MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS

$3^{\text {rd }}$ Edition

Michael S. Mamlouk Arizona State University

John P. Zaniewski West Virginia University

FOREWORD

This solution manual includes the solutions to numerical problems at the end of various chapters of the book. It does not include answers to word questions, but the appropriate sections in the book are referenced. The procedures used in the solutions are taken from the corresponding chapters and sections of the text. Each step in the solution is taken to the lowest detail level consistent with the level of the text, with a clear progression between steps. Each problem solution is self-contained, with a minimum of dependence on other solutions. The final answer of each problem is printed in bold.

The instructors are advised not to spread the solutions electronically among students in order not to limit the instructor's choice to assign problems in future semesters.

CHAPTER 1. MATERIALS ENGINEERING CONCEPTS

1.2. Strength at rupture $=\mathbf{4 5} \mathbf{~ k s i}$

Toughness $=(45 \times 0.003) / 2=\mathbf{0 . 0 6 7 5} \mathbf{k s i}$
1.3. $\mathrm{A}=0.36 \mathrm{in}^{2}$
$\sigma=138.8889 \mathrm{ksi}$
$\varepsilon_{\mathrm{A}}=0.0035 \mathrm{in} / \mathrm{in}$
$\varepsilon_{\mathrm{L}}=-0.016667 \mathrm{in} / \mathrm{in}$
$\mathbf{E}=39682 \mathrm{ksi}$
$v=0.21$
1.4. $\mathrm{A}=201.06 \mathrm{~mm}^{2}$
$\sigma=0.945 \mathrm{GPa}$
$\varepsilon_{\mathrm{A}}=0.002698 \mathrm{~m} / \mathrm{m}$
$\varepsilon_{\mathrm{L}}=-0.000625 \mathrm{~m} / \mathrm{m}$
$\mathbf{E}=350.3 \mathbf{G P a}$
$v=0.23$
1.5. $\mathrm{A}=\pi \mathrm{d}^{2} / 4=28.27 \mathrm{in}^{2}$
$\sigma=\mathrm{P} / \mathrm{A}=-150,000 / 28.27 \mathrm{in}^{2}=-5.31 \mathrm{ksi}$
$\mathrm{E}=\sigma / \varepsilon=8000 \mathrm{ksi}$
$\varepsilon_{\mathrm{A}}=\sigma / \mathrm{E}=-5.31 \mathrm{ksi} / 8000 \mathrm{ksi}=-0.0006631 \mathrm{in} / \mathrm{in}$
$\Delta \mathrm{L}=\varepsilon_{\mathrm{A}} \mathrm{L}_{\mathrm{o}}=-0006631 \mathrm{in} / \mathrm{in}(12 \mathrm{in})=-0.00796 \mathrm{in}$
$\mathrm{L}_{\mathrm{f}}=\Delta \mathrm{L}+\mathrm{L}_{\mathrm{o}}=12$ in -0.00796 in $=\mathbf{1 1 . 9 9 2}$ in
$\nu=-\varepsilon_{\mathrm{L}} / \varepsilon_{\mathrm{A}}=0.35$
$\varepsilon_{\mathrm{L}}=\Delta \mathrm{d} / \mathrm{d}_{\mathrm{o}}=-v \varepsilon_{\mathrm{A}}=-0.35(-0.0006631 \mathrm{in} / \mathrm{in})=0.000232 \mathrm{in} / \mathrm{in}$
$\Delta \mathrm{d}=\varepsilon_{\mathrm{L}} \mathrm{d}_{\mathrm{o}}=0.000232(6 \mathrm{in})=0.00139 \mathrm{in}$
$\mathrm{d}_{\mathrm{f}}=\Delta \mathrm{d}+\mathrm{d}_{\mathrm{o}}=6$ in $+0.00139 \mathrm{in}=6.00139$ in
1.6. $\mathrm{A}=\pi \mathrm{d}^{2} / 4=0.196 \mathrm{in}^{2}$
$\sigma=\mathrm{P} / \mathrm{A}=2,000 / 0.196 \mathrm{in}^{2}=10.18 \mathrm{ksi}$ (Less than the yield strength. Within the elastic region)
$\mathrm{E}=\sigma / \varepsilon=10,000 \mathrm{ksi}$
$\varepsilon_{\mathrm{A}}=\sigma / \mathrm{E}=10.18 \mathrm{ksi} / 10,000 \mathrm{ksi}=0.0010186 \mathrm{in} / \mathrm{in}$
$\Delta \mathrm{L}=\varepsilon_{\mathrm{A}} \mathrm{L}_{\mathrm{o}}=0.0010186 \mathrm{in} / \mathrm{in}(12 \mathrm{in})=0.0122 \mathrm{in}$
$\mathrm{L}_{\mathrm{f}}=\Delta \mathrm{L}+\mathrm{L}_{\mathrm{o}}=12$ in +0.0122 in $=\mathbf{1 2 . 0 1 2 2}$ in
$\nu=-\varepsilon_{\mathrm{L}} / \varepsilon_{\mathrm{A}}=0.33$
$\varepsilon_{\mathrm{L}}=\Delta \mathrm{d} / \mathrm{d}_{\mathrm{o}}=-v \varepsilon_{\mathrm{A}}=-0.33(0.0010186 \mathrm{in} / \mathrm{in})=-0.000336 \mathrm{in} / \mathrm{in}$
$\Delta \mathrm{d}=\varepsilon_{\mathrm{L}} \mathrm{d}_{\mathrm{o}}=-0.000336(0.5 \mathrm{in})=-0.000168 \mathrm{in}$
$\mathrm{d}_{\mathrm{f}}=\Delta \mathrm{d}+\mathrm{d}_{\mathrm{o}}=0.5$ in -0.000168 in $=0.49998$ in
1.7. $\mathrm{L}_{\mathrm{x}}=30 \mathrm{~mm}, \mathrm{~L}_{\mathrm{y}}=60 \mathrm{~mm}, \mathrm{~L}_{\mathrm{z}}=90 \mathrm{~mm}$
$\sigma_{\mathrm{x}}=\sigma_{\mathrm{y}}=\sigma_{\mathrm{z}}=\sigma=100 \mathrm{MPa}$
$\mathrm{E}=70 \mathrm{GPa}$
$v=0.333$
$\varepsilon_{x}=\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right] / E$
$\varepsilon_{\mathrm{x}}=\left[100 \times 10^{6}-0.333\left(100 \times 10^{6}+100 \times 10^{6}\right)\right] / 70 \times 10^{9}=4.77 \times 10^{-4}=\varepsilon_{\mathrm{y}}=\varepsilon_{\mathrm{z}}=\varepsilon$
$\Delta \mathrm{L}_{\mathrm{x}}=\varepsilon \times \mathrm{L}_{\mathrm{x}}=4.77 \times 10^{-4} \times 30=0.01431 \mathrm{~mm}$
$\Delta \mathrm{L}_{\mathrm{y}}=\varepsilon \times \mathrm{L}_{\mathrm{y}}=4.77 \times 10^{-4} \times 60=0.02862 \mathrm{~mm}$
$\Delta L_{\mathrm{z}}=\varepsilon \times \mathrm{L}_{\mathrm{z}}=4.77 \times 10^{-4} \times 90=\mathbf{0 . 0 4 2 9 3} \mathbf{~ m m}$
$\Delta V=$ New volume - Original volume $=\left[\left(\mathrm{L}_{\mathrm{x}}-\Delta \mathrm{L}_{\mathrm{x}}\right)\left(\mathrm{L}_{\mathrm{y}}-\Delta \mathrm{L}_{\mathrm{y}}\right)\left(\mathrm{L}_{\mathrm{z}}-\Delta \mathrm{L}_{\mathrm{z}}\right)\right]-\mathrm{L}_{\mathrm{x}} \mathrm{L}_{\mathrm{y}} \mathrm{L}_{\mathrm{z}}$ $=(30-0.01431)(60-0.02862)(90-0.04293)]-(30 \times 60 \times 90)=161768-162000$ $=\mathbf{- 2 3 2} \mathrm{mm}^{3}$
1.8. $L_{x}=4$ in, $L_{y}=4$ in, $L_{z}=4$ in
$\sigma_{\mathrm{x}}=\sigma_{\mathrm{y}}=\sigma_{\mathrm{z}}=\sigma=15,000 \mathrm{psi}$
$\mathrm{E}=1000 \mathrm{ksi}$
$v=0.49$
$\varepsilon_{x}=\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right] / E$
$\varepsilon_{\mathrm{x}}=[15-0.49(15+15)] / 1000=0.0003=\varepsilon_{y}=\varepsilon_{z}=\varepsilon$
$\Delta \mathrm{L}_{\mathrm{x}}=\varepsilon \times \mathrm{L}_{\mathrm{x}}=0.0003 \times 15=0.0045$ in
$\Delta \mathrm{L}_{\mathrm{y}}=\varepsilon \times \mathrm{L}_{\mathrm{y}}=0.0003 \times 15=0.0045$ in
$\Delta \mathrm{L}_{\mathrm{z}}=\varepsilon \times \mathrm{L}_{\mathrm{z}}=0.0003 \times 15=0.0045$ in
$\Delta V=$ New volume - Original volume $=\left[\left(L_{x}-\Delta L_{x}\right)\left(L_{y}-\Delta L_{y}\right)\left(L_{z}-\Delta L_{z}\right)\right]-L_{x} L_{y} L_{z}$ $=(15-0.0045)(15-0.0045)(15-0.0045)]-(15 \times 15 \times 15)=3371.963-3375$ $=-3.037 \mathrm{in}^{3}$
1.9. $\varepsilon=0.3 \times 10^{-16} \sigma^{3}$

At $\sigma=50,000 \mathrm{psi}, \varepsilon=0.3 \times 10^{-16}(50,000)^{3}=3.75 \times 10^{-3} \mathrm{in} . / \mathrm{in}$.
Secant Modulus $=\frac{\Delta \sigma}{\Delta \varepsilon}=\frac{50,000}{3.75 \times 10^{-3}}=\mathbf{1 . 3 3 \times 1 0} \mathbf{~}{ }^{\mathbf{7}} \mathbf{~ p s i}$
$\frac{d \varepsilon}{d \sigma}=0.9 \times 10^{-16} \sigma^{2}$
At $\sigma=50,000 \mathrm{psi}, \frac{d \varepsilon}{d \sigma}=0.9 \times 10^{-16}(50,000)^{2}=2.25 \times 10^{-7} \mathrm{in} .^{2} / \mathrm{lb}$
Tangent modulus $=\frac{d \sigma}{d \varepsilon}=\frac{1}{2.25 \times 10^{-7}}=\mathbf{4 . 4 4 \times 1 0 ^ { 6 }} \mathbf{~ p s i}$
1.11. $\varepsilon_{\text {lateral }}=\frac{-3.25 \times 10^{-4}}{1}=-3.25 \times 10^{-4} \mathrm{in} . / \mathrm{in}$.
$\varepsilon_{\text {axial }}=\frac{2 \times 10^{-3}}{2}=1 \times 10^{-3} \mathrm{in} . / \mathrm{in}$.
$v=-\frac{\varepsilon_{\text {lateral }}}{\varepsilon_{\text {axial }}}=-\frac{-3.25 \times 10^{-4}}{1 \times 10^{-3}}=\mathbf{0 . 3 2 5}$
1.12. $\varepsilon_{\text {lateral }}=0.05 / 50=0.001 \mathrm{in} . / \mathrm{in}$.
$\varepsilon_{\text {axial }}=v \times \varepsilon_{\text {lateral }}=0.33 \times 0.001=0.00303 \mathrm{in}$.
$\Delta \mathrm{d}=\varepsilon_{\text {axial }} \mathrm{Xd}_{0}=-0.00825 \mathrm{in}$. (Contraction)
1.13. $\mathrm{L}=380 \mathrm{~mm}$
$\mathrm{D}=10 \mathrm{~mm}$
$\mathrm{P}=24.5 \mathrm{kN}$
$\sigma=\mathrm{P} / \mathrm{A}=\mathrm{P} / \pi \mathrm{r}^{2}$
$\sigma=24,500 \mathrm{~N} / \pi(5 \mathrm{~mm})^{2}=312,000 \mathrm{~N} / \mathrm{mm}^{2}=312 \mathrm{MPa}$
$\delta=\frac{P L}{A E}=\frac{24,500 \mathrm{lb} \times 380 \mathrm{~mm}}{\pi(5 \mathrm{~mm})^{2} E(\mathrm{kPa})}=\frac{118,539}{E(M P a)} \mathrm{mm}$

Material	Elastic Modulus (MPa)	Yield Strength (MPa)	Tensile Strength (MPa)	Stress (MPa)	δ (mm)
Copper	110,000	248	289	312	1.078
Al. alloy	70,000	255	420	312	1.693
Steel	207,000	448	551	312	0.573
Brass	101,000	345	420	312	1.174
alloy					

The problem requires the following two conditions:
a) No plastic deformation \Rightarrow Stress < Yield Strength
b) Increase in length, $\delta<0.9 \mathrm{~mm}$

The only material that satisfies both conditions is steel.
1.14. a. $\mathrm{E}=\sigma / \varepsilon=40,000 / 0.004=10 \times \mathbf{1 0}^{\mathbf{6}} \mathbf{~ p s i}$
b. Tangent modulus at a stress of $45,000 \mathrm{psi}$ is the slope of the tangent at that stress $=\mathbf{4 . 7} \mathbf{x}$ $10^{6} \mathrm{psi}$
c. Yield stress using an offset of 0.002 strain $=\mathbf{4 9 , 0 0 0} \mathbf{~ p s i}$
d. Maximum working stress $=$ Failure stress $/$ Factor of safety $=49,000 / 1.5=\mathbf{3 2 , 6 7 0} \mathbf{~ p s i}$
1.15.a. Modulus of elasticity within the linear portion $=20,000 \mathrm{ksi}$.
b. Yield stress at an offset strain of $0.002 \mathrm{in} . / \mathrm{in} . \approx 70.0 \mathrm{ksi}$
c. Yield stress at an extension strain of $0.005 \mathrm{in} / \mathrm{in} . \approx 69.5 \mathrm{ksi}$
d. Secant modulus at a stress of $62 \mathrm{ksi} . \approx 18,000 \mathrm{ksi}$
e. Tangent modulus at a stress of $65 \mathrm{ksi} \approx 6,000 \mathrm{ksi}$
1.16.a. Modulus of resilience $=$ the area under the elastic portion of the stress strain curve $=1 / 2(50 \times 0.0025) \approx 0.0625 \mathrm{ksi}$
b. Toughness $=$ the area under the stress strain curve (using the trapezoidal integration technique) $\approx 0.69 \mathrm{ksi}$
c. $\sigma=40 \mathrm{ksi}$, this stress is within the elastic range, therefore, $\mathrm{E}=\mathbf{2 0 , 0 0 0} \mathbf{~ k s i}$
$\varepsilon_{\text {axial }}=40 / 20,000=0.002 \mathrm{in} . / \mathrm{in}$.
$v=-\frac{\varepsilon_{\text {lateral }}}{\varepsilon_{\text {axial }}}=-\frac{-0.00057}{0.002}=\mathbf{0 . 2 8 5}$
d. The permanent strain at $70 \mathrm{ksi}=0.0018 \mathrm{in} . / \mathrm{in}$.
1.17.

	Material A	Material B
a. Proportional limit	$\mathbf{5 1} \mathbf{~ k s i}$	$\mathbf{4 0} \mathbf{~ k s i}$
b. Yield stress at an offset strain of 0.002 in./in.	$\mathbf{6 3} \mathbf{~ k s i}$	$\mathbf{5 2} \mathbf{~ k s i}$
c. Ultimate strength	$\mathbf{1 3 2} \mathbf{~ k s i}$	$\mathbf{7 3} \mathbf{~ k s i}$
d. Modulus of resilience	$\mathbf{0 . 0 6 5} \mathbf{~ k s i}$	$\mathbf{0 . 0 7} \mathbf{~ k s i}$
e. Toughness	$\mathbf{8 . 2} \mathbf{~ k s i}$	$\mathbf{7 . 5} \mathbf{~ k s i}$
f.	Material B is more ductile as it undergoes more deformation before failure	

1.18. Assume that the stress is within the linear elastic range.
$\sigma=\varepsilon \cdot E=\frac{\delta \cdot E}{l}=\frac{0.3 \times 16,000}{10}=480 \mathrm{ksi}$
Thus $\sigma>\sigma_{\text {yield }}$
Therefore, the applied stress is not within the linear elastic region and it is not possible to compute the magnitude of the load that is necessary to produce the change in length based on the given information.
1.19. Assume that the stress is within the linear elastic range.

$$
\sigma=\varepsilon \cdot E=\frac{\delta \cdot E}{l}=\frac{7.6 \times 105,000}{250}=3,192 \mathrm{MPa}
$$

Thus $\sigma>\sigma_{\text {yield }}$
Therefore, the applied stress is not within the linear elastic region and it is not possible to compute the magnitude of the load that is necessary to produce the change in length based on the given information.
1.20. At $\sigma=60,000 \mathrm{psi}, \varepsilon=\sigma / \mathrm{E}=60,000 /\left(30 \times 10^{6}\right)=0.002 \mathrm{in} . / \mathrm{in}$. a. For a strain of 0.001 in ./in.:
$\sigma=\varepsilon \mathrm{E}=0.001 \times 30 \times 10^{6}=\mathbf{3 0 , 0 0 0} \mathbf{~ p s i}$ (for both i and ii)
b. For a strain of $0.004 \mathrm{in} . / \mathrm{in}$.:

$$
\begin{aligned}
-\sigma & =\mathbf{6 0 , 0 0 0} \mathbf{~ p s i}(\text { for i) } \\
\sigma & =60,000+2 \times 10^{6}(0.004-0.002)=\mathbf{6 4 , 0 0 0} \mathbf{~ p s i} \text { (for ii) }
\end{aligned}
$$

1.21. . Slope of the elastic portion $=600 / 0.003=2 \times 10^{5} \mathrm{MPa}$

Slope of the plastic portion $=(800-600) /(0.07-0.003)=2,985 \mathrm{MPa}$
Strain at $650 \mathrm{MPa}=0.003+(650-600) / 2,985=0.0198 \mathrm{~m} / \mathrm{m}$
Permanent strain at $650 \mathrm{MPa}=0.0198-650 /\left(2 \times 10^{5}\right)=\mathbf{0 . 0 1 6 5} \mathbf{~ m} / \mathbf{m}$
b. Percent increase in yield strength $==100(650-600) / 600=\mathbf{8 . 3 \%}$
c. The strain at $625 \mathrm{MPa}=625 /\left(2 \times 10^{5}\right)=\mathbf{0 . 0 0 3 1 2 5} \mathbf{~ m} / \mathbf{m}$

This strain is elastic.
1.22. See Sections 1.2.3, 1.2.4 and 1.2.5.

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.
1.23. The stresses and strains can be calculated as follows:
$\sigma=\mathrm{P} / \mathrm{A}_{0}=150 /\left(\pi \times 2^{2}\right)=11.94 \mathrm{psi}$
$\varepsilon=\left(\mathrm{H}_{0}-\mathrm{H}\right) / \mathrm{H}_{\mathrm{o}}=(6-\mathrm{H}) / 6$
The stresses and strains are shown in the following table:

Time (min.)	H (in.)	Strain (in./in.)	Stress (psi)
0	6	0.00000	11.9366
0.01	5.9916	0.00140	11.9366
2	5.987	0.00217	11.9366
5	5.9833	0.00278	11.9366
10	5.9796	0.00340	11.9366
20	5.9753	0.00412	11.9366
30	5.9725	0.00458	11.9366
40	5.9708	0.00487	11.9366
50	5.9696	0.00507	11.9366
60	5.9688	0.00520	11.9366
60.01	5.9772	0.00380	0.0000
62	5.9807	0.00322	0.0000
65	5.9841	0.00265	0.0000
70	5.9879	0.00202	0.0000
80	5.9926	0.00123	0.0000
90	5.9942	0.00097	0.0000
100	5.9954	0.00077	0.0000
110	5.9959	0.00068	0.0000
120	5.9964	0.00060	0.0000

a. Stress versus time plot for the asphalt concrete sample

Strain versus time plot for the asphalt concrete sample

b. Elastic strain $=\mathbf{0 . 0 0 1 4} \mathbf{i n} . / \mathrm{in}$.
c. The permanent strain at the end of the experiment $=\mathbf{0 . 0 0 0 6} \mathbf{~ i n} . / \mathbf{i n}$.
d. The phenomenon of the change of specimen height during static loading is called creep while the phenomenon of the change of specimen height during unloading called is called recovery.
1.24. See Figure 1.12(a).
1.25 See Section 1.2.7.
1.27. a. For $\mathrm{P}=5 \mathrm{kN}$

Stress $=P / A=5000 /\left(\pi \times 5^{2}\right)=63.7 \mathrm{~N} / \mathrm{mm}^{2}=63.7 \mathrm{MPa}$
Stress / Strength $=63.7 / 290=0.22$
From Figure 1.16, an unlimited number of repetitions can be applied without fatigue failure.
b. For $\mathrm{P}=11 \mathrm{kN}$

Stress $=P / A=11000 /\left(\pi \times 5^{2}\right)=140.1 \mathrm{~N} / \mathrm{mm}^{2}=140.1 \mathrm{MPa}$
Stress $/$ Strength $=140.1 / 290=0.48$
From Figure 1.16, N ≈ 700
1.28 See Section 1.2.8.
1.29.

Material	Specific Gravity
Steel	7.9
Aluminum	2.7
Aggregates	$2.6-2.7$
Concrete	2.4
Asphalt cement	$1-1.1$

1.30 See Section 1.3.2.

1.31. $\delta L=\alpha_{L} x \delta T x L=12.5 \mathrm{E}-06 \times(115-15) \times 200 / 1000=0.00025 \mathrm{~m}=250$ microns

Rod length $=\mathrm{L}+\delta L=200,000+250=\mathbf{2 0 0}, \mathbf{2 5 0}$ microns

Compute change in diameter linear method

$$
\delta d=\alpha_{d} x \delta T x d=12.5 \mathrm{E}-06 \times(115-15) \times 20=0.025 \mathrm{~mm}
$$

Final d=20.025 mm

Compute change in diameter volume method

$\delta V=\alpha_{V} \times \delta T \times V=(3 \times 12.5 \mathrm{E}-06) \times(115-15) x \pi(10 / 1000)^{2} \times 200 / 1000=2.3562 \times 10^{11}$ m^{3}
Rod final volume $=V+\delta V=\pi r^{2} L+\delta V=6.28319 \times 10^{13}+2.3562 \times 10^{11}=6.31 \times 10^{13} \mathrm{~m}^{3}$
Final d=20.025 mm

There is no stress acting on the rod because the rod is free to move.
1.32. Since the rod is snugly fitted against two immovable nonconducting walls, the length of the rod will not change, $\mathbf{L}=\mathbf{2 0 0} \mathbf{~ m m}$
From problem 1.25, $\delta L=0.00025 \mathrm{~m}$
$\varepsilon=\delta L / \mathrm{L}=0.00025 / 0.2=0.00125 \mathrm{~m} / \mathrm{m}$
$\sigma=\varepsilon \mathrm{E}=0.00125 \times 207,000=\mathbf{2 5 8 . 7 5} \mathbf{~ M P a}$
The stress induced in the bar will be compression.
1.33. a. The change in length can be calculated using Equation 1.9 as follows:

$$
\delta L=\alpha_{L} \times \delta T \times L=1.1 \mathrm{E}-5 \times(5-40) \times 4=\mathbf{- 0 . 0 0 1 5 4} \mathbf{m}
$$

b. The tension load needed to return the length to the original value of 4 meters can be calculated as follows:
$\varepsilon=\delta L / L=-0.00154 / 4=-0.000358 \mathrm{~m} / \mathrm{m}$
$\sigma=\varepsilon \mathrm{E}=-0.000358 \times 200,000=-77 \mathrm{MPa}$
$\mathrm{P}=\sigma \times \mathrm{A}=-77 \times(100 \times 50)=-385,000 \mathrm{~N}=\mathbf{- 3 8 5} \mathbf{k N}$ (tension)
c. Longitudinal strain under this load $=\mathbf{0 . 0 0 0 3 5 8} \mathbf{~ m} / \mathbf{m}$
1.34. If the bar was fixed at one end and free at the other end, the bar would have contracted and no stresses would have developed. In that case, the change in length can be calculated using Equation 1.9 as follows.
$\delta L=\alpha_{L} \times \delta T \times L=0.000005 \times(0-100) \times 50=-0.025 \mathrm{in}$.
$\varepsilon=\delta L / \mathrm{L}=0.025 / 50=0.0005 \mathrm{in} . / \mathrm{in}$.

Since the bar is fixed at both ends, the length of the bar will not change. Therefore, a tensile stress will develop in the bar as follows.
$\sigma=\varepsilon \mathrm{E}=-0.0005 \times 5,000,000=-2,500 \mathrm{psi}$
Thus, the tensile strength should be larger than $\mathbf{2 , 5 0 0} \mathbf{~ p s i}$ in order to prevent cracking.
1.36 See Section 1.7.

1.37 See Section 1.7.1

1.38. $\mathrm{H}_{0}: \mu \geq 32.4 \mathrm{MPa}$
$\mathrm{H}_{1}: \mu<32.4 \mathrm{MPa}$
$\alpha=0.05$
$\mathrm{T}_{\mathrm{o}}=\frac{\bar{x}-\mu}{(\sigma / \sqrt{n})}=-3$
Degree of freedom $=v=\mathrm{n}-1=15$
From the statistical t-distribution table, $\mathrm{T}_{\alpha, v}=\mathrm{T}_{0.05,15}=-1.753$
$\mathrm{T}_{\mathrm{o}}<\mathrm{T}_{\alpha, \mathrm{v}}$
Therefore, reject the hypothesis. The contractor's claim is not valid.
1.39. $\mathrm{H}_{0}: \mu \geq 5,000 \mathrm{psi}$
$\mathrm{H}_{1}: \mu<5,000 \mathrm{psi}$
$\alpha=0.05$
$\mathrm{T}_{\mathrm{o}}=\frac{\bar{x}-\mu}{(\sigma / \sqrt{n})}=-2.236$
Degree of freedom $=v=\mathrm{n}-1=19$
From the statistical t-distribution table, $\mathrm{T}_{\alpha, v}=\mathrm{T}_{0.05,19}=-1.729$
$\mathrm{T}_{\mathrm{o}}<\mathrm{T}_{\alpha, \mathrm{v}}$
Therefore, reject the hypothesis. The contractor's claim is not valid.
1.40. $\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{\sum_{i=1}^{20} x_{i}}{20}=\frac{113,965}{20}=5,698.25 \mathrm{psi}$

$$
s=\left(\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}\right)^{1 / 2}=\left(\frac{\sum_{i=1}^{20}\left(x_{i}-5698.25\right)^{2}}{20-1}\right)^{1 / 2}=571.35 \mathrm{psi}
$$

Coefficient of Variation $=100\left(\frac{s}{\bar{x}}\right)=100\left(\frac{571.35}{5698.25}\right)=10.03 \%$
b. The control chart is shown below.

The target value is any value above the specification limit of 5,000 psi. The plant production is meeting the specification requirement.
1.41. a. $\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{\sum_{i=1}^{20} x_{i}}{20}=\frac{110.7}{20}=\mathbf{5 . 5} \%$

$$
\begin{aligned}
& s=\left(\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}\right)^{1 / 2}=\left(\frac{\sum_{i=1}^{20}\left(x_{i}-5.5\right)^{2}}{20-1}\right)^{1 / 2}=\mathbf{0 . 3 3 \%} \\
& C=100\left(\frac{s}{\bar{x}}\right)=100\left(\frac{0.33}{5.5}\right)=\mathbf{6} \%
\end{aligned}
$$

b. The control chart is shown below.

The control chart shows that most of the samples have asphalt content within the specification limits. Only few samples are outside the limits. The plot shows no specific trend, but large variability especially in the last several samples.

1.42 See Section 1.8.2.

1.43 See Section 1.8.

1.44. a. No information is given about accuracy.
b. Sensitivity $==\mathbf{0 . 0 0 1} \mathrm{in}$.
c. Range $=0-1$ inch
d. Accuracy can be improved by calibration.
1.45. a. 0.001 in.
b. 100 psi
c. 100 MPa
d. 0.1 ge .10 psi
f. 0.1%
g. 0.1%
h. 0.001
i. 100 miles
j. $10^{-6} \mathrm{~mm}$
1.46 The voltage is plotted versus displacement is shown below.

From the figure:
Linear range $= \pm 0.1 \mathrm{in}$.
Calibration factor $=101.2$ Volts/in.
1.47 The voltage is plotted versus displacement is shown below.

From the figure:
Linear range $= \pm 0.3 \mathrm{in}$.
Calibration factor $=1.47$ Volts/in.

CHAPTER 2. NATURE OF MATERIALS

2.1. See Section 2.2.1.

2.2. See Section 2.1.

2.3. See Section 2.1.1.
2.4. See Section 2.1.1.
2.5. See Section 2.1.2.
2.6. See Section 2.2.1.
2.7. See Section 2.1.2.
2.8. See Section 2.2.1.
2.9. See Section 2.2.1.
2.10. For the face-center cubic crystal structure, number of equivalent whole atoms in each unit cell $=4$
By inspection the diagonal of the face of a FCC unit cell $=4 \mathrm{r}$
Using Pythagorean theory:

$$
\begin{aligned}
& (4 \mathrm{r})^{2}=\mathrm{a}^{2}+\mathrm{a}^{2} \\
& 16 \mathrm{r}^{2}=2 \mathrm{a}^{2} \\
& 8 \mathrm{r}^{2}=\mathrm{a}^{2} \\
& a=2 \sqrt{2} r
\end{aligned}
$$

2.11. a. Number of equivalent whole atoms in each unit cell in the BCC lattice structure $=\mathbf{2}$
b. Volume of the sphere $=(4 / 3) \pi r^{3}$

Volume of atoms in the unit cell $=2 \times(4 / 3) \pi r^{3}=(8 / 3) \pi r^{3}$
By inspection, the diagonal of the cube of a BCC unit cell

$$
=4 \mathrm{r}=\sqrt{a^{2}+a^{2}+a^{2}}=a \sqrt{3}
$$

$\mathrm{a}=$ Length of each side of the unit cell $=\frac{4 r}{\sqrt{3}}$
c. Volume of the unit cell $=\left[\frac{4 r}{\sqrt{3}}\right]^{3}$

$$
A P F=\frac{\text { volume of atoms in the unit cell }}{\text { total unit volume of the cell }}=\frac{(8 / 3) \pi \cdot r^{3}}{(4 r / \sqrt{3})^{3}}=\mathbf{0 . 6 8}
$$

2.12. For the BCC lattice structure: $a=\frac{4 r}{\sqrt{3}}$

Volume of the unit cell of iron $=\left[\frac{4 r}{\sqrt{3}}\right]^{3}=\left[\frac{4 x 0.124 \times 10^{-9}}{\sqrt{3}}\right]^{3}=\mathbf{2 . 3 4 9} \times 1 \mathbf{1 0}^{-\mathbf{2 9}} \mathbf{m}^{\mathbf{3}}$
2.13. For the FCC lattice structure: $a=2 \sqrt{2} r$

Volume of unit cell of aluminum $=(2 \sqrt{2} r)^{3}=(2 \sqrt{2} x 0.143)^{3}=0.06616725 \mathrm{~nm}^{3}=\mathbf{6 . 6 1 6 7} \times 10^{-29} \mathbf{m}^{3}$
2.14. From Table 2.3, copper has an FCC lattice structure and r of 0.1278 nm

Volume of the unit cell of copper $=(2 \sqrt{2} r)^{3}=(2 \sqrt{2} x 0.1278)^{3}=\mathbf{0 . 0 4 7 2 3} \mathbf{n m}^{3}=\mathbf{4 . 7 2 3} \mathbf{x 1 0} \mathbf{1 0}^{-29} \mathbf{m}^{\mathbf{3}}$
2.15. For the BCC lattice structure: $a=\frac{4 r}{\sqrt{3}}$

Volume of the unit cell of iron $=\left[\frac{4 r}{\sqrt{3}}\right]^{3}=\left[\frac{4 x 0.124 \times 10^{-9}}{\sqrt{3}}\right]^{3}=2.349 \times 10^{-29} \mathrm{~m}^{3}$
Density $=\rho=\frac{n A}{V_{C} N_{A}}$
$\mathrm{n}=$ Number of equivalent atoms in the unit cell $=2$
$\mathrm{A}=$ Atomic mass of the element $=55.9 \mathrm{~g} / \mathrm{mole}$
$\mathrm{N}_{\mathrm{A}}=$ Avogadro's number $=6.023 \times 10^{23}$
$\rho=\frac{2 \times 55.9}{2.349 \times 10^{-29} \times 6.023 \times 10^{23}}=7.9 \times 10^{6} \mathrm{~g} / \mathrm{m}^{3}=7.9 \mathbf{~ M g} / \mathrm{m}^{3}$
2.16. For the FCC lattice structure: $a=2 \sqrt{2} r$

Volume of unit cell of aluminum $=(2 \sqrt{2} r)^{3}=(2 \sqrt{2} x 0.143)^{3}=0.06616725 \mathrm{~nm}^{3}=6.6167 \times 10^{-29} \mathrm{~m}^{3}$
Density $=\rho=\frac{n A}{V_{C} N_{A}}$
For FCC lattice structure, $n=4$
$\mathrm{A}=$ Atomic mass of the element $=26.98 \mathrm{~g} / \mathrm{mole}$
$\mathrm{N}_{\mathrm{A}}=$ Avogadro's number $=6.023 \times 10^{23}$

$$
\rho=\frac{4 \times 26.98}{6.6167 \times 10^{-29} \times 6.023 \times 10^{23}}=2.708 \times 10^{6} \mathrm{~g} / \mathrm{m}^{3}=\mathbf{2 . 7 0 8} \mathbf{~ M g} / \mathbf{m}^{\mathbf{3}}
$$

2.17. $\rho=\frac{n A}{V_{C} N_{A}}$

For FCC lattice structure, $\mathrm{n}=4$
$\mathrm{V}_{\mathrm{c}}=\frac{4 \times 63.55}{8.89 \times 10^{6} \times 6.023 \times 10^{23}}=4.747 \times 10^{-29} \mathrm{~m}^{3}$
$\mathrm{APF}=0.74=\frac{4 x(4 / 3) \pi \cdot r^{3}}{4.747 \times 10^{-29}}$
$\mathrm{r}^{3}=0.2097 \times 10^{-29} \mathrm{~m}^{3} \quad \mathrm{r}=0.128 \times 10^{-9} \mathrm{~m}=\mathbf{0 . 1 2 8} \mathbf{n m}$
2.18. a. $\rho=\frac{n A}{V_{C} N_{A}}$

For FCC lattice structure, $\mathrm{n}=4$

$$
\begin{aligned}
& \quad \mathrm{V}_{\mathrm{c}}=\frac{4 \times 40.08}{1.55 \times 10^{6} \times 6.023 \times 10^{23}}=1.717 \times 10^{-28} \mathrm{~m}^{3} \\
& \text { b. } \mathrm{APF}=0.74=\frac{4 \times(4 / 3) \pi \cdot r^{3}}{1.717 \times 10^{-28}} \\
& \mathrm{r}^{3}=0.7587 \times 10^{-29} \mathrm{~m}^{3} \\
& \mathrm{r}=0.196 \times 10^{-9} \mathrm{~m}=\mathbf{0 . 1 9 6} \mathbf{~ n m}
\end{aligned}
$$

2.19. See Section 2.2.2.
2.20. See Section 2.2.2.

2.21. See Section 2.2.2.

2.22. See Figure 2.14.

2.23. See Section 2.2.5.
2.24. $m_{t}=100 \mathrm{~g}$
$P_{B}=65 \%$
$P_{l B}=30 \%$
$P_{s B}=80 \%$
From Equations 2.4 and 2.5,
$m_{l}+m_{s}=100$
$30 m_{l}+80 m_{s}=65 \times 100$
Solving the two equations simultaneously, we get:
$m_{l}=$ mass of the alloy which is in the liquid phase $=\mathbf{3 0} \mathbf{g}$
$m_{s}=$ mass of the alloy which is in the solid phase $=70 \mathbf{g}$
2.25. $m_{t}=100 \mathrm{~g}$
$P_{B}=45 \%$
$P_{I B}=17 \%$
$P_{s B}=65 \%$
From Equations 2.4 and 2.5,
$m_{l}+m_{s}=100$
$17 m_{l}+65 m_{s}=45 \times 100$
Solving the two equations simultaneously, we get:
$m_{l}=$ mass of the alloy which is in the liquid phase $=\mathbf{4 1 . 6 7} \mathrm{g}$
$m_{s}=$ mass of the alloy which is in the solid phase $=\mathbf{5 8 . 3 9} \mathbf{g}$
2.26. $m_{t}=100 \mathrm{~g}$
$P_{B}=60 \%$
$P_{l B}=25 \%$
$P_{s B}=70 \%$
From Equations 2.4 and 2.5,
$m_{l}+m_{s}=100$
$25 m_{l}+70 m_{s}=60 \times 100$
Solving the two equations simultaneously, we get:
$m_{l}=$ mass of the alloy which is in the liquid phase $=\mathbf{2 2 . 2 2} \mathbf{g}$
$m_{s}=$ mass of the alloy which is in the solid phase $=\mathbf{7 7 . 7 8} \mathbf{~ g}$
2.27. $m_{t}=100 \mathrm{~g}$
$P_{B}=40 \%$
$P_{l B}=20 \%$
$P_{s B}=50 \%$
From Equations 2.4 and 2.5,
$m_{l}+m_{s}=100$
$40 m_{l}+50 m_{s}=40 \times 100$
Solving the two equations simultaneously, we get:
$m_{l}=$ mass of the alloy which is in the liquid phase $=\mathbf{3 3 . 3 3} \mathbf{~ g}$
$m_{s}=$ mass of the alloy which is in the solid phase $=\mathbf{6 6 . 6 7} \mathbf{g}$
2.28.a. Spreading salt reduces the melting temperature of ice. For example, at a salt composition of 5%, ice starts to melt at $-21^{\circ} \mathrm{C}$. When temperature increases more ice will melt. At a temperature of $-5^{\circ} \mathrm{C}$, all ice will melt.
b. $-21^{\circ} \mathrm{C}$
c. $\mathbf{- 2 1}^{\mathbf{0}} \mathrm{C}$
2.29. See Section 2.3.
2.30. See Section 2.3.
2.31. See Section 2.4.

CHAPTER 3. STEEL

3.1 See Section 3.1.

3.2 See Section 3.2.

3.3 See Section 3.2.

3.4 See Section 3.2.

3.5. At a temperature just higher than $727^{\circ} \mathrm{C}$ all the austenite will have a carbon content of 0.77% and will transform to pearlite. The ferrite will remain as primary ferrite. The proportions can be determined from using the lever rule.
Primary α : 0.022% C, Percent primary $\alpha=\left[\frac{0.77-0.10}{0.77-0.022}\right] \times 100=89.6 \%$
Percent pearlite $=\left[\frac{0.25-0.022}{0.77-0.022}\right]=10.4 \%$
At a temperature just below $727^{\circ} \mathrm{C}$ the phases are ferrite and iron carbide. The ferrite will have 0.022% carbon.
Percentferrite, $\alpha:(0.022 \% C)=\left[\frac{6.67-0.25}{6.67-0.022}\right] \times 100=98.8 \%$
Percent pearlite $=\left[\frac{0.25-0.022}{6.67-0.022}\right]=1.2 \%$
3.6. See Section 3.3.
3.7. See Section 3.4.
3.8. See Section 3.4.
3.9. A wide-flange shape that is nominally 36 in . deep and weighs $182 \mathrm{lb} / \mathrm{ft}$
3.10. See Section 3.5.3.
3.11. See Section 3.6.
3.12. See Section 3.6.
3.13. Cold forming will almost double the yield strength to 66 ksi .
3.14. See Section 3.7.

3.15. See Section 3.5.3.

3.16. See Section 3.9.
3.17. See Section 3.9.
3.18. See Figures 3.17 and 3.18 .
3.19. See Figure 3.17.
3.20. a. $\mathrm{A}=1.0 \times 0.25=0.25$ in. 2
$\mathrm{P}_{\mathrm{y}}=12,500 \mathrm{lb}$
$\mathrm{P}_{\mathrm{f}}=17,500 \mathrm{lb}$
$\sigma_{\mathrm{y}}=12,500 / 0.25=\mathbf{5 0 , 0 0 0} \mathbf{~ p s i}$
$\sigma_{f}=17,500 / 0.25=\mathbf{7 0 , 0 0 0} \mathbf{~ p s i}$
b. Assume $\mathrm{E}=30 \times 10^{6} \mathrm{psi}$
$\varepsilon=0.6 \sigma_{\mathrm{y}} / \mathrm{E}=0.6 \times 50 \times 10^{3} /\left(30 \times 10^{6}\right)=0.001 \mathrm{in}$./in.
$\Delta \mathrm{L}=2 \times 0.001=\mathbf{0 . 0 0 2} \mathbf{i n}$.
3.21. $\mathrm{a} . \mathrm{A}=\pi(10 / 8 / 2)^{2}=1.227 \mathrm{in}^{2}{ }^{2}$
$\mathrm{P}_{\mathrm{y}}=41,600 \mathrm{lb}$
$\mathrm{P}_{\mathrm{f}}=48,300 \mathrm{lb}$
$\sigma_{y}=41,600 / 1.227=\mathbf{3 3 , 9 0 4} \mathbf{p s i}$
$\sigma_{f}=48,300 / 1.227=\mathbf{3 9 , 3 6 4} \mathbf{~ p s i}$
b. Assume $\mathrm{E}=29 \times 10^{6} \mathrm{psi}$
$\varepsilon=0.7 \sigma_{\mathrm{y}} / \mathrm{E}=0.7 \times 33,904 /\left(29 \times 10^{6}\right)=0.0008 \mathrm{in} . / \mathrm{in}$.
$\Delta \mathrm{L}=2 \times 0.0008=\mathbf{0 . 0 0 1 6} \mathbf{i n}$.
3.22. $\sigma=\mathrm{P} /\left[\pi(0.375)^{2}\right]$
$\varepsilon=\Delta L / 3$

From the graph, $\mathrm{E}=$ slope $=1.204 \times 10^{8} \mathrm{psi}$
$\mathrm{P}=8,225 \mathrm{lb}$
$\sigma=8,225 /\left[\pi(0.375)^{2}\right]=1.861 \times 10^{4} \mathrm{psi}$
$\Delta \mathrm{L}=(\sigma . \mathrm{L}) / \mathrm{E}=4.64 \times 10^{-4} \mathrm{in}$.
3.23. $\sigma=\mathrm{P} /\left[\pi(9.5)^{2}\right]$
$\varepsilon=\Delta \mathrm{L} / 75$

From the graph, E $=$ slope $=230 \mathrm{GPa}$
$\mathrm{P}=600 \mathrm{KN}$
$\sigma=600 /\left[\pi(9.5)^{2}\right]=528.8 \mathrm{MPa}$
$\Delta \mathrm{L}=(\sigma . \mathrm{L}) / \mathrm{E}=\mathbf{0 . 1 7 2} \mathbf{~ m m}$.
3.24. $\mathrm{a} . \mathrm{E}=\sigma / \varepsilon=500 \mathrm{MPa} / 0.002=250,000 \mathrm{MPa}=\mathbf{2 5 0} \mathbf{~ G P a}$
b. The proportional limit is at a stress of $\mathbf{6 0 0} \mathbf{~ M P a}$ and a strain of $\mathbf{0 . 0 0 2 5} \mathbf{~ m} / \mathrm{m}$
c. Yield strength at 0.002 strain offset $=\mathbf{6 5 0} \mathbf{~ M P a}$
d. Tensile strength $=\mathbf{6 8 0} \mathbf{~ M P a}$
e. $\Delta \mathrm{L}=0.38 \mathrm{~mm}$

$$
\begin{aligned}
& \varepsilon=\Delta \mathrm{L} / \mathrm{L}=0.38 / 250=0.00152 \mathrm{~m} / \mathrm{m} \\
& \sigma=\mathrm{E} \varepsilon=\left(250 \times 10^{9}\right) \times(0.00152)=380 \mathrm{MPa}
\end{aligned}
$$

From the graph, the applied stress is below the proportional limit.

$$
\begin{aligned}
& \mathrm{A}=\pi(15)^{2} / 4=176.7 \mathrm{~mm}^{2}=176.7 \times 10^{-6} \mathrm{~m}^{2} \\
& \sigma=\mathrm{P} / \mathrm{A} \\
& 380,000,000=\mathrm{P} /\left(176.7 \times 10^{-6}\right) \\
& \mathrm{P}=6.715 \times 10^{4} \mathrm{~N}=\mathbf{6 7 . 1 5} \mathbf{k N}
\end{aligned}
$$

f. No deformation because the applied stress is below the proportional limit (and therefore below the elastic limit).
g. Yes, because the applied stress is much below the yield strength.
3.25. $\sigma=\frac{102000}{\pi(0.025)^{2} / 4}=2.0779 \times 10^{8} \mathrm{~Pa}$
$=\frac{-}{L}=\frac{0.1}{100}=0.001$
$E=-=\frac{2.0779 \times 10^{8}}{0.001}=2.0779 \times 10^{11} \mathrm{~Pa}=207.79 \mathrm{GPa}$
$\varepsilon_{\text {laleral }}=\left(\mathrm{d}_{\text {final }}-\mathrm{d}_{\text {original }}\right) / \mathrm{d}_{\text {original }}=(24.99325-25) / 25=-2.7 \times 10^{-4} \mathrm{in} . / \mathrm{in}$.
$v=-\varepsilon_{\text {lateral }} / \varepsilon_{\text {axial }}=2.7 \times 10^{-4} / 0.001=\mathbf{0 . 2 7}$

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

3.26. a. Stress $=$ Load $/$ Area

Strain $=$ Displacement $/$ Gage Length

Stress (ksi)	Strain (in/in)	Stress (ksi)	Strain (in/in)
0	0	43.617	0.04150
14.000	0.00048	44.766	0.04778
20.729	0.00070	45.756	0.05439
36.271	0.00121	46.617	0.06103
36.361	0.00846	47.113	0.06686
37.378	0.02098	47.607	0.07370
38.349	0.02299	48.057	0.09099
40.283	0.02923	40.078	0.14907
42.177	0.03558		

Stress-Strain Relation
b.

Stress-Strain Relation of the Linear Range
Modulus of elasticity $=\mathbf{2 9 , 9 8 5} \mathbf{k s i}$
c. The proportional limit is at a stress of $\mathbf{3 6 . 2 7}$ ksi and a strain of $\mathbf{0 . 0 0 1 2} \mathrm{in} . / \mathrm{in}$.
d. Yield stress $=\mathbf{3 6 . 5 0} \mathbf{k s i}$
e. Ultimate strength $=\mathbf{4 8 . 2 0} \mathbf{k s i}$
f. $\varepsilon_{1}=$ change in diameter $/$ diameter $=(0.5-0.499905) / 0.5=0.00019 \mathrm{in} . / \mathrm{in}$.
at $\mathrm{P}=4.07$ kips, the displacement $=0.00141$ in
$\varepsilon_{a}=$ change in length $/$ length $=0.00141 / 2=0.000705 \mathrm{in} . / \mathrm{in}$.
$\nu=-\varepsilon_{1} / \varepsilon_{a}=0.00019 / 0.000705=\mathbf{0 . 2 7}$
g. Cross sectional are at failure $=\pi(0.416012)^{2} / 4=0.136$ in 2

True stress $=7.87 / 0.136=\mathbf{5 7 . 8 6 8} \mathbf{k s i}$
The true stress at failure (57.868 ksi) is larger than the engineering stress (40.078 ksi) since the cross sectional area at the neck is smaller than the original cross section.
h. The true strain at failure is larger than the engineering strain at failure since the increase in length at the vicinity of the neck is much larger than the increase in length outside of the neck. The specimen experiences the largest deformation (contraction of the cross-sectional area and increase in length) at the regions closest to the neck due to the nonuniform distribution of the deformation. The large increase in length at the neck increases the true strain to a large extent for the following reason. The definition of true strain utilizes a ratio of the change in length in an infinitesimal gauge length. By decreasing the gauge length toward an infinitesimal size and increasing the length due to localization in the neck, the numerator of an expression is increased while the denominator stays small resulting in a significant increase in the ratio of the two numbers. Note that when calculating the true strain, a small gauge length should be used at the neck since the properties of the material (such as the cross section) at the neck represent the true material properties.

3.27. a. Stress $=$ Load $/$ Area

Strain $=$ Displacement $/$ Gage Length

Stress (MPa)	Strain $(\mathrm{m} / \mathrm{m})$	Stress (MPa)	Strain $(\mathrm{m} / \mathrm{m})$
0	0	679.91	0.0422
78.97	0.0005	687.88	0.0485
359.78	0.0019	694.75	0.0553
629.11	0.0031	700.72	0.0620
629.58	0.0086	704.16	0.0679
636.63	0.0213	707.59	0.0749
643.37	0.0234	710.71	0.0924
656.78	0.0297	655.36	0.1515
669.92	0.0362		

The stress-strain relationship is shown below.

Stress-strain relation
b. The linear portion of the stress-strain relationship is shown below.

Stress-strain relation of the linear range

Modulus of elasticity $=\mathbf{2 0 6}, \mathbf{6 0 1} \mathbf{~ M P a}$

c. The proportional limit is at a stress of $\mathbf{6 2 9} \mathrm{MPa}$ and a strain of $\mathbf{0 . 0 0 3} \mathrm{m} / \mathrm{m}$
d. Yield stress $=\mathbf{6 3 4} \mathbf{~ M P a}$
e. Ultimate strength $=\mathbf{7 1 2} \mathbf{~ M P a}$
f. Stress $=$ Load $/$ Area $=1000 \times 155 /(37.5 \times 6.25)=661.33 \mathrm{MPa}$

By drawing a line parallel to the linear portion on the stress-strain diagram at a stress of 661.33 MPa , the permanent strain $=0.026 \mathrm{~m} / \mathrm{m}$.

The permanent deformation $=\varepsilon \times \mathrm{L}=0.026 \times 203=\mathbf{5 . 2 7 8} \mathbf{~ m m}$
g. No, because the applied stress would result in permanent deformation in the structure.
3.28. Easiest solution is to "google" the shape $350 \mathrm{~S} 125-27$. The area is $0.173 \mathrm{in}^{2}$
a. Max. force $=0.173 \times 33000=5710 \mathrm{lb}$. This is conservative since yield strength will increase by strain hardening.
b. No, in compression buckling would control for a thin member.

3.29. a. Stress $=$ Load $/$ Area

Strain $=$ Displacement $/$ Gage Length

Stress (ksi)	Strain (in/in)	Stress (ksi)	Strain (in/in)
0	0	86.600	0.04150
11.385	0.00045	89.200	0.04778
34.600	0.00117	90.900	0.05439
60.392	0.00203	92.600	0.06103
70.200	0.00846	93.900	0.06740
78.000	0.01990	95.700	0.07540
81.900	0.02923	97.500	0.09099
84.700	0.03558	96.300	0.11040

The stress-strain relationship is shown below.

b. The linear portion of the stress-strain relationship is shown below.

Stress-strain relation of the linear range
Modulus of elasticity $=\mathbf{3 0 , 0 3 7} \mathbf{k s i}$
c. The proportional limit is at a stress of $\mathbf{6 0 . 4}$ ksi and a strain of $\mathbf{0 . 0 0 2 1} \mathrm{in} . / \mathrm{in}$.
d. Yield stress $=\mathbf{6 6 . 5} \mathbf{k s i}$ (using the offset method)
e. Ultimate strength $=\mathbf{9 7 . 5} \mathbf{~ k s i}$
f. Stress $=$ Load $/$ Area $=88,000 /(1.22718 \times 1000)=71.71 \mathrm{ksi}$

By drawing a line parallel to the linear portion on the stress-strain diagram at a stress of 71.71 ksi , the permanent strain $=0.008 \mathrm{in} . / \mathrm{in}$.

The permanent change in length $=\varepsilon \times \mathrm{L}=0.008 \times 8=\mathbf{0 . 0 6 4} \mathbf{i n}$.

3.30. a. Stress $=$ Load $/$ Area

Strain = Displacement / Gage Length

Stress (MPa)	Strain $(\mathrm{m} / \mathrm{m})$	Stress (MPa)	Strain $(\mathrm{m} / \mathrm{m})$
0.00	0.000	587.77	0.042
77.31	0.001	605.42	0.049
234.78	0.001	616.97	0.056
409.91	0.002	628.53	0.062
476.53	0.009	637.36	0.069
529.47	0.020	649.54	0.077
555.95	0.030	661.72	0.093
574.84	0.036	653.64	0.112

The stress-strain relationship is shown below.

b. The linear portion of the stress-strain relationship is shown below.

Stress-strain relation of the linear range
c. The proportional limit is at a stress of $\mathbf{4 0 9} \mathrm{Mpa}$ and a strain of $\mathbf{0 . 0 0 2} \mathrm{m} / \mathrm{m}$
d. Yield stress $=480 \mathrm{MPa}$ (using the offset method)
e. Ultimate strength $=\mathbf{6 6 0} \mathbf{~ M P a}$
f. Stress $=$ Load $/$ Area $=390 /\left(\pi^{*} 16^{\wedge} 2\right)=485 \mathrm{MPa}$

By drawing a line parallel to the linear portion on the stress-strain diagram at a stress of 485 MPa , the permanent strain $=0.009 \mathrm{~m} / \mathrm{m}$

The permanent change in length $=\varepsilon \times \mathrm{L}=0.009 \times 200=\mathbf{1 . 8} \mathbf{~ m m}$.
3.31. a. $\mathrm{A}=\pi\left(6^{2}-5^{2}\right) / 4=8.6429 \mathrm{in}^{2}$
$\sigma=\mathrm{P} / \mathrm{A}=50,000 / 8.6429=5.785 \mathrm{ksi}$
$\varepsilon=\sigma / \mathrm{E}=5.785 / 30000=0.000193 \mathrm{in} . / \mathrm{in}$.
$\delta=\varepsilon \mathrm{L}=0.000193 \times 4 \times 12=\mathbf{0 . 0 0 9 2 6} \mathbf{i n}$.
b. $\varepsilon_{\text {lateral }}=-v . \varepsilon_{\text {axial }}=0.27 \times 0.000193=0.00005211 \mathrm{in} . / \mathrm{in}$.
$\varepsilon_{\text {lateral }}=\left(\mathrm{d}_{\text {outer, final }}-\mathrm{d}_{\text {outer, inital }}\right) / \mathrm{d}_{\text {outer, inital }}$
$0.00005211=\left(\mathrm{d}_{\text {outer, final }}-6\right) / 6$
$\mathrm{d}_{\text {outer, final }}=6.0031266$ in
$\Delta \mathrm{d}_{\text {outer }}=6.0031266-6=\mathbf{0 . 0 0 3 1 2 6 6} \mathbf{i n}$.
c. $\varepsilon_{\text {lateral }}=\left(\mathrm{d}_{\text {inner, final }}-\mathrm{d}_{\text {inner, inital }}\right) / \mathrm{d}_{\text {inner, inital }}$
$0.0000503=\left(\mathrm{d}_{\text {inner, final }}-0.18\right) / 0.18$
$\mathrm{d}_{\text {inner, final }}=0.18000905 \mathrm{~m}=180.00905 \mathrm{~mm}$
Final wall thickness $=\left(\mathrm{d}_{\text {outer, final }}-\mathrm{d}_{\text {inner, final }}\right) / 2=(200.01005-180.00905) / 2=10.0005$
mm
Increase in wall thickness $\boldsymbol{= 0 . 0 0 0 5} \mathbf{~ m m}$
3.32. $\mathrm{a} . \mathrm{A}=\pi\left(0.20^{2}-0.18^{2}\right) / 4=0.005969 \mathrm{~m}^{2}$
$\sigma=\mathrm{P} / \mathrm{A}=200 \times 10^{3} / 0.005969=33506304 \mathrm{~Pa}=0.033506 \mathrm{GPa}$
$\varepsilon=\sigma / E=0.033506 / 200=0.0001675 \mathrm{~m} / \mathrm{m}$
$\delta=\varepsilon \mathrm{L}=0.0001675 \times 1000=\mathbf{0 . 1 6 7 5} \mathbf{~ m m}$
b. $\varepsilon_{\text {lateral }}=-v \cdot \varepsilon_{\text {axial }}=0.3 \times 0.0001675=0.0000503 \mathrm{~m} / \mathrm{m}$
$\varepsilon_{\text {lateral }}=\left(d_{\text {outer, final }}-d_{\text {outer, inital }}\right) / d_{\text {outer, inital }}$
$0.0000503=\left(\mathrm{d}_{\text {outer, final }}-0.2\right) / 0.2$
$\mathrm{d}_{\text {outer, final }}=0.20001005 \mathrm{~m}=200.01005 \mathrm{~mm}$
$\Delta \mathrm{d}_{\text {outer }}=200.01005-200=\mathbf{0 . 0 1 0 0 5} \mathbf{~ m m}$
c. $\varepsilon_{\text {lateral }}=\left(d_{\text {inner, final }}-d_{\text {inner, inital }}\right) / d_{\text {inner, inital }}$
$0.0000503=\left(\mathrm{d}_{\text {inner, final }}-0.18\right) / 0.18$
$\mathrm{d}_{\text {inner, final }}=0.18000905 \mathrm{~m}=180.00905 \mathrm{~mm}$
Final wall thickness $=\left(\mathrm{d}_{\text {outer, final }}-\mathrm{d}_{\text {inner, final }}\right) / 2=(200.01005-180.00905) / 2=10.0005$ mm
Increase in wall thickness $\boldsymbol{= 0 . 0 0 0 5} \mathbf{~ m m}$
3.33. $\mathrm{d}=12 \mathrm{~mm}$
$\mathrm{G}=80 \mathrm{GPa}$
$\theta=90^{\circ} \mathrm{x} \pi / 180=\pi / 2$
$\tau_{\text {max }}=300 \mathrm{MPa}$
Equation 3.3, $\mathrm{G}=\tau_{\max } / \gamma$
Equation 3.2, $\gamma=\theta \mathrm{r} / \mathrm{L}$
$\mathrm{G}=\tau_{\text {max }} \mathrm{L} / \theta \mathrm{r}$
$\mathrm{L}=\mathrm{G} \theta \mathrm{r} / \tau_{\text {max }}=80 \times 10^{3} \mathrm{x}(\pi / 2) \times 0.006 / 300=\mathbf{2 . 5 1 3} \mathbf{~ m}$
3.34. $\mathrm{d}=1 / 2 \mathrm{in}$.
$\mathrm{G}=11.6 \times 10^{6} \mathrm{psi}$
$\theta=60^{\circ} \times \pi / 180=\pi / 3$
$\tau_{\max }=45 \times 10^{3} \mathrm{psi}$
Equation 3.3, $\mathrm{G}=\tau_{\max } / \gamma$
Equation 3.2, $\gamma=\theta \mathrm{r} / \mathrm{L}$
$\mathrm{G}=\tau_{\text {max }} \mathrm{L} / \theta \mathrm{r}$
$\mathrm{L}=\mathrm{G} \theta \mathrm{r} / \tau_{\max }=11.6 \times 10^{6} \times(\pi / 3) \times 0.25 / 45 * 10^{3}=\mathbf{6 7 . 4 5} \mathrm{in}$.
3.35. a. Using S.I Units
$\mathrm{G}=\tau / \gamma=135 / 0.0049=\mathbf{2 7 5 5 1} \mathbf{~ G P a}$
b. Using U.S. Customary Units
$\mathrm{G}=\tau / \gamma=19.6 / 0.0049=4000 \mathbf{k s i}$

Materials for Civil and Construction Engineers, Third Edition, by Michael S. Mamlouk and John P. Zaniewski. ISBN: 0-13-611058-4 © 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.
3.36. $\sigma=\mathrm{P} / \mathrm{A}$
$\varepsilon=\Delta L / L$

Material toughness $=\mathbf{8 , 9 9 7 . 0 0} \mathbf{p s i}$
3.37. The toughness versus temperature relation is shown below.

Temperature transition zone between ductile and brittle behavior $=\mathbf{0}-\mathbf{1 2 0}^{\mathbf{\circ}} \mathrm{C}$
3.38.

From the graph the energy corresponding to $30^{\circ} \mathrm{F}$ is $32 \mathrm{ft} . \mathrm{lb}$. Therefore, the steel member has adequate Chary V-notch fracture toughness.
3.39. See Section 3.10.
3.40. See Section 3.10.
3.41. See Section 3.11.

3.42. See Section 3.11.

CHAPTER 4. ALUMINUM

4.1. \quad See the introduction section of Chapter 4.
4.2.

	A36 Steel*	7178 T76 Aluminum**
Yield Strength	36 ksi	73 ksi
Ultimate Strength	$58-80 \mathrm{ksi}$	83 ksi
Modulus of Elasticity	$29,000 \mathrm{ksi}$	$10,500 \mathrm{ksi}$

*See Table 3.2 and 1.1
** See Tables 4.5 and 1.1
The material property that controls the deflection is the modulus of elasticity. The modulus of aluminum is lower. Therefore, the aluminum section must be larger.

The material property that controls the tension is the yield strength. The yield s of the steel is lower. Therefore, steel would require a larger cross section.
4.3. a. The stress-strain relationship is shown below.

b. Modulus of elasticity $=\mathbf{1 1 . 1 5} \times \mathbf{1 0}^{\mathbf{6}} \mathbf{~ p s i}$
c. The proportional limit is at a stress of $\mathbf{5 8} \mathbf{~ k s i}$ and a strain of $\mathbf{0 . 0 0 4} \mathbf{~ i n} . / \mathbf{i n}$.
d. $\mathrm{A}=\pi(0.28)^{2}=0.2463 \mathrm{in} .^{2}$ $\mathrm{P}=58 \times 10^{3} \times 0.2463=\mathbf{1 4 , 2 8 5} \mathbf{l b}$
e. Yield strength $=\mathbf{6 8} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{~ p s i}$
f. Tensile strength $=\mathbf{7 0} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{~ p s i}$
g. Elongation at failure $=9.7 \times 10^{-3} \times 100=\mathbf{0 . 9 7 \%}$
4.4. a. The stress-strain relationship is shown below.

b. Modulus of elasticity $=73.8 \mathrm{MPa}$
c. The proportional limit is at a stress of $\mathbf{3 8 0} \mathbf{~ M P a}$ and a strain of $\mathbf{5 . 2} \mathbf{~ m} / \mathbf{m}$.
d. $\mathrm{A}=\pi(7)^{2}=153.86 \mathrm{~mm} .^{2}$
$\mathrm{P}=380 \times 10^{3} \times 153.86=\mathbf{5 8}, \mathbf{4 6 7} \mathbf{k N}$
e. Yield strength $=400 \mathbf{M P a}$
f. Tensile strength $=\mathbf{4 8 2 . 7} \mathbf{~ M P a}$
g. Elongation at failure $=9.7 \times 10^{-3} \times 100=\mathbf{0 . 9 7 \%}$

4.5. \quad See Table 4.5.

4.6. Stress = Load / Area
 Strain $=$ Displacement $/$ Gage Length

Load (lb)	$\Delta \mathrm{L}$ (in.)	σ (ksi)	ε (in./in.)
0	0	0	0
2000	0.0014	7100	0.0007
4100	0.0028	14500	0.0014
6050	0.0042	21400	0.0021
8080	0.0055	28600	0.00275
10100	0.007	35700	0.0035
12000	0.0083	42400	0.00415
14000	0.0103	49500	0.00515
15,500	0.0136	54800	0.0068
16,400	0.0168	58000	0.0084
17,300	0.022	61200	0.011
18,000	0.031	63700	0.0155
18,400	0.042	65100	0.021
18,600	0.0528	65800	0.0264
18,800	fracture	66500	

a. The stress-strain relationship is shown below.

b. The linear portion of the stress-strain relationship is shown below.

c. The proportional limit is at a stress of $\mathbf{5 0 , 0 0 0} \mathbf{~ p s i}$.
d. Yield stress at an offset strain of $0.002 \mathrm{in} / \mathrm{in}=\mathbf{5 8 , 0 0 0} \mathbf{~ p s i}$
e. Tangent modulus at a stress of $60 \mathrm{ksi}=1,053,000 \mathrm{psi}$ f. Secant modulus at a stress of $60 \mathrm{ksi} \quad=\mathbf{6 , 3 1 6 , 0 0 0} \mathbf{p s i}$
4.7. a.Stress $=$ Load $/$ Area

Strain $=$ Displacement $/$ Gage Length

Stress (MPa)	Strain $(\mathrm{m} / \mathrm{m})$	Stress (MPa)	Strain $(\mathrm{m} / \mathrm{m})$
0	0	428.36	0.0297
41.71	0.0005	451.89	0.0438
179.46	0.0023	483.47	0.0678
319.71	0.0044	508.88	0.0966
371.09	0.0081	522.07	0.1192
391.62	0.0141	532.70	0.1477
405.67	0.0196	527.82	0.1609
418.16	0.0249		

The stress-strain relationship is shown below.

Stress-Strain Relation
b. The linear portion of the stress-strain relationship is shown below.

Stress-strain relation of the linear range

Modulus of elasticity $=\mathbf{7 2 , 7 8 9} \mathbf{~ M P a}$

c. The proportional limit is at a stress of $\mathbf{3 1 9} \mathrm{MPa}$ and a strain of $\mathbf{0 . 0 0 4 3} \mathrm{m} / \mathrm{m}$
d. Yield stress at an offset strain of $0.002 \mathrm{in} . / \mathrm{in}$. $=\mathbf{3 6 0} \mathbf{~ M P a}$
e. Tangent modulus at a stress of $450 \mathrm{MPa}=\mathbf{1 , 7 1 5} \mathbf{~ M P a}$
f. Secant modulus at a stress of $450 \mathrm{MPa}=\mathbf{1 0 , 5 0 0} \mathbf{~ M P a}$

4.8. a. Stress $=$ Load $/$ Area
 Strain $=$ Displacement $/$ Gage Length

Stress (ksi)	Strain $(\mathrm{in} / \mathrm{in})$	Stress (ksi)	Strain $(\mathrm{in} / \mathrm{in})$
0	0	60.234	0.02926
5.865	0.00050	63.541	0.04310
25.234	0.00225	67.983	0.06674
44.955	0.00432	71.555	0.09506
52.181	0.00799	73.410	0.11734
55.067	0.01388	74.905	0.14539
57.043	0.01930	74.219	0.15841
58.799	0.02451		

The stress-strain relationship is shown below.

Stress-strain diagram
b. The linear portion of the stress-strain relationship is shown below.

Stress-strain relation of the linear range
Modulus of elasticity $=\mathbf{1 0 , 3 9 9} \mathbf{k s i}$
c. The proportional limit is at a stress of $\mathbf{4 5 , 0 0 0} \mathbf{~ p s i}$ and a strain of $\mathbf{0 . 0 0 4 3} \mathbf{~ i n . / i n . ~}$
d. Yield stress at an offset strain of 0.002 in./in. $=\mathbf{6 0 , 0 0 0} \mathbf{~ p s i}$
e. Initial tangent modulus $=\mathbf{1 1 , 7 3 0}, \mathbf{0 0 0} \mathbf{~ p s i}$
f. \quad Stress $=\frac{3200}{\pi x 0.25 x 0.25 / 4}=65,190 \mathrm{psi}$

From the stress-strain diagram, the permanent strain $=0.045 \mathrm{in} . / \mathrm{in}$.
Permanent change in gage length $=0.045 \times 1=\mathbf{0 . 0 4 5}$ in.
g. $\varepsilon_{\text {lateral }}=\frac{-(0.25-0.249814)}{0.25}=-0.000744 \mathrm{in} . / \mathrm{in}$.
$\varepsilon_{\text {axial }}=\frac{1239 /(\pi x 0.25 \times 0.25 / 4)}{10399000}=0.002427 \mathrm{in} . / \mathrm{in}$.
$v=-\frac{\varepsilon_{\text {lateral }}}{\varepsilon_{\text {axial }}}=-\frac{-0.000744}{0.002427}=\mathbf{0 . 3 0 7}$
4.9. a. $\sigma=4000 /\left(\pi \times 0.004^{2}\right)=79.5774 \times 10^{6} \mathrm{~Pa}=79.5774 \mathrm{MPa}$
$\varepsilon_{\text {axial }}=\sigma / E=79.5774 /\left(69 \times 10^{3}\right)=\mathbf{0 . 0 0 1 1 5 3} \mathbf{~ m} / \mathrm{m}$
$\varepsilon_{\text {lateral }}=-v \varepsilon_{\text {axial }}=-0.33 \times 0.001153=-0.000381 \mathrm{~m} / \mathrm{m}$
b. $\varepsilon_{\text {lateral }}=\left(d_{f}-d_{o}\right) / d_{o}$
$\mathrm{d}_{\mathrm{f}}=\mathrm{d}_{\mathrm{o}} \times\left(1+\varepsilon_{\text {lateral }}\right)=8 \times(1-0.000381)=7.99695 \mathrm{~mm}$
4.10. a. $\sigma=-50000 /\left(\pi \times 3^{2}\right)=-1768.4 \times 10^{3} \mathrm{lb} / \mathrm{in}^{2}=-1.768 \mathrm{ksi}$

$$
\begin{aligned}
& \varepsilon_{\text {axial }}=\sigma / E=-1.768 / 11 \times 10^{3}=-\mathbf{0 . 0 0 0 1 6 1} \mathbf{i n} . / \mathrm{in} . \\
& \varepsilon_{\text {lateral }}=-v \varepsilon_{\text {axial }}=-0.33 \times 0.000161=0.000053 \mathrm{in} . / \mathrm{in} . \\
& \text { b. } \varepsilon_{\text {lateral }}=\left(d_{f}-d_{o}\right) / d_{o} \\
& d_{f}=d_{o} \times\left(1+\varepsilon_{\text {lateral }}\right)=3 \times(1+0.000053)=\mathbf{3 . 0 0 0 1 5 9} \mathbf{~ i n . ~}
\end{aligned}
$$

c. $\Delta \mathrm{L}=\mathrm{L} \times \varepsilon_{\text {axial }}=6 \times(-0.000161)=-0.000966 \mathrm{in}$.

Final height $=6-0.000966=\mathbf{5 . 9 9 9 0 3 4} \mathbf{i n}$.
4.11. For the tensile stress

$$
\sigma=2000 /\left(\pi \times 0.5^{2} / 4\right)=10,185.9 \mathrm{psi}
$$

Since $\sigma_{y}=21000 \mathrm{psi}$, it is clear that the applied stress is well below the yield stress and as a result the deformation is elastic.

$$
\begin{aligned}
& \varepsilon_{\text {axial }}=\sigma / E=10,185.9 /\left(10 \times 10^{6}\right)=0.0010186 \mathrm{in} . / \mathrm{in} . \\
& \varepsilon_{\text {lateral }}=-v \varepsilon_{\text {axial }}=-0.33 \times 0.0010186=-0.000336 \mathrm{in} . \\
& \varepsilon_{\text {lateral }}=\left(d_{f}-d_{o}\right) / d_{o} \\
& d_{f}=d_{o} \times\left(1+\varepsilon_{\text {lateral }}\right)=0.5 \times(1-0.000336)=\mathbf{0 . 4 9 9 8} \mathbf{~ i n . ~}
\end{aligned}
$$

For the compressive stress

$$
\begin{aligned}
& \varepsilon_{\text {lateral }}=+0.000336 \\
& d_{f}=0.5 \times(1+0.000336)=\mathbf{0 . 5 0 0 1 7} \text { in }
\end{aligned}
$$

4.12. $\varepsilon=\frac{\sigma}{70,000}\left[1+\frac{3}{7}\left(\frac{\sigma}{270}\right)^{9}\right]=\frac{1}{70,000}\left[\sigma+\frac{3}{7}\left(\frac{\sigma^{10}}{(270)^{9}}\right)\right]$
$\sigma=\left[20,000 /\left(\pi \times 0.01^{2} / 4\right)\right] \times 10^{-6}=254.65 \mathrm{Mpa}$
$\varepsilon_{\text {total }}=0.0045585 \mathrm{~m} / \mathrm{m}$
$\frac{d \varepsilon}{d \sigma}=\frac{1}{70,000}\left[1+\frac{30}{7}\left(\frac{\sigma}{270}\right)^{9}\right]$
At $\sigma=0$
$\frac{d \varepsilon}{d \sigma}=\frac{1}{70,000}$
$\frac{d \sigma}{d \varepsilon}=70,000=$ Initial tangent modulus
$\varepsilon_{\text {recoverable }}=254.65 / 70,000=0.0036379 \mathrm{~m} / \mathrm{m}$
$\varepsilon_{\text {permanent }}=\varepsilon_{\text {total }}-\varepsilon_{\text {recoverable }}=0.0045585-0.0036379=0.0009206 \mathrm{~m} / \mathrm{m}$
Permanent deformation $=\varepsilon_{\text {lateral }} . \mathrm{L}=\mathbf{1 . 8 4 1} \mathbf{~ m m}$

4.13.

Observation	$P(\mathrm{lb})$	ΔL	$\sigma(\mathrm{psi})$	ε	$u_{i}(\mathrm{psi})$
0.00	0	0.0000	0.00	0.00000	N/A
1.00	1181	0.0015	6014.78	0.00075	2.25554
2.00	2369	0.0030	12065.22	0.00150	6.78000
3.00	3550	0.0045	18080.00	0.00225	11.30446
4.00	4738	0.0059	24130.44	0.00295	14.77365
5.00	5932	0.0075	30211.43	0.00375	21.73675
6.00	7008	0.0089	35691.45	0.00445	23.06601
7.00	8336	0.0110	42454.90	0.00550	41.02683
8.00	9183	0.0146	46768.63	0.00730	80.30118
9.00	9698	0.0180	49391.51	0.00900	81.73612
10.00	10196	0.0235	51927.80	0.01175	139.31405
11.00	10661	0.0332	54296.03	0.01660	257.59278
12.00	10960	0.0449	55818.82	0.02245	322.08593
13.00	11159	0.0565	56832.32	0.02825	326.68831
14.00	11292	0.0679	57509.68	0.03395	325.87471
				$u_{t}=$	$\mathbf{1 6 5 4 . 5 3 6 3}$

Material toughness $=\mathbf{1 , 6 5 5} \mathbf{~ p s i}$
4.14

Observation	$P(\mathrm{lb})$	ΔL	$\sigma(\mathrm{psi})$	\mathcal{E}
0.00	0	0.0000	0.00	0.00000
1.00	1181	0.0015	6014.78	0.00075
2.00	2369	0.0030	12065.22	0.00150
3.00	3550	0.0045	18080.00	0.00225
4.00	4738	0.0059	24130.44	0.00295
5.00	5932	0.0075	30211.43	0.00375
6.00	7008	0.0089	35691.45	0.00445
7.00	8336	0.0110	42454.90	0.00550
8.00	9183	0.0146	46768.63	0.00730
9.00	9698	0.0180	49391.51	0.00900
10.00	10196	0.0235	51927.80	0.01175
11.00	10661	0.0332	54296.03	0.01660
12.00	10960	0.0449	55818.82	0.02245
13.00	11159	0.0565	56832.32	0.02825
14.00	11292	0.0679	57509.68	0.03395

a. $\mathrm{E}=\mathbf{8 , 0 2 0} \mathbf{k s i}$
b. Proportional limit $=\mathbf{4 3} \mathbf{k s i}$
c. The yield strength at a strain offset of $0.002=\mathbf{4 9} \mathbf{~ k s i}$
d. The tensile strength $=\mathbf{5 7 . 5} \mathbf{~ k s i}$
e. $\varepsilon_{\text {axial }}=0.016 / 2=0.008 \mathrm{in}$. $/ \mathrm{in}$.

From graph (or by interpolation from table), $\sigma=48,000 \mathrm{psi}$
$\mathrm{P}=\sigma \times \mathrm{A}=9,425 \mathrm{lb}$
f. Drawing a line parallel to the original part of the curve shows that the final (plastic) strain is about $0.0018 \mathrm{in} . / \mathrm{in}$.
Final Deformation $=0.0018 \times 2=\mathbf{0 . 0 0 3 6} \mathbf{~ i n}$.
g. No, since it is too close to the yield strength. Using a factor of safety, the applied stress must be much less than the yield strength.

4.15. See Section 4.5 .

CHAPTER 5. AGGREGATES

5.1. See Section 5.2.

5.2. See Section 5.5.

5.3. See Section 5.5.
5.5. See Section 5.5.1.

5.6. See Section 5.5.4.

5.7. Sample A: Total moisture content $=[(521.0-491.6) / 491.6] \times 100=\mathbf{5 . 9 8 \%}$

Free moisture content $=5.98-2.5=\mathbf{3 . 4 8 \%}$

Sample B: Total moisture content $=[(522.4-491.7) / 491.7] \times 100=\mathbf{6 . 2 4 \%}$
Free moisture content $=6.24-2.4=\mathbf{3 . 8 4 \%}$

Sample C: Total moisture content $=[(523.4-492.1) / 492.1] \times 100=\mathbf{6 . 3 6 \%}$
Free moisture content $=6.36-2.3=\mathbf{4 . 0 6 \%}$
5.8. Total moisture content $==[(297.2-281.5) / 281.5] \times 100=5.58 \%$

Free moisture content $=\mathbf{3 . 0 8} \%$
5.9. a. Bulk dry specific gravity $=5216 /(5227-3295)=2.6998$
b. Apparent specific gravity $=5216 /(5216-3295)=2.715$
c. Moisture content of stockpile aggregate $=100 \times(5298-5216) / 5216=1.57 \%$
d. Absorption $=100 \times(5227-5216) / 5216=0.21 \%$
5.10. Volume $=2000 \times 48 \times 0.5=48,000 \mathrm{ft}^{3}$

Required density $=0.95 \times 119.7=113.7 \mathrm{lb} / \mathrm{ft}^{3}$
Dry weight $=48,000 \times 113.7=5,458,320 \mathrm{lb}$
Wet weight $=3,086,200 \times 1.031=5,627,527 \mathrm{lb}=\mathbf{2 , 5 5 2 . 6}$ tons
5.11. The bulk dry specific gravity considers the total particle volume, whereas the dry-rodded unit weight considers the volume of the container.
Percent volume of particles $=\frac{88.0}{2.701 x 62.4}=52.2 \%$
Percent voids $=100-52.2=\mathbf{4 7 . 8 \%}$
5.12. The bulk dry specific gravity considers the total particle volume, whereas the dry-rodded unit weight considers the volume of the container.
Percent volume of particles $=\frac{72.5}{2.639 \times 62.4}=44.0 \%$
Percent voids $=100-44.0=\mathbf{5 6 . 0 \%}$
5.13. a. Dry-rodded unit weight for trial $1=(69.6-20.3) / 0.5=98.6 \mathrm{lb} / \mathrm{ft}^{3}$

Dry-rodded unit weight for trial $2=(68.2-20.3) / 0.5=95.8 \mathrm{lb} / \mathrm{ft}^{3}$
Dry-rodded unit weight for trial $3=(71.6-20.3) / 0.5=102.6 \mathrm{lb} / \mathrm{ft}^{3}$
Average dry-rodded unit weight $=99.0 \mathrm{lb} / \mathrm{ft}^{3}$
b. Percent volume of particles $=98.6 /(2.620 \times 62.3) \times 100=60.4 \%$ Percent voids for trial $1=100-60.4=39.6 \%$

Percent volume of particles $=95.8 /(2.620 \times 62.3) \times 100=58.7 \%$
Percent voids for trial $2=100-58.7=41.3 \%$
Percent volume of particles $=102.6 /(2.620 \times 62.3) \times 100=62.9 \%$
Percent voids for trial $3=100-62.9=37.1 \%$

5.14. See Section 5.5.

5.15. Bulk dry specific gravity $=495.5 /(623+500-938.2)=\mathbf{2 . 6 8 1}$

Bulk SSD specific gravity $=500 /(623+500-938.2)=\mathbf{2 . 7 0 6}$
Apparent specific gravity $=495.5 /(623+495.5-938.2)=\mathbf{2 . 7 4 8}$
Absorption $\quad=100 \times(500-495.5) / 495.5=\mathbf{0 . 9 1 \%}$

5.16.

Size No.	Maximum sieve size	Nominal maximum sieve size
357	$63 \mathrm{~mm}(2.5 \mathrm{in})$.	$50 \mathrm{~mm}(2 \mathrm{in})$.
57	$37.5 \mathrm{~mm}(1.5 \mathrm{in})$.	$25 \mathrm{~mm}(1 \mathrm{in})$.
8	$12.5 \mathrm{~mm}(0.5 \mathrm{in})$.	$9.5 \mathrm{~mm}(3 / 8 \mathrm{in})$.

5.17.

Sieve	Amount Retained (g)	Percent Retained	Cumulative Percent Retained	Percent Passing
25 mm	0	0	0	100
9.5 mm	47.1	7.3	7.3	93
4.75 mm	239.4	37.4	44.8	55
2.00 mm	176.5	27.6	72.4	28
0.425 mm	92.7	14.5	86.9	13
0.075 mm	73.5	11.5	98.4	1.5
Pan	9.6	1.5	100	0.0
Total	638.8			

Note that the values of the percent passing are rounded off to the nearest 1%, except the percent passing the 0.075 mm sieve is rounded off to the nearest 0.1%.

Semi-log gradation chart:

The Maximum Size = $\mathbf{2 5} \mathbf{~ m m}$
The Nominal Maximum Size $=\mathbf{9 . 5}$
5.18.

Sieve size	Amount Retained, g	Cumulative Amount Retained, g	Cumulative Percent Retained	Percent Passing
Plus 37.5 mm	0.0	0.0	0.0	100
37.5 mm to 25 mm	315.0	5.4	5.4	95
25 mm to 19 mm	782.0	13.3	18.7	81
19 mm to 9.5 mm	1493.0	25.5	44.2	56
9.5 mm to 4.75 mm	677.0	11.6	55.8	44
4.75 mm to 0.60 mm	1046.0	17.8	73.6	26
0.60 mm to 0.075 mm	1502.0	25.6	99.2	0.8
Pan	45.0	0.8	100.0	0.0
Total	5860.0			

The 0.45 power gradation chart:

Note: In order to plot the 0.45 power gradation chart the horizontal axis represents the sieve size raised to 0.45 , $\left(\mathrm{d}_{\mathrm{i}}\right)^{0.45}$. The vertical axis represents the percent passing calculated using Equation 5.16. The values on the x-axis are then deleted and the text box feature is used to label the x -axis with the actual sieve values. In addition, the drawing tool is used to add vertical lines between the axis and the data points. The following table is used to plot the 0.45 gradation chart:

$\left(\mathbf{d}_{\mathbf{i}}\right)^{\mathbf{0 . 4 5}}$	$\mathbf{P}_{\mathbf{i}}=\mathbf{1 0 0}\left(\mathbf{d}_{\mathbf{i}} / \mathbf{D}\right)^{\mathbf{0 . 4 5}}$
5.11	100
4.26	95
2.75	81
2.02	56
1.37	44
0.68	26
0.31	0.8

5.19.

Sieve Size, $\mathbf{m m}$	Amount Retained, \mathbf{g}	Cumulative Amount Retained, \mathbf{g}	Cumulative Percent Retained	Percent Passing
25	0.0	0.0	0.0	100
19	376.7	5.5	5.5	94
12.5	888.4	13.0	18.6	81
9.5	506.2	7.4	26.0	74
4.75	1038.4	15.3	41.3	59
2.36	900.1	13.2	54.5	46
1.18	891.5	13.1	67.6	32
0.6	712.6	10.5	78.0	22
0.3	625.2	9.2	87.2	13
0.15	581.5	8.5	95.8	4
0.075	242.9	3.6	99.3	0.7
Pan	44.9	0.7	100.0	0.0
Total	6808.4			

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Semi-log gradation chart

b. 0.45 gradation chart

 © 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

5.20.

Sieve	Sieve size (in.)	Amount Retained (lb)	Percent Retained	Cumulative Percent Retained	Percent Passing
3 in.	3	0.0	0.0	0.0	100
2 in.	2	0.0	0.0	0.0	100
$1-1 / 2$ in.	1.5	3.7	4.4	4.4	96
1 in.	1	15.9	19.1	23.6	76
$3 / 4$ in.	0.75	12.0	14.4	38.0	62
$1 / 2$ in.	0.5	13.5	16.2	54.2	46
$3 / 8$ in.	0.375	26.7	32.1	86.3	14
No. 4	0.187	10.1	12.1	98.4	1.6
Pan		1.3	1.6	100.0	0.0
	Total	83.2			

b. The maximum size is $\mathbf{2} \mathbf{i n}$.
c. The nominal maximum size is $\mathbf{1 - 1 / 2} \mathbf{i n}$.
d. Semi-log gradation chart

e. 0.45 power gradation chart.

f. The closest size number according to ASTM C33, Table 5.5, is 467. This coarse aggregate meets the gradation of Size No. 467.

5.21. See Figure 5.15.
5.22. From Equation 5.17, $P_{i}=0.15 A_{i}+0.25 B_{i}+0.60 C_{i}$

	Percent Passing										
Size, mm	25	19	12.5	9.5	4.75	1.18	0.60	0.30	0.15		
Agg. A	100	100	100	77	70	42	34	28	20		
Agg. B	100	85	62	43	24	13	7	0	0		
Agg. C	100	100	84	51	29	19	8	14	9		
Blend	100	96	81	53	34	21	12	13	8		

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

The grain size distribution of the blend is shown below

5.23. The maximum size of aggregate A is $\mathbf{2 5 . 0} \mathbf{~ m m}$.

The maximum size of aggregate B is $\mathbf{1 9 . 0} \mathbf{~ m m}$.

Sieve Size, $m m$	\% Passing Aggr. A	\% Passing Aggr. B	$\left(\mathrm{d}_{\mathrm{i}}\right)^{0.45}$	$\mathrm{P}_{\mathrm{Ai}}=\left(\mathrm{d}_{\mathrm{i}} / \mathrm{D}\right)^{0.45}$	$\mathrm{P}_{\mathrm{Bi}}=(\mathrm{di} / \mathrm{D})^{0.45}$
25	100	100	4.257	100	
19	92	100	3.762	88	100
12.50	76	92	3.116	73	83
9.50	71	65	2.754	65	73
4.75	53	37	2.016	47	54
2.36	38	31	1.472	35	39
1.18	32	30	1.077	25	29
0.600	17	29	0.795	19	21
0.300	10	28	0.582	14	15
0.150	5	21	0.426	10	11
0.075	3.0	15.4	0.312	7	8

0.45 Gradation chart for aggregate A :

The figure above shows that the gradation curve of aggregate A is almost a straight line very close to the maximum density line. Therefore, aggregate A is well graded.
0.45 Gradation chart for aggregate B :

The figure above shows that the gradation curve of aggregate B is deviated from the straight line (maximum density line). Therefore, aggregate B is not well graded.
5.24. $P_{i}=0.35 A_{i}+0.40 B_{i}+0.25 C_{i}($ Equation 5.17 $)$

Sieve Size (mm)	\% Passing Agg. A	\% Passing Agg. B	\% Passing Agg. C	\% Passing Blended Agg.
9.5	85	50	40	$\mathbf{6 0}$
4.75	70	35	30	$\mathbf{4 6}$
0.6	35	20	5	$\mathbf{2 2}$
0.3	25	13	1	$\mathbf{1 4}$
0.15	17	7	0	$\mathbf{9}$

5.25. Using Equation 5.17, $P_{i}=a A_{i}+b B_{i}$, the following table can be developed by trial and error:

Size (mm)	19	12.5	9.5	4.75	2.36	0.60	0.30	0.15	0.075
Specs.	100	$80-100$	$70-90$	$50-70$	$35-50$	$18-29$	$13-23$	$8-16$	$4-10$
Target Gradation	100	90	80	60	42.5	23.5	18	12	7
Agg. A	100	85	55	20	2	0	0	0	0
Agg. B	100	100	100	85	67	45	32	19	11
$50 / 50$	100	93	78	53	35	23	16	10	6
$45 / 55$	100	93	80	56	38	25	18	10	6
$40 / 60$	100	94	82	59	41	27	19	11	7

The best combination is obtained by blending 40% of material A and 60% of material B .

5.26. a. Bulk specific gravity of the mixture $=\frac{1}{\frac{0.5}{2.814}+\frac{0.5}{2.441}}=\mathbf{2 . 6 1 4}$
b. Absorption of the mixture $=0.5 \times 0.4+0.5 \times 5.2=\mathbf{2 . 8} \boldsymbol{\%}$
5.27. Using Equation 5.17, $P_{i}=a A_{i}+b B_{i}$, the following table can be developed by trial and error:

Size (mm)	19	12.5	9.5	4.75	2.36	0.60	0.30	0.15	0.075
Specs.	100	$80-100$	$70-90$	$50-70$	$35-50$	$18-29$	$13-23$	$8-16$	$4-10$
Target Gradation	100	90	80	60	42.5	23.5	18	12	7
Agg. A	100	100	100	79	66	41	38	21	12
Agg. B	100	92	54	24	3	1	0	0	0
$50 / 50$	100	96	77	52	35	21	19	11	6
$45 / 55$	100	96	75	49	31	19	17	9	5
$40 / 60$	100	96	79	54	38	23	21	12	7

The best combination is obtained by blending 55% of material A and 45% of material B .

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
5.28.

Input data				greg		
output data		A	B	C	D	Blend
Blend Percent		20\%	15\%	25\%	40\%	
Sieve Size (mm)	$\begin{aligned} & \text { Sieve Size } \\ & \wedge 0.45(\mathrm{~mm}) \end{aligned}$	Percent Passing				
37.5	5.11	100	100	100	100	100
25	4.26	100	100	100	100	100
19	3.76	95	100	100	100	99
12.5	3.12	89	100	100	100	98
9.5	2.75	50	85	100	100	88
4.75	2.02	10	55	100	100	75
2.36	1.47	2	15	88	98	64
1.18	1.08	2	5	55	45	33
0.6	0.79	2	3	35	34	23
0.3	0.58	2	2	22	25	16
0.15	0.43	2	2	15	14	10
0.075	0.31	2	1	6	5	4.1

5.29. a. Bulk specific gravity of the mixture $=\frac{1}{\frac{0.5}{2.491}+\frac{0.5}{2.773}}=\mathbf{2 . 6 2 4}$
b. Absorption of the mixture $=0.5 \times 0.8+0.5 \times 4.6=\mathbf{2 . 7} \%$
5.30. Assume decimal fraction of fine aggregate by weight is x
$(1-\mathrm{x}) / 2 * 0.5+(1-\mathrm{x}) / 2 * 1.5+11.5 \mathrm{x}=4$
$\mathrm{x}=0.29$, approximately $\mathbf{3 0 \%}$
5.31. See Section 5.5.8.
5.32. The sieves used to calculate the fineness modulus are $19,12.5,9.5,4.75,2.36,1.18,0.6$, 0.3 , and 0.15 .

Sieve, mm	Percent Passing	Cumulative Percent Retained
25	100	0
19	92	8
12.50	76	24
9.50	71	29
4.75	53	47
2.36	38	62
1.18	32	68
0.600	17	83
0.300	10	90
0.150	5	95
Total		506

Fineness modulus $=506 / 100=\mathbf{5 . 0 6}$
No, it is not within the typical range (2.3-3.1) indicating it is coarse aggregate.
5.33. The sieves used to calculate the fineness modulus are $9.5,4.75,2.36,1.18,0.6,0.3$, and 0.15 . The percent passing the 1.18 mm sieve is estimated by proportions.

Sieve, mm	Percent Passing	Cumulative Percent Retained
9.5	100	0
4.75	85	15
2.36	67	33
1.18	56	44
0.6	45	55
0.3	32	68
0.15	19	81
Total		

Fineness modulus $=296 / 100=\mathbf{2 . 9 6}$
It is within the typical range of $2.3-3.1$.
5.34.

Sieve, mm	\% Passing for Sand	\% Passing for Gravel	40% Passing for Sand	60% Passing for Gravel	\% Passing for Blend
50	100	100	40	60	100
37.5	100	97.5	40	58.5	99
19	100	52.5	40	31.5	72
9.5	100	20	40	12	52
4.75	97.5	2.5	39	1.5	41
2.36	90	0	36	0	36
1.18	67.5	0	27	0	27
0.6	42.5	0	17	0	17
0.3	20	0	8	0	8
0.15	6	0	2.4	0	2

0.45 gradation chart

The gradation curve of the blend is slightly deviated from a straight line. Therefore, the blend is almost well graded.
5.35. See Table 5.3.
5.36. Since sand is not considered in coarse aggregate angularity, use Equation 5.18b,

$$
X=\frac{\left(x_{1} P_{1} p_{1}+x_{2} P_{2} p_{2}+\ldots+x_{n} P_{n} p_{n}\right)}{\left(P_{1} p_{1}+P_{2} p_{2}+\ldots+P_{n} p_{n}\right)}=\frac{(100)(55)(90)+(87)(25)(90)}{(55)(90)+(25)(90)}=\mathbf{9 6}
$$

From Equation 5.19,
Bulk specific gravity of the blend $=\frac{1}{\frac{0.55}{2.631}+\frac{0.25}{2.711}+\frac{0.20}{2.614}}=\mathbf{2 . 6 4 7}$
From Equation 5.19,
Apparent specific gravity of the blend $=\frac{1}{\frac{0.55}{2.732}+\frac{0.25}{2.765}+\frac{0.20}{2.712}}=\mathbf{2 . 7 3 6}$
5.37. Since sand is not considered in coarse aggregate angularity, use Equation 5.18b,

$$
X=\frac{\left(x_{1} P_{1} p_{1}+x_{2} P_{2} p_{2}+\ldots+x_{n} P_{n} p_{n}\right)}{\left(P_{1} p_{1}+P_{2} p_{2}+\ldots+P_{n} p_{n}\right)}=\frac{(73)(25)(90)+(95)(60)(90)}{(25)(90)+(60)(90)}=\mathbf{8 9}
$$

From Equation 5.19,
Bulk specific gravity of the blend $=\frac{1}{\frac{0.25}{2.774}+\frac{0.60}{2.390}+\frac{0.15}{2.552}}=\mathbf{2 . 5 0 0}$
From Equation 5.19,
Apparent specific gravity of the blend $=\frac{1}{\frac{0.25}{2.810}+\frac{0.60}{2.427}+\frac{0.15}{2.684}}=\mathbf{2 . 5 5 1}$
5.38. Bulk specific gravity for blended aggregate $1=\frac{1}{\frac{0.45}{2.702}+\frac{0.35}{2.331}+\frac{0.20}{2.609}}=\mathbf{2 . 5 4 2}$

Bulk specific gravity for blended aggregate $2=\frac{1}{\frac{0.55}{2.702}+\frac{0.20}{2.331}+\frac{0.25}{2.609}}=\mathbf{2 . 5 9 6}$
Bulk specific gravity for blended aggregate $3=\frac{1}{\frac{0.50}{2.702}+\frac{0.30}{2.331}+\frac{0.20}{2.609}}=\mathbf{2 . 5 6 1}$
5.39. See Section 5.5.10.
5.40. See Section 5.5.9.

CHAPTER 6. PORTLAND CEMENT, MIXING WATER AND ADMIXTURES

6.1. See Section 6.1.
6.2. See Section 6.1.
6.3. See Section 6.3.
6.4. See Section 6.5.
6.5. See Section 6.5.
6.6. See Table 6.1.
6.7. See Section 6.5.
6.8. See Section 6.6.
6.9. See Section 6.7.1.
6.10. See Section 6.7.
6.11. See Section 6.7.1.
6.12. See Section 6.10.1.
6.13. a. (d)
b. $0.4-0.5$
c. $0.22-0.25$
d. Most of the water is needed for workability.
e. Extremely low w/c ratio (0.25) for high strength and a super plasticizer for an acceptable slump. Extreme care in choosing aggregate size, shape and gradation. Curing is optimized and carefully controlled.
6.14. See Section 6.8.
6.15. See Figure 6.8.
6.16. The two batches are expected to have about the same compressive strength since they have the same w/c ratio.
6.17. See Section 6.9.1.
6.18. See Section 6.12.

6.19. See Section 6.9.

6.20. a. Average strength using non-potable water $=15,294 /(2 \times 2) \quad=3,824 \mathrm{psi}$ Average strength using potable water $=17,186 /(2 \times 2)=4,296 \mathrm{psi}$
Percent difference $=(4,296-3,824) / 4,296 \quad=11.00 \%<10 \%$
Therefore, do not accept the water.
b. The set time measured by the Vicat test should not change significantly.
6.21. Average strength of mortar cubes with non-potable average $=15,267 /(2 \times 2)=3,817 \mathrm{psi}$ Average strength of mortar cubes with potable average $=17,667 /(2 \times 2)=4,417 \mathrm{psi}$ Ratio $=3,817 / 4,417=0.879=86.4 \%$ Since the average strength of the cubes made with non-potable water is less than 90% of the strength of the cubes made with potable water, I would not accept the questionable water according to ASTM standards.
6.22. Average failure load of mortar cubes with non-potable average $=6,909 \mathrm{~kg}$. Average failure load of mortar cubes with potable average $=7,512 \mathrm{~kg}$. Ratio $=6,909 / 7,512=0.879=92.0 \%$
Since the average strength of the cubes made with non-potable water is higher than 90% of the strength of the cubes made with potable water, I would accept the questionable water according to ASTM standards.
6.23. See Section 6.10.2.
6.24. See Section 6.11.
6.25. See Section 6.11.1.
6.26. See Section 6.11.1.
6.27. See Section 6.11.2.
6.28. See Section 6.11.2.
6.29.

Cement (lb)	Water (lb)	Admixture	What will happen?	
			Ultimate Compressive Strength	
25	15	None	Increase	Decrease
28	11	None	Approx. same	Increase
25	11	Water reducer	Increase	Approx. same
25	8	Water reducer	Approx. same	Increase
25	11	Superplasticizer	Increase	Approx. same
25	11	Air entrainer	Increase	Decrease
25	11	Accelerator	Approx. same	Approx. same

6.30. a. Water/cement ratio for case $1=350 / 700=\mathbf{0 . 5 0}$

Water/cement ratio for case $2=280 / 700=\mathbf{0 . 4 0}$
Water/cement ratio for case $3=315 / 630=\mathbf{0 . 5 0}$
b. Add water reducer and decrease the amount of water (Case 2)
c. Add water reducer (Case 1)
d. Add water reducer and decrease both the amount of cement and water to maintain the same water to cement ratio (Case 3)
6.31. a. Water/cement ratio for case $1=465 / 850=\mathbf{0 . 5 5}$

Water/cement ratio for case $2=370 / 850=\mathbf{0 . 4 4}$
Water/cement ratio for case $3=419 / 765=\mathbf{0 . 5 5}$
b. Add water reducer and decrease the amount of water (Case 2)
c. Add water reducer (Case 1)
d. Add water reducer and decrease both the amount of cement and water to maintain the same water to cement ratio (Case 3)

6.32. a. Hydration-control admixture (stabilizer)

b. Retarder
c. Air Entrainer
d. Water reducer
e. Retarder or hydration-control admixture
f. Accelerator

6.33. See Section 6.12.

6.34. $\mathrm{H}_{\mathrm{o}}: \mu_{1}<\mu_{2}$ (One-tail test)

$\mathrm{H}_{1} \quad: \mu_{1} \geq \mu_{2}$
$\mathrm{x}_{1}=$ average strength without admixture $=24.78 \mathrm{MPa}$
$\mathrm{s}_{1} \quad=0.74 \mathrm{MPa}$
$\mathrm{x}_{2} \quad=$ average strength with admixture $=25.54 \mathrm{MPa}$
$\mathrm{s}_{2} \quad=1.03 \mathrm{MPa}$
$\alpha=0.05$

$$
T_{o}^{*}=\frac{24.78-25.54}{\sqrt{\frac{0.74^{2}}{10}+\frac{1.03^{2}}{10}}}=-1.895
$$

Assume that $\sigma_{1} \neq \sigma_{2}$

From the statistical t-distribution table, $\mathrm{T}_{\alpha, v}=1.734$

$$
v=\frac{\left(\frac{0.74^{2}}{10}+\frac{1.03^{2}}{10}\right)^{2}}{\frac{\left(0.74^{2} / 10\right)^{2}}{10+1}+\frac{\left(1.03^{2} / 10\right)^{2}}{10+1}}-2 \approx 18
$$

$$
\left(\mathrm{T}_{\alpha, v}=1.734\right)>\left(T_{o}^{*}=-1.895\right)
$$

We reject H_{0}. Therefore, the admixture does not increase the strength.
6.35. $\mathrm{H}_{\mathrm{o}} \quad: \mu_{1}=\mu_{2}$ (2-tail test)

$$
\begin{array}{ll}
\mathrm{H}_{1} & : \mu_{1} \neq \mu_{2} \\
\mathrm{x}_{1} & =\text { average strength without admixture }=3607.5 \mathrm{psi} \\
\mathrm{~s}_{1} & =118.533 \mathrm{psi} \\
\mathrm{x}_{2} & =\text { average strength with admixture }=3567.375 \mathrm{psi} \\
\mathrm{~s}_{2} & =103.652 \mathrm{psi}
\end{array}
$$

$\alpha=0.1$

Assume that $\sigma_{1} \neq \sigma_{2}$

$$
\begin{aligned}
& \nu=\frac{\left(\frac{118.533^{2}}{8}+\frac{103.652^{2}}{8}\right)^{2}}{\frac{\left(118.533^{2} / 8\right)^{2}}{8+1}+\frac{\left(103.652^{2} / 8\right)^{2}}{8+1}}-2 \approx 16 \\
& T_{o} *=\frac{3607.5-3567.375}{\sqrt{\frac{118.533^{2}}{8}+\frac{103.652^{2}}{8}}}=0.721
\end{aligned}
$$

From the statistical t-distribution table, $\mathrm{T}_{\alpha / 2, v}= \pm 1.746$
$-1.746<\mathrm{T}_{\mathrm{o}}{ }^{*}=0.721<1.746$

Therefore we cannot reject H_{0}. Therefore, there is no significant difference between the means. This means that the admixture does not significantly increase the strength.

CHAPTER 7. PORTLAND CEMENT CONCRETE

7.1. $\mathrm{a} . f_{c r}^{\prime}=f_{c}^{\prime}+1400=5500+1400=\mathbf{6 , 9 0 0} \mathbf{~ p s i}$
b. Need to interpolate modification factor
$F=1.08-\left(\frac{1.08-1.03}{25-20}\right)(22-20)=1.06$
Multiply standard deviation by the modification factor $\mathrm{s}^{\prime}=(\mathrm{s})(\mathrm{F})=500(1.06)=530 \mathrm{psi}$
Determine maximum from Equations 7.1 and 7.2
$f_{c r}^{\prime}=5500+1.34(530)=6210 \mathrm{psi}$
$f_{c r}^{\prime}=5500+2.33(530)-500=6235 \mathrm{psi}$
Use $f_{c r}^{\prime}=\mathbf{6 2 4 0} \mathbf{~ p s i}$
c. Determine maximum from Equations 7.1 and 7.2
$f_{c r}^{\prime}=5500+1.34(400)=6036 \mathrm{psi}$
$f_{c r}^{\prime}=5500+2.33(400)-500=5932 \mathrm{psi}$
Use $f_{c r}^{\prime}=\mathbf{6 0 4 0} \mathbf{~ p s i}$
d. Determine maximum from Equations 7.1 and 7.2
$f_{c r}^{\prime}=5500+1.34(600)=6304 \mathrm{psi}$
$f_{c r}^{\prime}=5500+2.33(600)-500=6389 \mathrm{psi}$
Use $f_{c r}^{\prime}=\mathbf{6 3 9 0} \mathbf{~ p s i}$
7.2. $\mathrm{a} . \mathrm{f}^{\prime}{ }_{\mathrm{cr}}=\mathrm{f}_{\mathrm{c}}^{\prime}+1.34 \mathrm{~s}=24.1 \mathrm{MPa}+1.34(3.8 \mathrm{MPa})=29.2 \mathrm{MPa}$ $\mathrm{f}_{\mathrm{cr}}=\mathrm{f}^{\prime}{ }_{\mathrm{c}}+2.33 \mathrm{~s}-3.45 \mathrm{MPa}=24.1 \mathrm{MPa}+2.33(3.8 \mathrm{MPa})-3.45 \mathrm{MPa}=\mathbf{2 9 . 5} \mathbf{~ M P a}$ b. $\quad \mathrm{E}_{\mathrm{c}}=4731 \sqrt{ } \overline{\mathrm{f}}_{\mathrm{c}}^{\prime}=4731 \sqrt{ } 29.5 \mathrm{MPa}=25696 \mathbf{M P a}$
7.3. $\mathrm{f}^{\prime}{ }_{\mathrm{cr}}=\mathrm{f}^{\prime}{ }_{\mathrm{c}}+1.34 \mathrm{~s}=3000 \mathrm{psi}+1.34(350 \mathrm{psi})=\mathbf{3 4 6 9} \mathbf{~ p s i}$
$\mathrm{E}_{\mathrm{c}}=57000 \sqrt{ } \overline{\mathrm{f}}_{\mathrm{c}}^{\prime}=57000 \sqrt{ } 3469 \mathrm{psi}=\mathbf{3 . 4} \times \mathbf{1 0}^{\mathbf{6}} \mathbf{~ p s i}$
7.4. $1 / 5$ minimum clear distance $=(1 / 5) \times 10=2$ in.
$3 / 4$ minimum clear space between steel bars $=(3 / 4) \times(6-0.75)=3.9375$ in.
$3 / 4$ minimum clear space between steel bars and form $=(3 / 4) \times(4)=3 \mathrm{in}$.
Therefore, the maximum size coarse aggregate should not be more than 2 in .
7.5. Assume the nominal maximum size of coarse aggregate is 1 in .

Table 7.5 Coarse aggregate factor $==0.71 \mathrm{yd}^{3} / \mathrm{yd}^{3}$
Weight of coarse aggregate $=0.71 \times 1700=\mathbf{1 2 0 7} \mathbf{~ l b} / \mathbf{y d}^{3}$
Changing the w / c ratio does not affect the quantity of coarse aggregate because it depends only on its maximum size and the fineness modulus of the fine aggregate.
7.6. a. Required compressive strength $=\mathrm{f}^{\prime}{ }_{\mathrm{c}}+1.34 \mathrm{~s}=4000+1.34 \times(1.08 \times 200)=4289.44 \mathrm{psi}$

$$
=f^{\prime}{ }_{c}+2.33 \mathrm{~s}-500=4000+2.33 \times(1.08 \times 200)-500=4003.28 \mathrm{psi}
$$

Therefore, the required compressive strength $=4289.44 \mathrm{psi}$
b. w/c ratio, according to Figure 7.2 and Table 7.1, w/c $=0.48$ (air Entrained)
c. Coarse Aggregate Requirements
$2 \mathrm{in} .<(1 / 3)$ (12 in.) slab thickness

Aggregate size OK for dimensions

(Table 7.5) 1.5 in . nominal max. size coarse aggregate and 2.6 FM of fine aggregate Coarse aggregate factor $=0.73$
Oven dry weight of coarse aggregate $=(0.73)(125 \mathrm{pcf})=\mathbf{9 1 . 2 5} \mathbf{~ p c f}$
d.The quantity of coarse aggregate will remain the same because it is not affected by the w/c ratio.
7.7. $\mathrm{W}_{\text {water }}=0.45 \times 565=254 \mathrm{lb} / \mathrm{yd}^{3}$

$$
\gamma_{\mathrm{w}}=62.4 \mathrm{lb} / \mathrm{ft}^{3}(3 \mathrm{ft} / \mathrm{yd})^{3}=1684.8 \mathrm{lb} / \mathrm{yd}^{3}
$$

Step $9 \quad V_{\text {cement }}=565 / 3.15(1684.8)=0.106 \mathrm{yd}^{3}$

$$
V_{\text {water }}=254 / 1684.8 \quad=0.151 \mathrm{yd}^{3}
$$

$$
V_{\text {gravel }}=1963 / 2.7(1684.8)=0.432 \mathrm{yd}^{3}
$$

$$
\mathrm{V}_{\mathrm{air}}=4 \% \quad \text { Subtotal } \quad=0.04 \mathrm{yd}^{3}
$$

$$
\begin{aligned}
& \mathrm{V}_{\text {sand }}=1-0.729=0.271 \mathrm{yd}^{3} \\
& \mathrm{~m}_{\text {sand }}=2.5(1684.8)(0.271)=1141 \mathrm{lb} / \mathrm{yd}^{3}
\end{aligned}
$$

Step 10 mix water $=254-1963(0.016-0.024)-1141(0.048-0.015)$

$$
=254+15.7-37.65
$$

$$
=232.0 \mathrm{lb} / \mathrm{yd}^{3}
$$

moist gravel $=1963(1.016)=\mathbf{1 9 9 4 . 4} \mathbf{~ l b / y d}{ }^{3}$
moist sand $=1141(1.048)=\mathbf{1 1 9 5 . 8} \mathbf{~ l b / y d}{ }^{3}$
cement $\quad=\mathbf{5 6 5 . 0} \mathbf{~ l b} / \mathbf{y d}^{3}$

Summary

Batch ingredients required for $1 \mathrm{yd}^{3}$ concrete mix	
Water	232 lb
Cement	565 lb
Fine Aggregate	1195.8 lb
Coarse Aggregate	1994.4 lb

7.8. 1 . Required strength $=27.6 \mathrm{MPa}$
$\mathrm{S}=2.1 \mathrm{MPa}$
$\mathrm{f}_{\mathrm{cr}}=\mathrm{f}_{\mathrm{c}}+1.34 \mathrm{~S}=30.4 \mathrm{MPa}$
$\mathrm{f}_{\mathrm{cr}}=\mathrm{f}_{\mathrm{c}}+2.33 \mathrm{~S}-3.45=29.0 \mathrm{MPa}$
$\mathrm{f}_{\mathrm{cr}}=30.4 \mathrm{MPa}$
2. Water-Cement Ratio

Strength requirement (Table 7.1):
Water-Cement ratio $=0.48-\left(\frac{30.4-27.6}{34.5-27.6}\right)(0.48-0.40)=0.45$
Mild exposure requirements - use air entrainer
3. Coarse aggregate requirements

Minimum dimension $=150 \mathrm{~mm}$
Minimum space between rebar $=40 \mathrm{~mm}$
Minimum cover over rebar $=40 \mathrm{~mm}$
Coarse aggregate: 19 mm nominal maximum size, river gravel (rounded). Maximum size is 25 mm .
$25 \mathrm{~mm}<1 / 5 \times 150 \mathrm{~mm}$
$25 \mathrm{~mm}<3 / 4 \times 40 \mathrm{~mm}$
$25 \mathrm{~mm}<3 / 4 \times 40 \mathrm{~mm}$
Fineness modulus $=2.47$
Table 7.5 Coarse aggregate factor $=0.65 \mathrm{~m}^{3} / \mathrm{m}^{3}$
Oven dry weight of coarse aggregate $=1761 \times 0.65=1145 \mathrm{~kg} / \mathrm{m}^{3}$

4. Air Content

Only air entrainer is allowed
Table 7.6 for mild exposure, air content $=3.5 \%$
5. Workability Requirements

Table 7.7, slump range $=25$ to 100 mm
Use 25 to 50 mm for the following calculations
6. Water Content

Table 7.8, water content $=168 \mathrm{~kg} / \mathrm{m}^{3}$
Reduction in water content because of aggregate shape $=27 \mathrm{~kg} / \mathrm{m}^{3}$
Required water content $=168-27=141 \mathrm{~kg} / \mathrm{m}^{3}$

7. Cement content

Cement content $=$ Water content $/$ Water-cement ratio
Cement content $=141 / 0.45=313 \mathrm{~kg} / \mathrm{m}^{3}$
Table 7.9, minimum cement content $=320 \mathrm{~kg} / \mathrm{m}^{3}$
Cement content $=\mathbf{3 2 0} \mathbf{~ k g} / \mathbf{m}^{\mathbf{3}}$
8. Admixture
3.5% air content
Admixture $=6.3 \times 3.5 \times(320 / 100)=71 \mathbf{~ m l} / \mathbf{m}^{3}$
9. Fine Aggregate Requirements

Water volume $=141 /(1 \times 1000)=0.141 \mathrm{~m}^{3} / \mathrm{m}^{3}$
Cement volume $=320 /(3.15 \times 1000)=0.102 \mathrm{~m}^{3} / \mathrm{m}^{3}$
Air volume $=0.035 \mathrm{~m}^{3} / \mathrm{m}^{3}$
Coarse aggregate volume $=1145 /(2.55 \times 1000)=0.449 \mathrm{~m}^{3} / \mathrm{m}^{3}$
Subtotal volume $=0.727 \mathrm{~m}^{3} / \mathrm{m}^{3}$
Fine aggregate volume $=1-0.727=0.273 \mathrm{~m}^{3} / \mathrm{m}^{3}$
Fine aggregate weight $=2.66 \times 0.273 \times 1000=726 \mathrm{~kg} / \mathrm{m}^{3}$

10.Moisture Corrections

Coarse aggregate in dry condition $=1145 \mathrm{~kg} / \mathrm{m}^{3}$
Increase by 2.5%
Coarse aggregate $=1145 \times 1.025=\mathbf{1 1 7 4} \mathbf{~ k g} / \mathbf{m}^{\mathbf{3}}$
Fine aggregate in dry condition $=726 \mathrm{~kg} / \mathrm{m}^{3}$
Increase by 2.0 \%
Fine aggregate $=769 \times 1.020=741 \mathbf{~ k g} / \mathbf{m}^{3}$
Water $=141-1145(0.025-0.003)-726(0.02-0.005)=\mathbf{1 0 5} \mathbf{~ k g} / \mathbf{m}^{\mathbf{3}}$

Summary

Batch ingredients required for $1 \mathrm{~m}^{3} \mathrm{PCC}$	
Water	105 kg
Cement	320 kg
Fine Aggregate	741 kg
Coarse Aggregate	1174 kg
Admixture	71 ml

7.9. 1. Required Strength

$f_{c}^{\prime}=3000 \mathrm{psi}$
$\mathrm{s}=250$ (enough samples so no correction is needed)
$f_{c r}^{\prime}=\mathrm{f}_{\mathrm{c}}^{\prime}+1.34 \mathrm{~s}=3000+1.34(250)=3,335 \mathrm{psi}$
$f_{c r}^{\prime}=\mathrm{f}^{\prime} \mathrm{c}+2.33 \mathrm{~s}-500=3000+2.33(250)-500=3,083 \mathrm{psi}$
$f_{c r}^{\prime}=\mathbf{3 , 3 3 5} \mathbf{~ p s i}$
2. Water-cement ratio

Strength requirement (Table 7.1), Water-cement ratio $=0.55$ by interpolation
Exposure requirement, freeze and thaw and deicing chemicals (Table 7.3), maximum water-cement ratio $=0.45$
Water-cement ratio $=\mathbf{0 . 4 5}$
3. Coarse Aggregate Requirements

Nominal maximum size $=2 \mathrm{in}$. Therefore, maximum size $=3 \mathrm{in}$.
3 in. < (1/3) (12 in.) slab thickness

Aggregate size OK for dimensions

(Table 7.5) 2 in . nominal maximum size coarse aggregate and 2.68 FM of fine aggregate
Coarse aggregate factor $=0.75$
Oven dry weight of coarse aggregate $=(120)(0.75)\left(27 \mathrm{ft}^{3} / \mathrm{yd}^{3}\right)=2430 \mathrm{lb} / \mathrm{yd}^{3}$
Coarse aggregate $=\mathbf{2 4 3 0} \mathbf{l b} / \mathrm{yd}^{3}$

4. Air Content

(Table 7.6) Severe exposure, Target air content $=5.0 \%$
Job range $=4$ to 7% base
Design on 6\%
5. Workability
(Table 7.7), slump range $=1$ to 3 in.
Use 2 in.

6. Water Content

(Table 7.8) 2 in . nominal maximum size aggregate with air entrainment and 2 in . slump, Water $=240 \mathrm{lb} / \mathrm{yd}^{3}$ for angular aggregates
Required water $=240 \mathbf{l b} / \mathbf{y d}^{3}$
7. Cement Content

Water-cement ratio $=0.45$, water $=240 \mathrm{lb} / \mathrm{yd}^{3}$
Cement $=240 / 0.45=533 \mathrm{lb} / \mathrm{yd}^{3}$
Increase for the minimum criterion of $564 \mathrm{lb} / \mathrm{yd}^{3}$ for exposure
Cement $=564 \mathbf{~ l b} /$ yd 3
8. Admixture
6% air, cement $=564 \mathrm{lb} / \mathrm{yd}^{3}$
Admixture $=(0.15)(6)(564 / 100)=5.1 \mathrm{fl} \mathrm{oz} / \mathrm{yd}^{3}$
Admixture $=5.1$ fl oz/yd ${ }^{3}$
9. Fine Aggregate Requirements

Find fine aggregate content - Use the absolute volume method
$\begin{array}{lll}\text { Water volume } & =240 / 62.4 & =3.846 \mathrm{ft}^{3} / \mathrm{yd}^{3} \\ \text { Cement volume } & =564 /(3.15 \times 62.4) & =2.869 \mathrm{ft}^{3} / \mathrm{yd}^{3} \\ \text { Air volume } & =0.06 \times 27 & =1.620 \mathrm{ft}^{3} / \mathrm{yd}^{3}\end{array}$
Coarse aggregate volume $=2430 /(2.573 \times 62.4)$

$$
\begin{aligned}
=15.135 & \mathrm{ft}^{3} / \mathrm{yd}^{3} \\
& =23.470 \mathrm{ft}^{3} / \mathrm{yd}^{3} \\
& =3.530 \mathrm{ft}^{3} / \mathrm{yd}^{3} \\
& =559 \mathrm{lb}^{3} / \mathrm{yd}^{3}
\end{aligned}
$$

Subtotal volume
Fine aggregate volume $=27-23.470$
Fine aggregate weight $=(3.530)(2.540)(62.4)$
Fine aggregate $=\mathbf{5 9 9} \mathbf{~ l b / y d ~}{ }^{\mathbf{3}}$

10. Moisture Corrections

Coarse Aggregate: Need $2430 \mathrm{lb} / \mathrm{yd}^{3}$ in dry condition, so increase weight by 1.0% for moisture
Weight of moist coarse aggregate $=(2430)(1.01)=2454 \mathrm{lb} / \mathrm{yd}^{3}$
Fine Aggregate: Need $599 \mathrm{lb} / \mathrm{yd}^{3}$ in dry condition, so increase weight by 3.67% for excess moisture
Weight of fine aggregate in moist condition $=(599)(1.0367)=621 \mathrm{lb} / \mathrm{yd}^{3}$
Water: Reduce for free water on aggregates

$$
=240-2430(0.01-0.001)-599(0.0367-0.002)=197 \mathrm{lb} / \mathrm{yd}^{3}
$$

Summary

Batch ingredients required for $1 \mathrm{yd}^{3} \mathrm{PCC}$	
Water	197 lb
Cement	564 lb
Fine Aggregate	621 lb
Coarse Aggregate	2454 lb
Admixture	5.1 fl oz

7.10. Coarse Aggregate: Need $1173 \mathrm{~kg} / \mathrm{m}^{3}$ in dry condition, so increase mass by 0.8% for excess moisture

Mass of moist coarse aggregate $=(1173)(1.008)=\mathbf{1 1 8 2} \mathbf{~ k g} / \mathbf{m}^{\mathbf{3}}$
Fine Aggregate: Need $582 \mathrm{~kg} / \mathrm{m}^{3}$ in dry condition, so increase mass by 1.1% for excess moisture

Mass of fine aggregate in moist condition $=(582)(1.011)=\mathbf{5 8 8} \mathbf{~ k g} / \mathbf{m}^{\mathbf{3}}$
Water: Since absorption is larger than the available moisture content, increase mix water to allow for absorption by aggregates.

Mass of mix water $=157+1173(0.015-0.008)+582(0.013-0.011)=\mathbf{1 6 6} \mathbf{~ k g} / \mathbf{m}^{\mathbf{3}}$
7.11. Using Tables 7.11 and 7.12 :

Amount of Concrete	Cement	Wet Fine Aggregate	Wet Course Aggregate	Water
2000 kg	322 kg	604 kg	940 kg	134 kg
4400 lb	708 lb	1329 lb	2068 lb	295 lb
$1 \mathrm{~m}^{3}$	$0.222 \mathrm{~m}^{3}$	$0.555 \mathrm{~m}^{3}$	$0.612 \mathrm{~m}^{3}$	$0.111 \mathrm{~m}^{3}$
$36 \mathrm{ft}^{3}$	$7.992 \mathrm{ft}^{3}$	$19.980 \mathrm{ft}^{3}$	$22.032 \mathrm{ft}^{3}$	$3.996 \mathrm{ft}^{3}$

Note that for proportioning by volume, the required concrete volume is multiplied by 1.5 before entering Table 7.12.
7.12. a. From Table 7.11

Weight of cement $=5000 \times 0.170=850 \mathrm{lb}$
Weight of wet fine aggregate $=5000 \times 0.320=1600 \mathrm{lb}$
Weight of wet coarse aggregate $=5000 \times 0.442=2210 \mathrm{lb}$
Weight of water $=5000 \times 0.068=340 \mathrm{lb}$
b. Sum of the original bulk volumes of the components $=1 \times 1.5=1.5 \mathrm{yd}^{3}$

From Table 7.12:
Volume of cement $=1.5 \times 0.153=0.23 \mathrm{yd}^{3}$
Volume of wet fine aggregate $=1.5 \times 0.385=0.578 \mathrm{yd}^{3}$
Volume of wet coarse aggregate $=1.5 \times 0.385=0.578 \mathrm{yd}^{3}$
Volume of water $=1.5 \times 0.077=0.116 \mathrm{yd}^{3}$
7.13. See Section 7.2.7.

7.14. See Section 7.3.

7.15. See Section 7.3.

7.16. See Figure 7.22.

7.17. Concrete requires a small amount of water for hydration (see Section 6.8). Extra mixing water will leave air voids in place when it sets, which reduces the strength and worsen other concrete properties. During curing, however, extra water will prevent water in the concrete from evaporation, which ensures continuing the hydrating process of the concrete since hydration is a long-term process.

7.18. See Section 7.4.1.

7.19. See Section 7.4.2.

7.20. See Figure 7.32.
7.21.

Water- Cement Ratio	Ultimate Stress, MPa	40% Ultimate Stress, MPa	Secant Modulus, GPa	Compressive Strength $\left(\mathrm{f}_{\mathrm{c}}\right)$, MPa	Modulus from ACI Equation, GPa
0.33	53	21	35	53	34
0.40	48	19	29	48	32
0.50	36	14	23	35	28
0.67	21	8	20	16	19
1.00	10	4	16	7	13

The two relations have the same trend. They both show that the modulus increases when the ultimate stress increases. The ACI Building code provides slightly smaller moduli at low ultimate stresses and larger moduli at high ultimate stresses when compared to the secant moduli.
7.22. Using Equation 7.3, $\mathrm{E}_{\mathrm{c}}=57,000(4500)^{1 / 2}=\mathbf{3 , 8 2 4 , 0 0 0} \mathbf{~ p s i}$
7.23. See Section 7.5.1.
7.24. See Section 7.5.1.
7.25. $\mathrm{P}=(\sigma \times \mathrm{A}) / \mathrm{F} . \mathrm{S} .=(5000 \times 12 \times 12) / 1.2=600,000 \mathrm{lb}=\mathbf{6 0 0}$ kips
7.26. See Section 7.5.3.
7.27. See Section 7.5.3.
7.28. $\mathrm{M}=(\mathrm{P} / 2)(\mathrm{L} / 3)=\mathrm{PL} / 6$
$I=a\left(a^{3}\right) / 12=a^{4} / 12$
$\mathrm{C}=\mathrm{a} / 2$
Modulus of rupture $=\mathrm{MC} / \mathrm{I}=(\mathrm{PL} / 6)(\mathrm{a} / 2) /\left(\mathrm{a}^{4} / 12\right)=\mathbf{P L} / \mathbf{a}^{3}$

7.29. Using Equation 7.5, $\mathrm{R}=\mathrm{PL} /\left(\mathrm{b} \mathrm{d}^{2}\right)=(35,700 \times 450) /\left(150 \times 150^{2}\right)=4.76 \mathbf{M P a}$
7.30. Using Equation 7.5, $\mathrm{R}=\mathrm{P} \mathrm{L} /\left(\mathrm{b} \mathrm{d}^{2}\right)=(6,000 \times 8) /\left(4 \times 4^{2}\right)=\mathbf{7 5 0} \mathbf{~ p s i}$
7.31. Using Equation 7.5, $\mathrm{R}=\mathrm{Mc} / \mathrm{I}=3 \mathrm{P} \mathrm{L} /\left(2 \mathrm{bd}^{2}\right)=3 \times(5,000 \times 8) /\left(2 \times 4 \times 4^{2}\right)=\mathbf{9 3 7 . 5 p s i}$

7.32. Using Equation 7.6, $\mathrm{R}=0.725(20)^{1 / 2}=\mathbf{3 . 2 4} \mathbf{~ M P a}$
7.33. See Sections 7.5.5-7.5.7.
7.34. See Section 7.5.7.
7.35. See Section 7.6.
7.36. See Section 7.6.1.
7.37. See Section 7.6.2.
7.38. See Section 7.6.6.

7.39. a.mild steel is stronger than PCC

b. mild steel has a higher modulus
c. PCC is more brittle
d. The range of compressive strength for a typical PCC is 3000 to 5000 psi
e. The compressive strength for a high-strength concrete is usually greater than 6000 psi
f. A reasonable range for PCC modulus is 2000 to 6000 ksi
7.40. $\mathrm{a} \cdot \bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{5 \sum_{i=1}^{26} x_{i}}{25}=\frac{118,000}{25}=\mathbf{4 7 2 0} \mathbf{~ k s i}$

$$
\begin{aligned}
& s=\left(\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}\right)^{1 / 2}=\left(\frac{\sum_{i=1}^{25}\left(x_{i}-4720\right)^{2}}{25-1}\right)^{1 / 2}=\mathbf{7 1 0 . 7 3 3} \mathbf{~ k s i} \\
& C=100\left(\frac{s}{\bar{x}}\right)=100\left(\frac{710.733}{4720}\right)=\mathbf{1 5 . 0 6} \%
\end{aligned}
$$

b. The flow chart is shown below.

The results of the first 19 sample are higher than the minimum requirement. There was a sudden change starting with sample 20 , indicating that there is something wrong in the material which needs to be corrected.

CHAPTER 8. MASONRY

8.1. See Section 8.1.1.

8.3. Percentage of net cross-sectional area $=(447 / 960) \times 100=46.56 \%<75 \%$

Therefore, the unit is categorized as hollow.
Net area $=130 \times 0.466=60.58 \mathrm{in}^{2}$
Compressive stress $=120 / 60.58=1981 \mathrm{psi}>1700 \mathrm{MPa}($ Table 8.2 $)$
Thus, the compressive strength satisfies the strength requirements.
8.4. Percentage of net cross-sectional area $=(0.007 / 0.015) \times 100=46.67 \%<75 \%$ Therefore, the unit is categorized as hollow.
Net area $=0.081 \times 0.4667=0.0378 \mathrm{~m}^{2}$
Compressive stress $=726 / 0.0378=19.21 \mathrm{kN} / \mathrm{m}^{2}(19.21 \mathrm{MPa})>11.7 \mathrm{MPa}$ (Table 8.2)
Thus, the compressive strength satisfies the strength requirements.
8.5. a. Gross area compressive strength $=\mathrm{P} / \mathrm{A}_{\text {gross }}=51,000 /(7.5 \times 7.5)=\mathbf{9 0 6 . 6 7} \mathbf{~ p s i}$
b. Net area compressive strength $=P / \mathrm{A}_{\text {net }}=51,000 /(5.5 \times 5.5)=\mathbf{1 , 6 8 5 . 9 5} \mathbf{~ p s i}$
8.6. a. Gross volume $=7-5 / 8^{\prime \prime} \times 7-5 / 8^{\prime \prime} \times 7-5 / 8^{\prime \prime}=443.322$ in 3

Percentage of net cross-sectional area $=(348.1 / 443.322) \times 100=78.5 \%>75 \%$ Therefore, the unit is categorized as solid.
b. Gross area compressive strength $=P / \mathrm{A}_{\text {gross }}=98,000 /(7.625 \times 7.625)=\mathbf{1 , 6 8 6} \mathbf{~ p s i}$
c. Net area compressive strength $=\mathrm{P} / \mathrm{A}_{\text {net }}=98,000 /(348.1 / 7.625)=\mathbf{2 , 1 4 7} \mathbf{~ p s i}$
8.7. a. Gross area compressive strength $=P / A_{\text {gross }}=296 /(0.190 \times 0.190)=\mathbf{8 , 1 9 9} \mathbf{~ k N} / \mathbf{m}^{\mathbf{2}}$
b. Net area compressive strength $=P / A_{\text {net }}=296 /(0.114 \times 0.114)=\mathbf{2 2 , 7 7 6} \mathbf{k N} / \mathbf{m}^{\mathbf{2}}$
8.8. Gross area $=0.290 \times 0.190=0.0551 \mathrm{~m}^{2}$

Net area $=0.250 \times 0.150=0.0375 \mathrm{~m}^{2}$
Percentage of net cross-sectional area $=(0.0375 / 0.0551) \times 100=68.1 \%<75 \%$ Therefore, the unit is categorized as hollow. Compressive stress $=329 / 0.0375=8,773.33 \mathrm{kN} / \mathrm{m}^{2}=\mathbf{9 . 0} \mathbf{~ M P a}$
8.9. $a . A_{n}=V_{n} / h=312.7$ in $^{3} / 7.625$ in $=41$ in 2
$\mathrm{A}_{\mathrm{g}}=(7.625 \mathrm{in})^{2}=58.14 \mathrm{in}^{2}$
$41 / 58.14=\underline{0.705}$ the unit is hollow because the net area is only 70% of the gross area.
b. Gross area compressive strength $=83 \mathrm{k} / 58.14 \mathrm{in}^{2}=\underline{1.427 \mathrm{ksi}}$
c. Net area compressive strength $=83 \mathrm{k} / 41 \mathrm{in}^{2}=\underline{\mathbf{2 . 0 2 4} \mathbf{k s i}}$
8.10. a. $A_{n}=V_{n} / h=294.2 \mathrm{in}^{3} / 7.625 \mathrm{in}=38.6 \mathrm{in}^{2}$
$\mathrm{A}_{\mathrm{g}}=(7.625 \mathrm{in})^{2}=58.14$ in 2
$38.6 / 58.14=\underline{0.663}$ the unit is hollow because the net area is only 70% of the gross area.
b. Gross area compressive strength $=81 \mathrm{k} / 58.14 \mathrm{in}^{2}=\underline{1.393 \mathbf{k s i}}$
c. Net area compressive strength $=81 \mathrm{k} / 38.6 \mathrm{in}^{2}=\underline{\mathbf{2 . 0 9 8} \mathbf{~ k s i}}$
8.11. a. To reduce the effect of weathering and to limit the amount of shrinkage due to moisture loss after construction (See Section 8.1.1).
b. Absorption $=\frac{W_{s}-W_{d}}{W_{s}-W_{i}} \times 62.4=\frac{4.7-4.2}{4.7-2.1} \times 62.4=\mathbf{1 2 . 0 0} \mathbf{~ l b} / \mathbf{f t}^{\mathbf{3}}<\mathbf{1 3} \mathbf{~ l b} / \mathbf{f t}^{\mathbf{3}}$

Therefore, the absorption meets the ASTM C90 requirement for absorption for normal weight concrete masonry.

Moisture content as a percent of total absorption $=\frac{W_{r}-W_{d}}{W_{s}-W_{d}} x 100=\frac{4.3-4.2}{4.7-4.2} \times 100=\mathbf{2 0 . 0} \%$
8.12. Absorption $=\frac{W_{s}-W_{d}}{W_{s}-W_{i}} \times 1000=\frac{5776-5091}{5776-2973} \times 1000=\mathbf{2 4 4 . 4} \mathbf{~ k g} / \mathbf{m}^{\mathbf{3}}>\mathbf{2 4 0} \mathbf{~ k g} / \mathbf{m}^{\mathbf{3}}$

Therefore, the absorption does not meet the ASTM C90 requirement for absorption for medium weight concrete masonry.

Moisture content as a percent of total absorption $=\frac{W_{r}-W_{d}}{W_{s}-W_{d}} \times 100=\frac{5435-5091}{5776-5091} \times 100=$
50.22\%
8.13. a. Absorption $=100 \times\left[\left(\mathrm{W}_{\mathrm{s}}-\mathrm{W}_{\mathrm{d}}\right) / \mathrm{W}_{\mathrm{d}}\right]=100 \times[(7401-6916) / 6916]=\mathbf{7 . 0 1 \%}$
b. Moisture content as $\%$ of absorption $=100 \times\left[\left(\mathrm{W}_{\mathrm{r}}-\mathrm{W}_{\mathrm{d}}\right) /\left(\mathrm{W}_{\mathrm{s}}-\mathrm{W}_{\mathrm{d}}\right)\right]=100 \times[(7024-$ 6916) $/(7401-6916)]=\mathbf{2 2 . 2 7 \%}$
c. Dry density $=\left[\mathrm{W}_{\mathrm{d}} /\left(\mathrm{W}_{\mathrm{d}}-\mathrm{W}_{\mathrm{i}}\right)\right] \gamma_{\mathrm{w}}=[6916 /(6916-3624)] \times 1=\mathbf{2 . 1} \mathbf{~ M g} / \mathbf{m}^{\mathbf{3}}$
d. From Table 8.1: Based on the dry density the unit is Normal Weight.
8.14. a. Absorption $=\left(W_{s}-W_{d}\right) / W_{d}=(8652 \mathrm{~g}-7781 \mathrm{~g}) / 7781 \mathrm{~g}=871 \mathrm{~g} / 7781 \mathrm{~g}=0.112=$ 11.2\%
b. Moisture content as $\%$ of absorption $=\left(\mathrm{W}_{\mathrm{r}}-\mathrm{W}_{\mathrm{d}}\right) /\left(\mathrm{W}_{\mathrm{s}}-\mathrm{W}_{\mathrm{d}}\right)=(8271 \mathrm{~g}-7781 \mathrm{~g}) /$ $(8652 \mathrm{~g}-7781 \mathrm{~g})=490 \mathrm{~g} / 871 \mathrm{~g}=0.563=\mathbf{5 6 . 3 \%}$
8.15. See Section 8.1.1.
8.16. See Section 8.1.2.
8.17. Absorption by $24-\mathrm{h}$ submersion, $\%=[(2.453-2.186) / 2.186] \times 100=\mathbf{1 2 . 2 \%}$

Absorption by 5-h boiling, $\%=[(2.472-2.186) / 2.186] \times 100=\mathbf{1 3 . 1} \%<20.0 \% ~($ Table 8.4)
Saturation coefficient $=(2.453-2.186) /(2.472-2.186)=0.93>\mathbf{0 . 8 0}($ Table 8.4 $)$
Therefore, the brick does not satisfy the ASTM requirements since it fails the saturation coefficient requirement.
8.18. See Section 8.2.
8.19. See Section 8.3.
8.20. See Section 8.4.

CHAPTER 9. ASPHALT AND ASPHALT MIXTURE

9.1. See introduction of Chapter 9.

9.2. See Section 9.2.

9.3. See Section 9.1.

9.4.

9.5. See Section 9.3.
9.6. See Section 9.3 and Figure 9.11.
9.7. See Section 9.4.
9.8. a. Meeting specification requirements (quality control and quality assurance) to ensure safety at the refinery and at the HMA plant.
b. Meeting specification requirements (quality control and quality assurance). Simulation of short-term aging of the binder during mixing and construction.
c. Pumpability at the refinery.

Determining asphalt concrete mixing temperature at the HMA plant. Determining asphalt concrete compaction temperature on the road.
Meeting specification requirements (quality control and quality assurance). Ensuring appropriate viscosity for different climates.
d. Meeting specification requirements (quality control and quality assurance) to ensure appropriate performance of the HMA on the road.
e. Meeting specification requirements (quality control and quality assurance).

Selection of appropriate asphalt grades for different climates.
9.9. See Section 9.6.2.
9.10. See Sections 9.6.1 and 9.6.2.
9.11. See Section 9.7.1.
9.12. High temperature grade $>55+(2 \times 2.5)=60^{\circ} \mathrm{C}$

Low temperature grade $<-9-(2 \times 1.5)=-12{ }^{\circ} \mathrm{C}$
The asphalt binder that satisfy the two temperature grades at 98 percent reliability is PG

64-16.

9.13. High temperature grade $>48+(2 \times 2.5)=53^{\circ} \mathrm{C}$

Low temperature grade $<-21-(2 \times 3.0)=-27^{\circ} \mathrm{C}$
The asphalt binder that satisfy the two temperature grades at 50 percent reliability is PG 52-22.
The asphalt binder that satisfy the two temperature grades at 98 percent reliability is PG 5828.
9.14.

Case	Seven-Day Maximum Pavement Temperature, ${ }^{\circ} \mathrm{C}$		Minimum Pavement Temperature, ${ }^{\circ} \mathrm{C}$		Recommended PG Grade	
	Mean, ${ }^{\circ} \mathrm{C}$	Std. Dev., ${ }^{\circ} \mathrm{C}$	Mean, ${ }^{\circ} \mathrm{C}$	Std. Dev., ${ }^{\circ} \mathrm{C}$	50% Reliability	98% Reliability
	43	1.5	-29	2.5	PG $46-34$	PG 46-34
	51	3	-18	4	PG $52-22$	PG 58-28
3	62	2.5	10	2	PG $64-10$	PG 70-10

9.15.

Case	Seven-Day Maximum Pavement Temperature, ${ }^{\circ} \mathrm{C}$		Minimum Pavement Temperature, ${ }^{\circ} \mathrm{C}$		Recommended PG Grade	
	Mean, ${ }^{\circ} \mathrm{C}$	Std. Dev., ${ }^{\circ} \mathrm{C}$	Mean, ${ }^{\circ} \mathrm{C}$	Std. Dev., ${ }^{\circ} \mathrm{C}$	50% Reliability	98% Reliability
	39	1	-32	3.5	PG 46-34	PG 46-40
	54	1.5	-17	2	PG $58-22$	PG 58-22
3	69	2	5	2.5	PG 70-10	PG 76-10

9.16. CRS-2 is cationic, sets faster, and is more viscous than SS-1.
9.17. See Section 9.7.3.

9.18. See Section 9.8.

9.19. See Section 9.8.

9.20. See Section 9.9.

9.21. See Sections 9.8 and 9.9.
9.22. Equation 9.1, $\mathrm{G}_{\mathrm{mb}}=1353.9 /(1342.2-792.4)=\mathbf{2 . 4 6 3}$
9.23 a. Equation 9.1, $\mathrm{G}_{\mathrm{mb}}=1264.7 /(1271.9-723.9)=2.308=$
b. Equation 9.8, $\mathrm{VTM}=100\left[1-\left(\mathrm{G}_{\mathrm{mb}} / \mathrm{G}_{\mathrm{mm}}\right)\right]=100[1-(2.308 / 2.531)]=8.811 \%$

9.24. See Section 9.9.2.

9.25. Equation 5.19, $G_{s b}=\frac{1}{\frac{0.59}{2.635}+\frac{0.36}{2.710}+\frac{0.05}{2.748}}=2.667$

Since absorption is ignored, $\mathrm{G}_{\mathrm{se}}=\mathrm{G}_{\mathrm{sb}}$
Equation 9.3, $G_{m m}=\frac{100}{\frac{95}{2.667}+\frac{5}{1.088}}=2.487$
$G_{m b}=\frac{143.9}{62.4}=2.306$
Equation 9.8, $V T M=100\left(1-\frac{2.198}{2.487}\right)=\mathbf{1 1 . 6 \%}$
Equation 9.9, $V M A=\left(100-2.198 \frac{95}{2.667}\right)=\mathbf{2 1 . 7 \%}$
Equation 9.10, $V F A=100 x \frac{(0.217-0.116)}{0.217}=\mathbf{4 6 . 5 \%}$
9.26. Assume $V_{t}=1 \mathrm{ft}^{3}$

Determine mass of mix and components:
Total mass $=1 \times 147=147 \mathrm{lb}$
Mass of aggregate $=0.94 \times 147=138.2 \mathrm{lb}$
Mass of asphalt binder $=0.06 \times 147=8.8 \mathrm{lb}$
Determine volume of components:

$$
V_{s}=\frac{138.2}{2.65 \times 62.4}=0.836 f^{3}
$$

Ignore absorption, therefore $\mathrm{V}_{\mathrm{be}}=\mathrm{V}_{\mathrm{b}}$

$$
V_{b}=\frac{8.8}{1.0 \times 62.4}=0.141 f t^{3}
$$

Determine volume of voids:

$$
V_{v}=V_{t}-V_{s}-V_{b}=1-0.836-0.141=0.032 \mathrm{ft}^{3}
$$

Volumetric calculations:

$$
V T M=\frac{V_{v}}{V_{t}} 100=\frac{0.032}{1.00} 100=3.20 \%
$$

9.27. a. Equation 9.8, VTM $=100\left(1-\frac{G_{m b}}{G_{m m}}\right)=100\left(1-\frac{2.487}{2.561}\right)=2.89 \%<4 \%$
b. The air voids is lower than the design air voids. Thus, there is not enough room for the binder to go when the pavement is compacted by traffic, which results in rutting and bleeding.
9.28. Equation 9.8, $V T M=100\left(1-\frac{2.475}{2.563}\right)=\mathbf{3 . 4 \%}$

Equation 9.9, $V M A=\left(100-2.475 \frac{94.5}{2.689}\right)=\mathbf{1 3 . 0 \%}$
Equation 9.10, $V F A=100 x \frac{(0.130-0.034)}{0.130}=\mathbf{7 3 . 8 \%}$
9.29. Equation 9.8, $V T M=100\left(1-\frac{2.500}{2.610}\right)=\mathbf{4 . 2 \%}$

Equation 9.9, $V M A=\left(100-2.500 \frac{95.0}{2.725}\right)=\mathbf{1 2 . 8 \%}$
Equation 9.10, $V F A=100 x \frac{(0.128-0.042)}{0.128}=\mathbf{6 7 . 2 \%}$
9.30. See Section 9.9.3.
9.31. An Excel sheet can be used.

Volumetric Analysis					Criteria
Computed	Equation	Blend			
		1	2	3	
$\mathrm{G}_{\text {se }}$	9.4	2.855	2.922	2.849	
VTM	9.8	5.2	7.1	4.5	
VMA	9.9	13.2	12.7	14.1	
VFA	9.10	60.6	44.1	68.1	
$\% \mathrm{G}_{\mathrm{mm} \text {, Nini }}$	9.11	84.4	78.4	90.9	≤ 91.5
P_{ba}	9.12	2.69	3.37	1.92	
$\mathrm{P}_{\text {be }}$	9.13	3.37	2.32	3.99	
D/b	9.14	1.3	1.9	1.1	
Adjusted Values					
$\mathrm{P}_{\mathrm{b}, \text { est }}$	9.15	6.4	6.7	6.0	
$\mathrm{VMA}_{\text {est }}$	9.16	13.0	12.1	14.0	≥ 13
$\mathrm{VFA}_{\text {est }}$	9.17	69.2	66.9	71.4	70-80
$\mathrm{G}_{\mathrm{mm} \text {, Nini, est }}$	9.18	85.6	81.5	91.4	
$\mathrm{P}_{\text {be,est }}$	9.19	3.9	3.6	4.2	
$\mathrm{D} / \mathrm{B}_{\text {est }}$	9.20	1.2	1.3	1.1	0.6-1.2

Select blend 3

9.32. An Excel sheet can be used.

Volumetric Analysis

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Pb	6.1%
VMA	14.7
VFA	77
$\% \mathrm{G}_{\mathrm{mm}} @ \mathrm{~N}_{\mathrm{ini}}$	84.0
D / B	1.0

These results satisfy the design criteria shown in Table 9.10. Therefore, the design asphalt content is $\mathbf{6 . 1 \%}$.

Materials for Civil and Construction Engineers, Third Edition, by Michael S. Mamlouk and John P. Zaniewski. ISBN: 0-13-611058-4 © 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.
9.33. An Excel sheet can be used.

		Blend			
Data		1	2	3	
G_{mb}		2.457	2.441	2.477	
G_{mm}		2.598	2.558	2.664	
G_{b}		1.025	1.025	1.025	
P_{b}		5.9	5.7	6.2	
P_{s}		94.1	94.3	93.8	
P_{d}		4.5	4.5	4.5	
$\mathrm{G}_{\text {sb }}$		2.692	2.688	2.665	
$\mathrm{h}_{\text {ini }}$		125	131	125	
$\mathrm{H}_{\text {des }}$		115	118	115	
Volumetric Analysis					
Computed	Equation				Criteria
$\mathrm{G}_{\text {se }}$	9.4	2.875	2.812	2.979	
VTM	9.8	5.4	4.6	7.0	
VMA	9.9	14.1	14.4	12.8	
VFA	9.10	61.7	68.1	45.3	
$\% \mathrm{G}_{\mathrm{mm}, \mathrm{Nini}}$	9.11	87.0	86.0	85.5	≤ 89.0
P_{ba}	9.12	2.42	1.68	4.05	
$\mathrm{P}_{\text {be }}$	9.13	3.62	4.12	2.4	
D/b	9.14	1.2	1.1	1.9	
Adjusted Values					
$\mathrm{P}_{\mathrm{b}, \text { est }}$	9.15	6.5	5.9	7.4	
$\mathrm{VMA}_{\text {est }}$	9.16	13.8	14.3	12.2	≥ 13
$\mathrm{VFA}_{\text {est }}$	9.17	71.0	72.0	67.2	65-75
$\mathrm{G}_{\mathrm{mm} \text {, Nini, est }}$	9.18	88.4	86.6	88.5	
$\mathrm{P}_{\text {be,est }}$	9.19	4.2	4.3	3.6	
D/B est	9.20	1.1	1.0	1.3	0.6-1.2

Select aggregate blend 2.

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Design Binder Content

Data		Binder content			
		5.4	5.9	6.4	6.9
G_{mb}		2.351	2.441	2.455	2.469
G_{mm}		2.570	2.558	2.530	2.510
G_{b}		1.025	1.025	1.025	1.025
$\mathrm{P}_{\text {s }}$		94.6	94.1	93.6	93.1
P_{d}		4.5	4.5	4.5	4.5
$\mathrm{G}_{\text {sb }}$		2.688	2.688	2.688	2.688
$\mathrm{h}_{\text {ini }}$		125	131	126	130
$\mathrm{h}_{\text {des }}$		115	118	114	112
Volumetric Analysis					
Computed	Equation				
$\mathrm{G}_{\text {se }}$	9.4	2.812	2.812	2.812	2.812
VTM	9.8	8.5	4.6	3.0	1.6
VMA	9.9	17.3	14.5	14.5	14.5
VFA	9.10	50.9	68.3	79.3	89.0
$\% \mathrm{G}_{\mathrm{mm} \text {, Nini }}$	9.11	84.2	86.0	87.8	84.7
$\mathrm{P}_{\text {ba }}$	9.12	1.68	1.68	1.68	1.68
$\mathrm{P}_{\text {be }}$	9.13	3.81	4.32	4.83	5.34
D/B	9.14	1.2	1.0	0.9	0.8

Materials for Civil and Construction Engineers, Third Edition, by Michael S. Mamlouk and John P. Zaniewski. ISBN: 0-13-611058-4 © 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For ipformation regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Pb	6.0%
VMA	14.2
VFA	70
$\% \mathrm{G}_{\mathrm{mm}}$, Nini	86.4
D / B	0.9

These results satisfy the design criteria shown in Table 9.10. Therefore, the design asphalt content is $\mathbf{6 . 0 \%}$.

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

9.34. See Section 9.9.5.

9.35.

$\mathrm{P}_{\mathrm{b}}(\%)$	$\mathrm{G}_{\mathrm{mb}}(\%)$	Stability, N	Flow, 0.25 mm	$\mathrm{G}_{\mathrm{mm}}(\%)$	$\mathrm{G}_{\text {se }}(\%)$	VTM (\%)	VMA (\%)	VFA (\%)
4.0	2.303	7076	9	2.509		8.2	18.0	54.4
4.5	2.386	8411	10	2.489		4.1	15.5	73.2
					2.67			
5.0	2.412	7565	12	2.470	7	2.3	15.0	84.4
5.5	2.419	5963	15	2.451		1.3	15.2	91.4
6.0	2.421	4183	22	2.432		0.5	15.6	97.0

Materials for Civil and Construction Engineers, Third Edition, by Michael S. Mamlouk and John P. Zaniewski. ISBN: 0-13-611058-4 © 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Determine the asphalt content that corresponds to 4% air voids and check with Marshall design criteria shown in Tables 9.14 and 9.15.

	From data	Criteria
$\mathrm{P}_{\mathrm{b}} @ 4 \%$	4.5	
Stability (kN)	8.4	$5.34(\mathrm{~min})$
Flow, $(0.25 \mathrm{~mm})$	9	8 to 16
$\mathrm{G}_{\mathrm{mb}}(\%)$	2.39	na
VMA (\%)	15.6	$13.0(\mathrm{~min})$
VFA (\%)	73	65 to 78

Design asphalt content $=\mathbf{4 . 5 \%}$ © 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.
9.36.

P_{b} $(\%)$	G_{mb} $(\%)$	Stability (lb)	Flow	G_{mm} $(\%)$	G_{se} $(\%)$	VTM $(\%)$	VMA $(\%)$	VFA $(\%)$
3.5	2.294	1600	8	2.529		9.3	20.5	54.7
4.0	2.396	1980	9	2.510		4.5	17.4	74.0
4.5	2.421	2130	11	2.490	2.678	2.8	17.0	83.7
5.0	2.416	1600	14	2.471		2.2	17.6	87.4
5.5	2.401	1280	20	2.452		2.1	18.6	88.8

Determine the asphalt content that corresponds to 4% air voids and check with Marshall design criteria shown in Tables 9.14 and 9.15.

	From data	Criteria
$\mathrm{P}_{\mathrm{b}} @ 4 \%$	4.1	
Stability (lb)	2100	$1200(\mathrm{~min})$
Flow	9	8 to 16
$\mathrm{G}_{\mathrm{mb}}(\%)$	2.405	na
VMA (\%)	17.2	$15.0(\mathrm{~min})$
VFA (\%)	77	65 to 78

Design asphalt content $=\mathbf{4 . 1 \%}$

Materials for Civil and Construction Engineers, Third Edition, by Michael S. Mamlouk and John P. Zaniewski. ISBN: 0-13-611058-4 © 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

9.37.

$\begin{gathered} \mathrm{P}_{\mathrm{b}} \\ (\%) \end{gathered}$	G_{mb}	Stability (kN)	$\begin{gathered} \text { Flow } \\ (0.25 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{G}_{\mathrm{mm}} \\ (\%) \end{gathered}$	$\begin{aligned} & \mathrm{G}_{\mathrm{se}} \\ & (\%) \end{aligned}$	$\begin{gathered} \text { VTM } \\ (\%) \end{gathered}$	VMA (\%)	$\begin{gathered} \text { VFA } \\ (\%) \end{gathered}$
3.5	2.367	8.2	7.3	2.517		6.0	13.9	57.1
4.0	2.371	8.6	9.4	2.499		5.1	14.2	64.1
4.5	2.389	7.5	11.5	2.480	2.658	3.7	14.0	73.9
5.0	2.410	7.2	12.5	2.462		2.1	13.7	84.7
5.5	2.422	6.9	13.2	2.444		0.9	13.8	93.6

Materials for Civil and Construction Engineers, Third Edition, by Michael S. Mamlouk and John P. Zaniewski. ISBN: 0-13-611058-4 © 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Determine the asphalt content that corresponds to 4% air voids and check with Marshall design criteria shown in Tables 9.14 and 9.15 .

	From data	Criteria
$\mathrm{P}_{\mathrm{b}} @ 4 \%$	4.4	
Stability (kN)	8.05	$8.01(\mathrm{~min})$
Flow $(0.25 \mathrm{~mm})$	10.8	8 to 14
$\mathrm{G}_{\mathrm{mb}}(\%)$	2.38	na
VMA (\%)	14.15	$13.0(\mathrm{~min})$
VFA (\%)	70	65 to 75

Therefore the optimum asphalt content $=\mathbf{4 . 4 \%}$

9.38. See Section 9.9.6.

9.39. See Section 9.10.2.
9.40. $\quad M_{R}=\frac{P(0.27+v)}{t . \Delta H}=\frac{628(0.27+0.35)}{2.514 \times 247 \times 10^{-6}}=\mathbf{6 2 7 , 0 3 1} \mathbf{~ p s i}$
9.41. See Section 9.12.
9.42. See Section 9.12.
9.43. See Section 9.13.
9.44. See Section 9.13.1.
9.45.a. The control chart is shown below.

It is clear from the control chart that some of the cores have densities lower than the specification limits. Also the average density is 147.7 pcf which is less than the target value.
b. The control chart shows that there is a decrease in density values for the cores and this could be due to several factors such as problems with the paver, problems with the rollers, etc.
9.47. See Section 9.13.3.
9.48. See Section 9.14.

CHAPTER 10. WOOD

10.1. See introduction of Chapter 10.
10.2. See Section 10.1.1.
10.3. I would choose sample B because higher specific gravity indicates more cellulose and a denser piece of lumber. Therefore, this specimen would probably make a stronger, stiffer structural member.
10.4. See Section 10.1.2.
10.5. See Section 10.2.
10.6. Moisture content $=[(317.5-203.9) / 203.9] \times 100=\mathbf{5 5 . 7} \%$
10.7. See Section 10.3.
10.8. According to Figure 10.5 the $\mathrm{FSP}=28$. The changes in dimensions are due to the reduction of moisture below the FSP.

From Figure 10.5 the percentage of shrinkage due the changes of moisture from 28% to 7% are as follows: tangential $=6 \%$, radial $=3.1 \%$, and longitudinal $=0.23 \%$. The new dimensions will be:

- Tangential $=38 \times(1-0.06)=\mathbf{3 5 . 7} \mathbf{~ m m}$
- Radial $=89 \times(1-0.031)=\mathbf{8 6 . 2} \mathbf{~ m m}$
- Longitudinal $=2.438 \times(1-0.002)=\mathbf{2 . 4 3 3} \mathbf{~ m}$
10.9. a. No dimension change occurs above FSP.

Percent change in the wood diameter $=(1 / 5) \times(30-5)=\mathbf{5 . 0 \%}$

b. Swell

c. New diameter $=\mathbf{1 . 0 5 0}$ in
10.10. Assume a 30% FSP

The change of moisture content from 14% to 35% causes swelling. Swell does not occur above the FSP.
Assume a 1% swelling per 5\% increase in moisture content below the FSP.
Increase in depth $=(30-14) / 5=3.2 \%$
New depth $=12 \times 1.032=12.384 \mathrm{in}$.

10.11. See Section 10.4.

10.12. See Section 10.4.1.
10.13. See Section 10.4.
10.14. See Section 10.5.
10.15. See Section 10.6.
10.16. See Section 10.8 and Figure 10.12 .
10.17. $\mathrm{E}=\sigma / \varepsilon=20 /(0.00225)=8,889 \mathbf{~ M P a}$
$\mathrm{E}=\sigma / \varepsilon=2.9 /(0.00225)=\mathbf{1 , 2 8 9} \mathbf{~ k s i}$
The results are within the range of values in Table 1.1.
10.18. The typical load duration used in designing wood structures is 10 years.

For a one-week event, the designer should increase the allowable fiber stress.
According to Fig. 10.13, the designer should increase the allowable fiber stress by 25%.
10.19. Testing of structural-size members is more important than testing small, clear specimens since the design values are more applicable to the actual size members. The bending test is more commonly used than the other tests. See Section 10.9.
10.20. The actual dimensions of the 2×4 lumber is 1.5 " x 3.5 ".

Max bending moment $=M=(240 / 2) \times(16 / 2)=960.0$ in.kips
Moment of inertia $=\mathrm{I}=\left(1.5 \times 3.5^{3}\right) / 12=5.36$ in. ${ }^{4}$
$\mathrm{c}=\mathrm{d} / 2=1.75 \mathrm{in}$.
Modulus of rupture $=\frac{M c}{I}=\frac{960 \times 1.75}{5.36}=\mathbf{3 1 3 . 4} \mathbf{~ k s i}$

$$
\begin{aligned}
& \text { Apparent modulus of elasticity }=\left(\mathrm{P} \mathrm{~L}^{\wedge} 3\right) /\left(4 \mathrm{~b} \mathrm{~h}^{\wedge} 3 \times \text { delta }\right) \\
& =\left(240.0 \times 16^{\wedge} 3\right) /\left(4 \times 1.5 \times 3.5^{\wedge} 3 \times 2.4\right)=\mathbf{1 . 5 9 \times 1 0 ^ { \wedge } \mathbf { 6 } \mathbf { ~ p s i }}
\end{aligned}
$$

10.21. a. The actual dimensions of the 4×4 lumber is $3.5^{\prime \prime} \times 3.5^{\prime \prime}$.

The load versus deflection is shown below.

b. By inspection, extend the straight line backward until it meets the x -axis and this will be the new origin. The proportional limit is at a load of 3479 lb and a deflection of 0.483 in .
c. Max bending moment $=\mathrm{M}=(3479 / 2) \times(60 / 2)=52,185$ in. lb

Moment of inertia $=I=\left(3.5 \times 3.5^{3}\right) / 12=12.51 \mathrm{in} .{ }^{4}$
$\mathrm{c}=\mathrm{d} / 2=1.75 \mathrm{in}$.
Modulus of rupture $=\frac{M c}{I}=\frac{52,185 \times 1.75}{12.51}=7,300 \mathbf{p s i}$
10.22. a. The load versus deflection is shown below.

b. By inspection, extend the straight line backward until it meets the x -axis and this will be the new origin. The proportional limit is at a load of 280 lb and a deflection of 0.52 in .
c. Max bending moment $=\mathrm{M}=(365 / 2) \times(14 / 2)=1,277.5$ in. lb

Moment of inertia $=I=\left(1 \times 1^{3}\right) / 12=0.08333 \mathrm{in}^{4}{ }^{4}$
$\mathrm{c}=\mathrm{d} / 2=0.5 \mathrm{in}$.
Modulus of rupture $=\frac{M c}{I}=\frac{1,277.5 \times 0.5}{0.08333}=\mathbf{7 , 6 6 5} \mathbf{~ p s i}$
10.23. a. The load versus deflection is shown below.

b. By inspection, the proportional limit is at a load of $1,000 \mathrm{lb}$ and a deflection of 0.275 in .
c. Bending moment at failure $=\mathrm{M}=700 \times 14=9,800$ in. lb

Moment of inertia $=\mathrm{I}=\left(2 \times 2^{3}\right) / 12=1.333 \mathrm{in} .{ }^{4}$
$\mathrm{c}=\mathrm{d} / 2=1 \mathrm{in}$.
Modulus of rupture $=\frac{M c}{I}=\frac{9,800 x 1}{1.333}=\mathbf{7 , 3 5 2} \mathbf{~ p s i}$
d. The modulus of rupture computed does not truly represent the extreme fiber stresses in the specimen because the assumptions used in the derivation of the equation consider that the material is elastic, homogeneous, and isotropic. These assumptions are not exactly satisfied.
10.24. a. Stress $(\mathrm{psi})=\operatorname{Load}(\mathrm{lb}) /(1 \mathrm{in} . \mathrm{x} 1 \mathrm{in}$.

Strain (in./in.) = Deformation (in) / 4 in

Load, lb	Displacement, in.	Stress, psi	Strain, in./in.
0	0.000	0	0.000
7	0.012	7	0.003
10	0.068	10	0.017
87	0.164	87	0.041
530	0.180	530	0.045
1705	0.208	1705	0.052
2864	0.236	2864	0.059
3790	0.268	3790	0.067
4606	0.300	4606	0.075
5338	0.324	5338	0.081
5116	0.360	5116	0.090
4468	0.384	4468	0.096
4331	0.413	4331	0.103

b. The modulus of elasticity is the slope of the stress-stain line. The first part of the curve includes an experimental error probably due to the lack of full contact between the machine head and the specimen. Therefore, ignore the first portion of the curve and draw the best fit straight line up to the maximum stress. The modulus of elasticity is the slope of the line as shown on the figure below:

$$
\mathrm{E}=\sigma / \varepsilon=132,951 \mathbf{p s i}
$$

c. Failure stress $=\mathbf{5 , 3 3 8} \mathbf{~ p s i}$
10.25. a. Stress $(\mathrm{MPa})=\operatorname{Load}(\mathrm{MN}) /(0.05 \mathrm{mx} 0.05 \mathrm{~m})$

Strain $(\mathrm{m} / \mathrm{m})=$ Deformation $(\mathrm{mm}) / 200 \mathrm{~mm}$

Deformation, mm	Load kN	Strain	Stress (N/mm2)
0	0	0	0
0.457	8.9	0.002285	3.56
0.597	17.8	0.002985	7.12
0.724	26.7	0.00362	10.68
0.838	35.6	0.00419	14.24
0.965	44.5	0.004825	17.8
1.118	53.4	0.00559	21.36
1.27	62.3	0.00635	24.92
1.422	71.2	0.00711	28.48
1.588	80.1	0.00794	32.04
1.765	89	0.008825	35.6
1.956	97.9	0.00978	39.16
2.159	106.8	0.010795	42.72
2.311	111.3	0.011555	44.52

b. The modulus of elasticity is the slope of the stress-stain line. The first part of the curve includes an experimental error probably due to the lack of full contact between the machine head and the specimen. Therefore, ignore the first portion of the curve, draw the best fit straight line, and extend the line backward until it meets the x -axis. The intersection of the line and the x-axis $(0.002 \mathrm{~m} / \mathrm{m})$ is the new origin. The modulus of elasticity is the slope of the line, say at a stress of 40 MPa .
$\mathrm{E}=\sigma / \varepsilon=40 /(0.009-0.002)=\mathbf{5 , 7 1 4} \mathbf{~ M P a}$
c. Failure stress $=\mathbf{4 4 . 5 2} \mathbf{~ M P a}$
10.26.

Observation No.	P (lb)	ΔL (in).	σ (psi)	ε $(\mathrm{in} . / \mathrm{in})$.	u_{i} (psi)								
0	0	0.000	0	0.00000	N/A								
1	720	0.020	720	0.00500	1.800								
2	1720	0.048	1720	0.01200	8.540								
3	2750	0.076	2750	0.01900	15.645								
4	3790	0.108	3790	0.02700	26.160								
5	4606	0.140	4606	0.03500	33.584								
6	5338	0.164	5338	0.04100	29.832								
7	6170	0.200	6170	0.05000	51.786								
8	6480	0.224	6480	0.05600	37.950								
9	5400	0.253	5400	0.06325	43.065								
												$u_{t}=$	$\mathbf{2 4 8 . 3 6 2 0}$

10.27. $\mathrm{P}_{\max }=\sigma \times \mathrm{A}=4.3 \times\left(\pi \times 5^{2}\right)=702.10 \mathrm{kips}$

For F.S $=1.3, \mathrm{P}_{\max }=702.10 / 1.3=\mathbf{5 4 0 . 1} \mathbf{~ k i p s}$
10.28. See Section 10.10.
10.29. See Section 10.11.
10.30. See Section 10.12.
10.31. See Section 10.13.
10.32. See Section 10.13.

CHAPTER 11. COMPOSITES

11.1. See introduction of Chapter 11.
11.2. See introduction of Chapter 11.
11.3. See Section 11.1.
11.4. See Section 11.1.
11.5. See Section 11.1.1.
11.6. See Section 11.1.
11.7. See Section 11.1.
11.8. See Section 11.2.1.
11.9. See Section 11.2.3.
11.10. See Section 11.2.4.
11.11. Equation 11.6, $\mathrm{E}_{\mathrm{c}}=0.65 \times 0.5 \times 10^{6}+0.35 \times 50 \times 10^{6}=\mathbf{1 7 . 8 0} \times 10^{6} \mathbf{~ p s i}$ Equation 11.7, $\mathrm{F}_{\mathrm{f}} / \mathrm{F}_{\mathrm{c}}=\left(50 \times 10^{6} / 17.80 \times 10^{6}\right) \times 0.35 \times 100=\mathbf{9 8 . 3 \%}$
11.12. Equation 11.6, $\mathrm{E}_{\mathrm{c}}=0.55 \times 0.5 \times 10^{6}+0.45 \times 50 \times 10^{6}=\mathbf{2 2 . 8} \times \mathbf{1 0}^{\mathbf{6}} \mathbf{~ p s i}$ Equation 11.7, $\mathrm{F}_{\mathrm{f}} / \mathrm{F}_{\mathrm{c}}=\left(50 \times 10^{6} / 22.8 \times 10^{6}\right) \times 0.45 \times 100=\mathbf{9 8 . 7 \%}$
11.13. Equation 11.18, $E_{c}=\frac{E_{m} E_{f}}{v_{m} E_{f}+v_{f} E_{m}}=\frac{0.5 \times 10^{6} \times 50 \times 10^{6}}{0.5 x 50 \times 10^{6}+0.5 \times 0.5 \times 10^{6}}=\mathbf{0 . 9 9} \times 10^{6} \mathbf{~ p s i}$ Because of the isostress condition, both fibers and polymer carry the same load.
11.14. Equation $11.6, \mathrm{E}_{\mathrm{c}}=0.6 \times 3.5+0.4 \times 350=\mathbf{1 4 2 . 1} \mathbf{~ G P a}$

Equation 11.7, $\mathrm{F}_{\mathrm{f}} / \mathrm{F}_{\mathrm{c}}=(350 / 142.1) \times 0.4 \times 100=\mathbf{9 8 . 5 2 \%}$
11.15. Equation 11.6, $\mathrm{E}_{\mathrm{c}}=0.65 \times 3.5+0.35 \times 350=\mathbf{1 2 4 . 8} \mathbf{~ G P a}$ Equation 11.7, $\mathrm{F}_{\mathrm{f}} / \mathrm{F}_{\mathrm{c}}=(350 / 124.8) \times 0.35 \times 100=\mathbf{9 8 . 1 6 \%}$
11.16. Equation 11.18, $E_{c}=\frac{E_{m} E_{f}}{\nu_{m} E_{f}+v_{f} E_{m}}=\frac{3.5 \times 350}{0.5 \times 350+0.5 \times 3.5}=\mathbf{6 . 9 3} \mathbf{~ G P a}$ Because of the isostress condition, both carbon fibers and epoxy carry the same load.
11.17. Equation 11.20, $\mathrm{E}_{\mathrm{c}}=\mathrm{V}_{\mathrm{m}} . \mathrm{E}_{\mathrm{m}}+\mathrm{K} . \mathrm{V}_{\mathrm{f}} . \mathrm{E}_{\mathrm{f}}$
a. For 25% glass fiber, $\mathrm{E}_{\mathrm{c}}=0.75 \times 6+0.2 \times 0.25 \times 70=8.0 \mathbf{~ G P a}$
b. For 50% glass fiber, $\mathrm{E}_{\mathrm{c}}=0.50 \times 6+0.2 \times 0.50 \times 70=\mathbf{1 0 . 0} \mathbf{~ G P a}$
c. For 75% glass fiber, $\mathrm{E}_{\mathrm{c}}=0.25 \times 6+0.2 \times 0.75 \times 70=\mathbf{1 2 . 0} \mathbf{~ G P a}$

The figure below shows that increasing the percent of fibers increases the modulus of elasticity of the fiberglass.

11.18. Equation 11.20, $\mathrm{E}_{\mathrm{c}}=\mathrm{V}_{\mathrm{m}} . \mathrm{E}_{\mathrm{m}}+\mathrm{K} . \mathrm{V}_{\mathrm{f}} . \mathrm{E}_{\mathrm{f}}$
a. For 30% glass fiber, $\mathrm{E}_{\mathrm{c}}=0.70 \times 1 \times 10^{6}+0.2 \times 0.30 \times 10 \times 10^{6}=\mathbf{1 . 3 \times 1 0}{ }^{\mathbf{6}} \mathbf{~ p s i}$
b. For 50% glass fiber, $\mathrm{E}_{\mathrm{c}}=0.50 \times 1 \times 10^{6}+0.2 \times 0.50 \times 10 \times 10^{6}=\mathbf{1 . 5} \times 10^{6} \mathbf{~ p s i}$
c. For 70% glass fiber, $\mathrm{E}_{\mathrm{c}}=0.30 \times 1 \times 10^{6}+0.2 \times 0.70 \times 10 \times 10^{6}=1.7 \times 10^{\mathbf{6}} \mathbf{~ p s i}$

Increasing the percent of fibers increases the modulus of elasticity of the fiberglass.
11.19. a. Equation 11.6, $E_{R C}=v_{P C} E_{P C}+v_{S} E_{S}=(0.98 \times 25)+(0.02 \times 207)=\mathbf{2 8 . 6 4} \mathbf{~ G P a}$
b. Equation 11.7, $\quad \frac{F_{S}}{F_{R C}}=\frac{E_{s}}{E_{R C}} v_{s}=\frac{207}{28.64}(0.02)=0.145=14.5 \%$

$$
\mathrm{F}_{\mathrm{S}}=0.145 \times 1000=\mathbf{1 4 5} \mathbf{~ k N}
$$

$$
\mathrm{F}_{\mathrm{PC}}=1000-145=\mathbf{8 5 5} \mathbf{~ k N}
$$

c. $\mathrm{A}_{\text {column }} \approx \mathrm{A}_{\mathrm{PC}}=\frac{F_{P C}}{\sigma_{\text {allowable }}}=\frac{855 \times 10^{3}}{20 \times 10^{6}}=\mathbf{0 . 0 4 7 5} \mathbf{m}^{2}$
11.20. a. Equation 11.6, $E_{R C}=v_{P C} E_{P C}+v_{S} E_{S}=\left(0.98 \times 5 \times 10^{6}\right)+\left(0.02 \times 30 \times 10^{6}\right)=\mathbf{5 . 5 0} \times \mathbf{1 0}^{6}$ psi
b. Equation 11.7, $\quad \frac{F_{S}}{F_{R C}}=\frac{E_{S}}{E_{R C}} v_{S}=\frac{30 \times 10^{6}}{5.01 \times 10^{6}}(0.02)=0.109=10.9 \%$

$$
\mathrm{F}_{\mathrm{S}}=0.109 \times 600=\mathbf{6 5} \mathbf{k i p s}
$$

$$
\mathrm{F}_{\mathrm{PC}}=600-65=\mathbf{5 3 5} \mathbf{k i p s}
$$

c. $\mathrm{A}_{\text {column }} \approx \mathrm{A}_{\mathrm{PC}}=\frac{F_{P C}}{\sigma_{\text {allowable }}}=\frac{535000}{5000}=\mathbf{1 0 7} \mathbf{i n .}{ }^{2}$

