feature space
transform, 5
Fisher linear discriminant, see linear
discriminant, Fisher

hypercube, 8

INDEX

iid., 6
inner product
PNN
pattern unit, 18
input unit
PNN, 16
interpolation
Parzen, 8
invariance
tangent distance method, 33

kernel, see Parzen window

linear discriminant, 44
Fisher, 5, 44-51

Manhattan distance, see metric, Man-
hattan
matrix
scatter, 46
total, see scatter matrix, total
singular, 47
mean
Parzen estimate
convergence, 11
vector
total, 48
metric, 32
L1 norm, 32
Lo norm, 33
Lj, norm, 32
city block, see metric, Manhattan
Euclidean, 32
Manhattan, 32
Minkowski, 32
non-negativity, 32
properties, 32
reflexivity, 32
symmetry, 32
tangent distance, 33-37
triangle inequality, 32

nearest-neighbor
condensingsee nearest-neighbor, edit-
ing 31
convergence, 24
editing, 30-31
Algorithm, 31
minimal set, 31
error, 24-27
bound, 2527

73

finite sample, 27, 56
variance, 26
partical distance, 30
prestructuring, 30
pruningsee nearest-neighbor, edit-
ing 31
neural network
Probabilistic, 16-19
nonparametric method
benefits, 15

outer product, 47

Parzen
estimate
widow width effect, 8
Parzen window, 8
classification, 15-16
estimate, 8
function, 19
prior, 15
pattern unit
PNN, 16
PNN, see neural network, probabilistic
space complexity, 18
time complexity, 18
weight, 16
potential function, 40
probabilistic neural network, see neu-
ral network, probabilistic
benefits, 18
recall
Algorithm, 18
training
Algorithm, 17
probability
posterior
nonparametric estimation, 5
subjective, 38
prototype, 19

Rayleigh quotient, 47
RCE, see reduced coulomb energy
classification
Algorithm, 41
training
Algorithm, 40
reduced coulomb energy, 40

scatter
between-class, 47

74

within-class, 46, 47
scatter matrix, see matrix, scatter
search
tree, 30
subjective probability, see probability,
subjective

tangent vector, 34
training data
limited, 7
triangle inequality, see metric, triangle
inequality

variance
Parzen estimate
convergence, 11
vector
mean
total, see mean vector, total
Voronoi
cell, 23
tesselation, 23

window function
Gaussian, 43
within-class scatter, see scatter, within-
class

zero-information distribution, 27

INDEX

Contents

5 Linear Discriminant Functions

5.1
5.2

5.3
5.4

5.5

5.6

5.7
5.8

5.9

Introduction
Linear Discriminant Functions and Decision Surfaces
5.2.1 The Two-Category Case
5.2.2 The Multicategory Case
Generalized Linear Discriminant Functions
The Two-Category Linearly-Separable Case
5.4.1 Geometry and Terminology
5.4.2 Gradient Descent Procedures
Algorithm 1: Gradient descent.
Algorithm 2: Newton descent
Minimizing the Perceptron Criterion Function
5.5.1 The Perceptron Criterion Function
Algorithm 8: Batch Perceptron
5.5.2 Convergence Proof for Single-Sample Correction
Algorithm 4: Fized increment descent
5.5.3 Some Direct Generalizations
Algorithm 5: Fized increment descent
Algorithm 6: Batch variable increment Perceptron
Algorithm 7: Balanced Winnow algorithm
Relaxation Procedures L.
5.6.1 The Descent Algorithm
Algorithm 8: Relazation training with margin
Algorithm 9: Relazation rule
5.6.2 Convergence Proof oL
Nonseparable Behavior
Minimum Squared Error Procedures
5.8.1 Minimum Squared Error and the Pseudoinverse
Example 1: Constructing a linear classifier by matriz pseudoinverse

5.8.2 Relation to Fisher’s Linear Discriminant
5.8.3 Asymptotic Approximation to an Optimal Discriminant
5.8.4 The Widrow-Hoff Procedure.
Algorithm 10: LMS algorithm,
5.8.5 Stochastic Approximation Methods
*The Ho-Kashyap Procedures
5.9.1 The Descent Procedure
Algorithm 11: Ho-Kashyap
5.9.2 Convergence Proof

O W W

CONTENTS

5.9.3 Nonseparable Behavior 41
5.9.4 Some Related Procedures 42
Algorithm 12: Modified Ho-Kashyap 42
5.10 *Linear Programming Algorithms 44
5.10.1 Linear Programming 44
5.10.2 The Linearly Separable Case 45
5.10.3 Minimizing the Perceptron Criterion Function. 46
5.11 *Support Vector Machines 49
511.1 SVM training 50
Example 2: SVM for the XOR problem 51
5.12 Multicategory Generalizations 52
5.12.1 Kesler’s Construction 52
5.12.2 Convergence of the Fixed-Increment Rule 53
5.12.3 Generalizations for MSE Procedures 55
Bibliographical and Historical Remarks 57
Problems 57
Computer exerciSes v . v v v v i e e e e e e 65
Bibliography 67

Index e e 70

Chapter 5

Linear Discriminant Functions

5.1 Introduction

n Chap. 7?7 we assumed that the forms for the underlying probability densities were

known, and used the training samples to estimate the values of their parameters.
In this chapter we shall instead assume we know the proper forms for the discriminant
functions, and use the samples to estimate the values of parameters of the classifier.
We shall examine various procedures for determining discriminant functions, some of
which are statistical and some of which are not. None of them, however, requires
knowledge of the forms of underlying probability distributions, and in this limited
sense they can be said to be nonparametric.

Throughout this chapter we shall be concerned with discriminant functions that
are either linear in the components of x, or linear in some given set of functions
of x. Linear discriminant functions have a variety of pleasant analytical properties.
As we have seen in Chap. 77, they can be optimal if the underlying distributions
are cooperative, such as Gaussians having equal covariance, as might be obtained
through an intelligent choice of feature detectors. Even when they are not optimal,
we might be willing to sacrifice some performance in order to gain the advantage of
their simplicity. Linear discriminant functions are relatively easy to compute and in
the absense of information suggesting otherwise, linear classifiers are an attractive
candidates for initial, trial classifiers. They also illustrate a number of very important
principles which will be used more fully in neural networks (Chap. ?7).

The problem of finding a linear discriminant function will be formulated as a prob-
lem of minimizing a criterion function. The obvious criterion function for classification
purposes is the sample risk, or training error — the average loss incurred in classifying
the set of training samples. We must emphasize right away, however, that despite the
attractiveness of this criterion, it is fraught with problems. While our goal will be to
classify novel test patterns, a small training error does not guarantee a small test error
— a fascinating and subtle problem that will command our attention in Chap. ?7.
As we shall see here, it is difficult to derive the minimum-risk linear discriminant
anyway, and for that reason we investigate several related criterion functions that are
analytically more tractable.

Much of our attention will be devoted to studying the convergence properties

TRAINING
ERROR

THRESHOLD
WEIGHT

4 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS

and computational complexities of various gradient descent procedures for minimizing
criterion functions. The similarities between many of the procedures sometimes makes
it difficult to keep the differences between them clear and for this reason we have
included a summary of the principal results in Table 5.1 at the end of Sect. 5.10.

5.2 Linear Discriminant Functions and Decision Sur-
faces

5.2.1 The Two-Category Case

A discriminant function that is a linear combination of the components of x can be
written as

g(x) = w'x + wo, (1)
where w is the weight vector and wqy the bias or threshold weight. A two-category
linear classifier implements the following decision rule: Decide w; if g(x) > 0 and wo
if g(x) < 0. Thus, x is assigned to w; if the inner product w'x exceeds the threshold
—wp and wy otherwise. If g(x) = 0, x can ordinarily be assigned to either class, but
in this chapter we shall leave the assignment undefined. Figure 5.1 shows a typical
implementation, a clear example of the general structure of a pattern recognition
system we saw in Chap. ?77.

a(x)

Figure 5.1: A simple linear classifier having d input units, each corresponding to the
values of the components of an input vector. Each input feature value x; is multiplied
by its corresponding weight w;; the output unit sums all these products and emits a
+1 if wix 4+ wp > 0 or a —1 otherwise.

The equation g(x) = 0 defines the decision surface that separates points assigned

to wy from points assigned to ws. When g(x) is linear, this decision surface is a
hyperplane. If x; and x5 are both on the decision surface, then

thl + wop = WtXQ + wo

or

wh(x; —x3) =0,

5.2. LINEAR DISCRIMINANT FUNCTIONS AND DECISION SURFACES 5

and this shows that w is normal to any vector lying in the hyperplane. In general,
the hyperplane H divides the feature space into two halfspaces, decision region R
for wy and region Rg for we. Since g(x) > 0 if x is in R4, it follows that the normal
vector w points into R. It is sometimes said that any x in R; is on the positive side
of H, and any x in R is on the negative side.

The discriminant function g(x) gives an algebraic measure of the distance from x
to the hyperplane. Perhaps the easiest way to see this is to express x as

. w
X=Xp+r—r

[wi”
where x,, is the normal projection of x onto H, and r is the desired algebraic distance
— positive if x is on the positive side and negative if x is on the negative side. Then,
since g(x,) =0,

9(x) = w'x +wo = r|wl,

or

9
[[wil®

In particular, the distance from the origin to H is given by wg/||w|. If wy > 0 the
origin is on the positive side of H, and if wy < 0 it is on the negative side. If wy = 0,
then g(x) has the homogeneous form w'x, and the hyperplane passes through the
origin. A geometric illustration of these algebraic results is given in Fig. 5.2.

Figure 5.2: The linear decision boundary H, where g(x) = w'x + wg = 0, separates
the feature space into two half-spaces Ry (where g(x) > 0) and R2 (where g(x) < 0).

To summarize, a linear discriminant function divides the feature space by a hy-
perplane decision surface. The orientation of the surface is determined by the normal
vector w, and the location of the surface is determined by the bias wy. The discrim-
inant function g(x) is proportional to the signed distance from x to the hyperplane,
with g(x) > 0 when x is on the positive side, and g(x) < 0 when x is on the negative
side.

LINEAR
MACHINE

QUADRATIC
DISCRIMINANT

6 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS

5.2.2 The Multicategory Case

There is more than one way to devise multicategory classifiers employing linear dis-
criminant functions. For example, we might reduce the problem to ¢ — 1 two-class
problems, where the ith problem is solved by a linear discriminant function that
separates points assigned to w; from those not assigned to w;. A more extravagant
approach would be to use ¢(c— 1) /2 linear discriminants, one for every pair of classes.
As illustrated in Fig. 5.3, both of these approaches can lead to regions in which the
classification is undefined. We shall avoid this problem by adopting the approach
taken in Chap. 77, defining ¢ linear discriminant functions

gi(x) = w'x; +w;g i=1,..,c¢ (2)

and assigning x to w; if g;(x) > g¢,(x) for all j # ¢; in case of ties, the classification
is left undefined. The resulting classifier is called a linear machine. A linear machine
divides the feature space into ¢ decision regions, with ¢;(x) being the largest discrim-
inant if x is in region R;. If R; and R; are contiguous, the boundary between them
is a portion of the hyperplane H;; defined by

9i(x) = g(x)

or

(Wi — Wj)tX + (wio — wjo) =0.

It follows at once that w; — w; is normal to H;j, and the signed distance from x
to H;j is given by (g; — gj)/||ws; — w;||. Thus, with the linear machine it is not the
weight vectors themselves but their differences that are important. While there are
¢(c —1)/2 pairs of regions, they need not all be contiguous, and the total number of
hyperplane segments appearing in the decision surfaces is often fewer than ¢(c—1)/2,
as shown in Fig. 5.4.

It is easy to show that the decision regions for a linear machine are convex and this
restriction surely limits the flexibility and accuracy of the classifier (Problems 1 & 2).
In particular, for good performance every decision region should be singly connected,
and this tends to make the linear machine most suitable for problems for which the
conditional densities p(x|w;) are unimodal.

5.3 Generalized Linear Discriminant Functions

The linear discriminant function g(x) can be written as

d
9(x) = wo + Zwﬂi, (3)
i=1

where the coefficients w; are the components of the weight vector w. By adding
additional terms involving the products of pairs of components of x, we obtain the
quadratic discriminant function

d d d
g(x) = wo + Z wx; + Z Z Wi & (4)
i=1

i=1 j=1

5.3. GENERALIZED LINEAR DISCRIMINANT FUNCTIONS 7

not o

ambiguous
region
not o4

Figure 5.3: Linear decision boundaries for a four-class problem. The top figure shows
w;i/not w; dichotomies while the bottom figure shows w;/w; dichotomies. The pink
regions have ambiguous category assigments.

Since x;x; = x;x;, we can assume that w;; = w;; with no loss in generality. Thus, the
quadratic discriminant function has an additional d(d+1)/2 coefficients at its disposal
with which to produce more complicated separating surfaces. The separating surface
defined by g(x) = 0 is a second-degree or hyperquadric surface. The linear terms
in g(x) can be eliminated by translating the axes. We can define W = [w;;], a
symmetric, nonsingular matrix and then the basic character of the separating surface
can be described in terms of the scaled matrix W = W/(w!W™lw — dwg). If W
is a positive multiple of the identity matrix, the separating surface is a hypersphere.
If W is positive definite, the separating surfaces is a hyperellipsoid. If some of the
eigenvalues of W are positive and others are negative, the surface is one of the variety
of types of hyperhyperboloids (Problem 11). As we observed in Chap. ?7?, these are
the kinds of separating surfaces that arise in the general multivariate Gaussian case.

By continuing to add terms such as w;;x;2;7 we can obtain the class of polyno-
mial discriminant functions. These can be thought of as truncated series expansions
of some arbitrary g(x), and this in turn suggest the generalized linear discriminant
function

d
g(x) = Z a;yi(x) ()

POLYNOMIAL
DISCRIMINANT

PHI
FUNCTION

8 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS

Figure 5.4: Decision boundaries produced by a linear machine for a three-class prob-
lem and a five-class problem.

or

g(x) =a'y, (6)

where a is now a d-dimensional weight vector, and where the d functions yi(X) — some-
times called ¢ functions — can be arbitrary functions of x. Such functions might be
computed by a feature detecting subsystem. By selecting these functions judiciously
and letting d be sufficiently large, one can approximate any desired discriminant func-
tion by such an expansion. The resulting discriminant function is not linear in x, but
it is linear in y. The d functions y;(x) merely map points in d-dimenional x-space
to points in d-dimensional y-space. The homogeneous discriminant aly separates
points in this transformed space by a hyperplane passing through the origin. Thus,
the mapping from x to y reduces the problem to one of finding a homogeneous linear
discriminant function.

Some of the advantages and disadvantages of this approach can be clarified by
considering a simple example. Let the quadratic discriminant function be

g(z) = a1 + asx + asx?, (7)

so that the three-dimensional vector y is given by

1

y=1 = | (8)

The mapping from x to y is illustrated in Fig. 5.5. The data remain inherently one-
dimensional, since varying x causes y to trace out a curve in three dimensions. Thus,
one thing to notice immediately is that if x is governed by a probability law p(z), the
induced density p(y) will be degenerate, being zero everywhere except on the curve,
where it is infinite. This is a common problem whenever d > d, and the mapping
takes points from a lower-dimensional space to a higher-dimensional space.

The plane H defined by aly = 0 divides the y-space into two decision regions R1
and Rs. Figure 7?7 shows the separating plane corresponding to a = (—1,1,2)!, the
decision regions Ry and 7@2, and their corresponding decision regions R and R in
the original a-space. The quadratic discriminant function g(z) = —1 + z + 222 is

5.3. GENERALIZED LINEAR DISCRIMINANT FUNCTIONS 9

@—@——@—
-1 0 1 2
Ry Ry Ry

Figure 5.5: The mapping y = (1, x,22)! takes a line and transforms it to a parabola
in three dimensions. A plane splits the resulting y space into regions corresponding
to two categories, and this in turn gives a non-simply connected decision region in the
one-dimensional z space.

positive if x < —1 or if x > 0.5, and thus R; is multiply connected. Thus although
the decision regions in y-space are convex, this is by no means the case in z-space.
More generally speaking, even with relatively simple functions y;(x), decision surfaces
induced in an x-space can be fairly complex (Fig. 5.6).

Unfortunately, the curse of dimensionality often makes it hard to capitalize on
this flexibility in practice. A complete quadratic discriminant function involves d =
(d + 1)(d + 2)/2 terms. If d is modestly large, say d = 50, this requires the com-
putation of a great many terms; inclusion of cubic and higher orders leads to 0(&3)
terms. Furthermore, the d components of the weight vector a must be determined
from training samples. If we think of d as specifying the number of degrees of freedom
for the discriminant function, it is natural to require that the number of samples be
not less than the number of degrees of freedom (cf., Chap. ??). Clearly, a general
series expansion of g(x) can easily lead to completely unrealistic requirements for
computation and data. We shall see in Sect. 7?7 that this drawback can be accom-
modated by imposing a constraint of large margins, or bands between the training
patterns, however. In this case, we are not technically speaking fitting all the free
parameters; instead, we are relying on the assumption that the mapping to a high-
dimensional space does not impose any spurious structure or relationships among the
training points. Alternatively, multilayer neural networks approach this problem by
employing multiple copies of a single nonlinear function of the input features, as we
shall see in Chap. 77.

While it may be hard to realize the potential benefits of a generalized linear dis-
criminant function, we can at least exploit the convenience of being able to write
g(x) in the homogeneous form a'y. In the particular case of the linear discriminant
function

AUGMENTED
VECTOR

10 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS

Figure 5.6: The two-dimensional input space x is mapped through a polynomial
function f to y. Here the mapping is y1 = z1, y2 = 22 and y3 < zi1zs. A linear
discriminant in this transformed space is a hyperplane, which cuts the surface. Points
to the positive side of the hyperplane H correspond to category wq, and those beneath
it wo. Here, in terms of the x space, R is a not simply connected.

d d
g9(x) = wo + Zwiwi = Z Wi T 9)
i=1 =0

where we set (g = 1. Thus we can write

1 1
x1

y=| . |=1,1 (10)
T4

and y is sometimes called an augmented feature vector. Likewise, an augmented weight
vector can be written as:

a= : = . (11)
wy

This mapping from d-dimensional x-space to (d+1)-dimensional y-space is mathe-
matically trivial but nonetheless quite convenient. The addition of a constant compo-
nent to x preserves all distance relationships among samples. The resulting y vectors
all lie in a d-dimensional subspace, which is the x-space itself. The hyperplane deci-
sion surface H defined by aly = 0 passes through the origin in y-space, even though
the corresponding hyperplane H can be in any position in x-space. The distance from
y to H is given by |a’y|/|al|, or |g(x)|/||a]|. Since ||a]| > [|w]|, this distance is less

5.4. THE TWO-CATEGORY LINEARLY-SEPARABLE CASE 11

than, or at most equal to the distance from x to H. By using this mapping we reduce
the problem of finding a weight vector w and a threshold weight wq to the problem
of finding a single weight vector a (Fig. 5.7).

Yo=1

i
]

Yo=0

Figure 5.7: A three-dimensional augmented feature space y and augmented weight
vector a (at the origin). The set of points for which a’y = 0 is a plane (or more
generally, a hyperplane) perpendicular to a and passing through the origin of y-
space, as indicated by the red disk. Such a plane need not pass through the origin of
the two-dimensional x-space at the top, of course, as shown by the dashed line. Thus
there exists an augmented weight vector a that will lead to any straight decision line
in x-space.

5.4 The Two-Category Linearly-Separable Case

5.4.1 Geometry and Terminology

Suppose now that we have a set of n samples yq,...,y,, some labelled w; and some
labelled wy. We want to use these samples to determine the weights a in a linear
discriminant function g(x) = a'y. Suppose we have reason to believe that there
exists a solution for which the probability of error is very low. Then a reasonable
approach is to look for a weight vector that classifies all of the samples correctly. If
such a weight vector exists, the samples are said to be linearly separable.

A sample y; is classified correctly if aly; > 0 and y; is labelled w; or if aly; < 0
and y; is labelled wy. This suggests a “normalization” that simplifies the treatment
of the two-category case, viz., the replacement of all samples labelled wy by their
negatives. With this “normalization” we can forget the labels and look for a weight
vector a such that aly; > 0 for all of the samples. Such a weight vector is called a
separating vector or more generally a solution vector.

The weight vector a can be thought of as specifying a point in weight space. Each
sample y; places a constraint on the possible location of a solution vector. The
equation a’y; = 0 defines a hyperplane through the origin of weight space having y;
as a normal vector. The solution vector — if it exists — must be on the positive side

LINEARLY
SEPARABLE

SEPARATING
VECTOR

SOLUTION
REGION

MARGIN

12 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS

of every hyperplane. Thus, a solution vector must lie in the intersection of n half-
spaces; indeed any vector in this region is a solution vector. The corresponding region
is called the solution region, and should not be confused with the decision region in
feature space corresponding to any particular category. A two-dimensional example
illustrating the solution region for both the normalized and the unnormalized case is
shown in Fig. 5.8.

solution solution
I'egl on y2 reg| on y2

Figure 5.8: Four training samples (black for wy, red for wy) and the solution region
in feature space. The figure on the left shows the raw data; the solution vectors leads
to a plane that separates the patterns from the two categories. In the figure on the
right, the red points have been “normalized” — i.e., changed in sign. Now the solution
vector leads to a plane that places all “normalized” points on the same side.

From this discussion, it should be clear that the solution vector — again, if it
exists — is not unique. There are several ways to impose additional requirements to
constrain the solution vector. One possibility is to seek a unit-length weight vector
that maximizes the minimum distance from the samples to the separating plane.
Another possibility is to seek the minimum-length weight vector satisfying aly; > b
for all ¢, where b is a positive constant called the margin. As shown in Fig. 5.9, the
solution region resulting form the intersections of the halfspaces for which aly; > b > 0
lies within the previous solution region, being insultated from the old boundaries by
the distance b/||y;]|.

The motivation behind these attempts to find a solution vector closer to the “mid-
dle” of the solution region is the natural belief that the resulting solution is more likely
to classify new test samples correctly. In most of the cases we shall treat, however,
we shall be satisfied with any solution strictly within the solution region. Our chief
concern will be to see that any iterative procedure used does not converge to a limit
point on the boundary. This problem can always be avoided by the introduction of a
margin, i.e., by requiring that aly; > b > 0 for all i.

5.4.2 Gradient Descent Procedures

The approach we shall take to finding a solution to the set of linear inequalities
a'y; > 0 will be to define a criterion function J(a) that is minimized if a is a solution
vector. This reduces our problem to one of minimizing a scalar function — a problem
that can often be solved by a gradient descent procedure. Basic gradient descent is
very simple. We start with some arbitrarily chosen weight vector a(1) and compute
the gradient vector V.J(a(1)). The next value a(2) is obtained by moving some

5.4. THE TWO-CATEGORY LINEARLY-SEPARABLE CASE__ 13

~
M
S
Q
% a =
/
. I : N\
sol u_tl on / sol up on \0\\\\\ 3
region region -~
Y1
Y2
p & a
P i
4 ! Y3
e - / e i N Y3
z - I’ - - ,’ A \
7
rd rd
- / !
- J .7 / "267
! ! 4.
! i “é/
! /
/ !

Figure 5.9: The effect of the margin on the solution region. At the left, the case of
no margin (b = 0) equivalent to a case such as shown at the left in Fig. 5.8. At the
right is the case b > 0, shrinking the solution region by margins b/||y;||.

distance from a(1) in the direction of steepest descent, i.e., along the negative of the
gradient. In general, a(k + 1) is obtained from a(k) by the equation

a(k+1)=a(k) —nk)VJ(alk)), (12)

where 7 is a positive scale factor or learning rate that sets the step size. We hope
that such a sequence of weight vectors will converge to a solution minimizing J(a).
In algorithmic form we have:

Algorithm 1 (Basic gradient descent)

1 begin initialize a, criterion 0,7(:),k =0
2 dok+—k+1

3 a—a—n(k)V.J(a)

4 until n(k)VJ(a) <6

5 return a

6 end

The many problems associated with gradient descent procedures are well known.
Fortunately, we shall be constructing the functions we want to minimize, and shall be
able to avoid the most serious of these problems. One that will confront us repeatedly,
however, is the choice of the learning rate n(k). If n(k) is too small, convergence is
needlessly slow, whereas if n(k) is too large, the correction process will overshoot and
can even diverge (Sect. 5.6.1).

We now consider a principled method for setting the learning rate. Suppose that
the criterion function can be well approximated by the second-order expansion around
a value a(k) as

J(a) = J(a(k)) + VJ'(a —a(k)) + %(a —a(k))'H (a - a(k)), (13)
where H is the Hessian matriz of second partial derivatives 92.J/0a;0a; evaluated at
a(k). Then, substituting a(k + 1) from Eq. 12 into Eq. 13 we find:

LEARNING
RATE

HESSIAN
MATRIX

NEWTON’S
ALGORITHM

14 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS

1
J(a(k+1)) ~ J(a(k)) —nk)|VJ||> + §n2(k)VJtHVJ.
From this it follows (Problem 12) that J(a(k + 1)) can be minimized by the choice

") = g
VJIHVJ
where H depends on a, and thus indirectly on k. This then is the optimal choice
of (k) given the assumptions mentioned. Note that if the criterion function J(a) is
quadratic throughout the region of interest, then H is constant and 7 is a constant
independent of k.
An alternative approach, obtained by ignoring Eq. 12 and by choosing a(k +
1) to minimize the second-order expansion, is Newton’s algorithm where line 3 in
Algorithm 1 is replaced by

(14)

a(k+1) = a(k) - H™'VJ, (15)
leading to the following algorithm:
Algorithm 2 (Newton descent)

1 begin initialize a, criterion 6

2 do

3 a—a—H1VJ(a)
4 until H~!'VJ(a) < 0

5 return a

¢ end

Simple gradient descent and Newton’s algorithm are compared in Fig. 5.10.

Generally speaking, Newton’s algorithm will usually give a greater improvement
per step than the simple gradient descent algorithm, even with the optimal value
of n(k). However, Newton’s algorithm is not applicable if the Hessian matrix H is
singular. Furthermore, even when H is nonsingular, the O(d®) time required for
matrix inversion on each iteration can easily offset the descent advantage. In fact,
it often takes less time to set n(k) to a constant n that is smaller than necessary
and make a few more corrections than it is to compute the optimal n(k) at each step
(Computer exercise 1).

5.5 Minimizing the Perceptron Criterion Function

5.5.1 The Perceptron Criterion Function

Consider now the problem of constructing a criterion function for solving the linear
inequalities a’y; > 0. The most obvious choice is to let J(a; y1, ..., y») be the number
of samples misclassified by a. However, because this function is piecewise constant, it
is obviously a poor candidate for a gradient search. A better choice is the Perceptron
criterion function

Tp(a) =Y (=a'y), (16)

5.5. MINIMIZING THE PERCEPTRON CRITERION FUNCTION 15

Figure 5.10: The sequence of weight vectors given by a simple gradient descent method
(red) and by Newton’s (second order) algorithm (black). Newton’s method typically
leads to greater improvement per step, even when using optimal learning rates for both
methods. However the added computational burden of inverting the Hessian matrix
used in Newton’s method is not always justified, and simple descent may suffice.

where Y(a) is the set of samples misclassified by a. (If no samples are misclassified,
Y is empty and we define J, to be zero.) Since a'y < 0 if y is misclassified, J,(a)
is never negative, being zero only if a is a solution vector, or if a is on the decision
boundary. Geometrically, J,(a) is proportional to the sum of the distances from the
misclassified samples to the decision boundary. Figure 5.11 illustrates J, for a simple
two-dimensional example.

Since the jth component of the gradient of .J, is 0.J,/0a;, we see from Eq. 16 that

V= (), (17)

yey

and hence the update rule becomes

a(k+1) =a(k) +n(k)>_ v, (18)
Y€k

where Y is the set of samples misclassified by a(k). Thus the Perceptron algorithm
is:

Algorithm 3 (Batch Perceptron)

1 begin initialize a,n(-),criterion 6,k =0

2 do k—k+1
3 a—a+nk) Y vy
YEVk
4 until n(k) >, y <0
NAShY®

5 return a
6 end

BATCH
TRAINING

16 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS

=
N
AN

=
S
A

5
R
A

4

Figure 5.11: Four learning criteria as a function of weights in a linear classifier. At the
upper left is the total number of patterns misclassified, which is piecewise constant
and hence unacceptable for gradient descent procedures. At the upper right is the
Perceptron criterion (Eq. 16), which is piecewise linear and acceptable for gradient
descent. The lower left is squared error (Eq. 32), which has nice analytic properties
and is useful even when the patterns are not linearly separable. The lower right is
the square error with margin (Eq. 33). A designer may adjust the margin b in order
to force the solution vector to lie toward the middle of the b = 0 solution region in
hopes of improving generalization of the resulting classifier.

Thus, the batch Perceptron algorithm for finding a solution vector can be stated
very simply: the next weight vector is obtained by adding some multiple of the sum
of the misclassified samples to the present weight vector. We use the term “batch”
to refer to the fact that (in general) a large group of samples is used when com-
puting each weight update. (We shall soon see alternate methods based on single
samples.) Figure 5.12 shows how this algorithm yields a solution vector for a simple
two-dimensional example with a(1) = 0, and (k) = 1. We shall now show that it
will yield a solution for any linearly separable problem.

5.5. MINIMIZING THE PERCEPTRON CRITERION FUNCTION 17

22
NS \‘\\,\\’\0
N S iR A S
N T hhTSRSROOIIhIihtttkX &7

TR hRhihitii
N~ s NSNS
\““\\\\ Nt

Figure 5.12: The Perceptron criterion, J, is plotted as a function of the weights a;
and as for a three-pattern problem. The weight vector begins at 0, and the algorithm
sequentially adds to it vectors equal to the “normalized” misclassified patterns them-
selves. In the example shown, this sequence is y2,¥3,¥1,¥3, at which time the vector
lies in the solution region and iteration terminates. Note that the second update (by
y3) takes the candidate vector farther from the solution region than after the first
update (cf. Theorem 5.1. (In an alternate, batch method, all the misclassified points
are added at each iteration step leading to a smoother trajectory in weight space.)

5.5.2 Convergence Proof for Single-Sample Correction

We shall begin our examination of convergence properties of the Perceptron algo-
rithm with a variant that is easier to analyze. Rather than testing a(k) on all of the
samples and basing our correction of the set), of misclassified training samples, we
shall consider the samples in a sequence and shall modify the weight vector when-
ever it misclassifies a single sample. For the purposes of the convergence proof, the
detailed nature of the sequence is unimportant as long as every sample appears in
the sequence infinitely often. The simplest way to assure this is to repeat the sam-
ples cyclically, though from a practical point of view random selection is often to be
preferred (Sec. 5.8.5). Clearly neither the batch nor this single-sample version of the
Perceptron algorithm are on-line since we must store and potentially revisit all of the
training patterns.

Two further simplifications help to clarify the exposition. First, we shall tem-
porarily restrict our attention to the case in which (k) is constant — the so-called
fized-increment case. It is clear from Eq. 18 that if n(¢) is constant it merely serves to
scale the samples; thus, in the fixed-increment case we can take n(t) = 1 with no loss
in generality. The second simplification merely involves notation. When the samples

FIXED
INCREMENT

FIXED-
INCREMENT
RULE

18 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS

are considered sequentially, some will be misclassified. Since we shall only change the
weight vector when there is an error, we really need only pay attention to the mis-
classified samples. Thus we shall denote the sequence of samples using superscripts,
ie., by y', y2, ..., y*, ..., where each y* is one of the n samples y1, ..., yn, and where
each y* is misclassified. For example, if the samples yi, y2, and y3 are considered
cyclically, and if the marked samples

| ! ! ! |
Y1, Y2, ¥3, Y15 Y2, ¥3, Y1, Y2, --- (19)

are misclassified, then the sequence y', y2, y3, y* y°,... denotes the sequence
Vi, ¥3, Y1, Y2, Y2, ... With this understanding, the fized-increment rule for generating
a sequence of weight vectors can be written as

a(l) arbitrary }

a(k+1)=a(k)+y* k>1 (20)

where al(k)y* < 0 for all k. If we let n denote the total number of patterns, the
algorithm is:

Algorithm 4 (Fixed-increment single-sample Perceptron)

1 begin initialize a,k =0

2 do k « (k+ 1)modn

3 if yj is misclassified by a then a «— a—yy
4 until all patterns properly classified

5 return a

6 end

The fixed-increment Perceptron rule is the simplest of many algorithms that have
been proposed for solving systems of linear inequalities. Geometrically, its interpre-
tation in weight space is particularly clear. Since a(k) misclassifies y*, a(k) is not on
the positive side of the y* hyperplane a’y* = 0. The addition of y* to a(k) moves
the weight vector directly toward and perhaps across this hyperplane. Whether the
hyperplane is crossed or not, the new inner product a’(k + 1)y* is larger than the old
inner product at(k)y* by the amount |y*||?, and the correction is clearly moving the
weight vector in a good direction (Fig. 5.13).

5.5. MINIMIZING THE PERCEPTRON CRITERION FUNCTION 19
1 2 3

o

D
AN

<D
AN

&
VAN
AAN
L
Y
/

<1\
/I\

A,
<1\
A

,A
7k
~

Figure 5.13: Samples from two categories, w; (black) and ws (red) are shown in
augmented feature space, along with an augmented weight vector a. At each step
in a fixed-increment rule, one of the misclassified patterns, y*, is shown by the large
dot. A correction Aa (proportional to the pattern vector y*) is added to the weight
vector — towards an wj point or away from an ws point. This changes the decision
boundary from the dashed position (from the previous update) to the solid position.
The sequence of resulting a vectors is shown, where later values are shown darker. In
this example, by step 9 a solution vector has been found and the categories successfully
separated by the decision boundary shown.

Clearly this algorithm can only terminate if the samples are linearly separable; we
now prove that indeed it terminates so long as the samples are linearly separable.

Theorem 5.1 (Perceptron Convergence) If training samples are linearly sepa-
rable then the sequence of weight vectors given by Algorithm 4 will terminate at a
solution vector.

Proof:
In seeking a proof, it is natural to try to show that each correction brings the weight

vector closer to the solution region. That is, one might try to show that if a is any
solution vector, then |la(k + 1) — &|| is smaller than ||a(k) — &||. While this turns out

20 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS

not to be true in general (cf. steps 6 & 7 in Fig. 5.13), we shall see that it is true for
solution vectors that are sufficiently long.

Let a be any solution vector, so that a'y; is strictly positive for all 4, and let o be
a positive scale factor. From Eq. 20,

a(k+1) —ca=(a(k) —aa) + y*

and hence

la(k +1) - aal* = [|a(k) — aall* + 2(a(k) - aa)'y" + [Iy*|*.

Since y* was misclassified, a’(k)y* < 0, and thus

la(k +1) — 0a||* < [|a(k) — oa]* — 20a"y" + y*[|*.

Because aly" is strictly positive, the second term will dominate the third if « is
sufficiently large. In particular, if we let § be the maximum length of a pattern
vector,

5 = ma |y (21)

and 7 be the smallest inner product of the solution vector with any patter