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The origins of uncertainty theory and its application can be traced to the 
inception of philosophy. Now this theory has become an integral part of 
various disciplines such as engineering, medicine, finance, and computer 
science. 
Uncertainty, which was considered synonymous with random, stochastic, and 
probabilistic processes has grown to incorporate many more uncertain tools 
and methodologies. Today the questions with which many practitioners are 
struggling are: 

(a) What is uncertainty? Is it just a lack of knowledge and limited 
information? 
(b) What are the correct approaches to addressing, analyzing, and 

modeling uncertainty? 
(c) How does the quality and quantity of information affect uncertainty 

analysis and 
modeling? 

(d) How robust are answers obtained from uncertainty analysis and 
modeling? 

Some of these questions have been addressed philosophically in the literature. 
Since the late 19907s, computational intelligence, or soft computing, which 
consists of the areas of fuzzy set theory, neural networks and genetic 
algorithms, has been successfully applied as a tool in uncertainty analysis and 
modeling. This book on Applied Research in Uncertainty Modeling and 
Analysis which contains twenty-three invited chapters authored by world 
researchers focuses on the improved computational techniques to uncertainty 
modeling and analysis, and it presents both theoretical and practical 
applications of real world problems, thus exploiting the innovative uses of 
uncertainty theories. 
Part I of the book concentrates on the philosophical and theoretical 
foundations of uncertainty. Part I1 provides biomedical and chemical 
engineering applications. The biomedical applications use hidden Markov 
models, Markov random field and mean field theory. These models have wide 
applications in the field of engineering and other disciplines. Part I11 touches 
on civil infrastructure systems, and Part IV deals with the management of 
risks and documents classification problems. In Part V of the book, a well- 
balanced mixture of fuzzy systems, neural networks, and agent-based 
approach and prospect theory is applied to soft transportation applications. 
The last section of the book, Part VI, demonstrates how uncertainty modeling 
is important to structural engineering, as uncertainty modeling and analysis is 
needed in both design and decision making in structural systems. Parts 111, V 
and VI of the book present concrete applications in civil engineering. 



xii Forward 

The invited chapters were carefully selected from papers presented at the 
ISUMA 2003. This book is designed to serve as both a reference guide and a 
partial textbook in the field of applied uncertainty modeling and analysis. This 
volume will be an important addition to the International Series in Intelligent 
Technology. 

Madan M. Gupta 
Intelligent Systems Research 
Laboratory 
College of Engineering 
University of Saskatchewan 



PREFACE 

The application areas of uncertainty are numerous and diverse, 
including all fields of engineering, computer science, systems control and 
finance. Determining appropriate ways and methods of dealing with 
uncertainty has been a constant challenge. 

The theme for this book is better understanding and the application of 
uncertainty theories. This book, with invited chapters, deals with the 
uncertainty phenomena in diverse fields. The book is an outgrowth of the 
Fourth International Symposium on Uncertainty Modeling and Analysis 
(ISUMA), which was held at the center of Adult Education, College Park, 
Maryland, in September 2003. All of the chapters have been carefully edited, 
following a review process in which the editorial committee scrutinized each 
chapter. 

The contents of the book are reported in twenty-three chapters, 
covering more than . . ... pages. This book is divided into six main sections. 

Part I (Chapters 1-4) presents the philosophical and theoretical foundation 
of uncertainty, new computational directions in neural networks, and some 
theoretical foundation of fuzzy systems. 

Part I1 (Chapters 5-8) reports on biomedical and chemical engineering 
applications. The sections looks at noise reduction techniques using hidden 
Markov models, evaluation of biomedical signals using neural networks, and 
changes in medical image detection using Markov Random Field and Mean 
Field theory. One of the chapters reports on optimization in chemical 
engineering processes. 

Part I11 (Chapters 9-11) describes the application of neural networks and 
artificial life to civil infrastructure systems. One chapter focuses on pavement 
deterioration, while the second chapter uses neural networks in residential 
infrastructure management and the application of underground mall. 

Part IV (Chapters 12-13) describes the management of risks and document 
classification problems. Part V (Chapters 14-18) presents the applications of 
uncertainty theory to a variety of transportation engineering problems. This 
section includes topics on neural networks, fuzzy systems, and agent-based 
approach and prospect theory in soft transportation applications. 

Part VI (Chapters 19-23) describes various uncertainties in structural 
engineering. The section covers risk and reliability applications and chloride 
contamination in concrete and underground structures. 



xiv Preface 

The studies were designed to accommodate the interests of a large 
segment of researchers and engineers from a wide variety of subject areas. 
This clearly indicates an increasing interest in uncertainty applications. 
Hopefully, the studies will stimulate the interest of other researchers in the 
theory of uncertainty and innovative applications. The editors are grateful to 
the authors and the researchers. Also we express our thanks to the editorial 
staff, especially Sean Lorre of Kluwer Academic Publishers for providing 
useful feedback and comments during the editorial phases. 

Nii 0. Attoh Okine 
Newark, Delaware 

Bilal M. Ayyub 
College Park, MD 
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Chapter 1 

PHILOSOPHICAL AND THEORETICAL BASES 
FOR ANALYZING AND MODELING 
UNCERTAINTY AND IGNORANCE 

Bilal M. Ayyub 

1. DATA ABUNDANCE AND UNCERTAINTY 

The ability of a living system or a machine to make appropriate 
decisions can be taken as a measure of intelligence. This decision-making 
ability requires the processing of data and information, construction of 
knowledge, and assessment of associated uncertainties and risks. The 
analysis and modeling of uncertainty enhances this ability of making 
appropriate decisions, thereby increasing intelligence. A need to model and 
analyze uncertainties is also stemming from the awareness that data 
abundance does not necessarily give us certainty, and sometimes can lead to 
error in decision-making with undesirable outcomes due to either 
overwhelming-confusing situations, or a sense of overconfidence leading to 
an improper information use. The former situations can be an outcome of the 
limited capacity of a human mind in some situations to deal with complexity 
and data abundance; whereas the latter can be attributed to a higher order of 
ignorance, called the ignorance of self-ignorance. 

As our society advances in many scientific dimensions and invents 
new technologies, human knowledge is being expanded through observation, 
discovery, information gathering, and logic. Also, the access to newly 
generated information is becoming easier than ever as a result of computers 
and the Internet. We have entered an exciting era where electronic libraries, 
online databases, and information on every aspect of our civilization such as 
patents, engineering products, literature, mathematics, physics, medicine, 
philosophy, and public opinions, are becoming a mouse-click or a few clicks 
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away. In this era, computers can generate even more information from 
abundantly available online data. Society can act or react based on this 
information at the speed of its generation, creating sometimes non-desirable 
situations, for example, price and/or political volatilities. There is a great 
need to assess uncertainties associated with information, and quantify our 
state of knowledge and/or ignorance. The accuracy, quality, and incorrectness 
of such information, and knowledge incoherence are coming under focus by 
our philosophers, scientists, engineers, technologists, decision and policy 
makers, regulators and lawmakers, and our society as a whole. As a result 
uncertainty and ignorance analyses are receiving a lot of attention by our 
society. We are moving from emphasizing the state of knowledge expansion 
and creation of information to a state that includes knowledge and information 
assessment by critically evaluating them in terms of relevance, completeness, 
non-distortion, coherence, and other key measures. 

Our society is becoming less forgiving and demanding from our 
knowledge base. The use of non-credible information, leading to 
questionable decisions, could place decision makers on the defensive. On the 
other hand, untimely processing and use of any available information, even if 
it might be inconclusive, can be treated worse than lack of knowledge and 
ignorance. In the January 2003 State of the Union address, the U. S. President 
George W. Bush stated "The British government has learned that Saddam 
Hussein recently sought significant quantities of uranium from Africa." A few 
month later, after the conclusion of the 2003 U. S. war on Iraq, senior White 
House officials have conceded the information that former Iraqi President 
Saddam Hussein tried to buy uranium from Niger was inaccurate, but they 
said Bush's State of the Union speech was based on a broader range of 
intelligence. The assertion that Iraq was trying to reconstitute its nuclear 
weapons program was a key point in the administration's rationale for war. 
Although in July 2003, the White House spokesman said "The issue of Iraq's 
attempts to acquire uranium from abroad was not an element underpinning 
the judgment reached by most intelligence agencies that Iraq was 
reconstituting its nuclear weapons program. " These statements and decisions 
were made despite the March 2003 International Atomic Energy Agency 
dismissal as forgeries documents that alleged Iraq may have tried to buy 500 
tons of uranium from Niger. The news elevated the problem to scandalous 
levels for this action on uncertain information, although inaction on uncertain 
intelligence, such as the "intelligence failure" in the case of the 2001 World 
Traded Center attacks, was treated as scandalous and was investigated due to 
its unacceptability. Any inaction due to non-credible information can be 
easily taken by our demanding society to be as erroneous as an action based 
on non-credible information; hence the need for uncertainty assessment, 
modeling and analysis. 

Making appropriate decision commonly entails risk control and 
management. Although people have some control over the levels of 
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technology-caused risks to which they are exposed, reduction of risk needs to 
pursued by governments and corporations as a result of increasing demands 
by our society, and generally entails a reduction of benefits, thus posing a 
serious dilemma. The public and policy-makers are required, with increasing 
frequency, to subjectively "weigh benefits against risks" and assess associated 
uncertainties when making decisions. Further, lacking a systems or a holistic 
approach, vulnerability exists for overpaying to reduce one set of risks that 
may introduce offsetting or larger risks of another kind. Such risk-based 
decisions require uncertainty modeling and analysis. 

2. KNOWLEDGE 

Philosophers defined knowledge, its nature, and methods of 
acquisitions that evolved over time producing various schools of thought. 
Table 1 provides a summary of key terminology related to knowledge. Figure 
1 shows knowledge types, sources and objects. Figure 2 shows the 
relationships among information, opinions and knowledge. 
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able 1: Selected Knowled: 
Term 
Philosophy 

Epistemology 

Metaphysics 

Ontology 

Cosmology 

Cosmogony 

Ethics 

Aesthetics 

Knowledge 

Priori 
Posteriori 
Rationalism 

Empiricism 

and Epistemology Terms [I] 
Definition 
The fundamental nature of the world, the grounds for human 
knowledge, and the evaluation of human conduct. 
A branch of philosophy that investigates the possibility, origins, 
nature, and extent of human knowledge. 
The investigation of ultimate reality. A branch of philosophy 
concerned with providing a comprehensive account df the Gost 
general features of reality as a whole, and the study of being as 
such. Questions about the existence and nature of minds, bodies, 
God, space, time, causality, unity, identity, and the world are all 
metaphysical issues. 

A branch of metaphysics concerned with identifying, 
in the most general terms, the kinds of things that 
actually exist. 
A branch of metaphysics concerned with the origin of 
the world. 
A branch of metaphysics concerned with the evolution 

- ~ 

of the universe. 
A branch of philosophy concerned with the evaluation of human 
conduct. 
A branch of philosophy that studies beauty and taste, including 
their specific manifestations in the tragic, the comic, and the 
sublime; where beauty is the characteristic feature of things that 
arouse pleasure or delight, especially to the senses of a human 
observer, and sublime is the aesthetic feeling aroused by 
experiences too overwhelming (i.e., awe) in scale to be 
appreciated as beautiful by the senses. 
A body of propositions that meet the conditions of justified true 
belief. 
Knowledge derived from reason alone. 
Knowledge gained by reference to the facts of experience. 
Inquiry based on priori principles, or knowledge based on 
reason. 
Inquiry based on posteriori principles, or knowledge based on 
exuerience. 
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Figure 2: Knowledge, Information, Opinions, and Evolutionary Epistemology [I] 
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3. IGNORANCE 

3.1. Ignorance and Knowledge 

Generally, engineers and scientists, and even almost all humans, tend 
to focus on what is known and not on the unknowns. Even the English 
language lends itself for this emphasis. For example, we can easily state that 
Expert A informed Expert B, whereas we cannot directly state the contrary. 
We can only state it by using the negation of the earlier statement as "Expert 
A did not inform Expert B." Statements such as "Expert A misinformed 
Expert B," or "Expert A ignored Expert B" do not convey the same (intended) 
meaning. Another example is "John knows David," for which a meaningful 
direct contrary statement does not exist. The emphasis on knowledge and not 
on ignorance can also be noted in sociology by having a field of study called 
the sociology of knowledge and not having sociology of ignorance, although 
Weinstein and Weinstein [20] introduced the sociology of non-knowledge, and 
Smithson [14] introduced the theory of ignorance. 

Engineers and scientists tend to emphasize knowledge and 
information, and sometimes intentionally or unintentionally brush aside 
ignorance. In addition, information (or knowledge) can be misleading in 
some situations because it does not have the truth content that was assigned to 
it leading potentially to overconfidence. In general, knowledge and ignorance 
can be classified as shown in Figure 3 using squares with crisp boundaries for 
the purpose of illustration. The shapes and boundaries can be made multi- 
dimensional, irregular and/or fuzzy. The evolutionary infallible knowledge 
(EIK) about a system is shown as the top-right square in the figure, and can be 
intrinsically unattainable due to the fallacy of humans and the evolutionary 
nature of knowledge. The state of reliable knowledge (RK) is shown using 
another square, i.e., the bottom left square, for illustration purpose. The 
reliable knowledge represents the present state of knowledge in an 
evolutionary process, i.e., a snapshot of knowledge as a set of know-how, 
object and prepositions that meet justifiable true beliefs within reasonable 
reliability levels. At any stage of human knowledge development, this 
knowledge base about the system is a mixture of truth and fallacy. The 
intersection of EIK and RK represents the knowledge base with the infallible 
knowledge components (i.e., know-how, objects and propositions). Therefore, 
the following relationship can be stated using the notations of set theory: 

Infallible Knowledge (IK) = EIK I RK (1)  

where I means intersection. Infallible knowledge is defined as knowledge 
that can survive the dialectic processes of humans and societies, and passes 
the test of time and use. This infallible knowledge can be schematically 
defined by the intersection of these two squares of EIK and RK. Based on 
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this representation, two primary types of ignorance can be identified: (1) 
ignorance within the knowledge base RK due to factors such as irrelevance, 
and (2) ignorance outside the knowledge base due to unknown objects, 
interactions, laws, dynamics, and know-how. 

Expert A of some knowledge about the system can be represented as 
shown in Figure 3 using ellipses for illustrative purposes. Three types of 
ellipses can be identified: (1) a subset of the evolutionary infallible knowledge 
(EIK) that the expert has learned, captured and/or created, (2) self-perceived 
knowledge by the expert, and (3) perception by others of the expert's 
knowledge. The EIK of the expert might be smaller than the self-perceived 
knowledge by the expert, and the difference between the two types is a 
measure of overconfidence that can be partially related to the expert's ego. 
Ideally, the three ellipses should be the same, but commonly they are not. 
They are greatly affected by communication skills of experts and their 
successes in dialectic processes that with time might lead to evolutionary 
knowledge marginal advances or quantum leaps. Also, their relative sizes and 
positions within the infallible knowledge (IK) base are unknown. It can be 
noted from Figure 3 that the expert's knowledge can extend beyond the 
reliable knowledge base into the EIK area as a result of creativity and 
imagination of the expert. Therefore, the intersection of the expert's 
knowledge with the ignorance space outside the knowledge base can be 
viewed as a measure of creativity and imagination. Another expert (i.e., 
Expert B) would have herlhis own ellipses that might overlap with the ellipses 
of Expert A, and might overlap with other regions by varying magnitudes. 

This square This square 
represents the current represents the 
state of reliable evolutionary 
knowledge (RK). infallible 

knowledge (EIK). 

The intersection of the 
two squares represents 

Ignorance within RK knowledge with infallible 
due to, for example, propositions (IK). 
irrelevance. 

Lxe~ A 

Figure 3: Human Knowledge and Ignorance 
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3.2. Classification of Ignorance 

The state of ignorance for a person or society can be unintentional or 
deliberate due to an erroneous cognition state and not knowing relevant 
information, or ignoring information and deliberate inattention to something 
for various reasons such as limited resources or cultural opposition, 
respectively. The latter type is a state of conscious ignorance which is not 
intentional, and once recognized evolutionary species try to correct for that 
state for survival reasons with varying levels of success. The former 
ignorance type belongs to the blind ignorance category. Therefore, ignoring 
means that someone can either unconsciously or deliberately refuse to 
acknowledge or regard, or leave out an account or consideration for relevant 
information [7]. These two states should be treated in developing a hierarchal 
breakdown of ignorance. 

Using the concepts and definitions from evolutionary knowledge and 
epistemology, ignorance can be classified based on the three knowledge 
sources as follows: 

Know-how ignorance: It can be related to the lack of, or having 
erroneous know-how knowledge. Know-how knowledge requires 
someone to know how to do a specific activity, function, procedure, 
etc., such as, riding a bicycle. 
Object ignorance: It can be related to the lack of, or having erroneous 
object knowledge. Object knowledge is based on a direct 
acquaintance with a person, place or thing, for example, Mr. Smith 
knows the President of the United States. 
Propositional ignorance: It can be related to the lack of, or having 
erroneous propositional knowledge. Propositional knowledge is 
based on propositions that can be either true or false, for example, Mr. 
Smith knows that the Rockies are in North America. 

The above three ignorance types can be cross-classified against two possible 
states for a knowledge agent, such as a person, of knowing their state of 
ignorance. These two states are 

Non-reflective (or blind) state: The person does not know of self- 
ignorance, a case of ignorance of ignorance. 
Reflective state: The person knows and recognizes self-ignorance. 
Smithson [14] termed this type of ignorance conscious ignorance, and 
the blind ignorance was termed meta-ignorance. As a result, in some 
cases the person might formulate a proposition but still be ignorant of 
the existence of a proof or disproof, i.e., ignoratio elenchi. A 
knowledge agent's response to reflective ignorance can be either 
passive acceptance or a guided attempt to remedy one's ignorance 
that can lead four possible outcomes: (1) a successful remedy that is 
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recognized by the knowledge agent to be a success leading to 
fulfillment, (2) a successful remedy that is not recognized by the 
knowledge agent to be a success leading to searching for a new 
remedy, (3) a failed remedy that is recognized by the knowledge 
agent to be a failure leading to searching for a new remedy, and (4) a 
failed remedy that is recognized by the knowledge agent to be a 
success leading to blind ignorance, such as ignoratio elenchi or 
irrelevant conclusion. 

The cross classification of ignorance is shown in Figure 4 in two possible 
forms that can be used interchangeably. Although the blind state does not 
feed directly into the evolutionary process for knowledge, but it represent a 
becoming knowledge reserve. The reflective state has a survival value to 
evolutionary species; otherwise it can be argued that it never would have 
flourished [4]. Ignorance emerges as a lack of knowledge relative to a 
particular perspective from which such gaps emerge. Accordingly, the 
accumulation of beliefs and the emergence of ignorance constitute a dynamic 
process resulting in old ideas perishing and new ones flourishing [3]. 
According to Bouissac [3], the process of scientific discovery can be 
metaphorically described as not only a cumulative sum (positivism) of beliefs, 
but also an activity geared towards relentless construction of ignorance 
(negativism), producing architecture of holes, gaps and lacunae so to speak. 

Hallden [9] examined the concept of evolutionary ignorance in 
decision theoretic terms. He introduced the notion of gambling to deal with 
blind ignorance or lack of knowledge according to which there are times 
when, in lacking knowledge, gambles must to be taken. Sometimes gambles 
pay off with success, i.e., continued survival, and sometimes they do not 
leading to sickness or death. 

According to evolutionary epistemology, ignorance has factitious, i.e., 
human-made, perspectives. Smithson [15] provided a working definition of 
ignorance based on "Expert A is ignorant from B's viewpoint if A fails to 
agree with or show awareness of ideas which B defines as actually or 
potentially valid." This definition allows for self-attributed ignorance, and 
either Expert A or B can be attributer or perpetrator of ignorance. Our 
ignorance and claimed knowledge depend on our current historical setting 
which is relative to various natural and cultural factors such as language, 
logical systems, technologies and standards which have developed and 
evolved over time. Therefore, humans evolved from blind ignorance through 
gambles to a state of incomplete knowledge with reflective ignorance 
recognized through factitious perspectives. In many scientific fields, the level 
of reflective ignorance becomes larger as the level of knowledge increases. 
Duncan and Weston-Smith [8] stated in the Encyclopedia of Ignorance that 
compared to our pond of knowledge, our ignorance remains atlantic. They 
invited scientists to state what they would like to know in their respective 
fields, and noted that the more eminent they were the more readily and 
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generously they described their ignorance. Clearly, before solving a problem, 
it needs to be articulated. 

I Ignorance I 

Propositional 

Conscious Conscious Conscious 

3.3. Ignorance Hierarchy 

Ignorance 

Figures 2 and 3 express knowledge and ignorance in evolutionary 
terms as they are socially or factitiously constructed and negotiated. 
Ignorance can be viewed to have a hierarchal classification based on its 
sources and nature as shown in Figure 5. Ignorance can be classified into two 
types, blind ignorance (also called meta-ignorance), and conscious ignorance 
(also called reflective ignorance). 

Blind ignorance includes not knowing relevant know-how, objects- 
related information, and relevant propositions that can be justified. The 
unknowable knowledge can be defined as knowledge that cannot be attained 
by humans based on current evolutionary progressions, or cannot be attained 
at all due to human limitations, or can only be attained through quantum leaps 
by humans. Blind ignorance also includes irrelevant knowledge that can be of 
two types: (I) relevant knowledge that is dismissed as irrelevant or ignored, 
and (2) irrelevant knowledge that is believed to be relevant through non- 
reliable or weak justification or as a result of ignoratio elenchi. The 
irrelevance type can be due to untopicality, taboo, and undecidability. 
Untopicality can be attributed to intuitions of experts that could not be 
negotiated with others in terms of cognitive relevance. Taboo is due to 
socially reinforced irrelevance. Issues that people must not know, deal with, 

Blind Ignorance Conscious 
Ignorance 

Know-How Ignorance Ignorance 
Ignorance Ignorance 

Figure 4: Classifying Ignorance 
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inquire about, or investigate define the domain of taboo. The undecidedness 
type deals with issues that cannot be designated true or false because they are 
considered insoluble, or solutions that are not verifiable, or as a result of 
ignoratio elenchi. A third component of blind ignorance is fallacy that can be 
defined as erroneous beliefs due to misleading notions. 

Kurt Godel (1906-1978) showed that a logical system could not be 
both consistent and complete; and could not prove itself complete without 
proving itself inconsistent and vise versa. Also, he showed that there are 
problems that cannot be solved by any set of rules or procedures; instead for 
these problems one must always extend the set of axioms. This philosophical 
view of logic can be used as a basis for classifying the conscious ignorance 
into inconsistency and incompleteness. 

Inconsistency in knowledge can be attributed to distorted information 
as a result of inaccuracy, conflict, contradiction, and/or confusion as shown in 
Figure 5. Inconsistency can result from assignments and substitutions that are 
wrong, conflicting or biased producing confusion, conflict or inaccuracy, 
respectively. The confusion and conflict results from an in-kind inconsistent 
assignments and substitutions; whereas inaccuracy results from a level bias or 
error in these assignments and substitutions. 

Incompleteness is defined as incomplete knowledge, and can be 
considered to consist of (1) absence and unknowns as incompleteness in kind, 
and (2) uncertainty. The unknowns or unknown knowledge can be viewed in 
evolutionary epistemology as the difference between the becoming knowledge 
state and current knowledge state. The knowledge absence component can 
lead to one of the scenarios: (1) no action and working without the knowledge, 
(2) unintentionally acquiring irrelevant knowledge leading to blind ignorance, 
(3) acquiring relevant knowledge that can be with various uncertainties and 
levels. The fourth possible scenario of deliberately acquiring irrelevant 
knowledge is not listed since it is not realistic. 

Uncertainty can be defined as knowledge incompleteness due to 
inherent deficiencies with acquired knowledge. Uncertainty can be classified 
based on its sources into three types: ambiguity, approximations, and 
likelihood. The ambiguity comes from the possibility of having multi- 
outcomes for processes or systems. Recognition some of the possible 
outcomes creates uncertainty. The recognized outcomes might constitute only 
a partial list of all possible outcomes leading to unspecificity. In this context, 
unspecificity results from outcomes or assignments that are not completely 
defined. The incorrect definition of outcomes, i.e., error in defining outcomes, 
can be called nonspecificity. In this context, nonspecificity results from 
outcomes or assignments that are improperly defined. The unspecificity is a 
form of knowledge absence and can be treated similar to the absence category 
under incompleteness. The nonspecificity can be viewed as a state of blind 
ignorance. 
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The human mind has the ability to perform approximations through 
reduction and generalizations, i.e., induction and deduction, respectively, in 
developing knowledge. The process of approximation can involve the use of 
vague semantics in language, approximate reasoning, and dealing with 
complexity by emphasizing relevance. Approximations can be viewed to 
include vagueness, coarseness and simplification. Vagueness results from the 
non-crisp nature of belonging and non-belonging of elements to a set or a 
notion of interest; whereas coarseness results from approximating a crisp set 
by subsets of an underlying partition of the set's universe that would bound 
the crisp set of interest. Simplifications are assumptions made to make 
problems and solutions tractable. 

The likelihood can be defined in the context of chance, odds and 
gambling. Likelihood has primary components of randomness and sampling. 
Randomness stems from the non-predictability of outcomes. Engineers and 
scientists commonly use samples to characterize populations, hence the last 
type- 

t * t + t 1- 1 [ Nonspecificity I I Unspecificity 1 

Figure 5: Ignorance Hierarchy [I] 

4. MODELS FOR IGNORANCE AND UNCERTAINTY 
TYPES 

Systems analysis provides a general framework for modeling and 
solving various problems and making appropriate decisions. For example, an 
engineering model of an engineering project starts by defining the system 
including a segment of the project's environment that interacts significantly 
with it. The limits of the system are drawn based on the nature of the project, 
class of performances (including failures) under consideration and the 
objectives of the analysis. The system definition can be based on 
observations at different system levels in the form of a hierarchy. Each level 
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of knowledge that is obtained about an engineering problem can be said to 
define a system on the problem. As additional levels of knowledge are added 
to previous ones, higher epistemological levels of system definition and 
description are generated which, taken together, form a hierarchy of such 
system descriptions. An epistemological hierarchy of systems suited to the 
representation of engineering problems with a generalized treatment of 
uncertainty can provide realistic assessments of systems [lo, 111. 

The ignorance types as summarized in Figure 5 might require a mix 
of theories that most appropriately and effectively model its ignorance content 
[5 ,  6, 11, 12, 13, 16, 17, 18, 21, and 22). According to Table 2, classical sets 
theory can effectively deal with ambiguity by modeling nonspecificity; 
whereas fuzzy and rough sets can be used to model vagueness, coarseness and 
simplifications. The theories of probability and statistics are commonly used 
to model randomness and sampling uncertainty. Bayesian methods can be 
used to combine randomness or sampling uncertainty with subjective 
information that can be viewed as a form of simplification. Ambiguity, as an 
ignorance type, forms a basis for randomness and sampling; hence its cross- 
shading in the table with classical sets, probability, statistics, and Bayesian 
methods. Inaccuracy, as an ignorance type, that can be present in many 
problems, is cross-shaded in the table with probability, statistics, and 
Bayesian methods. The theories of evidence, possibility and monotone 
measure can be used to model confusion and conflict, and vagueness. Interval 
analysis can be used to model vagueness and simplification; whereas interval 
probabilities can be used to model randomness and simplification. Table 2 
provides example application of various theories to address respective 
ignorance types. 

System definition commonly involves data collection and encoding, 
and expressing information. The process of encoding data and information 
expression needs to be performed for each aspect of the system in the context 
of a universe or a universal set (U). In probability theory, the universal set is 
called the sample space (S) .  A universe can be defined as the totality of all 
the things that exist pertaining to the attribute of interest. Mathematically, a 
universal set is defined as the set of all objects or elements considered in a 
given problem or for modeling the attribute of the system. The universe is 
commonly treated as a "complete" set that is known with absolute certainty, 
termed in this case the "closed-world" assumption. This assumption can be 
relaxed to allow for case involving modeling based on an "open-world" 
assumption. In this section, all modeling cases are theories are based on the 
"closed-world" assumption as shown in the first column of Figure 6. 

The elements of the universe (U  or S) are commonly assumed as 
precise objects without any uncertainty in defining such objects. The 
meaning of the term "precisely defined elements" might vary by application. 
It could mean that the elements are (1) strictly described; or (2) accurately 
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stated; or (3) definite; or (4) distinctly defined with no variation; or (5) strictly 
conform to usage and/or rules. This case of precise elements defining U is 
shown in Figure 6 as the first branching of a tree representing several cases 
that are discussed in this section. The second branch in the first-level of 
branching in the second column is the case of imprecise or vague objects. 
Vaguely defined elements carry a contrary meaning to precisely defined 
elements. This term could mean, depending on the application, (1) not clearly, 
precisely, or definitely expressed or stated; or (2) indefinite in shape, form, 
and/or character; (3) hazily or indistinctly seen or sensed; (3) not sharp, 
certain, or precise in thought, feeling, or expression; or (4) imprecisely 
determined or known; or (5) uncertain in nature. In this case, the elements f 
the universe cannot be defined precisely, and are defined in vague terms that 
are nevertheless meaningful. Examples of the precise elements are integer 
numeric values, or letters of the alphabet. For the case of vague elements, an 
example is the illnesses of humans that are of varying imprecision levels. 

The third column of Figure 6 addresses a notion of interest that can be 
expressed by a set or an event that is defined herein as a collection of 
elements from a universe of interest. Such a notion can be precisely or 
vaguely expressed. This second level of branching is added to the first- 
branching level to produce part of the tree in Figure 6. The next column 
addresses uncertainty in belonging (i.e., membership) of an element to a set or 
event. Two cases are considered, the case of certain or binary belonging (i.e., 
0 for nonbelonging and 1 for belonging to a set), and the case of uncertain or 
gradual belonging (i.e., belonging is assigned a membership value in the 
continuous interval 0 to 1). Adding the belonging-uncertainty branching to 
the tree produces the eight cases as shown in Figure 6 with branches 
corresponding to various theories that are built on the assumptions 
enumerated along each branch. The top branch of precisely defined elements 
in a universe with precisely defined notions and certain belonging form the 
basis for classical set theory. In cases where a set is not fully known in terms 
of what elements belong to it, the set can be approximated by rough sets [12]. 
Cases involving vague notions with uncertain membership can be modeled 
using fuzzy sets [21]. The branch of precisely defined elements in a universe 
with vaguely defined notions and certain belonging is not logical and 
impractical, and is disregarded. Similarly, vaguely defined elements in a 
universe with precisely defined notions and uncertain belonging form the 
basis for fuzzy measure theory [19] as a generalization of measure theory. 
Making the notions in this case vague form the basis for the generalized fuzzy 
measure theory [19]. The remaining two cases under vaguely defined 
elements in a universe are illogical and impractical, and are disregarded. 
Ayyub [2] provides additional information on these theories and their 
applications. 
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Chapter 2 

A SELF-ORGANIZING NEURAL NETWORK BY 
DYNAMIC AND SPATIAL CHANGING 
WEIGHTS? 

Noriyasu Homma, Madan M. Gupta, Masao Sakai, Makoto 
Yoshizawa, and Kenichi Abe 

1. INTRODUCTION 

In neural networks, synaptic weights are considered to store 
knowledge of the past experiences (Gupta et al., 2003). As an evidence of 
synaptic long-term memory structure in biological brain, some spines on 
which synaptic connections exist could persist throughout a mouse's lifetime 
(Grutzendler et al., 2002), while some spines in another cortical area had a 
limited lifetime in contrast (Trachtenberg et al., 2002). This discrepancy 
seems to imply the fact that several biological learning mechanisms exist and 
they are still not clear. 

Generally speaking, learning and adaptation algorithms provide how 
to change the weights in order to accomplish given missions. Although the 
supervised backpropagation learning is one of the most successful neural 
applications, unsupervised learning or self-organization is an attractive 
function in biological neural networks. For example, Hebbian learning is a 
biologically based unsupervised learning (Hebb, 1949) and the self-organizing 
map (SOM) can learn a topological relation of the environment as in its 
network structure (Kohonen, 1982; Kohonen, 1989). 

On the other hand, cognition using incomplete information or 
observation is another attractive and intrinsic function in brain. The SOM, 

This work is partially supported by The Ministry of Education, Culture, Sports, Science and 
Technology under Grant-in-Aid for Scientific Research #I57001 19, by Japan Society for the 
Promotion of Science under Grant-in-Aid for Scientific Research #15300152, and by The 
Okawa Foundation for Information and Telecommunications under Research Grant #03-18. 
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however, needs the complete observation of the input information. This 
implies the SOM cannot self-organize its connection weights by using 
incomplete information of the inputs. 

In this paper we propose a self-organizing neural structure for storing 
feature space representation of logical concepts from incomplete observation 
by using a neuron model with dynamic and spatial changing weights (Homma 
and Gupta, 2002; Homma et al., 2002). To form the complete informational 
structure of concepts, (i) a necessary connection structure is created by an 
extended Hebbian rule and (ii) unnecessary connections are deleted by an 
unsupervised competitive learning. An ability of the proposed neural network 
for acquiring the informational structure is proven by using a concept 
formation problem. 

2. CONCEPT FORMATION PROBLEM 

2.1. Human Cognition using Incomplete Information 

In general, to understand or express a logical concept we use or have 
to use an incomplete information or only a subset of the complete 
information. For example, a concept "apple" is described by its attributes 
such as "shape is round," "color is red or green," "taste is good," and so on. 
There are many other attributes of the concept "apple," but it is very difficult 
to explain all the attributes of the "apple." Indeed we do not recognize, at 
least consciously, all the attributes of the concept "apple." Thus we use an 
incomplete informational set of the attributes and our cognition is based on an 
imperfect informational structure of the concept. The imperfect structure can 
be formed by our past experience or knowledge. 

Note that each of these attributes and their components such as 
"shape," "round," and "color" is also a concept. Then if we do not know 
about a concept of "shape," we might not be aware of the attribute "shape is 
round" even if we receive this information of the shape. 

An interesting thing of our cognition is that even if we could not 
recognize some of these attributes of a concept we can still understand the 
concept in our way. That is, we can understand "this is an apple" even if we 
are not aware of its shape. In fact, we did not know a concept of "mass -- 
energy equivalence E = mc2 " before Einstein had discovered. This 
equivalence is also an important attribute of the concepts "mass" and 
"energy." We, however, did know and understand "mass" and "energy" 
before the discovery in our way. An important difference between before and 
after the discovery is deepness of our understanding. 
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2.2. Problem Definition 

We consider a case of that the incompleteness is only due to a lack of 
our awareness of some attributes of target concepts. That is, neural networks 
receive the complete information of a concept, but they can recognize only an 
incomplete information through their underdeveloped neural connection 
structure that represents their imperfect informational structure of the inner 
awareness. Neural networks are required to develop the imperfect neural 
connections in order to observe and acquire the complete information of the 
target. 

We define a vector representation of a concept, x , using a set of 
feature variables {x, , x, ,K , x, ) 

x=[x1,x2,K ,x,lT E Sn (1) 
Let us consider a set of N vector representations of N concepts, S, given as 

S = { x 1 , x 2 , ~  , xN)  (2) 

where xi ,  i = l ,2,  K , N , are the vector representations of concepts i. A 

neuron receives the complete information of concept i, x i ,  but can recognize 
^ i  * i  

only an incomplete observation, fi' = [x, , x2 ,K , i;lT , through its synaptic 

connection vector w = [w, , w2 ,K , w, lT 
i xj=wjx;, j=l ,2 ,K ,n (3) 

Let the initial weight vector be w(0) = 0 and it will be developed to a 

connection structure w f 0 .  For example, at the initial stage a neuron cannot 
recognize any input information through the initial connections, w(0) = 0 .  

Here the goal of the ith concept formation by the ith neuron is to 
satisfy the following condition 

9 +xi (4) 
In other words, a concept formation defined in this paper is an acquisition 
process of awareness structure for observing the complete information by 

developing connection weights wi . In this sense, the connection weights 
imply strength of awareness for the received information. 

A trivial solution of Eq. (4) is 

wi -+ [I, 1, K , llT ( 5 )  
This solution means that neurons have all the possible connections and thus 
any informational structure of the concept vectors will not affect on this 
neural structure. A biological neuron, however, is connected with only of the 

order of lo4 neurons out of over 10'' neurons on average (Gupta et al., 2003). 
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That is, the neural network in the brain has a sparse or local connection 
structure that may associate with its local function. The local structure can be 
constructed by a signal-driven biological process such as Hebbian rule. Indeed, 
by using Hebbian rule, there is little possibility of making connections that 
carry few signals: if xi is always 0, then the possibility of wi = 0 is very 

high. Furthermore, it is very difficult to discover all the attributes of a concept 
and the trivial solution is the easiest one only when someone knows all the 
attributes such as in a supervised learning scheme. 

To seek another meaningful solution, let us consider the unipolar 
binary representation that is a simple cording convention of feature values. 
For example, features (that are also concepts themselves) "round," "cube," 

"red," and "green" can be corded as x = [x, , x, , x, , x, lT . If features of a target 

concept are "shape is round" and "color is green," then the unipolar binary 

feature vector can be represented as x = [I, 0,O, llT. 
If we use the unipolar binary representation for the feature values, 

that is, 

x i ~ { O , l ) ,  i = l , 2 , K  ,n  (6)  
2 then xi =xi . This implies that the following weights vector is also the 

solution of Eq. (4) 
wi  + xi (7) 

In this case, the neural structure will converge to the informational structure 
of the concept. 

Finally, formation of a set of concepts S using a neural network with 
M neurons, ( M 2 N ), can be represented by 

S  c S N N  = { w 1 , w 2 , ~  ,w") (8) 

In addition to this definition of the goal, as mentioned in Section 2.1, 
human cognition may be subjective and relative. Thus even if an incomplete 

information fii is observed through underdeveloped connections, the concept 
i can be recognized using the underdeveloped observation. We assume that 
the neural cognition is a process of matching its inner awareness structure w 
with an observed informational structure fi , not with the complete 
informational structure x .  The cognition result may be independent of the 
deepness of understanding, although the deepness is improved as new 
attributes of the concept are discovered ("mass" is mass even if we do not 
know about the mass-energy equivalence. see Section 2.1). 

For simplicity let 0 5 wi 5 1 for all i = 1,2, K , n , then the deepness 

of understanding can be represented by the total amount of awareness given 

as the sum of the weights W = xn wi . Thus the neural output as a result of 
r=l 

the cognition process for concept i can be defined as 
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The normalized output implies the ratio of a sum of the observed information 
to the total amount of awareness. If a neuron is aware of a subset of the 
complete informational structure, then the output is equal to 1, otherwise the 
output is less than 1, regardless of the total amount of awareness W. 

3. SELF-ORGANIZING NEURAL STRUCTURE WITH 
DYNAMIC AND SPATIAL CHANGING WEIGHTS 

3.2. General Model of Discrete-Time Neurons with Dynamic 
and Spatial Changing Weights 

I 

Neural inputs 

x(k)  E Rn 

Figure 1: A discrete-time neuron with dynamic and spatial changing weights (DSCWs) 

Fig. 1 shows the model of a discrete-time neuron with dynamic and 
spatial changing weights (DSCWs) (Homrna and Gupta, 2002; Homma et al., 
2002). In this neural model, the following variables are defined: 

x ( k )  = [x, ( k ) ,  x, (k ) ,K  , x, (k)lT E 91n : neural input vector; 

r ( k )  = [ r ,  ( k ) ,  r, (k ) ,K  , rn (k)lT E 91n : spatial distance vector 

between the sensory devices or another neuron's axon branches and the 
corresponding target dendrites (Fig. 1); 

w ( r ( k ) )  = [w,  ( r ,  w2(r2 (k ) ) ,K  , wn (r, (k))lT E 3" : weight 
vector as a function of the spatial distance vector r ; and 

y ( k )  E 3 : neural output. 
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The input x ( k )  to the neuron may be external signals or outputs from other 
neurons, but no self-feedback connection is considered in this paper. 

By the definition of the weight vector, the derivatives dw, ldr, are 0 

for i # j . Then the spatial changes in the weights are defined by the diagonal 
matrix as 

In general a necessary condition to form the ith synaptic weight is that the 
spatial distance 1;: is sufficiently short. As listed below various functions that 

satisfy this condition can be used for representing the relation between 
weights wi and distances 1;: 2 0,  i = 1,2, K , n . 
(i) linear function 

(0, ( 5  > To) 

(ii) exponential function 

(iii) sigmoid function 

where ro ,wo , and a are positive constants in this paper. Note that the 

following step-function can be represented by the sigmoid function with 
a+O. 

A discrete-time dynamic change in the connecting weight is defined 
as 

w(r(k + 1 ) )  = w(r(k))  + Aw(w(r(k)),x(k), y(k)) (15) 

where Aw = [Aw, , Aw, , K ,Awn lT is a vector function describing discrete- 

time changes in the weight vector. Note that this discrete-time dynamic 
changes can be used for the discrete-time learning scheme that provides how 
to change the existing synaptic weights. 
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To create new synaptic connections, another mechanism such as 
structural adaptation is needed. A dynamic change in the distance is 
introduced as a structural adaptation mechanism given by 

r(k + 1) = r(k) + Ar(r(k),x(k), y(kN (16) 
where A r  = [Ar, , Ar, , K , Ar, lT is a vector function describing discrete-time 

changes in the distance vector. Note that both the dynamic changes in Eqs. 
(15) and (16) imply the changes in the distance r(k)  . Eq. (15) implies a 

learning algorithm for only existing weights wi # 0 ,  that is, it only changes a 

strength of awareness. On the other hand, discovering a new attribute, that is a 
creation of a new synaptic connection, is not a subset of the change, but 
achieved by a structural adaptation given in Eq. (16). A specific combination 
of these two rules can be used for a specific task. 

Substituting the dynamic and spatial changing weights into Eq. (9) for 
W # 0 ,  the neural output, as a result of neural cognition of a concept, is 
defined as 

Y = f (x(k),w(r(k))) E 3 

where f is an activation function (Fig. 1). 

3.2. Unsupervised Competitive Learning 

We select a neuron c whose output is the largest among the neural 
network 

c = arg max y, (k) 
j 

(18) 

If there are some neurons c, 2 0, j = 1, 2, K , that satisfy Eq. (18), then the 

neuron with the largest sum of weights is selected. 

c = arg max W "j (k) 
Cj  

(19) 

If there are still several candidates, a neuron that satisfies Eq. (19) is selected 
randomly. Then the neural outputs are re-defined as y,(k) = 0, ( j  # c) , and 

Y,(Q = yc(k) - 
The learning rule in Eq. (15) is achieved by using observed 

information 2 instead of the complete information x 

wj" (k + 1) = wj" (k) + y [ i ,  (k) - wj" (k)] 

= wj" (k)[l + y(xj (k) - 1)] (20) 

wi (k + 1) = wi (k), (i # c) 
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where y > 0 is a learning constant. For simplicity, let y = 1 then this 
competitive learning rule can be written as 

wj" (k + 1) = wj" (k)xj (k) = 2, (k) 

w;. (k + 1) = w: (k), (i # c) 
(21) 

In the case of w,' (k) = 1, note that if 2, (k) = 1, that implies xj (k) = 1, then 

this feature is needed to be recognized and thus the connection structure will 
not be changed w;(k + 1) = 1. On the other hand, if i ,(k) = 0 , that is 

xj (k) = 0 ,  this feature is an unnecessary information and thus this connection 

should be disappear w;(k + 1) = 0 . Thus this learning rule can delete 

unnecessary connections. However, if wj"(k) = 0 ,  this learning rule cannot 

change this weight. The creation of a new connection can be achieved by the 
following structural adaptation. 

3.3. Extended Hebbian Rule for Structural Adaptation 

Using a spatial changing function as listed in Section 3.1, if a distance 
is sufficiently small the synaptic weight is relatively large. By a structural 
adaptation, any connection from sensory neuron i to cognitive neuron j, 
wji(k) , can be formed by growth of an axon branch of neuron i and a 

dendrite of neuron j. In this paper Eq. (16) is achieved by an extended 
Hebbian rule as follows: 

rji (k + 1) = rji (k) - qrji (k)xi (k) y, (k) 

= rji (')(I - Pi ('1 Y ('1) 
(22) 

where 7 > 0 is a growing constant and xi and y j  are outputs of sensory and 

cognitive neurons, respectively. Here, if the two neurons i and j fire 
simultaneously, the distance rji (k + 1) = rji (k)(l - 7 ) .  On the other hand, the 

distance will not change if they do not fire simultaneously. For simplicity, let 
q = 1 ,  x i €  {O,l), y, =1 ,  and y,,, = O  then 

The input information x i ,  however, can be recognized only through 

the existing synaptic connection with w: = 1 since if w,C = 0 then the 

recognizable input 2 is always equal to 0, 2i = w:xi = 0, regardless of the 
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input value of xi. To avoid this dilemma, let us introduce a supplemental 

growing scheme that if the ith sensory neuron fires, xi = 1 ,  distances between 

its axon and the dendrites of some possible target neurons, rji , become 

sufficiently short to form synaptic connections temporary. Since the ith 
sensory neuron does not know whether a target cognitive neuron is the 
candidate neuron c or not, target neurons with wi' = 0  are selected randomly 
in this paper. Then according to Eq. (23), the temporal synaptic connections 
will be deleted for the target neurons that do not fue simultaneously, yjzC = 0, 
but if the target is the candidate neuron c, the connection will be formed 
permanently since these two neurons i and c fire simultaneously, xiyc = 1. 
Note that, thus only a necessary connection structure such that 
xi ( k )  y, (k) = 1 can be created by using Eq. (23). 

Such random search of formation and deletion needs so-called trial 
and error mechanism. In general if the number of trials, N,, is sufficiently 

large at each iteration, a potentially necessary connection with wZc = 0  for 

xi = 1 can be selected correctly, and thus this necessary connection will be 

formed. 

4. CONCEPT FORMATION FROM INCOMPLETE 
OBSERVATION 

4.1. Self-organizing Network for Concept Formation 

Here a self-organizing algorithm to get the solutions given by Eqs. (7) 
and (8) is proposed. Let us consider the unipolar binary case for features of 
the concept vector x . 

Initialize iteration k  = 0 ,  the number of neurons m(0) = 0  , and the 

connection vector 11 ~ ' ( 0 )  = 0  1 1 .  

Select one concept vector E S ,  i(k) E {1,2, K , N )  and input it to 
the neural network. 

Select a candidate neuron for the concept xi'k' by the method described 
in Section 3.2. 

Self-organizing the weights according to the following condition 
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Case 1: If the candidate output y, is equal to 1, try to create a new 

awareness weight wZc so that i j ( k )  = 1 by the extended Hebbian 

rule given in Eq. (23). 

Case 2: If 0 < y, < 1, create new neuron m ( k )  + 1 with the same weight 

vector w ~ ' ~ ) ' '  = wc and m ( k )  + 1 4  m ( k )  . Then c = m ( k )  and 
learn the weight to delete unnecessary connections by using Eq. 
(21). 

Case 3: In the case of yc = 0 if there is a neuron without any connections, 
then select this neuron for a candidate. Otherwise, create a new 
candidate neuron and m ( k )  + 1 4  m ( k )  . Then try to create a 
randomly selected new awareness weight for this candidate by Eq. 
(23). 

5. m(k  + 1) = m ( k )  , k  -+ k  + 1 and return to Step 2. 

4.1. Some Remarks on Ability of Concept Formation Network 

A concept formation ability of the proposed self-organizing network 
is summarized in the following theorem. 

Theorem 1 (Concept Formation Neural Structure Theorem) For a unipolar 
binary concept set S = {x' , x 2  ,K , x  ) , there exists a self-organizing 
network with M neurons, ( M  2 N ), such that 

X~ = ji , i=1 ,2 ,K  ,N,  j i €  {1,2,K , M )  (24) 

Proof: For a concept x ( k )  = xi , a neuron c satisfying the candidate condition 
in Section 3.2 is selected. Then even if the current candidate output as a 

function of the current weight vector wc ( k )  is less than 1, ( x i ,  wc ( k ) )  < 1 ,  
the output after the learning in Step 4 can be changed into 1 

y , ( x i , w c ( k + l ) )  = 1 (25) 

This is because if yc (k )  < 1 ,  we can delete only the wrong connections for 

the target concept by using the self-learning rule given as Eq. (21). Also if 
y, ( k )  = 1,  then 

I1 w C ( k  + 1) I1 > I1 w C ( k )  I1 (26) 
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except for wc(k) =xi  by using the Hebbian rule that can create only the 
correct connection if the number of trials is sufficiently large; there is no 
wrong connection weight for the candidate. That is, 

11 xi - wc(k + 1) 11 < 11 xi - wc(k) 11 (27) 
Thus if this neuron is a candidate only for concept i 

wc -+xi (28) 

Otherwise, if this neuron c will also be a candidate (i.e. yc (k) = 1) for another 

concept xi,  j # i and 11 x j  11 > 11 wc 11 then 

Once wc converges to x J ,  another candidate neuron c'(f c)  for concept i 
will not be a candidate for concept j since neuron c is the only candidate for 
concept j. Thus after all concepts like concept j have their own candidates, the 
weight of a candidate neuron c' will converge to concept i 

wc' + x i  (30) 
Therefore if M is sufficiently large 

S c S N N  = { w 1 , w 2 , ~  ,w") (31) 

This proves the theorem. 
In addition to this ability, it is worth to compare the proposed self- 

organizing learning with Kohonen's self-organizing map (SOM) (Kohonen, 
1982; Kohonen, 1989). A major difference between the SOM and the 
proposed method given in Eqs. (18) and (20) is completeness of the input 
information. SOM supposes that the complete information of the input x can 
be given, while only an incomplete observation of the input, 2, is possible to 
use in the proposed method. In the sense of a hypothesis that human cognition 
is based on an incomplete information, the proposed network provides better 
model of human cognition. 

Furthermore, the extended Hebbian rule proposed for structural 
adaptation is a possible informational formulation of a biological evidential 
perspective in which some signal-driven special chemical matters can lead to 
growing directions of synaptic connections (Kohara et al., 2001). 

5. CONCLUSIONS 

We have developed a new self-organizing network model of concept 
formation by using neurons with dynamic and spatial changing weights. The 
proposed network can recognize concepts using incomplete information of 
concepts at current degree of understanding and develop its synaptic 
connections of inner informational structure to discover new information of 
concepts and finally the complete information. 
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Chapter 3 

SIMULATION OF FUZZY SYSTEMS I 

James J. Buckley, Kevin D. Reilly and Xidong Zheng 

1. INTRODUCTION 

We begin in the next section with a discussion of how we obtain fuzzy numbers 
for arrival and service rates in a basic queuing network. The fuzzy queuing 
model is presented in the third section. Since this model is discussed in [2] 
we only present an overview. This is followed by our simulation models and 
results. We go through the fuzzy calculations in detail so the reader can ap- 
preciate how the simulation method simplifies the process of going from initial 
data to the optimization models. 

However, the simulations sometimes produce fuzzy results at variance with 
the fuzzy calculations. The matter will be discussed at appropriate points in 
succeeding sections and will be related to our belief that some modeling and 
simulation styles may be approximating the results that would be obtained us- 
ing the extension principle. 

The last section has a brief summary and our plans for future research 
on this topic. This chapter expands on previous work reported in conference 
papers [61,[231,[271,[281. 

Let us now introduce the notation we will use in the paper. We place a "bar" 
over a symbol to denote a fuzzy set. So, &, x, :, ... all represent fuzzy sets. If - 
A is a fuzzy set, then x(x) E [O,1] is the membership function for xevaluated 
a real number x. An a-cut of z, written x[a], is defined as {xIx(x) 2 a), 
for 0 < a 5 1. Z[O] is separately defined as the closure of the union of all the - 
A[a], 0 < a 5 1. A fuzzy number N is a fuzzy subset of the real numbers 
satisfying: (1) N(x) = 1 for some x (normalized); and (2) N[a] is a closed, 
bounded interval for 0 5 a 5 1. A triangular fuzzy number T is defined by 
three numbers a1 < a2 < a3 where the graph of y = T(x) is a triangle with 
base on the interval [al, as] and vertex at x = a2 ( T(a2) = 1). We write 
T = (al/a2/a3) for triangular fuzzy numbers. A triangular shaped fuzzy 
number has curves, not straight line segments, for the sides of the triangle. For 
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any fuzzy number we have N[a] = [nl (a), n2 (a)] all a, which describes 
the closed, bounded, intervals as functions of a. 

Probably the first paper on fuzzy simulation was [7], followed by [8]. Here 
the authors wanted to "randomly" generate values of a fuzzy variable F. The 
fuzzy variable F has its values restricted by a possibility distribution z ,  which 
is usually just a fuzzy number. This means that POSS(F = x) = z ( x ) .  They 
randomly produce a value for using a two step process: (1) first randomly 
generate a from a uniform distribution over [0, 11; (2) then randomly gener- 
ate x from a uniform distribution over the interval =[a]. This procedure has 
subsequently been employed in the simulation models in [20] and [25]. A com- 
pletely different approach is in [3] where the authors show how to generate a 
chaotic sequence of fuzzy numbers, all of the same type and in the same inter- 
val, to estimate the fuzzy solution to a fuzzy optimization problem. In [I 11 the 
author is also concerned with fuzzy simulation. In this paper the author selects 
specific values from the fuzzy numbers in the problem (called Fuzzy Method 
3 in the paper), inputs these numbers and computes the result, and then con- 
structs a fuzzy set for the final result from the individual outputs. This is similar 
to what we will be doing. Finally, the last paper involving fuzzy simulation is 
[26] where the author simulates verbal models. In this paper the author substi- 
tutes fuzzy sets for linguistic variables, uses hedges and the compositional rule 
of inference, to obtain a fuzzy set conclusion which is then translated back to a 
linguistic term. 

2. FUZZY ARRIVALISERVICE RATES 

We start our model from crisp arrivalhervice rates (Alp). Recall that a com- 
plete specification of a (crisp, single station) queuing system involves specify- 
ing only these rates and a queue discipline; since we will be assuming FIFO 
disciplines throughout, we can focus on the arrivaVservice rates. For a fuzzy 
system, the fuzzy rates (51~) must replace the crisp values at some point. Refer 
to Figure 1, which shows the stages of computation in the (totally) crisp case 
starting from arrivalhervice rates. 

Figure 1: Steps in Crisp Calculation of System Performance Values Starting from 
ArrivalIService Rates, Culminating in Cost and Benefi ts. 
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The overall progression of the mathematical argument and/or simulation is 
as follows. We first construct fuzzy numbers for X = the arrival rate and for 
p = the service rate. Using these we determine fuzzy steady state probabilities 
(wj). From the fuzzy steady state probabilities we compute the fuzzy numbers 
for system performance V = server utilization, N = number of customers in 
the system, ?? = throughput, = response time and LC = lost customers (see 
[19]). Finally, we input the fuzzy numbers for system performance into models 
to find the optimal mix of the variables (number of servers, capacity, ...) to 
minE, maxv,  max fuzzy profit, etc. We now discuss each part of the model, 
except the final optimization, before we present our simulation results which 
will take us directly from a-cuts of X and F to the optimization procedure. 

For the rest of this section we concentrate on deriving fuzzy numbers for 
the arrival rate, and the service rate in a queuing system. We consider the fuzzy 
arrival rate first. 

2.1. Fuzzy Arrival Rate 

We assume that we have Poisson arrivals [24] which means that there is a pos- 
itive constant X so that the probability of k arrivals per unit time is 

the Poisson probability function. We need to estimate A, the arrival rate, so we 
take a random sample XI, . . . , X, of size ,m. In the random sample Xi is the 
number of arrivals per unit time in the ith observation. Let S be the sum of the 
Xi and let ?? be S/m. Here, X is not a fuzzy set but the mean. 

Now S is Poisson with parameter mX ([14],p.298). Assuming that mX 
is sufficiently large (say, at least 30), we may use the normal approximation 
([14],p.317), so the statistic 

is approximately a standard normal. Then 

where the ,912 is defined as 
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and N (0, l )  denotes the normal density with mean zero and unit variance. Now 
we divide numerator and denominator of W by m and get 

From these last two equations we may derive an approximate (1 - P) 100% 
confidence interval for A. Let us call this confidence interval [l (P) , r(P)]. 

We now show how to compute 1 (P) and r(P). Let 

Now f (A) has the following properties: (1) it is strictly decreasing for X > 0; 
(2) it is zero for X > 0 only at X = A; (3) the limit off ,  as X goes to oo is -oo; 
and (4) the limit of f as X approaches zero from the right is oo. Hence, (1) the 
equation zp12 = f (A) has a unique solution X = 1(P); and (2) the equation 
-zP12 = f (A) also has a unique solution X = r(P). 

We may find these unique solutions. Let 

and 

Then 1 (P) = and r (P) = 2;. 

We now substitute a for p to get the a-cuts of fuzzy number 1. Add the 
point estimate, when a = 1, x, for the 0% confidence interval. Now as a goes 
from 0.01 (99% confidence interval) to one (0% confidence interval) we get the 
fuzzy number for A. We drop the graph straight down at the ends to obtain a 
complete fuzzy number. 

Example 1 

Suppose m = 100 and we obtained X = 25. We evaluated equations (8) 
through (10) using Maple [18] and then the graph of is shown in Figure 
2, without dropping the graph straight down to the x-axis at the end points. 
However, in the rest of the paper we will use a triangular fuzzy number for 1. 



Simulation of Fuzzy Systems I 

Figure 2: Fuzzy Arrival Rate X in Example 1. 

2.2. Fuzzy Service Rate 

Let p be the average (expected) service rate, in the number of service comple- 
tions per unit time for a busy server. Then 1 / p  is the average (expected) service 
time. The probability density of the time interval between successive service 
completions is ([24], Chapter 15) 

for t > 0, the exponential probability density function. Let XI, . .. , X ,  be a 
random sample from this exponential density function. Then the maximum 
likelihood estimator for p is X ([14],p.344), the mean of the random sample 
(not a fuzzy set). We know that the probability density for X is the gamma 
([14],p.297) with mean p and variance ,u2/n ([14],p.351). If n is sufficiently 
large we may use the normal approximation to determine approximate confi- 
dence intervals for p. Let 

= (fiF - P ] ) / P ,  (12) 

which is approximately normally distributed with zero mean and unit variance, 
provided n is sufficiently large. See Figure 6.4-2 in [14] for n = 100 which 
shows the approximation is quite good if n = 100. The graph in Figure 6.4-2 in 
[14] is for the chi-square distribution which is a special case of the gamma dis- 
tribution. So we now assume that n 2 100 and use the normal approximation 
to the gamma. 
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An approximate (1 - P) 100% confidence interval for p is obtained from 

where ,8 was defined in equation (4). After solving for p we get 

An approximate (1 - P)100% confidence interval for p is 

Example 2 

If n = 400 and X = 1.5, then we get 

for a (1 - P)100% confidence interval for the service rate p. Now we can put 
these confidence intervals together, one on top of another, to obtain a fuzzy 
number p for the service rate. We evaluated equation (18) using Maple [18] 
for 0.01 5 ,O 5 1 and the graph of the fuzzy service rate, without dropping 
the graph straight down to the x-axis at the end points, is in Figure 3. For 
simplicity we use triangular fuzzy numbers for p in the rest of the paper. 

Having fuzzy numbers for X and p we may proceed to the next computa- 
tional stage. 

3. FUZZY QUEUING MODEL 

We go through the crisp and fuzzy calculations needed to get to the fuzzy num- 
bers describing system performance. 
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Figure 3: Fuzzy Service Rate jZ in Example 2. 

3.1. Fuzzy Steady State Probabilities 

We first discuss the crisp queuing model. The system has c parallel and identi- 
cal servers, system capacity M (in the servers and in the queue) and an infinite 
calling source. A basic assumption is that we are in steady state, all transient 
behavior has died down and can be neglected, and the time interval 6 is suffi- 
ciently small so that the probability of two or more events occurring during S 
is zero. 

The main objective at this point is to compute the steady state probabilities 
wi = the probability that there are i customers in the system, 0 5 i I. M ,  
from which we may determine various measures of system performance. The 
result is, from standard queuing theory, that wi = Fi (X ,  p, c, M), 0 5 i 5 M. 
Expressions for Fi can be found, e.g., in [19] or [24]. To obtain fuzzy steady 
state probabilities, we directly fuzzify crisp expressions. Then 

to be evaluated using a-cuts. We have 

for all a in [0, 11. Then we find a-cuts of the fuzzy steady state probabilities. 
Let [a] = [wil (a), wi2 (a)], then [4] 
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for 0 5 i 5 M, 0 5 a < 1. These are non-linear optimization problems which 
we solved for selected values of alpha through use of the Premium Solver Plat- 
form V5.0 from Frontline Systems [lo]. In the future we simply call the opti- 
mization software Solver 

Now assume we have all the needed fuzzy steady state probabilities. 

3.2. Fuzzy System Performance Variables 

We first discuss the computing of =server utilization, N =expected number 
of customers in the system and =average server throughput because the 
first two problems involve solving a linear programming problem. Then = -- 
average response time is simply NIX. Finally we see how to get LC = the 
expected number of lost customers per unit time due to finite system capacity. 
To motivate the fuzzy calculations we will first present the crisp definition. The 
crisp steady state probabilities are wi, 0 5 i 5 M. Let us assume that there are 
now two servers (c  = 2) in the system. 

The crisp definition of U is 

which is the probability that BOTH servers are busy. U x 100 gives the per- 
centage of time we expect both servers to be busy. In the fuzzy case 

and is evaluated by a-cuts 

for all a, where S is "wi E Ei[a], 0 5 i 5 M, wo + ... w~ = 1". This is re- 
stricted fuzzy arithmetic, first presented in ([I 51-[17],[21],[22]). Notice that we 
cannot simply add up the ?& for i = 2,3,  . . . , M because it may result in a fuzzy 
number not in the interval [0, 11. The restriction is that the sum of the wi must 
equal one so that it is a discrete probability distribution. Also see ([1],[2],[5]) 
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for more details on restricted fuzzy arithmetic applied to this type of calcula- 
tion. We compute the alpha-cuts of V by solving a linear programming prob- 
lem. Let T D ~  [a] = [wil (a) ,  wi2 (a)] ,  O 5 i 5 M .  Let V[a]  = [ul (a) ,  u2 (a)].  
The objective functions are 

subject to constraints 

The solution to the min (max) problem gives ul (a )  (u2(a)). In general, we 
always have 0 < u1 ( O ) ,  uz(0) 5 1. 

N  is just the expected number of customers in the system 

and N is determined by its a-cuts 

The end points of the interval X[a] = [nl (a) ,  n2 (a)] may also be found by 
solving linear programming problems 

subject to the same constraints given above. We get nl (a)  (n2(a)) from the 
min (max) problem. In general, we always have nl(0) 1 0 and n2(0) 5 M = 
system capacity. 

X  is the expected number of customers leaving the system per time period 
6. We first derive a crisp expression for X and then fuzzify it. From [19] 

So we need to solve 

subject to S and p E ~ [ a ] .  This is a non-linear programming problem. In 
general we always have X I  (0)  2 0 where x [ a ]  = [ X I  (a) ,  x2 (a)]. Also, since - -- 
R = N I X  and z [a]  = [rl(a),  ~ - ~ ( a ) ] ,  we will always have q ( 0 )  2 0. 
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Lastly, LC = XWM SO - 
LC = XuM. 

Here we simply multiply two fuzzy numbers. If z [ a ]  = [lcl (a),  lc2(a)], 
then we must get lcl (0) 2 0. 

Having fuzzy numbers for system performance we may go on to final mod- 
els for costs, benefits, and related quantities, but we shall not discuss this in any 
detail in this book. 

4. FUZZY CALCULATIONS 
---- 

The goal is: determine a-cuts of fuzzy system performance values U, N, X ,  R 
and LC. We have two methods: (I)  the one-step approach; and (2) the two-step 
procedure. For the computations in this section, and in the rest of this chapter, 
let us have c = 2 and M = 4, and the triangular fuzzy numbers 1 = (31415) 
for the fuzzy arrival rate and j3 = (51617) for the fuzzy service rate.. 

4.1. One-Step Approach 

Here we put the functions for the wi into the expressions for U, N, X ,  R and 
LC to get each a function of A, p, c and M. Then we have U = f,(X, p), N = 
fn(X,  p), X = f&, p), R = f r (A p) and LC = flc(X, p). For example, let 
p = X/p, then 

u = w 2 + w 3 + w q ,  (34) 

 here W2 = (p2/2)wo, w3 = (p3/4) WO, wq = (p4 18) wO and 

Now go back to section 3.2 and substitute the above expressions for the wi 
(wl = (p)wO) into the formulas for N, X ,  R and LC and we have the needed 
one-step expressions 

Using the extension principle we now calculate V = f ,(I, p),  ..., LC = 
fic(X, p). The results, only for the a = 0 , l  cuts are in Table 1. We employed 
Solver (or Matlab) for these optimizations. 

As we shall see, crisp simulation can approximate these one-step results. 
For the rest of this chapter we will be using these triangular fuzzy numbers for - 
X and p. Figures 2 and 3 show 1 and p to be triangular shaped fuzzy numbers, 
but for simplicity we will now use triangular fuzzy numbers for X and p. 

Now that we are employing 3 5 X 5 5 and 5 < p 5 7, there are other - - 
bounds on X ,  R and in addition to those stated in the previous section. For 
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----- 
Table 1: One-Step Alpha Cuts of U,N,X,R,LC. (c = 2, M = 4) 

Table 2: Alpha Cuts of the Fuzzy Probabilities. (c = 2, M = 4) 

U 

Alvha=Zero Cut Alpha=One Cut 

0.5031 
0.3354 
0.1118 
0.0373 
0.0124 

Alpha=Zero Cut 

[0.0749,0.30431 

throughput x2(0) 5 5 since the maximum value of X is 5. Also, lc2(0) 5 5. 
Lastly, ra(0) 5 0.6 since the maximum time in the system would be 3 service 
completions ( M  = 4) at maximum service time of 0.2 = 115 time units. We 
see that the values in Table 1 all satisfy these new constraints. 

Alpha=One Cut 

0.1615 

4.2. Two-step Approach 

We continue to assume that c = 2, M = 4,X = (31415) and ,Ti = (51617). The 
two-step method first finds the fuzzy steady state probabilities ?Ti, 0 5 i 5 4 
by solving equations (21) and (22). Using Solver (or Matlab) the a = 0 , l  cut 
results in Table 2 are found. Next, using the fuzzy numbers for ?Ti solve for 
the fuzzy numbers u, ..., LC given in section 3.2. Again, Solver was used and 
the a = 0 , l  cuts are in Table 3. Notice that x2(0) = 5.0000 in Table 3. The 
actual value computed was 6.6962, but from the previous subsection, we have 
the constraint x2(0) 5 5.0000. The two-step X gets "cut off' at 5.0000. 

Now compare Table 1 (one-step results) to Table 3 (two-step results). We 
- 1  -(2) --(2) see that (one-step)X 5 X (two-step) but (one-step)~'') w 2 (two-step) 

for 2 E {U, N, R, LC). We note that the two-step procedure has potential for 
generating results with more fuzziness than the one-step method. We will see 
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----- 
Table 3: Two-step Alpha Cuts of U,N,X,R,LC.(c = 2, M = 4) 

Alpha=Zero Cut 

[0.0749,0.3043] 
[0.4455,1.1306] 
[2.1370,5.0000] 
[0.1464,0.2529] 
[0.0081,0.2175] 

Alpha=One Cut 

0.1615 
0.7205 
3.9504 
0.1824 
0.0497 

----- 
Table 4: Optimal Values of U,N,X,R,LC.(c = 2, M = 4) 

I Min 

that crisp simulation will not directly approximate the results of the two-step 
calculation, but can give insights into fuzziness in our results. 

4.3. Spreadsheet Calculations and Simulations 

The immediately preceding computations represent a systematic approach to 
solutions: we take known crisp solutions (or approximations in some cases) and 
enter them into an optimizing program, to determine constrained min and max 
values used to approximate end points of a fuzzy output's alpha-cuts. Along 
with other resources, perhaps in another package, we obtain graphical and tab- 
ular outputs. No mathematical analysis work is needed beyond that which went 
into developing the formulae that start this calculation (optimization) process. 

Optimization methods are either not required at all in the basic cases or 
play a secondary role, e.g., in the probability case we will see immediately 
below. Consider again X E [3,5] and p E [5,7]. Absent further complexities 
such as balking or preemption, we obtain min and max values for U,N,X,R 
and LC by reasoning such as: a "low" ("high") arrival rate coupled with a 
"high" ("low") service rate produces "low" ("high') values of all performance 
values except X. We extrapolate from low (high) values to min (max). We 
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need also to recognize that a min (max) value of X occurs when both X and 
p are min (max) values. The results of a (first) round of reasoning along these 
lines are given in Table 4, where the desired results are first posted on the rows 
followed by the X and ~r, choices that effect these results. 

1.4000 

Figure 4: R[o] (Represented by R) is Plotted Against M (c=l). 

The methodology extends to developing values for steady state probabil- 
ities (min and max values estimating fuzzy probabilities). The results are the 
same as those obtained by optimization and other methods so we do not dis- 
play them here. Note that generating the performance values from these prob- 
abilities can be accomplished conveniently via optimization methods already 
discussed. 

We can illustrate the "what if '  simulation-style argumentation provided by 
the spreadsheet models. The concept of maximum system capacity (M) is a 
focus point in our studies. The alpha=O cut of the (average) response time as 
a function of maximum capacity, M, is given in Figure 4 and the alpha=O cut 
of the throughput rate vs. M is given in Figure 5. The characteristics of the 
performances are important, e.g., growth (and divergence of fuzzy values) in 
response time, adhering to mathematical results for the infinite M case; and 
the asymptotic behaviors in X, providing bounds to establish or confirm X 
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4 4 * + 
4 

Max X 

B 

Min X 

Figure 5: y[0]  (Represented by X) is Plotted Against M (c=l). 

constraints such as those imposed on max X in section 4.1. 
Trends in four of the principal performance variables as a function of the 

service time (parameterized by arrival rate at its end points and middle value) 
are given in Figure 6. The functional dependency of performance variables 
on A, p, and their ratio p differs, e.g., several of the variables are a function 
of p only whereas and R are functions of both p and p. X is the some- 
what unusual response variable as these figures show and attention to it seems 
warranted; moreover, X appears to change the most from one- to two-step 
modeling. Note that these trends allow estimations of a-cut values, e.g., the 
end points for a = 0 values, with interpolated results for other cuts. 

The mode of reasoning of this section carries over to general purpose sim- 
ulation; we will devise simulations in a similar (min and max) fashion, along 
with modeling the a = 1 case and projecting results onto other u-cuts. Spread- 
sheet analysis can be viewed as a flexible support scheme to simulations. 

5. GENERAL PURPOSE SIMULATION 

In this section, we discuss some foundational issues relating to arrivalhervice 
rate simulation and utilization of standard/conventional (crisp) simulation pack- 
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(Average) Utilization vs. Service Rate 

0.8 1 

--- 
4 5 6 7 S 

Mean Sewice Rate 

Average Throughput vs. Service Rate 

4 5 6 7 8 

Mean Service Rate 

Average Number in System vs. Service Rate 

--- - 
5 6 7 8 

Mean Service Rate 

Average Response Time vs. Service Rate 

0 1  I 
4 5 6 7 8 

Mean Service Rate 

Figure 6: Trend Lines for Performance Variables Plotted Against Mean Service Rate 
and Parameterized by the Arrival Rate and Number of Servers (c=l and c=2) (M = 4). 
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ages, specifically discrete event systems, to achieve results identical to or ap- 
proximations of fuzzy calculations. Several purposes can be identified for using 
these simulation systems in the study of fuzzy probability computations. A first 
is to provide solutions in software that is widely available and efficient both in 
human model development time and in machine terms. Such software, together 
with approaches on how to use it, could then form the basis for a system devel- 
opment and programming methodology for fuzzy probability modeling. 

For models based on arrivaVservice rates, the simulation systems provide a 
quite natural formulation. The model formulations (usually some kind of build- 
ing block description) give insight into how a queuing system works internally. 
Simulation is sometimes called a "whiteltransparent box" approach for this rea- 
son (in contrast to black box approaches). The transparent box approach makes 
it relatively easy to provide flexibilities, e.g., a mix of fast and slow servers in 
a multiple server system, in contrast to some work here and elsewhere where 
multiple server systems are restricted to multiple identical servers. Similarly, 
accommodating dynamic effects in models is possible without excessive effort. 
A vast variety of stochastic processes is made available in a declarative mode 
within these packages and ready schemes exist for handling complexities such 
as balking and preemption. 

Simulation languages provide much automatic output of model statistics 
and can provide additional results that fuzzy computation, as we have been 
describing it, does not. Full distributions of output variables and graphical 
displays of them are one such example. We will be exploiting these in obtaining 
some of our fuzzy results. The combination of automatic output and transparent 
box allows us to collect desired statistics according to model needs. 

Both GPSS/H [13] and SLX [12] have been utilized in our studies; these 
are "sister" languages developed by Wolverine Software, Inc. [13]. In some 
cases we have used both systems to verify results, as each provides somewhat 
of a variant world view; potential directions for future work were also assessed. 
SLX is an object-based language that provides an "extensibility" element, sig- 
nified by the "X" in its title (SL signifies "Simulation Language") - it includes 
several core GPSS/H elements in files that can be imported. GPSS/H (and its 
predecessors) provide perhaps the simpler approach to model our kind of sys- 
tems. Our first case study will utilize it. After it, we turn to SLX, providing 
some programming descriptions, serving to dramatize our claims about how 
these packages, together with our basic (fuzzy modeling) approaches, are great 
simplifiers of needed computations. These SLX descriptions also serve to give 
insight into what the GPSS/H effort is like. In this chapter's context we employ 
only a few features of these packages and others we do not use may be part of 
future studies expanding on the present coverage. 
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The mathematical formulations seen in the sections on arrivalhervice rate 
models are based on Poisson arrivalkervice rates. The approximate equiva- 
lence of the Poisson counting process and the exponential interval process [9] 
means that we rendered these distributions in terms of exponential intervals, 
i.e., we utilize exponential inter-arrival and service time distributions. 

5.1. Case Study: Long-Term Runs 
- - - - 

Our targets for this simulation are estimates of U, N,  X, R and LC. They will 
be determined by their a-cuts. We will consider calculating E[a], 0 L; a 5 1, 
since the others are computed in a similar manner. 

Let S I M  denote some simulation software that can be used to simulate 
our crisp queuing system with c = 2, M = 4. From this simulation we obtain 
a value for R. Actually, the simulation produces a distribution of values for 
time in the system and the R we use is the expected value (mean value) of this 
distribution. Input to S I M  will be X and p. We summarize all this as 

R = SIM(X, p). (36) 

Now, going to the fuzzy system, we obtain fuzzy number estimators 1 ,  p. 
Then - 

R[a] = {RI R = SIM(X, p), S }, (37) 

where 
S = A E x[a] and ,LL E ~ [ a ] ,  

for 0 L; a L; 1. Alpha-cuts of R will be intervals so let R[a] = [rl (a), r2(a)]. 
Then 

r l (a)  = min{RIR = SIM(X, p), S }, (39) 

and 
ra(a) = max{RIR = SIM(X, p),  S }. (40) 

So we solve these last two equations for selected values of a and we have 
estimated the fuzzy number for the expected time an item spends in the system. 
Also, R[O] is like a 99% confidence interval for this time. We compute the other - -- - 
fuzzy numbers (X, N,U, LC) the same way. 

How are we to solve equations (39) and (40)? We suggest a simulation op- 
timization method. The search space is given by S. As we shall see, using the 
end points of the intervals for the a-cuts of X p will solve many of these prob- 
lems. In this chapter there are only two places in a fuzzy queuing system that 
depend on a probability distribution: (I)  arrivals; and (2) service stations. We 
now look at each of these and how we plan to solve the optimization problem. 
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Table 5: Optimal Values of X E [Xl, A,] = %[a] for the Exponential Arrivals in 
Simulation 

Min I X 11 Max 1 X 

5.1.1. Arrivals 

All arrivals will be governed by the exponential distribution. To describe ar- 
rivals we use X = the number of items (customers) arriving per unit time and 
1/X = the mean time between arrivals. The solution to the optimization prob- 
lem is given in Table 5. We have assumed that all parameters in the fuzzy 
queuing system are held fixed except X for this arrival. If 1 is our fuzzy esti- 
mator of A, let [XI, Xu] = [A1 (a), X2 (a)] = %[a] for some fixed a E [O , l ) .  

We interpret Table 5 as follows: (1) if we want to approximate the left end 
point of the interval X[a] use for X the left end point of the interval 1[a]; and 
(2) if you want to approximate the right end point of the interval Ruse for X 
the right end point of the interval %[a]. 

These results are rather intuitive. Let X increase from its minimum X1 to 
its maximum Xu, holding other system parameters fixed. The system becomes 
more congested. We will call arrivals "customers" or "requests" in this section. 
When server utilization (mean value=U) increases, the number of customers in 
the system (mean value=N) increases and the time a customer spends in the 
system (mean value=R) also increases. At first it is not clear what happens 
to the number of customers leaving the system per unit time (mean=X) since 
X = N/R. But the number leaving per unit time will not decrease, so X will 
also increase. If the queue has finite capacity, then the number of customers 
lost per unit time (LC) increases as X increases, illustrated by Table 5. 

5.1.2. Service 

The number of service completions per unit time is p so the mean service 
time is 1/p. The exponential depends only on p. The optimization problem 
solution is given in Table 6. If ii is our fuzzy estimator of p, let [pl, pu] = 

[pl (a) ,  p2 (a)] = p[a] for some fixed a E [0, 1). 



Simulation of Fuzzy Systems I 49 

Table 6: Optimal Values of p E [pl ,  p,] = p[a] in the Exponential for Service in 
Simulation 

We interpret Table 6 as follows: (1) if we want to approximate the left end 
point of the interval x[a] use for p the left end point of the interval ~ [ a ] ;  and 
(2) if you want to approximate the right end point of the interval use for p 
the left end point of the interval p[a]. 

These results are also intuitive. Let p increase from its minimum pl to its 
maximum p,. All other parameters of the system are held fixed. This service 
station may have c (c 2 1) parallel and identical servers. The system consist- 
ing of this server and what comes before it becomes less congested. Fewer 
and fewer customers fill the queue in front of this server. This means that 
server utilization (mean value=U) decreases, the number of customers in the 
system (mean value=N) decreases and the time a customer spends in the sys- 
tem (mean value=R) also decreases. It is not clear what happens to the number 
of customers leaving the system per unit time (mean=X) since X = N/R. But 
the number leaving per unit time will not decrease, so X will increase. If the 
queue has finite capacity, then the number of customers lost per unit time (LC) 
decreases as p increases. These results are in Table 6. 

5.1.3. Results 

The results of our simulation, using GPSSJH ([12],[13]), are in Table 7. The 
simulation was run until 500,000 items left the servers. Notice that they are 
almost identical to the one-step results in Table 1. The key is to choose the 
values of X and p correctly. We could use Table 4 to pick X and p. However, 
for more complicated fuzzy systems we would not have the one-step results as 
in Table 4 and instead we would employ Tables 5 and 6. 
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----- 
Table 7: Simulation Values of U,N,X,R,LC.(c = 2, M = 4). 

Min I X I p 

0.0745 1 3 1 7 

5.2. Additional Case Studies 

In this and subsequent pages we relate studies which provide some insight into 
possible future effort. Some of them involve distributions of the mean values 
we have been observing and some remarks are given on programming detail. 
From here on, the study primarily involves SLX. Since some details are shared 
between it and GPSS/H, our discussion serves to illustrate a portion of the 
programming style used throughout the chapter. An SLX programming formu- 
lation for a single-server model appears in Figure 7 

arrivals: customer 
iat = rv-expo (random-stream1,arrival-rate) 
until-time = stop-time; 
enqueue queue; 
seize server; 

/ /  enter replaces seize for multiple servers 
/ /  (a capacity is defined in these cases) 

depart queue; 
advance rv-expo(random-stream2,service-rate); 
release server; 

/ /  leave replaces release for multiple servers 

Figure 7: Core Portion of SLX Program for Single-Server Queue with FIFO Queue 
Discipline. Comments Indicate Changes for Multi-Server Cases. 

The three lines of code starting at "arrivals: customer" are an SLX macro, 
which associates with an object type, here a "customer" object, and generates 
these objects according to the (random time) variable (rvexpo()), the exponen- 
tial service time associated with the Poisson arrival rate. These objects repre- 
sent the customers/requests for our system. Note that random stream control 
is in place here; the service rate utilizes another, different stream. Thus, we 
can e.g. change the arrival pattern (rate), for a new simulation run, while main- 
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taining the service pattern (rate) from the first run; we thereby secure a stream 
of requests that experience the same service response pattern and thus elim- 
inate spurious variation from also (haphazardly) varying the service. A stop 
time is a final feature of this macro, shutting off (unnecessary) generation of 
requests/customers which have no possible chance to be served. 

Several statements in the remaining lines of code can be seen to conju- 
gate each other, defining the starting and ending events of an activity: join- 
ing a queue, represented by the enqueue statement (with user-defined queue 
name) and leaving the same queue represented by a depart block (with the 
queue name). Similarly occupying the server (seize) and leaving the server 
(release) are conjugates. These conjugates are almost identical to ones used in 
GPSSJH. 

Carrying out our simulations requires deciding two main issues: 1) length 
of each model run and 2) replications. In the previous case, we used only one 
very long duration run in seeking to approximate a steady state or long-duration 
result, which we saw was a successful endeavor. In such a case replications 
are not used. Replications accommodate randomness of individual runs, espe- 
cially important in shorter runs, but more importantly provide distributions of 
our performance variables, which turn out to be useful in a number of ways. 
Sometimes, a few replications establish a solid mean with associated confi- 
dence intervals, making simulation effort minimal. A most important fact is 
that the knowledge we gain from these distributions is either not attainable or 
difficult to obtain in some, if not most, of the other methods presented in this 
paper. 

The mean value approach of this section employs the min and rnax ap- 
proach to the arrivalhervice rates that we used in the previous section and in 
the spreadsheet cases. In fact, these results were developed first and thus actu- 
ally preceded the other ones. 

Figure 8 relates a small part of a study with 5; = (3/4/5), p = (5/6/7), c = 1 
and a maximum number in the system fixed at M=4. The results aimed at the 
max throughput rate (X). Basic graphical output in Figure 8 (mean distribu- 
tions) is provided via one-line declarations (code not presented in the figure). 
The model uses short run times and multiple replications, achieving results 
quickly and accurately to two decimal places. It also gives deviation about the 
mean and min and max values. Because the runs are short, values beyond those 
permitted in the long-term runs appear; these are due to randomness of the sit- 
uation and provide some insights. In some cases, observations must be over a 
short period and so results like these help provide what is typical. It may be 
no coincidence that the rnax value (6.46) is similar to that from optimization 
models when the constraint on X's rnax is ignored. 
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Random Variable #Obs Mean Std Dev Minimum Maximum 
Throughput 1 0 0  4 . 5 1  0 .84  2 .45  6 . 4 6  

Lo Hi Freq 
2 . 0  2 .5  1 I 
2 . 5  3 . 0  6  1 
3 . 0  3 .5  6  1 
3 . 5  4 .0  1 6  1 
4 . 0  4 .5  1 2  1 
4 . 5  5 .0  2 9  1 
5 .0  5 . 5  2 0  1 
5 . 5  6 . 0  7 1 
6 .0  6 . 5  3  1 

Figure 8: Graphical Depiction (Edited) of Results from a Model Designed to Provide 
Maximum Throughput Rate (100 Model Replications). Each Run Involves Approxi- 
mately 100 Customers/Requests; c = 1, M = 4. 

FREQUENCY 

1 0 0  REPLICATIONS 
"Short Term Runs" 
(Min/Max X Regions) 

+ + + + + + +  + + + + + +  
+ + + + + + +  + + + + + + + +  
+ + + + + + + + +  + + + + + + + + + +  + 

0  ................................................. 
2 0 0  3 0 0  4 0 0  500  6 0 0  
AVERAGE THROUGHPUT (X) - Crisp Model Results 

Min X Region Max X Region 

Figure 9: Distributions of Min and Max Values of Modeled (100 Model Replica- 
tions; Approximately 100 Customers/Requests); c = 1, M = 4. X Values are Scaled 
by a Factor of 100. 
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Figure 9 shows the model result from a GPSSIH run and includes the mean 
distribution about the min value of X, as well as about the max, for c = 1 
and M = 4. X values are scaled by a factor of 100; the peaks around 300 
and 500 are actually at (a little less than) 3.0 and 5.0 and the reader can thus 
see the correspondence between this figure and its predecessor at the (higher 
value range of) points where they address the same situation. Short-term runs 
in this case involve approximately 100 customers/requests to complete service, 
complemented by 100 replications. 

Table 8 provides more details and includes another study with M=10. If we 
combine Figure 8's results with an analogous computation designed to obtain 
the minimum of X, again using the resulting mean of these computations, we 
get [2.82,4.52] for an a = 0 output for X. Similar arguments apply to the other 
variables. Table 8 contains a = 0 cut values determined by all styles of simula- 
tion reported here, optimization based methods, spreadsheet computations and 
(general, package-based) simulation. All of these methods produce essentially 
the same results. 

--- 
Table 8: Alpha=O Cut for Key Variables U ,  N, X and fi for c = 1 with M = 4 and 
M = 10. 

5.2.1. Exploring Potential in a = 1 Cut Models 

CASE: Single Server 

U - 
N 

In this section, we seek a method whereby we can exploit distributions from 
a = 1 cut models to estimate all alpha cuts. Our first attack is to effect a = 0 
cut values for the performance values. We employ a heuristic procedure, using 
a 99% confidence interval mimicking section 2's assumption on raw data used 
in characterizing input. The duration of the model runs allowed approximately 
100 customers/requests and the number of replications was 3000. This gives us 
the results in Figures 10 and 11. Figure 11 shows U in a close-up view where 
the reader can see the cut-off action. Notice that the 99% confidence interval 
is a good approximation to U[O] in Table 8. This heuristic undoubtedly needs 

Max Requests 
4 

[0.4201 ,0.7998] 
[0.6767,1.9965] 

Max Requests 
10 

[0.4297,0.9089] 
[0.7549,4.9928] 
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a better base than a "common" ground. In our premier example, however, 
it works fairly well as Figures 10 and 11 indicate and helps to establish that 
simulations have the potential to accomplish the desired task. 

5.2.2. Multiple a Cut (Spreadsheet-based) Models 

In our final effort, we developed multiple (five) a-cuts for the performance vari- --- 
ables we have been stressing: U ,  N, X and R, using the spreadsheet method 
and applying the same approach we used for the a = 0 calculations in sec- 
tion 4.3, but now at the multiple cuts (equally spaced) on the fuzzy (triangular) 
inputs. This gives us the fuzzy triangular shaped results portrayted in Figure 
12. 

6. CONCLUSIONS AND FUTURE RESEARCH 

We have considered several means for employing crisp analysis, modeling and 
simulation to estimate fuzzy outputs for fuzzy queuing systems models based 
on arrivalhervice rates (inter-event (time) intervals). The approach is comple- 
mented in a companion chapter, which builds models for similar ends but from 
a different starting point, i.e., a fuzzy (state) transition probability matrix. Gen- 
eral purpose simulation models constitute the central theme in this chapter, but 
other modeling tools play important roles. Table 9 provides an overview. (In it 
we abbreviate "Properties" as "Props" and ues "values" "variables.") 

Table 9: Overview of Simulations. See Text for Details and Abbreviations. 

ArrivaVService Rate Simulations 
I 

One-Step Optimization I Generate Performance Values 

- - * 

(Package) Simulation I Oueue Svstems Performance Values 

A - 
Two-step Optimization 
Queue Props Spreadsheet 
Queue Props Spreadsheet 

Generate Steady State Probabilities 
Generate Performance Values 
Generate Steady State Probabilities 

In our first round of modeling, we employed constrained optimization, us- 
ing established optimization packages, to produce fuzzy probability and fuzzy 
performance values from arrival and service rates. One consequence of these 
models was that they clearly depicted where minimum and maximum values 

(Package) Simulation 
(Package) Simulation 

Queue Systems Steady stateprobabilities 
Obtain a = O  cut & others from a=l cut 
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0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

Figure 10: U,N,X,R Distributions (c = 1, M = 4). 

Figure 11: Distribution of Utilization ( c  = I, M = 4). 
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alpha cuts for N 

U 

alpha cuts for X alpha cub for R 

---- 
Figure 12: Alpha Cut Estimates for Performance Variables, U ,  N ,  X, R for c = 1 
and c = 2, with M = 4). 

of fuzzy (range) estimates lie. Using this information we were able to effect 
simpler calculations in some cases, among them spreadsheet-based methods. 

In this second round of modeling, we developed dependencies of (average) 
response time and (average) throughput rate on maximum number of requests 
allowed in the system. We also developed trend lines for four of the perfor- 
mance variables on service rate, parameterized by number of servers and se- 
lected values of arrival rate (determined the end and middle points of our trian- 
gular fuzzy inputs). Finally, we developed candidate alpha cuts for these same 
performance variables but placed them at the end of the paper since a portion 
of the values seen there also were established in some of the simulation runs. 
The methods in these spreadsheet cases as well as in original optimization de- 
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pended heavily on the presence of pre-existing mathematical expressions which 
we could directly exploit. The simulation methods are not so restricted and can, 
with appropriate care, be used to develop results for cases in which there are 
no formulae in place. Some such work has already begun, with plans for more. 
A final note we make is that there are approximate mathematical results which 
seemingly would constitute a kind of intermediate state between closed form 
mathematics-based operations and simulation; such could well constitute a re- 
search topic in and of itself. 

Another satisfying result in our spreadsheet calculations was that they work 
not only for direct computation of performance values but also for the probabil- 
ities that precede them. We alluded to this development, stating that the results 
we obtained matched those of the optimization cases, and thus we dropped fur- 
ther discussion of the topic, noting that the results could be carried forward 
to the performance variables using the same optimization methods employed 
earlier in the paper (where we acquired performance values directly from the 
arrivaVservice rates by optimization methods). A possible research item lies in 
simplifying this step. 

In the first simulation model discussions, we developed a basis for model- 
ing systems employing long-term runs (to simulate long-term or steady (equi- 
librium) state solutions). These results, we saw, were well-founded in that they 
agreed with those produced in the other approaches. Their greatest benefit lies 
in providing base case(s) for more complex models for which no mathematical 
results are available. Current research in this direction is underway. 

In perhaps a more speculative, even heuristic mode, we sought to produce 
results with a minimum effort and certain added dimensions (for example, more 
transient behaviors). In some cases, very short runs with relatively few repli- 
cations have proved to be sufficient for baseline estimates. We also demon- 
strated, e.g., that shorter-term simulations readily reproduced values equal to 
and sometimes beyond the range of fuzzy calculations (where in the latter case 
we may, e.g., have simplified an optimization by relaxing (a) constraint(s)). 
These kinds of results typically involved exploiting opportunities in simulation 
packages' (output) frequency generation capabilities. These packages are "dis- 
tribution oriented" in their approach so that explorations beyond mean values, 
in many cases, are expedited. In a similar vein, we demonstrated a process of 
carrying out a single simulation, an a = 1 cut model, and utilizing it to obtain 
not only the a = 0 cut estimates but as many other cuts as we may desire; 
our demonstration was limited to five cuts. Simulations based on short-term 
model runs required associated replication schemes and we utilized relatively 
few replications, e.g., 100, in several cases, though we used many more (3000) 
in collateral runs to assess adequacy of the (former) choice. 
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Based on our study, crisp simulation has proved to be productive for fuzzy 
probability modeling. The simulation models are compact and relatively sim- 
ple to implement. Computation time has generally been much shorter com- 
pared to fuzzy computations they compete with. We hope that the methodol- 
ogy details we provided support other researchers' attempts to reproduce and 
extend our results. 

Other potentials of the simulation method are currently being explored, 
e.g., continuing the demonstrated value of simulation packages' output distri- 
bution generation capabilities. That shorter-term runs can be titrated for fuzzi- 
ness means that we can match fuzzy method results and, if desired, we can 
produce results that are more (less) fuzzy. A method applied to the conven- 
tionaVcrisp data (used first in this chapter on real world data to get modeling 
started) employed confidence intervals; justifications and choice of appropriate 
intervals need more research. Operating on cuts made on top of frequency dis- 
tributions emerging from stochastic modeling to project a-cuts of fuzzy num- 
bers may secure results for all cuts in a systematic procedure and is also a 
potential subject for additional research. 

Similarly, a future set of activities lies in reconciling the transition prob- 
ability approach (covered in the companion chapter in this volume) with this 
chapter's arrivaVservice rate approach. The transition probability matrices we 
have used in the companion chapter are general, i.e., they admit values any- 
where in the matrix, whereas the matrices corresponding to the arrivalhervice 
rate models are banded. In the latter set of circumstances, exact equivalence in 
results can be expected from the two approaches. Developing approximations 
for the general (transition matrix) setting (perhaps in conjunction with similar 
accommodations in the arrivaVservice rate setting) may help us realize how the 
two styles of modeling can complement each other under a broader range of 
options. 

Finally, challenges extend to other queuing situations, e.g., cases where 
servers operate at different rates and where dynamic effects occur, e.g., vary- 
ing numbers of servers or service rate changes based on moment-to-moment 
demand. In contrast to work reported here where our calculation schemes were 
related primarily to mathematic results (with projections under strict control), 
future work will relate simulation models among themselves, rooting them 
back, of course, to the mathematical bases. So far, fuzzy models have preceded 
the crisp analogs and have set a standard for the crisp systems to match. In the 
future, the situation may well be that crisp simulation will set some standards 
with fuzzy modeling enjoying the task to emulate. 
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Chapter 4 

SIMULATION OF FUZZY SYSTEMS I1 

James J. Buckley, Kevin D. Reilly and Xidong Zheng 

1 INTRODUCTION 

We begin in the next section with a discussion of our transition matrix based 
fuzzy probability queuing system model. This model is discussed in ([2],[4]) 
and so we need only present an overview. This is followed by our simulation 
methodology and results. We go through these fuzzy computations in detail so 
the reader can appreciate how the simulation method simplifies the process of 
going from initial data to the optimization models. 

However, the simulations sometimes produce fuzzy results at variance with 
the fuzzy calculations, ranging from less to equal on to more fuzzy. The matter 
will be discussed at appropriate points in succeeding sections and the reader 
will see that we have scored some significant successes while yet leaving open 
some fundamental questions for future research. Accordingly, the chapter's 
final section has, along with a summary, our plans for future research on the 
topic. This paper expands on previous work reported in conference papers 
[5],[17],[22],[23]. The notation used is the same as that employed in the previ- 
ous chapter. Also, for a brief review of the literature on (fuzzy) simulation of 
fuzzy systems see the previous chapter. 

2. FUZZY TRANSITION MATRIX MODEL 

In this section the mathematical background is presented, with pointers to some 
options for obtaining closed form and computational results. In the following 
section simulation approaches are outlined. As we will see, these interweave 
with mathematical arguments in several ways. 
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2.1. Fuzzy Transitions Overview 

In the web modeling context we may speak almost interchangeably of cus- 
tomers and requests in so far as requests initiate from web "customers." More 
generally, web customer requests generate additional requests but from several 
system points of view, e.g., load on the system, these can be addressed in a first 
approximation as new customers; linking requests tightly could lead to corre- 
lated phenomena that in principle add a great deal of difficulty to the modeling 
effort (fodder for additional research). In so far as all this is understood we can 
use "customers" without serious ambiguity. 

In the fuzzy transition probability model: (1) we first need to construct 
fuzzy numbers for p(i) = the probability that i customers arrive at the system 
during time interval S and for p = the probability that a customer leaves a server 
during time interval S given that the customer was in the server at the start of the 
time interval; (2) using the ~ ( i )  and jj calculate the fuzzy transition probabilities 
in a fuzzy transition matrix for a fuzzy, (usually) regular, Markov chain; (3) 
using the fuzzy transition matrix determine the fuzzy steady state probabilities; 
(4) using the fuzzy steady state probabilities compute the fuzzy numbers for 
system performance = server utilization, N = number of customers in the 
system, X = throughput, E = response time and LC = lost customers due to 
finite system capacity (see [14]); and (5) input the fuzzy numbers for system 
performance into optimization models to find the optimal mix of the variables 
(number of servers, capacity, ...) to m i d ,  m a x r ,  max fuzzy profit, etc. 

2.2. Fuzzy Numbers for Probabilities 

We will measure changes in our system at time intervals 6. This time interval 
may be one second, or 0.1 second, etc. We first need to gather data about 
the system, like the probability that i customers arrive during time interval 6. 
Suppose we observe the system during N time periods and find that there have 
been ni times that i customers have arrived for service, i = 0,1,2,3. ... We 
would expect, from practical considerations, that there is some positive integer 
L so that ni = 0 for i > L. Let p(i) be the probability that i customers arrive 
during time period 6, i = 0,1,2,3, ..., L. Then a point estimate of p(i) is 
simply ni/N. However, to show our uncertainty in this estimate we may also 
compute a confidence interval for p(i). 

We propose to find the (1 - P)100% confidence interval for p(i), for all 
0.01 5 ,f3 < 1. Starting at 0.01 is arbitrary and you could begin at 0.001, or 
0.005, etc. Denote these confidence intervals as 
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for 0.01 5 p < 1. Add to this the interval [ni/N, ni/N] for the 0% confidence 
interval for p(i). Then we have a (1 - /3)100% confidence interval for p(i) for 
0.01 5 p 5 1. 

Now place these confidence intervals, one on top of the other, to produce a 
triangular shaped fuzzy number ~ ( i )  whose a-cuts are the confidence intervals. 
We have 

m [a1 = [ d i l l  ( 4 ,  p(i)2 (41, (2) 

for 0.01 5 a 5 1. All that is needed is to finish the "bottom" of p(i) to make it 
a complete fuzzy number. We will simply drop the graph of ~ ( i )  straight down 
to complete its a-cuts so 

for 0 5 a < 0.01. In this way we are using more information in p(i) than 
just a point estimate, or just a single interval estimate. Notice that p(i) [0] is the 
99% confidence interval for p(i). See also section 2.1 and 2.2 in the previous 
chapter. 

We may do the same to obtain F. For simplicity, throughout the rest of 
this paper we will always use triangular fuzzy numbers for the fuzzy values of 
uncertain probabilities. 

2.3. Fuzzy Transition Probabilities 

We first need to explain how the system can change at the end of each time 
interval 6. System changes can occur only at the end of a time interval 6. This 
time interval may be one second, one minute, one hour, etc. During a time 
interval 6: (1) customers may arrive at the system but are only allowed into the 
system at the end of the time interval; (2) customers may leave the servers but 
are allowed to return to the calling source only at the end of the time interval; 
(3) at the end of the time interval all customers in the queue (in the system but 
not in the servers) are allowed to fill the empty servers; and (4) all customers 
who arrived are allowed into the system to fill empty servers or go into queue 
up to capacity M with all others, it may be assumed, returning to the calling 
source. System changes can occur only at times t = 6, 26,36, ... 

Let p(i) be the crisp probability that i customers arrive at the system during 
a time interval 6, i = 0,1,2,3, ... Then Ego p(i) = 1. Next let q(lls) be the 
probability that, during a time interval 6, 1 customers in the servers complete 
service and are waiting to return to the calling source at the end of the time 
interval, given that s servers are full of customers at the start of the time period, 
for I = 0,1,2, ..., s and s = 0,1,2,3, ... c. c = the number of parallel and 
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identical servers in the system. Then q(lls) = 1 for each s. Next we 
construct the transition matrix P .  The rows of P are labeled O,1,2,3, ..., M 
representing the system state at the start of the time period and the columns of 
P are labeled O,1,2,3, . .. , M representing the system state at the beginning of 
the next period. (See a c = 1 and M = 4 case in Table 1.) 

Letusnowassumethatc = 2and M = 10. S o P i s  1 1 x  11. Let P = ( p i j )  
and we first need expressions for all the pij which are fuzzified to pij and the 
fuzzy transition matrix is H = (pij) .  As an example let us look at 

Fuzzy numbers for the q(i12), i = 0,1,2,  must be computed, assuming we 
have the fuzzy numbers for the ~ ( i ) .  

Let p be the crisp probability that a customer leaves a server during time 
period 6. Then we have a binomial probability distribution for the crisp q(i1s) 

But now we have fuzzy probability p so we get the fuzzy binomial [I]. Hence 

which is computed by a-cuts 

for all a in [0, 11. 
Now we return to p6,10 which is evaluated by a-cuts 

for all alpha, where S is the statement " p ( i )  E ~ ( i ) [ a ] ,  0 < i 5 10, p(0) + 
... + p(10) = 1, q(i12) E q(i l2)[a],  i = 1,2 ,3 ,  4012) + 4112) + q(212) = 
1". This is restricted fuzzy arithmetic where we require the sums of the p(i) ,  
and the q(i12), to equal one (see [1],[2],[10]-[12],[151,[161). Let F ~ , J ~ [ ~ ]  = 
[ T ~  (a) ,  r2 (a)] Then we have an optimization problem 
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all alpha, subject to the linear constraints in S. The solution to these optimiza- 
tion problems can be: (1) easy (common sense); (2) easy using differential 
calculus (if a partial on a variable is positive, then it is an increasing func- 
tion of that variable); (3) solved by linear programming (using, e.g., Matlab or 
Maple 1131); (4) solved by non-linear programming using, e.g., the Premium 
Solver Platform V5.0 from Frontline Systems [7] or ( 5 )  solved by methods 
such as genetic algorithms (GA). In general, the Premium Solver Platform and 
GAS can handle many of these problems. The GAS have played a kind of "uni- 
form" approach to a wide variety of problems; they often play a lead role in 
explorations because of their flexibility. Also, they can be modified to solve 
potentially more complex problems than we have addressed so far. Thus, hav- 
ing software available that has been used by a team of researchers is a benefit 
in and of itself. An agent "theme" [18]-[21] comes to mind (and is mentioned 
briefly at other points of the paper) with an agent "node" in a ready state to 
participate in overall computational schemes, e.g., to confirm other solutions 
and to play the lead role in establishing results that other methods can later aim 
at, with a goal of more efficient and compact solutions. We foresee a triumvi- 
rate of calculation schemes all bearing a simulation mode of operation as their 
prime or secondary focus, complementing mathematical analysis, as a means 
to attack the problems of interest. 

We now assume we have the needed a-cuts of all the Ej in P. 

2.4 Fuzzy Steady State Probabilities 

Let P be the transition matrix for a regular Markov chain. Here we number the 
rows/columns 0,1,2, .. . , M for M system capacity. We say that the Markov 

(k) chain is regular if Pk > 0 for some k ,  which is pij > 0 for all i, j. This means 
that it is possible to go from any state Si to any state Sj in k steps. A property 
of regular Markov chains is that powers of P converge, or lim,,, Pn = II, 
where the rows of II are identical. Let w be the unique left eigenvalue of P 
corresponding to eigenvalue one, so that wi > 0 all i and CK-, wi = 1. That 
is w P  = w for 1 x (M + 1) vector w. Each row in II is equal to w and 
p(,) + p(O)II = w. In this last expression p(,) is the vector of probabilities of 
being in state Si after n steps and p(O) is the vector of initial probabilities. After 
a long time, regarding each step as a time interval, the probability of being in 
state Si is wi, 0 5 i 5 M, independent of the initial conditions p(O). In a 
regular Markov chain the process goes on forever jumping from state to state, 
to state, ... 
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Now proceed to a fuzzy finite, regular, Markov chain by substituting the 
Pij ,  from the previous subsection, for the pij producing a fuzzy transition ma- 
trix P. 

The uncertainty is in some of the pij values but not in the fact that the rows 
in the transition matrix must be discrete probability distributions (row sums 
equal one). So we now put the following restriction on the values: there 
are pij E Pij [ I ]  so that P = (pij)  is the transition matrix for a finite Markov 
chain (row sums one). At this point P is a ( M  + 1) x ( M  + 1) matrix with 
rows/columns numbered O,1,2, . . . , M .  We will need the following definitions 
for our restricted fuzzy matrix multiplication. Pick and fix an a in [0, 11. Define 
Dom[a] as the set of all pij E Pij [a],  0 5 i, j L: M ,  so that if we form a 
transition matrix P = (pi j)  with these pij all the row sums equal one. Define 
v = (poo, pol, .. . , P M M ) .  ROW vector v is just all the pij in a transition matrix 
P = (pij). Then Dom[a] is all the vectors v, where the pij are in the alpha-cut 
of Pij all i,  j, so that P is the transition matrix for a finite Markov chain. In this 
chapter let us assume that P is regular. 

For each v E Dom[a] set P = (pi j)  and we get Pn -t II. Let r ( a )  = 

{wlwP = w,  0 < wi < 1, wo + ... + W M  = 1, v E Dom[a]). r ( a )  consists 
of all vectors w, which are the rows in 11, for all v E Dom[a]. Now the rows 
in will be all the same so let E = (C o...., E M )  be a row in n. Also, let 
- 
wj[a]  = [wj l (a ) ,  w j2 (a ) ] ,  for 0 < j < M .  Then [3] 

and 
wj2(a) = max{wj lw E r ( a ) ) ,  

where wj is the jth component in the vector w. The steady state fuzzy prob- 
abilities are : (1) Eo = the fuzzy probability of the system being empty; (2) 
- wl = the fuzzy probability of one customer in the system; etc. 

In general, the solutions to equations (12) and (13) will be computation- 
ally difficult. We used both a genetic algorithm [2] and the Premium Solver 
Platform V5.0 [7] to get a-cuts for the fuzzy steady state probabilities. 

2.5 Fuzzy System Performance Variables 

We first discuss the computing of V =server utilization, N =expected number 
of customers in the system and =average server throughput because they all 
involve solving a linear programming problem. Then R = average response 

-- 
time is simply NIX evaluated using alpha-cuts. Finally we see how to get 
- 
LC = the expected number of lost customers per unit time due to finite system 
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capacity. To motivate the fuzzy calculations we will first present the crisp defi- 
nition. The crisp fuzzy steady state probabilities are wi, 0 < i < M and crisp 
p is the probability that a customer leaves a server during the time interval. Let 
us assume that there are now two servers (c = 2) in the system. 

A crisp definition of U could be expressed as 

which is the probability that both servers are busy. An alternative is for either 
one of the servers or both to be busy and we calculate it as well at times. A 
further wrinkle occurs, i.e., a simulation package may centralize on average 
contents of its multiple server components. For the most part we need not get 
bogged down by these nuances and just go with one definition until another is 
called for, e.g., by some model user. Accordingly, we continue from our first 
definition: U x 100 then gives the percentage of time we expect both servers 
to be busy. In the fuzzy case 

and is evaluated by a-cuts 

for all a ,  where S is "wi E ~ ~ [ a ] ,  0 < i < M, wo + ... WM = 1". This is re- 
stricted fuzzy arithmetic, first presented in ([lo]-[12],[15],[16]). Notice that we 
cannot simply add up the ;iiii for i = 2,3, . . . , M because it may result in a fuzzy 
number not in the interval [0, 11. The restriction is that the sum of the wi must 
equal one so that it is a discrete probability distribution. Also see ([1],[2],[4]) 
for more details on restricted fuzzy arithmetic applied to this type of calcula- 
tion. We compute the alpha-cuts of v by solving a linear programming prob- 
lem. Let wi [a] = [wil (a), win (a)], 0 I i I M. Let v[a] = [ul (a), u2 (a)] 
The objective functions are 

subject to constraints 
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The solution to the rnin (max) problem gives u l  (a )  (u2 (a)). 
N is just the expected number of customers in the system 

and is determined by its a-cuts 

The end points of the interval r [a]  = [nl (a),  n2(a)] may also be found by 
solving linear programming problems 

subject to the same constraints given above. We get n l ( a )  (n2(a)) from the 
min (max) problem. 

X is the expected number of customers leaving the system per time period 
6. We first derive a crisp expression for X and then fuzzify it. Define L(i), 
i = 0,1,2, to be the probability that i customers leave a server at the end of the 
time period, with no conditions on how many servers were busy at the start of 
the time period. Then we see that 

where U2 = w:! + ... + WM. Also 

and 
L(2) = p2u2. 

In the above equations the factors (1 - P ) ~ ,  2p(l-  p) and p2 come from the bi- 
nomial probability distribution. In the binomial probability distribution b(n, p), 
n is the number of independent experiments and p is the probability of a "suc- 
cess". Here n = 2 and a success is for a customer to leave a server. So, p2 is 
the probability of two successes in two trials, 2p(1 - p) is the probability of 
one success in two trials and (1 - p)2 is the probability of no successes in two 
trials. Then 

x = OL(0) + lL(1) + 2L(2), (25) 
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which simplifies to 
X = pw1 + 2pU2. 

Therefore, in the fuzzy case = pEl  + 2pu2 which is evaluated by a-cuts 

whereSis6'p E p[a], wi E w ~ [ ~ ] , O  5 i  5 M ,  wo+ ...+ W M  = 19?with 
u2 = W2 + ... + WM. 

Let z[a] = [ X I  (a) ,  x2 (a)] and let p[a] = bl (a) ,  pa (a)].  Then we may 
obtain the end points of the alpha-cut interval of by solving the following 
non-linear programming problems 

and 

X Z ( ~ )  = max{~2(a)w1 + 2p2(a) [w2 + . .a  + w M ] } ,  Q9) 

for all alpha, subject to the linear constraints in S. 
Finally we need to determine LC. We first find the crisp expression for 

the expected number of requests (customers) rejected per unit time due to finite 
system capacity and then fuzzify it. Now W M  x 100, W M  being the probability 
of the system being full, is the percent of requests rejected per unit time. Let A 
be the expected number of customers arriving at the system per unit time. Then 
the expected number of customers lost per unit time (LC) would be wMA.  It 
follows that 

L 

LC = w M A  = W M  ip( i ) ,  (30) 
i=O 

where p(i) is the probability that i  customers arrive during the unit time interval 
and we have assumed that p(i) = 0 for i > L. Hence 

to be evaluated by a-cuts and restricted fuzzy arithmetic. We get EM from 
the fuzzy steady state probabilities and the p(i) are calculated from data. M is 
system capacity and E M  is the fuzzy steady state probability that the system 
(servers and queue) is full. 

Let E [ a ]  = [Zcl (a) ,  Zc2 (a)] and wM [a] = [wMl (a ) ,  wM2 ( a ) ] .  ~ 1 1  we 
need to get is K[a] = [Al ( a ) ,  A2(a)] because then Zci(a) = wMi(a)Ai(a) ,  
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i = 1,2, all alpha. We obtain values for Xi (a) from linear programming com- 
putation. 

h ( a )  = min(lp(1) + 2p(2) + ... + Mp(M)) (32) 

and 
Xz(a) = max(lp(1) + 2p(2) + ..- + MP(M)), (33) 

all alpha, subject to the constraints 

Having fuzzy numbers for system performance we go on to final models 
for costs, benefits, and related quantities. 

2.6 Final Fuzzy Optimizations 

The final computations involve optimizations that, since ([2],[4]) cover them, 
we need only briefly overview them here. Input variables over which these 
optimizations occur include some already seen above and others: (1) c, the 
number of servers; (2) type of server (different values for ij3; (3) M system 
capacity; and (4) different arrival rates ( ~ ( i ) )  due to advertising the web site. 
The system operates under different "times" : (1) normal time; (2) bursty time 
([14], Chapter 8); and (3) long tailed distribution time ([14], Chapter 8). We 
want to, e.g.: (1) minR and max77; (2) max fuzzy profit; and (3) minLC. 
Different optimization methods are used: (1) analytical; (2) ranking the fuzzy 
numbers; and (3) using "ideal" points. 

3. SIMULATION-OPTIMIZATION VIA GAS 

In this section we describe several simulation approaches based on fuzzy tran- 
sition matrices, with the principal targets from the previous discourse being: - - - -  
estimates of a-cuts of fuzzy system performance values such as U, N, X, R, 
and LC. The methods either compute the steady state probabilities on the way 
to the performance variables and can, thereby, be targeted at the probabilities 
themselves in some circumstances where these values can compare with extant 
results andlor pave the way to new ones. 

The approaches include: (1) a genetic algorithm (GA) simulation followed 
by a linear optimization, developing first intermediate (fuzzy) steady state prob- 
abilities and then the performance values; and (2) an "ab initio" simulation 
using a =I  cuts of the fuzzy transition probability matrix values. The simu- 
lation, in this case, is a crisp one. It can therefore be developed with simpler 
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software configurations. We have chosen the same software we used in the pre- 
vious chapter. Most important, however, is how replicated crisp simulations, at 
an approximate level, can provide estimates, from output (frequency) distribu- 
tions, for the fuzzy performance variables for any a-cut. The approach is direct 
and its "cost," relative to the first approach, is low. 

Section 4.1 addresses the first (GA) case, whereas section 5.1 addresses 
the crisp a = 1 case. A topic of interest, we reiterate, concerns the relative 
fuzziness of simulation results and those from other (fuzzy) methods. Section 
5.2 treats this matter. 

3.1 A Genetic Algorithm Based Simulation Approach 

Let us first describe the feasible set F for the genetic algorithm. We first set 
v  = (poo, p12, ..., P M M )  a 1 x ( M  + vector of all the probabilities in a 
(M + 1) x ( M  + 1) transition matrix P = (pi j )  for a regular Markov chain. 
Let Pij [a]  = [I) i j l  ( a ) ,  pij2(a)]. NOW F consists of all v  SO that 

for i = 0, ..., M (all the row sums are one). It is important that this F is convex. 
What this means is that if va and v b  are in F, then so is vC where 

for all 0 < X < 1. This fact will be used in the crossover operation in the 
genetic algorithm. 

What we need to describe is the initial population Po, the fitness function, 
crossover, mutation and the next generation P I .  The initial population Po is 
just a set of K randomly generated vi E F. To describe the construction of 
the next population let v  E % and using this v construct the transition matrix 
P = (pij) .  Next compute the vector w = (wo, . . . , w M )  so that 

Let w(" = ( w t ) ,  ..., w$),  1  < i < K ,  be all the vectors w obtained from 
equation (38) using all the v E Po. Let E~ [a] = [wil ( a ) ,  wi2 (a ) ] .  Suppose in 
this run of the genetic algorithm we are looking for w3l ( a )  the left end point of 

the interval m3[a]. We now sort the w!) , 1 < i < K,  from smallest to largest. 
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The crossover operation generates possibly a new population member from 
two elements in Po. We will randomly choose two members of Po for crossover. 
But first we randomly choose two w from the set w ( ~ ) ,  1 5 i 5 K. In this ran- 
dom process it will be more likely that we pick a w ( ~ )  having a smaller value 
of w f )  than from those having the larger values of w f )  (this is easily accom- 
plished from the sorting described above). Suppose we picked w a  and wb. 
These two then correspond to va and v b  in Po. From va and v b  we determine 
vC E F as follows: 

vC = Xua + ( 1  - X)vb. (39) 

This vC is in F for any X E [O,l]. A value of X is randomly generated to get vC. 
Generate around I of the v C  in this manner and put them all in Po. Calculate 
their corresponding vectors w. Notice that Po has grown to be more than K 
members. 

Next we discuss mutation. To do this we need to consider the following 
equation: 

M-1 

1 - ~ i ~ 2 ( a )  5 pij 5 1 - P ~ M I ( ~ ) ,  (40) 
j=1 

for i = 0, . .. , M. We next randomly choose a few (maybe J )  v from Po for 
mutation. Suppose v = (pool . .. , p M M )  was chosen. Randomly choose an 
element in v which is not p i M ,  0 5 i 5 M (not the end of a row in P). 
Assume we picked P46. NOW 

Randomly choose a value in this interval [1)461 ( a ) ,  p462 (a)] .  Assume we got 
pi,. If equation (40) is satisfied for this pi6 = p46 we keep it, otherwise it is 
discarded and we randomly choose another value in the interval. So assume 
that we keep this ~ $ 6 .  Substitute plr6 for p46 in v. Now adjust the value of p4M 

so that the fourth row sum is one (we may always do this since equation (40) 
was satisfied). We now have a new (mutated) v in Po. After doing this maybe 
J times we have introduced new mutated members into Po. For all the mutated 
v compute their corresponding vectors w, discard the old values w. 

Now sort all the w f )  from smallest to largest for all the v in Po and choose 

the K smallest. Determine the v in Po corresponding to the K smallest w f ) ,  
these v are the next generation P1. 

Continue through this process of getting Pi, calculating the vectors w, sort- 
ing, crossover and mutation for O generations. We usually used around 200 
generations. Then we will have a good estimate of wsl (a) .  This is repeated to 



Simulation of Fuzzy Systems II 73 

estimate all the end points of the alpha-cuts of the fuzzy steady state probabili- 
ties. 

In our initial applications of the genetic algorithm we experimented with 
different sizes for Po and different values for 0. We usually used K = 100 for 
the size of the initial population and had values between 200 and 700 for 0. 

In our previous experience with other genetic algorithms we noticed that 
too often crossover produces a result not in the feasible set. In fact the algo- 
rithm can spend too much time discarding the results of crossover because they 
are not in 3. The same result may occur in mutation. Since 3 is convex our 
crossover always gives a result in the feasible set. 

Looking at the optimal solutions, especially the 11 x 11 case, we found 
that the optimal v was quite often on the boundary of 3. The solution v is on 
the boundary of 3 when one, or more, of the inequalities in equation (35) is 
an equality. So in the genetic algorithm we need population members v E Pi 
on the boundary of 3. Notice that crossover, equation (39), always gives a vC 
"between" va and vb. SO employing only crossover new populations will tend 
to migrate to the "center" of 3. Hence, the important operation of mutation 
is to make some v exist on, or near, the boundary of 3. We can get v from 
mutation on, or near, the boundary of F by having it more likely that the pij 
we choose in [pijl (a),pija(a)] is at, or near, the end points of the interval. 

4. GENETIC ALGORITHM EXAMPLES 

We will now present two numerical examples. Both of them are single server 
(c=l) cases, but the maximum number of customers in the system differs. Both 
utilize fuzzy triangular transition matrices. 

4.1 Case: c=1, M=4 

We first consider a case where M=4 and c=l. The triangular fuzzy transition 
probabilities are given in Table 1. The table only shows the base of the triangle 
and the vertex is at, or near, the midpoint of the base, the former case when the 
triangular fuzzy transition probability is symmetric. 

The computation first obtains the fuzzy steady state probabilities using the 
genetic algorithm (GA). We present these results in Table 2. For the problem 
at hand, we can see that transitions toward more occupied states occur and the 
resulting system is a very busy one, as we would expect. 

After computing these values we progress to the results for the key perfor- - - -  
mance entities U ,  N, X, and R. These results are displayed in Table 3. 
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Table 1: Fuzzy Probability Matrix (M=4, e l ) .  

Table 2: GA Result: Alpha Zero Cut Fuzzy Steady State Probabilities (M=4, c=l). 

Go [O] = [.OOOO, .OOOO] 
GI [0] = [.OOOO, .0006] 
E2 [0] = [.0006, .0070] 
E3 [0] = [.0236, .0804] 
G4 [0] = [.9122, .9758] 

The results that Table 3 portrays are (again) achieved via optimizations as 
outlined in section 2.5. According to remarks of the preceding paragraph we 
expect to and do indeed find a maximal steady state utilization. Correspond- 
ingly, ?i is near its maximum value too. And so on with other variables' final 
disposition. 

4.2 Case: c=1, M=lO 

In another case, M=lO and c=l (see Table 4 for the input), the computation 
takes slightly over 3 minutes. The fuzzy steady state probabilities and the U, - - -  
N, X, R results are given in Table 5 and Table 6, respectively. Several cases 
where the probabilities are near zero appear in the output as a result of the 
double precision arithmetic. Note that utilization, again, is very high. Recall 
that obtaining the fuzzy system performance result is a separate computation 
after securing the probabilities. 

4.3 Computational Steps 

The computations here utilize the Matlab optimization package. The compu- 
tational details are important for more than one reason. A first is universal: 
to lay out matters so the calculations can be confirmed (and extended if de- 
sired) by other researchers. A second is that our current work is a predecessor 
of some agent style computing [18]-[21], a mode, we interpret, as calling for 
explicit solution patterns for the "domain" problem (to offset complexities in 



simulation o f  Fuzzy Systems I1 75 

Table 3: GA Result: Alpha Zero Cut Fuzzy System Performance Variables (M=4, 
c=l) 

the networking and brokering features) and to facilitate a set of collaborators to 
engage in this kind of modeling effort. In addition, though we have not encoun- 
tered time-consuming calculations so far, they are in the offing. Since some of 
our attempted calculations have already resisted facile solution, e.g., in one 
case, an inability to get a calculation initiated (might we add, with somewhat 
pricey software) we seek to promote dialog on better or alternative approaches 
to these computations. 

The results we produce here are from successful use of the Matlab opti- 
mization toolkit, where another package failed on the larger of our two exam- 
ples. We have yet to "push the envelope" on Matlab for these kinds of calcu- 
lations so our previous paragraph comments must be nuanced to recognize this 
point. The calculation can be centered on a collection of (secondary storage) 
files, which are loaded into main memory at computation time: 

1. a constraint file representing the law on probability sums; 

2. an objective function file for computing directly from (the steady state) 
probabilities (e.g. equations (14), (19), (26) in section 2.5); 

3. a file connecting Items 1 and 2, utilizing the fmincon() built-in function 
whose description follows. 

Our Matlab call is: 
[x, fval] = fmincon(@objfun, xO,[],[],[],[],lb,ub, @confun,options) 

where x is the array of steady state probabilities fval is the max (or min) 
value sought, e.g., utilization, etc. mincon is a noted in Item 3 objfun is the 
objective function (Item 2) xO initializes x, (an array of all 0's suffices in our 
work) [I ... [I are not used in these calculations lb is the lower bound (array) 
for x ub is the upper bound (array) for x confun relates to Item 1 options 
is not used (left at its default) 

The GA (part of the) calculation in this example (computing the steady 
state probabilities from the fuzzy transition matrix) requires about 112 minute 
(elapsed time). 
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Table 4: Fuzzy Probability Matrix (M=10, c=l). 

0 1 2 3 4 5 
0 [.070,.130] [.260,.340] [.170,.230] [.070,.130] [.070,.130] [.070,.130] 
1 [.021,.065] [.127,.235][.215,.307] [.120,.200][.070,.130][.070,.130] 
2 [.OOO,.OOO] [.021,.065] [.127,.235] [.215,.307] [.120,.200] [.070,.130] 
3 [.OOO,.OOO] [.OOO,.OOO] [.021,.065] [.127,.235] [.215,.307] [. 120,.200] 
4 [.OOO,.OOO] [.OOO,.OOO] [.OOO,.OOO] [.021,.065] [.127,.235] [.215,.307] 
5 [.OOO,.OOO] [.OOO,.OOO] [.OOO,.OOO] [.OOO,.OOO] [.02 1 ,.O65] [. l27,.235] 
6 [.OOO,.OOO] [.OOO,.OOO] [.OOO,.OOO] [.OOO,.OOO] [.000,.000] [.02 1 ,.O65] 
7 [.000,.000] [.000,.000] [.000,.000] [.000,.000] [.000,.000] [.000,.000] 
8 [.000,.000] [.000,.000] [.000,.000] [.000,.000] [.000,.000] [.000,.000] 
9 [.000,.000] [.000,.000] [.000,.000] [.000,.000] [.000,.000] [.000,.000] 
10 [.000,.000] [.000,.000] [.000,.000] [.000,.000] [.000,.000] [.000,.000] 

Table 5: GA Result: Alpha Zero Cut Fuzzy Steady State Probabilities (M=10, c=l). 

TiJ0[0]=[0.000000000000007105, 0.000000000003795853] 
GI [0]=[0.000000000000091421,0.000000000071027725] 
TiJ2 [O]= [0.000000000001978444,0.000000000971756618] 
T& [O]= [0.000000000024610896,0.000000013284027083] 
TiJ4 [O]= [0.000000000684154316,0.000000203856567872] 
TiJ5 [O]= [0.000000015516770088,0.000003296945473752] 
Ws [O]= [0.000000488650614631,0.000043420172617435] 
E7[O]= [0.000017131017363733,0.000521541283974432] 
VJ8[O]= [0.000603983775910370,0.006225593230155810] 
E9[O]= [0.023680832253123528,0.079328046405422153] 
TiJij,o[O]=[0.925054143853171710, 0.972922528990218140] 

Table 6: GA Result: Alpha Zero Cut Fuzzy System Performance Variables (M=10, 
c=l). 

- - 
U[O] = [1.000,1.000] N[O] = [9.9139,9.9723] - - 
X[0] = [O.3OO, 0.5001 R[O] = [l9.828,33.241] 
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5. CRISP SIMULATION (PACKAGE) APPROACHES 

In this section we lay out an approach that is illustrated through a case study 
and has in it ingredients that can be used to solve a potentially large variety 
of problems. What we present is not the only attack we are making on the 
fuzzy matrix probability problem. Another approaches the fuzzy probability 
matrix through various sampling schemes; reference [22] shows some an ear- 
lier attempt that was successful in speed-up but not in accuracy (relative to the 
GAS). A new round of attack aims at improvements that are closer in spirit to 
the mainline attack of this section. With some still unresolved issues and scope 
limitations on the chapter we do not cover it here. 

We also like to compare and contrast the present methods with those based 
on arrival and service rates in the companion chapter. We start with contrast. 
The latter, so far, are based primarily on (mathematical) foundations given by, 
e.g., [6] and [14], and remain strongly tied to them. Meanwhile, though, intense 
research is being pursued to move out into building a family of simulations that 
grow via relating new simulations to other, prior, simulations and ultimately 
back to models very close to the mathematical roots. 

On the "compare" side, the same software is used here and in the com- 
panion paper, namely, SLX and GPSSIH [8],[9]. Though not (yet) a seamless 
integration, the potential exists for exploring models formulated in one purview 
to those in the other. SLX has been the prime software choice in the present 
study while the latter has been used repeatedly for supporting computation and 
confirmations. In the companion chapter, the two systems are in an almost 
equal balance. Much of calculation we report, then, has been done in repli- 
cation mode and with variant styles - across platforms. Securing accuracy 
through confirmed results is not the whole story, support of the agent theme 
[ 181-[21] being another. 

The simulation system we will develop for transition probability based ar- 
guments is called SIMcs. It computes values of the performance variables 
mentioned above (i.e., utilization, number of customers in the system, through- 
put per unit time, and average response time). In the current discourse, we 
simply bypass the stage of developing the state probabilities. 

The values that emerge from the simulations are stochastic and ("princi- 
pled") means (still being sought) are needed to infer fuzzy values from them. 
Fortunately, the companion chapter provides a lead for a prime option we use 
here. It is not the first and simplest method to configure a calculation so that 
the end points of a desired fuzzy variable range are estimated from mean val- 
ues emerging from the simulation distributions. While this method is most 
productive in models based on arrival and service rates, its utility for the tran- 
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sition matrix approach seems limited. The base problem is that there are far 
too many choices to be made from the values in the matrices we have worked 
with, i.e. not ones restricted to tridiagonal form most closely tied to arrival and 
service rate approach. (Review of the section on GAS in this chapter helps to 
substantiate this claim.) 

The alternative of choice is to derive information from the alpha=l situ- 
ation, specifically, via the (frequency) distributions the solutions provide. Our 
proposed heuristic is that used in establishing alpha cuts from real-world, prob- 
abilistic data (see section 2.2) and used in a case study in the companion chap- 
ter. That is, we choose some confidence interval based on the output distri- 
butions. The lower the cut the broader the confidence interval, the aim being 
to utilize the alpha=l cut to obtain any other cuts we may like. The sim- 
ulated stochastic outputs result from replicated runs, the extent of which we 
must choose, along with the number of replications. These choices can be ad- 
dressed by features such as stability, as our case study below demonstrates. The 
choices are being pursued in yet a few other ways, some of which we elude to 
in subsequent text. Let us now present some up-close action in this mode of 
modeling. 

5.1 The a = 1 Cut Model 

We begin simulation modeling for the a = 1 cut. In this case, the fuzzy input 
and output become crisp. We shall see soon how we employ these values for 
estimating other alpha cuts, particularly a = 0. This simulation can be ex- 
pressed as in (42), which expresses the expected response time < R > in terms 
of our simulation system SIMcs: 

where inputs include c, M ,  pij, where c = the number of servers, M = system 
capacity, and fij = the entries from the fuzzy transition matrix. More specif- 
ically, for the present effort dealing only with the a = 1 cut, we can identify 
the center points of assumed triangular fuzzy numbers we are using as Fij [I], 
or more simply, as < pij >, reflecting its crispness. 

A transition diagram for a particular case may help. Figure 1 is for M=4; 
the transition probabilities in this figure, by their origin, are crisp values. The 
diagram is general with respect to choices for c, the number of servers. 

A numerical example consistent with the figure is given in Table 7. The 
table is based on the earlier fuzzy transition matrix case in Table 1. Comparison 
of the tables reveals that the (crisp) entries in this (new) table are the midpoints, 
or near the midpoint, of the earlier (fuzzy) one. To develop the present table, 
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we must set the value of c. Cursory examination of the table reveals we are 
actually depicting a c = 1 system. Recall, that under the earlier assumption 
there can be multiple arrivals but only a single departure over a 6 interval. 
Thus, all transitions from higher number states to lower ones are zero except 
when the states differ by one customer (request). 

These table values are employed in the (crisp) simulations. From these 
simulations we will establish frequency distributions of our quantities of inter- 
est. For the a = 1 case, the means of these distributions will fall at the same 
points of a = 1 case in the GA (and other optimization) approaches. The dis- 
tributions themselves will be used heuristically for other alpha cuts (the zero 
cut being the emphasis here). 

Note in passing, that we can get the a = 1 cut's mean values more sim- 
ply than from carrying out simulations. For example, the numbers of Table 7 
were used directly in Matlab (matrix) calculations to obtain steady state a = 1 
cut results (e.g., using matrix powers or eigenvalue analysis; see [2] for exam- 
ple). These calculations provide solutions for the a = 1 cut but not for other 
cuts. The solutions we present below, based on simulation output (frequency) 
distributions can estimate any of the cuts, say, our (primary) desired a = 0 cut. 

The transition diagram provides a guide to the core portion of the program 
describing the transitions. Figure 2 shows coding for our M = 4 case. A switch 
construct is used along with case enumeration for program control transfers; in 
larger examples other constructions can shorten the code. 

Node-1 can be taken as the current node and Node becomes node the next 
state node (determined by one of the random functions Transi() (see next para- 
graph). The tabulate expression is of interest in that the language of choice, 
SLX, provides an easy means to generate frequency distributions and plots as- 
sociated with them: NodeTab, defined as random-variable (not shown) takes on 
a Node value which is then entered into a (pre-defined) frequency distribution. 

The Trans10 ... Trans50 functions are similar and so we explain only one 
of them (refer to Figure 3). Translo's "discrete-empirical" (SLX) function de- 

Table 7: Crisp Transition Matrix for Alpha=One Simulation. 
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Figure 1 : Transition Diagram for General Case, relative to c; M = 4. 
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switch (Node-I) 

case 1: Node = Transl(streamT); break; 
case 2: Node = Trans2(streamT); break; 
case 3: Node = Trans3(streamT); break; 
case 4: Node = Trans4(streamT); break; 
case 5: Node = TransS(streamT); break; 

1 
tabulate NodeTab=Node; 

Figure 2: Core Part of (SLX) Simulation Model Handles Transitions (M=4) and 
Records Node Visitation Frequencies. 

discrete-empirical Transl( 

/ /  TRANSITION MATRIX (Row 1) 
/ /  left = input value (defined below) 
/ /  right = state to transfer to 

T-M[1,11 1, T-M[1,2] 2, T-M[1,31 3, T-M[1,41 4, T-M[1,51 5); 

. . . 
/ /  Cumulative Probability (Row 1) 
/ /  input point for discrete-empirical fct 
T-M[1,11=0.1; T-M[1,2]=0.4; T-M[1,3]=0.6; 

T-M[1,4]=0.7; T-M[1,5]=1.0; 

Figure 3: Function Elements and Supporting Information Referencing Part of Appa- 
ratus to Implement the Transition Matrix of Table 7 in Conjunction with Figure 2's 
Switching Mechanism. 

scribes input-output pairs, the first entry of the pair describing the probability 
axis (in cumulative form), described by (table) TM(x,y) values just below the 
Trans10 function in the figure; the second entry of each pair defines the target 
node by its node number. The functions are driven by a random number stream 
on [0, 11, whose seed can be chosen for random number control used in repli- 
cations; the bottom line of the figure exhibits the key code line for "streamT," 
which is addressed in Figure 2. 

It may be noted in passing that this code system opens doors for more 
complex kinds of simulations, e.g., in which the TM(x,y) values change over 
time. Such a system is under investigation. These may result in quick but 
cruder approximations as we alluded to above in some earlier attempts [22]; 
however, at the time of this writing the idea seems to have a greater flexibility 
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with potentially more options to explore. 
Recall that U, N, X, R and LC are among the chief output variables of 

interest (performance values). In (purely) mathematical argument, these quan- 
tities are averages, typically, over a long period (not infrequently, infinite). In 
simulation, a model may be replicated several times, generating a distribution 
for each of these averages and in the work reported here this is what we have 
been doing. It might be worth noting, additionally, that some performance 
values produce useful distributed results with each run. Perhaps, the easiest 
case to envision is that of R: each individual customer (request) takes a certain 
amount of processing time and these times can be entered into a frequency dis- 
tribution to get a distributed result. Other variables, such as U, are operative 
over an entire run; we would have to break the duration of the simulation into 
intervals and get results for each sub-interval (again tabulating them into a fre- 
quency distribution) to get a frequency distribution for it. In the present study, 
we did not exploit these finer features, simply determining averages for all the 
performance values (even for R); the distributions, then, arise from the repli- 
cations. A seemingly lesser issue relates to smoothness of the output, though, 
as is generally the case, a larger number of replications typically leads to a 
smoother set of distributions for the results of interest. We provide information 
in this chapter, particularly, in Table 10 where a few choices for replication 
number are referenced. Worth mentioning in the same breath is that length of 
an individual run. In some systems there is a long build-up period, e.g., from a 
starting empty state; this can distort results (biasing them downward perhaps). 
However, in other cases, not atypical in queuing models, a system may cycle 
through alternating stages of empty and non-empty states. This means that in 
the general modeling picture, we should attend to runs of shorter duration as 
well as very long term ones. The problem is more a statistical one but variations 
in statistics and corresponding variations in fuzzy responses may be addressed 
in this manner. Still, in many cases, there are advantage in running a model a 
sufficiently long time so that some non-typical behavior does not have a seri- 
ous impact on the results. The longer model's distributions, of course, become 
more compact. 

5.2 Results 

With the considerations outlined in previous paragraphs, we first chose 1000 
replications, each embodying 1000 transitions. The elapsed time for this M=4, 
c=l case was approximately twenty seconds. The time is shorter than for the 
GA; the latter's time given above also does not include the (final) optimization 
follow-up work. No systematic attempt has been made to extract a minimum 
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Table 8: Simulation Results for U, N, X, R (M=4, c=l). Reported are Deviation 
Measures and the Coeffi cient of Variation (cv). 

mean min max dev var cv 
U: 1.0000 0.9990 1.0000 0.0001 0.00000 .00005 
N: 3.9478 3.9180 3.9700 0.0100 0.00010 -00254 
X: 0.4022 0.2926 0.5108 0.0408 0.00166 -10140 
R: 9.9184 7.7750 13.4807 1.0400 1.08156 -10485 

Table 9: Simulation Results for U, N, X, R (M=10, c=l). The Same Variables are 
Reported Here as in the Previous Case. 

mean min max dev var cv 
u: 1.0000 1.0000 1.0000 0.0000 0.00000 .00000 
N: 9.9478 9.9170 9.9700 0.0101 0.00010 .00102 
X: 0.4022 0.2926 0.5108 0.0408 0.00166 .lo140 
R: 24.9928 19.5613 33.9838 2.6222 6.87571 -10492 

for either of these values, though it could improve the elapsed time. We present 
two output displays (Figures 4 and 5 for this M=4, c=l case study). 

These figures were produced by Matlab on files produced by SLX pro- 
grams. The first of these outputs represents the distributions for four of the key 

- - A  

performance variables U ,  N, X, and R under the conditions just mentioned. 
The second case shows "up close," since in the first diagram its spread is 
difficult to appreciate. As a final remark, note that other alpha cuts can be ex- 
tracted in this (simulation) approach in a manner similar to what was done in 
the companion chapter (i.e., as displayed in the final figure there). 

Table 8 presents in tabular form our key (simulation) results for this case. 
The mean values of this table approximately match a=l cut values from the 
GA solution. Comparable results obtain for the M=10, c=l case, again simu- 
lating 1000 transitions over 1000 replica. The results are reproduced in Table 9. 
These results have companion graphs (paralleling the situation for the previous 
M=4 case), Figures 6 and 7. 

The results are quite close to the GA results and again the simulations give 
distributions that allow for a broader range of results (e.g., additional alpha 
cuts). The run time for the simulation is approximately 2 min, compared to 
GA's 3 min run (a figure that does not include the optimizations to get utiliza- 
tion, among details. 
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Figure 4: U,N,X,R Frequency Distributions (M=4, c=l). 
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Figure 6: U,N,X,R Frequency Distributions (M=10, c=l). 

Figure 7: Frequency Distribution of Utilization (M=10, c=l). 
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Table 10: Runs Varying Transitions (Trans) and Replications (Reps) (M=4, c=l). GA 
Results are Printed at Top for Comparison Purposes. 

- - - - 
Trans  Reps U N X R 

Alpha-Zero Cut 
GA Result-> [1.000,1.0] [3.903,3.975] [0.300,0.500] [7.808,13.251] 
1000 1000 [0.999,1.01 [3.918,3.9701 [0.293,0.5111 [7.775,13.4811 
1000 2000 [0.999,1.01 [3.920,3.9701 [0.286,0.5141 [7.693,13.8221 
2000 1000 [1.000,1.01 [3.928,3.9641 [0.292,0.5111 [7.754,13.499] 
2000 2000 [1.000,1.01 [3.927,3.9641 [0.286,0.5141 [7.690,13.8391 

Alpha-One Cut 
GA Result-> 1.0000 3.9478 0.4000 9.8697 
1000 1000 1.0000 3.9478 0.4022 9.9184 
1000 2000 1.0000 3.9477 0.4008 9.9613 
2000 1000 1.0000 3.9477 0.4022 9.9182 
2000 2000 1.0000 3.9477 0.4008 9.9613 

Table 10 contains four runs (M=4 case, only) with varying numbers of 
transitions and replications (to make up the frequency distributions). The table 
also includes the GA results for comparison and gives the a=l cut solutions. 
The table's contents exhibit stability of the results over these variations. They 
also help to see, e.g., the response time result, calculated by dividing by - 
X,  introduces the least stable results, the fractional values for r, and their 
variability, being contributing factors. Note that the simulation results are more -- 
fuzzy in all the cases (U, X ,  and R), whereas in the case of we get less fuzzy 
results. The two approaches mentioned in this chapter and its companion offer 
the reader a few discussion points on similar sets of phenomena and relative 
fuzziness in results, possibly provoking future research. 

6. CONCLUSIONS AND FUTURE RESEARCH 

In this chapter we considered how crisp and fuzzy methods can be employed, 
alone and in combination, to address problems involving fuzzy queuing sys- 
tems (fuzzy probability models) defined in terms of (fuzzy) transition proba- 
bility matrices. 

The chapter began by outlining mathematical bases for the subject matter 
of interest. Attention then turned to key roles of optimization techniques and 
genetic algorithms in solving these kinds of systems and developing interme- 
diate probability values and performance variables which depend upon them: 
utilization, number of customers/requests in the system, throughput rate, and 
response time. Some comments addressed lost customers (requests). 
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These solution techniques were found in the main to be effective, but the 
computational load was (also) found, on many occasions, to be high. Simi- 
larly, formulating models and getting them to work could be somewhat dif- 
ficult, more so than, e.g., the models of our companion chapter, where the 
software is well developed and anticipates many users' needs (in crisp cases, 
of course). A simulation language (system, package) such as SLX, however, 
provides a bridge between the neatly formulated arrival and service rate models 
and more general kinds of modeling and simulation; this is due in part, to the 
language's object-directed world view. 

Table 11 provides an overview for some of the main doings of the chapter. 
(In it we abbreviate "Properties" as "Props," and "Cost/Benefit" analysis values 
as "CB;" we also use "values" where often we have used "variables.") In par- 
ticular, it shows some key roles for different approaches, genetic algorithms, 
optimization packages and (package) simulations. 

Table 11: Overview of Simulations. See Text for Details and Abbreviations. 

Transition Matrix Based Simulations 

There have been other lines of simulation research that parallel the work 
described here and several remarks throughout the paper have alluded to them. 
There are still others, not reported here, e.g., ones related to developing sam- 
pling procedures over the (fuzzy) ranges of the fuzzy probabilities in the tran- 
sition matrix such that good approximations can be obtained at a comparably 
lower price to, say, the genetic algorithms. 

This chapter focused mainly on one line of research that has shown deep 
potential in developing a performance variable's alpha cuts at will from a single 
simulation at the alpha one cut. A poor man's "existence proof," namely, that 
this can be done, is well established by the case studies we reported here. But, 
more work needs to be done to realize this potential fully and to develop a more 
rigorous procedure to direct the search for answers within model outputs. 

It seems an obvious observation, based on several of our results and evalu- 
ations of them, that some fundamental research into correspondences between 
stochastic and fuzzy modeling approaches will be needed. Just as variance 
propagates in stochastic systems undergoing multiple stages of random oper- 

Genetic Algorithm (GA) 
Optimization Package - 
Optimization Package 
(Package) Simulation 

GA computes wi 
From Performance Values to C B  
Alternative to GA for Performance Values 
Generate a = O  cut from a=l cut 
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ations, so too does fuzziness. The companion paper (the previous chapter) 
makes it very clear that this happens, through its explicitly designated "one- 
step" and "two-step" approaches. 

The transition matrix approach seems a more difficult problem in that fuzzi- 
ness is difficult to introduce at any stage other than transition matrix itself, 
since, unlike the arrivalhervice rate approach, we are absent explicit mathe- 
matical formulae with which to work. It may be possible to utilize regression 
techniques in some cases, a matter we leave on future research agenda. 

There are broader picture connections worth noting in our final paragraphs. 
Putting our results which inherently involves either multiple solution tech- 
niques to precisely the same problem formulation or alternative problem for- 
mulations of the stated problem (or similarly stated) problems represents an 
agent perspective in the solutions domain. A "hot" topic today in computing 
science, agents, and their associated computational schemes, often going un- 
der names such as grid and collaborative computing, thus, may be opened for 
merger with our current research paths. An agent perspective would envision 
incorporating queuing systems both in terms of arrival and service rates as well 
as transition probability matrices along with a plethora of solution techniques. 

Agent methods can be employed to explore options relating to fuzziness 
introduction, starting at early points such as the initial formulation (as we 
have seen in the transition matrices cases), at intermediate levels (e.g., at the 
state probability level and its successors, the performance variables, in the ar- 
rivaVservice rate formulations), or even at final stages (where costs and benefits 
are often assessed in (finite) optimization contexts). 

In other studies referenced in the chapter, but not developed at any length, 
we explored combined systems such as crisp and fuzzy neural networks and 
logic programming-based and fuzzy rule systems. These studies execute a 
topic broadening of more or less conventional systems with strong fuzzy coun- 
terparts and extensions. The matters relating to the point of introduction of 
fuzziness into a train of mathematical developments, or into regression equa- 
tions, evoke additional 'scientific computation' agent notions beckoning addi- 
tional research. With these thoughts in mind this chapter can end on a note 
concordant with notes at the end of the companion chapter. 
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is that the EEG is correlated, non-stationary and not truly Gaussian. Through 
simple signal averaging we can measure only the ERP mean latency and its 
overall shape. It is obviously not the best estimator for this kind of signal. 

Despite the usefulness of the ERP as a research and clinical tool, the mech- 
anisms involved in their generation are still not well known. Observing the 
dynamic behavior of the ERP from trial to trial would allow us to gain a better 
understanding of these mechanisms in the brain. This paper presents a method 
to estimate the ERP signal from single trial segments. 

In the literature, several methods based on the Wavelet Transform have 
been proposed. These methods are based on the wavelet coefficient threshold- 
ing [2,3,4,5,6]. For simplicity, however, the majority make similar assump- 
tions as the averaging method mentioned above regarding the EEG. 

These methods, however, may fall short in producing the best possible re- 
sults when applied to EEG signals. These signals are fairly complex and con- 
tain substructures that the conventional methods do not account for. In particu- 
lar, the statistical assumptions generally used result in concise mathematically 
terms, but do not approximate well real world signals. 

In this work we propose a method to estimate an event-related potential 
signal from a single trial EEG segment. This method is based on the Hidden 
Markov Tree model [7] applied to wavelet coefficients and builds on the previ- 
ous thresholding work. This paper is organized as follows: the next section will 
describe the model and the algorithm used for the estimation of its parameters. 
The method used for recording the ERP signals is presented next. Following 
that, we show its application using synthetic and actual ERP signals. We in- 
clude a comparison to the result of using the wavelet soft-thresholding method. 
We end the paper with a discussion and conclusions section. 

2. THE HIDDEN TREE MODEL 

Let w be a single-trial EEG segment with an embedded ERP signal, the fol- 
lowing additive model is assumed 

where y is the noise-free ERP signal and E is the background EEG considered 
as a random signal of unknown probability. 

The Hidden Markov Tree (HMT) is a variant of the Hidden Markov Model 
(HMM). It is used to generate an estimate of the signal y based on the noisy 
observation w. An attractive application of this model is that it describes the 
correlations among the coefficients of the wavelet transformation. To support 
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this approach a qualitative description of the properties of the wavelet transform 
should be mentioned first. The wavelet transform has these main properties [7]: 

0 Locality. Wavelet transformations are localized in time and frequency. 

0 Multiresolution. Wavelet transform have the ability to zoom in and out 
to measure signal variations at different scales. 

Compression. Wavelet representations tend to be sparse, i.e. the ma- 
jority of signal information can be represented by a small number of 
significant coefficients. 

The above are well known properties and are amply discussed in wavelet 
transform textbooks. 

A common interpretation of the wavelet transform of a random process 
states that it has the property of being a "decorrelator", resulting in wavelet 
coefficients that are statistically independent of all others. The extreme case 
of these behavior is the wavelet transform of a Gaussian white processes, the 
wavelet coefficients of the transformed signal are also Gaussian and white. 
However, real-world signals contain correlations and may not be Gaussian. 
By virtue of the properties mentioned above, these real-world signals will be 
decomposed in well localized components in time and frequency, affording a 
degree of "decorrelation". That is, the wavelet coefficients will exhibit some 
dependencies across time and scales. This behavior gives rise to two other 
properties [8,7]: 

Clustering. If a given wavelet coefficient is smallflarge, then the adja- 
cent coefficients are likely to be also smallllarge. 

Persistence. Smalltlarge wavelet coefficients tend to propagate across 
scales. 

In order to illustrate these two properties, we have simulated a waveform 
in which we have inserted a transient distortion in the form of a discontinuity. 
The top plot of Figure I shows this waveform, the discontinuity occurs in the 
middle of the trace. The bottom plots are three levels of wavelet decomposition 
using the biorthogonal wavelet transform of order (3 , l ) .  

The property of clustering is illustrated in levels L1 and L2, by the large 
wavelet coefficients grouped together around the middle of the trace, where the 
discontinuity occurs. Note that they are larger relative to the other coefficients 
on the same trace. On the other hand, along the intervals on each side of the 
discontinuity the coefficients are small in amplitude. 
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'ime Domain Waveform 
I I 

Figure 1: The properties of clustering and persistence are illustrated in this sample 
waveform. A transient discontinuity has been introduced in the middle of the wave- 
form (top). Large coefficients in levels 1 and 2, related to the discontinuity, indicate 
persistence. Clustering is observed on all three levels. 
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The property of persistence is shown by the presence of large coefficients 
in levels L1 and L2. In this example, large coefficients are present (relative to 
the surrounding coefficients) at the time of the discontinuity. 

The Hidden Markov Tree attempts to capture the spatial interdependencies 
described by the property of persistence using a hidden Markov model. This 
HMT model is justified as follows: take a wavelet coefficient at, for example, 
level L1, if this coefficient is large, then we associate it with a class of coef- 
ficients with certain statistics (e.g., Gaussian, zero-mean and variance Vl.) If 
it is small, we associate it with to another class with different statistics (e.g., 
Gaussian, zero-mean and variance V2.) 

Furthermore, these classes are not directly observable, we can only observe 
them indirectly through the realization of the underlying stochastic process. 

Due to the persistence property, at the next level it is likely that the corre- 
sponding wavelet coefficient will be also large (or small). If we focus on the 
wavelet coefficients associated with the discontinuity, we see that this is the 
case. Therefore, there exists a strong spatial correlation between coefficients 
of the same class across the scale. 

The next step in this description is to formulate the Markovian relationships 
among the coefficients. First, the classes described above are defined by the 
values of discrete hidden state variables, one class for each state. Next, consider 
a wavelet coefficient at some scale level. It represents some information for a 
given time interval; the persistence property tells us that it may be correlated to 
a pair of coefficients at the next finer resolution level, in the same time interval. 

However, each one of these two coefficients accounts for only one half of 
the time interval that the coarser coefficient represents. Therefore, the class 
associated with the coarser coefficient can be considered to affect the classes 
associated with the finer coefficients. This is the Markovian relationship be- 
tween the hidden state variables that represent the classes. 

To illustrate this model graphically, a dyadic wavelet decomposition is 
shown in Figure 2 on a time-frequency plane. Each tile represents the time- 
frequency support of each wavelet. The wavelet coefficient is represented by a 
filled node. Each wavelet coefficient node has a white node connected to it that 
represents the hidden state variable. Beginning at a coarse level each state node 
is linked to two nodes at the next finer resolution level, indicating the Marko- 
vian relationship. The resulting graph is a forest of binary trees with root nodes 
at the coarsest level. Finally, the tree is drawn so that the root node is placed in 
the upper side of the graph, as shown in Figure 2. The nodes at the top of the 
graph represent the wavelet approximation coefficients; they are not processed 
in this application. 

Using the model of Eq. 1 and the linearity of the wavelet transform, let us 
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Figure 2: The coefficient dependencies are represented by connecting the state nodes 
vertically, producing a top-down (coarser-finer) binary tree graph. 

represent the wavelet transform of the signal segment in 1 using the following 
equation 

w3 - 3 x - Y ;  + n', 
. . 

where w i ,  y i  and n', are the wavelet coefficients of the observed signal, the 
actual signal and the noise, respectively. The index j indicates the scale level 
and Ic indicates time. In order to simplify the notation in the rest of the paper 
we will change the indexing of the coefficients using the following mapping, 
w i  - w,, and rewriting Eq. 2 into 

where T is the number of nodes in a sub-tree. The indexing used in Eq. 3 
takes advantage of the binary tree structure shown in Figure 2. Using the root 
node as the starting point, the wavelet coefficients are indexed from left to 
right, top to bottom. Each sub-tree structure shown in Figure 2, then leads 
to two sequences. One sequence for the hidden state variables, denoted S = 
( S i )  = (S1, S 2 ,  . . . , ST) .  Another sequence for the corresponding wavelet 
coefficients, w = (wi)  = ( w l ,  ~ 2 , .  . . , wT). 
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Let us use the symbol p(i) to denote the parent of node i and c ( i )  to denote 
the children of node i . For example, the parent of node 5, p(5 ) ,  is node 2; the 
children of node 3, c(3),  are the nodes 6 and 7. In addition, we will define I, 
as the subtree of wavelet coefficients with root node i. Tl denotes the whole 
tree of observed coefficients. Also, if Ij is a subtree of x, then z\j is the set 
of wavelet coefficients obtained by removing the subtree Ij from x. 

The parameters of the hidden Markov tree model are specified as follows: 

The state probability of the root node 

where M  is the total number of hidden states. 

The conditional probability that the state variable Si is in state m given 
Sp(i) is in state n 

amn = p [ S i  = mlSp(i) = n], m , n  = 1,. . . ,lW. z d i )  (5) 

The probability density of the observed value given the state variable is 
in state m 

All these are grouped together into a parameters vector 8: 

The densities bm(wi) can be approximated using M  Gaussian mixtures of 
the form 

b )  N ( 0 )  m = 1, . . . , M  (8) 

which can be used to approximate an arbitrary probability density function, if 
a sufficient mixture number ( M )  is used. The parameter vector is as follows 
for the mixture case: 

Once we have established the model, the next step is training it to determine 
the optimal parameters that best describes the observed wavelet coefficients. To 
estimate the parameter vector using the maximum likelihood principle, we can 
use the algorithm called expectation maximization (EM) [9]. This work uses 
an implementation derived from [lo] and [7]. 
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2.1. The EM Algorithm 

The EM algorithm was used in [lo, 71 in order to estimate the model param- 
eters in 8. Their implementation is referred as the upward-downward proce- 
dure, which is similar to the forward-backward procedure used to estimate the 
parameters of a hidden Markov model in [l l] .  

For each subtree 5 the downward variable ai(m) is defined as 

the conditional probability of observing the nodes before node i and state Si  = 
m, given the model. 

Similarly, the upward variable is 

the conditional likelihood of observing the subtree with root at node i ,  given 
the state Si at node i and the model. Additionally, 

The purpose of these variables is to compute the state probabilities p[Si = 
mlw, 81 and p[Si = m, Sp(i) = nlw, 81. SO, 

For the purpose of describing the EM algorithm, we will use Gaussian mix- 
ing components of the form: 

In addition, each node i in the tree is associated with a scale J ( i ) ,  where 
J ( i )  E (1, . . . , L), with J = 1 being the finest scale and L the coarsest level. 

The Expectation Step 

1. Select an initial parameter 8' and set I = 0. 
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2. Initialize the upward variable. 

For all Si at scale J = 1 and m = 1,. . . , M :  

For all Si at scale J = 1, . . . , L and m = 1, .  . . , M :  

3. Initialize the downward variable. 

For& at scale J = L a n d m  = 1, .  .. , M :  

For all states Si at scale J = L - 1,. . . ,1 and m = 1 , .  . . , M :  

The Maximization Step 

1. Compute the probabilities 

2. Assuming there are K trees apply the E step on each tree independently. 
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3. The next approximation of is computed with 

4. Check the error and repeat if necessary. 

2.2. Computational Underflows 

The computation of the downward variable ai(m) and upward variable, Pi(m) 
is an iterative process that will lead rapidly to computational underflows. To 
avoid this problem, it is necessary to use of a scaling factor on the upward 
variable ,&(m) so its computed value stays within the dynamic range of the 
computer. 

A 

We will denote the unscaled /3 as ,& (m); pi (m) the scaled /3 and pi (m) the 
intermediate value before scaling. A similar notation will be used for a. 

The scaling factor ci is defined as 

Then, 

The effect of the scaling factor ci can be explored by following the upward- 
downward procedure specified in the previous section. Using the tree shown in 
Figure 3 we can express the terms of the procedure. 

For node i in level L1 in Figure 3, we have 
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Figure 3: Hidden Markov tree model (HMT) 

Then, 

A 

E(m) = ciE(m) = cifi(m) (32) 

Similarly, from Eqs. 18 and 19 
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Bp(i) (m) (m) ~ l P p ( i )  (m) 
- - - 

Bp(i)\i(m) = h,p(i) A (m) cibi,p(i) (m) - PcP(~)  (m) (36) 

Now, on the node j in level L2; noting that p ( i )  = j and p(q)  = j', 

Similarly, 

Finally, 

= cjlcqcql&(j)\j (m) 

Now, lets derive the downward variables 



ERP Noise Reduction Using the Hidden Markov Tree Model 

Noting that in this case, 1 = k = p ( j ) ,  

Then at the second level, 

Using the scaled downward and upward variables, we can now compute the 
joint probability of Eq. 24 

Most of the factors cancel out from the numerator and denominator. The 
last remaining scaling coefficient can be easily removed. In general, the effect 
of the scaling factor in Eq. 24 is 

It is also easily shown that 

With the inclusion of the scaling factor ci, the upward-downward procedure 
is rewritten as follows: 
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Scaled Expectation Step 

1. Select an initial parameter O0 and set 1 = 0. 

2. The upward step. 

Forall Si at scale J = 1 andm = I , . .  . , M: 

A A 

Apply the scaling factor. At J = 1, let Pi (m) = Pi (m). 

For all Si at scale J = 1, . . . , L and m = 1,. . . , M: 

3.  The downward step. 

For S1 at scale J = Landm = 1, ... , M :  

A 

Apply the scaling factor. At J = L, let (m) = al(m). 

For all states Si at scale J = L - 1, .  . . , I  and m = 1,.  . . , M: 

M 

(m) = u r z i ) ~ p ( i )  (n)Bp(i)\i (n) 
n=l 

A 

&(m) = ciGi(m) 
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Scaled Maximization Step 

1. First, compute the probabilities 

2. Assuming there are K trees apply the E step on each tree independently. 

3. The next approximation of 0'+' is computed with 

2.3. De-Noising Using the HMT 

Using the model of Eq. 1 and an M-Gaussian mixture, the HMT model pa- 
rameters can be estimated using the EM algorithm. This model is then utilized 
as a prior distribution for the signal yi and employed to calculate a conditional 
mean estimate of yi given the observations w and the model 0 [7]. 

The addition of the noise E in Eq. 1 increases the mixture variance ozm. 
If E is Gaussian and white, of variance oi, then the observed signal variance 
would be yZm = ocm + oi. However, the other parameters of the model 
are unchanged. If after training, the estimated mixture variance of the noisy 
wavelet coefficient is y:,, then 

The conditional mean estimate of yi can be obtained using the results of 
the EM algorithm. 
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The last step in de-noising the signal is to apply the inverse wavelet trans- 
form of the estimated coefficients. 

3. METHODS 

Before discussing the experimental results of this method we will describe the 
methods used to acquire the EEG recordings. We developed a software tool 
to present visual and auditory stimuli to a subject in order to generate ERP 
signals. This program is used along with a data acquisition system to record 
both continuous EEG and the timing markers generated at each presentation of 
a stimulus. The timing markers were used in the post-processing to align the 
EEG segments. This program was developed using the X Window System and 
is currently implemented in the HP-UX and Linux operating systems. 

The purpose of the program is to present a sequence of stimuli in a man- 
ner determined by the user. The stimuli is of two kinds, visual and auditory. 
Each stimulus is presented to the subject for an interval referred as stimulus 
interval. Stimuli are presented at regular intervals referred as inter-stimulus 
interval. These intervals can be controlled by the program. Visual stimuli con- 
sist of computer images rendered on the computer monitor. Auditory stimuli 
are generated using a Grass Click-Tone Control Module controlled remotely 
using the parallel interface. The tone frequencies of the Grass module can be 
remotely controlled using voltage levels available in the PC parallel interface. 

We acquired continuous EEG recordings using electrodes attached to Fz, 
Cz and Pz. The signals were preconditioned before acquisition with a 0.1-100 
Hz band pass filter. The sampling rate was 256 Hz. The subjects were asked 
to watch on a computer display several sequences of images. The content of 
these images were adult faces depicting neutral, happy and angry emotions. 
See Figure 4 for a sample picture of each emotion. A sequence of 360 images 
were used. In each one 68% were neutral faces and 16% were happy and 16% 
were angry faces. The images were arranged so their presentation appeared 
randomly. The stimulus interval for each image was displayed for 200 ms, 
followed by a inter-stimulus interval of 1200 ms. The analysis was performed 
offline with programs implemented in Matlab. Each single trial was extracted 
and stored on disk. In this study we used Daubechies wavelets and computed 
five levels of decomposition. 
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. . .+ n . .  , 1 

(a) Neutral 

Figure 4: Sample images of the faces used as stimuli. The top image shows a face with 
a neutral expression. The faces at the bottom express a happy and angry expression, 
respectively. 
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4. APPLICATION AND RESULTS 

To demonstrate this method, a synthetic noisy ERP segment was generated by 
adding uniformly distributed white noise to a visual ERP signal considered to 
be noise-free, this signal is shown at the top of Figure 5. 

Y - Noise-free signal 

-101 I 
-100 0 100 200 300 400 500 600 700 800 900 

Y + N - Noisy signal (SNR = -3.5 db) 
10 

5 

0 

-5 

-101 I 
-100 0 100 200 300 400 500 600 700 800 900 

Y' - De-noised signal (SNR = 3.9 db) 

Figure 5: De-noising example using a hypothetical noise-free ERP signal (top plot). 
The middle plot shows the same ERP contaminated with uniform white noise at a 
SNR of -3.5 dB. The bottom plot shows the estimated de-noised signal, the SNR of the 
estimate is 3.9 db, an improvement of 7.4 dB. 

The time axis is drawn in milliseconds, the visual stimulus was presented 
at time t = 0 ms. The features of interest in the plot are two, the first one aris- 
ing at 100 ms indicating the activation of the visual cortex. This feature is an 
exogenous response and does not reflect cognitive process. The second feature 
is the positive deflection with an onset at around 450 ms terminating at 600 ms. 
This waveform is an endogenous response and reflects the cognitiveprocess- 
ing of the visual stimulus [I]. Endogenous responses have a typical onset at 



ERP Noise Reduction Using the Hidden Markov Tree Model 

Y - Noise-free signal 
10 

-1 0 
-100 0 100 200 300 400 500 600 700 800 900 

Y + N - Noisy signal (SNR = 5.0 db) 

- I "  

-100 0 100 200 300 400 500 600 700 800 900 
Y' - De-noised signal (SNR = 7.2 db) 

Figure 6: Synthetic noise-free ERP (top plot) contaminated with uniform white noise 
(middle plot.) The noisy segment has a SNR of 5 dB. The de-noised estimate (bottom 
plot) has a SNR of the estimate is 7.2 db, an improvement of 2.2 dB. 

around 300 ms post-stimulus and are positive in amplitude, they are referred to 
in the literature as P300 waveforms. 

In this demonstration, the test signals were created by adding noise scaled 
so that the SNR of each signal ranged from -3.5 dB to 5 dB. In Figure 5, the 
middle plot shows the noisy test signal with SNR of -3.5 dB. The de-noising 
result using the HMT model is shown at the bottom. The estimate measures a 
SNR of 3.9 dB, an improvement of 7.4 dB. As can be observed, only the prin- 
cipal features of the original ERP signal are preserved, namely the waveforms 
around 70 msec. and 450 msec. The exogenous and endogenous responses are 
still visible, but their amplitudes are reduced. 

Figure 6 shows the estimate under a more favorable condition. In this case 
the SNR is 5dB, and the estimated signal measures a SNR of 7.2 dB. Even 
though in this example the SNR improvement is not as large as in the first 
example, the recovered signal preserves more subtle features of the original. 
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Noisy signal 
20 

10 
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-1 0 

De-noised signal 
20 I I I I 

Figure 7: Sample de-noising results of an actual single-trial visual ERP signal using 
the HMT model. The stimulus occurs at time t=O msec and the de-noised estimate 
shows the P300 waveform onset at t=400 msec. 

This can be observed by comparing the endogenous responses on the top and 
bottom plots. The performance of the estimator at different levels of noise 
is summarized in Table 1. The table shows that wavelet-based HMT model 
consistently produces an estimate with an higher SNR. 

The next example, shown in Figure 7, illustrates the results in de-noising a 
raw single-trial visual ERP signal. In this case the noise content is unknown. 
The exogenous response starts at around 50 msec. post-stimulus, and the P300 
waveform begins at around 370 msec. 

To illustrate the type of estimates that can be produced using a wavelet 
thresholding method to our sample single-trial ERP. Figure 8 shows the de- 
noising result obtained by applying the method of level dependent soft- thresh- 
olding [3]. The smoothness of the estimate indicates that most of the finer 
details were shrunk, although manual tuning of the thresholds may produce 
better results. 
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Single trial with an angry stimulus on electrode Pz 

De-noising using level dependent soft thresholding 

Figure 8: Sample de-noising results using a real single-trial visual ERP using level 
dependent soft-thresholding. The stimulus occurs at time t=O msec and the de-noised 
estimate shows the P300 waveform onset at t=400 msec. 

Table 1: Signal to noise ratios of the simulated ERP signals and the corresponding 
SNR of the de-noised estimates. 

5. CONCLUSIONS 

In this paper we have modeled a single trial ERP segment using the wavelet- 
based HMT model as an alternative to the averaging method for ERP analysis. 
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The objective is to capture the dynamic changes of the ERP that the averaging 
method does not capture by allowing the estimation of the ERP for each single- 
trial. 

The HMT takes advantage of the persistence and clustering characteris- 
tics of the wavelet transform to model correlation structures within coefficients 
across scales, an approach that other wavelet-based methods do not use. These 
properties are suitable to model the statistical characteristics of an ERP signal. 
Due to the difficulty of knowing the signal distribution of an ERP segment, the 
use of a wavelet-based hidden Markov model is an advancement on the sim- 
ple assumption of the Gaussian independent and identical distributions made 
by other noise reduction methods. This distribution is approximated using the 
Gaussian mixture included in the model. 

Experimental results with synthetic signals show that the HMT tree model 
will achieve a measurable improvement in the SNR of the estimate. When used 
in real ERP signals, the HMT produces estimates which preserve many of the 
features that are apparent in the noisy signal. In contrast, another wavelet-based 
method, the soft-thresholding method, appears to be inferior in preserving these 
features. 

This research was supported in part by the National Institutes of Health under grants 
no. MH41712, NS39047, MH38494, EB002099, EB002309 and Computational Di- 
agnostics, Inc. 
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changes. Much research effort has been devoted to developing change detec- 
tion algorithms in this scenario [11, 12, 13, 14, 15, 16, 17, 181. One major 
category is single-threshold-based approaches that utilize certain test statistics 
adapted to noise and image models [11, 12, 13, 14, 161 to make decisions. 
There are usually two essential steps contained in these approaches, 1) defin- 
ing a metric function of intensity variation, and 2) choosing a proper threshold 
to for the metric function. These methods are subjected to a quandary of either 
causing false alarms when the threshold is not large enough, or missing detec- 
tion of significant changes when the threshold is overestimated. The reason 
is that the change detection is performed locally for each pixel on an image, 
but the single threshold to be applied is determined globally. In other words, 
this threshold is non-adaptive to the properties of a local region. Better results 
can be achieved if the threshold is increaseldecreased when the contextual in- 
formation of a local region suggests the test pixel be "unchanged"/"changed". 
This concept was investigated by Aach in 1151. He assumed that regions cor- 
responding to moving objects were likely to have compact shape with smooth 
boundaries. Based on this assumption, a multiple-threshold approach was pro- 
posed, where the thresholds were functions of not only intensity difference but 
also "border pixel pairs" that represented the degree of smoothness of region 
boundary. However, as a direct extension from the single-threshold approach, 
this method does not generate results in an optimal sense. 

Recently, change detection methods under maximum a posteriori (MAP) 
criterion have emerged to analyze remote-sensing images by satellites [17, 
181. These methods utilized Markov random field (MRF) theory to enforce 
spatial-contextual information. The prior knowledge of both "unchanged" and 
"changed regions was modeled by energy functions, which represented the po- 
tential of a pixel being in the corresponding status ("unchanged/"changed"). 
By minimizing the energy functions, the optimal results in the MAP sense 
could be obtained. We believe this is a powerful framework to model the un- 
certainty and minimize the error rate in detecting changes. In this paper, we 
present a new model under this framework aiming at detecting changes for im- 
age sequences. As an alternative to [17, 181, new energy functions are defined 
to reflect the prior belief on "unchanged"1"changed" pixels. In addition, an op- 
timization process is carried out by utilizing Mean Field Theory (MFT). In [17], 
the simulated annealing [20] method was adopted with capability of localizing 
the global extremum, but requiring highly extensive computation. Another ap- 
proach based on the iterative conditional mode algorithm [21], employed in 
[18], has a low computational cost, but may converge to a local extremum. 
Therefore, we propose the MFT based approach that renders a good trade-off 
between the two previous methods. 
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This chapter is organized as follows: Section 2. gives a brief review of 
the related theories; Section 3. describes the proposed methods and algorithms 
of change detection; Section 4. discusses the illumination invariant approach 
based on the proposed model; Section 5. presents the experimental results, and 
Section 6. concludes this chapter. 

2. BACKGROUND THEORIES 

Fundamentals of the MRF and the MFT are briefly introduced in this section. 

2.1. Markov Random Field Theory in Change Detection 

Let F = {F1,2, ..., Fi,j, ..., F,,,) be a 2-D random array, where Fi j, 1 5 i < 
,m, 1 5 j 5 n ,  is a random variable at site ( i ,  j ) .  Let Q = { ( i ,  j )  11 5 i 5 
m, 1 5 j 5 n )  be the set of all sites. Let frame f = { f i  ( i ,  j )  E 0 )  be 
a realization of F. Let p ( f )  denote the joint pdf of F = f ,  where p ( f )  = 

p { ~  = f) = p{Fi,i = fi,j,(i, j )  E 0 ) .  Then, with the same notation, F is 
- 

an MRF if: (1) ~ ( f )  > 0,Vf E F ,  and (2) ~ ( f i , ~ l f ~ t )  = ~ ( f i , ~ l f ~ ~ , ~ ) ,  where 
Q' = S2 - ( i ,  j ) ,  with symbol "-" denoting exclusion, and Nilj = {(i ' ,  jr)  l(i - 
i ')2 + ( j  - j')2 5 k, ( i r ,  j ' )  E a' ) ,  with k being a positive integer. N i f  defines 
the set of the k-th order neighboring sites of ( i ,  j ) .  With the definition of N i f ,  
a clique, denoted by c, is defined as a set containing single or multiple sites 
that are connected within Ni j, ( i ,  j )  E 0. Fig. 1 illustrates an example of 
cliques of a first-order neighborhood, where c may be a collection of single- 
sites or double-sites. It was introduced in [22] that the joint pdf p( f )  may be 
approximated by the Gibbs distribution 

where T is a constant and U is an energy function of the MRF, given by 

with V, being the clique potential or clique function. The V, functions rep- 
resent contributions to the total energy from single-site cliques, double-site 
cliques and so on. Note that (1) and (2) reflect the fact that the joint proba- 
bility density function p( f )  is determined by the local activities, namely, the 
clique potentials. 
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Single-site clique Double-site cliques 

First-order neighborhood 

Figure 1: A first-order neighborhood system (first panel), single-site (second panel) 
and double-site cliques (third and fourth panels) 

Considering the first-order neighborhood, we may rewrite (2) into the fol- 
lowing form [24] 

where the first, second, and third term are single-site, horizontal double-site and 
vertical double-site clique potentials, respectively. Notice that for a double-site 
clique {(i, j ) ,  (i', j')), the associated clique potentials Vi(i,j),(i~ ,j~)) ( fi,j, fjlljl) 
and V{ ( i ~  ,J),(~, j)) ( fil , j ~ ,  fi,j) are equal. Therefore, (3) may be rearranged into 

where cl and c2 are single-site and double-site cliques in the defined neigh- 
borhood, and Ui,j(fi,j) is the energy function associated with site (i, j). As 
pointed out in [24], if p(f) is a posterior distribution, minimizing the energy 
function ~ ( f )  yields an Maximum A Posteriori ( M A P )  estimate of the joint pdf 

~ ( f ) .  

2.2. Mean Field Theory 

To make the MRF theory more practical, we need to introduce the MFT. From 
the description of the MRF, we know that the value assigned to a random vari- 
able in the MRF is affected by the values at its neighboring sites, which are 
furtherly dependent on their neighbors. One way to calculate the interaction 
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between one site and it neighbors is to apply the MFT [25],[26], which as- 
sumes that the impacts from the neighbors can be approximated by an average 
field. Let us denote the mean field for site (i ,  j )  by f g f .  As a result, if the first- 
order neighborhood is considered, one can write the energy function related to 
site ( i ,  j )  in the following form [26] 

where V,, (.) and V,, (., .) are potential functions of single-site and double-site 
cliques respectively; and, f p f  is the mean field for f i t , j t .  Then, the marginal 

l? 

distribution of the MRF at site ( 2 ,  j )  may be approximated by the following 

As seen from (4) and (5) ,  the energy function is decomposed into local 
clique functions, where each site is treated independently. Therefore, the joint 
pdf p ( f )  can be approximated by 

Then, maximizing p ( f )  is equivalent to maximizing each p ( f i f ) ,  or, to 

minimizing the corresponding ugf ( f i  , j ) .  

In order to evaluate ugf ( f i  j), the mean field values f z t  at the neighbor- 
ing sites (it, j l )  within N i , j  must be computed. The general way to calculate a 
mean field value is by the following form 

Note that (8) requires the evaluation of p( f i  j), henceforth, uzf ( f i , j ) .  There- 
fore, the computation of the mean field value is usually carried out by iteration 
that stops when the change of the results from two consecutive iterations is 
sufficiently small. 

3. MRF CHANGE DETECTION METHOD 

3.1. MAP-MRF in Change Detection 

Let us denote the CDM by H = ..., Hi, j ,  ..., Hm,n), and a configuration 
of H by h = ( h l l 2 ,  ..., hi,j, ..., h,,,), where h i , j  E (-1, I), ( i ,  j )  E R with 
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"-1" denoting "unchanged" and "1" denoting "changed. Then, given two 
frames f(O) and f('), our goal is to find the optimal h* in the MAP sense, such 
that 

h* = argmaxhp(hl f(O), f(')) 

Applying MRF assumption on both F and H, maximizing p(h)f('), f ('1) 
with respect to h is equivalent to minimizing the associated energy function 
U(hlf('), f(')). This, as suggested by (9), can be accomplished by minimiz- 
ing U( f (') 1 h, f ('1) and U ( ~ J  f(O)), which are associated with p( f ('1 lf(O)) and 
p(hlf(O)), respectively. U( f(') I h, f (O)) addresses the potential of the similar- 
ity between f(l) and f(O) with the knowledge of h, i.e. whether the sites are 
changed or not. And, U(hlf(O)) is always considered to represent the spa- 
tial domain constraints, e.g., the smoothness or similarity between neighboring 
sites. Therefore, a general form of the prior model of these energy functions is 

where yf and yh are regularization parameters. The larger the regularization 
parameter values, the more the corresponding constraint is emphasized. 

Equivalently, we can write (10) by 

where y = x. It is noticed that minimizing ~ ( h l  f(O), f(')) with respect to h is 
7f 

equivalent to minimizing U( f (') 1 h, f (O)) + u (hi f (O)). Therefore, we define 
the energy function in the following form, 

In order to design the above energy functions, one needs to employ the 
prior knowledge. In our application, the prior knowledge includes the distribu- 
tions of the frame difference in absencelpresence of changes and the similarity 
between immediate sites (pixels). There are no specific routines in designing 
potential functions. In general, as indicated in [23], the formulation of a poten- 
tial function should keep consistency with the prior knowledge: if the formula- 
tion of the regions in a clique tends to be consistent with the prior knowledge, 
the value of the energy function decreases; otherwise, the value increases. 
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In change detection, we interpret U ( f ( ' ) ( h 7  f ( O ) )  as a sum of single-site 
clique potentials, which is 

where Vc, is selected to be 

which is the negative of the natural logarithm of the pdf of the absolute frame 
(1) (0 )  difference di,j = If. . - f. . I at site (i, j )  E 0, given the knowledge of hi ,j. 
'h.7 2 73 

Therefore, if d i , ~  is consistent with the prior belief, the conditional probabil- 
ity will be high. As a result, its logarithm value will be low, and vice versa, 
as required by the design rules. Choosing the natural logarithm is instinctive. 
First, more penalty should be assigned when the probability value is near zero. 
In this case, the value of energy function should be extremely large. Second, 
considering p( f  ('1 ~ f  ( O ) ,  h  = - I ) ,  which is equivalent to the pdf of frame dif- 
ference caused by noise, we may assume p( f  ('1 1 f  ( O ) ,  h = -1) = niTi p ( d i ,  I 

1 (1)  . .--I f!9') 
hi 13 . = -1) , where p(di 1 h i ,  = -1 )  = 2. 2 73 . . e - ~ v ~ ~ ( f i , j  l h z p ~ -  Z J  , with 
Zi3i being normalization constants. We may take the natural logarithm on both 
sides of the above equation to obtain the potential function. For the case of 
hi l j  = 1, i.e., at the presence of change, the independence assumption may 
not hold in general. However, this assumption can be accepted as a reasonable 
simplification to trade off computational complexity [18]. Therefore, the above 
reasoning may also apply to the case hi  = 1. The collection of the a prior 
will be described in Section 3.2.. 

The other energy function ~ ( h l  f ( ' : )  in (10) addresses the contextual con- - ~ 

straints on the neighboring sites. This can be explained as follows: with the 
knowledge of f(O), we want to obtain h  that complies with the properties of 
f  ( O ) ,  for example, continuity of h  if we assume smoothness of f  ( O ) .  Based 
upon this reasoning, we define 

where cz is a double-site clique in a first-order neighborhood N i f  at site ( 2 ,  j )  E 
R. The scaling factor has been explained in (3) and (4). The clique potential 
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Vc2 (-, .) is defined as 

where X E ( 0 , l )  is a constant representing the impact from site ( i t ,  j ' )  on site 
( i ,  j )  . The reasons behind this design are : (1) we encourage the state of site 
( i ,  j )  to agree with its neighboring sites; (2) the logarithm form is consistent 
with that in (14). The term 1 - 0.51hif - X . I acts as a probability of the 
random variable at site (i, j )  when its value agrees with those at its neighboring 
sites. Therefore, this definition also follows the design rules stated previously. 

To minimize u ( h  1 f ( O ) ,  f ('I), we must evaluate the clique potential func- 
tions. A question now is how to calculate Vc2 (hi j, hitdt). As mentioned previ- 
ously, we may apply MFT to simplify this calculation. If the first-order neigh- 
borhood system is assumed, we have the following approximation 

Combining (12) (18), we have 

where 

Essentially, to minimize ~ ( h  f ( O ) ,  f ( ' ) ) ,  we only need to evaluate UEf (.) 
at each site ( i ,  j ) ,  and choose hi,j between -1 and 1 to render a smaller value 

of U@f(.). 

3.2. MRF-MFT Change Detection Algorithm 

Eq. (20) requires evaluation of p(didlhi $), ( i ,  j )  E R. Instead of collecting 
the pdf for each site, we utilize the same pdf, denoted by p(dlh), for all sites, 
where d and h have the same sample spaces as di and hi,j respectively. This 
choice facilitates practical application since it would be extremely expensive 
to allocate memory for p(di  1 h i f )  for each ( i ,  j )  E R. When h(i,  j )  = - 1, 
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this approximation can be justified because the states of unchanged sites are 
driven by noise which is usually considered to be independently and identi- 
cally distributed (i.i.d.). For moving pixels, the above assumption is not true 
in general. However, if we assume that each pixel may experience the same or 
similar amounts of motion, the validity of using p(dl1) for all the sites is also 
justifiable. 

To train p(dl - I ) ,  we utilize the video segments containing motionless 
scenes. This is relatively easy to accomplish in many applications, such as 
in surveillance and teleconference videos. In general, it is difficult to train 
p(dl1);  however, it is possible to train a prototype for specific applications. 
Practically, we adopt the following strategy to calculate p(dl1):  first, p(dl1)  
is initialized to be a uniform distribution across the entire range of its sample 
space, i.e. p(dl1)  = &, d  E [0, L] for a discrete case; then, starting with the 
initial value, we adapt p(dl1) during a detection process, using the following 
equation 

( r )  p ( r ) ( d l l )  = ( 1  - r . p) - p ( r - l ) ( d l l )  + r . p  . p d I l ,  (21) 

where p$! is the pdf of the %hanged" pixels in frame r ,  p is the ratio of the 
number of "changed pixels to the total number of pixels in that frame, and 
E E ( 0 , l )  is a control parameter. The term p  reflects the intuition that the more 
"changed pixels there are, the more p ( d ( 1 )  should be adapted. Parameter 6 is 
designed to control the rate of the adaptation. 

An important question now is how the mean field value h g f ,  (i, j) E R is 
evaluated. As mentioned previously, the mean field value is usually computed 
iteratively until it converges. As described in Section 2.2., h e f  can be evaluated 

(0) ( 1 )  based on the local energy function u g f ( h i , j  1 f,,. , fi,. ) 

Applying (20), we have 

Note that the computing time can be greatly reduced by using (23). With the 
evaluation of h e f ,  (23) can be re-evaluated with the new value of h g f .  The 
iteration continues until the following condition is satisfied: 
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where, k is the index of iteration, rn . n is the total number of pixels, and 
6 E (0 , l )  is a chosen threshold. 

With these assumptions and simplifications, we present an algorithm to 
implement the proposed model as follows: 

0 Step 1 : Load  dl - 1) and initialize p(dl1) = 11256, for d = 0 255; 
Assign values to y, A, c and 6. 

0 Step 2 : Take two frames f(O) and f ('1, and calculate d = 1 f (O) - f ('1 1; 
Initialize the mean field values ii"f, where for each pixel (i, j), h~~ = 

0. 

0 Step 3 : For each pixel (i, j), evaluate (20) with hi,j = -1 or 1, and 
calculate the new mean field value by (22) and (23). 

0 Step 4 : Evaluate the difference between the new mean field value and 
the previous one as defined in (24); If the difference is less than 6, then 
go to next step, otherwise go to step 3. 

(0) (1) 
0 Step 5 : For each pixel, if the local energy u s f ( h i , j  = -11 f,,j , f, ) > 

(0) (1) u z f ( h i  = 11 fi,j , f , ,  ), then label pixel (i, j) "unchanged", otherwise 
"changed". 

Step 6: Update p(dl1) by (21): Finish if all the frames are done, other- 
wise go to step 2. 

4. ILLUMINATION INVARIANT APPROACH 

In the previous sections, we have presented an MRF-MFT model to identify 
changes exclusively due to noise. The disturbance caused by illumination 
changes have not been addressed. This type of disturbance usually appears 
in images as visually noticeable changes, but are most of the time uninter- 
esting and should be discriminated or excluded by a change detection algo- 
rithm. Recently, research [14] has been conducted to develop approaches with 
"illumination-invariant" features. In the following, we describe a new con- 
struction of an illumination-invariant change detection algorithm by using the 
proposed MRF-MFT model. 
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4.1. Shading Model 

The shading model [ll, 191 formulates the gray level intensity of an image as 
the product of the illumination of a physical surface and its shading coefficients, 

where (i ,  j )  is a particular pixel representing a point on the physical surface, 
fi,j is the obtained intensity, Ii,j is the illumination, and Si is the shading co- 
efficient at ( i ,  j ) .  The shading coefficient is determined by a number of factors, 
such as the structure of physical surface, reflectance of the material, and angles 
of striking and reflected lights. A typical formulation of the shading coefficient 
was provided by Phong [29]. 

It is usually assumed that, for two given images containing the same ob- 
jects, if there is no change in the physical structure of the object, the shading 
coefficient at the given location on two images are identical, i.e., 

where the superscripts denote image indices. In addition, the illumination Ii 
usually varies slowly in the spatial domain, which leads to the assumption that 
Iilj does not change within a small local region. 

4.2. Illumination Invariant MRF-MFT Change Detection 

Considering both the shading model and noise, we may formulate the intensity 
at pixel ( i ,  j )  in image k by 

( k )  where qi,j are assumed to be i.i.d. random variables due to noise. Therefore, 
the image difference can be modeled by 

Under the null hypothesis, namely, the object surface does not change, we have 
s$) = s:, which leads to 

(0) ( 1 )  where pi,j = Ii,j /Ii denotes the ratio of illumination on pixel ( i ,  j )  in the 
two images. If there is no illumination change, then pij = 1. 



126 Qiang Liu, Mingui Sun, Ching-Chung Li and Robert J.  Sclabassi 

In order to extend the previously described model with consideration of il- 
lumination, let us define an adjusted image difference to reflect the illumination 
change 

Under the null hypothesis, we have 

Now, the single clique function defined in (14) is changed to 

If pi,j can be evaluated, so can the corresponding clique functions. A simple 
way is to use the image intensity values to estimate pi,? To do that, let us 
define 

to compensate the noise effect, where Wi is a window centered at pixel (i, j ) ,  
and M is the number of pixels included in Rij. If M is sufficiently large, we 
have 

Considering that the illumination is usually a slow changing variable in the 
spatial domain, we may assume it a constant within Wif Consequently, we 
have 

( k )  Then we can use F, to obtain an estimated pi,j by the following, 

As a result. we have 
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( k )  Therefore, if the distribution of qi,j is known, p(ei,jlhij = -1) can be evalu- 
( k )  ated. Because qi,j represents a noise variable, for simplicity, let us assume it 

obeys a Gaussian distribution with a zero mean and a variance of 6;. Then, the 
(1) function q, . - 2 (O) also has a Gaussian distribution with a zero mean and ,.I pi,j % j  

variance equal to (1 + &-)a;. Consequently, we have 
pi,j 

Applying (38) to (32), we have the single clique function for "unchanged" 
pixels. For the "changed" case, p(ei,jlhij = I) can be calculated following 
the same procedure as described in 3.2., namely, being trained online. The 
adaptation of p(ei,j /hiyj  = 1) is still formulated by (21) except that that image 
difference d is replaced by e. 

5. IMPLEMENTATION AND EXPERIMENTS 

In this section, the experimental results based on the proposed method are re- 
ported. We present results on three image sequences: 1) a simulated data gener- 
ated by MATLAB (Mathworks Inc.), 2) Hallway sequence which is a popular 
test video clip containing multiple types of changes, and 3) a patient monitoring 
video sequence to demonstrate illumination-invariant function. All sequences 
are with QCIF format ( 144 x 176 pixels with Y component at 30 frames per 
second). Only the Y component is utilized to calculate frame differences. 

As described in the previous sections, five controlling parameters are re- 
quired, i.e., T, y, A, E, and 8. A set of typical values of these parameters is 
listed in Table 1. These values are chosen experimentally. 

0 T: It is called "temperature" in MRF based methods, e.g. simulated 
annealing algorithm [20]. This parameter determines the spread of the 
Gibbs distribution. In the simulated annealing methods, T is gradually 
decreased during an annealing process. However, as suggested by [27], 
a fixed T is able to render a satisfactory result while reducing the com- 
putational cost. Therefore, a constant T was utilized through out our 
experiments. 
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y :  This is the regularizing parameter to balance the constraints intro- 
duced by different clique potentials. In our application, a larger y em- 
phasizes the smoothness constraint. 

A: This parameter models the impact between neighboring sites. In (16), 
hi l j  - Ahrf, is utilized to represent the difference between neighboring 
sites ( i ,  j )  and ( i ' ,  j ' ) .  As is seen that the larger the A, the more impact 
from (i ', j ' )  is introduced. 

E: Its role is to control the adaptation of the pdf of d in the presence of 
change. The larger E, the more the pdf adapts to each CDM, and the 
faster it adapts to the testing data. However, considering the risk of false 
detection, we assign a moderate E value. 

0 8: The threshold to stop the iteration in calculating the mean field values. 

Table I: Typical control parameters 

1 parameter 1 T 1 y  I A E 1 e 
I value 1 2  11 ( 0.99 1 0.5 / 0.01 1 

5.1. Simulated Data 

To evaluate our method quantitatively, we generated a synthetic image se- 
quence by using MATLAB in the following way: a circle (with a radius of 
20, line width of 3, both in pixels, gray level intensity of 5, and the coordinates 
of the origins randomly generated) is plotted in a frame; then, the white Gaus- 
sian noise with mean of 127 and standard deviation of 1 is added to the frame. 
It should be noted that the signal-to-noise (SNR) ratio of the simulating data is 
worse than the SNR of common videos. Two pairs of sample frames are shown 
in Fig. 2. Let us denote the known CDM by h(T) and the detected CDM by 
hct). Then, the Re = {(i, j ) l h r )  # h!?, (i, j )  E R )  denotes the set of sites 

!J 
with false labels. The error rate is then defined by 

where llRe 1 1  and llRll denote the number of sites in Re and R respectively. 
Fig. 3 demonstrates the results of the simulated data, with the parameters 

listed in Table 1. Fig. 3(a) shows the results obtained from frame 1 and 2. The 
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Frame # 1 Frame # 2 Frame # 2 1 Frame # 22 

Figure 2: Two pairs of sample frames in the synthetic sequence: from left to right, 
frame 1 and 2 forming a pair; frame 21 and 22 forming another pair. 

left, middle and right panels in Fig. 3(a) show the known CDM, the detected 
CDM, and p(dl h = -1) and the initial p(dl h = I), respectively. Compared 
with the known CDM, the detected CDM has visible false detections. However, 
with the adaption of p(dlh = I) ,  the false detections are reduced. As seen in 
Fig. 3(b), where the results are obtained from frames 21 and 22, the detected 
CDM (the middle panel) contains much less false detections. The error rate 
of each CDM is plotted in Fig.3(c). It is seen that the error rate decreases as 
frames 1 - 20 being processed, then becomes stable after that. The reason is 
that p(dl h = 1) adapts gradually to the testing data at the initial 20 frames, and 
then stabilizes. The adaptation speed is quite satisfactory for many common 
applications (e.g. video surveillance, video editing), as indicated by our results 
using natural videos. 

5.2. Real-World Data 

In the following, we report experimental results of two real-world video se- 
quences. The first test sequence is called Hallway that can be found in the 
public domain. Sample frames are illustrated in Fig. 4, where the top panel 
shows frame 1 of Hallway sequence, and frame 25,50,100,250,275 are shown 
on the bottom panel. It is seen that frame 1 contains only background scene, 
while the subsequent frames have appearances of new objects, including two 
walking persons and a suitcase placed at the left side of the hallway. The ob- 
tained CDMs by using the MRF-MFT algorithm described in Section 3.2. are 
illustrated in Fig. 5. One can see that the foreground was well separated from 
the background scene. The conditional probabilities required by the potential 
functions are shown in Fig. 6 (for the clearance of display, only part of the 
pdf's are displayed). The right panel shows a close-look of the pdf's on the 
left panel. The pdf of noise, i.e. p(dlh = -I), was estimated from the in- 
tensity differences in manually selected regions, which contained no apparent 
changes. The pdf's of intensity differences caused by relevant changes were 
first initialized to be uniformly distributed within value range of 0 - 255, then 
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Figure 3: (a) The change detection results from frame 1 and 2. From left to right: the 
known CDM, the detected CDM andp(d1 h = -1) and initial p(dl h = I) ,  respectively. 
(b) The change detection results from frame 21 and 22. From left to right: the known 
CDM, the detected CDM and p(dl h = - 1) and p(dl h = 1). (adapted from frame 1 - 
20), respectively. (c) The error rate from frame 1 -- 50. 
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Figure 4: Frames 1725, 50,100,250 and 275 of Hallway sequence 

Figure 5: The detected CDM's from the sample frames of Hallway sequence, with 
the parameter values listed in 1. The white ("I-pixel") regions denote "there are sig- 
nificant changes between the test image (containing moving objects) and the reference 
image (containing merely background scene)". It is seen that the significant changes 
caused by the moving subjects and the suitcase being placed in the hallway were well 
identified. 

adapted in the process of change detection for the subsequent video frames. 
The convergence of the mean field value took 5.09 number of iterations in 

average. The algorithm was implemented in C++ and compiled with Microsoft 
Visual C++6.0. Experiments were carried on an AMD Athlon 1900 (1.66 GHz) 
PC with 5 12M DDR2100 RAM. Our program performed an average of 9.4 mil- 
liseconds per iteration. For the presented data, this leads to a time consumption 
of 47.85 milliseconds per frame pair. It is an acceptable amount of cost when 
the frame pair is formed at 10 frames per second or less. 

Next, we present experimental results on a video segment recorded at the 
Epilepsy Monitoring Unit at the University of Pittsburgh Medical Center. Sam- 
ple video frames were shown in Fig. 7. This type of video is often recorded 
for patient care and diagnostic purposes. Automatic detection of changes can 
facilitate this application by 1) tracking the subject and controlling the cam- 
era to present an optimal view of the subject, and 2) segmenting the region of 
interest to advance transmission and archiving of the monitoring video. We'll 
demonstrate the effectiveness of the illumination invariant approach described 
in Section 4.. Firstly, we carried out experiment on the testing video without 
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+ p(dlh=l) at frame 1 
-b p(dlh=l) at frame 25 
* p(dlh=l) at frame 50 - p(dlh=l) at frame 100 - p(dlh=l) at frame 250 

Figure 6: The 
-I), andp(d1h 
the pdf's in the 
ofp(d1h = 1). 

- p(dlh=l) at frame 1 - p(dlh=l) at frame 25 
-.- p(dlh=l) at frame 50 - p(dlh=l) at frame 100 
+ p(dlh=l) at frame 250 

0 06 

pdf's obtained from Hallway sequence: the left panel shows p(dlh = 
= 1) at the frames of 1,25,50, 100,250 and 275; the right panel plots 
marked range on the left panel, showing a close-look of the adaptation 

illumination invariance function. A typical result is illustrated in Fig. 7. The 
left panel shows a snapshot of the environment before the occupancy of the 
subject. The middle panel shows a video frame with the subject sitting in bed. 
Comparing these two images, we found that there were large intensity differ- 
ences (in amplitude) contained in the background area. For example, the pixels 
in the marked regions on the right panel, which shows the detected CDM with- 
out concerning illumination variation, had a maximum intensity difference of 
35. These intensity differences may be caused by shadow, light source change, 
and automated camera gain adjustment, which can all be considered as illu- 
mination variation. Thereafter, by using the algorithm described in Section 4., 
these irrelevant disturbance can all be greatly reduced. This is demonstrated by 
our experimental results shown in Fig. 8, where the image containing the back- 
ground scene, sample video frames with presence of the subject, and the corre- 
sponding CDM are shown on the top, middle and bottom panels respectively. 
It is seen that the irrelevant changes in the background area were successfully 
eliminated, while the subtle changes of the bed caused by the movements of 
the subject were retained. 

6. CONCLUSION 

In this chapter, we have presented a new approach to the change detection 
problem in image sequences. This approach employed two well-established 
theories: MRF and MFT. Based upon the MRF theory, change detection is 
modeled as an optimization problem, namely, the CDM is calculated in the 
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Figure 7: Experimental result on patient monitoring video WITHOUT illumination 
invariance function. The left panel shows a snapshot of the monitoring unit before 
the patient's occupancy. The middle panel shows a sample video frame at the pres- 
ence of patient. The right panel shows the detected CDM by the proposed method 
without concerning illumination variation. It is seen that the CDM was affected by 
the illumination change, for instance, the marked polygonal regions in the background 
area. 

Figure 8: Experimental results based on algorithms described in Section 4. featured 
with illumination invariance. Top panel: the image containing the background scene; 
middle panels: sample video frames with presence of the subject; bottom panels: the 
corresponding CDM's. It is seen that the irrelevant changes in the background area 
were successfully eliminated, while the subtle changes of the bed caused by the move- 
ment of the subject were retained. 
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sense of MAP. In order to carry out an efficient computation, we utilized MFT, 
which simplifies the procedure of searching for the optimal CDM. Experimen- 
tal results are reported based on this optimization approach. Both the synthetic 
and real-world data indicate that this approach accurately detects the changes 
between frame pairs. One remaining problem, however, is to determine the 
values of control parameters in the associated functions. Currently, the param- 
eters are chosen in an experimental manner. In the future, a meaningful cost 
function of these parameters may be designed to provide the values in a certain 
optimal sense. 

This work was supported in part by National Institutes of Health Grants MH38494 and 
EB002309 and Computational Diagnostics, Inc. 
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Chapter 7 

ANALYSIS OF MULTI-CHANNEL SUBDURAL 
EEG BY RECURRENT NEURAL NETWORKS 

Robyn R. Bates, Mingui Sun, Mark L. Scheuer, 
Robert J. Sclabassi 

1. INTRODUCTION 

Epilepsy, a neurophysiological condition in which there is a 
disruption of the brain's normal electrical activity, is associated with 
symptoms which can vary from a brief lapse of attention to episodes of 
seizures [I]. It is one of the most common neurological disorders and up to 
about 1% of the population in the United States is afflicted. While the 
existence of seizures has been noted since ancient times, the progress of 
epilepsy characterization and treatment was minimal until the advent of 
electrophysiological monitoring techniques [2]. 

An epileptic seizure is caused by repetitive, abnormal, and 
synchronized, neuronal activity within the brain, with symptoms that depend 
both on the location of the seizure onset within the brain, and the spread of the 
activity. A diagnosis of epilepsy is primarily based on an analysis of the 
electrical activity in the patient's brain, recorded as an electroencephalogram 
(EEG) [3]. The EEG represents the summed potentials of a large number of 
cortical neuronal cells which are mostly oriented in parallel columns 
orthogonal to the cortical surface [4]. 

An EEG record from a patient with epilepsy can contain information 
about seizure genesis in both the inter-ictal activity and the immediate pre- 
seizure stage. Detection of epileptoform activity in the pre-seizure component 
of a multi-electrode EEG record is highly useful in the localization of 
epileptogenic foci. 

For long-term monitoring of a patient with epilepsy, traditional 
methods whereby the entire EEG is reviewed by a trained technician, and 
significant portions by a specially trained neurologist, are inefficient and time 
consuming. The development of computer-based EEG analysis utilities has 
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led to the automated examination of long-term EEG records; however those 
methods have not yet been widely accepted. 

The use of automated methods in medicine, although not yet at the 
level of automated diagnosis, can be employed in an advisory capacity to 
isolate points of clinical interest for further analysis or detect clinically 
significant data. These results can then help to provide the clinician useful 
information with which to initiate appropriate interventions. With respect to 
the former application, analysis of the EEG record of a patient with intractable 
seizures can allow localization of epileptogenic foci - an important step in 
planning surgical treatment '5-81. 

1.1 Neural Network Models 

Artificial neural networks (ANN'S), or simply neural networks (NN's), 
are powerful analytical tools designed from interconnected computing 
elements called neurons (also variously called neurodes, nodes, neural units, 
or merely units). Loosely inspired by the makeup of the nervous system, 
these interconnected elements examine patterns of data and learn to classify 
them. As the neuron is a basic component of the brain, a neural unit is the 
building block of a neural network. Although the two are far from being the 
same, or from performing the same functions, they still possess similarities 
that are notable. Neural networks in the brain consist of a large number of 
interconnected units that give them the ability to process information in a 
highly parallel way. An artificial neuron sums all inputs to it and creates an 
output that is carrying information to other neurons. The strength by which 
two neurons are influencing each other is called a synaptic weight. In most 
neural networks, all neurons are connected to all other neurons by synaptic 
weights that can have seemingly arbitrary values, but in reality, these weights 
show the effect of a stimulus on the neural network and the ability or lack of it 
to recognize that stimulus [9]. 

Neural networks have been used in a wide variety of signal 
processing and pattern recognition applications and have been successfully 
applied in such diverse fields as speech processing, handwritten character 
recognition, time series prediction, data compression, feature extraction and 
pattern recognition in general. Their benefit lies in the relative simplicity with 
which the networks can be designed for a specific problem along with their 
ability to perform nonlinear data processing. 
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1.2 Recurrent Neural Network for Seizure Detection 

Recurrent neural networks have been proposed for time-series 
modeling and prediction, especially for those systems in which discrete time 
measurements are obtained. They are also appropriate for modeling 
real-world systems in which empirical measurements are obtained at discrete 
time points [lo, 1 11. 

This type of neural network can be trained on multiple temporal 
patterns, which may evolve on different time-scales and be sampled at 
non-uniform time intervals. Another advantage of the recurrent model is that, 
despite sparseness of the training data, the network is able not only to make 
good predictions at the final time step for temporal processes unseen in 
training, but also to reproduce an interval of the signal of interest at an earlier 
time. Furthermore, it may be possible for the network to predict the existence 
and role of a signal sample for which no target information is provided. The 
ability of the model to cope with outlier data points is likely to be useful in an 
application, such as EEG data, where there is a significant amount of noise, 
irrelevant components, spontaneous events, ambiguous artifacts, and 
distortion 1121. 

The research described in this chapter investigates the application of 
recurrent neural networks to the analysis of epileptic EEG records. There are 
three primary goals of these investigations: 

1.To employ the recurrent neural network to detect the possible onset 
of seizure activity in multi-channel subdural EEG (SEEG) data; 

2. To classify the EEG recording-electrodes in order of earliest 
detection of seizure-like activity; 

3. From steps 1 and 2, make certain qualitative conclusions regarding 
the location of the epileptogenic foci. 

2. METHODS 

2.1 Data 

EEG data were available from a five-year old white male patient who 
presented with intractable epilepsy. Epileptogenic foci were not well 
localized and ought to be several in number. A callosotomy, which resulted in 
only limited short-term improvement, was performed when the child was five. 
There is no history of other chronic illness. 

One collection of the EEG data was recorded from implanted 
subdural electrodes (SEEG), while the second collection was obtained from 
scalp recordings. Both sets were obtained after the callosotomy had been 
performed. For this study, only forty-eight sets of the subdural (SEEG) data 
were used. 
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The SEEG data was obtained from those sets, which were determined, 
by expert analysis, to contain definitive seizure activity. Each SEEG data 
was one minute of data (15000 data points per channel, sampled at 250 
samples/sec) . Since one of the objectives of the this study is to examine the 
neural network's ability to detect pre-seizure epileptoform activity, a number 
of sets of SEEG data preceding those which contained definitive seizure 
activity were also selected for analysis. 

The data had previously been low-pass filtered and demeaned. Since 
the data was obtained from multi-channel recordings, it was necessary to 
normalize the dataset over all channels before dividing up each channel by 
training or testing sets. 

By making the assumption of slow time variation, one may divide a 
time-series sample into segments of appropriately small time-intervals 
(generally < 4 seconds) and assume each segment to be stationary in the 
interval. However, there are instances in which the variation of the EEG 
signal over even a small time interval cannot be estimated by a sequence of 
stationary epochs without making some assumption about the smoothness of 
the time variation - viz. the second-order differences. 

Recurrent neural networks are particularly susceptible to large first 
and second-order differences because of the inherent short-term memory 
which is a consequence of the network architecture. By making the 
assumption of the interval stationarity, it is assumed that these differences are 
small within each interval and that the transition between intervals is smooth 
WI. 

Pre-processing the data by filtering or smoothing is typically 
performed to minimize the effects of non-stationarity. For example, some 
methods that are employed include the use of linear or other types of filters. 
However, methods used for pre-processing might introduce their own set of 
difficulties into the analysis. For example, the optimal cut-off points for these 
filters are however determined on a trial and error basis, which may require 
considerable time and expertise. 

2.2 The Recurrent Neural Network Architectures 

The architecture selected for this study, the recurrent architecture, is 
able to process sequential temporal data, since it employs one or more 
feedback loops that relate the output of the network to subsequent inputs to 
the network. Thus, this architecture is thus particularly well-suited for EEG 
data analyses. There are a variety of recurrent architectures available for 
study which differ in the layers involved in the feedback connections as well 
as the number of feedback connections between the layers [14, 151. 

Although there are number of recurrent architectures in which the 
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hidden layer is only partially connected to the input layer, it was decided to 
employ a fully connected recurrent network for this study. Since each input 
node receives equal weight by the network, the use of a fully-connected 
network is reasonable to optimize the trade-off between the representation of 
non-linear dynamics and training speed and stability [16]. 

Since the seizure events are not well-defined when observing the data 
at a discrete point in time, it is necessary to analyze the EEG records in the 
context of the surrounding data. This requirement is met by designing the 
neural network to possess a short-term memory, so that each data point is 
analyzed with respect to each preceding point - and by designing the input 
layer to consist of nodes representing contiguous EEG channels. For the 
architectures used in this study, the following relationship describes the 
recurrent process: 

where: xi - input at time t; 
yi.1- neural network output at time t-1 

Since both the inputs and outputs of the network are scaled over [O,l], 
a weight of 0.5 is used to scale the feedback sum of the input and output to 
Thus, both values receive equal weight in the recurrent summation. In this 
relation, the node inputs are considered individually and not in some linear 
combination. 

Topological considerations regarding the spatial and temporal 
characteristics of the seizure are of significant importance in the development 
of a methodology for studying epileptoform activity. The use of different 
recording montages can either enhance or disguise the presence of abnormal 
cortical activity. Also, the underlying anatomy of the cortex can affect the 
resolution of the signal recorded at an electrode by such factors as attenuation 
by tissue or bone, coupling of neighboring neuronal networks in localized 
segments of tissue, or by electrical conduction along specific neuronal 
pathways at a distance from the actual signal source. Artifacts and noise 
generated from the use of the recording equipment or process are also 
responsible for concealing both pre-seizure and seizure activity in the EEG 
record [ 171. 

These factors have implications in the design of seizure detection 
methods, particularly, with respect to the choice and design of the appropriate 
neural network architecture. Localization and estimating the distribution of 
signal sources in the cortex from the EEG record requires the solution of an 
inverse problem in which the cortical potential fields are calculated from a 
subset of electrostatic potentials measured on the scalp or subdurally. The 
characterization and solution of this problem is difficult because of the 



144 Robyn R. Bates, Mingui Sun, Mark L. Scheuer, Robert J. Sclabassi 

possibility that different internal sources can produce similar-looking 
electrostatic fields when measured by a finite number of electrodes [18, 191. 

A number of approximations are available for the solution of this 
source-localization problem, such as source imaging, but they fail to address 
the cases in which there might be more than one independent source. The 
general problem is the determination of the location and magnitudes of the 
sources of epileptoform activity within the cortex from the set of electrode 
potentials derived from specific recording sites on the scalp or from subdural 
measurements [20]. 

The subdural montage used to record the EEG data from the patient 
considered in this study consisted of 94 electrodes. Since this study did not 
employ the use of any pre-processing techniques to reduce the complexity of 
the data before processing by the neural network, a basic assumption was 
made concerning the design of the input layer for the neural network. It was 
assumed that the relatively large number (94) of recording electrodes that 
were placed subdurally would provide sufficient spatial resolution to pinpoint 
the location of seizure sources. It was further assumed that this resolution 
would be sufficient to allow the detection of pre-seizure activity in the EEG 
record by ensuring a recording of seizure activity sufficiently close to the 
epileptogenic foci so as prevent the attenuation effects mentioned above. 

Also, because of the nature of the recurrent architecture, it was 
assumed that values of the EEG data depended on the immediately preceding 
values. Therefore, using too few inputs can result in inadequate modeling, 
whereas too many inputs can excessively complicate the network, in terms of 
the training times and dimensionality of the network. If, as in this study, each 
input node represented each EEG electrode, using too many input layers will 
involve the input from too many electrodes and therefore provide low spatial 
resolution with regard to the actual localization of the seizure-like activity, if 
any. In the extreme case, for example, if an input layer of 94 nodes was used, 
corresponding to the complete montage for the subdural EEG, the detection of 
seizure-like activity would indicate that a seizure might have occurred in time, 
but with no information as to where on the montage the seizure-like activity 
happened. 

With these considerations in mind, it was decided to employ an input 
layer of five electrodes, which consisted of one central electrode and four 
closest neighbor electrodes, which would allow for the localization of seizure 
activity within a region covered by five electrodes. Larger network input 
layers and overall architectures were considered, but it was felt that a 
resolution of five electrodes would constitute a good tradeoff between 
localization and computer-processing time during the training of the network. 
In particular, the neural network should be able to provide a sufficiently low 
error during training, but not require a overly large amount of time to train. 

With respect to the number of nodes in the hidden layer of the 
network, designing an optimal structure can employ empirical rule is that the 
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number of weights should be less than a tenth of the number of training 
patterns. One method of determining the number of hidden-layer nodes is the 
Baum-Haussler rule: 

Number of Hidden Nodes I (Ntrain)(Etol)/(Ndata + Noutput) 
where NUai, is the number of the training data points, EtO1 is the relative error 
tolerance (the value is typically in the region of 0.01), Ndata is the number of 
data points per training example, and Noutput is the number of output neurons 
[20]. Thus, for a network in which there are 100,000 training sequences of 
data available, 250 data points per training sequence and 1 output neuron, 
there should be 4 nodes in the hidden layer. Although this heuristic does not 
take into account the effect of the short-term memory provided by the 
recurrent connection, the result of four nodes was considered an 
approximation and recurrent architectures possessing five and ten nodes per 
hidden layer were tested in this study. 

The single output node for both the 5-5-1 and 5-10-1 
architectures is intended to represent the activity "center-of-gravity" for the 
five input nodes. Thus, it may not represent any one of the five electrode 
signals being examined, but rather a spatial point in between the set of five. 
Schematics for both the 5-5-1 and 5-10-1 architectures appears below 
(Figures 1,2). 

2.3. Training 

For this particular study, two collections of training data, not from the 
testing data, were obtained -- one confirmed set of seizure data; one 
confirmed set of non-seizure data. The presence of seizure events was 
confirmed by expert epilptologists. From each of these two data collections, a 
total of 1000 data sets, 500 sets consisting of 94 channels, each channel with 
250 points (1 second) of confirmed seizure activity, and 500 sets of 94 
channels with 250 points of non-seizure data per channel, were extracted. 

The targets for these training sets are determined as follows: if the set 
of raw data corresponds to seizure data, its target is "1". If it corresponds to 
non-seizure data, its target is "0". 

Each sample of 250 sample points of raw seizure and non-seizure data 
is used only once. The sample sets were presented until the training goal had 
been satisfied. 

The resilient backpropagation training algorithm was used during 
training. This algorithm is a local adaptive learning scheme, in which only 
the sign of the derivative is considered to indicate the direction of the weight 
update (see figure 3.) 



Robyn R. Bates, Mingui Sun, Mark L. Scheuer, Robert J .  Sclabassi 

RECURRENT 
CONNECTION 

Recurrent Connection: 
Open for training 
Closed for testing 

HIDDEN 
INPUT LAYER LAYER 

Figure 1:  5-5-1 Recurrent Neural Network Architecture: 
five input nodes (one central input signal and four closest- 
neighbor signals); five hidden-layer nodes, and one output 
node. The recurrent connection provides feedback, with a 
one-sample time delay, from the output node to the input 
layer. The output layer of a single node represents the 
degree of seizure-like activity for the five input nodes. Thus, 
it does not indicate the degree of seizure-like activity for any 
one of the input nodes -but rather the "center-of-gravity" for 
the five input nodes. This architecture is fully-connected and 
the recurrent connection feeds into all the nodes in the input 
layer. The 5-10-1 architecture is similar, but with 10 hidden 
nodes. 
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Recurrent Connection 

Connection: 
Open for training 
Closed for testing 

Figure 2: 5-10-1 Recurrent Neural Network Architecture: five input 
nodes (one central input signal and four closest-neighbor signals); ten 
hidden-layer nodes, and one output node. The recurrent connection 
provides feedback, with a one-sample time delay, from the output node 
to the input layer. The output layer of a single node represents the 
degree of seizure-like activity for the five input nodes. Thus, it does not 
indicate the degree of seizure-like activity for any one of the input nodes 
-but rather the "center-of-gravity" for the five input nodes. Like the 5-5- 
1 network, this architecture is fully-connected and the recurrent 
connection feeds into all the nodes in the input layer. 



Robyn R. Bates, Mingui Sun, Mark L. Scheuer, Robert J. Sclabassi 

Tm~ning 5-10-1 Rwurrent Neural Network with Reslllent Backpropagallon Alprlthm 
1 o2 

1 

Figure 3: MATI.ABTM plot of resilient backpropagation training for the 5-10-1 
recurrent neural network. This network was trained on random sets of seizure and 
non-seizure data. Each set of data consisted of 250 samples of data obtained from 
confirmed intervals of seizure and non-seizure subdural EEG data. The seizure data 
was given a target value of 1; the non-seizure data was given a target value of 0. It 
can be noted that the training reached the training goal of 0.0275 within 3530 
epochs without any encountering any local minima. 

A training set for the neural network was constructed by selecting ten- 
thousand points from the SEEG data. The data points from the known seizure 
components of the data were given a corresponding target value of " 1 "; those 
data points from the known non-seizure component were given a target value 
of "0." A collection of training samples was then constructed using a 
uniformly distributed random-number generator in MATLABTM. During this 
process the non-seizure and seizure samples were mixed. This procedure was 
followed to ensure that the neural network did not receive any particular bias 
of pattern during the training. 

Since the purpose of the neural network was to detect either 
"seizure activity" or "no seizure activity," the neural networks were trained 
with the recurrent connection open. Thus, each sample of 250 points, 
representing either seizure activity or non-seizure activity was presented 
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randomly to the network and the architectures were allowed to learn specific 
patterns as seizure or non-seizure, but prevented from learning a sequence of 
patterns. In this way, the network was trained to be flexible in its recognition 
of sequences of samples. 

2.4 Validation 

During the validation stage of the design, these recurrent architectures 
were tested with EEG data containing confirmed seizure activity that were not 
part of the pool of EEG data to be tested for seizure activity. 

After preliminary tests to determine which size network would still 
provide appropriate seizure discrimination, as well acceptable computational 
speed, the 5-5-1 and 5-10-1 architectures were determined to produce 
acceptable results. 

2.5 Testing 

After the network has been satisfactorily trained, the recurrent 
connection was connected and the network run with the recurrent connection 
closed . 

The data to be analyzed was given to the network in the following 
manner: for five channels at a time, sequential blocks of 250 sample points 
(corresponding to 1 second of data) in each channel were presented to the 
network. After training had been completed, the network was used to analyze 
the EEG data sets. The data sets -- 94 channels, each with 15000 data points, 
for the SEEG data, were each run in their entirety before going on to the next 
data set. Since the input layer of the neural network had five nodes, five 
channels of data from each set were presented to the network at a time. Thus, 
channels 1 through 5 were run until all the data points had been analyzed by 
the neural network, then the next five channels, 6 through 10, were run, and 
so on, until all the channels had been analyzed by the network. Thus, for each 

data set, the total output of the neural network for the subdural data (e.g.), Y , 
is represented by: 

1 1  

Thus, an array of 94 x 15000 was obtained for the subdural and the 
scalp data, respectively (in practice, the SEEG record contained 96 channels, 
the last two channels were EKG data and were not used in the data analyses. 
95 channels were used for programming convenience). Each SEEG data set 
took roughly forty minutes to analyze. 
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2.6 Analysis and Display of Neural Network Output 

The neural networks generated outputs over the interval [0,1], where 
output values close to 0 were considered to represent points with low seizure- 
like activity. Output values close to +1 were considered to represent regions 
of high seizure-like activity; values between 0 and +1 indicate the degree of 
seizure-like activity. 

The [0,1] scaled values for each data set were then displayed as 
MATLABTM contour plots, using an appropriate colormap function, to 
provide an optimal contrast for visualization. Detection of seizure-like 
activity was accomplished by visual inspection of these plots, which presented 
the neural network output as data points per channel (see figure 6). 

Since the results of the 5-10-1 architecture proved the most accurate 
on test-data with expert confirmed seizure activity, further analysis of these 
results was performed. The standard-deviation of the neural network activity 
was then calculated for all channels at each time-point. A decrease in the 
standard-deviation of the neural network output at each seizure-like event was 
noted. Also, by spectrogram analysis, a large increase in the low-frequency 
components of the variation at the time of the seizure event in each sample 
was seen (figure 7). This suggests that, at the onset of seizure-like activity: 1) 
the magnitude of the signal standard-deviation across the subdural space is 
small; 2) the time-dependent change of the standard-deviation is small; 3) 
the signal power is concentrated in a small range of low-frequency 
components. These results suggest the entrainment of epileptogenic neural 
components during seizure onset. 

3. RESULTS 

In the analysis of the forty-nine sets of SEEG data, it was found that 
certain channels in a number of the data sets consistently showed relatively 
strong seizure-like activity -- above 0.5 on a scale of 0 to +1 despite which of 
the three architectures was used. The output values obtained from all three 
neural network architectures do not represent the level of seizure-like activity 
found at each channel - rather, each output value represents the level of 
seizure-like activity obtained for the group of five channels making up the 
nodes of the input layer. Thus, the value obtained at the output can be 
considered as the activity at a location which is the "center-of-gravity" of the 
five electrode locations corresponding to each group of the five channels. 

It was found that the neural network identified strong seizure-like 
activity on two of the recording channels for almost all the samples tested. In 
the same samples, three other recording channels also showed relatively high 
seizure-like activity in many of the samples (see figure 7) These five 
recording channels, outlined below, are depicted on the subsequent montage 
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in the shaded areas. A sample output from the 5-10-1 recurrent neural 
network, shown with its corresponding 94-channel sample of SEEG raw data 
is shown in figure 5. 

5 neighboring channels of raw data 

Recurrent Backpropagation Neural Network 

Output pzzEq 

Figure 4: 5-5-1 Recurrent "Neural Network Architecture in Testing Configuration: 
five neighboring channels of raw data are selected in sequence from the total data set 
(a). One point is selected as the central point; four neighboring points are included 
(b). The neural network is run in recurrent fashion during the testing phase (c). The 
output values range from 0 (no seizure-like activity) to +1 (high seizure-like activity) 
(d). These values are scaled from 0 (no seizure-like activity) to 1 (high seizure-like 
activity) for the convenience of contour plotting (f). 
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0 sec TIME 120 
sec 

Figure 5: Neural Network Output: TOD Plot (a): SEEG Raw data, 94 channels; 
Bottom Plot (b): Corresponding contour plot of scaled neural network output: 
120 seconds total output from 5-10-1 neural network. High degree of seizure- 
like activity is seen 70-80 seconds into the output contour plot across all 94 
channels. 
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Figure 6: Statistical Analysis of Neural Network Output 

Tor, Plot 
Decrease in magnitude of the standard deviation of neural network activity around 
the onset seizure-like activity 

Bottom Plot 

Spectrogram of the standard deviation data seen in the top figure. It is seen that there 
was a large increase in the low-frequency components of the standard-deviation at 
the time of the seizure event in the original SEEG data and the decrease of the 
magnitude of the corresponding standard deviation. 
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Figure 7: Subdural electrode montage showing the sites of the 
highest seizure-like activity detected by the neural network. 
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4. DISCUSSION 

This work showed that a recurrent neural network is useful in 
detecting seizure-like activity in epileptic EEG records. The consistency of 
results obtained from a number of subdural EEG data sets verifies that the 
neural network accomplished what it was designed to do within the bounds of 
a number of limitations. These limitations include the nature of the neural 
network training and test data, the particular complexity of the data used, the 
restrictions associated with the type of neural network used, and the 
approximations inherent in the recording techniques. 

The primary limitation to this study was the lack of a suitable number 
of patient samples. Data were obtained from a single individual with 
idiopathic epilepsy. The EEG data obtained from this patient were 
particularly complex, often showing seizure activity on all 94 recording 
channels. In addition, the focus (or foci) of epileptogenic activity was not 
known, nor could be it discovered from the data records. 

Seizure onset patterns are highly variable throughout the patient 
population and the onset of seizure activity in one patient can be 
indistinguishable from non-seizure activity in another patient. Furthermore, 
the onset of seizure activity can involve small changes, undetectable by 
human expert or automatic means. Two or more types of seizures can occur 
repeatedly in the same patient. 

Obviously, for a utility of the type proposed in this study to have 
clinical usefulness, it would need to be tested on a patient population of 
significant size. Furthermore, in order to be an effective clinical tool, the 
neural network would have to be able to recognize a wide variety of epileptic 
EEG's - not merely the complex types of the patient in this study. Also, the 
data obtained would have to be from an appropriate sample of the population, 
reflecting specific characteristics with respect to age, gender, diagnosis, etc., 
and who are accessible for study. Ideally, all inferences applied to the target 
population should apply to the broader population (viz. external validity). 

A significant limitation of any computer-based analysis technique is 
how it performs with respect to problem size and complexity. There are 
considerable trade-offs between the complexity of the data under 
consideration and the characteristics of the neural network used to analyze 
them. In general, the quality of the results obtained from the neural network 
depends on: (1) the complexity of the data being analyzed, (2) the extent of 
noise in the training data resulting from recording techniques, and (3) the size 
and architecture of the network in relation to the size required for an optimal 
or clinically acceptable solution. 

With respect to (I), EEG signals are difficult to analyze and the 
characterization of a certain series of epochs given by one expert may differ 
considerably than that obtained by another expert, especially in the 
designation of seizure activity. 
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Other general assumptions made regarding the unprocessed EEG data 
are reasonable approximations. In the EEG frequency range, the combination 
of signals received at the electrodes can be assumed to be linear. Also, during 
a seizure event, correlated activity in two components occurring in the same 
time-interval period is not attenuated by other independent activity, including 
baseline noise. Therefore, periods of correlated activity reflects the 
emergence of temporarily coupled sources that integrate synchronously active 
network. 

Addressing the second limitation of neural network analysis of EEG, 
there are a number of approximations introduced into the results by the 
techniques used to obtain the EEG signals during clinical recordings. 

However, certain trends can be taken into account when undertaking 
an iterative design of the network. In particular, adjustment of the network 
training rate is one parameter that is readily adjusted within the MATLAB 
code used to design the neural network. Since the recurrent architecture 
involves short-term memory, the lag-time in the response of the neural 
network to abruptly changing patterns (viz. from non-seizure-like to seizure- 
like) must be considered. For the architecture used in this study, one iteration 
of the network represented 1/250th of a second (the sampling rate), so the total 
lag-time of this particular network was considered to be insignificant. 

The training algorithm itself, the resilient back-propagation algorithm, 
is not typically used to train recurrent neural networks. The most widely-used 
gradient-based algorithms for training these type of networks are the 
backpropagation-through-time, recurrent backpropagation, and real-time 
recurrent learning algorithms. However, these algorithms tend to be affected 
by slow convergence. Most backpropagation algorithms are restricted by the 
potential problem resulting from the weight changes being a function of the 
gradient magnitude. Since the resilient backpropagation algorithm employs 
only the sign of the derivative to specify the direction of weight update, the 
potential problem arising from the increasing magnitude of the weight step 
partial derivative is avoided. This results in a typically quicker training time. 
Since the ultimate goal of this project is to provide a clinically useful utility, a 
relatively rapid training time is preferred. 

5. CONCLUSIONS 

It was shown that recurrent neural networks with relatively simple 
architectures are capable of detecting seizure-like activity in multi-channel 
EEG records. Furthermore, the results obtained from the three different 
architectures studied were fairly consistent in locating the generators of 
seizure-like activity based on the patient's subdural EEG montage. If these 
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results are verified by other studies, then these neural networks may serve as 
effective functional engines in more sophisticated seizure detection utilities. 
Additional work to increase the detection ability of these networks needs to be 
undertaken, especially with regard to the separation of the EEG data recorded 
at each electrode. Also, a means by which a utility using these neural 
networks can be made more adaptive to a variety of seizures from a wide 
patient population needs to be examined. 
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Chapter 8 

MULTICRITERIA OPTIMIZATION UNDER 
PARAMETRIC UNCERTAINTY 

Luke E. K. Achenie, G.M. Ostrovsky 

1. INTRODUCTION 

Often the performance of chemical processes cannot be estimated only by one 
objective function and it is necessary to take into account several conflicting 
criteria (Sophos et al., 1980), for example (a) process economics and 
environmental requirements, and (b) integration of process design and control. 
Therefore, multicriteria optimization (MCO) has evolved as an important 
problem in chemical process analysis and many other engineering disciplines 
(see for example, Keeney and Raiffa, 1976 and Caballero et al., 1997). MCO 
methods have been used for solving the process optimization. Luyben and 
Floudas (1994) used the multicriteria optimization (MCO) approach to 
combine economic and control objectives incorporating open-loop 
controllability measure. Sophos et al. (1980) considered multicriteria 
optimization within the petrochemical industry. Clark and Westerberg (1983) 
showed that the MCO problem can be reduced to a bi-level optimization 
problem. Palazoglu and Arkun (1987) considered MCO in the design of a 
robust chemical plant under uncertainty; they employed an economic 
objective function and dynamic operability measure as criteria. They also 
formulated a two-stage optimization problem in which the inner problem is a 
one-criterion optimization problem, using the &-constraint method (Haimes 
et al., 1975). Using multicriteria optimization, Chakraborty and Linninger 
(2003) investigated the trade-off between expected cost and flexibility of 
plant-wide waste management. 

MCO can be formulated as 

where D, = {x: g(x) 5 0 )  be the feasible region of (I) and g(x) is of 
dimension m. Note that in general, the separate NLP's 
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have different minimizers x: (x: # x;, i t j )  . Therefore, the MCO problem 

as stated in (1) is not well defined unless we define what constitutes a 
solution. 

2. PARETO SET 

We will consider a space of dimension p, in which each coordinate axis 
corresponds to a separate criterion. For illustration, we will consider the 

case p = 2 (Figure 1). There is the concept of a utopia point U (  f,* ,... fi ) 
such that each coordinate f i* is a solution to a one criterion optimization 

(OCO) problem (9.2). There is also the concept of a Pareto Set (PS, or non- - 
inferior set of points). Any point f = f (F) ( (g(2)  5 0) belongs to PS if in 

the small vicinity of 2 one cannot find a point? (g(F) 2 0 )  , in which there 
is at least a j such that 

This means that at any point in a PS, one cannot improve a criterion 
f ,  (x) without making another criterion f, (x) ( j # i) worse. 

Consider geometric interpretation of PS. For this we consider the 
mapping of x-space to f-space through the relations 

Let Df be the region in the f-space to which D, is mapped; see Figures 1 and 

2 for the case p=2. For each criterion f, (x) there is the concept of a lower 

boundary surface determined as 
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for different sets of {ci). For Df represented as Figure. 2, the lower 

Figure I x-space Figure 2 Criteria-space 

boundary surface of f 2  (x) is the curve ABG. One can show that if a point f 
belongs to PS then it belongs to the lower boundary curve. Indeed if a 
point f is an interior point of Df (see Figure 2) then in a vicinity of f we can 

always find a point, at which all criteria take better (i.e. lower) values. In 
order to find such a point we must move the point f i n  any direction inside the 
angle MfN (for example along the direction I). Consider the PS for the region 
Df represented on Figure 2. Let U be a utopia point. Draw the straight line 

UE parallel to the abscissa. Similarly draw UK parallel to the ordinate. 
Let the points B and A be the tangent points of the straight lines UE 

and UK with DJ , respectively. It is easy to show that the following 

inequalities hold 
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The point B ( flB , f: ) is obtained by solving 

Then flB = fl(xB), f: = f2(xB)wherex, =argmin{f2(x)!g(x) 5 0 )  
On the other hand point A is obtained by solving 

Here flA = f1(xA), f2A = f2(xA)wherexA =argmin{f ,(x) /g(x)IO) 
The lower boundary curve in Figure 9.2 is the curve ABG. It is clear 

that the arc BG does not belong to the PS since at each point of the arc we can 
improve simultaneously both criteria fl and f2 . In addition, PS coincides 

with the arc ACB of the lower boundary curve. Indeed, take a point flC, f: 
belonging to the arc ACB of the lower boundary curve. At this point, (3) 
cannot be satisfied. This means that if we decrease f, then f2 increases and 
vice versa. Therefore, all the points of the arc ACB represent the PS. 

3. SOLUTION STRATEGIES 

We consider some approaches, which reduce the multi-criteria optimization 
problem to one criterion optimization problem. One of such approach consists 
of construction of some convolution of original criteria &(XI, ..., fp(x) 

(i=l,. . .,p). 

3.1. Convolution of Criteria 

We consider here the following two methods: an average criterion and the 
worst-case strategy method. 
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Minimization of Average Criterion 

Very often, some weighted average of the multiple criteria is 
employed. Specifically each criterion X(x) is assigned a weight 

coefficient a, , reflecting its 

resulting problem is given by 

importance relative to the other criteria. The 

f '* = min f 1  (x, a )  
X 

g(x) 5 0 

where 

We need to show that a solution [Z, f, ..., f p  ] of (5 )  belongs to the 

PS. Suppose instead that f 6i PS . This implies that in a vicinity of f there is 

a point 2 for which condition (3) is met. However, for such a point we have 

Thus, we have obtained the point, for which the value of the objective 

function is less thanf . However, this contradicts the fact that f is the 

minimum of (5). Changing the values of the weight coefficient ai and 

solving problem (5) will generate different points of the PS. Thus a fixed 
value of [ a i ,  dl corresponds to each point in the PS. One can show that the 

method can obtain all the points of the PS if DJ is a convex region. On the 

other hand if the region is not convex then there are points in the PS, which 
cannot be obtained by the technique. Consider for example the Pareto set 
AREQB in Figure. 3. Let the straight line KL be tangent to the PS at the 
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Figure.3 Pareto set for a non-convex Df 

points R and Q. One can show that the method cannot determine the points, 
belonging to the section REQ. This is similar to the duality gap when using 
the Lagrange multiplier method. 

Worst Case Strategy 

In the worst case strategy (Clark and Westerberg, 1983), as in Section 
9.3.1, each criterion ( z )  is assigned a weight coefficient a, , reflecting its 

importance relative to the other criteria. The key difference is that the worst 
weighted criterion is minimized. The resulting problem is given by 

f "(a) = min f 2 ( ~ , a )  (7) 
X 

g,(x) 5 0, j = 1, ..., m 
where 

Define y to be an auxiliary variable; then according to Theorem A.4, problem 
(7) can be reformulated as 
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min y 
X , Y  

max aif, (x) I y 
ie 1 

g ,  (x) 5 0, j = l,...,m 

where I=(l,. . . ,p). Furthermore, using equivalent relations (A7), we can reduce 
the problem to 

Let [ ~ , f  , $1 ($ = fj (x)) be the single global solution to (9.8); 

that is the following conditions hold 

One of the constraints in (8) will be active and 

- - 
y = max aiJ; 

i~ J 

We next show that the point 7 = (7, ,..., fp) belongs to PS. Suppose 
- - - 

instead that f 6 PS . Then there exists a point f = (f, ,..., j p )  in the vicinity 
- - 

of 7 for which at least one f ,  is strictly less than 1 ; let it be f, , thus 

- 
Let 7 = max ai f .  . It follows from (10) that 

1 
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Consequently, we have found the point, at which all constraints in (8) are met 
and the objective function ?is less than or equal to 7 .  However, this 

contradicts (9). Consequently, the point f belongs to PS. Solving (8) for 

different values of ai one can obtain different points in the PS. One can show 

that the method permits to obtain all the points of the PS. Note however that 
for p > 3 the operation will be computationally intensive. 

3.2. &-Constraint Method 

The idea is to minimize one of the performance criteria, while 
requiring the remaining criteria to satisfy some target values. For at least two 
criteria, we solve the following problem (Haimes, 1975) 

Here the values E, are arbitrary values. A solution of the problem belongs to 

PS if all constraints (12) are active (Sophos et al., 1980). In general, solving 
problem (11) for different values of the parameter determines different 

points in the PS. The method permits to obtain all the points of the PS (Clark 
and Westerberg, 1983). 

3.3. Method of Consecutive Conciliations 

In this approach, the performance criteria are arranged in order of 
importance, with fi (x) being the most important. Then the problem to be 

solved is 
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Assuming [x"), &(' )I  (fi") = f i  (x'l)) is the global solution of the problem. 

For a given set of scalars & > 0 {i = l , . . . , (p  - 1 ,  and for 

k = 2, . . . , ( p -  1) we solve 

Let [ x ' ~ ' ,  f:'] ( fk(k) = f k ( ~ ( k ) ) )  be the solution of the problem. The value 

&,is the allowable deterioration of the optimal value &")of the i-th 

criterion f. ( x )  . Consider problem (14) for k=2. 

f,'2) = min f , (x )  
X 

The inequality (17) allows a violation El of fi") . 

Now we will give a geometric interpretation of the method for the case. The 
point A (Figure 4) corresponds to the solution of problem (13). After that we 

must solve (16). Condition (17) determines the region between f i  = fi* and 

-fl = f,'" + E, in which the solution of (16) must be found (Figure 4). It is 

easy to see that the point C at the intersection of f, = f,"' + &, and the 
Pareto set will be the solution to the problem. One can show that the method 
permits to obtain all the points of PS by solving (16) for different values of &, . 
In this case the method of consecutive conciliations is identical to the E- 

Constrained Method. 
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4. USING THE PARETO SET FOR DECISION MAKING 

It is clear from description of the methods of MCO that we can obtain only 
point-wise representation of the PS (as a multidimensional table). Suppose a 
PS has been found. The decision maker can use this information in one of two 
ways: (a) Using engineering consideration, select one of the points in PS as a 
final solution of the MCO problem; (b) Formulate a new 
criteria F ( fl ,..., f p  ) , which account for the relative significance of the 

individual criteria. In case (b) we look for the best point in the PS using the 
criterion F (f, ,..., f p  ) . Therefore, solving MCO problem is reduced to 

solving the problem 

where (19) is the surface of the PS in criteria space. Problem (18) must 
determine the best value of weight coefficient aiin (5) or (7). Since we 

construct the PS point-wise (as a multidimensional table) we do not have an 
explicit expression for G(fi, ..., f p  ) . 

Consider the particular case 

where f,* is the solution of (2) 

By solving (18) we will find the point in PS nearest to the "utopia" 
point. For p=2 it will be the point at which the level curve 

i=l 

is tangent to PS (Figure 5). 
It is clear that for p>3 both approaches are very computationally 

intensive. In connection with this we consider solving the MCO problem 
using a bi-level optimization method (Clark and Westerberg, 1983). For the 
vectors xl and x, , let us consider the bi-level optimization problem. 
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x, = arg min @ , (x, , w) 
W 

Problem (20) is an outer optimization problem, while (21) is an inner 
optimization problem. Let us stress that the search variables of the inner 
optimization problem differs from those of the outer optimization. 

If the points of the surface G are determined by solving (8) then (20) 
can be represented by the following bi-level optimization problem 
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i=l 

x = arg min y 
Y,Wi 

a ,  f j ( w )  l y j = 1, . . . ,p  

where a is a vector a  = (a, ,..., a , )  . In fact if we use the designation 

then we will obtain the bi-level problem (20). This is the full mathematical 
formulation of MCO problem. However, one must remember that the decision 

Figure 5 Point in PS nearest to the "utopia" point for p=2 

maker must provide the form of the function F, which determines the 
importance of each separate criterion. Similarly, one can determine the 
equivalent bi-level optimization problems for the "minimization of an average 
criterion" and "&-constraint" methods for determination of the PS. 

Let us consider the approaches to solving bi-level optimization 
problems. A direct strategy for solving the problem consists in solving inner 
optimization problem for each search point of the outer optimization 
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algorithm. This simple minded approach causes several difficulties. To see 
this, consider the following example (Clark and Westerberg, 1983) 

Figure 6 Dependence of X, on x, 

O l x , < 5  

x2 = arg min(xl + 1)' + ( y  - 5)' 
Y 

We can obtain an explicit expression for x, with respect to x, (Figure 6) as 

Subsequently we obtain the bi-level optimization problem as 
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At x, = 2the function x 2 ( x l )  has no derivative resulting in a non- 
differentiable problem. Since in problem (23) there is a nonlinear equality, in 
general the problem can be multi-extremal. 

A better approach to solving the bi-level optimization problem is as 
follows. Use the Karush-Kuhn-Tucker necessary conditions for the inner 
optimization problem and solve the problem 

 ere^= @ , ( x , , x 2 ) + f i h 2  + p T g 2  , g z j  is the j - th component of the 

vector g 2  and ng2 is dimensionality of the vector-function g 2 ( x )  .In this 

case we obtain a differentiable optimization problem. However, we need 
second order information (i.e. Hessian involving both the objective and 
constraints) if we decide to employ SQP for the solution. In addition, multi- 
extremality of the problem remains. 
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5. MULTI-CRITERIA OPTIMIZATION UNDER 
UNCERTAINTY 

5.1. Formulation of the Problem 

The multi-criteria optimization problem under parametric uncertainty can be 
posed as 

Here we give extensions of some methods for solving MCO problems 
considered in Section 9.3. We will consider one-step and two-step 
optimization formulations of MCO problems. 

5.2. One-Step MCO Problem 

The one-step MCO problem can easily be reduced to the previous case. 
Consider the case when we choose to minimize the mean value of the criteria 
while satisfying some mean values of the constraints. Suppose the mean 
values are given by the expected values 

In this case we must solve the problem 

This problem has the form (1) and therefore for solving the MCO problem we 
can use the concept of a Pareto set and the MCO method considered in 
Section 3. Note however that the MCO becomes considerably complicated 
because of the need to calculate the multi-dimensional integral (24) for each d 
and z. 
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5.3 Two-Stage MCO Problem 

In the two-stage MCO problem, the complexity consists in taking into account 
the different characteristics of the design and control variables. Here we will 
consider extensions of the average criterion (AC) method, the worst-case 
strategy (WCS) method and the method of consecutive conciliations for 
solving MCO problem. All the methods will take into account the ability to 
tune the control variables. 

We will use the following general approach for the extension of the 
AC method and the WCS method. First, we will transform each of the criteria 

f i  (d, z,6) to a new function f ,  (d)  , which will depend only on design 

variables. With f i  (d)  (i=l,. . .,p) we will be able to use the AC method or the 

WCS method for solving MCO problems under uncertainty. First consider the 
possibility of using the transformation used in the construction of the 
objective function in TSOP1. In this case, using (5.47) we will transform each 
criterion J (d, z, 6), (i = 1 ,..., p )  to a new function 

where 

Each f ,  (d)  depends only on design variables. Let zi* (d,  6 )  be the 

solution of (9.26). Note that each f ,  (d)  has its own internal optimization 

problem (26). Therefore, each zi* (d, 6), (i = 1, ..., p )  is different. Using 

(d) we can construct the PS with the help of the AC method or the WCS 

method. Suppose we construct the PS and the decision maker selects a point - - 
in the PS. ~ e t J ; ( d ) ,  (i=l, . . . ,p)  correspond to the point. However, 

- 
each f ,  (d) depends on its own control variables, which cannot be realized 

simultaneously. Consequently, we cannot implement the results and the 
approach cannot be used for solving the MCO problem under uncertainty. As 
such to solve the MCO, we will consider another approach in which a single 
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internal optimization problem will be used for construction of - - 
allJ;.(d),(i=l, ..., p) .  

Consider the following optimization problem 

Here F (  f, ,..., f p  , a )  is a convolution of p criteriaf, ,..., f ,  , which is 

constructed using the average criterion method or the worst-case strategy 
method. Here a is a vector of parameters (see (5) and (7)). We will suppose 
that the convexity condition is met; this permits to find all points of PS if the - 
average criterion method is used. Let us constructA(d,a), which will 

employ the optimal solution z* (d, 8 ,  a )  from (27) as follows 

- 
The function (d, a) (which is independent of z ) is a mean value of 

the original criterion J;. (d, z, 0 )  at the operation stage since for each0 

problem (27) is solved as an internal optimization problem. Again we can use 
the same AC or the WCS method for the construction of a convolution - 
of X(d,a), (i =I,  ..., p) . Here we will use the same parameters a, used in 

the construction of the convolution F (f, ,..., f p  , a )  . Designate the solution of 

the AC or the WCS problems (when using the functionsf,(d,a)) 

a s [ d * , r ]  ( r  = f;(d*,a)) . If we solve the AC or the WCS problems with 
- 

the functions A (d, a) (i = 1, ..., p) for all values of parameters a satisfying 
- 

(6),  we will construct some curve (surface) in the space of the A, (i = 1, ..., p) . 
This curve is an analog of the usual PS in the sense that the decision maker 
(DM) must make final decision using the curve. From engineering 

consideration he must select a point [d, Z] from this curve as the solution of 
the MCO problem. We will refer to the curve as the DM curve. 
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Let us analyze the obtained result. For each the control variables 

are obtained by solving (9.27) where a = Z and d = d using the average 
criterion method or the worst-case strategy (i.e. we solve a conventional MCO 
problem). Thus, the found values of the variables z correspond to one of the 
points on the Pareto set for the functionsf, ( d , z , o 1 ) .  Now consider the 

- - 
values ( d  ,a), (i = 1, ..., p)  . These are obtained by solving (5) or (7) where 

the functions f ,  (d ,Z)  are used. Again we obtain a solution, which 
- 

corresponds to one of the points of the conventional PS for f ,  ( d ,  a). Thus for 
- - 

the functions f ,  ( d ,  z) one cannot find a better MCO solution than f ,  ( d ,  a) .  
It is clear that the solution can be realized, if at each time instance the internal 
optimization problem (27) is solved since the same z* (d ,8 ,  a) is used for 

construction of z* ( d ,  8, a ) .  

Minimization of Average Criteria 

Formulate internal optimization problem (9.27) using as the objective 
function the weighted sum (9.5) 

f '*(d,8,a)  = min f '(d,z,O,a) 
z 

g(d,  z,@ 2 0 

where 

- 
Let z* ( d ,  8, a )  be the solution to the problem. Then f ,  ( d ,  a )  has the form 

(28). - 
The new criteria ( d ,  a) (i = 1, ..., p)  do not depend on the control 

variables z. Now we can directly use the method of minimization of the 
weighted average criterion 
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(30) 

where 

- 
This is a bi-level optimization problem since for calculation of A ( d ,  a )  we 

must use z*(d,8,a),  which is the solution of (28). We saw in a previous 
section that it is very computationally intensive, requiring the use of global, 
nondifferentiable optimization methods. To make matters worse, during the 
calculation of the objective function of (30), we must calculate p 
multidimensional integrals at each value of d. In connection with this we 
reduce the problem to a simpler problem as follows. Substitute in - 
f ( d ,  a )  expressions for ( d ,  a )  from (28) to obtain 

P P 

f ( d , a )  = C a k ~ { f k  (d,z*(d,@,a) ,@))  = x a k j  f ,  ( d ,  z * ( d , 6 , a ) , ~ ) p ( ~ ) d 6  
k=l k=l T 

This is equivalent to 

The term in the square brackets is the optimal value of the objective function 
of the internal optimization problem (29). Therefore, we can rewrite (32) as 

Since for a given 8 the optimal value at z does not depend on the 
values of z for other 6 , we can rewrite the above as 
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Here z(0) is a multivariable function with respect to the uncertain parameters 

0. Substitute the expression for 7 (d, a )  in problem (30) to obtain 

From condition (34) it follows that 

The system (33) to (35) has the form (5.51). Therefore, we can use the SB 
method for solving the problem. It is interesting to note that during the search 
for each d we must calculate only one multidimensional integral. Using - 

(d, a)  one can construct DM curve. 

Suppose the decision maker selects the point [d,Z] from the DM 
curve as the solution of MCO problem. This means that if we solve the 
internal optimization problem (29) at each time instance during the operation 
stage, the mean of fi ( d ,  ~ , 8 )  (j=l,. . .,p) will be equal to fi ( d ,  a) . 

The Worst Case Strategy 

Here we formulate the internal optimization problem using the worst-case 
strategy as 

f 2*(d,8,a) = min f 2 ( d , ~ , 8 , a )  
z 

g(d,  z, 8 )  5 0 

where 
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Let z* (d ,8 ,  a )  be the solution of the problem. As in the previous case 

f ;  (d ,a)  has the form (28). Again the new criteria f ,  (d ,a)  ( i  = 1, ..., p )  do not 

depend on the control variables z and we can directly use the method of the 
worst-case strategy for construction of the PS. In this case we must solve the 
problem 

f " ( a )  = ?in f2 (d ,a )  

where 

f 2 (d ,a )  = maxa,f,,(d,a). k 

Again we have obtained a very computationally intensive bi-level 
optimization problem, which requires calculation of p multidimensional 
integrals for calculation of the objective function. We cannot simplify the 
problem the same way as we did in the case of the average criterion strategy. 
Now consider the problem 

where 

j 2 ( d , a )  = I[maxak f k  ( d ,  z * ( d , 6 , a ) , ~ ) ] p ( ~ ) d 6 .  
T k  

(40) 

There exists the following known inequality 

Since an integral can be approximated with Gaussian quadrature, the 
inequality leads to 
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- 
Here f (d, a )  is an upper bound of f ' (d, a )  for any d and a. From here we 
have 

f '* (a) < '* (a)  . 
- 

Consequently, f '* (a)  is an upper bound of the optimal value of the objective 
function of (38). The term in the square brackets in (40) is the optimal value 
of the objective function of the internal optimization problem (36). Therefore, 
we can rewrite (40) as 

This is equivalent to 

- 
Substitute the expression of f ' (d,  a )  in (39) to obtain 

Constraint (35) follows from (42). Using Gaussian quadrature we obtain the 
discrete variant of the problem 
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where J = (1, . . . ,p)  .With the help of Theorem A.4 we can transform the 
problem to 

Note that yi (i = 1, ..., p)  are new auxiliary variables. This is the same as 

g j ( d , z i , 8 ' ) 5 0 , i c  I,, j = l ,  ..., m 

~ ~ f ~ ( d , z ~ , 8 ' ) 5 ~ ~ ,  k = l ,  ..., p  

XJd)  50. 

Consider the implications of the results. Suppose the decision maker 
assigns values to the parameters ai, which reflect the relative importance of the 
corresponding criterion. Then (9.43) provides an upper bound of the objective 
function of (38). Average values of each criterion will have the form (28) in 

which z* ( d ,  6, a )  is the solution of (36). 

Method of Consecutive Conciliations 

We showed already that if we construct Pareto set with the method of 
consecutive conciliations then it coincides with the E -constraint method (in 
the absence of uncertainty). As discussed earlier, Palazoglu and Arkun (1987) 
used the &-constraint method for solution of the MCO problem under 
uncertainty. For fixed 8 they reduced the MCO problem to one criterion 
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optimization problem in which one criterion (for example f ,  ( x )  is employed 

as the objective function and the other criteria become additional constraints 
(see (11) and (12)). Using (11) as the internal optimization problem they 
formulated a TSOPI. However, with this approach the equal status of the 
criteria f, ( x ) ,  ..., f ,  ( x )  are lost. To avoid this drawback, we will discuss 

another approach also based on the method of consecutive conciliations (the 
E -constraint method). 

For development of the approach we need to formulate two-stage 
analogs of problems (13) and (14). The analog of problem (13) is of the usual 
one-criterion optimization problem 

f,"' = min E{ f l * ( d , 8 ) )  
d 

x , ( d , 8 )  5 0 

where f,* ( d ,  8) is the solution of 

Let z;  ( 8 )  be the solution of the problem. It is clear that the optimal value of 
the objective function in (43) can be written as 

Now consider a two-stage analog of (16), for which the internal 
optimization problem is 

Let z i ( d ,  8 )  be the solution of the problem. Let us formulate an analog of the 
constraint (17). Consider 
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This gives the mean value of the first criterion when z(8) is the control 
variable vector obtained by solving problem (45). From here it is naturally 

required that the value (46) would not exceed f,(" +&, ; in other words the 
following inequality must be met 

Finally, the two-stage analog of (16) will be 

Using Gauss quadrature we can obtain discrete variant of the problem as 

Similarly we can formulate two-stage analog of (14) for j=3. It has the form 

where [ z; ( d ,  8)  f3*(d, 8)  1 is the solution of the internal optimization 

problem 
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Using Elf, (d,  zi(d,  0), 8)) and E{ f,* (d, 0 ) )  obtained by solving (47) for 

different values of E, one can construct the DM curve for p=2. 

Comparison of the methods 

The extension of the average criterion method permits to obtain some points 
of a DM curve by solving the system (33) to (35). However, for obtaining all 
points of the DM curve it is required convexity of the regionDf . The 

extension of the worst-case strategy requires solving a very computationally 
intensive problem. To avoid this we must solve problem (39) which give only 

an upper bound of f '* (a )  (see (38). The method of consecutive conciliations 
does not have the drawbacks of the first two methods. 

Computational Experiment 

Example 9.1 Consider the MCO problem for a three-stage flow sheet 
(Example 7.12). We will suppose that products C and D are hazardous to the 
environment. Therefore, it is desirable to decrease the exit flowrate these 
products. Thus, here we will have two criteria, which characterize 
performance of the chemical process. One criterion (f,) will represent the 

economics of the CP. It will have the form (7.138). The other criterion (f,) is 

Using the average criterion strategy, the worst-case strategy and 
consecutive conciliation (see Section 3), we construct the PS for the case 
when uncertain parameters take nominal values. In agreement with the theory 
(see Section (9.3) the points obtained by all methods lie on one curve ABC 
(Figure 7). For the case when uncertainty is taken into account, we construct 
the DM curve using the extensions of the AC method and consecutive 
conciliation method. With the worst constraint strategy we construct only the 
curve which is obtained by solving the upper bound problem (39) for the set 
of parameters a, satisfying condition (6). All the methods gave the same curve 
A*B*c*. 
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Example 9.2 We consider the reactor-separator problem (see example 6.3). 
Here we suppose that the products X and Y are hazardous to the environment. 
Therefore it is desirable to minimize the exit flowrate of these products. We 
consider the two-criterion optimization problem, in which one criterion is fl 
(see Example 6.3) which takes into account capital and operating costs. The 
other criterion is 

Using the average criterion strategy, the worst-case strategy and 
consecutive conciliation (see Section 9.3), we construct the PS for the case 
when uncertain parameters take nominal values. They gave the same curve 

1 1 1  A B C (see Figure 8). For the case when uncertainty is taken into account, 
we construct DM curve using extensions of the AC method and consecutive 
conciliation method. Using the worst constraint strategy we construct only the 
curve which is obtained by solving the upper bound problem (9.39) for the set 
of parameters a, satisfying (6). The first two methods gave the same curve 

2 2 2  A B C (see Figure 8). The last method gave the curve A ~ B ~ c ~ ,  which is 
above A ~ B ~ c ~ . ~  
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Figure 7 Pareto set (for nominal values of uncertain parameters) and DM 
curve when accounting for uncertainty in Example 9.1. 



Achenie and Ostrovsky 

Figure 8 Pareto sets for nominal values of uncertain parameters and DM curve in 
the case of taking into account uncertainty for Example 9.2. 
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Chapter 9 

DESIGN OF NEURAL NETWORKS FOR 
PAVEMENT RUTTING 

Rafiqul Alam Tarefder and Musharraf Zaman 

1. INTRODUCTION 

Rutting is one of the major distresses of asphalt pavements. Currently, an 
Asphalt Pavement Analyzer (APA) can be used to evaluate the rut potential of 
asphalt pavements in the laboratory. Although it is preferable to conduct APA 
tests to predict the rutting potential of an asphalt pavement, such tests are not 
always feasible for a project due to economic reasons. A rut prediction model 
can be a useful tool in such situations. Prediction of rutting using a model is a 
rather challenging task. Traditional statistical models have often exhibited 
weaknesses in predicting reliable rut values (Tarefder et al. 2002). This study 
proposes Neural Networks (NNs) to predict rutting of asphalt pavements. 

For a given set of data and a family of neural networks, design of 
neural networks (stage three) for pavement rutting involves selecting a NN 
from this family that best approximates the data with high probability. 
Therefore, NNs for rutting can be considered as a parameterized nonlinear 
function like polynomials, Fourier series, splines, etc. What distinguishes 
neural network for pavement rutting, as opposed to many other standard 
techniques, is that the neural network has a generalization capability. In other 
words, once the NN has been trained on a number of input-output pairs, it can 
then accurately predict outputs from inputs that the network has not seen 
previously. 

The generalization performance of a NN is influenced by three 
factors: the physical complexity of problem, the size of the training set, and 
the architecture of the neural network (Fine 1998). Rutting is a complex 
problem. The physics, and in some cases the mechanics, of this problem is not 
fully understood and therefore, it is difficult to express in a differential, 
integral or variational formulation (Ramsamooj et al. 1998). Therefore, the 
issue of generalization can be viewed from two different perspectives. 
According to the second perspective, the architecture of the network is fixed, 
and the issue to be resolved is that of determining the size of the training set 
needed for a good generalization to occur. According to the third perspective, 
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for a given family of NNs, the issue of interest is that of determining the best 
architecture of network for achieving good generalization. This study focuses 
on the third viewpoint. The task is to design a suitable architecture based on 
the limited data samples. 

The difficulty of this task may be associated with the fact that a finite 
database is used for estimating the architecture or model parameters. It is often 
possible to find a model, which fits the available data perfectly by taking a 
large number of model parameters (Tarefder et al. 2004). It is shown later in 
this paper that an over parameterized model gives very poor results on new 
data (data which has not been used for estimating the parameters). On the 
other hand, a model with too few parameters gives poor results both on the 
data used for estimating the parameters (i.e. training data) and on fresh data 
(i.e. test data). Therefore, a good design of a NN is a tradeoff between the 
performance on the training data and performance on new data (test data). The 
objective is to find a suitable architecture (i.e. the model with the smallest 
number of parameters) that exhibits good performance on training data (i.e. 
data used for estimating the parameters) and on test data (i.e. data used for 
estimating the prediction performance). 

A success in designing a NN not only depends on finding a suitable 
architecture but also on relevant input factors to the network, efficient training 
algorithm, appropriate performance index, and prediction approach. Steps 
required to a successful NN design, training, and estimation of its performance 
are the topics of discussion in this paper. In subsequent sections the NN 
preliminaries, input data, output data, data processing, NN architecture, and 
prediction results, and comparison of outputs from NNs to actual rut depths 
are discussed. 

NN Basics 

The basic structural constituent of a NN is known as "neurons". A neuron is 
an information-processing unit that is fundamental to the operation of a NN. 
There are three elements of a neuron. These elements are: (i) synaptic weight 
or connection link that is characterized by a weight or strength of its own, (ii) 
adder that sums the input signals, weighted by the respective synapses of the 
neuron, and (iii) activation function that is used for limiting the amplitude of 
the output of a neuron. Neuron can also include an externally applied 
threshold, bj (also referred to as bias). Mathematically, a neuron j can be 
described by Eq. 1 and Eq. 2 as follows: 
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where XI, x2 ...... xk are the input signals; wjl, wjz ..... wjk are the synaptic 
weights converging to neuron j; v, is the cumulative effect of all the neurons 
connected to neuron j and the internal threshold of neuron j; q(.) is the 
activation function; and y, is the output signal of the neuron. Activation 
functions used in this study are the sigmoid function and the linear transfer 
function. Usually, neurons are organized in the form of layers. Depending on 
the number of layers, a NN can be classified as a single layered network or a 
multiple layered network. Based on its role, a layer is classified as either an 
input, hidden or output layer. The input layer receives inputs from an external 
source and the output layer passes its computed values to an external source. 
The remaining layers are called hidden layers (Homik et al. 1994). 

NN Inputs 

The NN input factors are the aggregate factors (shape, size, type), binder 
factors (grade, specific gravity), environmental factors (temperature, wetldry 
condition), mix factors (asphalt content, gradation, voids in the mineral 
aggregate, air voids) and load factors (wheel load, hose pressure) (Tarefder et 
al. 2002). The factors considered are: 

Percentage of materials passing through 25.0m sieve 
Percentage of materials passing through 19.0 mm sieve 
Percentage of materials passing through 12.5 mm sieve 
Percentage of materials passing through 9.5 mm sieve 
Percentage of materials passing through no. 4 sieve 
Percentage of materials passing through no. 8 sieve 
Percentage of materials passing through no. 16 sieve 
Percentage of materials passing through no. 30 sieve 
Percentage of materials passing through no. 50 sieve 
Percentage of materials passing through no. 100 sieve 
Percentage of materials passing through no. 200 sieve 
Binder's Performance Grade (PG) 
Aggregate's Fractured Face (FF) 
Asphalt Content (% AC) 
Percentage air voids (% Air) 
Voids in Mineral Aggregates (VMA) 
Fine Aggregate Angularity (FAA) 
Temperature 
Wheel load 
Tire pressure 
Wetldry conditioning 

All the mixes considered in this study are designed by the Superpave method 
(Table 1). 
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Table 1. Mix Information Used in Neural Network Design - 

- 
- 
- 

- 

- 

- 

Asphalt to Dust Ratio 1 1.2 1 0.9 1 1.1 I 1.1 1 0.9 
Ite: Peff = Effective percentage Binder, SGC = Superpave Gyratory Compactor, '-' = 

No value 

'roperties 

25.0 (1 in.) 
19.0 (314 in.) 

Design Method I superpave] superpave I~u~e rpave  I superpave I~u~erpave  

Mix Type 

90-100 

Nominal Maximum Size 
(NMS), mm 

The input factors 1 to 11 represent the aggregate gradation that is determined 
by sieve analysis and expressed as percent of aggregate passing through 
different sieve sizes. The sieves shown by factors 1 to 11 are used to define 
the aggregate gradations of Superpave mixes. Factor 12 represents the binder's 
stiffness; a stiffer binder produces a mix with low rut potential. The input 
factor 13 represents coarse aggregate angularity (or fractured face). Fine 
aggregate angularity is represented by factor 17. The mix factors are shown by 
the input factors 14 to 16. The VMA varies from 6.6-22.2% with an average of 
16.2%, whereas the air voids vary from 2.5-1 1.1% with an average of 7.2%. 
The APA testing parameters used to simulate field pavement conditions are 
shown by input factors 18 to 21. In a typical APA rut test, asphalt samples are 
preconditioned at a test temperature of 64°C (for Oklahoma mix), the vertical 

S2 

100 
90-100 

Lift Thickness, mm 56-1 12 

Compaction Method 

25 

S3 

100 
90-100 

56-1 12 

SGC 

100 

19 

S3-rec 

56-1 12 

SGC 

19 

S4 

37.5-75 

SGC 

S6 

12.5 

12.5-25 

SGC 

4.75 
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wheel load is kept at 445 N (100 lbs), and the hose pressure is held at 700 kPa 
(100 psi) (OHD 2001). The numerical spreads of the above factors are shown 
in Figure 1. 
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PG FAA %AC %air %VMA FF temperature wheel load tire pressure test-condition 

Figure 1. Numerical spread of the input factors. 

NN Outputs 

The output data is obtained by means of cyclic rut tests using APA. In this 
equipment, rutting susceptibility is evaluated by subjecting HMA samples to 
moving wheel loads and measuring rutting (permanent deformation) at 
selected points along the wheel path as a function of the number of loading 
cycle. The deformations of samples or rutting are recorded over 8000 cycles. 
For the purpose of this study, it suffices to describe this time series of 
deformations by an interpolation with piecewise linear elements using only a 
few deformation values. Consequently, the domain of the neural network to be 
constructed and trained is a vector space of input factors whose range space 
consists of vectors obtained from a few values of deformation. Observations 
of deformations are made at eight selected cycles: 1, 500, 1000, 1500, 2000, 
4000, 6000, and 8000. Since the deformation at cycle number 1 for all data is 
essentially the same (zero deformation), the target vector consists of 7 
components. The range of 8000 cycle rut depth is 0.6 mm - 7.4 mm. Finally, 
a dataset consists of 21 inputs and 7 outputs (500, 1000, 1500, 2000, 4000, 
6000, and 8000-cycle rut depths). 
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Data Processing 

As preprocessing steps, missing data and outlier data are removed, non- 
numeric data are transformed to numeric data, and data are scaled into the 
active range of the activation functions used. Initially, 573 data sets (a total of 
1146 samples, each data set represents two samples) are available. After 
removing the missing data, 537 data sets are available. Data that deviates more 
than two times the standard deviation from the mean value of the 
corresponding data vectors is considered as outlier. 18 data sets are removed 
based on the outlier criterion and finally, 519 data sets are retained for 
normalization. All input values to a NN must be numeric. There are two non- 
numeric input parameters: one is performance grade (PG) and the other is 
testing conditioning. The PG has three different values, which are coded as 
three different numeric input parameters. The PG that corresponds to a grade 
of PG 64-22 is assigned a code of 1. Likewise, the codes of PG 70-28 and PG 
76-28 binders are assigned as 2 and 3, respectively. Similarly, sample testing 
in dry conditions are given a value of 1, while samples cured under wet 
conditions are given a value of zero. All of the 16 input vectors are then 
normalized, so that each input factor averaged over the entire data sets has 
zero mean and unit standard deviation. 

Principal Component Analysis 

The purpose of Principal Component Analysis (PCA) is to derive new 
variables (in decreasing order of importance) that are linear combinations of 
the original variables and are uncorrelated. Geometrically, principal 
components analysis can be thought of as a rotation of the axes of the original 
coordinate system to a new set of orthogonal axes that are ordered in terms of 
the amount of variation of the original data they account for (Engelbrecht 
2002). Mathematically, a PCA orthogonalizes the components of the input 
vectors (so that they are uncorrelated to each other) and orders the resulting 
orthogonal components (principal components) so that the largest variation 
comes first, and it eliminates those components that contribute the least to the 
variation in the data set (Haykin 1994; Hertz et al. 1991). A total of three 
principal component analyses are conducted in which factors accounting for 
0.1%, 1% and 2% of the variation of the input vectors are used. Using a 
variance of 0.1%, the number of input factors remained the same. Whereas, 
using a variance of 1%, the number of input factors reduces from 21 to 10; 
that is, input factors accounting for 99.0% of variation in the total data set 
leads to a reduction in input dimension. Using 98% of variation in the total 
data set, the number of input factors got reduced to 9 and is used to construct 
and train our neural network. Finally, a data set (training set) is designed that 
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consists of data in the form of pairs of vectors and is composed of 9 input 
factors and 7 target vectors. 

NN Architecture 

The manner in which the neurons are structured in a NN is called architecture. 
Usually, neurons are organized in the form of layers. NN architecture can be 
defined as: each of the 9-inputs is connected to each of the q-hidden neurons 
(either in one or two layers), and the outputs of the hidden neurons are fed into 
the 7-output neurons. The task is to determine the number of hidden neurons, 
q in the final NN. 

The NN architecture is designed by a sequential algorithm in which at 
each step a new neural network is designed by adding a neuron to a specific 
hidden layer, trained by the Levenberg-Marquardt minimization algorithm, 
validated, and tested for generalization performance (Demuth and Beale 
1998). 

As the first step, NNs having one hidden layer (hl) are studied. A 
family of NN of architectures in which the number of hidden neurons varies 
from 1 to 40 {Aq; q = hl= 1:40) are evaluated for generalization performance. 
The number of neurons in the input and output layers are simply the number 
of reduced inputs from principal component analysis (i.e., 9) and outputs (i.e., 
7), respectively. The family of feedforward NN is denoted by 9-hl-7 FNN. 

In the second step, networks having two hidden layers (hl & h2) are 
studied. The number of neurons in hidden layer one varied from hl=1:26 and 
in hidden layer two varied from h2 = 1: 18. For each hidden neuron in layer 
two, neurons are added from 1 to 20 in the hidden layer one. Consequently, a 
total of 468 architectures (4; q = hl  x h2= 468) are investigated. All the 
architectures studied in this family have nine inputs (found in the PCA) and 
seven output neurons; therefore the NNs are denoted by 9-hl-h2-7 NN. 

The architecture or topology of NN must be established before the 
training. In the subsequent discussion in this paper, it will be shown that a NN 
with 11 neurons in the first hidden layer and 11 neurons in the second hidden 
layer (9-hl-7, 9-hl-h2-7) has the best performance. To explain the training 
procedure in the next section, subsequent reference is made to a 9-hl-h2-7 NN 
shown in the Figure 2. This is a fully connected, "three layer7', and feed- 
forward neural network. The input layer consists of 9 inputs, which is the 
reduced number of inputs after principal component analysis. No processing is 
done in the reduced input nodes; they only distribute the network inputs to 11 
neurons in the hl-hidden layer. Consequently, this network has three 
processing layers (also called neuron layers) of which topology can be denoted 
by 9-11-1 1-7 NN. 
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Training 

In the training step, the hidden layer one takes a preconditioned input column 
of ~ = 9  vectors and maps it to a column of nhl=l 1 vectors by a tan-sigmoid 
transfer function. The tan-sigmoid transfer function, cp (v) is given by, 

(3) 
The resulting vectors are then taken as an input by the hidden layer two as 
inputs and mapped by a tan-sigmoid function to a column of nh2=l 1. These 
vectors are then taken as input by the output layer neurons and mapped though 
a linear operation to an output consisting of a column vector with n,=7 
components. The network weights are randomly generated from a uniform 
distribution for the linear transfer function, whereas for the tangent sigmoid 
transfer function the random weights are processed in accordance with the 
algorithm developed by Nguyen and Widrow (Hagan et al. 1996). The weights 
are continuously updated based on error (difference between the NN outputs 
and target vector) determined by the Levenberg-Marquardt algorithm. The 
trained network is tested for its performance. 

Performance Index 

The final network is selected based on the NN performance measure on the 
test data. The most common measure of performance of NN is the Mean 
Squared Error (MSE), expressed as: 

P n 
CC(oi,j - t  i,j) 

2 

j=li=l 
MSE = . , 

nap 
where, 
n = total number of data set. 
o = network output. 
p = number of outputs. 
t = target output. 

Instead of mean square error, an Average Relative Error (ARE) can be 
used to measure the performance of a NN. The average relative error is 
calculated using the L2-norm of error vector normalized by the L2-norm of 
output vector as shown below, 
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Although the above two indexes are most common for measuring performance 
of a NN, an additional measure of NN performance, the correlation (R-value) 
between the output and target values for all data sets, is also used for 
architecture selection (Hornik et al. 1989). 

Performance Estimation 

In this study, NN architecture is selected based on the performance measured 
by Eq. 4. However, the MSE performance of a NN of fixed architecture varies 
with initial choice of weight vectors to start the minimization algorithm (Fine 
1998). Quantifying a performance representative of a family of weights is one 
of the most central problems in designing an optimal architecture. This study 
settles for architectures that work satisfactorily "most of the time" (likelihood 
estimation). The likelihood method is simply what is used to generate 
simulated data after the unknown parameters (weights) are guessed. Ideally, 
the performance of a NN for a given architecture and m number of weight 
initializations {w = [wl, wa.. . .. wJ ), the expected value is approximated by a 
mean or a maximum likelihood estimator. 

Mean Estimation. The performance (MSE, ARE, R-value) of a fixed 
architecture is approximated by taking the mean of the performances of 
randomly initialized networks. 

Maximum Likelihood Estimation. The principle behind the 
maximum likelihood method involves multisampling of weight, w. If NN(wl), 
NN(w2), . . . . . .NN(w,,J are the m observed performances of the network, then 
the estimated performance of the NN is the most likely to produce or represent 
these observed values. The probability density function of NN(w) is 
determined. Then the one with maximum probability density is considered the 
final performance. 

Data Set Division 

One of the problems that occur during the NN training phase is called 
overfitting (Kearn 1997). The error on the training set is driven to a very small 
value, but when new data is presented to the network the error can become 
large. In such case, the network memorizes the training examples, but it does 
not learn to generalize to new situations. Overfitting occurs when the NN 
architecture is too large or NN is trained for too long. Evaluation of 
generalization error (validation error) during training can be used to eliminate 
NN overfitting. In order to eliminate overfitting, this study divides the original 
data set (input-output) into three sets: the training set, the validation set, and 
the test set. The training data set is used for computing the gradient and 
updating the network weights and biases. The error on the validation set is 
monitored during the training process. The test set is not used during training, 
but is used to compare the performance of different models (architectures). 
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There is no rule to divide the total data sets. This study divides 519 
data sets into three parts based on the training and validation performance of 
9-1 1-1 1-7 NN. The MSE, ARE, and R-values for different data divisions are 
summarized in Table 2. The difference between Set A and Set B is that the 
number of data in the validation set in Set B is higher than that in Set A. 
Obviously, the MSE performance of Set B is better (lower MSE value) than 
that of Set A for the validation set, whereas the MSE performance of Set B 
and Set A are almost equal for the training set. Due to increased number of 
unknown data in the validation data set, the R-square of Set B is less than that 
of Set A. There is little difference between the MSE performances of these 
two sets (Set A and Set B) on the test data. There is a R-square value 
improvement in the performance of Set C compared to Set A and Set B. Also, 
the Set D has highest R-square value. This is because most of available data 
are used to train the network and the calculation of R-square value involves all 
data. However, the Set D is rejected because the MSE and AVE errors are 
high. For similar reasons, the data division of Set E is rejected. From Table 2, 
it can be seen that the MSE, and ARV errors of Set C are smaller than those of 
the other data sets. Therefore, the data division of data Set C is chosen for 
designing the NN in this study. 

Table 2. Data Set Division and Network Performance 

Mean Square Error (MSE) Average Relative Error 
(ARE) 

R-value 
Data Set 

Training Validation Test Training Validation Test All Data 

DG = 52 
Note: DT = Training Data Sets, Dv = Validation Data Sets, DG = Test Data 

Sets. 
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The adequacy of data set division can be examined by plotting the test 
data set performance during the training process. If the error in the test set 
reaches a minimum at a significantly different iteration number than the 
validation set error, this indicates a poor division of data set. Figure 3 shows 
the MSE performance of the training, validation and test data sets as a 
function of epochs (an epoch is defined as the complete representation of all 
the data sets to the NN) for the division of set C. The result is reasonable. 
Since the test set error and the validation set error have similar characteristics, 
it does not appear that any significant overfitting has occurred. This also 
confirms that the selected Set C eliminates the dependence of NN performance 
on the training set and thereby ensuring that the division in the data sets is not 
affecting the selection of network architecture. 

Epoch 1911 00, MSE 0.084790610, Gradient 158.20911 e-010 

Epoch 

Figure 3. Performance of a neural network (NN) on different data sets. 
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Architecture of One hidden layer NNs 

First, a two layer feedforward network with 1 hidden neuron (9-1-7) is 
initialized and trained using a total of 312 training data sets and a total of 155 
validation data sets. Before the training, principle components that contributed 
less than 2% to the total variation in the data set are eliminated. As a result of 
this step, the dimension of the input space reduced from 16 to 9. A total of 50 
trials are performed with different random initializations of network weight 
and bias values. In each trial, each of the subsets (training, validation, test 
data sets) is randomly chosen so that the sequence of data in an epoch differed 
from one trial to another. The average of MSE performances from 50 trials is 
then computed. Next, a second NN with two neurons in the hidden layer (9-2- 
7) is chosen, trained and used to determine the MSE performances. The 
procedure of designing and training up to 40 more NNs continued before the 
average MSE performances on the test data sets are determined, as shown in 
Figure 4. The standard deviation for each NN is also plotted. 

Number of neurons in the hidden layer one (HI) 

Figure 4. Test Sets MSE performances of NNs of one hidden layer. 
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It is evident that as the number of neurons in hidden layer one increases the 
average MSE error decreases until it reaches 22 neurons. After 22 neurons, an 
increase in the hidden neurons of NNs does not improve the NN performance, 
but rather the standard deviation of MSE increases. Therefore, the NN with 22 
hidden neurons are selected (i.e., 9-22-7 NN) from this category of NNs. 

To further investigate our above selection of 9-22-7 NN, the 
correlation between the NN rut output and the actual rut depths is examined. 
The R-square between the NN predicted rut and the actual rut along with the 
MSE and AVR are shown in Figure 5. 

9-[Nl l-7 FNN 

Figure 5. R-square, Mean Square Error (MSE) and Average Relative Error 
(ARE) performances of NNs with one hidden layer 

The R-square shown is measured using all the data sets available, whereas the 
MSE and ARR test shown are measured on test data sets. The R-square value 
increases as the number of hidden neurons is increased in the trial feedforward 
neural network. The nearly maximum R-square of 0.81 11 with a standard 
deviation 0.0287 can be seen when the number of hidden neurons is 22 in the 
trial network (9-22-7). Although the trial network 9-25-7 has shown a higher 
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R-square value of 0.821 1, it was not selected as our final one layer NN due to 
its higher standard deviation of 0.0331. In addition, 9-25-7 FNN has a higher 
MSE value of 0.3671 compared to the MSE value of 0.3632 in the 9-22-7 
FNN. Therefore, the final selection of 9-22-7 NN is reasonable. 

Architecture of Two hidden layer NNs 

The performance of a NN having one layer of hidden neurons can be 
improved to a certain extent by using two layers of hidden neurons. A NN 
with two hidden layers may have performance better than that of a NN with 
one hidden layer. A trial and error approach similar to that in the previous 
section is adopted, except, in this case, the number of hidden neurons in one 
layer is increased while the number of neurons in the other layer of the NN 
remained constant. The input and output layers are kept same as the previous. 
That is, the input layer takes 9 inputs and the output layer has 9 neurons. The 
number of nodes in the first layer is arbitrarily chosen to vary from 1 to 20, 
whereas the number of nodes in the second layer is kept between 1 and 20. A 
total of 400 NNs are trained to find a NN that shows better performance over 
the others. For a selected configuration, a network is trained several times 
(selected arbitrarily) and then a simulation is performed on the trained NN 
using the training data set, validation data set, and test data set as well as the 
total data set. Results are reported by average and standard deviation of MSE, 
as shown in Table 3. 

Table 3. Training Performance of Trial Neural Networks 

Neurons Neurons Training Data Set Validation Data Set Test Data Set Total Data Set 

in h l  in h2 Mean Std dev. Mean Std dev. R- Std Mean Std dev. Mean dev, 
layer layer MSE MSE ARE ARE value R-value MSE MSE 

Note: MSE = Mean Square Error, ARE = Average Relative Error, R-value = Correlation of 
Determination, Std dev.= Standard Deviation, hl = hidden layer one, h2 = hidden layer two 
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Column 2 and column 3 show the number of hidden neurons in hidden layer 
one and two, respectively. The results are presented in ascending order of test 
sets MSE. The average performance of the first four NNs (first 4 rows) over 
all simulations are close to each other. The mean MSE error (0.3784) on test 
data is lowest in 9-12-1 1-7 NN, whereas the validation MSE value (0.3476) is 
minimum in 9-15-12-7 NN. However, it can be seen that 9-11-11-7 NN has 
lower variance in performance compared to that of any NN in the first four 
rows. The variance or standard deviation is very important in selection of 
NNs. If we compare the test set performance of 9-12-11-7 NN to that of 9-1 1- 
11-7 NN, where the MSE for 9-12-11-7 NN is 0.3784f0.0740, and that of 9- 
11-11-7 is 0.3874f0.0588, then the latter NN is preferred even though the 
former has a smaller MSE. The NN 9-1 1-1 1-7 has a smaller variance, having 
MSE values in the range [0.3286, 0.44621, while the NN 9-12-1 1-7 has MSE 
values in a larger range [0.3044, 0.45241. Using the results shown for NN 9- 
1 1 - 1 1-7, the interval associated with confidence level of -0.0 1 is estimated 
to be in the range [0.2522, 0.52261. It means that 99% of the observation 
reported for 9-1 1-1 1-7 NN in Table 3 (based on the MSE of test data sets) is in 
this interval. Further, analyses of R-value performances can show that 9-13- 
10-7 NN, 9-1 1-1 1-7 NN, and 9-14-12-7 NN can reach a R-value of 0.8141 
with 347 (i.e., weights = 13x9+10x13+7x10 plus bias = 13+10+7), 326, and 
411 parameters, respectively. The final selection of network in two hidden 
layer family is 9-11-11-7 NN, as it has the lowest number of adjustable 
parameters. 

NN Prediction 

At this stage, the trained and tested (validated) network (1 1-1 1-7 NN) is used 
to map or simulate new set of inputs. The difference between the testing and 
prediction is that the target output is known during testing, whereas in 
prediction steps we use the tested NN to find the unknown (target) rutting. 

Mean and Maximum Likelihood Prediction. A final simulation 
output is obtained through the development of ensemble networks, where the 
aim is to optimize NN outputs through a combination of a number of 
individual network outputs, trained on same data sets, using the same 
architecture and learning algorithm. As stated above, the training and 
simulation procedure is carried out for several times and the resulting output 
vector is compiled. For example, Figure 6 shows a histogram plot of RD (7) of 
an unknown (target) rutting. Similarly, histograms of the deformations or rut 
depths, RD (1)-RD (7) for the each test sets are compiled. Estimators of the 
deformations are calculated from the histograms. In particular, deformations 
are predicted based on estimators of the mean and maximum likelihood 
estimator. 
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RD(8000-Cycle) 

Figure 6. Histogram for rut depth, RD (7) of test data. 

Best Net Prediction. Among 100 trials, the NN (trained on same data 
sets, using the same architecture and learning algorithm) that provides the 
lowest error (MSE or ARE) on the validation data sets is used in simulation or 
prediction. In this paper, the estimation from a NN with the lowest MSE is 
termed 'best MSE net' estimation, whereas the estimation by NN with lowest 
ARE is termed as 'best ARE net' estimation. 

Analysis of Prediction Results. The deformations based on mean, 
maximum likelihood, best net ARE, and best net ARE estimations using 9-1 1- 
11-7 NN are depicted in Figure 7. An excellent agreement is observed 
between the predicted and observer test data. Also, a regression analysis of the 
network and predicted deformations is performed. The entire data set is 
applied through the network and a linear regression between the network 
outputs and the corresponding targets is performed. For 7 outputs, seven 
regressions can be performed. The results for 8000-cycle rut depth for a test 
data set 12 using 9-11-1 1-7 NN are shown in Figure 8. The best linear fit is 
indicated by the dashed line. The perfect fit (output equal to target) is 
indicated by the solid line. As the best linear fit line comes close to the perfect 
fit line, the NN simulation is evaluated as better. Similarly, deformation 
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responses obtained from a single best net, based on the minimum MSE and 
ARE, are also shown in Figure 8. It can be seen that the maximum likelihood 
prediction is close to the mean prediction where as the best net simulations do 
not have generalization capability. That is the use of families of networks 
trained on different initial conditions can improve NN performance through 
either linear combinations of the trained networks compared to by simply 
choosing the single best network. A possible explanation of this can be that 
the linear combination of network results in a new, more complex network 
that can explain the improved fit to the training data. The total error from 
simulation over the test data sets is determined as follows: 
Total relative error of mean estimator = 0.2666 
Total relative error of the maximum likelihood mean estimators = 0.2503 
Total relative error of best net based on the minimum validation error (MSE) 
=0.3329 
Total relative error of best net based on the minimum validation error (ARE) 

Maximum Likelihood Estimation 
2.5 

Best MSE Net Estimation 

Mean Estimation 

Best ARE Net Estimat 

Figure 7. Observed rutting versus neural network predicted rutting. 
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Best Linear Fit: A = (0.631) T + (0.897) 

Maximum Likelihood Estimatio~ 

Best Linear Fit: A = (0.47) T + (1.23) 

Best ARE Net Estimation I 

Best Llnear Fit 

Best Linear Fit: A = (0.6) T +  (0.991) 

Mean Estimation 

Best Linear Fit: A = (0.506) T + (1.32) 

Best MSE Net Estimation 

Figure 8. Regression plot for 8000-cycle rut estimation using 9-1 1-1 1-7 NN 
(A=actual rut depth, T= target rut depth) 

CONCLUSIONS 

In this study, 3-layer and 4-layer neural networks are designed to determine the rutting 
performance of asphalt concrete. A total of 5 19 sets of processed data obtained from 
mix design information and laboratory tests are used for developing this NN model. 
Finally, the NN selected has I 1 neurons in each hidden layer, whereas the output layer 
uses a total of 7 neurons. Using a total of 21 inputs, the developed model produces 
outputs (rut depths) at 7 different cycles. The time series of deformation recorded over 
8000 cycles are determined by an interpolation with piecewise linear elements, using 
these few outputs. Preprocessing and principal component analyses are applied, and 
the network trained using the Levenberg-Marquardt algorithm. Using randomly 
generated weight factors to initialize the training algorithm, histograms are compiled 
and outputs estimated using statistical estimators. An excellent agreement is observed 
between test data and simulations. It is believed that the developed NN design 
procedure will be a useful tool in the study of pavement design and wear. 
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Chapter 10 

NEURAL NETWORKS FOR RESIDENTIAL 
INFRASTRUCTURE MANAGEMENT 

Deidre E. Paris 

1. INTRODUCTION 

Over the last decade, there has been a rapid acceptance of new technologies 
like neural networks for solving a wide range of business problems. While 
neural networks have developed from the field of artificial intelligence and 
brain modeling, neural networks are nothing more than function 
approximation tools that learn the relationship between independent variables 
and dependent variables, much like regression or other more traditional 
approaches. The principal difference between neural networks and statistical 
approaches is that neural networks make no assumptions about the statistical 
distribution or properties of the data, and therefore tend to be more useful in 
practical situations. Neural networks are also an inherently nonlinear 
approach giving them much accuracy when modeling complex data patterns. 
An Artificial Neural Network (ANN) is an information processing paradigm 
that is inspired by the way biological nervous systems, such as the brain, 
process information. The key element of this paradigm is the novel structure 
of the information processing system. It is composed of a large number of 
highly interconnected processing elements (neurons) working in unison to 
solve specific problems. ANNs, like people, learn by example. An ANN is 
configured for a specific application, such as pattern recognition or data 
classification, through a learning process. ANNs are based on the neural 
structure of the brain in that the brain basically learns from experience. 

2. NEURAL NETWORK HISTORY 

The study of the human brain is thousands of years old. In 1943, 
Warren McCulloch, a neurophysiologist, and a young mathematician, Walter 
Pitts, wrote a paper on how neurons might work. They modeled a simple 
neural network with electrical circuits. Reinforcing this concept of neurons 
and how they work was a book entitled Organization of Behavior by Donald 
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Hebb written in 1949. It pointed out that neural pathways are strengthened 
each time that they are used. 

As computers advanced into their infancy of the 1950s, it became 
possible to begin to model the theories concerning human thought. Nathanial 
Rochester from the IBM research laboratories led the first effort to simulate a 
neural network. That first attempt failed. But later attempts were successful. It 
was during this time that traditional computing began to flower and, as it did, 
the emphasis in computing left the neural research in the background. Yet, 
throughout this time, advocates of "thinking machines" continued to argue 
their cases. In 1956 the Dartmouth Summer Research Project on Artificial 
Intelligence provided a boost to both artificial intelligence and neural 
networks. One of the outcomes of this process was to stimulate research in 
both the intelligent side, A1 (Artificial Intelligence), as it is known throughout 
the industry, and in the much lower level neural processing part of the brain. 

In the years following the Dartmouth Project, John von Neumann 
suggested imitating simple neuron functions by using telegraph relays or 
vacuum tubes. Also, Frank Rosenblatt, a neuro-biologist of Comell, began 
work on the Perceptron. He was intrigued with the operation of the eye of a 
fly. Much of the processing which tells a fly to flee is done in its eye. The 
Perceptron, which resulted from this research, was built in hardware and is the 
oldest neural network still in use today. A single-layer perceptron was found 
to be useful in classifying a continuous-valued set of inputs into one of two 
classes. The perceptron computes a weighted sum of the inputs, subtracts a 
threshold, and passes one of two possible values out as the result. 
Unfortunately, the perceptron is limited and was proven as such during the 
"disillusioned years" in Marvin Minsky and Seymour Papert's 1969 book 
Perceptrons. 

In 1959, Bernard Widrow and Marcian Hoff of Stanford developed 
models they called ADALINE and MADALINE. These models were named 
for their use of Multiple ADAptive LINear Elements. MADALINE was the 
first neural network to be applied to a real world problem. It is an adaptive 
filter which eliminates echoes on phone lines. This neural network is still in 
commercial use. 

Unfortunately, these earlier successes caused people to exaggerate the 
potential of neural networks, particularly in light of the limitation in the 
electronics then available. This excessive hype, which flowed out of the 
academic and technical worlds, infected the general literature of the time. 
Disappointment set in as promises were unfilled. Also, a fear set in as writers 
began to ponder what effect "thinking machines" would have on man. 
Asimov's series on robots revealed the effects on man's morals and values 
when machines where capable of doing all of mankind's work. These fears, 
combined with unfulfilled, outrageous claims, caused respected voices to 
critique the neural network research. The result was to halt much of the 
funding. This period of stunted growth lasted through 198 1. 
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In 1982 several events caused a renewed interest. John Hopfield of 
Caltech presented a paper to the national Academy of Sciences. Hopfield's 
approach was not to simply model brains but to create useful devices. With 
clarity and mathematical analysis, he showed how such networks could work 
and what they could do. Yet, Hopfield's biggest asset was his charisma. He 
was articulate, likeable, and a champion of a dormant technology. 

At the same time, another event occurred. A conference was held in 
Kyoto, Japan. This conference was the US-Japan Joint Conference on 
Cooperative/Competitive Neural Networks. Japan subsequently announced 
their Fifth Generation effort. US periodicals picked up that story, generating a 
worry that the US could be left behind. Soon funding was flowing once again. 

By 1985 the American Institute of Physics began what has become an 
annual meeting - Neural Networks for Computing. By 1987, the Institute of 
Electrical and Electronic Engineer's (IEEE) first International Conference on 
Neural Networks drew ore than 1,800 attendees. 

By 1989 at the Neural Networks for Defense meeting Bernard 
Widrow told his audience that they were engaged in World War N, "World 
War I11 never happened," where the battlefields are world trade and 
manufacturing. The 1990 US Department of Defense Small Business 
Innovation Research Program named 16 topics which specifically targeted 
neural networks with an additional 13 mentioning the possible use of neural 
networks. Today, neural networks discussions are occurring everywhere. 
Their promise seems very bright as nature itself is the proof that this kind of 
thing works. Yet, its future, indeed the very key to the whole technology, lies 
in hardware development. Currently most neural network development is 
simply proving that the principal works. 

3. THE HUMAN BIOLOGICAL NEURON AND 
ARTIFICIAL NEURON 

The fundamental processing element of a neural network is a neuron. 
Basically, a biological neuron receives inputs from other sources, combines 
them in some way, performs a generally nonlinear operation on the result, and 
then outputs the final result. As shown in Figure 1, in the human brain, a 
typical neuron collects signals from others through a host of fine structures 
called dendrites. The neuron sends out spikes of electrical activity through a 
long, thin stand known as an axon, which splits into thousands of branches. At 
the end of each branch, a structure called a synapse converts the activity from 
the axon into electrical effects that inhibit or excite activity from the axon into 
electrical effects that inhibit or excite activity in the connected neurons. When 
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a neuron receives excitatory input that is sufficiently large compared with its 
inhibitory input, it sends a spike of electrical activity down its axon. Learning 
occurs by changing the effectiveness of the synapses so that the influence of 
one neuron on another changes. Basically, a biological neuron receives 
inputs from other sources, combines them in some way, performs a generally 
nonlinear operation on the result, and then output the final result. The figure 
below shows a simplified biological neuron and the relationship of its four 
components. 

4 Partsol a 
T~pical Nerve Cell 

Dendrites : Accept inputs 

Soma : Process the inputs 

Axon : Turn the processed inputs 
into outputs 

Synapses : The electrochemical 
contact between neurons 

Figure 1. Parts of a typical human nerve cell 

3.1 The Artificial Neuron 

The basic unit of neural networks, the artificial neurons, simulates the 
four basic functions of natural neurons. Artificial neurons are much simpler 
than the biological neuron; Figure 2 below shows the basics of an artificial 
neuron. 
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Sun Transfer 

. Processing 
Elm ent 

Figure 2.  Model of  an artificial neuron 

Note that various inputs to the network are represented by the 
mathematical symbol, x(n). Each of these inputs are multiplied by a 
connection weight, these weights are represented by w(n). In the simplest 
case, these products are simply summed, fed through a transfer function to 
generate a result, and then output. Even though all artificial neural networks 
are constructed from this basic building block the fundamentals may vary in 
these building blocks and there are differences. 

4. NEURAL NETWORK MODELS 

In this section we provide details of three popular neural network models. 
The equations presented in this section and their derivation is taken from 
research on neural networks in business (Smith and Gupta, 2000). Each model 
is presented in terms of its purpose, architecture, and algorithm. Each of these 
models has some similarity to more traditional statistical and operations 
research techniques, and the relationships to the analogous traditional 
techniques are 
discussed. 
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4.1 Neural Network Design 

Designing a neural network consists of: 

Arranging neurons in various layers. 
Deciding the type of connections among neurons for different 
layers, as well as among the neurons within a layer. 
Deciding the way a neuron receives input and produces 
output. 
Determining the strength of connection within the network by 
allowing the network learn the appropriate values of 
connection weights by using a training data set. 

There are several types of neural networks, each with a different 
purpose, architecture and learning algorithm, and these are outlined in the 
following sections. 

4.1.1 Multilayered Feedforward Neural Networks 

According to a recent study (Wong, Bodnovich and Selvi, 1997), 
approximately 95% of reported neural network business application studies 
utilize multilayered feedforward neural networks (MFNNs) with the back 
propagation learning rule. This type of neural network is popular because of 
its broad applicability to many problem domains of relevance to business: 
principally prediction, classification, and modeling. MFNNs are appropriate 
for solving problems that involve learning the relationships between a set of 
inputs and known outputs. They are a supervised learning technique in the 
sense that they require a set of training data in order to learn the relationships. 

The MFNN architecture is shown in Figure 3 and consists of two or 
more layers of neurons connected by weights. The flow of information is from 
left to right, with inputs x being passed through the network via the hidden 
layer of neurons to the output layer. The weights connecting input element i to 
hidden neuron j are denoted by Wji , while the weights connecting hidden 
neuron j to output neuron k are denoted by Vkj . 

Each neuron calculates its output based on the amount of stimulation 
it receives from the given input vector x. More specifically, a neuron's net 
input is calculated as the weighted sum of its inputs, and the output of the 
neuron is based on a sigmoidal function indicating the magnitude of this net 
input. That is, for the jth hidden neuron 
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Figure 3. Architecture of Multilayered Feedforward Neural Networks (MFNNs) 

while for the kth output neuron 

$4- 1 

net! = 
j= 1 

(Eq. 4.2) 

Typically, the sigmoidal function f (net) is the well-known logistic function 

(Eq. 4.3) 
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where A is a parameter used to control the gradient of the function, although 
the only requirement is it to be bounded between 0 and 1, monotonically 
increasing, and differentiable. 

For a given input pattern, the network produces an output (or set of 
outputs) ok, and this response is compared to the known desired response of 
each neuron dk. The weights of the network are then modified to correct or 
reduce the error, and the next pattern is presented. The weights are continually 
modified in this manner until the total error across all training patterns is 
reduced below some pre-defined tolerance level (or the network has started to 
"overtrain" as measured by deteriorating performance on the test set (Zurada, 
1992). 

The weight update rule for the output layer weights V is given by 

(Eq. 4.4) 
and for the hidden layer weights W by 

(Eq. 4.5) 

Proof that the elect of these weight updates minimizes the total average- 
squared error 

(Eq. 4.6) 

where dpk is the desired output of neuron k for input pattern p, and opk is the 
actual network output of neuron k for input pattern p, relies on the fact that the 
algorithm (known as the backpropagation learning algorithm) performs 
steepest descent on this error function (Zurada, 1992). 

There are many training issues involved in applying MFNNs 
successfully, including ensuring that the learned relationships generalize well 
to new data. To ensure this, data are typically divided into a training and a test 
set, where the performance on the test set is used to indicate the generalization 
of the neural network results. Other issues involve optimal selection of the 
many training parameters including the number of hidden neurons, the 
learning rate c, the initial weights, and the slope of the sigmoidal function A. 
Convergence to local minima of the error function (Eq. 4.6) is also a concern, 



Neural Networks for Residential Infrastructure Management 223 

since this means that the final combination of weights will always produce an 
error. Researchers have recently started using heuristics approaches like 
genetic algorithms instead of the backpropagation learning rule to determine 
the optimal weights for the MFNN to minimize the total average-squared 
error (Gupta and Sexton, 1999; Montana, 1995; Sexton, Gupta, Smith and 
Montagno, 1998). 

The MFNN, with an algorithm for determining the optimal weights 
for a given training set of data (backpropagation or heuristic algorithm), can 
be seen as similar to any function approximation technique like regression, 
where the weights are analogous to regression coefficients estimated by least 
squares. The difference of course is the improved potential of the function 
approximation when learning highly complex and nonlinear data due to the 
increased number of free parameters. 

4.1.2 Hopfield Neural Networks 

While MFNNs learn the relationships between inputs and outputs in a 
supervised manner, Hopfield neural networks are completely different, in 
function, architecture and approach. With MFNNs, the neurons are connected 
in layers, and the weights are modified throughout the algorithm to reflect the 
learning process. With Hopfield networks however, there is no layer 
structure to the architecture, and the weights do not change. Hopfield 
networks (Hopfield, 1982) are a fully interconnected system of N neurons as 
shown in Figure 4 for N=4. The weights of the network Wij are fixed and 
symmetric (WV=Wji), and store information about the memories or stable 
states of the network. Each neuron has a state xi which is bounded between 0 
and 1. Neurons are updated according to a differential equation, and over time 
an energy function is minimized. The local minima of this energy function 
correspond to the stable states of the network. 
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Figure 4. Architecture of Hopfield neural network 

Hopfield networks are principally used to solve optimization 
problems of the kind familiar to the operations researcher. Hopfield and Tank 
(Hopfield and Tank, 1985) showed that the weights of a Hopfield network can 
be chosen so that the process of neurons updating simultaneously minimizes 
the Hopfield energy function and the optimization problem. Each neuron i 
updates itself according to the following differential equation 

(Eq. 4.7) 

where f (.) is a sigmoidal output function bounded by 0 and 1 like (Eq. 4.3) 
and 2 is a constant. These equations are similar to the calculation of a neuron 
output in the MFNN except that a constant term I has been added to the net 
input of each neuron, and the time dynamics are now continuous (although the 
process is usually simulated with a discrete Euler approximation). Each time a 
neuron is updated in this manner, the energy function 



Neural Networks for Residential Infrastructure Management 

(Eq. 4.8) 

is reduced. In fact, this energy function is a Liapunov function for the system 
and is guaranteed not to increase (Hopfield, 1982). This proof relies on the 
fact that the neuron update rules (Eq. 4.7) result in steepest descent of the 
energy function (Eq. 4.8), just like the weight update rules (Eq. 4.4) and (Eq. 
4.5) of the MFNN with backpropagation result in steepest descent of the error 
function (Eq. 4.6). 

The approach to solving optimization problems using Hopfield 
networks is to choose the weights WV and constant terms Ii to force the energy 
function and the optimization objective function to be equivalent. The 
optimization problem is expressed as a single function to be minimized, 
which incorporates all costs and constraints of the problem using a penalty 
function approach. Notice that the weights WV are simply the coefficients of 
the quadratic terms xix, in the energy function, while the constant terms Ii are 
the coefficients of the linear terms xi . Once the network weights and 
constants have been chosen, the neuron states xi are randomly initialized, and 
the neurons begin updating in a random sequence according to differential 
(Eq. 4.7). Over time, the energy function minimizes until the neuron states 
have stabilized, and the final neuron states correspond to a local minimum 
solution of the optimization problem. This solution may not necessarily be a 
feasible one or a good one since the penalty function treatment of the cost and 
constraints means that a balance needs to be found between which 
components of the energy function are minimized. Penalty function 
parameters need to be selected to reflect the relative degree of difficulty in 
minimizing each component of the energy function. Numerous researchers 
have tried to alleviate this problem by modifying the energy function form 
(Brandt, Wang, Laub and Mitra, 1988), or by analytically choosing values for 
the penalty parameters (Hegde, Sweet and Levy, 1988; Lai and Coghill, 
1992). 

Clearly, Hopfield networks are a steepest descent technique for 
solving an optimization problem using a penalty function approach. The 
performance of Hopfield networks has been improved by incorporating hill- 
climbing strategies into the neuron update equations (Eq. 4.7), like simulated 
annealing (Smith, Palaniswami and Krishnamoorthy, 1996). Variations of the 
Hopfield network include Boltzmann machines (Ackley, Hinton and 
Sejnowski, 1985) and mean-field annealing (Van Den Bout and Miller 111, 
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1989). Enhancements to these approaches such as neuron normalization have 
enabled certain hard constraints to be enforced by the neuron updating, rather 
than relying on a penalty function approach (Van Den Bout and Miller 111, 
1989). 

4.1.3 Self-organizing Neural Networks 

For many decades, statisticians have used discriminant analysis and 
regression to model the patterns within data when there are labeled training 
data (with inputs and known outputs) available, and clustering techniques 
when no such data are available. These techniques find analogies in neural 
networks, where MFNNs are used with back propagation when training data 
are available, and self-organizing neural networks are used as a clustering 
technique when no training data are available. Clustering has always been 
used to group the data based upon the natural structure of the data. The 
objective of an appropriate clustering algorithm is that the degree of similarity 
of patterns within a cluster is maximized, while the similarity these patterns 
have with patterns belonging to different clusters is minimized. 

Often patterns in a high-dimensional input space have a very 
complicated structure, but this structure is made more transparent and simple 
when they are clustered in a one, two or three dimensional feature space. 
Kohonen developed self-organizing feature maps (SOFMs) as a way of 
automatically detecting strong features in large data sets. SOFMs find a 
mapping from the high-dimensional input space to low-dimensional feature 
space, so the clusters that form become visible in this reduced dimensionality 
(Kohonen, 1982; 1988). In comparison with the two previous neural network 
models discussed, the SOFM involves adapting the weights to reflect learning 
(like the MFNN with back propagation) but the learning is unsupervised since 
the desired network outputs are unknown. Another significant difference 
between the SOFM and the previous models is the architecture and the role of 
neuron locations in the learning process. In the SOFM, input vectors are 
connected to an array of neurons, usually one-dimensional (a row) or two- 
dimensional (a lattice). Figure 5 shows this architecture for n inputs and a 
square array of nine neurons. 
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nb. Not all weights are showo 

Figure 5. Architecture of a SOFM with nine neurons 

When an input pattern is presented to the SOFM, certain regions of 
the array will become active, and the weights connecting the inputs to those 
regions will be strengthened. Once learning is complete, similar inputs will 
result in the same region of the array becoming active or "firing". Central to 
this idea is the notion of the ordering and physical arrangement of the 
neurons. With SOFMs the ordering of the neurons is important since we are 
referring to regions of neurons firing. If a neuron fires, it is likely that its 
neighbors will also fire, and thus for the first time we are concerned with the 
physical location of the neurons. This idea has more biological justification 
than the other neural models, since the human brain involves large regions of 
neurons operating in a centralized and localized manner to achieve tasks. In 
the human brain, as in the SOFM, there is usually a clear "winning neuron" 
which fires the most upon receiving an input signal, but the surrounding 
neurons also get affected by this, firing a little, and the entire region becomes 
active. 

In order to replicate the response of the human brain in the SOFM, 
the learning process is modified so that the winning neuron (defined as the 
neuron whose weights are most similar to the input pattern) receives the most 
learning, but the weights of neurons in the neighborhood of the winning 
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neuron are also strengthened, although not as much. It is appropriate at this 
point to define the concept of a neighborhood in relation to the architecture of 
the SOFM. For a linear array of neurons, the neighbors are simply the neurons 
to the left and right of the winner. This is called a neighborhood size of one. 
To achieve the effect of an active region of neurons, we need to consider 
larger neighborhood sizes, as shown in Figure 6 for rectangular array of 
neurons, with a hexagonal neighborhood structure. 

Figure 6.  Concept of neighborhood size for a rectangular array of neurons 

Initially the neighborhood size around a winning neuron is allowed to 
be quite large to encourage the regional response to inputs, but as the learning 
proceeds, the neighborhood size is slowly decreased so that the response of 
the network becomes more localized. The localized response, which is needed 
to help clearly differentiate distinct input patterns, is also encouraged by 
varying the amount of learning received by each neuron within the winning 
neighborhood. The winning neuron receives the most learning at any stage; 
with neighbors receiving less the further away they are from the winning 
neuron. 



Neural Networks for Residential infrastructure Management 229 

The size of the neighborhood around winning neuron m at time t is 
denoted by N,(t). The amount of learning that every neuron I within the 
neighborhood of m receives is determined by 

(Eq. 4.9) 

where Ilri- r,ll is the physical distance (number of neurons) between neuron i 
and the winning neuron m. The two functions a(t) and 02(t) are used to control 
the amount of learning each neuron receives in relation to the winning neuron. 
These functions can be slowly decreased over time. The amount of learning is 
greatest at the winning neuron (where i=m and ri = r,) and decreases the 
further away a neuron is from the winning neuron, as a result of the 
exponential function. Neurons outside the neighborhood of the winning 
neuron receive no learning. 

Like the other neural network models considered thus far, the learning 
algorithm for the SOFM follows the basic steps of presenting input patterns, 
calculating neuron outputs, and updating weights. The differences lie in the 
method used to calculate the neuron output (this time based on the similarity 
between the weights and the input), and the concept of a neighborhood of 
weight updates. The steps of the algorithm are as follows: 
Step 1: Initialize 

weights to small random values 

neighborhood size N,(O) to be large (but less than the number of 
neurons in one dimension of the array) 

parameter functions a(t) and 02(t) to be between 0 and 1 
Step 2: Present an input pattern x through the input layer and calculate the 
closeness 
(distance) of this input to the weights of each neuron j: 

P% 

d =  1 (Eq. 4.10) 

Step 3: Select the neuron with minimum distance as the winner m 
Step 4: Update the weights connecting the input layer to the winning neuron 
and its neighboring neurons according to the learning rule 
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for all neurons j in N,(t) 
Step 5: Continue from STEP 2 for '0 epochs; then decrease neighborhood 
size, a(t) and 02(t): Repeat until weights have stabilized. 

SOFMs have been predominantly used for clustering and feature 
extraction, finding application as a data mining technique. As such, they are 
comparable to traditional clustering techniques like the k-means algorithm 
(Hartigan, 1975). There has also been quite a significant amount of research 
undertaken in using SOFMs for solving optimization problems as an 
alternative to the Hopfield neural networks discussed in the previous section. 
This involves combining the ideas of the SOFM with the elastic net algorithm 
(Durbin and Willshaw, 1987) to solve Euclidean problems like the traveling 
salesman problem (Favata and Walker, 1991; Goldstein, 1990). In recent 
work, a modified SOFM has been used to solve broad classes of optimization 
problems by freeing the technique from the Euclidean plane. 

4.1.3 Other Neural Network Models 

There are many other different types of neural network models, each 
with their own purpose and application areas. Most of these are extensions of 
the three main models we have discussed in this section. Their potential 
application to problems of concern to the business world and the operations 
researcher is unclear, but they are referenced here for completeness. These 
other neural network models include adaptive resonance networks (Carpenter 
and Grossberg, 1988), radial basis networks (Broomhead and Lowe, 1988), 
modular networks (Jacobs and Jordon, 1991), neocognitron (Fukushima, 
1980), brain-state-in-a-box (Anderson, Silverstein, Ritz and Jones, 1977), to 
name just a few. 

5. RESIDENTIAL SATISFACTION DECISION SUPPORT 
SYSTEM MODEL 

The residential satisfaction decision support system is a multilayered 
feedforward neural network. The neural network is trained using Defoors 
train dataset. The data is divided into two groups: input variables and an 
output variable. The inputs are the independent research variables specified 
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in the model; the output variable SATIS is the dependent variable. The train 
dataset is made up of data rows, which makes up a set of corresponding 
independent variables and a dependent variable. These data rows are also 
referred to as cases. 

The decision support system is developed by first training the neural 
network. Training a neural network refers to the process of the model 
"learning" the patterns in the training dataset in order to make classifications. 
The training dataset includes many sets of input variables and a corresponding 
output variable. When the value of an input variable is fed into an input 
neuron, the network begins by finding linear relationships between the input 
variables and the output variable. Weight values are assigned to the links 
between the input and output neurons; every link has a weight that indicates 
the strength of the connection. The weights of the network are set randomly 
when it is first being trained. After all the rows of Defoors' dataset are passed 
through the network, the answer the network is producing is repeatedly 
compared with correct answers, and each time the connecting weights are 
adjusted slightly in the direction of the correct answer. If the total of the 
errors of all cases in the dataset is too large, then a hidden neuron is added 
between the inputs and outputs. The training process is repeated until the 
average error is within an acceptable range. The errors between the network 
and the actual result are reduced as more hidden neurons are added. The 
network has learned the data sufficiently when it has reached an acceptable 
error and is ready to produce the desired results, which are called 
classifications, for all of the data rows. The effectiveness of neural networks 
is demonstrated when the trained network is able to produce good results for 
data that the network has never seen before. This is examined using the 
trained network on Moores Mill test dataset. 

The neural network output variable is SATIS which indicates residents 
overall living satisfaction. This variable had four categories that respondents 
could select from to describe their satisfaction level: l=very dissatisfied, 
2=somewhat dissatisfied, 3=somewhat satisfied and 4=very satisfied. These 
categories were collapsed into two categories to simplify the neural network 
model: 1 & 2=NOT SATISFIED and 3 & 4=SATISIFIED. Thus, the 
residential satisfaction train dataset is clustered into 2 categories: NOT 
SATISFIED and SATISFIED. Table 1 provides definitions of the input 
variables that were used to train the neural network. 
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6. NEURAL NETWORK ANALYSIS RESULTS 

There were 18 input variables used to train the neural network and SATIS 
was the output variable. The neural network generated 79 hidden neurons 
during training; in which 56 neurons was the optimal number of hidden 
neurons that best solves the classification problem. The training time, or time 
it took for the network to learn before it was able to make accurate 
classifications was 49 seconds. 

Figure 7 shows the number of hidden neurons graphed against the 
percentage of correct classifications. The vertical line between the curve and 
the x-axis shows that the network needed 56 hidden neurons during training 
before it can make correct classifications on the dataset. 
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Table 1. Input data for neural network. 
Variable Name Definition Variable Definition 

Name 
SATPROM AN How satisfied residents are SATUNF How satisfied 

with the property residents are with 
management staff. their apartment units. 

RFAIRLY 

TALK 

TENANTPOLICIES How satisfied residents are QUICKCOMPLY How satisfied 
with property management's residents are with the 
tenant selection policies. expediency of staff 

responding to 
complaints. 

How satisfied residents are REPAIRSQUALITY How satisfied 
with property management residents are with the 
enforcing rules fairly. quality of 

maintenance repairs. 

How satisfied residents are CLEANNESS How satisfied 
with availability of property residents are with the 
management staff to address overall cleanliness of 
residents' concerns. the property. 

COOPERATIVE How satisfied residents are COMMUNCLEAN How satisfied 
with the ability of property residents are with the 
management staff to cleanliness of the 
cooperate with residents. community that 

surrounds the 
apartment complex. 

FRIENDLY How satisfied residents are SATCOM 
with property management 
level of friendliness towards 
residents. 

How satisfied 
residents are with the 
community that 
surrounds the 
apartment complex. 

RECOMMEND' If residents will recommend SAFE NIGHT HOOD^ How safe residents 
their apartment complex to a feel during the night 
friend as a place to live. in their 

neighborhood. 

Residents' quality of life SATMAINTEN How satisfied 
after renovations. residents are with the 

property's 
maintenance staff. 

BLDQUALITY How satisfied residents are SAFE NIGH^ How safe residents 
with the quality of the feel during the night 
apartment buildings on the at their apartment 
property. complex. 
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Correct Classifications by HiddenNeuron 

Number ofhidden neurons 

Figure 7. Graphical display of correct classifications by number of hidden neurons 

6.1 Actual and Predicted Outputs 

Table 2 displays the actual and classified outputs for all the data rows in 
the trained dataset. This table displays results for every row in the data file to 
which the net was applied. The Row Number column is the number of the 
row in the data file for each example. An asterisk is displayed beside the row 
number that the model makes an incorrect classification. The Actual column 
displays the category classification as it appears in the data file. The 
Classified column displays the category classification predicted by the 
network; the classification is either satisfied or not satisfied. The Not Satisf. 
and Satisf. columns are output classification categories and display the 
network's classification strength for each category. This value is the neuron 
activation strength for each category based on that set of input values. This 
value can loosely be thought of as a probability; the values for all categories 
add up to 1. When the value is close to 1 in a category, the network is more 
confident that the example set of inputs belongs to that particular category. 
As shown in the Table 2 below, there were only 2 data rows (rows #15 & #64) 
that the network classified incorrectly. These two rows were classified as 
satisfied with a weight value of .998 (row #15) and .749 (row #64). 
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Table 2 .  Actual and classified outputs for all rows of trained data. 
Row Not Row Not 

Number Actual Classified Satisf. Satisf. Number Actual Classified Satisf. Satisf. 
1 satisf. 

not sa. 
satisf. 
satisf. 
not sa. 
satisf. 
not sa. 
not sa. 
satisf. 
satisf. 
not sa. 
satisf. 
not sa. 
not sa. 
not sa. 
satisf. 
satisf. 
satisf. 
satisf. 
not sa. 
satisf. 
satisf. 
not sa. 
satisf. 
not sa. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
not sa. 
not sa. 
satisf. 
satisf. 
not sa. 
satisf. 
satisf. 
satisf. 
not sa. 
not sa. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 

satisf. 
not sa. 
satisf. 
satisf. 
not sa. 
satisf. 
not sa. 
satisf. 
satisf. 
satisf. 
not sa. 
satisf. 
not sa. 
not sa. 
not sa. 
satisf. 
satisf. 
satisf. 
satisf. 
not sa. 
satisf. 
satisf. 
not sa. 
satisf. 
not sa. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
not sa. 
not sa. 
satisf. 
satisf. 
not sa. 
satisf. 
satisf. 
satisf. 
not sa. 
not sa. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 0.087 0.913 

satisf. 
not sa. 
satisf. 
not sa. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
not sa. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
not sa. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
not sa. 
not sa. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 

satisf. 
not sa. 
satisf. 
not sa. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
not sa. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
not sa. 
not sa. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 

*denotes a data row that was classified incorrectly. 
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6.2 Agreement Matrix for Training Network 

The agreement matrix shows how the network's classifications compare to the 
actual classification in the Defoors data file in which the network was applied. Table 
3 is the agreement matrix for the trained networking using Defoors data file. Column 
labels Actual "NOT SATISFIED and Actual "SATISFIED refer to the category 
classification in the data file. The row labels Classified as "NOT SATISFIED" and 
Classified as "SATISFIED" refer to the network's predictions. 

When the network was applied to 99 rows of training data, there were 22 actual 
examples of residents being "NOT SATISFIED", but the network classified 2 of 
those cases as "SATISFIED and 20 as "NOT SATISFIED. There were 77 actual 
cases of residents being SATISFIED, which the network confirmed. 

Table 3. Agreement matrix for trained network using Defoors data file 
ACTUAL ACTUAL TOTAL 

"NOT "SATISFIED" 
SATISFIED" 

Classified as 20 0 20 
"NOT 

SATISFIED" 
Classified as 2 77 79 

"SATISFIED" 

TOTAL 22 77 99 

True-Positive 0.9 1 1 .OO d a  
Ratio 

False-Positive 0.00 0.09 d a  
Ratio 

True-Negative 1.00 0.90 d a  
Ratio 
False- 0.09 0.00 d a  

Negative 
Ratio 

Sensitivity 90.9 1 % 100.00% d a  
Specificity 100.00% 90.9 1 % d a  
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6.2.1 Explanation of Classifier Statistical Parameters 

There are statistical parameters that are specific to the classifier. They 
reflect the neural network performance compared to the actual classification. 
These parameters apply to each output classification (SATISFIED and NOT 
SATISFIED) separately. The following classification parameters are 
calculated from the comparison of the actual and neural network 
classification. The neural network classification can be considered as the 
predicted classification from the network. The actual classification can be 
considered as the true classification, which comes from the Defoors train 
database. Below is an explanation for the classifier parameters for ACTUAL 
SATISFIED cases. When the category is ACTUAL NOT SATISFIED, the 
terms are reversed. 

True-Positive Ratio (also known as Sensitivity): is equal to the number of 
residents classified as SATISFIED by the network that were actually 
confirmed to be SATISFIED (77) through the Defoors train dataset, divided by 
the total number of SATISFIED (77) residents as confirmed by the Defoors 
train dataset. It is also equal to one minus the False-Negative ratio. 
77/77=l .OO 

False-Positive Ratio: is equal to the number of residents classified as 
SATISFIED by the network that were actually confirmed to be NOT 
SATISFIED (2) by the Defoors train dataset, divided by the total number of 
NOT SATISFIED (22) residents as confirmed by the Defoors train dataset. It 
is also equal to one minus the True-Negative ratio. 2/22=0.09 

True-Negative Ratio (also known as Specificity): is equal to the number of 
residents classified as "NOT SATISFIED" by the network that were actually 
confirmed to be "NOT SATISFIED" (20) by the Defoors train dataset, 
divided by the total number of "NOT SATISFIED" (22) residents as 
confirmed by the Defoors train dataset. It is also equal to one minus the 
False-Positive ratio. 20/22=0.9 1 

False-Negative Ratio: is equal to the number of residents classified as 
"NOT SATISFIED" by the network that were actually confirmed to be 
"SATISFIED" (0) by the Defoors train dataset, divided by the total number of 
"SATISFIED7' (77) residents as confirmed by the Defoors train dataset. It is 
also equal to one minus the True-Positive ratio. 0/77=0.00 

Sensitivity and Specificity: The terms sensitivity and specificity come 
from medical literature, but are now being used for neural network 
classification problems. Sensitivity and specificity are calculated by 
comparing the network's results with the 99 rows of training data for all 
possible output categories (SATISFIED and NOT SATISFIED). 
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Sensitivity is a concept that can be thought of as the probability that the 
mode will detect the condition when it is present. Sensitivity (true positives) 
equals 1 minus the number of false negatives. Examining the column labeled 
Actual SATISFIED: 

Sensitivity (true positives): is equal to the number of residents the network 
classifies as SATISFIED that are also confirmed as SATISFIED by the 
Defoors train dataset (77) divided by the total number of residents confirmed 
as SATISFIED by the Defoors train dataset (77). 77/77=1.00 or 100%. This 
number implies that the sensitivity of the model for satisfaction is 100.00%. 

Specificity is a concept that can be thought of as the probability that the 
network model will detect the absence of a condition. Specificity (true 
negatives) equals 1 minus the number of false-positives. Examining the 
column labeled "Actual Satisfied": 

Specificity (true negatives): equals the number of residents the network 
classifies as NOT SATISFIED that are also confirmed by the Defoors train 
dataset as NOT SATISFIED (20) divided by the total number of residents 
confirmed as NOT SATISFIED by the Defoors train dataset (22). 
20/22=.9091 or 90.91%. This number implies that the specificity for the 
model is 90.91%. 

The calculations above for sensitivity and specificity were for the category 
Actual SATISFIED. When the category is Actual NOT SATISFIED, the terms 
are reversed. 

6.3. ROC (Receiver Operating Characteristic or Relative 
Operating Characteristic) Curve Graphs For Trained 
Network 

The ROC graphs the false-positive ratio on the x-axis and the true-positive 
ratio on the y-axis for each classification category. The circle plotted on the 
curve shows the intersection of the true-positive and the false-positive ratio on 
the y-axis for each classification category, and converts continuous 
probabilities to binary classifications for the trained network. 

The area under the curve represents how well the network is performing. 
A value close to 1 means that the network is discriminating very well between 
the different output categories. The area under ROC curves shown in Figure 
8 and Figure 9 below for both, NOT SATISFIED and SATISIED categories, 
is .9740 which implies that there is a 97.40% chance that the network will 
make correct classifications. 
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True-pos. vs False-pos. 

I 20% 40 % 60 % 100% 
False-positive percent 

Figure 8. ROC for NOT Satisfied classification for trained data 
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True-pas. vs False-pas. 

0% 20% 40% 60 % 80 % I t  
False-positive percent 

Figure 9. ROC for SATISFIED classification for trained data 
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7. VALIDATION OF NEURAL NETWORK 

After the residential satisfaction decision support system was trained using 
data from Defoors train dataset, the model was validated by running the 
model on Moores Mill test data and observing how efficient the model was in 
discriminating between different output categories (NOT SATISFIED and 
SATISFIED). The Moores Mill test dataset has the same input variables and 
output variable as the train dataset. There are 80 data rows in the Moores Mill 
train dataset. Out of the 80 data rows, 70 residents were SATISFIED; 10 
were NOT SATISFIED. This section will present similar model validation 
statistical information that was presented on training the network model. 

7.1 Actual and Predicted Outputs 

Table 4 displays the actual and classified outputs for all the data rows 
in the test dataset. As shown in this table, there were 4 rows that were 
classified incorrectly: row numbers 25,30,46, and 63. All of these data rows 
were actually NOT SATISFIED, but the network classified them as 
SATISFIED. The weights that were assigned to these rows for the 
SATISFIED classification were respectively, 1.000,0.814,0.989, and 0.921. 

7.2 Network Agreement Matrix for Validating Network 

Table 5 is the agreement matrix for validating the network model 
using Moores Mill data file. When the network was applied to 80 rows of 
data, there were 10 actual cases of residents being "NOT SATISFIED, but 
the network classified 4 of those cases as "SATISFIED" and 6 as "NOT 
SATISFIED". There were 70 actual cases of residents being "SATISFIED, 
which the network confirmed. A true-positive ratio of 1.00 and a false- 
positive ratio of .40 were given for the actual SATISFIED classification. The 
sensitivity which is also refer to as true positive is 100% which implies that 
there is a 100% chance that the network will detect when a resident is 
satisfied. On the other hand, the actual NOT SATISFIED classification has a 
true-positive ratio of .6 and a false- negative ratio of 0.0. The sensitivity for 
the 
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Table 4. Actual and classijied output for all of test data. 
Row Not Row Not 

Number Actual Classified Satisf. Satisf. Number Actual Classified Satisf. Satisf. 
1 satisf. satisf 0.004 0.996 2 0.905 0.095 

satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
not sa. 
not sa. 
not sa. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
not sa. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
not sa. 
not sa. 

satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
not sa. 
not sa. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
not sa 
not sa. 

not sa. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
not sa. 
satisf. 
satisf. 
satisf. 
satisf. 
not sa. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
not sa. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 

not sa. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
not sa. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 
satisf. 

79 satisf. satisf. 0.000 1.000 80 satisf. satisfy. 0.000 1.000 
"denotes a data row that was classified incorrectly. 
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Table 5. Agreement matrix for validating network using Moores Mill data file. 
ACTUAL ACTUAL TOTAL 

"NOT "SATISFIED" 
SATISFIED" 

Classified as 
"NOT 

SATISFIED 
Classified as 

"SATISFIED" 

TOTAL 

True-Positive 
Ratio 

False-Positive 
Ratio 

True-Negative 
Ratio 
False- 

Negative 
Ratio 

Sensitivity 
Specificity 

0 6 

70 74 

70 80 

1 .OO d a  

0.40 nla 

0.60 n/a 

0.00 d a  

100.00% nla 
60.00% d a  

actual NOT SATISFIED classification is 60% or .6 (false-positive), which means that 
there is a 60% probability that the computer will detect that the resident is not 
satisfied. 

The ratio values and the percentages for sensitivity for Actual "Satisfied" and 
specificity for Actual "Not Satisfied" are the same for Tables 3 and 5. However, the 
network misclassified 4 data rows that were actually NOT SATISFIED but classified 
as SATISFIED which explains the 60% for specificity. Since the network was not as 
efficient in detecting Not Satisfied cases, the value of the true-positive ratio and the 
sensitivity decreased. 
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7.3. ROC for Validating Neural Network 

Figure 10 and Figure 11 represent the ROC curves for the validation data for the 
network model. As mentioned in section 6.3, the circle plotted on the curve shows 
the intersection of the true-positive and the false-positive ratio on the y-axis for each 
classification category, and converts continuous probabilities to binary classifications 
for the trained network. The area under the curve represents how well the network is 
performing. A value close to 1 means that the network is discriminating very well 
between the different output categories. The area under the curves in Figures 10 and 
11 is 0.9307. This implies that the overall effectiveness of the network is in 
discriminating between different- output categories when validating the trained 
network is 93.07%. 

False-positive percent 

Figure 10. ROC for NOT SATISFIED classification test data 
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False-positive percent 
Figure 1 1. ROC for SATISFIED classification test set 

8. CONCLUSIONS 

In essence, neural networks are mathematical constructs that emulate the 
processes people use to recognize patterns, learn tasks, and solve problems. 
Neural networks are usually characterized in terms of the number and types of 
connections between individual processing elements, called neurons, and the 
learning rules used when data is presented to the network. Every neuron has a 
transfer function, typically non-linear, that generates a single output value 
from all of the input values that are applied to the neuron. Every connection 
has a weight that is applied to the input value associated with the connection. 
A particular organization of neurons and connections is often referred to as a 
neural network architecture. The power of neural networks comes from their 
ability to learn from experience (that is, from historical data collected in some 
problem domain). A neural network learns how to identify patterns by 



246 Deidre E. Paris 

adjusting its weights in response to data input. The learning that occurs in a 
neural network can be supervised or unsupervised. With supervised learning, 
every training sample has an associated known output value. The difference 
between the known output value and the neural network output value is used 
during training to adjust the connection weights in the network.. 

This research developed a residential satisfaction decision support system 
that can assist owners in making decisions that will meet their residents' 
needs. The system is based on neural networks. Residential satisfaction was 
investigated at two affordable housing multifamily rental properties located in 
Atlanta, Georgia named Defoors Ferry Manor and Moores Mill. Nonprofit 
housing developers, Atlanta Mutual Housing Association (AMHA) and 
Atlanta Neighborhood Development Partnerships (ANDP), respectively own 
Defoors Ferry Manor and Moores Mill 

The neural network was trained using Defoors Ferry Manor data, and it 
took 49 seconds to train the network. Seventy-nine hidden neurons were 
trained. The neural network was applied to 99 data rows used to train the 
network. Ninety-seven of those rows were classified correctly and 2 rows 
were classified incorrectly. The ROC (Receiver Operating Characteristic) 
graph showed the efficiency of the network, and it was concluded that the 
network was 97.40% effective in making correct classifications. 

The network was trained using data from Defoors trained data set; 
afterwards, the network was validated by running the network on Moores Mill 
test data and observing how efficient the network was in discriminating 
between different output categories. The Moores Mill test dataset has the 
same input variables and output variable as Defoors. There were 80 data rows 
in the Moores Mill train dataset. Out of the 80 data rows, 4 rows were 
classified incorrectly. When the network was applied to 80 rows of the data, 
there were 10 cases where residents were "NOT SATISFIED"; but the 
network classified 4 of those cases as "SATISFIED". 

The statistics related to the network's performance were that there was a 
100% chance that the network will correctly predict a resident is satisfied. On 
the other hand, the specificity of the network for the actual SATISFIED 
classification was 60%, which means that there is a 60% chance that the 
computer will detect when the resident is not satisfied. The network's overall 
effectiveness in discriminating between different output categories when 
validating the network was 93.07%. 

NOTES 

1. Category responses are l=will recommend, 2=will not recommend, and 3=do not know. 
2. Category responses are l=better off than before, 2=worse off than before, and 3=about the 

same as before. 
3. Category responses are l=very unsafe, 2=somewhat unsafe, 3=somewhat safe, and 4=very 

safe. 
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Chapter 11 

EVACUATION SIMULATION IN UNDERGROUND 
MALL BY ARTIFICIAL LIFE TECHNOLOGY 

Hitoshi Furuta and Masahiro Yasui 

1. INTRODUCTION 

In recent years, underground malls are popular and form a part of downtown, 
because ground has no available spaces in Japan [I]. Since the underground 
malls have complicated configuration and connections, it is difficult for 
visitors to evacuate in the event of a disaster. Therefore, it is necessary to 
develop a disaster prevention measure to improve the safety of people using 
the underground malls. 
Then, it is inevitable to predict how people behave for the anxiety and 
confusion during the disaster and to grasp the total action during the disaster. 
In this study, a new simulation system is developed to consider the evacuation 
behavior in the underground malls during the disaster. So far, a lot of 
methods have been proposed to the simulation of evacuation, whose models 
are based upon many and complex factors [2,3,4,5,6]. For more accuracy, it 
is necessary to take into account human psychological factors, visibility, and 
so on. However, when those models are applied to the real cases, some 
problems may arise on calculation time and accuracy. 
A new simulation model is proposed, which can express complex human 
behavior by a simple model that defines actions probabilistically, by 
introducing artificial life technology. If many factors are considered in the 
simulation, its implementation requires a lot of computational time. 

2. ARTIFICIAL LIFE TECHNOLOGY 

2.1 History of artificial life technology 

In September, 1987, artificial life workshop was held at Los Alamos, New 
Mexico, US. As the leadership of C. G. Langton, artificial life technology has 
been developed so far. 
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In 1990, Tierra was developed by T. Ray, which was quite important result in 
the initial stage of artificial life researches 171. (Figure 1) J. L. Casti of the 
Santa Fe research institute said that January 4, 1990 is the day which should 
be kept in mind, because a life that is not organized by carbon was born in 
computer for the first time ever. 

Figure 1. Tierra model by T. Ray 

2.2 Artificial life technology 

Characteristics of living beings are growth, self-duplication, metabolism, 
environmental adaptation, evolution and so on [8,9,lO, 111. From this point of 
view, it can be considered that actions do not have so many varieties in the 
human decision. Therefore, the variety in human decisions can be imitated by 
selecting several possible actions. In order to realize this function, it is useful 
to apply the generic technology that has been completed through artificial life. 

2.3 Emergence 

The concept of emergence has been considered in the philosophical field since 
a long time ago [11,12]. In artificial life, it is supposed that emergence is 
universally involved in biological phenomenon such as birth of a life, 
ontogenesis, and evolution. It is considered that emergence influences many 
phenomena such as birth of heart, sociogenetic, economy, evaluation of 
culture and so on. 
In order to generate "emergence", hierarchical structures of functions are 
needed [5,6,7]. Each element in the lower layer has only a simple relation 
with each other, but it does not have a relation with all elements. Namely, 
each element in the lower layer has only a relation with the neighborhoods. 
As a result, a general order in the upper layer is formed (bottom-up). The 



Evacuation Simulation in Underground Mall by Artificid Life Technology 25 1 

order formed in the upper layer becomes the boundary condition to the actions 
in the lower layer. Therefore, the nonlinear feedback between the upper and 
lower hierarchies is formed and causes a complicated behavior. This is called 
as "emergence". 

Feed 
back 

Concept of "emergence" is shown in Figure 2. 

A general order 7 
Feed 
back 

Elements which interact in neighborhood 

Figure 2. Concept of "emergence" 

3. HUMAN BEHAVIOR DURING DISASTERS 

3.1 Human actions during disasters 

Human behavior can be roughly divided into two typed such as leader-action 
and following-action. 

man 1 59.8% 1 40.2% 

Table 1. Difference of behavior during disaster 

woman ( 34.0% ( 66.0% 

I leader-action (active) 

From Table 1, it is obtained that 46.9% of people take leader-action and 
53.1% of people take following-action as a whole. 

following-action (passive) 
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The difference between leader and following actions is described below:. 

Leader-action. 
People acting as the leader can recognize paths to exits and go to an 

emergency exit, and inform it to human beings surrounding. 

Following-action. 
People following the human beings around them, because they do 

not recognize paths to exits. 

Also, it may be possible that human being fall in panic during disasters. Then 
it is imagined that there are struggles to survive even if it shoves others aside 
and people may behave in an irrational way such that occasionally increase 
own or others' risk. However, there is no case of panic in actual disaster 
situations. 

3.2 Rate of recognizing paths to exits 

The rate of recognizing paths to exits is different between weekdays and 
weekends. On weekdays, there are many people of using underground mall to 
commute, whereas on weekends there are people who often use it for 
shopping or eating. Table 2 presents the results of questionnaire about 
whether they know exits or not. Table 2 shows that 73.3% of people 
recognize exits on weekdays and 63.2% of people recognize the exits on 
weekends as a whole. 

Table 2. The rate of recognizing exit 
recognize exit I not recognize exit 

Weekdavs 1 73.3% 1 9.4% 1 10.7% 1 5.5% 1 1.2% 

immediate 
answer 

Weekends 1 63.2% 1 10.0% 1 19.5% 1 6.3% 1 1.0% 

When disasters occur, people do not necessarily recognize the nearest exit. If 
they can not find any near exit in a short time, they tend to evacuate to not 
near exit but known exit. On the other hand, even if they recognize any exit, 
they may act depending on the surrounding situation. 

answer 
after a 
while 

immediate 
answer 

answer 
after a 
while 

uncertainty 
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3.3 Safety recognition in Osaka underground mall 

Woman has a tendency to consider that underground mall is less safe than 
man does. Table 3 presents the results of questionnaire about recognition of 
safety for weekdays and weekends. 

Table 3. The rate of recognizing safety in Osaka under round mall 
I think safe I think unsafe f no idea I uncertainty 

3.4 Emergence in evacuation 

Weekdays 

Weekends 

During disasters, human being differs in the way of recognition of the 
disasters in an underground mall. Moreover, the transition of information is 
also different. However, people become a crowd and evacuate as a whole 
regardless of those differences. The crowd is a large number of people who 
act together. The crowd can be divided into the following three groups: 

The crowd tends to force themselves to the comer by the disaster 
The crowd who can appropriately correspond and judge to the 
disaster 
The crowd who is ignorant or indifferent to the disaster 

A representative factor forming a crowd is the interaction of each human 
action. The interaction of each human being is realized through the 
information from the environment. As the information from the environment, 
leading light (sign) and information from the crowd can be considered. 
Namely, each human action influences on the crowd and the crowd influences 
on each human action. Thus, each human being and the crowd can possibly 
show "emergence" due to the interaction among them. Concept of emergence 
in evacuation is shown in Figure 3. 

14.0% 

15.8% 

75.9% 

72.6% 

9.8% 

11.3% 

0.3% 

0.3% 
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Feed 
back 

Feed 
back 

Human interaction in neighborhood 

Figure 3. Concept of emergence during evacuation 

3.5 Occurrence of second disaster 

While recognizing some disaster, there are many people who want to evacuate 
immediately from the underground mall, because they understand it is 
dangerous. It is expected that the neighborhood of exits will be very 
congested. Therefore, it is likely that there may occur such second disasters 
as domino phenomenon and avalanche of the crowd. While domino effect is 
similar to avalanche of the crowd, they are different phenomena. Domino 
effect is the expansions to a line from back to front so that human beings 
behind force human beings ahead down. Avalanche of the crowd is the 
expansion of the crowd to multi-directions with the shape of lump from front 
to back so that human beings behind and left or right are involved in the fall 
of human beings ahead. Avalanche can occur when unstable balance is 
maintained by collisions of human beings. The difference between domino 
effect and avalanche of the crowd is shown in Table 4. 

Table 4. Comparison domino effect and avalanche of the crowd 

effect of pressure I on tumbling I before tumbling 

density to occur 

direction of tumbling I from back to front I from front to back 

shape of tumbling ( a line I the shape of lump 

domino effect 
even if density of 
population 
is 3 to 5 people/m' 

avalanche of crowd 
. 
if density of population 
is more than 10 people/d 
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4. APPLICATION EXAMPLE 

4.1 Model of human being 

It is assumed that each human being has the following characteristics: 
It recognizes paths to exits or not 

And it has the following attitudes: 
Heading direction 
Intensity to the heading direction 

Moving of human being is simulated by selecting the moving direction, 
intensity and speed of moving. By the difference of moving speed, the 
difference of old and young persons can be identified. Each model decides 
the direction by choosing a direction. After the heading direction is decided, 
it decides a movement cell. The model which recognizes paths to the exit 
heads directly for the exit. On the other hand, the model which does not 
recognize paths to the exit decides the heading direction probabilistically from 
the following factors: 

The direction that the human being in the neighborhood heads for 
The intensity to the present direction 
The information from the human being in the neighborhood 
The leading light 

The direction that a lot of human beings in the neighborhood go is sets up to 
be chosen highly. It is probabilistically decided as counting the number of 
directions chosen by neighbor human beings and the intensity to the present 
direction is strengthen. 
For example, consider the following case presented in Table 5. 

Table 5. Example of choosing direction 

direction of heading for I south 

the intensity to the heading direction 13  
the number of human in the neighborhood 1 10 

the number of the heading direction that 
human beings in the neighborhood choose south 

I west I I 

For this case, probability of choosing each direction is assumed to be. 

north : east : south : west = 4 : 3 : 2+3 : 1 
= 4 : 3 : 5 : 1  (1)  
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Thus, south is chosen because it has the highest probability. When direction 
is chosen within the region of recognizing leading light, it is assumed that the 
direction to the leading light is selected with high probability. This is realized 
by adding a fixed value to the direction to the leading light. 
For example, if the adding value is set up to be 5, the ratios become to be. 

north : east : south : west = 4 : 3+5 : 5  : 1 
= 4 : 8 : 5 : 1  (2) 
Moving direction is decided by the ratios given in Eg.2. In this case, since 
probability to the east is the highest, many people select this direction and 
therefore it causes the emergence (i.e., moving to the east as a whole) easily. 
If people who do not recognize paths to the exit are informed the paths to the 
exit from human beings who recognize, they tend to choose the same 
direction according to the information. When speed of the information is fast 
or the purveyors arrive at an exit, the simulation is implemented in the same 
way as the case without the information regarding the exit. When people 
approach to the exit without recognizing paths to the exit in the near region to 
the exit, they are given a fixed probability to the present direction. 
Then, it is considered that emergence appears with ease, as the crowd 
becomes larger. A flowchart of choosing a direction without recognizing 
paths to exits is shown in Figure 4. 
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following-action? - 
are there people in neighborhood? --c;--i 

choose a direction probahilistically c 
Figure 4. Flowchart to choose a direction by people without recognizing paths to exits 

4.2 Realization of recognizing paths to exits 

Intersections and exits are set as nodes, and passages are set as links. Each 
node has each identification number given as nearer exit has higher values 
and exit has the highest value. If a human being recognizes paths to an exit, 
the probability of choosing the direction to the exit is assumed to be high. 
However, helshe does not always select the shortest path, even if helshe 
knows the direction to the exit. This fact can be considered in the simulation, 
because many trials are implemented in the simulation. The flowchart is 
presented in Figure 5, in which people without recognizing paths to exits 
select the moving direction. 
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START Cr' 
are there people in neighborhood? r 

4 

choose the same direction to the exit 

Figure 5. Flowchart to choose a direction by people recognizing paths to exits 

4.3 Decision of movement cell 

Characteristics of human actions are as follows, when human beings are 
moving: 

Human being tries to avoid physical contacts to other people. 
Human being tries to make axis of shoulder square to the direction 

of movement. 
Human being tries to go straight ahead unless external force is 

given. 
Human being tries to avoid a contact with wall. 

It is difficult to develop model that satisfy all the above requirements exactly. 
Even if an accurate model can be accomplished, there arises a problem of 
enormous computation time. In this study, it is attempted to develop a simple 
model that provides almost the same result by introducing artificial life 
technology. 
The model is based on the assumptions that the heading direction is 
considered as the base and the next movement is selected from six actions that 
three cell in front, two cells in right and left, and stay in the same cell. In 
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Figure 6, a human being is in the center cell and white arrow means the 
heading direction and the cells with black arrow indicates movable cells at the 
next step. Then, the following probabilities are assumed: 

straight : sidewinder : right and left : stay = 500 : 100 : 20 : 1 (3) 

Figure 6.  Movable cell 

When moving against a wall, the following ratios are applied. 

straight : sidewind : right and left : stay = 100 : 500 : 20 : 1 (4) 

4.4 Verification of proposed model 

A virtual underground mall shown in Figure 7 is considered to examine the 
effectiveness of the proposed model. 

Figure 7. A virtual underground mall 
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It is assumed that the number of human beings is 200 and they are generated 
at random, and the ratio of human beings who recognize paths to exits is 30% 
or 60%. The execution result for the ratios of 30% and 60% are presented in 
Figure 8 and Figure 9, respectively. 

Beginning condition 
Evacuation rate : 0% 

After 10 steps 
Evacuation rate : 17% 

After 20 steps 
Evacuation rate : 39% 

After 30 steps 
Evacuation rate : 59% 
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After 40 steps After 50 steps 
Evacuation rate : 67% Evacuation rate : 77% 
Figure 8. Changes of evacuation process for recognizing rate 30% 

Beginning condition 
Evacuation rate : 0% 

After 10 steps 
Evacuation rate : 19% 



Hitoshi Furuta and Masahiro Yasui 

After 20 steps 
Evacuation rate : 40% 

After 30 steps 
Evacuation rate : 65% 

After 40 steps 
Evacuation rate : 79% 

After 50 steps 
Evacuation rate : 89% 

Figure 9. Changes of evacuation process for recognizing rate 60% 

From these figures, it is seen that human beings without recognizing paths to 
exits form a stream of crowd. This implies that all the people do not 
recognize the path to the exit. Namely, the explicit information of the path to 
the exit is not always provided in this model. The form of crowd is created by 
the interaction in the neighborhood. 
Paying attention to the evacuation rate, evacuation rate is not different until 20 
steps, even though there are some differences in the rate of recognizing the 
exits. However, evacuation rate becomes different after 30 steps. As steps 
proceed, the difference of evacuation rate becomes larger. 
On the other hand, it is possible to examine the state of evacuation during the 
disaster by using this model. For example, it is possible to investigate the 
change of the time to complete evacuation by the change of rate recognizing 
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paths to the exit. Thus, the number of steps needed for 80% completion of 
evacuation is examined by changing the rate of recognizing paths to the exit. 
The average of examination results is shown in Figure 10. 

0 10 20 30 40 50 60 70 80 90 100% 

Figure 10. Steps needed for 80% completion of evacuation 

From Figure 10, it is obtained that if the recognizing rate is 30%, steps needed 
for 80% evacuation are approximately 50 and if the recognizing rate is 60%, 
steps needed for 80% completion of evacuation are approximately 40. 
However, the difference diminishes when the recognizing rate becomes more 
than 60%. 
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5. CONCLUSIONS 

When considering complex factors on human decision, it needs a lot of load 
and time. It is almost impossible to model each human being individually. In 
this study, an attempt was made to develop a simple simulation model by 
using the concept of probability. Although the model is simple, emergence 
can appear by the interaction of each model. Therefore, it is possible to 
express complex actions of human decisions by probability and the simulation 
model proposed in this study is effectiveness. 
However, there still remain many problems to be overcome in the future. 
While an emergence would appear, it does not be sufficiently proven to be a 
true emergence. It is necessary to implement many simulations for various 
cases. . 
In this study, human actions are defined n terms of probability. The 
probability is subjectively decided so that it needs to investigate the human 
behaviors experimentally. Moreover, it is necessary to examine the 
applicability of the proposed model for a real underground mall and many 
various environments. Also, disaster should be defined in a more detail way; 
namely, the characteristics of disasters should be identified. Fire or 
earthquakes are possible disasters to be considered. 



Evacuation Simulation in Underground Mall by Artificial Life Technology 

REFERENCES 

[I] Kato, Yasuyoshi, Cellular Automaton method, MORIKITA Press, Oct. 1998 (in Japanese) 

[2] Burks, Arthur. W. ed., Essays on Cellular Automata, Urbarna: Illinoi Univ. Press, 1970 

[3] Bandini, Stefania and Mauri, Giancarlo, Proceedings of the Second Conference on Cellular 

Automata for Research and Industry, Springer-Verlag, 1997 

[4] Ilachinski, Andrew, Cellular Automata, World Scientific 2001 

[5] Kato, Yasuyoshi, Cellular Automaton method, MORIKITA Press, Oct. 1998 (in Japanese) 

[6] Weiss, Gerhard, Multiagent Systems, MIT Press 

[7] http:Nwww2.create.human.nagoya-u.ac.jp/-ari/stuff/lOyears.html 

[8] Shiraki, Wataru, Application of Art$cial Life Technology to Engineering, Science and 

Technology Press, 2003 (in Japanese) 

[9] Weisbuch, Gerard, Complex Systems Dynamics, Addison Wesley, 1991 

[lo] Tsutomu HOSHINO, Dreams and Troubles of Artificial Life, SYOUKABOU, Aug. 1994 

[ll] Arita, Ryuya, Artificial Life, Science and Technology Press, Jan 2000 (in Japanese) 

[12] Epstein, Joshua and Axtell, Robert, Growing Artificial Societies - Social Science from the 

Bottom Up, MIT Press, 1996 



Chapter 12 

EPISTEMIC UNCERTAINTY AND THE 
MANAGEMENT OF HIGH RISK EXPOSURES 

Mark Jablonowski 

1. INTRODUCTION 

Risk assessments involve establishing the probability of adverse 
consequences. It is these assessments that guide the risk management process. 
Traditionally, risk assessment has relied on estimation of precise probabilities 
from data. These numbers then serve as the basis for various well-defined risk 
financing, loss control and loss prevention decisions. 

In the "real world", risk assessments are subject to considerable pitfalls. 
Most of these result from the fact that real world complexities and dynamics 
introduce irreducible knowledge imperfections. We will refer to these 
generally as epistemic uncertainties, as distinct from the variability introduced 
by randomness. Limited data availability results in the inability to specify 
probability distribution exactly. This drawback, related fundamentally to the 
age-old "problem of induction", arises from the fact that many theoretical 
distributions can be plausibly fit to limited data. From a decision standpoint, 
the problem becomes, "which to choose?'. 

The problem is illustrated in Figure 1. The probability and loss 
characteristics of risk are presented on a two-dimensional graph, or risk map. 
Risk assessment takes the form of trying to identify the probability 
distributions that relate possible losses to their probability of occurrence 
(usually, on an annualized basis). Fitting distributions to data is relatively 
straightforward when data is readily available. This is usually the case with 
smaller, more "frequent" events. Once the data on which to base the fit 
becomes scarce, as they invariably do as losses become sufficiently large, 
various theoretical probability distributions become (more or less) plausible 
candidates. This is indicated by the divergence of candidate theoretical 
distributions. 

The risk manager finds him or herself in the uncomfortable position of 
having to make some of our most important decisions - those involving low 
probability1 high consequence (i.e., "high risk") exposures - with little (or no) 
information. The problem for the risk management decision maker becomes 
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how to incorporate these uncertainties into the decision-making process for 
dealing with high risk exposures (Jablonowski, 2000,2002) . 

f.. ... "Unknown" 

b 

Loss 

Figure 1. Risk Assessment Under Epistemic Uncertainty (Imperfect Knowledge) 

We will review here an exploratory approach to identifying areas of 
uncertainty in risk assessments. Describing, as best we can, the degree of 
epistemic uncertainty involved is the key first step to proceeding with some 
sort of decision strategy with respect to high risk exposures. We then proceed 
to discuss several potential decision criteria for decision in high risk 
situations. 

2. CIRCUMSCRIBING EPISTEMIC UNCERTAINTY 

The epistemic uncertainty involved in various risk estimates is separate and 
distinct from uncertainty due to randomness. As a result, the standard tools of 
statistical analysis, such as the development of probabilistic confidence 
intervals, do not apply. Rather, we need to approach epistemic uncertainty 
from the standpoint of possibility: What are the possible potentials for loss 
within the exposure mechanism given? This "possibilistic" approach is used 
to augment analysis in terms of the probability and consequence 
characteristics of loss when assessing risk. Recognizing, and measuring (as 
best we can) this uncertainty is the essential first step to understanding high 
risk exposures and what we can (and can not) do about them. 
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2.1 Exploratory Modeling 

Assessing high risk exposures on a possibilistic basis depends on our ability 
to enumerate, as best we can, plausible alternative risk scenarios. Each 
alternative represents a possibility that we must consider in our final decision 
as to how to deal with that environment. Assessment of the extent of 
epistemic uncertainty in this fashion is the basis of exploratory modeling 
(Bankes, 1993). Exploratory modeling recognizes that under epistemic 
uncertainty there may be a collection, or ensemble, of models consistent with 
the data under study. We do not have sufficient knowledge to declare that one, 
exact model represents the "true" model. Exploration, therefore, results in the 
specification of multiple plausible scenarios consistent with the data (or 
perhaps rather, lack thereof). No attempt is made to try to summarize or 
otherwise combine the models into one single "best" model. Rather, the 
plurality of models is left for further consideration in the decision process. 

This process is distinct from those applied when we believe that the 
underlying model parameters are random variates. In that case, we would turn 
to statistical methods, such as linear regression, to specify the underlying 
stochastic model. While exploration does not exclude stochastic models, it 
does not limit itself to uncertainties which result from randomness. As is 
obvious from the study of risk, models of epistemic and probabilistic 
uncertain can coexist. 

Exploration also varies from sensitivity analysis. In sensitivity analysis, as 
properly defined, the values of the underlying model parameters remain static 
(i.e., known). The variables are changed systematically, and the behavior of 
the model noted. This assumes knowledge of the model. What is unknown, to 
the analyst at least, is the behavior of the model "output(s)" under 
perturbations of its various "inputs". This behavior is specified in the 
derivatives (or partial derivatives) of the model, which it turn requires the 
model parameters be known. As the complexity of the model increases, we 
may need to determine sensitivity numerically. Numerical methods that 
attempt to identify the parameters of complex models (e.g., steepest ascent, 
and related response surface methodologies) are, once again, distinct from the 
exploratory methods we suggest here in that they assume the system is 
precisely "knowable" (albeit in some intractable analytical form). 

The methods of generating exploratory scenarios vary. More often than not, 
they owe more to the process of discovery than to the analytics of verification 
and validation. In exploratory modeling we seek not so much to discover the 
unknown, as to discover how much we don't know. Discovery is very much a 
creative process, not just an analytical one (Kanatarovich, 1993). While 
sampling and search through prospective domains of exploration can be 
systematized using a variety of analytical methods, fleshing out those domains 
remains very much an ad hoc matter. The means are often suited to the 
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challenges at hand. As such, many exploratory techniques are developed as 
part of the application process itself. 

Heretofore, perhaps the widest application of exploratory models as we 
have defined them here has been their use in planning and long range 
forecasting, both on a organizational and social level. This scenario based 
approach was originally developed based on a need to explicitly recognize the 
affects of epistemic uncertainty on model building in the planning process 
(Wack, 1985). While usually based on narrative scenarios, scenario-based 
planning often incorporates mathematical models as well (e.g., various 
population growth models). A large and useful body of techniques for 
scenario generation and application has emerged from such applications 
(Lempert etal., 2003). These include the development of structured methods 
for the elicitation of expert opinion, and robust simulation modeling 
techniques. 

To aid in the exploration process, computers are often utilized. Heuristic 
methods facilitated by the use of modern electronic computers include 
interactive visualizations and multiple simulations. In fact, realizing the full 
power of exploration requires substantial computational power. With 
expanded computational capability readily available today, due to the 
increased accessibility of powerful "desktop" computing environments, the 
idea of exploration is more attractive now than ever before. 

Even with the availability of large amounts of computing power at our 
disposal, exploration may seem at first glance as an effort cursed by the 
dimensionality of the very models it attempts to explore. Exploration within 
an admittedly uncertain environment immediately calls to mind a search space 
of immense proportions. The key to effective exploration, however, lies in its 
ability to circumscribe uncertainty. Developing plausible ways to do so is 
essential to the process of exploration. In fact tractable strategies exist, and 
continue to be developed. Consider for example bounding the slope, m, of a 
simple linear equation of the form y=rnx+b. Plausible bounds may be 
formulated rather simply using intervals. Interval calculations prove to be a 
computationally efficient method than simulation for handling the ensemble 
that results. 

Consider now the expansion of the exploration to an unknown model form. 
Let's say that all we know is that the function is continuously differentiable, 
bounded, and monotonic. The ensemble of possibilities is huge. However, we 
may still be able to systemize search among a more limited landscape by 
selectively searching through various functional forms (e.g., polynomials of 
arbitrary order) (Bankes, 1993). Again, as in the process of discovery, our 
effective "search space" may be quite large. Yet, selective guidance, based 
perhaps on past inductive successes, permits progress in this complex area. 
Carefully crafted sampling and search are common to success in both 
exploration and discovery. 
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As Bankes notes, the results of an exploratory analysis will not typically be 
mathematically rigorous., but rather present "an imperfect image of the 
complete ensemble.. ." (Bankes, 1993, p. 443). And further, "Given a fixed 
analytic budget (in dollars, people, or time), the analysis must provide the 
most useful results possible based on what we know about the problem at 
hand." (Bankes, ibid). The question is if, or to what extent, the results are 
useful to the problem at hand. The process must ultimately be directed by the 
questions we seek answers to. In this way, the search space itself can often be 
made more tractable. For example, in the analysis of risk, we are concerned 
only with the results of actions that cause losses to the entity (as opposed to 
gains). Exploration of candidate probability distributions and their properties 
may therefore be limited to examination of the negative semi-variance, for 
instance. Exploration may be further limited to the extent our decisions about 
risk depend on thresholds. Does the possibility exist (based on the 
exploration) that we may exceed some critical threshold? Exploration exposes 
epistemic uncertainty. The degree to which we are able to determine the 
extent this uncertainty permeates our models is a matter of our own ingenuity. 

When making high risk decisions, the risk manager faces considerable 
uncertainty about the "true" probability distribution of losses. Rather than ask 
"which to choose?'in the face of uncertainty, the exploratory modeler asks, 
"why choose?'. To the extent that uncertainty can be properly circumscribed, 
and this information carried forward to the decision phase, we have preserved 
valuable information that can affect the decision process. 

2.2 A Natural Measure of Uncertainty 

Certain intuitive concepts fall into place under the exploratory approach. 
For one thing, the divergence of opinion often seen among "knowledgeable" 
experts is accommodated. This divergence does not suggest any of the experts 
are wrong, but merely that there are multiple plausible candidates for the 
"true" distribution. Averaging the results often hides this divergence. We lose 
valuable information about uncertainty. Under exploratory modeling, methods 
that embrace the variety of expert's opinions are encouraged. Methods for the 
elicitation of expert knowledge, such as the so-called Delphi technique and 
other types of formalized "brainstorming", attempt to preserve divergences of 
opinion rather than artificially suppress them. 

When we have perfect knowledge of the environment, we can specify 
models exactly. Under complete ignorance, all models are essentially 
"possible". The knowledge we do have, however imperfect, constrains the 
possibilities between these two extremes. As a result, the divergence of the 
ensemble of explorations provides a natural measure of uncertainty due to 
knowledge imperfection: The wider the spread of the estimates, the greater 
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the uncertainty. This natural measure of epistemic uncertainty can be used to 
guide further exploration, and also becomes part of the subsequent decision 
making process. 

We can formalize the measures using absolute or relative interval measures, 
or, to the extent that the exploratory ensemble consists of distinct elements, 
set cardinality. These intervals are not developed from data, but are rather a 
response to the data available. Ultimately, they are judged instrumentally, by 
how well they permit us to reason about a complex and uncertain world. 

2.3 Relation to Uncertainty Logics 

While the uncertainty we encounter in most real-world risk assessments 
extends beyond that recognized by the theory of probability, its features can 
still be captured in robust theoretical models. Primary among these is the logic 
of fuzzy sets. Fuzzy sets are a generalization of interval-valued sets that allow 
for the possibility of various outcomes in the face of imperfect knowledge 
(Zirnmermann, 1991). They are used to model imprecision. Basically, a fuzzy 
set defines a spectrum of possibilities, using numerical expression. 

In terms of Figure 1 above, we could view the extreme distributions on the 
chart as defining the bounds of our uncertainty interval. Notice that as losses 
get larger (and data gets more scarce), the interval of uncertainty expands. In 
this way, exploratory modeling provides a direct empirical link to the creation 
of such intervals. To the extent that certain distributions within the envelope 
can be assigned different degrees of "credibility", we have defined a graded 
interval of possibility known as a fuzzy membership function. 

Indeed, by purely intuitive criteria, we see that the projections of multiple 
plausible models, such as we have shown in Figure 1, impart a visual 
fuzziness to the model building process. This visual diffusion is a good 
analogy for the type of uncertainty we feel. The true answer lies within a haze 
of uncertainty represented by multiple alternatives. These intuitive criteria can 
be formalized by giving the visual spread mathematical meaning. This can be 
done using simple intervals, or "nested" intervals graded by level of 
confidence. 

Exploration and the development of formal models using intervals values 
and fuzzy logics are intimately connected. Together they form the basis of a 
strategy for thinking about epistemic uncertainty. 
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2.4 Examples from Risk Modeling 

The question remains as to how we can practically incorporate exploratory 
models into the risk assessment process. Critical to the endeavor is our ability 
to generate candidate models efficiently. Intuition has been a mainstay of such 
approaches. A more defined and controllable methodology entails the 
development of multiple plausible models within the same, formal modeling 
framework. This approach has only recently gained practicality with the 
advent of very powerful, yet accessible, computers. We will detail two simple, 
real world examples of the exploratory modeling environment will help 
illuminate some of its features. Both are from the field of risk assessment and 
management at the organizational level. The uncertainty inherent in risk 
estimates has long been recognized at the level which the assessment of very 
low probabilities associated with very high stakes outcomes presents grand 
challenges to society (such as "global warming"). Observation suggests that 
significant uncertainties enter at far lower probabilities. As a result, the 
frontier for application of exploration to uncertain models is much wider than 
currently assumed. 

2.4.1 Exploring an Actuarial Simulation 

We consider first a large manufacturing firm with significant exposure to 
public liability from both its operations and products. In order to gain greater 
insight into the properties of a firm's exposures in this area, for the purpose of 
insurance purchasing and loss prevention, actuarial studies are often 
commissioned. The results of such studies usually include a probability 
distribution of the probabilities of exceeding some annual aggregate loss 
(more technically, a complementary cumulative distribution function, or 
CCDF). 

In our case study, it was decided that a fairly straightforward actuarial 
approach of fitting separate loss frequency and distributions to actual loss data 
would be appropriate. The distributions were combined into an aggregate 
distribution using Monte Carlo simulation. The result was a parameterized 
model that could be used to test various risk management alternatives. For 
example, various insurance retentions ("deductibles") could be applied to the 
simulation, and the results noted. If the firm had its own "captive" insurance 
subsidiary, the distribution would provide crucial information on the 
probability of exceeding various financial thresholds. 

Figure 2 shows the result of the simulation process. Based on initial, best 
guess estimates of parameters based on data fitting, the result is shown in the 
figure as the dashed line. All simulations, including mathematical 
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manipulations were done using a common spreadsheet computer program on 
a "desk top" personal computer. 

Figure 2. Exploring an Actuarial Simulation 

Given data limitations and other areas of uncertainty, it was decided to 
explore further models. Of primary concern was the tradeoff between severity 
and frequency. Upon review of the original model, concern surfaced as to 
whether the aggregate loses were in fact more "frequency driven", or more 
based on severity. Given some plausible assumptions, it was suspected that 
the contribution of frequency of loss in the initial estimate might have been 
overstated. Conversely, the severity, or potential size of loss, may have been 
understated, based on expert understanding of the mechanics of loss in this 
environment. Two more plausible simulations were run using the new models. 
These are shown in the figure as an additional two solid lines. 

The results of this exploration were telling. While all three models provide 
similar results to an aggregate annual loss of $5,000,000, they start to diverge 
significantly above that. At $10,000,000 of losses a year, the divergence in 
probabilities is pronounced. Such uncertainties would certainly have an effect 
on, say, the level of exposure to hold on the firm's own account (vs. 
commercial insurance). Based on the analysis, appropriate actions could be 
taken. For example, increased caution (i.e., regret minimization) may be 
reflected in a more conservative retention1 captive usage decision. What we 
forego is the possibility of additional tangible cost savings due to reduced 
reliance on commercial insurance. What we gain is protection against 
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decisions that could cause us considerable financial instabilities down the 
road. 

Note that though similar in appearance, the results of exploratory modeling 
are far different from the calculation of statistical confidence intervals. What 
we attempt to capture here is uncertainty due to knowledge imperfection, not 
randomness in the sampling process. In addition, the common interpretation 
of such intervals, as a "probability of a probability", becomes problematic in 
the face of uncertainty that is not properly treated as a form of randomness. 
Practically, propagation of this uncertainty via the probability calculus leads 
to different results than propagation via the calculus of intervals (Cooper, 
1994). 

2.4.2 Investment in Loss Prevention 

The investment in loss prevention activities remains one of the most critical 
decisions in the risk management process. Economic analysis and justification 
of loss prevention expenditures proceeds, classically, as a comparison of 
discounted costs and benefits, appropriately weighted by probabilities. Very 
simply, expected benefit, E(B), of initiating protection may be calculated as, 

Where, 

t=l 

p = Annual probability of loss without the protective measure 
p* = Annual probability of loss with the protective measure 
L = Loss reduction for mitigation 
r = annual rate of return, or discount rate 
T = Useful life of the protective measure 

When expected benefit exceed expected cost, we institute protection. Where 
expected cost is greater that expected benefit, we do not (Kunreuther, 2000). 
This simple, intuitive measure functions fine when probabilities are known. 
When epistemic uncertainty enters, the commensurate complications are 
introduced. When uncertainty as to post-prevention, pre-prevention or both, 
exists, we must account for it in the decision process. We may examine the 
degree of epistemic uncertainty present by performing an exploratory 
analysis. 

Consider the individual firm's decision to install sprinkler protection at a 
major production facility. We assume the initial cost of the protection 
measure is $80,000, with a useful life of 20 years. The annual probability of a 
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complete loss of the facility due to fire is assumed to be 015. With the 
proposed sprinkler protection the probability of loss drops to .0001. The 
potential reduction in loss ("loss expectancy") is $1,000,000. An annual 
discount rate of 6 percent is assumed. The net expected stream of discounted 
benefits equals $99,361. Since the long-run expected benefit is greater than 
cost, the protective measure should be installed. 

Obviously this decision depends critically on our ability to assess pre- and 
post loss probabilities. The problem is that this precision may not be available 
in the "real world". We rarely know enough about the mechanisms and 
statistics of low probability1 high consequence losses, or the effectiveness of 
protective measures in "field" applications, to be able to make such accurate 
assessments. 

Exploration of this model would involve multiple possibilities for the 
probabilities of loss and effectiveness of protection. To explore the model in 
our example, an electronic spreadsheet was developed that allowed 
manipulation of the expected cost/ benefit model using different possible 
probabilities. Rather than deriving a precise measure of expected benefits, the 
results are shown with various degrees of possibility. These possibilities were 
"weighted" by degree of possibility by a group of experts. The degree is 
shown as a fuzzy membership in the set of all possibilities, along a scale of 0 
to 1. The higher the membership, the greater the possibility an expected 
benefit belongs to the set of potential benefits. The results are shown in Figure 
3. 

Note that a range of benefits are shown, with various degrees of possibility. 
The result of the traditional analysis ( in this case, an expected benefit of 
$99361.) is shown as a high possibility. But other expected values are 
possible as well, both above and below the expected cost of the measure. The 
possibility of "1" for a range of values between 0 and $5,000 means that all 
values in that range are strong possibilities, all equally "good". Note also that 
in this case the experts suggest there is a distinct possibility ("1") that the 
protective measure will have no effect on reducing the probability of loss at 
all. With the installation at hand, this possibility was suggested by the fact that 
plant construction factors (i.e, flammable building materials) could 
overwhelm the ability of the proposed system to respond effectively. This 
combined with the uncertainty engendered by a unique sprinkler design 
needed to accommodate an intricate variety of manufacturing processes. Note 
further that this "unsureness" was not simply a matter of statistical reliability 
of, say, the water supply. Such reliability, however, adds another complicating 
factor which further deepens the epistemological uncertainty involved in the 
assessment. 
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I Expected Benefits 

Figure 3. Results of Exploratory Modeling of Loss Prevention Measures 

Were greater knowledge of losses and prevention mechanisms exist, 
perhaps via more controlled conditions and a more complete level of 
statistical knowledge of function (and malfunction), the fuzzy membership 
function would surround our "best guess" estimate more tightly. In these 
cases, and approximate decision can be made with some degree of confidence. 
That approximate yet supportable decisions are made in such cases is 
undeniable. Yet there are considerable real-world situations were uncertainty 
results in wide, and quite problematic, intervals of possibility. This is what 
makes many of these decisions so difficult. These conditions must be 
addressed in the decision process. 

3. FROM EXPLORATION TO DECISION 

The exploratory approach exposes epistemic uncertainties that require 
specialized treatment within the decision process. Care must be taken in 
applying such criteria lest the value of exploration be lost. Key to the 
exploratory approach is representing as much of what we don't know as far 
into the decision process as we can. We examine some possible criteria for 
decisions under epistemic uncertainty. Starting with simple extensions of the 
expected value criterion, we move to criteria that more accurately reflect 
limitations on knowledge when data becomes scarce. 
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3.1 Extended Expected Value Criteria 

When probabilities and consequences can be measured with relative 
accuracy, decisions may be based on expected values (probability x loss) 
(Kamrnen and Hassenzahl, 1999). Expected value calculations can be easily 
extended to exploratory results. If we consider the upper (u) and lower (1) 
bounds of an exploration as constituting an interval, interval valued expected 
values could be easily computed using the "interval average", (u+1)/2. Let's 
say exploration suggests an interval of [.01,. 101 as bounding the probability 
estimate of a loss of $1,000,000. The point estimate of probability based on 
our interval average would be ( .01+.10)/2, or .055. The expected value of 
loss n this case is (.055 x $1,000,000) = $55,000. This number could be used 
directly for expected cost/ benefits comparisons, and the like. Similar 
approaches are available when bounds are based on fuzzy membership 
functions rather than pure intervals. 

One problem with direct extension of expected value in this fashion is that 
we lose valuable uncertainty information gained through the exercise of 
exploratory modeling. In the case of interval estimates, for example, the 
interval will once again be reduced to a single, "best guess" estimate. In our 
simple example above, we do not distinguish between a decision based on the 
interval average of .055 and a precise probability of .055. Yet the fact that the 
former measurement involved greater uncertainty might certainly be relevant 
to our decision process. A method that preserves much (but not all) of the 
uncertainty information gained through the exploratory exercise is the 
consideration of regret. Regret may be defined most simply as the difference 
between the actual decision outcome and that which would be optimal under 
the circumstances. Introduction of regret recognizes that uncertainty, 
specifically that regarding the "down side" of the estimate, can have an affect 
on the decision process. Applied to the results of an exploration, regret 
minimization would suggest that we take the most conservative bound 
developed through our exercise as the basis for our expected value 
calculations. In the actuarial exploration discussed above (Section 2.3. I), for 
example, we would use the outer most plausible bound of the exploration to 
perform the calculations. These would then be utilized for traditional analysis 
based on expected values, such as the computation of insurance premiums. 

3.2 Minimax and Precaution 

When exploration indicates that the probabilities of outcomes under study 
are sufficiently "unknown", we may choose to abandon the probability 
dimension as a guide to action. Decisions based soley on the consequence 
dimension of risk suggest a minimax approach to decision. Under minimax, 
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we choose those actions that minimize the maximum possible loss, regardless 
of probabilities. The concept of regret avoidance remains central, but now on 
an absolute basis. No attempt is made to introduce relativities via probability 
weightings of any sort (e.g., expected values). 

In terms of risk management via loss prevention and mitigation, this 
approach is maximally conservative with respect to risk. The decision maker 
is theoretically willing to spend up to the amount of loss to prevent the loss. 
That is, as long as the difference between worst case outcome and cost of 
prevention1 mitigation is positive, we undertake the preventive measure. 

The minimax also forms the basis of precautionary approaches to decision, 
which suggest that when the consequences are high, and probabilities 
uncertain, we choose a maximally conservative approach with respect to the 
risk. This "precautionary principle" is being used more frequently to guide in 
the governmental regulation of technological activities that have the potential 
for widespread harm (Raffensberger etal, 1999). Consider the case of "global 
warming". There is scientific evidence that points to the fact that the mean 
temperature of the earth is rising. The supposed link to human activity is the 
production of so called green house gases due to increasing industrialization. 
The link between global warming and industrial production is, however, 
tenuous. That is, considerable uncertainty surrounds the probabilistic 
assessment of the risk of this industrial byproduct. Nonetheless, given the 
catastrophic consequences of this environmental trend, precaution suggests 
we apply a minimax approach to the regulation of the production of green 
house gases. This means spending on their curtailment, or baring the 
effectiveness of any genuine protective measures (see Section 2.3.2), we 
avoid the activity altogether. 

In the application of the minimax criteria, exploration seeks to determine if, 
when consequences get serious enough, their probabilities are sufficiently 
"unknown". If so, we abandon the probability criteria as desiderata, and 
concentrate solely on the loss dimension: If consequences are sufficiently bad, 
we take the appropriate action to avoid these consequences. 

4. CONCLUSIONS 

Risk management under conditions of uncertainty brought about by 
knowledge imperfection presents a considerable challenge. The existence of 
this form of uncertainty, as distinct from variability introduced by 
randomness, is recognized in the formal logics of intervals and fuzzy sets. 
Recognition of this form of uncertainty is especially important in the analysis 
of low probability1 high consequence (high risk) exposures. The consequences 
of "wrong" decisions in the context of high risk exposures are extreme and 
quite possibly irreversible. 
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Exploratory modeling refers to the identification of epistemic uncertainty 
via the identification of possible models consistent (i.e., bounded by) the 
information at hand. No attempt is made to eliminate, or even summarize this 
data, lest valuable information about this uncertainty be lost. Exploration 
takes the uncertain landscape of risk as it is, and seeks to mold decision 
around this landscape. In doing so, we manipulate decision criteria to best suit 
our goals, and not the factual basis for the decision. The result is decisions 
made on a more realistic, and therefore (hopefully), better basis. 

Epistemic uncertainty, once identified via the process of exploration, can be 
expressed using intervals or fuzzy membership functions. Extensions of 
expected value criteria to the domain of intervals and fuzzy memberships of 
the associated probability distributions is often suggested. Calculating 
expected values based on interval (or fuzzy) averages can result in 
considerable loss of information gained during the exploratory exercise. By 
including considerations of regret, we choose among the results of our 
exploration so as to act with appropriate conservatism with respect to those 
uncertainties present. When probabilities are sufficiently unknown, we turn to 
minimax and precautionary criteria for dealing with high risk environments. 
These criteria emphasize avoidance of the "worst case" in terms of 
consequences, in effect ignoring probabilities altogether. 
When dealing with epistemic uncertainty, we must adjust our decision 

criteria to suit the degree of knowledge imperfection. Exploratory modeling 
becomes the essential first step in defining the extent of these knowledge 
imperfections. 
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Chapter 13 

EXPERIMENT WITH A HIERARCHICAL TEXT 
CATEGORIZATION METHOD ON WIPO PATENT 
COLLECTIONS 

Domonkos Tikk, Gyorgy Bir6, and Jae Dong Yang 

1. INTRODUCTION 
The immense and exponentially growth in the number of electronic 

documents stored on the internet, corporate intranets and data ware- 
houses necessitates powerful algorithms and tools that are able to deal 
with data of such quantity. An obvious way to handle the vast number of 
documents is organizing them into category systems. Category systems 
are usually hierarchic (called taxonomy) because that offers straightfor- 
ward way to find and browse data at arbitrary refinement. E.g. doc- 
uments on large internet directories, such as Yahoo! and Google, are 
categorized into taxonomy. This storage technique requires efficient au- 
tomatic categorization methods as manual text categorization is no longer 
amenable in that size, requiring a vast amount of time and cost. 

The purpose in automatic text categorization (TC) is to assign a doc- 
ument to appropriate categorylies (or topic) being selected from a pre- 
defined set of categories. Originally, research in TC addressed the bi- 
nary problem, where a document is either relevant or not w.r.t. a given 
category. In real-world situation, however, the great variety of different 
sources and hence categories usually poses multi-class classification prob- 
lem, where a document belongs to exactly one category selected from a 
predefined set Baker and McCallum, 1998; Weiss et al., 1999; Wiener 
et al., 1993; Yang, 1999. Even more general is the case of multi-label 
problem, where a document can be classified into more than one category. 
While binary and multi-class problems were investigated extensively Se- 
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bastiani, 2002, multi-label problems have received much less attention 
Aas and Eikvil, 1999. 

As the number of topics becomes larger, multi-class categorizers face 
the problem of complexity that may incur rapid increase of time and 
storage, and compromise the perspicuity of categorized subject domain. 
A common way to manage complexity is using a hierarchy (in this paper 
we restrict our investigation to tree structured hierarchies), and text is no 
exception Chakrabarti et al., 1998. Internet directories (see e.g. Yahoo; 
http://www.yahoo.com) and large on-line databases are often organized 
in hierarchy. 

Patent databases are typically such where the use of a hierarchical 
category system is a necessity. Patents cover a very wide area of topics, 
and each field can be further divided into subtopics, until a reasonable 
level of specialization is reached. The International Patent Classification 
(IPC) is a standard taxonomy developed and administered by WIPO 
(World Intellectual Property Organization) for classifying patents and 
patent applications. The use of patent documents and IPC for research 
into automated categorization is interesting for the following reasons Fall 
et al., 2002: 

1 IPC covers a huge range of topics and uses a diverse technical and 
scientific vocabulary. 

2 IPC is a complex, hierarchical taxonomy, where over 40 million doc- 
uments have been classified worldwide. The number of documents 
classified each year is rising fast. 

3 Domain experts in national patent offices currently classify patent 
documents fully manually. These experts have an intimate knowl- 
edge of the IPC system. 

4 Patent documents are often available in several languages. Profes- 
sional translators have already performed large numbers of trans- 
lations manually. 

As a courtesy of WIPO, we could experiment with the WIPO-alpha 
English and WIPO-de German patent databases issued in late 2002 and 
early 2003, respectively. (Collections are available after registration at 
http://www.wipo.int/ibis/datasets/index.html.) WIPO-alpha is a large 
collection (3 GB) of about 75000 XML documents distributed over 5000 
categories in four levels (the top four levels of IPC); WIPO-de is an even 
larger collection of about 110000 XML documents defined on the same 
taxonomy (IPC). At WIPO, they experimented with several text catego- 
rization technique on the WIPO-alpha collection, see Fall et al., 2003a. 
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Our primary purpose with this database is to analyze the applicability 
of our algorithm, having been tested successfully on smaller corpora (see 
Tikk and Birb, 2003; Tikk et al., 2003), on a very large real-world collec- 
tion in terms of efficiency and feasibility (time and space requirements). 

The paper is organized as follows. Section 2 gives an overview on 
UFEX and the major features implemented in HITEC. Section 3 reports 
on our experiences on WIPO collections. The conclusion is drawn in 
Section 4. 

2. THE CLASSIFIER 
UFEX (Universal Feature Extractor) method aims at determining rel- 

evant characteristics of a set of categories based on training entities. It is 
particularly optimized to handle hierarchically organized category struc- 
tures. The nature of the training entities is independent from UFEX as 
it applies an internal representation form, therefore it is able to work 
on arbitrary kind of data (e.g. text, image, numerical measurements) 
that can be described by numerical vectors of features. The basic idea of 
UFEX is described in details in Tikk et al., 2003. For simplicity, in the 
next we will use the TC-specific notations. Here we remark again that, 
nevertheless, UFEX is designed to be able to process arbitrary numerical 
data. 

The core idea of UFEX is an iterative learning module that gradually 
trains the classifier to recognize constitutive characteristics of categories 
and hence to discriminate typical documents belonging to different cate- 
gories. 

Characteristics of categories are captured by typical terms occurring 
frequently in documents of the corresponding categories. We represent 
categories by weight vectors, called category descriptors (or simply de- 
scriptors), where an element of this vector refers importance of a term 
(typically word) discriminating the given category from others. The 
training algorithm of UFEX sets and maintains category descriptors in 
a way that allows the classifier to be able to categorize documents with 
high accuracy in the appropriate category. The training starts with zero 
descriptors. 

We now briefly describe the training procedure. First, when classifying 
a training document we compare it with category descriptors and assign 
the document to the category of the most similar descriptor. When this 
procedure fails finding correct category we raise the weight of such fea- 
tures in category descriptors that appear also in the given document. If 
a document is assigned to a category incorrectly, we lower the weight 
of such features in descriptors that appear in the document. We tune 
category descriptors by finding the optimal weights for each feature in 
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each category descriptor by this awarding-penalizing method. The train- 
ing algorithm is executed iteratively and ends when the performance of 
the classifier cannot be further improved significantly. See the block dia- 
gram of Figure l for an overview and details in Subsection 2.2. about the 
training algorithm. For test documents the classifier works in one pass 
by omitting the feedback cycle. 

Training 
documents 

-removal of function 
words 

-stemming 
-dimensionality 
reduction 

-term indexing ! 
4 

Topic 
Classifier descriptors 

Raise weight of 
cmccurring terms in 

Performance check 

Figure I .  The flowchart of the training algorithm of UFEX 

The rest of this section is organized as follows. Subsection 2.1. de- 
scribes the topic hierarchy, vector space model and descriptors. Subsec- 
tion 2.2. presents classification and the training method. 

2.1. Notations 
Let C be the fixed finite set of categories organized in a topic hierarchy. 

In this paper, we deal with tree structured topic hierarchies, and we do 
not allow multiple parenthood unlike in our previous work Tikk et al., 
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Let D be a set of text documents and d E D an arbitrary element of 
D. In general, documents are pre-classified under the categories of C, in 
our case into leaf categories. We differentiate training, d E DTrain, and 
test documents, d E D T ~ ~ ~ ,  where DTrain nDTest = 0, and Dnain UDTest = 
2). Training documents are used to inductively construct the classifier. 
Test documents are used to test the performance of the classifier. Test 
documents do not participate in the construction of the classifier in any 
way. 

Each document d j  E 2) is classified into a leaf category of the hierarchy. 
No document belongs to non-leaf categories. We assume that a parent 
category owns the documents if its child categories, i.e., each document 
belongs to a topic path containing the nodes (representing categories) 
from the root to a leaf. Formally, 

determines the set of topics d j  belongs to along the topic path from the 
highest to the deepest. Note that the root is not administrated in the 
topic set, as it owns all documents. cq denotes leaf-category, and the 
index refers to the depth of the category. 

Texts cannot be directly interpreted by a classifier. Because of this, 
an indexing procedure that maps a text d into a compact representation 
of its content needs to be uniformly applied to all documents (training 
and test). We apply the usual vector space model, where a document d j  
is represented by a vector of term weights 

where 7 is the set of terms that occurs at least once in the training docu- 
ments DTrai,, and 0 5 wkj 5 1 represents the relevance of kth term to the 
characterization of the document d. Before indexing the documents func- 
tion words (i.e. articles, prepositions, conjunctions, etc.) are removed, 
and stemming (grouping words that share the same morphological root) 
is performed on I. 

We experimented with tfxidf (3) and entropy (4) weighting Salton and 
McGill, 1983: 

Here o k j  is the occurrence of the kth term in d j ;  n k  is the number of 
documents for which kth term occurs at least once; N = IDTrain(. Term 
vectors (2) are normalized before training. 
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We characterize categories analogously as documents. To each cate- 
gory is assigned a vector of descriptor term weights 

where weights 0 5 vli 5 1 are set during training. All weights are 
initialized as 0. The descriptor of a category can be interpreted as the 
prototype of a document belonging to it. 

2.2. Classification and training 
2.2.1. Classification 

When classifying a document d E D the term vector representing d (2) 
is compared to topic descriptors (5). The vector of d is matched against a 
set of descriptors and based on the result the classifier selects (normally) 
a unique category. 

The classification method works downward in the topic hierarchy level 
by level. First, it determines the best among the top level categories. 
Then its children categories are considered and the most likely one is se- 
lected. Considered categories are always siblings linked under the winner 
category of the previous level. Classification ends when a leaf category 
is found. This, in fact, is a greedy algorithm where the best category is 
selected based on a conformity measure defined next. 

Let us assume that we have to select from m categories at an arbitrary 
stage of the classification of document dj: cl, . . . , c, E C. Then we 
calculate the conformity of term vector of dj and each topic descriptors 
descr(cl), . . . , descr(c,), and select that category that gives the highest 
conformity measure. We applied the unnormalized cosine measure that 
calculates this value as a function f of the sum of products of document 
and descriptor term weights: 

where f : R --+ [ O , 1 ]  is an arbitrary smoothing function with limx,o f (x) = 
0 and lim,,, f (x) = 1. The smoothing function is applied (analogously 
as in control theory) to alleviate the oscillating behavior of training. 

Summarizing, we give the pseudo-code of UFEX's classification algo- 
rithm for a document dj. It starts from the root category. 

Step 1: Calculate (6) for all m sibling categories of the given level. 

Step 2: Select the category that has the highest conformity measure with 
dj: Cbest. 
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Step 3: If chest is a leaf-category then stop; otherwise go to Step 1. 

McCallum McCallum et al., 1998 criticized the greedy topic selection 
method because it requires high accuracy at internal (non-leaf) nodes. 
In order to alleviate partly the risk of a high level misclassification, we 
control the selection of the best category by a minimum conformity pa- 
rameter confmin € [O, l] ,  i.e. the greedy selection algorithm continues 
when 

c0nf (dj, descr(cbeSt)) > cOnfmin (7) 
satisfied, where cbeS+, is the best category at the given level. This means 
that we stop in Step 2 if the best category does not satisfy the minimum 
conformity condition of (7). 

Another type of problem occurs when there are several categories hav- 
ing approximately the same conformity with dj as Chest. In such a case 
it is reasonable to consider a set of categories as the best ones, and con- 
tinue the selection method among their children. Formally, we can set a 
parameter confrel, E [0, I), typically around 0.9 and select in Step 2 a 
set of categories satisfying: 

Cj = { cl ~ ~ s c I ( c ~ , ~ )  - descr (c) 5 confrel,). 

2.2.2. Training 

In order to improve the effectiveness of classification, we apply super- 
vised iterative learning, i.e. we check the correctness of the selected cat- 
egories for training documents and if necessary, we modify term weights 
in category descriptors. Term weights are modified when a document is 
classified incorrectly. 

The classifier can commit two kinds of error: it can misclassify a doc- 
ument dj into ci, and usually simultaneously, it cannot determine the 
correct category of dj. The following training algorithm of UFEX aims 
at minimizing both types of error. We scan all the decisions made by the 
classifier and process as follows. 

For each considered category ci at a given level we accumulate a vector 
6(ci) = (S(vli), . . . , S(vTi)) where 

where confreq = 1 when ci E topic(dj), 0 otherwise. Here a > 0 E R is 
the learning rate. The category descriptor weight vki is updated as vki + 
6(vki), 1 5 k < 7 ,  whenever category ci takes part in an erroneous classi- 
fication. If dj is misclassified into ci then (confreq - conf(dj, descr(ci))) is 
negative, hence the weight of co-occurring terms in dj and ci are reduced 
in the category descriptor of ci. In the other case, if ci is the correct but 
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unselected category of dj, then (conf,,, - conf (dj, descr(ci))) is positive, 
thus the weight of co-occurring terms in dj and ci are increased in the 
category descriptor of ci. 

Summarizing, we give the pseudo-code of the training algorithm of 
UFEX. 

Step 1 Calculate for each category 6(c) defined in (8). 

Step 2 Each category descriptor descr(c) is updated by descr(c) - S(c). 

1 When c is incorrectly selected then conf,,,(c) = 0 and S(c) is 
negative, hence the weight of co-occurring terms in c and dj 
are decreased that incurred the incorrect selection. 

2 When the correct c is not found then conf,,,-,(c) = 1 and 6(c) 
is positive, therefore the weight of co-occurring terms in c and 
dj are increased to force the correct selection. 

Step 3 Repeat Step 1 and Step 2 for all documents in the training set. 

Step 4 If the terminal condition is satisfied then stop; otherwise repeat 
Step 1-Step 3. 

We also experimented with a more sophisticated weight setting method 
where the previous momentum of the weight modifier is also taken into 
account in the determination of the current weight modifier. Let 6(")(vki) 
be the weight modifier in the nth training cycle, and 6(0)(vki) = 0 for 
all 1 5 k 5 7. Then the weight modifier of the next training cycle is 
6("+')(ci) = (6'"+')(vli), . . . , 6("+')(vli)), and its elements are calculated 
as 

6("+l)(vki) = a . (conf,,, - conf(dj, descr(ci))) wj 
+ 6'") (vki) . p 

(9) 

where p E [O,l] is the momentum coefficient. The value of a and ,G' can 
be uniform for all categories, or can depend on the level of the category. 
We experienced that at a lower value, typically 0.05..0.2 is better if the 
number of training documents is plentiful, i.e. higher in the hierarchy, 
and a higher value is favorable when only a few training documents are 
available for the given category, i.e. at leaf categories. 

This modification changes the pseudo-code of the training algorithm 
as 

rn In an initial step (Step 0) 6(O)(vki) = o are set. 

In Step 1 we calculate 6(c) as defined in (9) 

rn In Step 4, we increase the training cycle counter by 1. 
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The number of nonzero weights in category descriptors increases as 
the training algorithm operates. In order to avoid their proliferation, we 
propose to set descriptor term weights to zero under a certain threshold. 

The training cycle is repeated until the given maximal iteration has 
not been finished or the performance of the classifier reaches a quasi- 
maximal value. We use the following optimization (or quality) function 
(introduced in Tikk et al., 2003) to measure inter-training effectiveness 
of the classifier for a document d: 

#(correctly found topics of d) 
= #(total topics of d) 

1 
1 + #(incorrectly found topics of d) ' 

The overall Q is calculated as average of Q(d) values: 

The quality measure G is more sensible to small changes in the effec- 
tiveness of the classifier than, e.g., F-measure van Rijsbergen, 1979 that 
we use to qualify the final performance of the classifier (see Section 3). 
Hence, it is more suitable for inter-training utilization. By setting a 
maximum variance value var,, (typically 0.95..1.00) we stop training 

-best -best 
when actual drops below the var,, -Q , where Q is the best G 
achieved so far during training. 

3. EXPERIMENTS ON WIPO PATENT 
COLLECTIONS 

3.1. The document collections 
WIPO offers two patent document collections for research: WIPO- 

alpha that consists of 3 GB English patent documents (in total about 
75000 documents) and WIPO-de collection that contains German patent 
applications (in total about 110000 documents). The documents are in 
XML format. Collection are provided as two sub-collection of a training 
set of 46324 (84822) English (German) documents, and a test set of 28926 
(26006) English (German) documents, respectively. Documents are as- 
signed one main category, and can be also linked to several other cate- 
gories. The indexers used the top four levels of IPC taxonomy (termed: 
section, class, subclass, and main group; top-down) when attributing IPC 
codes to documents. 

Training collections consist of documents roughly evenly spread across 
the IPC main groups, subject to the restriction that each subclass con- 
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tains between 20 and 2000 documents. Test collections consist of docu- 
ments distributed roughly according to the frequency of a typical year's 
patent applications, subject to the restriction that each subclass contains 
between 10 and 1000 documents. All documents in test collections also 
have attributed IPC symbols, so there is no blind data. 

Each document includes a title, a list of inventors, a list of applicant 
companies or individuals, an abstract, a claims section, and a long de- 
scription. These information are store in separate XML fields. Detailed 
descriptions about the collections can be found in Fall et al., 2002 and 
Fall et al., 2003b. 

3.2. Performance measures 
We have adopted three heuristic evaluation measures for categorization 

success proposed by the provider of the WIPO collections Fall et al., 2002. 
Let us suppose that the method returns an ordered list of predicted IPC 
codes, where the order is determined by the confidence level (see (6)). 
Then we can define the following measures (see Figure 2): 

1 Top prediction (briefly: Top) The top category predicted by the 
classifier is compared with the main IPC class, shown as [mc] in 
Figure 2. 

2 Three guesses (Top3) The top three categories predicted by the 
classifier are compared with the main IPC class. If a single match 
is found, the categorization is deemed successful. This measure 
is adapted to evaluating categorization assistance, where a user 
ultimately makes the decision. In this case, it is tolerable that the 
correct guess appears second or third in the list of suggestions. 

3 All classes (Any) We compare the top prediction of the classifier 
with all classes associated with the document, in the main IPC 
symbol and in additional IPC symbols, shown as (ic) in Figure 2. 
If a single match is found, the categorization is deemed successful. 

Although in Fall et al., 2002 it is suggested to use these measures 
solely on IPC class level, in our experiments we also use them on the 
lower subclass and main group levels. 

3.3. Dimensionality reduction 
When dealing with a huge document collection, the large number of 

terms, 111, can cause problem in document processing, indexing, and 
also in category induction. Therefore, before indexing and category in- 
duction many authors apply a pass of dimensionality reduction (DR) to 
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Top prediction 

I guess real 

Three guesses All classes 

i i E T G l  I guess real 

Figure 2. Explanation to the three evaluation measures Top, Top3, Any Fall et al., 
2002 

reduce the size of 171 to 17'1 << 171 Sebastiani, 2002. Beside that it can 
speed up the categorization, papers also reported that it can increase the 
performance of the classifier with a few percent, if only a certain subset 
of terms are used to represent documents (see e.g. Koller and Sahami, 
1997; Wibovo and Williams, 2002). 

In our previous experiments Tikk et al., 2003 we also found that per- 
formance can be increased slightly (less than 1%) if rare terms are dis- 
regarded, but the effect of DR on time efficiency is more significant. We 
reduced 171 by disregarding terms that either occur less than minocCur 
times, or occur more often than a certain threshold in Vnain, i.e. if 
nk/lVnainl 2 maxfreq. By the former process we disregard words that 
are not significant in the classification, while by the later process we ig- 
nore words that are not discriminative enough between categories. The 
typical values are minoc,u, E [1 . . 101 and maxfreq E [0.05 . .1.0]. 

The construction of patent documents provides another way of DR 
as well. One may select certain XML fields as the basis of the term 
set (dictionary), and index the other parts of the documents using this 
dictionary. E.g., the long description part can be ignored for dictionary 
creation because it may contain lot of dummy words. 

3.4. Results 
We present the results obtained by HITEC on WIPO-alpha collection 

by means of a series of figures (Figure 3-7) and a summarizing table 
(Table 1). We differentiated results based on confidence level. Here 0.0 
means that all guesses are considered, while 0.8 means that only those 
decision are considered where the confidence level is not less than 0.8. 
Obviously, the higher is the confidence level, the lower is the number 
of considered documents. The figures show all the three performance 
measures at class, subclass and main group levels by increasing confi- 
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dence levels of 0.1 step. Table 1 compares some significant values of each 
parameter setting. 

The best results have been achieved after 7 iterations when only XML 
fields of inventors, applicants, title, abstract and claims are used for dic- 
tionary creation ("iptac" setting); entropy weighting (4) is used; min,,,,r = 
2 and maxfreq = 0.25. (Figures 3). The other settings, e.g. "ipta" that 
appears in Table 1, are modification of this one. We denote there only 
the modified values. 

confidence level 

/ - m TOP (class) 

100 
+. Top3 (class) 

90 

3 - 80 A Any(c1ass) 
m g 70 

{ 60 
al 
5 50 
0 
4 40 ---a- - - Any (subclass) 
'C 

O 30 
S --+-Top (matn 

20 group) 

10 +Top3 (main 

35 45 55 65 75 85 95 group) 
+Any (main 

%of correct assignments relative to recalled documents group) 

- a Top (class) 

- Top3 (class) 

Any (class) 

- - .- - Top (subclass) 

. -cr- - Top3 (subclass) 

- - A  - Any (subclass) 

-m- Top (main group) 

+ Top3 (main group) 

--t- Any (main group) 

Figure 3. Setting "iptac". Precision by confidence levels. b) Comparisons of preci- 
s ion~,  extrapolated to 100% recall 
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The next setting delivered very similar results as "iptac"; obtained 
when claims fields is disregarded for dictionary creation ("ipta" setting). 
See 

0 0,l 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 

confidence level 

Top (class) 

- Top3 (class) 

Any (class) 

+i Top (subclass) 

Top3 (subclass) 

r Any (subclass) 

-+- Top (main group) 

-+- Top3 (main group] 

--+--Any (main group) 

I : Top (class) 

Top3 (class) 

Any (class) 

Top (subclass) 

- -b ." Top3 (subclass 

A Any (subclass) 

-a- Top (mam 
group) 

--+-Top3 (main 

35 45 55 65 75 85 group) 

%of correct assignments relative to recalled group) 

Figure 4. Setting "ipta" with entropy weighting and min,,,,, = 2 and maxf,,, = 0.25. 
a) Precision by confidence levels. b) Comparisons of precisions, extrapolated to 100% 
recall 

We investigated the effect if only the main category of each patent 
document is used for training. This experiment was suggested by the 
developers of the collection Fall et al., 2002, and can be argued that 
this selection makes ambiguous training documents (having more topics) 
unique for training purpose. The obtained result did not support this 
hypothesis, the obtained results were inferior than the ones with regular 
setting (Figure 5). 
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Figure 5. Setting: only main categories used for training. Precision by confidence 
levels b) Comparisons of precisions, extrapolated to 100% recall 

We also investigated the use of tfxidf weighting (3).  The obtained 
results are considerably worse then the ones by entropy weighting, but 
the time requirement for indexing the collection is decreased by about 
30%, because tfxidf weighting requires one pass less for indexing. See 
Figure 6. The inferiority of the results are also due to the high max,, 
parameter that is 0.5 here, while 0.01 with other setting. Consequently, 
the number of documents taken into account at high consistency levels 
is significantly higher. 

The next experiments were obtained when semantic information were 
propagated back to the learning phase. This modification takes into 
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Figure 6. Use of tfxidf weighting. a)  Precision by confidence levels. b) Comparisons 
of precisions, extrapolated to 100% recall 

account the location of the clue word in a sentence and the location of 
an important sentence in a paragraph. Cumulating these information we 
can determine areas in the text that are more important than others. 
This modification has great effect on the results at low confidence levels 
since it increases certain performance measure values by more than 3%. 
See Figure 7 and Table 1. 

Table 1 also contains reference results from Fall et al., 2003a for IPC 
class and subclass levels. The referred paper does not contain results 
for main group level. We assumed that the results of Fall et al., 2003a 
refer to the 0.0 confidence level (the most difficult setting), although it is 



298 Domonkos Tikk, Gyorgy Bird, Jae Dong Yang 

confidence level 

40 60 80 11 

%of correct assignments relative to recalled doc 

a Top (class) 

Top3 (class) 

- Any (class) 

Top (subclass) 

-+- - - Top3 (subclass) 
. . .& Any (subclass) 

--+--Top (main group) 

+ Top3 (main group) 

---+--Any (main group) 

- a- Top (class) 

9 Top3 (class) 

Any (class) 

- . -&- - .  Top (subclass) 

- - -4- - - Top3 (subclass 

- - - A -  - .  Any (subclass) 

Figure 7. Using semantic information. a) Precision by confidence levels. b) Com- 
parisons of precisions, extrapolated to 100% recall 

not indicated explicitly. One can observe that HITEC outperforms the 
best technique experimented with in Fall et al., 2003a by at least 10.41% 
at each level and performance measure, and the difference increases at 
deeper IPC levels. We indicated the difference between our best results 
and of Fall et al., 2003a also in the table. 

It worth to note that the graph of Top3 measure is dropping when 
the consistency level increases. The reason is that at lower consistency 
level more categories are returned, and based on the results, in some case 
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Table 1. Summary of results on WIPO-alpha patent collection (Abbreviation of 
method names: NB - Nai've Bayes, SVM - Support Vector Machine, k-NN - k Nearest 
Neighbors) 

Evaluation Setting IPC/conf. level 
measure c1./0.0 c1.10.8 s.cl./O.O m.g./O.O 

Top ipta 65.75 92.93 53.25 36.89 
iptac 65.50 92.93 53.14 36.78 
main 62.81 84.37 49.41 32.28 
tfidf 64.04 83.56 50.76 33.75 

semantic 66.41 72.86 54.63 38.38 
best of 55.00 - 41.00 - 

WIPO paper NB,SVM SVM 
difference 11.41 - 13.63 

Top3 ipta 85.56 92.93 75.05 55.44 
iptac 85.61 92.93 75.00 55.58 
main 83.61 84.37 70.89 48.98 
tfidf 70.71 84.11 56.57 37.05 

semantic 89.41 76.45 79.48 59.64 
best of 79.00 - 62.00 - 

WIPO paper NB k-NN 
difference 10.41 - 17.48 

Any ipta 73.68 95.83 62.45 46.46 
iptac 73.41 95.64 62.28 46.38 
main 71.32 94.97 58.97 41.51 
tfidf 72.22 90.38 60.18 42.71 

semantic 76.46 93.48 66.36 50.90 
best of 63.00 - 48.00 - 

WIPO paper NB SVM 
difference 13.46 - 18.36 

the one returned with lower consistency can be the correct one, but that 
is left out at higher consistency levels. When the consistency level goes 
higher, much fewer documents are considered, and then the Top 3 values 
increases again. (This arguing does not apply for the tfidf setting with 
high variance, because there the number of inferred documents is low 
even at low consistency levels.) 

One can observe that the relationship between evaluation measures is 
Top < Any < Top 3 except when tf x idf weighting scheme is applied: then 
Any gives the best values. Naturally, the lower we go in the taxonomy the 
more imprecise predictions are. At IPC class level the Top3 measure of 
HITEC at the lowest confidence level (i-e. when basically all documents 
are considered) attains 89.41% with semantic analyzer, which is a quite 
significant result. This value hints that the algorithm can be used for 
large document corpora in real-world applications. Because of the very 
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large taxonomy and range of documents the results on the main group 
level seems to be quite weak. However, if we consider that human experts 
can do this categorization work with about 64% accuracy then this result 
turns out to be much more significant. 

Table 2 shows our experiments on the German patent collection WIPO- 
de. The table presents selected results with the best setting (using se- 
mantic information). The results are comparable with the ones achieved 
for English patent documents. Consequently, we can conclude that the 
high performance of HITEC is practically independent from the language 
of document corpus and HITEC can be used generally for document clas- 
sification tasks. 

Table 2. Summary of results on WIPO-de patent collection 

Evaluation IPC/conf. level 
measure class/O.O class/0.8 subclass/O.O main group/0.0 

Let us shortly remark the time efficiency of the method. Our exper- 
iments were executed on a regular PC (Linux OS, 2 GHz processor, 1 
GB RAM). The indexing of the entire train collection took around one 
hour with entropy weighting and just over 40 minutes with tfxidf weight- 
ing. The training algorithm (7 iterations) required about 2 hours with 
each settings. If more iterations were done the results did not improved 
significantly. 

4. CONCLUSION 
We presented HITEC, an automated text classifier and its application 

categorize to English and German patent collections of WIPO under the 
IPC taxonomy. IPC covers all areas of technology and is currently used 
by the industrial property offices of many countries. Patent classification 
is indispensable for the retrieval of patent documents in the search for 
prior art. Such retrieval is crucial to patent-issuing authorities, potential 
inventors, research and development units, and others concerned with the 
application or development of technology. An efficient automated patent 
classifier is crucial component in providing an automated classification 
assistance system for categorizing patent applications in the IPC, that 
is a main aim at WIPO Fall et al., 2002. HITEC can be a prominent 
candidate for this purpose. 
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Chapter 14 

STUDY OF TRANSPORTATION AND 
UNCERTAINTY 

Shinya Kikuchi 

1. INTRODUCTION 

An increasing number of engineers and planners advocate the proper 
treatment of uncertainty in the analysis of transportation. This trend is 
certainly in the right direction, when one realizes the abundance of 
uncertainty, in the data, in the knowledge, in the dynamics in the 
demographic, economic and social trends, and technology developments. 
How to present what is known and what is not known (or not sure about) 
clearly is the bedrock of the scientific approach. In the practice of 
transportation engineering and planning, however, making distinction 
between the two, what is known what is not known, is often smeared by too 
much uncertainty. 

In view of the recent development in the theory of uncertainty in systems 
science, the greater public demand for accountability in the planning process, 
and the greater degree of complexity in the transportation issues, this short 
paper discusses the nature of uncertainty in the analysis of transportation 
engineering and planning. The intent of the paper is to promote discussions on 
the diversity of uncertainty types and the appropriate formalisms to deal with 
it. 

2. SCOPE AND NATURE OF ANALYSIS, AND 
UNCERTAINTY 

The Scope 
Transportation facilities and services are public works whose objective is to 
achieve what is good for the individuals and for the society over many years. 
Today's transportation engineering and planning places emphasis on how 
transportation facilities impact the socio-economic systems (not just solving 
congestion) over the long run. This means that the scope of transportation 
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engineering expands as new societal issues emerge: from mobility, to 
environment, energy, social equity, public health, livability, and to national 
security. 

As suggested by Dickey (1983), the issues that transportation study deals with 
are three types: problems affecting transportation, problems of transportation, 
and problems affected by transportation. The 3C principle in the federal 
transportation regulation, a coordinated, cooperative, and continuing 
approach, reaffirms the view that the scope of transportation is unbounded 
and dynamic. 

Because the issues of transportation change with time and space, uncertainty 
and risk are associated with every decision on investment, policy, and 
technology development. For example, decisions on ITS, perhaps the most 
popular planning activity today, face enormous uncertainty in its long-term 
impacts on the society including investment, privacy, government's 
accountability, security, and cost responsibility, and many unforeseen effects. 
Thus, the scope of transportation analysis is in fact bound by uncertainty. 

The Nature of Transportation Analvsis 
Underlying in transportation analysis is the aspects of human, both as the user 
and non-user of the facilities and services. A human, individually and 
collectively, has feeling, value, and desire, which are not only difficult to 
describe and measure, but also change over time and space. This feature set 
transportation analysis apart from other engineering fields. 

Other engineering disciplines study the properties of objects and their 
behaviors in order to develop a product or system that satisfies a set of well- 
defined objectives, e.g. minimum cost and maximum safety. For example, in 
structural engineering, engineers are basically interested in one aspect, to 
know how the material will react to the stress, and design a structure so that it 
does not fail. Failure is clearly defined. 

In transportation, in contrast, we want to know how people and society react 
to a set of stimuli including changes in infrastructure, land use pattern, 
regulations, demographics. Most cases, however, we do not know exactly 
what success is and what failure of the decision until many years later is. 
Further, experiments are not possible. The solution is usually tailored to the 
case-by-case unique local conditions. Because of the human factor and the 
changing nature of the scope, the transportation issues are complex with many 
factors interacting in a complicated manner. 

The nature of transportation study is characterized by the following, (1) 
human factor (individually and collectively) affects the system behavior; (2) 
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objectives are many, and not well-defined, (3) many elements, transportation 
and non-transportation, are involved in a complex manner, (4) the system 
performance changes dynamically over time with the changes in the socio- 
economic system, and (5) the solutions, if found, are local, not universal. 

Uncertainty and Information 
Given the scope and the nature of transportation study above, the issue of 
uncertainty is inseparable to the study of transportation. Uncertainty is the 
state of lack of information and, as a result, it is difficult to make decisions; as 
such, uncertainty and information are dual. The more information is gained, 
the less uncertain the situation becomes. Collecting information is a crucial 
activity of transportation. This means obtaining the data, developing 
knowledge base, defining clear goals, and communicating the ideas. How to 
measure the usefulness of information, how to decide on the level of details, 
how to combine different types of information to create new knowledge, and 
how to control propagation of uncertainty along the analysis path, are some of 
the tasks that should accompany in any analysis of transportation. 

Information takes different forms. Some information is statistical, which 
allows treatment by probability theory. However, the majority is in the form 
of perception and linguistic form. How to incorporate such non-statistical 
information in the analysis process has been the challenge. This is one of the 
topics to be discussed in this paper. 

Despite the enormous uncertainty in transportation analysis, the subject of 
information and uncertainty has not been seriously dealt with in a quantitative 
manner. Engineers and planners have avoided facing uncertainty head-on, 
rather many times the issue was veiled by self-serving treatment. Uncertainty 
is considered something undesirable and uncomfortable; and hence, it is 
removed by making assumptions, or at best, by conducting a sensitivity 
analysis. Even though the uncertainty in the initial data may be treated with 
the statistical analysis, along the analysis steps, uncertainty vanishes, and the 
final outcome is often presented with certainty. Kenneth Boulding (1974) 
states, "An important source of bad decision is illusion of certainty." This is 
also convenient, since politicians, the final decision-maker, are reluctant to 
hear about uncertainty about the consequences of the decision. 
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3. FOUR ACTIVITIES OF TRANSPORTATION 
ANALYSIS: PREDICTION, DIAGNOSIS, ABDUCTION, 
AND CONTROL 

Most of the analytical problems that we deal with fit in one of the following 
four classes. They are to predict, to diagnose, to abduct, and to control. To 
conduct any of these classes of activities, necessary elements are, input or 
data, knowledge base or model, output or result, and objectives or goals. The 
relationships among them are presented in Figure 1. 

Prediction is the activity to predict the outcome or results, based on the input 
and the knowledge base. This is similar to finding the value of y given x in y= 
f(x), where f(x) is the knowledge base. Prediction is perhaps the most 
common activity performed in transportation, such as travel demand 
forecasting, analysis of capacity and system performance when the initial 
condition is given. If the input is not certain, then uncertainty propagates 
along the analysis steps so that the degree of uncertainty of the output may 
become greater than that of the input. 

Diagnosis means finding the cause or input, based on the outcome and the 
knowledge base. This is similar to solving an equation, say 2x2 +x +4 =6 for 
x, where the outcome is known and the knowledge (model) is also known. 
Diagnosis is a much more difficult problem than prediction. Usually, more 
than one solution exists (as seen in even the simple problem above). Yet, 
diagnosis is an increasing important subject in transportation, because 
accountability and potential of litigation as a result of accidents and any 
negative outcomes are today's pressing issue. 

Abduction means fine-tuning the knowledge-base, based on the input and 
output. An example is a regression analysis, which is to find a relationship 
from the data on input and output. The back-propagation neural network is 
another example of knowledge building from input and output. Calibration of 
model parameters can be in this category also. 

Control means regulating the input (and the knowledge base) in order to 
achieve a goal or to match the output to a target. If the output and target do 
not match, then the input is adjusted, or sometimes the parameters of the 
model are adjusted. Control can be performed by trial and error or by 
mathematical programming. The former may be the case of solving a problem 
by iteration. The latter may be optimization using mathematical programming. 
Control can also mean regulation and calibration, to regulate the flow of 
traffic, traffic signal, or land use. Many of ITS strategies are in this category. 
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In these activities, uncertainty is inseparable, in the data, in the knowledge 
base, and in the goals. We need to look at our limits in the ability to predict, 
diagnose, abduct, and control in the face of uncertainty. 

Prediction 

Model 

Diagnosis 

Abduction 

Controll 
Optimization 

Figure 1 Four Activities of Transportation analysis 

5. MODELING UNDER UNCERTAINTY 

Let us now focus on the presence of uncertainty and its effects in the analysis 
process. Figure 2 shows the analysis chain consisting of observation of 
phenomena, model building, analyst's interpretation, and application. 

Uncertainty in the Observation of Phenomena. The analyst observes the 
phenomena, collects data, and transforms it to information, which becomes 
the input to model building. The data that is collected may be in the form of: 
numerical, descriptive, or illustrative. Uncertainty in the data may be inherent 
to the phenomenon itself (e.g., randomness), in the measurement, or a by- 
product of information transmission. Regardless of the sources, these 
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uncertainties undoubtedly create bias and perception in the mind of the 
analyst. 

The Model Framework. A model is a pair of spectacles through which the 
analyst views the phenomena and captures its essence. Basically, any model 
represents the connection between cause and effect (or stimulus-response). A 
model may take a functional form, a rule base ("if ... then ..... ,"), or a 
combination of the two. The mathematics in the model, however, must adhere 
to the axioms on which the mathematical theory is based. In the case of 
models that represent uncertainty, mathematics may be probability theory, 
possibility theory, fuzzy set theory, or other theories of evidence. Use of any 
of these frameworks depends on the nature of the phenomena for which the 
analyst wishes to model, and also depends on the purpose of application. In 
some cases, a deterministic assumption may be sufficient for a particular 
application. 

Analvst's Interpretation of the Model. Each analyst interprets the results of 
the model differently depending on the context and hisher bias. Subjectivity 
enters in interpretation always, particularly, when uncertainty is involved. A 
precise value obtained from the model may be interpreted as approximate 
values. For example, if an analyst hears that the capacity of a section of a 
highway is 2456 veh/hr, helshe interprets as a rounded value near it, say, 
2,500 veh/hr. Another example, if a travel demand model provides the future 
volume to be 28,673veh/day, it may be perceived as 29,00Oveh/day. A 
subjective filter exists in the analyst's mind, and it works differently, 
conservatively or optimistically, depending on application. 

Application of the Model Results to Decisions. The model and the results 
are then applied to prediction, diagnosis, abduction, control/optimization, 
leading to decisions on the design, investment, and policy. The precision for 
the parameters of design is controlled by the purpose of application and 
objectives. For example, in the case of predicting the traffic volume, one 
requires different levels of accuracy when determining the thickness of 
pavement and when determining the number of lanes. The precision level is 
not only determined by the application but also it is limited by the degree of 
precision of the initial data, measurement, model accuracy. For example, the 
travel demand forecasting that is extremely in detail in the model choice step 
but based on crude data on trip generation may be of little value from the 
standpoint of accuracy. 

In summary, to deal with uncertainty, one needs to able to answer the 
following question. 
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When observing the phenomena and collecting data - Is uncertainty inherent 
in the phenomena, observation, measurement, or subjective bias? What causes 
uncertainty? 

When formulating the model - Are the mathematical representation and the 
types of uncertainty observed consistent with the uncertainty in the 
observation of the phenomena? 

When interpreting the result of the model - How much bias does an analyst 
have when interpreting the model result and application? 

When applying the model result - Is the level of accuracy in the result 
sufficient for the problem, too much or too little? Can designer understand the 
uncertainty involved and know how to reflect it in the design decision? 

In summary, the main concern is the amount of uncertainty in the outcome 
and how much it ultimately affects the consequences of the decision. 

Nature of 
Phenomena 

Lack of Info 

Too much info 

Conflicting 
info 

Ambiguous 
info 

Measurement 

I-- ::- Probability Fuzzy Set 

Possibility 

Demspster- 
Shafer theory 
Knowledge 
based system 
(rule base) 

Numerical 
Interval 
Linguistic 

9 1 kkgof 
certainty 

Applications 

Problem 

+ Decisions for 
Design 

Prediction 

Control 

Diagnosis 

Models (no single model) 
Context (cannot be modeled context free) 
Axioms of the theory 
Assumptions about the phenomena 

Figure 2 Process of modeling in the environment of Uncertainty 
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6. TWO CASES OF UNCERTAINTY 

Formally, uncertainty needs to be looked at from the standpoint of truth or 
false of a proposition in the face of evidence. Uncertainty about the truth of a 
proposition "x is A" is associated with two conditions as shown below, where 
x and A are sets. 

Case 1: x is not clear. In other words, information about x is incomplete, thus 
"x is A" cannot be asserted with certainty. This type of uncertainty is called 
ambiguity. 

Case 2: A is not well defined. In other words, boundaries of the definition of 
A are not clear, thus "x is A cannot be asserted with certainty. This type of 
uncertainty is called vagueness. 

Until recently distinction between two cases was not clear, and the theory of 
probability has been used for any type of analysis involving uncertainty. 
Understanding the difference between these two cases clarifies the use of 
proper mathematical tool for different situations. George Klir, in his various 
books, Klir, et a1.(1995,1999,2000) has established the distinction between 
these two cases, and has developed the framework of theory of uncertainty . 

Case 1, the truth of "x is A is measured the weight of evidence pointing to 
A. Thus, to know the mechanism that generates different outcomes needs to 
be understood, and organized into proper form of evidence. While we do not 
go in details in this paper, the evidential patterns are now categorized into 
three distinct types, probability distribution, possibility distribution, and belief 
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function of Dempster-Shafer theory. Each of these three distributions forms a 
distinct well-established mathematical formalism of measure theory. In the 
following two common distributions, probability and possibility, are 
discussed briefly. These distributions are perhaps most relevant for 
transportation analysis. 

The probability distribution is one of evidential patterns in which each piece 
of evidence points to well-defined set (outcome) exclusively; hence, each 
piece of evidence is conflicting. The causal mechanism is not known, and 
thus, the outcome is random (to the eyes of the analyst), such as the case of 
rolling a die. The truth of "x is A" is only measured by weighing the evidence 
or frequency pointing to A. This is usually the case of observation of random 
phenomena. Probability theory measures propensity of occurrence of events. 

Possibility distribution, on the other hand, is an evidential pattern in which 
each piece of evidence points to nested sets; thus, the body of evidence is not 
conflicting but agreeing one another. Each piece of evidence differs only by 
the degree of agreement. Perception of time or cost, or the concept of 
approximate value, generally follows the possibility distribution. The truth is 
measured by the degree of agreement. In this case, because the evidence is not 
specific to a set, the optimistic and pessimistic ways of weighing the evidence 
exist. The former is called the possibility measure, and the latter, the necessity 
measure. Possibility theory measures the strength of disposition. Incidentally, 
the belief function of Dempster-Shafer theory represents the generalized 
evidential pattern in which probability and possibility distributions subsumed. 

Case 2 arises as a result of the unclear definition of the set; the truth of x is A 
cannot be asserted due to the vagueness of the word or image of A. Fuzzy set 
represents this type of uncertainty associated with language. This 
representation has been found to be very useful in modeling human behavioral 
pattern, because most of human decision and behavior is based on language 
based command. 

At the human level decisions, either as an individual or as a group, reasoning 
is usually conducted in language. It is inevitable that vagueness accompanies 
the language-based communication. Although language conveys the nuance 
and sensitivity of context dependency much more effectively than the 
numericaVmathematica1 expression, it is difficult to formalize and to model 
the process. Fuzzy set theory is the formalism that allows modeling of 
language based reasoning and representation of the perceived condition. 
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Mathematical Theories of Uncertaintv Treatment 
Figure 3 summarizes the types of mathematical framework when analyzing 
the truth of "x is A," as a function of the nature of information about x and the 
character of set A. Three frameworks are presented. They are probability 
theory, possibility theory and Dempster-Shafer theory. 

Probability theory is applicable when the information about x is statistical and 
set A is crisp set. Probability theory, however, can be applied to the situation 
when A is a fuzzy set, under a certain condition, (when the membership 
function of set A and the membership function of set "not A" are defined as a 
perfect complement). 

Possibility theory is applicable when the information about x is perceptive (or 
possibility distribution), and set A can be either crisp or fuzzy set. In this case, 
the specific measures are possibility and necessity, representing optimistic 
and conservative view of disposition, depending on how to weigh the 
evidence toward A. 

In addition, when the information is both probabilistic and also possibilistic, 
then Dempster-Shafer theory is appropriate. This is a comprehensive 
framework in which both possibility and probability theories are subsumed. 
Under this theory, two measures, belief and plausibility measures, are used to 
represent the optimistic and conservative dispositions. 
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Y 
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Figure 3. Different theories of uncertainty in the context of the truth of x is A 

7. TRANSPORTATION ANALYSIS CONDUCIVE TO 
UNCERTAINTY TREATMENT 

It is clear from the above that uncertainty refers to the situations in which 
determining the truth is difficult, (I)  due to the lack of evidence and (2) due to 
the lack of clear definition of words. For the former situation, the evidential 
pattern that is consistent with the observed phenomena needs to be 
established, and they are typically probability distribution or possibility 
distribution. These distributions are handled in the domain of measure theory, 
which measure the truth of a proposition. This section presents the types of 
transportation subjects for which these frameworks, measure theory and fuzzy 
set theory, are suited. 

Sub-iects Suited for Analvsis Using: Measure Theore 

Measure theory is relevant when evaluating the truth of a proposition "x is 
A," a situation when x is classified to A. In the transportation problem, a 
number of problems are in this category. Following are the problems often 
encountered in transportation. x may be any current or projected condition, 
and A is a particular domain or a set of interest. Decision depends on the truth 
of this proposition. In the following we list typical analysis situations. 

Classifying a situation into one of the predetermined classes, e.g., 
Assigning the current (or future) traffic condition to one of level of service 
categories. 

Comparing the estimated transit ridership with a threshold ridership value that 
justifies the investment. 

Comparing two quantities for their ranking, or comparing a value with a 
reference value, e.g., 
Selecting an alternatives based on comparison of the utilities of each 
alternative. 

Examining feasibility of arrival by comparing the estimated arrival time with 
the desired arrival time. 

Determining preference 
Setting ranking among available alternatives. 
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In dealing with these problems, either probability theory or possibility theory 
is applicable depending on the nature of evidential pattern of x and the 
definition of set, A. Probability theory is applicable when x, the predicted 
condition, is known or assumed to be random, and also when A is well 
defined. Thus, the uncertainty of "x is A" is expressed in probability and it is 
interpreted as propensity of occurrence. 

Possibility theory, on the other hand, is useful when the information about x is 
approximate, such that evidence is given in a set of ranges. Imagine an 
experiment in which each observation (experiment) yields a range (rather than 
a specific value), and the size of the range is different for every observation. 
This is similar to asking individuals in a group about acceptability of transit 
fare and each answers a different range. In this situation, probability theory 
cannot be applied because each piece of evidence is not pointing to well- 
defined sets. Under this evidential pattern, the truth of "x is A," is measured 
two ways, one, weighting any positive evidence pointing to A (which may 
also point to not A): two, weighing evidence that exclusively pointing to A. 
The former is called the possibility measure, and the latter is called the 
necessity measure. 

Suhiect Suited for Fuzzy Set Representation 

The nature of uncertainty that is related to vagueness and approximation is 
treated by fuzzy set. The following shows the types of notion that is suited for 
treatment by fuzzy set. 

Notion of desire, e.g., 
Desired departure time and desired arrival time 
Desired design value 
Objective and goals 

Notion of satisfaction and acceptability (vague threshold values), e.g., 
Satisfactory cost, acceptable cost, willing value for payment, 
Acceptable level of error, 
Acceptable delay, 
Acceptable air pollution level. 
Stated preference 

Perception and quantities based on memory, e.g., 
Past travel time, distance, appearance and condition. 

Descriptive condition, e.g., 
Traffic congestion - bad traffic and good traffic condition, 
Comfort, safety, level of service. 
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Imprecise Values - hard to measure or hard to summarize, e.g., 
Sight distance, reaction time, capacity of roadway, 
value of time, cushion value in design. 

Possibility 
Travel time, capacity of roadway or a system 

Similarity 

Among the above examples, one's estimated travel time by automobile 
between two points is a typical case of possibility. Although the statistically 
based information about past travel times may exist, because one is able to 
control the travel time somewhat, by driving fast or slowly, the travel time 
estimated by the traveler before travel is a set of values which are "possible" 
to achieve by the traveler and differ among the individuals. Another case is 
the capacity of a roadway, whose precise value is perhaps impossible to 
determine; it is understood as the approximate value, which the roadway can 
"possibly" handle. To some extent, the forecast value of travel demand is in 
this category. 

8. COMMENTS ON SPECIFIC TRANSPORTATION 
ANALYSIS ACTIVITIES 

Comparison and Classification involving Approximate Values 

Comparing values, for example, cost vs. benefits, expected outcome vs. 
target, and utilities of an alternative vs. another, is a common problem during 
any evaluation process. Classifying a given situation into one of 
predetermined classes also falls into the same class of problem. An example is 
determining the traffic condition with a threshold value of the level of service. 
These situations examine whether a value belongs to another set or not. In 
determining the truth of M>N, the problem is to find the truth that M belongs 
to a set of numbers greater than or equal to N. 
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When the values to be compared are not exact value, no clear answer can be 
given. The traditional approach has been to assume that the values are 
random, and assume a probability distribution for each value, and then to state 
one value is greater than the other in probability. A typical example of this 
approach is the stochastic choice model when utilities are compared. Yet, the 
utility of an alternative, to the mind of the decision maker, is not a single 
value, perhaps, it is an approximate number. 

The values to be compared may not always be a random nature; the values 
may be an inherently approximate number due to perception of the analyst. 
Consider the case of comparing the travel times of several available routes 
with each travel time known to him in approximate number with a range. This 
is the case of comparing fuzzy numbers associated with the perception of the 
time. This case each number follows a possibility distribution and the answer 
that one value is greater than the other is given in possibility, hence, 
optimistic and conservative answers. 

Transportation planning community for many years has concentrated on 
improving the accuracy of forecast traffic volume. One of the premises of 
transportation analysis is that transport activity and economic activity are 
linked. It is known that forecast economic activity into the next 20 year is 
impossible task. Nevertheless, the transportation planners have continued to 
"perfect" the long term forecasting models. The purpose of forecast is to 
examine whether the future conditions warrant or justifies a certain action 
today. Thus the forecasting issue must be linked to the issue of comparing 
numbers. The forecast volume is not a random value. It is a possible value. It 
is based on various assumptions and the initial random nature of traffic 
volume of today has transformed into a possible value. Thus, the comparison 
should be conducted in the manner consistent with the possibilistic 
framework. 

Computation and Reasoning 

Arithmetic operations of numbers are basic to all analyses. When the values 
are uncertain, having a range, randomness or approximate nature, then 
computation naturally yields not only cumbersome but also uncertainty 
propagates in the computation. Usually as more approximate numbers are 
manipulated the more uncertainty the outcome becomes. The compound 
effects of different models when they are chained are significant. One needs 
to conserve uncertainty, and also at the same time, one needs to control 
propagation of it in order for the outcome of the computation to be 
meaningful. 
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A typical example is the computations involved in the four-step travel demand 
forecasting process. Each step contains uncertainty starting from the trip 
generation and attraction. If the uncertainty is not masked by assumption of 
single number and definite equation, e.g., the gravity model, uncertainty 
propagates and the travel forecast must have a wide variation. (which is 
actually the case). In many cases, planners are interested in the range rather 
than a specific value. This means that the analyst should strive to conserve 
uncertainty. 

Increased uncertainty means weakened strength of reasoning. This affects the 
credibility of the planner, ironically presenting uncertainty is more honest 
presentation. Reasoning process is affected by the propagation of uncertainty. 

Our reasoning process, however, is based on incomplete data, incomplete 
knowledge of the phenomena, incomplete understanding of causalities, 
association, incomplete understanding of our goals, and or what we want to 
achieve in the long run. Analyst makes the case to the decision maker as to 
recommendation. Especially, in transportation planning, the reasoning process 
is based on a chain of reasons. For each reasoning step, a model is used. Since 
each model contains uncertainty, or information loss or information addition 
occurs. Such losses and additions should be minimized. 

Composite Picture and Presentation 

Transportation analysis involves getting the composite image of a situation. 
Many attributes exist and they form a composite image of a situation. Let us 
think the case of the definition of level of service. It is a driver perceived 
traffic condition according to HCM. Many attributes of LOS are not 
independent and the driver forms an image of the condition, which is hard to 
describe. The weights among the attributes are not clear, and definitely they 
are not additive because the attributes are not independent. A composite 
image is formed by set operations, e.g., union and intersection; however, the 
operations should not be a clear-cut binary operations, but rather emulate the 
sensitivity of language based operations, which is fuzzy set operations strive 
to achieve. 

Presentation is an aspect that is emphasized greatly in transportation planning 
today. Technology enables us to create an image that allows the audience to 
make judgement rather than the planner describing the situation. The traffic 
flow simulation has become a popular tool to present the situation graphically 
and allows the audience to make the judgement. Such illustrations tend to 
impress the audience. 
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In order to make the credible conclusions, however, we must understand the 
entire picture of how much we know and how much we do not know, and 
what more needs to be done to be certain. It is important that the public 
should not be swayed by the pretty image of the simulation and not being told 
about the uncertainty hidden in the output. It is important to present what is 
known and what is not known clearly. 

9. CONCLUSION 

Transportation affects our lives in innumerable ways. It controls the way of 
life, economy, environment, and the livability. It fosters technological 
innovations and affects commerce. It alters pattern of human settlement. 
Studying transportation means understanding how engineering, humanity, 
economy, politics, and nature work together in a dynamic manner, and to 
contribute to the creation of a better living condition. This paper advocates 
incorporating uncertainty in the analysis of transportation in a serious manner, 
and selecting proper framework when handling uncertainty and presenting it. 

How to deal with uncertainty is one of critical challenges, because it dictates 
the strength and weakness of logic and reasoning process. The lack of ability 
to deal with uncertainty affects the credibility of the profession. This may be a 
reason that the position of transportation has been ambiguous in terms of its 
membership in the scientific community. Integrity of transportation 
engineering and planning lies how uncertainty is being treated and 
represented. 

Every field of science and engineering has a set of founding rules and 
principles. In the case of fluid mechanics, it is the Euler's equation; in 
structural engineering, it is the Newton's laws, etc. Given the nature of study, 
what are the governing principles in transportation analysis? We may borrow 
some from physical and economic principles, but the principles that deal with 
the complex relationships between transportation and the socio-economic 
issue are not yet available. Theories of uncertainty should find the niche in 
this area and the fundamental principles of study of transportation may lie in 
treatment of uncertainty. 
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Chapter 15 

MULTI AGENT SYSTEMS APPROACH TO 
PARKING FACILITIES MANAGEMENT 

Mauro Dell'Orco and Dugan Teodorovit 

1. INTRODUCTION 

The number of trips by private cars has significantly increased in recent 
decades in many cities. At the same time, parking capacities have not kept up 
with this increase in urban travel demand. Streets in many cities are 
overloaded. Everyday, a significant percentage of drivers in single-occupancy 
vehicles are searching for a parking space. Additionally, less experienced 
drivers or out-of-towners further contribute to the increase of traffic 
congestion. This complex situation results in increased travel times and 
number of stops, unexpected delays, greater travel costs, inconvenience to 
drivers and passengers, increased air pollution and noise level, and increased 
number of traffic accidents. 

Expanding parking capacities is extremely costly, and sometimes 
environmentally damaging. Planners, engineers, economists, and city 
authorities introduced the concept of "congestion pricing" in an attempt to 
reduce fast growing traffic congestion. Congestion pricing assumes 
introducing different fees for streets/roads/zones/parking facilities usage. 
Various fees or tolls that vary with a location in the network, time of a day 
and/or level of traffic congestion could be proposed. In other words, drivers 
should pay for using specific road, corridor, bridge, parking facility, or for 
entering particular area during some time periods. It seems, that the basic 
economic concepts of supply and demand should be more utilized when 
solving complex urban traffic congestion problems. The basic idea behind the 
concept of congestion pricing is to force drivers to travel and use 
transportation facilities more during off-peak hours and less during peak 
hours, as well as to increase usage of underutilized transportation facilities. 
Successfully planned and implemented congestion pricing can have as 
consequences significant toll revenue, and drivers' responses in parking 
facilities used, departure time and destination traveled. This can result in 
decreased total number of vehicle trips, decreased total number of vehicle 
trips during peak periods, increased number of vehicle trips during off-peak 
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periods, increase in ridesharing, greater number of passengers in public 
transit, and in some cases increased cycling, and walking. 

Parking facilities management has significant influence on the level 
of traffic congestion. In this paper the agent-based model for parking facilities 
management has been developed. The Agent based model developed in this 
paper that represents the "Bottom-up approach" to problem solving is 
appropriate tool that can help us to better understand complex nature of urban 
traffic congestion. In this way, it will become easier to predict and/or control 
the overall performance of a complex urban traffic system. 

The paper is organized in the following way. A statement of the 
problem is given in Section 2. A Multi Agent Systems approach to the 
problem of parking facilities management is described in Section 3. The 
results obtained by using our proposed model in the case study of Bari are 
given in Section 4. Section 5 contains conclusions and directions for further 
research. 

2. PARKING FACILITIES MANAGEMENT: 
THE EVOLUTION OF UNPLANNED COORDINATION 

Urban traffic congestion problems show a complex behavioral pattern. 
Like emergent phenomena, traffic congestion is frequently unpredictable and 
even sometimes counterintuitive. It is very difficult, if not impossible, to 
explain explicitly the relationship between traffic authorities' actions and 
individual (drivers) behavior. The phenomenon cannot be successfully 
analyzed and explained through analytical models. The only way for 
analyzing this emergent phenomenon is the development of simulation 
models that can simulate behavior of every agent. Agent-based modeling is an 
approach based on the idea that a system is composed of a decentralized 
individual "agents" and that each agent interacts with other agents according 
to the localized knowledge. 

In our case, the interacting agents might be drivers, parking authorities, law 
enforcement and city government. If a kind of "central planner", responsible 
for minimization of the total urban traffic congestion, existed, all participants 
in urban traffic (drivers and parking authorities) would be obliged to strictly 
follow his orders. In real life this situation does not exist. Because of that, it is 
extremely important to explore how unplanned coordination evolves under 
different parking pricing strategies and different levels of parking 
enforcement, and whether it produces similar results like the global 
coordination planned by the "central planner", whose main objective is the 
minimization of the total urban traffic congestion. In our city parking system, 
we assume that the following agents are present: (a) drivers; (b) parking 
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authorities; (c) law enforcement. Through our proposed model, we study the 
evolution of unplanned coordination among independent agents in a "market 
selection game" in the case of different parking pricing strategies and 
different levels of parking enforcement. 

The model developed in this paper is an Agent-based model. In the city we 
studied, each part (drivers and parking authorities) acts based on its local 
knowledge and competes with other parts. Agents that represent parking 
authorities and law enforcement can increase the capacity, or significantly 
change parking fee policy. Agents that represent drivers learn all the time, and 
change their chosen parking facilities. Through the aggregation of individual 
drivers, parking authorities and law enforcement behavior, the overall picture 
of the city parking system emerges. 

We consider the situation in which few different parking facilities operate 
in urban traffic network and "compete" among themselves. The parking 
facilities define parking supply that is characterized by facility locations, 
working hours, and parking fees. Drivers adjust their parking plans to the 
proposed parking supplies. This results in the creation of drivers' itineraries 
through the network. 

Parking facilities compete with each other for "drivers market share", that 
represents the percentage of the total number of drivers that facility can 
attract, and highly depends on the proposed parking facility supply. Parking 
"competition7' we consider is a kind of iterated game: at the end of each 
iteration, any parking facility can increase its profit by changing operating 
strategy that includes adjusting working hours and changing parking fees. 

Parking fees can vary day-to-day or within day. In the latter case, parking 
fee at peak hours would increase substantially compared with parking fee at 
off-peak hours. In this paper updating of parking fee is carried out only day- 
to-day . 

To analyze parking strategies, we introduce a non-cooperative evolutionary 
model. In other words, the proposed model does not consider agents' 
deliberate cooperative behavior, and describes the changes over time of the 
agents' behavior. The agent's fitness is based on the success each agent has in 
playing the game. Agents follow particular strategy for a certain period of 
time. They are free to change the followed strategy at the end of each 
iteration. 

Let us assume that every network user chooses the parking facility based 
on perceived parking searching time, parking fee, number of previous 
rejections from that parking facility, etc. Perceived parking search time, or 
perceived parking fee is, very often, fuzzy. In other words, when subjectively 
estimating parking search time, expressions are used such as "it takes about 
15 minutes." It is rarely if ever heard that searching time is 13 minutes and 45 
seconds. The claim that parking searching time is "about 15 minutes7' is the 
result of a subjective feeling, an individual's subjective estimate. This is not 
the result of any measuring or the realization of a random variable 
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representing parking searching time. If we were to record parking searching 
time over a longer period of time, we would receive a series of different 
values, each representing one realization of the random variable that 
represents parking searching time. When we subjectively estimate parking 
searching time, we do not have information regarding the probability density 
function of search time; rather, we base our estimate on experience and 
intuition. Network users perceive also certain parking fee as "expensive", 
"reasonable", "not so expensive", etc. Users have a specific preference 
regarding the choice of each of the possible parking options. This preference 
can be "stronger" "medium" or "weaker." Let us introduce into the discussion 
a preference index that can take values from the interval of 0 to 1. When the 
user has an absolute preference for a specific parking facility, we consider the 
preference index to be equal to 1. This preference index decreases along with 
a decrease in the strength of the preference. Obviously, perceived parking 
searching times, perceived parking fees, and the strength of the user's 
preference can be expressed by fuzzy sets such as "very short travel time", 
"short travel time", "expensive road fee", "acceptable road fee", "very strong 
preference," "strong preference," etc (Figure 1). 

Our agents use approximate reasoning in decision-making process. In other 
words, agents' parking facility choice decisions are made based on a set of 
$...then rules, in which antecedents and conclusions are based on the 
attributes of alternatives. In this paper, we considered the following attributes: 
- Lot searching time; 
- Location of parking facility; 
- Number of previous rejection from each facility; 
- Duration of stay; 
- Parking fee; 
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- Level of parking enforcement (for illegal parking). 

0 30 min Time (min.) 

1 4  

Non-acceptable fee 

b 
3 $  

Fee ($) 

Figure 1 - Examples of perceived parking searching times, 
and perceived parking costs, expressed by fuzzy sets 
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3. MATCHING TRANSPORTATION SUPPLY AND 
TRANSPORTATION DEMAND UNDER DYNAMIC 
PARKING PRICING: MULTI AGENT SYSTEMS 
APPROACH 

In order to describe complex process of matching transportation supply 
and transportation demand under dynamic parking pricing, we use relatively 
new computational paradigm - Multi Agent Systems. We propose three 
different types of agents: (a) drivers; (b) parking facilities; (c) government of 
city. We assume that agents' behavior highly depends of the current traffic 
situation. We also assume that agents have capability to recognize various 
situations, make rational decisions, and learn from experience. Every agent 
has full autonomy in decision-making process. This means that every agent- 
driver has full autonomy in choosing the parking facility and departure time. 
At the same time, every agent-parking facility has full autonomy in applying 
certain parking fee during certain time interval, and city government 
Practically, agent-drivers and agent-parking facility "negotiate" all the time 
for using specific parking facilities during specific time intervals. Obviously, 
agent-drivers and agent-parking facilities frequently have different goals and 
through the "negotiation", they try to find compromise solution. In this way, 
parking facility occupancies is the result of many independent decisions made 
by individual agents. 

When making decisions, agent-drivers use experience and intuition. In 
order to have fair negotiation between agent-drivers, and agent-parking 
facilities, we assume that agent-parking facilities also use experience and 
intuition in decision-making process. When describing different decisions 
made at various stages of a process, human beings prefer to use qualitative 
expressions instead of quantitative ones. We assume the same for agent- 
parking facilities. In this way, the strategies of the agents can be formulated in 
terms of numerous descriptive rules. The qualitative or fuzzy nature of the 
human way of deciding has encouraged us to make an attempt at developing 
fuzzy systems that would control processes of matching parking supply and 
transportation parking demand. 

3.1. Fuzzy Rule Base for Parking Facility Choice 

The type of the planned activity, time of day, day of the week, current 
congestion of a particular routes, knowledge of a city streets and parking fees, 
and potentially available parking places have significant influence on chosen 
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route between origin and destination. Every parking facility choice is 
composed of a set of vague rules. It is sometimes difficult to describe these 
rules explicitly. Drivers make their parking facility choice after comparing the 
characteristics of the alternative parking facilities (charged parking facilities, 
free parking facilities, and illegal parking "facilities"). We assume that users 
make theirs parking-choice decisions based on distance from the parking 
facility, perceived parking search time, perceived parking cost, and based on 
experience from the past. 

Users' perceived parking search times and parking fees could be 
represented by corresponding fuzzy sets. We also assume that the user has a 
certain preference for the choice of a certain parking facility. This preference 
can be "stronger" or "weaker." Moreover, could be represented by fuzzy sets. 

Only few papers used fuzzy logic in modeling urban route choice: see for 
example [0], [O], [O], [O], [O], [O], [O], [O]. Even less papers have previously 
used Fuzzy logic to model the parking facility choice [O]. 

When choosing parking facility any driver can choose charged parking 
facility, free parking facility (if any), or helshe can decide to park illegally 
(illegal parking "facility"). 

Since the fine for illegal parking can be considered like a "very very high 
parking fee", and the parking fee is zero for free-of-charge parking, in this 
paper all possible parking options have been considered like charged parking 
with different fees. In this way, we could propose a unique fuzzy logic rule 
base for all possible parking options. The fuzzy rule basis that we propose is 
the following: 

Rule 1: 
If 

Then 
else 
Rule 2: 

If 

Then 
else 
Rule 3: 

If 

Then 
else 
Rule 4: 

parking facility is CLOSE and number of previous rejections 
is LOW and duration of stay is LONG and parking fee is 
LOW 
preference to choose parking facility is VERY HIGH 

parking facility is CLOSE and number of previous rejections 
is LOW and duration of stay is SHORT and parking fee is 
LOW 
preference to choose parking facility is HIGH 

lot-searching time is SHORT and parking facility is CLOSE 
and number of previous rejections is LOW and parking fee is 
MEDIUM 
preference to choose parking facility is HIGH 
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Then 
else 
Rule 5: 

If 

Then 
else 
Rule 6: 

If 

Then 
else 
Rule 7: 

If 

Then 
else 
Rule 8: 

If 

Then 
else 
Rule 9: 

If 
Then 

else 
Rule 10: 

If 
Then 

else 
Rule 11: 

If 

Then 
Rule 12: 

If 

parking facility is CLOSE and number of previous rejections 
is HIGH and duration of stay is LONG and parking fee is 
LOW 
preference to choose parking facility is MEDIUM 

parking facility is FAR and number of previous rejections is 
LOW and parking fee is LOW 
preference to choose parking facility is MEDIUM 

lot-searching time is LONG and parking facility is CLOSE 
and parking fee is MEDIUM 
preference to choose parking facility is MEDIUM 

duration of stay is SHORT and parking fee is VERY VERY 
HIGH and enforcement is WEAK 
preference to choose parking facility is MEDIUM 

parking facility is CLOSE and number of previous rejections 
is HIGH and duration of stay is SHORT and parking fee is 
HIGH 
preference to choose parking facility is LOW 

parking facility is FAR 
preference to choose parking facility is LOW 

lot searching time is LONG and parking facility is FAR 
preference to choose parking facility is VERY LOW 

duration of stay is LONG and parking fee is VERY VERY 
HIGH and enforcement is STRONG 
preference to choose parking facility is VERY LOW 

lot searching time is SHORT and parking facility is FAR and 
number of previous rejections is HIGH and duration of stay is 
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SHORT and parking fee is HIGH 
Then preference to choose parking facility is VERY LOW 

The proposed approximate reasoning algorithms takes into account driver's 
perception of the parking facility location, duration of the parking search time, 
duration of stay, driver's perception of the requested parking fee, as well as 
gained experience in using specific parking facility. 

3.2. Fuzzy rule base for updating the parking fee 

We already mentioned that in order to have "fair negotiation" between 
agent-drivers, and agent-parking facilities we assume that agent-parking 
facilities also use experience and intuition in decision-making process. When 
describing different decisions made at various stages of a process, human 
beings prefer to use qualitative expressions instead of quantitative ones. We 
assume the same for agent-parking facilities. In this way, the strategies of the 
agents can be formulated in terms of numerous descriptive rules. 

We assume that the following very simple fuzzy rule base can 
appropriately describe agent-parking facility behavior. 

Rule 1: 
If demand for parking is LOW 
Then parking fee is LOW 

Else 
Rule 2: 

If demand for parking is MEDIUM 
Then parking fee is MEDIUM 

Else 
Rule 3: 

If demand for parking is HIGH 
Then parking fee is HIGH 

3.3. Fuzzy rule base for updating the enforcement 

As well as agent-drivers, and agent-parking facilities there is in our 
scenario another competing Agent - the city government. It organizes the 
enforcement, trying to allocate in optimal way the resources among the 
different demands. To this aim, the experience of previous days is useful in 
decision process. 

In this case, the following fuzzy rule base can describe city government 
behavior: 
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Rule 1: 
If 
Then 

Else 
Rule 2: 

If 
Then 

Rule 3: 
If 
Then 

demand for illegal parking is LOW 
enforcement is WEAK 

demand for illegal parking is MEDIUM 
enforcement is MEDIUM 

demand for illegal parking is HIGH 
enforcement is STRONG 

Usually, there are no sudden daily changes in parking occupancy. In other 
words, the expectation is that traffic volumes vary smoothly over days. The 
proposed approximate reasoning algorithm also shows that parking facility 
charges vary smoothly over time. Driver entering the parking facility that has 
high demand should pay more because helshe is privileged to use relatively 
scarce resource. 

4. THE CASE STUDY 

The proposed model has been applied to the case of Bari, a medium-sized 
town of Southern Italy. In Figure 2, a simplified scheme of locations and 
capacities of charged parking in the Bari CBD is shown. 
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For sake of simplicity, we assume that: 

LEGEND 
Cn = n-th parking facility; 
dist = distance of the parking facility from the center 

of CBD 

Figure 2 - Location and capacities of charged parking in 
Bari CBD 

there are two types of demand - long stay and short stay (Figure 3). From a 
field survey, it came out that the first one is for work purposes, and takes 
place from 6 to 9 a.m. with an approximately sinusoidal distribution having a 
maximum of 97 carslmin. The second one is for other purposes (shopping, 
small business, etc ...), and takes place from 8:30 to 11:30 a.m. with a 
constant value of 0.7 carslmin. The total demand from 6:00 to 11:30 is 8500 
cars; 
- at first, there are 6 charged parking facilities; 
- free parking along the streets is allowed everywhere in CBD, and inner 

lots are occupied first; 
- illegal parking is used to reach the closest proximity of destination, and it 

is influenced by level of enforcement; 
- at the beginning, level of enforcement is weak. 
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Examples of membership functions are represented in Figures 3 and 4. The 
values of attributes used in the simulation can be: 
- constant for each facility, like charged parking distances from CBD center; 
- 
variable according to the number of parked cars, like lot searching time or 

4 short long 

Figure 3 -Duration of stay (hrs) 

distance of free parking from CBD center. In the first case, it is obvious that 
the greater the number of parked cars is, the more difficult finding a lot. In the 
second case, variability is in the sense that lots closer to the CBD center are 
supposed to be occupied first, therefore the distance from the CBD center, at 
which lots can be found, increases with the number of parked cars; 
- random, like duration of stay. 

medium high Very high Very Very 
high 

b 
0 5 10 15 20 25 

Figure 4 - fee ($) 
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In Figures 5, 6 and 7, lot-searching time versus number of parked cars, 
probability density function for long stay, and distance from CBD center 
versus number of parked cars are reproduced. 

parked cars 

Figure 5 - LST vs number of parked cars 

0 2 4 6 8 10 

duration of stay (hrs) 

Figure 6 - duration of stav wobabilitv densitv function 
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~arked cars 
Figure 7 - distance of free parking facilities from 

CBD center 

According to the time interval, we find the number of cars demanding 
service and draw the duration of stay, both for long and short-stay group. 
Then, the search of a parking lot is simulated applying the proposed model; in 
this way, we obtain the parking fees for each facility and the level of 
enforcement. Fees and enforcement are updated on a daily basis 

These outcomes are shown in Figures 8 and 9, while Figure 10 reproduces 
the occupancy of facilities. If we hypothesize that a new charged parking 
facility is built in an intermediate location, the model allows us calculating the 
changes in fees. The new fees and enforcement are reported in Figure 11. It 
can be noted that the final level of enforcement is slightly lower than the 
former one, while the level of fee for the new parking facility is a low 
intermediate one, possibly due to its location. 

-9- FACILITY 2 
+++ FACILITY 3 
a FACILITY 4 
4- FACILITY 5 
-6- FACILITY 6 

I 
2 3 4 5 

Day 
Figure 8 - Updating fees 
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Figure 9 - Updating enforcement 

Similar analysis could be easily made in the case of closing some of the 
existing parking facilities, or in the cases of significant increase in current 

Choices of day 1 Choices of day 2 Choices of day 3 

Choices of day 4 
3000 1- 

Choices of day 5 
3000 

1000 

500 

0 J 

0 20 40 60 0 20 40 60 

Abscissas: Time interval 
Ordinates: Number of vehicles 

- 
- - 

FACILITY 1 
FACILITY 2 

- FACILITY 3 
- FACILITY 4 - FACILITY 5 
- - - FACILITY 6 
-ff- 

FREE 
ILLEGAL 

Figure 10 - Facilities occupancy 



Mauro Dell'Orco and DuSan TeodoroviC 

parking fees. 

Figure 11 - Updating enforcement 

5. CONCLUSIONS 

We considered the existence of dynamic parking pricing in the urban 
transportation network. Considered time unit was one day. In other words, we 
updated fees and enforcement on a daily basis. In future applications, parking 
fees could be also updated on hourly basis. Proposed agent based model has 
capabilities to show flows propagation towards parking facilities in the urban 
traffic transportation network, and dynamic parking facility occupancy, as 
well as to calculate parking search times. Our model considers that each part 
(drivers, parking facilities) act based on its local knowledge and cooperates 
and/or competes with other parts. 

Model developed allows agents that represent parking facilities to increase 
the capacity, or to significantly change parking -pricing policy, while the 
agents that represent drivers learn all the time, change their parking facility 
choices, and departure times. In our approach, parking facility occupancy is 
the result of many independent decisions made by individual agents. 

Different pricing strategies should be the part of the comprehensive 
solution approach to complex traffic congestion problems. Undoubtedly, 
dynamic parking pricing represents one of the important demand management 
strategies. 

a he proposed Multi Agent Systems approach enables exploring various 
parking choice models, as well as various pricing schemes when studying 
complex parking pricing phenomenon. For example, traffic authorities, local 
governments and private sector could introduce higher parking tariffs for solo 
drivers, or they could provide special discounts to vanpoolers. In this paper 
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we have tried to explore different parking pricing schemes, as well as to study 
the extent of previously gained driver's experience, and how does it affect 
parking facility choice. 

Obviously, parking pricing should be carefully studied in the context of the 
considered city area (suburb, down-town, residential, commercial, retail use 
areas). The main role of any dynamic parking pricing would be in reducing 
the total number of vehicle trips, and in shifting commuters to alternative 
modes of transportation. 
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Chapter 16 

MODELING TRANSPORTATION CHOICE 
THROUGH UTILITY-BASED MULTI-LAYER 
FEEDFORWARD NETWORKS 

Giulio Erberto Cantarella and Stefano de Luca 

1. INTRODUCTION 

McCulloch & Pitts (1943) devised Artificial Neural Networks (McCulloch & 
Pitts, 1943) as a model (a very crude one indeed) of the neural tissue which 
made up the neural system of any animal (from brainless insects to human 
beings). More recently, ANNs have been considered just very flexible 
analytical functions, without any further reference to the initial biological 
background. As such an ANN is no more than a vector-valued function, y = 
cp(x), defined by a serial-parallel composition of several sub-modeling real- 
valued functions, that is a Parallel Distributed Processing (PDP) model made- 
up by processing units (PUS) (often called neurons from the biological 
metaphor) connected so that input values, x, are forwarded through 
intermediate (hidden) PUS to the output PUS, which provide the output 
values, y. 
Among the several proposed types, Multi-Layer FeedForward Networks 
(MLFFNs) are the most used as a powerful tool for regression and 
classification analysis. In a MLFFN all PUS are grouped into layers, and the 
layers are sequentially ordered from the input one to the output one so that 
each PU is only connected with all those in the upstream layer (if any) and in 
the downstream layer (if any) but not with those in the same layer or in other 
layers. MLFFNs are black box models useful when no satisfactory theoretical 
paradigm is available, but their parameters may hardly be given a clear 
interpretation. 
Recently MLFFNs have been applied to travel demand analysis, say to 
analyze how user socio-economic characteristics and level-of-service 
provided by transportation supply affect demand flows. The first papers 
(Reggiani e Tritapepe, 1998; Nijkamp et al., 1996; Schintler and Olurotimi, 
1998; Shmueli et al., 1998; Shmueli, 1996; Mozolin et al., 2000) addressed 
different demand analysis issues (trip generation, trip distribution and modal 
split) with satisfactory results. On the other hand all these papers have been 
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calibrated1 on aggregate data, hence they model demand flows, rather than 
disaggregate user choices, as in random utility models (RUMs) commonly 
adopted for choice modeling within a an econometric framework (Ben-Akiva 
and Lerman, 1985; Cascetta; 2001; Train, 2002). Hensher and Ton (2000), 
more recently, have proposed an alternative approach based on MLFFNs 
calibrated on disaggregate stated preferences data (i.e. simulated choice 
contexts have been proposed to users). They have applied it and obtained 
results have been compared with RUMs. 
Following an approach similar to the one of Hensher and Ton (2000) the 
authors have applied MLFFNs to simulate mode choice in an extra-urban 
context, by calibrating them against real data (Cantarella and de Luca, 2004). 
Results reported in all these papers show that proposed MLFFNs, with one 
intermediate (hidden) P U  layer connecting inputs to the output PU layer can 
be a feasible and effective tool for travel demand analysis, their effectiveness 
being only slightly improved by increasing the number of intermediate layers. 
MLFFNs may in same cases outperform commonly adopted RUMs, but, the 
advantages of their application for travel demand forecasting demand may be 
argued since no clear interpretation of parameters is possible, differently of 
common practice RUMs. 
This paper presents the application of MLFFNs with a layout different of the 
one used in literature, including explicit utility specification through a further 
intermediate (hidden) layer with a processing unit for each alternative. This 
way, both the utility function and the choice function are explicitly and 
separately specified, as in RUMS within an econometric framework. 
Moreover, utility parameters may be given an interpretation, useful for project 
appraisal. 
After this section, the paper is organized as follows. Section 2 introduces the 
main notations and definitions, section 3 describes the proposed utility-based 
Multi-Layer FeedForward Networks for choice modeling, section 4 shows the 
models specified, the results of an application to a real case study, and the 
comparisons with a Hierarchical Logit model. Section 5, finally, summarizes 
the main conclusions and reports some research perspectives. 
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2. NOTATIONS AND DEFINITIONS 

In this section Multi-Layer FeedForward Networks (MLFFNs) are briefly 
described mainly to introduce definitions useful in the following sections. 

2.1 Description of MLFFNs 

In broad sense, a MLFFN is a vector-valued function, y = cp(x), which may be 
considered a special type of Parallel Distributed Processing (PDP) model. As 
such, PDP model specifies a vector-valued function, y = <p(x), through the 
serial-parallel activation of processing units (PUS), each described by a real- 
valued function. At each PU outputs from upstream PUS (if any) are 
processed resulting in an output which is forwarded to downstream PUS (if 
any). From such a process, input values, x, are forwarded through 
intermediate (hidden) PUS to the output PUS, which provide the output 
values, y. Output processing units supply their outputs to the model-user; 
conventionally inputs are also represented by input processing units which 
just receive their inputs from the model-user and forward them to the 
downstream PUS without any transformation (without performing any 
process at all). All the other PUS are called intermediate (hidden). 
At each PU k first a weighted combination of inputs xj, received from each 
upstream PU j, is carried out: zk = Cj wjk xj + ,bk, where wjk is the weight given 
to connection (j,k), bk is a constant (usually called bias), zk is the result of the 
combination. Then, the output value yk is computed from the result of the 
linear combination, zk , through a function (usually called activation function) 
and is forwarded to downstream PUS, (see Figures in section 3.2 for an 
example). 
A Multi-layered FeedForward Network (MLFFN) is obtained when all PUS 
are grouped into layers, and the layers are sequentially ordered from the input 
one to the output one so that each PU is only connected with all those in the 
upstream layer (if any) and in the downstream layer (if any) but not with those 
in the same layer or in others (see Figure 1, in section 3.2). This architecture 
is the most used one for classification and (non-linear) regression analysis. 

2.2 Application of MLFFNs 

After input and output PUS have been given a meaning, the speciJication of a 
MLFFN requires the definition of the number of hidden layers, the number of 
PUS for each layer, the activation function for each PU (usually all PUS in the 
same layer have the same function), linear, logistic or hyperbolic tangent 
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being the most used types. Usually, the parameters of the activation functions 
are chosen by the model-builder, so far the parameters to be calibrated against 
a sample of observations (usually called training data-set) include one weight 
for each connection and one bias for each PU except the input ones. Due to 
the high number of parameters over-fitting may well occur (and calibration 
techniques should be designed also taking into this issue). 
The calibration of parameters can be performed by minimizing any distance 
between observed and predicted outputs; usually Euclidean distance is used, 
i.e. the (mean) sum of the square of differences (MSE). In this case a (local) 
minimum can be found through carefully designed gradient methods (such as 
the back-propagation algorithm that duly exploits the structure of the MLFFN 
by backwards updating weights and biases from the output layer to the input 
one). To improve convergence several copies (usually called number of 
epochs) of the calibration data-set are actually used for calibration; however it 
is well-known that an excessively high number of epochs may lead to over- 
training. Moreover, due to the existence of several local minima the obtained 
solution can be greatly affected by the starting values of weights and biases, 
thus the minimization algorithm is applied several times (usually called 
number of repetitions) each with a different initialization of 
parameters.Among all the solution obtained by this way one is chosen, for 
instance, the one with the least value of MSE computed over the calibration or 
the validation data set. 
The validation of a calibrated MLFFN is very relevant due to the high number 
of parameters as well as its flexible structure. At this aim, as already said, 
some observations (hold-out or validation sample) are usually taken aside to 
check whether generalization vs. reproduction of observations is obtained. 
Cantarella and de Luca (2003) address all the above issues in details, with 
respect to the use of MLFFN for choice modeling. 

3. MODEL SPECIFICATION 

After a brief introduction to choice models for travel demand analysis, this 
section describes the proposed utility-based Multi-Layer FeedForward 
Networks for choice modeling, according to the definitions and notations 
previously introduced. Reference is mainly made to transportation mode 
choice, but the same approach can be followed to simulate choice of 
destination, of route, etc. (or choices in contexts different of transportation). 
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3.1 Choice models for travel demand analysis 

This subsection presents a brief and formal description of choice models for 
travel demand analysis. In a broad sense a choice model tries to capture how 
attributes, x, such as level-of-service features (measured for the current state 
or assumed for a design scenario) and user socio-economic characteristics 
affect choice fractions, p: 

Utility-based choice models express the relation between attributes and choice 
fractions by explicitly introducing a (systematic) utility value, v, for each 
choice alternative as a function of attributes: 

v = v(x)utility function 
p = p(v)choice function 

The meaning of the systematic utility value depends on the framework within 
which the choice model is embedded, for instance the mean value of 
perceived utility considered as a random variable within random utility 
theory. Utility-based choice models allow to give an interpretation to some 
parameters of the models, useful for project appraisal. 
For each choice alternative, m (for instance transport mode: car, bus.. .), the 
systematic utility is often specified as a linear combination of attributes: v, = 
Cj 6 xmj, where fi  are duly defined parameters to be calibrated against a set of 
observations, commonly assumed generic regard to choice alternative. Of 
course the choice function, p = p(v), may well contain other parameters to be 
calibrated. Behavioral choice models, such as RUMS, which are derived from 
explicitly assumptions about user choice behavior, are distinguished from 
non-behavioral choice models, such as MLFFNs. 

3.2 Utility-based MLFFNs for choice modeling 

This paper deals with the specification of MLFFNs for choice modeling. The 
proposed lay-out is made-up by two intermediate layers besides the input and 
output ones (figure I), expressing the combination of two functions, 
according to the utility-based approach introduced above: 

v = v(x)utility function: from layer 0 to layer 1 
p = p(v)choice function: from layer 1 to 3 through 2 
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input utility hidden output 
layer layer layer layer 

Figure I .  utility-based MLFFN architecture 

[0] Input layer. This layer contains one PU mj for each attribute j (for 
instance: travel time, monetary cost, . . .) and each mode m, it simply forwards 
the input value xmj (from the data-set given by the model user) to downstream 
PUS, without processing it. 

[I] Utility layer. This layer contains one PU m for each mode m, which only 
receives input values from the upstream input PUS mj corresponding to the 
same mode m (figure 2). So far the input and utility layers are not fully 
connected. 
Assuming the identity function as activation function, yr(.) , the output, v, , is 
given by a linear combination of attributes: 

where 
pmj is the weight associated to the connection between input PU mj (attribute j 
for mode m) and utility PU m; 
ASA, is the bias (constant) associated to utility PU m (named after Alternative 
Specific Attribute from econometrics). 



Modeling Transportation Choice through Multi-Layer Feedforward Networks 

The provided output vm is formally analogous to commonly adopted utility 
function, quoted in the previous sub-section. Once parameters such as weights 
and biases have been calibrated they may be given an interpretation. 

[2] Hidden layer. The number of PUS in this layer is defined during the 
model-building stage. Each PU n in this layer is connected to (receives an 
input from) each PU m in the utility layer (figure 3). Assuming an activation 
function do ) ,  common to all PUS in this layer, the output, y,, is given by: 

where 
ym, is the weight associated to the connection between utility PU m (for mode 
m) and hidden PU n; 
en is the bias (constant) associated to hidden PU n. 

PU: n 

It should be noted that the calibrated weights and biases in this layer should 
hardly be given a clear interpretation. 

[3] Output layer. This layer contains one PU m for each mode m, which is 
connected to (receives an input from) each PU n in the hidden layer. 
Assuming an activation function with values in the range [0,1] and 
common to all PUS in this layer, the output, p,, is given by: 
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where 
4, is the weight associated to the connection between hidden PU n and 
output PU m (for mode m); 
bm is the bias (constant) associated to hidden PU n. 

PU. 

- 
Figure 4. 

It should be noted that the calibrated weights and biases in this layer should 
hardly be given a clear interpretation. 
According to the proposed lay-out allows both the utility function and the 
choice function are explicitly and separately specified, as in random utility 
models (RUMS) within an econometric framework. 

4. APPLICATIONS 

This section presents a comparative analysis of some instances of the 
following modelling approaches: 

[I] utility based (partially connected) multi-layer feedforward network models 
(MLFFN-lJ'B), 
[2] multi-layer feedforward (fully connected) networks(MLFFN-FC), 
[3] a closed form random utility model (RUM): hierarchical logit (HL). 

A common calibration data-set has been used, as well as the same validation 
data-set (hold out sample). 

4.1 The case study and the calibrationlvalidation data sets 

The proposed models have been tested against real data (already used to 
analyze several choice models by Cantarella and de Luca 2002, 2004). The 
whole database contains 2,808 interviews referring to journeys of students 
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from outside the city of Salerno towards (the country-side location of) the 
University of Salerno, Italy. Although four transport modes may be available: 
car-as-driver, car-as-passenger, car-pool and bus, only users that have 
available all transport modes have been considered to make clearer the 
analysis by avoiding the effects of mode availability. In such a context car-as- 
passenger is no longer an available transport mode, the observations become 
944, and mode market share are: car-as-driver (36.9%), bus (5.3%), car-pool 
(57.8%). 
In order to avoid overfitting and overtraining in MLFFNs calibration, and to 
carry out more effective comparisons between RUMS and MLFFNs, the 
whole data set has been split into a calibration data set and a validation one, 
through random sampling. According to two criteria the calibration data set 
must large enough (i) to reproduce observed survey market shares (within a 
small error), (ii) to allow a stable estimation of RUM utility parameters. If 
either criterion is not satisfied, uncorrected model calibration and ineffective 
comparisons may result. 
Analyzing the survey, as showed in Figure 5, the mode market shares become 
stable with about 700 observations (75%), which have been used to calibrate 
the models (almost the same size has been obtained by repeating 10 times 
such analysis with different observations). The remaining 244 observations 
have been used as validation data set. Clearly the mode market shares from 
the validation data set may be slightly different of those from the calibration 
data set. 

- - car - bus - car-pool 

Figure 5.  Mode share against number of observations 

Origin (and destination) zoning was mainly city based. Several type of 
attributes have been used as showed in table 1. Levels of service (LoS) 
attributes were computed through a transportation network model. 
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Table 1 .  Attributes used in models specification 
Type Car Bus Car-pool 

Level of service (LoS) 
Time Trip time (h) Continuous a a a 

Cost Trip monetary cost (e) Continuous a a a 

Socio-economic (SE) 
Qen 1 if gender is female - Binan, a - . .. .., 
Activity related and Land Use (AC+LU) 
ACTfe,, Activity time length (h) Continuous a 

Freq Weekly trip frequency - Discrete - a 

Others 
ASA Alternative s~ecific attribute - Binarv a a 

4.2. Indices for model validation and comparison 

The effectiveness of a model may be analyzed with respect to: 

- interpretability: parameters may be given a clear interpretation, 
- reproducibility: observed choices are well reproduced with reference both 
to calibration and validation data sets. 

Moreover, the model should be able to generalize to other data sets, 
describing design scenarios (generalization). It is also relevant taking into 
account the efficiency of the model, namely computing resources needed to 
calibrate and to apply it. For RUMS statistical significance of parameters 
should also be tested. All the models developed have been compared by 
introducing descriptive indices calculated both for the validation data set. 

aggregate indices 
[Psi,,,-Pre,d for each transport mode the differences between mode shares 

observed and simulated by the model have been evaluated. 
MSEsh,, is the mean square error between observed and simulated mode 

choice shares, this index takes a null value over the calibration data-set for 
any Logit model calibrated through maximum likelihood estimation (see for 
instance Train, 2002), thus it is useful only when referred to the validation 
data-set andlor to other choice models. 

disaggregate indices 
right is the percentage of users in the sample whose observed 

choices are given a probability greater than 0.90 (or any given threshold not 
less than 50%) by the model. 
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%clearly wrong is the percentage of users in the sample for whom the model 
gives a probability greater than 0.90 (or any given threshold not less than 
50%) to a choice different from the observed one. 

%unclear = 100 - (%clearly right + %clearly wrong) the percentage of users for 
whom the model does not give a probability greater than 0.90 (or any given 
threshold not less than 50%) to any choice. 

Fitting Factor (FF) = C,,, p"muser / Nus,, E [0,1], with FF = 1, meaning 
that the model perfectly simulates the choice actually made by each user, say 
with ps'muser = 1. Let MAE be the mean absolute error, it clearly turns out 
M A E = 2 x ( l  -FF). 

%right is the percentage of users in the calibration data-set whose 
observed choices are given the maximum probability (whatever the value) by 
the model; clearly it is not less than %clearly righ,. This rather meaningless index 
is very often reported when describing RUM applications, thus will be 
reported in this paper too. 

For RUMs only, consolidated indices and statistical tests have been also 
adopted: t student and pseudo rho2. 

All the results presented have been obtained through commercial software 
packages, HieLow (STRATEC) for RUMs and MATLAB@ for MLFFNs. 

4.3 Utility-based MLFFNs: analysis and comparisons 

This section reports results of an application of two types of MLFFNs, non 
utility based vs. utility based (fully vs. partially connected), and HL (RUM) to 
the data set described above. For each choice model two different 
specifications are analysed, depending on hypotheses on input variable sets: 

[I] MLFFN/HL with only Level of Service attributes (LoS); 
[2] MLFFN/HL with Level of Service attributes, socio-economic and 
activity related attributes (LoS + SE + AC); 

RUM 

HL[1] 

H L P ]  

MLFFN 
non-utility based 
MLFFN [ I ]  

MLFFN [2]  
[I] Los 
[2] LoS+SE+AC 

MLFFN 
utility based 
MLFFN- U B [ l ]  

MLFFN-UB[2] 
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Such specifications have been adopted to understand the impact of different 
combinations of variables on model goodness of fit and to let an easier 
interpretation of utility weight values obtained from MLFFN-UB calibration. 

4.3.1 Utility based MLFFNs (MLFFN-UB) 

To specify a MLFFN model the following main operational issues should be 
defined: calibration and validation data-sets, error function to minimize, 
parameters (weight and biases) initialization technique, input attributes, 
number of epochs and of starting conditions (initializations), selection of 
MLFFN architecture, computation of the parameters for the selected MLFFN 
architecture. All these issues have been addressed following the procedure 
(presented in details by Cantarella and de Luca, 2004) summarized in the 
figure 6, that easily allow to make operational a MLFFN model, once inputs 
and outputs have been defined. 
As regard split of survey data-set into calibration and validation data-sets 
(Step 0), a 75% threshold proved to be effective, thus the remaining 25% of 
the survey data set has been used for validation, as already said. Concerning 
calibration algorithm issues (Step 2), 120 repetitions (initializations) and less 
than 1000 epochs allow to cover the solution space, and to obtain good 
reproduction capabilities as well as to minimize the effects of over-training, 
whichever the architecture is. Finally, the most efficient MLFFN architectures 
have been selected (step 3) by considering one hidden layer and increasing 
number of processing units (PUS = 15, 30,45, 60), since some results suggest 
that two hidden layers do not improve effectiveness; several activation 
functions have been tested in the hidden layers and in the output one. As 
regard utility based MLFFN-UB the additional utility layer has been 
characterized by linear activation function (see Figure 7 in next section). 
Finally, several calibrations have been carried out by varying the epoch 
number (50, and from 100 to 1000 by 100). Once a MLFFN architecture has 
been selected, the set of parameters with the best value of error function 
computed on the validation data set has been chosen (Step 4). 
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MLFFN OPERATIONAL ISSUES I RELATED PROBLEMS SOLUTIONS ADOWED 

SPLIT OF SURVEY DATA-SET aggregate reproducibility of the 
phenomenon 

calibration data set definition : .maximum information 
validation data set definition : significant validation data-set I II 

................................................................. 
DEFINITION OF NUMBER OF EPOCHS 

and NUMBER OF STARTING CONDITIONS 
............................................................... 

................................................................. 
CALIBRATION ALGORITHMIC ISSUES ] performance function definition ------- 

............................................................... 

activationfunctions 

................................................................ 

4 : 

- calibration data set = 75% 
- validation data set = 25% I 

parameter initialization technique -Mean Square Emr WSE) 
- Nguyen-Widrow approach 
-trial and e m  pmcedure 

- uial and ermr procedure 
- 120 different starting jmints 1 

6 ;  : 

- trial and error procedure 
(see sections below) 

. over-fitting (attributes redundancy) 

................................................................. 
COMPUTATION OF PARAMETERS FOR 

i THE SELECTED MLFFN ARCHITECTURE 
- least validationem 

................................................................. 
Figure 6. Operational issues, related problems and solutions adopted 

: ............................................................... ; 

As already highlighted two different models are proposed, with only LoS 
attributes (MLFFN-UB[l] with 6 input processing units) and with LoS, SE 
and AC attributes (MLFFN-UB[2] with 9 input processing units). The 
hyperbolic tangent activation function in the hidden layers and sigmoid in the 
output one have lead to the best results. Figure 7 proposes the two 
architectures specified and calibrated. Main characteristics of specified utility 
based MLFFN models are showed in table 2. 
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Figure 7. Utility based MLFFN architecture (pk E [O,1]) 

As regard MLFFN-UB[l], 60 processing units in the hidden layers and 1000 
epochs have been necessary to get satisfactory reproducibility and, at the 
same time, to avoid over-training and over-fitting. By introducing more 
attributes, MLFFN-UB[2], the number of processing units in the hidden layer 
decreases while the same number of epoch are necessary to calibrate model 
parameters. 
The main experimental evidences are reported in table 3 and summarized in 
figure 8. 

Table 2. Main characteristics and training outputs for MLFFN-UB models 

Survey = 944 MLFFN-UB[l] MLFFN-UB [Z] 
rn 

Attributes LoS LoS+SE+AC 
Input PUS 6 6+1+2 
Output PUS 3 3 
Hidden lavers 1 1 
Hidden PUS 60 30 
Calibration set (75%) 700 700 
Validation set (25%) 244 244 
# Epoch 1000 1000 

Both architectures show good capabilities in reproducing market shares 
prediction. Such a result is confirmed by analyzing disaggregate indices, see 
%rlearly and %,,rl,,,, where unclear predictions number is over 50% of all 
hold-out sample. 
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Table 3. Main comparison indices for MLFFN-UB models 
MLFFN-UB[l] MLFFN-UB[2] 

rn 
Attributes hS+SE+AC 

By introducing more attributes, SE and AC attributes, the most effective 
architecture shows a slightly better fit allowing to achieve more than 40% of 
clearly right predictions, a better value of FF and very satisfactory market 
shares. As expected, SE-AC attributes introduce more parameters that allow 
segmentation of users and, as a consequence, a better reproduction of single 
user choices (see r ight) .  On the other hand it should be noted an increase 
of clearly wrong predictions due to the segmentation is introduced. 

mse MS ,2.77E-031 I - 

Figure 8. MLFFN-UB[l] vs 
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Both models show similar value of indices, but the MLFFN-UB[2] 
outperforms MLFFN-UB[l], allowing to minimize market shares error and to 
obtain more clearly right predictions, without a significant increase of clearly 
wrong predictions. Such results are not surprising and, one more time, stress 
how choice models are influenced by the adoption of SE attributes. It is worth 
noting that the value of %right for MLFFN-UB[l] is better than the value for 
MLFFN-UB[2], although only slightly; this result confirms that %right is 
poor index. 
As regard interpretation, an analysis of weight values is proposed for both 
models, MLFFN-UB[l] and for MLFFN-UB[2]. As described in section 3.2, 
the connections weights between input layer and utility layer may be 
interpreted as coefficient of systematic utility. These values, computed after 
calibration, represent the parameter that we wish to analyze. It should be 
noted, finally, that we compute specific coefficients for each attribute, and not 
generic as RUMS. It should be remembered that calibrated weights from input 
to utility layer include a scale factor, due to the identity activation function. In 
other words, if all these weights are multiplied by a common factor a; the 
MLFFN still provides the same results if all the weights of the connections 
from the utility layer are divided by the factor a. 
As regard MLFFN-UB[l], in table 4, for each transport mode the ratio 
between weight associated to travel time and weight associated to travel cost 
is reported. All the ratios assume reasonable values and positive sign, 
meaning that all weights are negative according to what we expected. In 
particular, car has the least ratio, which is doubled ratio for bus and increases 
up to 6.0 for car-pool. Such results highlight that travel time is much more 
relevant only for car-pool, and this is consistent with a transport mode where 
users divide travel costs (in the case study 2.5 students on average share the 
same car) and travel time depend on destination of each passenger and, 
therefore, can be much longer than car. Analogous remark may be extended to 
bus, where travel costs are lower than car but greater than car-pool. 
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ers 
MLFFN-UB[l] Transport 

ratio car bus car-pool 
Rm.IScx (euroh) 0.17 0.34 6.0 

Analyzing MLFFN-UB[2], timelcost ratios sensibly change for bus and car- 
pool (see table 5). As regard car, the ratio decreases but not significantly. 

Table 5. MLFFN-UB[21 utility functions parameters 
MLFFN-UBr21 Trans~ort - - 
El mode ix) 
ratio car bus car-pool 
$dpcx (eurolh) 0.1 1 7.29 4.5 

B e e n d e d S ~ x  0.15 

B a c d k x  0.36 

f l f ~ d f l c x  0.15 

Such results are a consequence of SE-AC attributes that allows to interpret 
better the choices introducing segmentation between users. The main 
consequence regards bus timelcost ratio that assumes a higher and more 
reasonable value. It allows, in fact, to simulate in a more realistic way the 
travel time "disutility" that is perceived by transit users. 

4.3.2 Comparisons with MLFFNs non utility-based 

This section presents results for two non utility-based MLFFNs, with only 
LoS attributes (MLFFN[l] with 6 input processing units) and with LoS and 
SE attributes (MLFFN[2] with 9 input processing units). The hyperbolic 
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tangent activation function in the hidden layer and sigmoid in the output one 
have lead to the best results. In figure 9 and table 6 are showed the 
architectures and the main characteristics of the most effective MLFFNs. For 
both models 30 processing units in the hidden layers and 1000 or 500 epochs 
have been sufficient to avoid over-training and over-fitting 
Following the procedure summarized in figure 3 the main experimental 
evidences are reported below (table 7 and figure 10). 
Both architectures show good capabilities in reproducing market shares 
prediction, considerations similar to those in the previous sub-section hold in 
this case too. 

I car / 

[bus) 

[c-pooll 

Table 6 Main characteristics and training outputs for MLFFN models 
MLFFN[l] MLFFN[2] 

Survey =944 0 0 
Attributes 

Input PUS 

Output PUS 

Hldden layers 

Hldden PUS 
Calibration set (75%) 

Validation set (25%) 

Epoch 

LoS LoS+SE+AC 

6 6+1+2 
3 3 

1 1 
30 30 
700 700 

244 244 
1,000 500 
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Table 7.  Main comparison indices for MLFFN-UPC models 
MLFFN[l] MLFFN[2] 
0 BBI 

%lear~y right 38.9% 41.4% 
%unclear 54.5% 50.4% 
%clearly wrong 6.6% 8.2% 

[Psim-Preadcar 1-2.4% -2.3% 

0% 10% 23% 30% 40% SOX 60% 70% 

Figure 10. MLFFN[l] U vs MLFFN[2] 

More interesting is the comparison between the best MLFNN non-utility 
based and the best MLFFN-UB (see figure 11). The two models are 
characterized by a different architecture that leads to a considerable different 
number of parameters. In MLFFN[2] the weights are 270 (9x30), while in 
MLFFN-UB[2] the weights are only 99 (9+3x30). 
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Although MLFFN[2] is characterised by much more parameters, the utility 
based approach guarantees the same capabilities in reproducing disaggregate 
choices. The two models show very similar performances as regard clearly 
right prediction, and %right, and MLFFN-UB[2] reproduces market shares 
slightly better. 
In conclusion, the utility based MLFFN model does not suffer from the 
smaller number of parameters. The utility layer, presumably, combined to SE 
attributes allow a better segmentation of user choices. 

Figure 11. MLFFN[2] vs MLFFN-UB [2] 

4.3.3 Comparisons with Random Utility Models (RUM) 

The random utility model specified is a Hierarchical Logit model (HI,), which 
overcome the assumption of non-correlation of perceived utility of the 
Multinomial Logit model, still retaining a closed analytical expression. The 
expression of the overall choice probability of the generic alternative pk is 
obtained as the product of probability p ~ ,  of choosing elementary alternative k 
within the predefined group (or nest) g containing m, alternatives (expressed 
by a MultiNomial Logit model with parameter @, multiplied by the 
probability p, of choosing group g (expressed by a MultiNomial Logit model 
with parameter 8,). The choice probability for alternative k is: 
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where: 
Y = 1 exp( vmg /6) is the so called inclusive utility also known as 

m,Eg 

logsum variable; 
6 = 8 18, E [0,1] is the ratio of parameters B and 0, associated to the two 
choice levels. Parameters to calibrate are those with utility function, say P,, 
plus parameter SE [0,1]. 

Other different RUMS may be proposed (such as Probit or Mixed-Logit), 
they have not been considered since they do not provide significant 
improvements of model effectiveness, but their calibration is much more 
computer demanding (requiring simulation) rather than closed-form ones. 
In our case study, the utility structure and the choice mechanism 
corresponding to a single-level HL models are represented by the choice tree 
shown in table 8, where, car-pool and bus perceived utility are correlated, as 
confirmed by results. The main characteristics of the model specified are 
briefly described below. 

Table 8. Main characteristics of HL models 
Survey =944 H W I  H W I  

Attributes LoS+AsA Los+SE+AC+ASA 
Input attributes 8 11 
Output 3 3 
Calibration set (75%) 700 700 
Validation set (25%) 244 244 
Log-likelihood (8= 0 ) -769 -769 

@ = f )  -485 
car-pool bus 

-45 1 
car 

0.36 0.41 

- trip monetary cost -1. I4 -1.18 

All coefficients are statistically significant and assume realistic values (table 
9). In this case the role of SE and AC attributes is relevant. 
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Table 9. Calibration results for HL models 

HLUI HLPI 
Attribute X Mode ratio &fflC,, ratio fldflc,,, 

@ Time Trip time car, car-pool, bus 0.37 0.42 

Gen 1 if gender is male car 1 .09 
@ 

ACTlenght Activity time length car 1.38 
b 
4 
Cj Freq Weekly trip frequency car-pool 
A 

0.22 

ASA Alternative specific attribute car 1.73 2.70 

2 ASA Alternative specific attribute bus 1.78 0.37 

The comparisons between the MLFFNs and RUMs have been carried out 
following the criteria introduced and already used in the previous sub- 
sections: reproducibility and interpretability. 
As regard reproducibility, the main evidences are reported in table 10 and 
figure 12. Both MLFFNs (MLFFN[2] and MLFFN-UB[2]) clearly 
outperforms HL model as regards %clearly right, with similar %clearly wrong 
predictions. As regards market shares prediction, the MLFFNs show slight 
better capabilities. This result is noteworthy since one of the main features of 
RUMs is the capability to reproduce aggregate market shares. Analogous 
considerations may be carried out by analyzing %right and FF indices. The 
results and analysis proposed confirm the goodness of MLFFN approach. 

As regard interpretation, an analysis of weight values is proposed for both 
models, MLFFN-UB[1] and MLFFN-UB[2], each one compared with the 

Table 10. Main companson indices for HL model 
HLPI MLFFN[2] MLFFN-UB[2] 

n la 
%clearly rrphr 13.1 % 41.4% 41 .o% 
%unclear 81.6% 50.4% 51.2% 
%clearly wronn 5.3% 8.2% 7.8% 
[Psun-Pread car 

[Ps,-P,,I]c~p' 
[ P ~ , - P , ~ ] ~ " V .  
MS-mse 

-2.1 % -2.3% -2.8% 
1.4% -0.9% +O. 1 

1% +3.2% ~ 2 . 7 %  
2.13E-3 1.60E-3 1.40E-3 

FF 61% 69% 69% 
%nght 73% 76% 76% 
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correspondent HL. It is not worthless to notice that the two approaches, 
MLFFN vs HL, are characterized by a significantly different number of 
parameters. 
With reference to MLFFNs, in table 11 reports the ratio between weight 
associated to travel time and weight associated to travel cost for each 
transport mode. It should be remembered that LQS attributes are generic for 
HL, thus the correspondent ratios do not depend on the mode; an attempt has 
been made to calibrate HL models with mode specific LQS coefficients, but 
obtained results are rather poor: values of coefficients do not even show the 
expected signs. 
To allow a comparison, for MLFFN-UBs, it has been computed a weighted 
mean ratio by averaging the timetcost ratios, each multiplied by the 
correspondent market share (Pk): 

Mean f i t  PC] = & [ A t  A] P k  b'k E IM 
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Figure 12. MLFFN[2] vs MLFFN-UB[2] vs HL[2]. 
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Analysing models with LoS attributes only, [I], it can be noted that the value 
of time of HL[l], 0.37 e/h, is almost equal to the value of time for bus in 
MLFFN-UB[l], but is twice the value for car and much lesser than the value 
for car-pool. This difference still remains significant when it is compared with 
Mean &/PC] = 1.14 €/h (= 3~0.37). This result is consistent with 
considerations already made in sub-section 4.3.1. 
Analysing models with LoS and SE attributes, [2], the value of time of HL[2], 
0.42 €/h, is greatly different of values in MLFFN-UB[2], four times greater 
than the value for car, and at least ten times lesser than the value for bus and 
car-pool. This difference is less significant when it is compared with Mean 
[,&I PC] = 0.98 e/h (= 2.3x0.42). Not surprisingly the values for SE attributes 
are quite different, in particular, those for gender and activity length are much 
lesser. 
All these considerations suggest that, as already pointed out, the role of SE is 
relevant; in addition it seems that MLFFN-UBs support an explanation of 
observed choices based more on LoS attributes than SE. This issue is surely 
worth of further analysis based on more experimental evidences. The case of 
MLFFN-UBs with generic LoS attributes will be addressed in a future paper. 

5. CONCLUSIONS AND RESEARCH PERSPECTIVES 

Recently attempts have been made to apply MLFFNs to travel demand 
analysis. The first papers on this topic followed an aggregate approach trying 
to simulate directly demand flows, thus resulting into not very effective 
models. More recently, Hensher and Ton (2000) have suggested a 
disaggregate approach trying to simulate user choices as in consolidated 
modeling approaches to travel demand analysis, based on random utility 



366 Giulio Erberto Cantarella and Stefano De Luca 

models (RUMs). In a previous paper (Cantarella and de Luca, 2004) the 
authors have described in details how a MLFWN can be used for choice 
modeling to support travel demand analysis, with rather effective results when 
compared with RUMs. Still, MLFFNs, adopted in literature, should be 
considered black-box models that do not allow any kind of parameter 
interpretation, thus making rather arguable their application to support 
demand forecasting for project appraisal. 
This paper has presented utility-based MLFFN models (MLFFN-UBs) 
different of those existing in literature, since they explicitly include utility 
specification through an intermediate layer with a processing unit for each 
alternative. This way, both the utility function and the choice function are 
explicitly and separately specified, as in RUMs within an econometric 
framework. Moreover, parameters of the utility function may be given an 
interpretation useful for project appraisal. Calibrated utility parameters for the 
analyzed real case study show signs as expected and reasonable values. 
The proposed MLFFN-UBs architecture has fewer parameters than other 
MLFFNs, still the utility-based approach guarantees the same capabilities in 
reproducing disaggregate choices and shows better performances in market 
shares simulation. It is worth noting that the more the parameters are the more 
likely the over-fitting may raise up. With regard to the analysed case study, 
proposed MLFFN-UBs outperform RUMs. 
So far reported results support the use of MLFFN-UBs both from a theoretical 
and applicative point of view: MLFFN-UBs are able to generalize 
satisfactorily mode choices, simulating aggregate mode shares as well as 
single user mode choice, and may outperform a (closed form) RUM with 
same attributes. 
Object of a future paper will be a formal analysis of conditions (if any) 
assuring that a duly defined MLFFN-UB may include as a special case a Logit 
model (or other RUMs) and an in-depth comparison with fully connected 
MLFFNs with respect to common mathematical features. Some issues remain 
open, such as the analysis of mathematical features, continuity and 
monotonicity, of choice fractions from MLFFN-UBs against utility values, 
and how user surplus, useful for project evaluation, may be estimated within a 
MLFFN-UB approach. Calibration method seem worth of further research 
work, regarding constraints on parameter values, for including generic utility 
parameters consistently with an econometric frameworks, as well as different 
calibration function, allowing a statistical analysis of parameters estimation. 

An early and shorter version of this paper has been presented at the Fourth 
International Symposium on Uncertainty Modeling and Analysis (ISUMA 
2003), Maryland, USA. 
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Chapter 17 

HETEROGENEITY IN COMMUTER 
DEPARTURE TIME DECISION: 
A PROSPECT THEORETIC APPROACH 

Metin Senbil and Ryuichi Kitamura 

1. INTRODUCTION 

Commuter departure time choice analysis has gained importance in the 
last twenty years. Underlying this development is the desire to better 
understand the behavioral mechanisms behind peak-period road congestion. If 
these behavioral mechanisms are better understood, congestion relief 
measures may be better coupled with commuters' decision processes, thus 
will be more effective in achieving their objectives. 

The commuter departure time studies up to now can be divided into 
two mutually exclusive groups with respect to the behavioral paradigms they 
adapt (see Senbil and Kitamura, 2003). The first group of studies has been 
based on the notion of random utility maximization, and implicitly assumes 
the network conditions are known to commuters (e.g., de Palma et al. 1983, 
Hendrickson and Planck 1984, Mahmassani and Herman, 1984). The second 
group of studies relaxes this assumption considerably and acknowledges the 
roles of heuristics in human decision, and adopts the concept of bounded 
rationality proposed by Simon (1955) (e.g., Mahmassani and Chang, 1987; 
Mahmassani and Jou, 1998; Mahmassani and Liu, 1999; Jou, 2001; Jou and 
Kitamura, 2002). 

This second group of researches has generally emphasized the framing 
of the departure time choice problem where the work start time is a key 
element. An indifference band has been proposed and applied by Mahmassani 
and co-researchers to repeated departure time choices in experimental and real 
settings. Jou and Kitamura (2002) further develop a decision frame by 
incorporating certain elements of prospect theory (Kahneman and Tversky, 
1979) such as zero asset positions for reference points and differentiation of 
gains and losses. Jou and Kitamura (2002) also propose that the upper bound 
of the utility of a commute trip materializes when its arrival time coincides 
with the preferred arrival time. Incorporating this maximum utility as a 
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constraint into the empirical formulation of utility functions, however, is yet 
to be achieved. 

This line of research has been extended by Senbil and Kitamura (2004) 
to be more compatible with prospect theory. This parallels Avineri and 
Prashker (2003) who employ cumulative prospect theory and incorporate 
learning mechanisms. This study conducts an experiment on route choices 
with random travel times. For this reason, they employ two scenarios: the first 
scenario is a choice between two routes with different Normally distributed 
travel times, the second scenario is a change of the first scenario in a way that 
one of the routes yields two different mean travel times with different 
dispersion parameters probabilistic (0.5 vs 0.5). The mean travel times of both 
of the routes are same both of the scenarios. Participants of the experiment are 
repetitively subjected to one of the scenarios randomly and a selection 
between two routes has been done by them without no prior information on 
the means travel times just their accumulated knowledge of the network. This 
study attempts to improve the cumulative prospect theory, a later development 
of the original prospect theory, by injecting learning mechanism into the 
decision process. Avineri and Prashker (2003) report that increasing travel 
time variability of a route decreases a travelers sensitivity to the route, that is 
to say, participants show tendency to choose the route with high variance of 
travel times; thus increasing travel time variability of a route increases its 
attractiveness. 

The study by Senbil and Kitamura (2004) has estimated the parameters 
of two value functions associated with two decision frames, one of which was 
originally proposed by Jou and Kitamura (2002). They conclude that prospect 
theory contribute to a better understanding of commuters' departure time 
decisions by offering the framing of decisions into gains and losses. The 
study, however, leaves outside its scope the weight function, another 
important element of prospect theory. Thus this study has the aim of 
extending Senbil and Kitamura (2004) on how commuters value outcomes 
and weight these outcomes in their decision making. In this regard, both 
observed and unobserved heterogeneity is introduced into the analytical 
framework to account for possible differences in the value function, which 
evaluates arrival time at work with respect to reference points. In other words, 
different commuters are assumed to have different valuations of being late or 
early, and parts of the differences may be accounted for by their measured 
attributes (observed heterogeneity), but the rest may be attributable only to 
unobserved factors (unobserved heterogeneity). For example, some 
employees might be risk averse and depart fairly early to rule out the 
possibility of arriving late, while some might be risk seekers who leave their 
homes at times that might result in late arrivals. These differences in behavior 
must be accounted for if one wishes to predict behavioral changes in response 
to a potential policy packet which may induce departure time changes by 
commuters. 
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As in Senbil and Kitamura (2004), two alternative decision frames are 
adopted in this study to represent different ways of editing the departure time 
choice problem. These frames are different in their definitions of gain and loss 
regions, and represent two possible ways commuters may view consequences 
of arrivals at work at different clock times. Weight function is considered 
within a broader model which we name as contingency adjustment model. In 
this regard, prior and posterior probabilities are introduced. Prior probability 
is the expectation of gains as acceptable gains. As this expectation changes to 
a new one with the realized arrival time. Rigorous econometric methods are 
applied to a data set that contains three-day records of commuting for each 
respondent of a survey, conducted in Otsu City, Japan, in 2002. The study 
reveals properties of an important dimension of departure time choice as a 
decision under uncertainty, and thereby contributes to the state-of-art in travel 
decision analysis. 

2. PROSPECT THEORY 

Prospect theory is concerned with risky choices "such as whether or not 
to take an umbrella and whether or not to go to war" (Kahneman and Tversky, 
2000, p.2), which "are made without advance knowledge of their 
consequences" (Kahneman and Tversky, 2000, p.2). There are also prospect 
theory studies concerning decisions made under uncertainty such as Tversky 
and Fox (1995). The basic premise of prospect theory is that the postulates of 
utility theory developed by Von Neumann and Morgenstern (1947) are 
incomplete and consequently inapplicable (see Allais, 1953, and Kahneman 
and Tversky, 1979) in many situations. 

For example, it has been found by experiments that the choice depends 
on the position in which the decision maker is placed and whether he is to 
gain or to lose, relative to that position, by making a decision. A typical 
example is given as follows: 

Two offers are made to an individual: 
A: Receive $1,000 with a probability of 0.85 
B: Receive $800 for sure 

Although the expected utility of A is larger than that of B ($1,000~0.85 = 
$850 > $800), the individual tends to choose B, because he tends to avert risk 
when he is gaining some asset (certainty effect). If these options are turned 
reverse, taken on the negative scale with the same probabilities so that the 
individual is to lose with each alternative, then the individual tends to choose 
alternative A. The individual becomes a risk seeker when he is to lose some 
asset, or, is in a loss region. He then prefers a probabilistic loss to a certain 
loss, even when the former has a larger expected loss. 

In order to address this, and many other flaws of expected utility theory 
as given in detail by Kahneman and Tversky (1979), they have developed 
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prospect theory. Editing, evalution and choice are subsequent stages of 
prospect theory. In the editing phase, prospects are organized by coding, 
combination, segregation and cancellation. The editing phase produces a 
subset of initial prospects. During coding, prospects are separated into gain 
and losses using the reference point, a neutral position that "[corresponds to 
current asset position, in which case gains and losses coincide with the actual 
amounts that are received or paid" '(Kahneman and Tversky, 1979, p.276). 
The evaluation phase is characterized with two scaling functions, i.e., the 
value and weight functions. The value function scales a deviation from an 
asset position (gain or loss) to a subjective value. The weight function rescales 
the objective probability to a subjective probability. Finally in the choice 
phase, individual chooses the prospect which has the highest value. 

The properties of the value function (Figure 1) can be summarized as: 
1. The domain of value function is defined as the deviation from a 

reference point, which is the zero asset position. 
2. The value function is concave for gains and convex for losses. 
3. The value function is steeper for losses than for gains. 

4 
LOSSES 

Figure 1. Typical value function 
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Kahneman and Tversky (1992) propose the following value function: 

where x refers to the outcome expressed as a deviation from the reference 
point, A is a scale parameter for losses, and a and p are parameters for the 
gain region and loss region, respectively. 

The other major element of prospect theory, the weight function 
"measures the impact of events on the desirability of the prospects, and not 
merely the perceived likelihood of these events" (Kahmenan and Tversky, 
1979, p.?). The range of weight function, n , is normalized to the same range 
of probability. The properties of the weight function are: 

1. Weight function is an increasing function in its domain. 
2. If p is l o w a . n ( p ) > p .  

3. If p is high a n(p) < p . 
4. Subcertainty: 0 < p < 1 3 n(p)+ n(1- p )  < 1. 

4P.) d p q r )  5. Subproportionality: 0 < p, q, r < 1 2 - < - 
4 P )  4 ~ 9 )  

6. Subadditivity a: n(p + A)- n(p) lz(1)- n(1 -A) 
7. Subadditivity b: n ( ~ )  - n(0) 2 n(p + A)- n(p) 

The second and third properties of the weight function refer to 
overweighting for small probabilities and underweighting for large 
probabilities. Overweighting is evident in the case of lottery tickets, and 
represents risk seeking behavior in case of gains and risk aversive behavior in 
case of losses. The fourth property, subcertainty, implies that the sum of 
complementing probabilities, when scaled by the weight function, falls short 
of 1.0. Subproportionality represents decreasing relative sensitivity; in other 
words, "for a fixed ratio of probabilities, the ratio of the corresponding 
decision weights are closer to unity when the probabilities are low than when 
they are high" (Kahneman and Tversky, 1979, p.282). The subadditivity 
feature of the weight function implies that a difference in probability values 
affects the weight more at the extreme ends of the probability scale (i.e., 0 or 
1) than in medium probability ranges. 
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0.5 
true probability: p 

Figure 2. Typical weight function 

A functional form of the weight function is given as 

by Kahneman and Tversky (1992) with a single parameter y. Another two- 
parameter specification is proposed by Prelec (1998) as 

Different specifications of weight function including those given by Eq. 2 and 
3 are reviewed in Bleichrodt and Pinto (2000) who propose a parameter free 
weight function estimation. 

Kahmeman and Tversky estimate the parameters of value and weight 
functions by using data obtained from controlled experiments in which 
subjects are presented with a variety of packets of risky prospects by the 
rules-of-thumb proposed by Tversky and Kahneman (1992). In their 
numerous studies, Kahneman and Tversky emphasize the importance of 
experiments in the analysis of decision making by individuals as they offer 
information that cannot be captured in any of the conventional data collection 
methodologies, e.g., panel surveys, time series observation, and cross section 
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surveys. By offering subjects risky prospects vs. certain prospects 
simultaneously and having them choose one from risky prospect and one from 
certain prospects between which they are indifferent, Kahneman and Tversky 
computes the certainty equivalents of risky prospects and consequently 
estimate the parameter values of both value and weight functions by using 
indifference relationships. By using risky prospects, a and b having certainty 
equivalents c and d respectively, we can give some of these algebraic 
relationships as follows: 

The parameters of the value function are estimated by regressing the 
risky prospects on their corresponding certainty equivalents. The parameters 
of the weight function, on the other hand, are determined by regressing the 
probability of a prospect on the ratio of certainty equivalent to the prospect. 

3. DECISION FRAMING 

A commuter's choice of departure time is contingent on the arrival at 
the workplace relative to reference time points that constitute the framework 
for his decision (Jou and Kitamura, 2002). Namely, a departure time is 
assumed to be chosen using reference time points around expected arrival 
times. Although there are many studies in the transportation literature that 
recognize the uncertainty and risks involved in commuting (for example, 
Bonsall, 2001, Avineri and Prascker, 2003), there has been no rigorous 
examination of how the commuter views the possibilities of being late or 
early for work. Also, there have not been many studies that recognize the 
effect of framing on decisions (Fujii and Kitamura, 2001, 2004, are 
exceptions that emphasize decision framing). 

Reference points are established in time through experience and as well 
as being imposed as constraints (e.g., work starting time). A learned 
commuter is expected to know the variability as well as the average of 
commute travel times associated with a particular departure time, because he 
must have experienced various events that may occur, such as congestion, 
accidents, road maintenance work, etc. If relevant information becomes 
available prior to departure by, e.g., television or radio, a learned commuter 
will be able to predict with improved accuracy how long his usual commute 
will take. If the usual departure time and route is not satisfactory in his 
decision frame, the commuter may change his departure time; if this shift does 
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not seem satisfactory, he may switch his route to take another route. Decision 
process does not end with this. Once departed from home for work, the 
remaining portion of the journey might also be subject to sporadic decisions 
on switching to another route in the case, lane changes as well as speed 
changes with respect to the relative arrival expectation relative to the 
reference points. 

It is proposed in this study that coupling constraints (Hagerstrand, 
1971) for work activity constitute two reference points along the time axis, 
i.e., the earliest acceptable arrival time (EAT), before which the commuter 
feels loss, and the latest tolerable arrival time (LAT), after which he also 
incurs loss. It is further proposed that the commuter holds a preferred arrival 
time (PAT). Arriving at work at PAT achieves the highest utility for the 
commuter. It is reasonable to expect that PAT is before LAT, providing the 
commuter with some time to adjust or prepare himself for the work 
environment. It is in general assumed that the commuter is satisfied when he 
arrives between EAT and LAT. The gain region is assumed to lie between 
EAT and LAT. Outside the gain region is the loss region; the commuter is not 
satisfied with an arrival that falls in this region. 

3.1. Symmetric Decision Frame 

Symmetric decision frame (Figure 3) is experienced when gain nad loss 
regions are symmetric about PAT. In this decision frame, PAT is not devised 
as a reference point; rather it represents the commuter's preferences that 
arriving at this time point achieves the highest value. The effect of PAT on 
commuter behavior might be more prominent when the commuter is still 
motivated to achieve an arrival at PAT even after he is guaranteed to arrive 
within the gain region. PAT might be regarded as a pseudo-reference point (or 
a secondary reference point) such that when a commuter secures a gain 
arrival, he might be motivated to achieve an arrival at PAT, thus might feel 
petty loss in the gain region. In this regard, PAT is introduced as a pseudo 
reference point because it is not a threshold between gain and loss regions, 
thus is not treated as a reference point in the study, but still is expected to act 
as a singular time point in departure time decision as noted above. Arrivals 
are classified into two groups with respect to PAT; those before PAT are early 
arrivals, and those after PAT late arrivals. 
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3.2. Asymmetric Decision Frame 

In the second approach (Figure 4), gains are assumed to exist between 
PAT and LAT as before. The amount of gain increases as one moves from 
LAT to PAT. Losses are assumed to materialize when the commuter arrives 
before EAT or after LAT. The treatment of the region between EAT and PAT 
is different from the first approach. 
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Figure 4. Asymmetric decision frame 

The second approach is motivated by the consideration that the gain 
may be viewed differently by the commuter between early and late arrivals. In 
the symmetric decision frame discussed above, gain is assumed to be 
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monotonically increasing toward PAT. In the problem editing of the second 
approach, the nature of gain is differentiated before and after PAT. When the 
arrival is after PAT, the mount of gain increases according to a concave value 
function as one moves away from reference point LAT back toward PAT. 

When the commuter arrives between EAT and PAT, on the other hand, 
he may focus on the fact that he could have arrived at PAT by leaving home 
later, which is feasible under usual circumstances for the morning commute. 
In this sense, the commuter may focus on the decline in gain caused by 
arriving earlier than PAT. Namely, he would evaluate an early arrival with 
respect to the difference between the gain of arriving at PAT and the gain at 
the earlier arrival time, and this difference is likely viewed as a loss. If this is 
the case, then, the value function should behave as if in a loss region, and 
therefore should be convex. This region is thus named the "quasi-gain 
region." The commuter is assumed to feel absolute loss if his arrival is earlier 
than EAT. 

In sum, the rationale for establishing the quasi-gain region is as 
follows. When the commuter evaluates an arrival between EAT and PAT, he 
feels gains increasingly as he approaches to PAT, which has the maximum 
value. Thus, the value function is concave between EAT and PAT on the 
assumption that the gain of an arrival is evaluated with respect to the decline 
in gain from that at PAT. The region between EAT and PAT thus represents 
perceived losses in the second approach. 

4. THE DATA 

The data are compiled from a survey that was conducted in Otsu City in 
Shiga Prefecture, Japan, in May 2002. The questionnaire was mailed to one 
thousand randomly selected resident drivers, and 260 of them completed 
questionnaires and sent them back (response rate = 0.26). 

The survey consists of three parts which respectively addressed: 
1. General commute information: 

a. Average, longest and shortest commute durations, 
b. Work start time, 
c. Latest tolerable time for arrival at the work place, 
d. Tolerance by managers on tardiness. . . 

11. Respondents' socio-economic and demographic characteristics: 
a. Sex, age, marital status, annual income and employment type, 

. . . b. Existence of children below 15 years of age. 
111. Commute characteristics on three consecutive survey days: 

a. Whether the commute was a usual one or not, 
b. Whether the route used was same as the previous one or not, 
c. Departure time from residence and arrival time at the work 

place, 
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d. Whether the respondent would depart at the same time in the 
next commute or not, 

e. Whether the respondent would use the same route in the next 
commute or not. 

After screening for item non-responses on commuting information, the 
number of respondents in the sample decreased from the initial 260 to 226. 
Summary statistics of the data set are given in Table 3. 

When we have a close look at the individual attributes, we notice two 
points to report. The first one of the ratio of car commuters within the sample: 
the sample is dominated with the male car commuters: 74% of 226 
commuters while the same ratio of male car commuters is higher than the 
similar ratio (69 %) of 1788 car commuters in Otsu city in a larger household 
travel survey, the Kei-Han-Shin household travel survey for 2000 and the 
second one is the average age of the drivers on the sample. The second point 
is the average age of the commuters: which is approximately 50: thus we can 
expect that most of the commuters are experienced in driving and most of 
them have developed comprehensive driving as well as commute habits. Thus 
the information that they supply for their commutes in our survey are result of 
at least 5 years of experience. 

Reported LAT either coincided with WST or was before that time for 
64% of commuters. Approximately half of these commuters-LAT5WST (or 
31% of all commuters) had to arrive at the work place before WST, i.e., LAT 
was before WST. . Thus, taking WST as a reference point might create 
serious problems in applying prospect theory to the case of departure time 
choice. Besides, the location of PAT is assumed to be between EAT and LAT 
in proposed decision frames in this study. But there are seven cases that have 
PAT later than LAT: PAT>LAT and this number increases to 28 when we 
include the cases where PAT coincides with LAT. To estimate the value 
functions based on the hypothesized decision frames, we have to eliminate 
these cases (28 in total). Because we assume monotonically increasing 
function(s) in between EAT and LAT and meet at PAT which is the highest 
value point for an arrival. 

The mode of commute trip durations on three consecutive days in our 
survey is consistent with the larger household travel survey data at 30 min. 
Most of the respondents in our survey reported their official work start times 
as 8:30 AM, and departure times from home mostly one hour before work 
start times (the mode is at 7:30 AM). 
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Std. 
N Minimum Maximum Mean Deviation 

Sex (1 indicates male respondent) 225 0 1 .74 .44 

Age 22 ) 49.88 11.63 

Income a 17 ) 633.24 386.49 

Marital status (1 indicates manied 
Individual pmon, 0 indicates else marital 220 0 1 37 .33 
characteristics statuses) 

Children below 15 (1 indicates 
existence of children below 15 
years of age, 0 indicates else 215 0 1 .28 .45 

situations) 

Loyest commute duration (mode= 

6'3 
225 10 300 67.22 43.70 

Shonest conffnute duration 
(mode= 20) 

225 4 180 31.67 2010 

Average conffnute duration 
(mode= 30) 

225 6 210 39.36 23.95 

Prefeyd Anival Time (mode= 
225 3:50 1640 8:44 1 :22 

General Commute 830) 
Information Work Stan Time (mode= 8:30) 225 4:OO 17:Oo 857 1:20 

Latest Anival Time (mode= 900) 225 5:30 18:OO 9:14 1:34 

Managen an tolerable to tanliness 
is indicated by 1. 224 0 1 .60 .49 

Flex-time time policy ( 1 indicates 
Flex-time policy is being practiced 
at the workplace, 0 indicates else 223 0 1 .25 .43 

situation). 

Commute trips on 
thnc cousecutive 
days 

Deparmre Time (mode= 7:30) * 226 2:Oo 16:lO 757 1:24 

Anival Time (mode= 8:20) * 226 3:oO 16:23 8:36 1:21 

Commute duration (mode= 30) 226 10 150 37.98 21.05 

Usual commute (1 indicates a usual 
commute, 0 indicates else) 

226 0 I .96 .I9 

Same mute (1 indicates that same 
mute has been used as the previous 226 0 1 .92 .28 
time, 0 indicates else) 

Same Deparmre time next day? (1 
indicates that the same departure 
time will beused next time, 0 226 0 1 .77 .42 

indicates else) 

Route change next day? (I 
indicates a different mute will be 226 0 1 .I5 .35 
used next time. 0 indicates else) 

r - - L - - s l . - -  " in 10000 Yen units 

b, in minutes. 

C, clock time (24 horn) 

d. clock time (24 hours) 

e. in minutes. 

Table 1. Profiles of the Data Set 
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An important point that should be highlighted is in the last section of 
Table 1. Almost all of the respondents (96%) replied that their commutes 
were usual ones. At the same time, only approximately three quarters (77%) 
of the respondents reported they would not change departure times on the next 
occasions. The result suggests that, even when commuters are making "usual 
commute" to usual work places for usual work starting times, about one 
quarter of commuters are changing their departure times. Also interesting is 
the result that 92% of the respondents indicated that they commuted on the 
same route as the previous commute, while 15% indicated that they would 
take a different route on the next occasion. The two responses are not 
mutually consistent and indicates that the respondents tended to overstate 
their intentions to switch commute routes in the survey. 

5. CONTINGENCY ADJUSTMENT MODEL 

Although it is unrealistic to assume that a commuter is aware of the 
mathematical probability distribution function of arrival times of his commute 
trips, it is reasonable to expect that he has a fairly accurate estimate of arrival 
time given a departure time. Through experience, the commuter has probably 
acquired an assessment of the variation in trip durations, and he bases his 
predictions of travel times on this accumulated knowledge. At the same time, 
it is anticipated that his departure time choice is also influenced by day-to-day 
variations in commute trip duration. In this section, we propose a procedure, 
which shall be called the "contingency adjustment model," to estimate the 
weight function based on the relationship between the long-term distribution 
and short-term realizations of commute trip durations. Before presenting the 
model, however, discussions are due on the method adopted in this study to 
estimate the perceived distribution of trip durations that a commuter has. 

The assumptions postulated in this study is that the commuter has 
accurate perceptions of the shortest, average and longest commute trip 
durations, given the departure time. In other words, we assume that the 
commuter who has made a considerable number of commute trips has well- 
founded perceptions of the mean trip duration and its dispersion expressed in 
terms of the shortest and longest trip durations. Furthermore, since the 
duration of a trip is influenced by numerous random elements, it is reasonable 
by the central limit theorem to assume that commute trip durations have a 
normal distribution (Figure 5). The approach taken in this study, then, is to 
estimate the mean and variance parameters of the normal distribution based 
on the shortest, average and longest commute trip durations as reported by a 
commuter in a survey. 

Communicating the concept of travel time variability in a survey is not 
a trivial task (Cook, et al., 1999). Commuters may perceive the variability in 
commute trip duration in terms of quantities other than the shortest and 
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longest trip durations. For example, a commuter may have the perception, "It 
normally takes 30 minutes, but takes more than 45 minutes about once a 
week" (see, e.g., Abdel-Aty et al., 1995) The approach taken in this study is 
based on the consideration that survey respondents will easily be able to 
indicate shortest and longest durations of their commutes. Although one 
would ideally ask for their estimates of the variance in travel times, the 
concept of variance is far too alien a notion for typical respondents to offer an 
estimate. On the other hand, questions addressing the frequencies of delays as 
in the above quote, are unlikely to be relevant to all respondents without 
customization. The approach adopted in this study is thus a compromise under 
limitations in survey administration. 

I I 

Time 

EAT LAT 

Figure 5. Arrival time distribution conditioned on departure time 

The normal curve in Figure 5 shows the distribution of arrival times 
given the departure time, average trip duration, and the variance of trip 
durations. In order to construct a measure of the perceived variance of trip 
durations for each respondent, we introduce the assumptions that the 
perceived distribution of trip durations also has a normal distribution, and 
further that its standard deviation, o, is proportional to the difference between 
the longest and shortest trip durations as indicated by the respondent. Suppose 
the reported shortest duration corresponds to the 2.5 percentile value and the 
longest duration to the 97.5 percentile value, and therefore the range defined 
by the two covers the central 95% of the distribution. If these assumptions are 
agreeable, then we would use the relation that the difference between the 
shortest and longest trip durations equals to 3.92 times the standard deviation. 
With this relation, the standard deviation of the perceived distribution of trip 
durations can be estimated for each respondent. 
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Let the perceived average, longest and shortest trip durations be at, It, 
and st. Also let the departure and arrival times denoted by DT and AT for each 
commute. Then, the perceived distribution of arrival times is 

N(DT + at, [(zt - st) /3 .92~) 

With this distribution, the probability, @, that the commuter will arrive 
between EAT and LAT can be evaluated and used as a measure of his risk 
aversiveness. The complement of this probability, @=I-@,  serves as a 
measure of his risk proneness. Namely, letting f(tlD7) be the normal 
probability density function of perceived arrival times, given departure time 
DT, we have 

LAT 

p i t  I DTW 

where t represents clock time. 
Unfortunately, the earliest arrival time is not available in the data set. 

EAT is therefore estimated by adding the reported shortest commute duration 
to the departure time. With this estimation, it is possible to obtain an EAT that 
is placed after a LAT when the commuter chooses a departure time that 
results in an arrival later than the LAT at the earliest. This may be interpreted 
as a case where the commuter is oblivious of the risk of being late. In this 
situation, @ and 47 cannot be defined by Eq. (5). 

The discussions so far of this section aid in the formulation of the 
weight function. If the perceived distribution of trip durations can be 
represented as discussed above, then @ defined as in Eq. (5) serves as a 
measure of the subjective probability of gain which the commuter will 
perceive prior to the departure at DT. Thus this probability shall be called the 
"expected gain probability." Now, suppose the commuter arrives at work at 
time AT. Recall that AT could not have been determined beforehand. Given 
AT, the commuter may have a posterior assessment of the probability of gain 
in which the arrival time, AT, is, after the fact, viewed more as a fixed 
constant than a random variate. The commuter may conceive a posterior 
distribution of arrival times which is centered at the realization arrival time, 
AT. He may then reassess the probability of gain associated with the departure 
time using this posterior distribution, i.e., 
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where g(t1AT) is the posterior distribution of arrival times given AT. We shall 
call f l  the "realized gain probability." 

In probing the relationship between the two, we shall introduce another 
proposition that the relationship between the expected gain probability, Yqas 
a prior probability, and the realized gain probability, fl, as a posterior 
probability, corresponds to the relationship between the objective (or "true") 
probability, p, and the decision weight, n(p). If this proposition is accepted, 
then the weight function discussed in Section 2 can be obtained by regressing 
f l  on f i  

The rationale behind the above proposition is as follows. As noted 
earlier, typical commuters repeat trips to the same work place about the same 
time of the day over and over. It would then be logical to assume that they 
have accurate assessments of the distribution of commute trip durations, at 
least for those departure times they often choose. It then follows that the 
probability of gain as they perceive is also accurate. Thus flcan be expected 
to closely approximate p. Note that fl can be regarded to represent long-term 
beliefs that a commuter holds about the distribution of his commute trip 
durations. 

Now, it is also expected that a commuter's departure time decision is 
influenced by the outcomes experienced in the immediate past. For example, 
it is conceivable that a commuter leaves earlier than before following a 
commute which took longer than usual. Researchers have often assumed that 
the trip duration predicted by a commuter can be expressed as a weighted 
average of trip durations experienced in the past, with heavier weights 
assigned to trip durations experienced more recently (e.g., Horowitz, 1984; 
Friesz et al., 1984; Smith, 1984; Cascatta, 1989; Cascatta and Canterella, 
1991 and van Berkum and van der Mede 1998). In fact if the commuter were 
to behave solely on the basis of his long-term beliefs, then there would be no 
shifts in departure time or switching of commute routes. Empirical 
observations, including the ones presented in Table 1 of this study, lend no 
support to such a view. The realized gain probability, fl, may be interpreted 
as one of the inputs on which the commuter's short-term adjustments are 
made. In other words, the prior probability based on long-term beliefs is 
adjusted, or weighted, using the short-term experience as represented by fl. 

In sum, the commuter has long-term beliefs about commute trip 
durations, or, arrival times, that he has formed through experience. At the 
same time, his departure time decision is adjusted under day-to-day variations 
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in travel time. This short-term adjustment is motivated by the discrepancy 
between the long-term, prior gain probability, yq and the short-term, 
posterior probability, $0. Then the relationship between the two, obtained 

from the collection of (Fq$o) as data, can be utilized to describe short-term 
decisions based on long-term data. We shall call this "contingency adjustment 
model" of departure time choice. It is proposed that the relationship between 
@and @be adopted as an estimate of the weight function in prospect theory. 

Scatter plots of (yq$o) and (@@) are produced using the data set 
described earlier and given in Figures 6 and 7 ,  respectively. Figure 7 exhibits 
that plots are more dispersed in moderate to high probability ranges. When the 
realized gain probability is linear-regressed on the expected gain probability, a 
slope coefficient of 0 .82  is obtained ( t  = 27.14; constant = 0.09, t = 3.96; R2= 
0.74, adjusted R2 = 0.54). We also applied nonlinear regression to expected 
and realized probability pairs. The regression equation is specified as in Eq. 
( 2 ) .  The y coefficient is estimated at 0.84 and is highly significant (t  = 33.6), 
and indicates subproportionality and subcertainty. 

Figure 6. Prior and posterior gain probabilities 

Priw b s s  probability 

Figure 7. Prior and posterior loss probabilities 
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Now, turning to the loss probability, @ a linear regression analysis 
yields the constant term as 0.09 (t = 7.60) and the slope coefficient as 0.82 (t 
= 27.14), with similar goodness-of-fit measures as the model for gains. A 
striking difference between the models for gains and losses emerges at this 
point that gains are not as underweighted as losses for moderate probabilities. 
This is also evident from results of nonlinear regression analysis. The analysis 
indicates that y coefficient (= 0.77, t = 26.3) is smaller than that for gains (= 
0.84) and significant. The two y coefficients are significantly different from 
each other at a (one-tailed) 95% confidence level. The regression analyses of 
@and 4% have thus yielded estimates of the weight function whose 
parameters are consistent with the properties prescribed by Kahmenan and 
Tversky (1979), suggesting the practical usefulness of the contingent 
adjustment approach proposed here. 

6. HETEROGENEITY IN THE WEIGHT FUNCTION 

Heterogeneity in the weight function is now examined by introducing 
both observed and unobserved heterogeneity into the weight function. For the 
simplicity of analysis, a linear weight function is adopted. This, however, 
limits the scope of analysis to the investigation of over- and under-weighting 
properties; examination of the other properties, such as subproportionality and 
subadditivity, while incorporating observed and unobserved heterogeneity, 
remains as a future task. 

The model takes on the form, @= fia + B'X + v) .  Note that over- 

weighting refers to the case where @ @ 1 and under-weighting to @ /%K 1 . 
Unobserved heterogeneity is represented by the individual-specific random 
effect, u, which is assumed to have a normal distribution. We specify the 
model as (Greene, 2002): 

yi, =a+O'Xi,  +vi, 

Vil = Eil + vi 

E(vi,) = 0 

~ ( v , , )  = a2 =0,2 +a: 

Cov (vi, , vis ) = a: 

~ o v ( v ~ , , v ~ ~ ) = ~  Vt,s, i +  j 

where the subscripts i and j refer to the individual, subscripts t and s refer to 
time, yit = Xi, is the vector of explanatory variables, 0 is a vector of 
coefficients, a is a constant,.&, is a purely random normal error term, vi is an 
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individual specific error component as noted earlier, and 0; and a: are their 
respective variances. assumed to be the generic error term and error term that 
is caused by individual unobserved heterogeneity respectively. 

In addition to the linear regression model, we also propose another 
model based on discrete choice by which we separate the sample into two 
with respect to over-weighting ( @ f f i l  4 1 )  and under-weighting 
( @f f i  1 +0). In this model, we exclude cases with equal posterior to prior 
probability and We estimate the parameters by using random effects probit 
model: 

st/? = a + O'Xit + vit 

The random effects probit model produces correlation, p, between 
individual choices as a result of unobserved heterogeneity, u. The unobserved 
heterogeneity is assumed to be distributed as normal and integrated out of the 
likelihood function: 

h(yil9 Yi2 9. . ' ' yiT la, 0)= 

The results of model estimations, obtained using LIMDEP 8.0, are 
presented in Table 2. The linear regression model accounts for 77% of the 
total variation (adjusted R' = 0.63) and is highly significant (F[228, 3891 = 
5.61, p < 0.005). Note that cases where @ is not properly defined because the 
commuter departed too late to arrive at or before LAT, are excluded in this 
estimation. 

On the other hand, random effects probit model is significantly 
improved over the simpler specifications with fewer variables. The cases that 
are employed for linear regression, 621 cases for 215 commuters, decreases 
approximately 50% in the random effects probit model estimation, 3 15 cases 
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for 155 commuters. In both of the models, we have parameters of unobserved 
heterogeneity that are significantly different from zero. Both of the models 
reveal different signs for arrivals in gain and loss regions: linear regression 
model reveals over-weighting in the gain region while probit regression 
reveals under-weighting. The same contradictory results is obtained for the 
constant term-positive for linear regression and negative by probit regression. 

None of the individual attributes have significant coefficients but 
existence of children under 15 years of age. Besides, some of the trip 
attributes--commute trip duration variability, ratio of commute trip duration 
and use of the same route as previous commute-have significant 
coefficients. Specially, use of the same route contributes to over-weighting-a 
result suggested by both of the models. Probit regression suggests that 
tolerated individuals increase their weigthts, which is also supported by the 
linear regression although the estimated coefficient value is insignificant in 
the linear regression. 

Commute trip duration weighted by average commute trip duration has 
a positive coefficient estimate. This variable is a ratio that computed by 
dividing commute trip duration to the average commute trip durations. If the 
ratio is one, then trip is completed as expected and then corresponding ratio of 
posterior to prior probability is increased by 0.15. In terms of choice making, 
this variable can cause difficulty about how a commuter would know that he 
will end up with the average trip duration, although there are instances that a 
trip duration can be guessed beforehand with the help of the weather 
forecasts, traffic broadcasts and the ITS applications. These information 
supplies might help commuters guess their commute durations in terms of 
known average trip durations, thus might increase the expectation of arriving 
at a certain point. 
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Variable 

Tolereme I R P R M I ~ S  M i n a a  k lolmbk. Orepscntn c k  u s r .  ; 0.03; I ,  0.54; 1.97 

Conmute hip duration T m d i i m  ktwrm bngtst ud ~h0ncstI;nawn~rrrmtt 1 
variability duntiom. ( XIW) j 0.14; 2.16; 0.01; 0.72 

PAT is after WST 1 rrpmmtsPAT i s*t lerW~,Omp*nbrhr- .  j 4 0 1 j  -0.26; 4.78;  -1.06 

Constant 1 0.151 2 . 0 1 ~  -1.701 -1.86 

Random effecls linear regression 
Ordiniuy Least Squares: F[ 15,6021 (prob) = 25.43 (pcO.005) 
Generalized Least Squates with Random Effects: F[228,389] = 5.61 (p=0.005) 

Random effects probit regression: LogLikelihood with only constant term 
L1: Loglikelihood function with constant tenn -218.13 

l.2: Loglikelihood function without random effects -180.13 

W: Loglikelilhood function with random effects -164 98 

# o f  individuals 215 155 

#of observations 621 315 

Table 2. Linear weight function with heterogeneity 

Note that the effect of the use of the same route as previous commute 
has turned out be positive and significant for both of the models. eans if the 
driver uses the same route as previous time (however we do not know the 
route taken previous time is the generally used route) is positive. This 
outcome suggests that commuters have propensity to increase the weights 
given to posterior probability when they continue to use the same route. 
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7. VALUING THE ARRIVALS 

The other element of prospect theory is the value function. Value 
function maps outcomes of a choice to different values in gain and loss 
regions. During an evaluation, choice is made by weighting the values of 
risky outcomes with the weight function. We have already estimated the 
weight function by nonlinear regression which yielded y parameter 0.84 and 
0.77 for gain and loss regions respectively (without any observed and 
unobserved heterogeneity). In this section, we estimate the value function, by 
using individual satisfaction on every commute and by controlling for 
individual heterogeneity as well. As stressed above when introducing 
contingency updating model, weight function implicitly is assumed to be a 
daily updating of individual evaluation of probability. Thus we separate the 
estimation of the two functions as Kahneman and Tversky 1992). 

We formulate the value function, V for the both of the decision frames 
as Eq. 6 with t  defined as the time difference from a reference point, X as 
observed variables, P vector of parameters, A as the time interval between 
EAT and LAT, B as the time interval between PAT and LAT. 

1 PX+{22.14)1 EAT < AT < PAT;A = PAT - EAT; DF2 

I$X + aln(AIOO) AT < EAT v AT > U T  

With respect to this formulation, the value function is assumed to be 
equal to zero at reference points which are EAT and LAT. Time deviations, t ,  
are computed from EAT and LAT for both the symmetric decision frame 
(DF1) and asymmetric decision frame (DF2). The time deviation in the gain 
region is normalized by dividing with the time interval , A for gains in early 
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side and B for gains on the late side arrivals; both of the values are increased 
to take values between zero and 100 for DF1. For DF2, this value in the early- 
gain region is assumed to be equal to 2.14 as its square and logarithm of 100 
are equal. Thus, the value function given by Eq. 6 achieves the maximum 
value at PAT. As noted in Section 3, the values are assumed to increase 
decreasingly from reference points in DFl- this is guaranteed by logarithmic 
transformation. The same assumption is maintained for DF2 but for the early- 
gain arrivals, where the value increases increasingly-this is guaranteed by 
power function. 

The stated intention about the next departure time reported by the 
respondent at the end of each survey day is used in the analysis. The intention 
is binary, notably, whether commuter intends to change or not to change the 
departure time the following day. In order to account for gains, we assumed 
valuelor utility prevails with "not to change departure time" in the gain 
region, that is to say, they are given value of one. To account for losses, we 
assumed valuelor utility prevails with "change departure time" in the loss 
region, thus they are given value of one. 

The value functions of both decision frames are estimated by using the 
binary Probit model that controls for random effects specification for 
unobserved heterogeneity (V refers to the observed value given in Eq. 9 and U 
refers to the unobserved value, the other terms and the likelihood function are 
same as Eq. 8 and 9): 

Uit = Kt + Vit 

The estimation is done by using LIMDEP 8.0 Econometrics Software 
Package (Greene, 2002). The estimated parameter values are given in Table 3. 
The estimation results of value function coefficients are more or less similar 
for both of the decision frames, even the Log likelihood functions are 
approximately equal. Although we conclude that both of the decision frames 
with different value function specifications are similar at least in coefficient 
values, the value function becomes different in the quasi-gain region of DF2 
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as the time difference is transformed by power function (with power assumed 
to be equal to two). 

Similar to the results of the weight function estimation, few of personal 
attributes display observed heterogeneity significantly. Males as well as high 
income earners decrease values, however the coefficient values are 
insignificant. On the other hand, increasing age make commuters more 
sensitive to valuing: values increase as one gets older, the same can also be 
said for commuters having children younger than 15 years of age. These 
coefficients of both age group and existence of children below 15 years of age 
are closely associated with life stage. For example, those who are older might 
have well established decision frames (we stressed this point in the data 
section too), so they might be more sensitive to values than those whose 
decision frames might be subject to change. Also having children younger 
than 15 might place household to act in accordance as children have tight 
schedules such as care, formal schooling etc. 
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Variable 

1 Symmenic 1 Asymmetric 
1 Decision Frame Decision Fraxe 

Sex 1 represents d+ 0 repreants fcmk. 1 -0.44 -1.091 -0.49; -1.19 

1 npnscnts paid worken enmlled in govemmnt 1 
Occupation and private scstors, 0 re-nts clsc. 1 0.351 1.13: 0.361 1.14 

Tco ycsr intervals horn 20 p m s  of age me given 1 
Age group integer values from 1 to 6. 1 0.35; 2.281 0.331 2.10 

lneom is indexed in onvreesing intsgcr values fro* 1 
1 (bwe* qusrtils in Japan) to 4 (higksl quartile in 1 

Income Gmup Japan). 1 -0.081 -0.611 -0.081 -0.59 

I represnts t k  s*stcoce of children k b w  I5 ; 
Child years of age, 0 represents sk. i 0.871 2.341 0.83: 2.17 

Dummy for loss region 1 npnsents srrivsk in loss region. Orepsmtsslse. 1 -2.75; -3.18: -2.841 -3.23 

1 represents arrival in cmly gain r c g i o ~  0 1 
Quasi-Gain represents slsc. 1 2.14; 3.74 

: :  
I rcpnsnts  early arrival, 0 represents late enivd 1 

Anival and 2 represents arrival at PAT. i -0.031 -0.191 -0.071 -0.50 

I represents wxittnc poky  is applied in t k  work 1 
Flexitime policy place, 0 represents eke. 1 -0.531 -1.511 -0.481 -1.33 

Tolerance 1 represents tardiness is tolerable, 0 represents ckc. 1 0.941 3.331 0.961 3.22 

T i  differems klwccn longest and shorlcst i 
Commute trip duration variability kmwn c o m t e  durations. (XLOO) 1 -0.491 -0.35: -0.451 -0.32 

LAT is before WST I rcprescnts LATis before WST. Orspresenls eke. i 0.25i 0.71: 0.24; 0.65 

known duration c o m t c  duration. 1 -1.241 -2.281 -1.281 -2.25 
T i m  deviation frornrefcrcncc point Vansformd 1 

Time Deviation from Reference either bv natural loearithm(DF1 and Dm) or bv i " .  . , -  
points power function(quasi-gain region in DFZ). 1 0.541 3.943 0.59: 4.01 

? I 

P Corrchtiondus to individual spccilic errors 0,66; a,88: 0,67i 8.86 

L1: Loglikelihood function with constant term: i -306.95 1 -306.95 

U: Loglikelihood function without random effects: 1 -289.30 1 -290.72 

L3: Loglielilhood function with random effects: 1 -255.10 i -255.27 

#of Individuals ; 198 3 198 

#of observations : 594 594 

Table 3. Value function with heterogeneity 
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The coupling constraints such as flexitime policy and tolerance on 
tardiness cause different effects. Hexitime policy (although insignificant) 
decreases (absolute) values, but tolerance on tardiness increases absolute 
values significantly. Tolerance although is a good thing on the side of 
commuters might be another way of controlling the workers. Both flexitime 
and tolerance differs from one another significantly. The first one is 
something that no parties- the paid worker and the manager loses, because 
flexiworker makes up the time that is vested to him in the morning. But the 
tolerance is something that bases on goodwill but the manager gradually (and 
possibly increasingly) loses while commuter enjoys fixed gains. So the two 
constraints although might seem similar to each other differs totally from one 
another. Commuter who is tolerated might choose to liquidize the tolerance 
when needed by gaining that tolerance by his compliance with the coupling 
constraints. 

The timely location of WST, such as after LAT or before PAT show 
increasing effect on values. But coefficients to these variables are 
insignificant too. On the other hand, as expected, the ratio of commute trip 
duration to known average commute trip has a significant coefficient that 
decreases absolute values. Even this ratio is one, value decreases by 1.24 
(DFI) and 1.28 (DF2). This reflects close association of commute duration 
with disutility. But note that the coefficient of this ratio turned out to be 
positive for weight function properties estimated in the previous section. The 
commute trip duration variability which is observed by the time difference 
between known shortest and longest trip times has a positive effect on the 
absolute value. But this variable is also insignificant. 

8. CONCLUSIONS 

This study follows the line of research of Senbil and Kitamura, 2004 
and Kitamura and Jou, 2003. In this study, we employ two decision frames in 
order to access the value and weight functions, two pivotal elements of the 
Prospect theory. Weight function has been associated with a new model 
coupled as contingency adjustment model. This new model finds its 
theoretical background on individual updating of perceived likelihood of any 
arrival time conditioned on a certain departure time. In this regard, the 
weights are assumed to be realized with respect to a comparison between 
expected (at the departure time) and realized arrival times. Commuter holds 
an expected arrival time at a departure time which is established by his 
commute history, but the same time, everyday is taken as another episode of 
risks and uncertainties: commuter reevaluates his chances and takes actions, 
such as listening the radio broadcast carefully when it is raining, or lane 
changing to make a null probability a possible gain arrival etc. Although our 
nonlinear regression estimation of the weight function complies with the basic 
premise of the Prospect theory, we need know other structural elements, the 
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effects of observed and unobserved heterogeneity, affecting behavioral 
responses to the expected probability. For this reason, we employ linear and 
probit regressions that control for heterogeneity but only refer to over- and 
under- weighting of probabilities. The weight function yielded results that are 
significant for trip attributes but not for most of the commuter attributes. 

The value function is devised by using two decision frames, the first 
one is symmetric about the preferred arrival time for gains and losses, the 
second one is not symmetric. The estimation of the value function by the 
binary Probit model yielded approximately similar results for both of the 
decision frames. In both of the decision frames, it is significantly true that 
commuters are responsive to the time deviations from reference points in their 
decision frames. Thus, we can say the arrival points in the gain region are not 
equal in values and the choice of the departure time is strongly conditioned on 
the possible arrival times. 
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Chapter 18 

Importance of Fuzzy Sets Definitions for Fuzzy Signal 
Controllers 

Maria Alice P. Jacques, Daliana B. L. M. Santos, Matti 
Pursula, and Iisakki Kosonen 

1. INTRODUCTION 

The operation of fuzzy signal controllers in comparison with traditional 
pretimed or vehicle-actuated control modes, has provided better traffic 
operations according to the usually adopted performance measures as is the 
case with delay and number of stops. Previous studies have demonstrated 
however, that fuzzy signal controllers' performance is highly affected by the 
choice of their decision-making logic and defuzzification interface. 

Other fuzzy controller aspects recognised as important in controller 
operation are the fuzzy sets adopted, their respective membership functions, as 
well as the rule base defined. Nevertheless, specific assessment of the impact 
of fuzzy set definitions on traffic signal performance has not been sufficiently 
explored in the literature. 

This research aims therefore to study the implications of small 
modifications to some fuzzy sets' parameters on fuzzy signal controllers. For 
this purpose a basic fuzzy signal controller developed at the Helsinki 
University of Technology is used. Fuzzy sets related to the controller input 
variables (in this case queue of the halted traffic and number of arrivals at the 
approach receiving green indication) have their parameters slightly modified, 
specifically in terms of the values for which the membership function is equal 
to zero and one. That is, the shape of the membership function related to each 
fuzzy set was not modified, only their limiting values. Six different 
modifications were evaluated, along with the basic situation, forming a set of 
seven studied situations. 

The evaluation of the impact of the above-mentioned modifications was 
carried out in two stages. Initially, the surface of control responses was 
developed for all the seven situations through MATLAB software, along with 
the corresponding matrix of control responses. The matrices were then 
evaluated to verify whether they differ from each other. A descriptive analysis 
of the general shape of the surface of control responses was also performed. In 
the second stage, the effective impact of the different situations on traffic 



400 Maria Alice P. Jacques, Daliana B. L. M. Santos, Matti Pursula, Iisakki Kosonen 

performance was assessed through simulation studies generated from 
HUTSIM software, developed at the Helsinki University of Technology. 
Simulation runs were performed for an isolated junction of two one-way 
streets, operating under three different traffic volume levels. 

2. FUZZY SETS AND FUZZY SIGNAL CONTROLLERS 

This section provides general concepts linked to the subject studied. These are 
related to fuzzy set definition, terminology and fuzzy controllers. 

2.1. Fuzzy set definition and terminology 

According to Zadeh, "a fuzzy set is a class of objects with a continuum of 
grades of membership. Such a set is characterised by a membership function 
which assigns to each object a grade of membership between zero and one". In 
other words, a fuzzy set can be defined as a set of elements belonging to a 
given universe of discourse, which is represented by ordered pairs of elements 
and their respective grade of membership to the set considered. 

The following relation can present this definition: 
A = {(up  PA(^)) / E U} 

In the above relation, the fuzzy set A is defined in a universe of discourse 
U, where ,uA(u) is the degree of membership of the element u E U in A, 
defined by the membership function ,uA . Therefore, the set of all points u E U 
is the support of the fuzzy set A. For the case in which the support of a fuzzy 
set is a single point in the universe of discourse, the fuzzy set is referred to as 
fuzzy singleton. 

Fuzzy sets are used to characterise each term belonging to the term set 
related to linguistic variables. The meaning of a fuzzy linguistic term is 
defined by the membership function assigned according to the intended use of 
this term. 

2.2. Fuzzy controllers 

Fuzzy logic controller (FLC) is a controller based on fuzzy logic whose 
algorithm converts the "linguistic control strategy based on expert knowledge 
into an automatic control strategy". The principal components of this type of 
controller are: fuzzification interface, knowledge base, decision-making logic, 
and defuzzification interface. Each of these components is fairly detailed in 
the literature. Thus, only the aspects relevant to the ongoing controllers' 
analysis and related to the fuzzy sets' role in fuzzification interface will be 
presented in this section. 
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In the fuzzification interface of an FLC, the system's attributes (linguistic 
variables) are defined. These are linked to the state of the process (input 
variables) and to the control action (output variables). The linguistic values of 
these variables (set of terms) are labels of fuzzy sets. The partition of the 
universe of discourse related to a linguistic variable is not unique and, 
although optimal partition can be achieved by a heuristic method, the basic 
principle can be the use of real life linguistic terms. The membership function 
of each fuzzy set is another important aspect related to the fuzzification 
interface. Its shape is quite free and must be defined by the controller's 
developer. For instance, the Fuzzy Logic Toolbox of MATLAB (FLT-M) 
software includes 1 1  built-in membership function types and allows the user to 
create hisher own membership function in the case that the built-in types do 
not suit hidher needs. 

When the shape of the fuzzy sets is determined, several other parameters 
have to be adjusted. In terms of triangle or trapezoidal-shaped functions, for 
example, these parameters are basically the points of the universe of discourse 
for which the membership function reaches its minimum and maximum 
values, zero and one. 

Membership functions are usually constructed upon expert judgement. 
All the same, even when different experts agree upon the universes of 
discourse and their corresponding partition to be associated with the different 
linguistic variables related to a particular control problem, they can differ 
regarding the shape of the membership functions and/or the parameters of 
these functions. 

2.3. Fuzzy signal controllers 

For traffic control purposes, the literature presents the development of 
different fuzzy controllers, referred to as fuzzy signal controller. The first 
controller of this type was developed by Pappis and Mamdani. This controller, 
as well as those to follow, is based on the fuzzy extension principle. Different 
fuzzy signal controllers' performance, according to the usually adopted 
measures of traffic performance, has been accessed by different authors with 
positive results. 

In an earlier paper the evaluation of different fuzzy traffic signal 
controllers for isolated intersections showed that there are differences not only 
among their linguistic variables but also among the partition of variables' 
universes of discourse (fuzzy sets labels). Tables 1 and 2 present, respectively, 
the linguistic variables and related labels of fuzzy sets of the traffic signal 
controllers evaluated, where: Model 1 is the fuzzy logic controller developed 
by Pappis and Mamdani; Model 2 and Model 3 are fuzzy traffic signal 
controllers for isolated intersections developed by Kim and Favilla, Machion, 
and Gomide, respectively; Model 4 refers to the controller developed by 
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Trabia, Kaseko and Ande; and Model 5 is the fuzzy signal controller built by 
Niittymaki and Pursula. 

In addition, Table 2 shows that the same label refers to different range of 
values of the corresponding universe of discourse in distinct models analysed. 
Triangle-shaped (trapezoidal) functions are commonly used in these 
controllers. 

In the present paper, small differences on the membership functions' 
parameters are investigated as they can impact upon a fuzzy signal controller's 
performance. 

each of the 10 seconds ahead. 
- 

T- Time elapsed from the end of the current green period. 
E- Extension to be given to the current green period. 
S.LEFT- No. of left-turning vehicles present within a 61 meter-distance behind 

ruble 1. Linguistic variables and fuzzy sets at the controllers studied 

the stop-line at the phase having the right of way. 
S.THRU- Identical, for through vehicles at the phase having the right of way (at 

Model 

1 

Linguistic variables 
A- No. of arrivals at the arm with the right of way, estimated for each of the 10 
seconds ahead. 
Q- No. of vehicles at the queue corresponding to the halted traffic, estimated for 

I I traffic (at the same or compatible piase as the variable C.LEFT. 
- 

2 

E- Extension to the current green time. 
A- No. of arrivals at the approach having the right of way. 
Q- No. of vehicles queued at the approaches with the halted traffic. 

- the same or compatible phase as the variable S.LEFT) 
C.LEFT- Identical, for the left-turning vehicles at the halted traffic phase. 
C.THRU- Identical. for the through vehicles at the ~ h a s e  having the halted 

3 
E- Extension to the current green time. 
RQ- Residual queue at the end of the green phase. 

- 

I TRgreen- The green traffic intensity within A, , in vehicles/s/lane. I 

QV- Queue variation during the green phase. 
ULV- Upper-limit variation for the membership functions of E. 

Omax- The maximum approach flow within the previous time interval A, , 

4 

I TRred- The red traffic intensity within A, , in vehicles/s/lane. I 

expressed in vehicles/s/lane. 

Qmax- The maximum queue length within A, , in vehicles/s/lane. 

- - -  - -- 

I EXT- Extension to the current green period 
; o w e :  Adapted from Analysing Different Fuzzy Traffic Signal Controllers for Isolated 

5 

Intersections, Jacques, et. al. 

E- Extension, which is not properly a linguistic variable. 
A- No. of vehicles within the approach zone (100 m) during the green. 
Q- No. of vehicles with speed less than 5 km/h within the approach zone on the 
red signals. 
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Fable 2. Fuzz sets and res ective membershi functions at the controllers studied 
Model Linguistic M. F. Shape 

none ( 1  4); a few ( 1  5); few (0-6); Triangular 

very small (4-12); small (8-16); small Triangular 
plus (12-20); medium (16-24); long (20- 
28); very long (24-32). 

T very short (1  3); short (1-5); medium (3-7); Triangular 
E long (5-9); very long (2 7) 
S.LEFT small ( 1  4); medium (2-7); large (5-9); Travezoidal 

(lo) 
Omax zero (10.17); small (0 - 0.25); medium Trapezoidal 

(0.08-0.33); big (> 0.25). 
Qmax zero (50.74); small (0.26 - 1.74); medium Trapezoidal 

1.26-3.26); big (> 2.74). 
TRgreen zero (10.6 7); small (0.23 - 1.73); medium Trapezoidal 

(1.27-3.27); big (2 2.73). 
TRred zero (50.74); small (0.26 - 1.74); Travezoidal 

I medium(1.26-3.26); big(? 2.74). 
E I E = -1 ( not to extend the green); E = +1 I 

(extend the green) 
A zero (1  2); a few (1-9); medium (4-12); Triangular 

5 many (28) 
Q a few (0-10); medium (5-15); too long (L Triangular 

8) 
EXT zero = 0; short = 5s; medium = 10s; long = Singleton 

15s 
* These are the values of the universes of discourse for which the membership 
function value for a given fuzzy set is zero. At these points the values of the 
membership functions start growing or stop decreasing in relation to the function's 
maximum value. 

lource: Adapted from Analysing Different Fuzzy Traffic Signal Controllers for Iso 
Intersections, Jacques, et. al. 

ted 
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3. METHODOLOGY FOR THE STUDY 

The following research steps were developed: definition of the basic 
intersection to be simulated with HUTSIM software; definition of the basic 
fuzzy signal controller and generation through MATLAB software of its 
corresponding control table and surface; definition of the modifications to be 
performed in the input variables' membership functions' parameters and 
generation of the corresponding control tables and surfaces; simulation with 
HUTSIM of different traffic volume levels for the previously generated 
control tables; and analysis of the simulation results. Each of these steps is 
presented in the following sections. 

3.1. Basic intersection for the study 

The intersection to be considered in this study is an isolated junction of 
two one-way streets, operating under different traffic volume levels, as shown 
in Table 3. These volumes include only passenger cars. The intersection has 
two lanes per approach and its legs are 600 meters long. 

Table 3. Intersection operation to be considered 

Volume Level 

3.2. Basic signal controller 

Volume (vehlh) 
Minor Street I Major Street 

Low 
Medium 

High 

The basic signal controller was developed at Helsinki University of 
Technology, and has been used in previous research work. It has the following 
linguistic input variables: queue at the approach with the halted traffic, with 
the terms small, medium, long, and any; and arrivals at the approach receiving 
green signal indication, with the values of zero, small, medium, long, and any. 
The controller's output variable is the extension to be given to the green time, 
having the following possible values: zero, short, medium, and long. All the 
values for the aforementioned linguistic values are labels of fuzzy sets whose 
membership functions are triangular or trapezoidal-shaped, as Table 4 
indicates. The basic case is referred to as Case 01 in Table 4. 

Triangular functions are implemented in MATLAB software according to 
three parameters: the first is the value for which the membership function 

Approach 
200 
400 
600 

~ p ~ r o a c h  
600 
1200 
1600 
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value is set equal to zero; the second has the membership function equal to 
one; and the last has membership function value equal to zero. For the 
trapezoidal-shaped functions, four parameters are required. The first and last 
values have membership function value equal to zero; for the second and third 
values, the membership function value is equal to one. The rule base is of the 
type: IF Queue AND Arrival THEN Extension. Thirteen rules form the rule 
base, linked by the aggregation connective ALSO. The fuzzy operators used 
to implement the connectives are: minimum for the connective AND and 
maximum for the connective ALSO. The fuzzy implication function was the 
minimum, and the defuzzification method adopted was the centre of gravity. 
The shape of the controller response for this basic signal controller is shown in 
Figure 2. 

The adopted knowledge base is shown in Table 5. It was defined in order 
to capture the objectives of the fuzzy signal control and to provide continuous 
change in the control action. Rules number 11, 12 and 13 were introduced for 
the sake of the continuity of the control's surface under de centre of gravity 
defuzzification method. 

Table 4. Fuzzy sets considered in each case studied 
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Table 5. Knowledge base adopted 

I 6 I Medium I Medium I Short I 

Rule Number 

1 
2 
3 
4 
5 

If "Queue" is ... 
Any 

Small 
Medium 

Long 
Small 

7 
8 
9 
10 

The computer simulation will be performed with HUTSIM, and the 
operation of the fuzzy controller will consider the following procedures: 
a) minimum green time equal to 5 seconds; 
b) maximum number of extensions to be given in sequence for a signal group 
equal to 5; 
c) if one extension is calculated as being less than or equal to 2 seconds, the 
extension is given but at its end no other extension is possible. 

11  

3.3. Modifications to the membership functions' parameters 
for the input variables 

and "Arrivals" is ... 
Zero 
Few 
Few 
Few 

Medium 

Long 
Small 

Medium 
Long 

Based on the basic fuzzy signal controller previously described, the 

then "Extension" is 

Zero 
Short 
Zero 
Zero 

Medium 

Few 

following situations will be investigated: 
Case 02 - Reduction of the queue limits by 20% 
Case 03 - Reduction of the arrival limits by 20% 
Case 04 - Reduction of the queue and arrivals limits by 20% 
Case 05 - Increasing of the queue limits by 20% 
Case 06 - Increasing of the arrival limits by 20% 
Case 07 - Increasing of the queue and arrival limits by 20 % 

Medium 
Many 
Many 
Many - - 

Short 
12 

The above-mentioned modifications lead to the fuzzy sets shown in Table 
4. It is important to point out that in all cases studied, the limits of the 
universes of discourses were kept unchanged as well as the fuzzy sets related 
to the variable extension. This was done in order to simplify the analysis to be 
performed and took into account that the modifications on the input 
variables's fuzzy sets should be, in principle, less effective in changing the 

Short 
Long 

Medium 
Medium 

Medium Medium 
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controller response than changes on the output variable. That is, if the changes 
in the input variable prove to affect the controller response it is possible to 
assume that the modifications on the output variable will also be effective. 

The shape of the membership functions was also kept unchanged for all 
cases studied. 

4. ANALYSIS OF CONTROLLER RESPONSE 

A visual analysis of the control tables, generated from the control 
surfaces, shows that there are some differences on the extension value for 
different pairs of queue and arrival. As can be seen from the comparison of the 
surfaces shown in Figures 1 and 2, these differences are specially noted for the 
situations related to the arrival intervals from zero to five and greater than 15, 
for all possible queue values. The importance of the differences observed in 
the fuzzy signal controller response and traffic performance can be evaluated 
based on the simulation study described in the next section. 

Figure 1. Control surface related to Case 01 
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Figure 2. Control surface related to Case 03 

5. SIMULATION STUDY WITH HUTSIM SOFTWARE 

Control tables generated for each of the case studied were introduced 
through HUTSIM software. This software provides, among other features, 
microscopic traffic simulation under actuated control strategies, including the 
fuzzy signal controller considered in this work. The following conditions were 
considered during the simulation runs: minimum green time of 5 (five) 
seconds, maximum number of extensions to the green indication equal to five, 
and after extensions less than or equal to 2 (two) seconds the current green is 
ended. 

Ten independent one-hour simulation runs for each of the cases 
considered were performed and refer to the three different traffic volume 
levels shown in Table 03. The simulation results for the controller response, 
averaged over the simulation hours, are shown in Table 06, while those 
regarding the traffic performance are presented in Table 07. 

The coefficient of variation (CV), expressed in percentage, was 
calculated in order to verify the variability of the controller response and 
traffic performance along the ten independent one-hour simulation runs for 
each case studied. Figures 3 to 5 show the CV for the results related to the 
major street, whilst Figures 6 to 8 show the results for the minor street. 
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Figure 3. Coefficient of variation for average delay at Major Street 
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Figure 4. Coefficient of variation for stopped vehicles at Major Street 
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- 
Figure 5. Coefficient of variation for average green time at Major Street 
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Figure 6. Coefficient of variation for average delay at Minor Street 
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Figure 7. Coefficient of variation for stopped vehicles at Major Street 
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Figure 8. Coefficient of variation for average green time at Major Street 



Table 6. Simulation results related to the controller's operation in the cases studied c I Major street: average green time (s) I Minor street: average green time (s) I Intersection: average cycle (s) I h) 
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6. ANALYSIS OF THE SIMULATION RESULTS 

The simulation results were submitted to an Analysis of Variance, 
whose F-values are shown in Tables 6 and 7. These values were 
calculated for each variable studied at each of the volume levels 
considered. The values presented in shadowed cells are those statistically 
significant at the 5% risk level, as FCritical is equal to 2.25. 

The evaluation of the impacts produced on the controller response 
shows that this response is effectively affected by the modifications made 
at the fuzzy sets. This is especially true for the medium and high traffic 
volume level as shown in Table 6. At medium volume the average cycle 
length varies from 56.81s to 64.59s, which means that the number of 
cycles per hour is modified from about 63 in Case 7 to 56 in Case 3. For 
the high volume level the number of cycles per hour varies from around 
50 to 44. Based on Figures 5 and 8 it is possible to verify that the 
variability of the average green time along the 10 one-hour simulation 
runs is different for each case and volume level studied. At Major Street, 
the average green time is more stable for case 2 for all volume levels. 
However, at the Minor street the average green time is more stable for 
case 2 when the volume is low and high, and for case 1 when the volume 
is medium. 

Based on the results, it is also possible to verify that while the 
modifications made to the input variables' fuzzy sets impacted 
significantly upon most of the variables associated with the controller 
response, they only impact on traffic performance basically when the 
volume level is medium or high. For these volume levels, the percentage 
of stopped vehicles at the minor street and the delay at the major street are 
significantly affected by the modifications made to the input fuzzy sets. 
The results of the CV shown in Figures 3, 4, 6 and 7 can explain these 
results as the CV for the performance measures related to the low traffic 
volume is much higher than its counterpart for the medium and high 
volumes. At the Major Street, the more stable results for the average delay 
were found for case 6 for medium volume and for case 2 for high volume. 
In the case of Minor Street, case 2 produces the least CV for medium 
volume and case 7 for the high volume. Regarding the percentage of 
stopped vehicles, the more stable results are provided by case 7 at the 
Major Street for the medium and high traffic volumes, and at the Minor 
Street for high volume. For the medium traffic volume at the Minor Street, 
the least CV was found for case 2. 

Other analysis to be performed is related to the generic impact of the 
modifications at the fuzzy sets limits on the controller response and traffic 
performance. Remembering that case 4 corresponds to the smallest 
extreme values for the fuzzy sets, case 1 is the basic case and case 7 is 
related to the biggest fuzzy sets' extreme values, some findings can be 
extracted from Tables 6 and 7. As the fuzzy set limits increase: 

- the green times for both streets decrease; 
- the average delay for the low traffic volume increases at the Major 

street and decreases at the Minor Street; 
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- while there is no trend observed for average delay for the medium 
volume at the Major Street, this performance measure decreases at 
the Minor Street; 

- the average delay decreases at both streets for high volume levels; 
- the percentage of stopped vehicles at the Major Street increases 

for the low and medium traffic volumes. No trend in the 
percentage of stopped vehicles was found for the high volume at 
the Major Street and for all volume levels at the Minor Street. 

7. CONCLUSIONS 

The study conducted showed that the definitions of the fuzzy sets 
associated to the input variables of a given fuzzy signal controller must be 
taken very carefully as they affect both the actual controller response and 
the traffic performance. 

Although not studied here, it is possible to infer from the results that 
if the controller and traffic operations are sensitive to small variations in 
the input variables' fuzzy sets, they should also be very much influenced 
by modifications to the output variable fuzzy sets. 

For the situation analysed in this work, it was found that increasing 
the fuzzy sets limits causes general improvement for the traffic 
performance at the Minor Street. These, as well as other numerical results 
are of course dependent on the characteristics of the intersection and 
control strategy in question. 

Thus, in order to allow for the traffic control objectives at a given 
intersection to be well captured by the fuzzy signal controller, special care 
must be taken in defining the fuzzy sets linked to all control linguistic 
variables. A very straightforward method for capturing these objectives 
from expert knowledge must therefore be applied. In light of this, a study 
geared towards defining a procedure to build fuzzy sets and rules from 
traffic control experts' knowledge of a given city is being conducted by 
this research team. 
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Chapter 19 

RELIABILITY EVALUATION OF REALISTIC 
STRUCTURES USING FEM 

Jungwon Huh, Achintya Haldar, and Seung Y. Lee 

1. INTRODUCTION 

The finite element method (FEM)-based approach is commonly used to 
realistically study the behavior of complicated real structures. It is a very 
powerful tool commonly used in many different engineering disciplines to 
analyze structural systems. With this approach, it is straightforward to 
consider complicated geometric arrangements, various sources of 
nonlinearity, boundary or support, and connection conditions, different 
materials, and load path to failure. 

To study the behavior of real steel frame structures, material and geometric 
nonlinearities need to be considered in the formulation. Furthermore, the 
structural members are connected to each other by various types and forms of 
connections. For steel structures, these connections are usually modeled as 
fully restrained (FR). However, extensive experimental studies indicate that 
they are partially restrained (PR) or semi-rigid. Thus, consideration of 
realistic rigidity of connections is warranted to study the behavior of steel 
frames. The connection rigidity adds another major source of nonlinearity in 
the formulation. Another major weakness of ordinary steel frames is their 
inability to transfer horizontal loads, e.g., high winds, strong earthquakes, and 
ocean waves, etc., effectively because of their relative flexibility. Reinforced 
concrete (RC) shear walls can be used to increase the lateral stiffness of 
flexible steel frames. This dual system is very common in seismically active 
regions. The behavior of the dual systems can be studied effectively by 
representing them with finite elements. 

The deterministic study of the nonlinear behavior of real structural systems 
using finite elements is an efficient and logical approach. However, most of 
the parameters required for the deterministic evaluation are random or 
uncertain in nature. The uncertainty in modeling the flexible connection 
behavior cannot be overlooked. It is expected that a more realistic modeling 
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of connection conditions would considerably increase the amount of 
uncertainty in the evaluation of the structural behavior (Haldar and 
Mahadevan, 2000a; Huh and Haldar, 2002). The implications of proper 
consideration of the connection conditions and the uncertainty in modeling 
them are comprehensively addressed in this study. 

The presence of reinforced concrete shear walls in a flexible steel frame 
adds several other sources of uncertainty. Furthermore, the evaluation of the 
propagation of uncertainties from the finite element level to the structural 
level is also expected to be very challenging. Integrating the finite element 
method and the first-order reliability method (FORM) (Haldar and 
Mahadevan, 2000a), a reliability method commonly used in the profession, 
the authors developed a new method. They called it a stochastic finite 
element method (SFEM)-based algorithm (Haldar and Mahadevan, 2000b). 
The method is briefly discussed in the following sections to evaluate the 
reliability of a simple steel frame with FR connections, a steel frame with PR 
connections, and a steel frame with RC shear walls systems under the static 
loading condition. 

2. DETERMINISTIC FEM FORMULATION 

For the problem under consideration, the iterative strategy is required to 
incorporate both the nonlinear behavior of the structure and the uncertainty in 
modeling all the parameters in the formulation. Since the FEM is an integral 
part of the algorithm, the efficiency of the deterministic FEM being used is 
very important in the iterative strategy. In this study, the assumed stress- 
based FEM is used for the basic deterministic FEM representation of the 
nonlinear structure. In this approach, an explicit form of the tangent stiffness 
is formulated, satisfying joint equilibrium and displacement compatibility. 
The method is efficient, economical, and accurate, particularly for frame 
structures, since fewer elements are needed to model the frame and the 
numerical integration to obtain the tangent stiffness can be completely 
eliminated. Details of the deterministic FEM can not be provided here due to 
lack of space; however, they are widely available in the literature (Haldar and 
Nee, 1989; Kondoh and Atluri, 1987; Haldar and Gao, 1997). 

Since the problem under consideration is essentially nonlinear even when 
the load is small, the following linear iterative strategy is used: 
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where K'"', AD'"', and F'"' are the tangent stiffness matrix, the displacement 
increment vector, and the external load vector at the n" iteration, respectively; 
and R'"-" is the internal force vector at the (n-I)" iteration. 

Using the assumed stress-based FEM, the tangent stiffness matrix and the 
internal force vector can be calculated as: 

and 

where A, is the elastic property matrix, Ado is the transformation matrix, 
Addo is the geometric stiffness matrix, and Rdo is the homogeneous part of the 
internal nodal force vector. They cannot be described further here but can be 
found elsewhere (Haldar and Nee, 1989; Kondoh and Atluri, 1987; Haldar 
and Gao, 1997). 

2.1. Incorporation of PR Connections into the FEM 

As mentioned earlier, the presence of partial connection rigidity needs to be 
incorporated into the deterministic analysis of structures to capture their 
realistic behavior. In general, the relationship between the moment M, 
transmitted by the connection, and the relative rotation angle 8 is used to 
represent the flexible behavior of a connection. Among the many 
alternatives (Richard model, piecewise linear model, polynomial model, 
exponential model, B-Spline model, etc.), the Richard four-parameter 
moment-rotation model is chosen here to represent the flexible behavior of a 
connection. It is expressed as (Richard and Abbott, 1975; Huh and Haldar, 
2002): 

where M is the connection moment, B is the relative rotation between the 
connecting elements, k is the initial stiffness, kp is the plastic stiffness, Mo is 
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the reference moment, and N is the curve shape parameter. These parameters 
are identified in Figure 1. 

e 
Figure 1. M-8 curve using the Richard Model 

In the finite element representation, all the members are represented by the 
appropriate beam-column elements. To represent a PR connection, an 
ordinary beam-column element can be used for the numerical analysis, 
however, its stiffness needs to be updated at each iteration since the stiffness 
representing the partial rigidity depends on the rotation 8. This can be 
accomplished by updating the Young's modulus as (Richard and Abbott, 
1975; Huh and Haldar, 2002): 

where lc, Ic, and Kc(@ are the length, the moment of inertia, and the tangent 
stiffness of the connection element, respectively. Kc(@ is calculated using 
Equation (4) and can be shown to be: 

The basic FEM formulation of the structure remains unchanged even in the 
presence of PR connections. Although it appears to be complicated, the 



Reliability Evaluation of Realistic Structures using FEM 42 1 

evaluation of the behavior of steel frames in the presence of PR connections is 
simple using the algorithm discussed here. 

2.2. Incorporation of RC Shear Walls into the FEM 

The incorporation RC shear wall in a steel frame is a little more 
challenging. The basic steel frame is represented by two-dimensional (2D) 
beam-column elements and the shear walls are represented by four-node plane 
stress elements. The static governing equation for the combined system can 
be represented in the incremental form as: 

where KT(") = K(") + KSh'"' , K,,'"' is the global tangent stiffness matrix of 

the shear walls at the n" iteration, K,,("-') D'"-') is the internal force vector 
of the shear walls at the (n-1)" iteration, and K'"), AD("), F("), and Rf"-') are 
defined earlier. Using the assumption the stress-based finite element method, 
Equations (2) and (3) can be used to define the tangent stiffness matrix and 
the internal force vector of the frame required to solve Equation (7). 

A four-node plane stress element is used to incorporate the presence of RC 
shear walls in the steel frame. An explicit expression for the stiffness matrix 
of the plate elements is necessary for efficient reliability analysis. To 
achieve this, the shape of the shear wall is restricted to be rectangular. Two 
displacement (horizontal and vertical) dynamic degrees of freedom (DDOFs) 
are used at each node point. Based on an extensive literature review and 
discussions with experts on finite element methods, it was concluded that the 
rotation at a node point could be overlooked (Lee and Haldar, 2003). To 
incorporate the shear wall stiffness into the frame structure, the components 
of the shear wall stiffness are added to the corresponding frame stiffness 
components in Equation (7). The explicit form of a stiffness matrix of a 4- 
node plane stress element can be obtained as (Lee, 2000): 

where 2a and 2b are the long and short dimensions of the rectangular shear 
wall, respectively, t is the thickness of the wall, y is the ratio of b and a; i.e., 
y = b l a . The matrixes A, B, C, and E in Equation (8) can be represented as: 
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- y o  y o y o - y o  
* = [ 0  1 0 1 0 1 0 

-1 -y  -1 y 1 y 1 - y  

C =  

and 

where E, is the modulus of elasticity and v is the Poisson's ratio of RC shear 
walls. 

Different types of shear walls are used in practice. The reinforced 
concrete (RC) shear wall is appeared to be the most widely used and is 
considered in this study. Thus, two additional parameters, namely, the 
modulus of elasticity and the Poisson ratio of concrete, are necessary in the 
deterministic formulation as in Equation (12). The tensile strength of concrete 
is very small compared to its compressive strength. Cracking may develop at 
a very early stage of loading. The behavior of a RC shear wall before and 
after cracking can be significantly different and needs to be considered in any 
realistic evaluation of the behavior of shear walls. The subject of cracking in 
RC panels has been extensively researched and reported in the literature 
(Gupta and Akbar, 1983; Liauw and Kwan, 1985; Vecchio, 1989; Lefas et. 
al., 1990; Inoue et. al., 1997). It was observ,ed that the degradation of the 
stiffness of the shear walls occurs after cracking and can be considered 
effectively by reducing the modulus of elasticity of the shear walls. Based on 
the experimental research reported by Lefas et al. (1990), the degradation of 
the stiffness after cracking can vary from 40% to 70% of the original stiffness 
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depending on the amount of reinforcement and the intensity of axial loads. 
In this study, the behavior of a shear wall after cracking is considered by 
introducing the degradation of the shear wall stiffness based on the 
observations made by Lafas et al. (1990). The shear wall is assumed to 
develop cracks when the tensile stress in concrete exceeds the prescribed 
value. The rupture strength of concrete, f, according to the American 

Concrete Institute (ACI, 1999) is assumed to be f, = 7 . 5 x E 7  where f: is 

the compressive strength of concrete. 
Once the explicit form of the stiffness matrix of shear walls is obtained 

using Equation (€9, the information can be incorporated in Equation (7) to 
study the static behavior of the combined system. The finite element 
representation of the RC shear walls is kept simple in order to minimize the 
number of basic random variables present in the SFEM formulation. More 
sophisticated methods can be attempted in future studies, if desired. 
Reliability evaluation procedures are emphasized in this paper. 

The governing equation of the combined system consisting of steel frame 
and RC shear walls, i.e., Equation (7), is solved using the modified Newton- 
Raphson method with the arc-length procedure. The deterministic formulation 
of the problem discussed above is expected to be very accurate and efficient. 
The formulation now needs to be incorporated in the reliability analysis in the 
context of the SFEM. 

3. STOCHASTIC FINITE ELEMENT FORMULATION 

Haldar and Mahadevan (2000b) discussed the basic SFEM-based algorithm 
used in this study. The SFEM to be used here is based on the first-order 
reliability method (FORM). In the context of FORM, a limit state function 
or performance function is required. Without losing any generality, the limit 
state function g can be expressed in terms of the set of basic random variables 
x (e.g., loads, material properties and structural geometry), the set of 
displacements u and the set of load effects s (except the displacements, such 
as internal forces). The displacement u = QD, where D is the global 
displacement vector and Q is a transformation matrix. The limit state function 
can be expressed as g(x, u, s) = 0 . For reliability computation, it is 
convenient to transform x into the standard normal space y = y(x) such that 
the elements of y are statistically independent and have a standard normal 
distribution. An iteration algorithm is used to locate the design point (the 
most likely failure point) on the limit state function using first-order 
approximation. During each iteration, the structural response and the 
response gradient vectors are calculated using the finite element models 
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discussed in the previous section. The following iteration scheme can be used 
for finding the coordinates of the design point: 

7 - 

where 

Vg(Y )= and ai = - W Y i )  

p g  (Y i )I 

To implement the algorithm and assuming the limit state equation has a 
general form of g(x,u,s) = 0 ,  the gradient Vg( y )of the limit state function in 
the standard normal space can be derived as (Haldar and Mahadevan, 2000b): 

where Jij's are the Jacobians of transformation (e.g., Js,,=as/ax). Once the 
coordinates of the design point y* are evaluated with a preselected convergence 
criterion, the reliability index P can be evaluated as: 

The evaluation of Equation (15) will depend on the problem under 
consideration and the performance functions used. It is necessary to 
determine the three partial differentials (aglas, aglau, and ag/ax) and four 
Jacobians (Jy,,, J,,, J,D, and JD,,). They are evaluated in the following 
sections in the context of the reliability analysis of a simple steel frame, a 
steel frame with PR connections, and a steel frame with RC shear walls. 

3.1. Limit State Functions 

Reliability is always estimated with respect ,to a performance function or a 
limit state. Both strength and serviceability limit states are necessary to 
study the underlying risk of realistic frame structures. The following limit 
states are used for this study. 
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3.1.1. Strength Limit State Functions 

According to the Load and Resistance Factor Design (LRFD) design 
guidelines (AISC, 2001) published by the American Institute of Steel 
Construction (AISC), the strength limit state functions for members in 
a two-dimensional steel frame can be defined as: 

and 

where 4 is the resistance factor, P, is the required tensile and compresssive 
strength, Pn is the nominal tensile and compressive strength, M ,  is the 
required flexural strength, and M ,  is the nonminal flexural strength. P, and 
M ,  in Equations (17) and (18) are unfactored load effects. Nominal axial 
load and bending moment capacity of a steel member can be calculated using 
the procedures suggested in the AISC's LRFD design guidelines (AISC, 
2001). 

For the steel frame with RC shear walls system considered in this study, it 
can be noted that some of the members in the frame are connected to the shear 
walls. The shear walls are expected to prevent local and lateral torsional 
buckling of steel members, thus improving their strength. Therefore, to 
consider the strength failure probability of the weakeest steel members in the 
dual system, this study considers the failure of steel members where shear 
walls are not present. 

3.1.2. Serviceability Limit State Function 

The vertical deflection at the midspan of a beam and the lateral 
displacement at the top of the frame are considered to be the two 
serviceability performance functions in this study. For the serviceability 
criterion, the limit state function is represented as: 
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where 6 is the calculated displacement component and 6,,, is the prescribed 
maximum or the allowable value of the displacement component. The 
allowable or the prescribed maximum value of the displacement component is 
generally suggested in design guidelines, as discussed in Section 4. 

3.2. Evaluation of Partial Derivatives and Jacobians 

3.2.1. Evaluation of  Partial Derivatives 

To implement the algorithm, the three partial derivatives (aglas, ag/au, and 
ag/ax) in Equation (15) need to be evaluated using both the strength and 
serviceability limit state functions. 

The strength limit state function is considered first. Since the strength limit 
state functions represented by Equations (17) and (18) do not explicitly 
contain any displacement component, ag/au is zero. The basic random 
variables in the limit state functions should be defined for the calculation of 
adax. The Young's modulus E, sectional area A, yield stress F,, plastic 
modulus Z,, and the moment of inertia of a cross-section I along with the 
external force F are considered to be basic random variables in this study. 
Thus, ag/& can be expressed as: 

And ag/as can also be derived by taking the partial derivatives with respect 
to P, and M, as: 

For the serviceability limit state represented by Equation (19), the three 
partial differentials can be expressed as follows: 

and 



Reliability Evaluation of Realistic Structures using FEM 427 

where ag/aS = -l/Sli*,. The actual Sli*, depends on the structure under 
consideration. 

3.2.2. Evaluation of Jacobians 

As discussed previously, it is also necessary to determine four Jacobians of 
transformation to evaluate Vg(y). Because of the triangular nature of the 
transformation, J,, and its inverse are easy to compute. Since s is not an 
explicit function of the basic random variables x, J,, = 0. J,,, and JD,,, 
however, are not easy to compute since s, D, and x are implicit functions of 
each other. The adjoint variable method (Arora and Haug, 1979; Haldar and 
Huh, 1998) is used to compute the product of the second term in Equation 
(15) directly rather than evaluating its constituent parts. An adjoint vector h 
can be introduced such that: 

After some mathematical manipulation, it can be shown that: 

For the strength limit state given represented by Equations (17) and (18), 
ag/au is zero and dg/as was derived in Equation (21). On the other hand, for 
the serviceability limit state, dg/as is zero and was derived in Equation 
(23). 

At this stage, J,,D needs to be estimated. Generally, when the strength 
limit state function is considered, the internal force vector a is the only 
contribution of the load effects s and can be expressed as s = Ao, where A is a 
transformation matrix with constant elements. Thus, JS,D can be obtained as: 
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where d is the nodal displacement vector in the global coordinate for the 
element. In Equation (25), aF/ax is easily obtained since the explicit 
dependence of F on the basic random variables is known, assuming the 
external load is not affected by the structural response. 

Using Equation (3) and the fact that Rdo and ~~d~ are not functions of 
basic random variables, the derivative of R with respect to x, namely aRlax in 
Equation (25), can be expressed as: 

where aRAJax can be expressed for a beam-column element as: 

The h estimated for the serviceability and strength limit state can then be 
associated with the FEM algorithm by substituting h into the last part of 
Equation (25). Therefore the first part of Equation (25) is now available in a 
simple explicit form for the evaluation of the gradient of the limit state 
function in Equation (15). 

3.3. Consideration of PR Connections in SFEM 

The task now is to incorporate the uncertainties in the PR connection 
conditions into the unified SFEM formulation previously discussed. The 
four parameters of the Richard model, namely, k, k,, Mo, and N, are 
considered to be basic random variables for connection elements. The 
following expression is considered for connection elements instead of 
Equation (28): 

The components of Equation (29) can be shown to be a function of Kc@) 
expressed by Equation (6),  i.e.: 
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where '€I* is the relative rotation of node i (i = 1 or 2) and can be obtained by 
subtracting the rigid rotation from the total rotation, q = k, k,, Mo, and N, and 

where 

The derivations of Equations (31) through (35) are given in more detail in 
Haldar and Mahadevan (2000b). As previously stated, a beam-column 
element is introduced for each connection. For such an element, Equation 
(29) needs to be evaluated. Once Equation (29) is evaluated, the rest of the 
steps are the same as those for an ordinary beam-column element. All the 
quantities required for the computation of Vg(y) in Equation (15) for a two- 
dimensional frame with PR connections are now available in a simple explicit 
form. Therefore, the reliability index and the corresponding failure probability 
can be calculated using the FORM analysis presented in Equations (13) 
through (16). 
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3.4. Consideration of RC Shear Walls in SFEM 

As mentioned in section 3.1.1, only steel members where RC shear walls 
are not present are investigated for the strength limit state in this study. The 
steel members are expected to be weaker in strength in this case. Thus, 
although the parameters in Equations (17) and (18) are expected to be 
influenced by the presence of shear walls, the partial derivatives with 
respective to the random variables related to shear walls, namely, Ec and v, 
need not be evaluated. For the serviceability limit state in Equation (19), since 
the partial derivatives with respective to Ec and v are also zero, they also need 
not be evaluated. 

To consider the presence of shear walls, on the other hand, the global 
tangent stiffness K in Equations (24) and (25) should be substituted by 
KT = K + Ksh where K and Ksh were defined in Equations (2) and (8). 

This requires the calculation of the derivatives of internal forces, aR/ax in 
Equation (25), with respect to Ec and v in the evaluation of Jacobians. They 
can be derived as: 

in which 

and 
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where the matrices A, B, C, and E are already difined in Equations (9) 
through (12), and other two matrices can be expressed as: 

and 

EI, = 

Finally, the gradient of a limit state function is now available in an explicit 
form for a frame and shear wall structural system. The reliability index and 
the corresponding failure probability can thus be calculated using the FORM 
analysis presented in Equations (13) through (16). 

4. NUMERICAL EXAMPLES 

To elaborate the proposed SFEM and to investigate the effect of PR 
connection conditions and the presence of RC shear walls on the overall 
reliability of steel frames, the following two examples are considered. In the 
first example, a two-story one-bay steel frame is considered. The 
connections in the frame are first considered to be FR type, a common 
assumption in analyzing such a frame. Connections are then considered to be 
PR type. The corresponding reliabilities of the frame in the presence of FR 
and PR types are evaluated using the method discussed here and compared. 
In the second example, the reliabilities of a two-story two-bay steel frame 
without and with the presence of shear walls are evaluated and compared. In 
both examples, all loads are applied statically. 

4.1. Example 1: Effect of PR Connections on Reliability 
Analysis 

To investigate the effect of PR connection conditions on the overall 
structural reliability, a two-story one-bay steel frame, shown in Figure 2, with 
FR connections is considered first. All the beams are made of W24x55 and 
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all the columns are made of W14x74. Grade A36 steel is used for this 
illustrative example. The frame is subjected to dead, live, and horizontal 
loads. The uncertainties associated with all the random variables are given in 
Table 1. 

To consider the effects of different rigidities in the PR connections located 
at b, c, g, and h (refer to Figure 2); three M-8 curves shown in Figure 3 are 
considered. The probabilistic descriptions of the four parameters of the 
Richard model representing the three curves are listed in Table 2. 

The following four cases of connection conditions are considered for 
discussion purposes: 

Case 1: a steel frame without PR connection, i.e., connection in the frame 
are assumed to be rigid or FR type, representing the standard practice in 
the profession 
Case 2: a steel frame with PR connections represented by M-8 Curve 1. 
It represents the realistic behavior of a FR type connection. 
Case 3: a steel frame with PR connections with intermediate rigidity 
represented by M- @Curve 2 
Case 4: a steel frame with PR connections with low rigidity 
represented by M- @Curve 3 

Figure 2. Two-Story Steel Frame Structure 
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Table I .  Basic rand1 
Random 
Variables 
E (kN/m2) 

(m2) 
I b X  (m4> 
zbx (m3) 
A" (m2) 
r x  (m4) 
zbx (m3) 

F, (kN/m2) 
D ( W m )  
L (kN/m) 
H (w 

variables in the stem 

Nominal Value 

2 .000~  lo8 
1.045x10-~ 
5.619x10-~ 
2.196~10'~ 
l.406xl0-~ 
3.313x10-~ 
2.065~10" 
2 .606~  lo5 

32.10 
23.34 

7m 
7 

-- 

44.50 

Frame 

vIean/Nominal 

1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .O5 
1 .O5 
1 .oo 

Note: b = Beam, c = Column, LN = Log-normal 

800 - ----- Curve1 - Curve 2 
I 
I curve 3 
I I 

Xstribution 

LN 
LN 
LN 
LN 
LN 
LN 
LN 
LN 
LN 

Type 1 
Type I 

0 0.004 0.008 0.012 0.016 0.02 

€I (radian) 

Figure 3. M-0 curves for connections 

Table 2. Statistical Description of the Four Parameters in the Richard Model 

Random 
variables 

k (kNm/rad) 
k,(kNdrad) 
Mo (kN.m) 

N 

Mean Value COV 

0.15 
0.15 
0.15 
0.05 

Curve 1 
1 . 1 3 ~ 1 0 ~  
1 . 1 3 ~ 1 0 ~  
508.64 
0.50 

Distribution 

Normal 
Normal 
Normal 
Normal 

Curve 2 
1 . 4 7 ~ 1 0 ~  
1 . 1 3 ~ 1 0 ~  
452.12 

1 .OO 

Curve 3 
5.6$x104 
1 . 1 3 ~ 1 0 ~  
339.09 

1.5 
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Both the strength and serviceability limit states discussed earlier (Equation 
(17) or (IS), and Equation (19), respectively) are considered in this example. 
For the serviceability performance function, the permissible lateral 
displacement at the top of the frame is considered not to exceed hl400, i.e., 
22.86 mm, and the allowable vertical deflection at the beam's mid-span is 
considered to be U360 under an unfactored live load, i.e., 25.4 mm. 
Considering all the random variables given in Tables 1 and 2, the 
corresponding reliability indexes and the probabilities of failure for both limit 
states of the four cases are evaluated using the proposed SFEM. The results 
are summarized in Table 3 in terms of reliability indices. In Table 3, PI, p2, 
and P3 represent the reliability indices corresponding to M-@curves 1, 2, and 
3, respectively. 

Based on the results of this example, it can be stated that the proposed 
algorithm can be used to estimate the probability of failure of a steel frame 
structure in the presence of FR and PR connections under static loading 
conditions. Several important observations can be made from the results 
shown in Table 3. Assuming a reliability index of 3.0 is acceptable, the 
reliability indices for Case 1 indicate that the frame is safe for both the 
strength and serviceability limit states, representing the normal practice in the 
profession. However, for Cases 2, 3, and 4, when connections are assumed 
to be PR types of different rigidities, the reliability indices change for both the 
strength and serviceability limit states. This is expected since redistribution of 
moments takes place in the frame due to the presence of PR connections. 
The reliability indices for Cases 1 and 2 for both the strength and 
serviceability limit states are very similar. The results are expected since 
Case 2 is a realistic representation of the idealized FR connection. 

Table 3. Reliability indexes for frame without and with PR connections 

Limit State 

Location 

Strength Limit State 

*Beam at e or hl~olumn at h 

Load 

Serviceability Limit State 

Drift at c beflection at e 

* Location for the beam : e for Case 1 only & h for others 

D+L+H 

p=3.608 

pi = 3.581 

p2 = 3.065 

0 3  = 2.525 

Rigid 
Connection 

PR 
Connection 

Case 1 

Case 2 

Case 3 

Case 4 

D+L+H 

P=3.123 

= 3.131 

P2 = 3.773 

p3 = 5.07 1 

D+L+H 

P=3.057 

= 2.910 

P2 = 2.200 

p3 = 1.5 11 

L 

~ = 4 . 1 5 5  

P1 = 4.038 

p2 = 3.599 

P3 = 3.021 
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In this particular example, the bending moment of the beam decreased at 
the column ends and increased at the mid-span, i.e., the location of the design 
moment for the beam shifted from h to e. The reliability indices for the 
strength limit state decreased for the beam and increased for the column as the 
rigidity of the connections decreased, making the beam more prone to failure 
than the columns. Thus, for the frame under consideration, the lower rigidity 
in the connections has a beneficial effect on the column and a detrimental 
effect on the beam. It is important to note that the reliability indices for the 
lateral deflection limit state decrease significantly as the rigidity of the 
connections is reduced. Assuming the reliability index lower than 3.0 is not 
acceptable, the frame with all three connection rigidities will not satisfy the 
serviceability requirement. The observation indicates that the serviceability 
limit state is expected to be more critical than the strength limit state for 
frames with PR connections. 

4.2. Example 2: Effect of RC Shear Walls on Reliability 
Analysis 

The reliability of a steel frame without and with the presence of RC shear 
walls are evaluated in this example using the SFEM algorithm discussed 
earlier. 

4.2.1. Reliability evaluation of a steel frame without shear walls 

A two-story two-bay frame without the shear walls, shown in Figure 4, is 
considered first. Grade A36 steel is used, and all columns are made of a 
W14x61 section and all beams are made of a W18x86 section. The statistical 
characteristics of the cross-sectional and material properties required for the 
reliability analysis are given in Table 4. The frame is subjected to dead, live 
and horizontal loads and the statistical properties of these loads are also given 
in Table 4. 
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Figure 4. A steel frame without shear walls 

Table 4. Basic random variables in the steel frame 

Random 
Variables 
E (kNlm2) 

(m2) 
Ibx (m4) 
zbx (m3) 
A" (m2) 
I", (m4> 

z b x  (m3) 
F, ( k ~ / m ~ )  
D (kNlm) 
L (kNlm) 

Nominal Value 

1 .999xlo8 
1.632x10-~ 
6.368x1u4 
3 .048~  lo" 
1.155x10-~ 
2 .664~  
1.671x10-~ 
2 .482~ lo5 

35.02 
24.81 

For the strength limit state, the reliability of the most critical beam at node 
b and the most critical column at node d are evaluated using the proposed 
algorithm using the performance functions represented by Equations (17) and 
(18). For the serviceability limit state, the horizontal drift of the top floor at 
node a and the vertical deflection of the beam at the midspan at node c are 
checked. In Equation (19), the prescribed horizontal drift at the top floor is 
considered to not exceed hl400, where h is the height of the frame. Thus, 

St2-f' is equal to 18.3 mm in this example. Similarly, the prescribed vertical 
deflection in the midspan of the beam is considered to be 11360 under the 
unfactored live load, where 1 is the span length of the beam. In this case, 

S f T  is considered to be 25.4 mm. 
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Considering all the random variables given in Tables 4, the corresponding 
reliability indexes and the probabilities of failure at different node points are 
evaluated using the SFEM. The results are summarized in Table 5. The 
reliability indices for both the beam and column for the strength limit state are 
found to be less than 3.0, i.e., they are weak in strength. 

Table 5. Reliability indexes for frame without shear walls 

Limit State 

Strength 

4.2.2. Reliability evaluation of a steel frame with shear walls 

The frame shown in Figure 4 is then reinforced with shear walls as shown 
in Figure 5. The compressive strength of concrete for shear wall, f,' , is 
considered to be 2 .068~10~ kN/m2. 

The statistical properties of two additional variables related to the shear 
walls, E, and v, are given in Table 6. The building is assumed to contain 5 
similar frames connected by rigid diaphragms at the floor levels. Only the 
center frame of the building is assumed to have shear walls. Although the 
physical thickness of the shear wall is 12.7 cm, considering the presence of 5 
similar frames and the rigid behavior of diaphragms, the effective thickness 
per frame is assumed to be 2.54 cm in this study. The combined system is also 
subjected to the three static loads given in Table 5. After the tensile stress of 
each shear wall exceeds the prescribed tensile stress of concrete, the 
degradation of the shear wall stiffness is assumed to be reduced to 40% of the 
original stiffness. 

Locations 
Beam, Node b 

Column. Node d 

Serviceability 
D+L+H 

L 
Drift, Node a 

Deflection, Node c 

Load Combination 
D+L+H 
D+L+H 

4.522 
5.434 

I3 
2.792 
2.807 
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1--4.572 rn+4.572 m-----(-----. 9.144m--i 

Figure 5. Steel frame with RC shear walls 

Table 6. Basic random variables in RC shear walls 

The probability of failure of the combined system is calculated using the 
proposed algorithm. For the strength limit state, the probability of failure of a 
column at node d in Figure 5 is estimated. For the serviceability limit state, 
the horizontal deflection at the top of the combined system (point a in Figure 
5) is evaluated. The results are summarized in Table 7. 

Random 
Variables 

Ec (kNlm2) 

v 

Table 7. Reliability indexes for frame with shear walls 

Value 
2.137~ lo7 

0.17 

The results in this example clearly indicate that the proposed algorithm can 
be used to estimate the probability of failure of a combined system consisting 
of flexible steel frame and RC shear walls under static loading conditions. For 
the reliability analysis of the frame without shear walls, the reliability indexes 
for the beams and columns are similar for the strength limit state, satisfying 
the intent of the AISC's LRFD code. The reliability of the column did not 
change significantly due to the presence of shear walls. However, the 
horizontal drift at the top of the frame reduced significantly and the 

Limit State 

Strength 
Serviceability 

MeadNominal 

1 .OO 
1 .OO 

Locations 

Column, Node d 

Drift, Node a 

C.0.V 

0.18 
0.10 

Distribution 

LN 
LN 

Load Combination 

D+L+H 

D+L+H 

P 
3.05 1 
7.708 
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probability of failure of the combined system in serviceability became almost 
zero. This is expected. For the combined system, the controlling limit state 
has changed from serviceability to strength. This simple example clearly 
demonstrates the beneficial effect of shear walls in carrying horizontal loads. 
It also demonstrates that the proposed algorithm can be used to estimate the 
reliability of a complicated structural system under static loading conditions, 
broadening the application potential of reliability methods. 

5. CONCLUSIONS 

A very efficient nonlinear finite element-based reliability analysis 
algorithm is presented to evaluate the reliability of complicated real structural 
systems. The authors called it a stochastic finite-element-based approach. It 
integrates the stress-based finite element method and the first-order reliability 
method. All major sources of nonlinearity and uncertainty can be 
incorporated in the algorithm. Both strength and serviceability limit states 
can be used for the reliability evaluation. The algorithm has been found to be 
accurate and efficient in evaluating reliabilities. The connections in steel 
frames are routinely considered to be FR type. However, they are essentially 
PR type with different rigidities. The behavior of steel frames change 
significantly if the connection behavior is considered realistically. The four- 
parameter Richard model is used to express the partial rigidity of connection 
conditions in this study. Steel frames with PR connection conditions and 
steel frames reinforced with RC shear walls are emphasized in this study. In 
steel frames with PR connections, the serviceability limit state can become the 
controlling limit state. The consideration of uncertainties in modeling the PR 
connections is also important in the reliability evaluation of steel frames. A 
steel frame can be weak in resisting lateral loads. RC shear walls can be used 
to improve their lateral rigidities. The shear walls are represented by four- 
node plane stress elements in this study. The SFEM is extended to evaluate 
the reliability of such a combined system. The procedure is clarified with the 
help of two examples. The example demonstrates how the SFEM-based 
reliability method can be used to evaluate risk of real structural systems 
capturing their realistic mechanical behavior. The procedure will be useful in 
developing the performance-based design guidelines under consideration by 
the profession. 
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Chapter 20 

SIMULATION IN RISK-BASED CODIFIED 
ENGINEERING DESIGN 

Achintya Haldar 

1. INTRODUCTION 

In spite of improvements in our basic understanding, analytical capabilities, 
and computational power, the presence of uncertainty in engineering designs 
cannot be avoided. Engineering designs consist of many interconnected 
activities, and some of them require the prediction of events that may occur 
during the lifetime of the systems being designed. Design activities include 
the selection of design loads, possible combinations of loads during the 
lifetime of the structure, evaluating load effects for a load or a load 
combination, and selecting the critical load effects for which the structure 
needs to be designed or proportioned satisfying prescribed performance 
criteria. In general, proportioning the elements is considered to be 
engineering design, and it appears to be the easiest task in the whole design 
process. Every phase besides the last phase of proportioning the elements 
cannot be predicted with certainty, and this is one of the main reasons why 
structures fail from time to time. The uncertainty in predicting future loads, 
load effects, and resistance has been recognized by the profession. It is a 
major challenge to satisfy design requirements in the presence of uncertainty. 
Risk-based design guidelines and codes are being developed and promoted 
worldwide in all major engineering disciplines. To help develop such 
guidelines, several reliability evaluation procedures with various degrees of 
sophistication were proposed (Haldar and Mahadevan, 2000a, b). Selecting 
design loads and load combinations is the weakest link in the design process. 
The American Institute of Steel Construction (AISC) provided major 
leadership in this area by introducing the Load and Resistance Factor Design 
(LRFD) codes as early as 1986. The AISC also demonstrated the dynamic 
and progressive characteristics of the concept by updating it twice since its 
inception. The third edition of the LRFD code was published in 2001. 
Similar design guidelines for concrete (ACI, 2002a), masonry (ACI, 2002b), 
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and wood (ASCE, 1995: AWC, 1996) are now available, reflecting the risk- 
based design concept. The load combinations and load factors used in these 
guidelines are identical and in the future are expected to be the only option 
worldwide. The uncertainty in the material behavior and other resistance- 
related parameters of structural elements needs to be incorporated in designs 
considering specific applications and satisfying an underlying risk (ASCE, 
2002). 

It is generally believed that all major sources of uncertainty are 
incorporated in the reliability-based design guidelines. This took multi- 
disciplinary efforts spanning more than two decades. The analysis or 
evaluation of load effect is still an open area and hopefully will be addressed 
in the near future. The advancement in computational power has yet to be 
fully utilized. The available reliability-based design codes are very similar to 
the earlier deterministic codes. The nature or amount of uncertainty in the 
design variables and advanced reliability concepts used in developing these 
codes generally remain unknown to designers. Thus, it may be difficult for an 
experienced design engineer to consider the presence of levels of uncertainty 
different than those used to develop the reliability-based design guidelines. 
Furthermore, the propagation of uncertainties from the variable level to the 
structural level is expected to be different for various design applications 
(Haldar and Mahadevan 2000b). The area is still being developed, and a 
typical engineer in a design office is not expected to be familiar with recent 
developments. In most cases, the design guidelines were developed to 
consider the behavior of elements of complex structural systems satisfying 
many explicit performance criteria. Some of the performance criteria are 
applicable at the local element level, e.g., the overall stress condition in a 
member, and some others are applicable at the overall structural level, e.g., 
the lateral deflection at a prescribed height of a structure. To satisfy all major 
performance criteria and for the purpose of uniformity, the system reliability 
may need to be evaluated using the information on element level reliabilities. 
In most cases, the evaluation of system reliability is very complicated and 
difficult. Reliability is always evaluated for a specific performance function 
and a reference or allowable value is required to formulate a performance 
function. The selection of the reference value for a given performance 
function is controversial and may not have been developed or accepted by the 
profession. 

For the design of nuclear power plants in mid-seventies, before the 
development of the LRFD concept, multiple analyses of structures to 
determine the most critical load effects were practiced. Three analyses were 
generally conducted by using: (i) the most probable values of the variables 
present in the problem, (ii) the least likely values, and (iii) the most 
conservative values. This way the implication of the presence of uncertainty 
in the problem can be indirectly studied. However, the information may not 
be of practical use since the underlying reliability remains unknown. It will 
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be very desirable if the multiple analyses concept can be integrated with the 
LRFD concept. 

Schueller (2002), in his Euro-SiBRAM72000 keynote address, commented 
that essentially the uncertainty management was the main topic in the risk- 
based codified design. It may be more rational to manage uncertainty by 
solving the problems several times instead of solving it only once. The 
challenge is to convince the deterministic colleagues the progressive nature of 
the multiple analyses, particularly considering the advancement in the 
computational power. 

Uncertainty associated with most of the design variables is now available 
in the literature. With the help of experts from many disciplines, several 
reliability methods are available to estimate the underlying reliability 
considering the uncertainty in the design variables (Haldar and Mahadevan, 
2000a, b). Thus, underlying risk in any engineering design can be evaluated 
without using any prescribed load and resistance factors. This allows an 
engineer to design more or less conservative way than the current codified 
approach, considering the problem under consideration and the willingness of 
the owner to accept the corresponding risk. Simulation, particularly Monte 
Carlo simulation method can be used for the reliability evaluation. The 
simulation approach is relatively simple and does not require sophisticated 
statistical and probabilistic knowledge required for other reliability evaluation 
techniques. Since simulation is multiple deterministic analyses satisfying the 
underlying uncertainty in the design variables, it can also be used for the 
design purpose. Thus, simulation is a viable alternative to the codified 
approach due to the significant advancement in computer technology and 
computational power. However, the question remains whether the simulation- 
based design concept is mature enough to be considered as an alternative to 
the currently available codified approach. 

Even if one assumes that the simulation approach is mature, there are many 
issues that need to be addressed before it can be accepted as an alternate 
design method. Some of the issues may not be simulation-related; they may 
be related to the weaknesses in the current deterministic approaches. Since the 
deterministic analysis is an essential element in simulation, the limitations in 
the deterministic procedures are also expected to be present in the simulation- 
based approaches. Also, if history is an indication, a strong resistance to the 
implementation of simulation-based engineering design can be expected from 
current designers. The engineering profession is reluctant to adopt a new 
approach in most cases. Lack of familiarity and resources in terms of money 
and time to learn a new approach are the main reasons for the resistance. 
Many issues that are avoided in the codified approaches need broader 
discussion in the profession, such as lack of data, the correlation 
characteristics of input information, lack of information on reference value to 
be used in the performance function, legal issues, software, and the efficiency 
and accuracy of the deterministic algorithm to be used for simulation. 
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The engineering community, in general, accepts the presence of 
uncertainties in engineering designs and acknowledges the necessity of 
explicitly incorporating them in the design whenever possible. The current 
design codes try to address the uncertainty-related issues conservatively, but 
practicing engineers may not be aware of this. They must know that the 
design value for the load-related design variables is selected to be above the 
mean value and the design value for the resistance-related design variables is 
selected to be below the mean value. The uncertainty characteristics, in terms 
of mean, standard deviation, and the underlying distribution for all the design 
variables, are in general different. It is essential that they know the basic 
concept and the assumptions behind the current codified approaches. They 
must be encouraged to use the simulation approach if the basic assumptions of 
the codified approach are not satisfied. 

Simulation is very powerful but it is an approximate technique. The accuracy 
in simulation increases with the increase in the number of simulation cycles 
used. However, it is not possible to predict the minimum number of simulation 
cycles required for a specific problem to satisfy the accuracy requirement before 
conducting the experiment. It depends on the underlying probability of failure 
which is unknown at the beginning of the experiment. However, using sufficient 
number of cycles, the simulation technique will estimate the system reliability 
considering the corresponding reference values, nonlinear behavior, static as 
well as dynamic response to the loading, correlation characteristics of random 
variables, etc. However, even for a given number of simulation cycles, the 
outcomes of the simulation for a specific problem could be different depending 
on the characteristics of computer-generated random numbers. There is no 
uniqueness in the simulation outcomes. The outcomes are computer-specific. 
Thus, the error in estimating probability of failure should be an integral part of 
simulation. 

Another fundamental drawback is the time or cost or efficiency of simulation. 
Huh and Haldar (2001, 2002) reported that simulating 100,000 cycles in a 
supercomputer (SGI Origin 2000) to estimate the reliability of a one-bay two- 
story steel frame subjected to only 5 second of an earthquake loading may take 
more than 23 hours. The efficiency of simulation can be improved by using 
variance reduction techniques (VRTs), which can be grouped in several ways 
(Haldar and Mahadevan, 2000a). One approach is to consider whether the 
variance reduction method alters the experiment by altering the input scheme, by 
altering the model, or by special analysis of the output. The VRTs can also be 
grouped according to description or purpose (i.e., sampling method, correlation 
methods, and special methods). Haldar and Mahadevan (2000a) noted that 
VRTs increase the computational difficulty for each simulation, and a 
considerable amount of expertise may be necessary to implement them. Even 
experts may not know some of these approaches, and practicing engineers 
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may not be able to use them. The most desirable feature of simulation, its basic 
simplicity, is thus lost. 

Based on the above discussions, it is clear that the simulation approach 
provides a very reasonable alternative to the commonly used codified approach. 
However, there are still some issues need to be addressed before it can be 
adopted. Issues related to the efficiency and accuracy of the deterministic 
algorithm to be used in simulations, the appropriate way to quantify the 
randomness, information to be used to define the statistical characteristics of 
design variables, defining appropriate performance functions and the selection of 
reference values, evaluating correlation characteristics of random variables 
present in complex systems, simulation of random variables versus random field, 
simulation of multi-variate random variables, system reliability, the effect of 
load combinations, time dependent reliability, available software to implement 
the simulation-based concept, etc., need further evaluation. Documentation of 
case studies will also help in this endeavor. A world body of distinguished 
scholars on reliability-based design addressed these issues in the International 
Colloquium Euro-SiBRAM'2002 (Marek, et al., 2002) to help to formulate the 
future direction in the simulation-based design. The opinions, comments, 
observations and recommendation made by the attending international 
scholars and practitioners are presented here. 

2. SIMULATION CONCEPT 

Lewis and Orav (1989) wrote, "Simulation is essentially a controlled 
statistical sampling technique that, with a model, is used to obtain 
approximate answer for questions about complex, multi-factor probabilistic 
problems." They added, "It is this interaction of experience, applied 
mathematics, statistics, and computing science that makes simulation such a 
stimulating subject, but at the same time a subject that is difficult to teach and 
write about." Theoretical simulation is usually performed numerically with 
the help of computers, allowing a more elaborate representation of a 
complicated engineering system than can be achieved by physical 
experiments, and it is often cheaper than physical models. It allows a 
designer to know the uncertainty characteristics being considered in a 
particular design, to use judgment to quantify randomness beyond what is 
considered in a typical codified design, to evaluate the nature of implicit or 
explicit performance functions, and to have control of the deterministic 
algorithm used to study the realistic structural behavior at the system level. 

The method commonly used for this purpose is called the Monte Carlo 
simulation technique. In the simplest form of the basic simulation, each 
random variable in a problem is sampled several times to represent the 
underlying probabilistic characteristics. Solving the problem deterministically 
for each realization is known as a simulation cycle, trial, or run. Using many 
simulation cycles will give the probabilistic characteristics of the problem, 
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particularly when the number of cycles tends to infinity. Using computer 
simulation to study the presence of uncertainty in the problem is an 
inexpensive experiment compared to laboratory testing. It also helps evaluate 
different design alternatives in the presence of uncertainty, with the goal of 
identifying the optimal solution. The use of simulation in engineering design 
was strongly advocated by Marek et al. (2001,2003), Schueller in his keynote 
address, and others. Elishakoff (2001) wrote an interesting essay on Monte 
Carlo simulation. 

The gathering of distinguished scholars on risk-based design in Euro- 
SiBRAM'2002 was a significant development and helped to promote the 
simulation-based engineering design as an alternative to the classical codified 
approach. However, there are still many challenges that need to be addressed 
first. In all fairness, similar challenges also exist in the current codified 
approach, and the discussions in the colloquium helped to identify them. 
Thus, these discussions are also expected to help improve the codified 
approach. 

3. STEPS IN SIMULATION 

Reliability evaluation using Monte Carlo simulation technique requires the 
execution of a series of sequential steps. The success of implementing the 
Monte Carlo simulation in design will depend on how accurately each step is 
addressed. Haldar and Mahadevan (2000a) identified the following six essential 
steps: (1) defining the problem in terms of all the random variables; (2) 
quantifying the probabilistic characteristics of all the random variables in terms 
of their probability density functions and the corresponding parameters; (3) 
generating values of these random variables; (4) evaluating the problem 
deterministically for each set of realizations of all the random variables, or 
simply numerical experimentation of the problem; (5) extracting probabilistic 
information from N such realizations; and (6) determining the accuracy and 
efficiency of the simulation. It is not necessary to discuss these steps in detail in 
this chapter. 

4. BACKGROUND INFORMATION ON CURRENT 
CODIFIED APPROACH 

One of the earliest codified approaches was published in 1916 on Report 
on Recommended Practice and Standard Specifications for Concrete and 
Reinforced Concrete was issued by several professional organizations 
including American Concrete Institute, American Institute of Architects, 
American Railway Engineering Association, American Society of Civil 
Engineers, and American Society for Testing and Materials. However, the 
risk-based engineering design concept has been under development for only over 
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the last four decades. It required a multi-disciplinary research effort. The 
introduction of the load and resistance factor design (LRFD) approach for the 
design of steel structures by the American Institute of Steel Construction (AISC) 
was an important development in civil engineering (AISC, 1986). The 
preliminary attempts were very simplistic in nature. In the developing the first 
edition of the LRFD code, the load effects and the resistance were assumed to be 
lognormally distributed and the first-order second moment (FOSM) method 
(Haldar and Mahadevan, 2000a) was used to estimate the reliability and the 
corresponding load and resistance factors. In the later editions (AISC, 1994, 
2001), the advanced first-order second-moment (AFOSM or FORM) approach 
was used to accommodate more complex design situations and included 
probability distributions other than the lognormal distribution. Simulation 
technique can also be used to extract similar information on risk and reliability. 
For the reliability evaluation methods applying simulation technique, the 
representation of individual variables need not be limited to parametric 
distributions. Bounded histograms, piecewise-uniform distributions and other 
non-parametric distributions can be considered as documented by Marek et al. 
(1995 and 2001) and Mack (2002). Further attention should be given to non- 
parametric distribution~ considering the scientific acceptability and limitations 
of such representations and the development of required databases. 

4.1. Deficiencies in the Current Risk-based Codified 
Approach 

Some of the major advantages of the current risk-based codified approach 
have been well publicized and accepted in the profession. However, it is based 
on several major assumptions. Some of these assumptions are identified next. 

The LRFD method was based on reliability analysis of isolated simple 
structural elements and was calibrated to achieve levels of reliability similar to 
conventional allowable stress-based design guidelines used at that time. The use 
of isolated simple structures to derive the safety factors is related to the basic 
design philosophy common to all codified design procedures. There are several 
advantages to isolated member approach including (Bjorhovde et al., 1978): (1) 
in deterministic design methods that use factors of safety, it is not practical to 
prepare detailed requirements for each structural configuration; (2) the 
characteristics of the individual members and connections themselves are 
independent of the framework; and (3) most research has been devoted to the 
study of such elements, and theoretical and experimental verification of their 
performance is readily available. Nevertheless, the performance of a member is 
directly dependent on its location in a structural configuration and on its 
relationship or connection with other members in the framework (Mahadevan 
and Haldar, 1991). An important objective of reliability-based design methods is 
to reduce the scatter of nonuniform risk levels produced under various load 



450 Achintya Haldar 

combinations, but Mahadevan and Haldar observed that in many cases it fails to 
do so. The codified approach also fails to consider the statistical correlations 
among the design variables. 

Popper (1982) wrote, "The fundamental idea underlying scientific 
determinism is that the structure of the world is such that every future event can 
in principle be rationally calculated in advance, if only we know the laws of the 
nature and the present state of the world." The nonlinear state of the structure 
needs to be considered appropriately in estimating the probability of failure. But 
since the code does not address the minimum analytical requirement for 
deterministic evaluation, this area has been overlooked. Haldar and Mahadevan 
(2000b) advocated the use of nonlinear stochastic finite element approach for 
this purpose. 

In the current codified approach, the reference or permissible or allowable 
value is required for the reliability evaluation, but in many situations the 
reference values are unknown. In defining the serviceability requirement for 
steel structures, the latest LRFD code (AISC, 2001) states "Deformation in 
structural members and structural systems due to service loads shall not impair 
the serviceability of the structures." The reference value for the fatigue-related 
problem has yet to be established. The information on the critical crack size or 
the damage accumulation function has yet to be developed (Zhao et al., 1994). 
Time-dependent reliability has been generally overlooked. 

In any case, the advanced reliability concepts used in developing the LRFD 
codes generally remain unknown to designers. Furthermore, for a particular 
design application, it may be difficult for an experienced design engineer to 
consider the presence of levels of uncertainty different than those used in 
developing the reliability-based design guidelines. As mentioned earlier, in 
most cases, these guidelines were developed to consider the behavior of 
elements of complex structural systems satisfying explicit performance 
criteria. However, the strength-related performance functions are generally 
applicable at the element level and serviceability-related performance 
functions are related to the system level. As mentioned earlier, the evaluation 
of system reliability from the element-level reliabilities is not simple. Thus, 
satisfying performance criteria for both strength and serviceability 
performance functions may not provide similar risks as observed by many in 
the past (Ellingwood et al., 1980, Gao et al., 1996). 

5. IMPLEMENTATION OF SIMULATION-BASED 
ENGINEERING DESIGN 

The international scholars active on simulation (Schueller and Spanos 
2001, Marek et al., 2002) agree that simulation is an attractive alternative to 
codified approach particularly for large real structural systems. However, 
several issues need to be addressed before advocating for its immediate 
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implementation. Some of the questions are as follows: (1) is the simulation- 
based design concept mature enough to be considered as an alternative to the 
currently available codified approach? (2) At present, should designers have 
the option to use either the simulation-based approach or the codified 
approach? (3) What is the future of simulation-based design considering the 
advancement in computer and information technology? They are discussed in 
the following sections. 

5.1. Is the simulation-based design concept mature enough to be 
considered as an alternative to the currently available codified 
approach? 

As mentioned earlier, numerous researchers have already advocated and 
identified the potential for simulation-based engineering designs (Schueller 
and Spanos 2001, Sundararajan 1995, Marek et. a1 1995). All the efforts can 
be grouped into two major categories: (a) improvements of the simulation 
methods beyond the basic Monte Carlo method to obtain a higher order of 
efficiency and accuracy, and (b) attempts to introduce it as a structural 
reliability assessment concept to the designers (Marek et al., 1995, 2001). At 
present, designers serve mainly as an interpreter of codes. In most codes, they 
are given option to use alternative methods with the responsibility of 
defending them when necessary. Designers rarely use this option for the fear 
of legal ramifications. The use of simulation in design is expected to 
showcase histher creativity and leadership role in the profession. The general 
consensus of the colloquium participants was that Monte Carlo simulation is a 
versatile method that is mature enough to be used for reliability analysis of 
large complicated real engineered structures. 

5.2. At present, should engineers have the option to use either 
the simulation-based approach or the codified approach? 

To address this question, it is essential to identify what has been done so 
far in the international communities. Theoretically, designers should have the 
option to use either approach. In the Czech Republic, CSN 7314 01-1998 
(Appendix A) is one of the pilot codes allowing the Monte Carlo simulation 
as a design tool. 

It was pointed out during the colloquium that in Canada, a 14 km long 
bridge with span length of 250 m was recently built. The code would not 
cover this design, and simulation was used. It was suggested that simulation 
could be used to design large projects. The reliability-based design is very 
common for offshore structures. 
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In Europe, highway and railway companies use simulation for assessment 
purposes. This is a good development. Once professionals are familiar with 
using simulation to evaluate existing structures, it will be simpler for them to 
use it for design. 

In the U.S., the general feeling is that we are safe if we design according to 
the design code. Any deviation from the codified requirements is discouraged 
to avoid the liability and insurance issues. This is not entirely true. Designers 
should use all available means to satisfy performance requirements, according 
to a judge. The automotive industry satisfied the code requirements. 
However, they should have used simulation to address all the issues related to 
the problem. We need to interact with designers, stating that they need to use 
all available information to make their design safe. This argument can be used 
to promote simulation. 

Some of the developments in the use of simulation in engineering design 
are very encouraging. Simulation could be used in design in some countries, 
but it is also necessary to look at its legal ramification. Unlike in Europe, in 
the U.S.A. a code is not a government document. It is developed by the 
profession and its acceptance is voted by the users and developers. It was 
pointed out in the colloquium that in some countries, code guidelines must be 
followed to the letters, and other countries permit alternative methods if they 
are better. We need to change the mentality and laws to implement 
simulation in design. In Europe, two tendencies currently exist: Anglo-Saxon 
- more or less free to do anything, and middle-European - fixed or obligatory 
requirements. Current Euro-code is obligatory. It is a product of about 20 
years of work from many different countries, and the developers of codified 
approach may not advocate simulation because of all the time invested in the 
current system. Also, the current code does not address the serviceability and 
durability issues in a probabilistic manner. In some cases, such as corrosion, 
good theoretical models exist which can be used with simulation benefiting 
the profession. 

In the U.S., the Accreditation Board of Engineering and Technology 
(ABET) now requires that all civil engineering undergraduate students 
demonstrate knowledge of the application of probability and statistics to 
engineering problems, indicating its importance in civil engineering 
education. Thus, the LRFD concept and simulation can be introduced to them 
at the same time. 

5.3. What is the future of simulation-based design considering 
the advancement in computer and information technology? 

Haldar (2002), Schueller (2002) and others commented that Monte Carlo 
simulation is a versatile method that is mature enough to be used for 
reliability analysis of large engineered structures. However, the reliability 
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community has no influence on hardware development, but has to keep up 
with software development in terms of parallel processing or computer 
farming. We need to reduce the dimensions of the problem, for example by 
using Karhunen-Loeve expansion. There is room for improvement in the 
variance reduction techniques. We need to provide these options to designers, 
and we need to implement new data management schemes integrated with the 
Internet in the new generation of computer codes. Schueller stated that this is 
a way to bring the concept to practicing engineers. They do not need to know 
the theory behind it very well. Another option could be to bring probability- 
based code to finite element method-based algorithms like ADINA, ANSIS, 
and NASTRAN. The programmers are working on these, but they are not 
fully developed yet. We need to develop more reliability-based software. 

6. GENERAL COMMENTS 

Unfamiliarity with the simulation-based design concept may be main 
reason behind why it is not used regularly in every day designs. Commercial 
aircrafts are now being designed using the simulation-based approach. Many 
participants of the colloquium admitted that they were essentially 
deterministic persons but now had been re-educating themselves in reliability- 
based design. They favored simulation-based performance assessment. They 
pointed out that during the Northridge earthquake of 1994, cracks developed 
in steel structures, and simulation could be used to study their behavior. 
Simulation could be the best approach for nonlinear problems where 
superposition may not work. Simulation can improve the understanding of 
uncertainty in a problem. Simulation can be used for sensitivity analysis. 
Simulation is an assessment method rather than a design method, and will fit 
very well with the performance-based design being gradually implemented in 
many countries. Simulation is only as good as the data, and reliable data on 
variables must be available in design offices from a legal point of view. 

6.1. Improvement in Efficiency in Simulation 

The Monte Carlo Simulation technique becomes attractive when the 
presence of randomness comes from many different sources and the 
theoretical solution becomes very tedious and impractical. On the other hand, 
it is very inefficient if the underlying probability to be estimated is relatively 
small, say less than (Schueller, 2002). Thus, for large complicated 
problems with low probability of failure, the efficiency of the basic Monte 
Carlo Simulation technique needs to be improved. In Section 1, some of the 
commonly used variance reduction techniques to increase efficiency are 
discussed. In recent years, controlled Monte Carlo Simulation technique has 
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been proposed (Schueller, 2002). In contrast to the importance sampling 
VRT, this methodology is self adapting and does not require detailed a-priori 
information. 

Schueller (2002) also advocated using parallel processing to increasing the 
efficiency. According to him "As MCS is based on the generation of 
independent samples to be used for subsequent computations, the procedure is 
ideally suited for parallel processing. This implies that more than one 
processor is used for the same task of an analysis." He commented that the 
parallelization should be possible from user level. He continued "One 
possible way to allow this user-supported parallelization is to offer the user a 
module group, which handles all tasks concerning parallelization, among 
which the following are found to be most important. In order to reduce the 
required programming especially the communication tasks need to be robust. 
Naturally, - not directly apparent to the user - the commands utilize available 
parallel processing library packages and systems, e.g. the Parallel Virtual 
Machine (PVM) package allows for a straight-forward implementation, i.e. on 
real parallel processing computers as well as on a number of workstations 
connected by network." 

6.2. Education 

The presence of uncertainty in engineering designs must be acknowledged 
by the profession and the concept needs be integrated in design courses. 
Reliability assessment methods using simulation can contribute to the 
transition from deterministic to probabilistic way of thinking of students as 
well as designers. A pilot international project titled TERECO (TEaching 
REliability Concepts), sponsored by Leonardo da Vinci Agency in Europe 
(Marek et al. 2001), was very successful. Education is important to bring the 
concept to students and practicing engineers, and it needs to be addressed in 
terms of undergraduate and graduate education. Graphical representation is 
an important tool for undergraduate education, but students need to be kept 
motivated beyond this so that they can apply the concept to real problems. 

6.3. Software Development 

To implement the risked-based design concept, either theoretical or 
simulation-based, in the engineering design, computer programs must be 
available to engineers. Special application-based computer programs need to 
be developed for this purpose. As an alternative, the commercially available 
deterministic computer programs should be modified to give an option to use 
risk-based design concept. 

Schueller (2002) discussed the subject in detail in his keynote address. 
According to him, "In order to keep the software on Computational Stochastic 
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Structural Analysis flexible and generally applicable, it has to be based on 
MCS. Furthermore, it should be based on modular programming. In general 
a program is developed by different groups and for different capabilities. 
Therefore, a natural modular structure is automatically given. However, in 
many cases this structure is not sufficiently observed by programmers or, 
even worse, modules are available, but different data handling procedures 
within the modules do not allow an efficient transfer of data." He encouraged 
developing modular programming transparent to all users. He continued "A 
second task is, to allow the user to access these modules at any time of the 
current analysis. Finally, the third task is to organize the easy transfer of data 
from one module to the other, i.e., input data as matrices, vectors as well as 
parameters for the calculations within the distinct modules. Efficiency is also 
a major issue. Fourteen major sources of uncertainty have been identified for 
performance-based seismic design. Parallel computing and smart simulation 
are necessary for this purpose. Simulation-based assessment can be used for 
this type of complicated problem. 

7. CONCLUSIONS 

The general consensus of the participants of Euro-SiBRAM'2002 was that 
Monte Carlo simulation is a versatile method that is mature enough to be used 
for reliability analysis of large engineered structures. The simulation-based 
approaches are being increasingly used as an alternative to codified 
approaches in some countries. However, it may suffer same deficiencies as 
the current risk-based codified approach. It is essential that the limitations of 
the current codified approaches be known to the practicing engineers so that 
they can use simulation whenever necessary to address the situations. 
Education and documentation of case studies are expected to accelerate the 
implementation of simulation in engineering design. With the advancement in 
the information technology, efficiency in simulation can be improved 
significantly. Another alternative will be to add simulation-based code to 
currently available finite element algorithms. There is some advancement in 
this area also. Many deterministic professionals are in the process of re- 
educating themselves in the simulation area. Legal aspects of using 
simulation in engineering design also need to be addressed worldwide. 

Many other valuable ideas, suggestions and opinions were presented and 
discussed at ten sessions of the colloquium. Interested readers are requested to 
refer to the colloquium proceedings (Marek et al. 2002). 
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Chapter 21 

SYSTEM IDENTIFICATION AT LOCAL LEVEL 
UNDER UNCERTAINTY 

Hasan Katkhuda and Achintya Haldar 

1. INTRODUCTION 

Health assessment of structures in use is a major challenge to the 
profession. Visual inspections are routinely used for this purpose. They 
cannot be effective if the defects are not visible to the naked eye or hidden 
behind some obstacles such as false ceilings, fire proofing material or other 
obstructions (Katkhuda, et. a1 2003). Furthermore, defects which do not alter 
the behavior of structures are expected to be present in large structural 
systems. Thus, locating them using visual inspections is a waste of resources 
and may forced to make some unnecessary maintenance decisions. An 
objective health assessment technique is urgently required to locate structural 
behavior altering defects at the local level. If such a method can be 
developed, the whole structure need not be inspected, the effect of defects on 
structural behavior can be easily evaluated, and the improvement in the 
structural behavior just after a repair action can also be studied very 
effectively. It is obvious that there is a need for a simple, inexpensive 
nondestructive evaluation (NDE) procedure that can be used routinely for in- 
service health assessment of existing structures at the local element level 
without disrupting their normal operation. 

To locate defects at the local level, a structure needs to be represented by 
elements and well developed finite element method can be used for this 
purpose. The solution of the inverse problem will identify the properties of 
all the finite elements in the formulation. The inverse problem can be set up 
as a static problem or as a dynamic problem. In dynamic formulation, since 
the inertia and damping forces must be considered, they provide more 
constraints. The dynamic formulation is used in developing the proposed 
method. The discussion clearly leads to developing a finite element-based 
system identification technique using dynamic response information. 



462 Hasan Katkhuda and Achintya Haldar 

System identification (SI) is a multidisciplinary research area and the 
existing literature is very extensive (Doebling, et. a1 1996, and Housner, et. a1 
1997). Available SI techniques can be broadly divided in to two categories: 
frequency domain and time domain. Frequency domain approaches are very 
common. Instead of using an enormous amount of response data in time 
domain, the structural properties can be described in terms of frequencies and 
mode shapes and changes in them can be used to detect defect. Since 
frequencies and mode shapes indicate the overall structural properties, the 
information can be used to decide whether the structure is defective or not, 
but the defects can not be located at the element level. Furthermore, the 
frequencies may not change significantly even in the presence of a major 
defect, e.g., the loss of a member of the structure, particularly considering the 
noises in the response data. To meet the objective of this study, the time 
domain SI techniques will be most appropriate. 

Several time domain approaches have been proposed (Hoshiya and 
Maruyama 1987, Wang and Haldar 1994, and Koh et. a1 2000). A typical SI 
technique has three components: input excitation, the system to be identified, 
and the output response Information. By knowing input excitation and output 
response information, the third component, i.e., the system can be identified. 
Outside the control laboratory environment, the measurement of exciting 
force could be very costly and may contain so much noise that the solution of 
inverse problem concept cannot be applied. The desirability of a SI technique 
will be significantly improved, if a system can be identified using only noise- 
laden response information. The concept is expected to be very challenging 
since two of the three components in a SI approach are unknown. 

Wang and Haldar (1994) and Wang (1995) proposed a linear time domain 
finite element-based SI approach and identified structures using response 
information only. They called it Iterative Least Square with Unknown Input 
(ILS-UI). In developing the dynamic equation of motion, they assumed 
viscous type damping and identified shear-type buildings, the simplest 
mathematical representation of structures. 

2. ILS-UI METHOD 

The governing equation of motion of a structure using viscous damping 
can be written in matrix form as (Wang and Haldar 1994): 

M x(t) + C x(t) + K x(t) = f (t) (1) 

where M is the mass matrix; C is the viscous damping matrix; K is the 
stiffness matrix; x(t), i(t), and x(t) are vectors containing the dynamic 
responses in terms of acceleration, velocity and displacement respectively; 
and f(t) is the excitation force vector. The acceleration of the structure is 
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measured and then integrated successively to obtain the velocity and 
displacement time histories. 

Assuming M is known mass matrix, Equation (1) can be rewritten as: 

For N- Dynamic Degrees of Freedoms (DDOFs) system, and suppose the 
responses of the structure are measured for a duration of (h. At), where h is the 
total number of sample points, and At is the constant time increment; Equation 
(2) can be rearranged in matrix form as: 

where A(t) is an (N . h) x L matrix composed of the system responses vectors 
of velocity and displacement; L is the total number of unknowns; P is a L x 1 
vector composed of the unknown system parameters- damping and stiffness- 
that need to be known at the element level; and F(t) is (N . h) x 1 vector 
composed of input excitation and inertia forces at any time t. 

For mathematical convenience, Equation (3) can also be expressed as: 

The total error, Er, in the estimation of the system parameters can be 
expressed as: 

To minimize the total error, Equation (5) can be differentiated with 
respect to each one of the P, parameters as: 
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Equation (6) gives L simultaneous equations. The solution of Equation (6) 
will give all L unknown parameters to be estimated. The unknown parameter 
vector, P can be evaluated as: 

It is relatively simple to solve for the system parameters vector P 
provided that the force vector F(t) and A(t) are known. However, as 
mentioned earlier, the input excitation is not known; thus, the force vector 
F(t) becomes a partially unknown vector. 

To address this issue, Wang and Haldar (1994) proposed an iterative 
procedure. Since the input excitation is not available at any time, they 
assumed the input excitation force f(t) to be zero forp time points to start the 
iterative process. This p time points should be kept to a minimum without 
compromising the convergence or the accuracy of the method. They observed 
that p can be only 2 time points if the structure is excited at any floor; and 
only 4 time points if the structure is excited at the base representing 
earthquake motion. 

As mentioned earlier, they applied the concept to identify shear-type 
buildings and extensively verified the method using computer generated 
output response information. The representation of a multi story building as a 
shear-type structure is the simplest mathematical representation and consists 
of many assumptions. This type of building deflects under shear forces only. 
The total mass of the structure is lumped at the floor levels; the girderslfloors 
are assumed infinitely rigid compared to columns; all the columns in a floor 
are represented by one column, and the deformation of the structure is 
considered to be independent of the axial force present in the columns. Thus, 
in this representation, an N-story building is represented by N dynamic degree 
of freedoms, i.e., each floor level has only one horizontal displacement. The 
mass matrix of a shear-type building is diagonal since the mass is lumped at 
each story. It can be represented as: 

M = diag. (m,, mt ... , mN) (8) 

The corresponding damping and stiffness matrices can be shown to be: 
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and 

where mi , ci , and ki ( i =1, 2, ..., N ) is the mass, damping, and stiffness 
respectively, at the ith DDOF of the building. 

A(t) matrix in Equation (3) for shear-type buildings will take the 
following form: 

The unknown system parameters vector P  for shear-type building will be: 

P = [ c ,  c2 ... cN i k, k, ... k N I T  (12) 

And the F(t) vector can be expressed as: 
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Using ILS-UI approach, using only response information, N number of 
stiffness and N number of damping parameters can be identified. Although, 
the ILS-UI approach is a significant improvement over the other methods 
available at that time, it cannot be used to detect defects at the element level, 
i.e., in columns and beams. Thus, the finite element representation of a 
structure needs to be improved to make it more realistic. A structure needs to 
be represented by elements, potential locations of defects. Only then the 
elements can be classified as defect-free or defective. 

For the ease of illustration, two dimensional frames are considered next. 
In such a frame, all the elements are represented by uniform two dimensional 
beam elements. For a two dimensional beam element, there are three Dynamic 
Degrees of Freedom (DDOFs) at each node. Two are translational DDOFs; 
one is along the length of the element (x axis) and the other is perpendicular 
to the x axis, i.e., along the y axis, and the third DDOF represents the rotation 
of the node. 

The mass matrix in Equation (8) for a shear-type building needs to be 
modified to represent three DDOFs at each node, giving a total of six DDOFs 
for an element. It can be shown to be (Cook et. al. 1989): 

Where Li is the length of the th element and Ei is the corresponding mass per 
unit length. 

For viscous damping, Equation (9) remains the same. However, the 
stiffness matrix in Equation (10) needs to be changed. The stiffness matrix K' 
for the ith beam element of uniform cross section (constant flexural stiffness or 
constant EI) is given by: 
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where Ei, Ii, and Ai are the Young's modulus, moment of inertia, and area of 
the cross-section of the ith element of the beam element, respectively. 

The global stiffness matrix K for the frame can be assembled from the 
stiffness matrices of all the elements using the direct stiffness method as: 

The unknown system parameters vector P for a frame can be expressed 
as: 

where ne is the total number of elements required to represent the whole plane 
frame, and ki = Ei 4 /Li is the unknown stiffness parameter for the ith beam 
element that needs to be identified. 

If the damping is considered to be viscous type, Equation (17) indicates that 
for a total of ne elements, 2 x ne numbers of parameters need to be identified. 
At this early stage of the development of the method, only the degradation of 
stiffness of elements is tracked to detect defects. The information on damping 
is not used. Thus, the identification of damping values of the elements may not 
be important and the efficiency of the algorithm can be significantly improved 
if they are not identified, particularly for a large structural system. 

The efficiency of the ILS-UI method can be significantly increased by 
considering Rayleigh-type damping, i.e., the damping is proportional to mass 
and stiffness, in the dynamic formulation (Ling 2000, and Ling and Haldar 
2004). The proposed algorithm is finite element based and the mass and 
stiffness matrices of a structural system will be readily available. The 
incorporation of the Rayleigh-type damping in the dynamic formulation is not 
expected to introduce any additional problem. For the Rayleigh-type 
damping, the damping matrix C in Equation (9) can be represented as: 

where factor a is the mass-proportional damping coefficient and P is the 
stiffness-proportional damping coefficient. They can be evaluated using the 
standard procedure from the information, on the first two undamped 
frequencies of the structure as suggested by Clough and Penzien (1993). 

Incorporating Equation (18) in to Equation (1) will result: 
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K x(t) + (a M + p K) x(t) = f (t) - M x(t) (19) 

As mentioned earlier, the mass matrix is assumed to be known. Lumped 
and consistent mass matrices are commonly used. For more realistic 
representation of the distribution of masses in a structure, the consistent mass 
matrix is generally preferred and is used in this study. Thus, the lumped mass 
matrix used for shear-type buildings needs to be modified. The consistent 
mass matrix for the ith element can be represented as (Cook et. al., 1989): 

where M' is the consistent mass matrix for the ith beam element of uniform 
cross section, Li is the element length and mi is the mass per unit length. 

The global mass matrix M for a typical frame can be assembled from the 
information on mass matrices of all the elements as: 

. m i L ,  MI=- 
420 

Equations (1 5) and (1 6) representing element and structural stiffness 
matrices, respectively, will remain the same. However, the A(t) matrix for the 
Rayleigh-type damping can be shown to be: 

- - 
140 

0 156 Sym. 

0 22L 4 ~ *  

70 0 0 140 

0 54 13L 0 156 

0 -13L -3L2 0 -22L 4L2 - 

where R' is the 6x6 matrix containing all the terms in the square bracket in 
Equation (15) for the ith element; N is the total number of DDOFs, L is the 
total number of unknown parameters, and h is the total number of equally- 
spaced sample points in the dynamic response information. 

The unknown system parameters vector P for the Rayleigh-type damping 
can be shown to be: 
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The improved efficiency in using the Rayleigh-type damping can be 
observed by comparing Equations (17) and (23). In Equation (17), the total 
number of parameters to be identified is 2 x ne, where ne is the total number of 
elements in the structural system. However, using Equation (23), only (ne + 2) 
numbers of parameters need to be identified. For a structural system containing 
a large number of structural elements, the use of Rayleigh-type damping is 
expected to significantly improve the efficiency of the algorithm. In all the 
subsequent discussions, only Rayleigh-type damping will be considered. 

As mentioned earlier, the algorithm is iterative in nature. A structure needs 
to be represented by finite elements. Initially, the basic finite element 
representation should kept simple without compromising the dynamic 
characteristics of the structure. It will be shown later with the help of examples 
that the finite element model can be refined, if necessary, to locate defect spots 
more accurately. It needs to be emphasized that basic objective of the finite 
element representation is not to accurately evaluate the structural responses but 
to provide a platform to compare structural responses as the structure degrade or 
deteriorate with time. The degradation will be captured by tracking the changes 
in the identified structural parameters. Structural responses in term of 
acceleration time histories must be available at node points in the finite element 
representation. The velocity and displacement time histories can be obtained by 
integrating the acceleration measurements successively. As mentioned earlier, 
the consistent mass matrix is assumed to be known. At this stage, all the 
information required to develop the A(t) matrix is available. The A(t) matrix 
for a two dimensional frame structure is shown in Equation (22). The unknown 
system parameters in Equation (23) can be evaluated by solving the L 
simultaneous equations as shown in Equation (7). However, the iteration 
process cannot be initiated since it is assumed that the input excitation force 
f(t) is unknown. Since the input excitation is not available, the iteration can be 
started by assuming it is zero at time ti, i = 1,2, . . ., p, wherep I h .  Wang and 
Haldar (1994) showed thatp could be only two points if the structure is excited 
at any DDOF, and only four points if the structure is excited at the base 
representing seismic motion. Later the authors (Katkhuda, et. al. 2004a) 
observed that the algorithm produces better and more accurate results if the 
excitation information is assumed to be zero at all time points h instead t o p  
time points to start the iteration. With this assumption, the F vector in 
Equation (7) can be obtained and a first estimation of the unknown system 
parameters P can be evaluated. Using Equation (19) and the estimated system 
parameters P, the information on the input excitation force f(t) can be 
generated at all time points h. Using the information on the generated input 
excitation and Equation (7), the estimation on the system parameters can be 
updated. The algorithm will iterate until the system parameters are evaluated 
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with a pre-determined accuracy. The convergence criterion is set with 
respect to the evaluated input excitation. The procedure will continue until 
there is a convergence in the input excitation with a predetermined tolerance 
(E). The tolerance (E) is set to be lo-' in this study. The convergence 

requires 1 f '+' - f ' I 5 lo-' applied for all time points h. 

It is interesting to note that the algorithm not only identifies unknown 
stiffness parameters of all the elements and the two Rayleigh damping 
coefficients, it also identifies the time history of the unknown excitation force. 

Obviously, the algorithm needs to be verified at this stage. Initially, the 
responses of structures were theoretically obtained using commercially 
available computer programs. To simulate realistic field conditions, 
artificially generated white noise was added to the theoretical response 
information. Using noise-free and noise contaminated response information, 
various structures were identified. Recently, defect-free and defective fixed 
ended and simply supported beams with uniform cross section were tested in 
the laboratory. The algorithm correctly identified the beams (Vo and Haldar, 
2004). Several examples are given in the following section to better illustrate 
the algorithm and its capabilities. 

3. NUMERICAL EXAMPLES 

Example 1 

A defect-free two dimensional steel frame excited by a blast load is 
identified in this example (Katkhuda, et. al., 2003). A three story plane steel 
frame, shown in Figure 1, is considered. The frame consists of 9 members; six 
columns and three beams. The height of the columns in each floor is 3.66 m 
and the bay width is 9.14 m. W18x71 of grade A36 steel section is used for all 
the beams and columns. Assuming the bases are fixed; the structure is 
represented by 18 DDOFs; 3 DDOFs at each node. The masses of the three 
beams ml, m*, and m3 are assumed to be 97.92 kg-sec2/m, and the masses of 
the columns m4 to m9 are assumed to be 39.19 kg-sec2/m. The beam 
stiffnesses k,, k2, and k3 are considered to be 10651 kN-m, and the column 
stiffnesses kq to kg are considered to be 2661 1 kN-m. 

The first two natural frequencies of the framefi andf2 were found to be 
6.62 and 23.27 Hz, respectively. Assuming 3% damping for the first two 
undamped frequencies, the Rayleigh damping coefficients a and j3 are 
estimated to be 1.9427 and 0.0003 194, respectively. 

The structure is assumed to be excited by a blast force applied 
horizontally at the top floor at node 1, as shown in Figure 1. The blast force is 
assumed to be a triangular pulse of magnitude 22 kN acting for a duration of 
0.05 sec. The theoretical responses of the frame in terms of displacements, 
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velocities and accelerations are calculated at each DDOF using a 
commercially available computer program ANSYS (2001). Once the 
theoretical responses are evaluated, the information about the input uncertain 
blast force is completely ignored. Considering responses from 0.02 to 0.123 
sec, recorded at 0.001 sec time intervals providing 104 time points the 
stiffnesses of all 9 members are identified. The results are summarized in 
Table 1. The maximum error in the stiffness identification is observed to be 
only 0.17%. The error is extremely small compared to other available 
methods presently available in the literature, even when input excitation 
information was used in the identification process (Toki, et al. 1989). 
Considering the practical aspect of the problem, the noise in the response 
information cannot be avoided. To simulate the presence of noise in the 
response information, numerically generated white noises with intensities of 
5% of the root mean square values of the responses at all dynamic degrees of 
freedom are added to the computer generated theoretical response 
information. 

.05 sec 4 5 3.66m 

Figure 1. Three stories frame and the blast load used for example 1 

The frame is again identified using the noise-contaminated response 
information. The results are shown in Table 1. As expected, the error in the 
stiffness identification went up, but the maximum error is observed to be only 
1.46%. The results in Table 1 indicate that the algorithm is very accurate and 
robust, and is capable of identifLing systems even in the presence of noise in 
the response information. 
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Table I .  Stijiness (EUL) ident.$cation for thefiame excited by one load for example 1. 
- . .  . Initial 

Theoretical Identified Identified Noise- 
Member Value Noise- Free Error % Included Error % 

(kN-m) (kN-m) (kN-m) 

kt 10651 10633 0.17 10495 1.46 

Example 2 

A real structure can be excited by multiple forces acting simultaneously. 
Although the information on the input excitation forces is not required for the 
algorithm, the question remains if the algorithm can identifj a structure when 
it is excited by more than one force. The two dimensional steel frame 
discussed in Example 1 is considered again, however, it is now excited by 
multiple forces applied at the superstructure (Katkhuda, et al. 2004b). 

The same three stories frame used in example 1 is excited by two 
harmonic forces: fi(t) = 44.4 sin ( 4 0 ~  t) kN applied horizontally at the top 
floor at node 1, and f2(t) = 44.4 sin (65 n t) applied horizontally at the second 
floor at node 3, as shown in Figure 2. 

h (9 

- 2 7  + 

t--- 9.14m + 
Figure 2. Three stories frame and two harmonic loads used for example 2 

The theoretical responses in terms of displacements, velocities and 
accelerations are calculated at each DDOF of the structure using ANSYS. As 
in Example 1, once the theoretical responses are evaluated, the information on 
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the two input harmonic forces is completely ignored. Using only responses 
from 0.02 to 0.87 sec recorded at 0.01 sec time interval providing a total of 86 
time points, the structure is identified. The results are shown in Table 2. The 
maximum error in the stiffness identification is found to be only 0.94%. To 
simulate the presence of noise in the response information, numerically 
generated white noises with intensities of 2% of the root mean square values 
of the responses at all dynamic degrees of freedom are added to the computer 
generated theoretical response information. The frame is identified with noise 
contaminated response information. In this case, the maximum error is found 
to be 0.97%. It can be concluded that the method is capable of identifLing the 
structure when it is excited by more than one load simultaneously. 

Table 2. Sttffness (EI/L) identification for the frame excited by two loads for example 2 
Initial Identified Identified Noise- 

Member Noise- Free Error % Included Error % Value 
(kN-m) (kN-m) (kN-m) 

k* 1065 1 10550 0.94 10548 0.97 

Example 3 

The damage state evaluation of structures just after major natural events 
like strong earthquakes or high winds is a major concern. The method 
presented here can also be used for this purpose. The stiffness evaluation of a 
large structure excited by an earthquake load is illustrated in this example. 

A four story two bay two dimensional steel frame, as shown in Figure 3, 
is considered. The frame consists of 20 members; 12 columns and 8 beams. 
The height of the columns in each floor is 3.66 m and each bay width is 9.14 
m. W18x71 of grade A36 steel section is used for all the members. Assuming 
the bases are fixed; the structure is represented by 36 DDOFs; 3 DDOFs at 
each node. The masses of all the beams and columns are assumed to be 97.92 
kg-sec2/m and 39.19 kg-sec2/m, respectively. The beam and column stiffnesses 
are estimated to be 10650.13 kN-m and 26625.34 kN-m, respectively. The first 
two frequencies,fi andf2, of the structure were found to be 4.71 and 15.63 Hz, 
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respectively. For an equivalent modal damping of 3% of the critical for the 
first two modes, the Rayleigh damping coefficients a and /3 are found to be 
1.365105 and 0.000469435, respectively. The structure is excited by the El 
Centro earthquake of 1940 applied at its base. The time history of the 
earthquake is shown in Figure 4. 

The theoretical responses of the frame are calculated in terms of 
displacements, velocities and accelerations at all nodes using ANSYS. The 
responses are recorded at 0.01 sec time interval. Using responses from 1 .52 to 
2.37 sec providing 86 time points, the structure is identified. After the 
theoretical responses are evaluated, the information on the input force is 
completely ignored. Using the response information only, the elements of the 
frame are identified. The theoretical and identified stiffnesses of the 20 
elements frame are shown in Table 3. The maximum error in the stiffness 
identification is found to be only 0.024%. 

Figure 3. Four stories frame excited with El Centro Earthquake load for example 3 

To consider the presence of noise, a numerically generated white noise 
with intensity of 5% of the root mean square values of the responses observed 
at all the dynamic degrees of freedom are added to the theoretical responses. 
As expected, the maximum error in the stiffness identification went up to 
1.99%. It is still relatively small. This example clearly demonstrates the 
method can identify large structural systems excited by earthquake loadings, 
even in the presence of noise. 
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-0.35 -i 
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Time (see) 

Figure 4. El Centro Earthquake time history 

Table 3. Stzffness (EI/L) identijkation for the fiame excited by earthquake load for example 3. 

Initial Identified Noise- Error % Identified Noise- Error % Member Theoretical Free (kN-m) 
Value (kN-m) Included (kN-m) 

K9 26625.34 26619.85 0.021 26097.29 1.983 

kin 26625.34 26619.71 0.021 26097.56 1.982 
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Example 4 

In the three examples discussed so far, it was shown that the method is 
capable of identifying small and large structures excited by one, two or 
earthquake loadings, even in the presence of noise in the response information. 
However, all the structures are considered to be defect free. It is important at 
this stage to demonstrate how the method can identi@ defective elements in a 
structure. 

The same two bays four-story steel frame considered in example 3 and 
shown in Figure 3 is used here. Defects in the frame are introduced in the 
following way. The stiffness of one beam, element 2, is reduced by 5% of its 
initial value to simulate defects in it. At the same time, the stiffness of one 
column, element 15, is reduced by 2% to simulate defects in it. As before, the 
theoretical responses of the defective frame at all node points excited by the El 
Centro earthquake are calculated using ANSYS, the responses are recorded at 
0.01 sec time intervals. Using responses from 1.52 to 2.37 sec, providing a 
total of 86 time points, the frame is identified. 

The identified stiffnesses of all the elements are given in Table 4. For the 
noise-free case, the results indicate that kZ and k15 decreased by 5.067% and 
2.043%, respectively, more than the other elements indicating the defects are in 
elements 2 and 15. A numerically generated white noise with intensity of 5% 
of the root mean square values of the responses observed at all the dynamic 
degrees of freedom are added to the theoretical responses to consider the 
presence of noise. The results of the noise-contaminated responses are also 
shown in Table 4. For this case, the stiffhesses of k2 and k15 decreased by 
5.779%, and 2.672%, respectively, indicating the presence of defects in them. 
This example demonstrates that the method can identi@ defective elements in a 
frame excited by earthquake loading, even in the presence of noise in the 
response information. 

Example 5 

To increase the application potential of the algorithm, it will be very 
desirable if it can identify the location of the defect more accurately within a 
defective element. The following example illustrates how the method can be 
used to locate defective spot in a defective element. 

A five-story plane steel frame, as shown in Figure 5, is considered here. 
The frame consists of 15 members; 10 columns and 5 beams. In this 
illustrative example, the beam in the third floor is assumed to contain a defect. 
The nature and the location of the defect will be discussed in detail later. To 
locate the defect spot in the defective element, the beam is represented by six 
equal length finite elements as shown in Figure 5. For this finite element 
representation, the frame now consists of 20 elements. Of course, the defective 
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beam can be represented by any number of elements depending upon the 
accuracy required for the detection. 

Table 4. Stiffness (EI/L) identijication for the defective state frame for example 4 .  
Initial 

Member Theoretical Identified Noise- Effect % Identified Noise- Effect % 

Value (kN-m) Free (kN-m) Included (kN-m) 

In this example, W21x57 of grade A36 steel section is used for all the 
members. The height of the columns in each floor is 3.66 m and the bay width 
is 9.14 m. Assuming the bases are fixed; the structure is represented by 45 
DDOFs; 3 DDOFs at each node. The masses of all the beams and columns are 
assumed to be 78.62kg-sec2/m and 3 1.47 kg-sec2/m, respectively, but the mass 
of each beam elements in the fourth floor, m7 to ml2, will be reduced to 13.10 
kg-sec2/m. The beam and column stiffnesses are estimated to be 10650.25 kN- 
m and 26625.62 kN-m, respectively, but the stiffness of the beam elements, k7 
to kI2, will be 63901 S O  kN-m. 

The mass-proportional damping coefficient a and the stiffness-proportional 
damping coefficient P for the Rayleigh damping are evaluated following the 
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procedure discussed earlier. The first two frequencies,fi andf2, of the structure 
were found to be 4.1 1 and 13.66 Hz, respectively. For an equivalent modal 
damping of 3% of the critical for the first two modes, a and P are found to be 
1.192267 and 0.00053728, respectively. 

T I L  
4 " (~22.2t3 mh . 

2 
.05 sec 

- - 3 3.66 m 

Figure 5. Five stories finite element frame and blast loads used in example 5 

A defect in the form of a notch is introduced in the fourth floor beam. The 
area of the beam is reduced by 40% of its original value over a length of about 
15 mm located at a distance 5.3265m from node 5 to model the defect. 
According to the finite element representation shown in Figure 5, it means that 
element 10 contains the defect. The defective frame is excited by two blast 
forces. A rectangular pulse with a magnitude of 44.48 KN and a duration of 
0.05 sec is applied horizontally at node 3 at the forth floor. At the same time, a 
triangular pulse with a magnitude of 22.28 KN and a duration of 0.05 sec is 
applied vertically at node 2 at the fifth floor, as shown in Figure 5. 

The theoretical responses of the frame, in terms of displacements, 
velocities and accelerations, are calculated at all nodes using ANSYS and 
recorded at 0.01 sec time intervals. The responses from 0.02 to 0.87 sec, 
providing 86 time points, are used for the identification purpose. The 
information on the two blast loads are ignored as stated earlier. All the 
elements of the frame are identified using the algorithm. The results are 
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summarized in Table 5. The stiffness of element 10 reduced by about 1.756%, 
much more than the other elements indicating that the defect is in element 10. 
As before, to consider the presence of noise, a numerically generated white 
noise with intensity of 5% of the root mean square values of the responses at 
all DDOFs is added to the theoretical responses. For the noise-contaminated 
case, the maximum error in the stiffness identification is found to be 3.129%. 
This example demonstrates the capability of the method to identify defect spot 
in a defective element even when the structure is excited by multiple loadings. 

Table 5. Stiffness (EI/L) identiJication for spot defect-state for example 5 
Initial Identified Identified 

Member Theoretical Noise-Free Effect % Noise-Included Effect % 
Value (kN-m) (kN-m) (kN-m) 

k, 10650.25 10608.96 0.388 10468.63 1.705 
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4. SYSTEM IDENTIFICATION USING SUB- 
STRUCTURING APPROACH 

In all the previous examples, it is assumed that the response information 
is available at all the dynamic degrees of freedom. However, for a large 
complicated structural system, the collection of dynamic responses at all 
DDOFs is not practical. To improve the practical application potential of the 
method, a system needs to be identified with limited response information. A 
sub-structuring approach can be used for this purpose where a part of a 
structure can be selected in such a way that the output responses are available 
at all DDOFs in that sub-structure to satisfy the requirements of the ILS-UI 
method discussed so far. In this way, not only the members of the sub- 
structure but also the input excitation information will be identified. The 
concept is now being developed and is very briefly discussed in this section. 

To clarify the concept; consider the plane frame shown in Figure 6. Two 
situations can be envisioned. From the past experiences dealing with similar 
structures, defects, in any, are expected to be present in the roof beam or in 
the top floor column, as shown in the sub-structure shown in Figure 6. Thus, 
identifying a small part of the structure will provide the necessary 
information. In the second situation, suppose response information is 
available only at nodes 1, 2, and 3, as shown in Figure 6. It is necessary to 
identify Elements 1 and 2 without using excitation information. With the 
limited available response information, a sub-structuring approach is 
necessary. The basic ILS-UI method discussed earlier is still applicable, but it 
needs some modifications for the implementation purpose. The success of the 
approach depends on how the sub-structure is selected. In order to identify 
the stiffnesses of elements 1 and 2; a key node should be selected satisfying 
two requirements; (1) the key node should connect the 'elements to be 
identified, and (2) the point of application of the unknown input excitation 
force should be at the key node. The sub-structure shown in Figure 6 satisfies 
both requirements. In the case of earthquake loadings the sub-structure 
approach can be applied anywhere in the structure since all the nodes in the 
structure can be considered as a key node because the inertia forces resulted 
from the seismic load are applied to all the nodes as shown later in example 6. 
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A7 A7 Sub-structure 

Figure 6. Sub-structuring concept 

In general the equation of motion for any sub-structure can be expressed 
as: 

K r ( t ) + ( a ~  + P K  Ji (t)=f ( t ) - ~  Y (t) (24) 
sub sub sub sub sub sub sub sub 

Equation (24) can be rewritten in matrix form as: 

where matrix A(t) is (Nkey . h) x L ; Nkey is the number of DDOFs for the 
key node in the sub-structure, h is the total number of sample points, and L is 
the total number of unknown parameters in the sub-structure as mentioned 
earlier. Essentially Equation (25) is identical to Equation (3) except that the 
size of .the unknown vector to be identified is reduced reflecting the 
availability of limited output response information. For the case shown in 
Figure 6,  Mcey = 3 since the key node is node 1 and it has 3 DDOFs (two 
translation and one rotation as stated earlier). For, this particular example, 
Equation (25) can be expressed as: 

where A(t) matrix can be shown to be: 
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where R' and R2 are the 6x6 matrixes containing all the terms in the square 
bracket in Equation (15) for elements 1 and 2, respectively; x(t) and x(t) are 
vectors containing the displacement and velocity responses at nodes 1, 2, and 
3 for the h time points. The reason for including the responses at nodes 2 and 
3 is that they are directly connected to the key node, and their responses are 
connected, in the context of the finite element model, with node 1. It can be 
noticed that the total number of DDOFs in this substructure Nsub is only 9. 

The x(t) and x(t) vectors can be expressed as: 

and 

x=[xl ,41,el,x2,42,~2,~3,~3,~3]T (29) 
Similarly, the unknown structural parameter vector to be identified is: 

where kl and k2 are the required unknown stiffness (EZ/L)  for elements 1, and 
2, respectively, and a is the mass proportional damping coefficient and P is 
the stiffness proportional damping coefficient need to be identified. 

F(t) matrix can be expressed as: 

F(t) (3,h)xl = f(t) (3,h)xl- ~(~)(3,h)xI 

where x(t) vector contains the acceleration responses at nodes 
h time points as follows: 

1,2, and3 for 

It can be noticed that the sub-structure satisfies all the requirements for 
the ILS-UI approach presented earlier. Thus, the two elements in the sub- 
structure can be identified using response information measured at only 3 
nodes. The same iterative strategy discussed earlier can be used to solve 
Equation (26). To clarify all the steps necessary to implement the sub- 
structuring approach, a numerical example is given below. 
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Example 6 

The two bays four-story steel frame considered in examples 3 and 4, and 
shown in Figure 3, is considered. Suppose the available information indicates 
that elements 2 and 15 may contain some defects. Since the elements are 
widely separated, two sub-structures are necessary. To identify element 2, the 
required sub-structure is shown in Figure 7. In this representation, node 3 is 
the key node and the output response information must be available at nodes 
2, 3, and 6. The defect-free frame is excited by the El Centro earthquake and 
the theoretical responses at nodes 2, 3, and 6 are calculated from 1.52 to 2.37 
sec at 0.01 sec time intervals, providing a total of 86 time points. 

Equation (24) for this sub-structure shown in Figure 7 can be expressed 
as: 

where A(t) matrix can be shown to be: 

And the x(t) and x(t) vectors can be expressed as 

and 

The unknown structural parameter vector to be identified is: 

where k2 and k5 are the required unknown stiffness (EI/ L) for elements 2, and 
5, respectively, and a is the mass proportional damping coefficient and P is 
the stiffness proportional damping coefficient need to be identified. 

F(t) matrix can be expressed as: 
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where x(t) vector contains the acceleration responses at nodes 2,3, and 6 for 
86 time points as follows: 

Figure 7. Sub-Structure 1 to identify the stiffnesses of element 2 for example 6 

The stiffnesses of elements 2 and 5 are identified and are shown in Table 
6 .  The algorithm identified both stiffnesses very accurately with a maximum 
error in identification of 0.03%. To simulate the presence of noise in the 
response information, numerically generated white noises with intensities of 
5% of the root mean square values of the responses at all dynamic degrees of 
freedom of the sub-structure are added to the response information. The 
frame is identified with noise contaminated response information. In this 
case, the maximum error is found to be 1.897% as shown in Table 6. 

To consider the presence of defects, the stiffness of element 2 is reduced 
by 5%. Again, the theoretical responses of the defective frame are evaluated 
at nodes 2,3, and 6, and using the noise-free response information, stiffnesses 
of elements 2 and 5 are identified. The results are shown in Table 6. The 
stiffness k2 reduces by 5.057 % indicating the defect is in element 2. As 
mentioned earlier, to consider the presence of noise in the response 
information, a numerically generated white noise with intensity of 5% of the 
root mean square values of the responses at all DDOFs in the sub-structure is 
added to the theoretical responses. The results for the noise-contaminated 
responses are shown in Table 6. As expected, the error in identification 
increased a little bit when noise is considered in the response information. 
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Table 6. Stiffness (EI/L) identification for sub-structure model I to identiJL element 2. 

Initial Identified 
Effect Identified Noise- Effect 

Members Theoretical Noise- Free 
% Included (kN-m) % 

Value (kN-m) (kN-m) 

Defect-free state 

Defective State (5% Defect in member 2) 

As mentioned earlier; for the seismic excitation, all the nodes in the 
structure can be considered as key nodes for the sub-structure representation. 
Thus the sub-structure required to identify element 15 is shown in Figure 8. 
In this case, the key node is node 9. The stiffness of element 15 needs to be 
identified using response information available only at nodes 6, 8, 9, and 12. 
The defect-free frame is excited by the El Centro earthquake and the 
theoretical responses at nodes 6, 8, 9 and 12 are calculated from 1.52 to 2.37 
sec at 0.01 sec time intervals, providing a total of 86 time points. 

Equation (24) for this sub-structure shown in Figure 8 can be expressed 
as: 

A(t)(3.86)x7 7x1  F(t) (3.86)xl 

where A(t) matrix can be shown to be: 

And the x(t) and i ( t)  vectors can be expressed as: 

and 

The unknown structural parameter vector to be identified for this sub- 
structure is: 
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where klZ ,, k10 and k15 are the required unknown stiffness ( E I / L )  for elements 
12, 10 and 15, respectively, and a is the mass proportional damping 
coefficient and p is the stiffness proportional damping coefficient need to be 
identified. 

Figure 8. Sub-structure 2 to identify the stiffnesses of element 15 for example6. 

F(t) matrix can be expressed as: 

where x(t) vector contains the acceleration responses at nodes 6, 8 ,9  and 12 
for 86 time points as follows: 

The stiffnesses of elements 10, 12 and 15 are identified and are shown in Table 
7. The algorithm identified the stiffnesses of the elements very accurately. To 
simulate the presence of noise in the response information, numerically 
generated white noises with intensities of 5% of the root mean square values of 
the responses at all DDOFs of the sub-structure are added to the response 
information. The frame is identified with noise contaminated response 
information. In this case, the maximum error is found to be 1.972% as shown 
in Table 7. 

To consider the presence of defects, the stiffness of element 15 is reduced 
by 2%. Again, the theoretical responses of the defective frame are evaluated 
at nodes 6, 8, 9 and 12, and using the noise-free response information, 
stiffnesses of elements 10, 12 and 15 are identified. The results are shown in 
Table 7. The stiffness k15 reduces 2.1 1 % indicating the defect is in element 
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15. As stated earlier, to consider the presence of noise in the response 
information, a numerically generated white noise with intensity of 5% of the 
root mean square values of the responses at all DDOFs in the sub-structure is 
added to the theoretical responses. The results for the noise-contaminated 
responses are shown in Table 7. As expected, the error in identification 
increased a little. 

Table 7. Stijiness (EI/L) identijkation for sub-structure model 2 to identifi element 15 

Initial Identified 
Effect Identified Noise- Effect 

Members Theoretical Noise- Free 
% Included (kN-m) % 

Value (kN-m) (kN-m) 

Defect-free state 

klo 26625.34 26608.95 0.062 26438.17 0.703 

Defective State (2% Defect in member 15) 

h o  26625.34 26616.28 0.034 26428.34 0.740 

k12 10650.13 10643.69 0.061 10585.92 0.602 

kls 26625.34 26061.68 2.1 1 25903.27 2.712 

For the first sub-structure, only responses at 9 DDOFs are required to 
identify it. For the second sub-structure, only responses at 12 DDOFs are 
required to identify it. To identify the whole structure, responses at 36 DDOFs 
are required. The two examples indicate that the sub-structuring approach can 
be used to identify a part of a structure, even in the presence of noise, if the 
available response information is very limited. However, the sub-structure 
needs to be selected very carefully. 

5. CONCLUSIONS 

A system identification procedure is presented to identify the structural 
parameters at the local element level of framed structures. The structures are 
represented by finite elements. The procedure detects defects by tracking the 
changes in stiffness properties of each element. The most attractive feature of 
the procedure is that it does not require input excitation information for the 
identification purpose. It is capable of identifying defects even in the 
presence of noise. With the help of several numerical examples it is shown 
that the method can accurately identify structures excited by one or multiple 
dynamic loadings including seismic loading. Initially, the finite element 
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representation can be kept very simple. However, if defective elements are 
identified, the finite element representation can be refined to locate the defect 
spot more accurately in the defective elements. Sub-structuring approach can 
be used if the available response information is limited. The procedure has 
the potential to be used as a nondestructive health assessment technique. It is 
expected to be simple and economical but reliable and accurate. 
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Chapter 22 

UNCERTAINTY MODELING OF CHLORIDE 
CONTAMINATION AND CORROSION OF 
CONCRETE BRIDGES 

Zoubir Lounis 

1. INTRODUCTION 

The maintenance of aging and deteriorating concrete bridge structures is 
recognized as one of the major challenges facing bridge owners and 
managers. Despite their better durability when compared to steel and timber 
bridge structures, reinforced and prestressed concrete structures are vulnerable 
to the damaging effects of corrosion induced primarily by chlorides (from 
deicing salts and seawater) and to a lesser extent by carbonation. It is 
estimated that one-third to one-half of the projected bridge rehabilitation costs 
in North America will be allocated for the rehabilitation of deteriorated bridge 
decks. 

In most highway agencies, bridge maintenance management is based to a 
large extent on the results of bridge inspection combined with engineering 
experience and judgment for decision-making. Bridge maintenance 
management is a challenging task that involves the identification of optimal 
prioritization of bridge structures for maintenance and rehabilitation and the 
determination of the optimal rehabilitation strategy for each structure of a 
given bridge or a network of hundreds or thousands of bridges. To achieve 
this goal, there is a need to develop and integrate reliable and effective 
decision support models that include: (i) condition assessment models; (ii) 
deterioration prediction models; (iii) risk assessment models; and (iv) 
maintenance optimization models as illustrated in Figure 1. 

Structural concrete (reinforced and prestressed) is the main constituent 
material of the majority of highway bridge structures in North America. 
Chloride-induced corrosion is identified as the main cause of deterioration of 
concrete bridge structures. The sources of chlorides are the seawater and 
deicing salts used during winter. The corrosion of the steel reinforcement 
leads to concrete fracture through cracking, delamination and spalling of the 
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concrete cover, reduction of concrete and reinforcement cross sections, loss of 
bond between the reinforcement and concrete, reduction in strength (flexural, 
shear, etc.) and ductility. As a result, the safety and serviceability of concrete 
structures are reduced, and their useful service lives shortened. 

The available information regarding the material properties, loading, 
deterioration processes, risk of failure, and design and maintenance costs are 
incomplete or uncertain. There are different sources of uncertainty with 
varying magnitudes that affect the predictions of the above models. These 
include: (i) physical uncertainty; (ii) model uncertainty; (iii) statistical 
uncertainty; and (iv) decision uncertainty. It is clear that the combination of 
these uncertainties lead to a considerable level of uncertainty in each model 
and in the overall bridge maintenance management system, in which decisions 
have to be made subject to uncertainty. 

Condition Reliability-Based Maintenance 
Assessment Bridge Maintenance Optimization 
Models Models 

Probabilistic Risk 
Deterioration Assessment 
Prediction Models Models 

Figure 1. Decision Support Models for Bridge Maintenance Management 

In this paper, the objective is the development of probabilistic 
deterioration models for the assessment of the level of chloride contamination 
of the concrete cover and the level of corrosion of the reinforcing steel of 
concrete structures under chloride attack from deicing salts. The proposed 
models take into account the uncertainty associated with the material 
properties, structure geometry and dimensions, applied environmental loads 
and corrosion resistance as well as the uncertainty associated with the 
analytical models. The prediction capability of the proposed probabilistic 
model is illustrated on an aging chloride-contaminated concrete bridge deck 
that was exposed to deicing salts for forty years for which field data were 
available. 
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2. DETERIORATION OF CONCRETE BRIDGES 

2.1 Overview of Deterioration Models of Concrete Bridges 

In the last two decades, highway agencies developed and implemented 
bridge management systems (BMS) for planning the inspection and 
maintenance of their bridges in order to ensure their reliability and minimize 
their life cycle costs. The effectiveness of a BMS, however, is highly 
dependent on the reliability of the deterioration models used. In the state-of- 
the-art BMS, stochastic deterioration models based on Markov chains were 
developed to predict the deterioration of different bridge components, 
including concrete deck slabs. The application of a stochastic deterioration 
model based on the discrete Markov chain for the prediction of cumulative 
damage in structures was first proposed by Bogdanoff (1978). 

Despite their practicality and ease of updating, the Markov chain-based 
deterioration models have serious shortcomings, including: (i) they are 
qualitative prediction models, based on subjective condition ratings as 
opposed to quantitative models; (ii) do not consider all parameters that govern 
the component deterioration; (iii) assume constant rate of deterioration as the 
cumulative damage after a stress cycle is assumed to depend only on the 
length of the stress cycle and the initial condition of the structural element; 
and (iv) do not consider the entire historical performance of component 
(Lounis 2000). 

These limitations may be acceptable for network-level analysis in which 
bridges are prioritized only for eligibility to maintenance funds. These 
models, however, have serious limitations for project-level analysis in which 
detailed and quantitative assessment of the levels of chloride contamination, 
corrosion, cracking, spalling, loss of bond and strength are critical for the 
assessment of the residual safety and identification of the appropriate and 
cost-effective rehabilitation strategy. 

A more appropriate model for concrete bridge structures exposed to 
chlorides from deicing salts is the mechanistic model based on Fick's law of 
diffusion of chlorides and the concept of the "chloride threshold level" for 
corrosion initiation (Tuutti 1982; Kropp and Hilsdorf 1995). This model is 
able to predict the time and space variations of chloride contamination of 
concrete and the time to onset of corrosion of the reinforcing steel. Several 
other models, including empirical, analytical, numerical and statistical, have 
been developed to predict the levels of chloride contamination of concrete, 
times to onset of corrosion, cracking, spalling and failure (Weyers 1998; 
Lounis 2000). 
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The practicality and reliability of these predictive models, however, is 
limited because they are not able to effectively account for the considerable 
uncertainty in the governing variables, model, and condition assessment 
methods. These models can predict the chloride ingress, steel corrosion and 
concrete cracking, provided that the parameters are certain and the underlying 
assumptions are satisfied. Intuitively, given the considerable uncertainty in the 
governing parameters of the model, there is a considerable uncertainty in the 
structural response . 

In the case of chloride contamination of concrete or corrosion of the 
reinforcing steel, this uncertainty is due to the heterogeneity of concrete, 
temporal and spatial variability of its properties, variability of the 
environment, concrete cover depth, chloride transport model and chloride 
threshold level, and measurement errors. Some of these shortcomings have 
been overcome through the use of probabilistic modeling of the chloride 
transport and corrosion initiation and solving the problem using reliability- 
based methods, such as Monte Carlo simulation, first-order or second-order 
reliability methods, or crossing theory (Enright and Frangopol 1998; Stewart 
and Rosowsky 1998; Lounis and Mirza 2001). 

2.2 Imperative for Probabilistic Modeling of Deterioration 

The prediction of the safety and serviceability of existing structures and 
the assessment of their maintenance needs is a very complex problem. This is 
due to the multitude of failure mechanisms and their interaction, which are 
very hard to quantify. For bridge structures, the main causes of failure may 
include aggressive environments, overstress due to heavy traffic load, 
accidental impacts, unsatisfactory design, protection, and construction, aging, 
and inadequate inspection and maintenance. Both the external effects and the 
material and structural parameters are time-dependent and random in nature. 
This requires the use of stochastic deterioration models to predict the 
structural response. Generally, a considerable level of uncertainty is 
associated with the predictive model and all its parameters. The sources of 
uncertainty can be identified as: physical uncertainty, statistical uncertainty, 
model uncertainty, measurement uncertainty and decision uncertainty. 

The physical or inherent uncertainty is that identified with the inherent 
random nature of a basic variable such as: (i) variability of the structure 
geometry (e.g. concrete cover thickness, member depth, etc.); (ii) variability 
of the material properties (strength, diffusivity, etc.); (iii) variability of the 
micro-environment (e.g. surface chloride concentration on the deck); (iv) 
variability of the applied loads (e.g. traffic load and superimposed load); and 
(v) variability of the condition rating, etc. 
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The statistical uncertainty arises from modeling the parameters and /or 
performance indicators using simplified stochastic processes or random 
variables by using lower order of stochastic correlation of stochastic processes 
or assuming independence of random variables. This uncertainty arises also 
from the use of a limited sample size to estimate the statistical parameters that 
describe the probabilistic model of the governing parameters and performance 
indicators. 

The model uncertainty results from the use of simplified physical models 
to describe the damage initiation or damage growth mechanisms, such as 
corrosion, cracking, spalling, collapse, etc. An example of such uncertainty 
arises in the modeling of the deterioration of concrete structure subjected to 
chloride attack from deicing salts, which is discussed further in this paper. 
This modeling uncertainty includes: (i) use of a simplified diffusion law to 
model the chloride transport mechanism; (ii) use of simplified chloride 
threshold level to define the corrosion resistance of concrete structures; and 
(iii) use of a simplified resistance degradation model in the propagation stage 
to assess the safety and serviceability of the structure. 

The decision uncertainty is that associated with the definition of the 
acceptable level of damage or limit state or acceptable probability of failure 
for both serviceability and ultimate limit states. This is quite a complex 
problem due to its dependence on the risk of loss of life and injury, cost of 
repair and replacement, redundancy of the structure, and failure mode 
considered. 

Probabilistic modeling of complex failure mechanisms of bridge 
structures has much to offer with regard to simplicity as compared with 
attempts of formulating purely deterministic models (Ditlevsen 1984; 
Melchers 1987; Mori and Ellingwood 1993; Frangopol et a1 1997; Stewart 
and Rosowsky 1998; Lounis and Mirza 2001). Ditlevsen (1984) states: 
"Probabilistic models are almost always superior to deterministic models of 
equal level of complexity in the sense that the former have considerable 
higher threshold of realism when dealing with phenomena taking place in 
uncertain environments". 

Therefore, given the considerable uncertainty that affect the material, 
structure, environment, loading, material performance and structural behavior, 
the imperative for probabilistic modeling of bridge deterioration cannot be 
ignored. In this paper probabilistic mechanistic models are proposed to 
predict the response of concrete bridge structures subjected to chloride attack. 
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3. UNCERTAINTY IN CHLORIDE TRANSPORT 

3.1 Mechanism of Chloride Contamination of Concrete 

Concrete is a porous material with pore spaces in the cement paste matrix 
and micro-cracks that provide a relatively easy access to aggressive agents, 
such as chlorides, oxygen, and water as shown in Fig.2. The penetration of 
these agents and their accumulation up to critical values at the steel level 
induce corrosion of the reinforcing steel, followed by concrete cracking, 
delamination, spalling and ultimately failure. The concrete cover provides 
both chemical and physical barriers to corrosion. The concrete pore water 
solution is naturally alkaline with a pH value about 13, which enables the 
formation and maintenance of a permanent protective passivating film on the 
steel surface (Bentur et al. 1995). The concrete cover with a depth (d,) 
represents also a physical barrier against corrosion by providing a dense and 
impermeable concrete cover, which limits the penetration of aggressive agents 
as shown in Fig. 2. 

The rate of penetration of chlorides into concrete is dependent primarily 
on the quality of concrete and more particularly on the water-cement ratio of 
the concrete mix and the presence of protective systems that delay or slow 
down the chloride ingress. The governing transport mechanisms of chlorides 
into structures are the ionic diffusion in saturated concrete and water 
absorption in partially saturated concrete. Chloride diffusion is a transfer of 
mass by random motion of free chloride ions in the pore solution resulting in 
a net flow from regions of higher concentration to regions of lower 
concentration (Kropp et al. 1995). The rate of chloride ingress is proportional 
to the concentration gradient and the diffusion coefficient of the concrete 
(Fick's first law of diffusion). 
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Penetration of Chlorides, Oxygen, Water 

Temperature & shrinkage reinforcement CI-, 0 2 ,  H 2 0  
\ 

Main reinforcement 
Concrete cover 

Slab 
Thickness 

Distribution reinforcement 

Figure 2. Typical reinforcement details of a bridge deck subjected to aggressive agents 

However, in porous solids, such as concrete, moisture may flow via the 
diffusion of water vapor, as well as non-saturated or even saturated capillary 
flow may occur in finer pores (Kropp et al. 1995). Although chloride ingress 
into concrete is due to multiple transport mechanisms, Fick's law of diffusion 
may be applied to quantify the chloride ingress. A concentration gradient is 
considered as the common driving force. Given the fact that concrete is a 
heterogeneous and ageing material, temporal and spatial variability is 
associated with the diffusion coefficient. Since in the field, chloride ingress 
occurs under transient conditions, Fick's second law of diffusion can be used 
to describe the time variation of chloride concentration for one-dimensional 
flow, as follows: 

ac a ac - = -[D-] 
at ax ax (1) 

Under the assumption of a constant diffusion coefficient, and boundary 
condition specified as C=C, and the initial condition specified as C=O for x>O, 
t=O, Crank's solution of Eq. (1) yields: 

X 
C(x, t) = C,[1- erf (-)I 

2 4 %  
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where C, is the chloride concentration at the surface; C(x,t) is the chloride 
concentration at depth x after time t; D is the diffusion coefficient; erf is the 
statistical error function; and t is the time of exposure. 
The time variations of the chloride profiles are shown in Fig.3. Despite its 
simplicity and extensive use, this model has some shortcomings that are 
summarized in the next sections. 

t Threshold chloride concentration 

Cover depth to top steel Depth 

Figure 3. Chloride Concentration Profiles at Different Times 

3.2 Uncertainty in Chloride Transport Model 

The uncertainty in the chloride transport model results from the use of a 
simplified physical model or relationship between the basic variables to 
represent the actual phenomena, such as: (i) assumption of chloride transport 
mechanism governed by diffusion; (ii) use of simplified models of the 
diffusion coefficient and driving chloride concentration; and (iii) assumption 
of non-correlated variables. The introduction of the apparent values of 
governing parameters addressed to some extent the uncertainty associated 
with the diffusion model for chloride transport, however, the model does not 
consider the considerable spatial and temporal uncertainty associated with the 
values of the governing parameters. 
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3.3 Uncertainty in Governing Parameters 

3.3.1 Diffusion Coefficient 

The ingress of chlorides into concrete is a complex process that combines 
several transport mechanisms such as diffusion, capillary sorption (or 
convection), and permeation, which is influenced by several factors such as 
concrete mix, nonlinear chloride binding of the cement, temperature, curing, 
etc. The chloride diffusion coefficient is determined by fitting the solution of 
Fick's second law of diffusion to measured chloride profiles expressed in 
terms of total chloride concentrations (including both free and bound 
chlorides). Since only the chlorides dissolved in the pore solution (free 
chlorides) are responsible for the initiation of the corrosion process, this 
procedure yields only the value of the apparent diffusion coefficient " D  
because chloride binding is not taken into account. The diffusion coefficient is 
not a constant but rather depends on time, temperature, and depth because of 
the heterogeneous nature and aging of concrete (Kropp et al. 1995; Neville 
1995; Weyers 1998). 

3.3.2 Surface Chloride Concentration 

As concrete bridge structures are subjected to a continually changing 
chloride exposure, the surface chloride concentration is not constant but time- 
dependent. Using field data, it has been shown that the surface chloride 
concentration increases with age (square root law). This increase is relatively 
fast and reaches a quasi-constant concentration in about 5 years (Weyers 
1998). Given the fact that the service life of concrete bridge structures (e.g. 
deck) varies between 20 to 50 years, it is therefore practical and reasonable to 
assume a constant surface chloride concentration. For bridge decks, the top 
surface is subjected to a continually changing chloride exposure. The chloride 
concentration at the concrete surface varies with the season, however at some 
shallow depth near the surface it can be assumed as a quasi-constant. In 
general, the values of the surface chloride concentration and "apparent" 
diffusion coefficient can be estimated from Eq. (2) by determining the best-fit 
curve through field data obtained from chloride profiles at different depths 
and exposure times. 
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4. UNCERTAINTY IN STEEL CORROSION MECHANISM 

4.1 Mechanism of Steel Corrosion 

The corrosion of conventional "carbon" or "black" steel embedded in 
concrete structures is considerably different from the corrosion of steel 
exposed to the atmosphere, as the reinforcing is protected by the concrete 
cover ("skin"), which provides a barrier, or protection that slows down the 
penetration of aggressive agents needed for the initiation and propagation of 
corrosion, namely chloride ions, water and oxygen. The corrosion of the 
reinforcing steel is assumed to start when the concentration of chlorides at the 
level of the reinforcement (chloride contamination over the concrete cover) 
has reached the so-called "chloride threshold level". 

The corrosion of steel in concrete is an electrochemical process in which 
two separate, but coupled chemical reactions take place simultaneously at two 
different sites on the steel surface, namely the anode and cathode as shown in 
Fig. 4. The electrical potential differences are the driving force for the 
corrosion reaction. The potential difference may be generated by: (i) potential 
difference along the steel surface; (ii) difference in the concentration of ions 
in the pore solution along the steel concrete interface; and (iii) contact of 
dissimilar metals. Due to this potential difference, iron is oxidized at the 
anode according to: 

Fe + ~ e ~ +  + 2 e- (34  
The released electrons move through the reinforcing steel towards the 

cathode, while ferrous ions are dissolved in the concrete pore solution 
according to: 

It is clear from Eq. (3b) that both moisture and oxygen should be present 
for the cathodic half-cell reaction to occur. The hydroxyl ions ( O H  ) released 
at the cathode move towards the anode where they combine with dissolved 
ferrous ions to yield ferrous hydroxide Fe(OH)2 (or rust). Given sufficient 
oxygen at the anodic sites, Fe(OH)2 can be further oxidized into different 
corrosion products with higher volumes (up to six times the original volume). 
Such volume increase induces tensile stresses in the surrounding concrete, 
which in turn lead to the cracking, delamination, and spalling of the concrete 
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cover. A simplified model of the service life of concrete structures exposed to 
chlorides illustrating the initiation and accumulation of the different damages 
is shown in Fig.5. 

Figure 4. Schematic description of a corrosion cell in reinforced concrete 

The exact role of chloride ions is not well understood yet (Rosenberg et 
al. 1989; Bentur et al. 1995). It is generally believed that the chloride ions 
become incorporated in the passive film that protects the steel, replaces some 
of the oxygen and increases both its conductivity and solubility (Rosenberg et 
al. 1989). As a result, the film loses its protective capacity, and ferrous 
chlorides form when chlorides react with iron. Chloride ions, therefore, act as 
catalysts of ion dissolution (Bentur et al. 1995; Rosenberg et al. 1989). The 
reactions consume O H  ions and then release the C1- back into the solution. 
The process results in a concentration of C1- and a reduction of pH at the 
point of corrosion initiation, which accounts for pitting corrosion. It is 
generally accepted that the concentration ratio of C1-/OH in the pore solution 
determines the initiation of corrosion. Hausmann (1967) suggested 0.6 as the 
threshold value. 

Tuutti (1982) proposed a model that describes the performance of 
concrete structures exposed to chlorides as a two-stage process (Fig. 5): (i) 
Initiation stage, which is defined as the time period from the initial exposure 
to chlorides until the onset of corrosion; and (ii) Propagation stage, which is 
the post-corrosion stage that corresponds to damage initiation (cracking, 
delamination, spalling, etc.) and damage accumulation until failure. The time 
to onset of corrosion (ti) depends on the rate of ingress of chlorides into 
concrete, surface chloride concentration, depth of concrete cover, and the 
value of the threshold chloride level. Using Eq. (2) and assuming the same 
initial and boundary conditions, the time to onset of corrosion is determined 
as follows: 
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t. = d,2 
c, 2 

(4) 
4~[er f  -' (1 - -)I 

cs 
where C,: surface chloride concentration; C,: threshold level of chloride 
concentration; D: chloride diffusion coefficient; and d,: depth of concrete 
cover. From the above equation, kit is clear that the concrete cover depth is a 
key parameter in delaying the onset of corrosion and extending the durability 
of concrete structures. 

Failure 

Onset of 
Corrosion 

Time bears) 

Propagation time 1, Initiation time .L w 

Service life 
. . I 

Figure 5. Service life model of reinforced concrete structures exposed to chlorides 

4.2 Uncertainty in Corrosion Initiation Model 

The uncertainty with the corrosion initiation model incorporates both the 
uncertainty associated with the chloride transport model as well as the 
uncertainty associated with the use of a simplified chloride threshold level to 
define the corrosion resistance of concrete structures subjected to chloride 
attack. As discussed earlier, there is great deal of uncertainty in the 
mechanisms of depassivation and breakdown of the protective film and onset 
of corrosion. The overall uncertainty includes: (i) assumption of chloride 
transport mechanism governed by diffusion; (ii) use of simplified models of 
the diffusion coefficient and driving chloride concentration; (iii) use of a 
single parameter (chloride threshold value) to define the resistance of concrete 
structures to chloride-induced corrosion; and (iv) assumption of non- 
correlated variables. 
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4.3 Uncertainty in Governing Parameters 

4.3.1 Threshold Chloride Concentration 

There is no consensus regarding the definition of a single value for the 
threshold chloride level. A considerable scatter of this threshold value is 
found in the literature (Rosenberg et al. 1989; Glass and Buenfeld 1995; 
Kropp et al. 1995; Pettersson 1996). The value of the threshold chloride 
concentration depends on several parameters, including: 
concrete type (cements with high contents of tricalcium aluminate-C3A have a 
great capacity to bind chlorides, resulting in increased chloride threshold 
level); 
source of chlorides, temperature and moisture content (higher temperature and 
moisture contents will decrease the threshold level); 
type of reinforcing steel (conventional black, carbon steel, epoxy-coated 
steel, galvanized steel, or stainless steel); 
concrete cover depth (thicker covers increase the threshold level by reducing 
the moisture and oxygen variations at the steel surface); 
water-to-binder ratio (a lower ratio helps to stabilize the micro-environment 

at the steel level as the moisture permeability is decreased); 
carbonation of concrete; and 
presence of macro-cracks (reduces the threshold value). 

Despite the fact that only the free chlorides induce steel corrosion, for 
practical purposes, the threshold content is given in terms of total chlorides 
(free and bound), as it is difficult to measure the free chlorides (Glass and 
Buenfeld 1995). In the literature, there is a considerable uncertainty 
associated with the value of the threshold concentration level "ChW obtained 
from laboratory and field studies where Ch was found to vary between 0.17% 
and 2.5% in terms of total chlorides by weight of cement for conventional 
black steel (Glass and Buenfeld 1995). Many highway agencies, however, use 
a total chloride threshold level of 0.2% by weight of cement (or 0.03% by 
weight of concrete or 0.7 kg/m3). 

4.3.2 Concrete Cover Depth 

The mean value of the concrete cover depth and its coefficient of 
variation depend on the initial design, and quality control during construction. 
Wide variations from the mean are observed in the field as will be illustrated 
in the case study. It is generally measured using a covermeter. 
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5. DETERIORATION MODELING AND PREDICTION 

5.1 Probabilistic Deterioration Modeling 

As mentioned earlier, a considerable level of uncertainty is associated 
with the prediction of chloride contamination of concrete and reinforcing steel 
corrosion. In light of the above, it is clear that a deterministic prediction 
model can be quite inadequate owing to the considerable uncertainty in the 
prediction models, governing parameters and structural response. Therefore, 
the level of chloride contamination of concrete structures and corrosion of the 
reinforcing steel should be determined using probabilistic methods. 

Using Eq. (2), the the level chloride contamination of the concrete cover 
at any given depth and time reaching a prescribed maximum value is 
formulated as the limit state function. Failure is defined as the event 
corresponding to the chloride concentration exceeding this maximum value, 
and the probability of failure is given by: 

The uncertainties associated with the surface chloride concentration and 
diffusion coefficient are considered by modeling them as random variables 
with probability density functions fc,(c) and fD(D), respectively that are 
fitted to the data obtained from the field measurements of the chloride 
profiles. Similarly, using Eq. 2, the corrosion of the reinforcing at any given 
time is formulated as the limit state function. Failure is defined as the event 
corresponding to the chloride concentration at the steel level exceeding the 
chloride threshold value "CthY', and the probability of failure is given by: 

The uncertainties associated with the surface chloride concentration, 
diffusion coefficient, concrete cover depth, and threshold chloride level are 
considered by modeling them as random variables with probability density 
functions fcs(c), fD(D), fdc(dc), and fcth(Ch), respectively that are fitted to the 
data obtained from the field measurements of the chloride profiles, 
measurements of corrosion activity, and observed damage on the bridge 
structure. 
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5.2 Deterioration Prediction Using Monte Carlo Method 

Monte Carlo methods are the most widely used techniques for uncertainty 
analysis, with a wide range of applications. These methods involve sampling 
at "random7' from the distribution of inputs to simulate artificially a large 
number of experiments until a statistically significant distribution of the 
structure response is generated (Melchers 1987). The direct sampling Monte 
Carlo is the most widely used method, although not as efficient as those based 
on importance sampling. The probability of an event g(x)<O under 
consideration, typically termed "failure" (e.g. probability that the chloride 
concentration at the steel level exceeds a threshold level) may be expressed as 
(Melchers 1987): 

where I[ ]is an "indicator function" that equals 1 if [ ] is "true" and 0 if [ ] is 
"false". Eq. (4) represents the expected value of I[ 1. If xj represents the jth 
vector of random observations from f,, then it follows directly from sample 
statistics that; 

Eq. (5) represents an unbiased estimator of Pf (Melchers 1987). 

6. ILLUSTRATIVE EXAMPLE 

6.1 Bridge Description 

The proposed probabilistic modeling and the prediction capability of the 
Monte Carlo method are illustrated on the Dickson bridge in Montreal, 
Canada. This bridge was constructed in 1959, and had a total length of 366 m 
and width of 27 m. The superstructure of this bridge consisted of reinforced 
concrete T-girders in the end sections and a concrete deck on steel girders in 
the central section. This superstructure was severely deteriorated because of 
the inadequate quality control in construction and the aggressive environment 
resulting from the frequent use of de-icing salts in winter. 

A detailed condition assessment that included detailed visual inspection, 
non-destructive and partial destructive evaluation was carried out in 1999 (i.e. 
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after 40 years) on the bridge superstructure prior to its demolition (Fazio 
1999). Hundreds of data points were collected, which indicated a 
considerable variation in the parameters affecting the chloride contamination 
of the deck and corrosion of the top mat of reinforcing steel throughout the 
deck. The statistical distributions of the governing parameters were derived 
from the data collected (Lounis and Mirza 2001; Fazio 1999). 

6.2 Field Survey 

6.2.1 Concrete Cover Depth 

The concrete cover depth was measured at 137 locations using a covermeter. 
The concrete cover depth (d,) was found to be normally distributed ranging 
from 10 mm to 89 mm with an average of 36.6 mm and a standard deviation 
of 16.5 mm. 

6.2.2 Diffusion Coefficient and Surface Chloride Concentration 

As mentioned earlier, the "apparent" values of the diffusion coefficient and 
surface chloride concentration were obtained by regression analysis to best fit 
the solution given by Eq. (2) to the chloride profiles obtained from field data. 
The chloride content of powdered concrete samples was measured at 35 
locations on the deck using the SHRP chloride analysis method known as the 
specific ion electrode technique (Fazio 1999). The "near surface" chloride 
concentration (C,) was found to have a lognormal distribution with an average 
of 4.56 kg/m3 and a standard deviation of 1.84 kg/m3. The apparent diffusion 
coefficient (D) also had a lognormal distribution with an average of 0.51 
c d y e a r  and a standard deviation of 0.16 cm2tyear. 

6.2.3 Threshold Chloride Level 

The chloride threshold level is determined by correlating chloride content 
measurements with electrochemical measurements of the steel embedded in 
concrete using changes in either half-cell potential or corrosion rate. The half- 
cell potential was measured at 137 locations using the conventional copper- 
copper sulfate half-cell and ASTM C876 criteria. The corrosion rate 
measurements were done with two different probes: 3-electrode linear 
polarization (3LP technique) and linear polarization device with controlled 
guard ring. The electrical resistivity was measured at 137 locations using the 
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Wenner four probe apparatus. The detection of delamination was investigated 
at 140 sites using a hammer. 

Another method used was the direct measurement of the weight loss from 
which the corrosion initiation time and, consequently, the threshold level can 
be estimated by using the corrosion rate data. Other methods included visual 
inspection for rust stains, cracking and spalling, and the sounding technique 
using a hammer for delamination detection and correlating the results with the 
measured chloride contents. A combination of all these results yielded a 
lognormal distribution of the threshold chloride concentrations (C*) with an 
average of 1.35 kg/m3 and a standard deviation of 0.135 kg/m3. The field data 
showed a considerable level of variability in all parameters that govern the 
chloride contamination of concrete and the corrosion of the reinforcing steel 
and are summarized in Table 1, in which p and V represent the mean value 
and coefficient of variation, respectively (Lounis and Mirza 2001). 

Distribution 
Normal 

6.3 Prediction of Chloride Contamination in Bridge Deck 

In the assessment of the chloride contamination of the concrete cover of the 
bridge deck, diffusion is assumed to be the governing transport mechanism based on 
the so-called apparent diffusion coefficient D. The random variable vector is x=[C,, 
D, dJT . Using the direct Monte Carlo simulation method, the chloride concentration 
at the steel level after 40 years is shown in Fig.6. This figure illustrates the skewed 
form of the distribution. 
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Density 

Figure 6. Distribution of Chloride Concentration at Reinforcement Level 

It can be approximated by a gamma distribution with parameters 2 and 0.783, 
mean value of 2.57 kg/m3 (0.71% by cement weight), standard deviation of 1.36 
kg/m3 (0.38% by cement weight) and a coefficient of variation of 0.53. The 
simulation results are very close to the field measurements that yielded a mean value 
of 0.73% by cement weight and a coefficient of variation of 0.72 (Lounis and Mirza 
2001; Fazio 1999). 

6.4 Prediction of Reinforcement Corrosion in Bridge Deck 

The random variable vector is x=[C,, Cth, D, dclT . Using the direct Monte 
Carlo simulation method, the distribution of the time to onset of corrosion is 
generated and is shown in Fig.7. It has also a skewed distribution that was 
approximated by a lognormal model, with a mean of 10.23 years and a 
coefficient of variation of 100%. 

density 

Time (years) 

Figure 7. Distribution of Corrosion Initiation Time of Reinforcing Steel 
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If ti can be approximated by a lognormal distribution with mean pti and 
coefficient of variation Vti, it is possible to derive the following relationship 
for the time-dependent probability of reinforcement corrosion Pf(t) as follows: 

where 

7. CONCLUSIONS 

This paper presented a reliability-based approach for the modeling of the 
deterioration and service life of concrete structures taking into account the 
uncertainties in the physical modeling, and variability of the material and 
structural parameters governing the chloride penetration into concrete and 
corrosion of the reinforcing steel. It illustrated the application of a 
probabilistic approach for the uncertainty modeling and prediction of chloride 
contamination of concrete and reinforcement corrosion in bridge structures 
that are subjected to the application of deicing salts during winter. The 
proposed probabilistic model provided very good predictions of the level of 
chloride contamination at different depths as well as the extent of corrosion of 
the reinforcing steel in the top mat of a deteriorated reinforced concrete bridge 
deck. The application of such an approach is required in the assessment of 
safety and serviceability of deteriorating concrete structures in order to ensure 
that the probability of failure is kept at an acceptable level. A reliability-based 
prediction of the service life of deteriorating concrete structures provides a 
rational decision support tool at both the initial design stage and during the 
operation and maintenance stage. The implementation of such an approach 
allows adequate control of the safety and serviceability of the structure 
throughout its service life and yields low life cycle cost. 
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Chapter 23 

REDUNDANCY ANALYSIS OF STRUCTURAL 
SYSTEMS 

Tarek N. Kudsi 

1. INTRODUCTION 

The reliability of engineering systems can be presented as a problem 
of supply versus demand. The reliability of engineering systems is achieved 
through the use of factors or margins of safety and adopts conservative 
assumptions in the process of design (Ang and Tang probability concepts, 
volume 11). The existing supply and the required demand may be modeled as 
random variables. Examples of random variables are: the cross section of a 
beam, the moment of inertia, the flange depth and thickness, the material 
strength, the elastic properties, and the applied loads on the structure such as 
vehicle loading, wind loading, or earthquake loading. In order to better 
understand the mentioned random variables, samples should be gathered and 
analyzed in order to calculate the mean and coefficient of variation (or 
standard deviation) in order to incorporate them into their respective 
distribution functions. 
The analysis of safety of a failure mode (or limit state) of a structural system 
can be categorized as follows: 
I. Safety is met when demand (or load effect) 5 supply (resistance). 
11. Failure will occur when demand (or load effect) > supply 
(resistance). 
Based on above, the capacity and demand function of a structure is referred to 
as the performance function of the structure, in the form of: 
Z = R - L  

(1) 
Where R = the supply and L = demand. It should be mentioned that when: 
Z = R  - L > 0 ,  is referred as the survival state 
Z = R  - L  < 0 , is referred as the failure state 
Z  = R  - L  = 0, is referred as the limit state 
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Structures' components can have many limit state functions depending on the 
failure modes associated with given components. There are three types of 
limit state functions related to bridges and structures: 
1. Ultimate limit state functions such as exceeding the moment 
carrying capacity, buckling of steel beam plates, shear failure, or combination 
of biaxial bending and axial loading. 
2. Serviceability limit state functions, such as cracking, and 
deflection 
3. Fatigue limit state functions, defined as the accumulation of 
damage and eventual failure under repeated loads. This limit state function 
applies to steel structures, and in particular to members in tension or reversal 
forces. 
In 1996, The U.S National Science Foundation Workshop on Structural 
Reliability in Bridge engineering, held in Boulder, Colorado, discussed the 
importance of reliability techniques in Bridge design, management, and 
maintenance. A better understanding of the effect of local damage on the 
overall behavior of the bridge system was one of the issues raised. The 
representatives discussed also the importance of material non-linearity and the 
effect of secondary members, in some cases, to produce reserve strength for 
the overall bridge system. The workshop concluded that a better 
understanding of the reliability of the bridge structural system is needed. 
The proposed study presents a new approach for evaluating redundancy of 
structural systems in general, and bridges in particular, based on reliability 
based system approach. Although, most of the researchers have mentioned 
that their proposed method for redundancy analysis is valid for all types of 
bridges, there still remain many unanswered questions, which the research is 
trying to answer. This presented methodology is also a powerful tool for 
depicting the true structural health condition of an existing building with 
localized failure. 
The questions that may be raised are: 
1. How significant modeling the bridge as a structural system in the pre- 
failure and post-failure phases is in the analysis of the global redundancy of 
the system in the pre-failure and post-failure phases? 
2. How important is the presence of secondary members in the system, 
and their role in redistributing load, on their respective subsystems 
redundancy, and the global redundancy of the bridge structural system? 
3. What is the effect of local failure on its related subsystem, and on the 
different subsystems of the global system? 
4. How reliable the bridge system is, in the post-failure phase compared 
with a pre-set target reliability? 
5. How can a bridge be identified as a redundant bridge, and what are 
the members that could cause the bridge to collapse? 
In order to answer these questions, a new methodology is proposed, based on 
the analysis of a bridge structural system accounting for the component 
interaction and their integration in their respective subsystem, and the global 
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system. In order to set a solid methodology for the redundancy analysis, the 
following two criteria are needed: 
1. A better understanding of the structural topology of the structural 
system or bridge. 
2. A better understanding of the effect of a failure of a component based 
on a certain limit state, on other failure modes of other components. 

2. GENERAL METHODOLOGY 

2.1. Structural System Analysis 

A general methodology for the analysis of structural systems, based on 
reliability techniques, and can be applied to all types of structural systems is 
presented. 
Prior to any type of structural reliability analysis, the following must be 
carried out: 

1. Define all different failure modes for each component in the system. 
The limit state functions will be based on design codes to be followed 
2. Define all the related random variables along with their means and 
standard deviation, and their respective distribution functions. 
3. Analyze the structural system using a non-linear finite element 
software program, to determine the stresses caused by the dead load, live load, 
and lateral loadings. 
4. Define the target reliability index P,,,,, for the system, subsystems 

and components. The assigned reliability index corresponds to the maximum 
probability of failure acceptable by the engineering community. 
5. Evaluate the probability of failure of each component related to all 
existing failure modes. For the task mentioned, First Order Reliability 
Method (FORM), Advanced Second Moment (ASM), or Monte-Carlo 
simulation techniques can be used. Advanced second moment is generally 
used to evaluate the probability of failure of non-normal non-linear limit state 
functions. 
6. Fit all failure modes related to each component into a series system, 
known also as the weakest link. If any limit state function reliability fall 
below the target level, the component fails. In figure 1, component i is 
composed of multiple failure modes, such as buckling, shear, or torsion. 

*Failure model = a . .. .. .. -. . - . *Failure Mode m 

Figure 1: Component i 
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7. Define the main subsystems to be modeled as series systems, as 
failure of any subsystem will lead to the complete failure of the system. 
8. Define the global structural topology of the system by proposing a 
general Block diagram that includes all the subsystems with all relevant 
components along with all related failure modes (Fig.2). 

Subsystem I Subsyslem 2 Subsystem m 

Figure 2: The Global System Layout 

where CU is the failure mode j of component i. Where i = l,2,3, ..., n , 

representing the number of components, and j = l,2,3, ..., m representing the 
number of failure modes associated with the component. The general block 
diagram is unique for every system and the shown topology is for descriptive 
purposes only. 
9. Calculate the reliability index along with the probability of failure of 
each subsystem and compare it with the target reliability index. 
10. Calculate the reliability index along with the probability of failure of 
the global system. 

2.2. Types of Uncertainties 

In order to acquire a better understanding of random variables, types of 
uncertainties should be defined. "Uncertainties in civil engineering systems 
can be mainly attributed to vagueness in defining the variables and parameters 
of the systems and their relations" (Ayyub and McCuen, 1997). 
There are three types of uncertainties and can be defined as follows: 
1. Physical uncertainty: the variation of the loading applied on the 
structure. Examples are the wind loading, earthquake loading, and the live 
load loading on a bridge induced by trucks crossing the bridge. 
2. Statistical Uncertainty: the uncertainty due to the limited sample size 
of the random variables. 
3. Model Uncertainty: Uncertainty due to simplifying assumptions in 
modeling the physical problem from an engineering point of view. Unknown 
boundary conditions and unknown effects. 
Based on the above, physical uncertainty requires a realistic understanding of 
the applied load on the structural system along with its random nature. For 
example, the live load on a structural system should be modeled based on data 
gathered after the system being monitored under this loading. 
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2.3. Types of Distribution Functions 

There are many types of distribution functions used in the field of reliability 
engineering. The most common types used, related to bridge analysis under 
traffic loading, are normal distribution modeling the dead load randomness 
nature, the lognormal distribution that is commonly used to model the 
material strength as it can disregard samples with negative values. The 
extreme type I (largest), referred to as the Gumbel distribution, is best to 
model the live loading on a bridge (Nowak, 1995, and Moses and Ghosn, 
1998). 

Probability of failure 

Failure occurs when the load effect (L) exceeds the resistance (R) of the 
structure, and can be derived by considering the probability density functions 
of R and L, along with their associated random variables. The main goal for 
the safety of the structure is to guarantee an R>L scenario throughout the 
design life of the structure. Assuming that R and L are normal, statistically 
independent, and positive random variables, it can be stated that: 

L,2Ri 

P f  = I . f f R ( ~ i ) f L ( ~ , ) d W ~ j  -- -m 

(2) 
f R ( R i )  is the probability density function for the structural resistance, and 
f L ( L j )  is the probability density function of the external loading. 

The reliability index is defined as: 
p = -a>-'(P F ) 
(3) 

Performance Functions 

All limit states related to the structural system's components must be 
identified, prior to any analysis. In order to perform the redundancy analysis 
of structural system, based on reliability techniques, the limits states 
associated with each component must be identified. 

3. REDUNDANCY ANALYSIS OF STRUCTURAL 
SYSTEMS 

In the above section, a reliability-based analysis is presented of a structural 
system and its components. In this section, a new methodology for the 
redundancy analysis of structural systems is presented. 
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Modeling a structural system as a collection of structural elements in series 
and structural system is very essential for evaluation of its true redundancy 
and reliability. 
In order to build the structural system, the following need to be carried out: 
1. Analyze the structural system using a non-linear finite element 
package. 
2. Fail each element separately, and re-analyze the structural system. 
New reliability indices for each component in the system are then generated. 
3. Define the failure of the structural system. For the purpose of this 
study, the total collapse of the structural system is considered as the failure 
criteria. 
4. If failure of element i does not fail the system, then element i is a 
redundant element. 
5. If failure of element i fails the system, then element i is a non- 
redundant element. 
6. Incorporate the elements in the system, according to their nature. If 
the element is redundant, then it is in parallel with the rest of the system. If 
the element is non-redundant, then it is in series with the rest of the system, 
thus failure of this element will result in the failure of the system. 
7. Define the degree of redundancy of the system (D.O.R), k , based on 
the number of members, which can be cut simultaneously without resulting in 
the failure of the system, thus k = 1 ,..., s . 
8. Number the non-redundant members fromi = 1,2, ..., n . 
9. Number the redundant members from j = n + 1, n + 2 ,..., n + m . 
10. Build a block diagram for the structural system according to steps 1 
through 9, for the pre-failure phase, and also for the post-failure phase. 

3.1. System Analysis in the Pre-Failure Phase 

The following presentation is for redundant structural systems in the pre- 
failure phase. The pre-failure phase is defined as the intact system, prior to 
any redundant member failure or modification. Consider the following four 
examples structural systems: 
1. Example system one, as illustrated in figure 3: A structural system 
composed of ten elements. If the degree of redundancy is k = 1,  this implies 
that any failure of any one redundant member will not cause the structural 
system to fail. The number of non-redundant members equals to five, 
i = 1,2,3,4,5, and the number of redundant members equal to five, 
j = 6,7,8,9,10. Assuming that the components are fully correlated, p= 1, the 

probability of failure of the pre-failure phase P fvslom- pre- jailurc is: 
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Figure 3: Pre-Failure Phase Representation of System One 

2. Example system two, as illustrated in figure 4: A structural system 
composed of ten elements. If the degree of redundancy is k = 2 ,  this implies 
that failure of any two redundant components will not cause the structural 
system to fail. The number of non-redundant members equals to five, 
i = 1,2,3,4,5, the number of redundant members equal to five, 
j = 6,7,8,9,10. Assuming that the components are fully correlated, = 1, 
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Figure 4: Pre-Failure Phase Representation of System Two 

3. Example system three, as illustrated in figure 5: A structural system 
composed of ten elements. If the degree of redundancy is, k = 3 ,  this implies 
that the failure of any three redundant components will not cause the 
structural system to fail. The number of non-redundant members equals to 
five, i = 1,2,3,4,5, and the number of redundant members equal to five, 
j = 6,7,8,9,10. Assuming that the components are fully correlated, p = 1, the 

probability of failure for the pre-failure phase P 
fv~ren~_prc-loi~ure 

is: 
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Figure 5: Pre-failure phase representation of system three 

4. Example system four, as illustrated in figure 6: A structural system 
composed of ten elements. If the degree of redundancy is, k = 4 ,  this implies 
that the failure of any four redundant members will not cause the structural 
system to fail. The number of non-redundant members equals to five, 
i = 1,2,3,4,5, and the number of redundant members equal to five, 
j = 6,7,8,9,10 . Assuming that the components are fully correlated, p = 1, the 

probability of failure of the pre-failure phase Pfqst e,n_ is: 
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Figure 6: Pre-failure phase representation of system four 

The above four example systems presented can be generalized for k  degrees 
of freedom and m  numbers of redundant members in a system. The 
probability of failure of the system in the pre-failure phase, Pf vatem- p,e- can 

be presented as follows: 

where Pfi =probability of failure of the non-redundant members, P ( F )  = the 
I 

minimum probability of the occurrence of the failure event, F ,  of each 
j 

possible arrangement of the redundant members, according to the system 
degree of redundancy, k  , for fully correlated redundant members, p = 1. In 
order to identify the amount of failure event arrangements, let r  = k  + 1 be 
the combination of the failure events of the redundant elements from a set of 
m amount of redundant elements, thus the amount of combination can be 
found as follows: 

Let C = F = the series of the multiple failure events arrangements of the 
J rlm j 

redundant members in the system. Thus, for a degree of redundancy, k  = 2 ,  
and r = k + l = 3 ,  and j = n + l ,  ..., n + m  is the amount of redundant 
members, the following series represent the possible arrangements of the 
failure events of redundant members: 
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7 Fn+2 I Fn+3 I Fn+4 9 Fn+2 I Fn+3 I Fn+S Fn+2 I Fn+3 I Fn+m 3 

""7 Fn+rn-2 I Fn+m-l I Fn+m (10) 

For a degree of redundancyk=3, r=k+1=4,  and j = n + l ,  ..., n + m i s  
the amount of redundant members, the following series represent the possible 
arrangements of the failure events of the redundant members: 

;6=3 

9Fn+2 I Fn+3 I Fn+4 I Fn+5 7 . * . 7  Fn+2 I Fn+3 I Fn+4 I Fn+m 9 

' * * "  Fn+m-3 I Fn+m-2 I Fn+m-1 I Fn+m (1 1) 
Similar equations such as equations (10) and (11) can be generated 
fork = l,...s , where s < m . Also, The above explanation of P(F) is only 

j 

applicable for fully correlated members, p = 1. When P(F) is incorporated 
i 

in equation (8), the maximum of the minimum of each combination is 
compared with all the probability of failure of the non-redundant members, 
and the maximum probability of failure would be the probability of failure for 
the pre-failure phase of the system P 

fvsrcn_ pre-fotlwc 
. In order to get a 

mathematical expression when the members are not fully correlated or in 
some cases no correlation exists between members, the definition of P(F) 

j 

should be modified to assess for the correlation between the random variables. 
The first order bound or the second order bounds can be used in order to 
narrow the gap between the upper and lower bounds. When the redundant 
members are not correlated, p = 0, the component P(F) = the product of the 

i 

probability of the occurrence of the failure event, F ,  of each possible 
j 

arrangement of the redundant members, according to the system degree of 
redundancy, k . When P(F) is incorporated in equation (8), the maximum 

j 

of the product of each combination is compared with all the probability of 
failure of the non-redundant members, and the maximum probability of 
failure would be the probability of failure for the pre-failure phase of the 
system Pf 

v m m _  pre- fnzblre 
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3.2. System Analysis in the Post-Failure Phase 

The following examples present the probability of failure for the post-failure 
phase of any redundant system. The post-failure phase is defined as the phase 
when the system looses a redundant member or members. Let 1 = 1, ..., v 
represents the member or members failed in the system. Consider the 
previously presented four systems: 
1. Example system one, as illustrated in figure 7: for this system, 
consider for example the failure of member 6. The degree of redundancy 
k = 1 and 1 = 6 , this implies that the redundant member 6 has failed. The 
probability of failure in the post-failure phase of the system Pfv~lem-PDll-,ailYRm is: 

Figure 7: Post-failure Phase representation of System One 

2. Example system two, as illustrated in figure 8: for this system, 
consider the failure of members 6 and 7. The degree of redundancy k = 2 ,  
1 = 6,7, this implies that the two redundant members 6 and 7 have failed. The 
post-failure system is presented in figure 15. From figure 10, it can be noted 
that the combination of 8-9, 8-10, 9-10, do repeat, for the calculation of the 
probability of failure of the system, only once, the combination will be 
counted. The probability of failure for the post-failure phase of the system is: 

j=n+m 
P fSym = m a w f  , Pf j=n+,  , 

i j d  min(Pf8 , Pf9 1, min(Pf8 , Pflo 1, 
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Figure 8: Post-failure phase representation of system two 

3. Example system three, as illustrated in figure 9: for this system, 
consider for example the failure of members 6, 7, and 8. The degree of 
redundancy k = 3,1 = 6,7,8 , this implies that the three redundant members 6, 
7, and 8, have failed. From figure 4.5.1.2.3, it can be noted that the 
combination of 9-10, do repeat, for the calculation of the probability of failure 
of the system, only once, the combination will be counted The probability of 
failure for the post-failure phase of the system is: 

j=n+m 
P f,,,e,n = m a w f  i ,  Pf j=n+, " 

i j#l mMPf9 3 Pf,,, 1) (14) 

Figure 9: Post-failure phase representation of system three 

4. Example system four, as illustrated in figure 10: for this system, 
consider for example the failure of members 6, 7, 8, and 9. The degree of 
redundancy k = 4,1 = 6,7,8,9 , this implies that the four redundant members 
6,7, and 8, have failed. The probability of failure for the post-failure phase of 
the system is: 
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(15) 

Figure 10: Post-failure phase representation of system four 

From the above presented systems, it can be concluded that for redundant 
systems, in the post-failure phase, having i = 1, ..., n , 
j = n + 1, n + 2 ,..., n + m , and k = 1 ,..., s , k is the degree of redundancy of 
the system, I = the element or elements failed from the system. The 
probability of failure for the system of fully correlated components is: 

It can be proven that when the members are fully correlated, the above 
presented methodology for redundant structural systems can also be used to 
evaluate effect of a failure of a two components whenk = 3 ,  for example, 
when used in its general form. 

4. RELIABILITY MEASURES FOR REDUNDANT 
SYSTEMS 

Based on the above two sections, the following equations can be derived for 
the pre-failure and post-failure phases from equations (8), and (16): 
The probability of success of the system in the pre-failure phase is: 

psqsfem- pre-faitwe (17) 

The probability of success of the system in the post-failure phase is: 

The reliability index of the system in the pre-failure phase is: 

The reliability index of the system in the post-failure phase is: 
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5. RELIABILITY LIMITS FOR REDUNDANT 
STRUCTURAL SYSTEMS 

In order to set limits for equations (17) through (20), for the redundancy 
evaluation of structural systems, a target reliability index should be chosen for 
the mentioned equations to be checked against, such as a target reliability 
index of 4 = 2.0 . 
The following limitations will depict if the system is redundant, in the pre- 
failure and post-failure phases, with respect to the pre-set target reliability 
index: 

If: Ppre- failure > P p o s t  - failure > P t  arg et (21) 
The component, the subsystem, or the global system, is highly redundant. 

If: Ppre - failure > P p o s t  - failure = Pf arg et (22) 
The component, the subsystem, or the global system, is redundant. 

If: Ppre - fiilure > P p o s t  - failure < P t  arg et (23) 

The component, the subsystem, or the global system, is non-redundant. 

5.1. Comments on the Presented Methodology 

In this chapter, a new methodology for the analysis of redundant structural 
systems is presented along with twelve general equations to evaluate the 
probability of failure and the reliability index of the system in the pre-failure 
phase post-failure phases. The mentioned methodology is a reliable tool for 
evaluating the true redundancy of existing structural systems. Based on the 
system's degree of redundancy, the proposed methodology accounts for the 
possible amount of redundant members' combinations to be integrated in the 
system's block diagram. The presented methodology can also be applied on a 
family of structural systems, in order to generate safety factors coefficients to 
be incorporated in future codes. 

5.2. Application of the Proposed Method on an Existing 
Concrete Structure 

Based on the above presented methodology for structural system analysis, a 
complete risk assessment is being carried out. The reliability indices based on 
ultimate limit states functions (such as moment and shear capacities) and 
serviceability limit state functions (Such as deflection) for each component 
are calculated. The lowest reliability index related to a specific limit state 
function, of each component leading to the highest probability of failure, is 
considered. Table 1 shows the results of the reliability index and related 
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probability of failure for the beams. All failure modes related to each 
structural component are laid in series configuration. 

The structure's components along with their related failure modes are then 
laid in parallel and series configuration based on the previously mentioned 
methodology, in order to evaluate the reliability of the structural system. The 
structural reliability index of the system is found to be, P = 1.22. This leads to 
a probability of failure of the structural system of 11%. 

An independent floor analysis is run, with the removal of beam 10 due to 
major cracks observed during site investigation (Figure 11). Accordingly, the 
floor is reanalyzed. It was noted that beams P6, P9, and P11 were overloaded. 
The probability of failure of the structural system is then recalculated and it is 
found to be 13% (P = 1.13). 

Figure 11: Part of structural drawing of the building 
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Name M+ 

I Beam 1 4.44 
2 
Beam 10.86 

3 
Beam 8.22 
4 

Beam 4.51 B 
I Beam 1 7.75 

Beam 2.66 B 
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6. CONCLUSION AND FUTURE RESEARCH 

System analysis is used to determine the probability of failure of the structure 
based on the presented methodology. The probability of failure is determined 
to be relatively high (1 1%). The system probability of failure increased to 
13% when beam 10 was removed from the floor analysis. 
Through the complete analysis, the contribution of each component to the 
whole structure is clearly noted. Moreover, through system analysis it is noted 
that the foundation reliability affected drastically the reliability of the 
structural system. This is due to the fact that the footings are in series 
configuration with the whole structure. Hence a high probability of failure of 
the footing led to a high probability of failure of the structure. It may be noted 
also that an improvement in the structural design and construction of some of 
the footings will help increase the reliability of the structure. 
As a result, the presented methodology helped in detecting the weak 
components of the structure. This may lead to a possible improvement that 
could be done to increase the reliability of the structure. However, it is 
important to be able to detect the structural topology in order to safely 
evaluate the reliability of the system. Also, incorporating a smart 
deterioration model into the assessment will help in truly finding the 
reliability of existing structures. 
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transportationluncertainty, 3 12, 3 12f 

CV. See Coefficient of variation 

Data abundance, analyzinglmodeling and, 
1 -3 

DDOF. See Dynamic degrees of freedom 
Decision framing, 16668, 177, 178, 

181-84, 187, 188 
asymmetric, 377-78,377f; 393t, 395 
symmetric, 370.376-77, 377f; 393t. 395 

Decision maker (DM), I78 
Defoors train dataset, in NNs, 230,23 I, 236, 

236t, 237-38,24 1.246 
Degree of redundancy (DOR), analysis of 

structural systems and. 5 17. 5 19-23 

Delphi technique, epistemic uncertainty and, 
27 1 

Dempster-Shafer theory, transportation 
uncertainty in, 3 1 0 - 1  1,3 12 

Denoising, ERP noise reduction in, 1 0 5 4  
DM. See Decision maker 
DM curve, in MCO, 178, 18 1. 187, 188, 

189f; 190f 
Dominolavalanche phenomenon, in 

evacuation simulations, 254, 254t 
DOR. See Degree of redundancy 
DSCW. See Dynamiclspatial changing 

weights 
Dynamic degrees of freedom (DDOF) 

reliability evaluation of realistic 
structures, 42 1 

SI at local level under uncertainty and, 
463,465,466,468,469,470-7 1 .  
472-73.477-82,484,486-87 

Dynamiclspatial changing weights (DSCW), 
20 

self-organizing NNs and. 23-25. 23f 

Earliest acceptable arrival time (EAT). 
commuter departure time decisions 
and, 376-78,379,383,390-91 

EAT. See Earliest acceptable arrival time 
EEG. See Electroencephalogram 
EEG analysis, by recurrent neural networks, 

139-40 
artifactslnoise in. 143, 155-56 
backpropogation algorithm for, 145, 148% 

I5lf; 156 
Baum-Haussler rule in, 145 
data classification in, 1 4 0 4  1. 142 
data context in, 143 
data display in, 150, 152f; 153J 154f 
data set testing in, 149 
design validation in, 149 
experimental considerations of, 155-56 
filtering/smoothing in, 142 
goals of, 141, 148-49 
limitations of, 155-56 
models of, 140-4 1 
network architecture in, 14245, 1465 

147f 
prediction in, 14 1 
recording montage effect on, 143 
subdural electrode montage effect on. 144 
synaptic weight and, 140 
training sets for, 145, 14849, 148t 

EIK. See Evolutionary infallible knowledge 
Elastic net algorithms, in NNs, 230 
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Electroencephalogram (EEG), 13940 
EM. See Expectation maximization 
EM algorithm 

ERP noise reduction and, 98 
maximization of, 99-100 

Emergence concept, evacuation simulations 
and, 250-5 I, 25 If 

Encyclopedia of Ignorance (Duncan & 
Weston-Smith), 9 

Epilepsy, 13940 
analysisldiagnosis of, 140, 14142 

Epistemic uncertainty, in high risk exposures 
actuarial simulations and, 273-75,274f 
best guess and, 277,278 
CCDF in, 273 
Delphi technique and, 27 1 
expected value criteria and, 278,280 
exploration/decision making and, 269.277 
exploratory modeling and. 269-7 1,280 
fuzzy sets and, 272,279-80 
heuristic methods in, 270 
interval calculations and, 270.272 
knowledge imperfection in, 275,279.280 
logics of intervals and. 279-80 
loss expectancy and, 276 
loss prevention and, 275-77,277f 
minimadprecaution in, 278-79 
Monte Carlo simulations and, 273 
probability distributions in, 267-68, 268f 
probability weightings in, 276, 279 
randomness v., 268,275 
regret /minimization and, 274-75,279, 

280 
risk assessment in, 267-68, 2685 271 
risk model examples of, 273 
scenario planning in, 270 
sensitivity analysis and, 269 
standard statistical analysis v., 268 
true v. possible distribution in, 271-72 
uncertainty logics and, 272 
worst case in, 280 

Epistemology, 4f; 5f; 8-9 
systems analysis and, 13 

ERP. See Event-related potentials 
ERP noise reduction, using HMT. 91-92 

application of, 108-1 1 , 1 0 8 ~  109f-11 If; 
I l l t  

computational underflows and. 100-1 05, 
IOl f  

conditional probability in, 97 
denoising and, 105-6 
EM algorithmlexpectation in, 98 
EM algorithmlmaxin~ization in, 99-100 

Gaussian mixture, 105, 1 12 
HMM in, 95 
methods for, 106-7, 107f 
probability density in, 97 
scaling factor in, 100, 103 
SNR and, 1085 109-1 0, 109f 
state probability in, 97 
wavelet coefficients in, 95, 96,96f 
wavelet transformlclustering in, 93, 94f 
wavelet transform1compression in. 93 
wavelet transformllocality in, 93 
wavelet transformlmultiresolution in, 93 
wavelet transformlpersistence in, 93, 94% 

95 
Euler approximation. in NNs. 224 
Euler's law, in transportation and 

uncertainty. 3 18 
Euro-Si BRAM'2000 International 

Colloquium, risk-based codified 
engineering design and, 445,447.448. 
455 . . 

Evacuation simulations, using artificial life 
technology 

crowd influencelbehavior in, 253.254f 
direction recognition and, 255-56, 

257-58,257f; 258s 
domino v. avalanche phenomenon in, 254, 

254t 
emergence concept in, 250-5 1,25 If 
exit recognition influence in, 252, 252t. 

26M3,26  If; 2625 263s 
experimental considerations of, 264 
hierarchical functions in, 250-5 1 
history/characteristics of, 249-50,250f 
human behavior during disasters in. 

251-54,25It 
human model characteristics in, 255,255t 
leadership influence in, 25 1-52, 25 1 t 
movement cell behavior in, 258-59. 259f 
neighborhoods in. 250,25 lf;262 
verification of, 259-60.259f; 260f 

Event-related ootentials (ERP). 91-92 
Evolutionary i'nfallible knowledge (EIK), 

6-7, 7f 
Expectation maximization (EM), 97, 98, 

99- 1 00 
downward variable and. 99- 100, 102. 

103, 104 
upward variable and, 98,99. 100, 103, 104 

Expected value criteria, episteniic 
uncertainty and, 278,280 

FEM. See Finite element method 
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Fick's laws of diffusion, uncertainty 
modeling of corrosion of concrete 
bridges and, 493,496,497,499 

Finite element method (FEM) 
reliability evaluation of realistic structures 

and, 4 17-1 8 
risk-based codified engineering design 

and, 453,455 
SI at local level and, 46142 

First-order reliability method (FORM) 
in redundancy analysis of structural 

systems, 5 15 
reliability evaluation of realistic structures 

and, 4 18,423.429.43 1,439 
uncertainty modeling of corrosion of 

concrete bridges and. 494 
First-order second moment method (FOSM), 

in risk-based codified engineering 
design, 449 

FLC. See Fuzzy logic controllers 
FORM. See First-order reliability method 
FOSM. See First-order second moment 

method 
FR. See Fully restrained connections 
Frontline systems, 38,65 
Fully restrained connections (FR). reliability 

evaluation of realistic structures and, 
417-18,431, 432f 

Fuzzy logic controllers (FLC) 
decision-making logic in, 400-401 
defuzzification interfaces and, 400-401 
expert knowledge and, 40040  1 
functions of, 404-6 
fuzzification interfaces in, 400-40 1 
linguistic control strategy and, 400-401 
types of, 401-2,402t, 403t 

Fuzzy numbers, triangular, 40,56.63 
Fuzzy rule base, multi-agent systems in 

parking facilities management and, 
326-29 

Fuzzy sets, 14,32 
confidence interval and, 34,36,6243 
data suited to use of, 3 14-1 5 
definitions of, 400 
enforcement /parking facilities 

management, 329-30 
epistemic uncertainty and, 272,279-80 
linguistic input variables and, 404-5 
membership functions and, 399-400.401, 

404-5 
multi-agent systems in parking facilities 

management and, 324,325f 

transportationluncertainty and, 3 1 1-1 2, 
312f; 314-16 

triangularltrapezoidal functions and, 
40 1-2,404,405t 

Fuzzy sets, for fuzzy signal controllers 
controller input variables in, 399-400 
controller response analysis in, 407-8, 

407f; 408f 
CVs and, 408,409f-4 10f; 4 1 O f 4  1 If; 4 14 
definitions of'. 400 
fuzzy logic controllers, 400402.4044 
fuzzy set definitions in, 400 
HUTSIM software in, 404,406,408 
input variable modifications to, 406-7. 

415 
knowledge base and, 405,406t 
linguistic input variables and, 404-5 
MATLAB Fuzzy Logic toolbox in, 400, 

40 1,404-5 
membership functions in, 399400,401. 

404-5 
modifications to controllers in, 399-400 
simulation study analysis and, 404,406, 

408,410t-41 It, 412t, 413t. 414-15 
test intersection for, 404,404t 
triangularltrapezoidal functions in, 40 1-2, 

404,405t 
Fuzzy systems. See also Probability, in 

fuzzy systems 
alpha-cut models and, 53-54. 54t, 55f; 

56f; 57, 68,69, 70, 73. 78-86, 79t, 
SOL 8 If 

Markov chain and, 62,6546,71 
optimization models and. 3 1-32,70 
performance variables and, 3840 ,6670 ,  

75t 
Poisson analysis in, 33-34.50 

GA. See Genetic algorithms 
Gaussian distribution, in change detection, 

126, 127 
Gaussian mixture, in ERP noise reduction. 

105, 112 
Gaussian quadrature, WCS and, 182, 183. 

186 
Genetic algorithms (GA) 

optimization models and, 70-73, 75t, 77, 
78, 83, 86, 87t 

Premium Solver Platform V5.0 and, 65 
Gibbs distribution, in change detection, 1 16 

Hebbian rule 
for learning, 19,22 
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for structural adaptation, 2627,29 
Heterogeneity, in commuter departure time 

decisions: prospect theory approach 
behavior mechanisms in, 369-70 
bounded rationality in, 369 
contingency adjustment in, 378-79,38Ot, 

381,384-85 
coupling constraints in, 394 
cumulative prospect theory and. 370 
data set surveylprofiles in, 37&79,38Ot, 

38 1 
decision framing/asymmetric in, 377-78. 

377f; 393t, 395 
decision framing/symmetric in, 370, 

37677,377f; 393t, 395 
EAT in, 37678,379,383,390-91 
gain probability and, 383-84,385f 
indifference bands in, 369 
LAT in, 37678,379,383,390-91 
loss probability and, 385f; 386 
observedlunobserved heterogeneity in. 

370,391 
ovenveightinglunderweighting in, 

373-75,387-88 
PAT in. 376-78.379.390-91 
posterior distribution in, 383-84 
prospect theory stages in, 372 
random effects probit model in, 387-88 
random utility maximization in, 369 
reference points in, 375 
risky choices and, 371-75,372f 
software used in, 391-92 
subcertainty in, 373 
travel time variability in, 381-86,382f 
value function in, 372-73,374f; 375. 

390-95,393t 
weight function in, 370,371,374,374A 

381,382f; 384,386-90.389t 
Heuristic methods, in epistemic uncertainty, 

270 
Hidden Markov model (HMM), ERP noise 

reduction and, 95 
Hidden Markov tree model (HMT), ERP 

noise reduction with, 92,94f; 95, 
97-106, I Olf; 108-1 2, 108f; 109, 109f; 
110, IIOJ;  I l l f ;  l l l t  

Hierarchical functions. evacuation 
simulations and, 250-5 1 

Hierarchical logits (HL), modeling 
transportation choice and, 348,35 1, 
360-65,36 1 t, 362t, 365t, 366 

Hierarchical text categorization methods 
classifiers in, 285-88 

confidence levels in, 297,298f 
conformity measures in, 288-89 
databases for, 29 1-92 
dimensionality reduction in, 292-93 
entropy weighting in, 294,295f 
HlTEC and, 285,298-300 
for Internet directories, 284 
IPC/WIPO patents and, 284,291-92 
optimization function for, 291 
parameter settings in, 293-300, 

294f-298f; 299t 
perforniance measures for, 292,293f 
taxonomy in, 283 
TC and, 283 
test documents and, 285-86 
tfxidf weighting in. 296,297L 299-300 
training in, 289-91,291-92 
UFEX and, 285-86,286f; 288-90 
weight vectors in, 285-86,288-9 1 

HL. See Hierarchical logits 
HMM. See Hidden Markov model 
HMT. See Hidden Markov tree model 
Hopfield NNs. 223-26,224f; 230 
HUTSIM software, in fuzzy sets for fuzzy 

signal controllers, 404,406,408 

Ignorance 
analyzing/modeling and, 8-1 0, I Of 
blind, 8-10, 10f; l l 
classification of, 8-1 0, IOf 
conscious, 8-1 0, IOf; l l 
EIK in, 6 7 .  7f 
fallacy, I I 
hierarchy of, 10-12, 12f 
ignoratio elenchi, 8-9, 10. l l 
IK in, 6 7 ,  7f 
knowledge and. 3,5f 
models for, 12-15. 15f; 16f 
RK in, 6 7 ,  7f 
sociology theory of, 6 7 ,  7f 
vagueness and, 12. 12f 

Ignoratio elenchi, 8-9, 10, 1 I 
IK. See Infallible knowledge 
ILS-UI. See Iterative least square, with 

unknown input 
Infallible knowledge (IK), 6 7 ,  7f 
Information, 1 

non-credible, 2 
Intelligence, I 
International Patent Classification (IPC), 284 
Interval calculations, epistemic uncertainty 

and, 270,272 
IPC. See International Patent Classification 
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Iterative least square, with unknown input 
(ILS-UI ) 

Rayleigh damping and, 467,468 
viscous damping and, 462,463,465 

Jacobians of transformation, in reliability 
evaluation of realistic structures, 
42628,430 

Karhunen-Loeve expansion, in risk-based 
codified engineering design, 453 

Karush-Kuhn-Tucker conditions, PS and. 
175 

Knowledge 
classification terms and, 4t 
EIK in, 6-7, 7f 
ignorance and, 3,5f 
1K in, 6-7, 7f 
RK in, 6-7. 7f 
sociology theory of. 6-7.7f 

LAT. See Latest tolerable arrival time 
Latest tolerable arrival time (LAT). in 

commuter departure time decisions, 
37678,379,383,390-91 

Learning, 19-20 
discrete-time, 24 

Level of service (LoS), modeling 
transportation choice and, 349,350~ 
357,363,365 

Level of service attributes, modeling 
transportation choice, 349,350t. 357. 
363-65 

Levenberg-Marquart minimization 
algorithm, 200,201,21 1 

Liapunov function, 225 
LIMDEP 8.0 Econometrics software, in 

commuter departure time decisions, 
39 1-92 

Limit state functions 
in redundancy analysis of structural 

systems, 5 13-1 4 
reliability evaluation of realistic structures 

and, 424-25 
strength evaluation of realistic structures 

and, 425,426,427,430,436-39, 
438t 

Linear iterative strategy, reliability 
evaluation of realistic structures and, 
418-19 

Linguistic input variables, in fuzzy sets for 
fuzzy signal controllers. 404-5 

Loadlresistance factor design (LRFD) 

in reliability evaluation of realistic 
structures, 425 

in risk-based codified engineering design, 
44345,449-50,452 

LoS. See Level of service 
LRFD. See Loadlresistance factor design 

MADALINE, first neural network, 216 
MAP. See Maximum aposteriori criterion 
Markov chain. See also Hidden Markov 

tree; Markov random field theory 
in fuzzy systems, 62,6546, 71 
limitations in corrosion of concrete 

bridges, 493 
uncertainty modeling of corrosion of 

concrete bridges and, 493 
Markov random field theory (MRF), change 

detection and, 1 15. 1 16-17. 1 17f 
Mass matrix, system identification at local 

level under uncertainty and, 462,464, 
466-69 

MATLAB software. 74.75.79. 106, 126-27 
colormap function of, 150 
random-number generator, 148 

Maximum aposteriori criterion (MAP) 
in change detection, 1 15, 1 1 &2 1 
MRF and, 1 18-2 1 

Maximum likelihood estimation, in NN 
design, 202 

MCO. See Multicriteria optimization 
MCO, under parametric uncertainty 

average criterion and, 177-79, 182, 188 
average criterion minimization and, 

165-66. 166% 173 
bi-level optimization for, 16142, 

174-75, 180, I82 
consecutive conciliations strategy. 

168-69, 170J 177, 184-87 
convolution of criteria and. 164 
DM curve, 178, 181, 187, 188, 189J; 190f 
&-constraint strategy and, 168. 173, 184, 

I85 
internal optimization and, 179. 183, 185. 

186-87 
objective functions in, 182, 183, 184 
one-step problems and, 176 
pareto sets and, 162-64, 163c 17 1-75, 

173% 174f 
two-stage problems in, 176 
worst case strategy in, 166-68, 177. 178, 

18 1-84, 187, 188 
MCS. See Monte Carlo simulation 
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Mean estimation of performance, in NN 
design, 202 

Mean field theory (MFT), change detection 
and, 115, 116, 117-18, 121 

Mean squared error (MSE), in neural 
network design, 201-3,203t, 204J; 
205-8,205t,207t, 209-1 0 

Measure theory, transportationluncertainty 
and, 3 13-1 4 

Membership functions, in fuzzy sets for 
fuzzy signal controllers, 399-400,40 1, 
404-5 

MFNN. See Multilayered feedfonvard 
neural networks 

MFT. See Mean field theory 
Minimax, in epistemic uncertainty. 278-79 
MLFFN. See Multilayered feedfonvard 

neural networks 
Modeling transportation choice. through 

MLFFNs 
activation functions in, 343-44 
architecture of, 343,346f; 352.354f 
backpropogation algorithms in, 344 
behavioral choice models and, 345 
calibration in, 344, 352 
comparison of models in, 344,35455. 

355f; 355t, 364f 
demand analysis in, 34 1-42 
hierarchical logits and, 348, 35 1,360-65, 

36 1 t, 362t, 365t, 366 
inlout processing and, 34 143,354t 
LoS attributes and, 349, 350t, 357,36345 
mode market share, 349, 349f 
non utility-based choice models and, 

35740,358J; 358t, 359J; 359t, 360f 
non-behavioral choice models and, 345 
operational issues summary for, 353f 
overfittinglovertraining and, 349,354 
PDPs and, 34 1-42 
PUS and, 34 144,346-48 
RUMS and, 342,348,350-5 1,360-6 1, 

365-66 
travel demand analysis and, 345 
utility-based choice models and, 345-48. 

351-52,353f 
validation data sets in. 344,348-50 
validation indices in, 350-5 1 
weight values in, 356-57, 357t. 359, 363, 

365t 
Monte Carlo simulation (MCS) 

epistemic uncertainty and, 273 
redundancy analysis of structural systems 

and, 5 15 

risk-based engineering design and, 445, 
447-48.45 1,452-55 

uncertainty modeling of concrete bridge 
corrosion with, 494,505,507,508 

Moores Mill test dataset, in NNs, 23 I, 24 1, 
243t. 246 

Movement cell behavior, evacuation 
simulations and. 258-59, 259f 

MRF. See Markov random field theory 
MRF-MFT algorithm 

in change detection, 121-23, 128, 130f 
illumination invariant of. 124-26 

MSE. See Mean squared error 
Multi-agent systems, in parking facilities 

management 
agent definitions for, 326 
agent interactions in, 322-24,325f 
capacity in, 336 
carpools in, 336 
case study of. 330-36.33 If 
central planners and, 322-23 
decision making in, 326 
enforcement in, 334,335J; 336,336f 
fees in, 332,332f; 334,334J; 336-37 
free parking in, 333,334f 
fuzzy rule base for, 326-29 
fuzzy sets and, 324,3255 327 
fuzzy setslenforcement and, 329-30 
lot searching time in, 333, 333f 
non-cooperative evolutionary models and, 

323-24 
occupancy in, 334,335f 
parking variables in, 32 1-22 
stay duration in, 33 1,332f 
unplanned coordination and, 322-25 

Multicriteria optimization (MCO) 
AC and, I 77-79, 182, 188 
consecutive conciliations strategy in, 

168-69, 170% 177, 184-87 
E-constraint strategy and, 168. 173, 184, 

I85 
DM curves and, 178, 18 1,  187, 188, l89J; 

190f 
objective functions and. 182. 183. 184 
parametric uncertainty and, 16 1-62 
pareto sets and, 16244, l63J 17 1-75, 

173J; 174f 
worst case strategy and. 16&68, 177, 

178, 18 1-84, 187, 188 
Multilayered feedfonvard neural networks 

(MFNN), in NNs, 220-23.22IJ; 225, 
226 
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NDE. See Nondestructive evaluation 
Neighborhoods, evacuation simulations and, 

250,25 If; 262 
Neural network design, for pavement 

rutting, 193-94,2 1 1 
architecture, 199-200 
ARE in, 201-3,203~ 207t, 209-10,21 Of 
basics in, 194-95 
data processing in, 199 
data set divisionlperformance in, 202-4, 

203t, 204f 
feed-forward networks in, 200 
input vectors in, 199-200 
inputs in, 195-98, l96t, 197f; 1981; 207 
maximum likelihood estimation, 202 
mean estimationlperformance in, 202 
MSE, 201-3,203t, 204J; 205-8,205t. 

207t, 209-10 
one hidden layer and, 205-7,205f; 206f 
outputs in, 198 
overfitting in, 202 
performance estimation in. 202 
performance grade in. 199,200 
~erformance index for. 20 1 
prediction of RD in, 208-1 I, 209f; 2101; 

21 If 
principal component analysis in, 199-200 
R-correlation value and, 202, 203f; 206, 

206% 207,207t, 208 
regression plots in, 209-10,2 1 Of 
synaptic weight in, 194 
tan-sigmoid transfer function in, 20 1 
testing conditioning in, 199 
training sets for, 1 19-200,20 1. 204, 205 
two hidden layer and, 207-8.207t 
validation set error in, 204,204f 

Neural networks (NN). See EEG analysis, 
by recurrent neural networks: Neural 
network design, for pavement rutting: 
Self-organizing neural networks 

Neural networks, for residential 
infrastructure management, 2 15 

actual v. predicted output of. 24 1,2422 
adaptive resonance networks v., 230 
agreement matrix training in, 236-38, 236t 
artificial neurons in, 2 18-1 9,2 19f 
backpropogation algorithms in, 223 
biological neurons v., 2 17-1 8,2 1 8f 
classifier statistical parameters in, 237-38 
connection weight in, 2 19,2 19f; 222, 

245-46 
Defoors train dataset in, 230,23 1,236, 

2361,237-38.24 1,246 

elastic net algorithm in, 230 
Euler approximation in, 224 
hidden neuron layer in, 220,22 1 f 
history of, 21 5-1 7 
Hopfield NNs in, 223-26,224J; 230 
input variables in, 230-3 1,2331 
Liapunov function in, 225 
MFNNs in, 220-23,221f; 225,226 
Moores Mill test dataset in, 23 1, 24 1 ,  

2431,246 
neuron neighborhood in, 227,228,228J 

229 
optimization problems in, 225 
output variables in, 230-3 1,234, 239  
overtraining of, 222 
penalty function parameters in, 225,226 
performance in, 225-26 
ROC curve graphs in, 238,239f; 240% 246 
ROC validation of, 244,244f; 245f 
self-organizing feature maps in, 22630, 

228f 
self-organizing NNs in, 22630 
training data in, 220-23,23 1 
validation agreement matrix for, 24 1.243t 
weight update rule for, 222 
winning neuron approach in, 227.228, 

229 
Neural output, self-organizing neural 

networks and, 22-23 
Neuron neighborhood, in NNs, 227,228, 

228f; 229 
NN. See Neural networks 
Noise. See also Signal-to-noise ratio: White 

noise simulation 
recurrent neural networks and, 155 

Non utility-based choice models, in 
modeling transportation choice, 
35740,358J; 358t, 359J; 359t. 360f 

Non-behavioral choice models. in modeling 
transportation choice, 345 

Nondestructive evaluation (NDE ), system 
identification and, 46142 

NSF Workshop on Reliability in Bridge 
Engineering, redundancy analysis of 
structural systems and. 5 14 

Objective functions, in MCO, 182, 183, 184 
OCO. See One criterion optimizations 
One criterion optimizations (OCO), pareto 

sets and, 16 1, 16243 
Optimization models 

in fuzzy systems, 3 1-32, 70 
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genetic algorithms in, 70-73, 75t, 77.78, 
83,86,87t 

Organization of Behavior (Hebb), 2 15-1 6 

Parallel distributed processing (PDP), for 
modeling transportation choice, 34142 

Parallel processing. in risk-based codified 
engineering design, 454 

Pareto sets (PS) 
bi-level optimization in, 17 1-72, 173-75, 

1731; 1741; 1 76 
consecutive conciliations strategy and, 184 
Karush-Kuhn-Tucker conditions and. 175 
MCO and, 162-64, 1631; 17 1-75, 1731; 

174f 
OCO and, 16 1, 16243 
relative significance in, 17 1 
utopia point and, 162-63, 17 1 
weight coefficients in, 17 1 

Partially restrained connections (PR), 
reliability evaluation of realistic 
structures and, 4 17-1 8 ,4  1 9-2 1,429. 
43 1,432-33,434.439 

PAT. See Preferred arrival time 
PDP. See Parallel distributed processing 
Penalty function parameters, in NNs, 225, 

226 
Perceptrons (Papert), on neural networks, 

216 
Performance variables, in fuzzy systems, 

38-40,66-70,75t 
Poisson analysis 

in fuzzy systems, 33-34.50 
ratio, in reliability evaluation and, 422 

Possibility distribution theory, 
transportationluncertainty and, 3 10-1 1, 
314 

PR. See Partially restrained connections 
Preferred arrival time (PAT), commuter 

departure time decisions and, 37678. 
379,390-91 

Premium Solver Platform V5.0,38,41 
agent node and, 65 
GAS and, 65 

Principal component analysis 
in NN design, 199-200 
training sets for, 199-200 

Probability density, ERP noise reduction 
and, 97 

Probability distribution theory, 
transportationluncertainty and, 3 10-1 1, 
314 

Probability, in epistemic uncertainty, 
26768,2681; 276,279 

Probability, in fuzzy systems. 62-63, 76t 
probability distribution and, 64, 66,67,68 
steady state and, 33, 3&40,37f; 43, 

65-66,67,69, 74, 741, 75, 76t 
transition probabilities and, 63-65 

Processing units (PU), for modeling 
transportation choice, 34 1 4 3  

Prospect theory 
commuter departure time decisions and, 

372 
cumulative, 370 

PS. See Pareto sets 
PU. See Processing units 

Random effects probit model, in commuter 
departure time decisions, 387-88 

Random utility maximization, commuter 
departure time decisions and, 369 

Random utility models (RUM). modeling 
transportation choice and, 342.348. 
350-5 1,36@-6 1,365-66 

Rayleigh-type damping 
ILS-UI and, 467,468 
SI at local level and, 467,468.469,470, 

477 
RC. See Reinforced concrete 
R-correlation value and, in NN design, 202, 

2031; 206,2061; 207.207t. 208 
RD. See Rut depth 
Receiver operating characteristic (ROC) 

curve graphs, in NNs, 238,239f; 240f; 
246 

Recognition, problem definitionlvector 
representation in, 2 1-23 

Redundancy analysis, of structural systems 
application of. 527-30, 528j; 5291 
ASM and, 5 15 
deterioration models in. 530 
distribution functions in, 5 17 
DOR in, 5 17.5 19-23 
failure mode v. safety in. 513-14.5 15-17. 

5151;516f 
FORM and, 5 15 
limit state functions in, 513-14 
loading factorslload effect in. 5 13. 5 17 
modeling considerations in, 5 14-1 5 
Monte Carlo simulations and, 5 15 
NSF Workshop on Reliability in Bridge 

Engineering and, 5 14 
performance functions in, 5 17 
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post-failure phase analysis and, 524-26, 
524f; 525f; 526f 

pre-failure phase analysis and, 5 18-23, 
5 19f; 520f; 52 If; 522f 

probability of failure in, 5 16.5 17, 530 
random variables in, 5 13 
redundanthon-redundant members in, 

5 19-23,524-26 
reliability index in, 515,5 16, 527 
reliability limits in, 526 
reliability measures in, 526 
reliability of, 513-14 
uncertainty types in, 5 16 

Regression plots, in NN design, for 
pavement rutting, 209-1 0,2 1 Of 

Regret minimization, epistemic uncertainty 
and, 27675,279,280 

Reinforced concrete (RC) shear walls. 
reliability evaluation and, 41 7-18, 
421-23,425,430-3 1,436f; 436t 

Relative rotation angle, reliability evaluation 
of realistic structures and, 4 19.420, 
420f; 42 1,428-29,432,433f 

Reliability evaluation, of realistic structures 
by FEM 

basic random variables of, 426,433t, 436t 
DDOFs in, 421 
FEM approach to, 41 7-1 8 
FEM formulation in, 4 18-1 9,420-2 1 
FORM and, 423,429,43 1,439 
FR connections in, 41 7-1 8,43 1,432f 
Jacobians of transformation and, 426-28, 

430 
limit state functions and, 424-25 
linear iterative strategy and, 4 18-1 9 
nodal displacement vectors in, 428 
plane stress element in, 42 1 
Poisson ratio in, 422 
PR connections in. 41 7-18.41 9-2 1,429. 

43 1,432-33,434,439 
RC shear walls and, 4 17-1 8,42 1-23, 

425,430-3 1,436f; 436t 
relative rotation angle and, 419, 420,420f; 

42 1,428-29,432,433f 
relative rotation of node in, 429 
reliability indices in, 43635,434f; 437, 

437t, 439 
Richard four-parameter moment-rotation 

model in, 4 19-20,420f; 428-29, 
433f; 439 

serviceability limit function in, 425-27, 
430,436,438,438t 

SFEM and, 4 18,423-24,428-3 1,434, 
435,437,439 

strength limit state function in, 425,426, 
427,430,436-39,438t 

stress-based FEM in, 42 1,439 
tangent stiffness matrix and, 4 19.42 1, 

423,430 
Young's modulus in. 420.422.426-27 

Reliability indices 
in redundancy analysis of structural 

systems, 5 15, 516, 527 
reliability evaluation of realistic structures 

and, 434-35,434f; 437,437~ 439 
Reliability-based approaches 

risk-based codified engineering design 
and, 449-50 

uncertainty modeling of corrosion of 
concrete bridges and, 494, 509 

Reliable knowledge (RK), 6-7, 7f 
Richard four-parameter moment-rotation 

model, reliability evaluation and, 
4 19-20,420f; 428-29,433f; 439 

Risk 
control/management, 2 
uncertainty v., 3 

Risk assessment, in epistemic uncertainty, 
26748,268f; 27 1 

RK. See Reliable knowledge 
ROC. See Receiver operating characteristic 
ROC validation, in NNs, for residential 

infrastructure management. 244,244f; 
245f 

R-square value, in NN design, 203,206-7, 
206j 

Rut depth (RD). NN design, for pavement 
rutting and, 208-1 1,209f; 2 1 Of; 2 1 If 

Scaling factor, ERP noise reduction and, 
100, 103 

SEEG. See Subdural electroencephalogram 
Seismic excitation, in system identification 

at local level, 470,473-74,474f; 47%. 
485 

Self-organizing feature maps (SOFM). in 
NNs, 22630,228f 

Self-organizing map (SOM), 19-20, 29 
Self-organizing neural networks 

concept formation networking in, 28-29 
concepts/cognition in, 20 
concepts/incomplete observation in, 27-28 
connection structures in, 22 
DSCWs and, 23-25,23f 
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dynamiclspatial changing weights in, 
23-25.23f 

Hebbian ruie/siructural adaptation in. 
26-27 

learningladaptation in, 19-20 
neural output in, 22-23 
problem definition in. 2 1-23 
for residential infrastructure management, 

2 2 6 3 0  
SOM in, 19-20,29 
structural adaptations in. 25 
unsupervised competitive learning in, 

25-26 
Serviceability limit function, reliability 

evaluation of realistic structures and, 
425-27,430,436,438,438t 

SFEM. See Stochastic finite element method 
Shear walls. See Reinforced concrete 
SI. See System identification 
Signal-to-noise ratio (SNR) 

in change detection simulation, 127. 128f 
in ERP noise reduction using HMT, 108% 

l o e l o ,  1o9f 
Simulation, in risk-based codified 

engineering design 
ABET and, 452 
advanced liability concepts in. 443-45 
AFOSM, 449 
codified approach to, 448-50 
critical load effects in, 44344  
deterministic approaches to. 454-55 
efficiency of, 453-55 
finite element methods in, 453,455 
Karhunen-Loeve expansion and, 453 
load-related design variables in, 446.447 
loadlresistance factors in, 445 
LRFD and, 44345,449-50.452 
MCS in, 445,44748,45 1,452-55 
method-based algorithms in, 453 
parallel processing in, 454 
random variables and, 447,448 
reliability-based design methods and, 

449-50.45 1-53 
risk-based design guidelines and, 44344  
simulation concept and, 448 
stochastic structural analysis and, 454-55 
VRTs and, 446-47.453-54 

Simulation language, extensible (SLX), 46, 
77, 79,s  IJ; 87 

Simulation, of fuzzy systems I. See also 
Simulation, of fuzzy systems I I  

alpha-cut models in, 38,53-54,54t, 555 
56f; 57 

arrivallservice in, 32-36.35f 
calculationslone-step approach to. 40-4 1. 

41t 
calculations/two-step approach to, 4 1.4 1 t, 

42t 
confidence interval in, 34,36 
crisp analysis in, 32.32J; 37,39.42,44, 

46,47, 54.58 
long-term runs in, 47-50,48t, 49t. 50f; 

Sot, 52f; 53t 
optimization models from, 3 1-32 
performance variables in, 3 8 4 0  
Poisson analysis in, 33-34, 50 
queuing model in, 36-40.37f 
queuing network as, 3 1-32 
results v. calculations in, 3 1-32 
spreadsheet calculations in. 4244,42t.  

43f; 44J; 45f 
steady state probabilities in, 36-40, 37f; 43 

Simulation. of fuzzy systems 11. See also 
Simulation. of fuzzy systems I 

alpha-cut models in. 68,69, 70, 73, 
78-86, 79t, SOf; 8 If 

confidence interval in, 6 2 4 3  
crisp approaches to, 6344,67-69,7 1, 

77-79 
future research on, 86-88 
fuzzy optimizations for, 70 
fuzzy performance variables in, 66-70,75t 
fuzzy probabilities for, 6243 ,  76t 
fuzzy steady state probabilities in. 6546 ,  

67.69, 74, 744 75, 76t 
fuzzy transition matrix model, 62-70, 87t 
fuzzy transition probabilities in, 63-65 
genetic algorithm optimizations for, 

70-73,75t, 77,78,83,86,87t 
Markov chain and, 62,6546,  71 
probability distribution in, 64, 66, 67, 68 
queuing model for, 61,88 
results for, 82-86, 83t, 84f; 851; 86t 

SLX. See Simulation language, extensible 
SNR. See Signal-to-noise ratio 
SOFM. See Self-organizing feature maps 
SOM. See Self-organizing map 
State probability, ERP noise reduction and, 

97 
Stiffness, in structures 

system identification at local level and. 
465,466,467,470,472t. 473-74, 
474J; 475t, 477t, 47%. 484f; 485-87, 
485t,487t 

tangent stiffness matrix and, 4 19,42 1, 
423,430 
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Stochastic finite element method (SFEM), 
reliability evaluation of realistic 
structures and, 4 18,423-24.428-3 1, 
434,435,437,439 

Stochastic structural analysis, in risk-based 
codified engineering design, 454-55 

Strength limit state function, reliability 
evaluation of realistic structures and, 
425,426,427,430,43639,438t 

Subdural electroencephalogram (SEEG), 
14142, 156, 157 

training sets and, 148 
Sub-structuring approach, SI at local level 

under uncertainty and, 480-87,48 lJ 
484J 488 

Synaptic weight 
EEG analysis and, 140 
in NN design for pavement rutting, 194 

System identification (SI), 461-62 
System identification, at local level under 

uncertainty 
ANSYS software, 47 1,472,474,476 
DDOFs and, 463,465,466,468,469, 

470-7 1,472-73.477-82,484. 
48687  

earthquake loading in, 4751,488 
excitation force and. 469-70,472 
FEM and, 46 1-62 
finite element frame and, 47679,478f 
frequencyltime domains and, 462 
ILS-UI and, 462-70 
mass matrix and, 462,464,46669 
NDE and, 46 1 4 2  
numerical examples of, 470-80.47 If; 

472J 472t, 475f; 475t. 477t479t 
Rayleigh-type damping and, 467,468, 

469,470,474,477 
seismic excitation in, 470,473-74. 474f; 

475t, 485 
shear- type structures and, 46446 
spot defect state and, 478,4791 
stiffness and, 465,466,467,470,4721, 

473-74.4741: 47%. 477t. 4781.4841: 
485-87,485t, 487t 

structural health and, 461-62 
sub-structuring approach in, 480-87, 

48 If; 484% 488 
white noise simulations for, 470,47 1, 

473,474,476,479,484,486,487 
Systems analysis, as modeling framework, 

12-15, 15J 16f 

Tangent stiffness matrix, reliability 
evaluation of realistic structures and, 
4l9,42l, 423,430 

Tan-sigmoid transfer function, in neural 
network design, 20 1 

TC. See Text categorization 
Text categorization (TC), 283,285 

child categories in, 287,288 
multi-label problems in. 287 
parent categories in, 287 

Training data, for residential infrastructure 
management, 220-23.23 1 

Training sets 
EEG analysis and, 145, 14849, 148t 
in NN design, for pavement rutting, 

1 19-200,20 1,204,205 
noise and, 155 
principal component analysis and, 

199-200 
SEEG and, 148 

Transportation, and uncertainty 
abductionlfine tuning data in. 306. 307f 
ambiguity in, 3 10 
approximate value treatment in. 3 15-1 6 
control/regulating data in, 306, 307f 
crisp set theory in, 3 12,3 12f 
Dempster-Shafer theory in, 3 10-1 1.3 12 
diagnosis in, 306,307f 
Euler's law in, 3 18 
forecasting accuracy in, 3 16 
fuzzy set theory in, 31 1-12,312L 331-16 
information gathering issues and, 305 
interpretationlsubjectivity in, 308, 309f 
measure theory and, 3 13-14 
model application in, 308.309f 
model framework in, 308.309f 
observation issues in, 307-8,309f 
possibility distribution theory in. 3 1 0 - 1  I, 

314 
predictionlknowledge base and, 306, 307f 
presentation issues in, 3 17- 18 
probability distribution theory in, 3 10-1  1, 

314 
reasoning strength in, 3 16-1 7 
scopelnature of analysis in, 3 0 3 4  
societal issues/reactions and, 304-5 
stochastic choice model in, 3 16 
weighting in, 3 17-1 8 

Triangularltrapezoidal functions, in fuzzy 
signal controllers, 401-2,404,409 

U. See Universal set 
Uncertainty Taboo, 10-1 1, 12f 
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models for, 12-15, 15% 16f 
risk v., 3 
types. in analysis of structural systems, 

516 
Uncertainty modeling, of chloride 

contamination and corrosion of 
concrete bridges 

apparent diffusion coefficient in, 499 
BMS and, 493 
chloride difhsion parameters, 498,499 
concrete corrosion processes and. 491-92. 

492% 493,496-97.497% 498s 
concrete cover depth and, 503,506 
condition assessment in, 49 1-92,492f 
decision uncertainty in, 49 1-92,492f 
deterioration models and. 49 1-92,492f; 

494-95,504 
deterioration prediction in, 505,507.508f 
failure definitions in, 504 
Fick's laws of diffusion in, 493,496,497, 

499 
FORM and, 494 
imperative for, 494-95 
maintenance optimization in, 491-92,492f 
Markov chain limitations in, 493 
modeling example of, 505-9,507t, 508f 
Monte Carlo simulations and. 494.505. 

507,508 
network v. project-level models for, 

493-94 
reinforcement predictions and. 508-9, 

508f 
reliability-based approaches to, 494,509 
risk assessment in, 491-92,492f 
steel corrosion processes and, 500-502, 

501% 502f 
stochastic deterioration in, 493,494 
surface chloride concentration in, 506 
threshold chloride concentration and, 503, 

506-7,507t 
uncertainty parameters, 494,495 

Understanding, deepness of, 20 
Unipolar binary concept set, 28-29 
Unipolar binary representation, problem 

definition and, 22-23 
Universal Feature Extractor (UFEX), 

285-86,286j 288-90 
Universal set (IJ), systems analysis and, 

13-15, 15f 
Utility-based choice models, transportation 

choice and, 34548,35 1-52,353f 
Utopia points, pareto sets and, 162-63, 17 1 

Validation agreement matrix, for NNs, 24 1. 
243t 

Validation data sets 
indices in, 350-5 1 
for modeling transportation choice, 344, 

348-50 
Value function, commuter departure time 

decisions and, 372-73,374J 375, 
390-95,393t 

Variance reduction techniques (VRT), in 
risk-based codified engineering design. 
44647.453-54 

Vector representation, problen~ definition 
and. 2 1-23 

VRT. See Variance reduction techniques 

Wavelets, 1 12 
Daubechies, 106 
in ERP noise reduction, 92, 93,95 
transformlclustering in, 93,94f 
transform/compression in, 93 
transformllocality in, 93 
transformlmultiresolution in, 93 
transformlpersistence in, 93, 94% 95 

WCS. See Worst case strategy 
Weight function, commuter departure time 

decisions and, 370,37 1, 374,374f; 38 1, 
382% 384,38690,389t 

Weight update rule, for NNs, 222 
White noise simulation, in SI at local level, 

470.47 1,473,474,476,479,484,486, 
487 

Winning neuron approach. in NNs. 227. 
228,229 

WIPO. See World Intellectual Property 
Organization 

Wolverine software 
fuzzy probability computations and, 4 W 7  
GPSSIH, 46,49,5&5 1,50t, 5 3 . 5 3 ~  77, 

79, 8 If 
SLX, 46,77,79,8 I f 

World Intellectual Property Organization 
(WIPO), 284 

Worst case strategy (WCS) 
in epistemic uncertainty, 280 
Gaussian quadrature and, 182, 183, 186 
in MCO, 16668, 177, 178, 18 1-84, 187, 

188 

Young's modulus, reliability evaluation of 
realistic structures and, 420,422, 
426-27 




