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John and Mimi Bell in Oxford in 1970, following the conferral of John’s D. Phil.



To the memory of −M2



Preface

If things of Sight such Heavens be
What Heavens are those we cannot see?

Andrew Marvell

This collection of essays was put together to celebrate John Bell’s sixtieth birth-
day on the 25 March 2005. The list of contributors signals some of the impor-
tant stations of John’s career as a mathematician, teacher, colleague and friend:
the student days in Oxford; the years of the young Lecturer, pacing the rooming
houses of Londinium’s Bedsit Land; the years of the Reader, ensconsed in more
sedate accommodations; the years of the Canadian Professor in London, Ontario,
no longer a philosopher in a mathematics department, but now a mathematician
in a philosophy department. And all of them years of books, records and beloved
recordings, from low-fi to high-fi, the sounds of Beethoven and Schoenberg, Heifetz
and Gould, Parker and Powell, conversations (monologues?) late (very late!) into the
night—vintage years of undying, revivifying enthusiasms, not least among them, the
enthusiasm for vintages.

The contributions are in no way intended to be commentaries on John’s work;
they are to be seen rather as presents from some of the people John has influenced,
been inspired by or inspired, encouraged, amazed and amused through the years.
They include contributions from former fellow students, former and current col-
leagues, former pupils, collaborators and joint authors, and from friends and admir-
ers. The papers are grouped into a small number of broad categories, though the
breadth of topics gives some indication of the range of John’s interests and influence,
running from mathematics to aesthetics, and from philosophy of science to political
theory. What unites the material in this volume is what is characteristic of John’s
work: when it is mathematical, the topics are chosen because of their philosophi-
cal interest; when it is philosophical, it takes, where appropriate, full advantage of
illumination from relevant work in mathematics and formal logic.

The attentive reader will no doubt have noticed that a considerable time has
elapsed between March of 2005 and the date of publication. Some of the lapse has
been in the interests of the quality of the volume itself, as we waited for some of
our eminent, and correspondingly busy, contributors to complete their papers. The
Editors, less eminent but perhaps not less busy, accept full responsibility for the rest
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x Preface

of the delay. We wish to thank the contributors, not just for their papers, but for their
patience and efficiency in the face of delays, pesterings and quibbles. We also wish
to thank John, Bill Demopoulos (the General Editor of the Western Ontario Series
in the Philosophy of Science, in which this volume appears) and the publisher for
their tolerance and understanding. We also owe an enormous debt to the meticulous
work of Oran Magal on the penultimate draft of the manuscript, and for compiling
the Name Index; his diligence and care has saved us from numerous infelicities.

Because of the various delays in its completion, John began referring to the book
waggishly as “the memorial volume.” But the joke, meant entirely good-heartedly,
has now, sadly, a cruel sting. We had intended to dedicate the volume to the fixed
point in John’s “perpetual motion,” Mimi, or −M2 as her dedicatory sobriquet
became. However, Mimi died from cancer on 20 November 2009; she had been
John’s constant companion for over 40 years, from their early days together at LSE.

Two of the editors first got to know the Bells at LSE in the early 1970s. Thanks
to John’s (literally) prodigious talent, which led to an Oxford Scholarship at the
age of 15, he was officially our senior as teacher and supervisor, and indeed, it
seemed then, as intellectual and cultural being, although he was scarcely older. We
picture John and Mimi in the large LSE Refectory (the standard meeting place, and
John’s constant resort), at one of the long formica tables, perhaps with a bowl of the
stodgy spaghetti or one of the glutinous curries, or just mugs of coffee or tea and a
biscuit or a cheese roll. The sense of fun was intense, as was the Bells’ delight in the
ridiculous, of which the Refectory, with its food and habitués (including ourselves),
provided a constant supply. John, of course, was the outwardly dominant one, but
Mimi was firmly in charge, a fact which became clearer as one got to know them
better. John was never allowed lasting dominance, and Mimi wouldn’t permit the
conversation to be swamped by John’s obsession du jour. After a first rebuke, John
would try reviving the topic on which he had fixed, especially if there was some
aperçu which had occurred to him and he was itching to get out; this would be fol-
lowed by a somewhat exasperated second rebuke, and the cycle would repeat itself.
Eventually, Mimi would exclaim “Oh John, you’re so irritating,” and the cycles
would be at an end. It was hard work, but Mimi always won, as she did at Scrabble.
Many eccentric and odd characters would turn up, and (of course!) gravitate to the
Bell circle, if sometimes only briefly. John encouraged this, and delighted in it; in
fact, for him the odder and more eccentric, the better. Mimi, however, would usually
remain aloof, composed, dignified and mildly sceptical, a rock of reassurance in the
unpredictable political and emotional turbulence.1

Eventually, the centre of this semi-communal social life shifted from the LSE to
the Bells’ rented flat in Alexandra Grove, where the lads of humble English origin,
having grown up in the monochrome aftermath of the Second World War, were first
exposed to new worlds of intellectual and culinary creation. The only occasion when

1 A fine sense of many of the LSE characters encountered by the Bells at this time is conveyed
by the chapter “London, 1968–73” in John’s memoir Perpetual Motion: My First Thirty Years,
available from his website.



Preface xi

at least one of the Editors saw John genuinely silenced and overawed was when their
son, Alex, was born. After witnessing Mimi give birth, John came to a dinner party
to which he had been previously invited. He hardly spoke a word all evening and
sat amazed by what he had experienced; when he did speak, it was to express his
admiration for Mimi and his complete devotion to her and their new son.

Evolving social and academic commitments and careers dispersed us somewhat,
and, as the years went by, there was less communal life and social gatherings became
rarer; new circles were formed of which we were no longer part. At the end of the
1980s, the persuasive powers of some of John’s future colleagues at the University
of Western Ontario, following on a decade of Thatcherism, convinced the Bells to
swap Londinium, as it became known for purposes of disambiguation, for London,
Ontario. This was a massive disruption, involving significant adaptation, no mat-
ter how willingly undertaken. Academic life remained relatively familiar, and, for
John, the major difficulty now was being surrounded by students and colleagues
with philosophical, rather than mathematical, background. But Canada generally,
and London in particular, involved considerable cultural bemusement for both the
Bells. John greatly enjoyed regaling visitors with lists of pros, cons and constants.
John was eventually able to reconcile himself to the strange ways of Canadians; one
suspects that he would thrive anywhere, but it has been the good fortune of Canadian
philosophy that he has been thriving in Canada. The Bells came to admire greatly
Canada’s well-run, multi-cultural mix, largely untroubled as it is by the hatreds that
had scarred old London in the thirties and which were, by the time the Bell family
left, beginning to reassert themselves in the darker corners of British political and
social life.

Once they’d arrived in Canada, and escaped a particularly miserly landlord (a
source of new obsessions!) by moving to their own home, the Bells kept a busy
social schedule, one that included frequent visits from graduate students. It was
during this transition period that the third editor got to know the Bells, again first as
John’s Ph.D. student, then as friend. For the shyer or more reserved of the Canuck
students, a visit to the Bell household promised intimidation, what with John’s bois-
terousness on home soil added to his brilliance. But, once arrived at the house,
Mimi (again firmly in charge) ensured that everyone recognized how welcome they
were. This third editor, who doesn’t think of himself as a shrinking violet, fondly
remembers spending a good portion of his first party at the Bells in the kitchen
helping Mimi prepare the food, a respite from the storm of conversation in the
living room. That job involved, among other things, the peeling of vegetables the
editor had never seen before, and was a first hint of the fact that every visit to the
Bells involved marvellous food, prepared with flair and imagination.

While John pursued his usual academic life, one of enormous productivity and
Oxonian “effortless superiority,” Mimi’s endeavours in new London were more var-
ied. For years, she worked at a local shelter for victims of domestic violence, putting
her deeply felt (if not often voiced) political commitments into action; while she
didn’t talk about this work often, at least at social gatherings, the work was essential
and potentially dangerous. In more recent years, she was involved in helping new
immigrants and refugees get settled in Canada, steering them through the formidable
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bureaucracy involved in finding adequate housing, language classes, training and
jobs. She was also eventually persuaded to share her culinary expertise with circles
outside the guests at her house. For years she taught cooking classes, and she set
up and ran her own catering business. She wrote a cookery book (which is partly
responsible for the difficulty one of the editors has in keeping his weight under
control). She wrote poetry and painted, including work that found its way into exhi-
bitions. All this in addition to raising the Bells’ son, Alex, and doing the bulk of the
work keeping a frenetic household running.

We cannot, sadly, dedicate this book to Mimi, as John so often did with his own
books. Instead, we dedicate it to her memory, with wonderfully fond recollection.

Waterloo (Canada) David DeVidi
Montreal (Canada) Michael Hallett
St. Andrews (UK) Peter Clark
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Chapter 1
On Logicist Conceptions of Functions
and Classes

William Demopoulos

1 Introduction

John Bell arrived in “new” London in 1989, a refugee from the academy under
Margaret Thatcher. We soon became good friends, and during the early years of our
friendship we collaborated on two papers (Bell and Demopoulos, 1993, 1996). The
first of these collaborations was a paper on the foundational significance of results
based on second-order logic and Frege’s understanding of his Begriffsschrift; the
second was on various notions of independence that arise in connection with ele-
mentary propositions in the philosophy of logical atomism. I retain fond memories
of both collaborations; they proceeded quickly and almost effortlessly. In this con-
tribution to John’s Festschrift, I propose to revisit our paper on Frege. That paper
was occasioned by (Hintikka and Sandu, 1992), which questioned whether Frege’s
understanding of second-order logic corresponded, in his framework of functions
and concepts, to what we would now regard as the standard interpretation, the inter-
pretation that takes the domain of the function variables to be the full power-set of
the domain of individuals. Hintikka and Sandu maintained that it did not on the
basis of a number of arguments, all of which they took to show that Frege favored
some variety of non-standard interpretation for which the domain of the function
variables is something less than the characteristic functions of all subsets of the
domain over which the individual variables range.

Although Hintikka and Sandu based their contention on many different consider-
ations, the one to which they assigned the greatest weight was that Frege lacked the
concept of an arbitrary correspondence from natural numbers to natural numbers (or
from real numbers to real numbers).1 Hintikka and Sandu contrasted their view of

W. Demopoulos (B)
Professor of Philosophy, Killam Research Fellow, University of Western Ontario,
London, ON, Canada
e-mail: wgdemo@uwo.ca

1 The textual considerations Hintikka and Sandu advance in support of this interpretive claim were
shown in (Burgess, 1993) to rest on simple misreadings of Frege’s Venia docendi, and in the case
of Frege’s relatively late paper, “What is a function?,” on passages that are far from unequivocal.

D. DeVidi et al. (eds.), Logic, Mathematics, Philosophy: Vintage Enthusiasms,
The Western Ontario Series in Philosophy of Science 75,
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4 W. Demopoulos

Frege on the concept of a function with that of Dummett who, in FPL,2 had main-
tained that Frege’s notion of a function coincides with the concept of an arbitrary
correspondence:

And it is true enough, in a sense, that, once we know what objects there are, then we also
know what functions there are, at least, so long as we are prepared, as Frege was, to admit all
“arbitrary functions” defined over all objects (FPL p. 177, quoted by (Hintikka and Sandu,
1992, p. 303)).

However in FPM Dummett reversed himself on this question, and suggested that
Frege implicitly assumed the adequacy of a substitutional interpretation of his func-
tion variables:

. . . Frege fails to pay due attention to the fact that the introduction of the [class] abstraction
operator brings with it, not only new singular terms, but an extension of the domain. . . . [I]t
may be seen as making an inconsistent demand on the size of the domain D, namely that,
where D comprises n objects, we should have nn � n, which holds only when n = 1,
whereas we must have n � 2, since the two truth values are distinct: for there must be
nn extensionally non-equivalent functions of one argument and hence nn distinct value
ranges. But this assumes that the function-variables range over the entire classical totality
of functions from D into D, and there is meagre evidence for attributing such a conception
to Frege. His formulations make it more likely that he thought of his function-variables as
ranging over only those functions that could be referred to by functional expressions of his
symbolism (and thus over a denumerable totality of functions), and of the domain D of
objects as comprising value-ranges only of such functions (FPM, pp. 219–220).

In FPM [Chapter 17, How the serpent entered Eden] Dummett put forward a
further consideration that can be seen as lending support to Hintikka and Sandu’s
view that Frege favored some sort of non-standard interpretation. In the course of
his discussion of the attempted consistency proof of Gg § 31, Dummett suggested
that Frege erroneously supposed that the consistency of certain restricted interpreta-
tions of the function variables extends to the system of Gg’s theory of functions and
classes in the context of full second-order logic. This unjustified, and unjustifiable,
assumption is what Dummett means by “Frege’s amazing insouciance regarding the
second-order quantifier” [FPM p. 218]. Subsequent developments have shown that
there is a systematic consideration in favor of Dummett’s claim and, a fortiori, in
favor of Hintikka and Sandu’s suggestion that Frege assumed a non-standard inter-
pretation: some restricted interpretations yield consistent fragments of Gg.3 Hence
it might be that Frege was blind to the inconsistency of his system because he con-
sidered the question of consistency only from the perspective of such a restricted
interpretation and failed to ask whether what holds of it, holds in general.

But although Dummett shares Hintikka and Sandu’s conclusion that Frege tended
toward a non-standard interpretation, his analysis does not support Hintikka and

2 I use the following mnemonic abbreviations: FPL for (Dummett, 1981), FPM for (Dummett,
1991), Grundlagen for (Frege, 1884), Gg for (Frege, 1903), FoM for (Ramsey, 1990), Principia
for (Whitehead and Russell, 1910), Tractatus for (Wittgenstein, 1922).
3 See for example the system PV discussed in (Burgess, 2005, § 2.1).



1 On Logicist Conceptions of Functions and Classes 5

Sandu’s evaluation of Frege’s foundational contributions. If we follow Dummett,
Frege missed the fact that the consistency of Gg, relative to a nonstandard inter-
pretation, does not necessarily extend to its consistency when the logic is given a
full interpretation. This is certainly an oversight, but it is not the oversight that is
appealed to in those of Hintikka and Sandu’s criticisms of Frege that so offended
some of their critics, as for example, whether, without having isolated the notion
of a standard interpretation, Frege could have even conceptualized results like
Dedekind’s categoricity theorem.

Apropos of Frege and categoricity, in their response to Hintikka and Sandu,
(Heck and Stanley, 1993) observed (what (Heck, 1995) elaborates in detail) that
Frege proved an analog of Dedekind’s theorem using his own axiomatization of
arithmetic (one that is only a slight variant of the Peano-Dedekind axiomatization).
And in our response, John and I argued that the relevance of the dependence of this
and other similar foundational results on the standard interpretation is not entirely
straightforward since the actual arguments which support them have the same char-
acter, whether one is working in second-order logic or in a suitably rich first-order
theory such as Zermelo-Fraenkel set theory. Hintikka and Sandu’s claim that Frege
could not even have formulated (let alone appreciated) these results because of their
dependence on the standard interpretation is therefore incorrect both historically
and methodologically. It is incorrect historically because Frege successfully proved
a categoricity theorem like Dedekind’s. And it is incorrect systematically because
essentially the same argument establishes the categoricity of second-order arith-
metic in any of the usual systems of set theory. And surely it is implausible that
only someone familiar with the categoricity of the Peano-Dedekind Axioms as a
theorem of second-order logic has really grasped the theorem or its proof. At most,
Frege might be charged with having missed a subtlety concerning the distinction
between formal and semi-formal systems; but this is hardly surprising for the period
in which he wrote.

In our paper, John and I accepted Dummett’s view in FPL and based our claim
that Frege’s interpretation of the function variables was the standard one on the
premise that Frege’s concept of a function coincides with the set-theoretic notion of
an arbitrary correspondence, in which case the domain of the function variables
is in one-one correspondence with the power-set of the domain of the individ-
ual variables. Our thought was that whatever covert role the neglect of Cantor’s
theorem might have played in the inconsistency of Gg, it is unlikely that Frege
sought to ignore the theorem by assuming that the totality of functions, like the
totality of expressions, is countably infinite. But we sided with Dummett in FPM
and supposed that Frege might very well have been misled into assuming that
what holds for certain countable interpretations of the function variables holds
in general; hence we agreed with Dummett’s evaluation of the sense in which
Frege missed the significance of the possibility of different interpretations for his
program.

More recently, reflection occasioned by reading (Sandu, 2005) has convinced
me that the equation of Frege’s concept of a function with the notion of an arbitrary
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correspondence should be reconsidered, and that it might be fruitful to recon-
sider it from the perspective of Ramsey’s interpretation of Principia’s propositional
functions.

Let us call classes the extensions of functions in the logical sense of “function,”
a notion I will explain in the sequel. Then we wish to explore whether the classes
determined by such functions correspond to only a fragment of the sets associ-
ated with arbitrary correspondences. The assumption that something like this is
correct evidently underlies Ramsey’s proposed reinterpretation of the first edition
Principia’s notion of a propositional function in his essay, FoM. That essay is
usually cited for its separation of the paradoxes and its isolation of the simple
hierarchy of Principia’s functions of lowest order. It is generally assumed that by
this hierarchy Ramsey understood a hierarchy of functions interchangeable with
the standard hierarchy of sets, modulo the condition that Principia’s hierarchy is
stratified rather than cumulative. In fact, Ramsey regards Principia’s simple hier-
archy of functions of lowest order as inadequate, and he devotes a central chapter
of his essay [FoM, Chapter IV] to criticizing Principia’s notion of propositional
function and arguing for its extension. He achieves this extension, and more, by
the introduction of the notion of a propositional function in extension, or what
I will call an extensional propositional function. The consideration of Ramsey’s crit-
icisms of Principia has led me to the view that the interest of Hintikka and Sandu’s
paper has less to do with standard vs. non-standard interpretations of second-order
logic than with Frege’s concept of a function. As I now see it, the chief interest
of their paper, although not perhaps their principal aim, is the suggestion that the
difference between logical and set-theoretic notions of function parallels the well-
known contrast between the logical notion of class and the mathematical notion
of set.

My strategy for the balance of the paper is to proceed anti-historically by review-
ing Ramsey’s notion of an extensional propositional function, its difference from
what Ramsey calls the predicative propositional functions of Principia, and the
uses to which Ramsey put the notion in his defense of a modified logicist position.
To motivate the notion of an extensional propositional function, I will begin by
briefly recounting the relevant Tractarian background to Ramsey’s thought. I will
then describe two reconstructions of the Axiom of Infinity, one with, and one
without, the notion of an extensional propositional function. Both reconstructions
trace back to Ramsey. The reconstruction involving the notion of an extensional
propositional function was elaborated in his FoM; my discussion of it consti-
tutes the principal novelty of the present paper. Having clarified the predicative
and extensional notions, I will return to Frege’s functions. I will argue that they
have a feature in common with Principia’s propositional functions, and that it is
plausible to argue, on the basis of this, that they should be distinguished from
the notion of an arbitrary correspondence. However the situation is not entirely
straightforward, and we will see that there are also reasons to suppose that Frege’s
notion can be regarded as falling in line with the mathematical (or “extensionalist”)
tradition.
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2 The Tractarian Background to Ramsey’s Extensional
Propositional Functions

There are three key ideas of the Tractatus that form the background to Ramsey’s
notion of an extensional propositional function: (i) A proposition is significant
only insofar as it partitions all possible states of affairs into two classes. This is
what (Potter, 2005) has called “Wittgenstein’s big idea.” It implies that tautologies
cannot be regarded as significant propositions, and insofar as the propositions of
logic are all tautologies, the propositions of logic are not significant propositions;
in particular, they cannot be merely more general than the truths of zoology or any
other special science as Russell claimed (in (Russell, 1919, p. 169)). (ii) Objects,
which constitute the substance of the world, are constant across alternative possi-
bilities; so also therefore is their number. Potter puts the point well when he says
that “what changes in the transition between [possibilities] is how objects are com-
bined with one another to form atomic facts; what the objects are does not change
because they are the hinges about which the possibilities turn and hence are con-
stant” (Potter, 2005, p. 72). It follows that there cannot be a significant proposition
regarding the number of objects. At best language can “reflect” the cardinality of
the world. (iii) Since atomic propositions are logically independent of one another,
statements of identity cannot express significant propositions, for if they did, they
would establish relations of logical dependence among atomic propositions.

It is a consequence of Wittgenstein’s rejection of identity, a rejection with which
Ramsey concurred, that the notion of class implicit in Russell’s theory of classes
must be an “accidental” one, that is, one according to which it is possible that every
property might be shared by at least two individuals, with the consequence that
there would be nothing to answer to the number 1 [FoM, p. 213]. If we could express
significant propositions with the use of identity, then among the properties of a there
would be the property of being identical with a, and this would settle the question
of the existence of the number 1 on Russell’s theory. But acceptance of the third
Tractarian thesis argues against a solution which, like this one, treats identity as a
possible constituent of a significant proposition. Hence if we follow the Tractatus
on identity, Russell’s theory cannot recover the notion of class that its account of
number—and indeed, of the whole of mathematics—requires. This is an objection
that is in some ways more fundamental than the standard objection to the apparent
contingency of the Axiom of Infinity, since even if that axiom could in some way be
made acceptable, according to the present objection, it is still possible on Russell’s
theory that there might not be enough numbers to go around. Hence, for this and
other reasons we will soon come to, mathematics cannot be based on Principia’s
theory of classes.

Ramsey’s notion of an extensional propositional function emerged from his
attempt to address this and other defects in Principia’s theory of classes, such as
those surrounding its account of Choice. But perhaps the most important consider-
ation in favor of the notion was that it proved essential to a formulation of Infinity
that accords with the first and second Tractarian theses. For, if we follow Russell and
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simply take Infinity to assert that for every inductive cardinal number n, there is a
class whose cardinality is given by n, then we treat the axiom as an accidental truth
concerning the number of things of a particular sort. As a consequence, we miss
the peculiar character of claims regarding the cardinality of objects—in the present
case, of individuals—enunciated by (ii): The existence of objects is a precondition
for significant propositions and cannot be a subject with which such propositions
deal; the same is true of their number. In order to see how Ramsey’s notion of an
extensional propositional function leads to a formulation of Infinity that addresses
these issues, it will be useful to begin with a formulation of the axiom that has all
the ingredients of the formulation of FoM except for the notion of an extensional
function.

3 Infinity Without Extensional Propositional Functions

Potter (2005) discusses an early unpublished fragment of Ramsey’s (“The number
of things in the world”) which contains what Potter calls “Ramsey’s transcendental
argument for Infinity.” Potter discusses this argument at length, and canvasses a
number of questions of Ramsey-interpretation which the fragment raises. The tran-
scendental argument evidently precedes Ramsey’s discovery of extensional propo-
sitional functions. For my purposes, the argument’s most interesting feature is the
formulation of Infinity it suggests, rather than the considerations in favor of the
axiom that it advances. I will refer to this as “Ramsey’s early formulation of Infin-
ity”; however, my discussion is not based on Ramsey’s unpublished fragment, but on
Potter’s reconstruction of it. The historical accuracy of Potter’s account is of course
completely irrelevant to its usefulness for motivating the formulation of Infinity that
Ramsey gives in FoM. That formulation is my main concern, and I will take it up in
the next section.

Let ϕx be any propositional function, and let T x be ϕx ∨ ¬ϕx . Then to say that
there are at least n individuals write

pn =D f ∃x1 . . . ∃xnT x1 & . . . & T xn,

where, here and elsewhere, Ramsey assumes Wittgenstein’s “nested variable con-
vention,” which says that whenever a variable occurs within the scope of another
variable, it is to be assigned a different individual as its value.4 Thus, for example,
“∃x∃y . . . ” is read, “there is an individual x and another individual y . . . .” Then if
there are n individuals a1, . . . , an , this is reflected by the tautology T a1 & . . . &
T an .

4 What I am calling Wittgenstein’s nested variable convention is explained in detail in (Wehmeier,
2008) in his discussion of “W-logic.” Wehmeier (2009) discusses a variant of W-logic (“R-logic”)
which originated from Ramsey’s initial misunderstanding of Wittgenstein’s convention.
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Now let pω be the “logical product” of the pn , for all finite n. Then pω is
Ramsey’s early formulation of Infinity, where what Ramsey means by the logical
product of the pn can be gleaned from what he says about logical sums:

A logical sum is not like an algebraic sum; only a finite number of terms can have an alge-
braic sum, for an “infinite sum” is really a limit. But the logical sum of a set of propositions
is the proposition that these are not all false, and exists whether the set be finite or infinite
(FoM p. 219, n. 1).

Ramsey clearly takes this to apply mutatis mutandis to the notion of a logical prod-
uct, in which case we are to understand by pω the proposition that every member of
the p-series is true. This is expressed by the infinite conjunction of the pn , which is
what Ramsey means by the proposition that every member of the p-series is true.
Hence, if there are infinitely many individuals, this is reflected by the tautology
T a1 & . . . & T an & . . . , which asserts, or appears to assert, the infinity of the
number of objects of the type of individuals, and is to be contrasted with a claim
about the number of things there are of some particular kind.

To construct an “Axiom of Infinity” regarding some sort of thing, we also proceed
by first describing a series of propositions such as

q1 =D f ∃x(x is a hydrogen atom)

q2 =D f ∃x∃y(x and y are hydrogen atoms)

...

where once again Wittgenstein’s convention regarding nested variables is assumed.
In this case, each qn is an ordinary empirical proposition concerning not objects in
general but the number of things of a particular kind, and qω (the product of all the
qn) says that there are infinitely many of them. The Tractatus imposes no prohibition
against the significance of a proposition like qn since it is a genuine possibility that
there are at least n hydrogen atoms, even if there are in fact only m of them for m less
than n. It is likewise a genuine possibility that there are infinitely many hydrogen
atoms. All such claims mark genuine possibilities in the sense demanded by the
Tractarian notion of a significant proposition.

There is a well-known distinction of Carnap’s that bears on the evaluation of
Ramsey’s early proposal. Carnap (1931, p. 41) distinguished between two types of
logicist reduction. Let us call a reduction type (a) if it defines all concepts of a
mathematical theory in terms of those of logic, and type (b) if, in addition to provid-
ing definitions of a mathematical theory’s concepts in terms of logical concepts, it
derives the axioms of the theory from purely logical axioms. It is worth remarking
that although Russell may have sometimes expressed the view that a type (a) reduc-
tion suffices for logicism, Frege was always clear on the need to secure both type
(a) and type (b) reductions.

In FoM [pp. 166–167], which was written after the fragment containing Ram-
sey’s early formulation of Infinity, there is an anticipation of Carnap’s distinction
between type (a) and type (b) reductions. Ramsey gave the distinction an interesting
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interpretation when, under the clear influence of Wittgenstein, he remarked that
while a type (a) reduction might illuminate the generality of mathematics, a type (b)
reduction would address what is truly distinctive about it: its necessity. But if Ram-
sey and Wittgenstein are the source of the view that necessity is the chief char-
acteristic of mathematical propositions that requires explanation, it is important to
remember that there is not a trace of an interest in necessity in Frege’s Grundlagen
or in the first edition Principia. Both works stress the generality of mathematics and
the possibility that this might be illuminated by assimilating it to the generality of
logic. Ramsey’s aim was to illuminate the necessity of mathematics by assimilat-
ing it to the necessity of logic. But he also saw that there are at least two ways in
which this might be accomplished. We can try reducing the propositions of math-
ematics to those of logic after the fashion of a type (b) reduction of the sort Frege
tried, unsuccessfully, to achieve. Alternatively, we might attempt to show that the
propositions of mathematics have the same kind of necessity that we find in the
propositions of logic, not by deriving mathematics from logic, but by an analysis
of the necessity mathematical propositions exhibit. Ramsey sought to explicate this
characteristic by proposing that the propositions of mathematics, like those of logic,
are “tautologies,” an idea that evidently has its basis in the Tractatus. However, by a
tautology Ramsey did not mean something that is truth-table decidable, as is clear
from his discussion of the Axiom of Choice where he mentions with approval the
possibility of “a tautology, which could be stated in finite terms, whose proof was,
nevertheless, infinitely complicated and therefore impossible for us” [FoM, p. 222].
We will return to Ramsey’s notion of tautology.

How do these considerations bear on Ramsey’s early formulation of Infinity?
There are two objections to this formulation, one more telling than the other. The
less telling objection is that the existential claims expressed by the propositions of
the p-series fall short of possessing the necessity of logical propositions. The fact
that T x1 & . . . & T xn becomes a tautology when there are individuals a1, . . . , an

which accord with Wittgenstein’s convention does not show that pn is a tautology,
and therefore does not show that the axiom is necessary. In a domain of m < n
objects, pn is simply false, a fact which on Ramsey’s formulation is represented
by the absence of values for the variables of pn that accord with Wittgenstein’s
nested variable convention. But to this objection Ramsey can respond that it was
not his intention to show that pn , let alone pω, is a tautology. Rather, the point of
the formulation was to capture the idea that if there are n individuals, then pn is
witnessed by the tautology, T a1 & . . . & T an . The objection mistakenly assumes
that the only way to establish the logical necessity of Infinity is to show that it
holds in every “universe of discourse.” This is one sense in which a proposition may
be seen to be a logical proposition, but it is not the sense Ramsey’s formulation
was intended to capture. A proposition can be one whose truth is witnessed by a
tautology, and thus be a logical proposition in Ramsey’s sense, without holding in
every universe of discourse. And this is precisely the case with Infinity.

The second objection is harder to articulate and will only become clear after we
have examined the formulation of Infinity in FoM that is based on Ramsey’s notion
of an extensional propositional function. As a first approximation, the difficulty is
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that the tautological character of the propositional function Tx which figures in
Ramsey’s p-series is not integrated into the theory of functions and classes as it
would be on a formulation of Infinity that was derived from an analysis of class and
propositional function. For this reason, Ramsey’s formulation carries little convic-
tion as an account of the necessity that a fundamental axiom like Infinity is supposed
to exhibit. Since, according to Ramsey’s reading of the Tractatus, the explanation
of this characteristic is the central task of a philosophy of mathematics, it seems
likely that the source of his dissatisfaction with his early proposal, and the reason he
never published it, was the recognition that it fails to present a convincing account
of Infinity’s necessity.

4 Infinity with Extensional Propositional Functions

In FoM Ramsey rejected the notion of propositional function that we associate with
the 1910 Principia. Such functions are, in Ramsey’s phrase, “predicative” in the
sense that the proposition ϕa which the propositional function ϕ assigns to a says or
predicates the same thing of a as the proposition ϕb, which ϕ assigns to b, does of b.
This connection with predication is essential to any logical notion of the functions
which determine classes, and it stands in contrast with the idea that a function is
an arbitrary correspondence. According to Ramsey’s new conception, the way to
accommodate the broader notion of set which is implicit in the idea of an arbitrary
correspondence is by conceiving of a propositional function as an arbitrary mapping,
in the present case from individuals to propositions, with ϕa and ϕb merely the
values of ϕ for a and b as arguments. Here “arbitrary” means both that the mapping
is not constrained to preserve a property in the sense that the propositions ϕa and
ϕb are not required to say the same thing of a and b, and that it allows all com-
binatorial possibilities of functional pairings of individuals with propositions. On
Ramsey’s view, it is only propositions that involve properties which are predicable
of individuals; the classes which propositional functions determine should not be
constrained by the demand that their elements share a common property.5

When this purely extensional notion of a propositional function is adopted, there
is, of course, no difficulty with the existence of unit classes and the number 1, since

5 By an abuse of notation which uses the same symbol ϕ in two very different ways—both for
a mapping from individuals to propositions and for a predicate of the language—a predicative
propositional function ϕ takes an individual a to a proposition of the form ϕa, i.e., to a proposition
which is expressed by a sentence consisting of the concatenation of the predicate ϕ with the con-
stant a. The class determined by ϕ is the class of all a such that ϕa is true. If ϕ is extensional but
not predicative, the class determined by ϕ is the class of all individuals a which ϕ maps to truths.
Under an extensional understanding of propositional functions, there is not in general a correspon-
dence between propositional functions and predicates of the language, so that the association with
propositions is in this sense “arbitrary.” It is also arbitrary in the stronger sense of allowing all
possible pairings of individuals with truth values.
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every object has a mapping to propositions that is unique to that object.6 Notice
however that, of the two features of extensional propositional functions, it is only
the second, namely the fact that such functions exhaust all combinatorial possi-
bilities, that the solution to this difficulty depends upon, and this can readily be
accommodated within a framework that considers only pairings of individuals with
truth values. The “propositional” aspect of propositional functions, the fact that they
map individuals to propositions, doesn’t enter into the solution of the problem raised
by the possibility that every property is shared by at least two individuals.

Ramsey says of the Axiom of Choice that given his notion of an extensional
propositional function, “it is the most evident tautology . . . [and not something that]
can be the subject of reasonable doubt” [FoM, p. 221]. He then proceeds to show
how, on Principia’s understanding of propositional function and class, the axiom,
though not a contradiction, is also not a tautology. Ramsey does not pause to explain
why on his account the axiom is an evident tautology, but as John once observed in
conversation, after the existence of singletons has been shown to follow from the
concept of an extensional propositional function, Choice, in the form “If K is a
family of disjoint non-empty classes, then K has a choice class,” is clearly true.
For if classes are determined by extensional functions, it is evident that every class
in K can be shrunk to a singleton; the sum of all such singletons is the required
choice class. Like the difficulty with the number 1, the foregoing justification of
Choice depends only on the fact that extensional propositional functions exhaust all
combinatorial possibilities.

Clearly, what Ramsey means by the tautologousness of Choice is not captured
by the idea that it holds in all universes of discourse, still less that it is truth-table
decidable. Ramsey perceived that there are “interpretations” of Principia, by which
he meant understandings of the notion of propositional function, of which the one
favored by Whitehead and Russell is just one example, under which Choice can be
shown to be false. And in a remark made in the course of a discussion of Infinity
and the possibility of saying something about the cardinality of the world given his
adherence to the second Tractarian idea to which we called attention in Section 2,
Ramsey shows his appreciation of the possibility of falsifying a fundamental axiom
by “imagining a universe of discourse, to which we may be confined, so that by ‘all’
we mean all in the universe of discourse” [FoM, p. 224]. From this we may conclude
that Ramsey’s understanding of the “tautologousness” of Choice is that relative to
his extensional understanding of “propositional function” and the intended meaning
of “all,” and relative perhaps as well to the intended meanings of the propositional
connectives, Choice is evidently true.7 Ramsey expresses this by saying that, under
these conditions, the axiom is “an evident tautology,” to draw attention to the fact
that its obvious demonstration in the finite case proceeds by inspecting all the com-

6 For example the singleton of a is determined by a propositional function which maps a to an
arbitrarily selected truth and maps every other individual to a falsehood.
7 Sandu misses this point about the tautologousness of Choice when he criticizes Ramsey’s con-
tention that Choice is a tautology and argues that since “. . . there are models of set theory in which
the Axiom of Choice is false, . . . it cannot, therefore, be a tautology” (Sandu, 2005, p. 252).
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binatorially possible relations between classes and their elements. In the general
case, we are incapable of carrying out such an inspection, but this does not affect
the truth of the principle on an understanding of propositional function that admits
all combinatorial possibilities.

The situation is different with Ramsey’s analysis of the Axiom of Infinity.
Here, in addition to the fact that Ramsey’s functions exhaust all combinatorial
possibilities, the propositional character of extensional propositional functions is
an indispensable component of the solution to the problem the axiom presents. To
understand Ramsey’s account of Infinity, suppose we try expressing the idea that
there are at least two things by the proposition

∃x∃y¬(ϕ)(ϕx ≡ ϕy), (∗)

where it is assumed that propositional functions are to be understood predicatively,
after the manner of Whitehead and Russell. Now consider a universe of discourse
U containing precisely two individuals a and b which have all their properties in
common. For Ramsey there is nothing absurd in the idea that two things might
share all their properties and thus be indistinguishable but distinct; and since he
rejects identity he will not allow an appeal to the property, being identical with a to
insure the truth of (∗) in U under such a predicative understanding of propositional
functions. Under these circumstances, (∗) will fail to reflect the fact that a and b
comprise a two-element universe. But for Ramsey that it should even be possible that
(∗) can fail in this way shows that, under its predicative interpretation, (∗) purports
to express a general truth, and hence, a significant proposition; it cannot therefore
be the correct expression of the idea that there are at least two things.

Let us now consider what happens when propositional functions are understood
extensionally. Assuming Wittgenstein’s nested variable convention, (∗) must be true
in any two-element universe such as U . For if we consider all possible mappings ϕ,
there must be one among them that assigns a to the negation of whatever proposition
it assigns b. Hence the function ¬(ϕ)(ϕx = ϕy) will map (a, b) to the negation of
a contradiction, and therefore on Ramsey’s understanding of propositional function,
the truth of (∗) in U will be witnessed by a tautology. This contrasts with the predica-
tive interpretation under which (∗) can fail in a two-element universe, so that even in
cases where it holds, it does so under a predicative understanding of propositional
function only in virtue of a contingent fact about individuals and their properties.
It also contrasts with Potter’s reconstruction of Ramsey’s early formulation, since
the fact that (∗) is witnessed by a tautology is not an ad hoc stipulation, but a con-
sequence of Ramsey’s extensional understanding of the nature of a propositional
function.

In light of the foregoing considerations, let us define the propositional function

T (x, y) =D f (ϕ)(ϕx = ϕy).

As we have seen, when propositional functions are understood extensionally, the
function T (x, y) maps to a tautology when the values of x and y are the same
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and to a contradiction otherwise. Thus if propositional functions are understood
extensionally, then if there are two individuals, and we understand ∃x∃yT (x, y) to
say, “There is an x and another y such that T(x,y),” then ∃x∃yT (x, y) reduces to
a contradiction, while ∃x∃y¬T (x, y) reduces to a tautology. This suggests a new
p-series defined as follows:

p1 =D f ∃xT (x, x)

p2 =D f ∃x∃y¬T (x, y)

p3 =D f ∃x∃y∃z¬T (x, y) & ¬T (x, z) & ¬T (y, z)

...

For each n, pn is true in a universe of n individuals. The witnesses to the propo-
sitions of the series alternate between a tautology, when a member of the series is
true, and a contradiction, when it is false. Ramsey’s new formulation of the Axiom
of Infinity is given by the logical product pℵ0 of the propositions of this series.
Observe that if there are ℵ0 individuals, pℵ0 is witnessed by a product of tautologies,
and if fewer than ℵ0, its falsity is witnessed by a contradiction.

To appreciate Ramsey’s achievement, consider how his proposal differs from the
following reduction of truths to tautologies. (For simplicity, we restrict ourselves
to quantifier-free molecular formulas, since this suffices to illustrate the point of
difference with the alternative reduction to which I wish to call attention.) Replace
a quantifier-free molecular formula ϕ by its equivalent disjunctive normal form.
Next replace any literal of ϕ’s disjunctive normal form which is true by x = x ,
and replace a literal by x �= x if it is false. Then the resulting formula is a truth
function of “tautologies” and “contradictions,” and it reduces to one or the other
according to whether it is true or false. This is clearly artificial since it enables us
to “reduce” to tautologies and contradictions many propositions which are merely
true or false. But FoM’s proposal regarding Infinity does not simply replace truths
with tautologies, and falsehoods with contradictions; it derives the tautologous or
contradictory character of a witness to a proposition of the p-series from an analysis
of the notion of a propositional function: a proposition of the p-series is witnessed
by a tautology or contradiction as a consequence of the cardinality of the domain
and the extensional character of propositional functions. In this respect Ramsey’s
reduction procedure stands in marked contrast with one which merely stipulates the
tautologousness of the witness to the truth of a proposition.

Does the formulation of Infinity based on Ramsey’s reinterpretation of the notion
of a propositional function provide a logical justification in the usual sense? It does
not. Ramsey’s achievement consists in showing how the witness to the truth of
Infinity reduces to a product of tautologies when the cardinality of the domain of
individuals is infinite. In conformity with the first of the Tractarian theses noted
earlier, the truth of the axiom is not expressed by a genuine proposition; rather,
the cardinality of the world is “shown”—or as I prefer to say, “witnessed”—by a
tautology. This is not the provision of a logical justification for Infinity that purports
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to show that it is true in every universe of discourse, but an explanation of how, as
a consequence of the notion of an extensional propositional function, a witness to
the truth of the axiom reduces to a product of tautologies in any domain in which
the axiom holds, and how a witness to its falsity reduces to a contradiction in any
in which it does not hold. By integrating the idea that Infinity, if true, is witnessed
by a tautology into the notion of a propositional function, it addresses the second of
the two objections we noted in our discussion of the formulation of the unpublished
fragment.

5 Extensional Propositional Functions and Logicism

Hintikka and Sandu’s discussion of Fregean concepts shares a number of similari-
ties with Ramsey’s discussion of the 1910 Principia’s propositional functions: Like
Ramsey, Hintikka and Sandu regard the notion of class on which the early logicists
relied as inadequate by comparison with the extensionalist tradition’s notion of set;
and both Hintikka and Sandu and Ramsey base their analyses of the inadequacy
of classes on a failure of the early logicists to conceive of a function as an arbitrary
correspondence. But there are also significant differences. By contrast with Hintikka
and Sandu, Ramsey took himself to be contributing to a more defensible version of
logicism. He hoped to show that his formulation of an appropriate extensionalist
replacement of Principia’s predicative propositional functions would address an
internal difficulty with the work, one surrounding the adequacy of its account of
mathematical propositions.

Ramsey’s extensional propositional functions attempt to marry two seemingly
incompatible ideas: they preserve the letter of the logicist thesis that classes are
determined by functions, but they also invoke the combinatorial notion of set by
representing a propositional function as an arbitrary functional pairing of individ-
uals with propositions. As a consequence, one gives up the Russellian idea that a
propositional function determines a class in terms of an antecedently available prop-
erty. But Ramsey’s extensionalism is in some respects congenial to Frege. This is
because Frege’s functions satisfy a condition of extensionality in the sense that func-
tions whose courses-of-values coincide are not distinguished, and because Fregean
functions form a simple hierarchy which is not constrained by ramification. Despite
these points of agreement with an extensionalist viewpoint, Frege’s assimilation of
concepts to functions which map into truth values is usually understood to share
with the 1910 Principia the idea that the correspondence is not arbitrary, but is
constrained by the principle that if a function maps two objects to The True, they
must fall under a common concept. Hence Frege’s generalization of the function
concept to include those that map to truth values is, in Ramsey’s sense of the term,
a generalization to a notion of function that is just as predicative as Russell’s.

If I have understood him, Sandu’s suggestion in (Sandu, 2005) is that his paper
with Hintikka should be understood as arguing that the predicativeness of Frege’s
functions is sufficient to show that they do not exhaust all mappings between objects
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and truth values, and that this lends support to his and Hintikka’s claim that in
general Frege’s functions are not arbitrary correspondences. But it is at this point
that I think a difference between Principia’s propositional functions and Frege’s
concepts may be important. For Principia, a function maps to the truth values only
by “passing through” a proposition; this, after all, is why they are called proposi-
tional functions. But Frege’s concepts map directly to the truth values. To be sure,
the informal explanation of the Fregean idea that concepts are a kind of function
invariably proceeds by saying that a function maps an object to The True just in
case the object falls under the associated concept. But as pedagogically natural as
this explanation may be, it is also misleading, since Frege’s assimilation of concepts
to functions does not exclude the possibility that a concept might be no more acces-
sible to us than the correspondence which a mapping to truth values establishes.
In such a case, there would be little to choose between a Fregean function and the
extensional notion of a function as an arbitrary correspondence between objects and
truth values.

What of Hintikka and Sandu’s question, “What was Frege’s concept of function?”
Frege explains our acquisition of the functions associated with concepts—functions
which express a judgeable content—by our acquisition of their linguistic expres-
sion, something we achieve by an analysis of sentences. For Frege this may well
have been an essential component of his conception of his theory of functions and
concepts. But like our informal explanation of how to understand functions which
map to truth values, perhaps it, and the predicative interpretation it suggests, can
be regarded as a consideration which merely motivates the notion. The question is
whether, by allowing for functions as arbitrary correspondences between objects and
truth values, we do as much violence to the Fregean idea of a concept or function
as Ramsey’s extensional functions do to the propositional functions of Principia.
As often happens, settling on an answer to an interpretive question such as this one
is less important than achieving greater clarity on the systematic issues the ques-
tion raises. It seems clear that both Principia’s propositional functions and Frege’s
concepts admit of extensionalist interpretations—in the strong sense considered
here, of arbitrary mappings between Principia’s individuals and propositions, or
between Frege’s objects and truth values. Such interpretations tend to undermine the
motivation for both ideas, a fact that is particularly evident in the case of Russell’s
propositional functions, where the extensionalist interpretation seems more properly
regarded as a wholesale replacement of the notion.

The situation is less clear in the case of Fregean functions and concepts because
they lack the explicit association with propositions that is characteristic of proposi-
tional functions; an extensionalist interpretation of a Fregean concept as an arbitrary
mapping of objects to truth values is arguably still a Fregean concept. However its
utility for Frege’s theory of classes is unclear. According to a theory like Frege’s,
concepts provide the principle which gives classes their “unity,” and they also serve
the epistemological function of providing the principle under which a collection of
objects can be regarded as a separate object of thought. A class that is generated by
an arbitrary pairing of individuals with truth values might be one that is “determined
by a concept,” but the concept which determines it seems no more epistemically
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accessible than the collection itself. Even if it can be convincingly argued that such
concepts sustain the unity of the classes they determine, it can hardly be maintained
that they are capable of playing the epistemological role which the predicative inter-
pretation can claim for its functions and concepts.8
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Chapter 2
Metaphysical Necessity

Michael Dummett

Saul Kripke deserves great credit for fastening the minds of the philosophical
community on the existence of different types of possibility and, correlatively, of
necessity. The type of necessity upon which analytical philosophers had been accus-
tomed to concentrate was analyticity; for clarity, I will replace this term by “a pri-
ori knowability.” We need not stop to argue over a precise characterisation of this
familiar notion: I will say that a statement, considered as made by the utterance,
actual or hypothetical, of a meaningful assertoric sentence by a particular person at
a specific time, is a priori knowable if the speaker is or would be able to recognise
its truth simply from the meanings of the words composing the sentence, together,
when needed, with some deductive argument which he devised or with which he
was presented. When it is not knowable a priori that a given statement is not true,
let us say that that statement is possible a priori. And I shall say that a statement
is knowable only a posteriori if the speaker is able to recognise its truth only on
the basis of some observations he has made or of reports made to him by others of
observations they have made. No doubt there are many holes in these formulations,
considered as definitions, but they will serve present purposes.

Kant of course distinguished between the analytic and the synthetic a priori, but
his distinction is little to the question here at issue. More relevant is the distinction
Aquinas made in discussing the ontological argument for the existence of God. The
proposition that God exists is, he said, per se nota but not nota quoad nos. By
“nota quoad nos” he meant essentially “knowable a priori” in the sense explained,
although he most probably would not have classified “I am here” under this head; he
was distinguishing propositions, not utterances of sentences. Since the proposition
that God exists was not nota quoad nos, there could not be a valid argument which,
like the ontological argument, derived it without appeal to any facts that could be
established only by observation: that is why Aquinas’s own proofs of the existence
of God all proceed from very general premisses about how things are in the world.
What, then, did Aquinas mean by “per se nota”? Plainly, this notion has to do with
the sort of thing that makes the proposition in question true, in contrast with the
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means by which we can come to know it. Why would one who believes that there is
a God be reluctant to add, “But there might not have been”? Not because he thinks
that the existence of God is capable of being proved by purely logical means, but
because there is nothing of which it would make sense to say, “Were it not for that,
there would not have been a God.”

If it were not so gross an anachronism, we might compare Aquinas’s distinction
with that between the derivability in some formal system of a formula of second-
order logic and its being true in all models, or with that between Frege’s definition
of analyticity and Bolzano’s. Frege defined a statement to be analytic if it was log-
ically derivable from fundamental logical laws; Bolzano if it held true under every
replacement of its non-logical expressions by syntactically similar ones. Mathemati-
cal realists, usually called platonists, consider that a mathematical statement may be
true even if it is beyond our means to prove. They would consider that Goldbach’s
celebrated conjecture that every even number greater than 2 is the sum of two primes
might be one of these. It would then be per se nota, since it would hold good in all
models of second-order arithmetic (or all standard models of the first-order theory),
but not nota quoad nos.

It is, then, plain that there is a notion of necessity distinct from that of being
knowable a priori; perhaps there is more than one such notion. Kripke labels the
notion he contrasts with knowability a priori “metaphysical necessity”; the function
of the word “metaphysical” here is to indicate that necessity of this type is not
explained in terms of our capacity to know the proposition in question. Knowa-
bility and possibility a priori may therefore also be termed “epistemic” necessity
and possibility; the reference is not to what we do know, but to what, given only
an understanding of the language and a capacity to reason, we can know. The clue
Kripke follows in characterising the metaphysical modalities is our use of “might”
and “might have”: something is metaphysically necessary if it is not the case that
it might have been otherwise. But care is needed. Suppose that someone recounts
some incident involving Anderson which took place in London; I say, “How for-
tuitous! Anderson might not even have been in London that day,” but the other
replies, “Oh, no, he had to be in London for the meeting of the committee.” This
reply does not express the metaphysical necessity of Anderson’s presence in Lon-
don on the day in question. Wittgenstein said that the modal verb “can” is always
tacitly qualified by a phrase of the form “as far as . . . is concerned”: possibility
is always relative. Possibility a priori is intended to be an absolute notion, how-
ever, needing no such qualification; and the same holds good for metaphysical
possibility.

Quine distinguished three grades of modal involvement. At the first grade, we
classify true statements as necessary or contingent, and false statements as impossi-
ble or possible: “necessarily true” and “possibly true” are metalinguistic predicates.
At the second grade, we apply necessity and possibility operators to sentences of our
object-language to form new sentences of our object-language; these new sentences
are subject to other sentential operators such as negation and conditionalisation. The
two grades are connected by a linking principle:
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(L1) A is necessarily true iff �Necessarily A� is true.

When “A is possibly true” is explained as meaning “�Not A� is not necessarily
true,” and �Possibly A� is defined to mean �Not necessarily not A�, the dual linking
principle:

(L2) A is possibly true iff �Possibly A� is true

follows. These linking principles may be regarded as holding irrespectively of the
direction of explanation. If we start at the first grade of modal involvement and
advance to the second, the direction of explanation is from left to right. The linking
principles then lay down the condition for the truth of any sentence built up by means
of modal operators and ordinary sentential operators in which no modal operator
stands in the scope of any other: they do not lay down that of a sentence in which any
modal operator stands in the scope of another. The third grade of modal involvement
is reached when the modal operators “Necessarily” and “Possibly” are allowed to
stand within the scope of quantifiers: modalised statements can now be quantified
into. When we advance from the second grade to the third, the foregoing linking
principles do not suffice to explain the truth-condition of a sentence in which a
modal operator stands in the scope of a quantifier. For that we need the first-grade
notion of a predicate’s being necessarily true of an object, with that of its being
possibly true of an object explained in terms of the former notion in an analogous
way. It may then appear open to us to lay down the linking principles:

(L3) A(x) is necessarily true of the object denoted by a iff �Necessarily A(a)� is
true

(L4) A(x) is possibly true of the object denoted by a iff �Possibly A(a)� is true.

We shall need to look at (L3) and (L4) again later. We may rank as a fourth grade
of modal involvement that modal operators should be freely allowed to stand within
the scope of other modal operators; but this fourth grade will not here concern us.

Kripke does not explain the modal operators expressing metaphysical necessity
and possibility by the transition from left to right of the linking principles (L1) and
(L2). He does not start by specifying the condition for a statement to possess the
property of being metaphysically necessary or being metaphysically possible, and
then give a partial explanation of the corresponding modal operators by appeal to the
linking principles. Rather, he adopts the opposite direction of explanation. A state-
ment A is metaphysically possible if �Possibly A� is true, where �Possibly A� is
interpreted as meaning �It might have been the case that A�, as this form of words
is understood in ordinary discourse; correlatively, A is metaphysically necessary if
�It could not have been the case that not A� is true, where “could not have been” is
the negation of “might have been.”

The distinction between the metaphysical modalities and the epistemic ones is
then drawn, at least in the first place, by invoking the phenomenon of modal rigid-
ity. By drawing attention to the phenomenon of rigidity, Kripke undoubtedly made a
signal contribution to philosophical logic. There is not only modal but also temporal
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rigidity. If I say, “It is always cold where I am,” I mean that, for every place s and
every time t , if I am at s at t , then it is cold at s at t . But if I say to someone on the
telephone, “It is very cold where I am,” and my interlocutor replies, “It is always
cold there,” he does not mean that I am always in a cold place, but that, if I am, for
example, in Dundee at the time, then it is always cold in Dundee. The adverb “there”
is temporally rigid, whereas the phrase “where you are” can be used as temporally
flexible. A news correspondent might say, “It is very noisy where Mr. Blair is”; if
someone comments, “It is always very noisy where Mr. Blair is,” he means that
Mr. Blair is constantly surrounded by a hubbub. Suppose now that we introduce the
expression “Blairabout” to bear the same relation to “where Mr. Blair is” as does
“there” to “where you are” or “here” to “where I am.” Then the statement “It is
always noisy Blairabout” means that if Mr. Blair is now at s, then, for every time t ,
it is noisy at s at t . At any time, the condition for the truth of “It is noisy Blairabout”
coincides with that for the truth of “It is noisy where Mr. Blair is”; but when quan-
tification over times is introduced into both sentences, the truth-conditions diverge.

Let us say that a sentence A is presently true at any given time if by uttering
A at that time the speaker would make a true statement. And let us say that it is
perpetually true if, at any time, it is presently true. Then the sentence “Mr. Blair
(if now alive) is where Mr. Blair is” is perpetually true; and, since it has the same
truth-condition, so is “Mr. Blair (if now alive) is Blairabout.” We may, however,
introduce the notion of a sentence’s being eternally true by appeal to a linking
principle, applied from right to left:

(L5) A is eternally true iff �Always A� is true.

We may say that A is temporarily true at any given time if it is true, but it is not
eternally true. Then, while “Mr. Blair (if now alive) is where Mr. Blair is” is eter-
nally true (provided that the phrase “where Mr. Blair is” is understood as temporally
flexible), the sentence “Mr. Blair (if now alive) is Blairabout” is not eternally true:
it is only temporarily true.

Kripke’s distinction, when it rests on the distinction between epistemic and meta-
physical possibility, is similar. The sentence “Mr. Blair is where he is” is epistem-
ically necessary, since, whenever it is uttered, a true statement is made (and any-
one who understands the words knows this). But it is not metaphysically necessary,
because Mr. Blair might have been somewhere else: the phrase “where he is,” even
if temporally flexible, appears to be modally rigid. The point seems delicate. There
is an ambiguity, akin to Russell’s joke answer to “I expected you to be taller than
you are”—“Of course I am not taller than I am.” It is at any rate clear that “Mr. Blair
is Blairabout” is epistemically but not metaphysically necessary, just as it is per-
petually but not eternally true. The point was glimpsed by G. E. Moore when he
replied to Russell’s observation that “This exists” is necessarily true by remarking
that nevertheless “This might not have existed” may be true; but he never followed
up the clue.

A disagreement between Saul Kripke and me concerned whether pairs of sen-
tences such as “It is cold here” and “It is cold where I am now” could be said
to express the same proposition. This question depends upon the answer to the
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prior question whether the notion of rigidity is relevant only to sentences containing
modal (or temporal) operators. Consider the two sentences

(i) “Mr. Blair is wherever he is” and
(ii) “Mr. Blair is Blairabout”;

the phrase “wherever Mr. Blair is” is certainly modally flexible. Kripke argued that
neither sentence contains a modal operator, and yet they differ in modal status: both
sentences are epistemically necessary, but only (i) is metaphysically necessary. The
difference arises from the modal rigidity of “Blairabout”, as opposed to the modal
flexibility of “wherever Mr. Blair is”: hence modal rigidity is relevant to sentences
not containing modal operators. The modal status of a sentence, he argued, depends
upon the modal status of the proposition it expresses: hence the two sentences must
express different propositions.

This argument appears to me to be back to front. We have been given no criterion
for the modal status of a proposition save the modal status of a sentence express-
ing it; and we have been given no criterion for the metaphysical modal status of a
sentence save the truth or falsity of the sentence that results from applying a modal
operator to it. The explanation was from right to left of the linking principles (L1)
and (L2). It is in virtue of the different ways in which “Blairabout” and “wherever
Mr. Blair is” behave when in the scope of a metaphysical modal operator that sen-
tences (i) and (ii) are accorded different metaphysical modal status: without refer-
ence to that, such a difference would be imperceptible. People who had a language
lacking modal operators (or modal auxiliary verbs or modal adverbs) could have
no idea of such a difference in modal status, nor, indeed, of modal status. Modal
rigidity directly affects only the truth-conditions of modalised sentences. This dif-
ference may then be projected back on to the unmodalised sentences to which the
modal operators were attached in the form of a difference in modal status; but this
difference merely reflects the difference in the truth-conditions of the modalised
sentences, and could not be perceived save by appeal to it.

It might be retorted that speakers of a language devoid of modality could still
recognise the difference in what we might call temporal status between the two
sentences (one is eternally true, the other only temporarily true). That is correct;
but it is more tendentious to claim that sentences differing in temporal status must
express distinct propositions.

We are therefore free, if we wish, to regard the proposition a sentence expresses
as Frege did, namely as determined by the condition for it to be true. Understanding
an assertoric sentence involves knowing its significance when uttered on its own,
and, in addition, knowing how it contributes to the sense of a complex sentence built
up from simpler sentences of which it is one. The significance of a sentence when
uttered on its own on a particular occasion to make an assertion may be called its
assertoric content: it is what determines the difference that is made to the hearer’s
picture of the world if he accepts it as correct. Frege’s truth-conditional charac-
terisation of sense gives an account of the assertoric content of a sentence when
uttered on a particular occasion. Just as he took the sense of the sentence when so
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uttered to be a thought, so we should take the proposition expressed by uttering the
sentence as depending solely on its assertoric content and the occasion of utterance.
More may need to be known about a sentence than its assertoric content in order
to understand how it contributes to determining the assertoric content of a more
complex sentence of which it is a constituent: we may call this its ingredient sense.
Any semantic property of the sentence not strictly relevant to its assertoric content
belongs to its ingredient sense, which bears solely upon its role as a subsentence
of more complex ones. Among such properties is the presence in the sentence of
temporally or modally rigid terms.

It may be objected that it is quite unfair to say that metaphysical modality is
explained solely by reference to behaviour within the scope of modal operators, on
the ground that there is a direct explanation in terms of truth at possible worlds.
But the notion of a possible world is explicable only by the use of modal operators:
a possible world is a way the world might have been. It is urged in reply that to
understand a sentence demands an ability to judge of its truth-value in a variety of
circumstances, which means, it is said, a grasp of which possible worlds it is true in
and which it is false in: the notion of a possible world is therefore already implicit
within the understanding of any unmodalised sentence. Understanding a sentence
indeed demands an ability to judge of its truth-value whatever circumstances may
obtain, but it does not require the capacity to envisage hypothetical circumstances
and consider what its truth-value would be in them. Furthermore, the notion of truth
or falsity invoked in the explanations of the modal operators in possible-worlds
semantics is that of the truth-value at a possible world; for example, �Possibly A�
is true at a world w if A is true at some world possible relatively to w. The truth-
value of a sentence at a world is the truth-value with respect to that world that we
ascribe to a sentence understood as uttered in the actual world. It is not to be equated
with that of its truth or falsity in the possible world, that is, the truth-value ascribed
to the sentence, when uttered in that world, by the inhabitants of that world; this
notion plays no role in the semantics. For instance, if uttered when Mr. Blair is (in
the actual world) in Milan, the sentence “Mr. Brown will be Blairabout tomorrow”
will be true at a world w if in w Mr. Brown is the next day in Milan; but if, in
w, Mr. Blair is today not in Milan but in Edinburgh, the same statement will be
true in w if Mr. Brown is, in w, in Edinburgh the next day. It is the presence of
modally rigid terms that brings about the divergence between truth at a world and
truth in it. But the understanding of a sentence demands the ability to judge of its
truth-value in whatever circumstances in fact obtain. A grasp of the condition for the
truth of an unmodalised sentence at any given possible world, as this notion is used
in possible-worlds semantics, is therefore quite irrelevant to a grasp of its assertoric
content. To know this, we need to know how the reference of any term it contains
is determined in the world in which it is uttered or considered as being uttered. The
inhabitants of a possible world would need, in order to understand the sentence, as
uttered on its own in that world, to know how the reference of a term occurring in it
was determined in that world. It may be argued that they should know how it would
be determined in other worlds; but they need know nothing about how its reference
was determined at any other world.
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The fact that an epistemically necessary sentence may not be metaphysically nec-
essary is solely due to its containing a modally rigid term. The standard examples of
epistemically necessary sentences that are not metaphysically necessary all depend
upon the rigidity of some term. The existence of sentences which, conversely, are
metaphysically but not epistemically necessary does not, however, follow from the
phenomenon of rigidity alone. “Solomon was a son of David” is, according to
Kripke, metaphysically necessary, and its being so depends upon the rigidity of
the proper name “Solomon”: “The king who built the first Temple in Jerusalem
was a son of David” is not metaphysically necessary, because, after all, the Temple
might have been built by a successor of Solomon. But, to apprehend the necessity
of “Solomon was a son of David,” we must know more than that “Solomon” is
modally rigid: we must know that being David’s son was an essential property of
Solomon’s, whereas building the Temple or being the last king of undivided Israel
was not. Essential properties are properties of objects, not of ways of referring to
them: the direction of explanation in (L3) and (L4) is from left to right. This feature
of metaphysical modality therefore does not turn primarily upon the behaviour of
particular linguistic items, but upon the principles that determine what is metaphys-
ically possible.

The doctrine of essential properties, as Kripke understands it, creates some diffi-
culty for modal logic. The statement “David begot Solomon” is, on Kripke’s view,
metaphysically necessary by the criterion that it is true in all possible worlds in
which both David and Solomon exist, since having been begotten by David was
an essential property of Solomon: hence “Necessarily, David begot Solomon” is
true, in accordance with the linking principle (L1). But we cannot now conclude,
by (L3), that begetting Solomon was an essential property of David’s; in fact, it was
one he was morally wrong to have had. For it to have been one of David’s essential
properties, the statement “David begot Solomon” would have had to be true in every
possible world in which David exists, whereas it is not true in those worlds in which
Solomon does not exist. It follows that (L3) and (L4) are unsound. In fact, in order
to express the fact that satisfying “F(x)” is an essential property of an object a,
we cannot use the sentential operator “necessarily”: we need an operator that is
specifically attached to one-place predicates. If we write the result of applying such
an operator to a predicate “F(x)” as yielding another predicate �N[λy.F(y)](x)�,
we can assert

N[λy.David begot y](Solomon)

but also

Not: N[λy.ybegot Solomon](David).

Modal logic is obviously greatly complicated by the need to have such an operator
upon predicate-abstracts as well as one operating on sentences.

This leads us on to the metaphysical necessity of all true identity-statements.
Since it is not necessarily true of David that he was the father of Solomon, “David
was the father of Solomon” had better not be an identity-statement. Hence “the
father of Solomon” must be a definite description rather than the result of applying



26 M. Dummett

a functor to a proper name, and definite descriptions must be interpreted in accor-
dance with Russell’s Theory of Descriptions. But “Phosphorus is the same planet
as Hesperus” is metaphysically necessary, even though it is not knowable a priori.
Why? Because “Phosphorus,” being modally rigid, must designate in every possible
world what it designates in the actual world, and likewise for “Hesperus”: so the
identity-statement is true in every possible world.

The doctrine that all true identity-statements are metaphysically necessary is
founded on the doctrine that all proper names are modally rigid. If we say that
Einstein might never have published his famous papers, we are speaking of that very
man, even though we identify him as the author of the Special and General Theories
of Relativity. It does not matter how little we know about the bearers of the names
we use in hypothetical suppositions. Even though we did not know that Eric Blair
and George Orwell were the same man, and even though we therefore identified
them in different ways, the two names would designate the same man in all possible
worlds in which they designated anyone; even if we imagined a world in which Eric
Blair never took up writing, and therefore adopted no pen-name, “George Orwell”
would still designate Eric Blair in that world.

I think we have to accept this. I do not see how it can be denied that proper names
are modally rigid; and the rest follows. But when we contemplate the metaphysical
necessity of “George Orwell was Eric Blair,” we must not think that we are recog-
nising some deep philosophical truth: we are merely acknowledging a mechanical
consequence of the modal rigidity of proper names.

But have we not learned something of philosophical importance about psy-
chophysical identity? We used to think that the proposition that sensations are
identical to stimulations of certain nerves, rather than merely correlated with them,
could be dismissed out of hand, since the two things are identified in quite different
ways. Now, however, the theory of metaphysical necessity has taught us that it does
not impugn the truth of an identity-statement that we identify the bearers of the
two names in different ways. But we knew that already: that is the whole point of
Frege’s famous Phosphorus/Hesperus example. What interests us is whether these
psychophysical identities are true (or even can be true—the “can” here expressing
possibility a priori). The notion of modal rigidity adds only that, provided the two
terms of an identity-statement are modally rigid, if the statement is true, it is nec-
essarily true; but once we are satisfied of the truth of a psychophysical identity, its
(metaphysical) modal status will not concern us greatly.

Yet the notion of modal rigidity cannot dispel the requirement that an identity-
statement cannot hold good unless the two terms designate things of the same sort.
Phosphorus and Hesperus are the same celestial body; George Orwell and Eric Blair
were the same man. But are there not identities that violate this principle? For
example, are not sounds waves of compression and rarefaction in the air or other
medium? If sounds and sound-waves are things of different sorts, they cannot be
identical. Cross-sortal identifications form an interesting topic, deserving of close
study. I think they are usually proposals that we should do without things of one
sort in favour of those of the other. Whatever is to be said about them, I do not see
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that either the notion of modal rigidity or the doctrine of the metaphysical necessity
of true statements of identity is of any great help in giving an account of them.

Given the metaphysical necessity of true identity-statements, it seems that we can
derive by L3 that being identical with Hesperus is an essential property of the planet
Venus. It then appears that being identical with Hesperus is the same property as
being identical with Venus, or, equally, with Phosphorus. It may be objected that it
is a priori knowable that Hesperus has the property of being identical with Hesperus,
but not that it has that of being identical with Phosphorus, and hence that these two
properties cannot be the same as each other or as that of being identical with Venus.
The Kripkean must answer that properties are what objects have, however they may
be referred to, whereas a priori knowability is a feature of sentences; we ought
therefore to speak of its being a priori knowable, not that being identical with Venus
is a property of Venus, but that the sentence “Venus is identical with Venus” is true.
It is, he must say, for one and the same reason that it is metaphysically necessary
that Venus has the property of being identical with Venus, and that it has that of
being identical with Hesperus: hence these properties are the same. What, then,
is a property? From every standpoint, it is something expressible by a one-place
predicate. But, the Kripkean must say, it is not the sense of that predicate, which
reflects our understanding of the predicate: it is what, in any possible world, makes
it true of an object in that world that the predicate applies to it. Whether the notion
of what makes something true is sustainable is a question into which we need not
here go further.

The notions of rigidity and of essential properties are linked in the following
way. A term t is modally rigid if, when the truth-value of a sentence in which it
occurs is evaluated at a possible world w, the denotation of t is taken as the same
as its denotation in the actual world, not its denotation in w; its denotation in w is
what any speakers of our language (English) existing in w would take it to denote.
(Perhaps we should say: what the speakers inw of a language syntactically similar to
English would take to be denoted by that term of their language which corresponded
to t .) The essential properties of whatever t denotes in the actual world supply the
criteria which determine whether anything existing in any world w is the same as
what t denotes in the actual world: if t denotes a in the actual world, then, if b exists
in w, and has, in w, all the essential properties of a, then b is the same as a. The
notion of an essential property thus governs the application of the notion of rigidity.

It may be objected that Kripke denies that we need any criterion of transworld
identity. He says that when we envisage hypothetical circumstances, we use no
criterion to identify hypothesised objects with actual ones: we simply stipulate of
some actual object that it plays some role in the envisaged circumstances. That is
true. But of course the question arises whether the circumstances we envisage are
genuinely possible ones (metaphysically possible, that is). People are apt to say
things like, “If Lewis Carroll had been born 35 years later, he would have become
a great logician.” They are then stipulating that the person they are talking about is
C.L. Dodgson (Lewis Carroll) just as if they had said, “If Lewis Carroll had visited
Germany, . . . .” But anyone born 35 years after the birth of Dodgson would have had
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a different mother from Dodgson, and thus, on Kripke’s view, would have lacked
one of Dodgson’s essential properties; he would therefore not have been Dodgson,
according to Kripke. The situation envisaged in the antecedent of the counterfactual
is not a metaphysically possible one on Kripke’s view, and the counterfactual is
therefore void.

There is a parallel point. Kripke is surely right in saying that, when we are
interested in how the life of a particular human being would have gone in cir-
cumstances other than the actual ones, we usually make clear that we are talking
about that individual simply by using his or her name. But such specification by
name cannot exhaust the way in which a particular individual can get into a pos-
sible world or set of hypothetical circumstances. Suppose that, in describing the
hypothetical circumstances he has in mind, the speaker refers to another individual
than the one in whom he is principally interested, and describes that other individ-
ual only in general terms. And suppose that the description characterises him as
having some, and lacking none, of the essential properties of some actual individ-
ual. Then the speaker must be talking about that actual individual, even if he has
never heard of him. Kripke has as much need of a criterion of transworld identity
as any other possible-worlds theorist; and it is supplied by the doctrine of essential
properties.

What, then, is an essential property of an object? If a king abdicates, he ceases to
be a king, but he still exists and thereby remains the same man as before. When we
say of him, “He was a king once,” the pronoun does not exemplify deferred osten-
sion. Remarkable transformations occur in nature without loss of identity or cessa-
tion of existence: a tadpole becomes a frog, and a caterpillar eventually becomes a
butterfly, but each is still the same creature after the metamorphosis. But a prince
cannot become a frog, a man a beetle, a woman a pillar of salt, a hunter a stag, a
girl a laurel bush or a man or woman a constellation. If any such transformations
were apparently to take place, they would mark the end of the life, and so of the
existence, of the human beings they occurred to: if it was said of a bush that it was
once a beautiful woman, this would be analogous to saying the same of a mummified
corpse. There is nothing that was a woman and is now a corpse, only something that
was the body of a woman and is now a corpse. So it is an essential property of every
human being that he or she is a human being: a man, woman or child cannot lose
that property and continue to exist.

Essential properties of this kind may be called existentially necessary properties.
Such a property attaches to an object in virtue of the sort of object it is: it could
not continue to exist while ceasing to be of that sort. Possession by an object of an
existentially necessary property has to do with the identification of the object over
time. But are there individually essential properties—properties which an individual
of a given sort must have in order to be that individual? In all the cases just consid-
ered, except transformation into a constellation, the body of a living person became
something else, in most cases the body of something else (a bush is not normally said
to have a body, although it can die). If we were to illustrate an individually essential
property in the same way, we should need a case in which the body of one person
became the body of another. People who supposed that a rite of passage—a puberty
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ritual, or reception into a religious elite—literally marked the end of one person’s
existence and the beginning of another’s would find no difficulty in this. In Western
culture, it is hard to give plausible examples. We may classify all essential properties
derivable from criteria for identification over time as persistence properties. Kripke
recognises individually essential properties, but not as persistence properties: his
examples have to do with the identification of an individual across possible worlds
rather than over time.

It is clear that, stated in terms of possible worlds, the essential properties of an
object are those which it possesses in every possible world in which it exists: unless
the range of possible worlds is constrained in such a way as to ensure that there
are such properties, there are no essential properties of objects save the persistence
properties. Examples such as that of Solomon’s being a son of David illustrate the
well known necessities of origin: among the essential properties of any object are the
circumstances of its having come to be, according to Kripke’s theory. An object’s
having come into existence in given circumstances is not a persistence property: it
is a consequence of identity over time, not a criterion or necessary condition for
it. If at a particular time it is true of a given man that he had certain parents, it
follows logically from the identification of someone at a later time as that same man
that the individual so identified had those parents: we could not discover that he
had those parents before making the identification. Someone’s losing the property
of having had the parents that he had is a conceptual impossibility. Why, then, do
the circumstances in which an object came into existence constitute an essential
property of it? The answer lies in Kripke’s conception of a possible world. Any
possible world exactly resembles the actual world up to a certain time, and thereafter
develops differently, though in accordance with the persistence properties and the
natural laws obtaining at the moment of divergence.

Now it is certainly the case that many counterfactual suppositions leading to the
conclusion that something or other might have held good take the form that Kripke
regards as canonical, namely to imagine things as having gone as they went in fact
up to a certain moment, and as having thereafter diverged from what actually hap-
pened. Let us call a counterfactual based on such a supposition a “Kripke counter-
factual” if the moment of divergence occurred at a time when all individual persons,
animals or things considered in the counterfactual were already in existence. Does a
restriction to Kripke counterfactuals underpin the necessities of origin? It is obvious
that formally it does. Practical applications may depend upon resolving problems
or disputes about when a person or object does first come into existence. At what
stage does an identifiable painting or other work of art begin to exist? At what point
did a named human being first exist? I find it impossible to accept the answer “at
the first moment of conception,” understood as the moment of impregnation, for
the decisive reason that the possibility that twins would form was then open, and
it would be senseless to ask which twin was the individual whose existence had
begun with impregnation. Kripke’s doctrine of metaphysical necessity is powerless
to resolve questions like these. It can only say that an actual individual—person
or thing—may be considered as involved in hypothetical circumstances from any
moment from that individual’s coming into being, whenever that was.
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In any case, the restriction to Kripke counterfactuals does not seem to me com-
pelling. I do not find it difficult to attach a sense to speculations about how things
would have been if some individual had been born much earlier or much later than
he in fact was, or had had different parents. It could be said that in such cases all that
is being imagined is the birth at a different time or to different parents of someone
very like, but not identical to, the individual in question; but I cannot say that I
see any compelling reason to maintain this, nor, indeed, to combat it. I doubt that
there is any clear truth of the matter: I doubt that it makes any difference which
we decide to say. When it comes to things other than human beings or animals,
such as cities or institutions, the idea that their origin is essential to their identity
seems far less compelling. The supposition that the city of Venice, for example,
was founded 30 years later than in fact it was does not strike me as the entertain-
ment of an impossibility. The objection that a city founded at such a date would
not be Venice appears quite unconvincing: what would make it Venice would be
its being located where Venice is now, and its having for the past many centuries
looked as the city we know by that name had looked in those centuries, and the
things that have happened in that time in and to that city having happened in and
to it.

If, like David Lewis, one is a realist about possible worlds, thinking that they
are as much part of reality as the actual world, then I suppose that the questions
whether objects to be found in the actual world also inhabit any other worlds, and,
if so, what are the criteria that render an object in one world identical with one in
another world, are genuine questions with determinate answers. But Saul Kripke is
not a realist about possible worlds. He nevertheless believes that individual objects,
and natural kinds, have essential properties. There can be no possible world in which
some individual or natural kind exists but lacks any of its essential properties; but,
for any consistent set of inessential properties of any given individual or natural
kind, there will be a possible world in which it has just the properties in that set. One
of the tasks of metaphysics is to determine which types of properties that individual
objects and natural kinds possess are essential to them; it is a task for empirical
investigation to discover which specific properties those are.

This sounds indeed a grand conception. It remains that it rests on a slender lin-
guistic basis: the rationale for the whole apparatus of essential properties and pos-
sible worlds is given by our practice of using modal auxiliaries like “might have”
and the counterfactual conditionals on which we base statements involving such
auxiliaries. It must be agreed that a statement to the effect that something might
have been so is most usually defended by citing circumstances in which it would
have been so, that is, by putting forward a counterfactual conditional. But I do not
think that the use of counterfactual conditionals is regimented to anywhere near the
extent that Saul Kripke supposes. When such a statement is made, it will usually be
apparent which features of the actual world, that is, of reality, the speaker intends to
be understood as holding constant; but sometimes it is obscure, and then the speaker
can be challenged to make the antecedent of the conditional more precise. There is
no general criterion by which the truth of an arbitrary counterfactual conditional is
to be judged.
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We have lighted on three types of essential property: self-identity; persistence
properties; and circumstances of origin. But, in seeking others, what are we looking
for? Is there any general criterion by which we can judge, of any given property that
an object may have, that it is essential to that object (or to any object that has it)? I do
not find any general principle underlying Kripke’s classification of certain properties
as essential. Rather, his category of essential properties seems to me a ragbag, with
properties being awarded this status on very heterogeneous grounds. Self-identity
properties were reckoned essential because of the denotations in possible worlds
assigned to modally rigid terms; circumstances of origin were deemed essential on
the basis of a doctrine about what possible worlds there are. In both these cases the
direction of explanation in the principle

(L6) λx[A(x)] is an essential property of a iff �A(a)� is true on every possible
world in which a exists

is from right to left. But essential properties of other types are not counted as such
because of any argument that they must be possessed in every possible world by
any object that exists in that world. Rather, they are first classified as essential
on intuitive grounds, and then from this it is deduced that any object possess-
ing any of them must possess it in all possible worlds in which it exists. The
range of possible worlds is delimited by the prior classification of these proper-
ties as essential; the direction of explanation is from left to right. The next sub-
class of essential properties I shall consider is that of internal structure, of sub-
stances and of animals of the same species: the essential properties of natural
kinds.

Chemical compounds and elements have, as we know, highly determinate inter-
nal structures; the notion of essential properties therefore fits them very well. It
appears to justify a notion of the real, rather than the merely nominal, essences of
such things: these are to be discovered by scientific investigation of them, not of
our uses of the words denoting them. Nevertheless, the doctrine of the real essences
of these types of substance has prompted a correlative analysis of such words. The
word “water,” for instance, is held to have an indexical component together with
a tacit reference to the real essence: on this analysis, it means “whatever has the
same internal structure as the liquid found in terrestrial streams and rivers,” and has
always meant that, even before we knew anything about its chemical composition.
Hence the Twin Earth paradox.

Yet a great many of the substances to which we habitually refer in everyday life
are not chemically pure at all: wool, leather, silk, wood, air and mud, for example.
Many of those substances are identifiable by their origin rather than their inter-
nal composition: there is no wood that was not once part of a tree. When we ask
what must be true of some material for it to be wood or wool, we are not asking
a metaphysical or a scientific question about its essential properties, but about the
meanings of the word “wood” or “wool”; we are asking after its nominal essence. It
is by no means obvious why it should be different with those substances which we
have discovered to have determinate internal structures. Now that we know about
the chemical composition of water, we may henceforward so use the word “water”
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as to make it essential to anything’s being called “water” that it is a compound
whose molecules contain two atoms of hydrogen and one of oxygen. But before
anyone had our notions of elements and of molecules, the word “water” surely
did not involve a tacit reference to an as yet unknown inner structure. The Twin
Earth paradox will arise only while the speakers on both planets do not yet know
the chemical compositions of the substances which those on one and those on the
other call “water,” but, in using that term, make a tacit reference to the chemical
composition. Once they know the composition, and make it part of the sense of that
term, there is no paradox; nor is there any paradox if, before they know the com-
position, they do not understand the reference of the term “water” as determined
by the as yet unknown composition. Until the molecular composition of material
substances was recognised, there could be no conception of the inner structure of
those substances comparable to that which we have now; for anyone who believed
that a substance continuously filled the whole volume that it occupied, there could
be no distinction between a compound and a mixture. It is a matter for discovery
that a substance for which we have a single name has a definite internal structure,
and what that structure is: there can be no presumption in advance that it has one.
It is therefore unlikely that, before such a discovery, the common understanding of
any substance-term would have included a tacit reference to a possible but as yet
unknown internal structure.

We are here concerned, of course, with everyday substance-terms, with the word
“water,” for example, as employed in ordinary colloquial speech. In scientific dis-
course, the chemical composition of a named substance is part of its nominal
essence: the name applies solely in virtue of that composition, and so there is no
divergence here between epistemic and metaphysical necessity. With animals, the
everyday criterion is that of descent: the offspring of a bull and a cow, however
much of a freak, is a calf, and a bull or cow can only have been sired by a bull upon a
cow. If creatures resembling terrestrial tigers, however closely, had been discovered
on Mars, they would not have been tigers (although they would certainly have been
called “Martian tigers”), unless they were proved to have been, by some extraor-
dinary means, descended from terrestrial tigers. The everyday criterion for being
an animal of a particular kind would, if universally maintained, yield a proof that
every kind of animal had a history going back to the origin of life on earth, which
few people believe; but even if new species can arise out of pre-existing ones, the
principle that the classification of animal kinds is to be based on descent and genetic
relatedness holds good in scientific biology as much as in popular thinking. Thus it
is in accordance both with everyday and with scientific criteria to say that white
ants (termites) are not true ants because they are not genetically related to genuine
ants (being in fact of a different order). What makes internal structure relevant to
the identification of the kind to which an animal belongs is that it has been found to
be a far more faithful guide to genetic relatedness than external appearance; but it is
still genetic relationship that is the controlling criterion. The selection of the internal
structure of an animal as one of its essential properties is thus an amalgam of what
belongs to the nominal essence of the kind to which it belongs, and is thus a criterion
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for its being of that kind, namely its descent, with a scientific symptom of its having
had that descent. No doubt a layman would be unskilled at identifying the specific
features of the internal structure which a biologist would take as being decisive; but
the general idea would accord well with his understanding of the question. Thus
what Kripke takes as an essential property of an animal is very near the nominal
essence of the kind to which the animal belongs, being a scientifically identified
symptom of the individual animal’s conforming to that nominal essence. There is
a much smaller divergence between the scientific and the everyday conception of
kinds of animal than between the scientific and the everyday conception of kinds of
substance.

Are individual objects and natural kinds the only things to which essential prop-
erties can be ascribed? The tight connection between essential properties and rigid
designation suggests that they are not, since dates and terms for lengths are supposed
to be rigid designators: the standard metre rod—that very rod—might have been
more than a metre long. What are the essential properties of a metre or of a differ-
ence of temperature of 1 ◦C? It is not apparent that such things have any essential
intrinsic properties: they have only essential relations given by scientific laws. What
are the essential properties of any particular year? It was the period during which
the Earth completed an orbit about the Sun; but that was part of its nominal essence.
Apart from that it appears to have only necessary relations: it necessarily succeeded
what was in fact the previous year, and necessarily preceded what was in fact the
subsequent one.

In the notion of what is metaphysically necessary and that of essential properties,
we do not have hold of any firm concepts. We are, indeed, exploring a loose one.
Many of our uses of modal auxiliaries such as “might have” are indeed not explica-
ble in terms of epistemic possibility, and a good proportion of them are amenable to
a Kripkean account. But the truth-conditions of statements involving them are not
definite; and in my opinion there is no determinate notion of metaphysical necessity
to be sought.

Has the notion of metaphysical necessity, whether a sharp one or not, been of
use as a philosophical tool? The notion of analyticity, or of a priori knowability, has
long been such a tool. It is a legitimate and a useful one, since it bears on the senses
of expressions, and thus upon the concepts they express. It is far from clear that the
notion of metaphysical necessity is of similar philosophical utility. It has become a
standard notion among analytical philosophers; but what clarification has it enabled
us to make? Kripke’s notion of metaphysical necessity is not to be equated with
Aquinas’s notion of the per se nota. For him whatever is nota quoad nos must also be
per se nota: he had no room for the contingent a priori. The concept of metaphysical
necessity can tempt philosophers to use it where they should be using that of aprior-
icity. For example, in a lecture which I heard on the subject of colour an argument
was put forward against the so-called dispositional analysis of colour-concepts, in
terms of how things appear to normal observers in normal circumstances. It was said
that, if the analysis were correct, then the following modalised biconditional must
hold of any object a:
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Necessarily, a is red iff a would appear red to any normal observer in normal circumstances.

This modalised biconditional was confuted on the ground that there is surely a pos-
sible world in which indeed a is red, but nevertheless appears yellow to all observers
in all circumstances. Whether or not there is such a possible world, the argument is
beside the point. If we are concerned with analysing the concept of something’s
being red, and thus the sense of the adjective “red,” the question is not whether the
biconditional is metaphysically necessary, but whether it is knowable a priori. The
addition of metaphysical necessity to our repertoire can have a confusing effect on
philosophical analysis of concepts; that it is in any way helpful is seriously to be
doubted.

The formulation of the notion of rigidity (modal or temporal) was a fruitful addi-
tion to the philosopher’s toolkit. The introduction of the concept of metaphysical
necessity has led only to irrelevance and confusion.



Chapter 3
Ibn Sı̄nā and Conflict in Logic

Wilfrid Hodges

1 To John

In autumn 1965 I became one of John Bell’s first students. He and I were both
registered at Oxford University to work for MPhil—later upgraded to DPhil—under
the supervision of John Crossley (though for reasons I don’t remember, I began as a
supervisee of Michael Dummett). John Bell and Alan Slomson (another supervisee
of John Crossley) had put together a clear and elegant first course on model theory,
concentrating on ultraproducts and the construction of elementary embeddings one
element at a time, in the style being pioneered at the time by Chang and Keisler.
That course was my introduction to model theory. A fuller version, with some extra
material from George Wilmers, became the famous Bell and Slomson: Models and
Ultraproducts. It was published two years earlier than the definitive tome of Chang
and Keisler, and made a lot of people happy.

I particularly want to thank John for another thing that he taught me during our
time in Oxford. In 1966 C. C. Chang himself came to Oxford with a copy of Jack
Silver’s dissertation on indiscernibles and large cardinals. This was novel stuff and
we all found it challenging. But John lectured on it, and what I learned from his
lectures led directly to my own DPhil thesis, and in turn to much of what I did later
in the field.

In 1967 I was invited to the Philosophy Department at UCLA at short notice. The
scheduled lecturer in Philosophy of Religion, the logician John Lemmon, had died
of a heart attack while climbing in the San Bernadino Mountains just a few weeks
before the beginning of term, and I was brought in as an emergency replacement.
I think it was during my year in California that John Bell was appointed to LSE
in London. For a while, he and Moshé Machover were the London mathematical
logicians. There were a number of people in London at the time who knew some-
thing about mathematical logic and took a positive view of it—Daniel Cohen, Paul
Cohn, Chris Fernau, Ivor Grattan-Guinness, Clive Kilmister, Geoffrey Kneebone,
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Imre Lakatos, Peter Landin, David Wiggins, and probably others I missed. But
none of these were trained specialists in the field. So John and Moshé, who made
a splendid team together, filled an important slot. In 1968 I moved to London too,
to lecture at the now deceased Bedford College, so I graduated from being John’s
pupil to become his colleague.

An aside: as my memory serves me, John told me once that according to his
mother, his surname translates into Russian as zvonok. I was appalled. A zvonok is
a doorbell—John Doorbell! I saw him much more as a kolokol, one of those tuneful
and authoritative church bells that ring across the countryside and are imitated by
bluebells in the spring.

That brings me to translations. Though the Oxford logicians were barely aware of
it, John Bell in the late 1960s was building for himself the foundations of a possible
second career as a scientific translator. His translation (with Michael Woods) of
Jean Nicod’s “Geometry and Induction” was published in 1970 and is still cited.
So I hope John will allow me to honour him with a translation of some hitherto
untranslated work of another logician, the eleventh century Arabic-Iranian scholar
Ibn Sı̄nā.

I thank Amirouche Moktefi and Dimitri Gutas for helpful comments; in partic-
ular Amirouche read through the Arabic with me and made many improvements to
the translation. Of course any mistakes are my responsibility.

2 De Interpretatione Chapter 14

2.1 The Text Translated Below

During the 1020s Ibn Sı̄nā wrote a commentary in Arabic on the logical works of
Aristotle, as part of his encyclopedia Al-Šifā’ (The Cure). The commentary runs to
some 2180 pages in the recent Cairo edition; this figure includes his commentary
Madk

¯
al on Porphyry’s Eisagōgē, which he counted as an introduction to Aristotle’s

work. Apart from the Madk
¯

al which was translated into Latin in the 12th century,
and the section of Qiyās dealing with propositional logic, barely any of Ibn Sı̄nā’s
commentary has been translated into any western language.

Ibn Sı̄nā refers to Aristotle’s texts as “The First Teaching” (as in [2.5.7], [2.5.9]
below). Their first five books are the subjects of the second to sixth volumes of
the Šifā’ respectively. After Madk

¯
al which comments on the Eisagōgē, there come

Maqūlāt (on Aristotle’s Categories), cIbāra (on Perì Hermēneías), Qiyās (on Prior
Analytics), Burhān (on Posterior Analytics) and Jadal (on Topics). Ibn Sı̄nā also
commented on the Sophistical Refutations, Rhetoric and Poetics, but we won’t use
these commentaries. We will cite two later works of Ibn Sı̄nā: the Easterners and
the ’Išārāt. The numerous references to the works of Ibn Sı̄nā will be by title in
the text. References to the work of other authors follow the standard format for
this volume.

The passage translated in §6 below is Section 2.5 from Ibn Sı̄nā’s commen-
tary cIbāra on Aristotle’s Perì Hermēneías, the book that the Latins knew as
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De Interpretatione. Ibn Sı̄nā is commenting on Section 14 of the Perì Hermeneías;
henceforth I abbreviate this to PH14. The commentator Stephanus—who probably
taught in Alexandria around AD 600—said of this passage

The enquiry now undertaken is certainly not Aristotle’s, but is written as an exer-
cise. That is why Porphyry, writing a lengthy commentary on [Perì Hermēneías],
did not judge this section worthy of the thought needed to clarify it. ((Charlton,
2000, p. 185). (Ammonius, 1897) says similar things in more detail.)

(3.1)

In fact most commentators have found it difficult to fit the passage convincingly into
Perì Hermēneías, or even to make sense of it on its own. This is helpful for us in two
ways. First, the passage is a misfit, so we can reasonably take it separately from the
rest of Perì Hermēneías. Second, it will serve to illustrate how Ibn Sı̄nā deals with
challenging material.

My title—“conflict in logic”—has two meanings. First we will see that Ibn
Sı̄nā takes up the view of some earlier commentators, that Aristotle’s passage is
about conflict as a notion related to logic. Second, Ibn Sı̄nā was notorious for
treating other logicians with disdain, and one of his livelier paragraphs here is a
vivid demonstration of how to wipe the floor with people you despise. I think Ibn
Sı̄nā is not just being obnoxious; he has a significant point to make about how to
do logic.

2.2 Ways of Teaching

The Aristotelian commentators set themselves the task of making Aristotle con-
sistent with himself. They developed a battery of excuses for the contradictions
and obscurities that they found in him. It became a cardinal point that Aristotle
intentionally made himself difficult to understand. Thus Ibn Sı̄nā’s predecessor
Al-Fārābı̄:

. . . the person who researches the Aristotelian sciences, studies his books, and
applies himself with perseverance to them, knows full well the different methods
he used to render things inaccessible, cryptic, and intricate, despite his express
intent to expound and explain. Among these [methods] are the following:

i. In many of the syllogisms . . . he omits the necessary premiss. (Etc. through
five methods.)

(3.2)

Dimitri Gutas argues that Ibn Sı̄nā accepted what he took to be Aristotle’s reasons
for this policy, and sometimes copied Aristotle by adopting a similar obscurity. Thus
Ibn Sı̄nā writes:

Whatever I am able to bring to light I will do so either openly, or from behind a
veil which acts as a useful kind of stimulus and drill . . . ((Gutas, 1988), p. 228 for
the Al-Fārābı̄ quotation and p. 307 for the Ibn Sı̄nā.)

(3.3)
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In fact Ibn Sı̄nā does assume that the obscurities of PH14 are deliberate,
but he has another explanation for them. In Qiyās he makes the following
remarks:

Teaching is of two kinds. [First there is] teaching which supplies knowledge of
something that wasn’t already known in the nature of things; as when one teaches
that the three angles of a triangle are equivalent to two right angles. [Second
there is] teaching that consists of reminding (tad

¯
kı̄r) and facilitating (’icdād).

Reminding is what causes a thing to come into the mental processor (bāl) when
the thing was already known. . . . Facilitation is that a thing comes into the mental
processor together with other things that have similar properties to it. Each of
these other things, when it is known, gives no further knowledge beyond itself;
but when [the first thing] is brought into the mental processor in the vicinity of
this thing, the two of them [together] supply new knowledge. . . . Perì Hermēneías
mostly consists of reminding and facilitating, though some of it is argument and
reasoning. (Al-Qiyās 15.13–17.1. On “mental processor” see §3.2 below and the
notes on [2.5.13].)

(3.4)

In paragraphs [2.5.9] and [2.5.10] of his commentary on PH14, Ibn Sı̄nā states his
view that this section of Perì Hermēneías, or at least a major part of it, was written
as a facilitation. (He says tawt.i’a; this is a near synonym of ’icdād, and there is no
reason to think that he means anything different by it.)

The notion of facilitation as a style of teaching seems to be Ibn Sı̄nā’s own. I think
it entitles him to a mention in the history of cognitive science. There is more to be
said on this, but not here.

The thing to take home here is that on Ibn Sı̄nā’s account, Aristotle is making
points not for their own sake, but so that they can serve as catalysts for the stu-
dent to develop other related pieces of insight. So there is no need for PH14 to
hang together. Its overall structure is not what the student should be learning from
it. Rather it gives the student a collection of bullet points that can facilitate other
knowledge in analogous situations.

Ibn Sı̄nā writes his commentary on PH14 in a similar style. He makes points
that should be followed up but aren’t. He jumps forwards and backwards through
Aristotle’s text for no apparent reason. With the exception of the remarkable para-
graph [2.5.16], he gives many suggestions but few arguments. He is surprisingly
casual about whether his explanations are accurate to Aristotle’s intentions. In the
context described above, one can see why he could have thought that this was an
appropriate way to treat a historical text; today we would regard it as less than
professional.

2.3 Summary of Aristotle’s Text

Ibn Sı̄nā would have had available to him the excellent Arabic translation of Aristo-
tle’s text made around the year 900 by ’Ish. āq ibn H. unain. This translation survives,
but Ibn Sı̄nā tends to quote so loosely that it’s hard to be sure exactly what he is
quoting. (For an example see the note on 131.12 “Contraries” below.)
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The following summary of Aristotle’s argument imposes a shape that may go
some way beyond what Aristotle himself intended. Incoherent arguments are very
hard to summarise without imposing some kind of coherence. Ackrill (1963) trans-
lates the passage with a commentary.

At 17b4 earlier in the Perì Hermēneías, Aristotle has explained that the two sen-
tences “Every A is an X” and “No A is an X” are contraries (enantíai) of each other.
This was by stipulation; in the present passage, Aristotle aims to give a heuristic
argument to justify the stipulation on the basis of more fundamental principles.

The principles that he assumes are as follows:

1. For every proposition p there is a proposition q such that p and q are contraries
of each other. (Implicit in 23a27–30.)

2. If p, q, r are propositions and both q and r are contraries of p, then q and r
express the same belief. (Implicit in 23a32–35.)

3. If p is a contrary of q then p and q can’t both be true. (24b9.)

Step 1 (23a32–39). Aristotle begins by reducing the question to one about beliefs.
I guess that this is in order to replace the equivalence relation in Principle 2 by iden-
tity. But in fact he continues his argument in terms of the propositions expressing
the beliefs.

Step 2 (23a40–23b7). Next he considers the case of singular propositions. An
affirmative singular proposition has the form

A is an X . (3.5)

and a negative singular proposition has the form

B is not an X . (3.6)

Aristotle claims that if the subjects A and B are distinct, then in general nothing
prevents (3.5) and (3.6) from both being true, even with the same X ; and the same
holds between two affirmatives or two negatives. So we conclude that two singular
propositions that are contrary to each other must have the same subject.

Step 3 (implicit in 23b7–9). Next he points out that if (3.5) is contrary to a singu-
lar proposition q, then q must entail

A is not an X . (3.7)

Otherwise Principle 3 is violated.
Steps 4a, 4b, 4c. Having established this, he gives three arguments why the

contrary of (3.5) must be (3.7) (up to identity of belief). The first argument (Step
4a, 23b7–27) is very obscure; maybe Aristotle intended it to be more than one
argument. It includes two further notions: that of a thing being true essentially as
opposed to accidentally, and that of a belief being further from the truth than another
belief.

The second argument (Step 4b, 23b27–32) is that for some particular values of
A and X the only candidate for a contrary of (3.5) is (3.7). But the generality in
Principle 1 implies that there is some uniform formula for reaching the contrary.
The third argument (Step 4c, 23b33–24a3) is broadly similar, but in the opposite
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direction: the contrary of (3.7) can only be (3.5), and so the contrary of (3.5) is (3.7)
by the symmetry in Principle 1.

Step 5 (24b1–6). Finally Aristotle reaches his conclusion as follows. By analogy
with singular propositions, the contrary of

Every A is an X . (3.8)

must have the same subject as (3.8). Now the subject of (3.8) is A, taken universally;
so the same must hold for its contrary. Also by analogy with singular propositions,
the contrary of (3.8) should conclude “. . . is not X .” Putting these together, the con-
trary of (3.8) is

Every A is not an X . (3.9)

As required, this expresses the same belief as “No A is an X .”

3 Ibn Sı̄nā’s Semantics

3.1 Ideas

For Ibn Sı̄nā, logic is about ideas (he calls them “things,” “ašyā”). More precisely
it’s about how ideas are derived from other ideas by definition or deduction. Ideas
are objective entities, as distinct from the representations of ideas in your mind or
my mind. In fact Ibn Sı̄nā believes that there is a divine intellect that holds the stock
of ideas. But he has a strong antipathy to mixing logic and metaphysics, so he never
mentions this point in his logical writings.

A typical idea is the meaning of a word or meaningful phrase of a natu-
ral language. Here we need some notation. I use quotes to name words and
phrases:

“not a horse” (3.10)

and semantic quotes (in the style of (Jackendoff, 1990) and others) to name the
meanings of words and phrases:

[NOT A HORSE] (3.11)

Ibn Sı̄nā himself has neither of these notations. For the first he would write the
equivalent of

the phrase not a horse. (3.12)

He has no expression for semantic quotes, but there are a number of phrases that
serve as a cue that he is talking about meanings. For example in [2.5.5] below
he says the Arabic equivalent of “as for it isn’t good itself”; he is talking about
the meaning [NOT GOOD]. (See the note on 125.17 below.) A more extravagant
example is

not-a-horse-ness insofar as it is not-a-horse-ness (3.13)
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(Al-Maqūlāt 242.3), which refers to [NOT A HORSE].
A typical idea like [HORSE] has at its core a principle for classifying actual or

possible entities into two sorts, those which satisfy it and those which don’t. This
principle is (near enough for present purposes) what Ibn Sı̄nā calls the “nature”
(t.abı̄ca) of the idea.

Some ideas are atomic and come to us direct. Others are compound; their nature
is built up from the natures of simpler ideas. A typical compound idea like [HORSE]
has a feature which records how the nature is built up. This feature is called the
“essence” (d

¯
āt) or “whatness” (māhiyya) of the idea. The idea also has a “defini-

tion,” which is a linguistic expression that reports the essence in a canonical form.
The simpler ideas from which an idea is formed are said to be “internal” (dāk

¯
il)

to the idea or the definition. For example [ANIMAL] is internal to [HORSE], and
[NECESSARY] is internal to [POSSIBLE].

The essence of [HORSE] actually contains [ANIMAL] as a conjunct: to check
that a thing is a horse, you need to check among other things that it’s an animal.
We can express this by saying that [ANIMAL] is “constitutive” (muqawwim) for
[HORSE], or that it’s a constitutive of [HORSE]. Unfortunately we often meet loose
vocabulary in this area. For example when Ibn Sı̄nā says that I is “essential” for J ,
he sometimes seems to mean that it’s internal, and sometimes that it’s constitutive.
Constitutive implies internal but not vice versa; for example [NECESSARY] is cer-
tainly not constitutive for [POSSIBLE].

This confusion arises from an endemic false assumption of Aristotelian logic,
which I discuss in (Hodges, 2009) under the name of Top-Level Processing. Briefly,
the assumption is that logical processing never reaches below the top syntactic level.
Ibn Sı̄nā deserves credit for making the assumption explicit, but (at least in the West)
we have to wait till Frege to see a serious assault on it.

The way it shows up in connection with “internal” is that definitions are required
to express intersections; for example

So the definition has to be composed from the genus and the differentia . . . as
when we define “human” by saying “Human is animal that is rational.” (Al-
Madk

¯
al 48.17–19)

(3.14)

. . . composition in the form of restriction, which is what happens when we obtain
concepts through definitions . . . (̇Al-cIbāra 31.16f)

(3.15)

(In all ages of Aristotelian logic, a ∩ b is thought of as b restricted to a. As Boole
puts it, “The mental operation represented by the adjective . . . is that of selecting
from a certain class as subject all the individuals which together answer to a given
description. . . . the subject class is expressed by that word or combination of words
to which the adjective is prefixed.” (Boole, 1997, p. 5)) Thanks to Top-Level Pro-
cessing, the theory of definitions tends to fasten on the top-level constitutives and
overlook features that are lower down in the syntactic structure, such as negations
on subphrases.
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3.2 Attachments

We can form the idea [HUMAN]. We can also form the ideas [RATIO-
NAL HUMAN] and [YOUNG HUMAN]; let us express this by saying
that the ideas [RATIONAL] and [YOUNG] are “attachments” of the idea
[HUMAN]. There is a crucial difference between these two attachments: [RATIO-
NAL] is (for Aristotelians) constitutive for [HUMAN], but [YOUNG] cer-
tainly isn’t. Those attachments that are not constitutive are said to be “acci-
dents” (carad. ). The distinction between constitutives and accidents is one of
the fundamental principles of Aristotelian philosophy, though not always in this
terminology.

Aristotle himself said a number of things relevant to the distinction between
constitutives and accidents, and the early commentators added more. By the
late fourth century AD, the Phoenician philosopher Porphyry decided that the
range of views on this and related topics had become a barrier to begin-
ners in the field, and so he wrote his Eisagōgē to draw some lines in the
sand.

Porphyry divides attachments into three groups, namely non-accidents (i.e. con-
stitutives), inseparable accidents (carad. ḡair mufāriq in the Arabic translation) and
separable accidents (carad. mufāriq) (Eisagōgē 12.25ff, (Barnes, 2003, p. 12)). He
classifies them by a device called “removal,” rafc in Arabic. Given an idea I and
an attachment J , we first form the idea NOT-J . (At this point an aristotelian would
want to distinguish between removing J and affirming NOT-J . For simplicity I
suppress this distinction.) Are there any things that satisfy I and NOT-J? If there
aren’t, then J is a constitutive of I . If there are in the real world, then J is a separable
accident of I . If there aren’t any in the real world, but we can imagine one, then J is
an inseparable accident of I . Thus [RATIONAL] is constitutive for [HUMAN] and
[YOUNG] is a separable accident of [HUMAN]. Porphyry offers [BLACK] as an
inseparable accident of [CROW].

Ibn Sı̄nā reviews this classification in his Madk
¯

al. In places he merely reports
what Porphyry said. Elsewhere (e.g., 86.4ff) he gives a textbookish critique of the
classification, scolding Porphyry for his careless formulations. But the full extent
of Ibn Sı̄nā’s disagreement with Porphyry comes to light when he forgets Porphyry
and sets out his own views, in Madk

¯
al and elsewhere.

Like Porphyry, Ibn Sı̄nā divides attachments into three groups, but the groups
are not Porphyry’s. Ibn Sı̄nā distinguishes (1) the constitutives, (2) the inherents
(lāzim) and (3) the rest. The rafc test plays no part in defining these groups. The
constitutives of an idea I are those ideas which are conjuncts of the essence of I ,
as we saw above. The inherents are those attachments that are not constitutive but
follow necessarily from the essence of I .

Sometimes [an idea] has inherents that follow from it because of its whatness,
though the whatness is established first and then these things follow from it. Thus
[EVEN] follows from [TWO] . . . . (Al-Madk

¯
al 34.10f)

(3.16)
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A demonstration gives an inherent . . . whereas a definition gives something in
the constitutive essence. An inherent [of an idea] is not internal to the definition
of the idea. . . . For example there is a demonstration telling us that a triangle
has angles equal to two right angles; this meaning is external to the definition of
[TRIANGLE]. (Al-Burhān 199.15–18)

(3.17)

The third class consists of those attachments that don’t follow from the essence of I .
How does this correlate with rafc? Strictly there are two forms of rafc, namely

removal in the real world and removal in the imagination. Ibn Sı̄nā mentions the
first, but he has very little interest in it. Logicians don’t concern themselves with the
actual world. As for removal in the imagination, he is clear that this can’t happen
with constitutives:

It’s impossible to introduce into the mental processor both an idea and one of its
constitutives, so that the idea is actually present and the constitutive is negated
from it; this would destroy the conceptualisation of the whatness. (Al-Madkhal
34.21–35.3)

(3.18)

But which accidents can be removed in the imagination? Ibn Sı̄nā’s answer has two
ingredients, one logical and one cognitive.

The logical part is that a proof of J from I can be long or short, depending
on what I and J are. For Ibn Sı̄nā the crucial dividing line is whether I entails J
immediately, or whether you need to introduce an intermediate (mutawassit.) idea in
order to deduce J from I . For example, part of the statement of Proposition I.32 of
Euclid’s Elements is that the internal angles of a (plane) triangle ABC add up to the
sum of two right angles. Euclid proves this by first extending the side BC to B D,
then adding a line segment C E parallel to B A:

A

B DC

E

(3.19)

Then by earlier propositions in the Elements, the angles AC E and EC D are respec-
tively equal to B AC and ABC , and the theorem follows at once. The theorem shows
that [ANGLES 180◦] is an inherent of [TRIANGLE]. But at least by this proof, it’s
not an immediate inherent. Ibn Sı̄nā thinks that the possibility of extending the side
BC to B D is an immediate inherent of [TRIANGLE], but the segment C E adds a
whole new idea (Al-Madk

¯
al 35.20–36.3).

This theorem has a history. Proclus in the fifth century AD (Proclus, 1970, 296ff)
mentions two other proofs of it, but both of them involve drawing extra lines.
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Mancosu (1996, p. 13ff) quotes a tract of the sixteenth century author Pereyra, in
which Pereyra uses the rafc test to show that the extendibility of BC to B D is an
accidental property of the triangle, and hence that the proof is not “scientific.” (For
Ibn Sı̄nā all scientific proofs are proofs of accidents—why should one bother to
prove a definition? Also we will see in a moment why he believes that the rafc test
doesn’t give the answer that Pereyra claims.)

We turn to the cognitive part. According to Ibn Sı̄nā, our bāl (which I translated
as “mental processor” in (3.4) above) is the part of our mind where reasoning gets
processed. From what he says about it, apparently it has a very limited range of
actions: we send two ideas into the bāl, and it either finds some overlap or similarity
between the ideas, or it tells us they are incompatible. (So the bāl is basically a
unification engine. In syllogistic reasoning it serves essentially the same role as
unification in the resolution calculus. Obviously there has to be some other mental
element that chooses the appropriate ideas to send into the bāl; this raises some
issues which are important for understanding Ibn Sı̄nā, but they are not our concern
here.)

Ibn Sı̄nā believes that the rafc test involves a simple act of comparison between
two ideas, with no further reasoning. So we do the test by a single pass through
the bāl. This is enough for the bāl to recognise the incompatibility of I and NOT-J
when J follows from I immediately:

There are accidents that are inherents of the whatness by a primary and clear
entailment that is not mediated by any other accident. So when the entailment
is not via some intermediate, it is impossible to negate the accident from the
whatness at the same time as affirming the whatness, having them both enter the
mental processor together. An example is [TRIANGLE] and [CAN IMAGINE A
LINE OF THE TRIANGLE EXTENDED]. (Al-Madk. al 35.18–20)

(3.20)

But in a single pass, with no memory and no internal controls, the bāl has no way
of recognising an incompatibility that depends on some intermediate that it hasn’t
seen:

It can sometimes happen that the holding of the accident is through something
intermediate, so when this intermediate thing doesn’t come into the mental pro-
cessor, one can negate [the accident]—for example [one can negate] that any two
angles of a triangle are [together] less than two right angles. (Al-Madk

¯
al 36.1–3)

(3.21)

In short, the test of rafc (in the imagination) separates an idea I from its accident J
if and only if J is not an immediate consequence of I .

Somehow this theory is a little glib. There are signs that Ibn Sı̄nā himself has
reservations about it. In Al-Burhān 38.3–8 he says that if a person didn’t realise
that all humans are rational, it would be possible for him to imagine there are
humans with no sense of humour. Now Ibn Sı̄nā believes that [HAS A SENSE OF
HUMOUR] is a consequence of [IS CAPABLE OF BEING SURPRISED], which
in turn is a consequence of [RATIONAL] (e.g. Al-Madk

¯
al 30.1f). This is a two-step

inference, so by the theory we have been reviewing, Ibn Sı̄nā should believe that it’s
possible, as things are, to imagine that there is a human with no sense of humour.
So why does he introduce the desperate premise that the imaginer doesn’t realise
that humans are rational?
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Nevertheless Ibn Sı̄nā is robust in his belief that there are non-constitutives that
can’t be removed in the imagination:

Pay no attention to the theory that says that non-constitutives can legitimately be
removed in the imagination. (Al-’Išārāt i.12 p. 49)

(3.22)

3.3 Meanings of Sentences

Semantics is a theme that runs throughout the logical part of the Šifā’. But Ibn Sı̄nā
is probably not intending to make a contribution to general linguistics. His context is
that we use logic to analyse arguments—other people’s or our own. These arguments
reach us in the form of sets of sentences. The sentences can even be written in a
book, separated and in the wrong order, and with bits missing or added (Al-Qiyās
460.4–8). So we have to try to reconstruct the author’s intentions. In other words,
we have to reconstruct the “reading” (’ak

¯
d
¯

, literally “taking”) that the author put on
his words. In this setting, Ibn Sı̄nā often refers to the kinds of information that we
need to supply, and the ways open to us for finding them.

Of course this includes disambiguating both words and syntactic constructions.
But as Ibn Sı̄nā often emphasises, it can also involve adding things that weren’t
explicit in the sentence:

. . . a time, or a place, or a comparison of how things are, or an implied event,
or an action or an experience, or some consideration of possible versus actual, or
some consideration associated with an agent or an experiencer . . . . (Easterners
48.6–8)

(3.23)

(The question how much interpretation we are entitled to add to a text was a hot
topic in Qur’ānic exegesis at the time.)

Thus every sentence has an indefinite number of possible readings. In general
some of these readings will be true and some will be false. This is probably how
we should understand Ibn Sı̄nā’s notion of two sentences being “true together,” or
“agreeing in truth” (and likewise “false together”). Thus a sentence p and a sentence
q are “true together” if there are a reading of p, and a corresponding reading of q,
such that p and q are both true under these readings. This notion obviously depends
on what we count as a “corresponding” reading. But in fact Ibn Sı̄nā normally
uses this notion of “true together” for two sentences that are very close syntacti-
cally; for example they may differ only in their quantifier. If the reading provides
references for the names in p, together with a place and time for the whole sen-
tence, then the same references and place and time carry over directly to the other
sentence.

Another notion in the same general area is ’ı̄hām, what a sentence suggests but
doesn’t in fact say.

But with propositions one should focus not on what they suggest but on what they
mean in themselves. (Al-cIbāra 55.13f)

(3.24)

Later in the cIbāra (p. 104) Ibn Sı̄nā uses this principle to dismiss the Grices of
his time. He doesn’t seem to have noticed that what the sentence suggests may be
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exactly the reading intended by the speaker or writer. This becomes highly relevant
in paragraph [2.5.16] below; see the note on line 130.16.

4 Conflict and Contrariety

4.1 Types of Opposition

The notions of two ideas “agreeing” or being “opposed” are two of the primitive
notions of Aristotelian logic. Since these notions are primitive, they tend to get
short shrift in terms of definitions and explanations. But we do meet classifications
of different types of opposition.

For Ibn Sı̄nā the general term for “opposed” is muqābil, literally “facing.” He
does offer a definition of this in Al-Maqūlāt 241.7f:

We say: opposing pairs are those which don’t combine in a single subject from a
single aspect at a single time together.

(3.25)

Unfortunately we have to guess the meaning of “combine”; but almost certainly he
means “are true together” as in §3.3 above. We also need to know what “aspects”
are; I ignore this here. I think we have to read “single subject” in a rather forced
way as “the same singular subject,” for example “Zayd.” Thus [MOVING] and [AT
REST] are opposed, because for example the following sentences can’t both be true
at the same time with the same Zayd:

Zayd is moving. Zayd is at rest. (3.26)

Ibn Sı̄nā’s definition seems to apply only to noun-type ideas; but we can extend it to
sentence-type ideas by regarding these as classifiers of times and/or circumstances.
This reduction of sentence-type ideas to noun-type ideas runs throughout Ibn Sı̄nā’s
logic, though as a heuristic principle rather than a formal reduction.

Ibn Sı̄nā mentions three main types of opposed pairs: negations (salb), contra-
dictions (naqı̄d) and contraries (d. idd). Negations are got by adding or removing a
particle of negation, provided of course that it applies to the whole idea.

When the predicate is negated on its own without negating the quantity with
which it is predicated [i.e. the quantifier on the subject], then the negation is not
a negation of what was affirmed. (Al-cIbāra 94.4–6)

(3.27)

In practice contradictories are the same thing as negations, though Ibn Sı̄nā may
intend the contradictory of p to be by definition a sentence which is true exactly
when p is false (i.e. under the same readings).

There is some discussion of contraries in book 7 of Maqūlāt. Ibn Sı̄nā mentions a
number of pairs which are generally considered contrary. They include [HEAT] and
[COLD], [HEALTH] and [SICKNESS], [MOVEMENT UP] and [MOVEMENT
DOWN]. He discusses which of these pairs can be described by saying that some
particular idea is present on one side and absent on the other. If he has a general
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definition for “contrary” here, I haven’t found it. But in cIbāra he gives the classical
definition for the case of sentence-type ideas:

Let us call this opposition ‘contrariety,’ where the two opposing things don’t ever
agree in truth, but they do agree in falsehood. . . . Contraries can’t be true together,
but they can be false together, as you know. (46.16–47.2.)

(3.28)

Just before giving the definition, he has quoted the example pair

Each person is a writer. No person is a writer. (3.29)

He says the second sentence is got from the first by negating the predicate; so he is
not distinguishing the second sentence from “Each person is not a writer.”

4.2 Aristotle’s Question in PH14

Ibn Sı̄nā opens his commentary on PH14 with a remark that the passage is about the
relation “in greater conflict with” (’ašadd cinād). This reading can be traced back at
least to Ammonius (mâllon mákhesthai, (Ammonius, 1897, p. 252, 202 r120), who
led the Alexandrian school in around AD 500, and it survives down to Whitaker
(“more violently opposed,” (Whitaker, 1996, p. 172)). But the evidence to support
it is vanishingly small. In both the original Greek and ’Ish. āq’s Arabic translation,
the comparatives are limited to just a few lines (23b20–24, a small part of what I
called Step 4a in §2.3 above). But for reasons given in §2.2 above, I don’t think Ibn
Sı̄nā is much concerned about whether he has interpreted this particular passage as
Aristotle intended it.

We don’t know specifically that Ibn Sı̄nā knew Ammonius’ commentary.
But it’s likely that he did, since some half a century earlier Yah. yā ibn cAdı̄
[1988, pp. 321–323] regarded the views of the “Alexandrian commentators” on
PH14 as something to discuss between friends. I thank Peter Adamson for this
reference.

The relation “in greater conflict with” is a rather strange one to find in an Aris-
totelian logical treatise. It has three variables: X is in greater conflict with Z than
Y is. Most Aristotelian logicians found it beyond their capabilities to handle even a
relation with two variables. Ibn Sı̄nā himself has an ambivalent attitude to variables
in relations. Throughout his logical writings he calls attention to them, and partic-
ularly to the need to supply the assumed parameters when we interpret sentences.
But his formal logic avoids them completely. There has to be a reason for this dis-
crepancy. I think it’s Top-Level Processing again; for further details see (Hodges,
2009).

The word cinād “conflict” never appears in ’Ish. āq’s translation of PH14, though
muqābil, salb, naqı̄d. and d. idd “contrary” are all frequent ((Jabre, 1999)—cinād does
appear at 21a38, earlier in the Perì Hermēneías). I suspect Ibn Sı̄nā chooses a word
distinct from all of these four, and uses it throughout his commentary, in order to
make it clear that he wants to visit a new question. In PH14 one easily gets the
impression that Aristotle is reworking issues that he has forgotten he settled earlier.
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(“The body of the chapter . . . upsets the distinction between contraries and contra-
dictories which was drawn in Chapter 7,” (Ackrill, 1963, p. 153).) The notion of
cinād turns up again quite often in Al-Jadal, Ibn Sı̄nā’s commentary on Aristotle’s
book about debate. Ibn Sı̄nā says in [2.5.1] that the topic of PH14 has more to
do with debate than with logic; but I don’t think the question of “greater conflict”
reappears in Jadal.

4.3 The Quickest Contradiction

Ibn Sı̄nā’s interpretation of Aristotle’s text seems to rest on two intuitions, which we
can call Canonicality and Immediacy.

Canonicality is the intuition that if every proposition has a unique most con-
flicting opposite proposition, then there has to be a recipe for finding this most
conflicting opposite which is uniform across all propositions.

A simple application of this intuition is to think of an idea I in terms of its
extension Ī , which is the class of things that satisfy I . Suppose � is the relevant
universe of things. An idea J is contrary to I if and only if J̄ is a subclass of �
that is disjoint from Ī . Just from the given data, how can we define a particular
contrary J for I ? There are only two options: J̄ must be either the complement of
Ī in �, or the empty class. Aristotelian logicians are unsure whether there are ideas
with empty extension; and in any case there are undesirable consequences if two
different ideas have the same most conflicting opposite. This leaves only the idea
NOT-I , whose extension is the unique contrary of Ī that includes the extensions of
all other contraries of I . This is the argument of [2.5.5], and similar thoughts lie
behind [2.5.4], [2.5.9], [2.5.14] and [2.5.17].

Immediacy is the intuition that if the incompatibility of I and K can be proved
more briefly than the incompatibility of J and K , then I conflicts with K more
strongly than J does.

The simplest example of this is where the only way to prove the incompatibility
of J and K is by using the incompatibility of I and K as a lemma. Ibn Sı̄nā isolates
this case at [2.5.6]. Also if the incompatibility of I and K can be proved using
only ideas in the essences of I and K , whereas to prove the incompatibility of
J and K one needs to go outside the essences, then prima facie one expects that
the proof will be shorter for I than for J . This seems to be the intuition behind
[2.5.11]–[2.5.13].

In §3.2 above we saw how Ibn Sı̄nā has reasons for being interested in lengths of
proofs. The idea of grading contradictions as more or less lethal has some echoes in
modern work; it can matter in databases.

Another area where people have considered false theories and classified them in
terms of distance from truth is the philosophy of science, as for example in (Oddie,
2007). I thank Sjoerd Zwart for making me aware of this possible parallel, though I
have to add that I think it would take some ingenuity to make Ibn Sı̄nā’s suggestions
relevant to the questions discussed by Oddie.
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5 The “Well-Known Commentator”

5.1 Ibn Sı̄nā’s Outrageous Analysis

In paragraph [2.5.16] Ibn Sı̄nā attributes the following argument to an unnamed
commentator:

A contradictory belief can be found for a true belief in each case. This fact is
something essential, since an essential thing is a thing that is found in all cases.

(3.30)

Ibn Sı̄nā seems to take the argument as follows. Write

Cx : x is the property of a thing, that true beliefs about it have contradictories.
Ex : x is essential.
Ax : x is found in all cases.

(3.31)

Then Ibn Sı̄nā reads the syllogism as follows:

Every C is an A. Every E is an A. Therefore every C is an E . (3.32)

I am guessing at some details of (3.31). But the formal argument (3.32) can be read
off from Ibn Sı̄nā’s discussion.

This argument (3.32) is obviously invalid. Ibn Sı̄nā could demonstrate this in a
couple of lines by giving interpretations of C , E and A that make the premises true
and the conclusion false, following Aristotle’s procedure in the Prior Analytics. But
this is not what he does.

What follows calls for some knowledge of syllogisms and their metatheory.
A good source for this material is the first three chapters of (Thom, 1981). Note
that for Ibn Sı̄nā a syllogism strictly consists of just the two premises; hence he has
only three figures, which are distinguished by where the middle term lies.

Ibn Sı̄nā assumes that (3.32) is intended as a syllogism. He reasons, assuming for
contradiction that the syllogism is valid:

(a) (130.3) The conclusion is universally quantified.
(b) By (a), the syllogism is not valid as a third figure syllogism.
(c) (130.6) The conclusion is affirmative.
(d) By (c), the syllogism is not valid as a second figure syllogism.
(e) (130.4) By (b) and (d) the syllogism must be in first figure.
(f) By (e), the subjects of the premises are respectively the middle term and the

minor term.
(g) (130.5) By (f), E must be either the middle term or the minor term.
(h) (130.1f) If E is the middle term then it isn’t in the conclusion.
(i) (130.7) E is in the conclusion.
(j) By (h) and (i), E is not the middle term.
(k) (130.7f) By (e), if E is the minor term then it is the subject of the conclusion.
(�) (130.8) E is the predicate in the conclusion.

(m) By (k) and (�), E is not the minor term.
(n) By (g), (j) and (m), contradiction.
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Ibn Sı̄nā leaves to the reader the steps for which I give no line reference. In fact we
could have stretched out the argument still further by including the metatheorems
that Ibn Sı̄nā uses but doesn’t state. Recall §2.2!

But Ibn Sı̄nā has only just started his demolition. He moves on to consider a
possible repair of the syllogism:

(o) (130.10) Suppose we replace the premise “Every C is an A” by “Every A is a
C .”

(p) (130.12) Then we get a valid syllogism with conclusion “Every E is a C .”
(q) (130.11) But our new premise is false, and our new conclusion is not what was

claimed.
(r) (130.13) In any case the commentator has forgotten to include the universal

quantifier on this premise.

Next he reverts to the original syllogism.

(s) The middle term is predicate in both premises.
(t) (130.16) By (s), the syllogism is in second figure.
(u) (130.15) Both premises are affirmative.
(v) No valid syllogism in second figure has both premises affirmative.
(w) By (t), (u) and (v), the syllogism is invalid.

Ibn Sı̄nā has already shown this result, but this time he is using a different metathe-
orem (v).

Finally he tries another repair:

(x) (130.16) Suppose that we replace the premise “Every E is an A” by “Every A
is an E .”

(y) (130.16) Then we are using an obviously false premise.

On the basis of the facts that Ibn Sı̄nā gives us, this final repair is pretty clearly what
the unnamed commentator intended in the first place. So a final twist of the knife is
that Ibn Sı̄nā doesn’t even bother to acknowledge that the resulting syllogism is a
straightforward instance of the valid first figure mood Barbara.

The premise “Every A is an E” says “A thing that is found in all cases is essen-
tial.” This is a tolerable statement of the Eisagōgē view of essence and accidents;
see §3.2 and the note on line 130.16 below. Ibn Sı̄nā rejects this reading because
he rejects the Eisagōgē view. But this could be a difference of terminology between
Ibn Sı̄nā and the unnamed commentator, not a mistake by the commentator. Ibn Sı̄nā
also refuses to consider the possibility that the commentator’s final clause could be
read as an equivalence between C and E ; see the note on 130.16. So Ibn Sı̄nā’s
whole attack on the commentator is almost certainly based on a wilful misinterpre-
tation of what the commentator said. This was hardly a new technique of debate,
but the crudity of Ibn Sı̄nā’s use of it can only be seen as undisguised personal
malice.
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5.2 Why?

Ibn Sı̄nā’s procedure in demolishing the unnamed commentator does have another
striking feature. He is conducting a philosophical debate by using a number of
metatheorems of syllogistic logic. More precisely he is using metatheorems of the
form “Any valid syllogism must satisfy the following condition . . . .” Let us call
these NCV (Necessary Conditions for Validity) metatheorems.

The chief accepted use of logic in Ibn Sı̄nā’s time was to check arguments by
reducing them to syllogistic form. For this one would need to know the rules of
syllogisms. But here Ibn Sı̄nā is using not those rules but higher-level rules about
them. Perhaps he was the only logician of his age who was capable of deploying
these metatheorems to make a philosophical point; if he believed he was, he cer-
tainly wouldn’t have wanted to keep the fact to himself. But we have no reason to
deny him credit for his observation that NCV metatheorems are useful.

The metatheorems that he invokes here are not very novel—I think they can
all be found in Aristotle. Among the other known results in Ibn Sı̄nā’s time, the
only other NCV metatheorem that I can offer for comparison is Theophrastus’
peiorem (“worse”) rule, which said that on any of several measures of strength,
the conclusion of a valid syllogism can never be stronger than the weaker of the
two premises (Thom, 2003, pp. 23, 76). But this rule was imprecise and it didn’t
generalise beyond categorical syllogisms—as noted in Thom’s book, there is a
counterexample in Ibn Sı̄nā’s modal syllogisms. (Ibn Sı̄nā gives his own version
of the rule at Al-Qiyās 108.9, where ’ah. san “better” is clearly a corruption of ’ak

¯
ass

“worse”!) By contrast the NCV metatheorems that Ibn Sı̄nā uses in his commentary
are ones that he had checked for himself in a range of extensions of categorical
syllogisms.

Within a couple of centuries of Ibn Sı̄nā, versions of the laws of distribution
started to appear in the West. These laws are NCV metatheorems. The best versions
were more precise than the peiorem rule, but still there were problems about gener-
alising them beyond categorical syllogisms. These problems were resolved only in
the late twentieth century. Meanwhile in 1906, Frege, in one of his most perceptive
papers (Frege, 1906), had argued that the logic of his time had no sound basis for
proving general NCV metatheorems, and that such a basis would need to be found
if Hilbert’s arguments for the independence of the parallel postulate were to be put
in an acceptable form.

5.3 Who Was the “Well-Known Commentator”?

Ibn Sı̄nā often discusses the views of other commentators, but he rarely names
them except by epithets like “well-known.” In the present case Fritz Zimmer-
mann (personal communication) has suggested that it might be Abū al-Faraj Ibn
al-T. ayyib, a contemporary of Ibn Sı̄nā who did write a commentary on the Perì
Hermēneías.
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If Zimmermann’s suggestion is right, the passage we are discussing falls neatly
into line with an episode that Gutas discusses (Gutas, 1988, pp. 64–72). The episode
took place in 1030, some half dozen years after Ibn Sı̄nā wrote his own commentary
on Perì Hermēneías. According to an anonymous disciple of Ibn Sı̄nā, someone
suggested to Ibn Sı̄nā that he might not be up to date with contemporary philosophy.
Ibn Sı̄nā took umbrage, and sent one of his friends off to Baghdad with instructions
to buy the latest books in the field. There Ibn al-T. ayyib had some commentaries for
sale; but when Ibn al-T. ayyib heard that it was Ibn Sı̄nā who wanted the books, he
“asked an exorbitant price,” which was duly paid. Later Ibn Sı̄nā let it be known that
in spite of paying the price, he had already formed a low opinion of Ibn al-T. ayyib. In
his account of the episode, the anonymous disciple goes on to include Ibn al-T. ayyib
among people who

never acquired the habit of dealing with [the forms of syllogisms] and they never
suffered the pains of analyzing the details of problems so that they may gain a
syllogistic habit; their sole reliance, instead, is upon ideas not subject to rules.
(Gutas, 1988, p. 69)

(3.33)

If Ibn al-T. ayyib was indeed Ibn Sı̄nā’s “well-known commentator,” then we
can easily understand why he didn’t want Ibn Sı̄nā to buy copies of his later
writings.

The anonymous disciple lists those of Ibn al-T. ayyib’s commentaries that
“became available to us,” and he includes the Perì Hermēneías commentary. If
this wording means that Ibn Sı̄nā didn’t have Ibn al-T. ayyib’s Perì Hermēneías
commentary before 1030, then Ibn al-T. ayyib can’t be the well-known commen-
tator. But the wording might only mean that the list contains those commen-
taries that were available after the 1030 purchase, including some that Ibn Sı̄nā
already had.

If we had the commentary then we could see whether it contains the argument
that Ibn Sı̄nā complains of. Unfortunately it survives only in three copies of an
epitome, all in India; (Lameer, 1996, p. 96) reports their coordinates. This epitome is
our best hope for settling whether Ibn Sı̄nā’s target was Ibn al-T. ayyib. My attempts
to see one of the copies (Calcutta, Būhār Library, Arab. Logic 283, fols. 44–7932)
haven’t so far borne fruit.

But did Ibn al-T. ayyib in fact accept Porphyry’s account of essence and accidents?
Apparently yes. We have his commentary on Porphyry’s Eisagōgē, and in it we find
for example a description of accidents as things which

when they are removed (irtafacat, from rafc) don’t affect the essence of the thing
(Ibn al-T. ayyib, 1975, p. 139 l. 11).

(3.34)

But probably there were other philosophers who followed Porphyry in this. The
anonymous disciple quotes Ibn Sı̄nā as naming two other contemporary philoso-
phers who “adhere more closely than others to the [traditional] transmission of
certain books” (Gutas, 1988, p. 68).
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6 Translation

The text is taken from Section 2.5 of (Ibn Sı̄nā, 1970), a volume of the Cairo edi-
tion of Ibn Sı̄nā’s Šifā’. Reference 124.5 means line 5 on page 124. The division
into paragraphs [2.5.1] etc. is my own. For transliteration of Arabic words I follow
Wehr’s Dictionary.

———

An explanation of whether the opposition between affirmative and negative
is greater, or the opposition between two affirmatives whose predicates are
contraries. 124.3

[2.5.1] It has been customary to conclude this part of Logic with something that
logicians as such don’t need. In fact it is more closely related to investigations
in the form of debate. Namely: when a predicate is predicated of a subject— 124.5
and this predicate has a contrary—which is in greater conflict with [the predi-
cation], the affirmation of the contrary, or its negation which is its contradictory
opposite?

For example when someone says

Zayd is just. (3.35)

and we say

Zayd is unjust. (3.36)

is it (3.36) that is in greater conflict with (3.35), or is it the sentence

[Zayd] is-not just? (3.37)

And if we say

Everybody is just. (3.38)

is it the contrary of this when we say

Everybody is unjust. (3.39)

or is [the contrary] what was mentioned earlier, namely 124.10

Not a single person is just? (3.40)
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This is stuff for sects to quarrel about, but the truth of it is that his being unjust is
in the nature of things more strongly in conflict with his being just than is his not
being just.

124.12 [2.5.2] As concerns [the conditions for] assenting [to a proposition], and the force
[of the proposition], regardless of whether [the proposition is taken to be] a belief or
a verbal expression: the negative form [of the proposition] conflicts most strongly
with the affirmative form and is furthest from matching it in truth and falsehood.
The present investigation is about the force, and the force can be [taken] either as a

124.15 phrase or as a belief (because the phrase follows the belief). So let us carry out the
investigation of these conflicting [propositions] in terms of beliefs.

[2.5.3] Consider a belief about something good, namely that it is good, and a125.1
belief that it is not good, and a belief that it is bad. You should know that if the
belief is associated with two contrary [predicates], as when we believe that Moses
is good and that Pharaoh is bad, or with two mutually contradictory [predicates], as
when we believe that Moses is good and Pharaoh is not good, this doesn’t imply
that the two beliefs conflict with each other. For the two beliefs to negate each other,
they would have to be about a single subject.

[2.5.4] So suppose we consider the truth about one subject, namely that he is125.5
good. If it is believed that he is bad, and it is also believed that he is not good, which
of the two beliefs is in itself more strongly in conflict [with his being good]? The
only thing that makes it impossible to believe that [the subject] is both good and bad
is that a bad thing is not good. If in place of “bad” we have “thing that is not good
and not bad,” then it would still be impossible to believe that [the subject] is good
and not good. In fact there are many things that are neither good nor bad. It’s clear
that the conflict in the case of the first belief [(that the subject is bad)] is not because
the two believed things are contrary to each other, but because the contents of the
two beliefs deny each other. Denial is in the first instance between an affirmation125.10
and [the corresponding] negation.

[2.5.5] They say: Another piece of evidence for this is that when a thing is good125.11
and just, some affirmatives are true of it, for example that it is praiseworthy and
preferable, and so are some negatives, for example that it is not blameworthy and
not loathsome; and some affirmatives are false of it, for example that it is loath-
some and blameworthy, and some negatives are false of it, for example that it is
not praiseworthy and not preferable. Now being a genuine contrary [of X] is not
something that one can impose on everything that disagrees [with X] this way or
that. In fact a single thing has just one genuine contrary. It follows that the contrary125.15
must be one of these [disagreeing things] that includes them all. So it includes all the
affirmatives and the negatives which say falsely of the good thing that it is not good.
Any [idea]—whether it affirms or negates—which is legitimately taken as [NOT
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GOOD] is inconsistent [with [GOOD]], and [NOT GOOD] itself is inconsistent
with [GOOD] even if it is not considered to be one of those [disagreeing things]. 126.1

[2.5.6] Suppose a thing X can be distinguished from a thing Z without needing 126.1
another thing Y , whereas Y can’t be distinguished [from Z ] without [using the dis-
tinctness of] X [from Z ]. Then X has a distinctness [from Z ] which is prior [to the
distinctness of Y from Z ]. A thing that has a distinctness [from Z ] that is prior [to all
other distinctnesses from Z ] is most strongly in conflict [with Z ]. So the negation
[of Z ] is most strongly opposed [to Z ], and what is most strongly opposed [to a
thing] is the contrary [of the thing], so the negative [of Z ] is the contrary [of Z ].

[2.5.7] It’s plausible that these two paragraphs in the First Teaching were not 126.4
intended to be an argument at all, and that the aim in the first of the two was just to 126.5
indicate that a contrariety in things doesn’t itself entail a contrariety in beliefs, but
rather a contradiction in things is a necessary condition for having a contrariety in
beliefs.

[2.5.8] And the aim of the second paragraph is to indicate also that when beliefs 126.7
are mutually incompatible, even though the beliefs can’t be true together, it doesn’t
show that they are contraries. So, to spell this out, there are infinitely many things
which are legitimately denied of a person who is good and just. For example he is
not a bird or a stone or the sky; to assert any of these [of him] is false. Also there are
infinitely many things which it would be legitimate to assert of him, for example

126.10that he is white and he is sitting and he is acting, so it is false to deny that these
things could be true of him. It’s impossible for infinitely many things to be true of
him, but infinitely many things are false of him. It’s not appropriate to consider in
each case whether or not the belief is contrary to the belief that he is good—this
applies to infinitely many beliefs.

126.14[2.5.9] But this enquiry is just about things which already had some befuddle-

126.15
ment in them, and this befuddlement lies just in what a thing can become. Thus,
granting that a good person is not a bird, and is also not bad, so that both [BIRD]
and [BAD] are false of him, still he could become one of these things, but he couldn’t
become the other. Of the two things that are opposed [to [GOOD]], the one that he
can become is [BAD], and the one that he can’t become is [BIRD]. The befuddle- 127.1
ment is just about things opposed to [GOOD], like [BAD] and [UNJUST], namely
whether the belief that he is just is contrary to the belief that he is bad and unjust.
This fits what is said in the First Teaching, which aims to make a facilitation and to
indicate that beliefs which deny [other beliefs] are not always opposed [to them] in
the sense of contrariety. Otherwise we would be dealing with the befuddlement that
the belief that Zayd is just will be contrary to the belief that he is a bird—and in 127.5
fact contrary to infinitely many other beliefs.

[2.5.10] It’s plausible that the aim of the First Teacher was what we indicated. 127.6
What he put at the beginning of this topic was put there not as an argument but as
a facilitation. After finishing this statement of his intentions, he starts by claiming
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that he has established [firstly] that the contrariety of two things doesn’t itself make
the two [corresponding beliefs] contrary to each other, and [secondly] that the fact
that two beliefs negate each other doesn’t force the two [corresponding] things to
negate each other. So he has to undertake an investigation of the former point which
is more specific than the investigations of these two points.

127.10

127.10
[2.5.11] So we say: In fact when we say “it is good” of whatever is good, we

speak truly, and when we say “it is not bad,” we speak truly. But the truth that we
express about [whatever is good] by saying “It is good” is a self-contained truth
in the essence (of [GOOD]), whereas the truth that we express about it by saying
“It is not bad” is not in the essence (of [GOOD]). [GOOD] is in the essence of
[GOOD]. But as for [NOT BAD], that is an accident of [GOOD] [which becomes
known] when [GOOD] is opposed to something that is not its essence and is distinct
from its essence, namely [BAD], so that [BAD] is denied of [whatever is good]. So
the assertion that [whatever is good] is good is completed for [GOOD] through the
essence of [GOOD], while its denial is completed for it only through something else.

127.15 You already know that the negative inherents in cases like this are not internal to the
essence. And corresponding to these two truths are two falsehoods. It is false that
[whatever is good] is not good, and this is a falsehood that is opposed to [GOOD] in128.1
its essence. And it is false that [whatever is good] is bad, and this is a falsehood that
is opposed to something that is an accident of it. And when the belief that [something
good] is good is true in an essential feature, [and] while the belief that [something
good] is not bad is true in an accidental feature, a belief that [something good] is
not good is false in an essential feature. Falsehood about something in the essence
is more opposed to truth about something in the essence than falsehood about some
accident is. This is how one should say it.

[2.5.12] About the belief that one of two [falsehoods can be] more strongly false128.4
than the other: this [belief] is incorrect. There is no truth that is more strongly true128.5
than some [other] truth, nor is there any falsehood that is more strongly false than
some [other] falsehood. However, some truths are more permanent and some are less
permanent. Also some truths are about an essential matter while others are about a
nonessential one. A falsehood about an essential matter is more strongly in conflict
[with the truth].

[2.5.13] This could give rise to another argument that should be understood as
follows. Suppose there is a just person that I know, and after checking it explicitly
I believe that he is good. Then there is no need to believe at the same time that he
is not bad, since this is not in his essence; rather it is an accident of him. But for128.10
a thing in the essence to come into the mental processor, there is no need at all for
it to refer to a relation to something external [to the essence]. Rather, the essential
truth simply coalesces as a result of the subject and the predicate coming into the
mental processor, whether or not anything else is brought into the mental processor
as well. And if I were to introduce two [other] beliefs that oppose this belief, namely
that he is bad and that he is not good, I would find that the belief that he is bad is
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not complete for me unless it contains [the belief] that he is not good. A falsehood
which is opposed to an accidental truth is completed only by an essential falsehood 128.15
coming into the mental processor. So if it doesn’t come into my mental processor,
about the just person whom I know to be good, that he is not good, then it is not
possible for me to believe that he is bad. And this is because I know and believe that
this just person is good, and that this is true. If I think of him as bad, so as to test 129.1
this opposition, there comes into my mental processor the compulsion to negate this
truth about him—[though conversely] when the negation of this truth comes into my
mental processor, it doesn’t have to have already come into my mental processor that
he is bad. [Aristotle’s] indication has to be understood in this forced way. Although
it is not quite right, it is close to what we said in the first place; it amounts to the
same thing.

[2.5.14] Here is another argument. All propositions have opposites in the form of 129.4
their contradictory negations. But not every proposition has an affirmative opposite 129.5
that expresses its contrary. In fact when we say “Such-and-such is square,” facing
it we [may] find that it’s not square, though we don’t find that it’s some other kind
of shape which is contrary to square. In this case the thing that conflicts [has to be]
the negative, and not an affirmative predicate which is contrary [to “square”]. When
a proposition has an affirmative contrary, it still has a negation that conflicts with
it. Thus every affirmative proposition has a negation that conflicts with it, while not
every affirmative proposition has a conflicting [proposition] that is affirmative. Just
by being affirmative, an affirmative proposition has a conflicting proposition that

129.10is negative; the other conflicting [proposition] arises incidentally and not from the
affirmativeness [of the first proposition].

129.11[2.5.15] But someone might well say: We are not discussing whether for every
affirmative there is an affirmative that conflicts with it in the way that [REST]
conflicts with [MOVEMENT] taken absolutely. Rather it can be assumed that the
negation gives the most general and greatest conflict. But take the case where
an affirmative which is contrary to a given predicate is narrowed down so as
to stay affirmative. Is there a contrary which results from narrowing down [the
predicate] over against it, and which is more strongly contrary to it? Thus when
[MOVEMENT] is specified to be [DOWNWARDS MOVEMENT], the contrary to
it [(namely [UPWARDS MOVEMENT])] is a movement which conflicts with it
more strongly than [REST] does.

129.15[2.5.16] But consider the case of a certain well-known commentator and all those
people who come close to his level of deficiency. He supports this argument by the
following unsound syllogism: 130.1

A contradictory belief can be found for a true belief about any thing.
This is an essential thing, since an essential thing is a thing that is
found in all cases.

(3.41)

See the mistake he made in the syllogism. He produced the phrase
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since an essential thing is found in all cases (3.42)

as a premise for a syllogism that concludes:

This is an essential thing. (3.43)

This goal of his is universally quantified with a singular subject, [and the conclusion
is affirmative], so that it can only follow in the first figure. So he can only put “the
essential” in (3.42) as either the middle term or the minor term, because it is the130.5
subject in this premise [[. . . ]]. If he put it as the middle term, then it shouldn’t occur
in the conclusion, but he did make it occur there. If he put it as the minor term then
the conclusion would be

The essential is such-and-such. (3.44)

not that such-and-such is essential. So in fact “the essential” has to be the minor
term in the syllogism, not the major.
—
When we take into account the other premise, we find that what this premise shares
[with the first-mentioned premise] is the property “found in all cases.” Suppose we

130.10 make that the subject there, so that the inference is as follows:

The essential is what is found in all cases.
What is found in all cases is that a true belief has a contradictory
opposite belief.

(3.45)

Then—disregarding the fact that the major premise is false when “found in all cases”
is taken in it in the same sense as in the minor premise—it is entailed that the essen-
tial is such-and-such, not that such-and-such is essential. Besides being false, the
[major] premise was misstated; for the syllogism to have a valid conclusion, the
premise is taken as universally quantified, not as unquantified.
—
And if he made “found in all cases” the predicate rather than the subject, as indeed
he should, then [the syllogism would be]

That a true belief has a contradictory opposite belief is a thing found
in all cases.
The essential is what is found in all cases.

(3.46)

so he would have made a deduction from two affirmatives in the second figure!130.15
—
If he had converted [the first premise], he would have made it

Anything found in all cases is essential. (3.47)
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But this is obviously false.

[2.5.17] After this argument there comes a strong argument. It says that when 130.17
something is not good and we believe that

It is not good. (3.48)

the only other beliefs (of the kind relevant to this discussion) that we can introduce
in contrast to (3.48) are the beliefs that

It is bad, (3.49)

that

It is not bad (3.50)

and that

It is good. (3.51)

But there are many cases where a belief that it is bad can be true together with the 131.1
belief (3.48), so (3.49) will not be an absolute opposite of the belief (3.48). Also
our belief (3.50) that it is not bad can be true [together with (3.48)]. In fact we
[can] find an individual thing, for example an infant, that is neither good nor bad.
Likewise [we can find something that is] intermediate [between good and bad]. The
remaining case is that the belief which conflicts with [its being not good] is (3.51)
that it is good. Therefore the belief that it is good conflicts with the belief that it
is not good, and is the genuine contrary of it. A contrary is the contrary of its own 131.5
contrary. So what conflicts with the belief that it is good is that it is not good. In fact
it’s impossible for X to be the genuine absolute contrary of Y when Y is contrary to
something other than X .

[2.5.18] If we put the [same] question about a universally quantified sentence, 131.7
we will be asking whether what conflicts with the sentence

Every human is not good. (3.52)

is the sentence

Every human is bad. (3.53)

or the sentence

Every human is not bad. (3.54)

or the sentence
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Every human is good. (3.55)

The contrary of (3.52), in the sense [of “contrary”] that we have explained, is (3.55).
So the contrary of the sentence (3.52) is the sentence (3.55), whereas the contrary

131.10 of the sentence (3.55) is the sentence

No person is good. (3.56)

which denies of each individual that he is good. This same account applies to both
singular sentences and universally quantified ones. But as for unquantified sen-
tences, how could they be contrary to each other, given that they are true together?
Likewise with two existentially quantified sentences. Contraries, even though they
can be denied together and false together, can’t be true together.

7 Notes

[2.5.1] This comments on Perì Hermēneías 23a27–32.

124.8 “is-not just,” Arabic uses a single word for “is not.” This pre-
cludes the reading “is not-just,” which Arabic would express dif-
ferently.

124.10 “mentioned earlier”: Probably this refers to those places where
Ibn Sı̄nā has said that a definition is a conjunction of genus and
differentiae, for example (3.14). It seems absurd to invoke this
fact, when the differentiae can contain any number of negations.
The explanation is almost certainly the principle of Top-Level
Processing, §3.1 above.

[2.5.2] This comments on Perì Hermēneías 23a32–39.

124.12 “force” (h. ukm): This very common word has a rather diffuse
meaning. Possible translations range between “judgment,” “con-
tent,” “force,” “logical properties” and “the rules for using it.”

124.12 “negative form” (sālib): Ibn Sı̄nā sometimes writes as if the nega-
tion of an idea X is the same idea X but taken “negatively.” Add
to this that he sometimes speaks of noun-type ideas as “affirm-
ing” or “negating,” as at 125.16. The outcome is that his words
for “negation” and “negative” don’t always translate smoothly
into modern logical idiom.

[2.5.3] This comments on Perì Hermēneías 23a39–23b7.
[2.5.4] Here Ibn Sı̄nā gives his own broad take on the question.

125.9 “the two believed things”: Apparently not the two beliefs men-
tioned in 125.6, but the first of those beliefs together with the
supposition (from 125.5) that the subject is good.
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[2.5.5] This doesn’t fit anything in Perì Hermēneías closely, though there might be
a reminiscence of 23b7–13. But the “They say” at the beginning is probably
meant to indicate that Ibn Sı̄nā is commenting on some other commentator.
A likely source is (Al-Fārābı̄, 1986, 201.21–202.6). Thus:

If the contrary is to be an affirmation, it must be the one that embraces
(taštamil calā) all the false affirmations; and if a negation, the one that
embraces all other false negations (Zimmermann, 1981, p. 195).

(3.57)

125.15 “includes” (yacumm): One of the primitive notions of Ibn Sı̄nā’s
logic, so that he never defines it. What he says about it is consistent
with the following definition: idea A includes idea B if and only
if for every idea C , if B is true of C then so is A. Al-Fārābı̄ has
’acamm in a corresponding place (Al-Fārābı̄, 1986, 202.3,5).

125.17 “[NOT GOOD]” (’ammā laisa bi-k
¯

air nafsuh): The expression
’ammā “as for” is normally followed by a noun phrase in the
nominative. So it is here, when we note that nafsuh and similar
expressions can serve as indicators that Ibn Sı̄nā is referring to an
idea. Then bi-nafsih later in the line picks up the other relevant
idea, namely [GOOD].

126.1 “it is not considered”: Ibn Sı̄nā has said first that [NOT GOOD]
is itself an idea that is inconsistent with [GOOD], and second that
it includes every such idea. That seems to complete the argument,
so perhaps we should delete the pointless clause “even if . . . .” A
suspect feature of the clause is that it finishes with tilka; this is
uncommon but not unique, see for example Al-Burhān 20.19 and
22.4.

[2.5.6] This again is pure Ibn Sı̄nā. It seems to complete the argument of paragraph
[2.5.4].

126.1 “a thing X” : Here we see the three variables of the relation “X
is more strongly in conflict with Z than Y is.” But none of them
appear as variables in Ibn Sı̄nā’s text. Thus Z is mentioned only
by implication; X and Y are introduced briefly as “the thing” and
“the other,” and there is just one anaphoric pronoun referring back
to “the thing.” After a career teaching logic, I lay a heavy bet that
only a fraction of Ibn Sı̄nā’s readers reconstructed all the cross-
references correctly.
Why did he do this? Even if he didn’t want to use variables here, he
could have clarified matters hugely by introducing a “first thing,” a
“second thing” and a “third thing” and cross-referencing properly.
One suspects he wanted to make a point. Maybe it was that logic
takes no prisoners. More likely it was that in interpreting any-
body’s statements you need to supply what the speaker assumes
about other entities besides those that are mentioned explicitly; cf.
(3.23) in §3.3 above.
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[2.5.7] This comments on Perì Hermēneías 23b13.

126.4 “the first”: The “first paragraph” is 23a32–23b7. But Ibn Sı̄nā has
already extracted a sound point from this paragraph in his own
paragraph [2.5.2].

[2.5.8] This comments on Perì Hermēneías 23b7–13.

126.7 As proposed by Moktefi, read tanāfin for yunāfı̄, and wa-in for
wa-an at the beginning of the next line.

126.11 “impossible for infinitely many things”:

Also it is said [in the First Teaching] that only finitely many
predicates are internal to the whatness of a thing, because these
[predicates] are internal to the defining of things, . . . So if
definitions were to reach the point that there were infinitely
many things in them, then it wouldn’t be possible for us to define
anything. But definitions do exist, since things get conceptu-
alised. So they must have finitely many principles. (Al-Burhān
168.6–9)

(3.58)

This paraphrases Aristotle Posterior Analytics A22 82b37–39.

[2.5.9] This comments on Perì Hermēneías 23b13–15, and perhaps also 23b21–23.

126.14 “befuddlement”: Aristotle himself mentioned befuddlement (or
more strictly deception, apátē) and becoming (genéseis). It seems
that nobody has a convincing explanation of what Aristotle
had in mind here. (Ackrill, 1963) doesn’t attempt to explain it.
Apparently the idea of mentioning something that Zayd couldn’t
become (namely a bird) is Ibn Sı̄nā’s own. Readers will certainly
notice that [BIRD] conflicts with Zayd’s essence, whereas [BAD]
doesn’t. From the arguments to come in [2.5.11] and [2.5.12], this
should suggest that [BIRD] is a better candidate for the contrary
of [GOOD] than [BAD] is. But this conclusion doesn’t fit with
anything else in PH14, so Ibn Sı̄nā leaves it to the reader to spell
out.

127.3 “facilitation”: The word is tawt.i’a, as in line 127.7 below. But
here Ibn Sı̄nā adds “indication” (tanbı̄h). This word belongs to one
of the standard excuses for Aristotle, namely that sometimes he
gave only hints, so as to protect his teachings from the intellectual
riffraff. Cf. (Gutas, 1988, pp. 307–311), noting that tanbı̄h is the
word translated as “reminder” on his p. 310.

[2.5.10] This comments on Perì Hermēneías 23b2–7.

127.9 “[secondly] . . . ”: The point seems to be a gratuitous contradiction
of 126.6f above. Probably the text is faulty.

[2.5.11] This comments on Perì Hermēneías 23b15–21.
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127.10 “So we say”: This is Ibn Sı̄nā’s standard formula to indicate that he
has been laying out a problem and he is about to give his own solu-
tion. This paragraph doesn’t seem to reflect Ibn Sı̄nā’s own views
any more than, say, [2.5.4]. Maybe he is signalling that he thinks the
argument in this paragraph is the heart of the matter.

127.10 “it is good”: Aristotle talks of beliefs about “the good,” which he
makes neutral (estìn agathòn). Arabic has no neuter case, so Ibn
Sı̄nā has a choice between reading the corresponding word (al-k

¯
air)

as “the good person” or “the good thing,” or simply as “the good.”
(cf. (Ackrill, 1963, p. 154) for a related comment on 23a32.) He will
try “the good person” in paragraph [2.5.13]; in paragraph [2.5.11] he
leaves it ambiguous.
Now Aristotle’s argument is about the essence of the good
(thing/person/. . . ), which he says contains the good. In Ibn Sı̄nā’s
framework objects don’t have essences; ideas do. So we have to sup-
pose that we are thinking about the good (thing/person/. . . ) through
some idea that identifies it, and [GOOD] is in the essence of this
idea. But how is this to work?
Suppose for example that we are thinking about Nelson Mandela;
then Aristotle’s argument assumes that [GOOD] is constitutive for
[NELSON MANDELA]. But how could it be? Isn’t it clear that
we could imagine even Nelson Mandela turning evil, polluting the
environment and depriving old ladies of their pension funds? Ibn
Sı̄nā accepts the rafc test in this direction.
The same problem applies if we take “it” in Aristotle’s “the good” to
stand for any one particular good entity—unless perhaps we believe
in Platonic ideas, which Ibn Sı̄nā didn’t. I think this leaves the argu-
ment of [2.5.13] as unrescuable, and that seems to be Ibn Sı̄nā’s
conclusion too. But we can more or less rescue paragraph [2.5.11]
by reading “the good” generically, like “the human” or “the horse.”
Then to say that the good is good is in effect to assert the mean-
ing [EVERYTHING GOOD IS GOOD]. I have translated it on that
assumption.

128.2 With several manuscripts, read h. ı̄na kāna ictiqād in place of
muqābilun lil-ictiqād.

[2.5.12] This comments on Perì Hermēneías 23b21f.

128.5 “more strongly true”: Ibn Sı̄nā is quietly reprimanding Aristotle for
a careless statement. Aristotle had said:

The more true belief about anything is the one about what it is in
itself. (23b17, trans. (Ackrill, 1963, p. 66))

(3.59)

For example the belief that gold is a metal is more true than the
belief that gold has high market value. This is incorrect, says Ibn
Sı̄nā; both beliefs are simply true, but Aristotle could have made his
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point by saying that the belief about the essence is more permanent
than that about an accidental property. “Permanent” should probably
be understood as in §3.3: a belief is more permanent if it is more
resistant to changing truth value when one changes it by changing
the “reading” of the time or circumstance that it applies to.

[2.5.13] This is a second attempt at Perì Hermēneías 23b15–21, which Ibn Sı̄nā has
already tackled in [2.5.11].

128.11f “mental processor” (bāl): Ibn Sı̄nā has a number of words for differ-
ent aspects of mind. One of the most specific is bāl. It’s the part or
aspect of the mind where rational processing takes place. His normal
idioms for it are yak

¯
t.ir bil-bāl (“it comes into the mind”) and ’uk

¯
t.ir

bil-bāl (“it is brought to the notice of the mind”). This notion of
bāl need not be an intrusion of psychology into logic. It’s better
seen as part of a high-level description of the algorithms needed for
reasoning.
The extent to which these algorithms probe the structure of the
relevant sentences gives an upper bound on the proving power of
Aristotelian logic. For example, with a few minor reservations, the
algorithms never penetrate an NP-VP sentence further than separat-
ing the NP from the VP. (This is one formulation of Top-level Pro-
cessing, §3.1). Line 128.12 is a typical illustration of this, with the
NP and VP (or strictly their meanings) called respectively “subject”
and “predicate.”

128.11 “essential truth”: I.e. truth about the essence. As in the notes on
[2.5.11], Ibn Sı̄nā must mean here the essence of the idea of this just
individual, for example [NELSON MANDELA]. Here he touches
on the hoary problem of the meanings of proper names. At Al-
Madk

¯
al 31.9 he suggests that the essence of the idea of an individual

contains “whatever [the individual] is individuated by.” But I don’t
know if he succeeds in taking this semantic question any further.

129.3 “forced way” (takalluf ): One of Ibn Sı̄nā’s commonest criticisms of
other commentators is that their explanations are forced. In this case
there is an implied criticism of Aristotle himself—that his argument
can only be explained in a forced way. Presumably the forced point
is the assumption that the essence of (the idea of) any individual
person can contain [GOOD]; see the notes on [2.5.11].

[2.5.14] This comments on Perì Hermēneías 23b27–32.

129.10 “not”: following the reading lā rather than lahā.

[2.5.15] This looks like a comment on something in the literature, but we don’t
know what.

[2.5.16] See §5.3 for the source.
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129.15 “his level of deficiency” (cahdah): The noun cahd has several
meanings, none of them clearly appropriate here; so if the text is
sound, it’s likely that some idiom hasn’t come down to us. But
since what follows is specific to an individual commentator, prob-
ably Ibn Sı̄nā’s phrase is meant to insult this commentator rather
than to describe some other people. An cuhda is a claim you have
against a person who has sold you substandard goods, and hence
it comes to be used metaphorically for an attribute in which one is
below standard. Commercial metaphors appear also at Easterners
24.18 (cuhda again) and Al-’Išārāt 67.8 (h. awāla).

129.15 “this argument”: Paragraph [2.5.14] lines 129.8-9, “every affirma-
tive proposition has a negation that conflicts with it.” The commen-
tator “supports” it in the sense of using it as a premise for a further
argument.

130.4 “and the conclusion is affirmative”: The clause is missing from the
text, but the argument needs it. Lo and behold, there it is in the
text at 130.6 (marked [[. . . ]] in the translation) where it makes no
sense at all. Presumably Ibn Sı̄nā himself, editing the passage, saw
that the clause was needed and added it in the margin. The copyist
wasn’t concentrating and managed to incorporate it at the wrong
place. There are many places in Ibn Sı̄nā where one suspects that
something like this has happened, but this is a particularly clear
example (thanks to the constraints of formal argument).

130.4 “singular”: Literally “specialised.” Ibn Sı̄nā’s point may be that
the subject is “the property of the thing, viz. that in all cases . . . ,”
which is singular, but the argument is made no less valid if we
replace this by “every property of the thing such that in all cases
. . . .” So without loss we can consider the conclusion as universally
quantified.

130.10 “the major premise is false”: The major premise is the second
premise in (3.45). Ibn Sı̄nā reads it as implicitly universally quan-
tified; so it says that the only thing true in all cases is that a belief
has a contradictory opposite belief. But the implied subjects—true
beliefs—have lots of other properties that hold in all cases, for
example being true beliefs.

130.16 “Anything found in all cases”: According to Ibn Sı̄nā’s account at
130.1, the commentator had said something of the form “An A is
a B.” His argument clearly calls for this to imply “Every B is an
A.” But “An A is a B” can quite naturally be read as meaning “The
As are the same thing as the Bs,” which does have the required
implication. Maybe Ibn Sı̄nā counts this reading as one of those
things that are merely “suggested” by the commentator’s sentence,
as in §3.3 above. But professionalism should have warned him to
start with the reading most likely to have been intended.
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That much is from the form of the argument. When we turn to the
content, the commentator seems to be claiming that if an idea I has
an attachment J that holds “in all cases,” then J is constitutive for
I . If “all cases” includes imagined cases as well as real-world ones,
then the claim is simply Porphyry’s claim that non-constitutives
can be separated off by rafc in the imagination. As we saw in §3.2,
Ibn Sı̄nā himself rejected this claim—so it’s no surprise that he
labels it as “obviously false.”

[2.5.17] This comments on Perì Hermēneías 23b33–24a3.

130.18 “relevant”: The restriction to these forms is from Aristotle. Ibn
Sı̄nā makes no attempt to justify it. Maybe he has in mind some
canonicality argument as in §4.3.

[2.5.18] This comments on Perì Hermēneías 24b1–9.

131.7 “universally quantified”: These are sentences of either of the forms
“Every A is a B,” “No A is a B.”

131.10 “is good” (second occurrence): This is reading huwa k
¯

air with
two manuscripts. The majority reading laisa bi-k

¯
air “is not good”

makes logical nonsense.
131.11 “account”: Singular sentences are of either of the two forms “A is

a B,” “A is not a B,” where A names an individual. The account
applying to both these and universally quantified sentences is that
we get the contrary by swapping “B” and “not a B”—where “No
A is a B” is counted as “Every A is not a B.”

131.12 “unquantified”: For Ibn Sı̄nā these are sentences of the forms “The
A is a B.” “The A is not a B.”

131.12 “Contraries”: This last sentence picks up the final sentence of
Aristotle’s text. The common core of the two sentences is (in
’Ish. āq’s translation) fa-’ammā al-d. āddān fa-laisa yumkin ’an
yūjadā macan, and (in Ibn Sı̄nā) wal-’ad. dād fa-laisa yajūz ’an
tas. duq macan. Both mean “Contraries can’t be true together,” but
Ibn Sı̄nā replaces most of the significant words by other words
that have the same meaning in context. Thus he replaces the dual
d. addān by a plural; yumkin and yajūz both mean “it’s possible,”
and yūjadā and tas. duq both mean “are true.” Differences like these
could be evidence that Ibn Sı̄nā is using a different translation from
’Ish. āq’s. But they are par for the course in Ibn Sı̄nā, and a more
likely explanation is that he prefers to assert his independence by
saying everything in his own words.
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Chapter 4
A Minimalist Foundation at Work

Giovanni Sambin

What is the nature of mathematics? The different answers given to this perennial
question can be gathered from the different theories which have been put forward as
foundations of mathematics. In the common contemporary vision, the role of foun-
dations is to provide safe grounds a posteriori for the activity of mathematicians,
which on the whole is taken as a matter of fact. This is usually achieved by reducing
all concepts of mathematics to that of set, and by postulating sets to form a fixed
universe, which exists by itself and is unaffected by any human activity. Thus it is a
static vision.

A dynamic view is also possible, in which mathematics, as well as all of science,
is the result of human interaction with the environment. In this view, mathematics
is, as it has been traditionally, the science of abstract concepts of number, figure,
measure, deduction, etc., and all these concepts are created by human beings through
a process of abstraction which is a part of human evolution (Sambin, 2002).

To understand the true nature of such concepts, one should first of all avoid
reducing them to a single one, such as that of set, since this would bring in undesired
assumptions. More generally, one should aim at looking at reality, imposing as little
as possible of one’s preconceived notions and expectations, so that one can more
easily accept different views as aspects of the dynamic process.

This general attitude corresponds fairly well to a precise foundational theory,
which we have called the minimalist foundation of mathematics (Maietti and Sam-
bin, 2005). Broadly speaking, it is obtained from a constructive type theory, such as
Martin-Löf’s, by avoiding the identification of logical propositions with sets and by
distinguishing an intensional level (a sort of high-level programming language) to
deal with computations from an extensional level to deal with abstract mathematics.
The result is a foundation from which apparently all others can be obtained by the
addition of some principles (essentially, a combination of: the axiom of choice, the
law of excluded middle, the powerset axiom).

Rather than pondering over the conceptual advantages of a minimalist founda-
tion (as is partly done in (Sambin, 2003; Maietti and Sambin, 2005)), after a short
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introduction to the idea, my aim here is to illustrate how it works when it is put into
action on a specific piece of mathematics. Thus I provide arguments showing that
this way of conceiving foundations is not only possible and reasonable, but actually
also relevant and useful in doing mathematics in a technical sense.

1 Foundations as a Choice of Abstraction Level

It is commonly believed that the choice of some principles stricter than some others
is due to the desire for safer foundations for one and the same mathematics. This is
a defensive and static view. More positively, the role of stricter principles is to allow
looking at reality with a finer grid of distinctions.

In fact, to be able to pass from the chaotic nature of reality to mathematical
thought, one has to abstract from details and contingencies, that is, to disregard
what under a certain perspective appears to be irrelevant. Only by “forgetting” some
information can one obtain some abstract concepts, treat them “mathematically,”
that is, with no mention of the reality they come from, and finally apply them back
to reality successfully.

This is probably taken for granted by most. However, one tends to overlook the
fact that there is no single and necessary method of doing it. Actually, different foun-
dations can be seen, under this perspective, as different choices as to what should
or should not be considered as relevant, that is, as different principles to be used to
abstract from reality and idealize it.

In a certain sense, a foundational theory is a specification of the sense organs,
or “lenses,” through which one perceives the world. Different choices of “lenses”
lead to different kinds of mathematics, with different degrees of abstraction and of
effectiveness.

The most common foundation, namely the classical foundation, is based on clas-
sical logic and on axiomatic set theory, such as ZFC. Both existence of entities—
which means only sets—and truth of propositions are identified with their poten-
tiality, that is absence of contradictions. All that is consistently conceivable auto-
matically exists and is true. So the task of mathematicians is reduced to discovering
what is assumed to be there already. In particular, propositions are formally reduced
to set-theoretic formulae, and their truth is fixed and independent of our knowledge,
and hence must coincide with absence of falsity.

To be able to justify this incredibly static view, it comes as a consequence that
one is led to postulate the existence of a world beyond sensory perceptions, in which
all of mathematics has always been, and will forever be, as it is now. No wonder then
that any residual effectiveness in mathematics is regarded as a lucky miracle, or even
as unreasonable.

1.1 Different Constructive Foundations and Their Incompatibility

To free mathematics from the immobility of the classical conception, which was
perhaps suitable in Plato’s times but is now historically childish, one necessary step
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seems to be that of overcoming the rigidity of classical logic. In intuitionistic logic
the notion of truth is linked with proof, and necessity, rather than with consistency,
or possibility. This means that the Law of Excluded Middle

LEM: for every proposition A, A ∨ ¬A is true

is not universally valid, and this immediately opens up some space for movement.
All foundations based on intuitionistic logic are called constructive, in the broad
sense. Here only two of these will be considered, which we call the geometric and
the computational vision of constructivism.

The geometric vision is expressed formally by topos theory (by which here and
from now on we mean the theory of the internal language of a generic topos, as
explained in (Bell, 1988; Maietti, 2005)). An explicit aim of toposes, as originally
introduced by A. Grothendieck in the 50s, is to enrich geometry with a general-
ized notion of space. Their axiomatizable version, the notion of elementary toposes
described by F.W. Lawvere and M. Tierney, can be seen as a possible universe of
sets.

While truth of propositions is left open (since LEM is not assumed), in a topos
the notion of proposition, and hence that of propositional function and of subset,
is assumed to be fixed. This seems necessary to be able to justify the Power Set
Axiom:

PSA: for every set X , the totality PX of all subsets of X also forms a set

which is assumed to hold in every topos. In fact, since PX is a set, one can freely
apply quantification over subsets to produce propositions. So in particular one can
define a “new” subset of X by making reference to the totality of subsets of X .
This is an impredicative definition or, speaking frankly, a patent vicious circle. The
only way to make it conceptually harmless seems that of postulating, in each topos,
the notion of subset to be fixed and hence fully static. Indeed, only in this way one
can say that the “new definition” is just a new name for a subset which was there
anyway.

This is the reason why topos theory has no tools to discern, as a theory, sets which
are given effectively. Treatment of effectivity is restricted to numerical functions and
must remain at the level of semantics—as for instance in the effective topos (Hyland,
1982).

In the computational vision, as put forward in (Bishop, 1967, 1970); (Martin-Löf,
1970), each piece of mathematics is considered meaningful as long as it has an
effective, or even numerical, content. It is then natural to assume the validity of the
Axiom of Choice, in the form:

AC: every total relation contains a function, ∀x∃y R(x, y) → ∃ f ∀x R(x, f x)

(where x is an element of the set A, y of the set B, and then f is a function from A
to B).

A rigorous formulation of the computational view of constructivism relies on
Martin-Löf’s intuitionistic type theory, here shortened to ML type theory (see
(Martin-Löf, 1984), and its refinement (Nordström and Petersson, 1990)). It can be
described as a systematic development of the Brouwer-Heyting-Kolmogorov inter-
pretation of intuitionistic logic, through the propositions-as-sets paradigm, that is,
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the identification of (inference, or deduction rules for) logic with (construction, or
induction rules for) set theory.

In this way not only is AC justified conceptually, it actually becomes internally
provable in ML type theory. In fact, by the propositions-as-sets paradigm, the char-
acterization of the quantifier ∃ coincides with that of the set theoretic constructor �
of disjoint sums. Thus a proof of ∃y R(x, y) automatically contains both a witness
a and a proof b that R(x, a) holds, and so when ∀x∃y R(x, y) holds, such witness
and proof are automatically produced by a function. In other terms, what is brought
to a proof of AC is the very meaning given to quantifiers, and hence ultimately the
identification of propositions with sets.

Effectivity of ML type theory lies in the fact that every entity can be understood
as computable. This is expressed formally by the fact that ML type theory1 is com-
patible with the internal Church thesis:

CT: every function on natural numbers is recursive, ∀ f : N → N ∃n f = ϕn ,

where ϕn is the recursive function with index n.
As with human affairs, contact between rigid principles produces reciprocal

rejection. Indeed, one can see that the principles of all propositions forming a set
(hence PSA) and of each proposition being the same as a set (propositions-as-sets
paradigm, hence AC) are constructively incompatible, in the sense that when put
together they return us to classical logic. Formally, one can prove that

T + PSA + AC  LEM

where T can be either topos theory or ML type theory.2 The conclusion seems to be
that the geometrical and the computational view of constructivism are incompatible.

1.2 The Minimalist Foundation of Constructive Mathematics

The most practical and simple expression of the computational view is to say that it
should be possible to implement any piece of (meaningful) mathematics in a com-
puter. This cannot be understood in its weak form, with the computer acting only
as a spell checker (are expressions well formed according to the given grammar?)
and as proof checker (do proofs apply only inferences rules of the given deductive
system?); in fact, any piece of mathematics can be implemented in this sense, as
long as it is formalizable in an axiomatizable theory. Even a highly non-effective

1 More precisely—as explained to me by Milly Maietti—ML type theory deprived of the reduction
rule inferring b = c from λx .b = λx .c, and of universes.
2 This is essentially Diaconescu theorem saying that that every topos satisfying AC is boolean
(see (Bell, 1988) for a simple proof). Its version for type theory says more precisely that PSA, or
more generally extensional quotients, are incompatible with AC, since the choice function does
not respect extensionality (Maietti and Valentini, 1999; Maietti, 1999).
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theory like ZFC certainly is axiomatizable, so this kind of “light” implementation is
not enough to characterize computational mathematics.

Informally, one could say that proper, or “deep” implementation requires that,
besides checking syntactical correctness of formalized mathematics, the computer
can “understand” it and that all theorems become valid under this “interpretation.”
That is, every definition in the given language for mathematics should correspond to
some construct in the computer’s internal language, and every mathematical proof
should produce a computer program. In particular, every function between natural
numbers in the language for mathematics has to produce a function in the com-
puter’s language, which automatically means a computable (or recursive) function.
This is called the proofs-as-programs paradigm.

In the end, the proofs-as-programs principle should be equivalent to the more
rigorous requirement that the theory in which mathematics is developed admits
a recursive realizability interpretation. This in turn should be even stronger than
the requirement of consistency with AC + CT mentioned before (and put forward
in (Maietti and Sambin, 2005)). However, the digression on computers reveals a
second difficulty, which appears at first even worse than the constructive incompat-
ibility discussed in the previous section.

In fact, any computer language is intrinsically intensional; this means, in par-
ticular, that a function is determined only through the instructions, or program, to
compute it. ML type theory (Nordström and Petersson, 1990) is intensional in this
sense, and this makes it possible to consider it as an abstract programming language.
On the other hand, in an extensional theory a function is uniquely determined by
its behaviour: the principle of extensionality for functions says that two functions
producing equal outputs on equal inputs are equal:

ExtFun: extensionality for functions, ∀x( f x = gx) → f = g.

This might look so trivially valid that it may seem worthless to spell it out. So
does in fact the standard set-theoretic approach to mathematics, in which a function
is defined as a total and single valued relation. And since equality of relations is
tacitly understood as extensional (that is, R and R′ are equal whenever, for every
x, y, R(x, y) holds if and only if R′(x, y) holds), extensionality for functions is
implicitly present in their usual definition.

The two definitions of equality between functions, as mentioned above, under-
lie two different conceptions of functions themselves. In the former a function is
identified with its instructions, in the latter with its behaviour. Knowing about the
intrinsic difficulty of going back from behaviour to instructions which determine
it, it seems difficult to reconcile them. Actually, their mutual inconsistency can be
proved rigorously. In fact, as remarked above, an intensional theory to deal with the
computational content of mathematics should be consistent with AC and CT. But
one can prove ((Troelstra and van Dalen, 1988); see (Maietti and Sambin, 2005)
for a simple proof) that the conjunction of ExtFun, AC and CT is contradictory,
symbolically

ExtFun + AC + CT  ⊥.
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So one can see that the apparent contrast is not just an alternative between two views
on constructive mathematics, which one could consider as a matter of subjective
choice, but rather between two needs whose accomplishment is assumed to be a
matter of fact. On one hand, mathematics traditionally wants to deal with “objects”
independently of their presentation, and this is just a way of saying that it must
be extensional. On the other hand, the use of computers to develop mathematics
is by now also an accepted reality, which has brought important achievements and
which is absorbing more and more resources. It is out of question to stop at this
point, in particular if one is not ready to abandon the computational interpretation
of mathematics and expects that it can be applied also when doing mathematics in
practice, that is in an extensional way.

The pressure of necessity always acts as a strong spring pushing towards a solu-
tion. And a solution is found in what looks, a posteriori, the most simple-minded
of all possible ways: contrary to a common expectation, both among mathemati-
cians and computer scientists, (the level of abstraction of) mathematics just cannot
coincide with (that of) its proper implementation. That is, the language in which
mathematical proofs are written, even if formulated in a computer, just cannot coin-
cide with the computer’s internal language, in which programs are written. So the
solution, as proposed in (Maietti and Sambin, 2005), is an approach to foundations
in which two different levels of abstraction live together and interact. There will be
an intensional type theory to deal with computations, together with an extensional
theory in which (extensional) mathematics can be developed and formalized.

The principal idea underlying the design of the intensional theory, as different
from ML type theory, is that logic should be introduced independently of set the-
ory. A specific formal system, called minimal type theory, or mTT, has been intro-
duced in (Maietti and Sambin, 2005) and expanded in (Maietti, 2009). In mTT,
every proposition is a set, namely the set of its proofs in the formal system, but
not conversely. This means that the propositions-as-sets paradigm is not followed.
As a result, the inference rules for the existential quantifier ∃ are weaker than the
rules for disjoint sums of sets �. A consequence of this is that AC is in general not
valid.

In all other respects, when restricted to sets minimal type theory essentially coin-
cides with ML type theory. As with the latter, it is designed to allow mechanical
checking of correctness of all judgements; to this end, equality is always intensional.
So it can be seen as a specification for a functional programming language. For
this reason, in this setting the implementation of mathematics can be identified, for
theoretical purposes, with its formalization in minimal type theory.

The core of the extensional theory is essentially many-sorted intuitionistic logic,
in which sorts can be sets or collections and both allow passing to quotients. Sets,
which are the domains of first-order variables, are the same as in the intensional
theory, except for equality which is extensional and is obtained by abstraction. In
particular, if every proof of a proposition A is considered to be equal to any other,
that is, if one abstracts from proofs, one obtains the judgement that a proposition A
is true. This is an important tool for obtaining extensional concepts (and explains the
technical reasons for logic to be independent from set theory). The main example is
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that of subsets; a subset D of a set X is a propositional function D(x) prop (x ∈ X)
and x ∈ X is said to be an element of D, written x ε D, if the proposition D(x) is
true, abstracting from its proofs. Impredicative definitions are avoided by restricting
variables in D to range only over sets. The notion of relation (in a set, or between
sets) is defined in a similar way, except for the number of arguments.

Besides abstraction, a further specification of the interaction between the two
theories is required. In fact, to be able to keep the computational interpretation, it
should be possible, for every piece of mathematics developed in the extensional
theory, to formalize it in the intensional ground theory. To satisfy this aim, one has
to take care that in the process of abstraction only those pieces of information are left
out which can be restored later for implementation, or which are not essential for it.
Against appearances, this requirement is not self-contradictory since it is possible to
restore information by a meta-mathematical analysis of proofs. One can show (see
(Maietti, 2009), which is based on an idea in (Sambin and Valentini, 1998)) that
it can be achieved once and for all, by only introducing extensional constructions
under a certain discipline.

In conclusion, the extensional and the intensional aspects of mathematics can
both be present in a single framework, provided they are seen as living at two dif-
ferent levels, which interact through abstraction and implementation.

The choice of two levels of abstraction also has a second, equally important moti-
vation: it makes it possible to see the different options for foundations as parts of a
unitary and consistent picture. This is obtained directly by showing that such options
are obtained by adding some principles. Roughly speaking, one adds propositions-
as-sets, or directly AC, to mTT to obtain ML type theory at the intensional level,
while one can add PSA to obtain topos theory at the extensional level (Maietti,
2005). By adding both assumptions one obtains a classical foundation (though one
must give up to compatibility with CT).

All these reasons explain why it has been natural to call this approach to founda-
tions minimalist, as was first proposed in (Maietti and Sambin, 2005). Its extensional
level is meant to be a common base for developing mathematics constructively. In
fact, all of mathematics developed in it can be understood as it is (with no need of
translations) by all mathematicians, whatever their foundational view. In particular,
it makes communication possible between different traditions in constructive math-
ematics; this has also a practical relevance, which should not be underestimated.

We have seen that the computational (type theoretic) and the geometrical (topos
theoretic) view of constructivism are incompatible when formulated in the usual
way. One tends to extend this incompatibility from their formulations to the views
themselves, and in fact they are felt to be incompatible in actual life: it often happens
that a mathematician who works, usually for contingent or subjective reasons, in one
of the two traditions is not very familiar with the other. Sometimes awareness of
incompatibility is not sharp enough; sometimes, owing to the fact that different lan-
guages are used, it is felt as insurmountable and hence the two options are perceived
as mutually exclusive.

When the two views are expressed inside the minimalist framework, the aims
inspiring their principles acquire a different perspective. Then one can realize that
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both aims can be achieved in the same foundation, if they are formulated in a weaker,
less rigid (and perhaps more realistic) way.

In the minimalist foundation, at both levels one has sets and collections. To
introduce a set, one must specify a finite number of effective rules generating all
its elements. All set constructors preserve effectivity of sets; in other words, every
set is inductively generated. On the other hand, collections lack any effectivity. One
can deal both with sets and with collections, while keeping them distinct, because
logic is given independently. In particular, the collection of propositional functions
with one argument in a set is present in the formal system for the intensional level
(Maietti, 2009); by taking quotients over propositional equivalence, one obtains the
collection of subsets in the usual sense, at the extensional level. In general, the
decidability of equality in a set or collection at the intensional level is lost when
passing to one of its extensional quotients.

So, while in the computational view “even the most abstract mathematical state-
ment has a computational basis” (Bishop and Bridges, 1985, p. 6), in the minimalist
view this applies only to statements regarding sets, both at the intensional and at the
extensional level (because its implementation is always possible). However, some
idealistic aspects are also present, and they are represented by collections. So in the
minimalist view any computational content is carefully preserved, and yet compu-
tations are not the only source of meaning.

On the other hand, the validity of PSA, as in topos theory, would destroy the
difference between a set, which is inductively generated, and the collection of its
subsets, which is not (and can never be). In the minimalist foundation, ideal aspects
of mathematics are possible and freely accessible, but they are kept distinct from the
computational ones, since sets are distinct from collections. In particular, the power
of a set is fully accessible, but the absence of PSA means that it is not a set.

More generally, the use of ideal language is intentionally designed so as to avoid
producing any fictitious computational reality. A typical example is found in the
notion of function. One has to distinguish a notion of operation, or function in the
intensional sense, from A to B, that is a “finite routine” (Bishop, 1967) producing an
element of B as output when an element of A is given as input, from that of function
as a total and single valued relation between A and B. This means, in particular, that
the so-called axiom of unique choice

AC! every function is given by an operation, ∀x∃!y R(x, y) → ∃ f ∀x R(x, f x)

is in general not valid, even if it is valid in all the other views (this shows, inciden-
tally, that the minimalist foundations is not a naked compromise between existing
foundations). In fact AC! is valid in ML type theory, also at the extensional level (see
the so-called setoids), since this follows from validity of AC at the intensional level
(Martin-Löf, 2006). It is derivable also in topos theory (Bell, 1988; Maietti, 2005),
and in set theory it even looks like a tautology, by the very definition of function; the
truth is that both these theories lack any notion of operation, that is function which
allows one to compute the output.

Failure of AC!, which goes together with the distinction between operation and
function, allows one to introduce a properly idealistic notion as such Brouwer’s free
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choice sequences (see (Dummett, 1977)) without spoiling or damaging the computa-
tional aspects. A choice sequence of nodes in a tree can be described mathematically
as a subset α of nodes of the tree which contains the root and which satisfies: for
every node a ε α, there exists exactly one node b which is a successor of a and
such that b ε α.3 This is a statement of the form ∀∃!, so by AC! we would always
have an operation f doing the same job as α. That is, if AC! holds, every sequence
is lawlike.

The notion of choice sequence was introduced by Brouwer mainly to be able
to give meaning to the principle called Bar Induction. One can prove that if all
sequences are lawlike and AC! + CT holds, then Bar Induction fails. In the min-
imalist foundation, owing to the lack of AC! one can prove that one can have a
proper notion of choice sequence without the loss of computational aspects, since
it can be shown that Bar Induction is consistent with CT (see (Maietti and Sambin,
201x)). Viewed in this way, Bar Induction becomes a very intriguing reducibility (or
conservativity) principle, saying that a certain ideal property holds (existence of a
bar) only if it corresponds to an effective property (the bar is inductively defined).

2 A Minimalist Foundation at Work

The short explanation of good reasons for a minimalist foundation, and its first
results, have, I hope, provided evidence that it is interesting enough and worthy
of further attention. However, rather than plunging into technical details of formal
systems or lingering over arguments of purely philosophical nature, I believe that
here it is better to illustrate the benefits of a minimalist foundation, and compare it
with other foundations, by looking at how they work in practice on a specific, signif-
icant example in mathematics. This seems appropriate also because the minimalist
approach was born from actual research in constructive mathematics, in the field
started in (Sambin, 1987) and now known as formal topology.

It is a widespread belief that there is only one kind of mathematics, which is
that developed in the classical foundation, and that the aim of constructivism is to
develop as much as possible of it while avoiding “strong” but unreliable principles,
such as the law of excluded middle or impredicative definitions. From this perspec-
tive, the excitement of discovery appears to be exclusively in the hands of classical
mathematicians. Then it is no surprise that so few people are attracted by research
in constructive mathematics: the effort of developing mathematics in a different
foundation does not seem to be worthwhile if the outcome is only already known
mathematics, with no novelty except perhaps a sharper treatment.

A more careful reflection brings the opposite conclusion. If a foundation is a
choice of the criteria by which one abstracts from reality to obtain mathematics, then
each choice should bring a different kind of mathematics. Indeed, in my opinion the

3 More precisely, choice sequences can be defined as formal points over a suitable formal topology
on the tree.
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most attractive and important aspect of research in constructive mathematics is that
it reveals new structures and new ways of mathematical thought.

So the mission of constructivism is not to accept mathematics as given and
redeem it from its classical sins, but to produce mathematics of a different kind:
a mathematics inaccessible from a classical standpoint, although compatible with it.
Every constructive foundation, when put in action in the practice of research, should
offer some specific contributions. This applies also to the minimalist foundation: if
it does not help to deliver something really new in mathematics, then it would have
little to say to working mathematicians.

The gain of constructive foundations, over the classical one, is usually to be found
in improved computational meaning or clearer conceptual structures. The motiva-
tions of the minimalist foundation can be summarized in one sentence: provide a
language for developing mathematics which can be understood and used by mathe-
maticians of whatever creed, and yet such that each piece of mathematics developed
in it is automatically formalizable in computer language.

We have seen above how this has been achieved. However interesting, it is still
information on known mathematics reached through a meta-mathematical study.
To create new mathematics, a foundation must be put to work and actually used
in doing mathematics. This has happened with the minimalist foundation (whose
substance was pretty clear well before its rigorous formulation was given in (Maietti
and Sambin, 2005)) in the development of formal topology beginning over 10 years
ago. It has brought the emergence of a new conceptual structure which underlies
topology; its development gives rise to an extension and generalization of topology,
which has been called the Basic Picture (Sambin, 2003, 201x). To be able to appre-
ciate its novelty, a short summary of the basic picture is needed. After that, it will
become easy to observe what had remained invisible from the perspective of other
foundations, as well as the reasons for this. This will provide a specific illustration
of the idea that, even starting from the same reality, different foundations produce
different mathematics.

2.1 Dynamics Between Two Sets

The common definition says that a topological space is a pair (X,OX), where X is a
set and OX is a topology on X , that is, a family of subsets of X which is closed under
arbitrary unions and finite intersections. Elements of X are called points, and subsets
in OX are said to be open. Given in this way, the definition has little computational
value and thus cannot be satisfactory for a constructivist. The simplest way to obtain
a topology on X in an effective way is to start from a second set S and a family

ext (a) ⊆ X (a ∈ S)

of subsets of X indexed by S. Open subsets are obtained by union of these, that is,
they are of the form
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ext V ≡ ∪bεV ext (b)

for some V ⊆ S. The union of any family of open subsets ext Vi ⊆ X (i ∈ I ),
indexed by a set I , is automatically also an open subset, since one can easily show
that ∪i∈I ext Vi = ext (∪i∈I Vi ). In particular, ext ∅ = ∅ is open. One can show
that closure under finite intersections is obtained by requiring two conditions on
ext , that is

B1: ext U ∩ ext V = ext (U ↓ V )

B2: ext S = X

for every U, V ⊆ S, where by definition a ↓ b ≡ {c ∈ S : ext c ⊆ ext a ∩ ext b}
for every a, b ∈ S, and U ↓ V ≡ ∪aεU ∪bεV a ↓ b for every U, V ⊆ S.

A function from S into subsets of X , as ext , can equivalently be expressed as a
relation between X and S, defined by

x � a ≡ x ε ext a

for every x ∈ X , a ∈ S. So one can see that the basic ingredients are just two
sets X, S linked by any relation �. A structure like this has been called a basic
pair. When it satisfies the conditions B1-B2, it is called a concrete space. However,
knowing whether B1-B2 hold or not is not necessary for introducing topological
notions on X .

The presence of the second set S alongside the set of points X immediately
produces movement. The notions of open and of closed subset of X can indeed
be explained, as we are going to see, purely as a result of the dynamic interaction
between X and S, through the relation �. One may think of X and S as two persons,
or domains, who are eager to communicate with each other about their own views,
that is about subsets of their domain, which they interpret as regions, concepts, etc.
S can simulate a region D of X by putting questions to X . But since � is the only
mean of communication, and in general it is not a function, when S asks about an
element a ∈ S, all that X understands is ext (a), and then a (positive) answer can be
of two different kinds: a is inside D, if ext a ⊆ D and a touches D, if ext a � D.
Note that here, and from now on, � denotes the relation of overlap between two
subsets D, E , which is defined by D � E ≡ ∃x(x ε D & x ε E) (the importance
of overlap is not visible in a classical approach, since D � E is there equivalent to
¬∀x¬(x ε D & x ε E), that is D ∩ E �= ∅). Accordingly, S will simulate D in two
different ways:

♦D ≡ {a ∈ S : ext a � D} ∃-simulation of D,

�D ≡ {a ∈ S : ext a ⊆ D} ∀-simulation of D.

Since a basic pair assumes no condition on �, all which applies to X will apply
symmetrically to S too. So, if ♦x ≡ {a ∈ S : x � a} is what S understands of



80 G. Sambin

an element x ∈ X , then a region U ⊆ S will be simulated by X in two different
ways:

ext U ≡ {x ∈ X : ♦x � U } ∃-simulation of U,

rest U ≡ {x ∈ X : ♦x ⊆ U } ∀-simulation of U.

Since X, S and � are arbitrary, a region in one domain can be totally different from
its simulations in the other. What is most interesting here, however, is that X and
S still can communicate about their regions with full agreement, if they are a bit
careful and follow some rules.

Given a region D, X can talk about it with S with mutual understanding, pro-
viding they make clear whether they are considering its ∃-simulation ♦D or its
∀-simulation �D. In the first case, X has to consider her own ∀-simulation of ♦D,
that is rest ♦D. This is because one can prove that4:

♦D = ♦ rest ♦D for every D.

So the ∃-simulation by S of D coincides with that of rest ♦D, which means that
nothing changes to the eyes of S when X passes from D to rest ♦D. This means that
they can agree on regions of X , if S considers ∃-simulations, that is subsets of the
form ♦D for some D, and X replaces a region D with its ∀∃-simulation rest ♦D.

They can extend this mode of communication also to regions of S, with analo-
gous precautions. One can prove the equation:

rest U = rest ♦ rest U for every U.

This means that, when S wants to talk about his region U , X has to consider its
∀-simulation rest U , and S has to consider his own ∃-simulation of rest U , that
is ♦ rest U . By the above equation, the ∀-simulation by X of U and of ♦ rest U
coincide.

One can prove that rest ♦ is saturation on X , that is, it preserves inclusion
of subsets (D ⊆ E → rest ♦D ⊆ rest ♦E), it is expansive (D ⊆ rest ♦D)
and idempotent ( rest ♦D = rest ♦ rest ♦D). A region D is called saturated if
D = rest ♦D. By the equation rest = rest ♦ rest , D is saturated iff it is the
∀-simulation rest U of some region U of S. On these regions X and S find imme-
diate agreement; that is, when ♦ is restricted to saturated regions, it has an inverse
rest .

Similarly, ♦ rest is a reduction on S, that is it preserves inclusion, it is contractive
(♦ rest U ⊆ U ) and idempotent. A region U is called reduced if U = ♦ rest U .
Because of ♦ = ♦ rest ♦, U is reduced iff it is the ∃-simulation by S of some region
in X . Also on these regions X and S agree, because when rest is restricted to them,
♦ is its inverse.

4 This and the next equation are an immediate consequence of the fact that ♦ is left adjoint to rest ,
which means that the equivalence ♦D ⊆ U iff D ⊆ rest U holds for every D and U .
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In conclusion, ♦ is a bijection between saturated subsets of X and reduced sub-
sets of S, and rest is its inverse. With a little more work, one can also prove that
the family of all saturated subsets of X is actually a complete lattice, the same for
reduced subsets of S, and that ♦ is actually a complete lattice isomorphism. So, in
this precise sense, X and S can communicate perfectly well, provided they keep in
mind that ∃-simulations in one direction correspond to ∀-simulations in the other.

Everything that has been said up to now works equally well if the roles of X and
S are interchanged. Or, which amounts to the same effect, if X and S are kept fixed,
but ∀-simulations and ∃-simulations, and more generally ∀ and ∃, are interchanged.
So, for instance, if one starts from a region D of X and its ∀-simulation �D by S,
then X must pass from D to her ∃-simulation of �D, that is ext �D. This has no
effect on S, because the following equations holds:

ext U = ext � ext U for every U,

�D = � ext �D for every D.

Without repeating details, one has that ext � is a reduction on X and that � ext is
a saturation on S; reduced subsets of X and saturated subsets of S form isomorphic
lattices, via the isomorphism � with inverse ext .

What is the relevance of all this for topology? Think of X as a set of points, and
ext a ⊆ X (a ∈ S) as a family of neighbourhoods. Then for every subset D ⊆ X ,
the common definition says that x is in the interior of D, written x ε int D, if there
is a neighbourhood ext a of x such that ext a ⊆ D. In the present notation, this is

x ε int D ≡ ∃a(x � a & ext a ⊆ D).

Since by definition x � a ≡ a ε ♦x and ext a ⊆ D ≡ a ε �D, it is also

x ε int D ≡ ∃a(a ε ♦x & a ε �D) ≡ ♦x � �D ≡ x ε ext �D,

that is, int = ext �. So the previous discussion says that X and S can agree on a
region D of X if this region is open, that is D = int D holds.

The common definition says that x is in the closure of D, written x ε cl D,
if every neighbourhood of x has some point in common with D. In the present
notation, this is

x ε cl D ≡ ∀a(x � a → ext a � D)

and one can easily find out that cl = rest ♦. As usual, D is said to be closed if
D = cl D.

It is now obvious that the definition of cl is logically dual to that of int , in the
sense that one is obtained from the other by interchanging ∃ with ∀ and & with →.
Although obvious, this fact was apparently not explicitly noticed before; certainly,
some of its immediate consequences had been ignored.
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In all the previous discussion it has also been obvious that, since the ingredients
of a basic pair are totally arbitrary, one can argue by symmetry and save half of the
work. In particular, � ext is a saturation on S, here denoted by A, and ♦ rest is a
reduction on S, denoted by J . What is their topological meaning? An element a of
the set S is an index, or name, for a basic neighbourhood ext a ⊆ X . Sometimes a
is called a formal basic neighbourhood, or simply an observable. Spelling out their
definitions, we see that:

a ε AU ≡ ext a ⊆ ext U ≡ ∀x(x � a → ∃b(x � b & b ε U )),

a ε JU ≡ ext a � rest U ≡ ∃x(x � a & ∀b(x � b → b ε U )).

So a ε AU means that the family of neighbourhoods ext b ⊆ X (b ε U ) covers
the neighbourhood ext a. We say that a is covered by U ; note that this directly
relates an observable with a subset of observables, and that points occur only in its
definition. The meaning of a ε JU is that ext a is inhabited by a point all of whose
neigbourhoods are in U . We say that a is positive with U .

As with any saturation or reduction, one can easily see that the families Sat (A)
of A-saturated and Red(J ) of J -reduced subsets, that is subsets U for which U =
AU and U = JU holds, respectively, can be given the structure of a complete
lattice. By symmetry, Sat ( cl ) and Red( int ) are also complete lattices; they are
the familiar lattices of closed and of open subsets of X , respectively. Due to the
links between the operators ♦, rest and between ext ,� through which int ,A
and cl ,J are defined, one can prove that one has the isomorphisms Red( int ) ∼=
Sat (A) and Sat ( cl ) ∼= Red(J ).

As we have just seen, it is very natural to introduce the reduction J , either by
symmetry, starting from int , or by duality, starting from A. And yet the notion of J
had not appeared before in topology. It seems evident that the reason for this was the
lack of a topological interpretation of the structure of basic pair. In fact, this is what
allows one to perceive the presence of symmetry and logical duality in topology.
We will see below some foundational reasons which can explain why they had not
appeared before.

Besides the notions of open, closed, cover, and positivity, one finds that a clear
structure underlies also the notion of continuity. In fact, the basic form of continuity
can be seen to coincide with a very clear dynamics between two basic pairs, that is
a pair of relations producing a commutative square. These are the arrows between
basic pairs.

Basic pairs in which the lattice of open subsets is a topology on X are charac-
terized by the two simple conditions B1 and B2. If one reads x � a as a is an
approximation of x , these express refinability, or convergence of approximations:
B2 says that every point has some approximation, and B1 says that for every two
approximations of a point, there is always a third improving on both. One can see
that continuity does not include preservation of convergence: arrows of basic pairs
preserve convergence if and only if they are topologically equivalent to a function.
So traditional point-set topology can be seen as the special case in which conver-
gence and its preservation are assumed.
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2.2 The Definition of Basic Topology

The notion of concrete space is not sufficient to develop topology constructively. In
fact, in many classical examples of topological spaces, points do not form a set in
any effective sense; a typical example is the continuum, defined via Dedekind cuts.
The aim of formal topology is to obtain such spaces as the collection of “virtual,” or
formal, points over a suitable point-free structure on the set of observables. In fact,
as a rule, even when points do not form a set, the formal structure of open subsets
can be given in a fully effective way, usually by an inductive definition. For instance,
a base for a topology on the continuum is given by intervals with rational endpoints,
which can be indexed by the set of pairs of rational numbers, and this set can be
equipped with a convenient pointfree structure.

Points of a classical topological space, such as the continuum, become again what
they had been originally (for Dedekind himself), that is, idealizations. It is a task of
the minimalist foundation to distinguish the collection of formal points, which is an
ideal entity called formal space, from the structure on observables, or formal opens,
which is effective. And also to distinguish the cases in which it happens that points
can be given concretely as a set, so that one has a basic pair or a concrete space,
from those in which points can be only ideal, and one has a formal space.

The point-free structure to be defined on the set of observables is usually called a
formal topology. It is crucially important to find the most convenient and convincing
definition. To explain the method by which this is done, it seems helpful to resume
the metaphor of communication between X and S through �. In fact, for S to find
the right definition is the same as to internalize his dialogue with a hypothetical X .
That is, S should first equip himself with a saturation A and a reduction J . Then
he should think of AU as his way of communicating with the virtual X about his
region U , when X takes its ∃-simulation. To emphasize his “dialogue” with X , he
may call AU “formal open,” since he knows that it corresponds to an open subset
for her. Analogously, S thinks of JU as a way to communicate with X about her
∀-simulation of U . Since reduced subsets correspond to closed subsets of X , he may
call them “formal closed.”

A delicate question concerns how S can manifest the fact that he is having a
relation with just one person (he could talk with X about her open subsets, through
A, and with X ′ about her closed subsets, through J ). One can easily prove that,
when A and J are defined using concrete points of the same set X and through the
same relation �, they satisfy the condition called compatibility:

AU � J V ↔U � J V

for every U, V ⊆ S.
The internalization of the dialogue is, metaphorically speaking, an axiomatiza-

tion of the structure induced by a basic pair on its set S. Thus one calls basic
topology any structure S = (S,A,J ) where S is any set, A is a saturation and
J a reduction on S, and A is linked to J by compatibility.

Now finally one can see how points can be simulated. The only way is to say that
a formal point is a subset α ⊆ S which behaves, with respect to the structure of S,
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exactly as if it were the subset ♦x determined by some concrete point x . In this way
the relation x � a is simulated by a ε α, and this is why one writes α � a instead.
If A were defined through points of X , one would obviously have that x � a and
a ε AU ≡ ext a ⊆ ext U imply x ε ext U . This means that α is required to split
covers:

α � a a ε AU

(∃b ε U )α � b

Similarly, if J were defined pointwise, one would have that α � a and ♦x ⊆ U
imply a ε JU ≡ ext a � rest U . So α must enter positivity:

α � a α ⊆ U

a ε JU

This is not yet enough. If a concrete point x satisfies x � a and x � b, then
x ε ext a ∩ ext b. In a concrete space, x ε ext a ∩ ext b holds if and only if
there is an observable c such that x � c and ext c ⊆ ext a ∩ ext b.

As a concrete space is just a basic pair satisfying convergence, so now a formal
topology is defined as a basic topology with an additional condition induced on S
by convergence, or B1 and B2. One can easily see that this is:

AU ∩ AV = A(U ↓ V )

(where now ↓ is defined in terms of A by putting a ↓ b ≡ A{a} ∩A{b} and then by
defining U ↓ V ≡ ∪aεU ∪bεV a ↓ b as before).

Finally, a formal point is a subset α of observables of a formal topology S which
splits covers, enters positivity, is inhabited and is convergent, that is, if α � a and
α � b then α � c for some c ε a ↓ b.

The collection Pt(S) of formal points of S is called a formal space. If the pow-
erset axiom PSA is assumed, then Pt(S) is a set, since it is a subset of PS; then
Pt(S) is a possible conversation partner for S, through the relation α � a ≡ a ε α,
even if her points might have no effective value. Predicatively, Pt(S) remains what
it is, after all, that is an idealization from S’s mind, and definitely not a set.

The discovery of symmetry and logical duality, together with the method by
which definitions have been introduced and justified, have brought point-free
structures which are richer than one would have expected previously. The satu-
ration A is not a novelty. It was part of the original definition of formal top-
ology in (Sambin, 1987). Moreover, pairs (S,A) with A satisfying convergence
AU ∩ AV = A(U ↓ V ) can be seen as a predicative presentation of locales
(Sambin, 1987; Battilotti and Sambin, 2006). If they are equipped with a predicate
Pos as required in (Sambin, 1987), they correspond to open locales (for a proof, see
(Vickers, 2006)).

The real novelty is the presence of the reduction J besides A, that is a positivity
relation besides the cover, and of the condition connecting them, namely their com-
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patibility. The reduction J allows one to speak about closed subsets in point-free
terms. Although it is new, from the point of view of the underlying logical structure
its introduction is as natural as that of A: A is a way to express quantifications of
the form ∀∃, that is � ext , and J of the form ∃∀, that is ♦ rest .

A similar remark applies also to all other definitions, including those of arrows:
they seem to flow almost by themselves out of purely structural and logical consid-
erations. Actually, the name “basic picture” has been chosen precisely because it can
be described as the study of pure dynamics between sets, when they are connected
by relations. In this sense it is a sort of applied logic. At the same time, this study is
carried on by means of some mathematical definitions which have a strong topolog-
ical meaning. So the basic picture is also a generalization of topology. Topology in
the stricter sense, either with points as in concrete spaces or point-free as in formal
topologies, is obtained as a special case simply by adding treatment of convergence.

Besides revealing an elegant, pure structure beneath topology, a fact which
should appeal to a logician’s taste, the basic picture offers a new, firm foundation
for topology, bringing a deeper understanding of familiar notions, and thus should
satisfy mathematicians also. Yet, the development of the basic picture is very recent.
It is thus natural and interesting to investigate the reason for this, and we do this in
the next section.

3 A Different Topology in Different Foundations

The definition of topological space that is commonly given in a foundation in which
the powerset axioms PSA is assumed makes no mention of a second set S alongside
the set of points X . The reason for this is that the information given by the presence
of S is supposed to be redundant. In fact, assume one starts from a basic pair X =
(X,�, S); the validity of properties turning it into a concrete space does not alter the
substance of our discussion and we assume it whenever useful. If PSA is assumed,
then PS is as good a set as S itself. So

X
�+−→PS,

where x �+ U ≡ ∃b(x � b & b ε U ) ≡ x ε ext U , is as good a basic pair as
the original X . But in the new basic pair the family OX of all open subsets of X
is indexed by a set, and hence OX itself is a set (it is {D ∈ PX : ∃U ⊆ S(D =
ext U )}). Moreover, one can easily see that the family of open subsets induced
on X by (X,�+,PS) coincides with OX . Hence, as long as one is interested in
open subsets of X , there is no difference between the original X and the basic pair
(X, ε,OX). Then it is clear why there is no need to keep the set S, and hence also
why the general notion of basic pair had never been seriously considered: using
PSA one can always reduce to the case in which the set S is OX and the relation �
is membership.

In other words, assuming PSA the information that open subsets can be obtained
from a set-indexed base is contained in the common definition of topological space.
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From the minimalist perspective, the same fact acquires a quite different interpreta-
tion: the information about a set-indexed base is left out not because it is redundant,
but rather because an impredicative foundation is unable to perceive it. In fact, the
property which distinguishes S from PS, namely inductive generation, is irreparably
lost by the impredicative notion of set.

In a predicative approach to topology, as in (Martin-Löf, 1970; Sambin, 1987),
the situation seems to be dual: a set of points X does not appear and the treatment
starts from the structure of opens, which is given on a set like S. In fact, in the most
important examples of spaces, such as those treated in (Martin-Löf, 1970), points
can be obtained predicatively only as ideal objects, that is formal points, and they
do not form a set. Thus the set X is not absent because it is redundant, but on the
contrary because it is an unavailable piece of information. In this way, however, all
cases in which points do form a set are neglected.

In both cases, one of the two sets of a basic pair is missing. Thus no dynamics is
possible. This explains why the symmetry between pointwise and pointfree notions,
the logical duality between closed and open, and hence the notion of positivity rela-
tion, had not appeared before.

These remarks suggest that different foundations reach different mathematical
notions, even when they start from the same reality. In this case, however, it is highly
debatable what such “reality” is precisely, prior to its formalization into a rigourous
mathematical definition. So it is perhaps more interesting to analyse a case in which
there can be general agreement that the reality one starts from is the same. The
definition of basic topology is an excellent test for this. We must take for granted that
it is obtained by abstraction from the structure induced on the formal side of a basic
pair X ; we have seen that in the minimalist foundation this is the basic topology
(S,A,J ) concretely presented through the definitions A ≡ � ext and J ≡ ♦ rest .
Then we can realize how, starting from the same mathematical “reality” given by
a basic pair, the process of abstraction leads to different results, according to the
different foundational “lenses” one is wearing.

Assuming classical logic, it is not necessary to consider closed subsets, in the
sense that the intrinsic characterization, saying that a subset D is closed if it contains
its closure cl D, is immediately proved to be equivalent to the “logical” definition
of closed subset as complement of open subset. In fact cl D ⊆ D by definition is

∀a(x � a → ext a � D) → x ε D.

By classical logic, this is equivalent to x ε −D → ¬∀a¬(x � a & ¬(ext a � D))

and hence to x ε −D → ∃a(x � a & ext a ⊆ −D), which is the definition of
−D ⊆ int − D, that is of −D being open.

The same fact can be expressed in a way which makes it evident that it is due
only to logical laws. By the definition cl ≡ rest ♦, using relativized quantifiers
one can express x ε cl D as (∀a ε ♦x)(∃y ε ext a)(y ε D). The laws concerning
quantifiers, in particular the classical equivalence between ∃¬ and ¬∀ as well as
that between ¬∃ and ∀¬ which holds also intuitionistically, apply also to relativized
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quantifiers. So the combination ∀∃, which by double negation is the same as ∀∃¬¬,
is equivalent to the combination ¬∃∀¬, that is ¬(∃a ε ♦x)(∀y ε ext a)¬(y ε D),
which by the definition int ≡ ext � is equivalent to x ε − int − D.

So on basic pairs the equation cl = − int − holds classically, and hence by
double negation also int = − cl −, that is closure and interior can be defined one in
terms of the other through complementation. This shows that, “wearing the lenses”
of classical logic, one cannot avoid reducing a quantification of the form ∀∃, charac-
terizing closure, to one of the form ¬∃∀¬. This prevents one from perceiving the fine
structure of duality between the intuitive notions of closed and open subsets, since
it soon boils down to the much simpler duality between a subset and its classical
complement, that is between a classical proposition and its negation.

By symmetry, the equations A = −J− and J = −A− hold. So the notion of
basic topology would reduce classically either to a set with a reduction (S,J ) or
a set with a saturation (S,A). These structures are too impoverished to be consid-
ered worthwhile. As a matter of fact, the only pointfree structure which has been
introduced up to now is essentially that of locale; here it can be seen as obtained
by abstraction from a concrete space, and thus it is a pair (S,A) where A satisfies
convergence. Then the locale is Sat (A) which, in the case of a concrete space, as
we have seen is isomorphic to the lattice of open subsets of X .

Closed subsets can also be defined in terms of open ones on the base of intuition-
istic logic, provided one has access to impredicative definitions. In fact, given any
basic pair X , if PSA holds one can consider all open subsets as basic neighbour-
hoods, by passing from X to (X,�+,PS) as defined previously. Here by definition
x is in the closure of D if ∀U (x �+ U → ext +U � D); since ext +U = ext U
and since all open subsets of X are of the form ext U for some U , we arrive at a
definition of closure in terms of interior:

x ε CL int D ≡ ∀E(x ε int E → int E � D).

Once can easily prove that CL int coincides with cl in the original basic pair. So
also in an impredicative approach one can focus on interior, and consider the notion
of closure as defined in terms of it.

By symmetry, given a reduction J on a set S one can define (impredicatively) a
saturation on S by putting

a ε AJ ≡ ∀Z(a ε J Z → U � J Z).

One can easily prove that actually, for every reduction J on S (that is, not neces-
sarily induced by a basic pair), the operator AJ is indeed a saturation, that it is
compatible with J , and the greatest such. Moreover, when (S,A,J ) is the basic
topology induced on S by X , then AJ coincides with A.

Then one could define a basic topology to be a set with a reduction (S,J ).
However, such a definition has never been developed; for some good reasons, what
corresponds to (S,A) in the present framework has been chosen instead. In fact,
while classically the structure of closed subsets by de Morgan laws is completely
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symmetric to that of open subsets, this is no longer true intuitionistically. A sign
of this is the different behaviour of structures of the form (S,A) or (S,J ). It is
apparently not possible to find a property characterizing, among all reductions, those
which are induced by a concrete space; on the other hand, this is easily done for a
saturation, and the solution is the condition of convergence mentioned before. In
other terms, it is not known how to present the algebraic structures of closed subsets
by means of a structure of the form (S,J ); on the other hand, the algebraic struc-
tures of open subsets, that is locales, can all be isomorphically presented, reasoning
impredicatively, as a lattice Sat (A), for some pair (S,A) where A is a saturation
satisfying convergence.

In conclusion, both in the classical and the impredicative approach one has cho-
sen locales to be the main pointfree structure, which here corresponds to the choice
of (S,A). The reason for this is that the lattice Sat (A) is isomorphic to the lattice
Red( int ) of open subsets of X .

The trouble is that, when the only criterion is isomorphism of lattices, one cannot
see that in a basic pair int is the trace of existential quantifications (because int ≡
ext � is of the form ∃∀, and every open subset is of the form ext U , that is the
∃-simulation of a subset of S), while on the other hand A is associated with universal
quantifications (since A ≡ � ext is ∀∃, and A-saturated subsets are ∀-simulations
of subsets of X ).

In other words, even if Red( int ) and Sat (A) are isomorphic lattices, one is
given by a reduction int and the other by a saturation A. Since this kind of infor-
mation is not preserved by lattice isomorphisms, it is better to retain the opera-
tors, that is keep (X, int ), (S,A), (S,J ), . . . and not only the lattices Red( int ),
Sat (A), Red( int ), . . . they give rise to. Then the symmetry between int and J
(and between cl and A) remains visible. And, under the inspiration of symmetry,
one can see that, just as with int one can define CL , for every reduction J one
can define a saturation AJ such that (S,AJ ,J ) is a basic topology. If a reduction
allows one to define a saturation compatible with it, there is no reason why also the
converse should hold. So, even assuming that the aim is to keep only one of the
operators of a basic topology, the choice for the saturation A is the wrong one, since
it gives rise to a basic topology only classically.

Finally, if the task of characterizing the structure induced by a basic pair on the set
S is carried out in the computational view, then one obtains some further information
not about the mutual relationship between A and J , but about their nature. That
is, when the axiom of choice AC is valid one can prove that the saturation A can
be generated effectively through an inductive definition. Let us say that an axiom-
set I,C is given by a family of sets I (a) set (a ∈ S) indexed on the set S and a
family of subsets C(a, i) ⊆ S (a ∈ S, i ∈ I (a)). From any axiom-set I,C one
can generate a saturation AI,C by postulating, for every a ∈ S and U ⊆ S, that
a ε AI,CU holds only either if a ε U or if inductively C(a, i) ⊆ AI,CU for
some i ∈ I (a).

There are two relevant mathematical results to consider here. One says that, when
the saturation A is concretely presented by a basic pair, using AC one can find
an axiom-set I,C such that A = AI,C (see Coquand et al., 2003). Therefore it
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becomes natural to require, among the conditions defining basic topologies, also
that the saturation A should be generated inductively, from some axiom-set I,C .

But then the second result says that, starting from any axiom-set I,C , one can
generate effectively, this time by a coinductive definition, also an operator JI,C and
prove that JI,C is a reduction, that it is compatible with AI,C , and that actually it is
the greatest such (see Martin-Löf and Sambin, in press).5

In this way one again finds that the notion of closed subset is uniquely determined
by that of open subset, and therefore the abstract definition of basic topology retreats
to the background. In fact, it can be reduced to the data of an arbitrary set S and an
arbitrary axiom-set I,C on S, understanding that from it one can generate AI,C

and JI,C . This option has the advantage that a basic topology is certainly given
effectively. The drawback is that it conflicts with the algebraic/geometric view, since
the property of being generated cannot be easily expressed in algebraic terms.

4 Benefits of the Minimalist Foundation

The previous analysis shows how the attitude expressed in the minimalist foundation
has been relevant for the development of the basic picture. Though it remains in the
end only an example, it seems sufficiently meaningful to suggest some reflections
of general nature.

4.1 Effective Computations and Ideal Structures in One
Framework

Effective computations and ideal algebraic/geometric structures are two vital modes
of mathematical thinking. It is hard to deny this. They are present also in construc-
tive mathematics, but the proposed foundational systems focus on just one of them
and leave the other in the background, subject usually to an informal, metalinguistic
treatment. However, there are no a priori reasons that all of mathematics should be
reducible to either of these two aspects. Thus it seems natural and important to aim,
as the minimalist foundation does, at expressing both within a single formal system,
although at two different levels of abstraction.

Brouwer was right in rejecting the reduction of mathematics to a purely formal
manipulation of signs. With hindsight, we can reach a more balanced view and see
that the evil is not formal language in itself, but its overestimation. The expression of
some mathematical content with full symbolism makes it easier to share it socially
and, at an individual level, helps to increase awareness of it. It is an important stage
of the transformation which starts from a subjective intuition and aims at an objec-
tive mathematical entity. In a dynamic perspective, formalization is therefore one of

5 It is still an open problem to prove, under the assumptions that A,J are presented by a basic pair
and that A = AI,C , that also J = JI,C holds.
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the facets of the process of abstraction through which every mathematical concept
is obtained.

A general criterion for an abstract concept to be healthy is that it is well-founded.
That is, it should remain clear what its contact is with the reality it comes from,
at least in the sense of something of a lower degree of abstraction. This gives a
theoretical rationale for requiring a formal system always to admit a computational
interpretation: it is a discipline to anchor it to something real and thus avoid mean-
ingless speech. A pure consistency proof, as required in Hilbert’s program, would
not be enough for this purpose.

At the same time, the general criterion of well-foundedness does not say that
computations should necessarily be the only reality to which one refers for mean-
ingfulness. Reducing all of mathematics to manipulation of numbers and signs, as
a machine does, would mean losing the power of high level human abstractions.
A purely algebraic structure can be very helpful for grasping the essence of a
mechanism beyond the details of specific examples or its actual implementation.
And it remains meaningful as long as it clearly refers to something real, which can
be computations again but indirectly (as in high level programming languages) or
something non-numerical (as happens for instance with the notion of triangle).

Briefly, mathematics should preserve its computational content without sacrific-
ing the power of its abstractness and becoming too close to programming (which
many working mathematicians rightly dislike). The actual development of formal
topology and the basic picture shows that this is entirely possible.

4.2 Creation of New Mathematics

As happens with a new postulate, the most exciting aspect of a new foundation is
that it leads to an extension of mathematics. This is actually what motivates its intro-
duction and makes it meaningful. Since the minimalist foundation is weaker than
others—in the sense that it is obtained by subtracting rather than adding principles—
the novelties it brings cannot be the solution of specific problems, which is the typ-
ical reason for adding a postulate. So its introduction seems fully justified only if it
opens new conceptual perspectives or it suggests the exploration of new landscapes
(for the same reason it would be worthless to have a bicycle if one could cycle only
along motorways).

The minimalist foundation allows one to develop mathematics in its usual exten-
sional and ideal way, and yet always preserve its computational content. This benefit
was to be expected, since it was the inspiring motivation.

It was not expected that the same attitude would gradually bring to light some
clear structures which had been overlooked by other foundations. These have been
delivered mainly by a methodological principle: to consider and express mathe-
matically in an independent way notions with a different logical structure, with no
subjection to the identifications forced by classical logic. A logical analysis of the
notions of open and closed subset, or better of the operators interior int and closure
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cl, shows that the formula by which they are defined is the same, but for the form
of quantifications. Assuming classical logic, the positive information of the form ∀∃
which characterizes cl is identified with, and hence replaced by, the combination
¬∃∀¬, that is absence or negation of an information of the form ∃∀, which charac-
terizes int. Thus closed subsets are uniquely determined by open subsets by way of
negation, or complement, and closure is explicitly definable by cl ≡ − int −. Also
assuming intuitionistic logic, closure can be uniquely determined by interior through
an impredicative definition. As a consequence, closed subsets and the operator cl
are anyway by and large ignored.

In an intuitionistic and predicative approach, closure and interior are mathemat-
ical notions representing two combinations of quantifiers, ∀∃ and ∃∀ respectively,
which cannot be reduced to each other by negation. So they must be treated indepen-
dently. This fact becomes particularly visible and clear when it comes to expressing
their properties in algebraic terms. Note that this is a task which must be faced
and cannot be left out as an optional extra. Actually, we have accomplished it
already with the definition of basic topology, which is the necessary first step of
a formal approach to topology. In fact, the notion of basic topology was obtained
as an axiomatic description, which is to say as an algebraic characterization, of the
structure induced by a basic pair on its formal side. But then, by the symmetry of
basic pairs, of the operators int and cl all one can say algebraically is that they give
rise to a basic topology. That is, int is a reduction, cl is a saturation, and their only
link is compatibility:

cl D � int E ↔ D � int E

for all subsets D, E (the role of compatibility is perhaps made clearer by noting that
it is equivalent to cl D ⊆ CL int D for every D). This is a very simple algebraic
structure, whose reverse shows that an intuitionistic algebraic treatment of int and
cl was missing. In fact, the only link between int and cl which can be expressed
algebraically is compatibility, but apparently no mention of this condition appears
in the literature. One can only guess that compatibility went unobserved because to
express it perspicuously one needs overlap and, incredibly, a specific notation for it,
such as the sign � adopted here is, has not been systematically used before.

In each of the extensions of the minimalist foundation we have considered, closed
subsets are uniquely determined by open subsets. This happens in each foundation
in a different way, and in the case of the computational view open and closed are to
be meant in the formal sense. As we have seen, this fact explains why one is very
unlikely to reach the notion of basic topology in its general form if some strong
principles are assumed in advance, that is in the process of its definition. Still, a
sign of the soundness of the structure of a basic topology is that it is not reduced to
something simpler even if the same strong principles are assumed after the definition
has been given.

In fact, in each case it is possible to start from one of the operators and by using
a strong assumption define the other one, so as to obtain a basic topology; but still,
such construction will not cover the general case. When the law of excluded middle
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LEM is assumed, given a saturation A one can define a reduction compatible with
it by putting J ≡ −A−. But this does not give all basic topologies: even assuming
LEM, all one can say is that a basic topology (S,A,J ) is the same as a structure
(S,A,A′) where A′ is a second saturation with AU ⊆ A′U for every subset U
(which is classically equivalent to the compatibility of J ≡ −A′− with A).

Given a reduction J , one can define impredicatively, as we have seen, a satu-
ration AJ so that (S,AJ ,J ) is a basic topology. In the computational view any
saturation A is to be given by way of an axiom-set I,C which generates it induc-
tively, so that with the same I,C one can define coinductively also a reduction
JI,C compatible with A. But in both cases one cannot rule out basic topologies in
which one of the operators is not uniquely determined by the other. For example,
given any axiom-set I,C and any extension J, D of it, one can easily see that,
since (S,AJ,D,JJ,D) is a basic topology and AI,CU ⊆ AJ,DU for every U , then
(S,AI,C ,JJ,D) is a basic topology too.

So, from the minimalist perspective, only the assumption of strong principles can
allow one to make precisely that choice, out of the many equally possible, in which
closed subsets can be uniquely determined by open ones. But even strong principles
cannot hide the fact that the algebraic properties of closed subsets, and their link
with open subsets, cannot be obtained from those of open subsets alone. So when
no strong principles are available or when an intuitionistic algebraic treatment is
required, the only option is to deal with closed and with open subsets independently.
In particular, one has to keep a primitive expression both for interior and for closure.

After basic pairs and basic topologies, the independent treatment of the notions
of open and closed is systematically kept in all subsequent definitions, beginning
with that of their morphisms. Concerning this, by analogy one would expect two
distinct and independent conditions, one saying that open subsets and the other that
closed subsets are preserved. It is interesting to observe that this actually happens
only if one defines morphisms to be continuous relations, rather than functions
as usual, because with functions the existential and universal images of subsets
coincide, and hence so would do also the two conditions. As concrete spaces and
formal topologies are obtained from basic pairs and basic topologies, respectively,
by adding a single assumptions of convergence, their morphisms are obtained by
adding only its preservation. So topology in the proper sense, both pointwise and
pointfree, becomes a special case.

The algebraic character of the operators A and J in a basic topology is clear,
but still the definition is not purely algebraic since their domain is the collections of
subsets of a set, which depends on logic. An abstract algebraic treatment is obtained
by replacing the collection of subsets with its algebraic axiomatization. To be able
to express compatibility between A and J , this must count also a primitive >< which
corresponds to overlap � between subsets, at the same way as the common notion
of partial order ≤ corresponds to inclusion ⊆. The axiomatization of properties of
operation of subsets with respect to inclusion, which is a universal notion, is the
standard one and gives the structure known as Heyting algebra, or locale; by adding
an axiomatization of the properties of overlap, which is an existential notion, one
obtains a new structure, which has been called an overlap algebra (see (Sambin,
201x, Ch. 9) for details).
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The algebraic soundness of definitions is confirmed by the fact that they extend
smoothly to the general framework of overlap algebras. The result is a purely alge-
braic formulation of the basic picture, and hence also of topology (Sambin, 201x,
Ch. 10). Here the expressive power provided by the extra primitives (for overlap and
for closure) is essential. In particular, to be able to put basic pairs and continuous
relations in algebraic terms, one must pass through a characterization of relations as
pairs of adjunctions linked by a property, called symmetry, which can be expressed
algebraically only if overlap is available.

Owing to the methodological choice of compatibility of the minimalist founda-
tion with all others, no ideological commitment is required to appreciate the novel-
ties introduced by the basic picture. In practice the new structures, reached by means
of the minimalist attitude, remain new and intelligible, and can be of interest, also for
mathematicians with different principles or without active interest in foundational
questions.

So the choice of weaker foundational principles is compensated for by richer,
purely mathematical structures, which are otherwise difficult to discern. Specifi-
cally, one can observe that when the independent treatment of the notions of open
and closed is carried out systematically, some notions emerge (overlap, closed,
positivity, coinduction) which are somehow dual to more standard ones (inclusion,
open, cover, induction, respectively) and equally important. We have seen that one is
forced to introduce them somehow when no strong principles are available by which
the information they carry is usually reconstructed. In other words, they are the
mathematical substitutes for the foundational principles by which they are usually
defined or determined.

These appear as the first steps of an investigation searching for a positive and
explicit mathematical treatment of that kind of information, mostly of existential
form, which otherwise is usually dealt with by negation, or surreptitiously recon-
structed using strong principles, or simply left in the dark. The basic picture shows
that a systematic exploration of this dark side of the mathematical planet is possible,
and provides us with the first tools for undertaking it. This could become its most
lasting conceptual contribution.

One can already see some applications confirming this idea outside topology. In
computer science, the positivity relation offers a mathematical modelling of the con-
cept of liveness, as cover does with that of safety (Hancock and Hyvernat, 2006. In
logic, the positivity relation provides with a complete semantics for a primitive con-
structive notion of satisfiability which is introduced coinductively (Ciraulo, 2007)
and goes along with the well-known fact that the cover gives a complete semantics
for derivability (Sambin, 1995).

4.3 Pluralism as a Source of Richness

Since the minimalist foundation is weaker than all others, one could not hope to
find any real novelty while remaining inside existing mathematics or by adhering
to aseptic metamathematical considerations. Something new has been found only
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by adopting the minimalist attitude with heart and soul and by putting it to work
directly on “reality,” that is on such basic ingredients as sets, relations, etc.

It is fidelity to an effective conception of sets which has forced us to keep on
stage the information on the base, given by the set S, which a posteriori can be seen
as the only road leading to the discovery of duality and symmetry in topology, from
which all the rest follows. Forgetting the base and defining closed subsets impred-
icatively in terms of open subsets makes it is very hard to conceive that closure is
not uniquely determined by interior. A sign of this is that the link between closure
and interior expressed by their compatibility was not studied. And only by relaxing
the requirement of an explicit computational meaning for all statements is one free
to see and play with pure algebraic structures.

This explains in particular why an aim has not been that of recasting the given
definition of topological space in the most constructive form possible, nor of devel-
oping only a predicative version of locales.

In my view, the aim is to create new territories of thought, and the challenge is
to do it while keeping the customary rigour of mathematics. It is the lack of means
which compels one to be creative. Whatever novelty there is in the basic picture,
it has been possible to conceive it only because I was forced to it, since no other
choice was possible. In fact, the restrictions of the minimalist foundation correspond
faithfully to my own limits: I really believe that only what is valid in the minimalist
foundation is unquestionable and fully reliable, that is objectively true, and only
with that do I feel safely at home. I hope I have shown that it is coherent, and that
one can do mathematics with it.

But I observe daily that others feel at home with other principles, which for
them are objective truths. Hence the mathematics they develop, which looks to me
to be hypothetical reasoning based on specific assumptions, is felt by them to be
objectively true, and sometimes also as the only possible reasoning.

This is rightly so. A foundation is a choice of values and hence a number of
principles by which one can give a structure to one’s mathematical perception of
the world. There is here a striking similarity with the embracing of a religion (or
even with membership to a specific culture): in both cases, in order to play its role,
it must be felt as an unquestionable truth, that is, at a certain level of conscience
one must “forget” that its principles are assumptions. One must not only believe
in them, but actually let oneself go into them completely to be able to use them
effectively, quickly and deeply, enough for instance to create new mathematics.
They must simply become a part of one’s way of automatic thinking, and thus at
the same level as objective reality.

At the same time, a correct perception of facts should bring one to acknowledge a
bewildering triviality, which is often overlooked or put aside: different people follow
different foundations (or religions) and hence have different notions of objective
truth. Assuming a static view, this is a plain paradox, and out of absolute truth one
is inclined to see only a dangerous relativism (which Frege called psychologism).
From a dynamic perspective, objective truth is a process; so one is free to believe
in something as objectively true and still, at a different level of consciousness, rec-
ognize that other people have a different creed, without having to fight them for
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being wrong. Since there is no absolute principle on which to base an agreement,
pluralism is unavoidable and tolerance acquires crucial importance.

To reach tolerance, one has to become aware of the assumptions underlying one’s
“objective truth” and compare them with those of others. It is easier, or even possible
in the first place, to realize that a certain principle (e.g. Euclid’s parallel postulate)
is actually an assumption if one can see that one is left with something meaningful
also in its absence (e.g. non-Euclidean geometry). Here the minimalist foundation
may serve the purpose, by showing that some principles are not indispensable and
that one can also develop reasonable mathematics without them.

Different foundations are possible, because of different aims and conceptions
about what is relevant; in each of them one has some specific mathematics, and
hence pluralism, when backed by tolerance, is a source of richness. The most inter-
esting and vital aspect of constructivism is the deep interaction it shows between
mathematical practice and reflections on foundations, which therefore cannot be
left only to a purely theoretical investigation. Since various options are possible,
every mathematician contributes to determining the course of events by making a
choice. Though the minimalist foundation rests on fewer assumptions (and thus one
could say that it is “more objective”), its aim is not to reach universal agreement by
a void compromise. The only “objective truth” one can hope for is that of a higher
level of awareness, obtained by adding a further step to abstraction. In my opinion,
this is the deepest spirit of constructivism. Following it confers several benefits, for
mathematics and for contemporary culture in general.
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Chapter 5
The Municipal By-Laws of Thought

David DeVidi

1 JLB

John Bell’s arrival at the University of Western Ontario was a turning point in my
life. At the time I was a PhD student, a mere few overdue course credits away
from beginning a dissertation on Carnap’s Logical Syntax of Language. What better
way to make up a couple of those credits than by taking the set theory course to be
taught by the hotshot new professor the philosophy department had recruited from
England, thanks in part to Margaret Thatcher’s campaign to drive intellectual talent
out of the UK? This turned out to be a doubly lucky choice for me. First, being new
to the department, John was on the look-out for PhD students who seemed able to
do their sums, so the class was a chance to catch his eye. More significantly, the
class was a revelation to me. I didn’t just learn a lot of set theory but was exposed
to a whole raft of (for me) new philosophical issues, and approaches to traditional
philosophical problems, that struck me as deeper, subtler and more interesting than
anything I’d seen before—no small statement, since I was fascinated by the Carnap
issues I was working on until then. The class also gave me my first contact with
whole fields that had only been names to me (if even that) before John’s arrival, e.g.,
category theory, type theory, and topos theory. I quickly signed on as John’s student
even though it meant spending another couple of years in grad school, essentially
learning the things I would have learned doing course work had I intended to write
on logic from the start.

John and I discovered many respects in which we are kindred spirits, though
quite different people. An example that amused us both: one late evening while
sharing refreshments we discovered that at about age 15 each of us had undergone
a certain crisis. Figuring out that while our interests and talents suggested we might
be best suited to physics, neither of us at 15 could imagine a career in physics that
didn’t somehow serve the interests of the Pentagon, so we steered into something
that seemed less harmful. Which makes us seem alike and perhaps suggests similar
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life experiences, until one accounts for the fact that John had these thoughts as an
Oxford undergraduate and steered towards pure maths, while I had them as a grade
10 student in Saskatchewan and steered temporarily towards journalism.

During my years under John’s supervision I didn’t come to share all his enthusi-
asms, but the one that I hope rubbed off on me, at least a bit, is his enthusiasm for
enthusiasms. Having a teacher and mentor who inspires interest in the work he cares
about—his own, and that by those he admires—by his willingness to wear his own
enthusiasm for it on his sleeve, and for whom seeming cool matters so little, was
liberating for someone who found the sometimes stuffy atmosphere of professional
philosophy difficult. But what I have most hoped to incorporate in my own teaching
is John’s willingness to share the enthusiasms of others. It is no accident that many
of John’s students have gone on to successful careers chasing things distant from
John’s own interests or advocating views John probably thinks wrong, and perhaps
nutty.

For this collection, I hope John will find it apt that I’m offering something on
logical pluralism, a topic that marries my longstanding interest in matters Carnapian
to themes learned from him.

2 The Problem

Whether logical pluralism is correct is a philosophical rather than mathematical
question, most straightforwardly stated “Is there more than one correct logic?” But
philosophers have in recent times been rather cautious about telling practitioners
in other fields that they don’t know what they’re doing. This caution was learned
the hard way, of course. And there is a whole range of systems called logics inves-
tigated by the strange logician down the hall in the philosophy department, or by
the higher-paid computer scientists across campus, or even by engineers or physi-
cists. For most philosophers, these probably fall on a scale of increasing obscurity,
beginning with familiar tools of the philosophical trade like Aristotelean syllogism,
classical propositional and predicate logic, and normal modal logics, running per-
haps through relevance logics, intuitionistic logic, non-normal modal logics, fuzzy
logics, and belief revision logics, on into things many professional philosophers
will never have heard of (dynamic logic? linear logic? dialethic logics? multi-agent
epistemic logics? other sorts of constructive logic?). However unfamiliar one is with
the specifics, and even if one harbours suspicions about some of these systems, it’s
professional good manners to think that if people are getting grants via the usual
peer review processes to investigate such systems they are mostly at least highly
promising and at least some of them must be, in some good sense, correct.

But the answer to the question of logical pluralism is at least not obviously yes, so
the straightforward wording doesn’t get to the heart of the issue. The philosophical
question is better stated as “Is there an interesting and non-trivial sense in which
there is more than one correct logic?” While the meaning of these adjectives in this
context is by no means transparent, and I am unable to nail them down, much of the
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debate about pluralism will turn on the question of whether a sort of pluralism that
is probably true also meets the tests of non-triviality or of being interesting. I will
be content for present purposes with giving a brief gloss for each.

A trivial sense of pluralism would be one, for instance, that is based on an equiv-
ocation. We are not tempted to say that “there’s more than one logic” on the ground
that in non-philosophical contexts it is common to describe any sort of bad think-
ing as “illogical”—e.g., parents driving their kids to school to prevent their being
abducted by strangers when stuffing them into cars and hurtling them along road-
ways at high speed creates greater risks of harm to them and their schoolmates than
is posed by stranger abduction. Other trivial senses of pluralism would arise from
cases where philosophers might legitimately dispute the use of the word “logic.”
Some object to the subject matter taught in critical thinking courses being called
“informal logic” on the grounds that there’s no such thing. Some philosophers dis-
like the practice in many logic textbooks of first distinguishing between deductive
and inductive logic, usually as a prelude to remarking that inductive logic will not
be covered in the book, on the grounds, once again, that there’s no such thing—this
time, no such thing as inductive logic. I do not intend to suggest that these latter two
are trivial disputes. However, I do say that even if there are such things as informal
logic or inductive logic these would give us pluralism about logic only in a trivial
sense. The interesting question about logical pluralism is more specific than just
whether there’s more than one sort of good thinking.

It’s even trickier to specify what is supposed to be ruled out by the restriction
to interesting sorts of pluralism, but it’s also clear that this is the condition that
rules out many of the most familiar examples of distinct logics from giving an easy
answer to the question of pluralism. Classical propositional and predicate logic are
distinct systems, after all, but nobody wants to say that they show that pluralism is
true. Why not? The first being essentially a sub-system of the second, it essentially
differs from the first only in being more restricted. For the present inquiry, this
cannot be an interesting difference.

Why, then, do we consider propositional logic at all? Among the reasons is
that it is a system with some interesting properties—expressive completeness and
decidability, for instance—that is also strong enough to represents a significant
fragment of the valid reasoning we do. The reason we go on to study the more
powerful system of classical predicate logic is that there is valid reasoning that is
not captured in propositional logic that the stronger system allows us to capture.
This suggests a more general line of explanation for why this example is not an
interesting pluralism, one that suggests a defence of logical monism: what makes
the propositional/predicate plurality uninteresting is that one is a subsystem of the
other, and one “logic” being a subsystem of another means that we are not dealing
with an genuine plurality. But, a monist might argue, each of these “logics” is merely
a subsystem of a single larger system. Indeed, all the correct logical systems are
correct precisely in being sub-systems of the single, correct system of logic, namely
the system that includes all and only deductively correct inferences. Each of the
systems we actually work with is limited in some ways to make it useful for some
practical purposes: when dealing with truth-functionally valid arguments, the extra
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machinery of predicate logic merely makes it harder to see what is essential to the
case at hand; for many purposes, the machinery of temporal or modal reasoning is
unnecessary, so we work with standard predicate logic rather than modal or tem-
poral versions, but similarly for much modal or temporal thinking the quantifiers
are not needed, so we work with propositional temporal or modal logics. But all
these systems—propositional, modal, temporal, predicate, etc.—insofar as they are
correct, are merely fragments of the single correct logic. So there are many correct
logics, but only in the uninteresting sense that for each we limit attention to a distinct
fragment of the too-complex-to-work-with, and perhaps even too-complex-to-state,
system of correct inferences.

The goal in this paper, then, will be to investigate the question of whether there
is an interesting and non-trivial sense of pluralism that can be plausibly maintained.
I shall begin by lodging some complaints against what I call the obvious approach
(intending no disparagement by this terminology, since it is one I have at least
implicitly advocated elsewhere since it is presumed in much of the discussion in
(Bell et al., 2001)). In effect, I suggest that there is a tension between the jobs
of showing how different systems of logic call all be correct and explaining why
they are interestingly distinct. The obvious approach, at least in the most important
presentation of it to date (Beall and Restall, 2006), explains mutual correctness in a
way that robs the distinction of interest. Predictably, this is a prelude to my going on
to suggest a different line of defense of pluralism. That defense begins with a detour
through the question “What makes something logic?” and finds different logics,
at least arguably, arise from distinct, legitimate answers to that question—while not
making the distinctness a matter of equivocation on the meaning of the word “logic,”
and so running afoul of the condition that the plurality not be trivial. I do not pretend
to adequately defend pluralism here, but do hope to suggest a line of defence that
establishes the plausibility of logical pluralism.

3 The Obvious Approach?

The title of (Bell et al., 2001) is Logical Options, and the goal of the book is to
introduce a range of distinct, philosophically significant logical systems. The book
takes a “models first” approach. That is, we began with characterizations of certain
inter-related and central logical concepts. An argument is valid precisely when every
case in which its premises are all true is also a case in which its conclusion is true; a
set of sentences is consistent precisely when there is a case in which all the sentences
in the set are true; and so on. The different logical systems can then be seen as arising
from different answers to the question “What constitutes a case?”

We claimed no special novelty in introducing the various logical systems this
way. It is, indeed, the obvious way to do so. JC Beall and Greg Restall have gone
further than merely assuming that one can elucidate a variety of logical systems in
this way to using it as a strategy for defending the claim that logical pluralism is
correct (Beall and Restall, 2000, 2006). They introduce the
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Generalized Tarski Thesis (GTT): An argument is validx iff in every casex in which
the premises are true, so is the conclusion.

Logical pluralism then becomes the claim that there is more than one way to specify
“the casesx .”

Of course, this can’t be the whole story. The wording of the Generalized Tarski
Thesis requires that cases be the sorts of things in which statements can be true or
not, but by itself doesn’t tell us any more. The difficulty for such a view is going
to come when it is time to specify what makes a suitable class of cases for deter-
mining a logic. Presumably, for instance, we don’t want to allow singleton classes,
for instance the class with just the actual world in it. For then every true sentence
“follows in the real world” from every set of true sentences, and all sentences follow
from any set that includes a false sentence. The room for mischief here is limited
only by the one’s ingenuity. It might be valid-in-no-umbrella-thinking to infer that
one’s head will get wet if one walks in the rain, but surely that doesn’t mean that
thinking about life without umbrellas is a sort of logic, at least in any sense relevant
to debates about logical pluralism.

In the book-length version of their argument (Beall and Restall, 2006), this prob-
lem is addressed by distinguishing the admissible from the inadmissible specifi-
cations of classes of cases. To be admissible, a class of casesx must meet three
conditions [pp. 14–23].

1. The class of cases must determine a suitable necessary link between reasons and
conclusions in correct inferences, i.e., a sense in which it cannot be the case that
all the premises be true while the conclusion is false.

2. The class of cases must make explicable how logic is normative. “In an impor-
tant sense, if an argument is valid, then you somehow go wrong if you accept
the premises but reject the conclusion” (Beall and Restall, 2006, p. 16). They
offer little in the way of positive characterization of this important condition,
contenting themselves with noting that the paradox of the preface implies that
it’s too strong to say that one is irrational if one accepts the premises and not the
conclusion.

3. The resulting notion of validity must be formal, i.e., having to do with the form
rather than the content of arguments, in some suitable sense. They distinguish
three options for this notion of formality: 1-Formality means not depending on
propositional content of any particular type; 2-Formality means not depending
on the terms involved referring to any particular category of objects; 3-Formality
means not depending on the semantic content of the claims involved.

The guiding idea is that these conditions describe the core of our concept of logic.
Our language is settled enough to determine that logic has certain features (i.e., the
ones described by this list), but, as with many of our concepts, this core does not
settle all questions we may, with changing circumstances, be led to ask; it’s an ordi-
nary language concept, and so should not be expected to correspond exactly to any
precisely specified notion. Mathematical investigation of such notions involves their
precisification when we suggest a technical replacement for the ordinary concept
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that can be subjected to rigorous investigation. Sometimes, at least arguably, there
is only one reasonable precisification (at least, up to equivalence), as for example
with the notion of computable function; for other concepts, there can be more than
one such precisification, for instance with the notion of necessary truth (which can
be precisified to metaphysical necessity, physical necessity, historical necessity, and
perhaps others). Beall and Restall’s argument comes down to a claim that in this
respect the concept of logical consequence is more like the concept of necessary
truth than that of computability. A proper precisification must respect the core of
the ordinary concept, but beyond that the question is not which precisification is
correct, but which ones work. And what ultimately makes pluralism correct is that
different precisifications work for different purposes.

Each such precisification purports to incorporate the core features involved in the use of
“follows from” or “logical consequence” . . . however, none do such a good job that it
renders the others useless or otherwise undeserving of the role. (Beall and Restall, 2006,
p. 28)

Beall and Restall are careful to distinguish their pluralism from that of the most
famous logical pluralist of them all. To do so, they give a rather unsympathetic
reading to Carnap, saddling him with a pluralism according to which plurality can
only exist “between” rather than “within” languages (equating, as he does in Log-
ical Syntax, for instance, “building a logic” with giving the rules for a formalized
language). They then argue that by taking distinct formal languages not as distinct
languages but instead to be differing “account[s] of the form of claims expressed
in a natural language such as English” one can explain the possibility of a plural-
ity within a language such as English (Beall and Restall, 2006, pp. 78–79).1 The
requirement that any acceptable logic must be a precisification that respects the
core of the ordinary concept contrasts, at least, with the official version of tolerance
announced in Logical Syntax, according to which, famously, “In logic there are no
morals. Everyone is at liberty to build his own logic . . . as he wishes” (Carnap,
1937, § 17). But they share with Carnap the view where the question of correctness
gives out, what matters is the practical value of the proposed system—eventually,
candidacy for the status of “a logic” depends on usefulness for some purpose.

4 An Uninteresting Plurality?

Each of the conditions Beall and Restall include in “the core” of logic is important.
Indeed, ideas akin to some of these will play a role in my own attempt to sketch
a route to an interesting sort of pluralism below. However, the use to which they
put the conditions seems to me misdirected. In short, I think this approach produces
an uninteresting pluralism, or at least, a pluralism less interesting than might be

1 Beall and Restall (2006) provide only a summary of a view defended in (Restall, 2002), so a
critique would involve a significant digression. I will simply note that I do not intend to endorse
this as an accurate reading of Carnap’s pluralism, only to report what Beall and Restall say.
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available with a slightly different approach. For only a very limited sort of disagree-
ment is allowed for in Beall and Restall’s version of pluralism. In their laudable
attempt to make clear the sense in which various systems can all be correct, they
have sold short the degree to which they can be genuinely distinct.

I will illustrate the problem by considering the way Beall and Restall defend the
claim that both classical and constructive consequence relations are correct.2 This
will seem problematic to many because, famously, in various constructive mathe-
matical systems it is possible to prove things that can be refuted in classical math-
ematics, or so it seems; for instance, Brouwer offered a proof that all functions
are continuous, a claim that is obviously refutable in classical mathematics. The
response of Beall and Restall to such cases is to rule out certain sorts of constructive
mathematics, opting for “deference to a certain important tradition in constructive
mathematics . . . . This brand of constructive mathematics is explicitly designed to
be consistent with classical mathematics” (Beall and Restall, 2006, pp. 117–118).
This is the tradition of Errett Bishop, Douglas Bridges, Fred Richman and others.
They quote Richman as follows:

It is a common misconception that intuitionistic mathematics deals with a special class of
mathematical objects that are, in some sense, constructive . . . . But when an intuitionist does
group theory, he is developing a constructive theory of groups, not a theory of constructive
groups. (Beall and Restall, 2006, p. 26)

As pluralism, this strikes me as weak tea. In this sense, almost any mathematician
will count as a pluralist, because all that is required is that one prefer constructive
proofs when they are available. Even hardened classical mathematicians are likely
to at least pay lip service to this idea, allowing that constructive proofs often con-
tain useful information not supplied by a non-constructive proof. But for Beall and
Restall,

The constructive mathematician who utilises classical reasoning, but who also notes when
she departs the strictures of the constructive high road to the broad and comfortable classical
low road, is a perfect example of a logical pluralist at work. (Beall and Restall, 2006, p. 126)

It is not clear that this is an interesting sort of pluralism, in the sense indicated
above. By restricting the range of appropriate application of constructive reasoning
in mathematics as they do, Beall and Restall make the relationship between the two
systems rather akin to that between propositional and predicate logic—one is merely
a subsystem of the other that will never conflict with it. So is the view just that the
constructivist refuses, for what are ultimately misguided reasons, to apply indirect
proofs, one of DeMorgan’s laws, and so on, but since those are misguided reasons

2 A similar argument can be made, I think, for the other star example from the book, the simulta-
neous correctness of classical and relevant consequence relations. “Disjunctive syllogism is valid
when GTT’s casesx are taken to be possible worlds, and it is invalid when those casesx are taken
to be situations. That is that. To whether Disjunctive Syllogism is valid, the classical and relevant
accounts give different but not rival answers” (Beall and Restall, 2006, p. 56). While there are
differences of detail between what I would say about the examples, these differences do not warrant
covering essentially the same ground twice here.
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he might well have decided not to use some other selection of classically correct
principles?

This is not quite the whole story. What originally motivated the constructivist to
regard certain principles as suspect isn’t the issue; what matters is that they landed
on a useful distinction. Not every rejection of a subset of classical principles would
result in a useful distinction. Beall and Restall argue that this sort of pluralism is, for
instance, “richer than” the scruples reflected in the practice of classical set theorist
who carefully note when their proofs depend on the axiom of choice in some form.
It’s not mere scruples about possibly dodgy principles that are in evidence, but an
attitude of finding “the distinction between constructively valid and invalid argu-
ments important, that is, to take the constructive counter-examples as marking an
important distinction” (Beall and Restall, 2006, p. 126). A better analogy to classi-
cal set theory is one where we suppose two universes of sets, only one governed by
choice—restricted proofs establish truths that hold in both universes, while proofs
using AC establish only that the truth holds in one universe. The constructivists’
attitude is one of finding the counterexamples in the non-choice universe interest-
ing, even if incapable of showing that some claim does not hold for the choice
universe.

I confess to not finding the difference between the two-universes analogy and
the scrupulous documenting of use of AC completely clear. But given the “models
first” approach employed in their presentation, putting the key point in terms of
regarding constructive counter-examples as marking an important distinction is apt.
For regarding constructive logic as a sub-system of classical, and supposing (to keep
this discussion simple) that things are logically possible when not refutable, there
are more logical possibilities from a constructive than from a classical point of view,
and the extra possibilities can serve as counter-examples and so be of interest.

But this allows us to put the worry about this approach in stark terms. For what
Beall and Restall do is exactly to rule out the most interesting counter-examples
available to a constructivist on the grounds of their incompatibility with classical
mathematics—they rule them out because they are classically refutable, and so
allow classical (hence, bivalent) reasoning to arbitrate the possible. Many construc-
tivists would emphatically disagree with Richman’s characterization of intuitionistic
mathematics: it is, for instance, the development of a constructive continuum that
they have in mind, rather than the same continuum the classical mathematician
works with, but reasoned about constructively. Hence the pleasure some of them
take in the discovery of smooth models in which there are non-zero numbers ε small
enough that ε2 = 0 (Bell, 1998). Or spaces in which all functions are continuous.
Or, to take a more purely logical example, cases where ¬∀x(Ax ∨ ¬Ax) is true.

What is wrong with the position Beall and Restall wind up defending is now eas-
ily stated. What makes constructive reasoning interestingly distinct from classical
is, as they note, that constructive counter-examples are interesting and important,
but are not available to a purely classically-minded mathematician. But their way
of accounting for how classical and intuitionistic logic can both be correct rules out
precisely the most interesting and important cases that count by constructive but
not classical lights as logical possibilities. What makes it interesting to claim that
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classical and constructive logic are both correct is that these are systems that dis-
agree.3 Of course, for the pluralist claim to be correct, there is some explaining to do
about how these seeming rivals can both be correct. But to de-fang the disagreement
entirely is to remove the interest of the claim. Is there a version of the pluralist claim
that leaves the disagreement intact?

5 What Makes It Logic?

Let us begin anew, looking again at the GTT, but this time as an answer to a different
question: what makes a principle or operator logical rather than something else (e.g.,
mathematical or physical)? For the GTT encodes what is today the standard answer
to that question.

Logic is, among other things, supposed to be the machine that hums in the back-
ground when mathematics is done. We define a semi-group to be a structure that
includes a set together with an associative binary operation (a “multiplication”),
a monoid to be a semi-group with a neutral element (call it 1), and a group as a
monoid where every element has an inverse. Logic is what you use to prove things
like “in a monoid, neutral elements are unique,” and you do that by showing that (a
suitable formalized version of) the claim “neutral elements are unique” follows from
the postulates for being a monoid, i.e., suitable formalized versions of the claims
involved in the definition just stated in English.

This is a very simple example of a familiar practice. To define a kind of math-
ematical structures, we need only specify the relevant non-logical stuff—the non-
logical vocabulary and the non-logical axioms. Logic then helps us discover what is
true in all the structures of that kind. And, supposing we’ve got a suitable model the-
ory knocking around, we can find out what doesn’t follow, too, by finding counter-
examples.

Very nice and very familiar. But what distinguishes the logical from the non-
logical here? What makes 1 non-logical while & is logical? Why is the law of non-
contradiction a logical principle, while the associativity of binary operators is not?
The answer is supposed to be straightforward. Not all binary operations are associa-
tive, so you need an axiom to guarantee that your designated operation is associative
if it’s semi-groups you want to talk about, but the law of non-contradiction always
holds. Similarly, the rules governing conjunction hold in every structure, while not
every structure has an element suitable for naming by 1 in it. So, the short answer

3 And that various flavours of constructivism disagree with each other. In this connection, it is
interesting that Beall and Restall choose the Axiom of Choice as their example. For that axiom,
and indeed other choice principles, have a disputed and complicated status within constructive
logic, one that John Bell has done as much to illuminate as anyone. See (Bell, 1993, 2006, 2009;
Maietti and Valentini, 1999; DeVidi, 2004, 2006). By advocates of some constructive systems
AC is regarded as a principle of logic that follows from the constructivist account of the existential
quantifier; but in other systems of constructive reasoning it implies the law of excluded middle,
and so all of classical logic.



106 D. DeVidi

is: non-logical principles hold in some structures but not others, while logical prin-
ciples hold in every structure.

Which of course is not really an answer yet, since it raises an obvious question:
what counts as a structure? There are various ways to describe structures in which
¬∀x(Px ∨¬Px) is true, for instance either Kripke frames or topological structures
for intuitionistic logic; other sorts of structures show disjunctive syllogism, or even
the law of non-contradiction, fail to be true. Which is probably a long way from
what we want to be discussing when introducing simple axiom systems in a logic
class, but this line of reasoning seems to be pushing us in the direction of having to
say that logic is a pretty thin system indeed—if everything anyone wants to call a
structure is a structure, are there any principles that survive?

Of course, the correct response is: “those are not structures in the relevant sense;
that is, those are not what Tarski meant when he defined mathematical structures.”
Which is true. And the relevant fact here is that in a Tarski structure conjunctions
and universal quantifiers are interpreted by suitable intersections, disjunctions by
unions, and negations by complements, which is manifestly not what is done these
other so-called models.

But we mustn’t be under any illusion about the order of definition here. One
can get classical logic out of a definition of Tarski structures because one is taking
structures to be defined in classical set theory (which guarantees, for instance, the
existence of the relevant complements to interpret the negations). Since, at least
close enough for government work, classical set theory is the theory that results by
employing the axioms of set theory in a classical logic rather than some other, if we
try to define logical principles as “those true in any structure” and by this understand
“true in the Tarski structures” we’re begging the question in favour of classical logic.

To summarize: One standard view is that logical principles are principles which
hold in every structure. But for this to be any good as an answer to our question, we’d
need some non-question begging way of specifying what counts as a structure—that
is, a specification independent of a choice of underlying logic. Add the suggestion
that there might be more than one principled specification and you have GTT.

But why does the idea of “correct in all cases” strike us as a reasonable way to
capture the notion of logicality in the first place? It connects closely to some ideas
that are clearly closely related to those associated with logical correctness.

First, there is the view that logic is topic neutral, a view naturally associated
with Frege.4 While there are some statements and patterns of reasoning that are
correct in certain domains but not in others, this fact is itself enough to show that
these are not logical truths or inferences—it is these grounds Frege uses to relegate
geometry to its merely synthetic a priori (and so non-logical) status because of its
reliance of spatial reasoning. On the other hand, his belief that arithmetic truths
hold “everywhere” is what motivates his arithmetic logicism. And it is on the same
grounds that most nowadays would relegate, for instance, mathematical induction to

4 This is a version of the intuition behind the “formality” condition identified as part of the “core”
of the concept of logical concept by (2006, p. 21).
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non-logical status, recognizing as we do models in which induction fails. A logically
correct principle is one that does not depend for its correctness on any special feature
of the domain we are considering.

As Beall and Restall point out in their argument for the centrality of GTT, it also
connects the notion of logical consequence to necessity. It is a familiar move from
“necessarily true” to “true in all possible cases”; logical truths are necessarily true
if anything is, and in a valid argument the truth of premises “necessitates” the truth
of the conclusion in some sense. One only needs some explanation for why it is
legitimate to smear together the notions of all structures and all possible cases, and
a few obvious further steps will lead us to the Tarski Thesis.

But this is not the only plausible characterization of what makes a principle log-
ical. It will be useful to gather a few into a list.

1. Logical is topic neutral: a logical truth is metaphysically neutral, and does not
depend for its truth on any presuppositions about what the world is like.

2. Logic has to do with when the truth of some statements necessitate the truth of
others: logically correct inferences are necessarily truth preserving.

3. Logic is the science of correct inference. (This is probably as close to a standard
characterization as one is likely to find, in fact.)

4. (Deductive) inference is supposed to be non-productive. The point of the claim
is that when you apply logical rules to a set of premises, the conclusion can’t be
something which wasn’t already “implicitly contained” in the premises. Some-
times people use the image of “unpacking” the premises to convey this idea.

This list could be extended, but this brief list will serve for present purposes. It
is easy enough to suppose that these different characterizations somehow amount
to the same thing, or perhaps that some entail others. We have seen an example of
how some such arguments can go already: if we assume that the notion of necessity
is adequately captured by quantification over “ways things might have been,” then
we can bring together the ideas of necessary truth preservation and topic neutrality,
for an argument that depends on restriction to a particular topic for its correctness
will then have some counterexample to its correctness among the “ways” to do with
other topics. But such arguments are not usually given, and more rarely still are they
scrutinized. And grounds for logical pluralism are to be found in the fact that these
characterizations can be pried apart.

6 The Systems Disagree

The goal, recall, is a pluralism which allows for more than one system of logic to be
correct while being interestingly distinct. The complaint against the sort of pluralism
defended by Beall and Restall was that in order to account for mutual correctness,
they have eliminated the really interesting differences between the systems they
consider. As a next step to avoiding this problem, let us briefly consider the fact that
those who first and most emphatically advocated many alternatives to classical logic
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were strongly of the view that their systems were incompatible with classical logic,
and not merely another tool in the logician’s toolbox. Classical logic, they argue,
is wrongheaded in some important way. The complaints are profitably regarded as
arguing that classical logic fails to satisfy one of the criteria of logicality recently
listed.

We will turn presently to some examples. But first, as a useful contrast, let us
look at some less fundamental complaints about the classical logic that philosophers
teach students in their first formal logic class.

We might complain about a misguided choice in the inevitable trade-off between
simplicity and comprehensiveness. Of course, when you’re building a system of
logic you want it to be correct—if the system says an inference is correct, you’d
like to be able to rely on it. But it had better be useful, too, and this requires that
it be simpler than, for instance, reasoning in ordinary language. Teaching classical
predicate logic in a first course in logic reflects a choice to leave out of account cer-
tain features of ordinary language argumentation because the simpler logic is useful
for many purposes even without extra devices such as temporal, modal, deontic,
or metamathematical (e.g., “is provable in Peano arithmetic”) operators. But it’s
always open to us to add in this extra machinery when we need it. Here we have
our familiar, not very interesting “plurality” of logics, all intended to capture the
notion of “correct inference,” but agreeing about what the correct inferences are
wherever they overlap—they are distinct logics only in the sense of being distinct
fragments of the same correct logic. The single correct logic is too complex to be
useful for many purposes, hence the proliferation of special-purpose fragments.
If this is all there is to logical pluralism, there are presumably a lot of pluralists
around.

A different sort of objection to standard presentation of classical logic notes its
failure to satisfy the neutrality condition. According to the standard semantics for
classical logic, for any name c in our language ∃x .x = c is valid, as is ∃x .x = x . So,
one might badly reason, “anything we can name exists,” and “it’s a necessary truth
that something exists . . . let’s call that necessarily existing thing God.” While I did
suffer through one talk some years ago that went along those lines, most everybody
recognizes these as false consequences in spite of their validity in classical logic.
Most are happy to say that this falsity is the price one pays for the simplification
gained by having to consider only non-empty domains, and by having each term
in the language refer to an individual which is in the domain in question. This is
not a real violation of neutrality, but another aspect of the trade-off between use-
fulness and correctness. It differs from the previous example where correctness
was not traded away, only comprehensiveness. But it’s a trade-off that is well-
understood. When necessary, i.e., when it becomes important to take into account
the existence of names which don’t refer to anything that exists (e.g., “Pegasus”) or
empty domains (“the class of thoughtful members of the Canadian federal cabinet in
2009”), we can use a free logic. But free logics are something of a pain to work with,
so we don’t bother with them for most purposes. What sort of pluralism does this
suggest? One in which standard logic is not merely overly simple for some purposes,
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but in which it is, strictly speaking, incorrect. But it is correct, in the special case
where certain simplifying assumptions are warranted, as they very often are.

The more interesting systems a pluralist might regard as additional to classical
logic were first formulated as its rivals. They arise out of arguments that standard
logic ought to be rejected—it’s somehow misguided as an account of logic.

Probably the most famous critique of classical logic is the one due to con-
structivists. In their original form, due to Brouwer, these arguments were pre-
sented with some peculiar solipsistic accoutrements, but the nature of his fun-
damental complaint, that classical logic depends on unwarranted metaphysical
assumptions, is clear enough. Moreover, plausibly, later formulations of essen-
tially the same arguments have divorced them from the more alarming parts of
Brouwer’s originals. For instance, in his discussions of realism and anti-realism,
Michael Dummett has argued that constructive reasoning is a metaphysically neutral
system, specifying patterns of reasoning acceptable whether or not realism is true;
the principle of bivalence, and hence all of classical logic, is correct for application
in a particular domain when and only when realism is the correct view for that
domain. Hence, the law of excluded middle, and the other classically but not intu-
itionistically correct principles, are metaphysical and not logical. (See, among many
places, (Dummett, 1993).)

But there is a different route to the view that intuitionistic rather than classical
logic is correct to be found in Dummett’s work. Dummett (1991) puts the intuition
that logic must be non-productive at the center of his argument. Roughly, the idea
is that the meaning of any proposed logical operator will be determined by the rules
governing its correct use; you’ll have rules which allow you to introduce that oper-
ator as the principal operator of a logically complex sentence (i.e., which specify
what is needed, canonically, to prove the sentence), and rules which allow you to
eliminate it (i.e., which specify the immediate inferences you can make from such
a sentence). The requirement Dummett proposes is that the basic introduction and
elimination rules must be in harmony: that is, if you introduce then eliminate, you
ought to be able to get out of the process no claims that were not already prov-
able without that maneuver, but you ought to be able to get out anything inferrable
from what was required for the introduction. From this basis, Dummett argues that
several classical principles are not, properly speaking, logical ones, whatever we
teach in our Introduction to Logic courses. For instance, ∀x(Px ∨ ¬Px), P ∨ ¬P ,
(P → Q) ∨ (Q → P), and ¬(P & Q) → ¬P ∨ ¬Q are all rejected because they
depend for their justification on inference rules of classical logic which, he argues,
are not in harmony—in particular, they depend on the classical interpretation of
negation.

Another familiar critique is plausibly taken as beginning from the idea that logic
is the science of correct inference, and so is in the business of giving a proper
account of “follows from.” One of the things over which you have to grit your teeth
and say “just learn it” when teaching Intro courses in logic is, of course, the fact that
in classical logic Q “follows from” P & ¬P , regardless of what Q is. Another is
the fact that a tautology like Q → Q “follows from” any premises at all. Certainly
those arguments are classically valid, and the corresponding conditional statements



110 D. DeVidi

are classical tautologies. But is it really right that from The Russell set both is and
is not a member of itself it follows that everything is permitted, or my dog is named
Flipper? The starting point of relevance logics is in this sort of consideration, in the
view that classical logic gets this wrong. Some advocates of relevance logic may
nowadays be happy enough with the idea that classical logic gets something else
right,5 but all of them will agree that the notion of following from, and so the proper
notion of consequence, requires a connection of relevance between premises and
conclusion. And this involves significant revisions of classical logic.

I do not intend necessarily to endorse any or all of these lines of reasoning, only
to note two things: first, and obviously, the genesis of these rival systems of logic
is in critiques of perceived deficiencies of existing systems, and so in what are at
least considered by those creating the rival system to be important differences; and
secondly, that that it is the disagreements that are interesting about the systems.

7 The Systems Are Correct

Of course, the emphasis on the disagreements among various logical systems raises
the other difficulty for pluralists, namely how the various systems nevertheless can
make a claim to correctness.

What I want to suggest is that Beall and Restall have latched onto the wrong
model of the relationship between precise concepts and their ordinary language kin.
While the concepts of classical consequence and the various constructive and rele-
vant alternatives are no doubt more precise than our ordinary language concept, it is
a mistake to think of them as all extending a fixed, consistent core characteristic of
our ordinary concept. For if the arguments of the original advocates of the alternative
systems are correct, there is no such fixed, consistent core.

The route to pluralism, then, begins with the view that each of the various
answers to the question “What makes it logic?” has a plausible claim to being
central to our understanding of logic. In the ordinary run of business to which we
turn our logical concepts, the various answers are related closely enough that they
seem merely alternative ways of phrasing the same answer—one needn’t draw these
distinctions in a critical thinking class aimed at large groups of undergraduates with
little interest in going further in philosophy, for instance. But that impression is mis-
taken, at least if there is substance to the critiques of classical logic described in the
previous section. Focus on different aspects of our ordinary concept of logic leads
us to different, i.e., disagreeing systems; that is, different answers to the question
“What makes it logic?” yield different answers to the question “Which principles
are logical?” This implies pluralism, provided each of the answers to the question
has a legitimate claim to being part of the ordinary concept of logic.

I think there is a further bonus that comes with this version of pluralism. An
advocate of this sort of pluralism can acknowledge the importance of Beall and

5 But not all. See (Read, 2006) for an emphatic example.
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Restall’s examples of how different logical systems are useful for different purposes.
But they can do one better; rather than merely offering this as reason for allowing
that all the various systems should count as logic, a pluralist of the suggested sort
can use their status as different sorts of logic to explain the variety of uses. For one
can expect that at least very often there will be a conceptual link between the job to
be done and a particular answer to the question “What makes it logic?”

For instance, the value of, and need for, relevance logic is easily made clear to stu-
dents by noting that we regularly reason successfully in the presence of inconsistent
information without drawing disastrously unrelated conclusions, and that reasoning
in the presence of inconsistency is unavoidable as is made clear by attention to the
history of law or scientific theorizing. But if logic is “the science of correct infer-
ence,” then attention to the practice of inference, and so to the relations between
premises and conclusions that warrant inference, can be expected to include con-
straints of relevance. On the other hand, if the job at hand is metaphysics then logic
must encode only principles that are free of metaphysical baggage. If Dummett is
right, then avoiding explosion is no longer required but we must turn a jaundiced
eye towards the law of excluded middle.

8 Conclusion

I do not pretend that this is an air-tight argument for pluralism. However, I think that
pluralism is a more viable view than it is sometimes given credit for being. Beall
and Restall have provided us with a stimulating and helpful book-length defence of
logical pluralism, but one that ultimately defends a disappointingly thin sort of plu-
ralism, as I hope to have successfully indicated. I hope to have described a route to
a more robust sort of pluralism that is both plausible and worth defending. Whether
it is ultimately defensible is, of course, a different and more difficult matter.6
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and Humanities Research Council of Canada is gratefully acknowledged. The best thing about the
paper is surely the title, so I am sorry to have to confess that I owe it to my hilarious colleague
Kenyon.
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Part II
Truth, Consistency and Paradox



Chapter 6
Truth and the Liar

Colin Howson

“Now, where were we? Read me back that last line”.
“‘Read me back that last line,’ ” read back the corporal who
could take shorthand.

Joseph Heller, Catch 22

1 Introduction

Frege famously claimed that logic is the science of truth: “To discover truths is
the task of all science; it falls to logic to discern the laws of truth” (Frege, 1956,
p. 289). But just like the other foundational concept of set, truth at that time was
intimately associated with paradox; in the case of truth, the Liar paradox. The set-
theoretical paradoxes had their teeth drawn by being recognised as reductio proofs
of assumptions that had seemed too obvious to warrant stating explicitly, but were
now seen to be substantive, and more importantly inconsistent. Tarski includes the
Liar paradox in his classic discussion of the concept of truth (Tarski, 1956), and
developed it, in the form of his famous theorem on the undefinability of truth, as
a reductio of the assumption that a language could be semantically closed, in the
sense of being able to contain its own truth-predicate.

This technical result seemed just one more way of seeing a paradox as a source
of useful information, just as the set-theoretical paradoxes were used as implicit
reminders that sets could not be too extensive in their membership.1 It inspired the
view, which became the orthodoxy until well into the second half of the twentieth
century, that a natural language like English could consistently discuss the truth and
falsity of any sentence in it only by implicitly assigning it a lower level in an object-
language, metalanguage, meta-metalanguage etc. hierarchy. But there was much that
was unattractive about this idea, and gradually challenges to it began to appear. One
of the most influential, because it used standard model-theoretic techniques in a
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way that made possible a consistent denial of the conclusion of Tarski’s Theorem,
was published almost simultaneously in (Martin and Woodruff, 1975; Kripke,
1975). The way in question was that of a type of three-valued logic, originally
invented for a quite different purpose by Kleene.

Though Kripke’s and Martin and Woodruff’s papers contained a broadly similar
technical result, the latters’ was little more than a very brief statement and proof of
it, while Kripke presented it as a part of a systematic philosophical theory of truth.
It begins with a powerful critique of the orthodox, so-called Tarskian theory, and
develops a convincing diagnosis of the causes of the Liar paradox and a theory of
truth intended to capture a central idea, that of grounded truth-ascriptions, which
can be seen as a plausible and precise way of demarcating genuine propositions
from spurious ones. Because it is an outstanding paper philosophically as well as
mathematically, his paper captured the philosophical imagination as few other tech-
nical advances in logic have.2 As Sheard observes in the introduction to his survey
of modern truth-theories:

The start of the recent era in the study of self-referential truth is easily dated. Kripke’s “An
outline of a theory of truth,” appearing in 1975, is almost universally cited as the spark for
the explosion of interest in the subject. Certainly no major intellectual advance ever arises
in a vacuum, and any suggestion that the subject of self-referential truth had lain completely
dormant prior to Kripke’s paper would be both inaccurate and unfair. Nonetheless, we need
only look at how frequently Kripke’s paper is cited in prefatory remarks in the literature, and
especially how many times it is cited at a personal level as having reawakened an interest in
the subject, to recognize the catalytic role of that essay in the recent wave of research and
discussion. (Sheard, 1994, p. 1032)

But appearing in that wave of research and discussion were also some strong
reservations about what Kripke’s theory achieved, and what in principle any such
theory can achieve. Perhaps surprisingly, the source of most of these reservations
was an objection due to Kripke himself. The problem he identified is a variant of
the so-called Strengthened Liar paradox. In Kripke’s theory the Liar sentence is not
true or false: this is how the theory escapes the conclusion, valid in bivalent logic,
that no language can contain its own truth-predicate. But it would seem to follow
that the Liar sentence is not true. Since this is just what the Liar sentence asserts
it must be true according to that basic, and surely correct, principle known in the
literature as Tarski’s Convention (T). The paradox can be dissolved by noting that
two distinct truth-predicates are involved in it, but one of them, the one appealed
to in concluding that the Liar sentence is not true, is a totally-defined predicate and
cannot be defined in the supposedly semantically closed language within which the
other lives. But the solution shows that even the three-valued approach apparently
cannot dispense with the need for a classical metalanguage. This seems to have been
Kripke’s own conclusion, expressed in the much-quoted remark that “the ghost of
the Tarski hierarchy is still with us,” and it is the conclusion drawn by nearly every
commentator since then.

2 Gödel should probably remain pre-eminent in this respect.



6 Truth and the Liar 117

I think that it is a wrong conclusion. There is certainly a problem, but it is not
spectral in nature. In fact, it is almost a familiar problem, that of justifying the use
of a classical theory to interpret a non-classical one, and famously experienced by
no less a thinker than Niels Bohr. His solution was to appeal to a principle he called
a complementarity principle, and I believe that something like that principle can
be invoked here. If any ghost arises from the corpse of the Strengthened Liar, it is
Bohr’s.

The discussion of Kripke’s work brings into relief an important but not-often
highlighted role played by the rather artificially structured formal languages of mod-
ern logic. By contrast with these, natural language has no precisely defined notion of
“well-formed sentence,” and it has an intensional, theory-interpreted semantics far
from the theory-neutral referential semantics of modern formal logic. This contrast
in syntax and semantics presents an obvious problem for anyone wishing to see
in these formalised systems a sort of idealisation of, or approximation to, natural
language, and hence might be thought to place in doubt the capacity of logical
research to say much if anything useful about natural-language representations and
reasoning. This would certainly be the wrong conclusion, if for no other reason than
that these systems can, and in the present context do, play a quite different but never-
theless extremely informative role: that of precisely articulated experiments, testing
out claims about what is and is not possible with respect to the functions a language3

can discharge subject to suitably imposed constraints. For example, it was at one
time widely held that self-referential statements are necessarily meaningless, a view
which as Kripke pointed out was definitively refuted by Gödel’s celebrated paper
containing his two incompleteness theorems, theorems which themselves ended
centuries of uncertainty about the capacity of deductive theories to capture truths
about their fields of enquiry, and about their own consistency. A simple formal
language is used to prove that any language capable of self-reference cannot also
contain its own truth-predicate; and the same simple formal language was later used
to show that this is not true. The Strengthened Liar, bent on revenge, would be
difficult if not impossible to analyse correctly without the help of elementary model
theory, as we shall see.

2 The Liar Paradox

Let us start where Kripke started, with the Liar paradox. At its simplest, this pro-
ceeds as follows. Consider the sentence

1. (1) is false.

Suppose also we require that the following constraint (Convention (T)) must be
satisfied by any adequate notion of truth:

3 I am taking “language” here to mean not only a set of descriptive items and rules for their correct
combination, but possibly also an associated deductive system.
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(T) B is true iff d(B), for every B; d(B) is the denotation (e.g. disquotation where
“B” names B by quoting it) of B.

(1) and (T) are clearly inconsistent, reading “false” as “not true,” because we infer
that (1) is true iff (1) is not true.

One might perhaps be forgiven for thinking that something formally a bit dubious
is going on here, particularly in the self-referential nature of (1) which on the face
of it looks like an equation whose solution is assumed rather than demonstrated,
and where it is far from clear that it has a solution at all (in the domain of mean-
ingful sentences). In fact, this is just one of the questions easily settled with the
help of the apparatus of modern formal logic, with the answer that there is certainly
a solution in the class of syntactically well-formed sentences4: indeed, this can be
shown in more than one way. One, the method of (Martin and Woodruff, 1975), is
direct and actually just mirrors the simple construction used above. This involves
a many-sorted first order language L whose interpretation v is a valuation function
over a sequence of sortal domains, one of which can contain the formulas of L .
Assume that L contains a monadic predicate T r . If the interpretation of T r is fixed
by the condition (in effect Convention (T)) that where t is a term whose value v(t)
is a sentence S such that T r(t) and S take the same truth-value under v, then v

is said by Martin and Woodruff to represent truth in L . Now suppose v assigns
the constant a the sentence S = “¬T r(a)”. Clearly, reading “false” as “not true”
we have in the identity v(a) = “¬T r(a)”, an exact formal analogue of the infor-
mal d(A) = “A is false” above, removing fears that there is anything in principle
ill-formed about the latter. And, just as above, we infer that v(¬T r(a)) = t iff
v(T r(a)) = t (for Martin and Woodruff this is not a paradox, however, as we shall
see later).

A more oblique way of achieving self-reference is of course due to Gödel,
famously exploited in his incompleteness theorems (Bell and Machover, 1977,
Ch. 7). Here L is some language in which the predicates and functions of elemen-
tary arithmetic are definable. The syntax of L can be encoded in a single domain
of an ordinary first order language, with the sentences of L defined in that domain
(relative to a particular Gödel numbering) by a formula SentL(x) of L . SentL is
a primitive recursive predicate, and theories much weaker than Peano arithmetic
(PA) are well-known to be capable of representing all the recursive functions and
predicates, and hence this one. PA itself is often taken as the base-theory, which
therefore functions as both object-theory and syntax-theory for L . The diagonal
function is also primitive recursive and hence representable in PA, and a celebrated
consequence, sometimes referred to as Gödel’s fixed-point lemma, is that for any

4 Whether these are the same as the meaningful sentences is difficult to answer without a precise
definition of “meaning,” though their status as ungrounded in Kripke’s theory is a plausible reason
for thinking that they are not.
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arithmetical predicate F(x) there is a sentence A of L such that A ↔ F[A]5 is
provable in PA and hence true in the standard model N .6 To avoid a terminological
conflict with another and quite different type of fixed point result discussed later, I
will follow McGee and call this the self-referential lemma (McGee, 1990, p. 111).

The capacity of L for self-reference can now be combined with the Liar reasoning
to produce a celebrated result, called Tarski’s Theorem after its eponymous author.
Suppose that some formula of L , call it T (x), represents truth in L , i.e. its extension
consists of the code numbers of sentences true in N . By the self-referential lemma
there is a fixed point in L of ¬T (x), i.e. a formula λ such that l ↔ ¬T [λ] is
true in N . But since T (x) represents truth in L the sentence T [λ] ↔ λ must be
true in N , which is impossible. Thus whatever the method used for achieving self-
reference in a language, any attempt to combine it with a representation of its truth-
predicate would seem to be impossible. This result was paraphrased informally by
Tarski as the statement that no language which permits self-reference is semantically
closed. He pointed out that an “essentially richer” language than L is needed to
define truth for L (this language is usually called the metalanguage for L). A natural
language like English attempts to force semantic closure by adopting Convention
(T) as an unrestricted axiom schema, and thereby merely generates the Liar paradox
as a deductive consequence.

These observations suggested to many (though not actually Tarski himself) a
solution of the Liar paradox in terms of a linguistic hierarchy, with the metalanguage
containing the truth-definition for some object language, and also all the sentences
of that language, or suitable translations of them. That the suggestion works as it
should is seen by modelling it using a simple formal language like L above and
appropriate expansions of it. To this end add a new monadic predicate T r to L to
obtain L(T r). T r represents truth in L , which implies, as we saw above, that all
instances, i.e. with sentences A of L , of A ↔ T r [A] are true in the expansion
of the standard model N of L to (N , TN ), where TN is the set of Gödel num-
bers of all sentences of L true in N . To the axioms of PA also add all instances
of A ↔ T r [A], for sentences A of L , as new “analytic” axioms, together with
∀x(T r(x) → SentL(x)) (but do not allow any formula containing “T r” into the
induction schema). The strategy has some nice consequences. First, it is easy to
see that the Liar paradox cannot be reproduced, since although there is a λ such
that ¬T r [λ] ↔ l is a theorem of PA, by the self-referential lemma, T r [λ] ↔ λ

is not among the new axioms: inspection of the proof of the lemma shows that λ
will contain an occurrence of T r (but note that, since SentL [λ] is provable so are
¬T r [λ] and λ, both of which are therefore true in (N , TN )). In fact, this primitive
truth-theory, call it PA+, is demonstrably (relatively) consistent: it is easily shown to

5 F[A] is the formula F(t) where t is the numeral for the Gödel number A# of A. This notation,
used by Reinhardt (1986), is simpler than the usual curved bracket-and-corner one. I will use it to
denote any acceptable way of referring to object-language sentences within that language.
6 If, as is usually assumed, the metatheory is standard set theory, the existence of N or a structure
isomorphic to it is of course provable.
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be a conservative extension of PA.7 Secondly, each provable arithmetical statement
clearly becomes provably true, though it quickly follows from conservativeness that
the reflection principle stating that all theorems of the PA are true is not a theorem of
PA+, assuming PA itself is consistent (these points are made variously in (Halbach,
2000; Ketland, 1999)).8

Nevertheless, though demonstrably consistent relative to PA, the result, as a
model of informal reasoning about truth, is still badly incomplete. PA+ is bound
to be incomplete in the technical sense, since the true arithmetical sentences are
not recursively enumerable. But the weakness descends to more mundane levels.
In particular, the requirement that as much as possible of informal valid reasoning
should be modelled demands that for any statement which we can informally prove
true we should be able to show that it is true formally, and as things stand we clearly
cannot. This deficit is, however, easily remedied: renaming T r as T r1, TN as T0,
L as L0 and L(T r1) as L1, all we need do to achieve this is repeat the procedure
by which we expanded L0 and add a new predicate symbol T r2 to obtain a new
language L2, and a corresponding version of Convention (T) restricted to sentences
of L1. And so on. Continuing in this way through the natural numbers an infinite
hierarchy of metalanguages and metatheories is generated, each with its associated
T r -predicate and (T)-schema. The T rn can be continued to a transfinite progression
for the ordinals α using a suitable representation of ordinals by code numbers, such
that T rα can be coded by a natural number in such a way that it is decidable whether
a given number codes an index and, for each pair of index-codes, which codes the
greater index. These desiderata can be achieved using Kleene’s system of ordinal
notations, generating a transfinite hierarchy of languages Lα for countable ordinals
α less than the smallest non-recursive ordinal, i.e., the smallest ordinal which does
not define a recursive well-ordering of natural numbers (Halbach, 1997, pp. 70–71).

Like many theories which appear to do a job which no other seems capable of, the
inadequacies of this one tended to get overlooked until shown up in sharp contrast
by a plausible competitor. Here is a familiar list of deleterious features:

1. All the ordinally indexed truth-predicates in the hierarchy are, we naturally want
to say, instances of some underlying truth concept; otherwise, why call them
truth-predicates? Yet we are precluded from saying this in any precise way with-
out resurrecting the Liar paradox.

2. Natural languages do not have such a layered structure, and so the modelling
requirement seems rather obviously violated. The usual response to this is, as we
know, that a single global truth-predicate is not a feature that any model should
seek to reflect since it is demonstrably pathological: in pretending to semantic

7 Expand any model M of Peano arithmetic to a model (M, TM ) of PA+. Suppose B is an L-
sentence provable in PA+. Then B is true in all (M, TM ) and so is true in all M . By first-order
Completeness, B is a theorem of PA.
8 It is provable within the truth-theory obtained by adding the clauses of a standard truth-definition,
where the clause for the universal quantifier says that a universally quantified sentence is true iff
all its instances are, and extending the induction axioms to include formulas of L(T r) (Feferman,
1991, p. 14). This theory is not a conservative extension of Peano arithmetic, however.
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closure natural languages, or their associated truth-theory characterised by an
unrestricted Convention (T), are inconsistent.

3. Nevertheless, counterintuitive consequences flow from trying to regiment
informal reasoning to accommodate a hierarchy of truth-predicates. Consider
Kripke’s well-known imaginary Nixon-Dean exchange (concerning the Water-
gate scandal of 1974; Dean was a White House aide and Nixon was of course
US President):

Dean: “All of Nixon’s utterances about Watergate are false.”
Nixon: “All of Dean’s utterances about Watergate are false.”

According to the levels-of-language account, the predicate “false” here must be
understood as falseα for some α. But clearly neither Nixon nor Dean can succeed
in including the other’s claim in the scope of his own at whatever level it may be.
But intuitively this is wrong: both can be in each other’s scope and indeed have
well-defined truth-values. Suppose Dean had said “Watergate = Watergate.” Then
Nixon’s claim is false. Suppose also all Nixon’s other statements about Watergate
are false. Then Dean’s statement is true. There is an intuitive sense in which there
are genuine truth-values for both statements grounded in the truth-values of the
nonsemantical, object-level assertions each made about Watergate.

4. The Liar sentence at any level α is, as we saw, provably true at that level. A
similar argument to that above shows that the Truth-Teller at level α, i.e. the
sentence which is a fixed point of the predicate T rα , is provably false. But neither
it nor the Liar sentence intuitively make any determinate utterance at all, and to
that extent ascribing truth-values to them that in some reasonable sense depend
on the “real” (i.e., non-semantic) level-0 facts should be out of the question.
Yet they both get one, with that assigned the Truth-Teller especially absurd. In
the light of these observations, why give them truth-values which in no genuine
sense of “true” do they seem to merit?

The answer is of course that they are bound to have truth-values if the truth-
predicate is total, i.e. everywhere defined, and the bizarre values themselves merely
reflect this distorting assumption. In that case, it might reasonably be asked, why
assume it? Why indeed?—For it turns out that if we give it up, the apparently very
deep implication of Tarski’s Theorem, which has inspired in some a sort of logi-
cal mysticism according to which truth is a necessarily transcendent notion, is to
others no more than a consequence of a gratuitous assumption. That truth is a total
predicate is an assumption of Tarski’s Theorem, and—logically speaking—equally
a target for the reductio as that truth is definable in the object-language. To see this,
assume there is a predicate T r in some L capable of discussing its own syntax which
under some interpretation of L represents the truth-predicate for L with respect to
that interpretation; i.e. we have Convention (T) in the form

[[A]] = [[T r [A]]]



122 C. Howson

where the double brackets signify truth value. Assume also there is a fixed point λ
for ¬T r(x) such that

[[l]] = [[¬T r [λ]]]

We immediately infer that [[T r [λ]]] = [[¬T r [λ]]]. If the values are t and f subject
to the usual valuation rules this is of course impossible. But it becomes entirely con-
sistent if [[λ]], [[¬T r [λ]]] and [[T r [λ]]] are undefined. So why not direct the modus
tollens of the Liar reasoning to the assumption that truth is a total predicate?

Since bivalence itself is a modelling assumption certainly not uniformly well-
fitted to informal reasoning, engendering as it does the Sorites and other paradoxes,
one might think it surprising that the truth-value-gap approach was not adopted
from the outset. Evading the Liar paradox by declaring λ neither true nor false
was in fact an old suggestion but, as Kripke pointed out (Kripke, 1975, p. 62),
it had not previously been accompanied by any developed semantic theory (and
by this is meant a theory in which the formal languages become evaluated fairly
classically in set-theoretical structures) in which the gaps are systematically derived
rather than imposed ad hoc as the occasion of paradox-avoidance demands. Martin
and Woodruff, and independently Kripke, remedied the deficit in broadly similar
ways, both using standard model-theoretic techniques combined with three-valued
valuational schemes proposed originally by Kleene (1952, pp. 332–336)9; Martin
and Woodruff used the weak three-valued tables and Kripke the strong. The weak
scheme is so-called because if any argument in a compound function is undefined so
is the function at that argument. The strong scheme is characterised by the following
tables for ¬ and &: ¬t = f , ¬ f = t , ¬u = u; & is the same as ordinary conjunc-
tion on values in {t, f }, is always symmetric, and & (u, t) = u, & (u, f ) = f ,
and & (u, u) = u. ∨ and → are defined in the usual way from ¬ and &. In both
schemes the quantifiers are interpreted conjunctively (universal) and disjunctively
(existential), where all instances are assumed to be nameable in the domain of the
base-model. Both have another property which is central to Kripke’s (and Martin
and Woodruff’s) construction, as we shall see shortly. An n-ary partial predicate P
is one which may be undefined for certain arguments by a valuation v; i.e. v may
assign some n-tuples of domain elements the value u. Kripke calls the set of n-tuples
d in the domain D of an interpretation to which v(P) assigns t the extension of P
in an interpretation v, and the set of n-tuples v(P) assigns f the antiextension of
P in v. Suppose M and M ′ are two ordinary classical model-structures expanded
to include respectively the partial predicates P and P ′, with extension/antiextension
pairs (PD, Q D) and (P ′

D, Q′
D). Let M � M ′ signify that PD ⊆ P ′

D and Q D ⊆ Q′
D .

In what follows the extension/antiextension pair interpreting P in a structure will be
called the partial interpretation of P in that structure.

9 Calling the Kleene rules “three-valued” is misleading: as Kripke emphasised, u is not itself a
third truth-value: on the contrary, it signifies the lack of a truth-value. Nobody presumably thinks
that ∞ is a member of the domain of the variables when seeing “x/0 = ∞”; it is just a shorthand
for saying that x/0 is undefined.
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We shall just be concerned with one partial predicate T r , interpreted as (partial)
truth. Both Kripke and Martin and Woodruff showed how to construct a partial
interpretation (T, F) of T r in which truth for the language containing T r is rep-
resented in the language, in Martin and Woodruff’s terminology: Kripke used the
general theory of induction on abstract structures due to Moschovakis to exhibit a
minimal fixed point in a sequence of expansions of an initial partial structure, and
Martin and Woodruff used Zorn’s lemma to exhibit a maximal one. At this point
Martin and Woodruff stopped, having carried out their objective of showing how
ordinary model-theoretic techniques, combined with a three valued logic, allow truth
to be represented within a semantically closed language. It was Kripke who carried
the discussion further, in a way that stimulated a general philosophical interest, by
showing that the minimal model had important properties that among others quali-
fied it to be a theory of truth grounded in non-semantic facts. This also seemed to be
what the orthodox account based on linguistic stratification also provided, but as we
saw only rather spuriously, and at great cost in terms of being able to express what
seem informally valid inferences involving truth.

These remarks indicate how big a role informal methodological criteria play even
in such an abstract discipline as logic. But that is because this sort of logic has
explanatory objectives. That granted, criteria of what is to count as a good expla-
nation start mattering, and foremost among them are the extent to which something
ill-explained by one theory is satisfactorily explained in a non-ad hoc way by a
rival, and the extent to which a good theory takes over what is already regarded as
meritorious in the existing one. According to these criteria, as Kripke pointed out,
his theory scores very well, at least up to a point. The point is however universally
regarded at least as a very serious one, but before examining it a brief resumé of
Kripke’s theory will be useful. Since the details of his construction are well-known
I shall present just the features that will matter to the subsequent discussion.

Assume that L is a language whose intended interpretation contains the natural
numbers, or some structure isomorphic to them, and can code its own syntax by a
Gödel numbering or some other coding function: it should be an acceptable structure
in the sense of Moschovakis (L might be the language of elementary arithmetic, or
even ZFC). Let L be L plus a monadic predicate T r , where in any partial inter-
pretation T and F are disjoint sets of code numbers of sentences. Thus if A is a
sentence of L then [[T r [A]]] = t in (T, F) if A# ∈ T and [[T r [A]]] = f in (T, F)
if ¬A# ∈ T . The heart of Kripke’s construction is the so-called Kripke jump: for
any partial interpretation (T, F) this is a function g from partial interpretations to
partial interpretations such that g(T, F) = ({A#|[[A]] = t in (T, F)}, {A#|[[¬A]] =
t in (T, F)}),10 where the valuation scheme is the strong Kleene one.11 The follow-
ing result is fundamental:

Theorem 1 g is monotonic with respect to �; that is, if (T, F) � (T ′, F ′) then
g(T, F) � g(T ′, F ′).

10 Kripke includes numbers of non-sentences in F .
11 This is not essential to the construction, as we shall see.
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The consequent states that the set of sentences assigned a determinate value by
M ′ extends the set of sentences assigned a determinate value by M , i.e. for all
sentences A of L, if [[]]M = t[ f ], then [[A]]′M = t[ f ]. The theorem is proved
by induction on the degree of A, assuming as before that all elements of the base
model have names in L (e.g., numerals).

The next step is to define an ordinally indexed sequence (T, F)α , by let-
ting (T, F)0 = (T, F) and (T, F)α+1 = g((T, F)α), with limits defined in
the usual way. Let (Ta, Fa) = (T, F)a . Using the monotonicity of g, a proof
by induction shows that for all α, (Tα, Fα) � (Tα+1, Fα+1), i.e. (Tα, Fα) �
g(Tα, Fα). Cardinality considerations dictate that at some (countable limit) ordi-
nal σ 12 there is a fixed point, i.e. (Tσ , Fσ ) = (Tκ , Fκ) for all κ 	 σ . Hence
Tσ+1 = {A#|A is true in (Tσ , Fσ )} = {A#|A is true in (Tσ+1, Fσ+1)}; i.e. (Tσ , Fσ )
and (Tσ+1, Fσ+1) make exactly the same sentences of L true. Similarly for “false.”
It follows that [[T r [A]]] = [[A]] in (Tσ , Fσ ) for every sentence A of L, since A is
true in (Tσ , Fσ ) iff A# is in Tσ iff T r [A] is true in (Tσ+1, Fσ+1) iff T r [A] is true in
(Tσ , Fσ ); repeat for “A is false”. Hence the formula T r(x) represents truth in L, in
Martin and Woodruff’s terminology, and so L is semantically closed.

Note that the existence of fixed points depends on the monotonicity of the jump
operation, and the monotonicity of the jump operation depends only on the valua-
tion scheme. The Kleene weak and strong tables are not alone in being monotonic:
as Kripke noted, so are many others, including supervaluations. Two familiar non-
monotonic schemes are the classical bivalent one and—which will be relevant to the
later discussion—the one resulting from adjoining so-called exclusion negation ∼
to either of the Kleene schemes, which sends t[ f ] to f [t] and u to t . If we try the
ordinal construction that generated the fixed point for the strong (or weak) Kleene
schemes we find that, where λ′ is the fixed point of the total predicate ∼ T r(x),
λ′ oscillates between t and f at successive stages. Indeed, it is easily shown to be
essential for monotonicity that ¬u = u. The combination of bivalent semantics
with an inductive construction resembling Kripke’s is of course the central feature
of so-called Naive Semantics (Martin, 1984a, c).

Finally, let T = ∅ and F = ∅. Mσ = (∅,∅)σ is the least fixed point relative to
the � ordering: for every fixed point c in the set C of fixed points, (∅,∅)α � c (the
proof is by induction on α; the basis is trivial because every partial model extends
(∅,∅)). It is easy to see that λ# is not in the extension or anti-extension of T r in
Mσ , or in any fixed point: it always takes the value u (such sentences are called
“paradoxical” by Kripke, as opposed to others which while undefined in Mσ have
definite truth-values in other fixed points). So what the Tarski-hierarchy solution
of the Liar paradox accomplishes by its typed truth-predicates—consistency in the
evaluation of λ—is accomplished here in a single non-stratified language containing
its own truth-predicate, and one moreover in terms of which, as Kripke showed, all
those of the Tarski hierarchy are definable: all the languages in the Tarski hierarchy
are sublanguages of L and all the associated predicates T rα are definable in Mσ , in

12 σ is not less than the smallest non-recursive ordinal; if the base model is N then σ is that ordinal.
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the following way. Let A1(x) be the formula of L defining the syntactic predicate
“x is the code number of a sentence of L .” Let T1(x) be the formula T r(x)& A1(x)
of L. Now let A2(x) define the code numbers of all formulas from the language
whose atomic formulas are those of L together with the formulas T1(x), for all
variables x , and closed under truth-functions and quantification. T2(x) is defined by
the formula T r(x)& A2(x), and so on through the natural numbers. Let Ln+1 be
the language obtained by adding Tn+1 to Ln , where L0 = L . Induction on n proves
that each of the Tn(x) is a total predicate and that the extension of Tn+1(x) is the set
of code numbers of all true sentences of Ln . ((Kripke, 1975, p. 75); this procedure
can be continued into the transfinite so that all the T rα in the Tarskian hierarchy
eventually become defined (Halbach, 1997)). Both the Tarskian and Mσ also assign
ordinal levels at which sentences become determinately true or false, though in Mσ

there is of course no type-subscript to indicate this: for any sentence A the level
of A in Mσ is the ordinal α at which A first acquires a determinate value ((Hal-
bach, 1997, p. 74), shows how the Tarskian and Kripkean levels are systematically
related).

3 Groundedness

Let μ be the fixed point of T r(x) (μ is the so-called Truth-Teller). There are fixed
points in which μ is true, and there are fixed points in which it is false. But none
of this, as it stands, seems to explain why we intuitively feel that neither the Liar
nor the Truth-Teller expresses a genuine proposition, but merely a grammatically
well-formed pseudo-proposition. One, and possibly the main, reason why Kripke’s
theory attracted so much philosophical attention is because it does, or did, seem
to explain why: these statements are ungrounded in the “real facts” holding in the
base structure. For this reason Mσ is of central importance for the interpretation
of Kripke’s theory. The significance of starting with both T and F empty is that
Mσ is simply the inductive closure under the jump operation of the empty inter-
pretation of T r under the jump operation: the only determinate values enter the
hierarchy at the ground level of sentences of L , the values of all other sentences
being determined at each stage in the inductive process by the valuation rules. Thus
these truth values are grounded, in a formally precise sense, in the non-semantical
properties of the base structure. Kripke himself actually cited this formal explica-
tion of the informal concept of “grounded” as the principal virtue of his theory
(Kripke, 1975, p. 57).

The fact that the base-model determines all truth-values in Mσ in this way is a
powerful argument for regarding Mσ among all fixed points as the authentic inter-
pretation of the predicate T r . Not only does this solve the problem of multiple fixed
points when the concern is to model a unitary notion of truth, but it does so in a nat-
ural, indeed compelling way: it makes groundedness a part of the meaning of truth,
which is as it should be if we believe that it is truth in the basic, non-semantic model
which should determine the truth or falsity of all sentences in which T r occurs, and
it also provides a natural solution to the problem stated above. For neither the Liar
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sentence nor the Truth-Teller are grounded, even though there are fixed points which
the latter is true.

Note that groundedness cannot just mean “having a determinate value in the
least fixed point,” since what is in the least fixed point will depend on the valuation
scheme adopted, assuming it is monotonic. Groundedness means, or should mean,
that those determinate values themselves are determined by what is true or false in
L about N . This consideration implies that the rules, besides being monotonic, must
also obey the compositionality principle: the values of truth-functional compounds
depend on the values of their components and the values of quantified sentences
depend on the values of their instances in the model (another way of putting it is
to say that the truth-values of the compounds are reductive). The Kleene weak and
strong rules have this property, but supervaluations, though also monotonic, do not:
the classical tautology λ∨¬λ in L is always true in any supervaluational fixed point
though neither λ nor ¬λ is. Thus by this argument, which seems a reasonable one,
supervaluations seem to be ruled out as determiners of authentic, i.e. grounded truth.

This still leaves the question of how to choose between monotonic rules which
are reductive. As far as the rules for the standard connectives and quantifiers are
concerned the choice, assuming some semblance of their ordinary meaning is to be
retained, is essentially between the weak and strong rules. The strong rules are the
nearest, in a well-defined sense (called, in (Kleene, 1952, p. 335),“regularity”), to
the classical valuation scheme, a fact exemplified in Kripke’s Nixon-Dean exchange
above: their respective statements are grounded, true or false, according to the strong
rules but not the weak, in accord with our intuitions given the factual assumptions.
Kripke voiced doubts, surely well-founded, about whether there is a fact of the mat-
ter about which monotonic valuation scheme is “really” correct, but states that this
is not his main concern [p. 77]. However, he also uses the Nixon-Dean exchange to
argue that a satisfactory formal theory should prove the groundedness of the pro-
tagonists’ statements, and as we see that does, given the other constraints, seem to
point to the strong Kleene rules.

In Maudlin’s very interesting approach (Maudlin, 2004), also a three-valued one
involving appeal to the smallest fixed point, “is true” is explicitly a logical operator
with its own semantic clause, that the truth value of T r [A] is the same as that of A
(so Convention (T) gets embodied in the semantic rules of language).13 Grounded
sentences according to this theory are sentences whose truth-value proceeds as in a
directed acyclic graph along paths determined by the valuation rules from bound-
ary sentences assigned a value exogenously. Suppose the formal language is like
Martin and Woodruff’s, in which constants can denote sentences, and suppose b
denotes “T r(b).” Then the truth-value of T r(b) is determined by that of the sentence
denoted by b, which is T r(b); i.e. we are in a semantic cycle, and T r(b) is intrinsi-
cally ungrounded. Similarly, the truth-value of T r(a) where a denotes “¬T r(a)” is

13 In effect this principle is tacitly adopted in nearly all the discussions of truth, since Convention
(T) is always imposed, in an appropriate way, as the sole constraint on the extension of the truth-
predicate.
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determined by that of ¬T r(a). These sentences, independently of whether they are
paradoxical in the classical sense, are ungrounded, according to Maudlin, because
their semantic determination involves such cycles [p. 40].

Although the structure of the class of truth-determinate sentences is extensionally
the same as given by the Kripke least fixed point, Maudlin claims that his account is
conceptually distinct from Kripke’s since it is not mere membership in a fixed point
that signifies groundedness, but the intrinsic topological character of its semantic
structure. It follows that for him u is a genuine semantical value additional to t
and f , signifying “ungrounded” in his absolute sense, whereas for Kripke it merely
means “undefined,” a notion entirely relative to the fixed point in question: “the
‘undefined’ sentences are merely those left over without truth-values once a fixed
point has been chosen” (Maudlin, 2004, p. 57). So, for example, the Truth-Teller
necessarily has the value u for Maudlin, but depending on the fixed point chosen, it
may have any one of the three values u, t or f in Kripke’s theory.

But the difference between the two approaches reduces to little more than a verbal
difference once the least fixed point is chosen to be the authentic truth-determiner,
for the truth-values in Mσ are, as we saw, determined by the closure conditions in
essentially the same way as they are in Maudlin’s theory: the ungrounded sentences
for both are those where truth fails to be determined by the structure of the ground
model M . The cycle in the evaluation of the Truth-Teller manifests itself as a con-
tradiction arising from the assumption that the sentence is first declared true or false
at some ordinal level. Thus the Truth-Teller is as determinately ungrounded, so to
speak, as it is in Maudlin’s account. Of greater moment is the threat common to both
accounts posed by a development known as the Strengthened Liar. It is not so much
that this fortified individual poses some new paradox analogous to the Liar, but that
its solution seems to reveal a violence to informal reasoning in the fixed-point theory
of truth that is, if anything, worse than anything the Tarskian theory is guilty of.

4 The Strengthened Liar

We have seen that Convention (T) survives in the form

[[T r [A]]] = [[A]]

for every sentence A of L in any fixed point. The self-referential lemma also sur-
vives, as the statement that for any formula H(x) of L there is a sentence C such
that [[C]] = [[H [C]]], holds for fixed points (McGee, 1990, p. 111). It follows that

[[T r [λ]]] = [[λ]] = [[¬T r [λ]]] = u (∗)

in every fixed point.
These facts about fixed points quickly dissolve the alleged paradox of the

Strengthened Liar, which, following (Burge, 1984, p. 87), proceeds thus:
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1. λ in the three-valued system is neither true nor false.
2. Hence λ is not true.
3. But λ says that it is not true.
4. Hence λ is true.

Contradiction.

Burge charges truth-value-gap theorists, including Kripke, with recognising the
problem but having “little illuminating to say about it” [p. 88]. But one thing that is
surely illuminating to say is that there is technically no paradox here at all. Repre-
senting the reasoning formally shows up the fallacy clearly:

1. [[λ]] �= t, f
2. ∴ [[λ]] �= t
3. ∴ [[T r [λ]]] �= t by (∗)

∴ [[T r [λ]]] = t
4. ∴ [[λ]] = t by (∗)

Contradiction.

The unnumbered step is implicit in the informal derivation, but it is incorrect since
[[T r [λ]]] = [[¬T r [λ]]] = u.

Feferman, noting the formal fallacy, remarks that nevertheless consideration of the Extended
Liar does leave one with a further bit of malaise about truth-gap approaches, since the formal
model-theoretic constructions don’t match up with informal usage. (Feferman, 1982, p. 266)

What lies behind Feferman’s reservation seems to be something like the following
argument:

(i) If Mσ gives the correct interpretation of truth for L, then ¬T r [λ] should be
true, because λ is not true.

(ii) But ¬T r [λ] is not true in Mσ .
(iii) Therefore Mσ does not give the correct interpretation of truth for L.

Adjoining the exclusion-negation operator ∼ to L, apparently authorising the pas-
sage from [[T r [λ]]] = u to [[∼ T r [λ]]] = t , will not help, since as we saw earlier
adjoining ∼ allows the construction of a ∼-Liar sentence and thereby destroys the
monotonicity of the valuation scheme. Indeed, even the property that the truth-value
of a sentence is u is not one definable in L, for exclusion negation would then be
definable in L as “A is false or A has the value u.” This three-valued theory avoids
the Liar and Strengthened Liar by making λ and T r [λ] into singularities, but the
problem is that they are rather like black-hole singularities in swallowing all relevant
information (i.e. about their truth-values) with them. The levels-of-language theory
was criticised for failing to allow intuitively valid reasoning to be reproduced in it;
now the same or worse seems be happening here.

One of the familiar problems about invoking “intuitively valid reasoning” is that
while it may be intuitive it is often not valid, which is why the apparatus of formal
models of inference was invented and why it continues to be indispensable. And
the fact is that as it stands the argument in (i)–(iii) also makes the same erroneous
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inference as did the derivation of the Strengthened Liar. No sound theory of partial
truth can allow that T r [λ] is true because λ is not true, for the truth-predicate rep-
resented by T r would cease to be a partial truth predicate, and become a total one.
Ketland (2003) has a variant of the proof that the predicate “A takes the value u” is
not definable in L ,14 which he accompanies with the remark that

No matter how we squeeze and tug the carpet, certain semantic concepts which are well-
defined in the informal metalanguage description of the fixed-point MV-language [Many-
Valued language] are inexpressible within the very MV-language in question. (p. 294; italics
in original)

But this is again just a failure to appreciate the fact that, far from there being an
expressive deficiency signalled by L’s failure to be able to define the predicate
“x takes the value u,” there would certainly be an expressive failure if it could:
it would mean that it wasn’t doing its job of defining a partial predicate. If one
is going to accept a genuine theory of partial truth then one must accept that it is
partial, and not demand something that cannot in principle be given. Partiality of
some sort is inevitable. Either it is the partiality of not having a truth-predicate that
applies via Convention (T) to statements involving it, as in the Tarskian theory, or it
is the partiality of the truth-predicate itself.

Perhaps surprisingly, it turns out that while we cannot have our cake we can (to
some extent) still eat it. For there is a way in which we can legitimately infer in L
that ¬T r [λ] is true from the fact that λ is not true in the least fixed point. Indeed, we
shall see shortly that there is a consistent first order theory within which that infer-
ence is valid. But now we seem to have generated another paradox: how can this not
contradict the conclusion that it is entirely appropriate for that inference to be invalid
within a sound theory of partial truth? The answer is, by distinguishing between
two distinct interpretations of L, which is in fact what is going on implicitly in
(i)–(iii) above. Where the base model is N and M = (N , (T, F)) is a fixed point,
¬T r [λ] is of course true in the classical structure (N , T ) interpreting L, called
the “closing off” of (N , (T, F)) (Kripke, 1975, p. 80). But neither λ nor ¬T r [λ]
are true in M . Thus we infer that ¬T r [λ] is true even though [[¬T r [λ]]]M = u,
because ¬T r [λ] is true in the closed-off structure Mc. We now have a nice, and
formally unimpeachable, explanation of why we find the inference involved in (i)
and (ii) above intuitively compelling: we are implicitly appealing to these two dis-
tinct interpretative structures for L: to Mc in (i), and to the corresponding partial
structure M in (ii).

Moreover, since Mc is a classical first order structure, we should in principle
be able to find a classical first order theory formulated in L within which the
chain of reasoning that ends with the assertion ¬T r [λ] can be reproduced. And we

14 He uses a Liar-type construction to show that no multi-valued language L which is capable of
self-reference, which contains constants denoting truth-values in a subdomain of any model M ,
and in which identity is bivalent can contain a term t which satisfies the condition that (t[A])M =
[[A]]M . However, the bivalence of identity implies that the truth-values t , u and f in a three-valued
system are distinguishable within L and hence that exclusion-negation is definable in L .
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can. Constructed by Feferman and referred to in the literature as KF (for “Kripke-
Feferman”; the terminology is due to (Reinhardt, 1986)15) its axioms are those of
Peano arithmetic (the object-theory also providing the syntax theory of L), together
with axioms corresponding to the ordinary truth definition for the atomic sentences
of L which do not contain T r , axioms describing the strong Kleene valuation
scheme, and an axiom saying that no sentence is true and false. A type of com-
pleteness theorem for KF due to Feferman states that (N , T ) is a model of KF iff
(N , (T, F)), is a fixed point. Feferman’s theorem is a proof that KF is (relatively)
consistent: it certainly has one model, by Feferman’s theorem. Moreover since (a)
the self-referential lemma is a provable biconditional in KF, so that λ ↔ ¬T r [λ] is a
theorem, and (b) T r [A] → A is a theorem of KF for all sentences A of L (McGee,
1990, p. 93), it immediately follows that ¬T r [λ] is a theorem of KF, as desired.
Since λ ↔ ¬T r [λ] is a theorem of KF, it follows that l itself is a theorem of KF.16

The Strengthened Liar “paradox” is blocked since KF does not license the inference
from λ to T r [λ]. This failure is not at all ad hoc: the rule is clearly unsound since
KF is a classical theory and hence every tautology, including λ ∨ ¬λ, is a theorem,
but the value of both λ and ¬λ, and hence their disjunction, is undefined in every
fixed point and so T r [λ ∨ ¬λ] is false in Mc (and its negation is a theorem of KF).

As we all know, that is not quite the end of the story. To many commentators,
including to some extent Kripke himself, this strategy for saving the validity of
the inference from “λ is not true” to “¬T r [λ] is true” is something of a poisoned
chalice. For in appealing to Mc to explain how we can consistently say that λ is true,
we are appealing to a truth-predicate that by Tarski’s Theorem lives irreducibly in
the metalanguage of L:

Since the object language obtained by closing off T (x) [my T r(x)] is a classical language
with every predicate totally defined, it is possible to define a truth-predicate [TR] for that
language in the usual Tarskian manner. This predicate will not coincide in extension with
the predicate T (x) of the object language, and it is certainly reasonable to suppose that it
really is the metalanguage predicate that expresses the “genuine” concept of truth for the
closed-off language; the T (x) of the closed-off language defines truth for the fixed point
before it was closed off. So we still cannot avoid the need for a metalanguage. (Kripke,
1975, p. 81)

Hence, Kripke famously concluded, the “ghost of the Tarski hierarchy is still
with us.”

This deflating conclusion is echoed by those commentators who feel that
Kripke’s construction has not, as it was intended to do, supplied a semantically-
closed language within which all legitimate truth-claims are to be made. Despite its
distinguished advocacy I think that it nevertheless rests on the same confusion, or

15 In some presentations there is an additional monadic predicate symbol for “false,” and in Fefer-
man’s original presentation the axiom that no sentence is true and false was absent.
16 KF is a provably reliable device for exhibiting (a recursively enumerable subset of) truths with
respect to Mσ : Feferman’s theorem shows that if T r [A] is a theorem of KF then A is true in Mσ ,
since if A is a theorem of KF then A is true all models of KF, and hence in all structures (N , T )
where (N , (T, F)) is a fixed point, and hence in Mσ itself.
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conflation, that issued in the alleged Strengthened Liar paradox. The truth that, qua
semantically closed language, what L represents is partial truth, and all legitimate
truth-claims, in the sense of partial truth, can be made within L (or some stronger
language like that of Zermelo-Fraenkel set theory). There is therefore no necessity at
all, from the point of view of describing partial truth, to ascend to a metalanguage: L
is the metalanguage. The necessity only arises if one wishes to infer that ¬T r [λ] is
true because λ is not true in any fixed point. While this may be an entirely legitimate
claim about truth in the classical structure Mc it is not a legitimate truth-claim with
respect to partial truth.

Once we see the interpretation of L in Mc as motivated by the desire for an
illuminating explanation rather than a necessity implicit in a theory of partial truth,
the ghost of the Tarski hierarchy ceases to be malign. Indeed, we merely find our-
selves in a type of situation familiar from other contexts: using classical concepts
and theories to interpret and explain non-classical ones, in the present case to explain
why we feel that the Liar sentence is true in some significant sense. The strategy of
appealing to classically based ideas and theories to compensate for the fact that
our cognitive processes do not seem to be geared to a direct appreciation of the
non-classical has of course a famous pedigree in modern physics, under the name
Bohr famously gave it, of Complementarity. Though Bohr’s own characterisation of
his idea was notoriously opaque a major component of it nevertheless was, as he saw
it, the indispensability of classical concepts for interpreting the quantum theory as
it stood at the time (Bohr, 1934, p. 94). The parallel is especially appropriate if one
regards quantum logic as the natural logic of quantum mechanics (though many of
course do not), since its non-classicality partly resides in a type of choice-negation
(represented by an operator projecting onto the orthogonal subspace).17

Bohr’s theory that quantum theory requires complementary interpretations may
not be one often pressed by physicists today, but the idea of gaining some sort of
epistemic access to one theory via an interpretation in another seemingly incom-
patible with it remains an acknowledged and formally unexceptionable procedure:
a less formally controversial example is Gödel’s interpretation of Heyting’s Intu-
itionistic propositional calculus in a classical theory of provability formally iden-
tical to S4 (Gödel, 1933), which arguably does more to render Intuitionistic logic
intelligible than all of Brouwer’s explanatory observations put together. Similarly,
the fact that human beings, and possibly a large part of the mammal kingdom too,
seem to possess an inbuilt exclusion-negation operator which automatically makes
every predicate in the informal language total, suggests that the properties of partial
truth based on a monotonic valuation scheme will be more easily understood and
reasoned about when interpreted within a deductive theory situated within classical
bivalent logic18 like KF or a suitably stronger classical theory; as obtained, for

17 Though A ∨ ¬A is always true, or what passes for true, even if neither A nor ¬A is. Also
quantum logic, or perhaps “logic,” is radically non-classical, unlike the Kleene rules.
18 There are axiomatisations of three-valued validity for the Kleene strong scheme, but they make
so much of informally valid reasoning illegitimate that Feferman is moved to remark that “nothing
like sustained ordinary reasoning can be carried on” in them (Feferman, 1982, p. 264).
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example, by adjoining suitable reflection principles to KF, like the statement that
if A is a sentence of L, then if T r [A] is provable in KF then A is true, which itself
can be formulated as a sentence of L (Reinhardt, 1986, p. 234), as can also the state-
ment that if ¬T r [A] is provable in KF then A is not true. As L-sentences both are
instances of the Uniform Reflection Principle ∀x(BewK F [F(ẋ)] → (x)), where
BewK F(x) is the provability predicate for KF expressed in L, and [(ṅ)] is the
Gödel number of the formula F(n̄) where n̄ is the numeral for n. Most importantly,
no metalanguage need be appealed to in this interpretative exercise because, as KF
shows, the classical interpreting theory can be formulated entirely within L itself.

KF’s status as a classical theory of partial truth has aroused a good deal of
comment, and as much in the way of reservations. Thus McGee objects that “the
simple connection between truth and proof” is broken in KF because in it “we
can prove things that are, according to [it], untrue” (McGee, 1990, p. 106): for
example, KF proves λ and also proves ¬T r [λ]. But McGee’s objection seems to
rest on the same conflation between two distinct truth-predicates that generated
the Strengthened Liar. According to KF’s own classical truth predicate which it
is a partial axiomatisation of, KF is not proving things that are untrue: λ is actu-
ally true according to that. According to the fixed-point truth predicate, interpreted
within KF by the formula T r(x) of L, KF is not proving that λ is true (recall
that the inference from A to T r [A] is quite properly, in its interpretative role as
formaliser of fixed-point truth, disallowed by KF) though it is proving that it is
untrue. Disequivocate, and the ground of McGee’s objection disappears. Reinhardt,
commenting on the fact that in KF the inference from A to T r [A] is disallowed,
goes to another extreme, claiming that in this respect “KF does not pretend, even to
itself, to be more than a formal device” (Reinhardt, 1986, p. 242). This seems unjust
too: KF is a classical interpretation of a non-classical theory, which is surely more
than being just a “formal device.” A stronger objection is that without Feferman’s
metatheorem, proved of course in the classical metalanguage, that KF’s classical

models are just the closings off of fixed points, there would be no reason to sup-
pose that KF is a faithful interpretation of truth in Mσ . But the objection is unsus-
tainable, for it would imply that no deductive reasoning would ever be justified in
default of an explicit soundness theorem, which is impossible on pain of an infinite
regress.

5 Conclusion

The problem with total truth, notoriously exposed in the Liar paradox, is its vulnera-
bility to diagonalisation. The fact is that there has got to be partiality somewhere, and
the simplest acknowledgment of this is to allow the truth-predicate (or function from
sentences to truth-values) to be undefined at “singular” arguments. Partial func-
tions are familiar and indispensable objects in mathematics. The whole edifice of
recursive function theory rests on them: the enumeration theorem for partial recur-
sive functions (Kleene, 1952, p. 341), which states that a partial recursive function
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fn(x1, . . . , xn, z) enumerates all the partial recursive functions of x1, . . . , xn as z
takes its (natural number) values, includes g(x) = f1(x, x) + 1 in the enumeration
by allowing it to be properly partial, undefined at the argument k. Partial predicates
are also an essential part of the theory, since they are predicates whose characteristic
functions are partial recursive functions (Feferman, 1982, p. 252).

Similarly, there is no problem in principle to including T r within the class of
predicates definable within a language which permits self-reference, by allowing it
to be undefined at the argument λ. The apparent sticking point, known affectionately
as the Liar’s Revenge, is that in asserting as true the “obvious” truth that λ is not true
in any fixed point the Tarski hierarchy is thereby reintroduced. But this is not, as we
saw, a necessity that a theory of partial truth itself has to accommodate nor should
even want to accommodate if it is to be a genuine explication of partial truth, but an
interpretative gesture towards the entrenched way of thinking which automatically
closes off every predicate to make it total. The ghost summoned by the closing-off
of the fixed point remains Bohr’s, not Tarski’s.
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Chapter 7
Necessary and Sufficient Conditions
for Undecidability of the Gödel Sentence
and its Truth

Daniel Isaacson

I am delighted to be able to join the other authors of this Festschrift in honouring
John Bell, and to be able to express my gratitude to John for his exuberant and gen-
erous friendship ever since we first met, in 1967. Even before then, John’s fame had
preceded him by way of an article about his plans to study mathematics in Oxford
or Cambridge that had appeared in the San Francisco Chronicle 6 years earlier and
impressed me enough to keep. It is wonderful to think back to those days of extraor-
dinary promise from the vantage point of John’s tremendous accomplishments in
the nearly 50 years since, and his promise of yet more.

1 Introduction

For S any recursively axiomatized �0-complete theory sound with respect to truth
in the structure of the natural numbers, there is a sentence G such that S � G and
S � ∼ G. This is a weak form of Gödel’s First Incompleteness Theorem, weak
because the hypothesis of soundness is much stronger than necessary. Gödel
strengthened the theorem by weakening the hypothesis, from soundness to
ω-consistency (see (Gödel, 1931, pp. 151, 173)). In 1957 Kreisel introduced “a
refinement of the concept of ω-consistency,” see (Kreisel, 1957), which he labelled
n-consistency, for each natural number n, and noted that 1-consistency, the min-
imal case of ω-consistency, is sufficient for Gödel’s First Incompleteness Theo-
rem. In this paper I analyze the relationship between soundness, ω-consistency,
1-consistency, and conditions intermediate between them, and expound properties
of these notions. I also discuss on what basis we know that the Gödel sentence is
true. I observe that a necessary and sufficient condition for S � ∼ G, for G the
Gödel sentence for formal system S, is the consistency of S ∪{ConS}, and establish
that this condition is strictly weaker than 1-consistency of S. I conclude with some
remarks about the relation between Gödel’s Incompleteness Theorems and Rosser’s
Theorem.
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2 Soundness and Consistency

There are three key elements to establishing Gödel incompleteness for a formal
system S in a language L such that for each natural number n there is a formal
numeral, n, which is a term in the language that denotes n when the variables of L
range over the natural numbers.

First, to specify an assignment of numbers to the symbols of L which is extended
to an assignment of numbers to the expressions (i.e., strings of symbols) of the
language L of S, where we write �E� to signify the number of the expression E ,
by a function x ∗ y = z from pairs of natural numbers into the natural numbers
expressible in L such that for ̂ the operation of concatenating two expressions, for
any two expressions X and Y of L, �X Ŷ� = �X� ∗ �Y�. It is required that the
relation of n to �n� is expressible in L.

Second, to show that for every formula F(v1) with one free variable in L, there
is a sentence D such that (D ≡ F(�D�)) is true (Diagonal Lemma).

Third, to construct a formula Pr(v1) in L with one free variable such that S  X
if and only if Pr(�X�).

The Gödel sentence can be obtained by applying the Diagonal Lemma to the
one-place formula ∼ Pr(v1), i.e., it is a sentence G such that (G ≡ ∼ Pr(�G�)) is
true.

Theorem 1 If every theorem of S is true (about the natural numbers), then S � G,
G is true, and S � ∼ G.

Proof Assume S  G. Then by the third condition, Pr(�G�) is true. Then by the
diagonal equivalence, G is false. Then by the assumption that S is sound (only
proves true sentences), S � G, which contradicts our assumption that S  G. So
by propositional logic, S � G. Then by the third condition, ∼ Pr(�G�) is true. So
by the diagonal equivalence G is true. Then ∼ G is false, so by soundness of S,
S � ∼ G. �

Remark Despite the exceedingly strong hypothesis that every theorem is true, and
the formal similarity (self-referential diagonalization) of the proof of the first incom-
pleteness theorem to the derivation of paradoxes such the Richard Paradox and
the Liar Paradox (noted by by Gödel in the introductory section of (Gödel, 1931,
p. 149), there is no threat of paradox. Diagonalization of provability in the context of
sound provability gives a sentence which is neither provable or refutable, a surprise
at the time but no paradox. Diagonalization on truth results in a sentence which is
both true and false, a paradox, or—in the context of arithmetized syntax—results in
the more refined result that truth for the language of arithmetic is not definable in
the language of arithmetic.

Soundness implies consistency since no sentence and its negation can both be
true. That consistency does not imply soundness, i.e., consistency is a strictly weaker
condition than soundness, is an immediate corollary of Theorem 1, i.e.,
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Corollary 2 If S is sound then S ∪ {∼ G} is consistent but not sound.

Proof If S is sound, then by Theorem 1, S � G. Then by propositional logic,
S ∪ {∼ G} is consistent, but also ∼ G is false. �

That consistency is strictly weaker than soundness can be proved without the
apparatus of arithmetization of syntax required in the proof by Corollary 2, e.g., as
follows.

Theorem 3 Let Q∗ =df Q ∪ {∃v11 + v1 = v1}, where Q has as axioms the axioms
of PA minus the Induction Axioms. Q∗ is consistent and proves a sentence false in
the structure of the natural numbers.

Proof Q∗ is consistent since it can be interpreted in the ordinals less than ωω with
zero the ordinal 0, and successor, plus, and times interpreted as those ordinal oper-
ations, and the sentence ∃v11 + v1 = v1 is false in the structure of the natural
numbers. �

Consistency of a �0-complete system implies a very limited degree of soundness
with respect to truth in the structure of the natural numbers, as follows.

Theorem 4 If a system S is �0-complete and consistent, it is �0-sound, i.e., if sen-
tence X is �0 and S  X, then X is true.

Proof If X is �0 and false, then ∼ X is �0 and true, in which case if S is
�0-complete, S  ∼ X . Hence if S is consistent, S � X , which is to say that for X
�0, if S  X , X is true. �
By Theorem 3, this result is best possible.

The converse of Theorem 4 also holds, so we have

Theorem 5 For any �0-complete system, consistency is equivalent to
�0-soundness.

Proof By Theorem 4 and the fact that if S is �0-sound, then for X any false
�0-sentence, S � X , i.e., S is consistent. �

Remark Consistency is necessary for incompleteness, since if S is inconsistent, then
by propositional logic, for every F , S  F and S  ∼ F , so a fortiori S  F or
S  ∼ F , i.e., S is complete.

Consistency of S is not only necessary but also sufficient for S � G. This is the
first half of Gödel’s First Incompleteness Theorem, as follows.

The proof depends on two results from arithmetization of the syntax of S.

Fact 6 There is a �0-formula Prov(v1, v2) such that ∃v2 Prov(v1, v2) expresses
{n : S  En}, where En is the expression in the language of S with Gödel number
n, i.e., S  En if and only if ∃v2 Prov(n, v2) is true.

Lemma 7 There is a �0-formula A(v1, v2) such that ∃v1 A(v1, v2) expresses {n :
S  En(n)}, where if En is a formula in the language of S with single free variable
v1, En(n) is the formula that results by substituting n for the variable v1 in En.
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Proof From Fact 6 by diagonal substitution into ∃v2 Prov(v1, v2). �

Theorem 8 Let a =df �∀v2 ∼ A(v1, v2)� and let G =df ∀v2 ∼ A(a, v2). If S is
consistent and �0-complete, S � G.

Proof Suppose S  G, i.e., S  ∀v2 ∼ A(a, v2). Then a ∈ {n : S  En(n)}.
By Lemma 7, ∃v2 A(a, v2) is true. Since S is �0-complete and hence �1-complete,
S  ∃v2 A(a, v2). But this contradicts the consistency of S. So S � G. �

3 Truth of the Gödel Sentence

Theorem 9 For any �1-sentence X in the language of a �0-complete theory S, if
S � ∼ X, then X is true.

Proof Since X is �1, it is of the form ∀vi F(vi ), for F(vi ) a �0-formula. If X is
false, ∃vi ∼ F(vi ) is true, so for some natural number k, ∼ F(k) is true. Then by
�0-completeness of S, S  ∼ F(k). Hence S  ∃vi ∼ F(vi ), so S  ∼ X , which
contradicts the hypothesis that S � ∼ X . So X is true. �

Since the Gödel sentence G for any system S is �1, by Theorem 9, if S � ∼ G, G
is true. However, S � ∼ G holds only on a stronger condition than the consistency
of S, as we shall see at the beginning of the next section, but as we shall now see,
the proof of Theorem 8, that if S is consistent, S � G, shows the stronger result that

Theorem 10 If S is consistent, the Gödel sentence for S is true.

Proof By Theorem 8, if S is consistent, S � G, in which case, a /∈ {n : S  En(n)}.
Then by Lemma 7, ∃v2 A(a, v2) is false, so ∀v2 ∼ A(a, v2) is true, i.e., G is true. �

The converse of Theorem 10 holds, i.e., the Gödel sentence for S is equivalent to
the consistency of S.

Theorem 11 If the Gödel sentence for system S is true, S is consistent.

Proof If G, i.e. ∀v2 ∼ A(a, v2), is true, then ∃v2 A(a, v2) is false, in which case, by
Lemma 7, S � G. But a system is consistent if there is any sentence that it does not
prove, so S is consistent. �

Remark The question “how can we know the truth of the Gödel sentence for system
S?” is tantamount, by Theorems 10 and 11, to the question “how do we know the
consistency of S?” Almost everyone who knows about, for example, Peano Arith-
metic believes it to be consistent. However, the most likely reason anyone will offer
as grounds for confidence in the consistency of PA will be that the theory is true of
the natural numbers, but this is a much stronger condition than (mere) consistency,
which is all that is required to establish the truth of the Gödel sentence. Hilbert
envisaged purely finitary consistency proofs, which Gödel’s Second Incomplete-
ness Theorem show to be unattainable. What is attainable, as the subsequent pursuit
of Hilbert’s programme established, is constructive consistency proofs. One may
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wonder if the conviction we have that, e.g., Peano Arithmetic is consistent is really
attainable by means of formal consistency proofs, or whether infinitary considera-
tions give more convincing grounds to hold that a given system is consistent, and
thereby that the Gödel sentence for that system is true.

4 Gödel’s Notion of ω-Consistency

We noted at the end of section 1 that consistency of S is sufficient to establish that
S � G, for G the Gödel sentence for S. Consistency of S is not sufficient to show
that S � ∼ G, as seen by the fact that there are consistent systems that prove the
negation of their Gödel sentence, e.g., the following.

Theorem 12 (a consistent theory that refutes its Gödel sentence) For P(v1) a
provability predicate for S, and for G a sentence in the language of S such that
S  (G ≡ ∼ P(�G�)), let S∗ be the system S ∪ {∼ G}. Let P∗(v1) be a provability
predicate for S∗, and let G∗ be a sentence such that S∗  (G∗ ≡ ∼ P∗(�G∗�)).
Then S∗  ∼ G∗.

Proof (1) For any sentence X , S  (X ⊃ (∼ G ⊃ X)), by propositional logic. Then
(2) S  (P(�X�) ⊃ P(�(∼ G ⊃ X)�), by properties of P(v1) as a provability
predicate for S, and so by thinning, (3) S∗  (P(�X�) ⊃ P(�(∼ G ⊃ X)�)).
Then (4) S∗  (P(�X�) ⊃ P∗(�X�)). For X such that S  ∼ X , by proof of
the Second Incompleteness Theorem for S, S  (∼ G ≡ P(�X�)), and so also
(5) S∗  (∼ G ≡ P(�X�)). Since S  ∼ X implies, S∗  ∼ X , by the Second
Incompleteness Theorem for S∗, (6) S∗  (∼ G∗ ≡ P∗(�X�)). By (4), (5), (6),
S∗  (∼ G ⊃ ∼ G∗). Then, since S∗  ∼ G, S∗  ∼ G∗. �

The preceding theorem shows that proving the second half of the First Incom-
pleteness Theorem, i.e., that S � ∼ G, requires a hypothesis stronger than consis-
tency of S. Gödel invoked a hypothesis which he called ω-consistency.

Definition 13 [ω-consistency] A system S in a language that contains a closed term
n, i.e., a numeral, for each natural number, is said to be ω-consistent if and only if
there is no formula F(vi ) with one free variable in L such that S  ∃vi F(vi ) and
for each natural number n, S  ∼ F(n).

Theorem 14 If a system is ω-consistent, then it is consistent.

Proof The contrapositive is immediate by ex falso quodlibet: if a system S is incon-
sistent S proves every formula in the language of S; in particular for any formula
F(w) with one free variable, S  ∃wF(w), and for each n S  ∼ F(n), i.e., S is
ω-inconsistent. �

The converse of Proposition 14 does not hold, i.e., consistency is strictly weaker
than ω-consistency.
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Theorem 15 There are consistent systems that are ω-inconsistent.

Proof One such system is Q∗ in Theorem 3, shown in the proof of that theorem to
be consistent. But also it is ω-inconsistent, as follows. For each natural number n,
Q∗  ∼ 1+n = n by meta-induction on n, for which the base case is Q∗  1+0 =
1, so Q∗  ∼ 1+0 = 0, and induction step is Q∗  (∼ 1+n = n ⊃ ∼(1+n)′ = n′),
so if Q∗  ∼ 1 + n = n, Q∗  ∼(1 + n)′ = n′ and since Q∗  (1 + n)′ = (1 + n′),
 ∼(1 + n′) = n′. �

Theorem 16 If a system is sound with respect to truth in arithmetic, then it is
ω-consistent.

Proof Let S be a system whose language contains numerals for the natural numbers
and which is sound with respect to truth in arithmetic. Suppose S  ∃wF(w). Then
∃wF(w) is true, i.e., there is a natural number n such that F(n) is true, which is to
say that ∼ F(n) is false. So S � ∼ F(n), which is to say that S is ω-consistent. �

The converse holds only for sentences up to �2 in the arithmetical hierarchy.

Theorem 17 If S is �0-complete and ω-consistent, then S is �2-sound.

Proof Suppose S  ∃v1∀v2 F(v1, v2) and ∃v1∀v2 F(v1, v2) is false, i.e., there is no
number n such that ∀v2 F(n, v2) is true, i.e., for each natural number n, ∀v2 F(n, v2)

is false, i.e., ∃v2 ∼ F(n, v2) is true. Then by �1-completeness of S (an immediate
consequence of �0-completeness), for each n, S  ∃v2 ∼ F(n, v2), so by logic
in S, for each n, S  ∼∀v2 F(n, v2). This contradicts the ω-consistency of S. So
∃v1∀v2 F(v1, v2) is true. �

Corollary 18 If S is �0-complete and ω-consistent, then S is �1-sound.

Proof Let ∃v1 H(v1) be a �1-sentence such that S  ∃v1 H(v1). Then S 
∃v1∀v2(v2 = v2 ⊃ H(v1). By Theorem 17, ∃v1∀v2(v2 = v2 ⊃ H(v1) is true.
So ∃v1 H(v1) is true. �

Proposition 19 (Kreisel 1955) There is an ω-consistent system that proves a false
�3-sentence.

Proof Let P(v1) be a formula that expresses {n : PA  En}. Let

H(x) =df ∃y(P(�Ex ⊃ ∃v1 Ey�) ∧ ∀z P(�Ex ⊃ ∼ Ey[z]�)).

From the arithmetization of the syntax of PA, H(x) can be written out as a for-
mula in the language of PA.

Let K be a diagonal sentence for H(x), i.e., s.t. that (K ≡ H(�K�)). So K is
true if and only if K when added to PA proves an ω-inconsistency. We show that
PA ∪ {K } is ω-consistent, as follows.

Suppose that PA ∪ {K } were ω-inconsistent. Then K would be true, i.e., when
added to PA it results in an ω-inconsistent system. But also since PA is sound with
respect to truth, PA ∪ {K } would be sound with respect to truth. But any theory
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with numerals for all the natural numbers that is sound with respect to truth in the
natural numbers is ω-consistent. This contradicts the supposition that PA ∪ {K } is
ω-inconsistent, so by reductio ad absurdum PA ∪ {K } must be ω-consistent.

Consequently, K is false, i.e., when added to PA it does not result in an ω-
inconsistent system, which means that PA ∪ {K } is an ω-consistent false theory,
as required.

Finally we need to show that K is �3.

K ≡ ∃y(P(�K ⊃ ∃v1 Ey�) ∧ ∀z P(�K ⊃ ∼ Ey[z]�))

so K ≡ ∃y∀z(P(�K ⊃ ∃v1 Ey�)∧ P(�K ⊃ ∼ Ey[z]�)) by predicate logic (prenex-
ing). The predicate P(v1) is �1. So the matrix of this formula contains two exis-
tential quantifiers. When they are brought into prenex position there are then two
adjacent existential quantifiers within the scope of ∃∀, which can be contracted to a
single existential quantifier and bounded quantifiers. The result is a quantifier prefix
∃∀∃, so K is �3. �

Gödel states in (Gödel, 1931, p. 176) that the notion of ω-consistency is “much
weaker” than the assumption that “every formula is true in the interpretation con-
sidered” but gives no argument for this claim.

Remark Though by Proposition 19, ω-consistency does not imply soundness, there
is a weak sense in which it does, as follows:

Theorem 20 True arithmetic is the only ω-consistent extension of PA that includes
each sentence or its negation.

Proof We have already seen that any theory for which all consequences are true
in arithmetic is ω-consistent, so in particular true arithmetic is ω-consistent, and of
course includes each sentence or its negation.

We need to show that every ω-consistent extension of PA that includes each sen-
tence or its negation coincides with true arithmetic.

Let S be such an extension of PA. We argue by induction over the logical com-
plexity of sentences that for all sentences X , S correctly decides X , i.e., if X is true
S  X and if X is false S  ∼ X .

(i) Base case: X is atomic. This case follows immediately by �0-completeness
of PA.

(ii) Induction steps:

(α) X is of the form ∼ Y or of the form (Y ⊃ Z): These cases were dealt with
in Problem 1.

(β) X is of the form ∀vi F(vi ). By induction hypothesis, S correctly decides
every sentence of the form F(m) for natural number m.

(1) Suppose X is true. Then by induction hypothesis for each number m S 
F(m). By completeness of S, S  X or S  ∼ X . Suppose S  ∼ X .
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Then S  ∃vi ∼ F(vi ). But this contradicts the ω-consistency of S. So the
supposition is wrong, which means that S  X , as required.

(2) Suppose X is false. Then there is a number k such that ∼ F(k) is true. Then
by induction hypothesis, S  ∼ F(k). Then by logic in S, S  ∼∀vi F(vi ),
as required. �

Remark As for consistency, an ω-consistent system can, if it doesn’t decide every
sentence in its language, be extended ω-consistently, as follows.

Theorem 21 If S is ω-consistent, then for X any sentence in L(S), S ∪ {X} or
S ∪ {∼ X} is ω-consistent.

Proof Suppose S ∪ {X} and S ∪ {∼ X} are both ω-inconsistent, i.e., there are for-
mulas A(x) and B(x) such that

S ∪ {X}  ∃x A(x) (7.1)

and S ∪ {X} ∼ A(n) for each n ∈ ω (7.2)

S ∪ {∼ X}  ∃x B(x) (7.3)

and S ∪ {∼ X} ∼ B(n) for each n ∈ ω (7.4)

then

S  ((X ∧ ∃x A(x)) ∨ (∼ X ∧ ∃x B(x))) from (7.1), (7.3) and prop. logic (7.5)

S  ∃x((X ∧ A(x)) ∨ (∼ X ∧ B(x))) (7.5) and predicate logic (7.6)

S  ((X ⊃∼ A(n)) ∧ (∼ X ⊃∼ B(n))) (7.2), (7.4), DT, ∧-I (7.7)

S  (∼ (X ∧ A(n))∧ ∼ (∼ X ∧ B(n)) (7.7) and prop. logic (7.8)

S ∼ ((X ∧ A(n)) ∨ (∼ X ∧ B(n))) (7.8) and prop. logic (7.9)

(7.6) and (7.9) imply that S is ω-inconsistent.
It must thus be the case that either S ∪ {X} or S ∪ {∼ X} is ω-consistent. �

Remark The corresponding property to Theorem 21 for consistency gives rise to
Lindenbaum’s Lemma, the result that every consistent set of sentences can be
extended to a consistent set of sentences in which each sentence or its negation
occurs: enumerate the sentences of the language, successively add each sentence
or its negation, preserving consistency; the union of all stages is a consistent set
that contains every sentence or its negation. By Proposition 19, it cannot be that
Theorem 21 implies that every ω-consistent set of sentences can be extended to
an ω-consistent set that contains each sentence or its negation. Where the proof of
Lindenbaum’s Lemma breaks down in the case of ω-consistency is that the union
of a chain of ω-consistent sets need not be ω-consistent, i.e., the union may contain
an ω-inconsistency (which is a infinite set of sentences) not contained in any one
element of the chain (whereas an inconsistency in the union must, being finite, occur
in an element of the chain).
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Theorem 22 The addition of a true �1-formula A to a system S that is �0-complete
preserves ω-consistency.

Proof (letter from Georg Kreisel 4 April 2005) . Suppose S ∪ {A} is ω-inconsistent,
i.e., there is a formula ∃x B(x) such that:

S  (A ⊃ ∃x B(x)) (7.10)

and S  (A ⊃∼ B(n)) for each n ∈ ω (7.11)

A is of the form ∀x A0(x) where A0(x) is �0 (quantifier-free). So

S  (∃x ∼ A0(x) ∨ ∃x B(x)) (7.12)

S  (A ⊃ (A ∧ ∃x B(x)) (7.10) and prop. logic (7.13)

S  (∃x ∼ A0(x) ∨ (A ∧ ∃x B(x))) (7.13) and prop/pred logic (7.14)

S  ∃x(∼ A0(x) ∨ (A ∧ B(x))) (7.14) and pred. logic (7.15)

S  A0(n) for each n ∈ ω, since ∀x A0(x) is true and S is �0-complete (7.16)

S  (A0(n) ∧ (A ⊃∼ B(n)) for each n, due to (7.11) and (7.16) and logic in S
(7.17)

S ∼ (∼ A0(n) ∨ (A ∧ B(n))) for each n by (7.26) and prop. logic (7.18)

But (7.15) and (7.18) imply that S is ω-inconsistent.
Thus S ∪ {A} must be ω-consistent. �

Corollary 23 If S is ω-consistent, then

S ∪ {((Pr(�∼ G�) ⊃∼ G)}

is ω-consistent.

Proof If S is ω-consistent, then ∼ Pr(�∼ G�) is a true �0
1-sentence. Hence, by the

theorem, if S is ω-consistent S ∪ {∼ Pr(�∼ G�)} is ω-consistent.

S ∪ {∼ Pr(�∼ G�)}  (Pr(�∼ G�) ⊃∼ G) by prop. logic (7.19)

Thus S ∪ {(Pr(�∼ G�) ⊃∼ G)} must be ω-consistent if S is ω-consistent. �

5 Kreisel’s Notions of n-Consistency

5.1 The Notion of 1-Consistency

The notion of ω-consistency is considerably stronger than needed for proving the
second half of the First Incompleteness Theorem. Since the arithmetized proof pred-
icate for a system S with arithmetized syntax is �1, the result can be proved with
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just the assumption that there is no �1 ω-inconsistency. This weaker notion is called
1-consistency, for which the precise definition is:

Definition 24 (1-consistency) A system S in a language that contains a closed term
n, i.e., a numeral, for each natural number, is said to be 1-consistent if and only if
there is no �1-formula ∃v1 F(v1) with one free variable in the language such that
S  ∃vi F(vi ) and for each natural number n, S  ∼ F(n).

Theorem 25 For a �0-complete system S, 1-consistency of S is equivalent to
�1-soundness of S.

Proof (i) Suppose S is 1-consistent, and let ∃vi F(vi ) be a �1-sentence such that
S  ∃vi F(vi ), and suppose ∃vi F(vi ) is false. Then for each number n, ∼ F(n) is
a true �0-sentence. Hence by �0-completeness of S, for each natural number n,
S  ∼ F(n). But this violates the hypothesized 1-consistency of S. So ∃vi F(vi ) is
true. So S is �1-sound.

(ii) Suppose S is �1-sound, and suppose S  ∃vi F(vi ). Then by �1-soundness
of S, there is a natural number k such that F(k) is a true �0-sentence. By �0-
completeness of S, S  F(k). Then S � ∼ F(k). Otherwise S is inconsistent,
so proves every sentence, including false �1-sentences, violating the hypothesized
�1-soundness of S. So S is 1-consistent.�

Theorem 26 For a �0-complete system S, �1-soundness of S is equivalent to con-
sistency of S + all true �1-sentences.

Proof (i) Suppose S is �1-sound and suppose that S + all true �1-sentences is
inconsistent. From the assumption that PA is �1-sound it follow that PA is consis-
tent. Thus if S + all true �1-sentences is inconsistent, it must be that there is a true
�1-sentence ∀v1 F(v1) s.t. PA  ∼∀v1 F(v1). But ∼∀v1 F(v1) ≡ ∃v1 ∼ F(v1) is
then a false �1-sentence, which contradicts the �1-soundness of PA. So S + all true
�1-sentences is consistent.

(ii) Suppose S + all true �1-sentences is consistent and that PA is not �1-sound,
i.e., there is a false �1-sentence ∃v1 H(v1) such that PA  ∃v1 H(v1), so then PA 
∼∀v1 ∼ H(v1), where ∀v1 ∼ H(v1) is a true �1-sentence. But then S + all true
�1-sentences is inconsistent.�

Theorem 27 If S is 1-consistent then for X any sentence in L(S), S ∪ {X} or
S ∪ {∼ X} is 1-consistent.

Proof First note that the proof of the corresponding result for ω-consistency does
not establish this result for 1-consistency since the formula ∃x((X ∧ A(x)) ∨
(∼ X ∧ B(x))), for A(x) and B(x) �0-formulas, is not �1 for an arbitrary sen-
tence X . Kreisel has given a proof (letter of 31 March 2005) of which the following
is a variant.

Suppose S∪{X} and S∪{∼ X} are both 1-inconsistent, i.e., there are�1-formulae
∃x A(x) and ∃x B(x), which is to say A(x) and B(x) are �0 formulas such that:
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S ∪ {X}  ∃x A(x) (7.20)

and S ∪ {X} ∼ A(n) for each n ∈ ω (7.21)

S ∪ {∼ X}  ∃x B(x) (7.22)

and S ∪ {∼ X} ∼ B(n) for each n ∈ ω (7.23)

S  (∃x A(x) ∨ ∃x B(x)) (7.20), (7.22) and S  (X∨ ∼ X) (7.24)

S  ∃x(A(x) ∨ B(x)) (7.24) and pred. logic (7.25)

I now claim that for all n ∈ ω, S  (∼ A(n)∧ ∼ B(n)). For if not, then for some
n ∈ ω:

S � (∼ A(n)∧ ∼ B(n)) (7.26)

But (∼ A(n)∧ ∼ B(n)) is a �0-sentence and S is �0-complete, so

S  (A(n) ∨ B(n)) (7.27)

Since S is �0-sound (A(n) ∨ B(n)) is true, so A(n) is true or B(n) is true. We
suppose w.l.o.g. that A(n) is true. Then by �0-completeness

S  A(n) (7.28)

From (7.21) we have S  (X ⊃∼ A(n)) by DT (7.29)

So S  (A(n) ⊃∼ X) by (7.29) and prop. logic (7.30)

S ∼ X by (7.28), (7.30) and MP (7.31)

But then by assumption in (7.22) and (7.23) we have:

S  ∃x B(x) and for each n ∈ ω S ∼ B(n) (7.32)

whence S is 1-inconsistent.
So the claim that for all n ∈ ω, S  (∼ A(n)∧ ∼ B(n)) must be correct.
But then (7.25) again implies that S is 1-inconsistent.
It must thus be that either S ∪ {X} or S ∪ {∼ X} is 1-consistent. �

Remark The following theorem stands in contrast with Theorem 20 for
ω-consistency.

Theorem 28 There are 1-consistent extensions of PA other than true arithmetic that
include each sentence or its negation.

Proof The false ω-consistent extension of PA proved to exist by Proposition 19
is 1-consistent. By Theorem 27 and the usual method of generating an extension
of a consistent set of sentences that includes every sentence or its negation (Lin-
denbaum’s Lemma), we obtain a 1-consistent complete extension. The reason this
construction works in the case of 1-consistency and does not, as explained in the
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Remark following Theorem 21, in the case of ω-consistency, is that by Theorem 25,
1-consistency is equivalent to �1-soundness, so if the union of the chain of 1-
consistent sets of sentences if 1-inconsistent, it must contain a false �1-sentence.
But that false �1-sentence must occur in one of the sets of sentences in the chain, in
which case that set of sentences is 1-inconsistent, contrary to construction. �
Remark The notion of 1-consistency readily generalizes to n-consistency for each
natural number n, but as we shall see, n-consistency is only a natural notion for
n = 1 and n = 2.

5.2 The Notion of 2-Consistency

Definition 29 (2-consistency) A system S in a language that contains a closed
term n, i.e., a numeral, for each natural number, is said to be 2-consistent if and
only if there is no �2-formula ∃v1∀v2 F(v1, v2) in the language of S such that
S  ∃v1∀v2 F(v1, v2) and for each natural number n, S  ∼∀v2 F(n, v2).

Theorem 30 For a �0-complete system, 2-consistency is equivalent to �2-
soundness.

Proof (i) Suppose S is 2-consistent and suppose S  ∃v1∀v2 F(v1, v2), where
F(v1, v2) is a �0-formula, and ∃v1∀v2 F(v1, v2) is false, which is to say that
for each natural number n, ∃v2 ∼ F(n, v2) is a true �1-sentence. Then by the
�1-completeness of every �0-complete theory and predicate logic, for each nat-
ural number n, S  ∼∀v2 F(n, v2). But then S is 2-inconsistent. So by RAA,
∃v1∀v2 F(v1, v2) is true.

(ii) Suppose S is �2-sound and suppose S  ∃v1∀v2 F(v1, v2). It follows that
∃v1∀v2 F(v1, v2) is true, so for some number k, ∀v2 F(k, v2) is true. Suppose
S  ∼∀v2 F(k, v2). Then S  ∃v2 ∼ F(k, v2). Since S is �2-sound, it is �1-sound,
so ∃v2 ∼ F(k, v2) is true. But this contradicts the truth of ∀v2 F(k, v2), so by RAA,
S � ∼∀v2 F(k, v2). This means that S is 2-consistent.�
Theorem 31 For a �0-complete system S, �2-soundness of S is equivalent to con-
sistency of S + all true �2-sentences.

Proof (i) Suppose S is �2-sound and S + all true �2-sentences is inconsis-
tent. Since S is �2-sound, S is consistent, so the inconsistency of S + all true
�2-sentences means that there is a true �2-sentence ∀v1∃v2 A(v1, v2) such that
S  ∼∀v1∃v2 A(v1, v2). But then S  ∃v1∀v2 ∼ A(v1, v2), and ∃v1∀v2 ∼ A(v1, v2)

is a false �2-sentence, which contradicts the assumed �2-soundness of S.
(ii) Suppose S + all true �2-sentences is consistent, and S is not �2-sound,

i.e., there is a false �2-sentence ∃v1∀v2 B(v1, v2) such that S  ∃v1∀v2 B(v1, v2).
Since ∃v1∀v2 B(v1, v2) is false, ∀v1∃v2 ∼ B(v1, v2) is true, so S refutes a true
�2-sentence, so S + all true �2-sentences is inconsistent, contrary to assumption.
So S is �2-sound.�
Theorem 32 If S is 2-consistent then for X any sentence in L(S), S ∪ {X} or
S ∪ {∼ X} is 2-consistent.
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Proof (letter from Georg Kreisel 7 April 2005) Since S is 2-consistent, S is
1-consistent, so by Theorem 27, S ∪{X} or S ∪{∼ X} is 1-consistent. There are two
cases—either one or both of these extensions are 1-consistent.

Case when just one extension is 1-consistent: We may suppose w.l.o.g. that
S ∪ {X} is 1-consistent and S ∪ {∼ X} is 1-inconsistent. From the 1-inconsistency
of S ∪ {∼ X} we have that there is a quantifier-free (or �0) formula B0(y) such that
S  (∼ X ⊃ ∃y B0(y)) and for all n ∈ ω, S  (∼ X ⊃∼ B0(n)): call this (∗).

We distinguish between the cases when S ∪ {∼ X} is consistent and when it is
inconsistent.

First suppose that it is consistent. By the absoluteness of purely numerical for-
mulae ∼ B0(n) for all n ∈ ω are true, and so by �1-completeness for all n ∈ ω

S ∼ B0(n).
We show that S ∪ {X} is 2-consistent. Suppose not, i.e., for some �0-formula

A0(y, z) S ∪ {X}  ∃y∀z A0(y, z) and for all n ∈ ω S ∪ {X}  ∃z ∼ A0(n, z): call
this (∗∗). Since S ∪ {X} is 1-consistent, it is �1-sound, so ∃z ∼ A0(n, z) is true. So
by �1-completeness of S, S ∼ ∀z A0(n, z). Hence S  (∼ ∀z A0(n, z)∧ ∼ B0(n))
and so S ∼ (∀z A0(n, z) ∨ B0(n)) and so S ∼ ∀z(A0(n, z) ∨ B0(n)).

But also from (∗) and (∗∗)

S  (∃y∀x A0(y, x) ∨ ∃y B0(y))

and so

S  ∃y∀x(A0(y, x) ∨ B0(y))

which is to say that S is �2-inconsistent, contrary to hypothesis.
Now suppose that S ∪ {∼ X} is inconsistent, S  X so S ∪ {X} = X . So if S is

2-consistent then, vacuously, S ∪ {X} is 2-consistent.
Case when S ∪ {X} and S ∪ {∼ X} are both 1-consistent: Assume S ∪ {X} and

S ∪ {∼ X} are both 2-inconsistent, i.e., that there are �0-formulas A0(y, z) and
B0(y, z) such that

S ∪ {X}  ∃y∀z A0(y, z) (7.33)

and S ∪ {X} ∼ ∀z A0(n, z) for all n ∈ ω (7.34)

together with

S ∪ {∼ X}  ∃y∀zB0(y, z) (7.35)

and S ∪ {∼ X} ∼ ∀zB0(n, z) for all n ∈ ω (7.36)

By (7.33) and (7.35) and given that S  (X∨ ∼ X),

S  (∃y∀z A0(y, z) ∨ ∃y∀zB0(y, z))
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and so

S  ∃y∀z∀u(A0(y, z) ∨ B0(y, z))

Since S ∪ {X} and S ∪ {∼ X} are both 1-consistent and hence �1-sound,
∼ ∀z A0(n, z) and ∼ ∀zB0(n, z) are all true, and hence provable S, and so their
conjunction also is:

S ∼ ∀z A0(n, z)∧ ∼ ∀zB0(n, z)

so

S ∼ (∀z A0(n, z) ∨ ∀zB0(n, z))

so

S ∼ ∀z∀u(A0(n, z) ∨ B0(n, u))

Then S is 2-inconsistent, contrary to the assumption. So at least one of S ∪ {X}
and S ∪ {∼ X} is 2-consistent. �

5.3 Properties of 3-Consistency

Remark We have seen that for S any �0-complete axiomatic theory and for
n = 1 and 2, 1-consistency of S, �n-soundness of S, and consistency of S + all
true �n-sentences coincide, and give content to the notion of 1-consistency and
2-consistency. On the other hand, the notions of n-consistency, �n-soundness, and
consistency of S + all true �n-sentences come apart from each other for n ≥ 3.

Theorem 33 The properties of 3-consistency and �3-soundness are not equivalent.

Proof Since ω-consistency implies 3-consistency, the theory constructed in Propo-
sition 19 is 3-consistent and not �3-sound. �
Theorem 34 The properties of 3-consistency of a system S and consistency of S +
all true �3-sentences are not equivalent.

Proof Let K be the false �3-sentence constructed in Proposition 19. Then its nega-
tion is a true �3-sentence, in which case PA ∪ {K } ∪ {all true �3-sentences} is
inconsistent, while PA ∪ {K } is 3-consistent. �

5.4 Expressing Consistency, ω-Consistency, 1-Consistency,
and 2-Consistency

When Gödel said that the condition of ω-consistency is “purely formal” in con-
trast to the assumption that every theorem is true, he was strictly correct if that
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means “expressible in arithmetized syntax.” But if it means expressible in finitary
arithmetic, and finitary arithmetic is identified with quantifier-free or bounded arith-
metic (P R A), thenω-consistency cannot be expressed. This subsection looks at how
the notions of consistency, ω-consistency, 1-consistency, and 2-consistency can be
expressed in arithmetized syntax. (Recall that the role of the function x ∗ y = z in
arithmetized syntax is specified in the second paragraph of Section 2.)

Expressing consistency: Consistency is expressed by a �0
1-sentence, ∀v0 ∼

Prov(�0 = 0′�, v0), for the �0-formula Prov(v1, v0).

Expressing ω-consistency: The property of ω-consistency is �0
3, when we arithme-

tize the definition of ω-consistency: “There does not exist a formula with one free
variable F(v1) such that S  ∃v1 F(v1) and for all n ∈ ω S ∼ F(n).”

The property of being the Gödel number of a formula is �0, though this is a
little bit delicate: F is a formula if and only if there exists a formation sequence
which generates it. On the face of it, this is a �1-property (like provability). How-
ever, unlike provability, there is a computable bound on the length of the formation
sequence, computable from the expression being tested as to whether or not it is
a formula. Let Fm1(v0) be a �0-predicate (i.e., with bounded quantification only)
such that Fm(n) is true if and only if n is the Gödel number of a formula with one
free variable. We can then express ω-consistency by:

∼ ∃v0(F1(v0) ∧ ∃v1 Prov(�∃v0� ∗ v0, v1) ∧ ∀v2∃v3 Prov(s(v0, v2), v3))

∀v0(F1(v0) ⊃∼ (∃v1 Prov(�∃v0� ∗ v0, v1) ∧ ∀v2∃v3 Prov(s(v0, v2), v3)))

∀v0(Fm1(v0) ⊃ (∀v1 ∼ Prov(�∃v0� ∗ v0, v1) ∨ ∃v2∀v3 ∼ Prov(s(v0, v1), v3)))

∀v0(Fm1(v0) ⊃ ∃v2∀v1∀v3(∼ Prov(�∃v0� ∗ v0, v1)∨ ∼ Prov(s(v0, v1), v3)))

∀v0∃v2∀v1∀v3(Fm1(v0) ⊃ (∼ Prov(�∃v0� ∗ v0, v1)∨ ∼ Prov(s(v3, v1), v3)))

Thus the ω-consistency of a theory is a �0
3 sentence.

Expressing 1-consistency: To express 1-consistency for a consistent theory S, we
need to say: “For every �0-formula F(v0), if S  ∃v0 F(v0), there exists n ∈ ω

such that S �∼ F(n).”
But by the property of completeness of S w.r.t. �0-truth and the consistency of

S, this is equivalent to: “For every �0-formula F(v0), if there exists a proof (in S)
of ∃v0 F(v0), then there exists n ∈ ω such that there exists a proof (in S) of F(n).”

Let �0 Fm1(x) be a �0-formula such that �0 Fm1(x) is true if and only if Ex

is a �0-formula with one free variable. 1-consistency/�1-soundness can then be
expressed as follows:

∀v0∀v1(�0 Fm(v0) ∧ Prov(�∃v0� ∗ v0, v1) ⊃ ∃v2∃v3 Prov(s(v0, v2), v3))

which is equivalent to

∀v0∀v1∃v2∃v3(�0 Fm(v0) ∧ Prov(�∃v0� ∗ v0, v1) ⊃ Prov(s(v0, v2), v3))

So 1-consistency/�1-soundness for a �0-complete theory is expressible by a
�0

2-sentence.
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Expressing 2-consistency: To express 2-consistency we need to say, “For every �0-
formula F(v0, v1), if S  ∃v0∀v1 F(v0, v1), then there exists n such that S �∼
∀v1 F(n, v1).”

This is a �0
3-condition in the same way that ω-consistency is, since there is no

equivalence:

S �∼ ∀v1 f (n, v1) iff S  ∀v1 F(n, v1)

If we are given that S is consistent, then

S  ∀v1 F(n, v1) implies S �∼ ∀v1 F(n, v1)

But no consistency condition, including ω-consistency, would give

S �∼ ∀v1 F(n, v1) implies S  ∀v1 F(n, v1)

which is a �1-completeness condition.
By contrast, in the case of 1-consistency, the needed equivalence is

S �∼ F(n) iff S  F(n)

for F(v0) a �0-formula, which holds by �0-completeness and consistency (as in
the argument justifying the expression of 1-consistency above).

6 Consistency of S ∪ {ConS}
Though 1-consistency is a much weaker condition than ω-consistency, it is still
stronger than required. It is immediate from S  (G ≡ ConS), which is prov-
able from the proof of the Second Incompleteness Theorem, that the consistency of
S ∪ {ConS} is a necessary and sufficient condition for S � ∼ G, i.e.,

Theorem 35 Let P(v1) be a provability predicate for a system S, and let G be a
sentence in the language of S such that S  (G ≡ ∼ P(�G�)). Let X be any
sentence such that S  ∼ X. Let ConS stand for ∼ P(�X�). Then S ∪ {ConS} is
consistent if and only if S � ∼ G.

Proof By propositional logic, S � ∼ G if and only if S ∪ {G} is consistent. By
the proof of the Second Incompleteness Theorem, S  (G ≡ ConS). Therefore
S � ∼ G if and only if S ∪ {ConS} is consistent. �

It remains to show that consistency of S ∪ {ConS} is strictly weaker than
1-consistency of S. Prima facie it is, given that 1-consistency of S is equivalent
to the consistency of S + all true �1-sentences, by Theorem 26, and ConS is
a true �1-sentence for S any consistent theory. But suggestive as this observa-
tion is, it doesn’t constitute a proof that consistency of S ∪ {ConS} is strictly
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weaker than 1-consistency of S. We establish this result by constructing a theory
S such that if PA ∪ {ConPA} is consistent, S is 1-inconsistent and S ∪ {ConS} is
consistent.

Theorem 36 Let PA+ =df PA ∪ {ConPA} and S =df PA ∪ {∼ ConPA+}. If PA+ is
consistent, then S is 1-inconsistent and S ∪ {ConS} is consistent.

Proof (i) If PA+ is consistent, then ConPA+ is a true �1-sentence, so ∼ ConPA+ is
a false �1-sentence. Then by Theorem 25, S is 1-inconsistent.

(ii) (1) Suppose S ∪ {ConS} is inconsistent.
(2) Then by propositional logic, S  ∼ ConS .
(3) Similarly, S is inconsistent if and only if PA  ConPA+ , so
(4) S proves the inconsistency of S iff S  PrPA(�ConPA+�), that is, iff

PA ∪ {∼ ConPA+}  PrPA(�ConPA+�).
(5) Then by the Deduction Theorem, PA  (∼ ConPA+ ⊃ PrPA(�ConPA+�)), and

so by the contrapositive of (5),
(6) PA  (∼ PrPA(�ConPA+�) ⊃ ConPA+).
(7) By arithmetized Second Incompleteness Theorem, PA  (ConPA ⊃

∼ PrPA(�ConPA�)).
(8) By arithmetization of the logical fact that if PA (or any other theory) does

not prove the consistency of a theory then a fortiori it does not prove the
consistency of an extension of that theory, PA  (∼ PrPA(�ConPA�)) ⊃
∼ PrPA(�Con(PA∪{ConPA})�)).

(9) By (7) and (8), P A  (ConPA ⊃ ∼ PrPA(�Con(PA∪{ConPA})�)).
(10) By (6) and (9), PA  (ConPA ⊃ ConPA+).
(11) Then by Modus Ponens, PA ∪ {ConPA}  ConPA+ , i.e., PA+  ConPA+ .
(12) From the assumption that PA∪{ConPA} =df PA+ is consistent, we have PA+

�

ConPA+ , i.e., Second Incompleteness Theorem for PA+.
(13) Then by (1), (11), (12) and RAA, S ∪ {ConS} is consistent. �

Corollary 37 For systems S for which Gödel’s Second Incompleteness Theorem
holds, the condition that S ∪ {ConS} is consistent is strictly weaker than the condi-
tion that S is 1-consistent.

Proof Since the 1-consistency of S is equivalent to the consistency of S + all true
�1-sentences (Theorems 25 and 26), and if S is 1-consistent then ConS is a true
�1-sentence, 1-consistency of S implies consistency of S ∪ {ConS}. On the other
hand, Theorem 36 shows that for systems S for which the Second Incompleteness
Theorem holds, consistency of S ∪ {ConS} does not imply 1-consistency of S. �

Remark Though consistency of S ∪ {ConS} is sufficient for S � ∼ G, the proof
that it is sufficient goes via the Second Incompleteness Theorem. For a proof of the
second half of the First Incompleteness Theorem without first proving the Second
Incompleteness Theorem, the proof from 1-consistency is best possible.
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7 Comparing Gödel’s Incompleteness Theorems with Rosser’s
Theorem

From Theorem 12 we saw that consistency is not sufficient to show that the Gödel
sentence for a system S is not refutable in S. This shows that Rosser’s Theorem, that
for a particular sentence R constructed for a given system S, if S is consistent then
S � R and S � ∼ R, is incomparable in strength with and not strictly a stronger
theorem than Gödel’s incompleteness theorem, contrary to the way is often pre-
sented, for example, (Mendelson, 1997, p. 208); (Adamowicz and Zbierski, 1997,
p. 178), and more to the point, Kleene when he says, “Rosser in [1936] achieved a
noteworthy improvement of the first Gödel incompleteness theorem” (Kleene, 1986,
p. 140). Of course what people who talk this way have in mind is that Rosser’s
theorem shows that any consistent �0-complete system will be �1-incomplete,
while Gödel’s Theorem shows this on an assumption stronger than consistency.
However Rosser’s result does not show that the Gödel sentence is irrefutable just
on the assumption of consistency (which, as we have seen, cannot be done). We
also know that Rosser’s theorem is no strengthening of Gödel incompleteness in
that it cannot give rise to the Second Incompleteness Theorem, and it is the Second
Incompleteness Theorem that is the heart of the matter.1
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Chapter 8
Paraconsistent Set Theory

Graham Priest

1 Introduction: For JLB

John Bell played a pivotal role in my intellectual life. I was first shown the beauty
of mathematics at school, by a particularly gifted teacher. Inspired by this, I went
up to Cambridge to read the subject. The process was disillusioning. With only few
exceptions, the lectures were dull and boring. It was not uncommon for a lecturer
to spend an hour writing on the blackboard with his or her back to the audience.
Supervisors obviously derived pleasure from solving the problems that I could not
solve, but this was with all the emotional engagement of cross-word puzzle solving.
The sense of intellectual excitement that I had experienced at school evaporated.

By the end of my undergraduate career I had decided that philosophy was proba-
bly more interesting than mathematics, and that my education might best be served
by studying mathematical logic; I went off to London to take an MSc in the subject.
It was then my great good fortune to meet John, who was lecturing on model theory
in the MSc programme. I am sure that the topic could have been made just as dull
and boring as the topics I had studied in Cambridge, but John was inspirational. The
sense of intellectual excitement in his lectures was palpable. The lectures were crys-
tal clear, delivered with enormous enthusiasm, and the hand-written lecture notes
that he handed out were a model of elegance. Many of us would go off with him for
coffee and a cigarette after the lecture; John would hold forth on the things he loved,
which of course included mathematics. I was reinspired.

At the end of the MSc, I decided to do a PhD, and asked John to be my supervisor.
The area I wanted to work on was somewhat peripheral to his interests, but, with
magnanimity, he agreed. I was a pretty self-motivated student, and John realised
that he could leave me largely to my own devices. I would go and see him at the
LSE once a month or so. We would have a coffee, and talk for hours; John, it must
be said, would do most of the talking. For some reason, I seem to remember, many
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of the topics started with “m”: music, Mozart, morality, masochism, miscegenation,
Marxism, Mao Zedong . . . and, just occasionally, mathematics. When I explained
what I was up to, he would listen, ponder, make helpful suggestions, and wonder,
no doubt, where it was all going. He was the ideal supervisor for me: enthusiastic,
patient, and—though he was only a few years older than I—with a perspective of
the richness of life of which I was in awe.

Paraconsistency and dialetheism were only a twinkling in my eye in those days.
John persuaded his research students to go to an alternative logic conference in
Uldum, Denmark, in 1971—not alternative in the sense of alternative logic, but
politically alternative: it was organised as a protest against the acceptance of NATO
funding by the organisers of the usual UK logic conference. It was listening to a
talk by Moshé Machover on the philosophy of mathematics at that conference that
started me thinking about these matters. (Moshé was another of my lecturers for the
London MSc, and in his own way, just as inspirational as John.) Virtually nothing
about paraconsistency made its way into my thesis.1 Nonetheless, it was clear that
my interests—driven by a mathematical nominalism—were fairly unorthodox even
in those days. John’s mathematical interests were in mainstream areas of mathemat-
ical logic, but he never tried to push me into those. He was always happy to engage
with and encourage things less orthodox. I suspect it appealed to the subversive in
him. At one stage of my candidature, Imre Lakatos learned that there was someone
with interests in the philosophy of mathematics working in the Mathematics Depart-
ment, and insisted that I immediately transfer to the Philosophy Department. John
protected me from the Lakatosian imperialism.

That was all many years ago. After I finished the doctorate, I left London. But
John and I have remained good friends over the years, though living on different
continents. My interests have since became even more heterodox. Exactly what he
thinks of paraconsistency now, I am not entirely sure. I suspect that he views it as
bizarre, though always with a deep chuckle in his voice and glint in his eye. Anyway,
the rest of this essay is dedicated to John. Serve him right.

What I will discuss here is paraconsistent set theory. Set theory, at least, is a
topic close to John’s heart . . . . Specifically, I will discuss the shape of an acceptable
paraconsistent set theory. I will review what is currently known about the matter,
and suggest some new ideas. There are, it must be confessed, as many questions
as answers. At the end of the essay I will apply the discussion to another impor-
tant issue for paraconsistency: that concerning its metatheory—and especially the
model-theoretic definition of validity. The connection is, of course, that such a
metatheory is formulated within set theory.2

1 Though I remember discussing some of the material that would become “The Logic of Paradox”
(Priest, 1979), with John and my other examiner, Michael Dummett, at the PhD viva in Oxford.
Neither, I think, saw much in it.
2 What follows is essentially Chapter 18 of the second edition of (Priest, 1987). I am grateful for
the permission of Oxford University Press to republish the material.
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2 Paraconsistent Set Theory: Background

The problem posed by Russell’s paradox and its set-theoretic cousins may be
thought of as generated by two factors. First, an unrestricted abstraction—or
comprehension—principle of set existence, which allows an arbitrary condition to
specify a set. Second, various principles of logic which allow certain instances of
this (or their conjunction) to entail everything. Since the discovery of these para-
doxes, the orthodox reaction has been to maintain the principles of logic in question,
but reject the unrestricted comprehension principle. This strategy gives type theory,
Zermelo-Fraenkel set theory, and so on.

There is, however, another possible strategy: maintain the comprehension princi-
ple and reject, instead, some of the principles of logic in question. There are various
ways one may do this, but the one which will be concern us here is the paraconsistent
way. Allow for the set theory to entail contradictions, but reject the principle ex con-
tradictione quodlibet, or to give it its more colourful name, Explosion, {α,¬α}  β,
and hence obtain a theory that is inconsistent but non-trivial.

How should one do this? Part of the answer is easy. A paraconsistent set theory
can naturally be thought of as a theory that endorses the two axioms (or one axiom
and one axiom schema):

∀x(x ∈ y ↔ x ∈ z) → y = z Ext

∃x∀y(y ∈ x ↔ α) Abs

where x does not occur free in α.3 The rest of the answer is not easy, however. What
is the appropriate underlying logic? In particular, what notion of conditional is being
employed in Ext and Abs?

Paraconsistency gives us several choices in answering this question. In making
the appropriate choice, there are two constraints that need to be borne in mind.
First, the resulting theory should not allow us to prove too much; second, it should
not allow us to prove too little.

For the first: although using a paraconsistent logic allows isolated contradic-
tions to be accepted, we still do not want wholesale contradiction. In particular,
if everything were provable, the theory would be quite useless. And even though
contradictions do not imply everything, there may still be arguments delivering triv-
iality. A notorious one is Curry’s paradox. Suppose that the conditional of the logic

3 One might also want to add an appropriate version of the Axiom of Choice to these. There are,
however, ways of obtaining the Axiom from unrestricted comprehension. One way is to use the
machinery of Hilbert’s ε-calculus. (See, e.g., (Leisenring, 1969, pp. 105–107).) Another, much
more radical, way is to take Abs in an absolutely unrestricted form which allows α to contain “x”
free. This delivers the Axioms of Choice (see Routley, 1977, p. 924f of reprint) whilst, surprisingly
enough, maintaining non-triviality (see Brady, 1989).
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satisfies both modus ponens and Contraction (or Absorption): {α → (α → β)} 
α → β. Triviality then ensues.4

This fact puts fairly severe constraints on an appropriate underlying logic. In fact,
it rules out very many paraconsistent logics. For example, it rules out da Costa’s well
known C systems. It also rules out many of the best known systems of relevant logic,
such as R.5 Not everything is ruled out, though, as we shall see.

But before we turn to this, let us consider the other constraint: not too little.
It is easy enough to choose an underlying logic for paraconsistent set theory that
does not give triviality. Choose the null logic (in which nothing follows from any-
thing)! This is obviously not very interesting. A minimal condition of adequacy
on a paraconsistent set theory would seem to be that we can get at least a decent
part of standard, orthodox, set theory out of it. We might not require everything;
we might be prepared to write off various results concerning large cardinality, or
peculiar consequences of the Axiom of Choice. But if we lose too much, set theory
is voided of both its use and its interest.

It should be remembered, here, that paraconsistency, unlike intuitionism, has
never been a consciously revisionist philosophy. The picture has always been that
classical mathematics, and the reasoning that this embodies, is perfectly acceptable
as long as it does not stray into the transconsistent. It is only there that it goes awry.
So the unproblematically consistent bits of orthodox set theory, at least, ought to be
delivered by a paraconsistent set theory.

The results of this second constraint are in some tension with the results of the
first. Put crudely, the matter is this. If we weaken our logic in a way that is sufficient
to avoid triviality, we weaken it so much that it fails to deliver much set theory that
we want to keep. We will see how this tension plays out in the following discussion.

3 The Material Strategy

As we have just seen, an underlying logic for a paraconsistent set theory must inval-
idate either modus ponens or Contraction. Both are live options. Let us start with
the rejection of modus ponens. There are various ways that one can arrange for
modus ponens to fail in a paraconsistent logic, but undoubtedly the most natural is
to take the conditionals (and biconditionals) in Ext and Abs to be material. That
is, α → β is simply defined as ¬α ∨ β. (α ↔ β is defined in the usual way as
(α → β) & (β → α).) In nearly every paraconsistent logic, material detachment
fails: {α,¬α ∨ β} � β. I will call this the material strategy.6 (The strategy does

4 See (Priest, 1987, 6.2).
5 For a survey of paraconsistent logics, see (Priest, 2002).
6 Adopting the material strategy in some form goes half way towards meeting (Goodship, 1996),
who advocates taking the main conditional of both the Comprehension Principle and the T -schema
to be material. Would treating the conditionals in the two schemas show the paradoxes of self-
reference to be of different kinds? No. They still all fit the Inclosure Schema (Priest, 1995, part 3),
and so have the same essential structure.
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not, of course, mean that the language employed does not contain different kinds of
conditional. For example, it may contain a relevant and detachable conditional as
well—though it need not.)

A simple and natural choice here is the logic L P (Priest, 1987, Ch. 5). A sound
and complete tableau system for this is as follows. (See Priest, 2001, 8.3.) Lines are
of the form α,+ or α,−. A tableau for the inference {α1, . . . , αn}  β starts with
the lines:

α1,+
...

αn,+
β,−

The rules are as follows:

α ∧ β,+
↓

α,+
β,+

α ∧ β,−
↙ ↘
α,− β,−

¬(α ∧ β),±
↓

¬α ∨ ¬β,±

α ∨ β,−
↓

α,−
β,−

α ∨ β,+
↙ ↘
α,+ β,+

¬(α ∨ β),±
↓

¬α ∧ ¬β,±

¬¬ α,±
↓

α,±
∀xα,+

↓
α(x/b),+

∀xα,−
↓

α(x/a),−

¬∀xα,±
↓

∃¬xα,±
∃xα,+

↓
α(x/a),+

∃xα,−
↓

α(x/b),−

¬∃xα,±
↓

∀¬xα,±
.

↓
b = b,+
b = c,+
α(x/b),±

↓
α(x/c),±
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Here, b and c are any terms on the branch, a is a constant new to the branch, and
“±” can be disambiguated consistently either way.7 The closure rules for a branch
are two:

α,+
α,−
×

α,−
¬α,−

×

(The second of these enshrines the Law of Excluded Middle.)
The paraconsistent set theory that this logic produces has a number of interest-

ing features. It is provably non-trivial.8 It validates all those axioms of ZF that are
instances of Abs (of course). It validates the Axiom of Infinity, but not the Axiom
of Foundation. It can also (unlike ZF) demonstrate the existence of a universal set.9

What theorems of ZF—beyond the axioms—it can (or cannot) establish, is as yet
a largely unanswered question. But the failure of material detachment means that
most of the natural arguments fail. Whilst this does not meant that there are no
unnatural arguments for the same conclusions, the prospects look rather bleak. The
failure of detachment is a singular handicap. For the same reason, any other way of
pursuing the material strategy does not look promising.

A perhaps more promising variation is to look at the consequences of the axioms,
not in L P , but in the non-monotonic extension L Pm. (See Priest, 1987, 2nd ed., Ch.
16.) The results of this approach are presently unknown.

4 The Relevant Strategy

A second, and arguably more plausible, strategy is to use a conditional in a logic
which validates modus ponens, but not Contraction. The most plausible candidate
for this is a relevant logic weaker than R, one of the depth relevant logics, as they
are sometimes called. The following is a tableau system for such a logic.10 Lines
are now of one of two forms. One is α,+i or α,−i , where i is a natural number
(thought of as representing a world). Premises and conclusion take the number 0.
The other is ri jk, where i , j and k are natural numbers (“r” representing a ternary
accessibility relation, as is standard in the semantics for relevant logics). The rules
for L P are all present, except that a natural-number world-parameter, i , is added

7 The rule for b = b means that this can be introduced at any time.
8 It might be thought that without detachment the axioms cannot be shown to be inconsistent. This
is false, though. An instance of Abs is ∀x(x ∈ r ↔ ¬x ∈ x). Whence we have r ∈ r ↔ ¬r ∈ r ;
and cashing out the conditional in terms of negation and disjunction gives r ∈ r∧ ¬r ∈ r . More
generally, whenever α is a classical consequence of �, there is a β such that α∨ (β ∧¬β) follows
from �. (See Priest 1987, Ch. 6.) Hence, any classically inconsistent theory is inconsistent in this
logic also.
9 For details of all this, see (Restall, 1992). Note that he defines “x = y” as “∀z(z ∈ x ↔ z ∈ y).”
10 A semantics with respect to which it is sound can be found in (Priest, 1987, 2nd ed, 19.8).
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uniformly. Thus, for example, the rule for ∧+ is11:

α ∧ β,+i
↓

α,+i
β,+i

It is easiest to define the conditional, →, in terms of a non-contraposing conditional,
⇒. Thus, α → β is (α ⇒ β)∧ (¬β ⇒ ¬α). The rules for ⇒ are as follows. When
i > 0 (i is an impossible world):

α ⇒ β,+i
r i jk

↙ ↘
α,− j β,+k

α ⇒ β,−i
↓

ri jk
α,+ j
β,−k

¬(α ⇒ β),−i
r i jk

↙ ↘
α,− j ¬β,−k

¬(α ⇒ β),+i
↓

ri jk
α,+ j

¬β,+k

In the left hand rules, j and k are any numbers on the branch. In the right hand rules,
j and k are new to the branch.

When i = 0 (i is a possible world), the rules simplify to:

α ⇒ β,+0
↙ ↘

α,− j β,+ j

α ⇒ β,−0
↓

α,+ j
β,− j

¬(α ⇒ β),−0
↙ ↘

α,− j ¬β,− j

¬(α ⇒ β),+0
↓

α,+ j
¬β,+ j

11 The rules for identity are an exception. The rules for this are:

.

↓
b = b,+0

b = c,+i
α(x/b),± j

↓
α(x/c),± j
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In the left hand rules, j is any number on the branch. In the right hand rules, j is
new to the branch.

The closure rules are now:

α,+i
α,−i
×

α,−0
¬α,−0

×

(So the Law of Excluded Middle is guaranteed only at the base world.)
Naive set theories based on relevant logics such as this are known to be incon-

sistent but non-trivial. Indeed, the logic may be strengthened in various ways, and
this is still true—though not, of course, with Contraction. (See Brady, 1989, Priest,
2002, § 8.) Thus, this relevant set theory satisfies the first constraint. What of the
second?

To answer this question (at least to the extent that the answer is known), it is
useful to divide set theory into two parts. The first comprises that basic set theory
which all branches of mathematics use as a tool. The second is the more elaborate
development of this, which includes transfinite set theory, as it can be established in
ZF, “higher” set theory.

The theory is able to provide for virtually all of basic set theory—Boolean oper-
ations on sets, power sets, products, functions, operations on functions, etc. (I will
return to the reason for the qualification “virtually” in a moment.) Thus, for conve-
nience, let the language be augmented with set-abstract terms. We may define the
Boolean operators, x ∩ y, x ∪ y and x̄ as {z : z ∈ x ∧ z ∈ y}, {z : z ∈ x ∨ z ∈ y} and
{z : z /∈ x}, respectively, and x ⊆ y as ∀z(z ∈ x → z ∈ y). We can then establish
the usual facts concerning these notions.12

How much of the more elaborate development of set theory can be proved is
not currently known.13 What can be said is that the standard proofs of a number
of results break down. One thing we obviously lose is that kind of argument which
appeals to vacuous satisfaction. Thus, for example, suppose that we wish to establish
∀x(x < ξ → A(x)) by transfinite induction on the ordinal ξ . We can no longer
argue in the basis case that since ¬x < 0, x < 0 → A(x); but we can make the
zero case explicit, and perform the induction on ∀x(ξ = 0 ∨ (x < ξ → A(x))).
The first disjunct must then always be considered as a special case. Things not so
easy to reconstruct are arguments employing reductio, such as Cantor’s Theorem.
Where α is an assumption made for the purpose of reductio, we may well be able
to establish that (α ∧ β) → (γ ∧ ¬γ ), for some γ , where β is the conjunction of
other facts appealed to in deducing the contradiction (such as instances of Abs). But
contraposing and detaching will give us only ¬α ∨ ¬β, and we can get no further.

12 Much of this is spelled out in (Routley, 1977, § 8).
13 Added in Press: In fact, it has recently been shown that standard results about ordinals and car-
dinals can be proved in this framework, as well as a number of results concerning large cardinals.
See (Weber, 2009, Chs. 5 and 6, 2010b).
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Even given β, the failure of the disjunctive syllogism prevents us from obtaining
¬α.14 Much remains to be done in investigating higher set theory in this context.

Let me now return to the qualification “virtually.” Problems arise with the empty
set. There can be no set, ϕ, such that for every a and b:

(1) a ∩ a ⊆ ϕ

(2) ϕ ⊆ b

For let a be {x : α} and b be {x : β}. Then, (1) and (2) together give us: (x ∈ {x :
α} ∧ x ∈ {x : α}) → x ∈ {x : β}. Abs then gives (α ∧ ¬α) → β, and the theory is
not paraconsistent.

If we define ϕ1 as a ∩ a, then this clearly satisfies (1), but it does not satisfy
(2). Alternatively, if we define ϕ2 as {x : ∀y x ∈ y} then it is easy enough to
show that this satisfies (2), but not (1). It is provably the case that both ϕ1 and ϕ2
have no members. One cannot, though, show that they are identical. For {¬x ∈
y ∧ ¬x ∈ z} � x ∈ y ↔ x ∈ z. Generally speaking, one cannot expect the
global structure of the universe of sets to be a Boolean algebra, as it is classically
(albeit the case that, classically, the maximum element of the algebra and some
set-theoretic complements are proper classes). What one will have, instead, is a De
Morgan algebra.15

This might, perhaps, be something that can be accepted. Boolean algebras are,
after all, just special cases of De Morgan algebras. But we are not finished yet. It is
not only the empty set that has multiple doppelgangers; so does the universal set. In
fact, all sets do. For let α be an arbitrary truth; then x ∈ y ↔ (x ∈ y ∧ α) is not
relevantly valid (from left to right). Thus, even though y and {x : x ∈ y ∧ α} have
the same members, we will not have y = {x : x ∈ y ∧ α}. What has gone wrong at
this point is clear. Ext notwithstanding, the entities in question are not extensional.
Nor is this an accident; the identity conditions of the entities in question are given in
terms of →, and this is an intensional functor, more at home in giving the identity
conditions for properties than sets.

This suggests changing the biconditional in Ext . A natural thought is to replace
it with the material biconditional, ≡. Natural as this thought is, the strategy does not
work. For {α ∧ ¬α} � β ≡ α. Now let α be any provable contradiction. Then for
any z, x ∈ z ≡ α. By Ext , it now follows that z = {x : x ∈ α}; there is only one
set. (Note that this argument does not go through in the material strategy because
the material conditional does not detach to give the identity.)

There is another possibility. To see this, consider restricted quantification for
a moment. It is natural to express “all As are Bs” using a conditional, thus:
∀x(Ax → Bx). If → is a standard relevant conditional, then the inference:

14 This is not the only sort of problem. Various natural arguments require the use of principles
that involve nested →s, such as Permutation, {α → (β → γ )}  β → (α → γ ). The logic just
described does not contain this principle. Whether it can be added whilst maintaining non-triviality
is not known. There is certainly triviality in the area. See (Slaney, 1989).
15 For a more systematic discussion of the issue, see (Dunn, 1988).
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1. Everything is B; hence all As are Bs

fails, since it depends on the validity of the inference B(a)  A(a) → B(a). Yet
inferences of this form are frequently appealed to when employing restricted quan-
tifiers of the kind in question. If we interpret → as ⊃, the material conditional, the
inference is valid enough. But now the inference:

2. All As are Bs; a is an A; hence a is a B

fails, since it employs the Disjunctive Syllogism, A(a),¬A(a)∨ B(a)  B(a). This
is even worse.

A solution to this problem is to use another sort of conditional. In many formu-
lations of relevant logics, there is a logical constant, t , which may be thought of as
the conjunction of all truths.16 (So t is true at the base world, 0, and any other world
at which all the things true at the base world are true.) The appropriate tableau rules
for t are:

. α,+0
↓ t,+i

t,+0 α,−i
×

It is not difficult to check that these validate the following inferences:

 t

α  t → α

We may now define an enthymematic conditional, ⇀, in terms of t :

α ⇀ β is (α ∧ t) → β

and use this as the conditional involved in restricted universal quantification. Thus,
“All As are Bs” is to be understood as ∀x(A(x) ⇀ B(x)). We now have:

B(a)  t → B(a)
B(a)  A(a) ⇀ B(a)

Hence ∀x B(x)  ∀x(A(x) ⇀ B(x)). And ∀x(A(x) ⇀ B(x))  (t ∧ A(a)) →
B(a). Hence A(a),∀x(A(x) ⇀ B(x))  B(a). So both the inferences 1 and 2 are
valid.17

16 See, e.g., (Dunn and Restall, 2002, p. 10). Sometimes, depending on the context, t gets inter-
preted as the conjunction of all logical truths.
17 For a general discussion of restricted quantification in relevant logic, see (Beall et al., 2006),
which suggests the use of a different, but closely related, kind of enthymematic conditional.
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Now return to set theory. It is natural to hear “y is a subset of z” as “all members
of y are members of z,” that is, on the present account, ∀x(x ∈ y ⇀ x ∈ z). Let
us define y ⊆ z in this way. We may now take Ext to be ∀x(x ∈ y  x ∈ z) →
y = z, where  is the biconditional corresponding to ⇀. This is equivalent to
(y ⊆ z ∧ z ⊆ y) → y = z.

Using  instead of ↔ in Ext overcomes many of the problems we noted. Thus,
for example, there is only one set that contains everything. ∀x x ∈ y  ∀x(x ∈ z ⇀
x ∈ y). So ∀x x ∈ y,∀x x ∈ z  y = z . Moreover, let α be any truth. Then we
have t → α, so x ∈ y ⇀ (α ∧ x ∈ y). Since (α ∧ x ∈ y) ⇀ x ∈ y, we have y =
{x : x ∈ y ∧ α}. The structure of sets is still not a Boolean algebra since the empty
set is still not unique.18 We do not have x /∈ y  x ∈ y ⇀ x ∈ z. Hence, we do not
have ¬∃x x ∈ y  y ⊆ z or, therefore, ¬∃x x ∈ y,¬∃x x ∈ z  y = z. But the
empty set is enough of an oddity that this may not matter too much. Reconstructing
the reasoning of set theory using ⇀ in Ext and the definition of ⊆ therefore looks
much more promising.19

5 The Model-Theoretic Strategy

I have discussed the material strategy and the relevant strategy for naive set the-
ory. These do not exhaust the possibilities. Let us return to the axiomatisation that
employs a material conditional uniformly. Call this M . (And suppose that the lan-
guage contains just the standard extensional connectives and quantifiers, as in the
usual formulations of ZF—and no set abstracts.) This time, we will consider, not
what is provable in M , but what the models of M are. M has many models, many
of which are clearly pathological. For example, there is the model with but a single
element, which both is and is not a member of itself. (This verifies the trivial theory.)

But M has many other models. We can construct some of these with the Collaps-
ing Lemma.20 Let M = 〈D, I 〉 be any model of ZF. Let ξ be any ordinal in M,
and a be the initial section of the cumulative hierarchy, Vξ , in M. (That is, the pair
〈ξ, a〉 satisfies the formula “x is an ordinal and y = Vx ” in M.) Define a relation, ∼,
on D as follows:

(x and y are in a (in M) and x = y) or (x and y are not in a (in M))

This is obviously an equivalence relation. (Since there are no function symbols,
it is vacuously a congruence relation too.) It leaves all the members of Vξ alone,

18 Note, in particular, that ⇀ does not contrapose. So from the fact that x = y we cannot infer that
x = y.
19 Added in Press: Unfortunately not. It is shown that this strategy does not work in (Weber, 2009,
Ch. 4, 2010a).
20 For the Collapsing Lemma, see (Priest, 1991) or (Priest, 1987, 2nd ed., Ch. 16). For the use
of the Lemma to construct models of set theory with other properties, see (Priest, 1995, Ch. 11),
technical appendix.
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but identifies all other members of D. Construct the collapsed interpretation,
M∼ = 〈D∼, I∼〉, with respect to this equivalence relation. The Collapsing Lemma
tells us that M∼ is a model of ZF.

But something else also happens. Let me use boldfacing for names. Then “a”
refers to a in M, and [a] in M∼. For all b ∈ D∼, the sentence b ∈ a is both true
and false in M∼. For if (in M) b is of rank less than ξ , b ∈ a is true in M, and
so in M∼; and if not, there is some x which is also not of rank less than ξ (e.g.,
{b}) such that b is in x . (I am not, here, assuming the Axiom of Foundation.) Since
x has been identified with a in M∼, b ∈ a is true in M∼. Whatever b is, there
are elements which do not have rank less than ξ such that b is not a member of
them (e.g., {c}, where c is distinct from b and has rank greater than ξ ). Since these
have been identified with a in M∼, b ∈ a is also false in M∼. Now consider any
sentence of the form b ∈ a ≡ α(x/b). The left side is both true and false. Hence
the biconditional is true in M∼ ({β ∧ ¬β} � β ≡ α). So ∀x(x ∈ a ≡ α) is true,
as is ∃x∀x(x ∈ y ≡ α). So M∼ is a model of Abs. It is a model of Ext as well,
of course, since this is in ZF. Hence, M∼ is a model of naive set theory (materially
construed).21

In fact, we can obtain more than this. Suppose that in M there are inaccessible
cardinals. Let ϑ1 be the least such, and ϑ2 be a greater one. Take ξ to be ϑ2. Since
the sets of rank less than ϑ2, and a fortiori than ϑ1, remain unaffected in the collapse,
both of these are consistent substructures of M∼ which are models of ZF. Moreover,
any theorem of ZF with its quantifiers relativised to Vϑ1 (so that ∃xα becomes ∃x ∈
cα, where “c” refers to Vϑ1 ; and similarly for ∀) holds consistently in M∼. (This
is not true of Vϑ2 , since this set itself behaves inconsistently.22) That is, Vϑ1 is a
consistent inner model of ZF (which shows that the theory of M∼ is highly non-
trivial).

To take stock, what we have established is that there are interpretations that:

• are models of Ext and Abs
• are models of ZF
• contain the cumulative hierarchy (at least up to Vϑ1 ) as a consistent inner model.

We may therefore suppose that the true interpretation of the language of set the-
ory has these properties. This is an appealing picture. The cumulative hierarchy (up
to ϑ1) is a perfectly good, consistent, set-theoretic structure; but it does not exhaust
the universe of sets. There may be non-well-founded sets (such as the set of all sets)
and inconsistent sets, such as the set of all sets that are not members of themselves.
The universe of sets is just much richer than orthodox set theory takes it to be.

Of course, the model M∼ that we actually constructed using the Collapsing
Lemma is still pathological from this perspective. It contains only one inconsis-
tent set, [a], which has to do duty for all inconsistent and non-well-founded sets.

21 The fact that M∼ is a model of Abs is a special case of a more general lemma, to be found in
(Restall, 1992).
22 In fact, Vϑ2 behaves just like the set of all non-well-founded sets, given Mirimanoff’s paradox.
It is well-founded, but it is also a member of itself, so is not well-founded.
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There are undoubtedly other models (the details of whose natures require further
investigation).23 It should be remembered that, even in classical logic, set theory—
and every other theory with an infinite model, but an “intended interpretation”—has
an absolute infinity of pathological models. Specifying the correct interpretation is
always a further issue. The model M∼ at least suffices to demonstrate the possibility
of interpretations of naive set-theory which have the above properties.24

And to return, at last, to the question of what to make of the theorems of orthodox
set theory, ZF, on this approach. The answer is obvious. Since the universe of sets
is a model of ZF (as well as naive set theory), these hold in it. We may therefore
establish things in ZF in the standard classical way, knowing that they are perfectly
acceptable from a paraconsistent perspective.25 We cannot, of course, require the
theorems of ZF to be consistently true in that universe; but if, on an occasion, we
do require a consistent interpretation of ZF, we know how to obtain this too. The
universe of sets has a consistent substructure that is a model of ZF.

6 Metatheory of Paraconsistent Logic

Let us turn, finally, to the issue of paraconsistent model theory. If the paraconsis-
tent strategy for set theory is to be anything more than an intellectual exercise, the
underlying logic used must, in some sense, be the right one for reasoning about
sets. Hence arise familiar debates about which logic is correct, and why. A frequent
objection made against paraconsistency in this debate goes as follows. Paraconsis-
tent logics have metatheories. In particular, they have appropriate semantics, proof
systems, and corresponding soundness and (hopefully) completeness results. Now
the logic in which such proofs are carried out must be classical, non-paraconsistent,
logic.26 This shows that paraconsistent logic cannot be maintained as the correct
logic.

23 Some of these can be obtained by other applications of the Collapsing Lemma. Different meth-
ods of constucting models of inconsistent set theory, some of which also model ZF, are discussed
in (Libert, 2003).
24 Criticising the strategy under discussion here, (Weir, 2005, p. 398), says: “It will not do to say . . .
that the models which . . . [do not have the desired properties] are ‘pathological’ or ‘unintended.’
All the dialetheist’s ZFC models are unintended in the sense that they do not capture anything like
the full structure of the naive universe of sets. This compares unfavourably with the unintended
models of first-order number-theory: they at least contain the ‘real’ structure of numbers.” This
is simply question-begging. The thesis is precisely that one of these models does capture the full
structure of the universe of sets. (Or, if there are many equally good models, then each captures the
structure of an equally good universe.) From the dialetheic perspective, it is precisely the cumula-
tive hierarchy that is an incomplete fragment of the universe of sets. And the models in question
do contain the cumulative hierarchy as a fragment (at least up to an inaccessible cardinal).
25 In particular, the argument constructing the interpretation M∼ above can be carried out in ZF,
and so is perfectly acceptable.
26 Rescher (1969, p. 229) documents this claim, though he does not endorse it.
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The argument is far too swift. For a start, the logic of the metatheory of a theory
need not be classical. For example, an intuitionist metatheory for intuitionist logic
is well known.27 Is there a metatheory for paraconsistent logics that is acceptable
on paraconsistent terms? The answer to this question is not at all obvious. First,
the standard proofs in the metatheories of paraconsistent logics are usually given,
as are most mathematical proofs, in an informal way. The question, then, is how to
interpret the proofs formally. A normal assumption is that the proofs are carried out
using classical logic. And indeed, this would seem to be sufficient for the purpose.
This point is not definitive, however. Most paraconsistent logics are generalisations
of classical logic in one way or another. In particular, they coincide with classical
logic in those cases (models) which are consistent (i.e., in which all formulas behave
consistently). Hence, if an informal argument concerns a consistent situation, and
can be regimented using classical logic, it is perfectly acceptable for a paraconsistent
logician.28 Can a paraconsistent logician, or at least, one who subscribes to paracon-
sistent set theory, look at the metatheoretic arguments concerning paraconsistent
logic in this way? The answer, unfortunately, is “no”. For metatheoretic construc-
tions are carried out in set theory; and paraconsistent set theory is not consistent.

In the model theory of paraconsistent logic, we must therefore use paraconsis-
tent set theory, however that is best construed. To what extent model theory can
be developed on the relevant strategy for naive set theory is still an open ques-
tion. But the model-theoretic strategy for naive set theory provides a simple way of
accommodating paraconsistent model theory. One may think of the metatheory of
the logic, including the appropriate soundness and completeness proofs, as being
carried out (as we know it can be) in ZF. According to the model-theoretic strategy,
the results established in this way can perfectly well be taken to hold of the uni-
verse of sets, paraconsistently construed. The paraconsistent logician can, therefore,
simply appropriate the results.

It might be thought that this approach to the metatheory of paraconsistent logic
suffers from a problem. In the material and model-theoretic strategies for paracon-
sistent set-theory, the relationship between the premises and the conclusion of a
valid inference is expressed by a material conditional. Thus, simplifying to the one-
premise case for perspicuity, and writing the relation “α holds in I” as “I � α ”, an
inference from α to β is valid iff:

Val for every interpretation I, (I � α ⊃ I � β)

Now, the material conditional does not support detachment. Hence an inference can
be valid, yet this does not licence the detachment of the conclusion from the premise.
Surely this deprives the notion of validity of its punch?

No. The disjunctive syllogism is perfectly acceptable provided that the situation
is consistent. (See, again, (Priest, 1987, Ch. 8).) Provided that we do not have I � α

and I � α, we can get from I � α to I � β. In particular, then, provided that
I is in part of the universe of sets that is consistent (the cumulative hierarchy, or a

27 See, e.g., (Dummett, 1977, Ch. 5), esp. p. 197.
28 For further discussion, see (Priest, 1987, Ch. 8).
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sufficiently generous part thereof), we have business as usual. (Note: this does not
mean that the set of things made true by I is consistent. “I � α and I � α” is
quite different from “I � α and I � ¬α.”) If I is a set outside this part of the
universe, matters are different. Thus, we may expect that there is an interpretation,
M, that is in accord with the actual, in the sense that for any γ , γ iff M � γ . One
should not expect this interpretation to be in the hierarchy. Appropriate techniques
of diagonalisation will give us sentences, α, such that M � α and M � α. In such
cases, even though Val holds, the fact that α (i.e., M � α) will not allow us to
detach β (i.e., M � β). However, such αs will be unusual. In standard cases Val
will provide a licence to get from α to β.

It might still be thought odd to have the validity of a deductive inference
grounded in a defeasible inference such as the disjunctive syllogism. But a lit-
tle thought should assuage this worry. The difference between a material I � α

⊃ I � β and a relevant I � α → I � β is not as great as might be thought
in this context. Both are simply true (or false) statements. Inference, by contrast,
is an action. Given the premises of an argument an inference is a jump to a new
state. No number of truths is the same thing as a jump. (This is the moral of Lewis
Carroll’s celebrated dialogue between Achilles and the Tortoise, (Carroll, 1895).)
None the less, truths of a certain kind may ground the jump, in the sense of making
it a reasonable action. There is no reason why a sentence of the form γ ⊃ δ may not
do this just as much as one of the form γ → δ. It is just that one of the latter kind
always does, whilst one of the former kind does so only sometimes.

If it is still not clear how a sentence can function in this way, consider sentences
of the form:

(∗) You promised to do x

The truth of (∗) normally grounds doing x , in the sense of making it reasonable
to do it. But, to use a celebrated example, suppose that (∗) is true, where the x in
question is the returning of a weapon to a certain person. And suppose that that
person comes requesting the weapon, but you know that they intend to use it to
commit suicide. Then the truth of (∗) does not, in this context, ground the action.
Just as with validity and the material conditional, the truth of a sentence of a certain
kind may ground an appropriate action in normal circumstances, but fail to do so in
unusual circumstances.

This objection dealt with, there would seem nothing to prevent the paraconsistent
logician from simply appropriating all the classical metatheoretic results in the way
explained. The appropriation might be thought to have all the charms of theft over
honest toil (as Russell said in another context); on the other hand, why reinvent the
wheel?

7 Conclusion: The Shock of the New

At various times in its history, mathematics has been shocked by the discovery of
new kind of entity: irrational numbers, infinitesimals, transfinite sets, and so on.
The reception by the mathematical community of these entities has often been
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controversial and contentious; and the discovery has always been followed by a
process of rethinking mathematical reasoning in the light of these entities and their
properties. The discovery of inconsistent objects, such as the Russell set—of all
those sets that do not contain themselves—is the most recent, and perhaps the
most contentious, episode of this kind; and we are still in the process of think-
ing through its ramification for mathematical reasoning. In mathematical revolu-
tions of this kind, it is always important to preserve the central parts of previous
mathematical thought. What I have been engaged in here is a contribution to this
project.
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Chapter 9
Paradox, ZF, and the Axiom of Foundation

Adam Rieger

It is a great pleasure to contribute to this Festschrift for John Bell. No-one has done
more than he has to demonstrate the fruitfulness of the interplay between technical
mathematics and philosophical issues, and he is an inspiration to all of us who work
somewhere in the borderland between mathematics and philosophy.

I also owe him a great personal debt. I arrived at the LSE dejected and dis-
illusioned by my experiences of the Mathematical Tripos at Cambridge, but it is
impossible to be downhearted for long in the company of John. His enthusiasm,
humour and warmth were the perfect antidote to the stuffiness and inhumanity of
Cambridge and helped hugely to rebuild my interest and self-confidence. John’s
energy levels must be seen to be believed, and an evening with him is an unforget-
table experience. It generally starts about 4 p.m. and ends around 5 in the morning,
when the last of his companions (never John, who always gives the impression that
he could go on talking indefinitely) finally succumbs to sleep.

At John’s suggestion, I wrote my M.Sc. dissertation at the L.S.E. on truth, which
led on eventually to an Oxford D.Phil. which concerned both the semantic and set-
theoretical paradoxes. It is the concept of set—example par excellence of one that
straddles philosophy and mathematics—that is the subject of this essay.

1

At the beginning of the twentieth century there was a crisis in the foundations of
mathematics. The crisis centred around the concept of set, which suddenly achieved
prominence in two different ways. Firstly, Cantor’s theory of the transfinite showed
that sets were of great intrinsic mathematical interest. And secondly through the
work of Frege and Russell it emerged that sets were central to the philosophical
project—logicism—of reducing mathematics to logic.

The discovery by Russell and others that, if handled carelessly, sets give rise to
contradictions, threatened not only the logicist programme, but mathematics itself;
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for large parts of mathematics, in particular analysis, make essential use of the com-
pleted infinite, and the paradoxes seemed to show that this was a risky practice.

A hundred years later there is no longer a foundational crisis. Why is this? By
1930, mathematicians had found a way of coping with the paradoxes. A system of
axiomatic set theory, Zermelo-Fraenkel set theory (ZF for short) had been devel-
oped, which allowed mathematicians to do all they wanted to do with sets, whilst
maintaining consistency. ZF is not the only axiomatic set theory, but at the present
time it has a completely dominant position amongst such theories. For the purposes
of university mathematics courses, for example, set theory just is ZF.

Does ZF really deserve its elevated position? Below I examine three sorts of
argument which can be adduced in support of ZF:

1. Argument from the paradoxes
2. Argument from the iterative conception
3. Argument from pragmatic mathematical considerations

and conclude that none of them are convincing.

2

There is a widespread view that one needs some kind of hierarchy, and hence ZF or
something like it, to avoid the paradoxes.1 Let us go back to basics to examine the
merits of this claim.

According to the naive conception of set, any arbitrary collection forms a set.2

This entails the truth of the naive comprehension schema

∃x∀y(y ∈ x ↔ ϕ(y)).

But this schema is in fact logically false: for as Russell noticed (Russell, 1902), on
letting ϕ be y �∈ y we obtain a contradiction.

Now whilst this shows that there is a fatal defect with the naive conception, it
does not yield an illuminating explanation of what exactly is wrong with it, an
explanation that might be of some use in the reform of the concept of set which
must inevitably follow.

Such an explanation is, however, available.
Suppose a is a set, and consider the set

b = {x ∈ a : x �∈ x}.

1 Logical cognoscenti know that this is false, but the view is common amongst those who are
mathematically, but not logically, well-informed.
2 As far as I know, nobody has ever explicitly put forward the naive conception, though it is implicit
in (Frege, 1893).
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It is easy to see that b �∈ a. So we have a recipe which, for any set a, gives us a set
which is not a member of a. The set b “diagonalizes out” of a.

If a already has all sets as members, trouble arrives in the shape of the Russell
paradox. And naively, there must be such a set a, for example the set of everything
whatever. (Just take ϕ(y) to be y = y in the naive schema above.) On this way of
looking at it, contradiction arises because, under the naive conception, we have both
extensibility (the ability to extend any given set by finding something that is not one
of its members) and universality (the existence of a set which contains everything).
Clearly these cannot co-exist consistently.

Essentially the same diagnosis can be given for the other standard set-theoretic
paradoxes. In the so-called Cantor paradox, extensibility arises from the power set
operation—since the power set P(a) of a is always strictly larger than a, there must
be elements of P(a) which are not in a. So again the existence of a universal set
leads to contradiction.

In some of the paradoxes the extensibility and universality are relativised to par-
ticular sub-collections of the universe. For example, the Burali-Forti paradox hinges
on the tension between (i) the principle that, for any initial segment of ordinals, we
can, by considering the ordinal number of the segment itself, find an ordinal not in
that segment, and (ii) the principle that there is a well-ordered set of all ordinals. The
slightly less well-known Mirimanoff paradox concerns the set W of all well-founded
sets.3 Since all the members of W are well-founded, so is W , but then it should be a
member of itself, and so, after all, not well-founded. Here extensibility is obtained
by considering, for any set a of well-founded sets, the set b = a∪{a}; this is another
set of well-founded sets (since a itself must be well-founded), yet it has a member
(namely a itself) which is not a member of a (else we have a ∈ a, so a is not
well-founded).4

3

A consequence of this diagnosis is that there is a neat and rather natural way to
solve the paradoxes: ban universality by not allowing very large collections (e.g. the
universe and the collection of all ordinals) to be sets. Remarkably, this solution was
hit upon by the originator of set theory, Georg Cantor, before the “paradox industry”
had even got under way. In a letter he wrote to Dedekind (Cantor, 1899) we find the
following passage:

. . . it is necessary, as I discovered, to distinguish two kinds of multiplicity . . . . For a
multiplicity can be such that the assumption that all of its elements “are together” leads
to a contradiction, so that it is impossible to conceive of the multiplicity as a unity, as “one

3 For the definition of well-founded, see below.
4 For more details, including attempts to apply the same idea to the semantic paradoxes, see
(Rieger, 1996, Ch. 1) or (Priest, 1994) (Priest uses the terms transcendence and closure).
Dummett’s idea of an indefinitely extensible concept (Dummett, 1991, p. 316) and the book (Grim,
1991) are also relevant. The basic idea can be found in (Russell, 1906c), which I discuss below.
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finished thing.” Such multiplicities I call absolutely infinite or inconsistent multiplicities . . . .
If on the other hand the totality of the elements of a multiplicity can be thought of without
contradiction as “being together” . . . I call it a consistent multiplicity or set.5

Cantor has discovered what in modern parlance is called the set/class distinction,
usually attributed to (von Neumann, 1925). The key idea is that some infinite col-
lections are all right, and they form the sets; others are just too big, and are either
abolished altogether, or allowed in as some other kind of entity (proper classes).6

The idea is, in the light of our diagnosis, thoroughly motivated and not at all ad hoc.
And, indeed, this is exactly what happens with ZF. This is sometimes expressed,

somewhat misleadingly, by saying that ZF incorporates the doctrine of limitation of
size—misleading because this phrase suggests that there is some cardinal magnitude
below which collections are safe but above which they are paradoxical, whereas the
point is not that sets must be below some particular size but that they must not be as
big as the universe.

Nothing we have said so far, however, requires sets to be arranged in a hierarchy.
But the ZF axioms embody such a requirement. In particular, the axiom of founda-
tion states that every (non-empty) set x has a member y which is minimal, in the
sense that no member of x belongs to y.7 Another way of putting this, equivalent
in the presence of the axiom of choice, is that there is no infinite descending mem-
bership chain x # x1 # x2 # . . . . So there cannot be, for example, a set which is a
member of itself, or a member of a member of itself.

A suspicion therefore arises that ZF restricts the notion of set more than is neces-
sary to avoid the paradoxes, and therefore offends against the following methodolog-
ical principle: when forced by paradox to reform a naive concept, preserve as much
of it as possible. The naive concept of set does not obey the axiom of foundation:
it allows such self-membered sets as the set of absolutely everything, and the set
of all things discussed in this paper. ZF rules out both of these, but the principle
of restricting universality seems to deny sethood only to the first.8 Can there be a
consistent theory which allows the second?

Indeed there can. One sort of theory with this property is discussed by (Aczel,
1988). Briefly, the idea is to take the axioms of ZF except foundation, and add to

5 Though it is not quite as explicit, the distinction between the transfinite and the absolute infinite
can be found much earlier in Cantor’s writings (e.g., Cantor, 1883, p. 205). It seems likely that,
having realized that any set can be enlarged by the power set operation, Cantor drew immediately
the conclusion that there can be no universal set. Cantor is sometimes accused of believing in
naive set theory (e.g., (Körner, 1960, p. 44): “Cantor’s theory of classes, by admitting as a class
any collection, however formed, leads to contradictions”). This is quite unjustified: rather “his
conception of set . . . was one in which the paradoxes cannot arise” (Menzel, 1984, p. 92); see also
(Hallett, 1984, p. 38 and passim).
6 More precisely, the principle that a collection is too big to form a set iff it can be put into 1-1
correspondence with the universe can be taken as the basis for an axiomatization of set theory, as
is done in (von Neumann, 1925).
7 A set x satisfying this condition is said to be well-founded.
8 To make the example work, interpret “discussed in this paper” so that it applies to only a small
(e.g. finite) number of things.



9 Paradox, ZF, and the Axiom of Foundation 175

them some version of an anti-foundation axiom. This is best understood in terms
of membership graphs. There is a natural sense in which (directed) graphs can be
regarded as pictures of sets: for example, Fig. 9.1 is a picture of the von Neumann
ordinal 2 = {∅, {∅}}.

Fig. 9.1 An exact picture of 2

Only well-founded graphs (graphs without infinite paths) can be pictures of sets
in the ZF universe; to obtain the richer non-well-founded universes we allow any
graph to be a picture of a set. Thus Fig. 9.2 is the picture of a set a = {a,∅}.

Fig. 9.2 A non-well-founded graph

By constructing a graph model from a model of ZF, Aczel proves that these
systems are consistent if ZF is.9

Summary: it can be rigorously proved that ZF restricts the notion of set more
than the paradoxes demand.

4

How did the idea take hold that a hierarchy is necessary to solve the paradoxes? To
answer this it will be necessary to take a short historical detour.

In December 1905 Russell read a remarkable paper to the London Mathematical
Society, later published as (Russell, 1906c). In it he states clearly that the lesson of
the paradoxes is that naive comprehension must be rejected:

What is demonstrated by the contradictions we have considered is broadly this: “A propo-
sitional function of one variable does not always determine a class.” (Russell, 1906c,
pp. 144–145)

9 For more details see (Aczel, 1988). I discuss the merits of the various anti-foundation axioms in
(Rieger, 2000).
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And he gives essentially the diagnosis above:

. . . there are what we may call self-reproductive processes and classes. That is, there are
some properties such that, given any class of terms10 all having such a property, we can
always define a new term also having the property in question. Hence we can never collect
all the terms having the said property into a whole; because, whenever we hope we have
them all, the collection which we have immediately proceeds to generate a new term also
having the said property. (Russell, 1906c, p. 144)

This insight would seem to lead naturally to the conclusion outlined above, that
a solution to the paradoxes may be obtained by ensuring that there is no universal
class, no class of all ordinals, etc. However, Russell does not simply draw this infer-
ence; rather he considers three different responses, all of which would indirectly
ban the offending classes: the “zigzag” theory, the “limitation of size” theory, and
the “no-classes” theory, tentatively suggesting that the last of these offers the most
promising route for a solution.11

Less than a year later, Russell had changed his mind about the paradoxes. In a
paper published in September 1906, he wrote this:

I recognise, however, that the clue to the paradoxes is to be found in the vicious-circle
suggestion. (Russell, 1906b, p. 198)

The “vicious-circle suggestion” is

. . . that whatever in any way concerns all o[r]12 any or some (undetermined) of the members
of a class must not itself be one of the members of a class.13 (Russell, 1906b, p. 198)

A new concept, circularity, has now entered the discussion. Russell believes that all
the paradoxes result from the (allegedly) circular practice of allowing totalities con-
taining members which, in some appropriate sense to be discussed below, “concern”
that very totality.

It might perhaps seem at first sight that this is just another way of stating the orig-
inal diagnosis. For is not this circularity the key feature of the “self-reproductive”
classes identified in the earlier paper? But in fact the difference is dramatic. Accord-
ing to the previous diagnosis, there cannot be a class of all ordinals or all things
(for this would lead to the contradictory consequence that there is a new ordinal
(thing) which both must and must not be in the class). But in the later paper, Russell
advocates the very much stronger principle that there can be no class whatever, large
or small, which has members concerning that very class. This inevitably imposes a
hierarchical structure on the universe of classes. At this point an alien constructivism

10 “Term” here just means “object.”
11 It might be thought that “limitation of size” embodies exactly the idea of restricting universality,
but it is clear that Russell does not think of it in this way: rather he sees the theory as posing the
question “how far up the series of ordinals it is legitimate to go” (p. 53), a question which he cannot
see any prospect of answering.
12 The original has “of,” which seems to be a misprint.
13 The occurrence of “any” (and “some”) may seem puzzling here: since anything presumably
concerns itself, the principle seems to rule out anything ever being a member of a class. But Russell
should be read as forbidding any member of a class concerning quantification over the class.
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was imported into classical mathematics, vestiges of which are still visible today.
For the vicious circle principle is inextricably linked with a constructivist view of
the metaphysics of mathematics.14

5

What had happened to Russell in the few months between the two papers? He had
been reading Poincaré. The second paper was, in fact, written in reply to [Poincaré,
1906]. In that work Poincaré blames the paradoxes on circularity. His treatment is
sketchy, and he discusses only Richard’s paradox15 in any detail, claiming that “the
same explanation serves for the other antinomies, as may be easily verified” (p. 190).
Thus applied to classes,

. . . the definitions that must be regarded as non-predicative are those which contain a vicious
circle.16 (p. 190)

Though he does not explicitly formulate the VCP, it is clear from a later passage in
the paper that he has the same conception of it as Russell:

. . . if the definition of a notion N depends on all the objects A, it may be tainted with the
vicious circle, if among the objects A there is one that cannot be defined without bringing
in the notion N itself. (p. 194)

Now Poincaré’s views on the VCP arise completely naturally from his wider
views on the philosophy of mathematics, in particular, his view on mathematical
existence. He is explicit in his constructivism. In a paper written in 1912, he declares
that a mathematical object “exists only when it is conceived by the mind” (Poincaré,
1963, p. 72). He considers a “genus” (set) G with a member X , and writes of the
members of G

. . . they will exist only after they have been constructed; that is, after they have been defined;
X exists only by virtue of its definition,17 which has meaning only if all the members of G
are known beforehand, and X in particular.

This conception of existence of course provides a motivation for the VCP. If
mathematical objects are brought into existence by their definitions, then it seems
that no totality can possibly contain members defined in terms of that very totality.

14 To avoid confusion, I should perhaps make it clear that here and throughout the paper I use
“constructivism” as a name for a metaphysical view about mathematics, roughly that mathematical
objects are brought into existence by some activity of human minds. The term is sometimes now
used for mathematics without the law of excluded middle, but I shall use it in its earlier sense.
15 This is a semantic paradox, introduced in (Richard, 1905), which concerns the collection E of
all reals definable in a finite number of words; by a diagonal argument we can obtain a new real,
not in E yet definable in a finite number of words.
16 The original italicises this sentence. At this point “non-predicative” means simply “not defining
a class”; confusingly, Russell, having accepted the diagnosis, started using “impredicative” to mean
“violating the vicious circle principle.”
17 My italics.
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However, Russell adopted Poincaré’s views on impredicativity without accepting
the constructivist outlook. By doing so he landed the classical mathematical com-
munity in a philosophical confusion from which it has yet to emerge.18

6

Armed with his diagnosis of the paradoxes and aided by Whitehead, Russell
embarked on reworking mathematics whilst obeying the VCP: the result was the
ramified type theory of (Whitehead and Russell, 1910). This is not the place for a
detailed discussion of that work, but for present purposes it is enough to note that
the system obtained is a (rather complex) hierarchy of propositional functions; the
position of a function in the hierarchy depends not only on (i) its arguments but
also on (ii) the ranges of any quantifications in its definition (this latter refinement
making the hierarchy “ramified”), both (i) and (ii) being required to be lower down
in the hierarchy.

But despite Whitehead and Russell’s efforts, their system has never been
accepted as a foundation for mathematics. Instead, the system of axiomatic set
theory developed in continental Europe, mostly by Zermelo, proved much easier
to work with. Most of the axioms appear first in (Zermelo, 1908), which contains
versions of: extensionality, empty set, pairs, separation, power set, union, choice and
infinity, that is, all the axioms in the now-standard theory except for replacement
and foundation. Interestingly Zermelo’s motivation at this point seems only partly
to have been the paradoxes; primarily he was concerned to analyse exactly which
principles concerning sets he had used in his proof that every set can be well-ordered
(Zermelo, 1904). The central idea is to replace naive comprehension by separation:
that is, we cannot in general form the set of absolutely all y such that ϕ(y), but only
the set of all members of some set a such that ϕ(y). Paradox is avoided because there
is no way to prove that the universe is a set; indeed the Russell paradox becomes a
proof that it is not a set.19

The replacement axiom was added later by Fraenkel (1922) and Skolem (1922).
As for the axiom of foundation: the issue first seems to have been considered by
(Mirimanoff, 1917a, b), who distinguishes “ordinary” sets which do not have infi-
nite descending membership chains from “extraordinary” ones which do. He does

18 Goldfarb (1989) attempts to reconcile Russell’s predicativism with his lack of constructivism,
arguing that his views on variables and their ranges of significance can lead to ramification of
intensional entities (in particular propositions and propositional functions) even on a realist con-
ception. But even if this is right—and Goldfarb says he is only making a “first step” (p. 27) towards
a full treatment of the issue—the fact remains that Russell advocates the VCP in full generality. As
Goldfarb admits (pp. 30–31), it is hard to see how the ramification of sets can be justified except
on a constructivist view.
19 The axiom of foundation immediately rules out a universal set, for such a set would be a member
of itself. But the point is that such a set is ruled out anyway by the other axioms. Foundation plays
no role in solving the paradoxes.



9 Paradox, ZF, and the Axiom of Foundation 179

not assert, however, that there is anything wrong with the extraordinary sets. von
Neumann (1925) describes non-well-founded sets as “superfluous” [p. 404] and
gives an axiom [p. 412] which excludes some, but not all, of them. Three years
later, in (von Neumann, 1928), he formulates the axiom of foundation in the form
∀x(x �= ∅ → ∃y ∈ x(y ∩ x = ∅)). However, it is not until (Zermelo, 1930) that
the axiom of foundation is explicitly adopted as a postulate. With this paper all the
axioms of standard modern set theory are in place.

7

In comparing type theory with ZF, it is useful to try to get clearer about what the
VCP is saying. Russell never provided a single clear statement of it. Here are two
attempts:

I. No totality may contain members defined in terms of itself.
(Russell, 1908, p. 75)

II. Whatever involves all of a collection must not be one of the collection.
(Russell, 1908, p. 63)

Now it seems that Russell took these, and other, statements to be different for-
mulations of the same principle.20 However, (Gödel, 1944) pointed out that it looks
like there is more than one principle here, in particular one to do with definitions,
the other to do with the notion of involving.21 Let us call these VCP I and VCP II,
and try to see more precisely what implications they have for sets.

VCP I seems closest to the constructivist spirit of Poincaré. It rules out impred-
icative definitions: for example definitions of x which quantify over a collection of
which x is a member.22

Since sets presumably “involve” their members, VCP II rules out sets which are
members of themselves. It also seems reasonable that “involving” is transitive, so
that a set also involves the members of its members, and so on. Hence a reasonable
explication of “x involves y” in the case of sets is “y is a member of the transitive
closure of x ,”23 in which case VCP II will be obeyed if sets satisfy the axiom of
foundation.24

20 Some other statements from Russell’s writings are to be found at the pages cited above, and also
(Russell, 1906b, p. 204); (Whitehead and Russell, 1910, p. 37).
21 Gödel claims to discern a third principle, concerning “pre-supposing,” which I shall not discuss
here.
22 This will not do as it stands as a characterization of impredicative definitions. For example it
will be equally objectionable if, instead of x itself being a member of the totality, some second
object y, defined using x , is a member. Presumably to make this rigorous we would require some
notion of well-foundedness for definitions; I shall not attempt to supply details here.
23 The transitive closure of x is the set whose members are the members of x , the members of the
members of x , and so on.
24 Though he does not state it explicitly, this seems to be what Gödel has in mind in his paper (see
p. 131 with its footnote reference to Mirimanoff). It is a little too strong to say that VCP II entails
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Now the system of Principia Mathematica obeys both VCP I and VCP II.
Impredicative definitions are rigorously avoided, and the universe has a hierarchical
structure. That ZF obeys VCP II is, as I have said, guaranteed by the axiom of
foundation. But ZF violates VCP I. The axiom of separation allows us, for any set
a, to define a new set b by admitting only those members of a satisfying some for-
mula ϕ(x). But there is no restriction on the quantifiers that may occur in ϕ(x): they
may range over the whole universe. Impredicative definitions are perfectly allowable
in ZF.

8

As I recounted above, most of the axioms of ZF resulted from Zermelo’s attempt to
defend his proof that every set could be well-ordered. This does not apply, however,
to the axiom of foundation. I conjecture that it was inspired by type theory, but I do
not know of anything explicit in the early literature which supports this. In any case,
somewhat later a new way justifying the axioms developed. This is the second of
the three ways I mentioned of arguing in favour of ZF.

The idea is as follows. We all have an intuitive grasp of the concept of natural
number, that is, we grasp a structure which we refer to as “the natural numbers.” If
someone wanted to justify the Peano axioms for number theory, they would appeal
to the evident truth of the axioms in this intuitively understood structure. The claim
is that something analogous can be done for set theory. There is an intuitive con-
ception of set, the iterative conception, which gives rise to an intuitively understood
model, the cumulative hierarchy. The axioms (or at least, a number of them)25 are
then justified by appealing to the fact that they are true in this model.

How does the model work? Start with the empty set.26 Call this V0. V1 is the
power set of V0, and in general, we obtain the next level after Vn by taking the
power set. Vω is just the union of all the Vn for finite n, and Vω+1 is the power set
of Vω. Continue through the ordinals, forming power sets at each stage and taking
unions at limit ordinals. The result is a hierarchy in which sets only have members
from lower down the hierarchy. As (Lavine, 1994, p. 144) points out, “the iterative
conception gives the Axiom of Foundation center stage.”

the axiom of foundation, for an infinite descending membership chain x1 # x2 # . . . in which all
the xi are different violates foundation without circularity. Such a chain seems equally offensive
to the constructivist intuitions underpinning the VCPs, and suggests that they do not fully capture
those intuitions.
25 There is disagreement, for example, on whether the axiom of replacement is derivable from the
iterative conception.
26 A variation is possible in which instead we start with some atoms or urelements, that is, some
non-sets. Though this is probably more natural from a naive point of view, mathematicians stan-
dardly work with a universe of pure sets, where everything is a set, since this is technically
smoother (for example the quantifiers can simply be taken to range over all sets) and does not
result in any limitation in structure. For present purposes the difference in the two approaches is
not important.
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The cumulative hierarchy was hinted at in (Mirimanoff, 1917a) and introduced
explicitly by von Neumann (1929) for the purposes of a consistency proof, but
the idea of using it as an intuitive model justifying the axioms only came later.
It is suggested by Gödel (1947, pp. 474–475), but only becomes explicit around
1970, when a number of papers appeared roughly simultaneously. Shoenfield (1967,
1977), Boolos (1971) and Wang (1974) are representative. Let us examine some of
the passages in which they justify that part of their conception of set which gives
rise to the axiom of foundation.27 First Shoenfield:

Sets are formed in stages. For each stage S, there are certain stages which are before S. At
each stage S, each collection consisting of sets formed at stages before S is formed into a
set. . . . When we are forming a set z by choosing its members, we do not yet have the object
z, and hence cannot use it as a member of z. The same reasoning shows that certain other
sets cannot be members of z. For example, suppose that z ∈ y. Then we cannot form y until
we have formed z. Hence y is not available as an object when z is formed, and therefore
cannot be a member of z. (Shoenfield, 1977, p. 323)

Boolos actually claims that the iterative conception of set has an intuitive plau-
sibility independent of the paradoxes, and that one might have come to see it as
superior to naive set theory (as embodied in the naive comprehension axiom) even
if the paradoxes had never been discovered. That is (though this is not the way
Boolos expresses it), there are really two versions of naive set theory, one captured
by naive comprehension, the other by the iterative conception, and the latter has at
least as great an intuitive appeal as the former:

ZF . . . is not only a consistent (apparently) but also an independently motivated theory of
sets: there is, so to speak, a “thought behind it” about the nature of sets which might have
been put forth even if, impossibly, naive set theory had been consistent. (Boolos, 1971,
p. 490)

Boolos observes that naive comprehension implies that there is a set of all sets,
and that this set is then a member of itself. He continues

It is important to realise how odd the idea of something’s containing itself is. Of course
a set can and must include itself (as a subset). But contain itself? Whatever tenuous hold
on the concepts of set and member were given one by Cantor’s definitions of “set” and
one’s ordinary understanding of “element,” “set,” “collection,” etc. is altogether lost if one

27 More detailed marshallings of evidence against the iterative conception may be found in
(Lavine, 1994, Ch. V; Hallett, 1984, Chs. 5–6). The overall conclusion of Hallett’s book, however,
that “we have no satisfactory simple heuristic explanation of why it [ZF] works,” seems to me to be
too strong. It is not mysterious that ZF avoids the paradoxes, since it is apparent from the axioms
that the paradoxical collections are denied sethood. Hallett also makes much (in Chapter 5) of the
technical result that we have very little idea of the size of the power set of ω, arguing that this
refutes ZF’s claim to embody a “limitation of size” conception. This, however, seems to depend
on thinking of “limitation of size” in the style of Russell, as “no sets allowed that are bigger than
such-and-such a cardinal”; rather, as I have been trying to convey, the point is that however big
it is, P(ω) is still a set, and therefore not as large as the universe. There is, however, another
sense of “why ZF works” considered by Hallett: why it (or indeed any set theory) is adequate as a
foundation for mathematics. I agree that this is genuinely mysterious, and I shall not try to solve
the mystery here.
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is to suppose that some sets are members of themselves. The idea is paradoxical not in the
sense that it is contradictory to suppose that some set is a member of itself, for, after all,
“(∃x)(Sx & x ∈ x)”28 is obviously consistent, but that if one understands “∈” as meaning
“is a member of,” it is very, very peculiar to suppose it true. For when one is told that a set
is a collection into a whole of definite elements of our thought, one thinks: Here are some
things. Now we bind them up into a whole (footnote: We put a “lasso” around them, in a
figure of Kripke’s.). Now we have a set. We don’t suppose that what we come up with after
combining some elements into a whole could have been one of the very things we combined
(not, at least, if we are combining two or more elements). (pp. 490–491)

Wang says simply:

A set is a collection of previously given objects. (Wang, 1974, p. 530)

What I want to emphasize here is the constant appeal, in these passages, to con-
structivist images and terminology. All three authors use temporal words: “before,”
“yet,” “until,” “when,” “now,” “previously.” The question is, in what sense are we to
take this? Clearly all agree that it is not to be taken literally: there is not actually a
time t0 at which only the empty set exists, another (later) time by which the singleton
of the empty set has been formed, and so on. The constructivist language is supposed
only to be metaphorical. Boolos for example, having presented the intuitive idea in
constructivist language, then back-pedals: “From the rough description it sounds as
if sets were continually being created, which is not the case” (p. 491).

It is clear, then, that the conception of set advanced is not supposed to be literally
constructivist, but apparently only constructivist “in principle,” under some liberal
interpretation. The trouble is, I shall argue, that the sense has to be so liberal that it
is no longer entitled to be called constructivist at all.

Wang admits (p. 531) that there is an element of “idealization” in supposing
that we can “run through” an infinite number of objects in the way required in his
description of the cumulative hierarchy. But all the authors are silent on what exactly
this means. If the talk of “formation,” “collection” and so on are to have any force,
there must surely be envisaged an agent who is doing the forming and collecting.
What properties do we take this agent to have? (Parsons, 1977, p. 507) raises some
problems concerning this:

It is hard to see what the conception of an idealized mind is that would fit here: it would
differ not only from finite minds but also from the divine mind as conceived in philosophical
theology, for the latter is thought of either as in time, and therefore as doing things in
an order with the same structure as that in which finite beings operate, or its eternity is
interpreted as complete liberation from succession.

To elaborate: if the agent is conceived of as working in ordinary time, there is just not
enough of it to generate the whole hierarchy (at least if time consists of continuum-
many instants). The agent needs to occupy a “super-time” with perhaps a class of
instants isomorphic to the ordinals. On the other hand, we must not let the agent
be too powerful; if he could move backwards and forwards in time at will then it is
mysterious why the sets need to be constructed in order at all.

28 Boolos is using “Sx” for “x is a set”.
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Even if the notion of the ideal agent could be satisfactorily clarified there remains
the problem of the status of the ordinals. The cumulative hierarchy is obtained by
iterating the power set operation up the entire collection of ordinals. If these are
assumed as given from the start this seems a platonistic rather than constructive
foundation for the whole enterprise. Wang (p. 532) suggests that the conception of
what ordinals there are can develop as the hierarchy is generated. But only count-
ably many ordinals can ever be defined, so it seems that some kind of platonistic
conception is inevitable.

Worse than this, however, is the issue of impredicativity. A sine qua non of con-
structivism is that objects are conceived of as occurring in an order, such that at any
point in the construction process, only those objects occurring earlier in the order are
available. It seems therefore that no theory allowing impredicative definitions can
rightly claim to be constructive: one simply cannot quantify over objects which, if
the constructivism is taken seriously, do not exist (“at the time”). But the ZF axioms
of which the hierarchy is an intuitive model involve impredicative quantifications.
Most striking is the axiom of power set in tandem with the axiom of separation.
From the power set axiom we know that for any set x the power set P(x) is also a
set; the axiom of separation can then be used to pick out individual subsets by means
of a formula ϕ. But this formula can contain quantifications over anywhere in the
universe. To put it informally, what subsets there are of a particular set depends not
only on what happens at the level of the set, and the next higher level, but also on
what happens in the whole hierarchy—as (Bell and Machover, 1977, p. 509) put it,
“the size of a power set Pu of a given set u is proportional not only to the size of
u but also to the ‘richness’ of the entire universe.”29 This seems incompatible with
any constructive interpretation.

It is not that the authors are at all unaware of this; it is just that they are silent
on the conflict between it and the constructivist heuristic which they give for the
iterative conception of set. Wang for example (p. 532) says explicitly “we do not
concern ourselves over how a set is defined, e.g. whether by an impredicative defini-
tion” and admits (p. 560) that “if we adopt a constructive approach, then we do have
a problem in allowing unlimited quantifiers to define other sets,” but he seems to see
no conflict between his own use of constructivist terminology and his advocacy of
impredicativity.

The justification of ZF as constructivist in principle is an attempt to have the best
of two incompatible worlds, and results in a hybrid position which is philosophically
bankrupt and ought to satisfy nobody. A symptom of the philosophical confusion
upon which ZF rests is the status of the axiom of choice. This is accepted by most
mathematicians, but is not usually regarded as just another of the axioms of set
theory—it has a more dubious status. It is customary to state carefully whether or
not any theorem requires it, and to do without it if possible. It is almost as though
people feel a little guilty in using it. Why is this? I suggest that the explanation is that

29 In technical terms, the power set operation is not absolute. The issue is discussed by Hallett
(1984, pp. 206–207, 221) and Hallett (1994, pp. 83–92).
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the strongly non-constructive feel of the axiom conflicts with the (false) idea that the
rest of ZF is constructive. But in fact the axiom of choice is fully in the spirit of the
rest of set theory—the damage its absence does to the theory of cardinal arithmetic
is one demonstration of this. If it were clearly realised that ZF is not constructive
at all, the axiom of choice would cease to be regarded as a second-class citizen and
take up its rightful position as just another of the axioms of set theory.

The conclusion of this section, then, is that ZF does not embody a philosoph-
ically coherent notion of set. There is a coherent constructivist position, which
entails repudiating impredicative definitions, obeying VCP I, and ending up perhaps
with something like ramified type theory. It seems, however, that such a position
will not lead to a foundation for classical mathematics. (Whitehead and Russell
famously had to postulate the axiom of reducibility to make possible the derivation
of mathematics in their system, but this axiom is unmotivated in the light of the
VCP. And alternative versions of constructivism, for example intuitionism, are more
damaging yet to classical mathematics.) There is also a coherent anti-constructivist
position, which rejects the metaphysics of constructivism and its resultant inability
to justify classical mathematics. This position rejects the VCP in all its forms. But
ZF is an uneasy compromise between these two: it pays lip-service to construc-
tivism without really meaning it, and in doing so forfeits its claim to philosophical
justification.

9

Suppose it is admitted that ZF cannot be given a coherent philosophical justification.
It seems there is still a third and final argument a defender of it might use: we might
call it the argument from mathematical pragmatics.

ZF has proved adequate as a foundation for mathematics, in the sense that all
known mathematics can be carried out in ZF. It is convenient to work with: for
example, the well-foundedness of the sets allows inductive definitions to be handled
smoothly. So whether or not it can be thought of as the axiomatization of a coherent
notion of set, it is reasonable—so the argument goes—for it to occupy the position
it does as the dominant theory of sets.

One reply to this is that it is no longer clear that ignoring non-well-founded sets
gives a theory which is optimal for applications. In recent years uses have started
to be found for non-well-founded theories—indeed the current revival of interest
started with Aczel’s realization that the modelling work he was doing in computer
science (on parallel processing) was much simpler if one abandoned foundation
(Aczel, 1988, Ch. 8). Rather than attempt to describe this application in detail, I will
try to give the general flavour with some simpler examples.

It is common in mathematical modelling to use (ordered) n-tuples 〈x1, . . . , xn〉.
There is a standard way of handling n-tuples in set theory: for example for the pair
〈a, b〉 we use the set {{a}, {a, b}}. It can happen that we want an entire n-tuple to be
equal to one of its elements, and this will be forbidden by the axiom of foundation.
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Thus in the treatment of the liar in (Barwise and Etchemendy, 1987) (so far the
best-known application of non-well-founded sets) the aim is to model a proposition
which asserts its own falsehood. Propositions are modelled by pairs,30 so what we
need is a proposition p which satisfies p = 〈F, p〉 (where F is an atom representing
falsehood). This is possible only if we abandon foundation.

A similar example, this time from computer science: a stream is a sequence of
data items, and can neatly be defined as an ordered pair where the first element is an
item of data and the second element is a stream. Then an infinite sequence of zeroes
is a stream s satisfying s = 〈0, s〉. Once again the axiom of foundation prevents
this from being modelled in a natural way. This example is from Barwise and Moss
(1996, p. 34). The book explores applications in other areas, for example the theory
of games and the model theory of modal logic.

It is true that a hard-line supporter of ZF cannot be forced to repudiate foundation.
We can always carry out these modellings by choosing appropriate objects in the
well-founded universe. But such an approach is analogous to a hard-line disbeliever
in complex numbers insisting on them as mere pairs of reals. As more and more
applications are discovered, it becomes clearer that there is no good reason for not
accepting non-well-founded sets as genuine sets.

10

There is a second and deeper reply to the “pragmatic” argument for ZF. A theory
of sets should, I think, be answerable to our informal concept of set as completely
arbitrary collection, as well as to the needs of mathematicians. Thus, even if math-
ematicians can get by using only some special class of sets, it does not follow that
we should rest content with a theory which says that these are all the sets there are.
Only a non-well-founded theory can convincingly be shown to modify the naive
conception as much as, but no more than, is required by the paradoxes; and only in
adopting such a theory can we obtain a truly satisfactory solution.
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Chapter 10
Absoluteness and the Skolem Paradox

Michael Hallett

1 Introduction

When seen in the “correct” light, the contradictions of set theory are by no means
disastrous, but instructive and fruitful. For instance, the antinomies of Russell and
Burali-Forti live on in the systems of axiomatised set theory in the guise of estab-
lished theorems. Zermelo used the Russell-Zermelo argument to prove that every
set possesses a subset which cannot be an element of that set, and from which it
follows that there can be no universal set ((Zermelo, 1908b, pp. 264–265), p. 203
of the English translation), and the essentials of the Burali-Forti argument can be
used to prove that there is no ordinary set of all (von Neumann) ordinals.1 The
fact that these contradictions reappear as theorems in set theory is not surprising
given that the reasoning involved is (or can be turned into) set-theoretic reasoning,
and that we always have the choice of treating the derivation of contradictions as
arguments in reductio form, choosing one premise as responsible for the contra-
diction. Indeed, much of the early discussion of the arguments was concerned with
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assessing which of the premises used was in fact so reduced. Once absorbed into
set-theoretic frameworks designed especially to avoid the known contradictions, the
paradoxes give rise to arguments which reveal something deep and interesting about
the existence of sets and the structure of the universe of sets itself. These systems
analyse what is exposed by the antinomies; unsurprisingly, the stronger the system,
the more refined the analysis tends to be. The most striking example is von Neu-
mann’s system, which allows that there is a greatest (von Neumann) ordinal; it is
just that this ordinal cannot be an ordinary set, and thus cannot give rise to an even
greater ordinal. Moreover, in this setting, the universal set, the Russell set, and the
set of all ordinals are all equipollent, all maximally “big,” and all equally “too big”
to be sets. (See Hallett, 1984, pp. 288–295.)

The situation with the “semantic” antinomies is somewhat different. They, too,
give rise to concrete, mathematical results. For instance, the Liar Paradox, developed
within a consistent theory which allows for the right representability, yields, instead
of a contradiction, Tarski’s Theorem on the undefinability of the truth-predicate for
that theory. However, the form of the argument is specific neither to set theory nor
to set-theoretic reasoning, but applies to a wide range of languages/theories.

Nevertheless, there is a famous semantic paradox which is specific to set the-
ory, namely the Skolem Paradox which goes back to (Skolem, 1923). Unlike
the antinomies, this does not arise from a pre-axiomatic, set-theoretic contradic-
tion; indeed, it is a “paradox” only made possible by the first-order axiomatic
representation of sets, which Skolem (in the paper mentioned) was the first to
present.2 Skolem’s argument shows that, while the axioms can prove the exis-
tence of sets with increasing infinite cardinality, yet the central concepts concern-
ing the different infinite cardinalities must be “relative inside axiomatic set the-
ory,” since one can find an interpretation of the axioms in the natural numbers.
Thus, the axiom system, if consistent, has an interpretation which cannot be the
one intended, since it is based on only countably many objects. As Skolem him-
self pointed out, there is nothing directly contradictory about this. The argument
can be sharpened (see below, p. 200f.), and crucially then internalised, to pro-
duce a contradiction, which can then be used as the basis of reductio arguments
of great import, as Gödel first showed. What this internalisation demonstrates is that
Skolem’s relativity is reflected within the theory itself (i.e., without any reference
to “exterior” models) in the notion of absoluteness. In particular, it can be used to
show that, while the natural numbers are absolute, the continuum (and the power
set operation generally) is non-absolute, where “absolute” can be given a precise
theoretical sense.

The present paper is concerned with this internalisation. There are two things in
particular which I wish to bring out. The first is historical. The non-absoluteness
of the continuum focuses on a feature of extensions which was first isolated (and

2 For discussions of Skolem’s assessment of the argument, and his changing views on its conse-
quences, see (Benacerraf, 1985; George, 1985). For more general discussion of the consequences
of the argument, see (Wright, 1985).
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objected to) by Poincaré. Poincaré identified this as an instability in the extensions
of certain sets, and saw this as problematic, since it conflicts with his generational
view of sets. Poincaré’s views are set out in the first section of the paper. Axiomatic
set theory, as was clear from Zermelo’s initial axiomatisation, rejects Poincaré’s
generational view, and Poincaré’s association of set existence with definability. (In
large part, Poincaré was reacting to the view of sets put forward by Zermelo.) How-
ever, the internalisation of the Skolem Paradox serves to refocus both Poincaré’s
and Skolem’s reservations. According to set theory, there is nothing unstable or
relative about the continuum. Nevertheless, I will suggest that the involvement of
the crucial notion of absoluteness in both Gödel’s and Cohen’s arguments for the
consistency and independence of the GCH indicates rather a conceptual weakness
in the fundamental notion of cardinality. This was something glimpsed by Skolem
himself in 1923.

2 “Impredicative” Extensions

The isolation of non-absolute sets is foreshadowed in both Russell’s and Poincaré’s
diagnoses of the antinomies.3 The term “impredicative” was originally used by Rus-
sell in a quite general way to refer to properties whose extension cannot be sets and
in this sense the properties used to specify the paradoxical sets are demonstrably
“impredicative”: see (Russell, 1907, p. 34).4 This same paper (marked “Received
November 24th 1905.—Read December 14th 1905”), written before Russell had
fixed on a solution, and before he had stated the VCP, contains the following striking
passage:

. . . there are what we may call self-reproductive processes and classes. That is, there are
some properties such that, given any class of terms all having such a property, we can always
define a new term also having the property in question. Hence we can never collect all the
terms having the said property into a whole; because, whenever we hope we have them all,
the collection we have immediately proceeds to generate a new term also having the said
property. (Op. cit., 36.)

Russell describes clearly this kind of “self-reproduction” found in the traditional
antinomies.

Suppose we call V a temporary universe. Let ψ be some property. It seems that
we can define a set u as {x : x ∈ V ∧ ψ(x)}. Either u ∈ V or u �∈ V . But suppose
that ψ is the property involved in the Russell contradiction, and suppose further
that u ∈ V . Then we have immediately that u ∈ u ↔ u �∈ u, i.e., the Russell
contradiction. Suppose now that ψ is the property Ord(x). We can easily show that

3 That Poincaré was essentially concerned with non-absoluteness is a suggestion I first heard pro-
pounded in a lecture given by Wilfrid Hodges in London in 1974 or 1975. Fuller treatments of
Russell’s and Poincaré’s views can be found in, e.g., (Goldfarb, 1988, 1989).
4 In this paper, and elsewhere, Russell uses the term “proper class” where we would now use the
term “set”.
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u = {x : x ∈ V ∧ ψ(x)} is an ordinal (a von Neumann ordinal), and thus is not a
member of itself. Thus, if u ∈ V , we would have, on the contrary, that u does belong
to itself, again the well-known contradiction. Hence, if we accept the definitions of
u as good, the conclusion must be that, with respect to the properties ψ involved
in these two paradoxes, V is not the full universe; it is indeed only temporary, for
there are perfectly good sets, like our u’s, which cannot possibly belong to it. We
could say that what Russell shows is that there are ψ such that for any temporary
universe V it must be the case that {x: ψ(x)}V �= {x: ψ(x)}.5 Put more in Russell’s
way, whenever we call a halt to the “process” of collecting together the ψ , we find
that there is at least one more ψ that is yet to be accounted for. If, in addition, we
think of producing sets, then these ψ are naturally described, in Russell’s phrase, as
“self-reproductive” properties.

Russell came to the conclusion, as did Poincaré, that what characterises these
collections is a certain circularity in their specification, and both believed that what
is needed is some adherence to (a form of) the vicious circle principle (VCP) in order
to avoid this. Unlike Poincaré, Russell held that what is required is an alteration to
“current logical assumptions,” and came to believe that these alterations must be
guided by the VCP.6 But what concerns us here is not so much the solution to the
problem, but rather its diagnosis. It is clear that the idea of the VCP owes much to
the analysis above. Here, for example, is Russell’s statement from 1908:

Thus all our contradictions have in common the assumption of a totality such that, if it were
legitimate, it would at once be enlarged by new members defined in terms of itself.

This leads us to the rule: “Whatever involves all of a collection cannot be one of the
collection”; or, conversely: “If, provided a certain collection had a total, it would have
members only definable in terms of that total, then the said collection has no total.”†

†When I say that a collection has no total, I mean that statements about all its members are
nonsense.7

5 The analogy with Zermelo’s argument that the universe is not a set is clear. Russell is close to
isolating the notion of non-absoluteness, though his condition is stronger; a property ψ is absolute
when it is possible to find at least one V such that {x: ψ(x)}V �= {x: ψ(x)}, not that this necessarily
holds for all V .
6 For the remark about “current logical assumptions,” see (Russell, 1907, p. 37). Gödel points
out (Gödel, 1944, p. 135) that there are actually three distinct formulations of the VCP relied on
in Russell’s writings. For Gödel’s discussion of these, see op. cit., pp. 455ff. Goldfarb suggests
in (Goldfarb, 1989) that for Russell these formulations may be more intimately connected than
Gödel’s discussion allows.
7Russell (1908, p. 225). The relation between the “self-reproductive” properties isolated by Russell
and the VCP was well summed up by Gödel:

I mean in particular the vicious circle principle, which forbids a certain kind of
“circularity” which is made responsible for the paradoxes. The fallacy in these, so it is
contended, consists in the circumstance that one defines (or tacitly assumes) totalities,
whose existence would entail the existence of certain new elements of the same totality,
namely elements definable only in terms of the whole totality. This led to the formulation
of a principle which says that no totality can contain members definable only in terms of
this totality [vicious circle principle]. ((Gödel, 1944, p. 133). The square brackets are in the
original.)



10 Absoluteness and the Skolem Paradox 193

Russell came to focus more on the direction taken by his footnote, though I want
to focus here on the formulation “If, provided a certain collection had a total, it
would have members only definable in terms of that total, then the said collec-
tion has no total,” for this is the closest to Poincaré’s view of sets, to which I
now turn.

Poincaré takes as his starting point neither Russell’s antinomy nor Burali-Forti’s,
but rather Richard’s, an antinomy which we now classify as “semantic,” involving

essentially a linguistic component. Consider the set E of all real decimals which can
be defined in a finite number of words; E is obviously denumerable. The contradic-
tion now goes, quoting Poincaré, as follows:

Suppose the enumeration [of E] effected, and let us define a number N in the following
manner. If the nth decimal of the nth number of the aggregate E is

0, 1, 2, 3, 4, 5, 6, 7, 8, or 9

the nth decimal of N will be

1, 2, 3, 4, 5, 6, 7, 8, 9, or 0

As we see, N is not equal to the nth number of E , and since n is any number whatsoever,
N does not belong to E ; and yet N should belong to this aggregate, since we have defined it
in a finite number of words.8

Poincaré endorses what he says is Richard’s own solution to the antinomy, namely:

E is the aggregate of all the numbers that can be defined in a finite number of words, without
introducing the notion of the aggregate E itself, otherwise the definition of E would contain
a vicious circle; we cannot define E by the aggregate E itself. Now it is true that we have
defined N by a finite number of words, but only with the help of the notion of the aggregate
E , and that is the reason why N does not form a part of E . ((Poincaré, 1906, p. 307);
see also (Poincaré, 1908, pp. 206–207), pp. 480–481 and 190 respectively of the English
translations.)

The concentration on “vicious circles” is then taken to be the way to avoid all the
antinomies:

But the same explanation serves for the other antinomies, and in particular for that of Burali-
Forti. . . .

Thus the definitions that must be regarded as non-predicative [in Russell’s sense] are
those which contain a vicious circle. The above examples show sufficiently clearly what I
mean by this. ((Poincaré, 1906, p. 307); see also (Poincaré, 1908, p. 207), pp. 481 and 190
respectively of the English translations.)

The connection to the formulation of Russell’s VCP which I picked out (i.e.,
“If, provided a certain collection had a total, etc.”) is clearest in Poincaré’s phrase
“we cannot define E by the aggregate E itself.” From this, Poincaré questions the
boundaries of the sets picked out:

8 Poincaré (1906, pp. 304–305); see also (Poincaré, 1908, p. 202), pp. 478 and 185–186 respec-
tively of the English translations. Recall that Poincaré, in this section of his paper (“Les Antinomies
Cantoriennes”) is explicitly discussing (Russell, 1907).
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A “non-predicative class” [thus, one whose definition suffers from a vicious circle] is not
an empty class, but a class with unsettled [indécise] boundaries. ((Poincaré, 1906, p. 310);
see also (Poincaré, 1908, pp. 206–207), pp. 481–482 and 191 respectively of the English
translations.)

This is elaborated in a discussion from 1909:

There is no actual infinity, and when we speak of an infinite collection, we mean a col-
lection to which we can add new elements continually (similar to a subscription list which
will never close, waiting for new subscribers). For the classification could only be closed
properly when the list was closed; for every time that one adds new elements to the col-
lection, one modifies it. It is therefore possible that the relation between this collection
and the elements already classified is modified; and since it is according to this rela-
tion that these elements have been arranged in this or that drawer, it can happen that,
once the relation is modified, the elements are no longer in the right drawer, and it will
be necessary to move them. While there are new elements to be introduced, it is to be
feared that the work [of classification] will have to begin all over again; and it will never
happen that there will not be new elements to introduce. The classification will never be
finished.

From this there emerges a distinction between two types of classification appli-
cable to the elements of infinite collections, predicative classifications, which cannot
be disrupted [bouleversées] by the introduction of new elements, and non-predicative
classifications for which the introduction of new elements requires constant reshaping
[remanier]. ((Poincaré, 1909, p. 463), or (Poincaré, 1913a, pp. 9–10), p. 47 of the English
translation.)

Let us examine a little more closely what exactly worries Poincaré.
In the 1909 essay, Poincaré says that the problem concerns collections which are

“mutable [muables]” (the collections with “unsettled boundaries” from 1906), while
the passage quoted above focuses on “disrupted classifications.” Though connected,
the two are not exactly the same. What does he mean by a “mutable” collection? By
this, Poincaré means a collection whose extension does not remain fixed over time,
so that in using a term for it, its reference may vary in the course of an argument,
thus rendering the conclusion of the argument uncertain. That this is one thing which
worries him is made clear at the beginning of the 1909 paper. Suppose we want to
use simple syllogistic reasoning to conclude that, since two soldiers are in the same
regiment, they are in the same division. The proof only works, Poincaré says, as long
as the soldiers stay in the same regiment; the conclusion might well be false if in the
course of the argument one of the soldiers is transferred to a different regiment. As
Poincaré says:

What is then the condition under which the rules of this logic are valid? It is that the clas-
sification adopted is immutable [immuable]. ((Poincaré, 1909, p. 461), or (Poincaré, 1913a,
p. 8), p. 45 of the English translation.)

The relevant classification here is the separation of the collection of all soldiers into
regiments, and a soldier shifting regiments changes the classification.

Poincaré is clearly assuming that the argument about the soldiers is not timeless.
In most ordinary cases, we rely on general assumptions about short-term stability
in the macro-world which more or less guarantees that the conclusion will apply
to the situation stated at the beginning of the argument. In any case, with ordinary
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arguments, mutability will usually depend on contingencies which are outside the
scope of the argument; this is enough to suggest caution, for bad luck could dictate
that the assignment of soldiers to regiments might change during the course of an
argument. But it is different with the antinomies. These (for Poincaré) present cases
where the classification must change, not because of external contingencies, but by
the very nature of the argument itself.

Take for instance the Richard antinomy. We start with a term “E ,” which refers
to the list of all definitions. Then we construct a definition d (of N), which we have
reason to think cannot be in the list denoted by E . But d is a definition, so it must
be in the list E , since, by assumption, E is the list of all definitions. Poincaré’s
point, it seems, is that the extension of the term “E” is no longer the same at
the end of the Richard argument as it was at the beginning, i.e., it is of necessity
“muable.” At the start, d was not in the extension of E ; indeed, the intention on
which d rests is predicated on the assumption that it is not in E . Yet, once d has
been framed, it seems that we are forced to admit that it must belong to E . Hence,
the extension of E is no longer the same, and the reference of “E” is uncertain. The
extendability of E rests in an essential way on d: it seems that we cannot formulate
d without incurring a change in the extension of E . In other words, mutability is
intrinsic to the argument, and this is what forces a contradiction. We are forced
to the conclusion that we are dealing with properties which, in Russell’s phrase,
are “self-reproductive.” What seems to underline the ambiguity is that d includes a
universal quantifier over E . If the extension of E changes, d will no longer mean the
same after it is formulated (with the extended E) as it was intended to mean at the
moment it was formulated. Consequently, the truth-value of ∀x ∈ E ψ(x) will in
general vary as the extension of E varies. Thus, we have a claim similar to Russell’s
in the passage quoted above (see p. 192), namely that part of the worry concerns the
scope of universal quantification.

Poincaré’s conclusion is that the whole line of argument is doomed from the
beginning, and that it was not just dangerous to employ the term for E , but illegiti-
mate, since it can never fulfill one of his conditions on the correct use of names, that
its reference be ‘entirely determined,’ to use Poincaré’s words from a later paper.9

Poincaré applies this analysis not only to the antinomies, but to the Cantor diag-
onal argument as well. Here, we start with a countable list ER of real numbers, and
then define a number N in much the same way as above, i.e., so that it is immediately
clear that it cannot be in the list ER. Although the definition of N contains a refer-
ence to the list ER, there is, it seems, no obvious circularity of the kind that worries
Poincaré, since there is no reason whatever to think that N should itself be in the
list ER. However, we can generate a contradiction by assuming that ER consists of
all real numbers, and thus that it must include N. In this case, there is an indirect
reference in the definition of N to N itself, for the extension of ER is assumed to
include all reals. But what does this contradiction show? One way to read it is as
showing just that the assumption that ER contains all real numbers is demonstrably

9 See (Poincaré, 1912, p. 8), or (Poincaré, 1913a, p. 90), p. 71 of the English translation.
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false. In this case, there is not the stretching of the extension of ER that Poincaré
perceives in the argument in Richard’s antinomy; nothing in the proof forces us to
conclude that the extension of ER is not fixed. But Poincaré rejects this reading of
the argument. Why?

The answer is that Poincaré assumes what might be called a “genetic” or “genera-
tional” view of mathematical objects, according to which the stock of mathematical
objects varies over time, just as the composition of a regiment will change over
time. The clearest confirmation of this is to be found in Poincaré’s paper from 1912
where he distinguishes between two points of view, the view that sets are picked out
by what he calls “comprehension,” and the view that they are created by what he
calls “extension.” Poincaré introduces the term “Pragmatist,” and then says:

The Pragmatists adopt the point of view of extension, and the Cantorians the point of view
of comprehension. For finite sets, the distinction can only be of interest to formal logicians,
but it appears to us much more profound where infinite sets are concerned. Adopting the
extensional viewpoint, a collection is constituted by the successive addition of new mem-
bers. By combining old objects, we can construct new objects, and then, with these, newer
objects; if the collection is infinite, it is because there is no reason for stopping.

On the other hand, from the point of view of comprehension we start from a collection
where there are pre-existent objects, objects which appear to us indistinct at first, but some
of which we finally recognise because we attach labels to them and arrange them in drawers.
But the objects precede the labelling, and the objects will exist, even though there may not
be a curator to classify them.10

Poincaré adopts the “Pragmatist” or “extensional” view against the “compre-
hension view.” According to the comprehension view, objects pre-exist, and def-
initions then only serve the function of selecting certain of them. Indeed, this is
the core of Zermelo’s defence of impredicative definitions against Poincaré’s objec-
tions. Poincaré’s extensional view, however, is most certainly a “generational” view,
according to which objects are created in stages, as the reference to “successive
additions” makes clear. But according to what, for Poincaré, does the “successive
addition of objects” take place? As the passage above says, this occurs through con-
struction, or by constructive definition. For this view, definition does not serve the
same function it does for the comprehension view; correct definition is taken itself
to be the criterion of existence, and does not itself rely on a supposition of existence
independent of the definitional prescription. What this means is that objects are
indissolubly tied to the definitions of them.

This has certain strong consequences for Poincaré’s “Pragmatist.” First:

For example, the Pragmatists admit only those objects which can be defined in a finite num-
ber of words. Possible definitions, being expressible in sentences, can always be enumerated
with the ordinary numbers from one to infinity. ((Poincaré, 1912, p. 5), or (Poincaré, 1913a,
p. 88), p. 68 of the English translation.)

10 Poincaré (1912, p. 4, 1913a, pp. 87–88), pp. 67–68 of the English translation. The mention of
drawers in this passage recalls what Poincaré has to say in his earlier paper from 3 years before;
see p. 194 above. It is very likely that Poincaré distinguishes between the “extensional” and the
“comprehension” views precisely because Zermelo hints at such a distinction in the section of
(Zermelo, 1908a, pp. 117–118) which replies to Poincaré. See also (Hallett, 2010, pp. 109–112).
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A little later in the same paper, Poincaré says:

And why do the Pragmatists refuse to admit objects which are not capable of a definition
in a finite number of words? It is because they consider that an object only exists when
it is thought, and that one will not be able to conceive of an object independently of a
thinking subject. ((Poincaré, 1912, p. 9), or (Poincaré, 1913a, p. 94), p. 72 of the English
translation.)

Here there is an implicit assumption that the thought of the cognising subject is
necessarily tied to its linguistic expression. On its own, this is innocuous enough,
and certainly would not rule out the construction of a power set P(ω) from ω in one
step. But Poincaré adopts the further view that a set cannot be said to exist before
its members have been shown to exist, thus that the existence of the members of a
set must be logically prior to the existence of the set itself. (This surely must be one
reason for the designation “extensional” for the position Poincaré supports.) This
leaves it quite vague as to what “logical priority” amounts to, and as to how exactly
the stages of existence are to be marked. But the fact that existence must be tied
to linguistic specification reveals the central aspect of Poincaré’s “logical priority”
view. As Goldfarb points out

Since it is first the specification that legitimizes the entity specified, that specification can
in no way depend on the existence of the entity. Therefore, the ranges of the quantifiers in
the specification cannot include the entity. (Goldfarb, 1989, p. 25.)

Thus, if we claim that v ∈ u, then we must be able to define v with a specification ϕv
which does not involve reference to the set u, either directly or through a quantifier.
This, plus the priority thesis, entails that the set itself can be referred to neither in
its own specification nor in the specification of any of its members.

This position can be summarised in the following two theses:

The Linguistic Specification Thesis (LST): A mathematical object (in particular, a set) can-
not be said to exist until there is a finite linguistic specification (definition) of it.

This is combined with:

The Individual Specification Thesis (IST): Before a set A can be said to exist, we must
be in possession of specifications of all of its potential members; needless to say, to avoid
circularity, these specifications cannot make reference, either direct or indirect, to the set A.

It follows that a set A cannot be defined by direct or indirect reference to itself, and
neither can it contain members which are defined by reference to A.

The following passage from (Poincaré, 1912) shows that what we have just
described is a fair reflection of Poincaré’s “Pragmatist” position. Poincaré consid-
ers the impredicative definition of an object X whereby first X is defined using its
relation to all the members of a collection G, and where it is then asserted that X is
itself a member of G. He says:

For the Pragmatists, such a definition implies a vicious circle. One cannot define X without
being acquainted with [sans connaître] all the objects of the genre G, and consequently
without being acquainted with X which is one of these individuals. The Cantorians do
not admit this. The genre G is given to us; consequently we are acquainted with all these
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individuals, and definition has only the aim of discerning [discerner] among them those
which have the relation stated to their fellows.

No, reply their adversaries, the knowledge of the genre does not allow you to know all
the individuals; it only gives you the possibility of constructing as many of them as you
wish. They exist only after they have been constructed, that is to say after they have been
defined. X only exists by its definition which has sense only if one knows in advance all the
individuals of G, and in particular X . ((Poincaré, 1912, p. 7), or (Poincaré, 1913a, p. 91),
pp. 70–71 of the English translation.)

Note that Poincaré (the Pragmatist) quite explicitly rejects the position, attributed to
the “Cantorians,” that specification of a set is enough to give us “acquaintance” with
its members.

The use of impredicative definitions is then tied to the worry about the instability
of extensions, for Poincaré says the following:

Why do the Pragmatists make this objection [to the impredicative definition of X ]? It is
because the genre G appears to them as a collection which is capable of increasing indef-
initely whenever new individuals are constructed which possess the appropriate character-
istics. Thus G can never be posited ne varieteur as the Cantorians posit it, for we are never
sure that G will not become G ′ in the light of new annexations. ((Poincaré, 1912, p. 9), or
(Poincaré, 1913a, p. 93), p. 72 of the English translation.)

And in a later paper, he makes the same explicit connection:

. . . Richard’s law of correspondence lacks a property which, borrowing a term from the
English philosophers, one can call “predicative.” (With Russell, from whom I borrow the
word, a definition of two concepts A and A′ is non-predicative when A appears in the defini-
tion of A′ and conversely.) I understand by this the following: Every law of correspondence
assumes a definite classification. I call a correspondence predicative when the classification
on which it rests is predicative. However I call a classification predicative when it is not
altered by the introduction of new elements. With Richard’s classification this, however, is
not the case. Rather, the introduction of the law of correspondence alters the division into
sentences which have a meaning and those which have none. What is meant here by the
word “predicative” is best illustrated by an example. When I arrange a set of objects into
various boxes, then two things can happen. Either the objects already arranged are finally
in place. Or, when I arrange a new object, the existing ones, or a least a part of them, must
be taken out and rearranged. In the first case I call the classification predicative, and in the
second non-predicative. ((Poincaré, 1910, p. 47), p. 1073 of the translation.)

This analysis is what is directly applied to the Cantor diagonal argument:

For example, the Pragmatists admit only objects which can be defined in a finite number of
words; . . . [W]hy then do we say that the power of the continuum is not that of the whole
numbers? Yes, being given all the points of space which we know how to define with a finite
number of words, we know how to imagine a law, itself expressible in a finite number of
words, which makes them correspond to the sequence of whole numbers. But now consider
the sentences in which the notion of this law of correspondence figures. A few moments
ago, these sentences had no sense since this law had not yet been invented, and they could
not serve to define points of space. Now they have acquired a sense, and they will allow
us to define new points of space. But these new points of space will not find any place in
the classification adopted, and this will compel us to upset it [la bouleverser]. And it is
this which we wish to say, according to the Pragmatists, when we say that the power of
the continuum is not that of the whole numbers. We wish to say that it is impossible to
establish between these two sets a law of correspondence which is secured against this sort
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of disruption [bouleversement]; . . . ((Poincaré, 1912, p. 5), or (Poincaré, 1913a, pp. 88–89),
p. 68 of the English translation. See also (Poincaré, 1909, pp. 463–464), (Poincaré, 1913a,
p. 10), p. 47–48 of the English translation.)

When we are given a list of real numbers, a finite string S of words specifies this
list, giving a sequence ER of reals. This brings into existence a new mathematical
object, namely this sequence ER. Sentences which previously contained the string
S were strictly speaking meaningless, and therefore could not possibly define real
numbers. Once it is recognised that ER exists, then such sentences have a perfectly
good meaning, and some of them may well define real numbers. But no such real
numbers (as so defined via ER) were available for classification when ER itself was
being defined, and so cannot be assumed to figure in ER. Indeed, the argument shows
how to define (with direct reference to ER) a real number N which cannot be in the
list. Once ER is available, the classification of the real numbers currently available
thus has to begin anew, and will necessarily lead (so the argument) to a list different
from ER.

This is really the same as the analysis of the Richard antinomy. Unsurprisingly,
Poincaré sees the two arguments as simply two aspects of the same process. We
can always specify a list of definitions of real numbers, and this specification
will then turn certain sentences which were hitherto meaningless into perfectly
good definitions of reals. This will necessitate a new list, and so on ad infinitum.
Indeed, the analysis reconciles an apparent contradiction between the two argu-
ments, a contradiction which can be put starkly by stating that Richard demon-
strates that there are only countably many numbers (since there are only count-
ably many possible definitions), while Cantor shows that there are uncountably
many:

In this there lies the solution of the apparent contradiction between Cantor and Richard.
Let M0 be the set of all whole numbers, and M1 the set of all points of our line definable
by finite sentences of our table after a first run through the list, and let G1 be the law
coordinating both sets. Using this law, a new set M2 is definable and is thus added. For
M1 + M2 there is a new law G2, using which there arises a new set M3, and so on. Richard’s
proof teaches us that, wherever I break off the process, then there’s a corresponding law,
while Cantor proves that the process can always be continued arbitrarily far. There is thus
no contradiction between these conclusions. ((Poincaré, 1910, pp. 46–47), p. 1073 of the
translation.)

The assimilation of, say, the Burali-Forti antinomy to Richard’s may seem a
little odd to modern eyes; since (Ramsey, 1926), it has been usual to point to a
semantic element behind Richard’s antinomy which is not present in Burali-Forti’s
or Russell’s. But the reason for Poincaré’s assimilation is clear. Not only does he
adopt a generational view of sets, whereby the existence of the elements of a set
precede that of the set itself, he makes the existence and the constitution of a set
dependent on its mode of definition. Given this, the Burali-Forti antinomy does look
somewhat similar, as we saw via Russell’s “self-reproductive processes.” The set u
of all ordinals could not exist without being defined (LST), and the definition uses
a predicate Ord(x) which u itself would satisfy, showing that u must be a member
of u, thus violating IST. The central principles here, LST and IST, are decisively
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rejected by modern set theory.11 Does this mean that all the important aspects of
Poincaré’s analysis must similarly be rejected? The answer is clearly no, as will be
shown in what follows.

3 The Paradox Internalised

Before proceeding to the internalisation of the Skolem argument, let us quickly run
through the latter’s main steps.

Consider the first-order Zermelo-Fraenkel system (ZFC) with a standard list
of axioms, including the Axiom of Choice (AC), and assume that it is con-
sistent. Since the theory is written in a countable language LZF, with “∈” as
its only non-logical predicate, then by the Completeness Theorem, it must have
a countable model M = <M, E>, where M is the M-domain, and E is
M-“membership.” M has in it an element mc, which is the interpretation in M
of ZFC’s term “c” for the continuum. Moreover, ZFC can prove the statement
“¬C(c),” where “C(x)” is the usual LZF formula expressing countability. M, being
a model of ZF, therefore says that the continuum mc is uncountable. But it is clear
that mc has only countably many M-members, i.e., the collection {x : x ∈ M &
x Emc} must be countable, since M has only countably many members. Therefore,
it seems, ZFC can have models in which the continuum is both countable and
uncountable.

Although this conclusion is somewhat odd (a “paradox”), it is no antinomy. For
one thing, the LZF statement “¬C(c)” simply says that there is no surjective function
whose domain is ω and whose range is c. And since M is a model of set theory,
this must mean that there is no object in M which plays the role of such a function
in M, despite the countability of mc. In other words, mc is uncountable in just the
way that c is.12

One might think that what this result shows is simply that first-order set theory
has unintended interpretations, if any at all, and this we now regard as nothing
unusual. For one thing, so much of the work using interpretations, going back to
Hilbert’s construction of models for various geometries, and including Henkin’s
construction of a model for any consistent theory from its syntax, shows us that
there is a sense in which the “material” of an interpretation is often quite irrele-
vant; what matters, rather, is the way it is arranged. The non-standard models of
first-order arithmetic underline this; it is not the nature, or quantity, of the elements
themselves which matters, but they way they are structured. Is this also the case
with the Skolem Paradox? For example, it is quite possible that mc itself is uncount-
able, i.e., has uncountably many real members, although contains only countably

11 Something like the IST is pursued in Martin-Löf’s constructive type theory; see e.g., (Nordström
et al., 1990, p. 27).
12 This resolution of the paradox was pointed out by Skolem in his original paper, (Skolem, 1923,
p. 223).
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many E-elements. Is the oddity just due to the fact that the relation E of the model
M is itself just non-standard? Short reflection shows that this sanguine reaction is
misplaced.

Suppose that ZFC has a model V , with domain V , which we regard as an intended
model, and thus has the real set membership over it, thus ∈. By the Downward
Löwenheim-Skolem Theorem, there exists a countable sub-structure V ′ =<V ′,∈′>
of V , where V ′ ⊆ V , and ∈′ is just ∈ itself restricted to V ′; this sub-structure satisfies
precisely the same LZF sentences as does V , and its membership relation really
is the same, intended set-membership relation. Although itself countable, this V ′
might still contain uncountable members. V ′ satisfies the Axiom of Extensionality,
so V ′ must be extensional; if we also insist that it is well-founded, we can apply
the Mostowski Collapsing Lemma to get a transitive V ′′ = <V ′′,∈′′> isomorphic
to <V ′,∈′>. Since it is isomorphic to V ′, this model, too, satisfies exactly the same
LZF sentences as does V , and its membership relation, too, must be the real one (or
behave just like it, which is the same thing). However, in V ′′ all sets are transitive,
and thus are either finite or countable, including the set representing the continuum.
Thus, the continuum of this model is a genuine set, cut out of the intended model V ,
and is really countable.

This stronger version of the paradox can be internalised. Let us remind ourselves
briefly of how this proceeds.

Since the paradox essentially concerns modelling of the language LZF, we have
to have available some means of talking about the language of ZF inside ZF. This
can be done via a standard coding which translates the relevant concepts into set-
theoretical ones. Following this Gödelisation, it can then be shown that there is
a one-place formula F(x) of LZF which expresses the notion of being a formula
of LZF, i.e., holds of x just in case x is the code (set) of a formula of LZF. This
formula determines a set F , and we can show similarly that there are formulae
and sets Sen(x), S, Ax(x), A respectively, corresponding to sentences and axioms.
With this as a basis, the standard model-theoretic elements can be reproduced fairly
straightforwardly inside ZF. The most important of these is the three-place predi-
cate Sat (v1, v2, v3), which says that v1 satisfies v2 inside v3; this allows us to say,
inside the theory, that a set v3 is a model of a formula of LZF, coded as v2, under
a satisfaction sequence v1 (an eventually constant sequence of members of v3). We
can prove two central theorems inside ZF, first that Sat obeys the Tarski conditions
on satisfaction, and, following this, that:

ZF  Val(�σ�, u) ↔ σ u (10.1)

where “Val(v2, v3)” is the 2-place predicate obtained by universal quantification
from Sat (v1, v2, v3), “σ” refers to a sentence of LZF, “�σ�” its code name,
and “σ u” refers to the standard relativisation of the sentence to the set u. What
Val(�σ�, u) in effect says is that all satisfaction sequences drawn from u satisfy σ

in u, and thus that “σ is true in the interpretation u.” In other words, Val(�σ�, u)
is precisely the counterpart in ZF of the normal model-theoretic <u,∈�u> |$ σ .
(10.1) shows the equivalence of this with the standard relativisation.
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Using the notions expressed in “Val” and the predicates derived from it, it is now
possible to express the notion of being a model of a set of sentences, to prove an
internal version of the Completeness Theorem for first-order theories, and to express
the notion of being an elementary substructure, written “E S(x, y).” With these in
hand, we can now demonstrate the Downward Löwenheim-Skolem Theorem inside
ZFC:

ZFC  ∀y ⊆ u
[[ℵ0 ≤ card(u)] →

∃z[y ⊆ z & card(z) = card(y) & ES(z, u)]] (DLST)

(Note the “ZFC”; this means that essential use is made of AC, just as with the
conventional version.) On reflection, none of this is a great surprise, since one might
argue that model theory is really nothing but informal set theory with a few rhetori-
cal flourishes, and it would be utterly surprising if this conceptually straightforward
piece of set-theoretical mathematics could not be rendered in our standard axiomatic
set theories. But given (DLST), it is now not surprising that we can get some version
of the Skolem Paradox, choosing y such that card(y) = ℵ0. But what we get now
(under the same assumption that ZF is consistent) is neither contradictory nor para-
doxical, but rather the connection with absoluteness, summed up in the following
result concerning C(x):

If the system ZF is consistent, then the predicate C(x) is not absolute. (10.2)

By the same token, ¬C(x) fails to be absolute, too. Before explaining this in detail,
we must first look at the notion of absoluteness.

Despite differences in the way absoluteness is presented, the notion, as the name
suggests, is one of invariance or stability, the singling out of those terms or formulae
which keep the same value (in the former case, set-value, in the latter, truth-value)
as the domain in which they are evaluated varies.13 Invariance itself, however, is not
a fixed notion; more and more things will be absolute as more conditions are put on
the domains to be used for the evaluation.

To illustrate this, the first definition of absoluteness (adapted from (Kunen, 1980,
p. 117)) is as follows:

Definition 1 (Absoluteness1) The formula ψ with free variables x1, x2, . . . , xn is
said to be absolute1 for the formula ϕ if we can show:

ZFC  ∃xϕ(x) & ∀x1, x2, . . . , xn
[[ϕ(x1) & ϕ(x2) & . . . & ϕ(xn)] →

[ψϕ(x1, x2, . . . , xn) ↔ ψ(x1, x2, . . . , xn)]
]

13 In what follows, we will slip rather sloppily between talk of formulae, the domains they deter-
mine, and the extensions of the formulae, thus sets or proper classes.
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This definition covers set terms as well: for the term τ , just take the formula x = τ .
Here, ϕ acts as the universe with respect to which the formula ψ or the term τ is to
be evaluated.

In this definition, nothing is said about the demands made by the formula ϕ,
apart from there being something which satisfies it. Hence, it is unlikely that things
satisfying a formula ψ looked at from ϕ’s perspective will satisfy ψ invariantly, i.e.,
be absolute1 for ϕ. It is easy to show that absoluteness in this sense is preserved
by the propositional connectives, but it is not difficult to exhibit very elementary
notions which are not absolute1; for example, the notion of something’s being a
subset of something else, i.e. “x ⊆ y.” However, this formula is invariant in the
sense we are investigating as soon as we demand that the evaluation take place in
a transitive evaluative class ϕ; then the things which ϕ “recognises” to be subsets
are precisely the things which ZF can prove to be subsets. As soon as we demand
transitivity, we can show that formulas built up from atomic formulas using only
propositional connectives and bounded quantification, the so-called �0 formulas,
are absolute as well.14

Another thing which may affect what is or is not absolute is the question of
which principles of set theory are available in the class ϕ, that is to say, which
principles ϕ “recognises to be true.” This is important because the definition of a
term, say, and the proof that the set which the term attempts to define exists, will
in general depend on the availability of some assumed background, thus on some
of the axioms. Hence, these axioms ought to be available in the classes ϕ if there
is to be a fair assessment of invariance. For this, it is enough to look at models of
the finitely many axioms used in the proof that the definition of the term in question
is a good one, for the “background knowledge” required for a specific purpose is
limited in exactly this way.

There is a perfectly good formal analogue to this informal talk of “availability.”
Saying that an axiom σ is “available in ϕ” is really just to say that ZF  σϕ , for
this latter, as (10.1) shows, really means that σ holds in the structure <ϕ,∈�ϕ>.15

From this, there follows an obvious way in which the requirement of background
knowledge can be inserted into the definition of absoluteness. Suppose the back-
ground knowledge which shows that a term is well-defined, or that a formula
expresses what it is intended to express, is summed up in the axioms σ1, . . . , σn ,
then in assessing whether the formula or term is absolute for ϕ, we can demand that
ZF  σ

ϕ
1 & . . . & σ

ϕ
n . In this way, we get the notion of an absoluteness sequence

for a formula or term. Again, more things will become absolute if we do this.
Based on these observations, we can adopt a second, general definition of abso-

luteness:

14 See (Kunen, 1980, pp. 118–119).
15 Whereas it is quite straightforward what σϕ means in ZF, speaking strictly “<ϕ,∈�ϕ>” makes
no sense, since the extension of ϕ might not be a set. However, this abuse of notation is of a piece
with the sloppiness pointed out in n. 13.
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Definition 2 (Absoluteness2) The formula ψ (or term τ ) is said to be absolute2 if
there is an absoluteness sequence σ1, . . ., σn for ψ (or for x = τ ) for which
we can show, for each provably non-empty transitive formula ϕ, that if
Z F(C)  σ

ϕ
1 & . . . & σ

ϕ
n , then ψ is absolute1 with respect to ϕ.16

Note that we can show in ZF(C) the existence of set models of any finite col-
lection of axioms σ1, . . . , σn , i.e., that ZF(C)  ∃x

[

σ
ϕ
1 & . . . & σ x

n

]

.17 Hence, to
show that a formula ψ is not absolute2, it suffices to show in ZFC that, for any
sequence of axioms σ1, . . . , σn , there is a transitive set u such that σ u

1 & . . . & σ u
n ,

and such that the (i.e., ZFC’s) evaluation of ψ in u differs from the evaluation of ψ
in the “universe” (i.e., ZFC’s evaluation of ψ).

Note also that these are not the only notions of invariance which we might take as
a sign that something is “absolute.” For example, Gödel in his original work defined
a formula ϕ as absolute if its value in the constructible universe is the same as its
actual value.18 Nonetheless, absoluteness2 seems a fairly natural notion, perhaps the
most natural which is not tied to a specific predicate like constructibility. The point
here is that, even using such a weak notion of absoluteness, while ω is absolute, the
theorem (10.2) asserts that ¬C(x), and indeed P(ω) (ZF’s term for the power set
of ω), are not absolute. The proofs which establish these failures of absoluteness
proceed precisely by the reasoning which yields the Skolem Paradox. Let us outline
the steps which lead to this.

Assume that ZF (and hence ZFC) is consistent. Now assume that C(x) is absolute
in the sense of absoluteness2, and that σ1, . . . , σn is an absoluteness sequence for
it, a sequence we abbreviate by σ . ZF can prove Cantor’s Theorem, from which it
follows that ∃x¬C(x); let τ1, . . . , τk be the list of axioms used in the proof of this,
this time abbreviated by τ . As was mentioned, we can always find set models of
finitely many axioms. Hence, there must be an extensional set z for which σ z and
τ z hold, thus showing that z is a model for σ and τ . The set z might be very large;
but we can apply the (DLST) to cut it down to a countable, extensional subset s, an
elementary substructure of z. Thus σ s and τ s both hold, too. Moreover, since s is
extensional, the Mostowski Collapsing Lemma says that there must be a transitive
set u which is isomorphic to s; this is likewise countable, and it follows that σ u

and τ u also both hold. Now, since the axioms τ used in the proof of Cantor’s The-
orem hold in z, it is easy to see that ∃x¬C(x) holds relative to z, i.e., [∃x¬C(x)]z ,
and the same must hold for the countable set u, for the axioms τ also hold there.
Hence [∃x¬C(x)]u , which in effect says that u is a countable model of the statement
“There exists an uncountable set,” just as in the original Skolem Paradox. There is
nothing contradictory about this in itself. But we can now use the absoluteness claim
for C(x) to generate a contradiction. [∃x¬C(x)]u is the same as ∃x ∈ u¬Cu(x);
but since u is transitive, and since also σ u , the absoluteness of C(x) entails that
∀x ∈ u[Cu(x) ↔ C(x)]. Hence, ∃x ∈ u¬C(x). On the other hand, since x ∈ u,

16 This notion of absoluteness is taken from (Bell and Machover, 1977, p. 502).
17 See (Kunen, 1980, p. 134ff.).
18 See (Gödel, 1940, p. 42), or (Gödel, 1990, p. 76).
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and u is transitive, we must have C(x), since u is countable, from which it follows
that there is an x ∈ u for which C(x) and ¬C(x), which is a contradiction. This now
gives the absurdity from which can conclude that C(x) is not, after all, absolute. The
argument that the term P(ω) is also non-absolute is entirely similar.

It is readily seen that this internal argument follows just the same pattern as
the informal argument for Skolem’s Paradox, except that, here, the assumption that
C(x) is absolute provides the genuine contradiction which the Skolem Paradox does
not quite yield. Given this, the Skolem Paradox is transformed into a highly signif-
icant (meta-)theorem, parallel to the transformation of the genuine antinomies into
theorems in the system.

As we have said, ω is absolute, and so is “being an ordinal number” (the predicate
Ord(x)), but crucially not the predicate “being a cardinal number.” What is the
central difference?

The absoluteness of ω means that its value when evaluated in any ϕ will be
just ω itself, provided that ϕ recognises the truth of the axioms in the absoluteness
sequence for ω. On the other hand, that P(ω) is not absolute means that, for any
finite choice of axioms, the value of P(ω) will in general change as ϕ varies; i.e.,
given any finite sequence of axioms, we can find a non-empty, transitive ϕ satisfying
these axioms such that ϕ ∩ P(ω) is not the same as P(ω). Why does this happen?

The key is the presence of unbounded quantifiers, for these are what in general
stand in the way of formulas being absolute.19 As pointed out, a formula ψ will
be absolute for ϕ (even in the sense of absoluteness1) if ϕ is transitive, and if ψ
contains no unbounded quantifiers. But whether or not the definition of a predicateψ
or a set-term t contains unbounded quantifiers depends crucially on the background
knowledge available. To illustrate this, let us look at ω.

The set ω is absolute, so the formula x = ω is an absolute formula. The usual
proof of this proceeds by showing that the formula x = ω can be expressed using
atomic formulae (x = y, x ∈ y), propositional connectives, and bounded quanti-
fiers. To say that x is ω is to say that x is a limit ordinal while none of its mem-
bers (predecessors) are, and all of this can be put in the right form providing the
formula Ord(x) contains only bounded quantification. But does it? On the face
of it, the answer is negative. To say that u is an ordinal is to say that u is well-
ordered by the ∈-relation, and this involves an unbounded quantifier, for the special
clause governing well-ordering begins by referring to all subsets of u, i.e., begins
∀x

[∀w[w ∈ x → w ∈ u . . . . The same holds if we want to define ordinals, not as
certain well-ordered sets, but as certain well-founded sets, for the well-foundedness
condition begins in exactly the same way. But now suppose the Axiom of Foun-
dation is present; there is then no need to build in either the condition of being
well-ordered by ∈, or of being well-founded. It is enough to demand that u be
transitive and totally ordered by ∈, and these notions can be expressed by formulae

19 This seems to provide some link between the notions of absoluteness and impredicativity. See
(George, 1987) for references to the idea that impredicativity concerns unbounded quantifiers. The
link between the two notions is implicit in Poincaré’s analyses of the antinomies given in §2. But
as George points out, this cannot be all there is to the notion, which seems irredeemably imprecise.
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which involve only bounded quantification, propositional connectives, and atomic
formulae. Thus, it is clear that x = ω will be absolute for any ϕ which is transitive
and which satisfies the Axiom of Foundation, together with other bits of ZF (minus
the power set axiom) which we require to prove that the definition is adequate.

What of P(ω)? Can we “hide,” in a similar way, any unbounded quantifiers
involved in the specification of members of this? The answer is that we cannot.

Suppose u is a transitive set which satisfies enough of ZF for it to be shown
that u contains a set v which is the power set of ω as far as u is concerned. It is
important to note that the power set axiom taken on its own is quite weak, for it
only says that all the subsets of a given set which the theory recognises can be
collected together into a set, and this is quite consistent with its being provable that
only very few subsets exist. However, the power set axiom gets its strength by being
combined with the Axiom of Separation (Zermelo’s Aussonderungsaxiom), which
(in first-order set theory) is the schema:

∀x∃y∀z[z ∈ y ↔ (z ∈ x & ψ(z))] (SEP)

This holds for any ψ in the language, regardless of how formed, thus, in particular,
for any ψ containing unbounded quantifiers.20 Thus, v will contain only those sets
which the “model” u can recognise as subsets of ω, and it is clear that this need
not be all the genuine subsets of ω. Suppose that y ⊆ ω, and that y is given by an
application of separation to a formula ψ(z) which contains unbounded quantifiers.
We can think of ψ and the condition “z ∈ ω” coalesced into the one condition ϕ,
in other words, that y is given by the abstraction term {z : ϕ(z)}. Allow that u is a
model of those axioms needed to prove that {z : ϕ(z)} defines a set, in particular the
requisite instance of (SEP). The key question now is whether v has y as a member,
or, in other words, how u will evaluate the abstraction term {z : ϕ(z)}. It is imme-
diately obvious that u will evaluate this term as {z ∈ u : ϕu(z)}, and hence that all
the unbounded quantifiers in ϕ will now be bounded by u. Thus, we now have quite
a different abstraction term from {z : ϕ(z)}, one which a priori we have no reason
to think corresponds to y itself, although it yields a subset of y. Thus, although v

will certainly contain yu = {z ∈ u : ϕu(z)}, it is quite possible that it will fail to
contain y = {z : ϕ(z)}, hence, quite possibly will not contain members matching all
the subsets of ω.

What this suggests is that u will not “recognise” the existence of a set (or rather,
the full extension of the set) corresponding to an abstraction term which contains
unbounded quantifiers, for it will automatically read those quantifiers as being
bound by u. However, (SEP) tells us that there are subsets of ω given by abstraction
terms which have quantifiers which range beyond u. Thus, apparently, any attempt
to pin down the extent of P(ω) which only takes into account formulas ψ restricted

20 Let us note in passing that, in general, axiom systems are not the simple sum of their axioms, but
that the axioms (so to speak) co-operate. Thus, although apparently weak on its own, the power-set
axiom is enormously powerful when combined with the Axioms of Separation (or Replacement)
and Infinity.
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to what is inside u, and not the full range of the ψ which (SEP) permits, will not
succeed. In this sense, then, the extent of P(ω) does seem to depend on that of the
“richness of the universe.”21

To summarise, it seems to me that this “internalisation” both disperses the mys-
tery which is sometimes glimpsed as a result of the Skolem Paradox, and actually to
a large extent explains it. It converts the paradox into a genuine contradiction, which
is then exploited via an appropriate reductio. Moreover, in doing so, Poincaré’s
existence principles (LST and IST) are firmly rejected, as is clear in the formulation
of (SEP); consequently, many sets/extensions which were taken as illegitimate by
Poincaré are taken to exist as sets in an unproblematic way with perfectly deter-
minate extensions. Given this, Poincaré’s worry about variation in the extension of
sets translates directly into the property of absoluteness. In particular, this argu-
ment shows that there is a radical difference between the set of natural numbers and
the central focus of Poincaré’s disquiet, the Cantor-Zermelo continuum, the former
being absolute, and the latter not, making it clear that there is a sharp separation
between the determinateness of the continuum and its non-absoluteness. This is
what, in the end, Zermelo’s insistence on the cogency of impredicative definitions
amounts to.

These results, of course, are far from paradoxical. But although the internalisa-
tion of the Skolem Paradox both dismisses Poincaré’s worries about incoherence
and takes away any sense of paradox, it does serve to shift attention to a genuine
conceptual difficulty within the theory of sets, namely that the cardinal notion of
uncountability is insufficiently tied to the ordinal notions which Cantor had adopted
to explain it. This is revealed by both Gödel’s proof of the consistency of the Gen-
eralised Continuum Hypothesis (GCH) and Cohen’s proof of the independence of
the Continuum Hypothesis (CH). In these consistency and independence proofs, the
notion of non-absoluteness (and indeed something close to the Skolem Paradox)
plays a central role. A quick inspection of the main lines of argument will show
this. It is to this that I turn in the final section.

4 Absoluteness, Consistency and Independence

Let us look first at Gödel’s consistency proof, for which the technical notion of
absoluteness was first introduced.

The key to the proof is the constructibility predicate L(x) and the notion of
constructible subset on which it is based. The constructible subsets of a given set
u are, in effect, the subsets of u definable in u, in other words, just the subsets of
u which satisfy a defining formula whose quantifiers are restricted to u. This loose
account can be rendered inside LZF itself, given the formal notion of satisfaction. Let
Sat (x, y, z) be the satisfaction predicate described before, and let ec(u) be the set
of eventually constant sequences of u, effectively the set of satisfaction sequences

21 This way of putting the matter is taken from (Bell and Machover, 1977, p. 509).
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defined over u. (Note that, if u is infinite, ec(u) has the same cardinality as u.) We
can then say that a subset v of u is a constructible subset of u if there is a z ∈ F and
a w ∈ ec(u) such that

v = {y : y ∈ u & Sat (w(0/y), z, u)}

where w(0/y) denotes the sequence w with the only change (if any) being that w’s
0-th choice is replaced by y. Thus, v is the collection of all those y for which there
is a formula z and a satisfaction sequence whose first element is y satisfying the
selected formula inside u.

The crucial thing about this is that satisfaction has to take place inside u, in other
words, given one of the central adequacy theorems concerning the predicate Sat ,
a definable subset v of u is just the set of all y in u which satisfy some formula ϕ
whose quantifiers are restricted to u. But this just means, in effect, that v = {y ∈ u :
ϕu(y)}, and that v is a collection of members of u picked out in a way that does not
make reference, either explicitly or implicitly, to sets which are not already present
in u itself. The abstraction term for v is just what the abstraction term {y : ϕ(y)}
becomes when it is evaluated in u.

These subsets of u can now be collected together into a set, D(u), often called
the predicative power set of u, meaning that it consists of just those subsets of u
which are capable of definition using only quantification restricted to u itself. In
usual predicative systems, such as that of Russell, quantification is restricted to some
stage or type, and the object being defined is then taken to belong to the next stage
or type. Here u should be regarded as the stage or type itself, which is what we get,
in effect, if we demand that types be cumulative.

Not unexpectedly, what we now find is that, quite unlike the full power set P(u),
if the set u is infinite, then the predicative power set D(u) has the same cardinality
as the starting set u, the number of formulas available for use in definitions (thus,
the size of F) being only countably infinite, and both ec(u) and the collection of
parameters available have the same size as u. Moreover, whereas P(u) is not abso-
lute, for infinite u, D(u) is, which is no surprise, given the bounded nature of the
quantification. Hence, for any non-empty transitive ϕ which satisfies the absolute-
ness sequence for D(u), ϕ ∩ D(u) is equal to D(u).

The predicate L(x) is now defined with the help of the operation D(x). First, sets
Lα are defined for all ordinals using a transfinite recursion; for successor ordinals
α = β + 1, Lα = D(Lβ), and when α is a limit ordinal Lα = ⋃{Lβ : β < α}.
Hence, the Lα form a cumulative hierarchy, the so-called constructible hierarchy.
(In sum, for all ordinals α, Lα = ⋃{D(Lβ) : β <α}.) Since the operations that go
into this recursion (in particular, the D(x) construction and the predicate Ord(x))
are all absolute, we can show that both x = Lα and x ∈ Lα are absolute formulas
too. The definition of L(x) is now simply:

L(x) ↔ ∃α[Ord(α) & x ∈ Lα]
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The formula for L(x) contains an unbounded quantifier, so is not absolute in our
sense, although it is invariant for transitive models of ZF which contain all the
ordinals. Nevertheless, the absoluteness of x = Lα and x ∈ Lα is enough to be
able to prove the central relative consistency results, as we will see.

It can now be shown that the constructible sets form an “inner model” of set
theory in which both the Axiom of Choice (AC) and the GCH hold. To show this
requires showing three things22:

(1) Each axiom σ of ZF (AC is not included) is provable in ZF when relativised to
the predicate L , i.e., ZF  σ L .

(2) The statement that all sets are constructible, i.e., ∀x∃α[x ∈ Lα] (always abbre-
viated as V = L) is also provable in ZF when relativised to the predicate L , thus
ZF  (V = L)L .

(1) and (2) together are enough to show that V = L is consistent relative to ZF. It is
now shown that inside ZF both AC and GCH follow from V = L, i.e.,

(3) ZF + V = L  AC and also ZF + V = L  GCH.

Hence, AC and GCH must also be consistent relative to ZF.
What interests us here is (3), or rather that part of it which concerns the deriva-

tion of GCH from V = L, for this very closely mirrors the argument behind the
internalised Skolem Paradox. Key use is made of the fact that the formula x ∈ Lα

is absolute, which turns on the fact that predicative power-set formation, unlike
full power-set formation, is absolute. The heart of the proof is the Lemma, which
Gödel calls “an axiom of reducibility for sufficiently high orders” (Gödel, 1938,
p. 556), that if all sets are constructible (i.e., if V = L), then any subset of Lℵα

(i.e., any member of P(Lℵα )) is not just somewhere in the L-hierarchy, but must be
constructible before the stage Lℵα+1 . This time we take an absoluteness sequence
σ for x ∈ Lβ , in much the same way as before we started with a supposed abso-
luteness sequence for C(x), and we assume V = L is in σ . Take any subset u
of Lℵα , and consider the set Lℵα ∪ {u}. There must be a transitive set v which
includes Lℵα ∪ {u} for which σv & [V = L]v . Since it is easily proved that
card(Lℵα ) = ℵα , then card(Lℵα ∪ {u}) is ℵα , too. Hence, applying the (DLST),
just as before, we can find an elementary substructure w of v which is of size ℵα and
which also includes Lℵα ∪ {u}. (The only difference here is that we have focused on
ℵα rather than ℵ0.) Hence, σw & [V = L]w. It can be argued easily that, although
w need not be transitive, it must be extensional since v is transitive, and thus must
satisfy the Axiom of Extensionality. Therefore w also satisfies it, so we can apply
the Mostowski Collapsing Lemma to collapse w to a transitive set x isomorphic to
it. But since Lℵα ⊆ w and Lℵα is transitive, the collapsing isomorphism applied to
each member of Lℵα (thus each member of u) must be the identity. Hence, it follows
that u itself must be a subset of x .

22 See (Bell and Machover, 1977, pp. 480–481).
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Since now [V = L]x , this must amount to ∀y ∈ x∃β ∈ x[y ∈ Lβ ]x (appealing
to various facts about transitive sets). This is where the absoluteness of the formula
y ∈ Lβ comes in, for this allows us to replace “[y ∈ Lβ ]x ” with “y ∈ Lβ” in the
formula, yielding ∀y ∈ x∃β ∈ x[y ∈ Lβ ]. Since u ∈ x , then ∃β ∈ x[u ∈ Lβ ]. Let
β ∈ x with u ∈ Lβ . But since x is transitive, this must mean that β ⊆ x . Hence,
card(β) ≤ card(x) = ℵα , and so β < ℵα+1, which means that Lβ ⊆ Lℵα+1 .
Hence, u, the subset of Lℵα we are considering, must be a member of Lℵα+1 , and
hence constructible before the stage Lℵα+1 . Accordingly, we have proved that

ZF + V = L  P(Lℵα ) ⊆ Lℵα+1 ,

which means that

ZF + V = L  2ℵα ≤ ℵα+1;

and, since it is an elementary theorem of ZFC that ℵα+1 ≤ 2ℵα , it follows that

ZF + V = L  2ℵα = ℵα+1;

thus the GCH.23

Hence, we might say that the availability of the machinery which enables us to
“internalise” the Skolem argument is precisely that which is deployed in the result
central to showing the relative consistency of the GCH. And the non-absoluteness
of C(x) (or of the power-set operation), or alternatively, the absoluteness of the
predicative power-set operation, is central to the proof.24

Skolem’s original 1923 paper shows remarkable prescience in matters concern-
ing the consistency and independence phenomena. According to Skolem, Zermelo’s
axiomatisation rests on a logically prior notion of “domain”,25 and Skolem clearly
thinks that there is something odd, if not circular, in trying to found the notion of set

23 For clear accounts of the proof of AC from ZF + V = L, as well as Gödel’s main “reducibility
lemma,” see (Kunen, 1980, pp. 174–175) or (Bell and Machover, 1977, pp. 517–522). Bell and
Machover point out the similarity of the proof of the main lemma with the proof of the non-
absoluteness of P(x); see p. 522.
24 It is worth pointing out that it is the iteration of D(x) through the classical ordinals that prevents
the constructible hierarchy of the Lα being an appropriate setting for predicative mathematics. See
for example (Kreisel, 1960, p. 386). According to what Kreisel calls “the fundamental idea of
predicativity” (ibid., p. 387), an ordinal α is predicatively legitimate for use in defining a given
level �α of predicative definitions if there is a lower level �β (with β < α) such that there is a
well-ordering of the natural numbers of type α definable by a formula from �β . (See also (Gödel,
1944; Wang, 1954).) This is not in general true of the L-hierarchy.
25 In his first paper on the axiomatisation of set theory (Zermelo, 1908b, p. 262), Zermelo says the
following:

Set theory is concerned with a “domain” B of objects, which we will call “things”, and
among which are the sets.
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on something set-like, and fully unexplained, like the notion of domain. In particu-
lar, he takes it that this rules out the use of the set-theoretic axioms in investigating
dependence phenomena for the set-theoretic system itself, useful and fruitful as this
might be for investigating these questions for logical systems in general. This is
because an assumption of consistency would have to be made, and this would in
turn rest on the assumption that “domains” exist, which, properly speaking, would
demand axioms for the notion of domain, potentially leading to an infinite regress.
Thus:

If one is not to base oneself again on axioms for domains (and so on, ad infinitum), I see no
other choice but to turn to considerations like those which were applied above in the proof
of Löwenheim’s Theorem, for which the idea [Vorstellung] of the finite whole number is
assumed as the basis.26

Gödel’s result has a rather different conceptual basis, in particular because it is
consciously a relative consistency proof, and one pursued by the method of inner
models first used for set theory by von Neumann in (von Neumann, 1929). But
crucially it has at its core precisely an application of “Löwenheim’s Theorem”, as
Gödel himself pointed out:

This [‘reducibility’] lemma is proved by a generalization of Skolem’s method for construct-
ing enumerable models. (Gödel, 1939, p. 93.)

Skolem’s comments are prescient, not just with respect to Gödel’s work, but also
with respect to Cohen’s later proof of the independence of CH. Skolem consid-
ers the question of whether the Zermelo axioms isolate a unique domain (up to
isomorphism), for clearly the conceptual dependence of set theory on a notion of
domain would then be somewhat less serious. He suggests how it might be shown
that this is not the case, namely by taking a domain B, and trying to adjoin to it a set
a /∈ B in something like the way a new object is adjoined to an algebraic structure,
though the set theory case will be a good deal more involved. Skolem then says the
following:

Much more interesting would be to be able to prove that one can adjoin a new subset of Z0
[Zermelo’s set of natural numbers] without giving rise to contradictions. This however will
be very difficult.27

In a footnote, Skolem then goes on:

Since the Zermelo axioms do not determine the domain B [of all sets] uniquely, it is
very unlikely that all problems concerning powers will be decidable using these axioms.
For example, it is quite possible that the so-called Continuum Problem, namely whether
2ℵ0 > or = ℵ1 is simply not solvable on this basis; nothing need be decided about it. It
could be that the situation here is just the same as in the following case: an undetermined
field [Rationalitätsbereich] is given, and one asks whether there is present in this domain a

26 Skolem (1923, pp. 229–230) (English translation, p. 299). See also (Wang, 1970, p. 39).
27 Skolem (1923, p. 229) (English translation, pp. 298–299).
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magnitude [Grösse] x such that x2 = 2. Because of the ambiguity of the domain this is just
not determined.28

None of this can be called an anticipation of the Cohen methods, but the idea of
adjoining a set is a fair general description of Cohen’s goal, perhaps most easily seen
in the adjunction of a non-constructible set to a model which satisfies V = L. The
genius of Cohen’s work is showing how it is possible to adjoin sets to a model of ZF
in such a way that one obtains a new model of ZF. In doing this, the construction of
both countably infinite interpretations and of absoluteness again play key roles. In
the following pages, I will try to say what this connection is, by giving a very brief
sketch of Cohen’s proof.

Assume we have a countable, transitive model <M, E> of ZF, the basis of the
Skolem argument in the sharpened form. Since <M, E> is countable and transitive,
its continuum cM must be countable. But the cardinal number ℵ2 of this model
must also be countable; hence, it seems that there must be a function f which is
a bijection between cM and ℵM

2 (or ωM
2 ), even though M cannot recognise this

function. Suppose we can now produce a new structure<N , E ′>which preserves as
much of <M, E> as possible, enough anyway to remain a model of ZF, but which
also contains f as an element. Then <N , E ′> will be a model of ZF together with
the sentence ‘The cardinality of the continuum is ℵ2,’ that is, providing <N , E ′> is
constructed properly. This (very crudely put) is the basis of the Cohen independence
proofs. Note that the very starting point for the idea of Cohen’s proof is rooted in the
phenomenon which lies at the basis of the Skolem Paradox, namely the ((DLST))
and the existence of countable models.29

Let us try to be a bit less crude. First of all, we can use ZFC itself to carry out the
construction, since <M, E> does not have to be a model of the whole system, but
only of a finite fragment of it, namely of the axioms which we actually use. If we
list these axioms, then ZF can prove that there is a model based on a set M which
satisfies them, meaning in particular that we can regard the relation E as just ∈. Just
as before, we can use the (DLST) and the Mostowski Collapsing Lemma in tandem
to produce a countable, transitive set which also satisfies these axioms. Thus, in
effect, we can regard M as a countable, transitive model of enough of ZF as we
need. What the Cohen technique does is to show how to take such an M and create

28 Skolem (1923, p. 229) (299 of the English translation). Skolem’s original has “Alef” and not “ℵ.”
van der Waerden (1937, p. 40) gives “Rationalitätsbereich” as an alternative to “Körper [field].”
The English translation of Skolem’s paper has “commutative field.”
29 As Cohen himself said (Cohen, 2005, p. 2417):

For example, he [Skolem] pointed out the existence of countable models of set theory.
. . . But certainly he was aware of the limitations on what can be proved. In a remarkable
passage, he even discuses how new models of set theory might be constructed by adding
sets having special properties, although he says he has no idea how this might be done. This
was exactly the starting point for my own work on set theory, although I was totally unaware
that Skolem had considered the same possibility.

For a more detailed discussion, see (Kanamori, 2008).
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in ZF an expansion N , still countable and still a model of ZF (or the bits that we
need), which contains the same ordinals as M , but also contains a function like f
showing that the continuum in the expansion is equinumerous with its second aleph,
thus violating the CH.

Suppose that p is an arbitrary partially ordered set in the countable, transitive
model M . Let G ⊆ p be a filter in p; G is said to be generic if its intersection with
any set dense for p in M is non-empty. (d is said to be dense for p in M if d ∈ M ,
and if ∀x ∈ p∃y ∈ d[y � x].) Cohen showed that for each p there will always be
a generic set. Since M is transitive, we have G ⊆ M , but in general G will not
belong to M as p does. If it does not, then we can define the smallest model N
(often denoted by M[G]) which contains M and which also has G as a member. (G
will be the new subset adjoined to <M, E>, or the basis of the new function, which
amounts to the same.) Cohen showed that this M[G] exists for generic G, and indeed
is also a countable, transitive model of ZF if M is, and indeed contains exactly
the same ordinals. The existence of M[G] is exactly what the forcing construction
shows; the members of p are at the basis of this, the so-called forcing conditions.
Note that since G is in M[G], and M[G] is a model of ZF, then [⋃ G]M[G] is in
M[G]. But union is an absolute operation, so [⋃ G]M[G] = ⋃

G, and this set is
therefore in M[G].

So far, all of this is quite general. The particular details of what M[G] will satisfy
over and above the axioms of ZF will depend on exactly what are chosen as the
forcing conditions. Let us go back to our bijection f between ωM

2 and cM . So far
as we know, there is no such f in M ; indeed, we can insist that M satisfies the
GCH so that we know there cannot be. We can put [P(ω)]M instead of cM , because
these two sets have the same cardinality in M , as does the set of all functions (char-
acteristic functions) from ωM to 2M , i.e., the set [2M ]ωM

. There will of course be
plenty of maps g in M going between ωM

2 ×ωM and 2M ; but since M possesses no
injection between ωM

2 and [P(ω)]M , then none of these maps will be such that the

corresponding g∗ : ωM
2 → [2M ]ωM

is injective. However, the finite fragments of
such a map will be in M , and indeed so will be the set of all these finite fragments.
Thus put

Fn
(

ωM
2 × ωM , 2M

) = {

p : card(p) <ωM ∧ dom(p) ⊆ ωM
2 × ωM ∧

ran(p) ⊆ 2M
}

This Fn ∈ M . So, in a sense, M recognises all the finite approximations to a func-
tion f like the one we want to consider, even though it cannot recognise such a
function itself.

Fn is partially ordered by reverse inclusion, i.e., x ≤ y iff x ⊇ y, so we can
take Fn as the set of forcing conditions. Now suppose G is any filter on Fn. Then
⋃

G must be a function from dom(
⋃

G) ⊆ ωM
2 × ωM and ran(

⋃

G) ⊆ 2M . But
the sets
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Di =
{

p ∈ Fn
(

ωM
2 × ωM , 2M

)

: i ∈ dom(p)
}

D j =
{

p ∈ Fn
(

ωM
2 × ωM , 2M

)

: j ∈ ran(p)
}

are all dense, which must mean that if G is generic, it intersects them all, and we
can conclude from this straightforwardly that for a generic G, dom(

⋃

G) = ωM
2 ×

ωM and ran(
⋃

G) = 2M , which means that
⋃

G is a function from ωM
2 × ωM

onto 2M .
We can now easily show that this

⋃

G generates a function f of the kind we
are seeking. For each α in ωM

2 , we get a function fα from ωM to 2M (given by
fα(nM ) = ⋃

G(α, nM )), and we can show that if α �= β, then fα �= fβ . In other
words, as the α run through ωM

2 , the fα run through distinct subsets of ωM .
⋃

G
(= f ) is clearly just the amalgamation of the fα . Hence, in M[G] we can show that
there are ωM

2 different subsets of ωM .
It is at this point that we can see the importance of the absoluteness of ω and the

non-absoluteness of P(ω). We know that ω, like 2 (and any other finite ordinal), is
absolute, so therefore nM and ωM are the same in M[G], i.e., just n and ω respec-
tively. Thus, M[G] knows that there are ωM

2 subsets of ω. But this will only give

us a violation of CH if we know that ωM[G]
2 is the same as ωM

2 , in other words, if
we know that the shift from M to M[G] preserves this particular uncountable car-
dinal. We know that cardinality, as opposed to ordinality, is not an absolute notion,
although it turns out that in this particular construction ωM

2 does equal ωM[G]
2 . Thus

CH is violated in M[G]; M[G] adds subsets of ω to M’s [P(ω)]M .
We can now see the importance of the fact that the continuum is not absolute, for

the cardinality of M[G]’s continuum is ℵ2 (in M[G]), and we have seen that this
cardinal is the same in both M and M[G]. But the cardinality of the continuum in
M is not ℵ2 because M satisfies GCH. Hence it must be the case that cM �= cM[G],
which could not be the case if P(ω) were absolute. Thus, we have traded essentially
on the fact ω is absolute but P(ω) is not.

The method roughly sketched here is extremely flexible. For one thing, by vary-
ing the finite partial functions chosen, one can produce models M[G] in which the
power of the continuum is almost any uncountable cardinal. For another, even the
stability of the uncountable cardinal chosen is something which depends on the
forcing conditions. That ωM

2 equals ω
M[G]
2 is a consequence of the fact that Fn

satisfies the countable chain condition (c. c. c.) in M .30 In fact, if M[G] preserves
cofinalities (i.e., if cf(γ )M = cf(γ )M[G]), then any cardinal in M will also be a
cardinal in M[G], and if the set of forcing conditions p satisfies c. c. c. in M , then

30 A chain in a partially ordered set p is a subset of p in which the ordering relation is total. Two
elements x, y of p are compatible if there is an element z of p such that z ≤ x, z ≤ y, and
incompatible if there is no such z. An antichain in p is a subset q of p such that any two distinct
elements of q are incompatible. The c. c. c. for p then says that any antichain of p is countable.
See (Kunen, 1980, p. 53).
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cofinalities will be preserved in the shift to M[G].31 This is important to realise,
since by choosing sets of forcing conditions which do not have c. c. c., one can
violate cardinal preservation, or indeed ‘collapse’ cardinals in M to smaller ordinals
in M[G]. In short, the forcing models show how radically the size of the continuum
is undetermined by the standard axioms of ZF, thereby underlining the “relativity”
of the central notions of cardinality and power.

5 Conclusion

The central focus of this paper is the internalisation of the Skolem Paradox, showing
how this latter is transformed from a puzzle into an important technical result, a
result which, I have argued, is fundamental in the study of modern axiomatic set
theory. I have also suggested that the result is a clear reflection, in a very different
setting, of what is at the heart of Poincaré’s diagnosis of the antinomies, namely
that the Cantorian continuum possesses an instability property not possessed by the
collection of natural numbers. Poincaré wished to demonstrate, through his anal-
ysis, that the Cantorian continuum, indeed “Cantorism” generally, is incoherent.
Modern set theory rejects that conclusion. In fact, it might be argued that the non-
absoluteness of P(ω) shows that set theory gives a sufficiently refined account of
the continuum to recognise a sharp conceptual distinction between the continuum
and the set of natural numbers. Nevertheless, the internalisation of the Skolem Para-
dox ultimately shows that Poincaré’s diagnosis, when reflected in the way I have
indicated, points to a central conceptual difficulty, namely set theory’s inability to
solve the most basic non-trivial questions about exponentiation in the ordinal theory
of infinite power.32
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Chapter 11
Equalisers of Frames in Constructive Set Theory

Peter Aczel

1 Introduction

In a recent note (Palmgren, 2005) Erik Palmgren has shown that, in a sufficiently
strong version of Martin-Löf’s type theory (Martin-Löf, 1984) the category of set-
presented formal topologies has coequalisers. We refer the reader to (Palmgren,
2005) for the background motivation for this result.

Here we want to get a version of Palmgren’s result in a sufficiently strong version
of constructive set theory (Aczel and Rathjen, 2001). We prefer to work with the
(superlarge) category of set-presented class frames, a category that is equivalent to
the opposite of the category of set-presented formal topologies. So we want to show
that the category of set-presented class frames has equalisers.

Recall that a (class) frame is a partially ordered class having a top element &,
sups

∨

Y of arbitrary subsets Y and meets a ∧ b of elements a, b such that the
distributive law

a ∧
∨

Y =
∨

{a ∧ y | y ∈ Y }

always holds. The (superlarge) category Frame of frames has maps that preserve
the frame structure; i.e. the top, sups and meets.

A set-indexed family {γ (a)}a∈S of elements γ (a) of a class frame A indexed by
a set S is a family of generators of A if, for every x ∈ A, the class Sx = {a ∈ S |
γ (a) ≤ x} is a set and x = ∨{γ (a) | a ∈ Sx }. A function C : S → Pow(Pow(S))
is a set-presentation of A for the family of generators if, for a ∈ S and U ∈ Pow(S),

γ (a) ≤ γ̂ (U ) ⇐⇒ (∃V ∈ C(a))[V ⊆ U ],

where γ̂ (U ) = ∨{γ (a) | a ∈ U }.
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A set-presented frame is a frame equipped with a set-indexed family of genera-
tors and a set-presentation for the family. The set-presented frames form a (super-
large) category sFrame whose maps A → A′ are the frame maps between the
underlying frames of A, A′ so that the forgetful functor sFrame → Frame is full.

If A, A′ are frames and F1, F2 : A → A′ are frame maps then we may form the
subframe Â = {a ∈ A | F1(a) = F2(a)} and easily show that it gives an equaliser
of F1, F2 in the category of frames. Our task now is to prove the following result.

Theorem 1 (CZF + ∗-REA) If F1, F2 : A → A′ are frame maps, where A, A′ are
set presented frames, then their equaliser Â also has a set-presentation, so that Â
becomes an equaliser of F1, F2 in the category sFrame.

The theorem is an immediate consequence of the following two results,
where F1, F2 : A → A′ are frame maps between the frames A, A′,
with equaliser Â, {γ (a)}a∈S is a set-indexed family of generators for A and
eq(F1, F2) = {U ∈ Pow(S) | γ̂ (U ) ∈ Â}. A subset Ŝ of eq(F1, F2) is a set-base
for eq(F1, F2) if whenever U ∈ eq(F1, F2) then, for every b ∈ U there is V ∈ Ŝ
such that b ∈ V ⊆ U .

The axiom ∗-REA will be explained later when we turn to the proof of Lemma 3.

Lemma 2 (CZF) If the set-indexed family of generators {γ (a)}a∈S for A has a
set-presentation and eq(F1, F2) has a set-base Ŝ then {γ̂ (U )}U∈Ŝ is a set-indexed

family of generators for Â that also has a set-presentation.

Lemma 3 (CZF + ∗-REA) If A′ has a set-presentation then the class
eq(F1, F2) has a set base.

We assume that the reader has some familiarity with the axiom systems C Z F
and C Z F + RE A for constructive set theory. In order to make the paper more
self-contained we recall the Strong Collection Scheme and the Fullness Axiom of
CZF and the axiom RE A that play an important role. The Strong Collection Scheme
states, for each formula ϕ(x, y), that if a is a set such that ∀x ∈ a ∃y ϕ(x, y) then
there is a set b such that

∀x ∈ a ∃y ∈ b ϕ(x, y) & ∀y ∈ b ∃x ∈ a ϕ(x, y).

Another collection scheme, the Subset Collection Scheme, was used in the original
formulation of C Z F . The Fullness Axiom is an axiom that is equivalent to that
scheme, given the other axioms and schemes of C Z F , and is formulated using the
following notion. If A, B are sets then mv(B A) is defined to be the class of total
relations from A to B; i.e. it is the class of all relations R ⊆ A × B such that

∀x ∈ A ∃y ∈ B (x, y) ∈ R.

Now the Fullness Axiom states that, for all sets A, B there is a subset D of mv(B A)

such that

∀R′ ∈ mv(B A) ∃R ∈ D R ⊆ R′.
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The Regular Extension Axiom (RE A) is a useful addition to C Z F . A regular set is
a transitive set that has the Strong Collection Property, where a set A is transitive
if every element is a subset and it has the Strong Collection Property if, whenever
R ∈ mv(Aa), with a ∈ A then there is a set b ∈ A such that

∀x ∈ a ∃y ∈ b (x, y) ∈ R & ∀y ∈ b ∃x ∈ a (x, y) ∈ R.

The axiom RE A states that every set is a subset of a regular set. A slight strength-
ening of RE A is the axiom

⋃

RE A, which expresses that every set is a subset
of a union-closed regular set; i.e. a regular set closed under the union operation,
x ∈ A )→ ∪x ∈ A.

It is worth noting that if A is regular then, if a ∈ A and f : a → A the
{ f (x) | x ∈ a} ∈ A, and if 2 = {∅, {∅}} ∈ A then A is closed under unordered
pairs x, y ∈ A )→ {x, y} ∈ A and also under binary unions x, y ∈ A )→ x ∪ y ∈ A
when A is union-closed.

2 Proof of Lemma 2

As Ŝ is a set-base for eq(F1, F2) the family {γ̂ (U )}U∈Ŝ is easily seen to be a

set-indexed family of generators of Â. We focus on the problem of getting a set-
presentation Ĉ : Ŝ → Pow(Pow(S)) for the family. For U ∈ Ŝ and U ∈ Pow(Ŝ)
let

U *̂ U ⇐⇒ γ̂ (U ) ≤
∨

{γ̂ (V ) | V ∈ U}.

We must find Ĉ such that for U ∈ Ŝ and U ∈ Pow(Ŝ)

U *̂ U ⇐⇒ (∃V ∈ Ĉ(U )) V ⊆ U .

Let C : S → Pow(Pow(S)) be a set-presentation for {γ (a)}a∈S . Observe that

U *̂ U ⇐⇒ ∨{γ (a) | a ∈ U } ≤ ∨{γ (b) | b ∈ ∪ U}
⇐⇒ (∀a ∈ U ) γ (a) ≤ ∨{γ (b) | b ∈ ∪ U}
⇐⇒ (∀a ∈ U )(∃V ∈ C(a)) V ⊆ ∪ U

The following lemma gives us what we need.

Lemma 4 (CZF) Let C : S → Pow(Pow(S)), where S is a set, and let Ŝ ∈
Pow(Pow(S)). Then there is Ĉ : Ŝ → Pow(Pow(Ŝ)) such that, for all U ∈ Ŝ
and U ∈ Pow(Ŝ),

(∀a ∈ U )(∃V ∈ C(a)) V ⊆ ∪ U ⇐⇒ (∃V ∈ Ĉ(U )) V ⊆ U .
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Proof For U ∈ Pow(S) let

MV(U,C) = {R ∈ Pow(C∗) | (∀a ∈ U ) ∃V (a, V ) ∈ R},

where C∗ = {(a, V ) ∈ S × Pow(S) | V ∈ C(a)}.
Claim There is Q : Ŝ → Pow(C∗) such that, for all U ∈ Ŝ, Q(U ) ⊆ MV(U,C)

and if T ∈ Pow(C∗) then

(∗) T ∈ MV(U,C) ⇐⇒ ∃R ∈ Q(U ) R ⊆ T .

Proof of Claim By the Fullness Axiom, for each U ∈ Ŝ there is a subset D of

mv(C
U
) such that T (U, D), where if C = ⋃

a∈S C(a),

T (U, D) ≡ ∀R′ ∈ mv(C
U
) ∃R ∈ D R ⊆ R′.

So, using Strong Collection, there is a set D of subsets of mv(C
U
) such that

(∀U ∈ Ŝ)(∃D ∈ D)T (U, D) and (∀D ∈ D)(∃U ∈ Ŝ)T (U, D).

For each U ∈ Ŝ let Q(U ) = MV(U,C) ∩ (∪D). By the Union axiom and
Restricted Separation Q(U ) is always a set so that Q : Ŝ → Pow(C∗) and
Q(U ) ⊆ MV(U,C). Now let U ∈ Ŝ and T ∈ Pow(C∗). To prove (∗), the implica-
tion from right to left is immediate. For the converse direction, let T ∈ MV(U,C).

Choose D ∈ D such that T (U, D). Then, as T ∩ C∗ ∩ (U × C) ∈ mv(C
U
), there

is R ∈ D such that R ⊆ T ∩ C∗ ∩ (U × C). As R ∈ ∪D and R ∈ MV(U,C) we
get that R ∈ Q(U ). As R ⊆ T we have derived the right hand side of (∗). �
Given U ∈ Pow(Ŝ) let T (U) = {(a, V ) ∈ C∗ | V ⊆ ∪ U}. By the claim there
is Q1 : Ŝ → Pow(C∗) such that, for all U ∈ Ŝ, Q1(U ) ⊆ MV(U,C) and, as
T (U) ∈ Pow(C∗),

(∀a ∈ U )(∃V ∈ C(a)) V ⊆ ∪ U ⇐⇒ T (U) ∈ MV(U,C)

⇐⇒ (∃R ∈ Q1(U )) R ⊆ T (U)

Let R ∈ Q1(U ) for some U ∈ Ŝ. Then

R ⊆ T (U) ⇐⇒ (∀(a, V ) ∈ R) V ⊆ ∪ U
⇐⇒ (∀(a, V ) ∈ R)(∀b ∈ V )(∃W ∈ U) b ∈ W
⇐⇒ (∀b ∈ G(R))(∃W ∈ U) b ∈ W
⇐⇒ (∀b ∈ G(R))(∃W ∈ C1(b)) W ∈ U
⇐⇒ T1(U) ∈ MV(G(R),C1),

where G(R) = ⋃

a∈S{V | (a, V ) ∈ R}, C1(b) = {W ∈ Pow(S) | b ∈ W } for b ∈ S
and T1(U) = {

(b,W ) ∈ C∗
1 | W ∈ U

}

. Note that each of these are sets.
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Let Ŝ1 = {G(R) | R ∈ ⋃

U∈Ŝ Q1(U )}. By the Union axiom and Replacement

this is a set. By the claim again there is Q2 : Ŝ1 → Pow
(

C∗
1

)

such that, for all

U1 ∈ Ŝ1, Q2(U1) ⊆ MV(U1,C1) and,

T1(U) ∈ MV(U1,C1) ⇐⇒ (∃R′ ∈ Q2(U1)) R′ ⊆ T1(U).

So, if VR′ = {W | (∃b ∈ S (b,W ) ∈ R′} ∈ Pow(S) for R′ ∈ Pow
(

C∗
1

)

,

R ⊆ T (U) ⇐⇒ (∃R′ ∈ Q2(G(R))) R′ ⊆ T1(U)
⇐⇒ (∃R′ ∈ Q2(G(R))) VR′ ⊆ U ,

and hence, if U ∈ Ŝ,

(∀a ∈ U )(∃V ∈ C(a)) V ⊆ ∪U ⇐⇒ (∃R ∈ Q1(U )) R ⊆ T (U)
⇐⇒ (∃R ∈ Q1(U ))(∃R′ ∈ Q2(G(R))) VR′ ⊆ U
⇐⇒ ∃V ∈ Ĉ(U ) V ⊆ U ,

where Ĉ(U ) = {VR′ | R′ ∈ ⋃

R∈Q1(U ) Q2(G(R))} ∈ Pow(Pow(S)). �

3 Proof of Lemma 3

We first formulate the axiom ∗-REA. A union-closed regular set A is defined to be
a ∗-regular set if it has the Relation Reflection Property; i.e. if a0 ∈ X ⊆ A and
R ⊆ X × X such that

(∀a ∈ X)(∃b ∈ X)[(a, b) ∈ R]

then there is X0 ∈ A such that a0 ∈ X0 ⊆ X and

(∀a ∈ X0)(∃b ∈ X0)[(a, b) ∈ R].

The axiom ∗-REA: Every set is a subset of a ∗-regular set.

Note the following result, where DC is the axiom of Dependent Choices; i.e. the
axiom that states that whenever R ∈ mv(AA), where A is a set, if a ∈ A then there
is f : N → A such that f (0) = a and ( f (n), f (n + 1)) ∈ R for all n ∈ N.

Proposition 5 (CZF+DC) Any union-closed regular set has the Relation Reflection
Property and so is ∗-regular.

Corollary 6 ∗-REA is a theorem of CZF + DC + ⋃

REA.

To prove Lemma 3 we let A be a large enough ∗-regular set such that 2 ∈
A. We will explain what large enough means as we go on. For any set X let
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PowA(X) = A ∩ Pow(X). As A is a set so is each PowA(X). Let Ŝ = {U ∈ A |
U ∈ eq(F1, F2)}. As A is a set we can use Replacement and Restricted Separation
to see that Ŝ is a set. We show that Ŝ is a set-base for eq(F1, F2).

H1: We get S ∈ R by requiring that S ∈ A.
H2: Let U, V ∈ R. We must show that U ↓ V ∈ R. But (U ↓ V ) = ⋃{U ↓

{c} | c ∈ V } where U ↓ {c} = ⋃{(b ↓ c) | b ∈ U } for c ∈ V with
(b ↓ c) = {a ∈ S | a ≤ b, c} for b, c ∈ S. It follows that if we assume
that the set {(b ↓ c) | b, c ∈ S} is a subset of A then, as U, V ∈ A, so is
(U ↓ V ) ∈ A. This can be defined by Restricted Separation in A, provided
we assume that {(a, b) ∈ S × S | a ≤ b} and 2 = {0, {0}} are elements of A,
so that Restricted Separation does indeed hold in A.

H3: For i = 1, 2 and U ∈ Pow(S) let

GiU = Fi (γ̂ (U )).

Note that

U ∈ eq(F1, F2) ⇐⇒ G1U = G2U.

Let G1U = G2U . We must show that if b ∈ U then there is V ∈ A such
that b ∈ V ⊆ U and G1V = G2V . So let G1U = G2U and let b ∈ U . Let
X = PowA(U ).

We will assume that S ⊆ A
It follows that, for each b ∈ S, {b} ∈ A so that {b} ∈ X . We will use the following
lemma.

Lemma 7

1. (∀V1 ∈ X)(∃V2 ∈ X) [G1V1 ≤′ G2V2].
2. (∀V2 ∈ X)(∃V1 ∈ X) [G2V2 ≤′ G1V1].
Proof It suffices to prove 1 as we get 2 by interchanging the roles of G1 and G2.
For V ∈ Pow(S) and i = 1, 2 let Ti V = ⋃

a∈V S′
Gi {a}.

We assume that the
{

S′
Gi {a} | i ∈ {1, 2} & a ∈ S

}

⊆ A.

We get that Ti V ∈ A for all V ∈ X . Observe that

Gi V = Fi (γ̂ (V ))

= ∨′{Gi {a} | a ∈ V }
= ∨′ {∨′ {

γ ′(a′) | a′ ∈ S′
Gi {a}

}}

= ∨′{γ ′(a′) | a′ ∈ Ti V }

So, for V1, V2 ∈ Pow(S),
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G1V1 ≤′ G2V2 ⇐⇒ (∀a′ ∈ T1V1)[γ ′(a′) ≤′ ∨′{γ ′(b′) | b′ ∈ T2V2}]
⇐⇒ (∀a′ ∈ T1V1)(∃V ′ ∈ C ′(a′))[V ′ ⊆ T2V2]

Now let V1 ∈ X . Then, as V1 ⊆ U , G1V1 ≤′ G2U so that

(∀a′ ∈ T1V1)(∃V ′ ∈ C ′(a′))[V ′ ⊆ T2U ].

We assume that
⋃

a′∈S′ C ′(a′) ⊆ A So, for V ′ ∈ ⋃

a′∈S′ C ′(a′), V ′ ∈ A so that,
using the regularity of A, as U ⊆ S ⊆ A,

V ′ ⊆ T2U ⇐⇒ (∀b′ ∈ V ′)(∃b ∈ A)[b ∈ U & b′ ∈ T2{b}]
⇐⇒ (∃W ∈ A)[W ⊆ U & V ′ ⊆ T2W ]

So

(∀a′ ∈ T1V1)(∃V ′ ∈ C ′(a′))(∃W ∈ A)[W ⊆ U & V ′ ⊆ T2W ]

so that

(∀a′ ∈ T1V1)(∃W ∈ A)[W ⊆ U & (∃V ′ ∈ C ′(a′)[V ′ ⊆ T2W ].

As T1V1 ∈ A and A is regular there is a set W ∈ A such that W ⊆ Pow(U ) and

(∀a′ ∈ T1V1)(∃W ∈ W)(∃V ′ ∈ C ′(a′)[V ′ ⊆ T2W ].

Now let V2 = ∪W . Then V2 ∈ A and

(∀a′ ∈ T1V1)(∃V ′ ∈ C ′(a′))[V ′ ⊆ T2V2].

It follows that G1V1 ≤′ G2V2. �

Corollary 8 (∀V ∈ X)(∃V ′ ∈ X)[G1V ≤′ G2V ′ & G2V ≤′ G1V ′]
Proof Given V ∈ X , by the lemma there are V1, V2 ∈ X such that

[G1V ≤′ G2V2 & G2V ≤′ G1V1]

Let V ′ = V1 ∪ V2. Then, V ′ = ∪{V1, V2} ∈ A and hence V ′ ∈ X . Also Gi Vi ≤′
Gi V ′ for i = 1, 2 so that

[G1V ≤′ G2V ′ & G2V ≤′ G1V ′]. �

As {b} ∈ X and X ⊆ A we may apply the Relation Reflection Property to the
corollary to get a set X0 ∈ A such that {b} ∈ X0 ⊂ Pow(U ) and

(∗) (∀V ∈ X0)(∃V ′ ∈ X0)[G1V ≤′ G2V ′ & G2V ≤′ G1V ′].
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Let V = ∪X0. Then, as A is union-closed, V ∈ A so that V ∈ X and b ∈ V ⊆ U .
Also

γ̂ (V ) =
∨

{γ (a) | a ∈ V } =
∨

{γ̂ (V0) | V0 ∈ X0}

so that, for i = 1, 2, Gi V = ∨′{Gi V0 | V0 ∈ X0}. Using (∗) we can now easily
show that G1V = G2V and we are done. �

We now summarise the assumptions we have made about the ∗-regular set A. We
have assumed that A is a superset of the set

{2} ∪ S ∪
{

S′
Gi {a} | i ∈ {1, 2} & a ∈ S

}

∪
⋃

a′∈S′
C ′(a′).
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Chapter 12
Analogy and Its Surprises: An Eyewitness’s
Reflections on the Emergence of Real Algebraic
Geometry

Max Dickmann

To John Bell on his 60th birthday, in steadfast friendship.

1 Introduction

The years 1978–1980 witnessed the birth of a systematic and organized corpus of
knowledge—a theory worth that name—providing the tools required for a structural
understanding of the geometric behaviour of algebraic varieties1 over the field of
real numbers.

The obvious interest of such an enterprise for geometry and physics—even for
technological applications—raises immediately a question about the reasons for
such a late development, especially in comparison to that of its cousin—algebraic
geometry over the field of complex numbers—that developed vigorously and with-
out interruption between the second half of the nineteenth century and the present.

A second, obvious, question is that of examining the conceptual process that led
to the establishment of the new discipline of real algebraic geometry, with special
emphasis on its final steps. Nowhere, as far as I know, has this second aspect been
treated with revealing—rather than technical—detail by the dramatis personae.

In this paper I want to address these two questions from the informal perspective
of an eyewitness to the events, rather than that of a rigorous historical investigation, a
task quite beyond my abilities.2 I wish to convey the development of some key ideas
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1 An algebraic variety over a field K is the set of solutions x ∈ K n of a finite set of polynomial
equations P1(v1, . . . , vn) = 0, . . . , Pm(v1, . . . , vn) = 0, where the Pi ’s have coefficients in K .
2 Questions of an historical nature akin (but not identical) to those dealt with here have been the
object of several colloquia on “The origins of real geometry” in 2005–2007, in which the author
took part. However, the contents of this paper, as well as its omissions, inaccuracies and errors, are
entirely my responsibility.

D. DeVidi et al. (eds.), Logic, Mathematics, Philosophy: Vintage Enthusiasms,
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that brought to birth this new mathematical discipline, trying, as much as possible,
to spare the reader a tiresome technical exposition that may risk obscuring my goal.
In particular, some unavoidable technical definitions will be relegated to footnotes.

2 The Late Development of Real Algebraic Geometry

The following quotations offer, in my opinion, a revealing insight of the state of
mind of two leading mathematicians, as late as the beginning of the 1970s, concern-
ing the existing state and the perspectives of development of real algebraic geometry.
Dieudonné (1985, p. 74)3:

In principle, in “abstract” algebraic geometry, algebraic equations with coefficients in any
field whatsoever can be taken; but the experience of real geometry, where it is possible that
no point of R

n satisfies a polynomial equation of degree > 0, shows that it would not be
possible to have workable geometric statements without being over an algebraically closed
field . . . (My emphasis).4

In a rather interesting reflection, Thom regrets, as late as 1972, the pitiful state of
neglect of real algebraic geometry:

It might be argued that the importance accorded by analysis to the complex field and the
theory of analytic functions during the last century has had an unfortunate5 effect on the
orientation of mathematics. By allowing the construction of a beautiful (even too beautiful)
theory which was in perfect harmony with the equally successful quantification of physical
theories,6 it has led to a neglect of the real and qualitative nature of things. Now, well
past the middle of the twentieth century, it has taken the blossoming of topology to return
mathematics to the direct study of geometrical objects, a study which, however, has barely
begun; compare the present neglected state of real algebraic geometry with the degree of
sophistication and formal perfection of complex algebraic geometry. In the case of any nat-
ural phenomenon governed by an algebraic equation it is of paramount importance to know
whether this equation has solutions, real roots, and precisely this question is suppressed
when complex scalars are used. As examples of situations in which this idea of reality
plays an essential qualitative role we have the following: the characteristic values of a linear
differential system, the index of critical points of a function, and the elliptic or hyperbolic
character of a differential operator (My emphasis).7

It is often a delicate exercise to give a convincing explanation of something that
has not happened; in the present case, the lack of an earlier development of real
algebraic geometry. Besides the “harmful” influence of nineteenth century complex
analysis suggested by Thom, there is an obvious conjecture—by no means antithet-

3 This and the next quotations are taken from the respective English translations.
4 However, Dieudonné registers in the same text (p. 74) that topological properties of the sets of
points with real coordinates of (complex) varieties given by polynomials with real coefficients were
studied by Harnack, Hilbert and others already in the 19th century.
5 “Harmful” (“néfaste”) in the French original.
6 The French text speaks of the “quantitative character of the physical laws.”
7 Thom (1975, fn. 4, p. 35). Chapter IV of (Dieudonné, 1985) gives an historical panorama of the
dominant role played by complex projective geometry during most of the nineteenth century.
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ical to his—based simply on the observation of actual historical record. I will try to
sketch it here.

Real algebraic varieties have a behaviour that, with hindsight, may have looked
“strange” or “irregular” as measured by existing and long acquired mental habits,
namely those arising precisely from the theory of analytic functions and (hence)
classical algebraic geometry. Here are some instances, far more “perverse” than that
mentioned by Dieudonné:

Examples 1 (1) The “spiriting away” of real solutions of algebraic equations into
the complex realm in certain parts of real space. Example: the cubic curve in
R

2 given by the equation

y2 − x (x2 − 1) = 0

obviously has no solutions where both coordinates are real, whenever
0 < x < 1 or x < −1.

(2) Irreducible varieties over the reals may be non-connected, contrary to the sit-
uation over the complex field (Shafarevich, 1977, Ch. VII, § 2, pp. 318–324).
Examples: the polynomial defining the curve above is irreducible, has two con-
nected components (one for −1 ≤ x ≤ 0 and another for x ≥ 1), and no
“singularities”; the local dimension at each point is 1: in a small neighborhood
of any point the curve can continuously (and algebraically) be deformed into a
line.

The cubic curve in R
2 defined by

y2 = x2 (x − 1)

(irreducible as well) has two components, but one of them has “shrunk” into the
single point (0, 0) (dimension 0), necessarily a singularity.

Note, in passing, that even as late as 1957 it wasn’t even known whether a real
algebraic variety has finitely many connected components (proved by Whitney
that year).

(3) The (local) dimension may change from one point to another of a connected,
irreducible algebraic variety over R, contrary, again, to the behaviour known
in the complex case, where all points of an irreducible variety have the same
local dimension (Atiyah and Macdonald, 1969, pp. 124–125). Example: The
Cartan-Whitney umbrella in R

3 given by the equation:

x3 − z (x2 + y2) = 0

In this example the points with coordinates (0, 0, z) (z �= 0)—i.e., those lying
in the “handle” of the umbrella—have dimension 1, while the rest (those in the
“canvas”) are of local dimension 2. �

The obvious conjecture I want to state is that the absence of techniques capable
of dealing with phenomena of this kind—that is, capable of “taming” phenomena
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genuinely perceived at the time as “wild”—was responsible for the state of neglect
of real geometry regretted by Thom. Mathematicians interested in this area were
empty-handed to prove basic theorems of sufficient generality to explain the
behaviour of real algebraic varieties observed in the simple examples above, as well
as in many others. Of course, this conjecture does not itself constitute a “cultural” (or
“sociological”) explanation of the belated appearance of those techniques. Thom’s
judgement may well be a point of departure for the (necessary) elucidation of this
question.

3 The Sparse Pieces of a Puzzle

To be sure, bits and pieces of knowledge of the “real world” slowly began to emerge
from the 1830s on. We begin by succinctly recording, with no claim to complete-
ness, the most relevant among these results.8

3.1 The (Slow) Progress of Real Geometry

3.1.1 Real Algebra and Logic

1. Sturm’s algorithm (1835) for the separation of the real roots of a real polynomial
in one variable, the first recorded work on real varieties in a modern sense. This
algorithm originated in Sturm’s (and Fourier’s) work on differential equations.
In 1853 Sylvester extended Sturm’s algorithm, and in 1852 he established the
“inertia law” for quadratic forms over the reals named after him. Hermite also
worked on this subject (1854).

2. Hilbert’s work (1888) on the representation of non-negative polynomials as sums
of squares of polynomials, and the incidence of this question on the possibility
of certain geometrical constructions, leading to the statement of Hilbert’s 17th
problem (1900).

3. Artin and Schreier’s solution to Hilbert’s 17th problem (1927) that, in particular,
led them to introduce the key notion of a real closed field (henceforth abbrevi-
ated RCF), and to prove the existence and uniqueness of the real closure of any
ordered field.

4. Tarski’s work—dating back to 1929–1930, though fully published much later—
on quantifier elimination for the first-order theory of the field of real numbers
in the language L = {+,−, ·, 0, 1,<} for ordered (unitary) rings. This result
played a central role in the emergence of real algebraic geometry:

8 In order to avoid an overextended bibliography, we record in the sequel only the publication
year of the works mentioned. References to the original articles can be found in the extensive
bibliography of (Bochnak et al., 1998), assorted with useful comments in the bibliographic and
historical notes at the end of each chapter. See also the bibliographic references in (Becker, 1986;
Dickmann, 1985; Knebusch, 1984).
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(a) It implies the completeness and the decidability of the first-order theory
of R. Completeness shows, amongst many other things, the identity of
Th(R) with Artin-Schreier’s theory of real closed fields.9 Decidability is
at the root of the constructive-algorithmic aspects of real algebraic geom-
etry that which underwent a vigorous development from the 1980s on (cf.
Basu et al., 2006).

(b) It has as a consequence the so-called (second) “transfer principle”—“model-
completeness” in the logicians’ jargon—a tool of constant use in showing
that the satisfaction of (first-order) properties by finitely many elements of a
RCF is independent of the particular RCF that contains them.
More importantly,

(c) It gives the fundamental identity

“Definable (in L) = Semi-algebraic”

for real closed fields,10 that is, the identity within this theory of two central
concepts: one originating in logic, the other in geometry. In particular, Tarski
announces in (Tarski, 1931) the, by now usual, geometric characterization of
the (L–) definable subsets of the real line.

(d) Tarski (1931) also gave an explicit geometric interpretation of logical opera-
tions (e.g., existential quantification = projection) and showed, conversely,
that some standard topological operations on definable subsets of real
Euclidean space (e.g., closure and interior) can be expressed by logical for-
mulas of the first-order language built on L. Quantifier elimination for the
first-order theory of RCFs amounts, in fact, to proving that a projection of a
semi-algebraic set is semi-algebraic.

5. An extreme case that confirms the scatteredness of information that afflicted
real algebraic geometry until rather recently is that of the PhD thesis (Brakhage,
1954), never published, and completely unknown to the practitioners of the sub-
ject until a few years ago. He carried out the first systematic topological study of
semi-algebraic sets and functions over arbitrary RCFs.11

6. J.-L. Krivine’s work (1964), originating in questions of real analysis, and largely
unnoticed by geometers until well into the 1980s, proved first versions of some
foundational results in real algebraic geometry.

9 One cannot refrain from noticing the absence in Tarski’s work of any reference to that of Artin-
Schreier, though they were contemporaries, working 400 km from each other (!); presumably he
did not know it.
10 A semi-algebraic subset of K n , K a RCF, is a finite Boolean combination of sets defined
by polynomial equalities and inequalities. The powerful geometric implications of this identity
became clear only much later.
11 I borrow this information from (Bochnak et al., 1998, pp. 57–58).
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(a) A weak version of the real nullstellensatz.
(b) A precise algebraic characterization of the real radical of an ideal in any ring,

yielding, in particular, the exact form of those polynomials vanishing on a
given real algebraic variety. 12

(c) The (later) so-called Kadison-Dubois representation theorem.

Independently, Dubois (1969) and Risler (1970) proved stronger versions of the
real nullstellensatz, the latter in its definitive form.

7. Stengle’s positivstellensatz (1974) characterized those polynomials taking non-
negative values on a real algebraic variety (and more).

8. Recio (1977)—and, independently, Coste-Roy (1979) and Delzell (1980)—
proved the so called “open” quantifier-elimination theorem (a.k.a. “finiteness”
theorem), another key result for later developments: an open semi-algebraic sub-
set of K n (K a RCF) can be represented as a finite union of finite intersections
of strict polynomial inequalities.

9. Collins (1975) devised an algorithm for quantifier elimination of RCF based on
a geometric result: cylindrical algebraic decomposition. Contrary to the (highly
inefficient) algorithm derived from Tarski’s result, Collins’ is as efficient as pos-
sible, that is, of doubly exponential complexity on the entry data (Davenport and
Heintz later showed that one cannot possibly do better). �
The works of Artin-Schreier (3) and Tarski (4) appear, in retrospect, to be the

most important ground stones in the construction of real algebraic geometry.

3.1.2 Topology of Algebraic Varieties over R

1. Harnack’s result (1876) on the number of connected components of non-singular
algebraic curves in the real projective plane.

2. Hilbert’s extension of Harnack’s work leading to (the first part of) Hilbert’s 16th
problem.

3. The work of J. Nash (1952) and H. Whitney (1957) on the topology of algebraic
varieties over R. Nash was led to consider analytic functions on open subsets of
R

n which are solutions of algebraic equations with polynomial coefficients, later
baptised Nash functions (for example, the function y = 1√

1+x2
); the theory of

Nash functions turned out to be of crucial importance in both real algebraic and
real analytic geometry. Nash’s work was continued by Akbulut, King, Tognoli
and other researchers. Whitney proved that the difference of two algebraic vari-
eties over R has finitely many connected components.

4. Lojasiewicz (1964) was the first organized rendering of the existing, but sparse
information on real analytic geometry. Amongst a wealth of information, they

12 His results apply, directly, to algebraic varieties over arbitrary RCFs (rather than only over R).
In the sequel we call the former real algebraic varieties, while mentioning explicitly those results
valid only over R.
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contain the first systematic study of (local and global) semi-algebraic and semi-
analytic sets in R

n (and the original proof of the famous Lojasiewicz inequality).
Note. Many results of topological nature concerning varieties over R were
derived from results known to hold in the field of complex numbers.

Each of these results—and many others not mentioned here—contributed in its
own way to shape the theory that eventually emerged at the end of the 1970s. How-
ever, in spite of their individual significance, the list looked for a long time as a
repertoire of scattered “facts.” They had various origins and motivations, emerging
from disparate areas of mathematics: differential equations, real analysis, topology,
geometry, algebra, and even mathematical logic. A unifying thread could hardly
be discerned, even with hindsight, until at least the middle 1960s. Further, none
of these (and other) contributions could, by themselves or even together, offer a
structural explanation of the behaviour of algebraic varieties over R known from
many examples, nor answer certain questions arising from them. For example, does
an arbitrary semi-algebraic subset of R

n have finitely many connected components?
Does there exist a notion of connectedness of semi-algebraic sets over an arbitrary
RCF reflecting the phenomena observed in examples over RCFs other than R? (Note
that the interval topology of any RCF other than R is totally disconnected.) Is there
a “reasonable” theory of dimension for real algebraic varieties and semi-algebraic
sets over general RCFs? Do the sets of equidimensional points of a real algebraic
variety have a discernible structure (e.g., are they L-definable)? Are there uniform
decompositions of semi-algebraic sets into pieces with a simple geometric structure?

4 The Puzzle Solved: Invention of the Real Spectrum

The discovery of the real spectrum of a ring involved a rather complicated detour
through a path parallel to that opened by Grothendieck in his abstract formulation of
“classical” algebraic geometry in the early 1960s. Though at the end of the journey
it was realized that in the real case one could dispense with this abstract machinery,
understanding the trend of ideas that led to its discovery requires travelling again
along that rugged path.

4.1 Zariski Spectra, Grothendieck Topologies and étale Schemes

Our point of departure is the classical Zariski spectrum of a ring, endowed with a
structure sheaf :

4.1.1 Data

A (commutative, unitary) ring A.

• Points of Spec(A): The prime ideals of A.
• Topology on Spec(A): Given by the family of sets
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Da = {p ∈ Spec(A) | a �∈ p} (a ∈ A).

as a basis of opens.
• Structure sheaf S

A
on Spec(A): The ring of sections over a non-empty basic open

Da (i.e., a �= 0) is A[a−1].
The stalk of S

A
at p ∈ Spec(A) is, then, the ring Ap, the localization of A at p. �

As is well-known, Spec(A) is a spectral space. 13 The pair (Spec(A), → SA) is
an (affine) ringed space.

The interesting case for algebraic geometry (over C, say) is A = C[V ] =
C[X1, . . . , Xn]/I(V ), where V is an algebraic variety defined by polynomials in
C[X1, . . . , Xn], and I(V ) is the ideal of polynomials vanishing on V ; C[V ] is called
the coordinate ring of V . For a field extension K ⊇ C—in fact, any field containing
the coefficients of the polynomials defining V —the set of points in K n satisfying
the equations defining V is denoted by V (K ). In this case we have:

4.1.2 Basic Properties of the Zariski Spectrum of a Complex Variety

1. The prime ideals of C[V ] correspond bijectively to the irreducible subvarieties
of V (e.g., if V is a surface in C

3, to the irreducible components of V (C), the
irreducible curves in V (C), the points of V (C), etc.).

2. The points of V (C) correspond bijectively to the maximal ideals of C[V ] : for
x ∈ V (C),

x )→ Mx = the (maximal) ideal of polynomials vanishing at x .

3. The restriction of S
C[V ] to V (C) (under the identification x ↔ Mx ) is the sheaf

of germs at x of regular (rational) functions over V , i.e., rational functions whose
denominator does not vanish on V (C).

4. The topology induced by Spec(C[V ]) on V (C) (under the identification in (2))
is the Zariski topology, where the closed subsets are the subvarieties of V (C),
rather than its Euclidean topology induced from C

n . �
The trouble with this approach is that the open subsets of the Zariski topology

on V (C) are far too big, precluding the possility of getting an implicit function
theorem—an essential tool for the local analysis of the variety (in particular, the
study of its singular points).

4.1.3 The étale Site

Grothendieck’s remedy to circumvent this (major) stumbling block was to make a
fresh start and endow the set Spec(A) with:

13 That is, a T0 space with a basis of quasi-compact open sets (the Da’s in this example) closed
under finite intersections, where every irreducible closed set is the closure of a singleton.
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(i) A coherent system of coverings, instead of a flesh and bone topology;
(ii) A different structure sheaf on Spec(A).

The details of Grothendieck’s theory are too technical to be expounded here; we
shall only describe it in general terms, of necessity vague, but nevertheless needed
for later comparison. The interested reader can consult expository texts such as
(Johnstone, 1977) or (Goldblatt, 1979).

Ad (i). The systems of coverings considered—made of maps rather than
(open) sets—are required to satisfy appropriate axioms, which define a
Grothendieck topology or a site. When A = K [V ], V a variety over the
field K , a specific site is considered, called the étale site of V .

Ad (ii). The stalks of the sheaf on (the site) Spec(A) to be considered are
henselian local rings14 with separably closed15 residue fields. The process
is done in such a way that, grosso modo, the stalk of the new structure sheaf
Set

A at p ∈ Spec(A) is the (strict) henselization of Ap.16 This is a delicate
point, as the sheaf is not constructed stalkwise but over open subsets; one
must consider coverings by certain maps called étale localizations.

This recipe guarantees, of course

• The validity of (abstract versions of) the implicit function theorem (see Artin
et al., 1972),

at the price of
• Not only having to manipulate quite complicated objects but, more importantly,

losing much of the geometrical intuition.

In fact, the price of the ransom is irredeemably lost: the étale site of a complex
variety V is never the site associated to a topology on Spec(C[V ]), except in trivial
cases.

We also point out, for later comparison, that although the process just sketched
adds no new points—the underlying set is still Spec(A)—the stalks of the struc-
ture sheaf Set

A have non-trivial A-automorphisms: these arise from non-trivial auto-
morphisms of the separable closure of the residue field k(p) of the localization
Ap (p ∈ Spec(A)).

14 A local ring B (with maximal ideal �) is henselian if every simple root of a monic polynomial
F ∈ B[X ] in the residue field B/m lifts to a root of F in B (necessarily simple as well).
15 A field is separably closed if it contains all roots of every polynomial having no multiple roots.
For fields of characteristic zero this just means algebraically closed.
16 It can be proved, though this is by no means trivial, that any local ring B can be extended, in a
“minimal” way, to a henselian local ring Bh with separably closed residue field; Bh is called the
strict henselization of B. Bh is unique up to B-isomorphism and, in the geometric case, all relevant
morphisms defined on B lift to Bh .
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4.2 “Real” Variations on Grothendieck’s Theme

A process parallel to that sketched in the preceding paragraph was carried out in the
“real” context in (Coste and Coste, 1979; Coste-Roy, 1980), inspired by ideas of
Gavin Wraith. We shall review their similarities and differences, which eventually
led to a quite unexpected outcome.

4.2.1 A Real Analog to the Zariski Spectrum of a Ring

The initial step of constructing an analog to the Zariski spectrum of a ring, see
Section 4.1, can be carried out without major obstacles. The idea is to replace the
totality of the prime ideals of a ring by the subset of its real prime ideals, i.e., those
prime ideals p of A such that the domain A/p (equivalently, its field of fractions
quot(A/p) = k(p)) has a total order compatible with the operations with sum and
product. These are the prime ideals p satisfying, for each n ≥ 1, the condition

∀x1 . . . xn ∈ A

(

n
∑

i=1

xi
2 ∈ p ⇒ x1, . . . , xn ∈ p

)

Warning. There are rings not containing any real prime ideal (e.g., the field C). A
necessary and sufficient condition for a ring A to contain at least one real prime
ideal is that −1 is not a sum of squares in A; rings with this property are called
semi-real. �

The real Zariski spectrum of a ring A, Spec
RZar

(A), is defined by the following

4.2.2 Data

• Points: the real prime ideals of A.
• Topology: the topology induced by that of Spec(A), see Section 4.1.
• Structure sheaf: the restriction to Spec

RZar
(A) of the structure sheaf S

A
of

Section 4.1, denoted SR
A

.

Since a prime ideal p is real if and only if the maximal ideal pAp of the localiza-

tion Ap is real, the stalks of the ringed space
(

Spec
RZar

(A), SR
A

)

are local rings with

a real maximal ideal, called residually real local rings; this property is equivalent
to: all elements of the form “1 + sum of squares” are invertible.

So far no big news. In fact, the topology of Spec
RZar

(A) has the same short-
comings as that of Spec(A): its open sets are too big to get an implicit function
theorem.

4.2.3 The Real étale Site

The recipe for recovering some kind of implicit function theorem was to follow
Grothendieck’s steps in Section 4.1 as closely as possible. Step (i), replacing the
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topology of Spec
RZar

(A) by a suitable site requires a variant on the classical case

mentioned in Section 4.1: étale localizations are to be replaced by their real coun-
terparts.

To carry on with step (ii), the natural course of action was to consider sheaves
over Spec

RZar
(A) having as stalks henselian local rings with real closed—instead

of separably closed—residue fields (called real closed local rings). Here are some
natural examples of rings of this type:

Examples 2 The rings of germs at a non-singular point of an algebraic variety over
R, of:

• C∞ functions;
• Analytic functions;
• Nash functions (see Section 3.1.2 (3)).

These are indeed local rings: the maximal ideal is the germ of functions vanishing
at the chosen point of the variety; their residue field is R; and the implicit function
theorem known from analysis ensures they are henselian. �

The question is, then, how to construct the required sheaves. A process parallel
to that of the classical case (see Section 4.1 (ii) above) can be performed via a real
analog of the notion of “étale localization.” The following remarks are intended to
give an inkling into how this is done.

Given a residually real local ring, B, and an order ≤ of its residue field kB =
B/m, a henselisation Bh,≤ of B “along ≤” can be constructed, having as residue
field the real closure kB of (kB,≤). This is achieved by lifting successively the
simple roots in kB of all polynomials F ∈ B[X ] (and iterating this process as long
as necessary).

In particular, given a real prime ideal p of A and carrying out this construc-
tion on the residually real local ring Ap, for each order ≤p of the residue field
Ap/pAp —equivalently of A/p, since Ap/pAp . quot(A/p)—, one obtains a
real strict henselisation (A/p)h,≤p with residue field k(p) = real closure of
(quot(A/p),≤p).

This sketch of the construction makes it clear that:

1. The stalks of the sheaf to be constructed are in one-to-one correspondence with
the pairs (p,≤p) consisting of a real prime ideal p of A and an order ≤p of A/p,17

and
2. Since the residue field k(p) is real closed—hence has no automorphisms other

than the identity—the henselisation (A/p)h,≤p has no proper A-automorphisms.

This last property guarantees:

Theorem 3 (Coste and Coste, 1980) The real étale site of a ring is spatial, i.e., it is
the site associated with a topological space.18 �

17 See also (Roy, 1982, Prop. 3.3, p. 418).
18 The first to intuit (and conjecture) the validity of this foundational result was Gavin Wraith. An
idea of A. Joyal played a crucial role in the proof.
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Remark (1) above leads to the determination of the exact nature of this space:

Definition 4 (The real spectrum.) The real spectrum of a (commutative, unitary)
ring A, Spec

R
(A), consists of:

Points: The pairs (p,≤p) where p is a real prime ideal of A and ≤p is a total order
of A/p.
Topology: Generated by the basis of opens consisting of the sets

H(a1, . . . , an) = {(p,≤p) ∈ Spec
R

(A) | ai/p >p 0 for i = 1, . . . , n}

for all finite sequences a1, . . . , an ∈ A. �

5 The Inception of Real Algebraic Geometry

The invention of the real spectrum opened the way for a rapid development of alge-
braic geometry over the field of real numbers and, more generally, over arbitrary
real closed fields. It was also the catalyst for many important developments arising
from the specific ways in which real algebraic geometry came about.

In this final section we shall complete the foregoing account by drawing up a
succint “reading guide” of the principal events that followed the discovery of the
real spectrum. The book (Bochnak et al., 1998) gives a comprehensive and very well
written and treatment of the new discipline of real algebraic geometry. Accounts of
its first steps—of a much more limited scope than (Bochnak et al., 1998) but pre-
ceding its publication (1988, first French edition)—are contained in the expository
surveys (Becker, 1986; Dickmann, 1985; Knebusch, 1984). There is no reason to
repeat the story here; it suffices to record the main landmarks.

5.1 Preliminary Remarks

1. First an obvious issue: why bother with algebraic geometry over arbitrary RCFs
when the main interest is on R? Fascination with pointless generality (typical of
mathematicians, some would say)? The pleasure of the purity of method?

Well . . ., for the first there is the obvious point that many proofs—but not all—
cost the same in either case. Secondly, and more importantly, concrete practice
shows that establishing a result in R may require prior knowledge of other results
over arbitrary RCFs. For example, rephrasing a certain geometrical statement
as a first-order formula—needed to prove a property over R—may require a
dimension argument, or the finiteness of the number of connected components,
over arbitrary RCFs.

2. Another word of caution in the same spirit: semi-algebraic sets that may not be
varieties are indispensable for the study of the latter.

3. Thirdly, a radical difference between complex and real algebraic geometry is the
nearly complete absence of projective space in the latter. This stems from the fact



12 Analogy and Its Surprises 241

that projective spaces—and, more generally, grassmannians—over a RCF, K ,
are embedded as non-singular affine algebraic varieties in affine space of higher
dimension over K . For example, the n-dimensional projective space Pn(K ) is
naturally (and algebraically) embedded in K (n+1)2 , in such a way that its image,
and that of all its non-singular algebraic subvarieties, become smooth affine sub-
varieties of K (n+1)2 . This is the case even for the “complex” projective space
Pn(K [i]): by separating “real” and “imaginary” coordinates, it is embedded as
a non-singular affine variety in K 2(n+1)2 . For details, see (Bochnak et al., 1998,
§ 3.4, pp. 70–75).

5.2 A Simplification

To make life easier, the pairs (p,≤p) ∈ Spec
R
(A) in Definition 4 can be subsumed

into subsets α of A subject to suitable requirements (and conversely), by the expe-
dient of setting α = {x ∈ A | x/p≥p0}. Note that α ∩ −α = p.

The real spectrum of a ring, whenever non-empty, is a spectral space (cf. footnote
13). Further, for α, β ∈ Spec

R
(A),

β ∈ {α}(= closure of {α}) ⇔ α⊆β

It also has the following special property, known as complete normality: for
α, β, γ ∈ Spec

R
(A),

γ ⊆ α, β ⇔ α⊆β or β ⊆α

In particular, the set of maximal elements of Spec
R
(A) is a Hausdorff space. For

more information on completely normal spectral spaces, see (Carral and Coste,
1983) or (Dickmann et al., 201x).

5.3 The Geometric Case

Henceforth we focus on the case of interest in real algebraic geometry, where A =
K [V ] = K [X1, . . . , Xn]/I(V ) is the coordinate ring of a variety V over a RCF, K ,
such that ∅ �= V (K )⊆ K n (this condition ensures that K [V ] is a semi-real ring, i.e.,
Spec

R
(K [V ]) �= ∅). As in the complex case, cf. Section 4.1, the points of V (K )

correspond bijectively to the maximal elements of Spec
R
(K [V ]): for x ∈ V (K ),

α : x )→ αx = (Mx ,≤)

where Mx = {P/I(V ) | P ∈ K [X1, . . . , Xn] and P(x) = 0}, and ≤= ≤Mx is the
(unique) order of K (recall that A/Mx . K ).
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However, the outstanding result in the present case is that, under this embedding,
the topology induced on V (K ) by the spectral topology of Spec

R
(K [V ]) is the

Euclidean topology inherited from the n-fold product of the interval topology on
K , not the Zariski topology. This fundamental point deserves a closer look: since
the isomorphism of the field A/Mx . K [X1, . . . , Xn]/Mx onto K is given by
P/Mx )→ P(x), and the subbasic open sets of Spec

R
(K [V ]) are by definition of

the form

H(P/I(V )) = {α ∈ Spec
R

(K[V]) | (P/I(V ))/α ∩ −α = P/α ∩ −α >α 0},

we have (∗):

α−1[H(P/I(V ))] = {x ∈ V (K ) | P/Mx >Mx 0} = {x ∈ V (K ) | K |$ P(x) > 0}
= P−1[(0,+∞)] ∩ V (K )

Since the family {P−1[(0,+∞)] ∩ V (K ) | P ∈ K [X1, . . . , Xn]} is a subbase for
the Euclidean topology of V (K ), the equality (*) proves our assertion.

Further, (*) implies that the correspondence

H(P/I(V )) )−→ P−1[(0,+∞)] ∩ V (K ) (P ∈ K [X1, . . . , Xn]) (∗∗)

is bijective. Note, incidentally, that the equality (*) also shows that V (K ) is dense
in Spec

R
(K [V ]). Using quantifier elimination one gets much more out of this

bijection.
Indeed, since inverse images commute with set-theoretic operations, taking finite

boolean combinations in (*) gives, as in (**), a one-to-one correspondence between
arbitrary semi-algebraic subsets of V (K ) and finite boolean combinations of (quasi-
compact) subbasic opens of Spec

R
(K [V ]). The latter are called constructible sets

and play an important role in the theory: they form the canonical basis for the con-
structible topology associated to the spectral topology of Spec

R
(K [V ]) (in fact, of

any spectral space). Identifying V (K ) with its image in Spec
R
(K [V ]) under the

map α of 5.3, one gets:

Theorem 5 Let V be an algebraic variety over a RCF, K , and let S be a semi-
algebraic subset of V (K ). Then,

1. There is a unique constructible set ˜S ⊆ Spec
R
(K [V ]) such that S = ˜S ∩ V (K ).

2. The correspondence S )→ ˜S is an isomorphism from the boolean algebra of semi-
algebraic subsets of V (K ) onto the boolean algebra of constructible subsets of
Spec

R
(K [V ]).

3. It maps bijectively open (resp., closed ) semi-algebraic subsets of V (K ) onto
quasi-compact open (resp., closed constructible ) subsets of Spec

R
(K [V ]).

In fact,
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4. If S is an open (resp., closed) semi-algebraic subset of V (K ), then ˜S is the largest
(resp., smallest) open (resp., closed) subset of Spec

R
(K [V ]) whose intersection

with V (K ) is S.
5. The tilde operation commutes with the interior and closure operations (for the

Euclidean topology of V (K ) and the spectral topology in Spec
R
(K [V ])). �

For a proof of Theorem 5, see (Bochnak et al., 1998, § 7.2, pp. 142–146).

Remarks (a) Items (1) and (2) use in an essential way quantifier elimination for
RCFs, and item (3) the open quantifier elimination theorem mentioned in
Section 3.1.1 (9).

(b) By quantifier elimination, the constructible subsets of Spec
R
(K [V ]) are exactly

those of the form

{α ∈ Spec
R
(K [V ]) | k(α) |$ ϕ[π

α
(P1), . . . , πα

(Pm)]}

where ϕ(v1, . . . , vm) is a formula (without parameters) of the language L for
ordered rings and π

α
(P) = P/α ∩ −α is the image of P ∈ K [X1, . . . , Xn] in

k(α) = the real closure of (quot(A/α ∩ −α), ≤α ).
(c) The tilde operation extends to semi-algebraic functions, that is, functions f :

S −→ T where S ⊆ K n, T ⊆ K m, whose graph is a semi-algebraic subset of
K n × K m . �

5.4 Connectedness

Since Spec
R
(K [V ]) is a quasi-compact space, it has finitely many connected

components, and each of them, being clopen, is in turn a finite union of basic
opens, hence constructible. By restriction to V (K ), the tilde correspondence of
Theorem 5 (2) gives a partition of this variety into finitely many semi-algebraic
pieces, each of which is maximal for the following notion, defined for semi-
algebraic sets S ⊆ V (K ):

S is semi-algebraically (s.a.-) connected if it cannot be split into two disjoint, semi-
algebraic, non-empty sets, open in the induced topology.

In other words,

An algebraic variety over a RCF has finitely many s.a.-connected components, each of
which is a semi-algebraic set.

This result, combined with another “soft” topological argument and open quantifier
elimination, yields a direct proof of

Theorem 6 Any semi-algebraic subset of K n, K a RCF, has finitely many s.a.-
connected components, each of which is a semi-algebraic set.19 �

19 I found this direct argument while writing this paper. The original argument, in (Coste and Roy,
1982, Thm. 5.5), (i), begins by proving the result for K = R by induction on the dimension of
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5.5 Dimension

Another central geometric result is the cell decomposition theorem: it shows that
any semi-algebraic subset of K n , K a RCF, can be decomposed in a finite number
of (semi-algebraic) pieces with a simple geometric description, called cells. Cells
are defined by induction, and they come provided with a well defined dimension,
which agrees with the intuitive meaning of the word.

Though non unique, cell decompositions give a notion of dimension for arbitrary
semi-algebraic sets, verifying the traditional requirements, e.g., if S ⊆ K n , T ⊆ K m

are semi-algebraic sets, then:

• dim(S ∪ T ) = max {dim(S), dim(T )},
• dim(S × T ) = dim(S)+ dim(T ),
• dim(S) = dim(S) [ S = closure of S for the Euclidean topology],
• If S isopen, then dim(S) = n.

Further, this geometrically defined notion of dimension of a semi-algebraic set
S ⊆ K n agrees with an algebraic notion, akin to the Krull–dimension, detectable in
the real spectrum, namely, the length of largest specialization (i.e., inclusion) chain
of elements of Spec

R
(K [X

1
, . . . , X

n
]) contained in ˜S (see Bochnak et al., 1998,

Prop. 7.5.6).

5.6 The Implicit Function Theorem

As we have seen in Sections 4.1 and 4.2, ensuring the validity of this classical
result from analysis was a driving force, within the abstract, Grothendieck–style
setting, that led to the discovery of the real spectrum. However, once the abstract
setting became concrete, i.e., the genuine Euclidean topology (as well as its semi-
algebraic version over arbitrary RCFs, cf. Section 5.3) was retrieved within this
setting via the real spectrum, the validity of a semi-algebraic version of the implicit
function theorem ceased being big news (as it was clear earlier). Indeed, a slight
adaptation of its classical proof renders it valid for semi-algebraic functions of any
class Ck(k ∈ N ∪ {∞}). (Note: semi-algebraic C∞ functions are the same thing as
Nash functions.)

the ambient space, using cylindrical decomposition (cf. Coste and Roy, 1982, Thm. 3.5). By the
compactness theorem of first-order logic, one gets primitive recursive bounds on the number and
the degrees of a suitable family of polynomials intervening in the proof; these bounds are then
used to validate the transfer to arbitrary RCFs. Admittedly, this argument gives considerably more
information, useful elsewhere. See also (Bochnak et al., 1998, § 2.3 and Thm. 2.4.4).
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5.7 The Real Spectrum as a Ringed Space

So far we have considered the real spectrum of an algebraic variety over a RCF as a
topological space. A fitting question is: which are natural candidates to be sheaves
that may turn Spec

R
(K [V ]) into a (locally) ringed space? As far as I know only two

sheaves have been studied with some detail. The most natural, that fits the abstract
approach sketched in 4.2 above, is the sheaf of Nash functions:

Theorem 7 ((Roy, 1982); see also (Bochnak et al., 1998, Prop. 8.8.2)) Let V be an
algebraic variety over a RCF, K . There is a unique sheaf, ˜N , on Spec

R
(K [V ])

whose ring of sections ˜N (˜U ) over an open constructible set ˜U, where U is an open
semi-algebraic subset of V (K ), is isomorphic to the ring N (U ) of Nash functions
on U. 20 The stalk of ˜N at a point α ∈ Spec

R
(K [V ]) is a henselian local ring whose

residue field is k(α), the real closure of the ordered field (quot(K [V ]/α∩−α),≤α).
�

A second choice is the (unique) sheaf ˜C
sa

whose ring of sections over ˜U is the
ring C

sa
(U ) of continuous semi-algebraic functions on the open U (cf. Bochnak

et al., 1998, Prop. 7.3.2). The stalk of ˜C
sa

at α ∈ Spec
R
(K [V ]) is a local ring (not

necessarily henselian) having k(α) as residue field.
Note. In line with the idea of conveying geometrical intuition, we have only

accounted for the sheaf of Nash functions in the geometric case. By adding another
layer of abstraction (an abstract description of Nash functions due to Artin and
Mazur) it is possible to define a sheaf N

A
of “Nash” functions over Spec

R
(A), for

any ring A, having properties akin to those of its geometrical ancestor.

5.8 Idempotency of the Real Spectrum and the Substitution Lemma

A property of the Zariski spectrum of an arbitrary ring, A —endowed with either
the structure sheaf S

A
(4.1) or the étale sheaf Set

A (4.1)—is that the ring A can be
recovered from (or represented by) the sheaf (S, say): A is isomorphic to the ring
of global sections of S (i.e., sections over the whole of Spec(A)).

This is not true of the real spectrum of a variety endowed with the sheaf
of Nash functions: there are many more Nash functions than polynomials; cf.
Section 3.1.2 (3). A weaker, but nevertheless remarkable, property of the real spec-
trum of any ring A endowed with the Nash sheaf N

A
(see note above) is idempo-

tency: iterating the construction gives back the initial ringed space. More precisely:

20 The collection {˜U |U ⊆ V (K ) open semi − algebraic} is a basis for the spectral topology of
Spec

R
(K [V ]).
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Theorem 8 (Roy, 1982, Thm. 5.1) Let A be any ring and let U be a quasi-compact
open subset of Spec

R
(A). The locally ringed space (U, N

A
(U )) is isomorphic to

(

Spec
R

(

N
A
(U )

)

, NN
A
(U )

)

. �

Remarkably enough, in the geometric case this idempotency theorem is equiv-
alent to a result about Nash functions worth mentioning here. To make sense of
it, recall that Nash functions on an open semi-algebraic subset U of, say, R

n , are
semi-algebraic, i.e., have a (parametrically L-) definable graph; hence the first-order
formula of L defining a Nash function f : U → R makes sense over any real
closed extension K of R and, in fact, defines a function f K : U K → K on the
open semi-algebraic set U K ⊆ K n defined (in K ) by the same formula defining U
(in R). One has:

Theorem 9 (The Substitution Lemma; Bochnak-Efroymson) Let U be an open
semi-algebraic subset of R

n and let N (U ) be the ring of real-valued Nash functions
on U. Let ϕ : N (U ) −→ K be a ring homomorphism into a real closed extension
K of R. Then,

(1) (ϕ(X
1
), . . . , ϕ(X

n
)) ∈ U K .

(2) For f ∈ N (U ), ϕ( f ) = f K (ϕ(X
1
), . . . , ϕ(X

n
)). �

5.9 A Beautiful Application: The Bröcker–Scheiderer Theorem

As an illustration of the kind of geometrical statement that can obtained by use of the
real spectrum (combined with other techniques), we state the following remarkable
result:

Theorem 10 (Bröcker–Scheiderer; cf. (Scheiderer, 1989)) Let V be an algebraic
variety over a RCF, K , such that V (K )⊆ K n. Then,

1. Every basic open semi-algebraic subset of V (K ) can be represented as the inter-
section of at most dim(V ) sets, each defined by one strict polynomial inequality.

2. Every basic closed semi-algebraic subset of V (K ) (i.e. any finite intersection
of sets of the form {x ∈ V (K ) | P(x) ≥ 0} with P ∈ K [X

1
, . . . , X

n
]), can

be represented as the intersection of at most 1
2 dim(V ) (dim(V ) + 1) sets, each

defined by a polynomial inequality (≥ 0).

These bounds are optimal. �
Besides real spectral techniques, the original proof also used techniques from the
abstract theory of quadratic forms. A direct proof was later given by Mahé.

For example, any basic open semi-algebraic subset of R
2 is the intersection of

at most two sets, each defined by a strict polynomial inequality! Of course, one
can only expect that the degrees of the polynomials required for such an optimal
representation will grow very fast; however, I do not know of any precise result of
this kind.
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Chapter 13
Euler’s Continuum Functorially Vindicated

F. William Lawvere

Contrary to common opinion, the question “what is the continuum?” does not have a
final answer (Bell, 2005), the immortal work of Dedekind notwithstanding. There is
a deeper answer implicit in an observation of Euler. Although it has often been dis-
missed as naive, we can use the precision of the theory of categories to reveal Euler’s
observation to be an appropriate foundation for smooth and analytic geometry and
analysis.

Euler observed that real numbers are ratios of infinitesimals. This is not only true
but an effective definition of the smooth real continuum; the properties of the smooth
continuum, including its canonical map to the less-refined Dedekind continuum, can
be expressed in terms of such ratios.

Some of the features of categorical precision are the following. Maps (functions,
transformations, etc.) have both definite domains and definite codomains, with oper-
ations like restriction to subdomains or expansion of codomains being effected by
composition with suitable inclusion maps; such operations change the properties
of the map. Equality of maps A → B can be tested by composing with elements
E → A where E belongs to a class of element-types chosen in a way appropriate
to the particular category; the limitation to a bare point E = 1 is typically not
appropriate (except for the special abstract constant sets that Cantor extracted from
mathematics for his particular purposes). It is possible and preferable to assume for
basic work in geometry and analysis that the ambient categories are cartesian closed,
as was already taken for granted by Euler’s teachers: for two spaces X , Y there is a
well-determined map space M with a structural map X × M → Y . That structural
map has a universal property that implies that the punctual elements of M are in
bijective correspondence with maps X → Y in such a way that the structural map
effects evaluation. I use the exponential notation M = Y X .

To realize Euler’s vision, I will postulate a space T of infinitesimals with certain
properties (whose consistency has been shown many times) and then derive proper-
ties of the reals R defined as ratios of T .
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But what are ratios? Much confusion has been caused by the notational presump-
tion that division is an operation on the same footing as addition and multiplication.
The slogan “you can’t divide by zero” by no means disposes of the issues that
arise, especially for variable quantities. (In fact, one can even divide by zero, if
it is zero that one wants to divide, getting infinitely many answers.) In algebra, if s
is a quantity in a ring A, the result A[s−1] of dividing by s is another ring with a
homomorphism

A → A[s−1]

typically neither injective nor surjective, because the new ring consists of functions
defined on an open subspace

spec(A[s−1]) ↪→ spec(A)

of the domain of the original quantities. (For example if A is a ring of polynomials
in one variable, then A[s−1] consists of rational functions whose denominator is a
power of s, and the open subspace excludes the zeroes of the polynomial s). This
and many other constructions should suggest that disaster can result from naive pre-
sumptions that symbols like difference quotients necessarily denote anything unique
(Lawvere, 1996).

Because division really refers to the possible existence of inversion to multipli-
cation, we define a (possible) ratio to be a general map A → B and we say, in
particular, that “b is divisible by a” if and only if a ratio r exists with b = ra:

E
a
����

�� b
���

��
�

A r
������ B

(Thus divisibility is categorically dual to “belonging to” (Lawvere and Rosebrugh,
2003)). For example, these notions apply in a monoid (when A = B = E) or
in a linear category (where composition is traditionally called multiplication); our
special example will be in a nonlinear category, except that the objects involved are
so small that all the maps around them are affine-linear.

In the development of Synthetic Differential Geometry (Kock, 2006) over the
past 40 years it has usually been assumed that a smooth category contains a line
object which actually has the structure of a ring R. Then the subspace D of first-
order infinitesimals (h2 = 0) plays a key role. In particular, all the maps D → D
are uniquely represented by elements of R, precisely fulfilling Euler’s principle. I
show below that reciprocally R can be constructed from a non-coordinatized version
T of D, thus achieving a foundation for smooth geometry that is even “radically
synthetic” in the sense that all algebraic structure is derived from constructions on
the geometric spaces rather than assumed.
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There is a direct non-quantitative basis for the necessity of our infinitesimal space
T . The most fundamental functor characteristic of smooth and analytic categories
is the tangent-bundle functor. Because this functor preserves cartesian products and
more, it cries out to be construed as a representable functor. By Yoneda’s Lemma,
a representing object is unique.

The tangent-bundle functor has been (explicitly or implicitly) fundamental in
mathematical physics because motion is ubiquitous in the material world. Motion
means that a thing is in a certain place and yet elsewhere in the same instant. The
generic mathematical model is still the one that involves nilpotent elements; for
example, the canonical commutation relation of quantum mechanics is at bottom
Leibniz’s rule for the derivative. However, other models may be included in the
general treatment we give below, in which one might think of T as a generic instant
which has a certain point 0 but does not reduce to it.

Therefore we postulate a pointed space T and call the map space X T the tangent
bundle of any space X , with evaluation at the point inducing the bundle map
X T → X . Even the point of T is not really a given structure in the intended exam-
ples, for in them 1 → T is unique (but far from being an isomorphism). Thus every
actual map T → T would automatically preserve 0; however, there would still be
non-punctual elements E → T T of the map space for E �= 1, so we define by
pullback

R

��

� � �� T T

ev0

��
1

0 �� T

the subspace R of Euler reals. The object T T has an intrinsic multiplication arising
from composition, and the subspace R is clearly closed under it, so we automati-
cally get “multiplication of reals” as an operation R × R → R. As often happens,
multiplication is more fundamental than addition.

Thus R has the intrinsic structure of a monoid with 0. Moreover, it has always
been commutative. To justify that commutativity seems difficult, though intuitively
it is related to the tinyness of T , in the sense that even for slightly larger infinitesimal
spaces, the (pointed) endomorphism monoid is non-commutative. Note that if we
define

Dn = {h ∈ T T |hn+1 = 0}

then actually Dn ⊂ R, and D = D1 is the object considered in previous Synthetic

Differential Geometry work; for that reason a possible isomorphism D
≈−→ T can

be thought of as a unit of time (T itself has no intrinsic multiplication). A canon-
ical map T T → R, retracting the inclusion, is needed to define derivatives and is
obtained (together with the commutativity!) by the assumption that the composite
of the inclusion followed by the universally commutative quotient monoid is an
isomorphism.
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Cantor extracted from the cohesive and active world of mathematics a subuni-
verse of discrete and inert sets (which served not only for cardinal measurements but
also as a featureless background in which, dialectically, mathematics could be mod-
eled by Dedekind, Hausdorff, Moore, Frechet, and their twentieth century succes-
sors). This contrast can be modeled by a subcategory with a reflector X → π0(X)
satisfying

π0(X × Y )
≈−→ π0(X)× π0(Y )

π0(1) = 1

(Lawvere, 2007). In particular, the S in the subcategory should satisfy

S
≈−→ ST

because these S are spaces of non-Becoming, i.e. spaces in which no motion is
possible, not even infinitesimal motion. Typically such a components functor π0
exists; in particular, any algebraic structure that a space might carry is reflected as a
similar structure on its “set” of components.

Proposition 1 π0(X T ) = π0(X) for all X iff π0(R) = 1.

Assume π0(R) = 1 (i.e. R is connected). But that leaves many possibilities for
π0(U ) where U ⊂ R is the subgroup of invertible elements. The above construc-
tions would also provide a basis for complex-analytic geometry and analysis; in that
case we would have π0(U ) = 1. However the intuition for the real case involves a
line which is bi-directional, so that

π0(U ) = Z2

a multiplicative group of two elements. In all cases, we can consider U+ defined as
the kernel of the natural homomorphism U → π0(U ) (i.e. the component of the
identity) as the group of positive elements of R.

Further axioms, implying that R has an intrinsic addition, will be discussed
below. But first, assuming that R has an addition, we show how to use only a
given subgroup P (such as the U+ defined by using π0) to derive the structure of
an ordered rig, that is, the rig R will have moreover a subrig M of non-negative
quantities (in general a rig has commutative multiplication and addition satisfying
the distributive law, but not necessarily negation). Define

A = {a ∈ R|a + P ⊆ P}
M = {λ ∈ R|λA ⊆ A}

Proposition 2 If P is a multiplicative subgroup of a rig, then A is an additive
monoid and hence M is a subrig of R. If, moreover, 1 belongs to A, then M is
contained in A and P is contained in M.
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Therefore the relation defined by

r � s iff ∃m ∈ M[r + m = s]

has the expected properties of an ordering. The elements h for which

0 � h & h � 0

constitute an ideal that contains all nilpotent quantities.
If the ambient category is a topos with generic subobject 1 → � and if we denote

by �M the space of order-preserving maps (parameterizing the upclosed parts of M)
the natural Dedekind-Yoneda map

M → (�M )op

is given by the ordering on M itself. This map is neither injective nor surjective; it
maps into the inf-completion V ↪→ (�M )op that plays the role of the nonnegative
semi-continuous Dedekind reals and serves as the natural recipient for metrics in the
category. (Similarly, R itself can be order-completed, but by using M in a two-sided
way.)

There are two ways to insure that R has unique addition: one involves integration
and the other differentiation.

1. Integration (or distribution theory) concerns smooth linear functionals. Expe-
rience with Taylor series motivates the presumption that for suitable smooth
spaces, homogeneity should imply linearity. Thus if we define

(X) = HomR(RX , R) ↪→ R(RX )

as the space of those functionals ϕ satisfying just the multiplicative condition

ϕ[λ f ] = λϕ[ f ]

for λ in R, then the assumed extensivity property of general integration

(X + Y ) = (X)×(Y )

specializes to

(2) = (1)2.

From that, + emerges as the unique homogeneous map R × R → R which
becomes the identity when restricted to both 0-induced axes R → R × R.

2. The other route from multiplication to addition goes via trivial Lie algebras. The
kernel

Lie(R) ↪→ RT → R
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has a binary operation induced from multiplication since the evaluation/
projection is a homomorphism. However this operation is usually called addition;
the space of endomorphisms of Lie(R) for that operation is a rig that contains
(the right action of) R as a multiplicative sub-monoid, so that if we postulate that
R exhausts the whole endomorphism space, then R inherits a canonical addition.

The object T is often assumed to be an ATOM; this can be read: “amazingly
tiny objectified motion.” The objectified motion reflects the intuition that elements
of the tangent bundle are arrows obeying differential laws of motion, etc. The qual-
ification “amazingly tiny” refers to the important property (not used in the above
discussion) that T is tiny with respect to the whole category. This tinyness is partly
expressed by (Grothendieck’s notation) f !, the surprising additional right adjoint
that some topos morphisms f have. The morphism in question is the essential one
having f ∗(X) = X T, but the additional operation f !(Y ) = Y 1/T leads to the rep-
resentability of differential forms, of laws of motion, and of still unexplored higher
infinitesimal constructions. Tinyness is relative to the universe, as crudely measured
by the amazing right adjoint:

Proposition 3 Given any object T in any Grothendieck topos ε, then ε is a subtopos
of a larger one ε′ where T becomes tiny. But conversely, the smaller ε may not
be closed under ( )1/T , so that T is typically not tiny with respect to the smaller
container ε itself.

Tinyness permits a certain compromise with Robinson’s idea that infinitesimal
constructions should preserve logic; we must restrict ourselves to geometric logic
(also known as coherent, positive, or dynamic logic).

Proposition 4 If T is tiny and if A is any object equipped with a structure described
in geometric logic, then AT enjoys the same structure with the same geometric prop-
erties, as is seen by composing with the morphism to the classifying topos for the
structure theory in question.

Most of the known models for the above discussion are “infinitesimally gen-
erated” in the sense that starting from T , all objects of the topos (such as the
algebra of operators on Hilbert space) are obtained by the functorial operations of
exponentiation, limits, and colimits. Such is the remarkable blossoming of Euler’s
principle.
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Chapter 14
Natural Numbers and Infinitesimals

J.P. Mayberry

1 Gödel on Nonstandard Analysis

In the introduction to the second edition of his Non-standard Analysis (Robinson,
1996) Abraham Robinson included some brief, and, on the face of it, deeply puz-
zling, remarks by Gödel on the significance of Robinson’s theory. In particular,
Gödel makes the surprising claim that

. . . there are good reasons to believe that nonstandard analysis, in some version or other,
will be the analysis of the future.

The qualifying phrase “in some version or other” is surely necessary here, for as it
is conventionally practiced nonstandard analysis is logically parasitic on the stan-
dard analysis of Weierstrass, Dedekind, and Cantor, and is perhaps best regarded
as merely a special logical technique for discovering proofs of standard theorems
about the conventional real numbers.

In any case, Gödel goes on to make a very peculiar observation indeed:

Arithmetic starts with the integers and proceeds by successively enlarging the number sys-
tem by rational and negative numbers, irrational numbers, etc. But the next quite natural
step after the reals, namely the introduction of infinitesimals, has simply been omitted.

But it has been omitted for the very best of reasons, namely, to avoid out-and-out
contradiction. For, as is well-known, once the irrational numbers have been intro-
duced in the conventional way—using Dedekind’s Cut Axiom, for example—it is
a theorem that there are no infinitesimals. Given any two positive real quantities
0 < a < b, there is a finite multiple of the smaller which exceeds the larger:

b <

k summands
︷ ︸︸ ︷

a + a + · · · + a

It is simply inconceivable that Gödel was not aware of all this. Yet he goes on
to say
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I think, in coming centuries it will be considered a great oddity in the history of mathematics
that the first exact theory of infinitesimals was developed 300 years after the invention of
differential calculus.

Surely on the face of it this is not odd at all. On the contrary, to most mathematicians
the axioms of the theory of complete ordered fields seem self-evidently true of the
real numbers, especially if completeness is postulated in the form of Dedekind’s Cut
Axiom, which is simply an analytic formulation of the familiar fact that two lines
intersect in a point.

But these axioms preclude the introduction of infinitesimals in any natural way,
and that is why Robinson himself was forced to introduce them by the back door,
so to speak, by exploiting the weakness of first order logic as an instrument of
definition.1

Gödel’s final remark, however, is perhaps the most puzzling of all:

I am inclined to believe that this oddity has something to do with another oddity relating
to the same span of time, namely the fact that such problems as Fermat’s, which can be
written down in ten symbols of elementary arithmetic, are still unsolved 300 years after they
have been posed. Perhaps the omission mentioned is largely responsible for the fact that,
compared to the enormous development of abstract mathematics, the solution of concrete
numerical problems was left far behind.

What could the notorious intractability of simply stated problems in elemen-
tary number theory—Fermat’s Theorem,2 Goldbach’s conjecture, the twin prime
hypothesis—have to do with the supposed “oversight” of not introducing infinitesi-
mals in defiance of a theorem that says that infinitesimals don’t exist?

These remarks, understood in the conventional way, are, on the face of it, simply
absurd. Moreover, since it is, surely, highly unlikely that Gödel is thinking here of
the use of Robinson’s own brand of nonstandard analysis to attack these problems
in natural number arithmetic, we are left with the obvious question: whatever did
Gödel have in mind when he made them—or Robinson when he included them in
his Preface, come to that?

Surely it is clear that if, as Gödel suggests, infinitesimal analysis is to be the
“analysis of the future,” it would have to be a natural theory rooted in a clear vision
of new fundamental principles, not merely a technical device exploiting the def-
initional weakness of first order logic. In particular, we should need a treatment
of infinitesimal analysis that is not parasitic on the traditional, nineteenth century
concept of real number, as Robinson’s nonstandard analysis unquestionably is.

But when we try to imagine how we might establish Gödel’s “analysis of the
future,” we soon realize that we shall be forced to abandon some our most deeply
rooted mathematical convictions. For example, we could no longer assume that we

1 In particular, he makes essential use of the impossibility of giving a first order characterisation
of the general concept of finiteness.
2 Of course this been proved by Andrew Wiles. But Wiles’ proof (considered along with the other
proofs that connect it to the Fermat conjecture) is of a length and complexity that mocks any
expectations grounded on the simplicity of the result proved. And the other famous problems
remain unsolved.
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can always approximate a real number by a strictly increasing ω-sequence of ratio-
nals. For if every real r is the limit of such a sequence there is no room for any
quantities r − ε strictly smaller than r but separated from it by an infinitesimal
distance ε > 0.

Indeed, it seems altogether likely that the price we should have to pay for a nat-
ural theory of infinitesimals, is to abandon our conviction that the natural number
system is absolute, that is to say, we should have to entertain the possibility of
there being inequivalent, but equally “natural,” ways of proceeding to infinity. And,
of course, if there are inequivalent natural number systems with different proper-
ties, then it may well be that certain classical problems in number theory (e.g., the
twin prime hypothesis) may not be well posed in the sense of having determinate
answers: they may have different answers in different number systems.

Now this does suggest how Gödel’s brief remarks might be interpreted as making
sense. But how could we set about developing his “analysis of the future”? I shall
return to this question in Section 7, but first I shall look at issues raised by Gödel’s
speculations in natural number arithmetic.

2 Natural Numbers or Finite Sets?

Is there a mathematically natural point of view from which it makes sense to call
into question the uniqueness of the system of natural numbers? I must emphasize
the crucial importance of the word “natural” here, because of course it is possible to
exhibit non-isomorphic models of formal first order arithmetic.

But from the conventional standpoint, given such an example, at least one of the
structures in question must be nonstandard and thus highly unnatural. And in any
case, the Compactness Theorem, on which the construction of nonstandard natural
number system depends, itself rests, like so much else in conventional mathematics,
on the assumption that the natural number sequence is absolute.

More exactly, what is required for the usual proofs of Compactness is that the
notions of formula, proof, etc. be unequivocal. But the definitions of these notions
rest on the notion of finite sequence which, in the conventional treatment, depends
on the notion of natural number. Thus we need an unequivocal, “absolute” notion
of natural number to do formal syntax and formal proof theory in the conventional
manner.

On the most naive level there is the conviction, surprisingly widespread among
mathematicians, that the natural numbers do not even require definition. After all,
we all know how to begin the natural number sequence

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, · · ·

and how to continue it from any point

· · · , 539646, 539647, 539648, 539649, 539650, · · ·
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What more is there to the natural number sequence other than that it is generated
from zero by successive iterations of the operation of passing from a number to
its immediate successor? Moreover, once you have mastered the art of intransitive
counting you have acquired all the skills necessary for counting out collections
of things. That will enable you to grasp the very meaning of the word “finite”: a
collection is finite if it can be counted out.

But such an operationalist account of the concepts of finite plurality and natural
number3 is manifestly circular: a finite plurality is one that can be correlated, one-
to-one, with a proper initial segment of the natural number sequence; the natural
number sequence, however, consists of those terms that can be reached from zero
by iterating the successor operation a finite number of times. Anyone familiar with
the works of Frege and Dedekind on this question will instantly realise how utterly
unilluminating and inadequate such an account is.

The conventional view of theoretical arithmetical rests on the idea that, Frege
and Dedekind notwithstanding, the principles of proof by induction and definition
by recursion do not, in fact, even require justification: they follow immediately from
the defining idea that the natural numbers are the successors of zero.

But the idea that the possibility of repeating or iterating an argument or a calcu-
lation “forever” justifies on its own proof by induction or definition by recursion is
simply a fallacy, as both Frege and Dedekind have shown: I propose to call it the
Sorites fallacy.4

It might, at first, appear that the problem here is to explain what natural numbers
are, that is, to give an account of what things our number words and numerals name
or stand for. But a careful reading of both Frege and Dedekind shows that both
of them saw that giving a logically rigorous account of the intuitive idea of finite
iteration is the central problem here.

The beginning of wisdom is to realise that there simply are no such things as
“natural numbers,” that natural numbers as “mathematical objects” are illusions,
non-entities, mere artefacts of our notation, reified and alienated products of our
counting and calculating procedures, and that, consequently, to devise a theory of
what “they” are as particular objects is utterly otiose and, indeed, productive of
quite unnecessary confusion.

But what, then, are the facts of arithmetic facts about? Not facts about calculating
and counting as activities, for calculating and counting, as activities, although they
may disclose the elementary facts of arithmetic, do not actually constitute its subject
matter. The facts of arithmetic are facts about finite pluralities (sets), about what
our ancestors called “numbers” (arithmoi in Greek) until the mathematicians of the
seventeenth century changed the meaning of “number,” giving it (more or less) its
present day meaning.

3 On the conventional view, an account of the natural numbers must of necessity include an account
of finiteness, since the natural numbers, after all, are intended, among other things, to name the
modes of finite plurality.
4 The Sorites fallacy is a fallacy even from an infinitary point of view, as Dedekind carefully
explains in his “Letter to Kefferstein” (Dedekind, 1967).
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Here is the definition of “number” Newton gave in his Universal Arithmetic:

By a Number we understand not so much a Multitude of Unities, as the abstracted Ratio of
any Quantity to another Quantity of the same Kind which we take for Unity.

Notice that Newton actually tells us here that his definition is intended to replace
the traditional definition of Euclid:

A number (arithmos) is a plurality composed of units

where

A unit (monas) [in a plurality] is whatever it is in comparison with which each of the entities
[composing the plurality] is called one.5

Moreover, Newton’s definition extends the science of arithmetic far beyond its orig-
inal compass; for it is what allows us to speak of integral, rational, and irrational
numbers, which form the subject matter of a greatly expanded arithmetic.6

Of course the introduction of this altered and expanded version of number was
an indispensable step in the development of the calculus and hence of mathematical
physics.7 But the extra power and convenience that this new concept of number
provided was purchased at the cost of simplicity, and indeed even intelligibility, in
the foundations of mathematics.

In elementary arithmetic it meant replacing finite sets with natural numbers as
the subject matter of the science. On the face of it this represents a considerable
decrease in clarity. For we have many ordinary, concrete instances of finite sets, but
natural numbers are “abstract objects” with individual natures that are opaque to our
understanding.

The books now on my desk are the elements of a set (or, in Euclid’s terminology,
the units of a number) which, as it happens, is a five. But what is the number five
itself ? And, of course, we mustn’t allow our facility in employing the familiar rules
for counting and calculating with decimal numerals fool us into thinking that we are
familiar with the supposed entities that those numerals “name.”

In order to understand what is really going on in elementary arithmetic we need
to return to the original Greek conception of the subject. We get a modernised ver-
sion of classical Greek arithmetic by formulating it as the theory of finite sets. This
Euclidean arithmetic is essentially conventional (i.e., Zermelo–Fraenkel) set theory
but with the Axiom of Infinity replaced by the assertion that every set is finite,
that is to say, no set can be placed in one-to-one correspondence with any of its
proper subsets. This amounts to adopting Euclid’s Common Notion Six: The whole
is greater than the part.

5 Elements, Book VII. Thus in a number of horses the unit is a horse, in a number of numbers, a
number, etc.
6 I shall develop a theory of these Newtonian numbers in Sections 6 and 7.
7 There was no reason to call these abstracted ratios “numbers,” however: “abstract quantities” or
“real quantities” would have done as well, without altering the traditional meaning of “number.”
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We can make this identification of Euclidean arithmetic with finitary Zermelo-
Fraenkel set theory because the central axioms of the Zermelo-Fraenkel theory—
Extensionality, Pair Set, Power Set, Union, Comprehension, and Replacement—all
acquire an aura of self-evidence when applied to finite sets.8

Of course when I say that Euclidean arithmetic just is Zermelo-Fraenkel set the-
ory (with the obvious finitary modifications) I am not referring to the familiar first
order formal theory that goes by that name, but to the intuitive set-theoretical ideas
that underlie and inform it.9

3 Euclidean Arithmetic

In Euclidean arithmetic, then, we take the notion of (finite) set, rather than the
notion of natural number, as basic. In this theory a set is a finite, extensional plu-
rality composed of definite, well-defined things called its members.10 A set is itself
definite and well-defined and therefore is eligible to occur as a member of other
sets. Following Frege I shall call sets, and the things that can be members of sets,
objects.

To say that sets and their members are “well-defined” is not to say that they have
verbal definitions, but rather that they are, so to speak, self contained in the sense
of being sharply, indeed, absolutely, distinguished from one another. Given objects
a and b either they are identical (a = b) or they are distinct (a �= b), tertium non
datur.

To say that sets are “extensional” pluralities is to say that what a set is—its
essence—is determined only by what its members are and not by how (or, indeed,
whether) we define it. Thus there is nothing to the set whose members are the dis-
tinct objects x, y, · · · , z apart from the fact that its members are x, y, · · · , z, and,
of course, that, together, x, y, · · · , z are finite in multitude.

Euclidean arithmetic is a finitary theory of finite sets. This means that we
must apply constructive principles of reasoning to propositions that require global
quantification—quantification over the totality composed of all sets and their
members.11

I shall call this fundamental requirement Brouwer’s Principle. It incorporates the
the idea that the difference between infinite pluralities (proper classes or, as I prefer

8 The same is essentially true of Foundation too, but that requires that it be reformulated. See
[§§ 4.11 and 8.6](Mayberry, 1994).
9 Surely it is obvious that no formal, first order theory, finitary or otherwise, can serve as a foun-
dational theory for arithmetic.
10 A plurality that is not finite I shall call an infinite species, for example the infinite species of all
three element sets.
11 Local quantifiers, whose domains are (finite) sets can be defined using Comprehension

(∀x ∈ S)(x) ⇔def {x ∈ S : (x)} = S

These quantifiers satisfy the usual (classical) laws.
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to say, infinite species) and finite ones (sets) is not just a matter of size but actually
a matter of logic.

In particular, if A is a proposition that can be expressed only with the help of
unrestricted quantification over the elements of an infinite species, then the Law
of the Excluded Middle fails for A and we cannot infer that either A is true or A
is false. This means that Brouwer’s Principle requires us to make a fundamental
distinction between local functions and relations, which are identified with (finite)
sets of ordered pairs in the usual way, and global functions and relations, like the
power set function λxP(x) and the membership relation λxy[x ∈ y], which are
defined eveywhere.12

For the obvious definition of identity for global functions σ and τ

σ = τ if, and only if, for all objects x, σ (x) = τ(x)

employs an unbounded universal quantifier over the infinite species of all objects.
This means that the Law of the Excluded Middle fails here, that is to say, on this
definition we cannot assert, in general, that either σ = τ or σ �= τ , and, in conse-
quence, global functions cannot be accounted objects. In contrast to local functions,
which are just (extensional) sets of ordered pairs, they are essentially intensional in
character.13

Brouwer’s Principle also dictates that in using definition by comprehension to
define a subset {x ∈ S : (x)} of a set S, the comprehending property  cannot
require, directly or indirectly, global quantification in its expression. This corre-
sponds to Zermelo’s requirement that  be definite.

But this entails that the principle of induction, even as restricted to the terms of a
finite linear ordering, can be established in general only for properties  which are
“definite” in the sense just described.

Thus suppose that

L = [FirstL , · · · , x,NextL ‘x, · · · ,LastL ]

is a (local) linear ordering. Induction along L for the property  can be formulated
as follows:

From the premises

(i) (FirstL )

(ii) (x) ⇒ (NextL ‘x), for all x in the field of L except x = LastL .

infer that (x), for all x in the field of L .

12 A global function, σ (of one argument) is defined by unambiguously specifying, for each object
x , the object σ(x) that is the value of σ at the argument x . Similarly, a global relation  (of one
argument) is defined by unambiguously specifying, for each object x , the truth value, true or false,
of the proposition (x) at the argument x . Of course global functions and relations of two or more
arguments can be defined in a similar way.
13 A similar argument applies to infinite species, so that they cannot be accounted objects either.
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This can be proved, but only when  is a definite property (in Zermelo’s sense)
which can be formulated without employing unbounded quantifiers. The idea that
we can start from (i) and proceed by a number of inferences using (ii) equal to the
number of terms in L to infer that (x), for all x in the field of L , is a clear instance
of what I called the Sorites fallacy in Section 2.

This restriction on induction, in turn, entails an analogous restriction on definition
by recursion along a linear ordering. Thus we can prove that given a finite linear
ordering L = [FirstL , · · · ,LastL ], a local function g : S → S from a set S to itself,
and an aritrarily chosen a ∈ S, there is a unique local function f : Field(L) → S
defined on the field of L with values in S which satisfies the recursion equations

f (FirstL) = a

f (NextL(x)) = g( f (x)), for all x in Field(L) except LastL .

But for an arbitrarily chosen a and a global function γ , we cannot, in general,
establish the existence of a local function f defined on the field of L and satisfying
analogous recursion equations

f (FirstL) = a

f (NextL(x)) = γ ( f (x)), for all x in Field(L) except LastL .

This discloses a profound difference between local recursion—recursion along
a finite linear ordering with respect to a local function g : S → S—and global
recursion—recursion along a finite linear ordering with respect to a global function
γ , even though there is a superficial resemblance between them.

Naively, if f is defined by local recursion with respect to g : S → S along
L = [0L , 1L , 2L , · · · , kL ] starting at a ∈ S then

f (0L) = a

f (1L) = g(a)

f (2L) = g(g(a))
...

f (kL) =
kL gs

︷ ︸︸ ︷

g(g(· · · g(a) · · · ))

And, by the same token, if f is defined by global recursion with respect to γ along
L = [0L , 1L , 2L , · · · , kL ] starting at a then
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f (0L) = a

f (1L) = γ (a)

f (2L) = γ (γ (a))
...

f (kL) =
kL γ s

︷ ︸︸ ︷

γ (γ (· · · γ (a) · · · ))

Thus it might appear that recursion corresponds, in each case, to starting at a and
iterating the function with respect to which the recursion is carried out as many
times as there are terms in the linear ordering L .

Of course we can iterate both local and global functions syntactically, so to
speak:

n
︷ ︸︸ ︷

g‘g‘g‘ · · · g‘a

or

n
︷ ︸︸ ︷

γ (γ (γ (· · · γ (a) · · · )))

where n specifies a number of expressions that we can actually write down.14

In any case, this licence to write down longer and longer expressions does not
provide a theoretical justification for recursion along an arbitrary (finite) linear
ordering. On the contrary, to suppose that it does is to commit the Sorites fallacy: it
is, in effect, to incorporate into our theory, surreptitiously and indirectly, the assump-
tion that the number system is absolute, thus begging the very question at issue.

In Euclidean arithmetic the idea of the iteration of a function must be given
a proper, set-theoretical definition, and cannot be taken as a fundamental datum,
as a notion just “given” prior to the rigorous development of mathematics.15 This

14 Thus n = 1729
1729

︷ ︸︸ ︷

γ (γ (γ (· · · γ (a) · · · )))
is a possible value whereas n = 101729

101729

︷ ︸︸ ︷

γ (γ (γ (· · · γ (a) · · · )))
is not.
15 Indeed, this is true even in conventional infinitary mathematics, as Dedekind pointed out so
eloquently in (Dedekind, 1967).
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has profound consequences for the theory of simply infinite systems in Euclidean
arithmetic, as I shall explain in Section 5.

4 Arithmetical Functions and Relations

In Euclidean arithmetic, there are two ways of doing conventional “natural number”
arithmetic. The first of these is to concentrate theoretical attention on global func-
tions and global relations that are arithmetical in the sense I am about to define. The
second is to follow Dedekind in the attempt to define “natural numbers” directly
using the concept of a simply infinite system. This I shall describe in section 5.

A global function is arithmetical if the cardinality of its value depends only on
the cardinalities of its arguments. Thus if ϕ is, say, a binary global function, it is
arithmetical if, and only if, for all sets S, T , U and V ,

S ∼=c U and T ∼=c V ⇒ ϕ(S, T ) ∼=c ϕ(U, V )

(where “∼=c” means “equal in cardinality to” and is defined in the usual way).
Similarly, a binary relation is arithmetical if its truth value at given arguments

depends only upon the cardinalities of those arguments.
There are global functions and relations arithmetical in this sense correspond-

ing to the familiar basic functions and relations of conventional natural number
arithmetic:

(i) Power set:

x )→ P(x)

(This corresponds to the natural number function x )→ 2x .)
(ii) Successor:

x )→ x ∪ {x}

(This corresponds to the natural number function x )→ x + 1.)
(iii) Addition (disjoint union):

x, y )→ (x × {∅}) ∪ (y × {{∅}})

(iv) Multiplication (Cartesian product):

x, y )→ x × y

(v) Exponentiation:

x, y )→ { f ∈ P(y × x) : f is a function from y to x}



14 Natural Numbers and Infinitesimals 265

(vi) Bounded sums:

y
∑

x=0

ϕ(x)

This is arithmetical if ϕ is.
(vii) Bounded products:

y
∏

x=0

ϕ(x)

This is arithmetical if ϕ is.16

(viii) Cardinal equivalence and ordering:

x ∼=c y and x <c y

(ix) Bounded arithmetical quantifiers:

(∀x <c S)(x) and (∃x <c S)(x)

These are arithmetical if  is.

We can express all the conventional equations and inequalities of natural number
arithmetic by using cardinal equality (∼=c), cardinality inequality (<c and ≤c), and
arithmetical functions.

What correspond to “natural numbers” here are not objects but infinite species,
in fact, the cardinality classes, that is to say, the equivalence classes under the global
relation ∼=c of cardinal equivalence.

Arguments and definitions in Euclidean arithmetic that employ these arithmetical
notions are constructive in the strongest conceivable sense: for from the Euclidean
standpoint we do not regard a “number theoretic function” n )→ ϕnumber(n) as
legitimately defined unless it is possible to exhibit a well-defined, set-theoretical
operation ϕset which is arithmetical, and which, when applied to a set S of size n,
yields a set, ϕset(S), of size ϕnumber(n).

We can use these arithmetical global functions and relations to show that a suit-
able formalised version of Euclidean arithmetic is equivalent to the theory usually
designated I�0 + exp, which is natural number arithmetic based on addition, mul-
tiplication and exponentiation, but with the induction schema restricted to formulas
all of whose quantifiers are bounded ((∀x < t) or (∃x < t), for some term t).17

16 See (Mayberry, 1994, § 9.1) for the set-theoretical definition of this function and the bounded
sum function.
17 This was established by Vincent Homolka in (Homolka, 1983).
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In this sense, then, we can regard Euclidean “natural number” arithmetic as some-
thing with which we are familiar, even though, strictly speaking, it has no natural
numbers. But we must not be too hasty in assimilating it to conventional natural
number arithmetic, as it contains surprising and important new features which I am
about to disclose.

5 Simply Infinite Systems in Euclidean Arithmetic

The alternative to the theory of arithmetical global functions and relations given
in Section 4, is to follow the example of Dedekind (1893) and develop a version
of his theory of simply infinite systems suitable to Euclidean arithmetic. Dedekind
intended his simply infinite systems to be concrete versions of the natural number
system.

His theory is an attempt to make mathematically rigorous the naive idea that the
natural numbers are generated from zero by successive iterations of the successor
function x )→ x + 1 (= σ(x))

0, σ (0), σ (σ (0)), σ (σ (σ (0))), · · ·

Every term of the sequence can be obtained by a finite number of iterations of the
successor function applied to 0, and, conversely, every term that can be obtained by
a finite iteration of the successor function applied to 0 belongs to the sequence.

In fact, Dedekind allowed a simply infinite system to start with an arbitrary ele-
ment z and an arbitrary successor function σ , provided that σ never assumed the
value z nor repeated itself. But, as Dedekind realised, the central problem here is
to give a rigorous, mathematical account of the finite iteration of a function, that
most difficult of mathematical notions whose mysteries we discreetly hide behind
the three dots of ellipsis and the Latin phrase ad infinitum.

Dedekind’s solution to this problem—his theorem on definition by recursion
(§126 of (Dedekind, 1893))—makes essential use of a powerful set-theoretical
assumption, namely, the existence of a transfinite set S with a power set P(S).18 Such
infinitary resources are not available to us in Euclidean arithmetic, and therefore, as
we shall see, Dedekind’s theorem on the uniqueness up to isomorphism of simply
infinite systems19 does not hold in that finitary theory.

Although in Euclidean arithmetic, where all sets are finite, we cannot carry out
Dedekind’s original analysis in full, we can nevertheless investigate the problem
of finite iteration20 and thereby obtain a finitary analogue of his notion of simply
infinite system. Let me begin by laying down two key definitions.

18 This means that the set-theoretic machinery required to establish the existence of a unique (up to
isomorphism) natural number sequence confronts us with Cantor’s intractable continuum problem.
19 §132 of (Dedekind, 1893).
20 In Euclidean arithmetic it is the finite iteration of global functions that is problematic, as I
explained in Section 3.
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Definition 1 Let σ be a global function of one argument, and a an arbitrary object.
Then a linear ordering L is generated from a by σ if L is the empty ordering, [ ], or
the following conditions obtain:

(i) FirstL = a.
(ii) For all x ∈ Field(L) except LastL , NextL(x) = σ(x).

Notice that we are defining the notion of “generation” or “finite iteration” here,
not appealing to it. This is of crucial foundational significance since it is this “static,”
purely set-theoretical definition of “generation” that allows us to develop the theory
of simply infinite systems (natural number systems) without committing the Sorites
fallacy.

The empty ordering [ ] and the one-termed ordering [a] are always generated
from a by σ . If σ(a) = a these are the only orderings generated. Otherwise σ

generates the further orderings

[a, σ (a)], [a, σ (a), σ (σ (a))], [a, σ (a), σ (σ (a)), σ (σ (σ (a)))], · · ·

until an ordering [a, σ (a), σ (σ (a)), σ (σ (σ (a))), · · · , k] is reached for which

σ(k) ∈ {a, σ (a), σ (σ (a)), σ (σ (σ (a))), · · · , k}

If this never happens we say that σ generates a simply infinite system from a.
But this kind of talk about “generation” as if it were a temporal process of some

sort is merely metaphorical, and I employ the metaphor merely to hint at what
I am trying to do. In fact, I need to lay down a precise, mathematically acceptable
definition.

Definition 2 (Simply Infinite System) Let σ be a global function of one argument,
and a an arbitrary object. Then σ generates a simply infinite system from a, if for all
non-empty linear orderings L ,

σ generates L from a ⇒ σ(LastL) �∈ Field(L)

Notice that the proposition σ generates a simply infinite system from a employs
a global quantifier in its definition. In particular, it is a �1 proposition since its
expression requires an initially placed global universal quantifier.

In Dedekind’s original definition a simply infinite system is essentially identified
with the infinite sequence of terms

a, σ (a), σ (σ (a)), σ (σ (σ (a))), · · ·

The corresponding identification in Euclidean arithmetic is with the infinite spe-
cies of initial segments
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[ ], [a], [a, σ (a)], [a, σ (a), σ (σ (a))], [a, σ (a), σ (σ (a)), σ (σ (σ (a)))], · · ·

In the latter case we must use segments rather than terms as “numbers” since we
need to know the predecessor of a number and it is not always possible to define
a global inverse to a global injection σ . Thus each “number” in a simply infinite
system is a linear ordering which stands for the cardinality of its own field.

If σ generates a simply infinite system from the initial term a, let us identify the
simply infinite system with the species, Nσ,a of linear orderings that are generated
from a by σ .

Let me give some examples:

(i) The von Neumann simply infinite system VN :

(a) σ(x) = x ∪ {x}
(b) a = ∅

(ii) The Zermelo simply infinite system Z:

(a) σ(x) = {x}
(b) a = ∅

(iii) The Cumulative Hierarchy simply infinite system CH:

(a) σ(x) = x ∪ P(x)
(b) a = ∅

(iv) The Ackermann simply infinite system ACK:

(a) σ(x) = y, where y is the set whose Ackermann code is one greater than
the Ackermann code of x .21

(b) a = ∅

Of course in Dedekind’s original theory we can prove that all simply infinite
systems are isomorphic. But it is perhaps the most interesting feature of Euclidean
arithmetic that this is no longer the case. In Euclidean arithmetic we have sim-
ply infinite systems of differing lengths and with different closure properties with
respect arithmetical functions.

This is so strange, and so foreign to the conventional conception of natural num-
ber, that I must take care to formulate these claims with mathematical precision.

After all, it seems an outright contradiction to claim that it is possible to have
natural number systems of differing lengths. Indeed, given any two simply infinite
systems, N and M, it seems obvious that we can set up a one-to-one correlation
between their terms (and hence between the linear orderings which compose them).

21 I include this example because it will be important later. It is, of course, possible to give the
successor function of ACK a set-theoretical definition. For details, see (Mayberry, 1994, Ch. 10,
§ 10.6).
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For let their initial terms, aN and aM be correlated, and having correlated n to m,
correlate σN (n) to σM(m).

The careful reader will perhaps notice that there is a global (and hence ille-
gitimate) recursion being appealed to in this little argument. But, in fact there is
something interesting going on here, which leads me to one further example of a
simply infinite system.

(v) Let N and M be simply infinite systems. Define a global function τ by22

τ((x, y)) = (σN (x), σM(y))

Then τ generates a simply infinite system, Inf(N ,M) (the infimum of N
and M), from the initial term (aN , aM).

Then it can be shown that Inf(N ,M) is shorter than or equal in length to each of N
and M, but is longer than or equal in length to any simply infinite system N ′ that
is shorter than or equal to each of N and M in length – hence its designation as the
“infimum” of those two systems.

But we must be careful here, because these key notions of “length” and “closure”
must be carefully formulated in a constructive way. Let us start with closure.

Definition 3 (Closure) Let ϕ be a binary23 arithmetical global function, let η be a
binary global function, and let N be a simply infinite system. We say that η repre-
sents ϕ in N if for all x, y ∈ N

η(x, y) ∈ N and Field(η(x, y)) ∼=c ϕ(Field(x),Field(y))

We say that N is closed under the arithmetical global function ϕ if we can exhibit
a global function η that represents ϕ in N . This can be expressed symbolically by

N ϕ−→ N (via η)

To say that N is not closed under ϕ is to say that it is impossible that η should
represent ϕ in N , no matter what the binary global function η may be.

Similarly, if we want to compare simply infinite systems as to length we must be
careful to formulate the concepts to be employed so that they are compatible with
constructive reasoning.

Definition 4 (Measures) Let N0 and N1 be simply infinite systems, and μ be a
unary global function. We say that μ is a measure for N0 in N1 if for all x lying
in N0

22 The defining equation defines τ only at arguments that are ordered pairs. At all other arguments
we may assign the “don’t care” value ∅.
23 A similar definition can be given for global functions of any number of arguments.
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μ(x) lies in N1 and Field(x) ∼=c Field(μ(x))

We say that N0 is shorter than or equal to N1 in length (in symbols: N0 1 N1)
if we can exhibit a measure μ for N0 in N1. To deny that N0 1 N1 (in symbols:
N0 �1 N1) is to say that it is impossible that μ should measure N0 in N1, no matter
what the unary global function μ may be.

Propositions asserting closure (N ϕ−→ N ) or asserting that one simply infinite
system is shorter than another (N0 1 N1) are (informally) �1

1 in form, and that
raises the question of the “domain of variation” of the informal second-order quan-
tifiers employed in these definitions.

The intention is that the “second-order domain” of global functions be composed
of those functions that can be defined from the basic set-theoretical operations
(power set, pair set, union, etc.) by composition and the fixing and varying of
parameters—we might call the logic employed informally here predicative second-
order logic. But the notion of “composition” is problematic in the context of
Euclidean arithmetic: how many times can we combine and compose previously
defined functions to obtain a new one?

However, these predicative second-order definitions allow us to approach ques-
tions of closure and length from a conventional, infinitary point of view. Thus we
may use facts about the classical standard model, Vω = (Vω,F ,∈),24 of the pred-
icative second-order formal theory of hereditarily finite pure sets to suggest answers
to questions concerning the existence of global functions satisfying given condi-
tions.25

In particular, if we cannot define a global function with a certain property in
Vω classically, we may take that as evidence that no such function can be defined
constructively in Euclidean Arithmetic.

For example, it can be shown that in Vω there is no definable global function that
measures Z in VN . This suggests that we may lay down the following classically
witnessed postulate:

Postulate 1 Given any unary global function μ it is impossible that μ should be a
measure for Z in VN (in symbols Z �1 VN ).

I call this a “postulate” rather than an “axiom,” because it is certainly not self-
evident, although the fact that it holds classically in Vω strongly suggests that it is
valid in Euclidean arithmetic.26

Here we encounter a significant difference between Euclidean arithmetic and
classical infinitary arithmetic: in Euclidean arithmetic there are non-isomorphic nat-

24 F consists of all functions V n
ω → Vω, of all degrees n, definable by terms in the first order

theory of Vω (including terms containing constants for elements from Vω), and is the domain of
variation for the higher order function variables.
25 This method was invented by Richard Pettigrew, and is to be expounded at length in (Pettigrew,
2008).
26 This has been established by Richard Pettigrew (2008) using a method inspired by a model-
theoretic construction by Steve Popham in (Popham, 1984).
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ural number systems. But the difference is even more striking, for it can also be
shown that in Vω there is no definable global function that measures VN in Z , and
this justifies our laying down another classically witnessed postulate:

Postulate 2 Given any unary global function μ it is impossible that μ should be a
measure for VN in Z (in symbols VN �1 Z).

The fact that both Z �1 VN and VN �1 Z hold in Euclidean Arithmetic shows
that the intuitive picture of a simply infinite system’s being laid out sequentially in an
extension of infinite length is completely misleading. Since a simply infinite system
is the infinite species of all linear orderings generated by a successor function σ

from a initial term a, it is intensional in its very essence, and cannot be said even to
have an “extension.” In Euclidean arithmetic we can speak of the “extension” only
of finite sequences, just as the only extensional collections are finite ones, i.e., sets.

Propositions about the comparative lengths of simply infinite systems are, when
properly understood, propositions about the logical and set-theoretical properties
of their respective successor functions. A similar observation applies to the closure
properties of simply infinite systems.

Using the method of classically witnessed postulation we can justify the
following:

Postulate 3 (i) None of the simply infinite systems VN ,Z and CH is closed under
addition.

(ii) The simply infinite system CH is strictly shorter in length than both VN and Z
(in symbols: CH ≺ VN and CH ≺ Z).

There are, however, simply infinite systems that are closed under addition, indeed
under much stronger arithmetical functions. The Ackermann simply infinite sys-
tem, ACK, can be proved outright (i.e., without making use of classically witnessed
postulates) to be closed under addition, multiplication, and exponentiation.

There are various techniques now known for defining new simply infinite systems
from previously given ones.27 I shall now describe one of the simplest.

Let K be a linear ordering of two or more terms which I shall call K -ary digits.
An K -ary numeral is just a non-empty sequence, (L , f ), of K -ary digits (so that
L is a non-empty linear ordering and f : Field(L) → Field(K ) ) whose first term,
f (FirstL), is not 0K (i.e., FirstK ), unless less L has only one term.

Given a simply infinite system N define its K -ary expansion, N [K ], to be the
simply infinite system whose terms are the K -ary numerals (L , f ) whose underly-
lying linear ordering L lies in N .28

The essential facts about these K -ary extensions are contained in the following:

Theorem 1 Let N be a simply infinite system, and let K be a linear ordering, with
two or more terms, whose field is measurable by N .

27 These techniques are presented in (Pettigrew, 2008).
28 The elements of N [K ] are thus linear orderings [0, 1 · · · , m] whose terms, 0, 1, · · · , m, are
K -ary digits whose lengths lie in N , and which are arranged in their natural order.
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(i) N 1 N [K ]
(ii) N [K ] is closed under addition.

(iii) A necessary and sufficient condition for N to be closed under addition is that
N [K ] be closed under multiplication.

(iv) A necessary and sufficient condition for N to be closed under multiplication is
that N [K ] be closed under Lexp1

K (= λx, y(x logK (y))).
(v) A necessary and sufficient condition for N to be closed under Lexpn

K is that

N [K ] be closed under Lexpn+1
K

(

= λx, y
(

xLexpn
K (logK (y),logK (y))

) )

.

Where logK is an arithmetical global function corresponding to the conventional
number theoretical function that sends each n to the greatest x ≤ the base K loga-
rithm of n.

It is important to realise that, in the (implied) definition of Lexpn
K , the expression n

is not a variable ranging over “natural numbers.” The “recursion” in the definition is
really a recipe for laying down as many particular definitions of these higher “log-
arithmic exponentials” as one wishes (or as one can). We cannot even “internalize”
this recursion to (finite) linear orderings L = [0L , · · · , kL ].29

But the method of K -ary expansion will not yield closure under exponentiation.

Theorem 2 Let N be a simply infinite system, and let K be a linear ordering,
with two or more terms whose field is measurable by N . Then the following are
equivalent:

(i) N [K ] is closed under exponentiation.
(ii) N measures N [K ].

(iii) N is closed under exponentiation.

So N [K ] is not closed under exponentiation unless N itself is already closed
under exponentiation. Moreover, N [K ] is a proper extension of N unless N is
already closed under exponentiation.

Thus if we start with a simply infinite system, N , not closed under addition (e.g.,
if N is VN ,Z or CH), then successive K -ary extensions produce longer and longer
expansions

N ≺ N [K ] ≺ (N [K ])[K ] ≺ ((N [K ])[K ])[K ] ≺ · · ·

closed under stronger and stronger arithmetical functions

λx(x + 1), +, ×, λx, y(x logK (y)), λx, y(x (logK (y)
logK (logK (y)))) · · ·

though all these “logarithmic exponentials” grow more slowly than the exponential
function.

29 Compare the discussion of iterating the application of a global function at the end of § 3.
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Notice, however, that if I set N0 = N and Nn+1 = Nn[K ], then the ensuing
non-terminating sequence

N0 ≺ N1 ≺ N2 ≺ N3 ≺ N4 ≺ · · · ≺ Nn ≺ Nn+1 ≺ · · ·

is not “internal” to Euclidean arithmetic, so to speak, and, needless to say, the bold-
faced subscripts do not range over “natural numbers.”

Rather, the “endlessness” of the “sequence” consists solely in the fact that we
can repeat the construction N )→ N [K ] as often as we like—or as we can—so
that there is no natural halting place. The subscripts are mere indices or tallies, as it
were, recording the number of such expansions that have actually been carried out
in a given case.

But even though we cannot use the method of K -ary expansions to construct a
simply infinite system closed under exponentiation, nevertheless there are simply
infinite systems with this property. I have already called attention to the Ackerman
system, AC K , whose successor function generates sets in the order determined by
their Ackermann codes, as an example. Richard Pettigrew (Pettigrew, 2008) has
exhibited simply infinite systems N1 ≺ N2 both of which are closed under expo-
nentiation.30

All these facts about simply infinite systems must be seen in the light of the
further fact that no simply infinite system is “long enough” to count out every (finite)
set. More precisely, the method of classically witnessed postulation justifies our
laying down the following postulate:

Postulate 4 Let N be a simply infinite system and μ any unary global function.
Then it is impossible that for all sets S, μ(S) lies in N and μ(S) ∼=c S.

Since no simply infinite system can measure all finite sets, and since there are
simply infinite systems with differing lengths and closure properties, we are at a
loss to say what it is that corresponds, in Euclidean arithmetic, to the natural number
sequence of conventional arithmetic. Surely the Euclidean theory of simply infinite
systems shows that in Euclidean arithmetic the idea of the uniqueness of “the” natu-
ral number sequence should be abandoned, and that, from that standpoint, there are
many non-equivalent but equally legitimate ways of systematically “proceeding to
infinity.”

We can regard each simply infinite system as an attempt systematically to exhibit
a unique member of every cardinality class. In ordinary mathematics, with its infini-
tary assumptions, this works. But we now know that, in Euclidean arithmetic, any
such attempt is bound to fail.

From the standpoint of the philosophy of mathematics, the Euclidean approach
to arithmetic relieves us of the temptation to say what those peculiar entities, the
natural numbers, “really” are. Mathematically, it allows us to escape from the idea

30 More precisely, he shows that we can introduce the proposition N1 ≺ N2 as a classically wit-
nessed postulate. This will prove to be of significance when we come to discuss the treatment of
real numbers in Euclidean arithmetic.
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that the essence of arithmetic is to be sought in calculating procedures, an idea that
leads directly to what I have called the Sorites fallacy, which manifests itself in
the belief that the principles of proof by induction and definition by recursion are
self-evidently valid and do not stand in need of justification.31

The mathematical facts I have given concerning the lengths and closure proper-
ties of simply infinite systems, interesting in themselves from the standpoint of pure
arithmetic, allow us to develop a theory of “real numbers” in which infinitesmals
occur naturally, rather than as the superadded “ideal elements,” that they are in con-
ventional nonstandard analysis. The resulting algebra of real numbers leads, in turn,
to a natural development of the infinitesimal calculus.

6 Rational Numbers

A central topic in the ancient version of Euclidean arithmetic dealt with the theory
of ratio and proportion in numbers (arithmoi). Looking to Euclid for inspiration, let
us develop an arithmetic of (positive) ratios so that, like the “natural numbers,” they
correspond to equivalence classes under the appropriate equivalence relation.

We may start by defining (positive) ratios, (S : T ), to be ordered pairs, (S, T ),
of sets (where T �= ∅), under the equivalence relation

(S, T ) ∼=ratio (U, V ) if, and only if, S ×c V ∼=c U ×c T

In conventional, contemporary terms the concrete ratio (S : T ) corresponds to
“abstract” ratio m/n, where S has m elements and T has n. Of course each particular
pair (S, T ) represents its equivalence class with respect to the equivalence relation
∼=ratio. The natural order relation for ratios is

(S, T ) <ratio (U, V ) if, and only if, S ×c V <c U ×c T

In ancient arithmetic the proposition (S, T ) ∼=ratio (U, V ) was expressed by

S : T :: U : V

Notice that I have introduced ratios and the notion of equality (∼=ratio) between
ratios, simultaneously, so that ratios are not to be thought of as mere ordered pairs
of sets simpliciter but rather as ordered pairs of sets identified or distinguished in
accordance with the new notion of “equality” defined by the equivalence relation
∼=ratio.

An ordered pair, (S, T ), of sets we might call a “concrete” ratio which “illus-
trates” or “represents” a ratio properly so called in accordance with Euclid’s defini-
tion of “ratio”:

31 In ordinary mathematics we can look on Dedekind’s theory of simply infinite systems as ren-
dering the Sorites fallacy harmless, insofar as it bears on mathematical practice, even though it
remains a fallacy even there.
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A ratio32 is a relationship in respect of size between two magnitudes of the same kind
(Elements, Book V, Definition 3).33

It is not difficult to define addition, +ratio, and multiplication, ×ratio, for posi-
tive ratios, in conformity with the equivalence relation ∼=ratio, and this allows us to
develop an arithmetic of ratios which parallels the arithmetic of numbers (arithmoi –
finite sets) sketched in Section 4.

We need, however, not just positive ratios, but rational numbers, positive, nega-
tive, and zero. Let us therefore define rational numbers to be ordered pairs (r, s) of
positive ratios, r and s, taken under a new equivalence relation

(r, s) ∼=Q (t, w) if, and only if, (r +ratio w) ∼=ratio (s +ratio t)

The idea here is that the pair (r, s) of positive ratios corresponds to the rational
number r − s, positive, negative, or zero.

Again we can define addition, +Q, and multiplication, ×Q, of rational numbers
in conformity with the equivalence relation ∼=Q. Indeed, we can define bounded
sums (�n

i=0ai ) and products (�n
i=0ai ) of rational numbers, in the obvious way.

It should be clear how to develop the arithmetic and algebra of rational numbers
from these definitions. One just needs to bear in mind that the rational numbers actu-
ally referred to are really representatives of the ∼=Q-equivalence classes to which
they belong.

In summary, a rational number q is an ordered pair of the form (r, s), where
r and s are positive ratios, so that r and s themselves are ordered pairs of sets,
r = (T : U ) (= (T,U ) ) and s = (V : W ) (= (V,W )) ), where each of T,U, V
and W is a set which is serving as a representative of its cardinality class, and where
U,W �= ∅. Thus q = ( (T,U ), (V,W ) ) (= ( (T : U ), (V : W )) ) is an ordered
pair of ordered pairs.34

All of this is quite straightforward: after all, everyone knows that the theories
of positive ratios, integers, and rational numbers belong, essentially, to arithmetic,
and the arithmetic of rational numbers I have described here is, indeed, contained in
Euclidean arithmetic.

7 Real Numbers

The conventional reals, which nowadays are usually defined using the axioms for a
complete ordered field, were originally introduced as “abstracted ratios” of concrete

32 Logos, which can mean “reason” in Greek, hence ratio which means “reason” in Latin.
33 The reader can verify that the definition of equality for ratios (∼=ratio) I have given is equivalent
to Euclid’s more general definition (Elements, Book V, Definition 5) when the latter is specialized
to ratios of arithmoi.
34 Needless to say, there are alternatives to the way I have defined (positive) ratios and rational
numbers here.
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quantities (e.g., “abstracted” ratios of lines to lines or of polygons to polygons, etc.)
when they were invented in the seventeenth century.

In Section 2, I quoted Newton’s definition of (positive, real) number:

By a Number we understand not so much a Multitude of Unities, as the abstracted Ratio of
any Quantity to another Quantity of the same Kind which we take for Unity.

Of course our positive ratios are essentially abstracted ratios35 of particular numbers
(arithmoi) understood in the traditional sense (i.e., as what we call “finite sets”), and
are thus genuine “Numbers” in Newton’s then novel sense given in the definition
I have just quoted.

On the definition Newton gives, the notion of “Number” (i.e., positive real num-
ber) is logically dependent on geometrical concepts, so that, for example, to define√

2 we need to abstract from the ratio of a line to a line, namely, the ratio of the
diagonal of a square to its side.36

But we no longer believe, as the seventeenth century did, that Euclidean geometry
describes the actual space we live in, so this logical dependence on Euclidean geom-
etry is something of an embarrassment. (This no doubt explains why we now define
the real numbers axiomatically.) I intend, therefore, to show that we can develop
a theory of real number arithmetic which remains Newtonian in spirit, so that real
numbers are ratios, but which cuts the notion of real number free of any logical
dependence on geometrical concepts: a purely arithmetical theory of real numbers.

This means that I shall not be required, as Newton was, to define the basic arith-
metical operations on real numbers in a geometrical manner—they are already given
to us in the corresponding rational-arithmetical operations on the rational numbers.

The theory of real arithmetic I shall develop here rejects the conventional idea
that the real number field is a proper extension of the rational field. On the con-
trary, the central idea that informs this approach to real number theory is that the
distinction between rational and irrational real numbers rests upon an even more
fundamental distinction between large and small sets. An immediate consequence
of this idea is that the real numbers form a subring of the rational field.

As we shall see, the distinction between “large” and “small” sets is itself a
relative one, depending, as it does, upon which “natural number” system (simply
infinite system) N we use to count out the elements of a set, so, in contrast to the
conventional view, there is no fixed or absolute concept of real number.

Recall that I have laid down the classically witnessed postulate that no simply
infinite system forms a scale for all sets, that is to say, given any simply infinite
system N and any candidate universal measure μ with respect to N (i.e., any unary
global function μ), it is impossible that, for every set S, μ(S) lies in N and μ(S) ∼=c

35 We can speak of “abstraction” here, because we moderns do our “abstracting” by using equiva-
lence relations and their equivalence classes.
36 Newton took it for granted that if we “abstract” ratios that are “equal” or “proportional” in the
sense of Eudoxus (Euclid’s Elements, Book V, Definition 5), then we obtain identically the same
Newtonian number.
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S. In fact this holds even if we confine ourselves to pure sets37: there is no scale for
the species of pure sets. To simplify my exposition I shall confine my attention to
pure sets.

Definition 5 Given any simply infinite system N , any set S, and any rational num-
ber q we say that

(i) A set S is N -small if, and only if, there is an n in N such that

S <c Field(n)

(ii) A rational number q is N -small if, and only if, there is an n in N such that
|q| <Q nQ, where nQ = ( (Field(n) : {∅}), ({∅} : {∅}) ) is a rational number
corresponding to n.

(iii) A set S is N -large if, and only if, for all n in N

Field(n) <c S

(iv) A rational number q is N -large if, and only if, for all n in N , nQ <Q |q|,
where nQ is defined as in (ii).38

These notions lead to the following key definition.

Definition 6 Let N be a simply infinite system and let q be any element of Q.

(i) q is said to be N -real if it is N -small. RN is the species of N -reals.
(ii) q is said to be N -infinitesimal if for all 0 �= n ∈ N

q <Q 1/nQ

IN is the species of N -infinitesimals.
(iii) q is said to be N -rational if q is N -real and there are m and n in N such that

|q| ∼=Q mQ ×Q nQ. QN is the species of N -rationals.
(iv) q is said to be N -irrational if q is N -real and for all sets S and T �= ∅

|q| ∼=Q SQ ×Q (TQ)−1 ⇒ T is N -large

where SQ = ( (S : {∅}), ({∅} : {∅}) ) and TQ = ( (T : {∅}), ({∅} : {∅}) )
represent (the sizes of) S and T in Q.

Note that in accordance with definitions (ii) and (iv) non-zero N -infinitesimals
are N -irrational.

37 That is, sets whose transitive closures contain no individuals (non-sets).
38 Notice that in all these definitions N -small is�1 but N -large is�1. This has important technical
consequences.
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When it is clear from the context what the counting number sequence N is,
we may drop explicit reference to it and speak simply of “reals,” “infinitesimals,”
“irrationals,” etc.

8 The Calculus

I have already remarked that the theory of real numbers sketched here is not
absolute, but relative to the choice of a concrete natural number system N . Let
us therefore suppose that we are dealing with a fixed simply infinite system N
closed under addition, multiplication, and exponentiation, so that I may drop ref-
erences to N and refer to the species, I, of infinitesimals, etc. In the same spirit
I shall drop the subscripts from operators etc. when doing so will not lead to
confusion.

I shall begin by defining a fundamental equivalence relation on the real numbers:

Definition 7 Let r and s lie in R. Then

r ∼=R s if and only if r − s lies in I

This gives rise to a natural ordering on R (mod ∼=R) defined as follows.

Definition 8 Let r and s lie in R. Then

r 1R s if and only if [r ∼=R s or [r �∼=R s and r <Q s] ]

(Note that this definition and the previous one make perfectly good sense if r and s
lie in Q.)

It is important to realise that neither r ∼=R s nor r 1R s is decidable, e.g., we
cannot in general assert

r ∼=R s or r �∼=R s

R with ∼=R taken to be the principal notion of equality strongly resembles the
classical reals, as we shall see. Indeed, the reals “nearly” form a field in the sense
that every real which is explicitly bounded away from 0 has a real inverse.39

R under ∼=Q might be thought of as the reals with the infinitesimals added, or,
more in the spirit of our enterprise, the reals with the infinitesimals acknowledged.40

39 A real r is explicitly bounded away from 0 if there is a non-zero n ∈ N such that

0 <Q 1/nQ <Q |r |
Here we are up against the fact that ¬(∀n ∈ N )(n) does not imply (∃n ∈ N )¬(n).
40 I shall often drop the subscript Q, e.g., writing “a = b” instead of “a ∼=Q b” and a ≤ b
instead of a ≤Q b, since these relations are locally defined and therefore decidable, and all our
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Definition 9 Let δ >Q 0Q be a positive infinitesimal. Then

(i) A rational number q lies in Iδ if, and only if, for all n in N ,

|q| <Q nQ ×Q δ

where nQ is the rational number corresponding to n.
(ii) A rational number q lies in Rδ if, and only if, for some n in N ,

q <Q nQ ×Q δ

where nQ is the rational number corresponding to n.
(iii) For rational numbers p and q

p ∼=δ q if and only if p − q lies in Iδ .
p ≺δ q if and only if p < q and p �∼=δ q.
p 1δ p if, and only if, p < q or p ∼=δ q

Rδ consists of those infinitesimals that are of the same order of magnitude as δ,
Iδ of those infinitesimals that are infinitesimally small compared to δ.

We now concentrate our attention on rational valued functions on the rationals
(Q-functions for short), that is to say, global functions ϕ whose value at rational
number arguments is a rational number. Clearly +Q, ×Q, and expQ are functions
of this sort.

Our principal concern, however, is with those rational functions that are real
functions of one or more real variables in accordance with the following definition.

Definition 10 Let ϕ be a Q-function and J be a subspecies of R. We say that ϕ is
real function defined on J if for all x lying in J , ϕ(x) lies in R (and similarly for
functions of more than one argument).

The basic functions +Q, ×Q, and expQ are real functions in this sense. In fact,
all the “standard” functions used in conventional analysis—the natural logarithm
x )→ ln(x), the exponential x )→ ex , the trigonometric functions and their inverses,
etc.—have analogues in our R.41

We are not interested in real functions defined on arbitrary domains J ⊆ R, but
those defined on domains J ⊆ R that are microstable in the following sense.

Definition 11 Let J be a subspecies of R.

(i) J is microstable if for all x, y lying in R

x ∼= y ⇒ x lies in J if, and only if, y lies in J

constructions and definitions apply to the rationals. I shall also write “a ∼= b” and instead of
“a ∼=R b” and “a 1 b” instead of “a 1R b” even though these relations are not locally defined.
All of this is in the interest of avoiding a proliferation of subscripts.
41 This can be established by using polynomials of large degree,

∑n
i=0 ai xi , where n is large.
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(ii) Given any infinitesimal δ, J is δ-microstable if for all x, y lying in J

x ∼=δ y ⇒ x lies in J if, and only if, y lies in J.

Of course R iself is microstable and, indeed, δ-microstable for any
infinitesimal δ. We also need microstable versions of the open and closed intervals
of classical analysis.

Definition 12 Let a and b lie in R and let δ > 0 be an infinitesimal.

(i) Let a and b be real numbers, then the closed interval [a, b] is the species of all
reals x such that

a 1 x 1 b

(ii) Let a and b be real numbers, then the open interval (a, b) is the species of all
reals x such that

a ≺ x ≺ b

(This notational convention means that “(a, b)” can refer to an ordered pair or an
open interval. One has to live with this ambiguity when doing conventional analy-
sis too.)

The point of introducing microstability is best understood in conjunction with
the notion of continuity.

Definition 13 Let J be a microstable subspecies of R and ϕ be a real function
defined on J . We say that ϕ is continuous on J if for all x, y lying in J

x ∼= y ⇒ ϕ(x) ∼= ϕ(y)

This is just the pre-Weierstrassian concept of continuity that prevailed in the
eighteenth century. Notice that in accordance with this definition and the definition
of real function, all real functions defined on a microstable domain are continuous
on that domain.

We can relativise the definition of continuity.

Definition 14 Let δ > 0 be a positive infinitesimal, J a δ-microstable subspecies of
R, and ϕ a real function defined on J . We say that ϕ is δ-continuous on J if for all
x, y lying in J

x ∼=δ y ⇒ ϕ(x) ∼=δ ϕ(y)

The general theory of continuous functions can be developed in a relatively
straightforward way: we just have to keep track of when our definitions employ
global quantifiers and remember to employ constructive (intuitionistic) logic to
propositions involving those quantifiers.
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The differential and integral calculus are treated in a manner reminiscent of non-
standard analysis. Thus we define the derivative of a real function ϕ defined on a
microstable subspecies J of R as follows:

Definition 15 Let ϕ and ψ be real functions defined on a microstable subspecies, J ,
of R. Then ϕ is said to be differentiable on J with derivative ψ if for all infinitesi-
mals ε �= 0 in I

ϕ(x + ε)− ϕ(x)

ε
∼= ψ(x)

In these circumstances we say that ψ ∼= ϕ′.

In terms of difference functions this becomes

�ϕ(x, ε) (= ϕ(x + ε)− ϕ(x)) ∼=ε ψ(x)ε

so that the difference ϕ(x +ε)−ϕ(x) is ε-infinitesimally close to the product εψ(x)
at all arguments x lying in J .

The definite integral also has a definition in terms of infinitesimals:

Definition 16 Let ϕ be a real function defined on a microstable domain J , let a, b ∈
J with a 1 b, and let ε ∈ I be an infinitesimal with ε > 0. Then:

(i) The ε-sum of ϕ from a to b (in symbols: �b
aϕ · ε) is defined by

�b
aϕ · ε =

k
∑

n=1

ϕ(a + nε(b − a) )ε(b − a)

where k is the N -large natural number such that k ≤ 1/ε < k + 1.
(ii) ϕ is said to be integrable from a to b if for all non-zero infinitesimals ε and δ

�b
aϕ · ε ∼= �b

aϕ · δ

Of course this defines the integral
∫ b

a f only up to ∼=-equivalence.42 When dealing

with an explicitly defined function such as f = λx(x2), we write
∫ b

a x2dx in the
usual way.

These definitions permit a straightforward development of the Calculus anal-
ogous to its development in conventional nonstandard analysis. In particular, an
“algebraic” proof of the Fundamental Theorem of the Calculus along Leibnizian
lines can be given.

42 When σ(x) ∼= τ(x) for all x in a domain J we write “σ . τ on J”.
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Theorem 3 (The Fundamental Theorem of the Calculus) Let ϕ and ψ both be
real functions defined on a microstable domain J with ψ . ϕ′ on J . Then for all
a, b ∈ J with a ≺ b and [a, b] ⊆ J , ψ is integrable from a to b and

∫ b

a
ψ ∼= ϕ(b)− ϕ(a).

Proof It will simplify the exposition, though without really sacrificing generality, to
consider the case a = 0 and b = 1. We must show that for all infinitesimal ε > 0,

�1
0ψ · ε =

k
∑

n=1

ψ(nε)ε ∼= ϕ(1)− ϕ(0)

where k is the integer part of 1/ε (so that kε ∼= 1). Since ψ ∼= ϕ′ on [a, b]
ϕ((n + 1)ε)− ϕ(nε)

ε
∼= ψ(nε) (1 ≤ n ≤ k)

and therefore there are infinitesimals δ1, · · · , δk such that

ϕ((n + 1)ε)− ϕ(nε) ∼= ψ(nε)ε + εδn (1 ≤ n ≤ k)

Hence

k
∑

n=1

ψ(nε)ε =
k−1
∑

n=o

[ϕ((n + 1)ε)− ϕ(nε)] + ε

k
∑

n=1

δn

But

k−1
∑

n=o

[ϕ((n + 1)ε)− ϕ(nε)] = ϕ(kε)− ϕ(0)

and ϕ(kε) ∼= ϕ(1). Now let δ = max{|δ1|, · · · , |δk |}. Then

∣

∣

∣

∣

∣

ε

k
∑

n=1

δn

∣

∣

∣

∣

∣

≤ ε

k
∑

n=1

|δn| ≤ εkδ ∼= δ

so

∫ 1

0
ψ ∼= ϕ(1)− ϕ(0)

as required. �
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9 A Finitary Version of the Reals

The theory sketched in Sections 7 and 8 is infinitary in that the real numbers con-
stitute an infinite subspecies of the rationals. I want now to explain how we can
develop a finitary theory of the reals along essentially the same lines.

Let me begin by observing that we can lay down a classically witnessed postulate

Postulate 5 (i) N ≺ N ∗
(ii) Both N and N ∗ are closed under exponentiation.

(iii) N ∗ is not a scale for the species of all (pure) sets.

Using the fact that N ∗ is not a universal scale, we may assume that there is a
pure set, S, that is not measurable by N ∗.43

Under this assumption, the species of sets measurable by N ∗ can be proved not
to be closed under union, since {S} is measurable by N ∗ but

⋃

({S}) = S is not.
This suggests that we lay down the following definition.

Definition 17 Let N be a simply infinite system. Then a set S is an N -set if the
transitive closure of S ∪ {S} is measurable by N .

In fact it is more convenient to work with an N ∗-large linear ordering

L = [ 0L , 1L , · · · ,� (= LastL) ]

in place of an unspecified N ∗-large set S. Moreover we may assume that the terms
of L consists of L sets44 representing all the cardinalities strictly less than that of L ,
arranged in ascending order of cardinality.

We need to work with the extended Farey series, Farey(L), based on L which is
defined as follows:

Definition 18 (Extended Farey Series) Let L be a linear ordering whose field is
composed of L sets whose terms are ordered by increasing cardinality, and for all of
whose terms, x , x <c Field(L).45 Then the extended Farey series determined by L
is the linear ordering, Farey(L), whose terms

{x/y : x, y ∈ Field(L), y �= ∅ (= 0L) }

are ordered linearly in accordance with the global relation <Q.

43 Notice that I have said “assume” and not “postulate.” From the classically witnessed postulate
that N ∗ is not a scale for the species of all pure sets we can derive only that the existence of a set
too large to measure by N ∗ is possible (i.e., not impossible). This makes the stronger assumption
that S is actually an example of such a set consistent with our theory.
44 That is, sets S for which the transitive closure of S ∪ {S} is measurable by Field(L). Together
the L-sets form a set, since the definition of L-set does not require global quantifiers.
45 Note that this condition means that Field(L) contains exactly one representative of each car-
dinality smaller than that of Field(L) itself, so L “behaves like” a finite initial segment of “the”
natural numbers.
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Of course, from the standpoint of Euclidean arithmetic Farey(L) is just a (large)
linear ordering whose terms form a finite set, since all sets are finite in Euclidean
arithmetic.

I have now set up the technical machinery that will allow us to recast the account
of rational, real, and infinitesimal numbers sketched in Sections 6, 7, and 8 in finitary
form. The idea is roughly this: let the species of N ∗ sets go proxy for the species
of all sets. The species of N ∗ sets can function in such a role because N ∗ is closed
under exponentiation.

Call the species of N ∗ sets V∗. Then all the concepts employed in Sections 6 to
8 have their sub-∗ versions Thus Q∗ = Q ∩ V∗, R∗ = R ∩ V∗, I∗ = I ∩ V∗, etc.,
so we can rerun the exposition in 6 to 8 replacing all these notions with their sub-∗
versions, without affecting the mathematical essentials of the exposition.

There is an additional bonus, however. V∗ is a subspecies of the set of Farey(L)
sets (which we may call VFarey(L)). This means that the finitary theory is more useful
when we come to apply it to minimal parts geometry, a version of geometry which
rejects the infinite divisibility of space and posits instead that any bounded region
of space (or even space itself) is composed of a large, though still finite, number
of indivisible minimal parts which are related by a nearest neighbour relation. In
this way the minimal parts geometry can be regarded as an undirected graph, the
minimal parts graph.

By imposing natural symmetry conditions on these graphs we can assign
each minimal parts graph a dimension, and can classify all one, two, and three
dimensional minimal parts geometries. It is still possible to recover conventional
Euclidean geometry in any minimal parts geometry using the analytical machinery
I have described.46

10 Conclusions

I have described how to carry out a development of the Calculus using a theory of
real numbers in which infinitesimals are included among them in a natural way.
Moreover, this development arises naturally out of an approach to arithmetic in
which non-isomorphic natural number systems also occur in a natural way. This
suggests, I believe, a way in which the remarks made by Gödel in the preface to
Robinson’s book could be vindicated.

There is, however, another way of incorporating infinitesimals naturally into real
analysis, a way that begins, not with arithmetic as I have done, but with geometry
and kinematics. I am referring to smooth infinitesimal analysis, which was invented
by F.W. (Lawvere, 1979) and given an elegant, elementary exposition by John Bell
in (Bell, 1998).47

46 The general theory of minimal parts geometry is developed in (Lush, 2003).
47 Of course smooth infinitesimal analysis can be expounded naturally in conventional infinitary
mathematics.
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Despite their radically different motivation, and their different logical and
foundational approaches, smooth infinitesimal analysis and the theory I have
sketched have much in common.48 In particular, it is significant that the geomet-
rical/kinematical approach that inspires smooth infinitesimal analysis also calls the
uniqueness of the natural number system into question.

There are also strong mathematical connections between the theory I have
sketched and conventional nonstandard analysis, though the latter is much more
conservative in character, since the role it allots to infinitesimals is essentially that
of “ideal elements” (like the points at infinity in projective geometry).

Indeed, it is literally conservative over conventional analysis in the technical
sense, so that infinitesimals can always be eliminated from proofs of theorems of
nonstandard analysis that do not refer to them explicitly. Thus it is unlikely to
have the radical consequences described by Gödel in the remarks I have quoted in
section 1.

The general theory of numbers—natural, rational, and real—that I have sketched
here, and the theory of minimal parts geometry developed in (Lush, 2003), represent
only the first steps in giving a finitary account of mathematics in general.

Of course it is not “finitary” in the conventional sense. But it is not clear that
conventional finitism is foundationally coherent. It is, after all, based on the iterative
conception of “natural number” in which the natural numbers are defined as the suc-
cessors of zero under finite iterations of the successor function, and both Dedekind
and Frege called attention to the vicious circle contained in this conception of natural
number more than one hundred and 20 years ago.

But even if a finitary account of the core notions of mathematics along the lines
I am considering here could be given, it would represent only an alternative to the
infinitary assumptions and techniques currently in use. And those assumptions are
so simple, so convincing, so powerful, and so fruitful, that a finitary rival would be
a mere curiosity unless it could match these features.

It is not, after all, obvious that the infinitary methods of conventional mathematics
lack legitimacy, especially after we abandon the fantasy that the notion of the finite
iteration of a function, and with it the notion of “natural number,” are somehow just
“given.”

Perhaps if we arrived at such a finitary alternative to conventional infinitary
mathematics, we would see these two approaches, not so much as rivals, but just
as different ways of viewing the same underlying phenomena. The root prob-
lem, on either approach, is to understand what infinity really means. We have
made great advances in understanding this problem, but its final resolution still
eludes us.49

48 It is not yet clear what the technical, mathematical relation between them is.
49 I have discussed this issue at considerable length in (Mayberry, 1994).
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Chapter 15
Logic in Category Theory

Alberto Peruzzi

1 Motivations

Logic already spanned a great range of topics before the birth of categorical logic.
Some celebrated results achieved in logic during the first half of the twentieth
century are milestones in the understanding of mathematical relations between syn-
tactic, semantic and algorithmic aspects of the structure of language and reasoning.
Logical tools have been exploited in a variety of applications: from linguistics to
computer science, from methodology of science to specific physical theories. The
very formulation of questions and answers concerning the foundations of math-
ematics relies on such tools. Finally, mathematical logic has altered the face of
philosophy. In view of such outcomes, it is all the more appropriate to consider
the impact of categorical methods on logic, since they affect the study of proofs and
models, by forging a stricter relationship between a theory and its models, and by
enlarging the range of possible models beyond the universe of sets in a way that
leads to a substantial refinement of the status ascribed to logic itself.

In the last 30 years the growth of research on mathematical problems through
categorical methods has been fast and wide-ranging. If algebra and topology were
the first areas in which such methods became customary practice, by now one can
acknowledge a categorical turn in logic too, with effects on landmark results already
achieved, along with their applications and indeed the very idea of foundations.
What follows will offer a synthetic and selective path across the impact of categories
on logic, focusing on the main concepts and the overall sense of the transformation.
If it is possible for me to draw such a path, it is thanks to the guidance and support
provided 25 years ago by John Bell.

Aside from the personal debt, Bell’s contributions to categorical logic deserve
mention, both for specific results and clarity of design (see, for instance the explana-
tory picture of the steps involved in passing from Boolean-valued models to the
use of topos-theoretic methods (Bell, 1988, pp. 235–245). His logic-oriented view
of topos theory (Bell, 1986), emphasizes the resources of the internal language to
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express a local notion of set within a type-theoretic setting. These resources frame
an analysis of Hilbert’s ε–operator (Bell, 1993). Bell also extracted from the categor-
ical form of synthetic differential geometry a crystalline presentation of the basics
of the calculus (Bell, 1998), one which sheds light on logical issues concerning the
continuum and unlocks applications to both quantum and relativistic physics (Bell,
1996, 2006).

Within the range of ideas, techniques and results of categorical logic, only those
of the most general character will be considered here. References will be confined
to contributions of two kinds: papers of historical importance and survey papers
or books, with no presumption of a complete list in each case. By skipping many
details, the exposition will remain at an elementary level. Nowadays this conceptual
machinery may perhaps seem obvious to many mathematicians, but it was the out-
come of an anything but obvious development, the source of which lies in algebraic
geometry, and even when the dependence on this source is deemphasized, the sense
of the categorical way to logic still remains cryptic for others as well as for many
logicians, computer scientists and philosophers.

Aiming to avoid the obvious and the cryptic, the paper reviews some main
steps in the growth of categorical logic. The change in perspective did not occur
suddenly and was hardly transparent at the birth of category theory 60 years ago.
Since emphasis will be placed on the unifying concepts behind the “categorifica-
tion” of logic, only occasional attention will be paid to topics external to its core,
with only brief mention of modalities, relationships with set theory and the con-
cept of meaning. Talk of “logic in category theory” intends to stress the change in
perspective; thus the framework of Section 2 aims to show how much more is at
stake than merely taking logic as practiced (in manifold ways) since the beginning
of the twentieth century and translating it into categorical terms. The turn rather
comes with doing logic from scratch in terms of adjoints and, in fact, using this
strategy as an “order parameter.” How and to what extent can (and must) this line
extend to other areas of logic such as inductive or philosophical logic? Though this
question remains implicit in what follows, some results described below suggest
no less long-range effects. Section 3 introduces, in chronological order, the notions
merged into present-day categorical logic. Section 4 outlines the constructions cor-
responding to propositional, first order and higher-order logic, with emphasis on the
unified picture resulting for model theory, proof theory and computability theory (in
λ-calculus form). Finally, Section 5 will refer to the extension of this picture related
to constructive type theories and propose some general reflections.

2 Perspective Remarks

The problems at the origin of categorical logic were different from those out of
which the two souls of mathematical logic were born: In the Boole-Schröder lineage
logic was an autonomous branch of algebra, while in the Frege-Russell tradition
it carried the weight of a foundation of mathematics as a whole, see (Mayberry,
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1994). Through the Hilbert-style axiomatization of logic it became possible to
draw clear-cut boundaries among three, by now familiar, layers of logical struc-
ture: propositional, first order and higher order. Set-theoretic assumptions confined
to the background re-emerged as soon as Tarski established semantics as a branch
of logic.

In 1945 Saunders Mac Lane and Samuel Eilenberg introduced the notion of cat-
egory (Eilenberg and Mac Lane, 1945), as identifying the formal profile of what
a mathematical universe of discourse is in general, in which objects A, B, . . . and
maps f, g, . . . (arrows, morphisms, but not necessarily functions) between objects
are on the same footing. A category C can be described as both a generalized, or
many-sorted, monoid, and a directed graph with added equations between arcs. Each
map f has a unique domain/source dom( f ) and a unique codomain/target cod( f ).
To write f : A → B means that A is the domain dom( f ) and B the codomain
cod( f ). Significantly, the two axioms for a category deal directly with the maps: (i)
the existence, for any object A, of an identity map 1A, such that for any map g of
domain A and any f of codomain A, g · 1A = g and 1A · f = f , (ii) associativity
of composition h · (g · f ) = (h · g) · f , provided each composite is defined, i.e.,
dom(h · g) = dom(g) = cod( f ) and dom(h) = cod(g · f ) = cod(g). The notion
of category was subsidiary in fact to that of functor as a map F from a category C to
another category D, expressing a no less general condition for a minimal preserva-
tion process, such that F(1A) = 1F(A) and F(g · f ) = F(g) · F( f ), for any A, g, f
in C (if the order of composition is reversed, the functor is contravariant, or equiv-
alently an ordinary (covariant) functor defined on Cop, the opposite category of C
having all C-maps reversed). The notion of functor in turn was needed to define the
uniformity of transformations, as for example the basis-independent “isomorphism”
between a vector space V and its double dual V ∗∗: a natural transformation between
two functors F, F ′ : C −→ D, is a map τ such that τA : F(A) → F ′(A), for every
object A in C, and, given f : A → B in C, τB · F( f ) = F ′( f ) · τA.1

In addition to the idea that mathematics is organized into categories—such as Grp
of groups and homomorphisms, Spaces of spaces and continuous maps, Set of sets
and functions—which are not themselves necessarily organized into one hierarchy,
another basic idea is that of investigating the properties of any object through the
maps between it and other objects. This includes investigating the properties of any
category C by considering functors between C and other categories. It is not, how-
ever, the land of structuralist holism, where the identity of any entity is given only
by reference to a larger collections of entities, and so on indefinitely. Categorical
logic uses specific resources to compress the information needed to characterize
such properties by means of universal constructions and specific patterns of internal
and external parametrization. Characterization is “up to isomorphism” for objects
of a category and “up to equivalence” for categories, where a map f : A → B

1 Henceforth, · will be generally omitted. As for the size of the collection of objects and maps, for
simplicity’s sake the categories considered will be small, i.e., with a set of objects (rather than a
proper class), or locally small, i.e., with a set of maps between any two objects.



290 A. Peruzzi

establishes an isomorphism A ∼= B if it has a left and right inverse g : B → A,
i.e., g f = 1A and f g = 1B , and a functor F : C −→ D establishes an equivalence
C ≡ D if there is a quasi-inverse G : D −→ C such that, for any C-object A and
any D-object B, G F(A) ∼= A and FG(B) ∼= B.

One of the leading ideas Mac Lane advocated as central to a categorical
“philosophy” of mathematics was that each mathematical form has many different
realizations and category theory aims at an axiomatic description of such forms,
which also makes the basic patterns of their mutual relations explicit. What about
logic? The answer came with Lawvere’s contributions in the sixties, leading to a
picture different from both the Boole-Schröder and the Frege-Russell lineages.
Lawvere conceives mathematical logic as the logic of mathematics which finds

formal expression by adjoints, and in this way manifests “general laws about the
movement of human thinking,” (Lawvere and Rosebrugh, 2003, p. 193), deployed
across different mathematical universes of discourse. Emphasis is on objectivity of
invariants, and so on syntax-independent structure, in a way equally different from
the logicistic approach (however type-theoretically rephrased), a formalistic view of
the axiomatic method, and an intuitionistic perspective as well, since the character of
logical principles remains objective—and support for this claim comes from the way
a categorical approach recovers constructive reasoning, as intrinsically emergent out
of the structure of variation and cohesion (Peruzzi, 2000a).

Up to the second half of the seventies the relations between logic and cate-
gory theory concerned only a minority of category-theorists. Then the situation
changed. Whereas in 1977 it could appear merely a novelty that categorical logic
was included in Jon Barwise’s Handbook of Mathematical Logic, with two chapters:
one by Anders Kock and Gonzalo Reyes and one by Michael Fourman (Kock and
Reyes, 1977; Fourman, 1977), now it occurs even as one of the subjects covered
in the 2005 expansion of the Handbook of Philosophical Logic, with a chapter by
Bell (2005). One might presume the subject is finally recognized as belonging to
the intersection of mathematical and philosophical logic. That they have non-empty
intersection is clear. That the intersection contains categorical logic is not; and yet,
it is useful to make a point: Topics of philosophical logic cover additional aspects of
language and reasoning and a fortiori they call for more sophisticated mathematical
resources, rather than dispensing with them. If the commitment underlying this point
is set aside, the only sense to be made of such an intersection relies on the joint effect
of two data: (i) higher-order (free) intuitionistic logic being valid and complete for
topos-models; (ii) intuitionistic conditions on the meaning of ¬ , ∨ and ∃ being of
relevance not only for philosophy of mathematics but (after Michael Dummett, see
(Dummett, 1975)) for philosophy of language too.2

This may seem a puzzling motivation from what might be called a sociological
point of view, given that the standard uses of logic by philosophers in the analysis

2 Some notions yet to be defined—to start with, that of a topos—are exploited in the present section
to pinpoint the different components involved in the impact of categorical thinking on logic, thus
affecting its use in extra-mathematical applications.
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of language completely ignore categories and functors. Actually, if there is a way
to logic most strictly linked to mathematics, it is the categorical way—the pres-
ence of = as a primitive notion testifies to that link. Far from being puzzling, the
motivation is revealing, once a mathematically substantive framework is required
to elucidate the problem of how the logical structure of language is connected to
space and change, especially in the way space and change pertain to the common-
sense world. An articulated discussion of this point would set the order of matters
upside-down, by presupposing tools provided by the categorical analysis of object-
patterns and action-patterns (Peruzzi, 2000b), the logical import of which is yet
to be introduced. But while the interaction between logic and category theory can
be appreciated by itself, this can best be achieved by avoiding two assumptions:
that category theory deals with aspects of logic, which, qua logical, can be elab-
orated on presumably autonomous grounds, and that it merely offers an auxiliary
language to express results (that can be) achieved with no mention of categories.
To counter these (related) assumptions, it is necessary to focus on aspects of log-
ical import which have only emerged through category theory: from refinement
of core-concepts as those of variable, substitution, connective and quantifier, to an
intrinsic relationships of a theory with its models, up to semantics of λ-calculi and
constructive type theories.3

One obstacle to grasping the change involved was precisely the received view,
present in many logic textbooks, that = is not a logical notion. This view could
be adopted only insofar as propositions were treated separately from proofs and
proofs were supposed to be unsuited for algebraic description. Category theory puts
propositions (as objects) and proofs (as maps) on the same footing, thus propo-
sitions and proofs are treated in coordination without, at the same time, merely
reducing a proposition to the set of its proofs. Though the categorical analysis of
logic makes appeal to stronger assumptions than usually realized, such as that True
and False enter logical syntax as 0-ary constants, the resulting refinement of basic
notions of logic, together with the view of theories-as-categories and of models-as-
functors reveals the actual mathematical content of previous results. Two examples:
Deligne’s Theorem, to the effect that every coherent topos has enough points is
equivalent to completeness for geometric theories; and Stone duality for full first
order logic was obtained categorically by adapting the ultraproduct construction
(Makkai, 1987), so that completeness is framed as a representation theorem and,
more generally, representability of a theory T passes through a syntactic category
CT canonically associated with T .

Let us see how this association is defined. First, a signature � is specified,
starting from ground sorts, many-sorted function and relation symbols, from which
�-terms and �-formulae are recursively defined in the usual way (with resort to
the machinery of a many-sorted first-order language containing =, ∧, & and ∃).
A �-theory T is then a deductively closed set of sequents involving �-formulae.

3 Recent survey papers, such as ( Pitts, 2001; Bell, 2005), provide a detailed picture of the impact
of categories on also other aspects of logic.
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CT has as objects equivalence classes {x.ϕ}—up to clash-free renaming of variables
and suitable substitutions—for any �(T )-formula ϕ, where the context x lists all
the free variables in ϕ; maps {x.ϕ} → {y.ψ} are the T -provably equivalent classes
[θ(x, y)] of formulae θ(x, y) in T -language, with x disjoint from y, which are prov-
ably functional, in the sense that the sequents θ  ϕ ∧ ψ , ϕ(x)  ∃yθ(x, y) and
θ(x, y)∧θ(x, z)  y = z, with each sequent taken in the same context. Composition
is directly defined, by taking care of independence from the representatives of such
classes, and [ϕ ∧ x = x′] : {x.ϕ} → {x′.ϕ(x′/x)} acts as the identity. Thus CT is a
category with finite limits and {&} as terminal.4

Another consequence of a categorical approach is that quantifiers enter the lan-
guage simultaneously with the other connectives, yielding a different hierarchy of
logical complexity which assigns “geometric logic” (as a subsystem of infinitary
intuitionistic logic) special meaning as the logic of geometric theories, where a
geometric theory is one axiomatized by sequents ϕ  ψ such that ϕ and ψ are
positive-existential formulae with possibly infinitary disjunctions, reducing to a
coherent theory if disjunctions are finitary; the existence of a “generic” model for
any geometric theory has been a central theorem, but one can prove it only after
setting the syntax-semantics relationships in functorial form.5

The logical import of duality and genericity was unrecognized in early cate-
gory theory. More, it seemed initially (and did for about 20 years) that the basic
concepts and the aims of category theory are remote from logic: categories, func-
tors and natural transformations serve at best to investigate the conditions under
which any given mathematical structure, say the structure shared by set-theoretic
models of a first-order axiomatizable theory, is preserved or not under suitable
maps, provided the language of the theory is purely functional and the form of
the theory is equational. Had this remained the case, the interest of categories
would have continued to be confined to algebra and related aspects of topol-
ogy and geometry. But the concept of adjoint functor changed all this. The ubiq-
uity of adjunctions across mathematics is more than a matter of architecture and
one place to realize it is in logic. Lawvere highlighted this ubiquity, in contrast
with the idea that logic only seeks to identify primitive notions with which to

4 The logical aspects of Stone duality are located in a much wider “phenomenology” of dualities,
which find unified formulation in categorical language, as results from (Johnstone, 1982). Repre-
sentability is actually a constant theme of category theory, which offers the general environment to
unify results in the line of Cayley and Stone (but also of Grothendieck). A reference point for this
unification is the Yoneda Lemma: given the “hom-functor” h A : C −→ Set, with h A(−) = the set
of C-maps from A to –, for a fixed object A of C (see footnote 1), and given any F : C −→ Set,
there is a bijection between the natural transformations h A → F and the set F(A). The Lemma
also extends to contravariant functors, in which case the C-maps from – to A are considered to
define h A. The embedding C −→ SetCop

is full and faithful and thus allows one to investigate C
in a wider context with no loss of information.
5 That the theory of fields and in particular the theory of local fields can be expressed by coherent
first-order axioms is relevant for the use of constructive reasoning in algebra, . . . as much as that
the subtle distinctions involved in axioms of different forms for the concept of field can be confined
to Boolean toposes.
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achieve a possibly minimal and adequate axiomatization, when he demanded that
foundations transform the architecture revealed by those features of mathemati-
cal practice common to all its fields into explicit axioms (Lawvere, 1969). This
demand is reminiscent of Eliakim Moore’s attitude already expressed in (Moore,
1908), which had influenced Mac Lane (McLarty, 2005). This ideal thread is
helpful to realize how Lawvere’s demand, consistent with the attention to practi-
cal needs underlying the very origins of category theory, allows a different con-
cept of “foundations” to emerge. For, by the notion of adjoint the missing links
between Bourbaki’s structures mères are filled and turned into a subject of log-
ical concern, rather than leaving such structures mères and their combinations
as contingent highlands in a sea of sets. The same ubiquity of adjoints lends
itself to identify mathematically relevant systems of logic, hierarchically organ-
ised in correspondence with layers of mathematical structure and its functorial
preservation.

If the precise correspondence between topology and logic had already been made
clear by the pioneering works by Tarski and Stone, as summed up in the text-
book (Rasiowa and Sikorski, 1963), a deeper perspective was opened by the French
School of algebraic geometry with the introduction of new and more powerful tools
in order to solve cohomology problems. Alexandre Grothendieck was led to use the
notion of sheaf over a topological space. A sheaf of groups (rings, spaces, sets, . . . )
over a space B is intuitively a family of locally (fibrewise) defined groups (rings,
spaces, sets, . . . ) continuously varying over B, where sections glued with sections
over any open have unique restrictions to any smaller open. Grothendieck inves-
tigated schemes, as sheaves obtained by gluing together spaces of prime ideals in
commutative rings. Beyond the obvious contravariant nature of the restriction of
any such structure from V to U , for U ↪→ V opens in X , Grothendieck found how
to fully express the sheaf notion as a functor O(X)op −→ Set, and to generalize
this notion to a functorial construction F : Cop −→ Set over a site of definition
(C, J ) as a (small) category C with a pullback-stable system J of covering fam-
ilies of morphisms fi : Ai → A for each object A, so that a topology is given
by purely categorical conditions and the gluing axiom becomes the condition that
F(A) → ∏

i F(Ai ) ⇒
∏

i,i ′ F(Ai × Ai ′) is an equalizer diagram. (In this way,
also CT becomes a site.) To have a suitable resource of “meter sticks” in the study
of schemes, in 1963 he introduced the category of such sheaves Sh(C) as a topos
(a “Grothendieck topos”) conceived of as a “generalized space” and finally investi-
gated the category of toposes defined over a base topos, which in turn could vary.
Thus he claimed “the right to transcribe mathematics into any topos whatever,”
as emphasized by Pierre Cartier (Cartier, 2001, p. 395), so that the very interpre-
tation of any statement is internalised in each given topos, while geometric mor-
phisms between toposes are the appropriate functors to express, in full generality,
the change-of-base technique developed within algebraic geometry. Not only will
there be different hierarchies of sets within different toposes, but also: if the essential
constituents of mathematical thought are those invariant under change-of-topos, no
specific cumulative hierarchy of sets can be a proper candidate for foundations; and
if such constituents are expressed by universal patterns of construction, ∈-based
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set theory is unsuited to the task—its constructive versions add extrinsic logical
constraints on ∈-structure—whereas these features are jointly and directly realized
within a categorical perspective.

It was not further topological interpretations of autonomously given logical sys-
tems, but rather this generalized and point free notion of space which enlarged the
horizon of topology itself and prepared the ground for synthetic differential geom-
etry in smooth toposes. A smooth topos is one with a real-numbers-object R, any
R → R(n) smooth, and a subobject D = {d ∈ R : d2 = 0} of first order infinitesi-
mals, satisfying the “Kock-Lawvere” axiom: for each f : D → R there is a unique
real b such that, for any infinitesimal d, f (d) = f (0) + d.b. (Note that D, and
a fortiori R, is not decidable.) More to the point here, the topos structure gave the
mathematical motivation for geometric logic and for theories with such underlying
logic. If the gluing condition on sheaves is dropped, we get a further generalization
of the initial case O(X)op −→ Set, namely the notion of a presheaf of E-objects,
which is simply a functor Cop −→ E.

When E is a topos, so also is the category of all presheaves Cop −→ E. The study
of presheaf toposes turned out to be of great utility in approaching set-theoretic inde-
pendence problems (for E = Set) in a context more flexible than Boolean-valued
models—where a Boolean-valued model SetB is the special case of presheaves of
sets on a suitable Boolean algebra B other than 2. Now, a sheaf topos is coher-
ent if its underlying site satisfies a suitable refinement of compactness; and the
case of geometric theories is to the point both in explaining how the connection
between category theory and logic emerged from a specific area of mathematics
and to provide a paradigmatic instance of the way constructive reasoning inheres
in categorical constructions. In fact, the logic of such theories can be traced right
back to the notion of site, as a “base space” no longer described by open sets of
points, and the lack of the law of the excluded middle (LEM) is related to covering
conditions in the site and their stability under pullbacks. The full logic of sheaves
over a site turns out to be intuitionistic in general, but this did not result from a philo-
sophical bias toward an epistemic (verificationist) or specifically idealistic view of
mathematics. Whereas Brouwer the topologist made substantial contributions to the
understanding of space (dimension, fix-point theorem, degree of a continuous map
of orientable manifolds), Brouwer the philosopher of intuitionism dispensed with
space, after the failure of the Kantian foundation of geometry, to leave the inner
intuition of time as the only remaining source. The rediscovery of intuitionistic
logic within topos theory was rather due to the definition of sheaves, and indeed
came from a much more general (and basic) concept of space, namely the site of
definition.

Bill Lawvere realized that any Grothendieck topos has a truth-value object �
and that the existence of � in a category C with finite limits makes it possible
to express the comprehension principle, for formulae interpretable in C, as a cat-
egorical statement. In 1969–1970 he and Myles Tierney arrived at a more gen-
eral notion of topos than that of Grothendieck, and one elementarily axiomatizable.
Since then, the project of a categorical theory of (continuously variable and cohe-
sive) sets grew up as a framework for the foundations of mathematics, alternative
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to the standard ∈-based set theory. It turned out that the logic of a topos is, in gen-
eral, intuitionistic and is reflected in the properties of �, but then the converse was
also at hand: a Grothendieck topology (or coverage) can be defined as an operator
j : � → �, such that (1) j · & = &, (2) j · j = j , (3) j · ∧ = ∧ · ( j × j), thus
j preserves truth, is idempotent and distributes over conjunctions, resulting into a
“Lawvere-Tierney topology.” Hence a purely categorical construction captures the
logical import of such a topology and can logically characterize the very notion of
sheaf, as shown in full detail by (Bell, 1988, Ch. 5). In particular, for j = ¬¬,
the double negation sheaves allow one to obtain elegant categorical independence
proofs.

Already in 1964 Lawvere had axiomatized the category of sets (Lawvere, 1964).
For some time, the features of such an ∈-free system, compared to previous
foundational theories, were accessible to logicians only through the last chapter
of (Hatcher, 1968). But the resources of an elementary topos made clear that
logical notions can be expressed in a topos and that their intrinsic behaviour is
intuitionistic, since the algebra of subobjects of the terminal 1 is Heyting and
there is an order preserving bijection between Sub(1) and the algebra of truth-
values 1 → �. The implicit constraint is one of ontological homogeneity: truth-
values as well as numbers, referred to by statements about C, have to be defin-
able in terms of C-structure itself. As this paper does not intend to focus on
foundations, it will not broach the many issues involved in the set vs category
theory debate.6 Nonetheless, two aspects cannot be omitted: (I) membership, and
(II) internalization.

(I) Category theory describes any mathematical structure in terms of morphisms
rather than by means of ∈, but this does not mean that elements are ignored. Rather,
the concept of element undergoes refinement and generalization in a way which
(once more) originates from algebraic geometry, where a map X → A may be seen
as an element of A defined over X , or, for suitable X , as an X -shaped figure in A,
or again as a generalized element of A varying over X , with A and X as objects
of the same category. Point-elements are only a particular instance and the exis-
tence of enough points to characterize an object is far from trivial. (The assumption
that it is so for any object, namely wellpointedness, coincides with standard exten-
sionality and the fact that its very form is metatheoretically related to a form of
completeness was recognised only by means of topos theory.) An elementary topos
is precisely a category of variable sets, with variable elements, over a base B. The
collapse of the base into any one-point set, as in classical set theory, freezes variation
and restricts ∈ to global or constant elements, namely those that can be factored
through the terminal. In the case of Set that means elements that factor through any
singleton set.

Constancy being associated with globality, global elements (as points) are in
general not enough to characterize the objects, and when they are the topos is

6 Together with various contributions by Colin McLarty on the fom- and categories-lists, the debate
could have benefited more from Bell’s fair as well as suggestive remarks in ( Bell, 1986).
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called well-pointed. Finally, ∈A is definable as the domain of the monomorphism
m : U � �A × A uniquely determined (up to iso) by the pullback square
evA ·m = &·!U , which covers the classical case with � = 2.7 But variable elements
do not necessarily collapse to constant ones and, at the same time, the condition for
being a subobject is stricter, though given “up to isomorphism,” than that for a mere
subset.

In many categories, for example in categories of sheaves, the terminal is not
punctiform as it is in the category Set of classical sets; in such a basic a category of
sheaves as the étale topos Sh(B) of spaces locally homeomorphic to a base space B,
constant elements (to be denoted by closed terms) are determined by global sections.
Type-theoretically, the upshot of this is that there can be sorts with no closed terms
(constant terms), and yet any term t (−) : X can be treated by exponentiation as
a closed term 1 → X (−). Variable elements are more than multiple possibilities
of constancy and the resulting semantics for type-theories is more general than the
classical set-theoretic one. A given map E → B can have many local sections but
no global one, i.e. the only existing E-elements are partially defined on B, while the
cohesion of objects is reflected into their algebra of parts, which in general is not
Boolean.

For any topological space X , a point x ∈ X determines a continuous map ˆx :
{∗} → X , and conversely. The topos Sh({∗}) is nothing but Set . So, the same point
x determines a geometric morphism px : Set −→ Sh(B), which by extension is
also considered as a point of Sh(B). Any topos with a geometric morphism to Set
is said to be an S-topos. Such a functor is unique up to iso and any such topos is
characterized by having arbitrary set-indexed copowers of 1 (local smallness was
assumed at the beginning). A point of an S-topos E is accordingly a geometric
morphism p : Set −→ E. The topos E has enough points if for any two different
maps f, g : A → B in E there is a point that distinguishes them, thus a p such that
p∗ · f �= p∗ · g. In this case we also say that the collection of point-functors to E is
“jointly conservative.”

This property has a definite model-theoretic meaning, as shown below. Thus, in
contrast with the persistent contraposition of set theory and category theory, it is
more proper to say that a categorical foundation pivots around a theory of cohe-
sive sets with variable and partially defined elements, while classical set theory
only deals with the special case of variable sets on a one-point space. Since the
arithmetization of analysis, the common attitude is that constancy precedes vari-
ability, hence a variable is just an indeterminate constant entity. Categorically,
in order to refer to a constant, an argument is needed to show factorizability
through 1.

(II) If all of logic (say all of logic necessary to present-day mathematical practice)
can be done, and in a more uniform way, within category theory, then even the claim

7 A topos can be shown to have power objects P(−) (represented as �−), in view of the unique
correspondence between relation maps r : R � B × A and maps fr : B → P(A). Vice versa, by
the existence of the pullback of fr ×1A ·r along ∈A, � can be obtained as P(1) up to isomorphism.



15 Logic in Category Theory 297

that mathematics is founded on ∈-based axioms can benefit from the role categorical
concepts play in foundations, as logic does. This may seem to be avoiding the ques-
tion, but it has the virtue of shifting the focus from formal semantics and ontology
to logical syntax.

There is indeed a problem with this shift: any (locally small) topos admits, by
means of its internal language, a set-theoretical formulation: it is what Bell defined
as “local set theory” (from untyped to typed ∈), and the underlying strategy of inter-
nalization can be put to work already for categories (and corresponding theories)
with weaker expressive resources. The discovery of internal languages may suggest
that, in the end, what counts in categorical logic is just set theory. It will not be
the “GO-FAST” (Good Old-Fashioned Axiomatic Set Theory), but still set theory,
with suitably “localized” =,∈,⊆. In this set theory, so long as all inferences con-
form to intuitionistic principles, any substantial reference to categorical “jargon” can
be gently pushed aside, apart from now talking about categories, rather than mere
collections, of sets. And the need to index families of objects can be satisfied by
means of suitably “localized” set-theoretic resources. In other words, as soon as the
categorical analysis of logic based on Grothendieck’s sheaf theory is internalized,
any foundational pretension from categorists becomes unnecessary, for, conceding
that between the lines use of category theory may be essential in various branches
of mathematics, on the foundational front this turns out to be dispensable, in so far
as categorical properties can be translated into a purely type-theoretical language
out of which to re-frame ∈-based set theory.8 So, while it may seem that category
theory is needed for making sense of the change in the received view of sets as well
as for the architecture of mathematics; yet, exactly as in previous logicist projects
for foundations, these needs leave no trace in the axioms. As “Abstract Nonsense”
category theory was more productive than expected but, after proper house-cleaning
(read: after type-theoretic paraphrase), it is revealed as just that, only in a new
sense: precisely in virtue of its content-plasticity, category theory is dispensable
or, if it has any foundational import, this import can be conveyed also by means of
a non-categorical language. So the argument could go.

Categorical logic provides specific evidence that such a line of argument is
flawed. Section 4 will mention model-theoretic results which show the logical mean-
ing of genericity, which are achieved by a variational method aimed at check-
ing the universal property of a generic model. This method agrees with moti-
vations of a “phenomenological” character, in a sense that differs from Husser-
lian tenets in many respects and ultimately—by an argument that will not be
repeated here (see Peruzzi, 2000b)—amounts to identifying the source of formal
notions in content-laden patterns of activity, as proposed by Mac Lane especially in
(Mac Lane, 1986). It is a sense for which indispensability arguments neither arise
by an account of use nor through metaphysical assumptions (even just those of an

8 This argument is different from relying on mutual equiconsistency relative to sets: for instance,
the power of the axioms for an elementary topos being equivalent to that of Z0, i.e., ZF with only
bounded quantifiers, is significant only with reference to a universe of discrete sets of points.
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all-embracing formalism), being tied rather to explanatory power, heuristics and
conceptual deepening. Since, on the other hand, arguments in support of the indis-
pensability of categories may seem superfluous, indeed, unnecessary precisely in
this regard, qualification is needed.

First, emphasis on advances of logic by means of categories is not intended
to nullify previous achievements but to refine and locate the practice of logicians
within a larger horizon of mathematical significance. Secondly, there is already
a labyrinth of non-classical, modal, temporal and quantum logics. So there is a
growing labyrinth of systems of categorical logic, related to semantically exotic
phenomena with weak mathematical substance and unsuited to transferring the
constructions involved to other problems—different from the logic of reflexive
graphs and monoid-actions in dealing with dynamical systems relevant to con-
tinuum mechanics or cognition. In other words, if there is reason to regret the
spread of neo-scholasticism in logical studies (especially those included in philo-
sophical logic) before the use of categorical methods, so also one might deplore
the overly formal exercises that have resulted from their application. Yet, the
range of uses and abuses of any conceptual apparatus is a measure of its poten-
tial; and in fact, as is to be expected when a mathematical theory acts as a pow-
erful and flexible framework with general theorems adapted to many different
areas, its very solidification also favours a scholastic attitude. At the same time
its growth in complexity calls for diversified competence. That all these concerns
apply to present-day categorical logic is a tribute to its methods and results; but it
also urges consideration of what is characteristic of a categorical approach which
allows access to logical problems previously undetected and creates the tools to
solve them.

In a nutshell, there are four main aspects of categorical logic. One is the already
mentioned refinement of the meanings of variable, constant, connective and quan-
tifier, which is directly associated with “universal” properties of mathematical
construction-patterns; second, the idea of theories-as-categories enables the use of
functorial interpretations and preservation of theories across models, even in the
absence of the (classical) prenex normal form theorem; third, an efficient notation
system for proofs as maps opens the way to the “geometry” of proofs in terms
of coherence and homotopy, well beyond mere provability or its absence, and ties
the analysis of constructivity to definite mathematical structures; fourth, such dif-
ferent theories as (untyped, typed, dependent, polymorphic) λ-calculi, synthetic
differential geometry, realizability and intuitionistic set theory are merged into a
unified framework through the expressive resources of categorical language. The
tools needed to make these four aspects explicit will be summarized in Sections
3 and 4: specific layers of logical structure in correspondence with different kinds
of categories will serve as a guide-line (following a suggestion implicit through-
out (Johnstone, 2002, vol. 2, § D)) to identify the perspective peculiar to cate-
gorical logic, which in the end can be seen as an ideal lever putting inferential
patterns in direct contact with root components of our understanding of space and
motion.
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3 The Working Mathematician’s Path to Logic

Algebraic logic, in the tradition from Boole to Tarski, hosts the core notions and
methods which justify the inclusion of logic as a mathematical subject, but it met
serious obstacles in previous attempts, by means of polyadic and cylindric algebras,
to deal effectively with nested quantifiers in the presence of n-ary predicates, with
n > 1. It also had to meet Frege’s arguments against the idea that “p is true” can
be expressed by an equation (as p = &). The Lindenbaum-Tarski construction of a
term algebra defined by equivalence classes with respect to provable biconditionals
(or equations) was adequate for what concerns provability and completeness but did
not cover the structure of proofs. The Hilbert program showed the need of an explicit
analysis of proof-structure. Gentzen’s natural deduction and sequent calculus were
the first answer to such a need and became a cornerstone in proof theory while
remaining separate from algebra and model theory. This separation was replaced,
years later, by an intrinsic link through the development of category theory. Together
with Gentzen, Mac Lane was a PhD student at Göttingen from 1931 to 1933; there
he developed interest in logic. In effect, Mac Lane’s first paper (Mac Lane, 1935)
which grew out of the dissertation prepared under Bernays’ and Weyl’s guidance,
concerned logic; his initial study of the notion of proof ties in with ideas expressed
53 years later in (Mac Lane, 1997). Recalling this would only be suggestive were it
not for the amount of research in categorical logic actually accomplished in between.
A bit of chronology is thus helpful in first recognizing how the path from categories
to logic could appear as a side-track and then making explicit, step by step, how
components of a different character, originating within areas far from the typical
concern of logicians, merged into the present picture.

As was anticipated in Section 2, the mathematical tools peculiar to such a path,
based on features involved in indexing/parametrizing and in functorial change-of-
base, were created during the second half of the fifties by the French school of
algebraic geometry, through the Seminaires at the IHES and especially the pioneer-
ing contributions by Grothendieck.9 The definition of the concept of adjoint functor
by Daniel Kan (1958), added a decisive instrument for organizing mathematical
constructions into a single powerful pattern and to stimulate its identification in
many contexts beyond the original source in algebraic field theory.

Actually, adjunctions generalize Galois connections, such as the one between
subsets of a group H and subsets of a field X on which H acts: for H the auto-
morphism group Aut (X), there is a pair of maps F : P(X) −→ P(Aut (X)) and
G : P(Aut (X)) −→ P(X), where F assigns each subset Y of elements of X
the subgroup of actions which keeps the elements in Y fixed, and G assigns each
subset K of automorphisms its set of fixed points. Thus F(Y ) ≥ K iff Y ≤ G(K ).
The general pattern is: a functor F : C −→ D is left adjoint to G : D −→ C

9 Unfortunately, a relevant part of the work on schemes, sheaves and fibred categories was accessi-
ble to a large audience only much later (Grothendieck, 1970; Grothendieck and Dieudonné, 1971).
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(and G right adjoint to F), written F 3 G, if there is a natural bijection ϕ between
D-morphisms F(C) → D and C-morphisms C → G(D), written f :F(C)→D

ϕ f :C→G(D)
, ϕ

being natural in the sense that it does not depend on the specific objects and mor-
phisms considered. In addition to the uniqueness of adjoints when they exist, what
is crucial in an adjunction is the unique existence of two natural transformations:
a unit ηC : C → G F(C) and a counit εD: FG(D) → D, with ηC = ϕ(1F(C))

and εD = ϕ−1(1G(D)), since they capture a uniform notion of universality. For,
any f : F(C) → D and any g : C → G(D) can be uniquely recovered by the
factorizations f = ϕ−1(G f · ηC ) and g = ϕ(εD · Fg). The adjunction pattern is,
in effect, the global form of a universal map, free for a functor over an object (or
its dual, as in the case of � in relation to the functor Sub). Such uniformization
is instantiated in such diverse ways as the construction of a free algebra over a
set of generators, the evaluation map (as in modus ponens, or the β-rule in terms
of computability), but also the notion of polarity and finally the construction of a
generic model of a theory.

Intuitively, a diagram D of shape I in C is a graph map D : I −→ C. Central to
any category C are the commutative diagrams of maps and the existence of limits
and colimits for diagrams of given shape. Each limit is just the terminal object in the
category of cones over diagrams of the same shape, with morphisms all the maps
required to allow composites to commute. Colimits are the dual of limits. The notion
of pullback (also known as fibred product) is given as the limit of diagrams of shape
· → · ← ·, i.e., for f : A → C ← B : g, an object X = A ×C B and a pair
of maps h : A ← X → B : k such that f h = gk, with the universal property
that for any other h′ : A ← X ′ → B : k′ there is a (unique) u : X ′ → X with
h′ = hu and k′ = ku. The dual (in the opposite category, with all maps reversed) of
a pullback is a pushout, which yields coproducts and initial objects as particular
cases. The pullback notion is an instance of the gain in generality, as it covers
inverse images, meets, intersections, monomorphisms (as left cancellable maps),
relativized conjunctions and finally products, the latter being pullbacks over the ter-
minal, which in turn is the limit for an empty diagram. A property is pullback-stable
if it is preserved by pullbacks. Existence of limits or colimits in ensured by special
functors from-to C having left or right adjoints. An equalizer is a limit for diagrams
of shape · ⇒ · or in other words for parallel pairs of maps f, g : A → B. The
notion of monomorphism is a proper generalization of that of injective function; the
same holds for its dual (epimorphism) with respect to surjective function. The dual
notion of an equalizer is that of coequalizer, under which quotients of equivalence
relations fall as an instance. A functor is left exact (right exact) if it preserves all
finite (co-)limits.

In 1963, Lawvere’s thesis (Lawvere, 1963) introduced the idea of theories-as-
categories and models-as-functors, by dealing with sets of equations expressed by
commutative diagrams with no use of ∈. Whereas universal algebra investigated
signatures and corresponding varieties, the concept of a doctrine as defined by Law-
vere allowed a unified analysis of algebraic theories T and their categories of models
(T-algebras), with natural transformations as morphisms. An elementary doctrine is
given by a base category with finite products T of objects-as-types and maps-as-
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terms, plus a contravariant assignment of a category of attributes Att (A) for each
object A and substitution Att ( f ) : Att (B) → Att (A) for f : A → B. A doctrine is
existential if Att has a left adjoint. This determines the (full) subcategory of functors
T −→ E from a theory T (and then from its classifying category) to an arbitrary
E, with natural transformations carrying the structure. For instance, the axioms for
the doctrine of groups give rise to different instantiations of a group-object: an ordi-
nary group when functorially mapped to sets, a topological group in the category of
topological spaces, a Lie group in smooth manifolds, a commutative group in the
category of groups.10

The treatment of theories as categories fits in with Lawvere’s general picture,
according to which a theory T is the “abstract general,” the category of T -models in
any given ambient category is the “concrete general,” whereas a “concrete particu-
lar” is a given category C to which the process of extraction of a concept (structure)
may be applied: by adjointness, each object of C can be canonically interpreted
as a concrete structure of the given abstract kind. The whole suggests approaching
logical properties of theories independently of presentation and syntax.

In 1963–1964, the exposés at the “Seminaire de Géométrie Algébrique du Bois-
Marie” in Paris, later collected as (Artin et al., 1972), displayed the potentialities
of categorical language in the description of Grothendieck toposes. Charles Ehres-
mann’s definition of sketches in 1965, as given by an oriented graph with a set of
finite diagrams and cones over them, starting from the presentation of a category
with finite products, would also prove to be of logical interest later on. In 1968 Jim
Lambek described for the first time deductive systems as graphs, which turn into
categories when equations between proofs are added (Lambek, 1968).

These seemingly heterogeneous contributions, together with Grothendieck’s con-
cept of a fibred category, became in the following decades the axes for a whole
area of logical investigation. They gained that role thanks to the seminal ideas and
results in Lawvere’s research papers of 1966–1969 (Lawvere, 1966, 1968, 1969),
which made clear the following points: (1) The logical content of cartesian closed
categories, i.e., categories with binary products, provided by the right adjoint to the
diagonal functor � (with the terminal as the empty product) and a right adjoint to the
product functor, so that there is natural bijection A×B→C

A→C B , for arbitrary objects A, B
and C , thereby × 3 exp (for exponentiation); when 1 is &, × is ∧, exp is ⇒, one
directly gets a fragment of propositional logic, with the Deduction Theorem built in.
(2) The gain in expressive power as adjoints and indexed structure are taken together,
the latter being associated with a variable algebra of predicates, as, after the notion
of a doctrine, a hyper-doctrine is a fibred structure given by a functor H : Top −→ S
from a category with finite products to a category S (usually a poset), where each
H(A) is a cartesian closed category (usually a Heyting algebra) the structure of
which is homomorphically preserved by re-indexing H( f ) : H(B) → H(A), for

10 The idea of a doctrine extends to the consideration of “monads” and 2-categories, as categories
with also a further “vertical” dimension of composition. This line will not be pursued here for
simplicity’s sake, but it is what allows connecting rewriting system for λ-calculi ( Seely, 1987)
with proof-homotopy as remarked below.



302 A. Peruzzi

f : A → B, and finally the substitution functor has both a left and a right adjoint
(the source of models for polymorphic linear logic is in this notion); also equal-
ity can be characterized in hyperdoctrines as left adjoint to the contraction functor
�∗ : P(I × I ) → P(I ), such that Eq(X) ⊆ Y iff X ⊆ �∗(Y ), for a given set I and
a predicate X defined on I , i.e., X ∈ P(I ) and Y ∈ P(I × I ). (3) The categorical
unification of syntactic and semantic self-reference in the form: an epimorphism
X → Y X determines a fixed point for any Y → Y , see (Yanofsky, 2003) for a
clear introduction. (4) The general role of adjoints in foundations, as supporting
the proposal of a “dialectical” view, at odds with the empiricist and analytic legacy
spread throughout contemporary philosophy of logic:

Foundations will mean here the study of what is universal in mathematics. Thus Foundations
in this sense cannot be identified with any “starting point” or “justification” for mathematics,
though partial results in these directions may be among its fruits. But among the other fruits
of Foundations so defined would presumably be guide-lines for passing from one branch
of mathematics to another and for gauging to some extent which directions of research are
likely to be relevant. (Lawvere, 1969, p. 281)

As already mentioned, in 1969–1970 Lawvere and Tierney succeeded in extract-
ing an elementary formulation of the topos concept: an elementary topos is a
cartesian closed category with a subobject classifier, i.e., an object � with a map
true : 1 → � such that for any subobject a : A � X , there is characteristic map
χa such that the equation true!A = χaa corresponds to a pullback square. Note that
a subobject A � X can be defined, independently of ⊆, as the equivalence class of
monomorphisms a′ : A′ � X for which there is an iso f : A → A′ with a′ f = a.)

At the 1970 Nice Colloquium, Lawvere presented a paper which explicitly
defines quantifiers as adjoints to substitution (as described below in Section 4)
(Lawvere, 1971). 1972 was rich in publications: the collection of essays (Lawvere,
1972) came with an Introduction in which the various ingredients of a categorical
approach to logic were presented for the first time in a unified perspective, finally
accessible to logicians with no previous acquaintance with categories; Peter Freyd
gave a systematic exposition of results about elementary toposes (Freyd, 1972,
§§ 2.4 and 4) within which logical features of � are neatly described; (Mitchell,
1972) first described in print the internal language of a topos, also identified by
André Joyal and Jean Benabou, while Michel Coste gave it detailed formula-
tion; Joyal also introduced the idea that Cohen, Robinson and Kripke forcing are
instances of one general semantic pattern in sheaf toposes: it is what was later
known as the Beth-Joyal or Kripke-Joyal semantics; finally, Lawvere began the sem-
inal “Perugia Lectures,” the notes of which (Lawvere, 1973) exercised widespread
influence.

One of the first uses of sheaves within classical model theory was made by Angus
MacIntyre in (MacIntyre, 1973). The following year, Michael Fourman submitted
his thesis at Oxford, in which the Heyting algebra structure of � is extensively
investigated, while Gonzalo Reyes offered an important synthesis, addressed to
logicians working in model theory, of the steps leading “from sheaves to logic”
(Reyes, 1974). The collection (Lawvere et al., 1975) gave the state of the art in
1975. In particular, the contribution by Gerhard Osius elaborated the comparison,
started in (Osius, 1974), between internal and external semantics in a topos context.
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At Montréal, which was then becoming the center for categorical studies, André
Boileau’s thesis Types vs Topos refined the link between the type-theoretical fea-
tures of the internal language and topos-theoretic properties; the successive paper
(Boileau and Joyal, 1981), provides a sharp and handy axiom-system. In 1975 Law-
vere’s paper “Continuously variable sets: algebraic geometry = geometric logic,”
presented at the Logic Colloquium 1973, was published in the proceedings vol-
ume (Lawvere, 1975). The very title of that paper sums up the core-idea behind the
logical meaning of geometric morphisms. Finally, Benabou’s investigation of small
and locally small fibrations proved to be a crucial advance for both foundational
issues, as emerges from (Benabou, 1985), and successive applications to theoretical
computer science, after the needs of higher-order functional programming led to
the acknowledgement of the effectiveness of a categorical semantics. The following
year, Corrado Mangione gave the first historical reconstruction of the development
of categorical logic (Mangione, 1976).

In 1977 two books appeared which, taken together, cover almost every aspect
of the linkage between topos theory and logic at the time. One is the handbook
(Makkai and Reyes, 1977), which presents the correspondence between degrees
of first order complexity and sheaf categories, with emphasis on model-theoretic
aspects, and exemplifies the topological motivation for infinitary logic. The other
is Peter Johnstone’s advanced summa of topos theory (Johnstone, 1977), which
for the first time organized the vast amount of information about elementary and
Grothendieck toposes into a systematic framework, though logic could only receive
limited attention within it. The two aforementioned papers, (Kock and Reyes, 1977;
Fourman, 1977), dealt with specific topics. John Zangwill presented the same year
a thesis at Bristol in which the internal language of toposes is exploited to introduce
local set theory (Zangwill, 1977). Thanks to the clear-cut and full elaboration Bell
later accomplished in (Bell, 1988), the potentialities of a local set theory became
fully recognisable to a larger audience.

In 1979, Applications of Sheaves appeared (Fourman et al., 1979), and it soon
became a standard reference for �-sets, with � a complete Heyting algebra, i.e.,
satisfying the infinitary distributive law x ∧ ∨

yi = ∨

(x ∧ yi ), also described as a
frame or as a locale (depending on the “direction” of morphisms between any two
such structures), giving rise to opposite categories, with different properties as con-
cerns duality. �-sets are mainly related to independence proofs, so that it is part of
categorical set theory rather than categorical logic. In this way, both Boolean-valued
models and topological models of intuitionistic analysis given by Dana Scott found a
unified treatment, while Scott and Michael Fourman worked out an elegant seman-
tic treatment of intuitionistic free first-order logic and axiomatized the associated
theory of definite descriptions for partially defined elements (Fourman and Scott,
1979). The same year, Robert Goldblatt’s lattice-theoretically oriented introduction
(Goldblatt, 1979) allowed logicians to learn of semantics for first-order theories in
toposes; unfortunately, adjoints only appear in Ch. 16 which was added to the 2nd
(1984) edition, and play no role before this.

Growth was so intense in the 1980s that the short selection of works per year
listed so far, however incomplete, should be tripled at least, in order to reach
the present state of the art. The ideas did not change but rather found further
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applications and were more and more articulated. An extremely active area which
led to a considerable change in focus for the subject was the recognition of sys-
tematic connections with computability theory, notably Martin Hyland’s discov-
ery of the effective topos Eff (Hyland, 1982), where all functions N → N are
recursive. This is also known as the realizability topos as its objects (X,=X )

come with a partial equivalence relation =X measured by means of natural num-
bers, so that an arithmetical sentence is true in Eff iff it is Kleene-realized, see
(McLarty, 1992, Ch. 24).

Once λ-calculus and category theory came to be thought of as two sides of a
theory of functions, there was an explosion of research on categories to match the
various forms of λ-calculi: from simply typed and untyped λ-calculus to construc-
tive type theory and proof theory, motivated by linear logic and dependent and poly-
morphic type theory (thanks especially to Jean Yves Girard and Per Martin-Löf),
finally pointing at a new unification of logic in terms of fibrations. The relationships
of topos theory with both higher order intuitionistic logic and various forms of the λ-
calculus is extensively covered in the (by now canonical) reference volume (Lambek
and Scott, 1986), while the introduction (Asperti and Longo, 1991) is addressed to
computer scientists.

Colin McLarty’s introduction (McLarty, 1992, Ch. 13–16) gives a crisp and syn-
thetic account of logical aspects of topos theory; for a survey paper see (Peruzzi,
1991a). Francis Borceux deals with the subject in vol. 3, Ch. 6–7, of his wide-
ranging treatise on categorical algebra (Borceux, 1994). Reyes and Macnamara,
together with a research group in Montreal, developed the first systematic appli-
cation of categorical semantics to the analysis of typing in ordinary language
(Macnamara and Reyes, 1994). For an up-to-date presentation of logic in category
theory, the best references are the relevant part Johnstone’s great work (Johnstone,
2002, vol. 2, part D), and Bart Jacobs type-theoretically oriented handbook (Jacobs,
1999), while two recent, mutually complementary primer papers, are the already
mentioned (Pitts, 2001; Bell, 2005); several remarks in (Lawvere and Rosebrugh,
2003), especially Appendix A, clarify topics touched in passing here and convey the
essentials of the categorical spirit in logic. At present, the most extended source for
logic in this spirit remains (Mac Lane and Moerdijk, 1992).

4 Layers of Logical Structure

Subsystems of zero–, first– and higher-order logic have long been investigated
for and applied to reduction classes, model-theoretic preservation and definability
hierarchies. Categorical logic has re-created some of these layers of structure and
identified others with general mathematical content, associated with levels of inte-
gration between connectives and quantifiers. In correspondence with a hierarchy
of functorial properties, layers of mixed structure (of connectives and quantifiers),
some of them previously undetected, have thus become the subject of extensive
research.



15 Logic in Category Theory 305

Full intuitionistic propositional logic I L0 is obtained just by means of suitable
adjoints, as shown in the following diagram for the category P of propositions and
proofs, where 1 is the terminal category with only one object and one map, the
identity.

P

P P P

P

ββ

β β

1
Δ

Between 1 and P each functor in the picture is right adjoint to the one above it,
and the same between P and P×P. The diagonal functor � : P −→ P×P, is defined
so that for any propositional formula ϕ and any proof f ,�(ϕ) = 〈ϕ, ϕ〉 and�( f ) =
〈 f, f 〉. This functor is left adjoint to the product functor because �(ϕ) → 〈ψ, γ 〉 iff
ϕ → ψ×γ , where × is just ∧ in P and a map ϕ → ϕ′ corresponds to an implication
ϕ  ϕ′. The adjoints suffice to determine a set of axioms and rules that makes two
main kinds of data explicit: (1) the existence of special maps (identity, projection to
conjuncts, evaluation (namely, modus ponens) and injection of disjuncts into their
coproduct, with uniqueness of !ϕ : ϕ → & and 0ϕ : ⊥ → ϕ, (2) the principles for
composition of proofs, as well as for product, coproduct and exponential transpose
of proofs (matching introduction and elimination rules), which characteristically
come with a set of equations between proofs, as shown in full detail by (Lambek
and Scott, 1986, Part I). Soundness and completeness have now the form: there is
a P-morphism x : & → ϕ (or, in logic notation,  ϕ) iff the defining commutative
diagrams are preserved by every functor to categories of appropriate kind to interpret
P-structure. Many results take the form of showing that, for theories of given form,
limited classes of functors already suffice.

Moreover, if a left adjoint \ is supposed to exist for the coproduct map ∨, a
co-Heyting algebra structure is obtained, to which a new connective, subtraction,
corresponds, such that ϕ \ ψ → γ iff ϕ → ψ ∨ γ , which in case ϕ = & gives
a different kind of negation, −ψ , dual to ¬ψ = ∨{α : α ∧ ψ = ⊥}, and “−”
generally differs from “¬” in a bi-Heyting algebra. Lawvere suggests a distinction
between contradiction and inconsistency which relates to this negation in contrast
to the intuitionistic law ϕ ∧ ¬ϕ  ⊥ which follows directly from ϕ ∧ ¬ϕ  γ ,
for arbitrary γ . When ¬ is replaced by the co-Heyting −, ϕ ∧ −ϕ is initial no
longer, corresponding rather to the boundary of ϕ, which in general is non-null.
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This is also of interest for minimal logic, which is weaker than I L0 in having only
ϕ ∧ ¬ϕ  ¬γ .

If rather than ⊥, a relativized false statement dependent on ϕ is taken, the sug-
gested distinction is further refined in precategories, by inverting the order of quan-
tifiers in the customary �3-definition of identities (and the other basic categorical
notions too), thus passing to a �2-definition, which makes them relative to the given
maps. In place of identity maps a precategory has only endomaps u f : A → A and
v f : B → B (taken as idempotent) depending on the particular f : A → B, so that
f u f = f and v f f = f but in general u f �= ug and v f �= vg , for g : A → B with
g �= f , see (Peruzzi, 1994).

If P is supposed to be a poset category (i.e., having only one arrow ≤ for 
between any two objects as elements of the poset) the direct way to add modalities
is by taking a subcategory M of P, with the inclusion map i : M ↪→ P having a
left adjoint p (for possibilization) and a right adjoint n (for necessitation), so that
the composites pi = 5 and ni = � are defined. By adjunction, �ϕ  ϕ, ϕ  5ϕ
and iterated modalities reduce to just � and 5, which after all is in agreement with
common sense.

Modal logicians who dislike such reduction will find more palatable the pre-
sheaf approach which increases the subtlety of analysis to a degree unknown in
standard modal logic, as, rather than one or more specified accessibility relations
between two indexes (thought of as indexing “possible worlds”), there is now a
family of maps to be considered as a whole, so that soundness and complete-
ness must take the variability of transitions into account. The standard case in
which accessibility is ≤ (as for I L0) corresponds to a poset-category of states
(say, of increasing information) ignoring different transition processes between
states.

The above constructions by adjoints make it apparent that LEM is a special addi-
tion that narrows the range of categories required for adequate analysis of the struc-
ture of reasoning in the presence of incomplete information. Previous constructive
rejection of LEM gets more specification as the data space is no longer given in
terms of point-set topology: boundaries matter, whereas LEM collapses the process
of identifying points into a mere assumption that they exist, see (Vickers, 1988).11

Taking definability by adjunction as the principle, the categorical properties
needed to reach full intuitionistic first-order logic I L1 are trickier to list than those
for higher-order logics, which are just those defining a topos (cartesian closedness
plus representability of subobjects). The properties of I L1 are in fact obtained by
subtraction, as witnessed by the very name, as the corresponding level of structure
is identified as that of a pretopos, after (Artin et al., 1972), as a category with finite
limits, initial object (to match ⊥), binary coproducts and (effective) coequalizers
of equivalence relations (though there are more elegant definitions of a pretopos).

11 Already in standard topology what generally matters is whether or not connectedness, rather
than total disconnectedness, holds.



15 Logic in Category Theory 307

In a sense, the pre-eminence assigned to first-order in applications of logic in the
analysis of language and the methodology of science must be rethought.

However mathematically substantive, the mere analysis of connectives by means
of categories would not have made much of a difference in logic. The key was
the definition of quantifiers as adjoints along a map f , whereas such f had tra-
ditionally remained implicit. The simplest example is given in the case of poset-
categories, such as the ⊆-lattice of parts of any given set. Given sets X,Y and a
map f : X → Y , for any A ⊆ X and B ⊆ Y ,

A ⊆ f −1(B)

∃ f (A) ⊆ B
and

f −1(B) ⊆ A

B ⊆ ∀ f (A)

When X and Y are taken as types in extension, substitution along f replaces a
Y -term by an X -term. By the very consideration of the map along which substitu-
tion occurs, first-order logic becomes many-sorted by default, and even in the case
X = Y , explicit recording of the given f is still crucial for specifying images and
their Galois dual. In more general categories, the place of inclusion is taken by an
arbitrary morphism, with subobjects replacing subsets. The two equivalences above
are natural, thus ∃ f 3 f −1 3 ∀ f .

For any category C and X any object of C, one can form C/X as the so-called
“slice” category, with objects all C-maps to X and morphisms from h : A → X to
k : A′ → X those C-maps g : A → A′ such that h = kg. When C is a topos, C/X
is too and f −1 induces the functor f ∗ : C/Y −→ C/X , while the two functors
∃ f ,∀ f : Sub(X) −→ Sub(Y ) induce a pair of functors � f ,� f : C/X −→ C/Y
such that � f 3 f ∗ 3 � f . It is essentially as a result of this analysis of quantifiers
as adjoints to substitution that the equational approach to logic started by Boole
and interrupted by Frege gained a new lease on life, one which later matched the
development of λ-calculi.

Efforts by logicians to control the apparently innocuous substitution procedure,
under way since Frege’s Grundgesetze and Whitehead-Russell’s Principia, reached
a first precise formulation in Hilbert-Bernays’ Grundlagen der Mathematik. Then an
autonomous theory was obtained through the investigations of Schönfinkel, Curry
and Church. However, it was only through Lawvere’s understanding of the logical
aspects of the change-of-base technique of algebraic geometers that the priority of
substitution to quantification acquired mathematical substance.

To give a categorical treatment of recursion, one must add the notion of a “natural
numbers object” (Lawvere), i.e., an object N , with 0 : 1 → N and s : N → N such
that for any element x : 1 → A and any endomap f : A → A, there is exactly
one map h : N → A which makes the resulting diagram commute, namely x = f 0
and f h = h f . The existence of such an object N in a cartesian closed category
C is determined by the forgetful functor U : C� −→ C having a left adjoint. In
a topos the existence of N implies the usual axioms for arithmetic. Starting from
N , the number systems can be axiomatized, with increased “resolving” power of
the formal setting, as shown by the difference between Cauchy and Dedekind reals
and the distinction of various concepts of finiteness. The smooth topos for synthetic
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differential geometry is a prime instance of a model for a theory of the continuum
which has no models even in Boolean extensions.

As for computability, typed λ-calculus, as a prototype of a functional pro-
gramming language, is by now a central topic in the convergence between
logic and theoretical computer science. This convergence finds its medium pre-
cisely in cartesian closed categories, since such a category C provides the ambi-
ent surroundings needed to relate product types and power types in a purely
functional language, as the adjunction ×A 3 (−)A matches “currying”: the two
basic β and η equations being given, respectively, by evA,B · f̂ × idA = f and
(evA,B · (g × idA))

∧ = g, for f : C × A → B fixed, and g any map C → B A.
The Curry-Howard principle, “objects as types, morphisms as terms,” expresses

this link in compact form: terms in simply typed λ-calculus ∼ proofs in I L0-natural
deduction, so that “p is provable” is read as if it said p is an inhabited type. In
particular, it was by means of the categorical notion of C-monoid, corresponding to
an object X for which X X ∼= X , that models of untyped λ-calculus were obtained,
whereas any such X in the universe of classical sets could only be a singleton.
But category theory provides the tools for representing higher-order versions of the
λ-calculus too. At its root, λ-calculus is a formalism both for representing functions
and for making “function” the ground notion of mathematics, but this very ambition
calls for a proper rendering of functions. As concerns logical structure, there are two
aspects of concern to take into account.

First, it is usually forgotten that the idea of “functions first” was behind Church’s
attempt at formulating an intensional logic that develops the Fregean distinction of
sense and reference differently from Carnap’s method of intension and extension.
The contributions by Carnap and Church were not intended to confine intensional
aspects to face-value syntax—otherwise, the only candidate for synonymy, as an
equivalence relation finer than extensional identity, would ultimately produce sin-
gleton quotients in the definition of meaning by abstraction. In the 1960, possible
worlds semantics appeared as the best (workable) approximation. Such a frame-
work to enrich Tarski-style formal semantics, by now well-known, was of a modal
nature and proved efficient in the semantics for intuitionistic logic. But, by taking
functions as set-theoretically defined, cartesian products are presupposed and thus
forced to be given in extension, rather than by their universal property (in terms of
functions), and due to this presupposition the framework could not avoid collapsing
each process with its outcomes. A categorical treatment can be developed to define
a finer equivalence of propositions, different from [[ϕ]] = [[ψ]] on the collection
of indexed domains, for [[−]] : Ob(P) −→ H, with H a Heyting algebra, for this
does not take into account the possibly different state transitions. By taking these
into account, as the notion of sheaf permits, a concept of local intension (as a germ)
can so be defined, see (Peruzzi, 1991b), which avoids the extensional collapse.

Second, equivalence of proofs is trivial if the category P is treated as just a
poset: that the structure of actual deductive steps matters as much as the form of
propositions is a natural requirement for a theory purportedly aimed at grasping
form and structure by means of the patterns of their variation; and as a bonus for
this refinement of logical analysis, one can also see that categorical proof theory
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for classical logic is not trivial at all. Thus the above adjunction diagram for P,
though with its explicit notation for proofs in I L0, described as a cartesian closed
category with finite colimits, does not fill the gap by itself.12 If one ends up with
the same set of semantically valid sentences as for Kripke semantics, then the added
structure is redundant and a poset will be sufficient. Vice versa: if there are logics
which pay attention to constraints on parallel state-transitions (as the motivations for
quantum, relevant and paraconsistent logics suggest), a poset will not be sufficient.
Therefore, as far as mathematical understanding of processes (computational steps,
transition-states, . . . ) counts for logical validity, a theory designed to capture univer-
sality cannot forget differences among them in the case of proof structure either. If
reference is a function of the procedures involved in the construction of sense, then
more than the existence (or not) of any such procedure is needed, hence the demand
for an adequate formal treatment already for P.

Unfortunately, for any propositional theory T , the syntactic category CT is a pre-
order. In fact, it coincides with the Lindenbaum algebra of T . Thereby, any ϕ → ϕ

is the identity. Once again the only proof endomap on any given ϕ is idϕ , whereas,
as non-contractible closed paths in homotopy teach, the non-null loops can contain
precious information, which can be taken into account in a kind of “logical genus”
for theories as homotopy defines the topological genus of a space.

On passing to first order theories, the link between syntax and semantics becomes
stricter, as the two are functorially related. What in classical model theory had to be
proved, by taking into account the form of axioms for a given theory, is directly
granted by the preservation-properties of models as functors. The obstacle to the
prenex normal form theorem in a constructive setting does not so much concern ∃,
in view of the Frobenius law, i.e., ϕ ∧ ∃yψ x ∃y(ϕ ∧ ψ) (provided y is not in x)
and commutativity of ∃ with ∨. Rather the obstacle concerns ∀: though ∀ trivially
commutes with ∧, the sequent ∀y(ϕ ∨ψ) x ϕ ∨ ∀yψ is classical. This obstacle is
bypassed by considering a hierarchy of signatures and theories of increasing expres-
sive power, with corresponding structure-preserving functors between the models at
each layer.

In doing this, categorical logic endorses the requirement that inferential
schemes cannot be superimposed, by an “external observer” so to speak, on a given
universe of discourse and even less can it be developed in isolation, as if it were
the expression of the (possibly constructive) way thought works independently of
any subject matter. Nor, for this very reason, does logic undergo a fission, in order

12 What ultimately matters in representing logic by posets is whether there is a map 1 → A or
not (for completeness, whether & → ϕ or ϕ → ⊥) and the only map A → A that matters is
identity. Therefore, the map p2 < f, g >: A → A, obtained by pairing f, g : A → A to have
< f, g >: A → A ∧ A and then by composing with p2 : A ∧ A → A, is trivial, as is the
composition of tw1 : A ∧ B → B ∧ A and tw2 : B ∧ A → A ∧ B. Whereas in a general
category with 1, from the existence of x : 1 → A it doesn’t follow that A ∼= 1, the existence of
only idA : A → A collapses A onto 1, “the” absolutely true proposition (given the composition
!A · x ·!A, necessarily !A · x = idA , and if idA = x ·!A, then A ∼= 1). So, if there is more than one
true proposition, there is at least one f : A → A such that f �= idA, but there is no trace of any
such f when a deductive system collapses to a poset.
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to match an unprincipled range of contexts of use, each with its own axioms and
rules. Rather, logical analysis proceeds in agreement with mathematical architec-
ture, starting from categories with products and images of morphisms, to deal with
n-ary predicates and existential formulae, up to categories with all finite limits—to
interpret terms and predicates of n arguments, equations between terms and the
substitution procedure (by pullbacks). Accordingly, increasingly powerful theories
are internalized and their various forms are unified under adjunction principles
expressing universality conditions. Variation of logic is approached as intrinsically
principled, avoiding any clash of “-isms” precisely because variation is one of the
main themes of categorical thought just as characteristic as the search for invariants.

From this perspective, the boundary line separating full propositional from full
predicate logic turns out to be secondary with respect to “mixed” layers of struc-
ture. To simplify the picture, here only four layers of increasing expressive power
will be mentioned. Categorical logic is sequent-oriented and each sequent comes
with its explicit environment of declared variables, so that in writing ϕ x ψ , the
list x contains the free variables in both ϕ and ψ , in order to specify the domain
of definition of formulae. Semantically, this constraint is motivated by the need to
define the “extension” of predicates with respect to one well-defined product as
their environment. Four main layers respectively correspond to theories in sequent
form which are cartesian, expressed by sequents relating only formulae built from
atomic formulae R(t1, . . . , tn), equations, ∧ and &, plus ∃xϕ, provided its unique-
ness is provable; regular, in a language built up from regular formulae, i.e., atomic
formulae R(t1, . . . , tn), equations, ∧, &, and ∃x(ϕ); coherent, that is, regular with
also ⊥ and ∨; and geometric, that is, coherent with

∨

i∈I ϕi , provided the whole set
of free variables is finite.

Since sequents obtained by composition or substitution now come with explicit
names of proof-maps, further control on proof-trees is achieved. Soundness and
completeness are provided by the fact that, if T is a cartesian (regular, coherent,
geometric) theory over a signature � and M is any model of T in a cartesian (reg-
ular, coherent, geometric, resp.) category C, then if σ is a cartesian (regular, coher-
ent, geometric. resp.) sequent over �, M |$ σ iff T  σ . Accordingly, cartesian
logic, regular logic, coherent logic and geometric logic are identified.

In particular, coherent logic is geometric logic restricted to finitary disjunctions.
As mentioned above, geometric logic was identified as a crucial logical layer in
view of the preservation properties of geometric morphisms between Grothendieck
toposes. Why? The motivation for the name of such functors lies in that, given
topological spaces X,Y with their respective lattice of open sets O(X), O(Y ),
any continuous map f : X → Y , f induces a pair of adjoints between sheaves
f∗ : Sh(X) −→ Sh(Y), f ∗ : Sh(Y) −→ Sh(X), such that if p : E → Y
is étale (i.e., a local homeomorphism), f ∗ gives the pullback of p along f and
f∗ acts by composition. Namely, if F : O(X)op −→ Set is a sheaf on X and
U belongs to O(Y ), ( f ∗F)(U ) = F( f −1U ), while if U ′ belongs to O(X),
( f∗F)(U ′) = F( f U ′). One crucial property of f ∗ is that it inherits from f −1 the
preservation of ∩ and

⋃

and thus is left exact. Hence the definition of a geometric
morphism in general as a map f : E −→ E′ of toposes such that f ∗ 3 f∗ and f ∗ is
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left exact. Since any left adjoint preserves colimits, the condition of left-exactness
implies distributivity. Apart from (coherent) sites for which any coverage is finitely-
generated, distributivity concerns infinitary disjunctions, therefore, in view of the
fact that the other categorical properties match the needed properties of ∧, &, ∃,

∨

,
⊥, geometric logic is thus determined by invariance for geometric morphisms.

As noted above, we get a categorical semantics for I L1 through the notion of
pretopos. A pretopos is Heyting when, given any pullback square gh = f k, it satis-
fies (i) the Beck-Chevalley condition g−1∃ f = ∃hk−1 and (ii), for any two objects
A and B and any morphism f : A → B, f ∗ : Sub(B) −→ Sub(A) has both
a left and right adjoint, ∃ f 3 f ∗ 3 ∀ f . Conditions (i) and (ii) do not necessarily
come together. In addition to the Beck-Chevalley condition, a key role is played
by the Frobenius reciprocity law, which is a property, commonly taken as a trivial
theorem in I L1, the utility of which as an axiom (since its proof in I L1 depends
on ⇒) is shown in categorical logic: Frobenius reciprocity is sufficient to yield reg-
ular logic from cartesian logic, and, in presence of distributivity, to yield coherent
logic.

The last topic of significance for grasping the actual content of categorical logic
is internalization. Of its many aspects, especially for models of type theories, only
the general strategy will be described in relation to the layers of logical structure
identified above. In order to specify the internal language of a category C, we define
a system of terms and types which is canonical for the translation of theories inter-
pretable in C and for model-variation C −→ C′.

Given C, its canonical signature �C is given by the following assignment: for
any object A a type A; for any morphism f : A1 × A2 × An → B a function
symbol f with arguments in types A1, A2, . . . , An and values in type B; for any
subobject R of A1 × A2 ×· · ·× An a relation symbol R defined over corresponding
types. To this one can add product and exponential types in correspondence with the
kind of category and respective terms for the maps required to define products and
exponentials. The definition of signature is turned into a set of type-axioms stating
which sorts (as basic types), which type-constructors and which term-constructors
there are. Note that �C has more types than the objects in C. For instance, the type
A × B is, at face value, different from A × B and likewise P(A) �= P(A) but we
will identify them.

Higher-order logic in its many-sorted, intuitionistic and free version is revealed,
via the notion of topos, as the underlying logic of a “local set theory.” Basic types
correspond to 1, � and possibly further ground types, on which to define product–
and power-types; corresponding terms are defined as usual, but note the special
term-assignments: ∗ : 1; if ϕ : � and x : A, then {x : ϕ} : P(A); if t, s : A then
t = s : �; if t : A and s : P(A) then t ∈ s : �. In particular, it turns out that
true is definable as ∗ = ∗. The C-sets are the ∼-equivalence classes of terms t of
power-type, where [t]/∼ = {t ′ : t ′ = t} is internally provable in L(C) and functions
from one such set X to another Y are the f for which it is provable that f ∈ Y X .
Together, they form a category which is a topos.

In a topos E, Sub(A) is a Heyting algebra, for any object A. Because of the pres-
ence of partially defined singular terms, the support of which is a proper subobject
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of 1, the cut rule applies to �  ϕ and ϕ, �  ψ provided the variables free in ϕ are
free in � or ψ . Thus, for the modus ponens (� = ∅), the variables free in ϕ must be
free in ψ and thus ∃xϕ cannot be inferred from ϕ(x) and ϕ(x)  ∃xϕ.

The main difference with respect to simple type theories of the past is given
by the existence of the truth-value object � as a basic object, to which a basic
type-of-propositions corresponds. In particular, propositional quantifiers are present
in the internal logic of a topos and actually the definitional resources at hand in a
topos reduce the logical machinery to sequents between equations about �-terms,
by which connectives and propositional quantifiers can be equationally defined, as
shown in (Bell, 1988, Ch. 3).

Then, by adding the required syntax, a (typed) language L(C) on �C is fully
defined as are, by the presence of typed ∈, also the set-theoretic operations (which
can now be applied to “sets” of the same type). Once a model structure for L(C) is
defined, C is recovered up to equivalence. Both passages, from categories to theories
and vice versa, turn out to be fruitful. The first way, for example from categories with
finite limits, allows identifying special kinds of logic. The second way, for example
from theories in a fragment of I L1 or versions of the λ-calculus, allows identifying
special kinds of categories. By composition of the two ways, CT h(C) ≡ C and
T h(CT ) ≈ T (up to translation). This is also called the “Equivalence Theorem.”13

The usefulness of L(C) lies in that, by using intuitionistic reasoning (possibly
restricted to one of the above fragments), we get a category of C-sets the objects
of which can be treated as sets, the morphisms of which act as functions and the
subobjects as subsets, with equations between terms (also of power types in toposes)
relativized to their common type, and finally ∈A is defined as a relation between
terms of type A and sets of type P A. Thus, for instance, f = 1A iff T x f (x) = x .
Conversely, given a theory T , we can associate with it a syntactic category CT

as already described. Within such a category CT , there is the generic model of T
canonically defined by the same kind of assignment of objects to sorts, maps to
function symbols and subobjects to relation symbols as in the case of the internal
language. It can be proved that, in bijective correspondence with the four forms
of T described above, there is an equivalence between functors Cart (CT , D) , . . . ,
Geom(CT , D) and the respective categories of T -models in D, for any D, thus even
beyond the standard case D = Set. Mimicking in CT the usual term-model out of
T -syntax produces the generic model GT of T , i.e., a model such that

(∗) ϕ x ψ holds in GT iff it is provable in T

and all possible T -models in any other category are images of GT under functors of
the same kind as the theory (cartesian, regular, coherent, geometric). GT lives in a
category designed to match the form of T and which, in general, is different from
Set. (Models in Set suffice if T is cartesian.)

13 This notion of theory-equivalence requires some care, as Johnstone explains in (Johnstone,
2002, vol. 2).



15 Logic in Category Theory 313

The two-way procedure mentioned above is thus at hand: the first goes from
categories C, through the internal language L(C), to theories T hL(C), the second
one goes backwards from CT to T . If T is cartesian and D a category in which T is
interpreted, the category T − ModD of T -models in D “coincides” with the functor
category Cart (CT , D), . . . , and finally if T is geometric, T − ModD “coincides”
with Geom(CT , D).

Thus a model of T in D is (up to iso) just a functor CT −→ D of the appro-
priate kind (adequate to T -structure). This systematic match extends to full first
order theories, in which case any given category T − Mod is taken with elementary
morphisms. Moreover the category of functors CT −→ Set which preserve the form
of T is jointly conservative, though this does not extend to theories in full first order
logic, see (Freyd and Scedrov, 1990).

Category theory also offers a previously undetected formulation of theories,
namely as a sketches, see (Johnstone, 2002, vol. 2, Ch. D2). Although sketches have
only proved to be useful for algebraic theories, the approach by means of sketches
identifies a dimension in the analysis of theories which is intermediate between the
logical notion of a theory T and CT . From the model-theoretic point of view there
is an equivalence between sketches and theories of special kind, the main link being
expressed in a theorem proved in (Makkai and Paré, 1989).

Now, let us consider an arbitrary (consistent) theory T and its models in toposes.
CT is also the underlying category of a site (CT , J ) with suitable coverage J , called
the “syntactic site.” There is an equivalence between functors from CT to E and
geometric morphisms from E to Sh(CT , J ) in S-toposes, and the latter can then be
identified with the classifying topos Set [T]. The result is canonical, since for any
(cartesian, . . . ) theory T , the topos Sh(CT , J )—with J suitable for the different
forms of T —contains a generic T -model GT . Hence (∗) holds and any model of T
in E is obtained, up to equivalence, as f ∗(GT ) for f : E −→ Sh(CT , J ).

For geometric theories, there is a result of particular importance: models in
Boolean toposes suffice, that is, if T is geometric and σ is a geometric sequent
ϕ  ψ , if the sequent holds in any T -model in Boolean toposes, then it is provable
in T . The crucial step is that for any Boolean topos B there is a surjective geometric
morphism f : B −→ Set [T ], with surjective meaning that f ∗ is faithful (i.e., it
is injective on maps). For, by hypothesis f ∗(GT ) |$ σ and thus GT |$ σ , hence
T  σ . Therefore, any classical proof of σ can be turned into an intuitionistic one.
There is no classifying topos for full intuitionistic (possibly infinitary) first order
theories, but there is a canonical model: for any such T there is Grothendieck topos
E and a T -model NT such that T  σ iff NT |$ σ .14

14 Among many other related topics are categorical versions of definability theorems ( Makkai
and Reyes, 1977), and a refined version of completeness, called “conceptual completeness”
(Johnstone, 2002, D3.5).



314 A. Peruzzi

5 Further Connections with Type Theories
and Concluding Remarks

The above hierarchy of logics, with their categorical counterparts, is more than
updated formalistic tinkering in a constructive setting. As Mac Lane once claimed
that topos theory lets Brouwer the topologist finally meet Brouwer the intuition-
ist, so one could add that categorical logic constrains axiomatic bricolage by rep-
resentability conditions within (pre)sheaf-theoretic constructions, see (Troelstra
and van Dalen, 1988), and it is just as a particular byproduct of this constraint
that constructive reasoning re-emerges from variation and cohesion patterns of
structure.

One advantage of the topos-theoretic medium is the existence of a certain special
topos. The free topos F, generated by the free type theory, with only ground types
for 1 and �, is initial, in the sense that it has a unique logical morphism into any
any linguistic topos, as generated by a type theory. F can be considered as an ideal
world for philosophical convergence, as it satisfies intuitionistic constraints such as
“∃x A(x) is assertible only if there is a closed term t for which A(t/x)” and “ϕ ∨ψ

is assertible only if such is either ϕ or ψ ,” respectively corresponding to the external
property that 1 is projective (i.e., given any epimorphism f : A � B, for every
x : 1 → B there is a y : 1 → A such that x = f y) and 1 is indecomposable (i.e., is
not the union of any two proper subobjects). In view of such properties of the free
topos (possibly with the addition of a natural numbers object N ), there would be an
ideal universe of discourse on which the three traditional approaches to foundations
agree, as argued in (Lambek and Scott, 1986).

Another pro is that the same medium provides a unified framework for com-
paring the range of forms taken by the concept of choice and the relationships
between choice and constructivity. On one side the standard form of choice says,
in categorical language, that epimorphisms split: any f : A � B has a section
s : B → A, for which f s = 1B ; which in a topos is equivalent to saying every
object is projective. This splitting implies Booleanness. On the other side, choice
is implicit in the constructivist picture when the assumption “For all x there is a
y such that ϕ(x, y)” is taken constructively. Taken constructively, the assumption
itself says there is a construction of a suitable y for each x , and that very construction
determines a function f where f (x) = y is the suitable y for x .

A similar phenomenon occurs with extensionality, in the form of wellpointed-
ness, which together with such form of choice is enough to characterize Set, but
which in the internal language holds trivially, for if f �= g : A ⇒ B, there
is a B-element x that distinguishes them, namely the generic x = 1A. Here the
subtle analysis of external (sheaf-theoretic) and internal properties of a topos is
efficient in clarifying the real power of assumptions about extensionality, bivalence
and choice. For instance, it can be proved that a topos is (externally) wellpointed
iff (internally) ∀xϕ follows from ϕ(t/x), for all t closed and x the only free vari-
able in ϕ. More generally, categorical methods refine checking the relative strength
of different principles or of different formulations of one principle, since many of
them prove no longer to be equivalent as in the classical universe and weak versions
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of them (as in the case of the axiom of choice) turn out to be sufficient for most
purposes.

The use of categories also helps to radically rethink diagonal arguments (and
fix-point theorems). The Gödel and Tarski Theorems look, in fact, different from the
received view taking them as prescriptions against paradoxes. Categorical rewriting
makes them special instances of a positive, structural, statement. Thus the question
as to which consequences of incompleteness and the indefinability of truth can be
drawn from the analysis Lawvere started in (Lawvere, 1968), in view of the larger
range of models provided by toposes different from Set, calls for further attention.
It is one of the subjects on which categorical logic is expected yet to achieve more
systematic results to improve the received view of self-reference (and also to avoid
ad hoc systems with hierarchical truth-predicates that, though ingenious, lack math-
ematical relevance). This line is far from uncontroversial but makes it clear that
categories are not so flexible as to legitimate a sort of metamathematical “anything
goes,” as if the limitations of the classical universe were replaced by a no com-
mitment attitude. Though what has been described in Section 4 already provides
evidence for the contrary, let us make it more explicit: if the plurality of notions
of constructivity and computability benefits from categorical logic, constraints are
added, as shown in the axiomatization of logical systems since introduction and
elimination come together as far as definition by adjoints is the underlying princi-
ple, from which the needed equations follow (as a counterweight to just “up to iso”
conditions).

A byproduct of interest for realizability is the step from notions of local character
in spatial sheaves (∃-equivalence relations on overlappings) to partial equivalence
relations. As indicated above, the same technique is efficient also in intensional
logic, for it leads to defining local intensions by abstraction as germs, which in the
case of sheaves over a site of indexes (possible worlds, information stages) can be
glued together into a unique notion, thus avoiding the difficulties of both the global
concept of intension associated, after Carnap and Montague, with relational seman-
tics (but functorially undefined in terms of accessibility) and the index-relative char-
acter of a similarity relation (family-resemblances), see (Peruzzi, 1991b).

The inconsistent belief that the intended universe of discourse X is an unqualified
whole and at the same time a very specific one led many to take as a defect of set-
theoretic semantics that, given two predicates ϕ and ψ over the domain X , if any
X -element satisfying ϕ also satisfies ψ and vice versa, then extensionality implies
the equivalence of ϕ and ψ .15 Now, if X is really “the whole,” it also contains as a
sub-domain the language in use to which ϕ and ψ belong, thus the equivalence is
innocuous; if X is one model among others, the equivalence does not follow unless

15 In most applications of set-theoretic semantics, one argues as if {a} �= {b} for a �= b, but in
Set the two singletons are isomorphic and that’s all. Hence either urelements are given or some
content foreign to explicit semantics is used, to confirm the claim that meaning is in the eye of
the beholder: in other words, one supposes to know more than what is allowed by the theory.
On the other hand, the very notion of singleton is far from trivial in categories corresponding to
constructive reasoning, see (Fourman et al., 1979).
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we make explicit the underlying theory which is supposed to specify the meaning of
predicates. At first sight, since category theory is designed to identify properties up
to ∼= between objects, the resulting semantics should be even more extensional. But
this is not the case, because the interpretation of a predicate (or a term) is a map,
and in cases of interest it is between objects with structure rather than mere sets,
thus the information to be taken into account is expressible within X as a category
with further structure. The interpretations of ϕ and ψ in X may be pointless spaces
which still have many variable and partial elements making the equivalence between
them a much stricter relation. Similarly, if models are functors, at first sight a theory
should have fewer models than those allowed by set-theoretic semantics. But, since
models can now be taken in categories different from Set, there are more models
and in fact some theories have models in them only.

By taking a theory as a category, term models become more than a completeness
device, as they identify initial algebras. If only in this respect, categorical semantics
is revealed as essential. In fact, the interaction of categorical logic and higher-order
programming has led to the formation of a vast area of research, within which the
resources employed in modelling constructive reasoning by dependent and pred-
icative type theories are further refined. The resulting framework is centered on
fibrations, which provide additional flexibility and unification, acting as a red thread
among logics in computer science. Though topos theory and the associated higher-
order intuitionistic logic do not need such a complex framework, they find their
place within it as a particular case, one with an actual mathematical content still to
be reached by such an even more general framework.

Polymorphism uses type variables in addition to function variables and uses pred-
icative/impredicative definition of functions, the evaluation of which is independent
of specific data types. In dependent type theory, types depend on terms and change
with term-values. Predicates (as indexed propositions) and types are indexed by
contexts, which declare the types of free variables, where a context is a sequence
of variable declarations. Categorically, there is a constraint or parametric polymor-
phism, as objects lie within one category or are functorially related, and impredica-
tivity inheres by default in universal constructions, even though these are localized
to a given category. The intertranslation of topos-theoretic, type-theoretic and set-
theoretic statements becomes subtler in Martin-Löf constructive type theory, which
also admits a presentation as a functional programming language. It is no accident
that models in locally cartesian closed categories, introduced by Robert Seely to
deal with dependent types (Seely, 1984), have been elaborated as categories C
of contexts with a functor Cop −→ Fam(Set) where the families (or attributes)
(Jacobs, 1999, Ch. 1 and 11), come with adequate closure conditions for dependent
sums and products.

A logical counterpart of the notion of genericity in passing from ModSet (T )
to ModE (T ) is not optional, but intrinsic to untyped λ-calculus (C-monoids) and
polymorphic λ-calculus (Girard, Reynolds), as made apparent in the Moggi-Hyland
model. Here the crucial process is multiple indexing, as some types depend on
term-variables the types of which depend on . . . (recursively). So the hierarchy of
terms and types is defined by simultaneous induction. Index types have a structure
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of their own and can be assumed to form a category I. The overall structure is cap-
tured precisely by means of the concept of fibration. Whereas an indexed category
I −→ X is focused on the single fibres, the converse picture X −→ I , with X
generalizing the disjoint union

⋃

i∈I Xi , assigns the global structure a central role.
A functor F : E −→ B is a fibration if for any E-object E and B-morphism
u to its F-value F(E), the E-morphism f such that u = F f satisfies a unique
factorization condition ( f is “cartesian”), see (Jacobs, 1999, p. 27) for details. As
Benabou argues, fibrations can be exploited to deal with foundational problems,
since they turn the dependence on set-theoretical assumptions and limitations of size
into functorial dependence on other categories. Together with Lawvere’s description
of the category of categories, the fibrational approach is a viable answer to doubts
about the real autonomy of category theory and shows how to control hierarchi-
cal type-dependent structure, well beyond classical logic as encoding principles of
thought for constancy and discreteness.16

The general idea is that logic is determined by a fibration above a type theory,
which in turn is given as a fibration. A suitable base-structure has more than one
logic over it, corresponding to different fibrations. One can investigate the structure
of fibrations over fibrations, corresponding to double indexing, and the composi-
tion of fibrations (by substitution, in logical terms). Both involve category theory
in extensive and essential way. Doctrines and hyperdoctrines, I L1 as well as topos
logic turn out to be determined by certain fibrations with structure.

That conditions such as those on ∃ and ∨ must work as a criterion was tied to
a constructive theory of meaning of a subjective nature; that the free topos satisfies
both argues that no such commitment is necessary, for their validity depends on
the initiality of F, and initiality does not count as a “good” property in virtue of
subjective constraints. Is it then for its formal role within the given framework? But
then one could proceed likewise with any adequacy criterion and ultimately the very
notion of structure would be implicitly defined, which means that it should be freed
from any previous understanding. To be consistent, such liberality should receive the
same (metatheoretic) treatment, which brings us back to Buridan’s paradox. True,
the free topos has nice properties. However, a system built out of syntax is the result
of objectifying language as a mathematical structure among others. Were the above
equivalence of categories to mean that anything needed is “essentially” of linguistic
nature, this would be either trivially true or fallacious. It is trivially true insofar
as mathematics manipulates symbols for spaces, flows and tile patterns, etc. It is
fallacious insofar as the virtues of what is syntactic are identified through what is
not (or is not supposed to be) and precisely for this reason the equivalence is far
from trivial. Though the idea of language as all-pervading may be widespread, the
comfort it gives is either trivial or fallacious; and as the same line applies to any

16 In this regard, the equiconsistency of the elementary topos axioms with Z0, and the internal-
ization of a topos into a local set theory, can be both misleading. What is achieved by means of
categories is a theory of variable and cohesive sets. In particular classical sets appear as the limiting
case of vanishing variation and cohesion. Languages qua special mathematical structures have no
ontological priority.
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representation theorem, some doubts about the comfort are in order. That everything
is formal in mathematics does not entail that everything is (or can safely be taken
as) linguistic. Were it so, the difference between syntax and semantics would vanish
and the relevance of the properties defining the free topos would reduce to a matter
of convention.

A different option is endorsed by constructivism. The hard constructivist claims
there is one ideal ground-logic and it has such and such axioms and rules. The soft
constructivist investigates the pros and cons of different candidates and is ready to
let the selection depend on formal reasons, or to dispense with the need of a choice.
The strong constructivist’s claim is simply the mirror image of the pretension of
(Platonic, by default) realism associated with the claim that logic is Boolean and
bivalent, and the mirror image extends to indispensability arguments in the light of
sheaf theory. The logic of variation also embodies the case in which no variation
is present. In particular, also the logicist version of realism has now a non-classical
mirror image, concerning the ontology of the thinking subject. The soft construc-
tivist renounces uniqueness of logic and envisages an open plurality of universes of
discourse, each one with its internal patterns of reasoning.

To the formalist’s eye, the controversy attests to the cunning of reason: the cluster
of content-laden motivations addressed by the contenders only serves to enlarge the
web of formal notions and formal systems; the tools offered by category theory can
thus be exploited to refine and extend the spirit of formalism, now freed from clas-
sical metatheory. Motivations forgotten, structure shines through. By avoiding any
commitment to identify a minimal substantive ground, sufficiently rich in mathe-
matical content, what remains is a new version of logical relativism; but what it may
contribute to the understanding of the constraints on the range of a priori possible
type-theoretic conventions is not clear. Unless further qualified, even the adequacy
criterion consisting in the “reflection” of patterns of reasoning in the object language
and in the metalanguage, is insufficient to determine one system (since both intu-
itionistic and classical metatheory, as well as set-theoretic and categorical metathe-
ory, are supported). Were it even sufficient, with proper qualification, the formalist
would count it as just one criterion among others: there are many categories and
many corresponding logics; toposes provide an excellent frame for intuitionistic
theories, but there are also Boolean toposes.

Now, as a slice topos E/A is still a topos, toposes are locally cartesian closed
categories, but in general the latter are not cartesian closed and precisely those
which are not serve as models (actually, classifying categories) for the constructive
reasoning expressed by dependent type theories, such as Martin-Löf’s. When the
left adjoint to the “hom”-functor which internalizes the function-space construc-
tion is a tensor product (not necessarily cartesian, because just associative), we
have monoidal closed categories, and the latter (with further conditions) provide
a semantics for linear logic. The world of categories seems to be sufficiently gen-
erous to accommodate these and other logics as well. Presumably, further similar
correspondences will be added in the future. But this is no argument supporting
the idea that “anything goes,” i.e., that categorical thought is compatible with any
kind of structure. Conventionalism ends at the resources which create the space for
conventions.
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On the other hand, even assuming that the ground logic manifests the constructive
structure of an Ideal Subject and also assuming that this can be uniquely charac-
terized as a universal in categorical terms, there is no proof that the latter is an
autonomously identifiable source of mathematical reasoning. Bell proposed looking
at topos theory as signifying the passage from absolute to local mathematics: from
the Newtonian world of constant (classical) sets to the invariants from one topos to
another. And one might extend this proposal beyond toposes, but already in their
case the obstacle is that Lorentz transformations form a group, whereas geometric
morphisms are not generally invertible. At the very least, even were the variety of all
possible logics to form one hierarchy of increasingly general invariants (in analogy
to more general groups), no corresponding relativity theory for logics exists as yet.

Thus it seems we are back to saving the phenomena by resorting to a pluralistic
formalism, reminiscent of Carnap’s Principle of Tolerance, now sufficiently flexi-
ble to accommodate constructive constraints too. This is the “no solution” solution.
However comfortable, it is not the only, or the last, option: for it not only leaves the
range of kinds-of-structure accessible to human thought unexplained, but makes it a
pseudoproblem. Is it really so? After the age of incompleteness, with its presumably
paradigmatic moral that the limitations inherent to a kind of self-encoding formal
systems have the effect of a cosmic sentence, categorical analysis allows rethinking
the matter at its mathematical roots. Time is ripe to revive Hilbert’s dictum: wir
müssen wissen, wir werden wissen. It is obvious that philosophy has already made
its entrance here; it’s not obvious that it was already there in disguise. Though there
is no unique philosophy adapted to categorical logic, there are (mutually opposite)
philosophical objections to it. These include the “essentialism” charge leveled by
(Girard, 2004, p. 152), Martin-Löf’s criticism of definitions of entities “up to iso-
morphism,” rejection of the idea that types come first, terms after, as well as both
circularity and “abstract nonsense” arguments by supporters of ∈-based set theory
as a foundation. Such objections can be met only if the escape into a sort of neo-
formalism is avoided. The above emphasis on geometric logic as well as the logical
import of adjoints and fibrations serves this aim.

As for the very definition of a category, the objects are what they are and not
isomorphism-classes, unless the category is skeletal (which still presupposes the
data for a quotient). To work up-to-iso from top to bottom, one should not only
skip identities but also to reformulate composition accordingly, and it is difficult to
see how to have g · f before the equation dom(g) = cod( f ). (Resort to partiality
just shifts the problem.) Thus the objection that when we assert ϕ, we mean ϕ at
face value, and not ϕ up-to-iso, is misleading insofar as it suggests that synonymy
classes are singletons. Ernst Cassirer’s reconstruction of the process leading modern
science and mathematics from Substanzbegriff to Funktionbegriff is not cast aside
by characterizing logical operations by means of universal properties. Vice versa,
the priority of structure over object-substance does not commit us to a formalist
version of logicism in a type-theoretical setting. Up-to-iso sounds like an admission
of original sin: even though the objects of a category C are supposed to be given,
what matters is their structure and their structure is defined (as the Yoneda Lemma
witnesses) by the C-morphisms to and from any other object in C. But if there is
any place where canonical constructions, providing unique existence and naturality,
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are really fundamental it is category theory. At present, categorical logic is the most
general framework for a variational study of principles of reasoning and also the
view of logical problems according to which if there is a solution, it is a universal
solution. It is unique existence up-to-iso expressed by �3-sentences and it is a virtue
that can be perfected, rather than ignored.

Doubtless, categorical logic can be treated as just a formal device for secur-
ing preservation of some proof-structure and model-theoretic structure. As such,
it already repays the effort to learn it, but its very source in geometry provides better
understanding and draws attention to the space-laden nature of the roots of thought.
Syntactic constructions are no exception; our understanding of algebraic manipula-
tions of symbols is, as the verbs for such actions reminds us, only possible because
those roots are never uprooted. When the language of categories makes the mathe-
matical content of proofs, computations, and the syntax-semantics interface explicit,
it points to a concrete background of cohesive objects and patterns of actions by
which to investigate the most sophisticated type systems. Semantics as commonly
understood preserves a few fossils of content, while much such content is carried
by logical syntax. So the meaning often ascribed to the internal language and to the
Equivalence Theorem can be misleading. More than shifting the demarcation line
between syntax and semantics, the point is to have invariants which are independent
of given theory-presentations. One great value of these invariants is their use in
overcoming the contrast between the axiomatic and the phenomenological method,
as opposed to supporting a neo-formalist view. It enables us to take the givenness of
objects and maps at face value, as manifested in concrete patterns of action.

On the one hand logicism seems vindicated, provided its original demands are
relaxed and finally the tension with constructive reasoning is overcome within a
purely “structural” horizon. On the other hand logicism must be enriched, for it is
the inherent structure of the types-and-terms system which grounds the constructive
sense of logic. So, if one intends to avoid dependence of logic on a prior formal
ontology, typing has to be taken as a basic logical notion, while the nature of the
ontology remains indeterminate, in agreement with formalism. The plurality of such
systems of types-and-terms does the rest. But then it is problematic to grasp the real
effect of the dictum “a logic is always a logic over a type theory,” meaning that 
is relative to which system of types allows for which variable declarations. The idea
agrees with an underlying theme of the categorical approach to logic since its begin-
ning, but it may also be taken as support for reviving logical conventionalism à la
Carnap: “in logic there are no morals” now becomes “choose the type system you
need.” In this sense, if internalization relative to a multiple hierarchy of types only
refines the lesson already drawn from the Skolem paradox applied to the semantics
of classical set theory, the gain is small.

As for the internal/external distinction, given C as a mathematical universe of
discourse, the logic-of-C is that which results from the common structure of objects,
is preserved by morphisms and coincides with the structure of valid inferences as
representable within C. Its constructive nature is measured by the kinds of variation
and cohesion present. (Arguments for constructivity find their ultimate motivation
in the fact that what becomes—be it the very thinking subject through its states—is
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endowed with dynamic structure.) This very idea needs qualification, in view of the
ambiguity between the internal logic Li (C) and the external logic Le(C). Though
there are categories the structure of which is insufficient to represent internally the
logic used to describe the properties of their objects and maps, the internal language
of a topos is sufficient to express local properties. Yet there are also global prop-
erties, externally detectable, that are not represented internally and they cannot be
taken as logically irrelevant. To reduce the gap between internal and external, in
the presence of representability, one can consider the strongest logic L for which
Li (C) ≡ Le(C). Were C taken as the whole of possible mathematical universes-
of-discourses, it would be improper to ask for such logic, since there is no external
logic. When we talk about logic as a whole, either it is really abstract nonsense or
it is something internally representable. Thus, the issue is not whether all logical
properties can be collectively represented into one definite universe of discourse,
but rather whether there is a finite range of patterns that, suitably fine-tuned (by
adjunctions), can generate all possible variations. Categorical logic supports a posi-
tive solution to this issue.
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Chapter 16
Gunk, Topology and Measure

Frank Arntzenius

1 Introduction

It is standardly assumed that space and time consist of extensionless points. It is also
a fairly standard assumption that all matter in the universe has point-sized parts. We
are not often explicitly reminded of these very basic assumptions. But they are there.
For instance, one standardly assumes that one can represent the states of material
objects, and of fields, by functions from points in space and time to the relevant point
values. Electric fields, mass densities, gravitational potentials, etc. . . . are standardly
represented as functions from points in space and time to point values. This practice
would seem to make no sense if time and space did not have points as parts.

There is an alternative that has not been much explored. The alternative is that
space and time and matter are “pointless,” or “gunky.” The idea here is not that space
and time and matter have smallest finite-sized bits, that space and time and matter
are “chunky.” Rather the idea is that every part of space and time and matter has a
non-zero, finite, size, and yet every such part can always be subdivided into further,
smaller, parts. That is to say, the idea is that every part of space and time and matter
has a non-zero size, and yet there is no smallest size.

Let me emphasize how radical this idea is. It is very natural to think that any
thing decomposes into some ultimate collection of fundamental parts. And it is very
natural to think that the features of any object are determined by the way that object
is constructed from its ultimate parts, and by the elementary features of these ulti-
mate parts. Indeed, much of the history of science can be seen as an attempt to break
down complex objects and processes into ultimate parts, and to find the laws that
govern these ultimate parts. But if there are no smallest regions, and if there are no
smallest parts of objects, then a spatial or temporal decomposition of a region, and of
an object, cannot bottom out at an ultimate level. The idea that the features of large
regions and large objects are determined by the features of minimal-sized regions
and minimal-sized objects cannot work if space and time, and the objects in it, are
gunky, i.e. pointless. Space, time, and objects would simply not have ultimate parts.
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There would just be an infinite descending chain of ever-smaller parts. A somewhat
dizzying prospect.

Well, let’s not get ahead of ourselves. Not only would it require a fairly radical
revision of our atomistic intuitions, it would also require a fairly radical and exten-
sive re-working of standard mathematical methods for doing physics. If we cannot
use real numbers to coordinatize locations in space and time, what can we use? If
we cannot use ordinary functions to describe the states of things, what can we use?

All things in good order. We will get started on the business of re-writing physics
a bit later on. First we will consider arguments for undertaking this seemingly mad
enterprise. To preview: we will find no utterly compelling arguments against the
existence of points. But we will find non-compelling reasons to explore the mathe-
matics of gunky space and time.

2 The Possibility of Motion and Determinism

Zeno argued that if time consists of instants of zero duration, then during each such
instant an object cannot move. But if time consists entirely of a series of such
instants then objects can never move. In view of this problem Aristotle proposed
that there are no instants, no 0-sized intervals of time, indeed no smallest sized,
atomic, intervals of time. Rather, time consists of smaller and smaller intervals. To
put it another way: the world is a true movie, not a sequence of snapshots. To put it
even more suggestively: becoming is not reducible to being.

One may not be impressed by Zeno’s argument. One may for instance respond,
as did some commentators in the Middle Ages, that to be in motion is just to be at
different locations at different times, so that it simply is not true that just because
one occupies only one location at one time one never moves.

Indeed, this is a perfectly coherent way to respond to Zeno’s problem. However
one can then formulate a new worry, which is closely related to Zeno’s worry. For
if motion is just a matter of being at different locations at different times, then the
intrinsic state of an object at an instant does not include its velocity. How then does
an object at an instant “know” in which direction to continue and at which speed?
Less anthropomorphically: if the instantaneous states of objects do not include their
velocities, then how could the instantaneous state of the world determine its subse-
quent states? That is, how could determinism hold? The world may in fact develop
in a deterministic fashion, and it may not, but surely whether it does, or does not,
should depend on the character of the laws of evolution of the world, rather than
that the atomicity of the structure of time alone should imply that the world cannot
be deterministic.1

1 Well, it could still be deterministic if the equations of motion were first-order, as they are in
quantum mechanics. Still, one might like to think that even if the equations of motion are second-
order, as they are in classical mechanics, the world could be deterministic.
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One might attempt to respond to this argument by claiming that even if time
consists of 0-sized instants, nonetheless the intrinsic state of an object at a time does
include a velocity. Such an “intrinsic velocity” would not be defined (as in ordinary
calculus) in terms of (limits of) the position development of an object. Rather, it
would be a primitive intrinsic feature of an object at a time, which causes the object
to subsequently move in the direction in which the intrinsic velocity is pointing.

This does not strike me as a plausible response. For according to this response
the intrinsic velocity at an instant and the direction in which the trajectory in space
continues are not definitionally related, but are merely causally related. So it should
be logically possible to have an object whose spatial trajectory continues in a direc-
tion that differs from the direction in which its intrinsic velocity points. Now, one
might claim that such a bizarre non-alignment of direction of trajectory and intrinsic
velocity is ruled out by the laws of nature. However, the mere conceptual possibility
of such a misalignment seems puzzling, to say the least. Furthermore, if the laws
of nature are to connect the directions in which primitive velocities point and the
directions of trajectories in space, as they must do, then there is going to have
to exist some further primitive relation, “parallelhood,” which obtains, or fails to
obtain, between intrinsic velocities and spatial directions. Other things being equal
it seems undesirable to add “intrinsic velocities” and “parallelhood” to one’s stock
of primitive quantities and relations, when one has no real need for them. In short,
this response on behalf of points does not seem plausible to me. (For more detail on
this line of argumentation, see (Arntzenius, 2000).)

However, a more plausible response to Zeno can be made on behalf of points.
For one could simply claim that determinism should not be understood as the idea
that the state at an instant determines states at all other times. Rather it should be
understood as the idea that any finite history of states determines states at all other
times.

Indeed, it seems to me that Zeno’s arrow provides no compelling argument
against point-sized instants. Let’s turn to another argument.

3 Cutting Things in Half

If space consists of points then one cannot cut a region exactly in two halves. For if
one of the two regions includes the point on the cutting line, i.e. if it is closed at the
cut, then the other does not include the points on the cutting line, i.e. it is open at the
cut. Imagine, for instance, that we have x and y coordinates which are parallel to
the sides of a rectangle. Suppose that the horizontal, x-coordinate, of the rectangle
runs from 0 to 2, and suppose that we cut the rectangle at x = 1. The question then
arises: do the points that have x-coordinate=1 belong to the left hand side after we
have made our cut, or to the right hand side? If they belong to the left hand side,
then the left half is closed at the cut, and the right half is open. If vice versa, then
the left side is open. So the two parts would not be identical. So one cannot cut a
region exactly in half if regions are composed out of points. One might reasonably
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conjecture that such a difference between open and closed regions is an artifact of
our mathematical representation of regions, that does not correspond to a difference
in reality. I, for one, find it hard to believe that there really are distinctions between
open and closed regions in nature. But I agree that this is hardly a knock-down
argument.

4 Paradoxes of Size

If there exist points in space, and space is continuous, then it can be shown that
there must be regions that have no well-defined size. For instance, there will be a
part of any wall in any room such that it has no well-defined size. If you wanted to
paint such a part of a wall in your house blue, there would be no possible answer
to the question: “How much paint will I need to paint that part of my wall blue?”
The problem is not that you would not know how much paint you would need, or
that you would need 0 quarts of paint. Rather, the problem is that there just exists
no quantity r of paint such that you would need exactly that quantity to paint that
region. Let me be a bit more precise.

One can prove that in a continuous, pointy space there must exist regions that
have no well-defined measure, if one assumes the axiom of choice and one assumes
that the measure is countably additive. One can also prove that in a continuous
pointy space of three or more dimensions there must exist regions that have no
well-defined measure, if one assumes the axiom of choice and one assumes that the
measure is finitely additive and invariant under (distance preserving) translations
and rotations.2

There is even more weirdness about points and sizes: Banach and Tarski have
shown that the existence of points implies cost-free guaranteed increases in size.
That is to say, they showed that in a continuous pointy 3-dimensional space one
can take a sphere, break it into a finite number of pieces (five pieces in fact), move
those pieces around rigidly (i.e. while preserving distances between the parts of the
pieces), and re-arrange those pieces to form a sphere of twice the size! That is to say,
by breaking an object into five parts, and merely re-arranging these parts spatially,
without any stretching or changing of shapes, one can make an object larger or
smaller, as one desires.

There is in fact a close relationship between this result and the fact that there
are regions which have no well-defined size. Some of the parts into which we must
break the sphere must have no well-defined sized. It is not hard to see that this must
be so, for rigid motions preserve size, and the size of an object that consists exactly
of five non-overlapping parts is just the sum of the sizes of those parts. So Banach
and Tarski’s result depends essentially on the existence of size-less regions.

How might one respond on behalf of points? Well, in the first place, one might
simply deny the axiom of choice. This is an issue that could take us deep into

2 See, e.g., (Skyrms, 1983; Wagon, 1985).
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philosophy of mathematics and mathematical physics, to which I have nothing new
to contribute. I merely wish to point out that denying the axiom of choice implicitly
commits one to (being part of) a large project, namely that of re-writing that part of
mathematics and mathematical physics that one wants to retain, in such a way that
it makes no use of the axiom of choice. My only comment on this project is that
I am interested in a different project, namely that of doing physics without points.
My project has several independent motivations, only one of which concerns the
measure theoretic paradoxes.

A second possible response to the measure theoretic paradoxes is: who cares?
Surely we will not as a practical matter get our hands on measureless parts of
objects. Surely size-altering de-compositions and re-compositions are not practi-
cally achievable. So why worry?

Indeed, since one needs the axiom of choice to prove the existence of measure-
less regions, one cannot have explicit constructions of measureless, or of measure-
altering, de-compositions and re-compositions. Nonetheless the mere existence of
regions and/or parts which have no measure, and the mere possibility of size-
altering de-compositions and re-compositions, remains rather bizarre, and prima
facie implausible.

A third possible response to the measure theoretic paradoxes (on behalf of points)
starts by making a distinction between sets of points in space-time, which are math-
ematical entities, and physical regions. One could, e.g., suggest that all physical
regions are Borel regions.3 If that is so, then all physical regions are (Lebesque)
measurable, and no size-altering de-compositions and re-compositions are
possible.

Indeed, one could say this. But note that this means that regions fail to satisfy the
standard axioms of mereology. For one is denying that the fusion of any arbitrary
collection of regions is a region. (Some collections of points are such that their
fusion is a non-Borel region.) It seems hard to motivate this failure independently.

Nonetheless, yet again, we have found no devastating argument against points.
We have simply found one more reason to try to see how far we can go without
points. Let us turn to another argument against points.

5 Quantum Mechanics and Points

In non-relativistic quantum mechanics one can represent the state of a single particle
by a wave-function. The probability that a particle will be found in a particular
region upon measurement is given by the integral of the square of this wave-function
in this region. If one has two functions whose values differ on a set of points of
measure 0, then integrating them over any region will always yield identical results.
Thus, as far as probabilities of results of measurements are concerned, functions that

3 Borel regions of the real line: start with the collection of all open intervals, then close this
collection up under countable union and intersection, and complementation.
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differ on a set of points of measure 0 are equivalent. This provides motivation for
the claim that functions that differ on a set of points of measure 0 correspond to the
same wave-function, i.e. the same quantum state.

A slightly more formal motivation for this derives from the fact that in a Hilbert
space there is a unique null vector, a unique vector whose inner product with itself
is 0. Thus, if one wishes to represent vectors in a separable Hilbert space (with
a countable infinity of dimensions) by (complex) functions on space (or config-
uration space), and one wishes to represent the inner product of vectors by inte-
gration of the corresponding functions, then one has to represent vectors not by
functions, but by equivalence classes of functions whose values differ on up to
(Lebesque) measure 0 points. Indeed, although it is not often brought to the fore,
it is a standard assumption in quantum mechanics that wave-functions correspond
to equivalence classes of (square integrable) functions that differ up to Lebesque
measure 0.

This ignoring of measure 0 differences between regions in space suggests that
quantum mechanics should be set in a gunky space, not in a pointy space. (We
will flesh out this claim in more detail when we examine the measure theoretic
approach to gunk.) But, as always, there are responses possible on behalf of the point
lover.

In the first place one might respond that the above is a false claim: quantum
mechanics standardly uses wave-functions that are eigenfunctions of position, so-
called “delta functions,” which differ from each other only on measure 0 sets of
points. This line of response takes us into a tricky area. So-called “delta functions”
are not functions at all. Indeed position operators, on the standard separable Hilbert
space approach to quantum mechanics, simply cannot have eigenstates. Nonethe-
less, it is true that there are (non-standard) ways of rigorizing the notion of an eigen-
state of position, and thereby sanctioning states that in a clear sense are confined to
a single point, while departing from the standard formalism of separable Hilbert
spaces. (See, e.g., (Bohm, 1978; Halverson, 2001).) Not only does one have to
depart from the standard formalism of separable Hilbert spaces in order to do so,
but position eigenstates also have the feature that observables such as momentum
and energy have no well-defined expectation values in such position eigenstates.
In (Arntzenius, 2004) I have discussed whether it is worth paying this price for
the acquisition of position eigenstates, and argued for a cautious “no.” Let me here
merely say that it is far from clear that it is worth paying this price, and leave it
at that.

There is of course another possible response that can be made on behalf of the
point lover. One could simply accept that quantum mechanics happens not to make
use of measure 0 differences, and argue that this is all good and well, but this does
not mean that such differences do not exist. Not every theory needs to make use of
all the features that nature has on offer.

Indeed, I agree that both of the above two responses (on behalf of points) are
perfectly coherent and possible. Nonetheless it seems to me that nature is piling up
the hints that there just might be no points out there in space and time. Let’s look at
one more problem with points.
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6 Contact Between Objects

In the nineteenth century some people started worrying about the possibility of
contact between solid objects if space consists of points. Here is a sketch of such
worries. Let us suppose that solid objects cannot interpenetrate, i.e. that solid objects
can not occupy overlapping regions. Now consider two solid objects which always
occupy closed regions, i.e. regions which include their own boundary. Such objects
can never be in contact, for closed regions either overlap or are a finite distance
apart. In order to avoid interpenetration such objects must decrease their velocities
when they are still a finite distance apart, so some kind of action at a distance would
have to occur. It seems strange and objectionable that the mere existence of solid
objects should imply action at a distance. Alternatively suppose that solid objects
occupy open regions. Then there must always be at least one point separating them.
So they still cannot be in genuine contact, and they still must change their velocities
without ever being in genuine contact.

The impossibility of genuine contact seems to provide an objection to the exis-
tence of points. However, there are a number of decent responses that one can give
on behalf of points.

In the first place, one could respond that one would not want such “genuine
contact” anyhow, since collisions would lead to sharp, undifferentiable, kinks in the
trajectories of objects. One could plausibly argue that a more realistic physics has
objects interacting through fields. Then there will never be “genuine contact,” so
there is no “problem of contact.” One could amplify this line of thought by claiming
that it is even more realistic to suppose that quantum mechanics, with an ontology
of wave-functions (or perhaps wave-functions plus point particles), is correct, and
that given such an ontology there is no problem of contact.

Secondly, one could argue that even if one wants to countenance solid objects
which interact by contact, one could just have a slightly different account of what
it is to “be in contact” and what it is to “interpenetrate.” One could, e.g., just say
that two objects are “in contact” if and only if the boundaries of the regions that
they occupy overlap. (A point p lies on the boundary of region R if any open set
containing p intersects both R and the complement of R.) And one can say that
objects do not “interpenetrate” unless they overlap on more than just their bound-
aries. Physics can then proceed as usual. Of course, this would mean that objects
occupying open regions (in a 3-dimensional space) that are separated by a two-
dimensional surface are in contact, and that bodies occupying closed regions which
overlap on a two-dimensional surface do not interpenetrate. But so what? It does
not lead to any trouble in formulating physics, or any trouble with experiment. It
only leads to trouble with philosophers who think that it is a priori that “genuine
contact” is possible, where “genuine contact” means having not even a single point
in between, and who think it is a priori that “interpenetration” is not possible for
solid objects, where “interpenetration” means not overlapping even on a single
point. I don’t know whether to respond to such philosophers that in a Newtonian
collision world there are, in their sense of “solid,” no solid objects, or whether to
respond that in their sense of “genuine contact” there is no genuine contact, and in
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their sense of “interpenetration” there is interpenetration. But one can do Newtonian
collision physics when one defines contact as having overlapping boundaries, and
interpenetration as overlapping on more than a boundary.

Both of the above responses on behalf of points seem adequate. Nonetheless note
that neither of the responses requires a physics that makes essential use of points,
or of measure 0 differences. So one is still left with the suspicion that points, and
measure 0 differences, are artifacts of the mathematics, and do not exist in reality.

7 Now What?

It appears that every problem associated with the existence of points can be over-
come; there appears to be no single devastating argument that space and time (or
matter) have to be gunky. Nonetheless it remains of interest to examine the possibil-
ity of doing physics in gunky space and time in more detail.

There have been a number of approaches to the mathematics of gunky spaces.
These approaches divide into three categories: the measure theoretic approach
(Skyrms, 1993; Sikorski, 1964), the topological approach (Roeper, 1997), and the
metric approach (Gerla, 1990). In this paper I will not look in any detail at the
metric approach. The reason I will not is that in the metric approach one assumes
from the start as fundamental notions the notion of the “diameter” of a region and
the notion of the “distance” between regions. This approach is prima facie ill-suited
for the purposes of modern physics since in general relativity the notion of distance
is local and path-dependent (rather, it is not a non-local path-independent) rela-
tion between regions. It would seem preferable to first be able to build a pointless
differentiable manifold, and then to be able to put a metric tensor field on such a
differentiable manifold. The measure-theoretic and topological approach to gunk
are prima facie more amenable to this idea, since they do not start by presupposing
the existence of non-local metric structure. Let’s look at these two approaches in
more detail and let’s start with the topological approach.

8 The Topological Approach to Pointless Spaces

My strategy for constructing a pointless topological space will be as follows. I will
start with an ordinary pointy topological space. I will then put on blurry spectacles
which wash out differences in regions which, intuitively speaking, are differences
in the (pointy) mathematical representation of space that do not correspond to dif-
ferences in actual physical space. This will yield a pointless topology. Once I have a
pointless topology, I, of course, no longer have ordinary (point to point) functions.
But there are still maps from pointless regions to pointless regions. We will see
that a rather natural set of such maps corresponds one-one to pointy functions that
map regular closed region to regular closed regions. Unfortunately this does not
include functions which are constant on a finite region, so that we do not appear to
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have enough materials to do physics with. Furthermore, one would like to be able
to put a measure on a pointless topological space. We will find that there is also
a problem in putting a measure on a pointless topological space. I will therefore
advocate switching to the measure theoretic approach. But first some of the details
of the topological approach.

Let us start with an ordinary pointy topological space which is a “locally compact
T2 space.” A topological space is a “T2 space” if and only if for any distinct points
x and x ′ there are disjoint open subsets O and O ′ containing x and x ′ respectively.
This is a very mild separability condition. A topological space is “locally compact”
if and only if for every point x there exists a “compact” closed set C such that x
lies in the “interior” of C . A set S is “compact” if and only if for every collection of
open sets {Oa} such that S is a subset of the union of these open sets, S ⊆ ⋃{Oa},
there is a finite subcollection of these open sets such that S is a subset of the union
of that subcollection: S ⊆ Oa1 ∪Oa2 ∪· · ·∪Oan . The demand that a space be locally
compact is very mild and roughly speaking amounts to the demand that each point
is contained in an open set whose closure is not “very large.” (The closure of a set S
is the union of S with its boundary.)

Now let us put on our blurry spectacles, and ignore differences between sets that
“differ only on their boundaries.” We will say that two sets A and B “differ only
on their boundaries” if and only if the closure of the interior of A is equal to the
closure of the interior of B, i.e. if Cl Int(A) = Cl Int(B). (The interior of a set
consists of the points of that set that do not lie on its boundary.) Here are a couple
of examples of sets that, by this definition, differ only on their boundaries. Any set
and its interior differ only on their boundaries. (Cl Int Int(A) = Cl Int(A).) Any
set consisting of finitely many points and any other set consisting only of finitely
many points differ only on their boundaries, since the closure of the interior of each
of them is the empty set.

Now, let us divide up all pointy regions (all sets of points) into equivalence
classes R of regions that differ only on their boundaries. The motivation for doing
this is that our “blurry glasses” cannot distinguish regions that are in the same
equivalence class, so we can regard these equivalence classes as corresponding to
pointless regions. (From here on the symbols “R” and “Ri ” will be always taken to
denote pointless regions rather than pointy regions.)

Now let us give these equivalence classes R mereological structure. (This mere-
ology will be standard except that it will include a “null region,” i.e., it will be a
complete Boolean algebra.) In order to do this, let me first note that every equiva-
lence class of pointy regions will include exactly one “regular closed” pointy region,
where pointy region S is said to be “regular closed” if and only if Cl Int(S) = S.
For, take pointy region S in some equivalence class. Now consider Cl Int(S). It
will be in the same equivalence class as S, since Cl Int(S) = Cl Int Cl Int(S).
For the same reason Cl Int(S) is regular closed. It is also the only regular closed
pointy region in that equivalence class. For suppose S′ is regular closed and in
the same equivalence class as S. Then Cl Int(S) = Cl Int(S′) = S′, so S′ is
the same as Cl Int(S). So there is a one-one correspondence between pointless
regions R, and regular closed pointy regions P R. So we can define a mereological
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structure on the equivalence classes R by defining a mereological (Boolean) struc-
ture (�,¬,&,∨) on the corresponding regular closed pointy regions PR. This we
can define in the following way:

1. The empty set is the null region.
2. P Ri � P R j if and only if P Ri ⊆ P R j . (“�” stands for the “part of” relation.)
3. ¬P R = Cl(Co(P R)). (Co(P R) is the set theoretic complement of P R.)
4. P Ri ∨ P R j = P Ri ∪ P R j .
5. P Ri & P R j = Cl(Int P Ri ∩ Int P R j ).
6. If S is a set of regular closed pointy regions then

∨

S = Cl
⋃{P R|P R ∈ S}.

7. If S is a set of regular closed pointy regions then
∧

S = Cl Int
⋂{P R|P R ∈ S}.

Next let us give the pointless regions topological structure. The topological struc-
ture we will give pointless regions cannot be given in the same way that we gave
pointy spaces topological structure, namely in terms of a distinction between open
and closed regions. For that is exactly the kind of distinction that we do not believe
exists if reality is pointless. Instead we will give the topological structure of pointless
regions in terms of the primitive notions of “part of,” “connectedness” and “limit-
edness.” And again, we will use the one-one correspondence with regular closed
pointy regions to determine the topological structure of the pointless regions. In
particular, we stipulate that

1. Two pointless regions are “connected” if and only if the closed regular pointy
regions that they correspond to have non-empty intersection.

2. A pointless region is “limited” if and only if the closed regular pointy region that
it corresponds to is compact.

Now we can make use of a result that Peter Roeper proved in (Roeper, 1997). He
has shown that any collection of pointless regions that is constructed in the above
way (i.e. by taking equivalence classes of pointy regions in a locally compact T2
space which differ only on their boundaries) will satisfy the following axioms of
pointless topology:

A1 If pointless region A is connected to pointless region B, then B is connected
to A.

A2 Every pointless region that is not the pointless “null region” is connected to
itself. (The pointless “null region” corresponds to the equivalence class of
regions which differ only on their boundaries from the null set.)

A3 The null region is not connected to any pointless region.
A4 If A is connected to B and B is a part of C then A is connected to C .
A5 If A is connected to the “fusion” of B and C , then A is connected to B or A is

connected to C . (The “fusion” of B and C is the smallest pointless region that
has B and C as parts.)

A6 The null region is limited.
A7 If A is limited and B is a part of A then B is limited.
A8 If A and B are limited then the fusion of A and B is limited.
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A9 If A is connected to B then there is a pointless limited region C such that C is
a part of B, and A is connected to C .

A10 If A is limited, B is not the pointless null region, and A is not connected to the
“complement” of B, then there is a pointless region C which is non-null and
limited, such that A is not connected to the “complement” of C , and C is not
connected to the “complement” of B. (The “complement” of a pointless region
A is the pointless region −A such that A and −A have no parts in common,
and every non-null pointless region has some part in common either with A or
with −A.)

From a philosophical point of view it might seem that it would have made more
sense to start with the axioms of pointless topology, and then to explain that any
collection of pointless regions which satisfies these axioms will correspond one-
one to equivalence classes of pointy regions in the unique corresponding locally
compact T2 space. After all, I certainly do not want to say that pointless regions
just are equivalence classes of pointy regions, for that would mean that pointless
regions just are mathematical constructions out of entities (pointy regions) which I
believe not to exist. And that would not make much sense. No, the pointless view
that I am here exploring is that pointy regions really do not exist, let alone that
equivalence classes of them exist. The things that really exist are pointless regions,
the primitive predicates and relations that are needed are the “part of” relation, the
“limitedness” predicate and the “connected to” relation, and the axioms that char-
acterize the true topology of space are A1 through A10. However, not only is it
much easier to introduce the machinery of pointless topologies via a construction
out of pointy topologies, it is also very important to see that pointless regions behave
exactly the way that our blurry spectacle motivation wants them to behave. That is
why I constructed pointless topologies in the way that I did. OK, on to the next
tasks: placing material objects and fields in such a pointless topological space, and
giving this space more structure than topological structure.

9 Objects in a Pointless Topology

If space is pointless then one cannot specify the locations of material objects by
indicating for each point in space whether that object occupies it or not. So how
should we conceive of the locational properties of objects in a pointless space? Well,
here’s a suggestion. We specify the locational state of a material object by specifying
for every pointless region whether the object is entirely contained in that region
or not.

This suggestion is problematic. The problem is that, despite the fact that space is
pointless, one could nonetheless have point particles if one followed this suggestion.
How? Well, imagine that a material object is such that it is entirely contained in each
of a collection of smaller and smaller pointless regions. Now, if for any pointless
region within which the object is contained there is an arbitrarily small pointless
subregion within which the object is contained, the object could not have any finite
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size. So it must have size zero.4 This is surprising. For it means that one can have
pointless space containing point particles! However, allowing such a thing seems to
defeat most of the reasons we started on this whole business of gunk. We wanted
neither points in space nor point particles.

Moreover, allowing such point particles also leads to a formal feature that seems
objectionable, namely a violation of “countable additivity.” Here’s what that means
in this context and why it fails. Consider the following plausible looking principle:
if an object is wholly outside each of a countable collection of regions Ri , then it
is also wholly outside the fusion of these regions. Now consider our example. If a
particle is entirely contained in each of a collection of converging regions, then it
is wholly outside the complements of these regions. Now consider the fusion of the
complements of these regions. Intuitively speaking the only thing that this fusion
does not contain is the point that the converging collection is converging to. But
remember that we are in a pointless space, and there exists no such point. So one
should expect that the fusion of this countable collection is the whole space, for
there is no pointless region that it misses out on, as it were. And indeed, this is
correct: the fusion of these complements is the whole space. But a material object
cannot lie entirely outside the whole of space. So we have a countable collection
of regions such that the object lies wholly outside each one of the regions in the
collection, but is wholly contained in their fusion. This is a failure of countable
additivity, and seems bizarre and objectionable. So it seems that one should not
allow a specification of the locational properties of a material object by specifying
for each region whether it is entirely contained in it or not.

The obvious alternative is the following. One specifies the locational properties
of a material object by specifying which region the object exactly fills. It will then,
of course, be entirely contained in any region that includes this region, etc. But it
could not be entirely contained in a converging collection of regions, for there is a
minimal region, such that it is not contained in anything smaller than that region.
No problem.

10 Fields in a Pointless Topology

How about the states of a field such as the electric field in a pointless topology?
Here’s a very natural suggestion. We specify the state of a field by specifying for
each pointless region in space the exact range of values that the field obtains in that
region. This brings up a further issue. Should we think of the possible ranges of
values of the field as pointless ranges or as pointy ranges? Should we think that
fields can have exact point values, or that the value spaces of fields are as gunky as
the physical space that they inhabit? I don’t know. In what follows I will make the

4 This doesn’t quite mean that it has to be a point particle, since it could still be a line, or an
infinitely thin surface. But one can define a notion of “a converging set of regions” in such a way
that the particle does indeed have to be a point particle if it is entirely within each of the regions in
the “converging set of regions.”
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weaker assumption, i.e. I will assume that the value space of a field is a pointless
space, and see how far we get.

Following Peter Roeper (Roeper, 1997), let us call a map h from a pointless
physical space S to a pointless field value space V S a “bounded continuous mereo-
logical” map, if it satisfies the following constraints:

1. h(R) is the null region in V S if and only if R is the null region in S.
2. If R1 is part of R2 then h(R1) is part of h(R2).
3. If V is non-null and part of h(R1) then there exists a non-null R2 such that R2 is

part of R1 and h(R2) is part of V .
4. If R1 is connected to R2 then h(R1) is connected to h(R2).
5. If R is limited, then h(R) is limited.

One can prove (see (Roeper, 1997)) that there is a one-one correspondence
between bounded continuous mereological maps (between two pointless spaces)
and continuous pointy functions (between the two corresponding locally compact
T2 spaces) which map regular closed sets of points to regular closed sets of points.
That is to say, if we specify the state of a pointless field in a pointless space by means
of a bounded continuous mereological map h, then this is equivalent to specifying
the corresponding pointy field in the corresponding pointy space by means of a
function f from points in space to pointy field values, where f must satisfy the
constraint that it maps regular closed sets of points in space to regular closed sets of
field values.

Now, suppose that it were the case that every pointy field function f that one ever
is likely to need when doing standard pointy physics has the feature that it sends
regular closed sets to regular closed sets. Then one could suggest that even though
physical space and field value spaces in fact are pointless, one can still continue
the standard practice of using ordinary pointy functions f when doing one’s calcu-
lations in physics, since the possible gunky field states in gunky space correspond
one-one to such pointy functions in pointy space.

Unfortunately, though, this is not true. For consider a pointy function f that has
a fixed constant value v over some pointy region P R. It will map every subset of
P R, and hence every regular closed subset of P R, to the singleton set {v}. And
a singleton is not a regular closed set. So a function that is constant over some
(finite) region P R does not preserve the property of being regular closed. But clearly
physics needs to make use of such functions. So we have a problem.

And there is more trouble. It seems clear that we will need to put a measure on
pointless regions. For how else are we going to able to talk of the sizes of regions,
and how else are we going to be able to do the pointless analogue of the integra-
tion of functions, something that we surely have to be able to do? Unfortunately
when one tries to put a measure on a pointless topological space one will run into
difficulties that appear to be insurmountable.

Let me start on the project of putting a measure on a pointless topological space
by considering a very simple case. We know that there is a one-one correspon-
dence between pointless topological spaces and pointy locally compact T2 spaces.
Let us now consider the pointless topological space that corresponds to the pointy
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1-dimensional continuum, i.e., the real number line. We know that there is a one-
one correspondence between the pointless regions R in the pointless 1-dimensional
continuum and the regular closed sets of real numbers. Given this fact, the obvious
way to try to put a measure on the pointless regions in the pointless continuum is
to identify the measure of any pointless region R with the Lebesque measure of the
corresponding closed regular set of real numbers P R. The problem now is that this
will turn out to yield a measure on the pointless regions which violates countable
additivity. We can see this by looking at a “Cantor-set,” or rather, the complement
of a Cantor set.

Start with the set [0, 1]. Call this set S0. It is a regular closed set with Lebesque
measure 1. Now consider the middle quarter of this set, i.e., the set [3/8, 5/8]. Call
this set S1. S1 is a regular closed set with Lebesque measure 1/4. Now consider the
set S2 which consists of two parts which fill the middle of the gaps left by S1 and
which has Lebesque measure 1/8. That is to say S2 = [7/32, 9/32]∪[23/32, 25/32].
Keep on doing this. That is, set Sn has parts which are slotted halfway between all
the parts of all the previous sets, and Sn has half the Lebesque measure of set Sn−1.
Since each set Sn is a regular closed set, each such set corresponds to a pointless
region Rn in the pointless 1-dimensional continuum. Let us now ask what the fusion
∨{Rn} of all these pointless regions is. Well, by our previous account of the mere-
ology of pointless regions, this is going to be the unique pointless region that corre-
sponds to the regular closed pointy region Cl �{Sn}. The union of all pointy regions
Sn is dense on the set [0, 1]. So its closure is just [0, 1]. So the pointless region
∨{Rn} corresponds to the equivalence class of regions that differs by measure 0
from the pointy region [0, 1].

Now we can see why we are in trouble if we assign measures to pointless regions
by assigning them the Lebesque measure of the unique regular closed regions that
they correspond to. For

∨{Rn} will be assigned measure 1 by this method, while the
measures of the Rn will sum to 1/2. That is to say, this measure will not be countably
additive. This is a terrible problem, for we need a countably additive measure.

Now one might suggest that the problem here is that I simply suggested the wrong
rule for assigning measures to pointless regions. However, not only is there no other
obvious candidate for such a measure, one can in fact prove that there can be no
such measure. That is to say, one can prove that there cannot exist a countably
additive measure that is defined on every element of an algebra if that algebra is
isomorphic to the algebra of closed regular regions of a continuum.5 So our attempt
to do physics in this kind of pointless topological space is in big trouble. Combined
with the implausibility of our account of the possible states of fields in this kind of

5 This is so because the algebra of closed regular regions of the real line is not “weakly
distributive,” and one cannot have a “semi-finite” countably additive measure that is defined on
every element of an algebra that is not weakly distributive. A measure is said to be “semi-finite”
if every element that has infinite measure has a part that has finite measure. For the definition of
weak distributivity and a proof of the fact that one cannot put a semi-finite measure on an algebra
that is not weakly distributive, see Chapters 32 and 33 of Fremlin (2002).
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topological space, this provides us with a good reason to try our luck instead with
the measure theoretic approach to pointless spaces.

11 The Measure-Theoretic Approach to Pointless Spaces

Let’s concentrate on a simple case: the real number line. As before, we are going
to create a pointless space by putting on blurry glasses. On the measure theoretic
approach what we are going to blur out is differences of Lebesque measure 0. In
order to do that, we first have to restrict ourselves to Lebesque measurable sets. So
let’s start by restricting ourselves to the Borel sets. One gets the collection of all
Borel sets on the real line by starting with the collection of all open intervals (open
sets of the form (a, b) for any real numbers a and b), and closing this collection up
under complementation, countable union and countable intersection. Now let us put
on our blurry glasses and define pointless regions R of the pointless real line to be
equivalence classes of Borel sets of the pointy real line that differ up to Lebesque
measure 0. Note that forming such equivalence classes preserves complementation,
countable union and countable intersection. Indeed one can show that the algebra of
such equivalence classes is a complete Boolean algebra, i.e., a standard mereology
(with a null region) which is closed under arbitrary fusion. (See Sikorski, 1964,
pp. 73–75.)

As before we would like to be able to recover standard physics, and we would
therefore like to be able to recover a large collection of pointy functions from
pointy space to a pointy field value space from some suitable collection of mappings
between the corresponding pointless spaces. Luckily there already exists a nice and
well-known account of how to do this. In particular, one can prove the following (see
Sikorski, 1964, § 32). There exists a one-one correspondence between equivalence
classes of pointy “Borel-measurable” functions from real line A to real line B that
differ on up to Lebesque measure 0 sets of points, and “σ -homomorphisms” from
pointy regions on the pointy real line B to pointless regions on the pointless real line
A. A function is said to be “Borel measurable” if it sends Borel sets to Borel sets.
A mapping h between Boolean algebras that are closed under countable union and
intersection is said to be a “σ -homomorphism” if:

1. h(¬R) = ¬h(R)
2. h(

∨

Ri ) = ∨

h(Ri ), for any countable collection {Ri }
3. h(

∧

Ri ) = ∧

h(Ri ), for any countable collection {Ri }.
That is to say, if we make the very simple and natural assumption that the

state of a pointless scalar field in a pointless continuum (the above generalizes to
n-dimensional continua) can be given by a σ -homomorphism from pointy value
ranges to pointless regions in space, then we can recover all Borel measurable pointy
functions (including highly discontinuous ones) up to differences of Lebesque mea-
sure 0. This is a great result. Not only can one recover all the functions that one
could reasonably be expected to ever need in physics, one can also only recover
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these functions up to the kind of differences that one would expect not to correspond
to real differences in nature.

What about topology though? We have just put a measure on an atomless mere-
ology of pointless regions, but that tells us nothing about which pointless region is
connected to which pointless region. For, loosely speaking, cutting out a segment of
the real line, and pasting it in somewhere else along the real line does not alter the
mereology of the real line, nor the measure-theoretic structure of that mereology.
So we need to add a topology separately. How could we do that? Well, what we
could try to do is to start with the pointy real line, and then use its pointy topology
to define a topology on the pointy real line which is invariant under differences of
up to Lebesque measure 0. Let’s try that.

Let’s say that pointy Borel sets A and B are “connected” if and only if there
exists a point p such that any open set containing p has an overlap of non-zero
measure both with A and with B. And let us say that pointy Borel set A is “limited”
if and only if for some compact Borel set B we have that A ∩ Complement(B) has
measure 0.

Clearly these definitions are invariant under differences in regions A and B up
to measure 0. So we can use it to define a topology on the pointless regions of the
pointless real line. The resulting structure will satisfy Roeper’s axioms A1 through
A9, but it will violate axiom A10. Let me remind you what this axiom says: If Ra is
limited, Rb is not the pointless null region, and Ra is not connected to the comple-
ment of Rb, then there is a pointless region Rc which is non-null and limited, such
that Ra is not connected to the complement of Rc, and Rc is not connected to the
complement of Rb.

To see that this axiom fails consider a Cantor-type pointy set, for instance the
pointy set B = (0, 1) ∩ Complement

⋃

(Sn) where the Sn are the gap-filling sets
that I defined in the previous section. Set B is a measure 1/2 Borel set, so we can
consider the corresponding non-null pointless region Rb to which it corresponds.
Now let Ra be the null region. Ra is limited and not connected to the complement of
Rb since the null region is not connected to anything. So there should be a non-null
and limited Rc such that Rc is not connected to the complement of Rb. Now the com-
plement of Rb is the union of three pointless regions: {−∞, 0}, ⋃

Rn , and {1,∞}.
Now, any pointy non-null open set has an overlap of non-zero Lebesque measure
with any pointy set in the equivalence corresponding to this pointless region, so this
pointless region is connected to every non-null pointless region. So there cannot be
such an Rc.

The problem is the following. The basic idea of axiom A10 is that there is a
topological notion of pointless region R1 being “strictly inside” pointless region R2.
The idea is that R1 is strictly inside R2 if R1 is disconnected from the complement
of R2. And then the idea of “pointlessness,” or the idea of “non-atomicity,” suggests
that if R1 is strictly inside R3 then there ought to be an R2 such that R1 is strictly
inside R2 and R2 is strictly inside R3. In particular for any non-null R there should
be a non-null region R′ which is strictly inside R. This axiom fails given the way
that I have defined connectedness on the measure theoretic approach, since there are
Cantor type non-null regions such that there are no regions that are strictly inside
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such a Cantor type region, since the complement of such a Cantor type region is
connected to every non-null region.

Now one might think that the failure of this axiom shows that we do not really
have a pointless space. However, the fact that our space is pointless is still unam-
biguously represented in two different ways:

1. The algebra of regions is non-atomic.
2. Other than the null region, every region has non-zero measure, and for every

non-zero measure, no matter how small, there are regions that have that measure.

So I am not terribly worried about the failure of axiom A10. However, it is inter-
esting to note that the fact that there exists a pointless region Rb corresponding to a
pointy Cantor set shows that one should not think that each pointless region can be
decomposed into a collection of extended “solid islands.” The pointless region Rb,
for instance, is not so decomposable. Ah well, so be it.

There is a question that I have not yet answered. Namely: to what extent does a
measure algebra with a topology satisfying axioms A1–A9 uniquely correspond to
a pointy topological space plus measure? Part of the answer is well known: every
atomless separable measure algebra is isomorphic, and hence corresponds uniquely
to the mereology of the continuum with the Lebesque measure on its Borel alge-
bra. (See Royden, 1968, Ch. 15.) But I do not yet know to what extent the point-
less topological structure uniquely determines the corresponding pointy topological
structure. So there is interesting work left.

And, of course, this is only a beginning. We also need to add differential structure
and then metric structure in order to be able to do modern physics. But that is work
for the future. For now let me simply conclude that the measure theoretic approach
to gunky, or pointless, spaces is the most promising.
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Chapter 17
Pitholes in Space-Time: Structure and Ontology
of Physical Geometry

Robert DiSalle

1 Introduction: The Philosophy of Space-Time
and the Foundations of Mathematics

The philosophy of space and time did not begin with Newton and Leibniz, but
there are perfectly good reasons why contemporary discussions see their origin in
the controversy between those two. On the one hand, the issues explicitly raised
between them—especially, and most obviously, the epistemological and method-
ological questions surrounding Newton’s theory of absolute space and motion—
have never lost their relevance to the continuing evolution of physics. On the other
hand, in different but equally unprecedented ways, they saw the question of the
nature of space and time as part of a larger set of deeply interconnected questions,
not only in the foundations of physics, but also in metaphysics, epistemology, and
the foundations of mathematics.

To approach these questions as a seamless whole is a doubtful prospect. In the
case of Newton and Leibniz, it involved theological and even psychological contro-
versies, among others, with which one would hardly wish to burden a twenty-first
century discussion of the philosophy of natural science. Kant, perhaps, had a sim-
ilarly broad perspective on the epistemology and metaphysics of mathematics and
physics; his transcendental account of space and time enabled him to exclude some
of the philosophical questions (particularly concerning God and the soul) that had
preoccupied Newton and Leibniz, and to integrate the scientific and philosophical
aspects of space and time on the basis of sensible intuition. It is arguable, however—
if not obvious—that the very simplicity of Kant’s view is one of its fatal limitations.
A view so neatly bound up with Euclidean geometry and Newtonian physics, and
with the intuitive constructive procedures that form the epistemological basis of
both, could hardly survive the dramatic evolution of mathematics and physics in the
nineteenth and twentieth centuries. Given this situation, the dominant line of philo-
sophical response to non-Euclidean geometry and post-Newtonian physics seems in
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retrospect to have been a natural one: the mathematical theory of space and time
came to be seen as the theory of a certain kind of formal structure, independent of
its empirical origins or, indeed, any intuitive content; the connection of such unin-
terpreted structures with experience came to be seen as determined by conventional
choice.

This view dominated the philosophy of space and time in the twentieth century,
to the extent that its proponents, the logical empiricists and their sympathizers, were
the dominant voices in the philosophy of science generally. But it was not the only
significant view. Hermann Weyl, in particular, suggested that the space-time geom-
etry of general relativity, as represented in the theory of Riemannian manifolds,
retained a profound link with intuitive conceptions of space and motion, a link
which could be illuminated by deeper analysis of the nature of the continuum. In
this respect, Weyl can be seen as revisiting some of the epistemological and meta-
physical aspects of the philosophy of space and time that were of such concern to
Newton and Leibniz, and as integrating concerns in the foundations of physics and
mathematics in a similar way.

Even after the logical empiricist view has receded from prominence, an approach
such as Weyl’s remains outside the main currents of the philosophy of physics.
Yet the study of the continuum, in light of continuing work in the foundations of
mathematics as well as physics, may yet offer some insight into the metaphysics of
space and time. It is, moreover, a project that has been taken up, with characteristic
insight and enthusiasm, by John Bell. It has been the third most important subject of
conversation between us over many years—after atonal music and film noir—and
it is a privilege to be able to offer some critical reflections on its early history, in
John’s honour.

My aim is to revisit some Leibnizian themes regarding the ontology of space and
time and their connection with his study of the continuum. Considered as arguments
against Newton’s theory of absolute space, Leibniz’s celebrated arguments against
the reality of space are not as cogent, or even as apposite, as they have generally
been taken to be. Considered as arguments from the foundations of mathematics,
however, bearing on the general idea of space as a substance, they have profound and
surprising implications for ongoing discussions about the ontology of space-time in
modern physics.

2 Origins of an Ontological Problem

The philosophical controversy between Newton and Leibniz may be said to have
begun with Descartes, since it was against Descartes’ account of space and motion—
of space as essentially identical with body, and of motion as displacement relative to
contiguous bodies—that Newton was chiefly reacting. But the classic philosophical
question about space and time, the one that came to dominate subsequent discus-
sion, was framed most explicitly by Leibniz: Are space and time real things, or
merely ideal, abstracted from the spatial and temporal relations among real things
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and events? The distinction appears to be a fairly clear one. We ought to be able
to distinguish between the real existence of, say, two individual brothers, and the
merely ideal existence of “the pair” of them, or of the abstract relation “brother-
hood.” In the philosophy of modern physics, at least since the time of Mach, it has
seemed obvious that this question corresponds to an empirically motivated ques-
tion of reduction: space and time, especially as they appear in Newton’s theory of
absolute space and time, are essentially hypothetical theoretical entities whose evi-
dential basis is the set of spatial and temporal relations that we directly observe and
measure; the question is whether these entities are simply reducible to the empirical
relations. No one who views the issues from a modern perspective, however, can see
the question in such simple terms.

For one thing, it was easier to believe before the nineteenth century that spatial
and temporal relations are simply given to us as raw material, as unproblematic
facts from which to abstract a spatial or a temporal structure. Through the work of
Helmholtz and Poincaré, however, it became clear that a conception of the spatial
relations among things is already a fairly theoretical conception. It is made possi-
ble only by simple, but nonetheless peculiar, assumptions about the possibilities of
certain kinds of motion. Then, too, it was easier in the nineteenth century to think
of spatial relations as, at least, epistemologically unproblematic, than it became in
the aftermath of special relativity. With the advent of special relativity, those rela-
tions, along with temporal intervals, were shown to depend on empirically dubious
assumptions about simultaneity. In short, to the extent that the “relationalist” view
of space and time was supposed to be an epistemological thesis, arguing from the
supposition that geometrical relations are better and more immediately known than
the geometrical structure of space itself, it has to be seen as a naive precursor to, if
not a historical casualty of, the emergence of modern mathematics and physics.

For another thing, to translate the classic Leibnizian question into twentieth or
twenty-first century terms is not so easy as it is sometimes taken to be. Setting
aside the epistemological difficulties for the moment, it is at least straightforward
to ask whether “absolute space” can be reduced to spatial relations. But if there
is a meaningful question whether “absolute space-time” (however one understands
this) can be reduced to spatio-temporal relations, it is not necessarily analogous to
the older question. The older question made sense because the structure in ques-
tion involved assumptions that went beyond what is contained in the (supposedly
fundamental) underlying relations: to the structure of momentary relative positions,
the structure added the notions of same position at different times, or, in the weaker
case of a Newtonian space-time, sameness of velocity over time. In other words, the
structure known as “absolute space” is essentially a space-time structure over and
above the set of merely spatial relations at any given temporal instant. The structure
that defines the spatio-temporal relations in a relativistic space-time, by contrast, is
the space-time itself. In the Newtonian case, a class of geometrical relations could
be defined by a structure that did not, by itself, impose any kind of dynamical con-
straint on possible motions (though one could argue that even those geometrical
relations impose upon the motions of physical things in ways that hardly seem com-
patible with the notion that the structure is only an abstraction from some actual
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relations: consider, for example, that there is a unique straight path connecting any
two points). Therefore the structure in virtue of which relative motions are well
defined stood independent of the structure on which privileged states of motion
could be defined. But in relativistic space-time, the structure in virtue of which
objects have spatio-temporal relations is inseparable from the dynamical structure
in virtue of which they have states of motion. This is a specific form of a more
general point about space-time theory as it has developed from Newtonian physics
through general relativity: that space-time structure is an essential part of dynamical
theory, as understood classically; and that if it were to be eliminated, it would not be
through reduction to an epistemologically more basic set of relations, but through
replacement by another sort of theory altogether, such as a quantum theory, whose
fundamental structure is of a radically different sort.

3 The Ontological Problem in Its Present State

The last point is not particularly new, and was pointed out very clearly in (Weyl,
1927); see also (DiSalle, 2006). It suggests that the most-discussed arguments of
Leibniz against Newton, from Leibniz’s correspondence with Clarke, are completely
misdirected—at least, if they are judged as arguments against the theory of space
and time presented in Newton’s Scholium on space, time, and motion. That theory
defines absolute space as a structure essentially connected with time, in such a way
that motion is distinguished from rest, i.e. that one can determine the same place
in absolute space at different times, and therefore the absolute translation of a body
from one place to another. But the familiar “indiscernibility” arguments urged by
Leibniz in his correspondence with Clarke (Leibniz, 1716, p. 364) concern only spa-
tial symmetries: the universe would not be different if the locations of all its contents
were shifted by some given distance, or reflected East to West, or rotated about a
given axis. Indeed, Newton’s theory, in principle, strictly requires such symmetries,
since they are the symmetries of the Euclidean space with which the theory begins.
The crucial question about absolute space is whether, in fact, it makes a difference
whether bodies remain at the same place through time, or what their velocities are.
And this is a question whose answer must come from the theory of motion, that is,
from an inherently spatio-temporal theory, not from general considerations on the
symmetry properties of space in itself. It is Newton’s own theory of motion—not
the uniformity of space—that, by virtue of its implicit relativity principle, makes
motion and rest “indiscernible” and absolute space a questionable structure.

For our present purpose, it is useful to rehearse the evident defects of the classic
Leibnizian arguments in order to get a clearer view of the genuine insight behind
them. Newton’s arguments in the Scholium and Leibniz’s arguments to Clarke
are essentially at cross-purposes: Leibniz is concerned with an ontological mat-
ter which, to Newton, was entirely separable from the structural question that the
Scholium tries to answer, i.e., what sort of spatio-temporal structure is presup-
posed by the dynamical theory. No doubt part of the reason for confusion is the
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weakness in Newton’s answer, which consists in the assertion that “absolute space”
is necessary for a theory that, in fact, only requires the weaker structure that we
know as “Newtonian space-time” (cf. (Stein, 1967)). Thus an equivalence class of
spaces (the inertial frames) ought to replace the single privileged “immobile” space.
But the more interesting reason is Leibniz’s preoccupation with the notion of sub-
stance, and his concern with whether space can possibly satisfy this notion—and, if
it can’t satisfy the notion of substance, whether there is any sense in the claim that
it has a real existence.

One could dismiss these concerns, with a certain degree of plausibility, by tracing
them to the peculiarities of Leibniz’s own account of substance. On that account,
a genuine substance is a complete individual with a complete individual concept:
the specification of an individual is the specification of everything that is truly
predicated of that individual. The true concept of an individual, then, is the set
of all predicates that distinguish it from every other actual or possible thing, and
therefore specifies, in effect, its relations to the entire universe, past, present, and
future. On this account it is indeed difficult to see how the indistinguishable parts of
space could possibly qualify as substances, but the account of substance is itself
not so easy to accept. It places the “principle of the identity of indiscernibles,”
which we are inclined to treat as a reasonable epistemological condition on any
scientific metaphysics—no real distinction where there is no empirically discernible
difference—in a fairly peculiar light, as denying the possibility of real things that
differ only numerically. The modern physicist might, after all, reject the identity
of indiscernibles in the form that Leibniz intended it; it is one thing to eliminate
theoretical distinctions that make no discernible difference, but it is quite another
thing to insist that no two things differ only numerically: arguably a central fea-
ture of the atomic theory is to reduce the qualitative differences among types of
matter to numerical differences of atomic structure, or arrangements of generally
indiscernible fundamental particles.

It is less straightforward, however, to dismiss Leibniz’s scruples about whether
space deserves to be called a substance, and the continuum of space to be thought of
as a collection of individual points. For these arise from the fundamental nature of
the continuum, and from Leibniz’s appreciation of the distinction that this implies
between space and any of the things that we are inclined to think of as real. For a
real thing is a whole composed of its actual parts, whereas the parts of space are
divisions that we create in thought:

But space, like time, is not something substantial, but ideal, and consists in possibilities, or
in an order of coexistents that is in some way possible. And thus there are no divisions in
it except those made by the mind, and the part is posterior to the whole. (Leibniz, 1705,
p. 278)

It follows that the points of space, in particular, must be thought of as mere extrem-
ities, or limits, of lines in space, and emphatically not as the elementary parts of
space. Understanding them in the latter sense leads inevitably to paradoxes like
those of Zeno:
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Regarding indivisibles, when by that is meant the simple extremities of time or of a line, we
are unable to conceive new extremities in them, nor parts either actual or potential. Thus
points are neither large nor small, and no leap is needed to pass them. The continuum,
however, though it has such indivisibles everywhere, is not composed of them, as seems to
be supposed by the objections of the skeptics [i.e. the paradoxes], in which, in my opinion,
there is nothing insurmountable. (Leibniz, 1692, p. 416)

From reflections of this sort we gather that, in opposing “absolute space,” Leibniz
was not directly concerned with the theory of space and time, and of the dynamical
connection of space with time, that is proposed in Newton’s Scholium; indeed,
through his own dynamical assumptions he may be thought of as presupposing
such a theory himself (cf. (DiSalle, 2002)). His concern is that “absolute space”
is assumed to be a real thing, in spite of having the properties of something ideal—a
totality of parts, in spite of having the properties of a genuine continuum.

One deceives oneself in wishing to imagine an absolute space that is an infinite whole
composed of parts; there is no such thing, it is a notion which implies a contradiction, and
those infinite wholes, with their opposed infinitesimals, are only in place in the calculations
of geometers, just like imaginary roots in algebra. (Leibniz, 1704, p. 145)

Beyond the empirical indiscernibility of spatially distinct states of affairs, Leibniz
is pointing to the mathematical and conceptual incoherence of any view of space as
a genuine substance. Of course this is not a novel observation about Leibniz’s views
of the continuum. It is worth noting, however, that the problem of the composition
of the continuum has a bearing on the physics of space and time that transcends its
role in Leibniz’s controversies with Newton. For this problem is the point on which
Leibniz’s view engages, not the empirical arguments of the Scholium, but that very
conception of the reality of space that characterizes modern substantivalism: the
differentiable manifold as the ontological basis of space-time.

It is on this last point, moreover, that the “substantivalist” of modern times goes
beyond anything that Newton himself was willing to defend. While the Scholium
carefully avoids such ontological matters, focusing only on the structural claims
that Newton (not entirely correctly) regarded as underpinning the laws of motion,
the essay De Gravitatione, where Newton directly addresses such matters, casts
doubt on their relevance. His understanding of the nature of space focuses on those
of its features that experience and geometrical reasoning suggest to us, whether
or not we understand what kind of thing it is. What we learn from geometrical
reasoning is that the points of space are not the parts of space; when Newton speaks
of the parts of space, he means “places,” which are, appropriately, not very carefully
delineated. In fact the delineation of places is simply by the construction of figures,
whose boundaries—planes, lines, and, especially points—are mere extremities or
“limits” (Newton, 2005, p. 22). It would appear, then, that Newton’s view has more
in common with Leibniz’s than is generally supposed (cf. (DiSalle, 1994)). It is true
that, while Newton does not, any more than Leibniz, think of space as a substance
composed of its points, he does not therefore conclude that space is something ideal.
He concludes, instead, that space has “its own manner of existing that fits neither
substances nor accidents.” He even suggests that the usual notion of substance is
“unintelligible.” In this way the unpublished De Gravitatione reinforces the view
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that appears to be implicit in the Scholium, that the theory of absolute space—
considered simply as a theory that space-time has a certain “absolute” structure—is
independent of a substantivalist or any other interpretation of its ontological foun-
dation. It can be defended, therefore, much as Newton defended his theory of grav-
ity against scruples regarding action at a distance: as a theoretical description of a
notable feature of nature, a description that can be empirically applied and evaluated
even in the absence of any satisfactory view of its ultimate metaphysical basis. Its
modern counterpart is, perhaps, “structural space-time realism” (cf. (Dorato, 2000))
rather than substantivalism. What the latter has especially in common with Newton’s
view is the emphasis on the epistemology of physical geometry (cf. (DiSalle, 1995)):
questions about the nature of space-time are, ultimately, questions about the empir-
ical meaning of claims that the world has a spatio-temporal structure of one kind or
another, and about the empirical investigation of the truth of such claims.

One might plausibly argue, however, that such as position is not a considered
“middle course” between substantivalism and relationalism, as is sometimes sug-
gested. Especially (but not only) in the case of Newton himself, it could be seen as
the dismissive move of one criticizing a philosophical tradition from a perspective
that fails to take the traditional questions seriously; perhaps one should say that
Newton merely threw up his hands at a difficulty that, to someone more seriously
interested in ontological questions, could not be honestly ignored. The basis for
the continuing ontological discussion, then, is not a debate between modern-day
Leibnizians and modern-day Newtonians; rather, it is more like a debate between
the modern day Leibnizian and a sort of philosopher—the substantivalist—who
shares some of Leibniz’s ontological concerns in a way, and to a degree, that
Newton did not. On both sides, it is assumed that a realist view of space requires
a coherent account of its ontological foundation. The substantivalist therefore faces
a challenge that Newton’s theory does not, namely, to defend the individuality of
space-time points against Einstein’s “hole argument,” the modern counterpart of
Leibniz’s indiscernibility argument (cf. (Earman and Norton, 1987; Earman, 1989;
Rynasiewicz, 1992)).

This is one reason for the emergence of “structural space-time realism” as an
alternative. Another alternative is a “sophisticated” version of substantivalism that
simply accepts the equivalence of indiscernible spatio-temporal situations. It is quite
understandable that a modern sympathizer with relationalism would interpret this
move as essentially a concession of defeat, a “pale imitation of relationalism” (Belot
and Earman, 2001); for similar reasons, though with even less justice, “structural
space-time realism” has been referred to as “relationalism in disguise” (cf. (Dorato,
2006)). While it hardly seems worthwhile or relevant to dispute about the names
given to such positions, I think that there are good historical and conceptual reasons
to resist going so far. It makes sense to say that there are varieties of realism about
space-time that a relationalist ought to be able to accept. But to put it this way
is to acknowledge that accepting such a position requires a significant concession
from relationalism as well, from the perspective of the historic motivations for a
relationalist view. In fact, the “relationalist” who can see her own position reflected
in “structural space-time realism” must have conceded a great deal already. For
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there are three classical philosophical elements of relationalism that this acceptance
of structure implicitly denies:

Abstraction There is no reasonable sense in which a relativistic space-time
structure can be thought of as a mere abstraction from a collection of actual
or possible spatio-temporal relations, as originally demanded by Leibniz.
Space-time is the structure in virtue of which certain relations can be con-
sidered possible or actual.

Reduction there is no reasonable sense in which the structure is reducible to
actual or possible relations, for the same reasons which told against the claim
of abstraction.

Relativity There is no reasonable sense in which relationalism, taken in this
sense, underwrites those arguments for the relativity of motion that were,
after all, the paramount scientific theme of relationalism in its classical sense.
Indeed, on this account of relationalism, one can perfectly well have a rela-
tionalistic theory of Newton’s “absolute space” and “absolute motion,” in
which neither is reducible to more basic relations, but both are fundamentally
incorporated into a relational structure.

Rather than say that one position is an imitation of the other, one ought to say that
the correct position contains essential reasonable elements of each classical position.
But to call this just a reasonable middle ground between the classical positions does
not do justice to this view itself, nor to the nature of the difficulties with the classical
positions. For the reasonable elements are those which the classical positions dis-
torted in order to satisfy their respective peculiar ontological demands. In each case
there are ontological arguments being made that only distract from the problem of
understanding how space-time structures function in physics.

4 The Structure of Space-Time and the Ontology
of the Space-Time Manifold

From considerations like the foregoing, it appears that a realistic view of space-
time can be, and perhaps should be, detached from a substantivalist ontology. It is
worth considering, therefore, why the latter in some form or other remains central to
defending realism against relationalism in its classic form. There is at least one good
philosophical reason, and one good mathematical reason. On the philosophical side,
there is a characteristic modern account of the ontology associated with a physical
theory that goes beyond the general methodological point that we should take the
world to be more or less as the best physical theory says it is (a view compatible with
“structural space-time realism” in any case); on this account, a theory implies—or at
least entitles us to—specific ontological commitment to the entities that the theory
talks about. In short, if the theory is true, then the terms that occur in the theory must
have genuine referents (cf. (Quine, 1953)). From this philosophical point of view,
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the mathematical fact that general relativity treats space as a differentiable manifold
(assuming that general relativity is a successful theory) establishes the differentiable
manifold as a legitimate entity, and the fact that the theory quantifies over space-time
points establishes the latter as part of the theory’s ontology. That is to say, in a
mathematical framework in which any number of space-time theories—Newtonian
or relativistic—can be expressed in the form of tensor fields, then it would seem
to be sensible to regard the generic manifold as representing space-time itself, i.e.,
as the object whose structure is the common subject-matter of those theories just
because it is the domain on which the tensor fields are defined.

From this point of view, it seems obvious that if the general theory of relativity
is our best theory of space-time, and as such the most reliable guide to the meta-
physics of space-time, then the center of our metaphysical attention ought to be the
differentiable manifold, which has at least a prima facie claim to be the ontological
basis of the theory. But if we look back over the evolution of space-time theory, and
reconstruct earlier theories (Newtonian and Minkowskian space-time theories) in
the formalism of differentiable manifolds, then it seems easy and natural to identify
space-time with the manifold, and to interpret the question, “What is the structure
of space-time?” as the question, “What geometrical objects does physics attribute
to the differentiable manifold?” The claim of “structural space-time realism,” that
assertions about the real structure of physical geometry can be interpreted realisti-
cally on independent grounds, does not by itself determine the significance of the
manifold on which our mathematical account of such structures depends.

It seems reasonable, then, given the history and continuing prominence of
Leibnizian indiscernibility arguments such as the “hole argument,” to pursue an
understanding of the differentiable manifold, and the individuality of its points, that
answers the relationists’ epistemological challenge. One can consider whether the
points of the space-time manifold can find a principle of individuation in the struc-
tures imposed on the manifold, that is, can “inherit” an individual identity from the
structures that are built upon them. This effort has an obvious and sound motivation,
reminiscent of Newton’s attempt to argue that the parts of space get their identity
from the order of situation of which each forms a part. This is something more
subtle than “manifold plus metric substantivalism”: it seeks to show that geomet-
rical structures determine individuating properties of space-time points in a way
that defeats the arguments from indiscernibility. “Metric essentialism” is one plau-
sible form that such an effort might take, suggesting that points of the space-time
manifold have essential metrical properties (cf. (Maudlin, 1990, 1993; Butterfield,
1989)). Alternatively, (Stachel, 2002, 2005) proposes that the structures defined on
the space-time manifold individuate the points of the manifold which, in themselves,
have no individuating features:

The points of space-time have quiddity as such, but only gain haecceity (to the extent
that they do) from the properties they inherit from the metrical or other physical
relations imposed upon them. In particular, the points can obtain haecceity from the
inertio-gravitational field associated with the metric tensor: For example, the four non-
vanishing invariants of the Riemann tensor in an empty space-time can be used to indi-
viduate these points in the generic case. (Stachel, 2005, p. 7)
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Such proposals share a sound motivation with “structural space-time realism,”
namely, to defend a realistic view of space-time against the more doubtful claims of
relationalism.

Yet one may doubt whether this building-up of an individuating structure—as
one might say, heaping Pelion upon Ossa in order to ascend from a featureless
point in the manifold to a determinate element in a relational structure—actually
can perform the task required of it. The various arguments from indiscernibility
suggest that it is not points, but equivalence classes of points, that are speci-
fied by such means, that is, identifying points that belong to equivalence classes
under the relation of indiscernibility. In that case the sort of specification that
the structure makes possible hardly seems to bestow an individual identity on
the points. I think, however, that the indiscernibility arguments are not the most
important neo-Leibnizian arguments. Even if they could be overcome by some
method of individuation, the deeper ontological question would remain: can such
a specification of points ever give us an ontological basis for the space-time
continuum?

Here is another way to raise the issue. Philosophical debates over indiscernibil-
ity, whatever confusions have surrounded them, have one fairly clear question at
their heart: how large is the set of equivalent structures, or, how wide is the group
of transformations that respects whatever structure is supposed to be invariant? If
by an individuating structure, one means something like the way in which parts
of space-time can differ in the curvature assigned to them by the local variation
of the curvature tensor, then one can say at least of a variably-curved space-time
that its parts have individuating features. If one, going further, took the existence
of such features as necessary for thinking of something as substantially existing,
then perhaps one could say that a curved space-time is immune to a certain line
of relationalist argument that tells against spaces with non-trivial symmetries. One
might therefore suggest that a non-symmetric space-time has a claim to be a real
substance, while the properties of symmetric spaces require us to treat them as
merely ideal. Yet there is both a Newtonian and a Leibnizian argument to resist
this way of thinking. On the Newtonian side—that is, on the side of physical
geometry as an object of scientific knowledge, independent, as Newton suggested,
of how well we understand its ultimate ontological significance—whether space
has any non-trivial symmetries ought to be considered an empirical question. If
we identify gravity and inertia, and therefore re-interpret the Newtonian gravita-
tional field as the variation of space-time curvature with mass-energy distribution,
surely this is because of the striking empirical fact about gravitation identified in
Einstein’s equivalence principle. Similarly, if we expect of a quantum theory of
gravity that it maintain the identity of gravity and inertia, instead of treating grav-
ity as a field (like other quantum fields) defined against a flat space-time back-
ground, our motivation ought to be this same empirical fact. By the same token,
an experimental violation of the equivalence principle would provide at least a
prima facie motivation to treat gravity on a footing with the other quantum fields.
One might be tempted to think of the latter as a philosophically retrograde step,
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but it would make sense if the empirical basis of Einstein’s philosophical argu-
ment for space-time curvature—the equivalence principle—turned out to be merely
approximate.

To see the Leibnizian reason, we must look beyond the familiar epistemological
arguments, to one arising from Leibniz’s arguments about the nature of the con-
tinuum. The question is not merely the one that seems so evidently relevant to the
philosophy of physics, whether the empirical indistinguishability of the points of
space-time is compatible with the idea that they form a substance in the sense of the
contemporary debate. It is, rather, whether the individuation of the parts of the con-
tinuum makes mathematical sense, or provides a sensible ontological interpretation
of the space-time manifold. The original significance of Riemann’s notion—that
which made it the mathematical basis for the theory of variably-curved spaces—is
not so much connected with the notion of a collection of points, such as one begins
with in the treatment of a differentiable manifold from a set-theoretic point of view.
Rather, the significance of the manifold is connected with the Riemann’s notion of
a “domain of variability,” or of a collection of domains of variability comprising
the separate dimensions of the space (cf. (Riemann, 1867)). In other words, the
Riemannian idea is that of a multiplicity (aggregate, variety—or manifoldness, to
use Clifford’s literal translation of mannigfaltigkeit) of independent but conjoined
continua. Arguably, the set of locations that are thus constituted—the ordered n-
tuples of real numbers that make up the points of the manifold—are not conceptually
or ontologically prior to these continuous domains of variability. If the manifold is
characteristically thought of as a particular kind of topological space, with topolog-
ical features defined on an underlying set of objects, this is not because the latter is
taken as a well-understood metaphysical foundation for physical geometry. Rather,
it is because it is on the basis of set theory, and the set-theoretic reconstruction of
the differential calculus, that the usual notions of differential geometry are given a
rigorous formulation. As Russell noted (Russell, 1903), it is this rigorization that
first placed the study of the continuum on a logically coherent conceptual founda-
tion, and set aside those puzzles about the continuum with which Leibniz had to
contend. But this fact does not by itself require us to interpret the point-set literally
as an ontological foundation for space or space-time.

From these Leibnizian reflections, we are led to ask the question whether the
space-time continuum has an ontological basis in the collection of its points. It is
an obvious and useful way of speaking to say, of any Riemannian manifold, that
it has a certain metrical structure at any point. Then, it would seem, one ought to
be able to speak of the points as individuated by their “essential metrical proper-
ties,” as suggested above. But what are these essential properties that distinguish
the points of space-time? If they are metrical properties, they correspond to the
metric “at a point,” which, intuitively, yields the inner product of “infinitesimal”
vectors at any point. We know, however, that at a point there are, strictly, no nonzero
vectors. Hence the familiar mathematical way of speaking, in which the metric is
said to operate upon vectors in the tangent space to a given point. In the case of a
sufficiently uniform space, such as Minkowski space-time, since we can treat the
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entire space-time as a vector space, no ambiguity need arise: the metric determines
the interval between any two space-time points, and thereby the length of a vector
lying in the space. But in a non-uniform space-time of the sort that is typical of
general relativity, the fact that the metric operates in the tangent spaces has a deeper
significance. Intuitively, the metric of such a space exhibits its “local” structure and
its variation over finite regions. In mathematical strictness, however, all points are
exactly the same. So it is not in the space-time manifold, but in and among its tan-
gent spaces, that the interesting work of classical differential geometry is done. It is
striking to find, as John Bell has often noted, that a classic text on general relativity
notes this very distinction, and (rightly!) warns the reader not to misinterpret the
rigorous description of the space-time metric as a literal account of vectors in the
manifold (cf. (Bell, 2005, p. 317; Misner et al., 1973)).

This is one compelling motivation for the exploration of synthetic differential
geometry, whose conceptual structure and philosophical significance John Bell has
done so much to illuminate (Bell, 1998, 2005). By analogy to the role that non-
standard analysis plays in relation to the differential calculus, synthetic differential
geometry treats the curved space-time manifold, not through the tangent spaces to
its points, but “intrinsically” through the behavior of its smallest “flat” parts. The
metric thus operates on actual infinitesimal vectors lying in the space-time, which
thereby exhibits the structure of a true continuum. Of course, the usual rigorous pre-
sentation may well remain the standard one, and perhaps even the most useful one,
in spite of the greater intuitive plausibility of synthetic differential geometry. But
the mere possibility of such an alternative formalism ought to give us pause, when
we return to the question of space-time ontology. It suggests that the space-time
point is an ideal limit—much as Leibniz suggested—rather than a genuine part of
space-time. If we take this representation too literally, we are forced to ask, where is
the variable structure of this space, all of whose parts are exactly the same? Indeed,
such a situation raises something like Zeno’s “arrow” paradox for substantivalists:
the curvature of space-time is the variation of its metric from point to point, yet the
metric is precisely identical at every point. This paradox is avoided by the synthetic
representation, in which curvature is directly exhibited by variations in infinitesimal
structures. Perhaps more simply, we can avoid the paradox by carefully distinguish-
ing the mathematical representation from the structure that it seeks to represent. In
either case, the important lesson is that metrical structure is an essential property of
space-time; it is not an essential property of the points of which we may take space-
time to be composed. In Leibniz’s words, “Several people who have philosophized
in mathematics about the point and unity have become confused, for the failure to
distinguish between resolution into notions and division into parts” (Leibniz, 1715,
p. 583; cf. Bell, 2005, pp. 86–90).

To accept this lesson is not to endorse the Leibnizian view as a whole. If Newton
was at fault for failing to provide a coherent ontology for absolute space, Leibniz
must be faulted for confusing the problem of the ontology of space with the prob-
lem of physical geometry—allowing questions about the composition of the contin-
uum to obscure the Newtonian investigation of the geometrical presuppositions of
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dynamics. In the case of Leibniz, the fact that one could think clearly about what
one might call the essential properties of space, but not about the individuality of
its parts—that, indeed, the lack of individuation of its parts is one of those essential
properties of space—implies that one ought to regard it as a merely ideal entity.
Newton, apparently aware of and convinced by these same considerations, is also
convinced by considerations of a quasi-transcendental character that space cannot
be merely “nothing,” but must be some aspect of the real world. Therefore in his
case this peculiar combination of features requires us to acknowledge that space
has a peculiar kind of existence. Here again is an instructive analogy to the case
of universal gravitation: the mode of action of gravity, as proposed by Newton, has
features that on Leibniz’s view cannot belong to any genuine physical interaction;
for Newton, however, these features suggest that gravity may be a natural “power”
of a hitherto-unexpected kind, and that our conception of what is physically intel-
ligible may have to be revisited. A similar revisiting of metaphysical categories is
occasioned by the need to understand spatio-temporal structure as a real feature of
the world, and as a genuine object of empirical study.

A further lesson is to be cautious in applying philosophical criteria for “what
there is.” When we ask whether the terms that occur in the theory “really refer,”
we should be careful to ask, which terms really do occur in the theory? Which
occur, instead, only its mathematical representation? More precisely, which terms
refer to theoretical objects of which the theory gives us, at least in principle, some
empirical grasp, as genuine features of the natural world? Which terms, instead,
are merely descriptive devices that make possible the representation of features of
the world, without themselves being taken literally as features of the world? The
fact that “our best physical theory” employs or quantifies over some set of objects
or structure does not necessarily provide, in any straightforward sense, grounds for
taking the relevant objects or structure to be something real. Philosophically, one
might demand, further, that in addition to invoking or “referring to” that structure,
the theory provide some empirical access to it—provide some empirical means of
individuating its parts, or an empirical description of its structural features. The
potential difficulty of providing such an empirical connection—that it doesn’t nec-
essarily emerge from the fact that the theory “refers to” or quantifies over such
things—can be seen from some familiar problems in the interpretation of modern
physics, for example in discussions of the status of the state vector in quantum
mechanics. In that case it seems fairly obvious that the mathematical apparatus of
a physical theory can make use of objects, perhaps even find them indispensable,
without thereby settling the question of their place in the theory’s ontology. In the
case of space-time, it seems less obvious, because of the longstanding familiarity
of the notion of a space-time point, and because of the rigorous account of the dif-
ferentiable manifold as a point-set. But the implication should be equally clear. The
subject-matter of space-time geometry (in general relativity) is the continuous vari-
ation of the metric over space-time; the points at which its “local” values are given
are indispensable elements of the standard framework in which this subject-matter
is described.
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5 Conclusion: Structure from a Pithole

I would like to close with a note on the title of this paper, and its bearing on the philo-
sophical theme. John Bell and I once spent a weekend ambling around northeastern
Pennsylvania, discussing the individuation of space-time points in an atmosphere
free of distractions. But we could not help being distracted by a roadside sign indi-
cating “the phenomenon that was Pithole”: a nineteenth century ghost-town, relic
of the heroic days of Pennsylvania’s oil industry. Our minds were prepared with
Hollywood images of ghost-towns: deserted store-fronts, saloon doors swinging
open and shut in the breeze, and tumbleweeds doing that for which tumbleweeds
are justly renowned. We were unprepared, therefore, to find that the trace of Pithole
was in fact nothing at all—not a town abandoned to ghosts, as it were, but the ghost
of a town whose features had completely vanished. It was amusing to note the his-
torical markers scattered about the indifferent grass, suggesting that such and such
a structure might have been here or there; we began to suspect that the phrase “the
phenomenon that was Pithole” had a metaphysical resonance that eluded the local
historians who had coined it.

This incident seems to have at least a metaphorical resonance for the metaphysics
of space-time. In the long struggle toward a scientific grasp of space-time struc-
ture, the concept of the differentiable manifold obviously deserves its pre-eminent
place—even if, as seems likely, the successor to general relativity turns out to require
a fundamental structure of a radically different sort. Its conceptual significance lies,
however, in its illuminating treatment of the relations between the infinitesimal
and the large-scale structure, or the local and the global structure, of a space that
is continuously variable. The collection of space-time points, along with the tan-
gent spaces on which we construct a rigorous formulation of the varying metrical
structure, is the mathematical basis for an extremely fruitful representation—not the
ontological basis for our scientific understanding of space-time. In itself, the point is
essentially a “pithole” in space-time, a place from which all structure has vanished,
an entity whose “essential properties” are generic ones that offer no clue to the
physical geometry that the formalism builds upon them. It is space-time itself that
has “essential properties”: one of these is the metrical structure whose symmetries,
or inhomogeneities, can be objects of physical investigation; and one of these is the
continuity in virtue of which we can pursue the analysis of its structure down to the
level of the infinitely small—ideally, to the level of its structure “at a point.” Even
if his criticisms of Newtonian space and time were somewhat misdirected, then,
Leibniz’s strictures against taking this idealization too seriously are instructive. If
there is to be a good reason to regard “the space-time continuum” as a collection of
individuals, it ought to come from physics, e.g., from a quantum theory of gravity
or a theory that incorporates a discrete space, rather than from a peculiarly literal
interpretation of some aspect of the mathematical formalism. This is an especially
compelling point in light of the efforts, of John Bell and others, to show that an
alternative, “pointless” characterization of the continuum is a live possibility, and,
perhaps, even a tool for the eventual construction of quantized space-time (cf. (Bell,
2005, pp. 317–318)).
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It would be an odd, if not an ironic, outcome if what we took to be the ontological
essence of space-time, in general relativity, turned out to be that very feature of
space-time that the successor theory dispenses with. It does not make much sense
to me, I admit, to try to interpret general relativity in anticipation of the theory that
must replace it; it seems to me that this must be done after the fact, when we know
what that theory is, and can then consider in what relation to it general relativity
stands—as some form of limiting case, for example. One could argue, as is done
persuasively in (Belot and Earman, 2001), and as (among others) (Smolin, 2005)
exemplifies, that particular interpretations of general relativity serve as heuristic
principles and motivations in various quantum gravity research programs, but that is
a different matter altogether. What does make sense, at the moment, is to ask in what
ways the empirical success of general relativity—in whatever ways and to whatever
extent it has been a success—may constrain its possible replacements. One could
say, in all strictness, that the only rigid constraint is the demand to reproduce the
successful predictions of general relativity, or even to improve upon them. Alter-
natively, one could argue that certain physical or philosophical insights associated
with general relativity ought to be preserved in any sound successor to it, such as
general covariance or background independence. But from the perspective of phys-
ical geometry, we can suggest that general relativity describes an interdependence
between the structure of space-time and the distribution of matter that—barring vio-
lations of the equivalence principle, or similarly momentous empirical surprises—
a future theory might incorporate, even with a radically different account of the
ontology of space-time than anything suggested by the concept of a differentiable
manifold.
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Chapter 18
A Silly Answer to a Psillos Question

Elaine Landry

In this paper I offer an answer to a question raised in (Psillos, 2006): How
can one speak of structures without objects? Specifically, I use category theory
to show that, mathematically speaking, structures do not need objects. Next, I
argue that, scientifically speaking, this category-theoretic answer is silly because
it does not speak to the scientific structuralist’s appeal to the appropriate kind of
morphism to make precise the concept of shared structure. Against French et al.’s
approach,1 I note that to account for the scientific structuralist’s uses of shared
structure we do not need to formally frame either the structure of a scientific theory
or the concept of shared structure. Here I restate my (Landry, 2007) claim that the
concept of shared structure can be made precise by appealing to a kind of morphism,
but, in science, it is methodological contexts (and not any category or set-theoretic
framework) that determine the appropriate kind. Returning to my aim, I reconsider
French’s example of the role of group theory in quantum mechanics to show that
French already has an answer to Psillos’ question but this answer is not found in
either his set-theoretic formal framework or his ontic structural realism. The answer
to Psillos is found both by recognizing that it is the context that determines what
the appropriate kind of morphism is and, as Psillos himself suggests,2 by adopting
a methodological approach to scientific structuralism.
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1 A Psillos Question

In his most recent paper aimed at challenging the various versions of scientific
structuralism,3 Psillos claims that “(a) structures need objects and (b) scientific
structuralism should focus on in re structures” (Psillos, 2006, p. 3). Borrow-
ing from the philosophy of mathematics literature, Psillos begins by taking a
“system” to be a collection of objects with certain properties and relations, so that
a “structure” is the abstract form of this system (p. 4). Accordingly, this yields the
basic structuralist postulate that

[a]mong the many structures that can characterize a system some is privileged. This is the
structure of this system as specified by the relationships among the objects of the system.
It’s this postulate that renders talk about the structure of system meaningful . . . . This issue
then is what exactly makes a structure privileged. (Psillos, 2006, pp. 3–4)

To speak to this issue of privileging, Psillos next considers the distinction (borrowed
from Shapiro, 1997) between ante rem and in re structuralism, whereby

[a]nte rem structuralism has it that structures are abstract, freestanding, entities, they exist
independently of systems, if any, that exemplify them . . . [and] in re structuralism takes
systems as being ontologically prior to structures: it denies that structures are freestanding
entities. Structures are abstractions out of particular systems . . . . (Psillos, 2006, p. 5)

In re claims about structure are thus to be understood in one of two ways: they are
about a privileged system or about all systems that are so privileged because they
share structure (e.g., are isomorphic). So far so good. However, Psillos next claims
that, in contrast to the ante rem position,

[a]ccording to in re structuralism, there are no extra objects [such as Shapiro’s “places”]
which ‘fill’ the structure. It’s obvious then that the objects that ‘fill’ the in re structures have
more properties than those determined by their interrelationships in the structure. They are
given, and acquire their identity, independently of the abstract structure they might be taken
to exemplify. (Psillos, 2006, p. 5)

I take it Psillos means to point out that, for example, when considering the various
systems that have the natural number structure, say the models of von Neumann
ordinals and the Zermelo numerals, the object 2 will have some properties in one
system that it does not have in the other, for example the property 2 ∈ 4. But as
Benacerraf has shown, this does not mean, as it does for the Fregean, that such
objects have or acquire their identity qua natural numbers independently of their
position in a structure. Indeed for the structuralist4 this means that one ought not
to countenance such objects as things that have independent identity conditions5;

3 Specifically, the versions he considers are: structural empiricism, epistemic structuralism and
ontic structuralism.
4 I am not claiming that Benacerraf advocated a structuralist position; see ( Benacerraf, 1991,
pp. 284–294), where he refers to his position as that of a “formist” and distinguishes it both from
the position of the formalist and the Fregean.
5 Indeed the conclusion for ( Benacerraf, 1991) is that if by “object” we mean thing or individual
that has independent identity conditions, then we ought not to countenance numbers as objects
at all.
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rather, objects are nothing but “positions in a structure,” whatever we then mean
by the term “structure.” So it is simply a mistake to claim that “[m]athematical
structuralism, then does not view structures without objects. It’s not revisionary of
the underlying ontology of objects with properties and relations” (Psillos, 2006,
p. 6). It certainly is revisionary of an ontology of objects qua individuals,6 and
really, that is the whole point. For example, the point is to show that all there is to 2,
or all we need to know of 2, is that it is a position in an abstract system (or structure)
that has the appropriate kind of structure, i.e., that satisfies the Peano axioms. Let
me explain.

Both the in re and ante rem structuralist take objects to be nothing but positions
in an abstract system (or structure), as having no other identity conditions, and so
no other relevant properties, than those specified by what is taken to characterize
the structure of that abstract system (or structure). Really, that’s the raison d’être
of mathematical structuralism; that it can forego traditional debates about the inde-
pendent existence, and/or absolute criterion of identity, of mathematical objects in
favor of discussions about objects qua positions in an abstract system (structure)
whereby objects are fully characterized by their shared structure (are characterized
up to isomorphism). For example, for the ante rem structuralist the natural number
2 is nothing but a position in a structure that satisfies the Peano axioms, where
“structure” means a freestanding ontological entity and “position” means a “bare
position” or “place” in this structure. For the in re structuralist, the number 2 is
likewise nothing but a position in an abstract system that satisfies the Peano axioms,
where “abstract system” means a privileged system or all (possible) systems that
are privileged because they have the same structure (e.g., are isomorphic). In any
case, the only “objects” that the ante rem structuralist is committed to are structures,
and the only “objects” that the in re structuralist is committed to are (possible)
systems. Of course, both of these commitments are problematic; that is, ante rem
structuralism commits us to the actual (metaphysical) existence of structures and in
re structuralism commits us to the possible (modal) existence of systems, but neither
commits us to the existence of objects. So it is simply a mistake to draw, from the
claim that mathematical structuralism is not revisionary of ontology, the “immediate
moral” that “structures need objects” and that “This holds for both ante rem and in
re structuralism” (Psillos, 2006, p. 6).

Psillos next changes his line of attack; he uses the above “mathematical moral”
to argue against any version of scientific structuralism that does not countenance
independently existing objects. He does this by showing that when it comes to con-
sidering physical systems:

1. Ante rem structuralism is ill-motivated. This because “finding the structure of
a natural system is an a posteriori (empirical) enterprise. Its structure is in re
(Psillos, 2006, p. 6). And,

6 I use the term “individual” to mean, minimally, an object that has or acquires its identity inde-
pendently of its position in a structure.
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2. In re structuralism must concede that there is more to the world than structure.
This because

[a physical system] is a natural structure in the sense that is captures the natural (causal-
nomological) relations among the objects of the systems. It is the structure that delimits
a certain domain as possessing causal unity. Hence, it is grounded on the causal relations
among the elements of the domain. (Psillos, 2006, p. 6)

Psillos further claims that, for both the ante rem and in re interpretations of scientific
structuralism, “[o]bjects are needed in either case” (p. 7). This because “[p]laces in
structures and formal relations do not cause anything at all. It’s the “fillers” of places
[individuals] and concrete (in re) relations that do.” When considering physical sys-
tems, Psillos thus concludes that since

the discovery of the in re structure is an empirical matter, it may not be isomorphic to any of
a set of antecedently given ante rem structures. Second, even if the discovered in re structure
turns out to be isomorphic to an ante rem one, the order of ontic priority has been reversed:
the ante rem structure is parasitic on the in re; it’s an abstraction from it. (Psillos, 2006, p. 7)

I will challenge both of these claims (that the discovery of the in re structure
is an empirical matter and that an abstract system of any kind need be a “bottom-
up” abstraction from a concrete in re structure). For now, however, I will offer a
“top-down” version of an in re interpretation of mathematical structuralism that is
not committed to any independently existing “objects,”7 and that does not begin
with concrete systems and work “bottom-up” to the concept of an abstract system
(or structure). I will then reconsider French’s example from quantum mechanics
to show that, as a matter of methodological fact, science works both “top-down”
and “bottom-up.” Thus, while French is wrong to presume that science works only
“top-down” and so can cut the world by structure, Psillos is wrong to presume that
it only works “bottom-up” and so is bound to a world of individuals. Nonetheless,
French does have an answer to offer Psillos, but it is one that arises neither from his
formal framework nor from his ontic structural realism; it arises from structuralist
considerations as made within a methodological context.

2 A Category-Theoretic Answer to the Mathematical
Structuralist

Before providing my category-theoretic answer to Psillos’ question, it is nec-
essary to provide a clear distinction between the interpretations and varieties
of mathematical structuralism.8 There are two levels at which one finds struc-
turalist ideas: the abstract and the concrete. At the concrete level there are two

7 As I will explain, by “object” I intend to include Psillos’ objects qua individuals, Shapiro’s
structures as actual objects and Hellman’s systems as possible objects.
8 See (Parsons, 1990; Dummett, 1991; Hale, 1996) for excellent overviews of the interpretations
and varieties of mathematical structuralism, and for thoughtful analyses of the problems of each.



18 A Silly Answer to a Psillos Question 365

interpretations: the formalist and the model-theoretic. The formalist interpretation9

forgoes both semantic and ontological questions in favor of providing a methodolog-
ical account of how mathematics is done as opposed to considering what mathemat-
ics is about. Thus, the formalist has nothing to say about the semantic or ontological
status of either objects or structures. The model-theoretic interpretation10 concerns
itself primarily with semantic issues; that is, the existence of an object qua a position
in a model is a consequence of the truth of a statement in which it occurs.11 This
is because structures are taken as models and objects as positions in models; again,
either in some privileged model or in all models that have the same structure (that are
isomorphic). As noted by Dummett, model-theoretic structuralism at the concrete
level is not really mathematical structuralism, because

[t]here is an unfortunate ambiguity in the standard use of the word ‘structure,’ which is
often applied to an algebraic or relational system—a set with certain operations or relations
defined on it, perhaps with some designated elements; that is to say, a model considered
independently of any theory which it satisfies. This terminology hinders a more abstract use
of the word ‘structure’; if, instead we use ‘system’ for the foregoing purpose, we may speak
of two systems as having an identical structure, in this more abstract sense, just in case they
are isomorphic. The dictum that mathematics is the study of structure is ambiguous between
these two senses of ‘structure.’ If it is meant in the less abstract sense, the dictum is hardly
disputable, since any model of a mathematical theory will be a structure in this sense. It is
probably usually intended in accordance with the more abstract sense of ‘structure’; in this
case, it expresses a philosophical doctrine that may be labeled ‘structuralism.’ (Dummett,
1991, p. 295)

Moving then to the abstract level we find two interpretations and several varieties
of what is typically understood as mathematical structuralism. As already noted, the
two interpretations are the ante rem and the in re. The ante rem interpretation comes
in two varieties: the set-theoretic and the structure-theoretic. The set-theoretic inter-
pretation takes a structure to be an abstractly considered set-structured system, i.e.,
an abstract system qua a set/collection/class with certain elements and first-order
functions/relations and, perhaps, second-order predicates, typically symbolized as
S = 〈e, f, P〉. The abstract structure of any system is expressed in these terms
so that an object, qua a position in a structure, is a type of set-structured object,

9 I mention here the formalist position because, while it is not typically characterized as a mathe-
matical structuralist position, it does bear upon the reading in ( Psillos, 1995) of the structure/object
debate as similar to, if not the same as, the form/content or structure/nature debate. As we will see,
at least for the mathematical structuralist, the meaning of a term or expression or the existence of
an object is fixed fully by its position in a structure, so really there is no form/content debate. See
(Landry, 1999) for a discussion of why mathematical structuralism bypasses this debate.
10 Again, while it is not typically taken as a mathematical structuralist position, I mention the
model-theoretic interpretation because of its association with the semantic view of scientific the-
ories, with Putnam’s internal realism, and also with Putnam’s Paradox. See, however, Dummett’s
point, as noted above, which has been missed by many philosophers of science, that the move from
the model-theoretic interpretation to full-blown structuralism involves a conflation of concrete and
abstract levels of analysis.
11 Note also the connection here to the slogan from (Quine, 1948), that to be is to be a value in the
range of a bound variable.
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i.e., is an abstractly considered element, function or predicate. The problem with any
such version is that the point of (Benacerraf, 1991) applies as much to set theory as
it does to arithmetic: Which set theory acts as the background theory and so captures
the structure of (all) such set-structured objects/systems/structures?

The structure-theoretic variety of ante rem structuralism, as best exemplified
by the account in (Shapiro, 1997), seeks to forego the question of what pro-
vides the background theory by taking structures themselves at face value, that
is, by taking structures as “freestanding abstract objects” so that objects are “bare
positions” or “places” in such structures. Though we might begin with concrete
systems, from these we abstract away the non-essential (non-structural) properties
so that we are left with objects as bare positions in a structure. The problem with
the structure-theoretic version is that, instead of reifying objects qua independently
existing things (as with standard mathematical Platonism), it reifies structures qua
independently existing things. That is, it yields an ontology of structures qua indi-
viduals for which, just as if we had an ontology of objects qua individuals, we
need identity conditions and face the problem of epistemic access. Finally, there
is the problem, shared by both the set- and structure-theoretic versions of ante
rem structuralism. This arises from the question: What is meant by “abstractly
consider”? Typically, the ante rem structuralist of either variety replies with the
“ladder analogy”: concrete systems act as rungs on ladder, which we use to climb
“bottom-up,” via the process of abstraction, towards all systems that have the same
structure. But once we reach the top, i.e., once we arrive at the structure, we kick
away the ladder. The problem is that we are now owed an account of the process of
abstraction, and one that does not come up against Plato’s “regress problem.”12

The in re option likewise comes in two varieties: the eliminativist and the
schematic. Each eschews talk of both objects and structures qua individuals, i.e., as
independently actually existing things. The eliminative variety is best characterized
by Hellman’s13 eliminative modal-structuralism, wherein talk of both objects and
structures is eliminated in favor of talking about all possible systems that have a
structure. The terms of a theory are not genuine singular terms (as they are with ante
rem structuralism), but neither are they purely schematic or variable; rather, they
are terms of “modalized assertions” that range over all possible systems that share
structure (i.e., are isomorphic). This, however, seems to force us to choose from
among three problems: (i) we must assume the concepts of possibility/necessity as
primitive, or (ii) we must adopt a possible world semantics, or (iii) we must assume
that there are enough possible objects to make up such systems.

The schematic variety of in re structuralism takes the terms of theory as purely
schematic or variable and is expressed in two ways: informally and formally.
Informally, as characterized by (Parsons, 1990), it holds that the most fundamen-
tal concept of structure for this purpose is meta-linguistic; the structure of an

12 See (Psillos, 2006, p. 6) for an account of the regress problem as applied to the ante rem struc-
turalist.
13 See (Hellman, 1996, 2001, 2003).
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abstract system qua a “domain” is given by a predicate and the relations and func-
tions between domains by further predicates and functors. The problem is that
predicates, functions and functors are themselves taken either as set-theoretic or as
quasi-concrete objects, and so cannot be accounted for in purely structuralist terms.
Thus to account for these objects we seem to run the risk of requiring set theory
or logic as a background theory or of requiring physicalism/mentalism to underpin
their nature/construction. Accepting the latter as untenable, the former leaves us
asking, pace Benacerraf, which set theory, which logic?

I have argued elsewhere (see Landry and Marquis, 2005) that one can use cat-
egory theory to formally frame a schematic in re interpretation of mathematical
structuralism. What the informal version demonstrates is that if the concept of an
abstract system (a “domain”) is to be taken as both meta-linguistic and formally
precise we, likewise, need a linguistic framework that begins with the schematic
concept of an abstract system. Unlike the ante rem or informal schematic in re
varieties, this version is “top-down”; it does not seek to build up abstract systems
from either (quasi-) concrete objects or concrete systems, it begins with the concept
of an abstract system characterized in terms of the cat-structure of “objects” and
“arrows.”14 Yet, unlike the ante rem approaches or the modal in re approaches,
it eschews taking structures or systems as actually or possibly existing “objects”;
abstract systems, as cat-structured systems, are schemata and so require no condi-
tions of possibility or actuality.

It is in this sense that a category provides the schemata for talking about the
shared structure of objects and abstract systems in terms of the arrows (kinds of
morphisms) between them. Because a category is taken as a schema for what we
say, as opposed to being taken as an object-holder for what exists, we need only
take category theory as a linguistic framework; we need not take category theory as a
background theory, or foundation,15 for mathematics. That is, because no single cat-
egory or type of category is taken as privileged, Benacerraf’s point does not apply.
A category, then, is not constitutive of what an abstract system (or a structure) is;
rather it provides a schema for what we say about the shared structure of both objects
and abstract systems. Moreover, because we work top-down and so begin with the
concept of an abstract system, the “objects” and “arrows” that define a category are
themselves taken to be schematic or variable. We need not work bottom-up from
anything that makes-up “objects” and “arrows,” and so we need not take them or
their constituents as quasi-concrete objects.

So how, in mathematics, can we speak of structure without objects? First, as
structuralists we construe objects as nothing more than positions in abstract systems

14 In a similar vein, see (Bell, 2006) for a “top down” account of abstract sets, i.e., for an account
that begins with the notion of an abstract set characterized in terms of a type of category-theoretic
structure, e.g., in terms of topos-theoretic structure. From there, he goes on to account for the
notion of a variable set characterized in terms of different types of category-theoretic structure,
e.g., in terms of the category of bundles and sheaves.
15 See (Bell, 1981; Feferman, 1977; Mayberry, 1994; Landry, 2006) for criticisms of taking cate-
gory theory as a foundation.
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(structures) that have a structure. For example, 2 qua natural number is nothing more
than a position in any or all systems that satisfy the Peano axioms. Second, we con-
ceive of abstract systems themselves as schemata for what we say about the shared
structure of objects, as opposed to conceiving of them as freestanding structures or
possibly existing systems. Finally, we use category theory as a linguistic framework,
as opposed to using set theory, structure theory or modal logic as a background the-
ory, to express what can be said of the shared structure of both objects and abstract
systems. For example, we use the category of sets, Set, to talk about the object “set”
in terms of the morphisms between them, and this regardless of what a set is. And,
likewise, to talk about the shared structure of, for example, the abstract systems
of groups and sets, we use the forgetful functor between the category of groups,
Grp, and the category of sets, Set. Thus, for a structuralist, objects are nothing but
positions in abstract systems, and for a formal in re schematic structuralist, abstract
systems are not independently existing “objects” (actual or possible); rather their
structure, too, is formally schematized by category theory. What we have then is a
version of mathematical structuralism that provides an answer to Psillos’ question:
How in mathematics can we speak of structures without objects? But can the same
category-theoretic framework be used by the scientific structuralist? In the next sec-
tion, I will answer: No.

3 Why This Answer Is Silly for a Scientific Structuralist

Recent semantic approaches to scientific structuralism, aiming to make precise the
concept of shared structure between physical systems qua models, formally frame a
model as a type of set-structure. This set-theoretic framework is then used to provide
a semantic account of (a) the structure of a scientific theory, (b) the applicability16

of a mathematical theory to a physical theory, and (c) the structural realist’s appeal
to the structural continuity between predictively successful successive physical the-
ories. In (Landry, 2007), I challenged the idea that, to be so used, the concept of a
model17 and so the concept of shared structure between models must be formally
framed in set-theoretic terms.

For those who thought that I intended to argue, or at least make way for the
claim, that it ought to be framed in category-theoretic terms, let me now be clear:
what I was then, and am now, arguing is that for the scientific structuralist to use the
concept of shared structure between physical systems qua models (both theoretical

16 In accounting for applicability, this use also attempts to frame the concept of “surplus structure”
as in (Redhead, 1975, 1980, 1995).
17 Note here that the level of analysis is not, in the first instance, intended to be at the concrete
level so that “model” is not intended to be understood in the Tarskian model-theoretic sense; rather
the analyses that I consider (for example, French and da Costa’s partial structures account) are
intended to be at the abstract level. In particular, they are accounts that, being Bourbakian in spirit,
are in line with the set-theoretic ante rem version of mathematical structuralism. See also the next
note.
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models and phenomenological/data models), no formal framework is needed. What
is needed, however, is the concept of an appropriate kind of morphism, where both
the determination of the appropriate kind and the meaning of the term “morphism”
are fixed by some context. Let me explain.

In (Landry, 2007), I first challenged the Bourbaki-inspired assumption that scien-
tific models qua structures are types of abstractly considered set-structured systems
and next considered the extent to which this problematic assumption underpins both
Suppes’ and French et al.’s18 semantic view of the structure of a scientific theory.
I pointed out that, mathematically speaking, there is no reason for our continuing
to assume that types of abstract systems (structures) and/or the morphisms between
them are “made up” of set-theoretic elements and functions. What I did not make
explicit is that, in the same vein, I was arguing that there is no reason to assume
that types of abstract systems and/or the morphisms between them are “made up” of
category-theoretic objects and arrows. Thus, to account for the fact that two physical
systems qua models share structure, one does not have to specify what models are
qua types of set- or cat-structures. It is enough to say that, in the context under
consideration, there is a morphism between the two systems, qua mathematical
or physical models,19 that makes precise the claim that they share the appropriate
kind of structure. I then used this investigation to show that when it comes to using
the concept of shared structure—to account for the structure of scientific theories,
the applicability of a mathematical theory to a physical theory, and the structural
continuity between predictively successful successive theories—there is no need to
agree with French that “without a formal framework for explicating this concept of
‘structure-similarity’ it remains vague, just as Giere’s concept of similarity between
models does . . . ” (French, 2000, p. 114). The meaning of the concept of shared
structure need not remain vague; it can be made precise by appealing to a kind of
morphism, but it is the context (and not any set– or category-theoretic type) that
determines the appropriate kind for its use.20 To demonstrate this I considered the

18 Seen in the light of the set-theoretic version of ante rem structuralism, Bourbaki structures are
types of abstractly considered set-structured systems and, similarly, for French and da Costa mod-
els qua partial structures are Bourbaki structures. Finally, like Shapiro’s structure-theoretic ante
rem account of mathematical objects as “bare positions,” (French, 2006), uses his ontic structural
realism to conceive of physical objects as purely structural “nodes.”
19 By speaking only of mathematical and physical models I do not mean to exclude iconic models.
An iconic model, taken in terms of (Hesse, 1963; Achinstein, 1968; Suppe, 1977; Redhead, 1980),
is a concrete physical system that functions as an icon for another system in such a way that the
properties that hold of the first can be said to hold, perhaps by analogy, of the second. For example,
the solar system is often taken as an iconic model for the orbital theory of the atom. See also
(Suppes, 1962, pp. 290–291), where he characterizes the concept of an iconic model as a “physical
model” or, equally, as the “physicists’ concept” of a model.
20 I thus take the concept of a morphism at face value, i.e., as a map between two kinds of structured
systems, qua mathematical or physical models, where, as explained in note 5, there are at least
three options other than taking models themselves as types of set-structures. For example, one
could use category theory to provide a formal framework for the concept of an abstract structured
system and too for the concept of a morphism as a map between such cat-structured systems, but
again this is quite beside my point here. My point is that, regardless of formal frameworks, it will
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example given in (French, 1999a) from the development of quantum theory to show
that, as witnessed by both Weyl and Wigner’s programmes, it was the foundational
and representational contexts of considering the “relevant symmetries” that deter-
mined that the appropriate kind of morphism was the one that preserved the shared
Lie-group structure of both the theoretical and data models.21

Why, then, can’t category theory be offered as a formal framework for a “top-
down” in re interpretation of scientific structuralism and so be used to answer Psil-
los’ question: “How in science can we speak of structures without objects?” Because
although, mathematically speaking, we can offer up a category-theoretic answer,
scientifically speaking, the answer is given at the wrong level. Recall that debates
about in re and ante rem structuralism and, likewise, debates concerning those vari-
eties of mathematical structuralism that depend on a set-theoretic background theory
or category-theoretic linguistic framework are at the abstract level. That is, they are
about formally framing the concept of shared structure between models themselves
formally framed as abstract mathematical systems or “structures.” In contrast, for
Psillos, debates of the versions of scientific structuralism concern the shared struc-
ture between models as concrete physical systems22 and, as we have seen, this is
structuralism at the concrete (model-theoretic) level. Moreover, as noted by Dum-

be a specific context that determines what kind of morphism is appropriate. For example, in the
context of speaking about the shared structure of systems structured by space-time theories the
appropriate kind of morphism is a diffeomorphism, and this regardless of what a diffeomorphism
is, i.e., regardless of whether it is a function between set-theoretic elements or an arrow between
category-theoretic objects. Note also that if we narrow the context we must likewise narrow the
kind of morphism. For example, while for generally relativistic theories the morphism between
the dynamically possible models will be any diffeomorphism, for special-relativistic theories the
morphism between models will be a restricted kind of diffeomorphism called a Poincaré transfor-
mation and for Newtonian Mechanics it will be another restricted kind diffeomorphism called a
Galilean transformation, the groups of Poincaré and Galilean transformations being subgroups of
the diffeomorphism group. Thanks to Dean Rickles for pressing me to spell out the details here.
21 The attention to use/context is thus intended to be amenable to the (Cartwright et al., 1995)
view of the importance of “phenomenological” models, but, contra (Suárez, 2003, 2006), it does
not go as far as rejecting “isomorphism” accounts of shared structure. Rather it seeks to present
a “morphism” account of shared structure wherein the morphism that preserves the appropriate
kind of structure is determined by the use/context and not by a presumption that any one type of
morphism is, or is not, the type that makes precise the concept of shared structure and, in so doing,
fixes its meaning/use for any context.
22 There are several ways to go here in explaining what is meant by the term “model” in the
concrete, physical, sense. First, one might take model itself at face value, viz., to be understood,
in the Tarskian sense, as an interpretation that makes a set of sentences true without adding that a
model is a set-theoretic entity. Second, one might offer, along the lines of van Fraassen, a state-
space account of what is meant by a mathematical model, so that a physical model is a model (in
the Tarskian sense) of a mathematical model qua a state-space. Finally, one might forego giving an
account of models per se and instead offer up an account of what is meant by the term “system”
so that one may then consider a concrete physical system as (or as represented by) a model (again,
in the Tarskian sense) of a mathematical model qua a kind of abstract mathematical system. In any
case, I am not suggesting that these are the only ways or that one of these ways is preferable to the
other; I am only pointing out that none of these requires us to take physical models as types of set-
or cat-structures or as types of set- or cat-structured systems.
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mett, since any model, in the model-theoretical sense of the term, of a mathematical
theory will be a structure in this concrete sense, this is hardly structuralism in the
mathematical sense of the term. Indeed, whether we interpret theories semantically
or syntactically, this shows why when, in a scientific setting, we attempt to move
from the concrete to the abstract level of analysis,23 we encounter problems such as
Putnam’s paradox and the Newman problem.24

Put in other words, using any version of mathematical structuralism to formally
frame the concept of shared structure will not assist with questions about the struc-
ture of scientific theories (as represented by theoretical models), the structure of
physical systems (as represented by mathematical/physical models), or the struc-
ture of the phenomena (as represented by data models), unless we presume that the
abstract mathematical structure of a theory matches the concrete physical structure
of the world. So too our category-theoretic framework cannot be used to answer
Psillos’s scientific question unless we presume that “the world,” or what we know
of it, is cut into category-theoretic kinds. Moreover, to borrow from Newton, this
presumption, or any like it, is far removed from the scientific task of both reasoning
to and from the phenomena.

Without this presumption, the fact that we can, in mathematics, speak of struc-
tures without objects, does not answer the question of how this can be so in sci-
ence. Simply, the reason is as follows: in mathematics, the axioms alone determine
whether a system has a structure of the appropriate kind, and so determine whether
any position is an object in the structuralist sense of the term. For example, the Peano
axioms fully determine whether a system has a structure of the natural numbers, and
so determine whether the 2 of the Zermelo numerals is an object called a natural
number, i.e., is a position in any or all systems that have the same structure. In sci-
ence, by contrast, the determination of the appropriate kind of structure is made only
methodologically, that is, is made by considering the structure of a system in what
are taken to be significant contexts. For example, as we will see, the group-theoretic
structure of quantum-mechanical systems (both theoretical and phenomenological)
was determined by considering the “relevant symmetries” between such systems in
both foundational and representational contexts.

23 Note also French’s claim that Psillos’ comparison between mathematical and scientific struc-
turalism is misleading because “the central claim of OSR [Ontological Structural Realism] is that
it is the structure [and not the in re concrete system composed of objects] that is both (ultimately)
ontically prior and also concrete” (French, 2006, p. 8). But as we shall see, French’s version of
scientific structuralism, in so far as it is formally framed by set theory, needs to presume that “the
world" is set-structured to make the connection between the abstract mathematical structure of a
theory and the concrete physical structure of the world.
24 See (Psillos, 2006, pp. 3–4) for a precise account of what gives rise to these problems, viz.,
that “if we start with the claim that a certain domain D has an arbitrary structure W , and if we
posit another domain D′ with the same cardinality as D, it follows as a matter of logic that there
is a structure W ′ imposed on D′ which is isomorphic to W . This claim has been the motivating
thought behind Newman’s critique of Russell’s structuralism and of Putnam’s model-theoretic

argument against metaphysical realism . . . .”
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As my nod to Newton suggests, and as the quantum mechanical history shows,
the methodology of science is such that this determination of the appropriate kind
of structure is made both by working down from the structure of the theory to the
structure of the phenomena and working up from the structure of the phenomena
to the structure of the theory. Unfortunately, just as French’s attempts to formally
frame the structure of scientific theories presume that a scientific structuralist story
can be told by working only “top-down” from the abstract set-structure of scientific
theories, so Psillos’ criticisms presume that one must work only “bottom-up” from
the concrete (set-structure) of the phenomena.

The French story goes something like this: structures are formally framed as
types of set-structures, models are structures, physical theories and physical sys-
tems are (or are represented by) models, so the shared structure between models
qua types of set-structures is formally framed by a type of set-theoretic morphism
(homeomorphisms, partial isomorphisms, partial homomorphisms, etc).25 Thus, the
scientific structuralists’ uses of shared structure are gleaned by working “top-down”
from the abstract set-structure of a theory: the structure of a scientific theory, as
characterized by its models, is given by its set-structure; applicability is explained
in terms of a type of set-theoretic morphism between mathematical and physical
models; and continuity of structure is, likewise, explained in terms of a type of
set-theoretic morphism between the models of predictively successful successive
theories.

Psillos’ story differs not by its set-theoretic presumption but rather because it
works “bottom-up” from the concrete set-structure of the world, i.e., it presumes
both that “finding the structure of a natural system is an a posteriori (empirical)
enterprise” and the world is “made up” of objects qua individuals qua elements of a
domain (see Psillos, 2006, p. 6).26 Psillos works up from concrete physical systems
to in re structures so that

there are objects that ‘fill’ the structures, these objects have [non-structural] properties over
and above those that are determined by their interrelationships within the structure . . . it’s
in virtue of these properties that they have causal unity . . . . (Psillos, 2006, p. 9)

In any case, what is not answered by French or Psillos is: Why do we presume either
that scientific theories of physical systems are set-structured or that the phenomena
are cut into objects qua elements and properties qua functions between them? And
too, why do we suppose that the methodology of science must work only “top-down”
or “bottom-up”?

25 Specifically, formal accounts of shared structure have been made in terms of: homeomorphisms
between models qua types of lattice structures ( da Costa et al., 1997); partial isomorphisms
between models qua partial structures in a function-space ( French, 1999a); and, partial homo-
morphisms between models qua partial structures ( French, 2000). See also ( Redhead, 1975) for
the development of the “function space” approach and ( Redhead, 1980) for the use of this approach
for analyzing the role of models in physics.
26 It is the latter presumption that has Psillos claiming that relations require relata, etc.
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While the first presumption may be made by appeal to some set-theoretic foun-
dationalism (as was done by Suppes and as is adopted by French et al.27), it is
the second presumption that leaves both the scientific structuralist and the struc-
tural realist open to the Psillos’ question: How can one speak of structures without
objects? That is, if the formal framework for scientific structuralism is taken to be
set theory, Psillos’ question translates (perhaps without remainder) to the question:
How can one have relations (functions) without relata (elements)? Now this question
might not be a problem for the epistemic structural realist, who, while allowing for
talk of objects/elements/individuals, claims that all we know is their structure, but it
certainly is a problem for the ontic structural realist, like French, who claims that
all there is is structure.28

4 An Answer for the Methodological Scientific Structuralist

I now reconsider French’s example of the role of group theory in quantum mechan-
ics to show that French already has an answer to Psillos’ question, but this answer
is not found in his set-theoretic formal framework or his ontic structural realism.
Regardless of any presumption of the structure of a theory or the structure of the
world, what the history of science shows us, and what the scientific structuralist
relies upon, is that the phenomena are structured for and by mathematical theories,
so that mathematical models and physical models share structure, and, furthermore,
so that the models of predictively successful successive theories share structure.
But what this history (and philosophy) also shows us is that it is contexts, as set
within the methodology of reasoning to and from the phenomena, and not any for-
mal framework or any causal-nominological world that tells us what the appropriate
kind of structure is. Let me explain.

We first consider Psillos’s analyses of the various positions of the scientific struc-
turalist. He considers three: the ontic structuralist, the empirical structuralist and the

27 See Suppes’ claim that “. . . there is no theoretical way of drawing a sharp distinction between
a piece of pure mathematics and a piece of theoretical science. The set-theoretical definitions of
the theory of mechanics, the theory of thermodynamics, the theory of learning, to give three rather
disparate examples, are on all fours with the definitions of the purely mathematical theories of
groups, rings, fields, etc. From the philosophical standpoint there is no sharp distinction between
pure and applied mathematics, in spite of much talk to the contrary” (Suppes, 1967, pp. 29–30).
See (French, 1999a, p. 201) where this quote from Suppes is used to explain the role of models in
science and see also (French, 2000, p. 104), where this same quote is used to claim that “[W]ithin
such a [Suppesian set-theoretic] framework the applicability of mathematics to science comes to
be understood in terms of the establishment of a [type of set-theoretic] relationship between one
kind of structure and another.” As noted, in my 2007 paper I challenge the idea that accounts of
shared structure need be given in such set-theoretic terms.
28 Certainly, since formally speaking arrows do not require objects, one could give a category-
theoretic account of physical objects in terms of arrows only, that is, one could construe physical
objects themselves as arrows. This would certainly avoid reference to objects qua elements and
perhaps could even be used to formally frame French’s 2006 notion of an object qua node. But,
again unless we presume that “the world” is cat-structured, what would we gain?
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epistemic structuralist. Against the position of the ontic structuralist, who holds that
structure is all there is, he says:

[I]f we take structures to be causal, we should not look to their structural properties for an
underpinning of this causal unity and activity. This is not surprising. Places in structures
and formal relations do not cause anything at all. It’s the ‘fillers’ of the places and concrete
(in re) relations that do.

This with the “moral” that

OS [ontic structuralists] will take structures to be either ante rem or in re. Objects are needed
in either case. If OS reifies structures, their causal unity, role and efficacy are cast to the
wind. If OS gives ontic priority to in re structures, there is more to the world than structure.
(Psillos, 2006, p. 7)

Let’s pause here to consider an example by analogy. Let the notion of mathemat-
ical necessity29 be taken as analogous to the notion of physical causality. To say that
2 is necessarily greater than 1, do we need 1 and 2 as independently existing objects?
Not for the structuralist; indeed, the structure of the natural numbers as determined
by the Peano axioms and the successor relation are all that are needed to guarantee
that, whatever (or even whether) 1 or 2 are, as positions in any system that has a
natural number structure, 2 is greater than 1. So it is objects qua positions and their
structural properties and not objects qua individuals and their non-structural proper-
ties that underpin necessary relations. Likewise, why can’t the scientific structuralist
argue that two objects, qua positions in a system, stand in some causal relation in
virtue of their structural properties and/or some (perhaps higher-order) relations that
result from their shared structure?

Against the position of the structural empiricist, like van Fraassen, who allows
that the structure of the phenomena qua appearances can be known, but denies that
science should or need aim at knowing more, Psillos notes that “structural empiri-
cism buys into a substantive metaphysical assumption: that its at least possible that
the structure of the appearances is causally connected to a deeper unobservable
structure” (Psillos, 2006, p. 8). Indeed, such “excess structure” is possible, but the

29 Ladyman is developing an alternative modal form of ontological structural realism which aims
to account for the notion of physical necessity in purely structural terms. Adopting this modal
stance, one may say that the structure of a physical system specifies the necessary properties
associated with what it is for a particular physical object to be an object of the appropriate kind.
To explain what might be meant here, again consider our example from mathematics: it may be
said that while 2 ∈ 4 is a possible property of the natural numbers, it is not a structural, i.e., a
necessary, property because 2 ∈ 4 is not true for all systems that have a natural-number structure.
Modal structural realism is, therefore, at once both more modest and more ambitious than other
varieties of structural realism. Unlike the standard ontic version, it does not aim to capture all the
properties of physical objects, but it does aim to capture their necessary properties. The necessary
properties transfer, via the shared structure of those systems that have the appropriate kind of
structure, to the objects qua positions, thus representing the necessary relations between objects.
See too his claim that “the abstract mathematical structures it [the theoretical part of a theory]
employs . . . must have some grip on reality. It is clear that the “grip on reality” in question must
go beyond a correct description of the actual phenomena to the representation of modal relations
between them” (Ladyman, 1998, p. 418).
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question is whether it is needed to tell the structuralist story of either the structure
of a scientific theory, the applicability of mathematics to a scientific theory, or the
continuity of structure over theory change. Psillos has not demonstrated that it is;
other than simply stating that is it needed to tell a “causal” story.

Against the epistemic structuralist, who claims that all we know is the structure
of the phenomena but leaves open that we might know too the structure of their
(perhaps unobservable) causes, Psillos notes that this marks an improvement over
structural empiricism “only if it is accepted that the world has already built into it a
natural structure . . . . This is a non-structural principle” (Psillos, 2006, p. 9). Yet, as
we have seen, Psillos himself holds that the world has a “natural structure,” only for
Psillos it is a causal-nomological structure. In any case, according to Psillos, both
the structural empiricist and epistemic structuralist positions fail because

given that we talk about in re structures, there are objects that ‘fill’ the structures, these
objects have properties over and above those that are determined by their interrelationships
within the structure . . . in any case, these in re structures are individuated by their non-
structural properties since it’s in virtue of these (non-structural) properties that they have
causal unity and are distinguished from other in re structures. (Psillos, 2006, p. 7)

But what if this causal-nomological structure can be fully captured by structural
properties? Again, by analogy, let’s suppose an in re interpretation of the natural
numbers. There are things (von Neumann ordinals or Zermelo numerals) that fill the
structure, but as objects (as natural numbers) these things are only positions in any,
or all, systems that have the appropriate structure. They might have non-structural
properties (such as 2 ∈ 4) but, as objects qua positions, they are not individuated
by, nor do they bear the necessary relations they do (such as 4 > 2) in virtue of any
non-structural properties. It remains to be argued, then, that not only is it possible but
it is necessary that physical objects, and so concrete in re structures, are individuated
by their non-structural properties and too that it is precisely these properties that
underpin causality. Psillos has argued that it might be the case that non-structural
properties and, therefore, the objects qua individuals that support them, are needed
to get at causes, but he has not demonstrated that it must be the case. Thus, it might
be the case, as (French, 2006) suggests it is,30 that to tell a causal-structuralist story
about what cuts the world into its “natural structure” we do not require objects qua
individuals.

30 French, for example, uses his ontic structural realism to respond, claiming that “there should
be no physical properties that cannot be captured in structural terms, since any such property
worth its salt, as it were, would feature in the relevant causal-nomological relations and would
thus be incorporated into the structural description” (French, 2006, p. 8). Moreover, in reply to
Chakravartty, he has argued that, to best explain why it is that whatever conception of causality
we presume (productive or Humean), we find properties in packages, we do not need objects qua
individuals. Rather, something like the “bundle view” of objects can be adopted as a metaphysical
frame for understanding his “nodes” view of objects. He has further explained how the “nodes”
view might mark an improvement over the “bundle” view: “the structuralist could simply avail
herself of a structural analog to compresence which similarly ‘ties together’ aspects of different
structures. Indeed, it would be some such principle that metaphysically, as it were, gives rise to the
‘nodes’ in the world structure that we identify as electron, quarks etc.” (p. 17).
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Indeed, French does have an answer to Psillos’ question of how, in science,
we can speak of structure without objects (qua individuals), but it is an answer
that arises neither from his set-theoretic framework nor from his ontic structural
realism. (French, 2000) discusses two “contexts of applicability” of group theory
in development of quantum mechanics: one relating to foundations and the other
to the representation of physical phenomena. To exemplify both, he considers the
role of group theory for both the “Weyl programme” (which was concerned with
the group-theoretic elucidation of the foundations of quantum mechanics) and the
“Wigner programme” (which was concerned with the utilization of group theory in
the application of quantum mechanics itself to physical phenomena). Of the Wigner
programme, French notes:

Wigner himself emphasized the dual role played by group theory in physics; the establish-
ment of laws—that is, fundamental symmetry principles—which the laws of nature have
to obey; and the development of “approximate” applications which allowed physicists to
obtain results that were difficult or impossible to obtain by other means. (French, 2000,
p. 107)

French then details the history of Wigner’s programme as motivated by the search
for the mathematics that would represent the needed symmetries—permutation and
rotation—and which would further take account of spin. He next recalls a point
he made about Weyl’s programme, viz., that “behind these ‘surface’ relationships
there may lie deeper, mathematical ones” (p. 109). One such deeper relation is the
reciprocity between the permutation and linear groups that Weyl refers to as “the
guiding principle” of his work and also as the “bridge” within group theory. It is in
considering this “bridge” that French concludes:

Thus with regard to the construction of the ‘bridge’ between the theoretical and the mathe-
matical structures, represented by T and M ′, on the quantum mechanical side we have the
reduction of the state space into irreducible subspace and on the group theoretical side we
have the reduction of representation. It is here we have the (partial) isomorphism between
(partial) structures, (weakly) embedding T into M ′ . . . . Interestingly, then, the construc-
tion of this bridge . . . crucially depends on a further one within group theory itself—the
bridge that Weyl identified between the representations of the symmetry and unitary groups
as expressed in the reciprocity laws. ( French, 1999a, pp. 198–99; see also French, 2000,
pp. 109–110.)

Where, however, are French’s partial structures/partial isomorphisms, and so
his set-theoretic framework, doing any real work? It seems to me that there are
two contexts that determine the appropriate kind of morphism and in each it is
group-theoretic morphisms that do the work. The first context, of reasoning from the
phenomena, is exemplified by Weyl’s programme; it uses the “relevant symmetries”
to “work up” from the concrete structure of the phenomena, via quantum mechani-
cal principles and/or experimental results expressed as group-theoretic symmetries,
to present31 the abstract structure of the theory. The second context, of reasoning

31 See (Brading and Landry, 2007) for a more detailed discussion of the distinction between
presenting and representing, and for a consideration of what this distinction implies for both the
structural realist and structural empiricist positions.
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to the phenomena, is exemplified by Wigner’s programme; it uses the “relevant
symmetries” to “work down” from the abstract mathematical theory, via the group-
theoretic formalism and corresponding “internal bridges,” to represent the concrete
structure of the phenomena. In either case, what does the real work is the group-
theoretic morphisms that underwrite, in both the foundational and representational
contexts, the “relevant symmetries,” and so serve to tell us what the appropriate
kind of structure is for both presenting the structure of quantum theory and for
representing the structure of quantum phenomena.

In choosing to consider group theory to be “the appropriate language” for quan-
tum mechanics, French believes that he is left to face a Psillos-style question:32 How
can we talk of a group if we have done away with the elements that are grouped?
French’s reply is as follows:

[w]e begin with a conceptualization of the phenomena . . . informed by a broadly classical
metaphysics . . . in terms of which the entities involved are categorized as individuals. That
categorization is projected into the quantum domain, where it breaks down and the fracture
with the classical understanding is driven by the introduction of group theory; the entities
are classified via the permutation group which imposes perhaps the most basic division
into ‘natural kinds,’ namely bosons and fermions. It is over this bridge that group theory is
related to quantum mechanics as indicated above. (French, 1999a, p. 204)

Later, making his ontic structural realist conclusions more explicit, French notes
that

[t]he introduction of group theory into quantum mechanics provides a useful example, and
one that has important . . . implications. Metaphysical: the very basis of the applicability of
group theory lies in the non-classical indistinguishablity of quantum particles so that their
permutation can be treated as a symmetry of the system. Furthermore, this emphasis on
symmetry and invariance subsequently led to a metaphysical characterization of elemen-
tary particles as, ontologically, nothing more than sets of invariances. Epistemologically:
this latter characterization can be adduced as a further aspect of an ontological version
of structural realism which claims not simply that all we can know about the world is its
structure but all that there is about the world is this structure . . . . (French, 2000, p. 103)

But where is either French’s set-theoretic framework or his ontic structural
realism doing any scientific structuralist work? In French’s story, clearly what
“drives” and “imposes” our quantum-mechanical “natural kinds” is the shared Lie-
group structure. So why do we need the additional assumptions that (i) such group-
theoretic systems are set-theoretic types, and (ii) that quantum particles are nothing
but sets of invariances? What do we gain from these additional assumptions and,
perhaps more importantly, what do we lose?

What we lose is precisely an answer to Psillos’ question; even if French could use
the “ladder analogy” to kick away concrete objects/individuals/elements,33 if groups

32 See (Psillos, 1995, 2001) for exact details of his criticisms of any structural realist attempt to
separate nature from structure, content from form, and relata from relations.
33 See ( French, 1999a), where he argues that objects qua individuals are only heuristic devices;
they are to be used only to introduce structures and so can be “kicked away” once they have served
this purpose. See also (Psillos, 2001), where he criticizes just this claim.



378 E. Landry

really are sets, and if sets require elements, then to represent quantum phenomena as
group-theoretic sets of invariances we need relations among elements, so we need
objects qua individuals. But if we drop both the set-theoretic framework and the
ontic structural realism, we can answer Psillos as follows: as the example of the role
of group theory in quantum mechanics shows, the determination of the appropri-
ate kind of structure both for presenting the structure of a scientific theory and for
representing the structure of the phenomena is fixed by those contexts in which we
reason both to and from the structure of the phenomena. Thus, contra Psillos, the
phenomena might be represented “purely structurally,” i.e., might be represented
by working “top-down” from the abstract structure of a mathematical theory, and so
might not require objects/individuals/elements to drive/impose/cut the world into its
“natural” (causal-nomological) kinds. But, contra French, this “naturality” is taken
as a fact of our scientific method as employed in some context; it is neither a conse-
quence of a formal set-theoretic reading of the structure of a scientific theory nor an
ontic structural realist reading of the structure of “the world.”34

In sum, against Psillos, mathematical structuralism does not require objects or
structures as actually or possibly existing objects qua things or individuals that have
independent identity conditions. And, even if scientific structuralism focuses on in
re structures, we can work “top-down” from the structure of the theory to represent
the structure of the phenomena, and so we need not begin with objects qua individ-
uals. But, against the structural realist, this “cutting” of the world using structuralist
scissors is a methodological fact about how we present the structure of a theory or
represent the structure of the phenomena; it is not an epistemological fact about
what we know or an ontological fact about what there is. Thus, the answer to Psillos
is found both by recognizing that contexts determine what the appropriate kind of
morphism is for representing the structure of the phenomena and, as Psillos himself
suggests, by adopting a methodological approach35 to scientific structuralism.

34 As (French, 2006) suggests, we can use kinds of properties to cut “the world” into kinds of
objects. For example, we can use group-theoretic properties to cut the phenomena into quantum-
mechanical kinds of objects. That is, “[t]he kinds of properties that feature in [the reconceptu-
alization of objects] will be those group-theoretic invariants described in terms of the relevant
symmetry principle (see for example Castellani, 1993). Thus proceeding down the ‘natural’ kind
structure, a particle will be understood as a fermion, say, in terms of the relevant (anti-symmetric)
representation of the permutation group . . . and as an electron in terms of the properties of mass
and spin associated with the relevant irreducible representation of the Poincaré group and so on.
It is in such terms that structuralism secures objectivity and these symmetry principles have been
viewed as ‘higher rules and principles’ imposed on the laws. What this gives us is a multi-layered,
or multi-aspected, kind of structures involving ‘webs or relations’—as represented by the relevant
laws, etc.—tied together, as it were, by higher order symmetry principles representing the invariant
in terms of which the ‘nodes’ in this structure can be described” (French, 2006, pp. 5–6). What
French does not mention, however, is that while Castellani’s structuralist account is used to account
for quantum-mechanical objects it is not used to cut “nature” at its joints and so it brings with it no
ontic structural realist aim of reconceptualizing objects as mere “nodes.”
35 See (Brading and Landry, 2007) for just such an approach, which we call “minimal scientific
structuralism.”
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Chapter 19
The Vacuum in Antiquity and in Modern
Physics

Michael Redhead

In antiquity there were two diametrically opposed views about the vacuum, or the
void as it was often called.

The first view, associated with the ancient atomists, was happy to embrace the
conceptual possibility of the void, and indeed to assert that it actually “existed,”
allowing room, so to speak, for identifying change in the physical world with the
changing configuration of the (unchanging) atoms within the void. There was some
confusion here as to whether the void existed only between the atoms or actually
penetrated inside the atoms. This problem was not properly cleared up until the
time of John Philoponus (sixth century AD), who was the first person to draw a
clear distinction between space and a body occupying the space.

The second view, essentially the majority view, was that the void was a para-
doxical, even contradictory, concept. The basic thought was that if the void was
identified with “nothing” then it could not exist, and conversely if it did exist it
could not be nothing! If this Parmenidean style of argument did not convince, then
Aristotle could argue that if the void existed then motion through it would be impos-
sible since a material medium would be necessary to sustain motion. But equally, if
one did not accept that argument, then motion would be infinitely fast, since there
would be no resistance to the motion, and actual infinities were, of course, rejected
by Aristotle. (Aristotle himself seems to have achieved the remarkable intellectual
feat of maintaining both arguments simultaneously!)

With the scientific revolution in the seventeenth century AD, the arguments con-
tinued. Descartes, for example, believed that extension was a necessary concomitant
of matter (res extensa), so if you tried to remove all the matter from inside a flask,
you could not possibly succeed, because you would end up with the flask containing
an empty volume, which Descartes regarded as a reductio ad absurdum. On the
other hand, Pierre Gassendi revived the views of the ancient atomists, and people
like Robert Boyle and, most famously, Isaac Newton entertained the corpuscular
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hypothesis concerning the ultimate nature of matter. For Newton, in particular, the
void in the guise of absolute space was given a theological interpretation as the
sensorium of God. But many people objected to Newton’s account of gravitation,
and other influences such as electric and magnetic effects, as acting at a distance
across a vacuum. In the famous queries appended to his Opticks, Newton specu-
lated about a subtle medium, the aether, as ultimately responsible for transmitting
these influences. But the aether itself might be corpuscular (which would just reset
the problem of how action could be transmitted) so, the alternative view was of
“effluvial” theories modelled on Newton’s own conception of a corpuscular theory
of light.

It was the rise of the wave theory of light at the beginning of the nineteenth
century that led back to the view that truly empty space did not exist. If you could
empty a flask of aether it would become opaque to light and no such effect had ever
been observed, even with the best available vacuum pumps! Somehow the aether
was so subtle it could just flow back unimpeded through the walls of the flask.

But then came the famous negative result of the Michelson-Morley experiment
(1887) designed to measure the velocity of the earth through the aether, and with
Einstein’s special relativity theory (1905) the rejection of the whole concept of a
material aether. So were we back to the void of antiquity? There were two reasons
why this was not so.

1. In Einstein’s general relativity theory (1915) space (or more accurately space-
time) became a dynamical object in its own right, acting (gravitationally) on
matter and being reacted on by matter. So the void was causally efficacious, a
totally different view from the unchanging, featureless backdrop against which
events unfold contemplated with Newtonian absolute space.

2. But the new quantum theory, introduced by Max Planck in 1900, was to lead to
an even more dramatic revision of the physicist’s conception of the vacuum. To
understand this there are two basic ideas that we need to get across:

(a) Wave-particle duality: Material particles like electrons are to be thought of
as possessing a wave-like aspect as well as a particle-like aspect.

Perhaps the best way of thinking of this is to think of an electron as a
“discrete” excitation of a continuous matter field spread throughout space.
The idea of a discrete excitation is where the quantum mechanics comes in;
the excitations are “quantized” as one says, so you can’t have a half electron
or a quarter electron, but only a whole electron as a possible excitation of
the field. It is the same with all the other particles like protons and neu-
trons (now thought to be made up of still more fundamental particles, the
quarks). And also the fields of force between the material particles, like the
electromagnetic field, which, reciprocally, have also a particle aspect, so the
interactions can be given effectively the old-fashioned effluvial interpreta-
tion, i.e., as mediated by streams of particles (in the case electromagnetism
these are called photons). But remember these “particles” have also a wave
aspect, allowing for interference and diffraction effects, so there is also a
continuum (i.e., plenum) way of talking about the interactions!
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If you find all this confusing, don’t worry, famous physicists have wres-
tled with these novel ideas for the past 70 years or so, and although the
empirical predictions are wonderfully vindicated, there is still a deal of argu-
ment about what the equations mean!

(b) The uncertainty principle: Consider a pendulum in a grandfather clock. If
you set the bob in motion it acquires kinetic energy, but as it swings up to
the endpoint of its arc the kinetic energy has all been converted into potential
energy, and then as it swings down the potential energy gets converted again
into energy of motion, i.e., kinetic energy. But in the absence of friction
the total energy remains constant—the famous law of the conservation of
energy.

Suppose you now try to bring the pendulum to rest, with the bob hanging
vertically, so classically it would have zero energy.

According to quantum theory this is not possible to do. If you try to
reduce the potential energy by moving the bob to the vertical position, you
inevitably introduce “fluctuations” in the speed of the bob so the kinetic
energy goes up. On the other hand, if you try to bring the bob to rest so that
the kinetic energy is reduced, “fluctuations” will occur in the position of the
bob, so increasing its potential energy. This is an example of the celebrated
Heisenberg uncertainty principle, which says roughly that doing one sort of
thing to a physical system prevents you at the same time doing other sorts
of thing.

In the case of the pendulum there is effectively a trade-off between reduc-
ing the two sorts of energy, so that the minimum total energy of the bob is
not zero, as we would expect classically, but is given by the famous formula
1/2 h f , where f is the frequency of the pendulum, the number of complete
oscillations it makes in 1 s, and h is known as Planck’s constant. Now h is
very small indeed—e.g. with a pendulum making one oscillation per second,
so f = 1, the minimum, often called the zero-point energy, comes out at
approximately 10−34 J. For comparison the typical energy of the pendulum
in a grandfather clock is about 1/10 J, so it is not surprising that for macro-
scopic objects like a pendulum in a grandfather clock, the zero-point energy
can safely be ignored!

But when we are dealing with atomic particles like electrons, the zero-point fluc-
tuations become very important. From the field point of view we can say that the
oscillations of the field can never be brought entirely to rest. The vacuum in quantum
theory is defined as the state of lowest energy for the field. Classically this would be
the state where the field was not oscillating at all. But quantum-mechanically there
is no such state. We are always going to be left with the zero-point energy.

Let us look at the situation from the particle point of view. The vacuum fluc-
tuations in the field and the associated zero-point energy can now be described in
terms of the creation and annihilation of so-called “virtual” particles. These are
literally created out of nothing—well it would be better to say “out of the vacuum
of the quantum field.” But according to Einstein a particle of mass m carries energy
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mc2, where c is the velocity of light. So where has the energy come from to create
the virtual particle? The answer lies again in another application of the uncertainty
principle. In the quantum theory energy need not be conserved in creating a par-
ticle of mass m, so long as it is “paid back” over a time not longer than h/mc.
To conform to this principle virtual electrons, for example, have to annihilate, i.e.,
“disappear” (back into the vacuum) in a time which comes out numerically at about
10−21 s. But if the electron is moving very fast, near to the speed of light, then it can
cover a distance of about 10−11 cm during its lifetime, and this is detectable since
it lies between the scale of atomic dimensions (10−8 cm) and nuclear dimensions
(10−12 cm). So virtual particles can produce all kinds of important effects in atomic
and nuclear physics. Theoretical predictions of these effects are in amazingly close
agreement with experimental data. Indeed the predictions have been verified up to
ten significant figures in the most favourable case (the anomalous magnetic moment
of the electron), which stands as one of the most outstanding triumphs of the theory
of quantum physics.

If we did the same calculations for virtual billiard balls, the lifetimes come out at
around 10−48 s, far beyond the scope of any possible detection, so the possibility of
virtual billiards can definitely be ignored in everyday life!

So, back to the problem of trying to empty a flask. We can, in principle take
out all the “real” particles, but we are always going to be left with the seething
activity of the virtual particles which we cannot get rid of, unless, per impossibile,
we pumped out the fields themselves. But, remembering that the gravitational field,
and possibly other fields as well, are part of the geometry of space, this would mean
pumping space out of space, so to speak, and that sounds like a conundrum for the
ancients. Which is where we came in . . . .

Acknowledgment I am grateful to Richard Sorabji for helpful advice, and Gresham College
where the paper was originally presented.



Chapter 20
Falsifiability, Empirical Content
and the Duhem-Quine Problem

Elie Zahar

1 Historical Background

Having been struck by the steady growth of mathematical knowledge, Duhem
wondered whether a similar cumulative pattern had also been achieved in the devel-
opment of physical science. In this respect, his conclusions were largely negative:
as long as explanatory science relies on metaphysics and as long as the latter is and
must remain unstable, progress in physics cannot possibly be viewed as cumulative.
But provided physical theories be restricted to their purely representative parts, then
thanks to the Correspondence Principle, the mathematical structure of scientific sys-
tems can be seen to evolve continuously: the old equations, though strictly incom-
patible with the new ones, constitute limiting cases of the latter (Duhem, 1954, Part
1, Ch. 3).

Let us examine more closely Duhem’s negative conclusions regarding the envis-
aged parallel between mathematics and physics. Duhem took mathematics to consist
of synthetic theories whose certainty flows from two facts. First, all mathematical
axioms, e.g. those of arithmetic and of Euclidean geometry, turn out to be very sim-
ple and therefore afford a direct and infallible insight into their intended domains.
Secondly, the rules of inference used by mathematicians are all deductive, hence
infallibly transmit truth from the premises to conclusions. It follows that mathemat-
ical theorems are established once and for all. Old mathematical truths are never
revised, they are simply added to (Duhem, 1954, Part 1, Ch. 1, § 3).

This way of viewing mathematics was questioned first towards the end of the
nineteenth, and then during most of the twentieth century. Most logical empiricists
took mathematical propositions to be logically true and hence vacuous. Since math-
ematical truths were considered empty, there could no longer be any question of
a genuine progress in mathematical knowledge, but at best of an increasing psy-
chological awareness of the tautologous character of certain statements. This view
now lies in ruins; for the most fundamental mathematical system, namely set theory,
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makes essential use of axioms like those of choice and of the power set which are
known to be synthetic. (We shall see that this logical fact strongly supports Quine’s
approach to the Duhem-Quine dilemma. See below, Section 6). As a result, Duhem’s
assessment of the status of mathematics seems nowadays less wrong-headed than it
did 50 years ago: the certainty of mathematics appears to be due, on the one hand,
to the deductive nature of its inference rules, and on the other, to the alleged per-
spicuity of axioms which articulate the meanings of some basic concepts like those
of “class” and of “belonging to a class” (∈). Mathematics is therefore synthetic, so
the difference in certainty between its propositions and those of physics is one of
degree rather than kind; but where does this difference really lie? The Duhemian
answer has implicitly been given above: physical hypotheses are not only synthetic
but also complex and far from self-evidently true; so they provide us with no direct
insight into their intended domain. Moreover, their rules of inference are not all
deductive; for unlike mathematics, empirical theories must in some sense be based
on observation. The question is: in exactly what sense?

According to Duhem: despite their empirical character, the methods of induction
and of crucial experimentation were—wrongly—supposed to parallel the mathe-
matical methods of direct proof and of “reductio ad absurdum”(Duhem, 1954, Part
2, Ch. 6 §§ 3,6).

2 Induction and Direct Proof

Let us now address a highly controversial question, namely that of the allegedly
heuristic role of induction in the construction of scientific laws. In a direct mathe-
matical proof, we begin by positing a set of axioms from which we then derive, step
by step, a sequence of theorems. As for the inductive process, it supposedly starts
from a set of indubitable factual statements from which a general hypothesis is then
inferred. Duhem showed this method to be invalid on at least two counts. First,
unlike their common-sense counterpart, the empirical results on which induction
rests are “symbolic” and theory-laden, hence fallible. For example, in the absence
of an electrical theory, a statement like “the current is on” would be meaningless
and hence devoid of truth-value (Duhem, 1954, Part 2, Ch. 6). Thus we have to face
the so-called vertical transcendence of all factual scientific propositions, as distinct
from common-sense statements like “there is a white horse in the street”; for accord-
ing to Duhem, the latter can be both realistically interpreted and infallibly known
to be true. Note that Duhem’s fallibility thesis concerning all objective empirical
statements has a lot to commend it, even though his view about the incorrigibility of
common-sense propositions be highly dubious. There is secondly the well-known
Humean or horizontal transcendence of any universal law with respect to any of its
instances.

As is well-known, Descartes made a clear distinction between autopsychological
sentences like “It seems to me that I hear a noise” and any transcendent propo-
sition which refers to some objective “external” reality (Descartes, 1986, Medita-
tion 2). For example, corresponding to the autopsychological report just mentioned,
we have the objective statement that there is—in physical reality—a sound-wave.
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Descartes acknowledged that only autopsychological propositions are indubitable.
Going back to Duhem, let p and p′ be defined as follows: p ≡ (the current is
on), p′ ≡ (I see—what I take to be—the pointer of the galvanometer move). Thus
p′, but not p, is or might be incorrigible. Now note that in inducing laws from
basic statements, we need to start from singular propositions having the form, not
of p′, but of p. For example: I need to know that iron, and copper, and aluminum,
etc., conduct electricity, not that it seems to me that they do so. Duhem was there-
fore right about physical induction being neither certain nor theory-independent; or
rather about its being fallible precisely because it is theory-dependent; for even the
singular basic statements on which it relies in order to arrive at generalisations are
dubitable.

We have already mentioned that experimental laws like “All metals conduct
electricity” are fallible for a second and more prosaic reason: since they proceed
from a finite to a potentially infinite sample, they run the risk of being refuted by the
next recalcitrant observation. So induction seems to lead from theory-dependent
to other fallible statements. A very different conclusion, namely a hypothetico-
deductivist one, can however be drawn from this state-of-affairs. We can give up the
unacceptable idea of directly inducing laws from facts and look upon an autopsy-
chological proposition like p′ as the only allowable type of basic statement. There
is nothing to prevent us from deducing such level-0 reports from high-level theo-
ries taken in conjunction both with boundary conditions and with psycho-physical
assumptions. We shall see that this approach increases the complexity of the Duhem-
Quine problem; but in return, indubitable descriptions of sense-experience would
constitute what Quine himself regarded, at least initially, as the fixed periphery of
our system of knowledge (Quine, 1980). Anyway, having provisionally dealt with
induction as a heuristic tool, let us now turn to what Duhem calls the indirect method
of proof.

3 Indirect Method and Crucial Experiments

Duhem maintained that:

Those who assimilate experimental contradiction to reduction to absurdity imagine that in
physics we may use a line of argument similar to the one Euclid employed so frequently
in geometry. Do you wish to obtain from a group of phenomena a theoretically certain and
indisputable explanation? Enumerate all the hypotheses that can be made to account for
this group of phenomena; then, by experimental contradiction, eliminate all except one; the
latter will no longer be a hypothesis, but will become a certainty . . . ; but the physicist is
never sure he has exhausted all the imaginable assumptions. ( Duhem, 1954, Part 2,Ch. 6)

I shall use Popper’s demarcation criterion to support Duhem’s intuitive argument.
Let us recall that a proposition is to be considered scientific if it is universal, non-
verifiable and empirically refutable. In the quotation above, Duhem maintains—
without any real justification—that no disjunction H1 ∨ H2 ∨ · · · ∨ Hn of scientific
theories can be known to be true; he simply invokes the obvious psychological
fact that the physicist can never be certain of having exhausted the set of all pos-
sible hypotheses. Using Popper’s criterion, it can however easily be shown that any
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disjunction like H1 ∨ H2 ∨ · · · ∨ Hn is scientific and hence unverifiable—in the
objective sense.

Without loss of generality, let us restrict ourselves to the case where n = 2. Being
scientific and hence universal statements, H1 and H2 can be written in the form:

(i) H1 ≡ (∀x)B1(x) and H2 ≡ (∀y)B2(y).

Since the two variables x and y can always be chosen to be distinct, we have:

(ii)  [(H1 ∨ H2) ↔ (∀x)(∀y)(B1(x) ∨ B2(y))];

i.e., H1 ∨ H2 is universal.
If we suppose that H1 is consistent, then so is the weaker proposition H1 ∨ H2.

In order to prove that H1 ∨ H2 is empirically refutable, let a1 and a2 be potential
falsifiers of H1 and H2 respectively. That is:

 a1 → ¬H1, a2 → ¬H2. Therefore,

(iii) [(a1 & a2) → ¬(H1 ∨ H2)].

It can generally be assumed that a1 and a2 are logically compatible sentences:
given the universality of both H1 and H2 with respect to the time parameter, a1 and
a2 can be taken to describe events occurring at different moments; so that a1 & a2
is a consistent and empirically decidable statement. By (iii), (H1 ∨ H2) is therefore
experimentally falsifiable. (H1 ∨ H2) is finally unverifiable; for any empirical result
verifying (H1 ∨ H2) would have to verify either H1 or H2 or both; which, given
the scientific character of both H1 and H2, is impossible. Thus the scientist is never
in a position to know that a disjunction of empirical theories must be true; and this
independently of his powers of imagination.

4 Indirect Method and the Duhem-Quine Problem

Let us turn to the problem posed by the refutability of scientific theories. It is obvi-
ous that the truth of any scientific theory or of that of any disjunction H1∨· · ·∨Hn of
physical hypotheses must always remain uncertain; but could we not at least be cer-
tain about an isolated theory Hi being definitively falsified by experience? Duhem
rightly drew our attention to the fact that a falsifying experiment undermines, not
an isolated theory but a whole system including the theory in question. Quine rein-
forced this ungainsayable Duhemian thesis by claiming—for reasons which will
be examined below—that a falsifying experiment challenges the whole of science
(Quine, 1980, § 5).

Note that even in the absence of Quine’s globalist thesis, serious problems con-
front the falsificationist viewpoint. Lakatos showed that certain boundary condi-
tions, e.g., the assumption that only the gravitational field acts within a given
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region, do not have the character of singular statements but that of universal and
hence unverifiable hypotheses. This objection however constitutes no damaging
criticism of Popper’s falsificationist criterion; for we can consider all unverifi-
able boundary conditions as part of the system undergoing the test. This would
complicate the Duhem-Quine problem, without however essentially changing its
nature.

Lakatos also defended the view that a theoretical system S normally involves
a ceteris paribus clause, i.e., the caveat: other things being equal (Lakatos, 1970).
This situation can be rendered more precisely as follows. We have seen that the
hypothetico-deductive model of explanation can be described by means of the
scheme:  (S → E), where: E ≡ (B → P), S is a theory, B the description
of boundary conditions and P a prediction. According to Lakatos, S consists of
some core hypothesis H taken together with an indefinite set � of propositions
of the form: on some specific occasion, only gravitational forces acted on the test
body, there were no random variations in the weather conditions, etc. Thus, we have:
H , �  E . Were E to be falsified, then we should allegedly not know whether to
blame H or any member of the possibly infinite set�. This objection to falsification-
ism need not however be taken too seriously. As long as we carry out our deductions
in a first-order language, then by the compactness theorem, E will logically follow
from some finite subset of {H} ∪ �. Hence H & A  E will hold, where A is a
conjunction of finitely many elements of �. To the extent that ¬E can be observa-
tionally verified, (H & A) can be said to have been refuted. This might admittedly
leave us with an aggravated Duhem-Quine problem; for we cannot a priori decide
whether H or any conjunct in A is false. All the same, the single finite proposition
S ≡ (H & A) will have been experimentally refuted.

The Duhem-Quine problem can furthermore be partially solved as follows.
Let H & A be an empirically falsified conjunction. If successive variants
A1, A2, . . . , An of A lead to the refutations of H & A1, H & A2, . . . and H & An ,
then according to both Duhem and Popper, it can reasonably be conjectured that the
fault lies with H . Popper did not however admit that such reasonableness rests—
as it clearly does—on the following intuitive probabilistic argument: if, despite
all the negative outcomes just mentioned, we decide to adhere to H , then each
of A, A1, . . . , An must be considered false; which yields the unique assignment
(t, f, . . . , f ) of truth-values to (H, A, A1, . . . , An). But should we be prepared
to give up H , then each of A, A1, . . . , An could, for all we know, be either t or
f ; which yields 2n+1 assignments compatible with all the experimental results.
Then, provided H, A, A1, . . . , An be mutually independent, the chances are that
H is false. A, A1, . . . , An may of course share a core G such that H & G is
testable and G actually false; which might account for the successive refutations
of H & A, . . . , H & An . This is why a caveat of mutual independence has to
be entered. Be it as it may, the above—admittedly crude—piece of probabilistic
reasoning provides a rationale for our feeling that, barring miracles, H must be the
culprit.

Despite this—tentative—solution which is aimed at reducing the scope of the
Duhem-Quine problem, many questions concerning the conjunction H & A remain
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unanswered. In Duhem’s time the validity of Logic, which was usually identified
with the Aristotelian syllogism, was not called into question; and its schemes almost
never explicitly figured among the premises yielding empirical predictions. Logic
has since been both enriched and formalised; so that A might well be a logical prin-
ciple, or more generally an analytic proposition. In such a case, we should normally
feel entitled to regard A as immune to refutation. The Duhem-Quine problem would
then automatically reduce to the question of the falsifiability of H , where the latter
might also turn out to be a conjunction. Quine however rejects the analytic-synthetic
distinction. It would thus follow that A cannot be hived off even though A might
normally be regarded as analytic. Thus H & A would still have to face the verdict
of experience en bloc. Quine claims that even mathematics and logic can be revised
in the face of recalcitrant empirical evidence; with the result that the Duhem-Quine
problem can no longer be localised. This is why we ought to examine the possibil-
ity of demarcating between, on the one hand, all the analytic statements including
the principles of logic and mathematics and, on the other, the domain of synthetic
propositions including all scientific hypotheses.

5 Kripke’s Challenge

Empiricist methodology faces two threats coming from opposite directions. First:
Quine regards no component of our scientific knowledge as being immune to
revision. Hence observational anomalies could conceivably call into question any
of our principles, whether these be empirical, mathematical or even logical. This
Quinean view which, if correct, would render the Duhem-Quine problem unman-
ageable, will be examined in the next section. There is secondly the threat posed by
Kripke’s thesis that there exist statements which are both necessary and a posteriori,
i.e., whose necessary truth could be empirically established. “Hesperus is Phos-
phorous,” “Cicero is Tully” and “Heat is a motion of particles” are supposed to
be examples of such propositions. Thus, in respect of any testable conjunction of
premises H1 & . . . & Hn , one can no longer infer from the a posteriori character of
some Hi that Hi can in principle be rejected in the light of evidence undermining
H1 & . . . & Hn ; for despite being a posteriori, Hi might, unbeknownst to us,
prove metaphysically necessary (Kripke, 1972). Contrary to Quine’s proposal, this
Kripkean thesis dramatically, but also mysteriously and unpredictably, restricts the
scope of the Duhem-Quine problem. It moreover flies in the face of normal scientific
practice. Showing that Kripke’s conclusions are at best irrelevant to science, more
particularly to the Duhem-Quine problem, is therefore an important task.

Let us start by granting that the truth of some analytic, and hence necessary
statements may come to be known a posteriori. Without the use of a pocket cal-
culator, I might have been unaware that 29 = 512; but this in no way implies
that the validity of this equation is contingent. Needless to say, Kripke’s the-
sis goes well beyond this truism. So let us consider identities between singular
terms like “Hesperus = Phosphorous.” In this particular case, Kripke concedes
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that “Hesperus” and “Phosphorous” could be regarded as definite descriptions. We
would thus be dealing with an identity of the form: [ιx H(x) = ιy P(y)], where:
H(x) ≡ (x is the Evening Star); P(y) ≡ (y is the Morning Star); so that H(x) and
P(y) have different Fregean senses. After carrying out a Russellian analysis, the
above identity proves equivalent to the sentence [(∃x)(∀z)(H(z) ↔ (z = x)) &
(∀y)(P(y) ↔ H(y))], which is clearly contingent.

We are however told that “Hesperus” and “Phosphorous” could also be regarded
as proper names; so that “Hesperus=Phosphorous” assumes the form [a = b],
where “a” and “b” are now distinct primitive individual names. Kripke maintains
that under such a construal, “[a = b]” must, if true, be necessarily so. But this
prima facie startling claim turns out to be a trivial consequence of a stipulation,
namely that every proper name “a” is to be regarded as a rigid designator, i.e., that
if “a” has a referent, then the latter will be the same in all (metaphysically?) possible
worlds. More precisely: let “a” and “b” be two distinct primitive symbols, e.g., let
“a”=“Cicero” and “b”=“Tully.” J.S. Mill reasonably maintained that a name might
possess a referent but certainly not any (Fregean) sense. The above analysis in terms
of definite descriptions such as [ιx H(x)] and [ιy P(y)] cannot therefore be applied
to the identity “[a = b].” The latter will hold on one and only one condition, namely
that “a” and “b” denote the same object. Assume this condition to be satisfied in our
world. Kripke’s astonishing conclusion is that “[a = b]” is then necessary in the
sense of holding in all possible worlds. Such a bold claim is nonetheless trivial
since it follows from an arbitrary decision.

Possible worlds are stipulated, not discovered by powerful telescopes. There is no reason
why we cannot stipulate that in talking about what would have happened to Nixon in a
certain counterfactual situation, we are talking about what would have happened to him.
(Kripke, 1972, p. 44)

Thus Kripke demands, by fiat, that “a” and “b” be treated as rigid designators;
i.e., the class W of possible worlds is in effect defined in such a way that our world
lies in W and each of “a” and “b” denotes the same entity in all members of W ;
from which it trivially follows that if “[a = b]” holds in our world, then it will be
true throughout W . Furthermore, this definition of metaphysical possibility seems
doctored to yield this rather uninteresting result.

Scientists have shown little interest in metaphysical, as opposed to logical or
mathematical, necessity. As admitted by Kripke himself, “[a = b]” is not an ana-
lytic or tautological assertion. There obviously exist possible interpretations whose
domains contain more than one element and where “a” and “b” denote differ-
ent individuals, thus making [a = b] into a false sentence. And though noth-
ing stops a scientist from postulating [a = b] where “a” and “b” are simple
names, there is hardly any reason for him to do so; for he might just as well sys-
tematically substitute “a” for “b,” thus greatly simplifying the presentation of his
system.

There remains the question concerning the sense in which “[a = b],” as opposed
to the identity “[a = a],” might have some informative content, no matter how
minimal. From what has been said, it would seem to follow that “a = b” asserts
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no more than “a = a,” i.e., than the statement that a is identical with itself; which
is highly counter-intuitive since we have the unerring conviction that “a = a” is
totally devoid of content. This is however only because, when reading a text, we do
not remain within the bounds of the object-language but are also meta-linguistically
aware of the latter’s syntax. Thus the sequence of symbols “a = b” tells us that
the same entity is (contingently) denoted by the two distinct names “a” and “b”;
while “a = a” does nothing but remind us of a convention adopted once and for
all, namely that independently of context, the same primitive sign always refers to
the same object. This is one reason why Frege initially held “a = b” to be not
only about the individuals denoted by “a” and “b,” but also about the symbols “a”
and “b” themselves. No matter how mistaken this approach might be, it still reveals
an important psychological fact: our reading of a formula is directed not only at its
referents, but also at the sequence of signs constituting the formula. As a proposition
of the object-language, the identity “a = b” does not tell us that “a” �= “b” since it
does not talk at all about “a” or “b”; but “a = b” exhibits the scriptural difference
between “a” and “b,” thus showing us that “a = b” could prove false under certain
interpretations and must therefore be synthetic. Once again, a Kripkean analysis
turns out to be superfluous. The air of necessity surrounding “a = b” flows from
Kripke’s misleading intuition that every equality “a = b” is either necessary or
false.

Let us now turn to more serious examples which allegedly demonstrate the a
posteriori necessity of some theoretical identities (or identifications):

. . . One might very well discover essence empirically (p. 110). . . . Philosophers have, as I’ve
said, been very interested in statements expressing theoretical identifications; among them,
that light is a stream of photons, that water is H2O, that lightning is an electrical discharge,
that gold is the element with the atomic number 79 (p. 116) . . . So if this conclusion is
right, it tends to show that such statements representing scientific discoveries about what
this stuff is are not contingent truths but necessary truths in the strictest possible sense
(p. 125). (Kripke, 1972)

Let us explain why, despite its seemingly scholastic and hence innocuous charac-
ter, Kripke’s thesis about the necessity of certain a posteriori propositions threatens
the empirical testability of scientific theories. This can most clearly be seen by draw-
ing a parallel between Kripke’s position and Kant’s views concerning the status of
such synthetic a priori principles as the law of the conservation of substance, which
turns out to be that of the conservation of matter. Kant admittedly regarded his
principles as a priori propositions while the Kripkean identities are rightly held to
be a posteriori and hence synthetic. Still, both “Matter is conserved” and “Light is
a stream of photons” are respectively declared by Kant and by Kripke to be nec-
essarily true (Kant, 1957, § III, Thm 2). Under no circumstances can such propo-
sitions be legitimately regarded as having been empirically refuted. Let us once
again note that this conclusion runs counter to the intuition of working scientists. In
the post-Einsteinian era, it is well-known that the conservation of matter—that is:
should the latter be distinguishable from energy—can be rejected without rendering
science impossible. As for Kripke’s views, they have the following paradoxical con-
sequence: given that light is a particulate stream of photons, then by proposing that
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light is a wave process, Huygens, Fresnel and Maxwell were—albeit unbeknownst
to themselves—going against a “necessary truth[s] in the highest possible sense”;
i.e., they were violating something akin to a logical principle; which also entails
that Kripke forecloses the very possibility of accounting for optical processes in
continuous field-theoretic terms.

Kripke might of course have meant that only if true would a theoretical iden-
tity be necessary. So it looks as though his theses can always be affirmed with
total impunity; and this for two reasons. First: since the identities in question are
universal synthetic propositions, they cannot be strictly verified, so none of them
can definitively be claimed to be true. Secondly, even if they could somehow be
ascertained as true, then they would by definition hold good in all possible worlds,
for the latter are defined in such a way that if the identity “Water is H2O” proves
true in one of them then, thanks to rigid designation, it will automatically obtain in
all of them. But Kripke is not out of the woods yet, for his account of essences is
too geared to subject-predicate logic, too monadic, to be entirely satisfactory. He
neglects relational properties. For example: it clearly follows from Kripke’s the-
ses that the elementary particles constituting H and O—i.e. the electrons, protons,
etc.—must both belong to every possible world and bear to one another the same
relations which hold in ours. In other words: to the extent that the electron possesses
an essence, the latter must include the relations it bears to that of the proton and
of other constituents of matter, as well as of all ambient fields; for what would the
essence of the electron be in the absence of positively charged particles which attract
it? Every possible world ought therefore to be vastly enriched; it must end up being
governed by the same fundamental laws as ours, while differing from the latter only
through its boundary conditions, where the form of these conditions might in turn
be circumscribed by the laws. Thus Kripke’s seemingly bold theory reduces to the
classical picture adhered to by most working scientists, that is, essentially one world
governed by a fixed system of basic laws but in which different sets of boundary
conditions can be envisaged, the latter being chosen so as to be compatible with
the laws. Moreover, the entailed generalisations which are sensitive to changes of
boundary conditions can be considered “contingent,” and the remaining ones can
be dubbed “necessary.” As for Kripke’s identity statements, they ought to be treated
as nominal definitions, i.e., as mere abbreviatory devices. For example: most of the
stuff which had previously been labeled “water” on the basis of certain phenomenal
properties was subsequently found to be composed of two atoms of hydrogen (H2)
and of one atom of oxygen (O). On the basis of such a composition and of atomic
theory, of physiology and of certain boundary conditions, the previously ascertained
phenomenal qualities of water can be accounted for, at least in principle. This might
have led scientists to adopt a new nominal definition according to which “water”
from then on stood for: substance consisting of H2 and of O; i.e., “water” was treated
as an abbreviatory device. This admittedly turns “Water is H2O” into a necessary
statement, albeit into a merely analytic one, while the connection between H2O and
the phenomenal properties of water, though predictable, remains synthetic. All this
goes to show that the only notion of necessity needed in the sciences is the strictly
logical one.
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6 Quine’s Holism and the Analytic-Synthetic Distinction

Rather than start by giving a definition of the terms “analytic” and “synthetic,” let
us consider an example given by Quine himself. We shall then analyse certain fea-
tures of this concrete case in order to arrive at a general characterisation of ana-
lyticity. Intuitively, the example must of course be unambiguously either analytic
or synthetic. Consider the proposition “No bachelor is married” which, according
to Quine himself, is held to be quintessentially analytic, i.e., true by definition, or
true exclusively by virtue of the meanings of its terms. For if one were to look
up the meaning of “bachelor” in a dictionary, then one might well find: bache-
lor ≡ (male and unmarried). Through the replacement of “bachelor” by its verbal
or dictionary definiens, the above statement is transformed into: “There exist no
unmarried males who are married,” which is logically true and hence true indepen-
dently of all empirical states-of-affairs. So Quine rightly claimed that if there were
any necessary propositions, then these would have to be analytic and hence escape
all empirical control. We shall now examine his thesis that no such propositions
exist.

Let us go back to his concrete example about bachelors being unmarried, while
provisionally accepting the following stipulation: a true proposition is analytic if
its truth depends exclusively on the meanings of its (non-logical) constituent terms.
Thus, by means of the verbal definition of “bachelor”:

α “No bachelor is married”

is reducible to:

β “No male unmarried person is married,”

i.e., to ¬(∃x)[P(x) & ¬M(x) & M(x)], where: P(x) ≡ (x is a male person);
M(x) ≡ (x is married). This last formula is logically true, i.e., true indepen-
dently of the meanings of its descriptive components P and M . Since logical
principles are not only particular cases but also the most important instances of
analytic truths, we appear to have reached a paradoxical conclusion, namely that
¬(∃x)[P(x) & ¬M(x) & M(x)] holds both independently of, and by virtue of the
meanings of its terms. This “paradox” flows from the ambiguity of the notions of
“meaning” and of “definition.” The dictionary or verbal meaning of a symbol is the
sequence of primitive signs of which the symbol constitutes an abbreviation. Note
that only non-primitive symbols, i.e., those not belonging to the basic vocabulary
of a language, possess verbal definitions. In going from [α] to [β], we replaced
“bachelor” by its dictionary meaning, i.e., by “male and unmarried,” thus obtaining
the logically true sentence [β]. An expression however possesses another “meaning”
or Fregean Bedeutung, namely a referent. This is the—normally extra-linguistic—
entity denoted by the expression. It will henceforth be called its ostensive mean-
ing since it is often, though not always, fixed by ostension. For example: tables,
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colours and even elementary particles can be pointed to with the finger, but though
performing an objective function, a logical connective cannot be singled out by
ostension; it can, at best, be partially determined by a number of postulates circum-
scribing its usage. A Platonist might maintain that even a logical constant refers to
an entity inhabiting some World of Forms, which is far from being an absurd claim.
None of my theses however rests on the assumption that abstract terms possess real
referents, which is why I chose the agnostic expression “ostensive meaning” to sub-
sume the referents of all names of physical entities as well as the objective meanings
of logical constants and of mathematical terms. In what follows, all that matters is
our ability clearly to distinguish between the ostensive meanings of words on the
one hand, and the dictionary or verbal definitions of nonprimitive expressions on the
other.

Quine seems initially to have carried out his critique at the verbal level. We have
seen that [α] turns out to be analytic provided “bachelor” stands for “male and
unmarried person.” Quine however asks: how could we possibly know, with any
degree of certainty, that we have here the real definition of “bachelor”? We might of
course consult a dictionary, but all dictionaries suffer from one basic defect: since
a natural language contains only finitely many words, dictionaries are necessarily
circular. No dictionary of a natural language can therefore be relied upon to give us
the primitive meaning of a word like “bachelor.” We could of course go round asking
people whether by “bachelor” they really mean “unmarried male”; but the answers
might well vary from one person to the next, so that the status of “All bachelors are
unmarried” will always remains uncertain.

Though interesting as questions of applied linguistics, these Quinean consider-
ations do not bear on any logical or epistemological problems. In its—admittedly
idealised—form, theoretical science starts by laying down a primitive vocabulary
all of whose terms need not even be ostensively defined. Some molecular expres-
sions may subsequently prove useful and are therefore fixed by means of verbal
definitions, i.e., of abbreviations. Thus all propositions can—in principle—be refor-
mulated in terms of the basic vocabulary; so they will turn out, whether effectively
or not, to be either analytic or inconsistent or synthetic. Hypotheses are then formu-
lated and basic statements derived. Since the latter are intended to be empirically
decidable, their terms must be observational and hence defined directly by osten-
sion. Note that throughout these operations, a unique logic and the fixed ostensive
meanings of its connectives are presupposed. (Remember that these meanings are
embodied in certain principles as well as in the rules of inference.) Thus [β] is a
logical truth provided the universal quantifier, the conjunction and the negation keep
their classical (ostensive) meanings. It should be remembered that (¬¬p → p) and
(∀x)[¬¬M(x) ↔ M(x)] cease to be analytic in intuitionistic logic. In other words:
once properly expressed in the primitive vocabulary, an analytic statement will be
true independently of the ostensive meanings, not of its logical constants but of its
descriptive terms.

So far, nothing has been said in defence of globalism, i.e., of the thesis that
experience challenges the whole fabric of our knowledge. At this point however,
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Quine’s critique takes on a very radical form. Quine maintains that any hypoth-
esis, whether analytic, mathematical, logical or contingent, can be thrown into
doubt by an experimental refutation. For example: as a result of empirical find-
ings, we might decide to reject a prima facie analytic premise like “No bachelor
is married.” As explained above, this is tantamount to giving up the verbal def-
inition according to which “bachelor” is shorthand for “male unmarried person.”
Thus we might enrich our basic vocabulary by adjoining to it the word “bach-
elor” as a primitive predicate, which would enable us to deny [α] without fear
of contradiction. Such an ad hoc move would however be irrelevant to the prob-
lem of holism, for it comes down to weakening our original theory while leav-
ing its underlying logic intact: treating “bachelor” as a primitive symbol is in
effect equivalent to giving up a trivial premise, namely (∀x)[(x is a bachelor) ↔
((x is male) & (x is not married))]. Let us note that science hardly ever makes use
of such premises; moreover, although weakening a hypothesis might ward off an
empirical refutation, such a move would leave Quine’s globalist thesis unsupported.
In short: altering the verbal definition of words will not lead, beyond Duhem, to the
Duhem-Quine problem. But what about modifying the ostensive meanings of certain
terms?

Note that changing the referents of descriptive non-observational terms does not
stave off empirical falsification. By definition, a relation of the form S  p in no
way depends on the ostensive meaning of the descriptive symbols occurring in S
or in p. By changing the referents of certain terms, we may nevertheless change
the meaning of p in such a way that p is no longer undermined by experience.
But if p is empirical, then it contains exclusively observational predicates, so that
only by altering the latter could we conceivably save S from refutation. Obser-
vational notions ought however to possess meanings fixed in advance of theory.
Should this condition be met, then we shall again face the refutibility of S alone,
i.e., of the conjunction of a well-circumscribed number of assumptions. The issue
of holism is consequently left untouched. This seems to be one reason for Quine’s
apparent readiness to give up—if need be—a logical truth like (¬¬p → p) or
[(p & (q ∨ r)) ↔ ((p & q) ∨ (p & r))]. But such a move would come down
to altering not the verbal but the ostensive sense of certain connectives. We would
therefore have modified our logic and, from a Platonist viewpoint, the referents of
our logical constants. Thus any parallel between the rejection of a banal proposition
such as [α] and that of a logical principle vanishes. We might similarly be led to
negate certain mathematical postulates like the axiom of choice or the continuum
hypothesis, which would again be tantamount, not to some verbal redefinition, but
to the assertion or denial of a substantive existence claim. Since logic and—to a
lesser extent—mathematics are common to all scientific hypotheses, questioning
these two disciplines might put our whole system of knowledge in jeopardy. This
is in effect the only acceptable version of Quine’s holistic thesis, which has however
been vindicated at the very high cost of modifying either logic, or mathematics, or
both. Given his attachment to classical first-order logic, Quine himself ought to have
found such a cost prohibitive; while most working scientists would be loath to resort
to such drastic measures.
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7 Empirical Content and the Duhem-Quine Problem

In this section it will be shown that a number of epistemological confusions can
be traced back to a misunderstanding, or rather to a faulty diagnosis, of problems
of the Duhem-Quine type. In previous works, I claim to have vindicated the view
that scientific systems can be effectively refuted by level-0 reports. Against this
naive falsificationist attitude, Lakatos had argued that a theory H cannot be regarded
as having been undermined by a factual proposition (p & ¬q) until and unless a
rival hypothesis H∗ has been proposed, where H∗ both yields (p → ¬q) and is
incompatible with H .

Paul Feyerabend also mounted an attack on falsificationism; his starting point
was however different from Lakatos’s. He correctly maintained that if methodolo-
gies are to be useful, then they ought to have prescriptive import; i.e., they should be
normative in the sense of guiding the scientist in his construction and in his choice of
hypotheses. Of course, an alternative definition can be adopted according to which
the only task of a methodology is to provide a system for the post hoc appraisal
of available theories. But this sort of academic exercise gives no guideline for any
effective action and is therefore contemptuously dismissed by Feyerabend. Should
prescriptive import be granted, then Feyerabend claims that all extant methodolo-
gies contain directives which, if systematically followed, would have inhibited the
progress of science at some points of its historical development. For example, Fey-
erabend attacks Newtonian empiricism, where the latter is interpreted as implying
that hypotheses can legitimately be criticized by way not of any theoretical consid-
erations, but only of empirical results. Thus Newtonianism entails that in order to
be acceptable, every law should be induced from the facts and held to be true—or
approximately true—until such phenomena are discovered as either make the law
more precise or else constitute exceptions to it. Feyerabend rightly maintains that
this inductivist methodology is reactionary in that it discourages the formulation of
new theories as long as the reigning paradigm encounters no empirical difficulties.

In order to combat the conservatism inherent in empiricist philosophy, Feyer-
abend advanced the view that the empirical content of a theory generally depends
on the existence and nature of its rivals. Should this thesis prove tenable, then it
would hit not only inductivism but also the very notion of falsifiability; for the latter
relies on the existence, for each theory H , of a well-circumscribed set � of potential
falsifiers such that, should any member of� be verified, then H must be held to have
been refuted. Popper called � “the empirical content” of H . But if we are to believe
Feyerabend, � will in principle depend on all the rivals of H , whether these be
actual or potential, so that the appellation “falsifier of H” ceases to have any clear
meaning. Hence it no longer makes sense to accept—even provisionally—a theory
H on the grounds that unlike its rivals, H is unrefuted; for H might be falsified
by some fact which, though well-known, belongs to � only by virtue of some rival
hypothesis H∗ which is yet to be proposed.

In (Feyerabend, 1975), Feyerabend put forward two examples which seem
prima facie to establish his thesis: those of Brownian motion and of Mercury’s
perihelion. With some historical justification, he maintained that only after it had
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been explained in 1905 by the Einstein-Smoluchowski theory was Brownian motion
regarded as having refuted classical thermodynamics. And yet Brownian motion
had been observed long before 1905, i.e., at a time when many physicists looked
upon thermodynamics as the very paradigm of a successful hypothesis. Feyerabend
concluded that Brownian motion formed part of the (falsifying) empirical content
of classical physics only after the emergence of the Einstein-Smoluchowski theory.
Similarly: the anomalous precession Mercury’s perihelion had been noticed and
described long before Einstein put forward the General Theory of Relativity (GTR),
but only after GTR appeared on the scene did the motion of Mercury constitute a
refutation of Newtonian physics.

It seems to me that Feyerabend put his finger on a major difficulty resulting from
the Duhem-Quine problem—a difficulty which he mis-identifies as pertaining to the
empirical content of scientific theories. Let us examine the general test-structure
which allegedly applies to the case of Brownian motion. Consider a system T
which implies a statement P about some microprocess, where the latter is correctly
described by some proposition P ′ which is incompatible with, yet observationally
indistinguishable from P; and let M ′ be an observation statement which, though
easily verifiable and in fact already verified, remains ignored until a new theory T ′
is proposed, where T ′ is such that:

 [T ′ → (P ′ → M ′)] and  [T ′ → P ′]; whence  [T ′ → M ′].

According to Feyerabend, the appearance of T ′ changes the methodological situa-
tion in a dramatic way: M ′ confirms T ′ and hence refutes T . Thus the presence of
T ′ has increased the empirical content of T by adding M ′ to the set of falsifiers of
T . As an example, M ′ can now be interpreted as a sentence describing the motion
of a Brownian particle, P ′ as a proposition about molecular processes, T ′ as the
Einstein-Smoluchowski theory and T as Classical Thermodynamics.

Despite its superficial plausibility, this example can be shown to be irretrievably
flawed. To begin with, Feyerabend commits a simple logical error; for there are only
two possibilities:

1. Either M ′ fails logically to conflict with T , i.e., Not[ (T ′  M ′)]; in which case
M ′ refutes T neither before nor after T ′ was discovered; or

2. For some observation statement M , M is both incompatible with M ′ and entailed
by T , in which case M ′ refutes T both before and after T ′ was proposed.

Of course, as a matter of psychological fact, people might have realized
the relevance of M ′ only after the “refuting” theory T ′ was proposed; but
this fact is hardly relevant either from the logical or from a methodological
viewpoint.

These considerations suffice to refute Lakatos’s and Feyerabend’s general theses.
But though largely correct, our logical analysis has so far overlooked an important
Duhemian point, which also escaped Feyerabed’s attention, namely that by them-
selves, i.e., without the adjunction of auxiliary assumptions, such high-level theo-
ries as T and T ′ entail no observation statements. Thus M ′ cannot possibly follow
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from T ′ alone. And the fact that Feyerabend mentions Mercury’s perihelion and
the Brownian motion in the same breath suggests that he might well have had the
following situation in mind.

Let T be an old theory, T ′ a new rival of T , A a conjunction of (appropriate) aux-
iliary assumptions, p a sentence describing some boundary conditions; and finally
let m and m′ be two predictions. Suppose that:

3.  [p → (m & m′)];  [(T & A) → (p → m)] and  [(T ′ & A) →
(p → m′)].
In other words: given the same initial conditions described by p, m and m′

express incompatible predictions, while (p & m) and (p & m′) are potential
falsifiers of (T & A) and of (T ′ & A) respectively. Note that in view of the
incompatibility of m and m′, (p & m′) is also a potential falsifier of (T & A).
That is :

4.  [(T & A) → ¬(p & m′)].
Now assume that (p & m′) is verified, so that (T ′ & A) is confirmed and

(T & A) refuted. With regard to (T & A), we therefore confront a typical Duhem-
Quine situation: we know that (T & A) is false but not which of the two conjuncts
to blame. There may in fact exist another set of auxiliary hypotheses, A0 say, such
that:

5. ¬[(T & A0) → (p → m′)].
It might now look as though (T & A0) is confirmed by (p & m′) just as strongly
as is (T ′ & A). This is however to forget that A0 might be a complex assumption
whose sole function is to save T from refutation. Compared with A, A0 may not
only be unnatural but also unsupported by independent evidence. Still, it cannot
legitimately be maintained that T alone has been experimentally falsified; for the
evidence (p & m′) conflicts with the whole of (T & A0). Now suppose that some
revolutionary hypothesis T ′ is put forward which, in conjunction with the “natural”
auxiliary assumption A, yields (p → m′); i.e. that:

6. ¬[(T ′ & A) → (p → m′)].
Only then would Feyerabend—as well as Lakatos—accept the claim that T has

been refuted. In other words: because both of the presence of T ′ and of the truth of
(p & m′), we are entitled to hold A to be true and hence, in view of (4), T to be
false. Thus the crucial step consists in deciding, in the light of (6), that A is true. In
other words: given the availability of the new theory T ′ which, together with A, is
corroborated by (p & m′), we can now conclude that A holds good. Neither Lakatos
nor Feyerabend seems however to realize that we are here confronting a classical
Duhem-Quine problem. As an example, consider the concrete case of Mercury’s
perihelion, where: T ≡ (Newtonian Gravitational Theory); T ′ ≡ (General Relativity
(GTR)) and A ≡ (The Sun is a point mass). Let A0 be some complicated assumption
about the uneven distribution of mass density within the sun, p a statement about
the mass, initial position and velocity of Mercury, and finally, m′ a description of
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the precession of Mercury’s perihelion. Then the relations (3)–(6) will be satisfied—
naturally within the limits of observational error (For more details, see (Zahar, 1989,
Ch. 8).)

It is probably a historical fact that the precession of Mercury’s perihelion was
regarded as having refuted Newton only after GTR was proposed. But without vio-
lating any logical rules, we can account for this state-of-affairs far more satisfacto-
rily than does Feyerabend or Lakatos. Although (p & m′) is verified, (6) and (4) do
not imply that A is true and hence T false; for (p & m′) belongs to the empirical
content, not of T , but of the conjunction (T & A). In other words: (p & m′) is
not some new falsifier of T created by the emergence of T ’. We can nonetheless
explain why, other things being equal, (T & A0) derives little support from the
verification of (p & m′): (T & A0) is ad hoc with respect to (p & m′) since A0 was
“cooked up” in order to accommodate Mercury’s perihelion, i.e., to fit (p & m′).
But suppose—counterfactually—that A0 subsequently receives some measure of
independent factual support; i.e., assume that independently of Mercury’s perihe-
lion, we have some reason for holding the sun’s density not to be evenly distributed
throughout its volume; the situation will have changed dramatically, for we should
then consider (T & A0) to have become a serious rival of (T ′ & A).

Thus Feyerabend’s thesis, though psychologically illuminating, depends on the
faulty analysis of a historical accident.

8 Is There a Bayesian Solution of the Duhem-Quine
Problem?

The Bayesians rightly insist on the fact that probabilistic arguments are at the
heart of scientific reasoning—a view strongly defended by Leibniz, who real-
ized that Logic alone could not solve all epistemological problems. The starting
point of Bayesianism is Bayes’s theorem, i.e., a straightforward consequence of
Kolmogorov’s axioms which, in its strong form, asserts that:

P(h|e) =def P(h & e)/P(e) = P(e|h) · P(h)/P(e)

= P(e|h) · P(h)/

⎡

⎣

∑

j

P(e & h j )

⎤

⎦

= P(e|h) · P(h)/

⎡

⎣

∑

j

P(e|h j ).P(h j )

⎤

⎦ ;

where P(
∨

j h j ) = 1 and P(h j & hu) = 0 for j �= u.
I have written down this cascade of trivial equations in order to underline the

fact that Bayes’s theorem is an uncontroversial, not to say a trivial consequence of
Kolmogorov’s axioms. Most philosophers—and this includes Popper—accept these
axioms and hence the relations written down above. So the difference between the
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Bayesians and their opponents cannot possibly consist in the former’s unique accep-
tance of Bayes’s Theorem. From reading various texts, it appeared clear that this
difference lies in the subjective interpretation given by the Bayesians to the notion of
probability—and this even though, if we are to believe Colin Howson, Bayesianism
is compatible with objectivism. But if this were really the case, then Bayesianism
would lose all claim to originality, for the difference between the Bayesians and the
genuine objectivists would at best be one of degree, not of kind.

Let me give an example which illustrates this point. In (Bovens and Hartmann,
2003), the authors cite an example in which they claim that P(R1, R2) = 0.10
and P(R1,¬R2) = 0.01 = P(¬R1, R2), where R1 ≡ (the culprit spoke with a
French accent), and R2 ≡ (the culprit drove off in a Renault car). These figures seem
plausible, so no attempt is made to justify them. The context nevertheless indicates
not only that these probabilities reflect objective states-of-affairs but also that they
could have been obtained by means of a poll. Clearly, the total number of French
citizens, of Renault owners and even of all the people inhabiting a given region could
easily be determined. So we have here to do with objective frequencies lying at the
basis of allegedly subjective assessments of probabilities. However, the authors also
make use of such relations as P(Rep · R j |R j ) = p j and P(Rep · R j |¬R j ) = q j ,
where Rep · R j is the proposition that there exists a report according to which R j is
true (Bovens and Hartmann, 2003, pp. 12–14). But then it is difficult to see not only
how p j and q j could be objectively estimated but also how they could reasonably
be postulated in all circumstances. Consider the case where the truth value of R j is
unknowable. R j might, e.g., denote some high-level quantum theory, the reporters
being Einstein and Heisenberg. Even if both reporters knew the extent to which R j

was empirically adequate, P(Rep · R j |R j ) will, in all probability, receive widely
divergent values; for, unlike Heisenberg, Einstein is not likely to accept reporting
R j as true. Hence a minimal psychologistic element must be allowed for by all
consistent Bayesians; this is probably why Howson and Urbach wrote:

The other notion of probability is epistemic. This type probability is, to use Laplace’s
famous words, “relative in part to our ignorance, in part [to] our knowledge. It
expresses numerically degrees of uncertainty in the light of data. (Howson and
Urbach, 1993, p. 22)

It seems to me that we have here a confusion between two theses:

1. The use of probabilities arises from our uncertainty as to the actual truth-value
of some propositions. In other words, had we been in a position to know the truth
value of certain statements, then we should never have resorted to the probability
calculus;

2. Probabilities express or refer to the degree of our certainty regarding these propo-
sitions.

This type of reasoning is on a par with the following obvious non sequitur: Logic
owes its origin to our need to learn something about the connections between various
state-of-affairs; ergo, Logic expresses our desire to acquire knowledge. There is
related non sequitur—of a more sophisticated kind—we often use logical rules in
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order to infer some truths from other truths; hence Logic is a description of the
psychological rules of thought followed by the (healthy) human mind. This is of
course the well-known psychologistic fallacy.

Be that as it may, the thesis that probability “expresses numerically degrees of
uncertainty in the light of the data” is admittedly consistent. It is therefore time to
examine how the Bayesians use this approach in order to solve the Duhem-Quine
problem. Howson and Urbach consider an example cited by Lakatos, namely that
of Prout’s theory, which will henceforth be denoted by H . H asserts that the atomic
weight of every element is an integral multiple of that of hydrogen. As for the aux-
iliary hypothesis A implicated in the testing of H , it consists of laws about some
measuring techniques, about the reliability of certain instruments, about the purity
of the chemicals employed, etc. Let e be the verified report that the measured weight
of chlorine is 35.83. Thus e  ¬(H & A), which means that (H & A) is empirically
refuted. Yet the scientists of the day took e to have undermined A rather than H , a
fact which Howson and Urbach set out to explain. They write:

It seems that chemists of the early nineteenth century, such as Prout and Thomson, were
fairly certain about the truth of t [=H ], but less so of a [=A], though more sure that a is true
than that it is false. . . . For these reasons, we conjecture that P(a) was of the order of 0.6
and that P(t) was around 0.9, and these are the figures we shall work with. (Howson and
Urbach, 1993, p. 138)

Following Jon Dorling, the two authors go on to assume that H is indepen-
dent of A; they then lay down, without any justification, the following relations:
P(e|¬H & A) = 0.01 = P(e|¬H & ¬A) and P(e|H & ¬A) = 0.02. From all
these assumptions they finally deduce P(A|e) = 0.073 ≪ 0.878 = P(H |e).

These operations are however nothing but a series of blatantly ad hoc adjust-
ments of parameters carried out in order to obtain a foreknown result, namely that
in the Prout case, the Duhem-Quine problem was unexpectedly resolved in favour
of the high-level theory H rather than in that of the auxiliary hypothesis A. It can
of course hardly be doubted that many historical events can be “modelled” through
assignments of probabilities to various sentences. Such modelling however hardly
constitutes an explanation. It even seems to me that Howson, Urbach and Dorling
confuse the explanans with the explanandum. That many chemists attributed to
P(H) a value higher than that of P(A) is not an explanans but the very fact which,
if the Duhem problem is to be solved, ought to be explained. And the same goes
for all the other ad hoc assumptions made by the authors. Yet there are at least two
satisfactory methods which might explain why most, though by no means all, the
scientists of the day were prepared to accept H rather than A. The first consists
in showing that, when conjoined with auxiliary assumptions different from A, H
had previously been confirmed on numerous occasions, which takes us back to the
conclusions reached in Section 4 above. The second method consists in demonstrat-
ing that H had introduced unity into a scientific system by establishing unexpected
connections between some of its hitherto disparate elements. The scientists would
consequently have refused to regard such unity as being due to the existence of
a malicious demon bent on deceiving them. All this underlines the relevance not
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only of objective, but also of metaphysical considerations to the solution of the
Duhem-Quine problem.

Let me end this section by showing that Bayesianism is fundamentally incapable
of solving an epistemological problem arising from the ad hoc feature of certain
hypotheses, namely of those obtained by ad hoc maneuvers. None of the statements
H , A, e, etc. entering as arguments into the probability functions considered by the
Bayesians bears any trace of the methods by which these propositions have been
constructed. In other words, a cooked up law is treated on a par with an ad hoc
one. As an illustration, consider an urn � containing an infinite number of pairwise
incompatible hypotheses, each one of which involves a large number of parameters
(i.e., the conjunction of any two hypotheses is inconsistent, and this independently
of the values assigned to the parameters). Hence at most one member of � can
be true. Now let E be any limited set of verified factual statements. Assume that
every hypothesis belonging to � is known to yield E . No matter how sophisticated
it might become, Bayesianism has no machinery for discriminating between the
various elements of �; and yet if any hypothesis belonging to� were to be chosen at
random, its chances of being true would clearly be vanishingly small. The Bayesians
may of course decide to allot higher probabilities to the non-ad hoc members of �,
but they are incapable of defending such a decision on Bayesian grounds—all of
which is nothing but the generalised version of the argument fielded against the
Bayesian treatment of the Proutian case, as described above.

9 Conclusion

This paper dealt first with Duhem’s ungainsayable but modest claim that an
experimental refutation undermines not one theory, but a whole cluster of
hypotheses no member of which is singled out as the culprit. Secondly, Kripke’s
thesis that there exist necessary a posteriori truths was discussed; it was shown that
in all cases relevant to the empirical sciences, there was an excluded middle between
metaphysical (i.e., untestable yet fallible) hypotheses and scientific (i.e., refutable
and hence also fallible) propositions. Thirdly, Quine’s holistic thesis that “the unit
of empirical significance is the whole of science” was examined. It was found that
throwing doubt on supposedly analytic statements like “No bachelor is married”
comes down to abandoning merely verbal definitions which do not seriously bear
on any aspect of knowledge. It is only when one moves towards the centre of the
“field” of science, i.e., towards mathematics and logic, that holism begins to acquire
some clout. It is certainly the case that the mathematical and, even more so, the
logical axioms are common to almost all physical theories. Altering logic—or even
mathematics—will therefore have repercussions in all branches of knowledge. Thus
holism comes into its own only when, as a result of empirical difficulties and in order
to increase the simplicity of a system, logic is tampered with; for by its very nature,
logic permeates the whole fabric of our knowledge. What is however puzzling is
that Quine consistently maintained that only one logic, namely classical complete
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first-order logic, is legitimate. But then one fails to see in what sense Duhem-Quine
goes beyond Duhem.
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Part V
Decision Theory and Epistemology



Chapter 21
Can Knowledge Be Justified True Belief?

Ken Binmore

1 Fallibilism or Skepticism?

The view that knowledge can usefully be interpreted as justified true belief has fallen
into disfavor in recent times. David Lewis observes that the use of such a definition
seems to require an apparently impossible choice between the rock of fallibilism
and the whirlpool of skepticism, but that we can—just barely—escape both perils
by steering with care (Lewis, 1996). This paper offers a more radical defense of the
same conclusion.

A standard objection to the traditional definition has been voiced in (Gettier,
1963). In a bowdlerized version of his story, Boris and Vladimir have both proposed
marriage to the beautiful Olga. She blushes with pleasure when Vladimir pays her
compliments, but seems not to remember Boris at all. Boris is not surprised, because
he is poor and Vladimir is rich. He thinks his knowledge of the world justifies his
believing that Olga will marry money. When Olga surprises Boris by accepting his
proposal, his belief turns out to be true because, unknown to anyone, a long-lost
uncle has died and left Boris a fortune. But do we want to say that Boris therefore
knew that Olga would marry a rich man?

The traditional definition can be defended against such attacks by challenging
the standard of justification that is employed. In our Russian story, Boris should
perhaps have been more realistic about his own inexperience in matters of the heart,
and sought advice from an agony aunt. He would then have learned that beautiful
maidens sometimes pretend indifference with a view to fanning the flames of a
favored suitor’s ardor.

This paper avoids such disputes over what counts as adequate justification by
treating the justification process as algorithmic. The general problems that arise in
treating knowledge algorithmically are surveyed in (Binmore and Shin, 1992). This
paper confines its attention to investigating the formal implications of maintaining
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that knowledge must simultaneously be justified and true. The findings depend on
the manner in which the underlying decision problem is framed.

In formulating what is nowadays called Bayesian decision theory, Leonard Sav-
age distinguished between large and small worlds (Savage, 1951). His Foundations
of Statistics says at one point that it would be “ridiculous” and at another that it
would be “preposterous” to apply his theory in a large world, but no formal criteria
are offered to distinguish between small-world decision problems and large-world
decision problems (Binmore, 1992a).

This dimly recognized distinction between large and small worlds in decision
theory echoes a distinction in proof theory made precise by Gödel. A mathemat-
ical system large (or complex) enough to include arithmetic cannot be simultane-
ously consistent and complete. This paper adapts the halting argument for Turing
machines in defending the claim that decision theory needs to recognize a similar
distinction.

In a context sufficiently far removed from the small worlds to which Bayesian
decision theory properly applies, the knowledge assumptions that the theory implic-
itly takes for granted can no longer be sustained. But we can still steer between the
rock of fallibilism and the whirlpool of skepticism by explicitly building into our
framing of the underlying decision problem the possibility that any such framing
may fail to capture something significant.

2 Small World Assumptions

Bayesian decision theory takes for granted that a decision-maker’s knowledge at any
time partitions the universe of discourse into a collection of disjoint possibility sets.
The partitioning property of these possibility sets is then inherited by the informa-
tion sets that von Neumann introduced into game theory (Binmore, 1992c, p. 454).
An assumption of “perfect recall” is then usually made to ensure that a player’s
knowledge partition is always a refinement of his previous partitions. This section
reviews the linkage between such knowledge partitions and the idea of a knowledge
operator.

We identify an event E with a subset of a given universe of discourse denoted by
�. The event in which Boris knows that E has occurred is denoted by KE , where
K is his knowledge operator. The event in which Boris thinks it possible that E has
occurred is denoted by PE , where P is his possibility operator.

If we make the identification P = ∼K∼, then we establish a duality between K
and P . Either of the following lists will then serve as a rendering of the requirements
of the modal logic S5:

(K0) K� = � (P0) P ∅ = ∅
(K1) K(E ∩ F) = KE ∩ KF (P1) P (E ∪ F) = PE ∪ PF
(K2) KE ⊆ E (P2) PE ⊇ E
(K3) KE ⊆ K2 E (P3) PE ⊇ P2 E
(K4) PE ⊆ KPE (P4) KE ⊇ PKE
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The “infallibility” axiom can be taken to be either (K2) or (P2). The seemingly
innocent (K0) and (P0) will be called “completeness” axioms.

These ideas are linked with knowledge partitions by defining the possibility set
P(ω) to be the set of states that Boris thinks is possible when the true state of
the world is ω. In Bayesian decision theory, the minimal requirements for such
possibility sets are usually taken to be:

(Q1) The collection {P(ω) : ω ∈ � } partitions �
(Q2) ω ∈ P(w)

The second of these assumptions is the “infallibility” requirement.
To establish an equivalence between the two approaches, it is only necessary to

define P and P in terms of each other using the formula:

ω ∈ PE ↔ P(ω) ∩ E �= ∅ . (21.1)

With this definition, (P0)–(P3) can be deduced from (Q1)–(Q2) and vice-versa.
However, the role of the completeness axiom (P0) is peripheral. If we dispense with
(P0) and redefine both (P1)–(P3) and (21.1) so that they apply only to non-empty
events, then (new P1)–(new P3) are equivalent to (Q1)–(Q2).

It is significant that (P0) can be eliminated, because the result of the next section
can be regarded as saying that (P0) and (P2) cannot both hold in a large enough
world when the possibility operator is algorithmic.

3 Justification

The process of justification is abstracted away in the previous section. It is under-
stood to be somehow built into the knowledge or possibility operators. We now
unpack this black box by postulating that justification is actually carried out by a
“Leibniz engine” J that makes judgements on what events are possible.

The assertion that justification is algorithmic is interpreted to mean that J is a
Turing machine that sometimes answers NO when asked questions that begin:

Is it possible that . . . ?

Issues of timing are obviously relevant here. How long does one wait for an answer
before acting? Such timing problems are idealized away by assuming that Boris is
able to wait any finite number of periods for an answer.

As in the Turing halting problem, we suppose that [ N ] is some question about
the Turing machine N . We then take {M} to be the question:

Is it possible that M answers NO to [ M ] ?



410 K. Binmore

Let T be the Turing machine that outputs [ x ] on receiving the input {x}, and employ
the Turing machine I = J T that first runs an input through T , and then runs
the output of T through the justification machine J . Then the Turing machine I
responds to [ M ] as J responds to {M}.

An event E is now defined to be the set of states in which I responds to [ I ] with
NO. We then have the following equivalences:

ω ∈ E ↔ I responds to [ I ] with NO

↔ J reports it to be impossible that I responds to [ I ] with NO

↔ ω /∈ ∼PE

It follows from (P2) that

∼PE = E ⊆ PE .

This identity only holds when PE = �. Since E = ∼PE , it follows that E = ∅,
and so P ∅ = �. That is to say, we are led to the following apparent contradiction:

Proposition If the states in � are sufficiently widely construed and knowledge
is algorithmic, then infallibility implies that the decision-maker always thinks it
possible that nothing will happen.

If one seeks to maintain (P0) or (K0) in a world large enough for our use of
the Turing argument to make sense, this proposition puts paid to Lewis’s attempt
to steer between the rock of fallibilism and the whirlpool of skepticism. But
why should we hang on to these hard-to-interpret completeness axioms in a large
world?

4 What Is an Event?

I think the apparent contradiction built into the preceding proposition signals a fail-
ure of the model to capture the extent to which familiar assumptions from small-
world decision theories need to be modified when moving to a large world.

For example, we think of an event E as having occurred if the true state ω of the
world has whatever property defines E . But how do we determine whether ω has
this property?

If we are committed to an algorithmic approach, we need an algorithmic proce-
dure for the defining property P of each event E . This procedure can then be used
to interrogate ω with a view to getting a YES or NO answer to the question:

Does ω have property P ?

We can then say that E has occurred when we get the answer YES, and that ∼E has
occurred when we get the answer NO.

But in a sufficiently large world, there will necessarily be properties for which
the relevant algorithm sometimes will not halt. Our methodology will then classify
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ω as belonging neither to E nor to ∼E . Our inadequate formalism then forces us to
place ω in ∅—although we can no longer interpret this as the set with no elements.

A more satisfactory analysis would perhaps appeal to some appropriate version
of constructivist or intuitionistic logic,1 but I hope the preceding remarks will at
least make it plausible that we can sustain the conclusion of the proposition of
the previous section in a large world. To say that P∅ = � can be interpreted to
mean that Boris necessarily thinks it possible that the true state of the world will
remain unclassified according to any of the properties recognized by his algorithmic
classification system.

5 All-Encompassing Worlds

Robert Aumann, in (Aumann, 1987), has pioneered an approach to the foundations
of game theory in which the states of the world in the model are to be thought of
as encompassing absolutely everything that could conceivably happen—including
Boris’s states of mind and behavior. I have used Gödelian arguments elsewhere to
criticize Aumann’s use of Bayesian decision theory in such a large-world context
(Binmore, 1987, 1992b). But what if Aumann’s visionary approach is employed,
using a decision theory that is suited to large-world applications?

On this subject, I shall only point out that the argument of Section 3 survives
allowing the justification machine J to depend on the true state of the world. Boris’s
justification algorithm is then one of the many properties of whatever the true state
ω turns out to be. When Boris interrogates ω, he will then sometimes be asking a
question about the workings of his own cognitive processes.

The non-halting argument of Section 3 is based on precisely this self-referential
possibility. The argument can therefore be seen as another telling of the tale that
Boris cannot operate an algorithmic model that is always successful in predicting
the workings of his own mind. Still less can Boris operate an algorithmic model that
is always successful in predicting what the workings of his mind would be if the true
state were not ω, but some other state ζ . It obviously makes no sense to postulate
(P2) or (P3) in such a large world, but these assumptions are needed if knowledge
is to be modeled in terms of the possibility partitions of Bayesian decision theory.

6 Conclusion

There is no problem in requiring knowledge to be both justified and true in a small
world. This paper argues that the same may be possible in large worlds, but only
at the expense of abandoning much of the structure that Bayesian decision theory
takes for granted.

1 Note that possibility in Section 3 is taken to be the failure to get a NO when the justification
machine is asked whether something is possible. But this is not the same as getting a yes to the
same question.
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Chapter 22
The Stochastic Concept of Economic
Equilibrium: A Radical Alternative

Moshé Machover

1 Introduction

My aim in this article is to present the gist of some ideas first proposed in (Farjoun
and Machover, 1983): that the main economic quantities—such as the unit price of
any type of commodity, and the rate of profit—at any time should be modelled not as
determinate numerical magnitudes but as random variables; and that at equilibrium
these quantities have characteristic distributions rather than determinate numerical
values. I add some methodological remarks about mathematical models and about
what economics can borrow from physics.

I am not an economist but a mathematician, whose knowledge of academic main-
stream economics is quite patchy. I made my first acquaintance with it in the early
1960s, when I was assigned the task of teaching some courses of mathematics to
students of economics. In order to find examples of applications and problems that
would be close to the interests of these students, I decided to have a look at some
books on mathematical economics.

My attention was attracted by a recent book (Schwartz, 1961), because it was
by a well-known mathematician, Jacob T. Schwartz, co-author (with Nelson Dun-
ford) of an important monograph on linear operators. I found it very interesting
and instructive. In particular, I was fascinated by Part A of the book, entitled “The
Leontief Model and the Technological Basis of Production.” I realized immediately
that this was just the right framework for formalizing Marxian economics (with
which I was familiar). Of course, this was no accident, as Leontief’s input–output
matrix formalism was a direct descendant of Marx’s “schemes of reproduction.”1
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1 I found out later that before emigrating from the USSR in 1931, Wassily Leontief had worked
in GOSPLAN, the Soviet Economic Planning Board, which used Marxian economic theory. Leon-
tief’s work, for which he was awarded the Nobel Prize in 1973, was one of the channels through
which Marxian theory exercised its—largely unrecognized—influence on mainstream economics.
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I played around with this formalism in order to analyse the so-called transfor-
mation problem of Marxian economics (of which more anon), unaware that I was
duplicating other people’s work. I didn’t get very far, and let the matter rest.

In the late 1970s, my interest was rekindled by my friend Emmanuel Far-
joun. He got involved in the controversy between Sraffians and Marxists that
flared up following some publications by the former (see, in particular, Steedman’s
book (Steedman, 1977)). The Sraffians showed that the transformation problem—as
commonly understood—is not solvable. Hence they concluded that Marx’s labour
theory of value is wrong and worthless. The Marxists sprang to the defence of this
theory. (Some Marxist responses are collected in (Langston et al., 1984).)

At the heart of this controversy was a notion of equilibrium which was shared by
both sides.

1.1 The Equilibrium Price–Profit Equation

Let me outline the simplest form of the linear equilibrium model of prices and profit
in the Leontief formalism.

We consider a (closed) capitalist economy, in which n types of commodity
(excluding labour power), say C1, . . . ,Cn , are produced. In this simple model it
is assumed that each type of commodity is produced by a unique technical process,
and there are no by-products.2 More importantly, it is assumed that each type of
commodity has a determinate equilibrium unit price3; and that all types of produc-
tion yield the same equilibrium rate of profit.

If pi is the price of one unit of Ci and ρ is the rate of profit, then

pi =
n

∑

j=1

(

ai
j + ρki

j

)

p j , i = 1, . . . , n. (22.1)

Here ai
j is the amount of C j consumed (i.e., used up) as input in the production of

one unit of Ci ; and ki
j is the amount of C j employed (i.e., used but not necessarily

used up) in the production of one unit of Ci multiplied by the number of units of
time during which it is so employed.4,5

2 These two assumptions can be, and indeed have been, challenged as unrealistic. But this issue is
irrelevant to the present discussion.
3 These prices are determined only up to an arbitrary factor of proportionality; thus, it makes no
difference if all unit prices are multiplied by the same positive number. Alternatively, we can put,
arbitrarily, p1 = 1, and then all unit prices are completely determined.
4 Thus, if time is measured in years and x units of C j are employed during a year in producing a
total of y units of Ci , then ki

j = x/y.
5 Note that labour does not occur in (22.1); this is because it has been eliminated from the account-
ing by incorporating into the ai

j the wage goods consumed by the workers who supply the labour
power used in producing Ci . This elimination is possible due to the fact that the price of labour
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The system (22.1) of n equations can be written in matrix form:

p = (A + ρK)p, (22.2)

where p is a column n-vector and A and K are n × n matrices with non-negative
elements. The unknowns here are p and ρ. Since p is determined only up to propor-
tionality,6 the number of unknowns is n, the same as the number of equations. To
make sense, a solution p and ρ should be positive.

Under very reasonable conditions,7 there is indeed such a solution, and it is
unique.

1.2 The Uniformity Assumption

Like all mathematical models, the one just described makes various assumptions
that simplify reality. Here I would like to draw attention to a very fundamental
conceptual assumption: at equilibrium, the unit prices of all types of commodity
produced by the economy have (up to proportionality) determinate numerical val-
ues; and the rates of profit accrued by capital in all productive units are equal.

Clearly, this assumption does not purport to describe a real-life state of affairs
in a capitalist economy. Everyone knows that if you shop around you will find that
the same type of commodity is sold at the same time by different sellers at a variety
of unit prices; and rates of profit vary greatly both within industries and between
them. So the equilibrium that the input–output model describes is an ideal one.
However, it is implied that the real economy is driven by market forces, the forces
of competition, towards an ideal equilibrium of this sort, and are only prevented
from actually reaching it by various disequilibrating forces, that act as “noise.”

(Schwartz, 1961, p. 9) provides the following justification for the assumption
regarding the rate of profit:

We have here taken an essential step in assuming the rate of profit, ρ, to be the same for all
types of production. This corresponds to the ordinary assumption, in the theory of prices, of
“free competition”; it can be justified in the usual way by arguing that a situation in which
the production of different commodities yields different rates of profit cannot be stable,
since investments would be made only in the industry yielding the highest rate of profit to
the exclusion of other commodities yielding lower rates of profit. Long-term equilibrium,
of which our simple theory is alone descriptive, would be reached only when all such rates
of profit became equal (My emphases).

power does not contain any direct profit, but is just the total price of the wage goods consumed by
the workers.
6 See footnote 3.
7 The economic meaning of these conditions is that the economy is capable of producing a physical
surplus; and that it cannot be partitioned into two or more closed sub-economies. For details,
see (Schwartz, 1961, Lecture 2). The mathematical tool used here is the Frobenius theory of the
eigenvalues and eigenvectors of non-negative matrices.
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Note that Schwartz refers to the uniformity assumption as “ordinary” and to his
justification of it as “the usual” one. They are indeed both common and time-
honoured: they go back at least to Adam Smith, and have been accepted and
repeated (with some variations) by many authors of various schools, including
Marx.8

Note also that Schwartz does not bother to justify the assumption that at equi-
librium the unit prices are determinate, although a similar justification (in terms of
competition) might surely be offered. Apparently he (like many others) regards this
as more or less obvious.

1.3 The Transformation Problem

Marx had not one but two sets of ideal prices or price-like quantities. He starts off,
as a first approximation, with the notion of exchange value (to which I shall refer
here briefly as “value”). The value of a given commodity is, roughly speaking, the
total amount of labour (measured, say, in labour hours) necessary to produce it,
including not only the labour used directly in its production but also the labour used
in producing its material inputs, as well as the inputs of these inputs, etc.9

But values cannot serve as equilibrium prices in an (ideal!) state of affairs in
which the rate of profit is uniform. This is because if commodities were to exchange
at their values, then a commodity whose production process has higher “organic
composition” (roughly speaking, smaller labour intensity) would yield a lower rate
of profit than a commodity produced by a process with lower organic composition
(greater labour intensity).

Since Marx—following the classical economists, especially Adam Smith and
David Ricardo—subscribed to the uniformity assumption, he introduced what he
called “prices of production,” which are ideal equilibrium prices corresponding
quite closely to the pi of Section 1.1.10

Marx’s price–profit system of equations, connecting the ideal equilibrium rate of
profit and prices of production was very similar to the Leontief equation (22.2), of

8 See (Farjoun and Machover, 1983, pp. 14–16) for quotes from Smith and Marx, as well as from
a later article by Schwartz.
9 In the formalism of Section 1.1, let vi be the value of one unit of Ci , and let li be the amount
of labour used directly in producing it. Further, let ci

j be defined like the ai
j of (22.1), except that

they do not incorporate the wage goods consumed by the workers who supply the labour power
used directly in producing Ci (cf. footnote 5). Then the vi are the unique solution of the system of
n linear equations:

vi = li +
n

∑

j=1

ci
jv

j , i = 1, . . . , n.

10 Both values and prices of production must be distinguished from what Marx called “market
prices”: these are real-life prices, whose relationship to the prices of production is as described in
Section 1.2.
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which it was in fact a direct ancestor.11 However, Marx postulated an additional con-
straint: the equilibrium ideal rate of profit must, according to him, equal the average
rate of profit that would obtain if all commodities were priced at their values. Thus,
if S is the total value of the surplus produced during a unit of time,12 and K is the
total value of the goods employed (but not necessarily used up) in production during
this period, then the ideal rate of profit ought to be

ρM := S

K
. (22.3)

Through this link, values are “transformed” into prices of production.
But Marx was unable to solve [his rudimentary form of] (22.2) with the added

constraint ρ = ρM. In fact, we now know that this so-called “transformation prob-
lem” is in general not solvable—at least not in the sense in which it has commonly
been understood. As pointed out by the Sraffians, the unique ρ solving (22.2) need
not in general equal ρM as defined by (22.3): there are reasonable counter-examples,
cases of the model outlined in Section 1.1, whose solution fails to satisfy ρ = ρM.

Emmanuel Farjoun, who got involved in the controversy around the transforma-
tion problem (and who contributed to Langston et al. (1984)), eventually came up
with a radical idea: the point was not whether the Sraffians were right or wrong
about the Leontief model, or whether the model could be tweaked in some way so
as to satisfy Marx’s postulate; rather, it was whether that model—or indeed anything
like it—was a reasonable way of theorizing equilibrium. An analogy with statisti-
cal mechanics suggested very strongly that it was not: the uniformity assumption
(which both sides in the transformation controversy subscribed to) was all wrong.
We elaborated this idea together in Farjoun and Machover (1983).

2 Stochastic Equilibrium

The main aim of Farjoun and Machover (1983) was to amend and reconstruct the
Marxian labour theory of value, preserving what we regard as its invaluable core,
while ditching the concept of prices of production (which we regard as unnecessary
and mistaken) and avoiding altogether the transformation problem as commonly
understood (which we regard as a non-problem).

But the book’s basic methodological message—which is my present topic here—
is much more general. It concerns the notion of economic equilibrium used in sev-
eral economic theories of various schools. In this connection, Marx’s theory and the
Leontief model discussed in the Introduction serve as a mere illustration.

11 Cf. footnote 1.
12 This is obtained from the value of the whole product by deducting from it the value of the
non-labour inputs consumed in its production and the value of the goods consumed by the workers
engaged in this production.
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The methodological message is, briefly, that the concept of equilibrium in which
unit prices and “the” rate of profit are determinate quantities is fundamentally erro-
neous. This is suggested by analogy with statistical mechanics, a theory underlying
thermodynamics, founded by Boltzmann and Maxwell in the 1870s. This analogy
is explained in some detail in Farjoun and Machover (1983), and here I shall only
highlight a few points.

2.1 Equilibrium in Statistical Mechanics

In a volume of gas enclosed in a closed container, the molecules are in constant
motion (the total kinetic energy of this motion is what constitutes the heat energy
stored in the gas). In this motion, the molecules collide with one another and as a
result the more energetic molecules tend to slow down (by imparting some energy to
slower molecules with which they collide); conversely, the less energetic molecules
tend to speed up.

However, this does not mean that at equilibrium all molecules reach an equal
level of kinetic energy.13 The point is not merely that such a state of uniformity
does not actually occur; but that if it ever did it could not last for a split second. If
it were miraculously brought about through the mechanism of incessant collision,
then this very same mechanism would instantly disturb it. Note also the use of the
word “tend” in the description of this mechanism: what is meant by it is that a more
energetic molecule is more likely to slow down than to speed up, not that it will
always do so.

Another important feature of this physical system is the distinction between
macro-state and micro-state. A macro-state can be described by some global data,
such as the total energy of the gas, its volume, as well as some statistical data that
will be mentioned below. A micro-state is described by an enormous number of
data: the position of each molecule (given by its three space coordinates) and its
momentum (given by three independent numerical components). The number of
these data is called the number of degrees of freedom of the system. And the system
in question has a great many. Thus, to each macro-state there corresponds a very
large set of micro-states.

The notion of equilibrium of such a system refers to the macro level. It does not
imply that all the molecules are motionless—they never can be, for this would hap-
pen only at 0◦K, which is unattainable—but that the macro-state remains unchanged
unless perturbed by external forces.

Among the data characterizing a macro-state are the statistical distributions of the
individual molecules’ energies, speeds and positions. In particular, an equilibrium

13 This false assumption—analogous to the uniformity assumption discussed in Section 1.2—was
actually made by J.P. Joule before the advent of statistical mechanics. This is discussed by us
in Farjoun and Machover (1985).
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macro-state is characterized by specific distributions, which are supposed to stay
unchanged in the absence of external perturbation.14

Even such a macro-equilibrium does not exist in actual reality, because no system
can in practice be perfectly isolated from external interactions. Nevertheless, fairly
close approximations to it—good enough for practical and even for many theoretical
purposes—do actually exist: this is what insulation is all about.

2.2 Economic Equilibrium

The analogy between the kind of system just described and an economy need hardly
be spelled out.

The fundamental error of the uniformity assumption is that it conceptualizes the
market forces driving the economy towards an ideal equilibrium as endogenous,
while the disequilibrating forces perturbing the system are conceptualized as exoge-
nous. But the latter surely include also market forces, the forces of competition. This
is an untenable logical inconsistency.

The trouble with the kind of ideal equilibrium assumed in Section 1.1 is not that
it is purely ideal but that it is prevented from occurring by the very forces that are
supposed to drive the economy towards it.

The distinction between macro-state and micro-state is surely valid in economics
no less than in statistical mechanics. And if a model of a capitalist economy is to
have any verisimilitude, it must possess a large number of degrees of freedom: a
micro-description must include detailed data on the simultaneous states of a great
multitude of agents and the transactions between them.

The concept of economic equilibrium surely makes sense only as a macro con-
cept, which is compatible—indeed presupposes—great mobility at the micro level.
Basic economic quantities such as the rate of profit of an enterprise and unit prices
must be conceptualized as random variables, which at equilibrium have specific
distributions rather than determinate values.

Such a representation is needed even if in the end one is only interested in rela-
tions between the equilibrium mean values of these quantities. These mean values
cannot, generally speaking, be taken in advance as reasonable approximations for
the random variables themselves. The reason for this is that a given functional rela-
tion that holds between random variables does not, in general, hold between their
means.15

Finally, simple observation suggests that a real economy of a country is most
of the time not all that far from what common sense would regard as macro-
equilibrium. Macro quantities, such as annual GNP, the level of employment, or

14 Note that this is quite another matter from the micro-state staying unchanged. Similarly, if the
age distribution of a population is unchanged, it does not follow that each member of it remains of
constant age.
15 For example, if X,Y and Z are random variables such that XY = Z, it is not in general true that
E X · E Y = E Z, where “E” denote the mean operator.
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the statistical distribution of incomes, do not change very rapidly except at some
critical moments, when instability becomes evident. It is therefore unreasonable
to use a theoretical concept of equilibrium that is not even approached, let alone
attained, by a real economy.

3 Methodological Comments

Let me end with a couple of methodological comments.
First, a mathematical model of a complex real system need not—indeed cannot—

be realistic in every way. It is not a duplicate of reality but a simplified simulacrum
of it. But the vital question is what simplifications are acceptable.

A model can work very well in simulating real behaviour even if it makes quite
drastic simplifications of some aspects of reality. But it must fail if it simplifies
away essential aspects of the reality under investigation. Of course, what counts as
an essential aspect depends on the specific phenomena being investigated and on the
purpose of the investigation.

The thesis that I have argued in this paper is that a non-stochastic concept of
equilibrium is inappropriate for modelling the behaviour of prices and profits in a
capitalist economy.

On the other hand, Ian Wright’s paper (Wright, 2005) illustrates how a model that
is in many ways very simplistic can nevertheless display in a surprisingly realistic
way various phenomena of a capitalist economy. Wright’s model does not impose
a deterministic concept of micro-equilibrium; rather, the macro-equilibrium that
emerges from it is stochastic.16

Second, it is quite fruitful for economic theory to look for concepts it can use-
fully borrow from natural science, particularly physics. Of course, by no means all
physical concepts can be borrowed, or have useful analogues in economics.

Some specifically physical concepts—such as mass, force field, three-dimension-
al physical space, four-dimensional space-time, mechanical micro-equilibrium, and
perhaps even energy (in the sense in which it features in the law of preservation of
energy)—need not have useful applications or analogues in economic theory. On
the other hand, more general concepts that originated in physics and engineering—
such as feedback, degrees of freedom, steady state, macro-equilibrium, and perhaps
entropy—seem to be quite usefully applicable.

16 I am grateful to Ian Wright for the following comment on a draft of the present paper: “You
may want to note that Econophysics is a relatively new field that has extensively used statistical
equilibrium concepts with some success (particularly in providing very simple, abstract and satis-
fying explanations of the detailed income distribution). Your book (Farjoun and Machover, 1983)
presaged this development by some years.”

Wright’s work is presented and amplified in a forthcoming book (Cottrell et al., 2006). For other
recent work making use of ideas proposed by Farjoun and Machover (1983), see the Probabilistic
Political Economy website: https://www.jiscmail.ac.uk/cgi-bin/webadmin?A0=ppe.
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Chapter 23
Collective Choice as Information Theory:
Towards a Theory of Gravitas

George Wilmers

The present paper introduces a new approach to the theory of voting in the context
of binary collective choice, which seeks to define a dynamic optimal voting rule
by using insights derived from the mathematical theory of information. In order
to define such a voting rule, a method of defining a real-valued measure of the
weight of independent opinion of an arbitrary set of voters is suggested, which is
value free to the extent that it depends only on probabilistic information extracted
from previous patterns of voting, but does not require for its definition any direct
information concerning either the correctness or incorrectness of previous voting
decisions, or the content of those decisions. The approach to the definition of such
a measure, which I call gravitas, is axiomatic. The voting rule is then defined by
comparing the gravitas of the set of those voters who vote for a given motion with
the gravitas of the set of those who vote against that motion.

1 What Can We Learn from a Council of Elders?

As a motivating thought experiment1 let us consider a precapitalist tribal society
governed by a hereditary chief who takes all decisions de jure, but who is advised
by a council of elders M which he chairs. Custom has determined that, after due
deliberation, but prior to the chief making a final decision on any resolution before
M , each elder must pronounce a declaration of opinion for or against the resolution:
abstentions are not permitted. Let us imagine that M is considering a particular
resolution. If the chief is wise then he will listen carefully to the advice he is given by
the elders on the resolution; but how should he evaluate it? He may perhaps reason
that, since his position is hereditary, he is unlikely to be wiser than the average
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1 The present section arose from my reflections on a conversation in 1968 between John Bell and
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elder, even though he happens to be possessed of a certain mathematical knowledge
and ability; hence his best policy may be to efface entirely all his own subjective
judgments about the matters under deliberation both now and previously, and also
to efface all his personal opinions about the value of the previous judgments of the
elders. However if the chief is to eliminate from consideration all such personal
judgments, then he must find some objective way to compare the weight of opinion
of the set of those elders who are in favour of the particular resolution against the
weight of opinion of those who are against the resolution. How are these two weights
of opinion to be measured?

Our chief could of course simply count up those in favour and those against
the resolution, and compare the resulting cardinalities, as the leaders of the great
western democracies would surely enjoin him to do,2 but his mathematical learning
makes him extremely reluctant to throw away the extensive objective information
which is contained in the pattern of advice given to him by the elders concerning
previous resolutions. Also he has noticed that in the past the members of certain
groups of elders have generally voted together in a rather predictable manner, so
that he does not feel it appropriate to count their votes as if they represented quite
separate opinions. He reflects that he would prefer to have at his disposal a measure
of weight of independent opinion of each of the two sets of elders representing
opposing viewpoints on the merits of approving the resolution. So, in order to ensure
that his approach is truly objective, the chief decides to erase from his memory all
details about the actual content of previous resolutions and of any advice he has
been given previously, and to treat in a formal mathematical manner the information
contained in the resulting abstract matrix of the elders’ declarations for or against all
previous proposals. The chief’s mathematical problem is now how to extract from
this remaining information two weights of independent opinion for comparison.
This problem is in essence the subject matter of the present paper.

2 The Notion of Gravitas: A Preliminary Discussion

Our formal starting point is a fixed assembly M of n voters in a binary choice con-
text, where M is endowed with a probability distribution σ on the set of possible of
divisions D(M) of M . Formally a division α of M is just a map from M to {0, 1}
which represents the event that the members of M vote on the latest motion before
the assembly in such a manner that for all a ∈ M , a votes yes if α(a) = 1 and
no if α(a) = 0. Since we are identifying divisions with events, our notation will
allow logical disjunctions of divisions also to be treated as events, so that, e.g., for
α, β ∈ D(M), α ∨ β is the same event as β ∨ α.

We may think of σ as derived by some statistical rules from the evidence of
previous voting records. We shall not concern ourselves here with exactly what

2 . . . provided, of course, that the results of such a calculation were likely to be consistent with
their own assessments of the correct decision.
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statistical procedures are used to derive such an a posteriori probability distribution
on D(M), but will instead take it as given. Thus we start with a mathematical ide-
alization of the problem in the previous section. In general σ will be dependent on
time since it will change as further information of the voting records of the members
of M is accumulated. In the discussion below however we shall mostly treat σ as if
it were fixed at a particular moment in time, and will take it as given at that moment
in time, even though the concepts defined below should properly be thought of as
defined relative to σ(t) and variable time t .

Our fundamental question can now be phrased as follows. Suppose a new motion
is presented to M and a given subset A of voters of M vote one way on the motion
while the complement of A in M , Ac, vote the other way. Does there exist some
natural measure which we can define in order to compare the “weight of independent
opinion” of A with that of Ac?

In Section 3 we shall approach this question from an axiomatic standpoint, and
we shall call this idea of the weight of independent opinion the gravitas of A,
denoted by Gσ (A). We formulate strong natural axioms for gravitas for arbitrary
σ , which generalise the special classical situation in which σ is taken a priori to be
the uniform distribution on D(M), i.e. where the voters are a priori considered to
vote independently with each voter voting yes with probability 1

2 . In particular the
quantity Gσ (A) − Gσ (Ac), or gravitas margin, generalises the classical notion of
margin. We show that there exists a measure which satisfies the axioms, which we
call polarity-free entropy (PFE). Although it does not seem easy to find an alterna-
tive measure to PFE which satisfies the given axioms for gravitas (other than a trivial
translation by a constant), it is as yet unclear if there exist intuitively convincing
additional axioms which would make PFE the unique solution for Gσ .

Given a notion of gravitas Gσ , we may define a voting rule RGσ by setting, for
any division α such that the set of those who vote yes in α is A,

RGσ (α) =
{

1 if Gσ (A)>Gσ (Ac)

0 otherwise

RGσ , which we call the gravitas majority rule, may be regarded as a conceptual
generalization of the simple majority rule for the case in which the information
contained in σ is available. It may be described as a realization of the intuitive
concept of rule by weight of independent opinion. Furthermore, by analogy with
the classical margin |A| − |Ac|, we will call the quantity Gσ (A) − Gσ (Ac) the
gravitas margin; the intuitive idea of the gravitas margin is to provide an indicator
of reliability of a judgment arrived at by applying the rule RGσ . In the remain-
der of this section we shall consider briefly the philosophical background to these
ideas.

The axiomatic approach which we are adopting differs considerably from that
of more traditional semantic constructions which are used to interpret the meaning
of the act of voting. In particular we make no a priori assumption that in the act of
voting the individual voters are expressing personal opinions or personal preferences
which are in any sense independent of the opinions or preferences of other voters.
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Our intuitive philosophical focus is rather on analysing the properties of the sets
of temporarily like-minded voters A and Ac which form when the assembly M is
considering a particular motion, and on treating these subsets as being the important
collective actors in an information theoretic analysis of voting.

There exists a large corpus of scholarly work on the mathematics of democratic
choice, most of which can trace its philosophical origins either to the (quite separate)
work of the eighteenth century luminaries (Condorcet, 1785; Rousseau, 1762), or
to the twentieth century game theoretic considerations of social choice theorists
arising from the celebrated impossibility theorem of (Arrow, 1963). In the case
of unicameral binary choice the former tradition, which we may loosely call the
epistemic tradition,3 has been concerned primarily with the problem of examining
the mathematical conditions under which a majority decision rule can be theoret-
ically justified in the context where an objectively correct answer is assumed to
exist,4 while the latter tradition is concerned with the reconciliation of individual
subjective preference orderings and seeks typically to examine under what condi-
tions decision rules can avoid certain types of paradox or inconsistency. However,
to our knowledge, there has been no work done on the axiomatic or mathematical
foundations of a theory which would attempt to generalise the classical ideas of
either Condorcet or Rousseau to the situation in which extra objective information
is available in the form of the probability distribution σ .

The notion of gravitas which we present here and its associated decision rule RGσ

could naturally be seen as belonging to the epistemic tradition. However the author
believes that the notion of gravitas is relevant not just to a “Condorcet jury” type
of context where an objectively correct answer is assumed to exist, but to a much
more general context in which we require only that a correct answer to a motion
put before M is accepted as existing with a normative but probabilistic sense given
to the meaning of the word correct, as being defined relative to certain limited but
precisely defined information. In the present case the limited information is taken
to consist of σ together with the actual division of the voters on the given motion.
Thus correctness in such a sense is an information-theoretic and relative notion:
on the basis of certain symmetry and information theoretic principles, if we strictly
limit the information available as above, then a particular outcome is deemed proba-
bilistically correct in that context. Such a notion of probabilistic correctness relative
to a precise informational framework may be viewed as an attempt to transcend the
traditional distinction between epistemic and proceduralist interpretations of voting,
and to provide a common epistemic analysis of voting theory.5 This is however an

3 See (Cohen, 1986; Coleman and Ferejohn, 1986) for philosophical discussions of the con-
cept of an epistemic justification of democracy, and also for a critical discussion of proceduralist
approaches.
4 See e.g. (Grofman et al., 1983; Ladha, 1993; Boland, 1989; List and Goodin, 2001; List, 2004)
for details.
5 It may be noted that the philosophical idea of a separate notion of probabilistic correctness rel-
ative to limited information makes sense even in the case when we suppose that there exists an
“objectively true” answer. For example, in a jury trial, the criterion for conviction is typically that
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idea of for epistemic interpretation of voting which is very different from the usual
notion of what might constitute an epistemic explication of voting.6 We will not
pursue the analysis of this idea further here, since it is peripheral to the development
of the main ideas of this paper.

The general theory of voting is associated with probability theory in various
ways, notably in the classical theory of voting power, and in Condorcet style justi-
fications of majority decision rules. However we may reasonably ask the question
why there has been so little theoretical work done at a foundational level on optimal
collective decision rules in a context where additional objective information con-
cerning prior individual voting records of members of an assembly is available, and
in particular why that most powerful tool of mathematical reasoning under uncer-
tainty, information theory,7 has been so strikingly absent from deliberations. There
are two related reasons for this situation, both of which have their origins in the
tradition of centuries. The first of these reasons is that the foundational principle
of “one person one vote” (OPOV), however hierarchically modified, underlies in
some form or other all modern institutional collective forms of decision making;
thus since the academic field of study of collective decision making is dominated by
a consideration of existing types of institution, rather than a study of what might be
possible, the consideration of fundamentally more complex decision rules invoking
the use of additional information is normally ruled out a priori.8 The other, related,
reason is that, despite its rather weak theoretical justification, OPOV and its natural
corollary of majority rule are ideologically so closely associated with the contempo-
rary political concept of democracy, that any suggestion that some other conflicting
principle might be more profound, more equitable, and might produce better collec-
tive judgments, is likely to meet with incredulity at best. In addition there are two
further technical reasons why the point of view advocated in the present paper might
not have appeared worthy of consideration until relatively recently. On the one hand
the appropriate mathematical ideas from information theory have only been current

guilt is proved “beyond reasonable doubt.” If therefore we make the reasonable assumption that all
judgments in such trials are de facto made on a probabilistic basis, then, given that the information
which can be made available to a jury is of necessity limited, a jury (or indeed an individual jury
member) may in fact make a decision which is probabilistically correct on the basis of the evidence
available, but which is nonetheless incorrect in an absolute sense. Our restriction of the admissible
information available to the decision rule to σ together with the actual division of the voters, may
in this case be interpreted as a uniform (or fair) method of reifying the information contained in the
accumulated subjective judgments of jury members on the evidence available to them. (Of course
this presupposes that an estimate for σ is actually available, which would not be the case for a
one-time only jury).
6 See (Cohen, 1986) for an account of the latter.
7 In particular Shannon’s notion of entropy (Shannon and Weaver, 1964); see e.g. (Paris, 1994)
for a modern, detailed axiomatic presentation of the use of entropy in probabilistic reasoning.
8 We may note here that types of information other than that encoded in σ might in principle also be
recorded and used in the calculations of a decision rule; for example, normalised information about
the strength of conviction which individual voters attach to individual judgments could be recorded
and used in some way. A closely related point is made in Dummett’s discussion of Arrow’s theorem
in (Dummett, 1984).
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in the last half century, while on the other hand the necessary technology of instant
communication, and the computational power necessary to process the raw voting
data in order to estimate numerical values for a notion of gravitas have only become
available within the last 20 years.9

In the general context of the idealised Condorcet jury, where there exists a
clearly defined objectively correct answer associated with each motion put before
the assembly, it will in many cases be possible to carry out experiments to deter-
mine empirically whether or not a rule RGσ associated with a particular definition
of gravitas G compares favorably in the decisions it generates when comparison is
made with the simple majority rule, or indeed with a rule RG ′σ where G ′ is some
other notion of gravitas. For example, where a disease can be infallibly diagnosed
by some laboratory test, a panel of medical experts could be asked to evaluate for a
lengthy sequence of patients whether or not, on the basis of clinical evidence, each
of them had the disease. The votes of the experts would in each case be aggregated
separately using RGσ and the simple majority rule, and a comparison of the results
could then be made with the objectively correct answers which would be supplied
by applying the laboratory test. Extensive experiments of this kind over a variety of
different scientific domains could be used to provide strong evidence for or against
the efficacy of a rule RGσ for a particular definition of G. If it turns out that a
particular definition of G can be uniquely characterised by a convincingly natural
set of axioms, then empirical evidence of the above kind could provide powerful
independent evidence in favour of adopting RGσ as a decision rule in a more general
context.

We should remark that, although in the Condorcet jury context there has been
considerable research carried out concerning the performance of various voting rules
which employ extra information concerning the competence of individual voters,
such voting rules have an entirely different nature to the approach adopted in the
present paper, since they depend on information concerning the correctness of pre-
vious judgments, whereas our framework of analysis makes no assumption that such
information is available.

3 Axioms for Gravitas

Before we state our axioms we need to establish some simple notation. The
probability distribution σ on D(M) extends naturally to a probability function on the
set of disjunctions of elements of D(M) and we shall identify σ with this extension,
so that for example if α, β ∈ D(M) with α �= β, then σ(α ∨ β) = σ(α) + σ(β).
Also for every A ⊆ M , σ induces a probability distribution σA on D(A), the set of
divisions of A. In fact for any α ∈ D(A) σA(α) = σ(α).

9 I do not intend by this statement to minimise the difficulty of the computational problems
involved, which I have not addressed here, and which would certainly be substantial in the case of
a large electorate.
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We now introduce our axioms, and explain briefly the motivation behind them. It
is understood that the axioms should hold for all possible M and σ . We also assume
that the gravitas function Gσ takes real number values in the interval (0,∞).

Continuity Axiom For any A ⊆ M , Gσ (A) is continuous as a function of σ .
This axiom simply expresses mathematically the intuitive idea that the gravitas

function should be a smooth function with respect to changes in σ : although gravitas
might change quite rapidly as σ changes, there should be no sudden jumps in its
values.

Locality Axiom For every A ⊆ M , Gσ (A) is a function of σA alone.
This axiom expresses the intuitive idea that the gravitas of the set of voters A

should depend only on the behaviour of the voters in A, and should in particular
be independent of how the remaining voters of M vote. While this property is very
natural, there does exist however an alternative natural point of view, and we shall
return to this in our considerations later.

Voter Renaming Axiom Let π be a permutation of the voters of M which,
given σ , induces the probability distribution σπ on M defined by σπ(απ) = σ(α)

for each α ∈ D(M), (where απ denotes the obvious permutation of the division α).
For any A ⊆ M let Aπ denotes the image of A under π .

Then Gσπ (Aπ ) = Gσ (A).
This axiom is just a version of the familiar idea of anonymity; the gravitas of A

should not depend on the names which the elements of A happen to possess but only
on their properties as determined by σ .

Monotonicity Axiom For any A ⊆ M and b ∈ M , Gσ (A) ≤ Gσ (A ∪ {b}).
This axiom expresses the idea that adding a new member to a set of voters A can-

not decrease the gravitas of A, given that the voting behaviour of the other members
of A remains unchanged. Note that this natural assumption immediately implies that
the voting rule RGσ is monotone.

Clone Axiom For any A ⊆ M , if a, b ∈ A are distinct voters such that the
probability (calculated using σ ) that a votes the same way as b is 1,

Then Gσ (A) = Gσ (A − {b}).
This axiom just expresses the idea that if two voters in A behave identically,

then one of them is redundant in calculating the gravitas of A since the two voters
vote systematically as if they were of one opinion. The axiom reflects the intuitive
idea that in calculating gravitas we are seeking to count not voters, but independent
points of view.

For any A ⊆ M and α ∈ D(A), let α denote the dual division to α in which each
member of A votes the opposite way to the way they voted in α. We can now state
our next axiom.

Polarity Free Axiom For any A ⊆ M , Gσ (A) depends only on the values
σ(α ∨ α) where α ∈ D(A).

This axiom needs some explanation. The idea here is that the actual direction
(for or against motions) in which voters vote is immaterial in calculating a measure
of their independence: all that matters is their voting patterns relative to each other.
So if σ were altered because a proportion of motions were arbitrarily replaced by
their negations, this should not affect the value of Gσ (A), assuming that the voters
would reverse their votes in line with their beliefs. Obviously this axiom represents
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a strengthening of the Locality Axiom which could have been included in it. How-
ever because of its different and less obvious status, we have separated it from the
Locality Axiom.

Let us denote by σ ∗
A the probability distribution which is obtained from σ by

considering just the set of events of the form α ∨ α where α ∈ D(A). Thus the
Polarity Free Axiom asserts that Gσ (A) depends only on the information in σ ∗

A. In
the case when A is M we will write σ ∗ to denote σ ∗

M .
We shall call an event of the form α∨α a polarity free division of A. More gener-

ally any disjunction of polarity free divisions of M may be referred to as a polarity
free event. Trivially, polarity free events are closed under Boolean operations.

Clearly σ ∗ contains less information than σ . However the information which it
contains has an interesting epistemological status as we now explain.

For the purpose of the present discussion let us now assume the existence of some
objective notion of correctness for all motions presented to M . Then by complete
analogy with σ there exists another probability distribution τ which encapsulates
information about the correctness of the previous voting of voters in M . To make
this precise we define for each division α ∈ D(M) an analogous event α̂ by replac-
ing “voting yes” by “voting correctly” and “voting no” by “voting incorrectly” in
the definition of α. We call α̂ a truth-division of M and we let DT (M) be the set
of all truth-divisions of M . Also, given some α̂ ∈ DT (M), we may define its dual
truth-division α̂ to be ̂α. Again by analogy we call an event of the form α̂ ∨ α̂ a
polarity free truth-division of M . Then analogously to σ there exists a probability
distribution τ on DT (M) which could be defined in the same way from records as to
whether voters voted correctly or incorrectly, if such records existed, as σ is defined
from records of actual yes or no votes cast. Of course, unlike σ , the distribution
τ will not in general be accessible to us, since except under rather special circum-
stances we will not have access to the data from which τ would be constructed.

τ (̂α) tells us the probability of the event α̂ occurring, based solely on the record
of correctness of the previous votes of members of M . However we may now notice
that for any M and any α ∈ D(M) the events α ∨ α and α̂ ∨ α̂ are extensionally
identical, and hence, provided that enough previous votes are taken into account, it
will be the case that σ and τ nearly coincide for such events, i.e., that

σ(α ∨ α) . τ (̂α ∨ α̂)

for any polarity free division α∨α of M , where the approximation tends to equality
as the number of previous votes taken into account increases. So if we have no
access to the records of correctness from which τ would be constructed, we should
regard the function σ restricted to these polarity free events as the best approxima-
tion available, say ρ∗, to the values which τ would give to the polarity free truth
divisions; i.e. we define ρ∗ by

ρ∗(̂α ∨ α̂) = σ ∗(α ∨ α)

for any polarity free division α ∨ α of M .
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Two linked foundational questions now arise. The first question may be stated
as follows: if we are given only the information contained in σ ∗, how should ρ∗ be
extended to a probability distribution ρ defined on the whole of DT (M) in such a
manner that, from a purely information-theoretic standpoint, ρ is the best estimate
of τ we can make in the absence of any other information? The second, related,
question is: if instead we are given all the information contained in σ , how should we
extend σ to a natural joint distribution on the Boolean algebra of events generated
by D(M) ∪ DT (M)? These questions will not be considered further here but will
be pursued in a later paper.10

Our last two axioms generalise properties of the classical notion of margin. The
absolute values of Gσ (A) are intuitively less important than a comparison of the
values of Gσ (A) and Gσ (Ac). For any measure of gravitas G we let MarGσ (A)
denote the Gσ–margin of A in M , i.e., we define

MarGσ (A) = Gσ (A)− Gσ (Ac).

Now the classical margin of A (over Ac) is of course just |A| − |Ac|. So if
MarGσ (A) is to generalise the classical margin we should expect that the two
notions would coincide for the paradigm case of the uniform distribution on D(M).
Accordingly we may now state the following

Classical Margin Axiom Let unif denote the uniform distribution on D(M).
Then for any A ⊆ M

MarGunif(A) = |A| − |Ac|

In the case of the simple majority rule, the classical margin |A| − |Ac| provides,
in a Condorcetian analysis, an indicator of the probability that the majority decision
is correct; although this analysis is dependent on absurdly idealised assumptions
concerning voters’ independence, nevertheless under these special conditions the
classical margin possesses certain attractive invariance properties.11 So it is natural
that if we are seeking to generalise the concept of margin to MarGσ (A) for arbi-
trary σ , then we should seek to ensure that this generalisation possesses a strong
conceptual stability. Our final axiom below should be interpreted with this in mind.

For the purposes of defining our final axiom we will assume that Gσ (A) satis-
fies the Locality, Polarity Free, and Voter Renaming axioms. Recall that we have

10 We confine ourselves here to noting that the first of these questions can reasonably be considered
an analogue in collective choice theory of the problem in uncertain reasoning (by a single agent)
of choosing a canonical probability distribution from a set of possible distributions constrained
by certain data. The method of choice for solving the latter problem is the use of the maximum
entropy principle (see, e.g., (Paris, 1994)), but without additional insight maximum entropy appears
powerless to help in solving the former problem. The author believes however that the notion
of gravitas can be used to provide the appropriate missing idea necessary to partially solve this
problem.
11 The importance of invariance properties of the notion of margin in a classical Condorcetian
analysis of voting has been emphasized by List (2004).
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insisted by the Locality and Polarity Free axioms that Gσ (A) depend only on σ ∗
A; in

particular Gσ (A) therefore depends only on the probability of polarity free events,
i.e., of events which refer only to how the voters vote relative to each other, not to
which way they actually vote. However, if we now take as given some such G and
consider instead as a possible alternative notion of gravitas the expected value of G
on A with σ ∗

A conditioned upon the polarity free divisions corresponding to every
possible way in which the members of Ac could divide, then we obtain a rather
natural, but not locally defined quantity, which we will define below and will denote
by EGσ (A). We call the function EGσ of subsets A of M the polarity free expectation
(over M) of Gσ .

There is a slight notational difficulty in formally defining EGσ . This difficulty
arises because if we consider a polarity free division α ∨ α where α ∈ D(A) and
condition this event on the polarity free event β ∨ β where β ∈ D(Ac), then we
need to consider the conditional probabilities of two possible alternative polarity
free divisions of M , namely αβ ∨ αβ and αβ ∨ αβ. The respective conditional
probabilities of these events are given by

σ(αβ ∨ αβ)

σ(β ∨ β)
and

σ(αβ ∨ αβ)

σ(β ∨ β)
.

Note that if |A| = m say, then for each event β ∨β as above there are 2m disjoint
atomic polarity free divisions of M as above and 2m corresponding conditionalised
probability values summing up to 1. If we denote by σ ∗

A|β∨β the probability dis-

tribution just described, then this distribution may be thought of as a distribution
on the 2m polarity free divisions of the set A ∪ {d}, where d /∈ A is treated as
a placeholder element whose value in a division indicates the relative polarity of
β ∨ β to α ∨ α corresponding to the two forms above. To be precise: given a fixed
β ∈ D(Ac), let γ ∈ D(A∪{d}) be such that γ (d) = 1. Let α ∈ D(A) be defined by
∀a ∈ A α(a) = γ (a). Then the polarity free event γ ∨γ is identified with αβ ∨αβ.

With this interpretation we may define for non-empty A and Ac

EGσ (A) = 1

2

∑

β∈D(Ac)

σ (β ∨ β) G
σ ∗

A|β∨β (A ∪ {d}).

The factor of 1
2 is present since otherwise because of the notation each event

β ∨ β would be counted twice. For the special cases when A or Ac is empty, it is
natural to define EGσ (A) = Gσ (A).

Now, given some notion of gravitas Gσ , one can reasonably argue that, despite
the nonlocality of its definition, EGσ (A) has an almost equally good claim to be
considered as a measure of gravitas as Gσ (A), since intuitively it just represents
the expected value of G(A) conditionalised on all possible appropriate events corre-
sponding to the behaviour of the rest of the assembly, Ac. At first sight it would be
nice therefore if Gσ and its polarity free expectation EGσ could be made identically
equal. This turns out to be too strong a requirement: it results in inconsistency. As we
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have stressed, however, the important function to be considered for possible invari-
ance properties is the gravitas margin rather than gravitas itself. So it is pleasing to
discover that the following strong axiom is in fact satisfiable:

Polarity Free Margin Invariance For every A ⊆ M ,

MarEGσ (A) = MarGσ (A).

This concludes our list of axioms for the notion of gravitas.

4 Polarity Free Entropy (PFE)

In this section we define a measure, Polarity Free Entropy, or P F E , which satisfies
all eight axioms for a notion of gravitas, G, described in the previous section, namely
the Continuity, Locality, Voter Renaming, Monotonicity, Clone, Polarity Free, Clas-
sical Margin, and Polarity Free Margin Invariance axioms.

Definition 1 Given M , A ⊆ M and σ ,

P F Eσ (A) = −∑

α∈D(A)
σ (α∨α)

2 log2
σ(α∨α)

2 if A �= ∅

0 otherwise.

Note that for A �= ∅ the definition is just one plus the usual Shannon entropy (to
the base 2), but taken over the set of polarity free events α∨α. Another, perhaps more
natural, interpretation of P F Eσ (A) is as the Shannon entropy of a hypothetical
distribution h(σA) obtained from σA by, for every α ∈ D(A), redistributing the
probability of each polarity free event α ∨ α equally over the events α and α. Here
one can think of the entropy of h(σA) as being a measure of the uncertainty in
σA if one “forgets,” or discards as irrelevant, the available information about the
particular manner in which the value of each σA(α∨α) is subdivided by σA between
α and α.

It follows from the above definition that the polarity free expectation of P F Eσ

function, EP F Eσ , as defined in the previous section, is given by

EP F Eσ (A) = 1 − 1

2

∑

β∈D(Ac)

σ (β ∨ β)
∑

α∈D(A)

σ (αβ ∨ αβ)

σ(β ∨ β)
log2

σ(αβ ∨ αβ)

σ(β ∨ β)

for A �= ∅, M , with EP F Eσ (A) = P F Eσ (A) otherwise.
It is now straightforward to verify that

Theorem 2 The measure of gravitas P F E defined above satisfies the Continuity,
Locality, Voter Renaming, Monotonicity, Clone, Polarity Free, Classical Margin,
and Polarity Free Margin Invariance axioms.
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In addition P F E has the following two properties:

1. For any A ⊆ M and any σ

EP F Eσ (A) = P F Eσ (M)− P F Eσ (Ac)+ δA

where δA = 0 if A = ∅ or M , and δA = 1 otherwise.
It is this equation, a translation by δA of the equation satisfied by the classical
Shannon entropy, which ensures that the axiom of polarity free margin invari-
ance holds: the result then follows just by writing the equations corresponding to
EP F Eσ (A) and EP F Eσ (Ac) and subtracting.
In the special case of the uniform distribution, it is trivial to verify that P F E
satisfies a strong form of the classical margin axiom, namely

P F Euni f (A) = |A|.

We may remark here that although any translation of P F Eσ by the addition of a
constant value K still satisfies the eight axioms of the previous section, if we also
we require the property (2) above to be satisfied, then no nontrivial such translation
is possible.

We should also note that if A is a singleton then P F Eσ (A) = 1 for any σ .
It is also worth remarking that if we define Gσ (A) trivially to be |A| for all σ ,

then this function satisfies all the axioms of the previous section except the clone
axiom. It might therefore at first sight be concluded that the axioms are rather weak.
This however is not at all the case: in the presence of the clone axiom the remain-
ing axioms, and especially the polarity free margin invariance axiom, take on a far
stronger meaning.

5 Conclusions and Open Problems

Much further research is necessary to elucidate the foundations of a theory of
gravitas, together with the gravitas majority (or supermajority) decision rules
which can be derived from the concept. The axioms suggested, in particular those
involving the notion of polarity freeness, are by no means unchallengeable. In
fact these axioms emerged because the author started by investigating a simpler
notion of gravitas, consisting simply of the usual Shannon entropy of σA, namely
∑

α∈D(A) −σ(α) log2 σ(α). This definition has many pleasant properties and satis-
fies all the axioms given in Section 3 above except the polarity free axiom and the
polarity free margin invariance axiom. However this last axiom should not really
be counted as a failure since Shannon entropy does satisfy the simpler margin
invariance axiom which can be formulated in the absence of the “polarity free”
requirement, by replacing EGσ by the conditional Shannon entropy EGσ , defined by
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EGσ (A) =
∑

β∈D(Ac)

σ (β) Gσ |β(A)

where σ |β denotes the conditionalisation of σA to the event β.
With this change we get the axiom of

Margin Invariance For every A ⊆ M , MarEGσ (A) = MarGσ (A).

In the case when G is interpreted as Shannon entropy EGσ is simply the usual
conditional entropy of A given Ac; then the analogous property to (1) of the previous
section holds (i.e., with the constant term δA deleted) which immediately implies
that the above axiom of margin invariance is satisfied. Furthermore Shannon entropy
also possesses an at-first-sight attractive property which is not possessed by P F E :
namely it is additive for the union of two disjoint sets of voters A and B in the case
when the probability distributions over A and over B are independent of each other.
Nevertheless, as a measure of gravitas Shannon entropy possesses some difficult
counterintuitive properties. We can see this by looking at the example of a singleton
A. Here the Shannon entropy varies between 0 and 1 depending on how close to
1
2 the probability that the unique member of A votes yes is. This does not seem to
make much sense as a measure of gravitas: in a two person committee we would
surely not prefer, in the absence of other information, the judgement of a voter
whose previous record indicated she was equally likely to vote yes or no, against a
voter who previously almost always voted no, but on this particular occasion voted
yes! This example is not really a problem for P F E however since, as noted above,
P F E gives each individual voter an equal gravitas of 1.

Another reason to distrust Shannon entropy as a measure of gravitas is that the
Shannon entropy of A satisfies a very strong symmetry property which we may call

Division Renaming Gσ (M) is invariant under any permutation of D(M) if the
probability distribution σ is adjusted to reflect the permutation.12

For ease of notation we have stated the property for M , but it is clear that in
the case when G is Shannon entropy (or in the presence of the Locality axiom)
we could replace M by an arbitrary subset A. This property is far stronger than
voter renaming: in a sense it makes the voters almost redundant to the calculation
of Gσ since the divisions now all acquire identical status as abstract objects, and
their original relationship to the voters of A appears to be irrelevant. This does not
seem to have any intuitive justification as far as the notion of gravitas is concerned;
furthermore it is inconsistent with the polarity free axiom, modulo only the trivial
requirement that Gσ (M) be not independent of variations of σ .

12 That is, if π is a permutation of D(M) and σπ is defined by σπ (π(α)) = σ(α) for each
α ∈ D(M), then Gσπ (M) = Gσ (M). Note that whereas a permutation of M always induces a
permutation of D(M) the converse is not true.
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Turning to the rule RGσ discussed briefly in Section 2 as a motivation for the
study of gravitas, it is worth noting that in a dynamic context where σ(t) is changing
over time, the clone and continuity axioms appear to ensure that such a rule would
have the effect of strongly discouraging the formation of factions, by penalizing
the voting power (or success) of any such faction: over time this would occur quite
irrespective of whether the factions existed as formal entities.

To analyse this claim further let us define the success rate of a voter as the
probability that that voter will belong to the winning camp when a new motion
is presented and a vote is taken.13 One of the most intractable problems arising
from the use of conventional static voting rules is the fact that such voting rules are
prone to instabilities caused by the increase in success rates which a set of voters
may achieve individually by forming a faction which votes as a block, using an
internal voting rule to decide which way all the members of that faction vote. The
formation of one such faction in turn encourages the formation of other factions in a
process which is inherently unstable unless one faction is large enough to constitute
by itself a winning coalition, i.e., a majority dictatorship.14 More serious than the
instabilities, however, is the fact that voters are no longer voting honestly on the
individual motions presented to them. In a political context the factions formed in
the above manner are often given a formal status and called parties; we are now
culturally so accustomed to this phenomenon that, even though the negative effects
of party discipline on the discourse of politicians are well recognised, the existence
of parties is regarded as an intrinsic part, or even a sine qua non, of the process of
democratic decision making. Yet the possibility of a dynamic voting rule such as
RGσ(t) indicates that the phenomenon of dishonest voting can at least be actively
discouraged. For if RGσ(t) is taken to be the voting rule then as soon as a faction has
formed for long enough for the effects of block voting to be partially reflected in the
probability distribution σ(t), the gravitas of any set of voters including that faction
as a subset would tend to decrease; hence it seems likely that the formation of a
faction would result in at least some members of that faction suffering a decreased
success rate shortly after its formation, thus undermining the raison d’être of the
faction. This can be seen as encouraging honest voting, and as a strong disincentive
to the formation of factions. While this positive effect seems intuitively clear for
a gravitas majority voting rule, rigorous mathematical results along these lines are
likely to be hard both to formulate and to prove.

In the light of the above, it is interesting to consider Rousseau’s observations
concerning the problems arising from the formation of factions in a political context.
According to Rousseau’s notoriously ill-defined, but sometimes unfairly maligned,
intuitive concept of “general will,” the general will is always correct, but may well
be at variance with the vote of the majority (see (Rousseau, 1762)). In Rousseau’s
conception the general will cannot be directly accessed, but while the opinion of the
majority provides an indication of the general will, presumably in some probabilistic

13 See (Laruelle et al., 2006) for an analysis of the concept of success in the context of voting
systems.
14 Effects of this kind have been studied in a number of recent papers on voting power; see
(Felsenthal and Machover, 2002, 2008; Gelman, 2003).
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sense, it can be “mistaken.” Reasons given by Rousseau as to why such “errors” can
occur include insufficient or incorrect information available for the formation of
judgments, and especially distortions caused by the formation of factions:

If, when the people, being furnished with adequate information, held its deliberations, the
citizens had no communication one with another, the grand total of the small differences
would always give the general will, and the decision would always be good. But when
factions arise, and partial associations are formed at the expense of the great association,
the will of each of these associations becomes general in relation to its members, while it
remains particular in relation to the State: it may then be said that there are no longer as
many votes as there are men, but only as many as there are associations. The differences
become less numerous and give a less general result. Lastly, when one of these associations
is so great as to prevail over all the rest, the result is no longer a sum of small differences,
but a single difference; in this case there is no longer a general will, and the opinion which
prevails is purely particular. It is therefore essential, if the general will is to be able to
express itself, that there should be no partial society within the State, and that each citizen
should think only his own thoughts . . . . (Rousseau, 1762, Book 2, Ch. 3)

There is in this quotation from Rousseau a serious conceptual problem which
arises from the first sentence, and which has been much commented upon. It is
difficult to understand how people could be both well-informed and have thoroughly
considered a question, if they have no communication with one another.15 It seems
here as if Rousseau is grappling with an intractable difficulty, because while he
desires an informed people who have fully deliberated the questions to be decided,
he is painfully aware of the negative effects on the voting outcome which may be
caused by factional substructures. However we can now see that the use of a grav-
itas majority rule could well cut through the difficulty which Rousseau was facing;
under a gravitas majority rule, the influence of factions is likely to evaporate soon
after they start to be formed, and the outcome of the voting rule can once again be
considered, figuratively, the “sums of small differences” of independent opinions,
even though there is nothing like a bijective correspondence between independent
opinions and individual voters.

If indeed some sense can be made of Rousseau’s idea of the general will, a
question concerning which this author takes no position, then the notion of gravitas
margin seems likely to provide a far more plausible indication of the general will
than that provided by the classical margin. Indeed if the general will is interpreted as
the limit of a probabilistic notion, then it may well be possible, using the notion of
gravitas, to give the general will a more precise sense, which would be reasonably
faithful to Rousseau’s underlying idea.

For many reasons the ideas put forward in the present paper are likely to be met
with a certain scepticism; hence it seems appropriate to end this paperby posing two
precise philosophical challenges to those who would question whether a notion of
gravitas majority can serve any useful purpose in the context of human systems of
collective choice:

15 The original French text of the first sentence, which is difficult to translate exactly, is as follows:
“Si, quand le peuple suffisamment informé délibère, les citoyens n’avaient aucune communication
entre eux, du grand nombre de petites différences résulterait toujours la volonté générale, et la
délibération serait toujours bonne.”
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1. In defining a decision rule for collective choice, is there some convincing philo-
sophical principle which would exclude as unreasonable the use of additional
information about the abstract relationships between voters’ previous choices
such as that encoded by σ?

2. Suppose that it could be demonstrated by empirical methods as suggested in
Section 2 that a particular gravitas majority rule RGσ performed systematically
better than the simple majority rule when applied in contexts in which the cor-
rectness of M’s decisions could be compared with an independently accessible
objective truth. To what extent would such empirical evidence validate the use
of the rule RGσ in contexts (a) where there exists an independent standard of
objective truth or correctness which is not in general accessible, or (b) where
there exists no independent standard of objective truth or correctness?

Acknowledgement I wish to express my thanks to Moshé Machover, Alena Vencovska, Hykel
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Chapter 24
Scientific Knowledge and Structural Knowledge

Peter Clark

1 Introduction

There is a very general question in the philosophy of science. It is this: how do
we think our theories represent the world? What is theoretical knowledge in the
sciences, knowledge of? One very influential answer to this question is the thesis of
Structuralism: theoretical knowledge is not knowledge of unobservable objects and
the hidden relations among them but is always and only knowledge of structure.

There is no doubt that Structuralism is currently a very influential thesis. From
its stronghold within the philosophy of mathematics it has recently burst forth into
the methodology and the epistemology of science with a proposed solution to the
pessimistic induction. The leading advocates of this view, John Worrall and Elie
Zahar (see especially (Worrall, 1989, 2007; Zahar, 2001)) describe it as being the
only viable solution to the problem of giving a (minimally) realistic interpretation
of the natural sciences. Thereby they claim it meets the challenge of Constructive
Empiricism, which is the claim that science does not aim at the truth but at empirical
adequacy alone.

Not only this but also it has sallied forth into the metaphysics of science, as an
interpretation of modern physics and virtually the whole of the special sciences.
Here its champions are James Ladyman and Don Ross1 whose recent book is aptly
and humourously entitled “Every Thing Must Go” (the emphasis is mine). They
claim two further motivations which go far beyond Worrall and Zahar’s modest
defensive operation. They see a need for “an ontology apt for contemporary physics,
and a way of dissolving some of the metaphysical conundrums it presents” and
“for a conception of how theories represent the world that is compatible with the
role of models and idealisations in physics” (Ladyman and Ross, 2007, p. 131).
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These are worthy aims indeed, but the battle cry with which they lead their assault
is really revolutionary. They deny that “strictly speaking there are ’things’,” they
deny that “in the material world as represented by the currently accepted scientific
structures, individual objects have any distinctive status.” They argue that “some
real patterns behave like things, traditionally conceived, while others behave like
traditional instances of events and processes.” But that “from the metaphysical point
of view, what exists are just real patterns . . . . Science motivates no separate meta-
physical theories about objects, events and processes” (p. 121). Their clarion call is
“There are no things, Structure is all there is.”

Now, one must not underestimate the seriousness of their claim. Their claim is
not that there are some queer things about in modern physics, entities with startling
and peculiar properties, for we can all agree on that, but rather it is that they want
to do without entities of any sort whatsoever and rely merely on the existence of
patterns (to use Resnik’s phrase) and structures. It is a manifest fact that modern
physical theory can be formalised in first-order set theory with individuals as ure-
lements and consequently that in that formalisation there are universally and exis-
tentially quantified expressions, the quantifiers thought of as ranging over sets and
the urelements. If to be asserted to be by a theory is to be the value of a bound
variable occurring in that theory, then it would appear that modern physical theory
is committed to all manner of entities, objects and things which serve as the range
of those variables, in the standard univocal Quinean way. Ladyman and Ross et al.
are fully aware of this and that is why they eschew that means of exhibiting the
ontological content of theory and that Quinean view of theoretical commitment to
existence.2

Before pursuing this matter further I should put my cards on the table. I am no
structuralist, in mathematics, physics or metaphysics, though I am happy to accept
the existence of all sorts of structures from ω through C (the field of complex
numbers), to physical fields, and even, if it is required by metaphysics, to atomless
gunk. But all these structures are structures of things. One can in my view talk of
structures quite properly as themselves things, when one thinks of the structure as
an equivalence class, as an abstraction over some suitable equivalence relation itself
defined over classes of objects. But I think that structures are always structures of
somethings.

Structuralism as a general view about the nature of mathematics really got started
in a remark of Dedekind in his classic of 1887 Was sind und was sollen die Zahlen?
(Quotations are from Dedekind (1963).) He famously remarks there:

If in the contemplation of a singly infinite system N , ordered by a representation ϕ, we
disregard entirely the peculiar nature of the elements, retaining only the possibility of distin-
guishing them, and considering only the relations in which they are placed by the ordering

2 Thus they say explicitly, “It is not part of our realism that every time a scientist quantifies over
something in formulation of a theory or hypothesis she is staking out an existential commitment
. . . . Indeed, we will argue that, semantic appearances notwithstanding, we should not interpret
science—either fundamental physics or special sciences—as metaphysically committed to the
existence of self-subsistent individuals” (Ladyman and Ross, 2007, p. 119).
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representation ϕ, then these elements are called natural numbers or ordinal numbers or
simply numbers.

This manifesto for structuralism, that the natural numbers should be regarded as
merely place holders in any ω-sequence, was replied to by Russell in 1903, before
he himself temporarily adopted a structuralist view in (Russell, 1927). I have always
thought that Russell’s reply then was exactly the right one, not just to the specific
claim but to the general structuralist thesis. It is worth quoting in full. He argues as
follows:

Moreover it is impossible that the ordinals should be, as Dedekind suggests, nothing but
the terms of such relations as constitute a progression. If they are to be anything at all they
must be intrinsically something: they must differ from other entities as points from instants,
or colours from sounds. What Dedekind intended to indicate was probably a definition by
means of the principle of abstraction . . . . But a definition so made always indicates some
class of entities having (or being) a genuine nature of their own, and not logically dependent
upon the manner in which they have been defined. The entities should at least be visible to
the mind’s eye; what the principle asserts is that, under certain conditions, there are such
entities, if we only knew where to look for them. But whether when we have found them,
they will be ordinals or cardinals, or even something quite different, is not to be decided
off hand. And in any case, Dedekind does not show us what it is that all progressions have
in common, nor give any reason for supposing it to be the ordinal numbers, except that
all progressions obey the same laws as ordinals do, which would prove equally that any
assigned progression is what all progressions have in common. (Russell, 1903, p. 249)

I will return to this issue later, we should begin by considering the methodological
version of structural realism.

2 The Modest Defence of Scientific Structural Realism

Let us now turn to the modest defence of Scientific Realism proposed by Worrall
and Zahar. What is it that they are defending and why does it require a defence at
all? They are defending the claim of Scientific Realism which they, I think entirely
rightly, characterise as a combination of a metaphysical claim and an epistemolog-
ical one. The metaphysical claim asserts that there is a mind-independent reality of
which scientific theories attempt to give true descriptions, and the epistemological
thesis asserts that not only is this reality partially accessible to human discovery
but that “it is reasonable to believe that the successful theories of mature science—
the unified theories that explain the phenomena without ad hoc assumptions—have
indeed latched on, in some no doubt partial and approximate way, to that structured
reality, that they are, if you like, approximately true” (Worrall, 2007, p. 153–154).
Why does such a claim need defending? It is essentially because of the pessimistic
induction.

While at the empirical observational level of specific confirmed predictions
science is cumulative, at the theoretical or explanatory level it is highly non-
cumulative. Indeed the history of science reveals a sequence of dramatic revolutions
in theory and that despite much, often very surprising predictive success by earlier
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theories, subsequent theories, while retaining as predictions those earlier predictive
successes, have denied that the underlying structure of unobservable reality was
anything like what earlier theories said it was. Up to the present then, all past
theories have been proved to be false, Newtonian gravitational theory giving way
to Relativity and classical electromagnetism giving way to quantum theory being
prime examples, though the list is legion. Why do we not then reasonably infer that
our current scientific theories are false? That is the pessimistic induction. But that
induction further invites the question as to in what sense then were those admittedly
predictively successful earlier theories even approximately true, given that such rev-
olutions have occurred in successive theoretical accounts of the deep structure of the
Universe? That is the central threat to scientific realism.

One standard realist defence against the pessimistic induction, the no miracles
argument, is manifestly invalid. This very well known argument of Putnam and
Boyd says that if we do not grant some notion of approximate truth to successive
theories, then the explanatory success of science at the empirical predictive level
would be a miracle (Putnam, 1975; Boyd, 1984). It would be a matter of the remotest
chance, the remotest coincidence. But the invalidity of this argument is clear since
it hinges upon what we take the prior likelihood of a false theory having a true and
interesting consequence to be. It is only on the very specific assumption that the
prior likelihood of that is incredibly low, that the argument has the slightest force.
After all, any sequence of events can seem miraculous if one chooses a sufficiently
low prior probability for outcomes of the required kind (see particularly (Howson,
2000), especially pp. 35–60).

Indeed further it is a requirement, if you like, of the practice of science that the
predictive successes of earlier theories are carried over into succeeding theories as
a necessary condition for the adequacy of those theories. The once much vaunted
problem of “Kuhn loss,” as it was called, turned out to be a myth.3 The key idea in
the structuralist defence of scientific realism is really contained in what is sometimes
called the “correspondence principle.” This is the claim that if we look at the history
of major scientific revolutions then an adequacy condition on succeeding theories is
that they yield the predecessor theory as a limiting case. The classic example of this
is special relativity and Newtonian mechanics, where the Lorentz transformations
of the former yield the Galilean transformations of the latter when the velocities
considered are small with respect to that of light, and where the dynamical laws of
the former yield as a limit the Newtonian Second Law when again the velocities are
small with respect to that of light.

Now the key claim in general of Worrall and Zahar’s position is that there is a
strong notion of continuity which can be extracted from the history of theory change
in science. It is continuity at the mathematical structural level, not at the ontological
level.4

3 Kuhn loss was the supposed historical phenomenon that the explanatory successes of earlier
theories at the level of successful predictions would fail to be captured by succeeding theories.
4 Van Fraassen in an excellent recent reply to structuralism (van Fraassen, 2006), gives a nice
example of how observations reveal the structure of the phenomena behind them without revealing
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As Worrall puts it:

According to the account of theory change that underpins SSR [Structural Scientific Real-
ism], successive theories in science have not only been successively more empirically ade-
quate, but there has always been a reason, when viewed from the vantage point of the later
theory, why the earlier theory achieved the degree of empirical adequacy that it did—namely
that the earlier theory continues to look approximately structurally correct: its mathematical
equations are retained modulo the correspondence principle. (Worrall, 2007, p. 143)

This seems to me to be a modest historical thesis, which one might well accept.
The difficulty is however that it comes embedded with another claim, which seems
to me to be completely fallacious as an account of theoretical knowledge in science.
This claim is the view that a theory’s full cognitive content is captured by its Ram-
sey Sentence, where the Ramsey sentence of a given theory T , results from T by
replacing all the theoretical predicates occurring in T by second order variables and
then existentially quantifying over them. So if T is an empirical theory with a theo-
retical vocabulary !1, . . . , !n and with observational vocabulary O1, . . . , Ok , then
expressing T as T (!1, . . . , !n, O1, . . . , Ok) the Ramsey sentence of T , denoted by
R(T ), is the claim ∃X1 . . . XnT (X1, . . . , Xn, O1, . . . , Ok). As is very well known,
T and R(T ) have exactly the same observational consequences.5 Now why is it the
case that Structural realists want to identify the cognitive content of T with R(T )?
The answer is because R(T ) says there are certain attributes, X1, . . . , Xn , whose
relational structure is exhibited by R(T ) and that that structure imposes exactly the
content on the observations that T does, (recall that T and R(T ) are observation-
ally equivalent). So R(T ) exhibits the structural constraints that T imposes on the
observations.

There is however a real difficulty with this view. It is the old problem pointed
out by the topologist Max Newman (Newman, 1928) when criticising Russell’s
version of structural realism (as developed in (Russell, 1927), and that based upon
his distinction between knowledge by acquaintance and knowledge by description).
This objection has been greatly elaborated upon by William Demopoulos and

the qualities and inner nature of that hidden reality. His example is based on one provided by
Russell in (Russell, 1927). Van Fraassen writes: “Listen to the radio, and hear the sounds which
were produced in the studio many miles away. In between are the radio waves which have none of
the qualities of sound. But we can infer that they must have structure which encodes the structure
of this sound. Thus we know a great deal about those radio waves on the basis of observation: not
what qualities they have or what they are like in themselves, but their structure. And it’s precisely
that, and only that, which science describes (as it happens of course what Maxwell’s equations
describe)”(p. 289).
5 The proof is straightforward. If an observation sentence O is not a consequence of T then some
interpretation I of T satisfies T but fails to satisfy O . But then that same interpretation will satisfy
R(T ), since R(T ) is merely an existential generalisation of some predicates in T , but will fail to
satisfy O . So if O is a consequence of R(T ) then it must be a consequence of T by contrapo-
sition. Similarly if O is not a consequence of R(T ), then some interpretation of the existentially
generalised predicates of T satisfies R(T ) but fails to satisfy O. Precisely that interpretation of the
predicates of T will then provide an interpretation of T itself which satisfies T but fails to satisfy
O . Hence by contraposition if O is a consequence of T , O is a consequence of R(T ). So as far as
O-consequences are concerned T and R(T ) are equivalent.
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Michael Friedman (Demopoulos and Friedman, 1985; Demopoulos, 2003a, b,
2007). I will concentrate on Demopoulos’ most recent elaboration of Newman’s
argument (Demopoulos, 2008; see also Ketland, 2004; Ainsworth, 2009) for I
think his argument is very telling. Essentially the argument boils down to a model-
theoretic argument of the following sort. Take a model, call it M in which all of the
purely O-sentences of T hold. Then provided the cardinality of M is sufficiently
great it can be expanded to a model M∗ in which of course the O-sentences are
satisfied, but in which all of the existential claims of R(T ) are also satisfied. This
follows because of the richness of the set of subsets of the domain of M. It is
always possible, provided the domain of M is sufficiently large, to find subsets of
the domain which will satisfy the existential claims of R(T ) exhibited above.6 What
this means then is that, if T is consistent, R(T ) expresses at most a cardinality claim
on the universe, which is manifestly not what the theoretical claims of empirical
science do. As Demopoulos puts it “modulo a logical assumption of satisfiability
and an empirical assumption about cardinality, it follows that if the O-sentences are
true, the T -sentences are true” (Demopoulos, 2008, p. 24). This result also holds
if we do not, in forming the Ramsey sentence of the theory, allow for existential
quantification over so-called mixed terms, that is those terms which apply both to
theoretical and observational entities. So it cannot be right to identify the cognitive
content of T with R(T ), which is what the structural realist insists we should do.
This clearly presents a dilemma for the structuralist realist. Either identify the cog-
nitive content of T with R(T ) with resulting trivialisation, or do not, but then what
is to constitute the structural content of an empirical theory T ?

Interestingly ontic structural realists like Ladyman and Ross do not identify the
Ramsey sentence as the structural content of T , for they eschew altogether this form
of analysis of structural content. So we should now turn to an analysis of their view.

3 Ontic Structural Realism

Ross and Ladyman and their co-authors clearly want metaphysics to fulfil an
explanatory purpose, in particular they see it as performing an explanatory unifi-
cation at the highest theoretical level. So, to take a straightforward example, one
might genuinely regard the metaphysical theory of Perdurantism (see, for example,
(Hawley, 2001)), perhaps enhanced by stage theory, as a good example of an attempt
to unify the large scale picture of the four-dimensional block universe of Minkowski
Space-Time in Relativity with ordinary facts about objects and how they change
in our experience as codified in common sense theories. That particular model of
Relativity could be treated independently of theories about ordinary objects which
change and age but it is clearly helpful if an explanatory unification can take place.

6 For proofs, see (Ketland, 2004; Demopoulos, 2008, 2003a). The background model theory is
explained in (van Dalen, 1983).
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Similarly one might recall seventeenth and eighteenth century struggles with the
concept of matter, which sought to find a metaphysical concept of matter which
could marry the concept of substance as a carrier for the primary qualities of matter
as exhibited in mechanics (for example those of mass, inertia, impenetrability, and
vis viva) to the other extraordinary property of matter, its response to the gravita-
tional field and all that that apparently implied about action at a distance.

Now Ross and Ladyman lay down a constraint on metaphysical hypotheses
which they label the Principle of Naturalistic Closure (PNC). This, modulo some
technical stipulations, says:

Any new metaphysical theory that is to be taken seriously at time t should be motivated by,
and only by, the service it would perform, if true, in showing how two or more specific
scientific hypotheses, at least one of which is drawn from fundamental physics, jointly
explain more than the sum of what is explained by the two hypotheses taken separately, . . . .
(Ladyman and Ross, 2007, p. 37)

Given this view about the role of metaphysics embodied in the PNC they argue for
a positive and a negative thesis. They assert that:

The single most important idea we are promoting in this book is that to take the conventional
philosophical model of an individual as being equivalent to the model of an existent mis-
takes practical convenience for metaphysical generalisation. We can understand what indi-
viduals are by reference to the properties of real patterns. Attempting to do the opposite—as
in most historical (Western) metaphysical projects—produces profound confusion. (Witness
the debates about identity over time, identity over change in parts, and vagueness, none of
which are PNC-compatibly motivated problems.) (Ladyman and Ross, 2007, p. 229)

So they use the PNC to dismiss some, if not all, of contemporary metaphysics.
This seems to me unfair since much of modern metaphysics has been motivated
by an attempt to bring a consistency proof forward for common sense views and
fundamental physics (thereby surely satisfying the PNC). But I shall not dwell upon
this point. Rather let us turn to their positive ontic structuralist thesis. That is the
claim that all that exists is structure or patterns, all the way down. Though they
never quite spell out what they mean by this view it is clear that they are committed
to a reductionist view that objects, atoms, molecules, quarks and tables and chairs
are to be thought of as “bundles” of structural universals.

Now it seems to me evident that whatever form of structuralism is involved the
view cannot provide an answer to the pessimistic induction. For where before we
had revolution in underlying ontology through scientific revolutions, we now have
revolutions in structure. If there was a dramatic change in ontology from, say, the
substance of heat, phlogiston, to the kinetic energy of molecules in the transition
from early theories of heat and of Carnot’s thermodynamics to late nineteenth cen-
tury thermodynamics, then how is continuity to be restored by appeal to a transition
from the structure of continuous media subject to a conservation law over cycles
to a structure of discrete moving particles governed by rectilinear motion except
at collision? Mathematical structure can change discontinuously just as traditional
ontology can. So where is the advantage in this talk of structures?

But there is I think an even more serious objection, one that Russell made long
ago and with which I began this paper. The objection is that the doctrine isn’t coher-
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ent, if it is globalised so that everything is structure. Ladyman and Ross espouse
the semantic view of theories; they wish to use all the techniques of model theory,
domains, isomorphisms and embeddings, etc., to formulate and analyze the struc-
tural relations postulated by empirical theories. But they understand objects in a
domain merely by the relational nexus in which they take part—objects are certain
“higher order” relations holding among relations on the domain. But then which
relations hold on the domain will depend upon the objects in the domain, and that
depends upon which relations hold on the domain. I submit that this is viciously
circular, not in the sense of understanding or definability alone, but in the ontological
sense.

Perhaps the argument is better put by alluding to the Newman-Demopoulos argu-
ment mentioned above. That argument showed that structuralism does not yield an
adequate account of theoretical knowledge because it does not yield any constraints
on the World except ones of cardinality, which is certainly not what we take our
theories to be telling us about the nature of reality. Now, there is no doubt that we can
ascribe properties and relations to relations. We can say correctly that the relation
less-than-or-equal-to is antisymmetric, or that the successor relation is one-one, or
that the relation of isomorphism is part of the relation of ordinal similarity. But if all
science does is speak of the relations holding among or of relations, it is perfectly
consistent with the world being empty.7 We are not given a coherent account of how
the World can be unless some of the relata are individuals, but then structure can’t
be everything that there is.

So, despite their claims, nothing is gained by the structuralist account of
theoretical knowledge either methodologically or ontologically, and the debate
between the realist and the constructive empiricist over the interpretation of the-
oretical knowledge is left unresolved, by this move at least.
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Part VI
Aesthetics



Chapter 25
Musing on Music

Richard Feist

The man that hath no music in himself,
Nor is moved with concord of sweet sounds,
Is fit for treasons, stratagems, and spoils;
The motions of his spirit are dull as night,
And his affections dark as Erebus.
Let no such man be trusted. Mark the music.

The Merchant of Venice, Act V, Scene 1

1 Introduction: Boethius on Music

Anicius Manlius Severinus Boethius (ca. 480–524) would have been most puzzled
by what Shakespeare’s Lorenzo says. The reasons for his supposed perplexity lie
in the background views on music that he appropriates from ancient Greek philos-
ophy. Boethius’ compendium on music, De institutione musica (The Fundamentals
of Music), along with similar texts on arithmetic, geometry and astronomy, formed
the medieval quadrivium. It is surprising that the scholastic philosophers, who were
often deeply concerned with logical consistency and order, were unperturbed by
the inconsistencies running rampant throughout De institutione musica. On the one
hand, the work’s first part is Pythagorean: music was inseparable from numbers,
which governed the universe. Music exemplified the cosmic order. On the other
hand, the work’s latter sections contain anti-Pythagorean sentiments; music is not
necessarily anything that expresses universal orders. So, it is difficult to say pre-
cisely what Boethius thought about music. Further complicating this is the fact that,
with respect to music, Boethius was not always a terribly original thinker. He often
borrowed from a (now lost) treatise on music by Nicomachus and from the first book
of Ptolemy’s Harmonics. Still, in the most original section of the book, the open-
ing chapters, Boethius expresses a view of music that is relevant to the historical
development of music and how thinkers addressed problems in the philosophy of
music.

In these chapters Boethius divides music into three kinds. The first is musica
mundana (cosmic music), which consists of the permanent and orderly numerical
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relations that could be “seen” in nature. Such relations would be planetary motions
and seasonal changes. But there was another, natural music, musica humana (human
music), which controls that obscure, yet supposedly common union: the body and
the soul. Finally, there is music that exemplifies all these orderly relations, musica
instrumentalis, which includes instrumental and vocal music. Boethius insisted that
music was a key part of education; not only was it an important, albeit passive,
object of study, but it influenced morals and served as an introduction, a platform of
sorts, to more advanced philosophical studies.

An elegant discussion of music as a platform of education can be found in Plato’s
Republic:

Then aren’t these the reasons, Glaucon, that musical training is most important? First,
because rhythm and harmony permeate the inner-most element of the soul, affect it more
powerfully than anything else, and bring it grace, such education makes one graceful if one
is properly trained, and the opposite if one is not. Second, because anyone who has been
properly trained will quickly notice if something has been omitted from a thing or if that
thing has not been well crafted or well grown. And so, since he feels distaste correctly,
he will praise fine things, be pleased by them, take them into his soul, and, through being
nourished by them, become fine and good. What is ugly or shameful, on the other hand,
he will correctly condemn and hate while he is still young, before he is able to grasp the
reason. And, because he has been so trained, he will welcome the reason when it comes and
recognize it easily because of its kinship with himself. (401d4–402a4)

According to Plato music, not surprisingly, is not the absolute foundation of educa-
tion, the forms are. Socrates compares the forms to letters; music entering the soul is
like learning to read. Reason, however, comes afterwards. This notion of music first,
followed by reason, is somewhat echoed in Boethius. Ultimately, the true musician
according to Boethius was not the person who naturally sings or plays an instru-
ment by ear, but the philosopher, the critic, “. . . who exhibits the faculty of forming
judgments according to speculation or reason relative and appropriate to music”
(Boethius, De insitutione musica 1.34, transl. Calvin M. Bower, quoted from Grout
and Palisca (1963, p. 51)). Boethius would have regarded a human outside of music
as outside of nature altogether, a “monster” in the traditional sense of that term.

A general and important theme here is the all-compassing nature of music, at
least according to the ancients and, of course, Boethius. One could say that music
originally determined, or at least highly influenced, the boundaries of sense. It was
the primordial giver of order, of harmony. This thought has been echoed in our times
by the great violinist Yehudi Menuhin:

Music creates order out of chaos; for rhythm imposes unanimity upon the divergent; melody
imposes continuity upon the disjointed, and harmony imposes compatibility upon the incon-
gruous. (Menuhin, 1972, p. 9)

From relatively recent scientific literature, there is a similar notion of music as order-
giving. Oliver Sacks, in his description of sufferers of post-encephalitic Parkinsoni-
anism, describes one case as follows:

By far the best treatment of her crises was music, the effects of which were almost uncanny.
One minute would see Miss D. compressed, clenched and blocked, or jerking ticking and
jabbering—like a sort of human bomb; the next, with the sound of music from a wireless
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or a gramophone, the complete disappearance of all these obstructive-explosive phenomena
and their replacement by a blissful ease and flow of movement as Miss D., suddenly freed
of her automatisms, smilingly ‘conducted’ the music, or rose and danced to it. (Sacks, 1981,
p. 56–57)

Unfortunately, music has dark effects—in rare cases. For instance, it has been doc-
umented that one patient suffered a grand mal, a major epileptic seizure, simply
by listening to a recording of Tchaikovsky’s Valse des Fleurs (Critchley, 1977,
p. 344). Even rarer are cases in which merely recalling a tune can cause seizures.
Such deep and diametrically opposed effects of music on the soul are simply grist
to Plato’s mill.

For now, let us note that the basic idea is that, so to speak, it was once strongly
held that there really was no meaning outside of music. We can see this even if we
travel back to the origins of Western literature, as embodied in the Homeric poems.
Some hold that these works are in fact the original works of Western literature.1

To forget the role that music plays in these epics can lead to misunderstanding
them. Because the ancients saw music as a mnemonic aid, they crafted their works
according to metrical considerations. As the work of the great Homeric scholar,
Milman Perry, established, the demands of the musical rhythm in many cases took
precedence over the semantic content.2 In many passages of the Iliad, for instance,
Achilles is repeatedly referred to as “swift-footed,” even in those scenes where he
is seated. Certain scholars, while attempting to understand works like the Iliad are
often needlessly perplexed by such repeated phrases.3

Nonetheless, by Shakespeare’s time, it had become possible at least to think of a
human existing outside of music. Such a marginalized human was still monstrous,
being outside the moral order of the universe. But what I wish to stress is that
music remained very much a part of the world, even though it may not be a kind
of part that exemplifies the whole. In fact Shakespeare is most likely echoing some
of the concerns over the development of music that had occurred since antiquity.
Music was seen by many in the sixteenth century as having declined since antiquity.
Basically, music had gone from being that which is deep within the soul, perhaps
a mover of sorts, to being regarded as a formal sonic structure. This concern that
music had become too formal can be found in a variety of thinkers, religious and
non-religious, of the time historians refer to as “the Renaissance.”

2 Formalized Music and the Renaissance

An example of one who reacted to the over-formalization of music is the religious
leader Bernardino Cirillo (1500–1575), the archpriest of the Santa Casa of Loreto, a
famous shrine and destination for pilgrimages. Cirillo complains that the polyphonic

1 This is an overstatement, but it is often made; the epic of Gilgamesh predates those of Homer.
2 For an overview of Milman’s work, see (Powell, 2004, Ch. 1), “The Philologist’s Homer.”
3 For an example of needless perplexity see (Smith, 2001, p. 7).
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masses of the time were disappointing since they failed to move him. The masses
paid too much attention to form. Cirillo insists that:

. . . when a Mass is sung in church, I should like the music to consist of certain harmonies
and rhythms apt at moving our sentiments to religion and piety according to the meaning of
the words. . . . Today every effort and diligence is bent on making a work in strict fugue so
that when one says “Sanctus,” another pronounces “Sabaoth,” while a third sings “Gloria
tua,” with certain wails, bellows, and bleating that at times they sound like cats in Jan-
uary . . . (Feb. 16, 1649 letter to Ugolino Gualteruzzi, quoted from Grout and Palisca (1963,
p. 153))

A similar, but more moderate reaction to formalization is in the secular writ-
ings of a prominent musician of the time, Gioseffo Zarlino (1517–1590). Zarlino
regarded with pride the achievements in contrapuntal technique; however, he also
agreed that music had fallen from its heights among the ancients. But, Zarlino
insisted that music was currently undergoing a rebirth. Mere technique, he insisted,
was not enough: music must move us to praise the glory of God. Indeed, Zarlino
credits God with providing the world with Adrian Willaert (1490–1562), whom he
refers to as the “new Pythagoras” who will restore music to the honour and dignity
that it once had and ought to have. Basically, Zarlino credits Willaert with leading a
new movement in music, where music is a vehicle of emotional expression. In other
words, music was to be a language of the emotions.

The important point to draw out here is that viewing music formally has certainly
been done—long before formalism as a general approach was applied to various
disciplines. What lies behind this is the distinction between “that it can be done”
and “should it be done?” Clearly, the Renaissance thinkers agreed that formalized
views of music are possible; formalism in fact was staring them all in the face. But,
they reacted, holding that a formalist take on music was misguided. In many ways,
the formalist view of music strips it of a world. It is interesting to note that formalists
today often replace that lost world by claiming that another one has taken its place.
However, what this other world of music is, is often not at all explained.

But I wish to return to the claim that “music is a language of the emotions.”
This is a very old claim and, indeed, an ambiguous one. It has at least two possible
readings. One could say that music expresses emotions or that it signifies emotions.
Certainly music has great power. In fact, music is often claimed to have powers that
outstrip any other human activity. To put any constraints on music’s power has been
seen by some, says contemporary philosopher of music Peter Kivy, to be an act
of sacrilege. Still, one must ask, just what are the powers of music? What, indeed,
can it really do? There are several questions to keep in mind while thinking about
music. What is essential to it? Simply because we can interpret music in a highly
abstract manner, does that mean that we should? Another, related, set of questions
concern the supposed powers of music. What exactly, can it do? Peter Kivy offers
an amusing but cautionary note, when considering the powers of music.

. . . long experience has taught me that whenever someone denies to music any power at all,
or any important property, such denial tends to be seen as treachery or barbarism or some
kind of musical insensitivity only to be expected from philosophical analysis or formalism,
both of which I suppose that my work exemplifies. Had I denied that music can predict the
future or remove warts, I am certain there would have been at least two responses in the
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literature to the effect that I had missed some sense in which it can predict the future or
remove warts, although of course, one must not be quite so rigid or pedantic about what it
means to “predict” or “remove” or what exactly the “future” or a “wart” might be. (Kivy,
1997, p. 140)

Kivy, whom I shall discuss later on, does not deny all power to music.

3 The Turning Point in Aesthetics: Representation

I now pass over the 1600s, to the years 1700–1750. During this time a number of
important works dealing with philosophical reflections on art appeared in England
and the continent. (For a list, see (Kivy, 1997, p. 4).) But as the historian Kristeller
writes:

The decisive step towards a system of the fine arts was taken by the Abbé Batteux in his
famous and influential treatise, Les beaux arts réduit à un meme principe (1746). (Kristeller,
1992, p. 38)

What eventually emerged from Batteux’s discussion could be called the modus
operandi of the science of the arts, now called “aesthetics.” The proposed view was
that the arts are of a piece, united by their representative nature. The representative
function, or mimesis, certainly played a role in the history of reflections on art and
originates in the works of Plato and Aristotle. However, prior to Batteux, the general
consensus was that the arts were all quite different; there was no clear notion of a
“system” of the arts. They were more or less thought of as the disparate arts. The
modern “system of the arts,” as Kristeller calls it, consists of five arts. Three of
them, painting, sculpture, and poetry, are not immediately problematic with respect
to representation. Music and architecture are, at least to us today, more problematic
with respect to the representative function. It was only around the mid-eighteenth
century that representative function became that which was the shared property of
all the arts.

If we shift back to the history of music, we note a parallel. Let us divide music
into vocal and instrumental music. Clearly both had been in existence for cen-
turies; the question is not one of existence, but emphasis. That is, prior to the mid-
eighteenth century the emphasis, in quantity of production and what composers and
their patrons valued, was vocal music. This type of music is, to a certain extent,
much more easily subsumed under the representative function than instrumental
music. Of course, instrumental music had existed and did so in sophisticated forms
prior to the mid-eighteenth century. A quick consideration of Bach’s instrumental
works, written in the first half of the eighteenth century, illustrates the high levels
instrumental works achieved. However, it remains an empirical, sociological fact
that vocal music dominated. Vocal music was, once again, more valued than any
other kind of music; vocal music commanded money whereas other musical types
at the time generally did not—or at least not to the same degree. But all this changed
in the latter half of the eighteenth century as it became possible to make a decent
living composing purely instrumental music, absolute music. Now, once separated
from any kind of vocal or literary associations and assuming a respected and popular
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status, music as absolute music becomes an object that is difficult to subsume under
the representative function.

Standard examples of absolute music include Bach’s Art of Fugue and Haydn’s
later symphonies. A typical text in music appreciation offers the following
definition:

Absolute music is music for which the composer has not indicated to us any nonmusical
associations, whether of story, scene, or mood. Here the musical ideas are organized in such
a way that, without any aid from external images, they give the listener a satisfying sense of
order and continuity. (Machlis, 1970, p. 116)

Clearly this definition is intentionally-based; the foundation of the music/non-
music connection is the intention of the composer. Of course, musical asso-
ciations happen in a variety of ways. But, does this mean that music, via
associations, can represent anything? This discussion turns on what one takes “rep-
resentation” to mean.

In the early 1700s, one could say that the search for a clear definition of “repre-
sentation,” perhaps even any serious reflection on the notion of representation, is still
a long way off into the future. At this time the mimetic function was a resemblance
theory. In other words, “X represents Y ” is unpacked as “X resembles Y .” With
this understanding of representation, at least three options loomed before aesthetic
thinkers in the second half of the eighteenth century. First, they could simply exclude
absolute music from the arts. Second, accept absolute music as a fine art and find a
way to explain its representative nature. Third, accept absolute music as a fine art
but construct a non-representative theory of the arts.

Without doubt the key thinker in aesthetics at this time is Kant. Indeed, Kant’s
Critique of Judgment sets the stage for the ensuing nineteenth century’s aesthet-
ical philosophy. Unfortunately, Kant does not clearly answer the question: “does
absolute music represent or not?” Without going into the difficult notion of Kantian
aesthetic ideas, one could say that Kant offers us a hybrid answer. In the sense of
its form, absolute music is a fine art that does not represent; with the addition of
poetry to it, the latter’s evocation of the aesthetic ideas can cause the representative
function to be engaged. Regardless of how one wishes to understand this, Kant in
the end does not think that absolute music alone can represent anything. However,
he still wants to have a general theory of art that has a representative function and
can incorporate absolute music as an art. Whether or not he is successful—and it
would appear that he is not—is not to be decided here.4

4 The Nineteenth Century

The giants of nineteenth century aesthetic thought are Hegel and Schopenhauer.
Hegel emphasizes the dialectical nature of reality, which ultimately encompasses
all forms of knowing. Without doubt he would have stressed the system of the arts

4 For more on Kant see (Kivy, 1997, pp. 15–18), and (Bicknell, 2002).
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as unified. Nonetheless, the sheer difficulty of understanding Hegel’s reflections on
music, along with his unclear references, make any serious discussion of his aesthet-
ics beyond the scope of my work here. And so I turn briefly to Schopenhauer, who
restores music to the status of an all-encompassing art form by returning to Platonic
thought. According to Schopenhauer, art in general:

. . . repeats the eternal Ideas apprehended through pure contemplation, the essential and
abiding element in all the phenomena of the world. According to the material in which it
repeats, it is sculpture, painting, poetry, or music. Its only source is knowledge of the Ideas;
its sole aim is communication of this knowledge. (Schopenhauer, 1966, p. 184)

Despite this, Schopenhauer insists that art does more than communicate knowledge
of the Ideas. Art is a liberating mechanism, that is, it allows us an escape from our
everyday world to one that is, at all times, nearby and yet difficult to remain within.

There always lies so near to us a realm in which we have escaped entirely from all our
affliction; but who has the strength to remain in it for long? As soon as any relation to our
will, to our person, even of those objects of pure contemplation, again enters consciousness,
the magic is at an end. We fall back into knowledge governed by the principle of sufficient
reason; we now no longer know the Idea, but the individual thing, the link of a chain to
which we also belong, and we are again abandoned to all our woe. (Schopenhauer, 1966,
p. 198)

The non-musical arts aim at the Platonic Ideas by stimulating our minds to reach for
such ideas.

The (Platonic) Ideas are the adequate objectification of the will. To stimulate the knowledge
of these by depicting individual things (for works of art are themselves always such) is the
aim of all the other arts (and it is possible with a corresponding change in the knowing
subject). Hence, all of them objectify the world only indirectly, in other words, by means of
the Ideas. (Schopenhauer, 1966, p. 257)

Now we see the difference with music. Schopenhauer goes on to say that the visible
world is simply an appearance of the Ideas. But music, he says, passes over the
Ideas and is therefore independent of the world. That is, music could exist even if
the world did not; this possible non-worldly existence of music cannot be attributed
to any of the other arts. Schopenhauer then concludes:

Thus music is as immediate an objectification and copy of the whole will as the world itself
is, indeed as the Ideas are, the multiplied phenomenon of which constitutes the world of
individual things. Therefore music is by no means like the other arts, namely a copy of the
Ideas. For this reason the effect of music is so very much more powerful and penetrating
than that of the other arts, for these others speak only of the shadow, but music of the
essence.5 (Schopenhauer, 1966, p. 257)

5 It is interesting to note that Paul Hindemith has the exact opposite view of music. “The reactions
music evokes are not feelings, but they are the images, memories of feelings. Dreams, memories,
musical reactions—all three are made of the same stuff.” Visual arts and poetry release direct
emotions. Music is a trickster. “Paintings, poems, sculptures, works of architecture . . . do not—
contrary to music—release images of feelings; instead they speak to the real, untransformed, and
unmodified feelings.” (Hindemith, 1961, p.42)
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Now, why would we accept that music is of the essence of anything? Music, when
understood, is supposedly understood immediately.

This close relation that music has to the true nature of all things can also explain the fact
that, when music suitable to any scene, action, event, or environment is played, it seems
to disclose to us its most secret meaning, and appears to be the most accurate and distinct
commentary on it. (Schopenhauer, 1966, p. 262)

Schopenhauer goes on to state that when you listen to music, give yourself up to it,
you see the events of life, but if you then reflect (presumably on the music) you can-
not put the music and life into some kind of correspondence. Music, Schopenhauer
repeats, just is not a copy of the phenomena.

Accordingly, we could just as well call the world embodied music as embodied will; this
is the reason why music makes every picture, indeed every science from real life and from
the world, at once appear in enhanced significance, and this is, of course, all the greater, the
more analogous its melody is to the inner spirit of the given phenomenon. (Schopenhauer,
1966, p. 263)

Still, Schopenhauer is quick to point out that there are strict limitations on these
analogies between music and anything else.

But we must never forget when referring to all these analogies I have brought forward, that
music has no direct relation to them, but only an indirect one; for it never expresses the
phenomenon, but only the inner nature, the in-itself, of every phenomenon, the will itself.
Therefore music does not express this or that particular and definite pleasure, this or that
affliction, pain, sorrow, horror, gaiety, merriment, or piece of mind, but joy, pain, sorrow,
horror, gaiety, merriment, peace of mind themselves, to a certain extent in the abstract,
their essential nature, without any accessories and so also without the motives for them.
Nevertheless, we understand them perfectly in this extracted quintessence. (Schopenhauer,
1966, p. 261)

Much has been written about Schopenhauer’s view of music. Without doubt it
has been an influential view—especially in the early twentieth century. (See, for
instance, (Yewdale, 1928).) Despite all of the criticisms of Schopenhauer, most of
which reduce down to the accusation that he is a muddle-headed metaphysician,
I think that he has much to say to modern philosophy of music. Indeed, Peter
Kivy, one of the most influential of modern philosophers of music, despite what
he explicitly says, has much in common with Schopenhauer. This now brings us to
the twentieth century.

5 The Twentieth and Twenty-First Centuries

These centuries, in many ways, do not have a single giant in aesthetics akin to a
Hegel or a Schopenhauer.6 Nonetheless, perhaps some of the best work, at least in
the analytic tradition, is that by Nelson Goodman, who offered numerous departure

6 Clearly some would argue that Theodor W. Adorno (1903–1969) would be a suitable candidate
for such status.
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points for aesthetical investigations in his Languages of Art.7 We have seen that the
history of reflection on music illustrates, overall, an encroaching formalism in that
music was originally held to be a broad framework of all meaning, which over the
years, dwindled in its scope as content slowly drained from it. So now let us consider
what happens after all content is in fact drained. In our time Peter Kivy is the key
representative of the formalist view of music.

In several works, Kivy attacks the notion that music is “about anything,” or that
music can mean anything (Kivy, 1990, 1993, 1997). Still, Kivy insists that music can
be profound. But its profundity cannot be unpacked in terms of hidden hermeneutic
content, that is, in terms of what the music says or means, because, once again,
music cannot say or mean anything. Then again, Kivy notes, even if music could
say something about something, that alone is not enough to make it profound. In
his attack on one particular attempt (Levinson’s) to find musical profundity, Kivy
concludes:

It seems to me, then, that Levinson has failed to make out a plausible case for musical
“aboutness.” And without “aboutness” the case for musical profundity must also fail. But
perhaps some might think this is a logical quibble or my concept of “aboutness” overly
stringent and restrictive. So let us grant, for the sake of the argument, that Levinson has
established the possibility of a musical aboutness and ask ourselves whether, even then, a
case can be made for this kind of “aboutness.” For profundity does not just require being
able to say something about something; it requires being able to say something profound.
I do not believe, even given the concept of musical aboutness as a gift, that Levinson can
make his case for musical profundity. (Kivy, 1997, p. 169)

Now, in order to make his own case for musical profundity, Kivy discusses some of
Schopenhaeur’s themes. First, music differs from the other fine arts. Second, music
represents the Will, while the other arts represent Platonic Ideas. Third, music liber-
ates us from the world, while the other arts plunge us more deeply into it. Because
Kivy rejects the notion of music representing anything, he rejects theme two. But
he does accept one and three. His view is best summarized by his own words. Kivy
writes:

. . . it is neither a “lack” in music that it possesses no content, nor a “lack” in the contentful
arts that they possess no power to liberate. On the contrary, it is a defining virtue of the
contentful arts that they do not liberate us from our workaday world but engage us, albeit
in ways characteristic of the fine arts. And it is a defining virtue of absolute music, so I
shall argue, that it does not engage us in our workaday world but liberates us from it. (Kivy,
1997, p. 204)

In sum, absolute music lacks content but has the power to deliver us from this world.
Such a compound predicate would apply to a formalist view of mathematics. Kivy
acknowledges this; and he says that such a common predicate does not bother him at
all since it does not force us to equate mathematics and music (Kivy, 1997, p. 210).

7 (Goodman, 1976). The first edition appeared in 1968 and caused quite a stir in the academic
world. A standard text for many kinds of arguments in aesthetics, somewhat dated now but still
quite useful, is (Beardsley, 1981).
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That is quite true. However, a hot bath could possess such a compound predicate
as well. In any case, Kivy’s description of absolute music leaves a lot open by not
being terribly precise about music itself. Still, one must be careful with Kivy’s use
of the term “content.” Although he calls absolute music “organized but meaningless
noise,” he nonetheless calls it a “world” (Kivy, 1997, p. 206). Now in some ways
this resembles Hilbert’s famous formalist pronouncement: “No one shall drive us
out of the paradise which Cantor has created for us” (Hilbert, 1991, p. 191). In any
case, Kivy’s musical world is some kind of object. In certain places he refers to
it as an “intentional object” (Kivy, 1997, p. 209). This now resembles more of an
intuitionist understanding of mathematics.

Nonetheless, a key distinction between mathematics and music is provided by
G.H. Hardy, who states that most people enjoy mathematics, just as they do a
musical tune. But music can stimulate mass emotion, whereas mathematics cannot
(Hardy, 1969, p. 86). The importance of this distinction is that it cuts directly against
Kivy’s view of absolute music being liberating. In many ways, music ties us directly
to this world in which we live.

In any case, Kivy does not hold that absolute music lacks all meaning; he deems
his position “enhanced formalism” (Kivy, 1997, p. 216). This partial retreat from a
“straightforward formalism” is not unique to Kivy—nor to aesthetics. Kivy’s claims
to formalism and then an actual partial retreat is an excellent example of Carnap’s
warning to be aware that philosophers say they are doing one thing and then actu-
ally do something else. Indeed, this retreat can also be found in the philosophy of
mathematics.8 But, we can also find this retreat earlier in the philosophy of music.
Kivy’s great 19th century predecessor, Eduard Hanslick, struggled with formalism
in much the same way. However, Hanslick offers some deep insights into some age
old philosophical problems. Hanslick writes:

Reading so many books on musical aesthetics, all of which defined the nature of music in
terms of the ‘feelings,’ and which ascribed to music a definite expressive capability, had
long excited in me both doubt and opposition. The nature of music is even harder to fix
within philosophical categories than painting, since in music the decisive concepts of ‘form’
and ‘content’ are impossible of independence and separation. If one wishes to attribute a
definitive content to purely instrumental music—in vocal music content derives from the
poem, not from the music—then one must discard the precious pearls of the musical art,
in which no one can demonstrate a ‘content’ distinct from the ‘form,’ nor even deduce it.
On the other hand, I readily agree that it is idle to speak of absolute lack of content in
instrumental music, which my opponents accuse me of having done in my treatise. How is
one to distinguish scientifically in music between inspired form and empty form? I had the
former in mind; my opponents accused me of the other. (Hanslick, 1963, pp. 26–27)

As far as I know, Hanslick does not answer his own question, namely, “how
does one seriously articulate, within absolute (instrumental) music, the distinction
between ‘inspired’ and ‘empty’ form?” Nonetheless, it is quite interesting that he

8 There are different kinds of formalist views of mathematics and often the formalist view is taken
precisely to preserve some ontological view, such as Hilbert’s formalism as a means to defend the
consistency of mathematics. For a general overview of this, see (Shapiro, 2000, Ch. 6).



25 Musing on Music 461

in fact posed such a question.9 The point is that music is never truly understood
as a purely sonic form. A purely sonic structure would be something like a drum
rudiment repeatedly played on a table top.10 Even those who claim to be formal-
ists retain some aspect of content in absolute music. Eventually, then, the two are
blurred. It seems that content in music, as Hanslick points out, just cannot be sep-
arated from form. This raises all sorts of difficult questions, but it is interesting to
note that Hanslick was saying things about content and form with respect to music
that W.V.O. Quine was to say a century later concerning content and form with
respect to language.11

With this notion of thoughts on music as being a type of harbinger concern-
ing particular philosophical reflections on language, I would now like to consider
a troublesome theme in the philosophy of music, namely whether or not music can
represent. Clearly past thinkers thought that it could. My suspicion, which I shall try
to flesh out to some degree in the next section, is that many arguments against music
as being able to represent cut against any symbolic system’s claim to represent. The
rest of the paper, then, is a small musing on this but does not claim to exhaust it in
any way.12

6 Representation

Without doubt the term “representation” has vexed philosophers as well as other
scholars. In philosophy we often worry about how sentences represent anything; in
literature the problem of how a novel can represent anything is equally problematic,
perhaps more so. In any case, one theme in the complex story of representation
is that representative capacity has largely been assigned to sentential systems and
denied to non-sentential ones. If one thinks about pictures and the origins of human
communication, undoubtedly those from the caves of Lascaux come to mind. Pic-
tures might have been the earliest form of human communication: the earliest way
to say something to someone about something else.

Certainly the pictorial form of communication has been slowly, but surely,
shunted aside in the history of mathematics. A picture or a diagram has long been
seen as merely heuristic to understanding a proof, but not forming part of the proof
itself. There are several reasons as to why this is the case. The most typically cited
reasons are that pictures are misleading and subject to severe constraints on their
expressive powers. This is, without doubt, quite true. However, one should also keep

9 It is interesting to note that Kivy rejects the form-content identity in music simply because the
latter has no content. (See his “On the Unity of Form and Content” in (Kivy, 1997).) But again,
this makes his notion of “enhanced formalism” very difficult to understand.
10 Would anyone call such an event a “piece of music?” Perhaps, and this raises the interesting,
but difficult question of the ontology of music. I will return to this briefly at the end of this paper.
11 This, I suggest, is a large topic and merits much further exploration. However, that is a task for
another time.
12 For an extended discussion of this question see (Robinson, 1994).
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in mind that all forms of representation are constrained in some way or another.
This was pointed out, albeit in a slightly different sense, by Wittgenstein, when
he insisted, based on the notion that representations and their objects are part of
the same world, that any representation, Y , of any object, X , involves a non-empty
intersection of their forms (Wittgenstein, 1961, 2.17). The two sets may differ in
some ways, but they cannot be disjoint. Without going into the details, suffice it
to say that the nature of these constraints on representation, at least in the context
of Wittgenstein’s remarks, cannot ultimately be divorced from the logical atomism
that underlies them. It would be reasonable to generalize and say that when we form
judgments concerning the limits of representation—what can represent what—these
judgments will reflect deeply held metaphysical pictures of the world. Needless to
say, there is much more to be discussed in the history and philosophy of representa-
tion than I can enter into here.13

Metaphysical niceties aside, it should be noted that there is an everyday context
for questions involving representation. If you are a confused tourist desperate to
get to the airport to catch a plane, then what counts as a “good representation of
the city” could be the sparse maps often found on restaurant place-mats. Highly
detailed representations found in tourist guides will often provide quicker routes to
the airport, but the time needed to digest the guide’s information plus traveling the
quicker route to the airport could be longer than the time needed to use the place mat
plus traveling the longer route to the airport. However, if one is at home leisurely
planning the trip, then the tourist guide is a much better representation of the city.
So, if we ask for a “good representation of a city” the answer will depend on the
context. More generally, when we ask if X represents Y we are often asking this
question within a particular context Z .

I would like to put the question of the context to the side for a moment and simply
ask whether music—in and of itself—can represent anything. As we have seen, in
the past it was clearly assumed that it could, to the point of being the boundaries of
meaning. What was running underneath all the previous musings on music was that
“X represents Y ” means “X resembles Y .”14 Let us begin with what appears as an
easy case. No doubt musical instruments can emit certain sounds that resemble non-
musical sounds; certain scales played on a clarinet resemble clocks and certain piano
riffs can sound remarkably like running trains. However, most people hearing these
scales and riffs do not automatically notice the resemblance to non-musical sounds,
instead people often notice first how much these scales and riffs resemble other
musical sounds. Still, if listeners are coached, advised that what they are hearing
“sounds like” a clock or freight train, most listeners rapidly assent.

One might argue that the listener of an instrumentally-emitted sound should not
require such coaching in order to recognize the sound as resembling a non-musical
sound. It should be heard as resembling a non-musical sound. After all, open the

13 For an examination of the implicit metaphysics involved in making judgments concerning rep-
resentations, see (Greaves, 2002).
14 For an extended critique of the resemblance theory of representation, see (Goodman, 1976, § 1),
“Reality Remade.”
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door to coaching and, given a good coach, any musical sound could be said to
resemble any other kind of sound. But this demand is not universal. Anyone who
has seen an ultrasound or an X-ray realizes that seeing-Q-in-Z often requires a high
level of training, which, arguably, is a kind of coaching. I doubt that anyone would
ultimately reject the view that the ultrasound resembles the fetus. Nonetheless, very
few individuals lacking the background training to read ultrasounds would immedi-
ately see a fetus, let alone specific gender markers. Finally, the fact that coaching is
needed does not entail that a fetus is not represented in the ultrasound. Perhaps an
even more extreme example would be Relativity Theory’s field equations. They do
represent a situation, yet who without specific training can read anything into them?

So, in addition to the problem of the context of degrees of representation, an
external problem, there is an internal problem as well. Just because people require
coaching to see that particular Q in a supposed representation, Z , of the “real Q,” it
by no means follows that Z does not actually represent the real Q.15

One might wish to reply that in specific examples such as the field equations
of relativity or some other scientific representation of the world there is something
within that representation that serves to point the interpretation in a particular direc-
tion, to a particular referent. That something internal to the scientific representation,
call it IM (internal marker) is what sets a scientific representation aside from the
question of musical representation.

This opens a huge debate, upon which I only make a brief comment. One
could argue the case that there really is no such IM in scientific representations of
the world. Theories, if formalized, can be given a variety of interpretations. (See
(Putnam, 1983).) It would seem to be some kind of external criterion, EC, that
selects a particular interpretation of a theory T out of a set of possible interpretations
of T . This EC is most likely a pragmatic notion, such as success.16 In any case,
we are wise to heed Quine’s words, “. . . reference is nonsense except relative to a
coordinate system” (Quine, 1969, p. 48). Indeed, when we ask whether music can
represent, and then deny that it can, we are doing this within a language. Language,
even natural ones, do not represent in and of themselves.

But something similar might be going on with respect to music as well. As we
have seen in the simple case of musical representation, the supposedly intended
interpretation of a given musical set of sounds is often not selected by an uninformed
listener. Coaching is required—and this is also required in many fields as well. Now
consider a more involved issue—an actual composition of music, a quartet or sym-
phony or what have you. Can this represent? These pieces, when played, often elicit
many different interpretations. But, as we have seen with Schopenhauer, there is a
sense of constraint on the interpretations. If one listens to a piece of music, such
as Beethoven’s “storm,” one may not say, “that represents a storm.” Or consider
Schubert’s “Die Forelle”—very few would notice that it represents a trout. But as

15 I am barely scratching the surface of all the problems connected to representation. For a general
discussion see (Goodman, 1976).
16 This is another huge issue in the philosophy of science but one that I shall simply pass over here.
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Schopenhauer stated, quite rightly I believe, there is a natural fit between music
and the world. Military music around the world all sounds military. Sacred music,
too, has a certain kind of feel. This, again, is merely to echo a common position to
two thinkers as far apart as Hardy and Schopenhauer. Clearly the constraints on the
set of possible interpretations of a given piece of music would be far weaker than
the set of possible interpretations of a given piece of scientific theory, but that is
a difference in degree, not kind. The main point is that if we are open to degrees
of representation and do not see it as an all or nothing affair, then music, too, can
represent.

Finally, there is another sense to the openness of representation. Not only are
there better and worse representations within the particular context, but there is also
a creative aspect. Goodman writes:

To a complaint that his portrait of Gertrude Stein did not look like her, Picasso is said to
have answered, “No matter, it will.” (Goodman, 1976, p. 33)

7 Summary and Conclusion

Throughout history music has been seen as a kind of representation of the world.
In the strongest form of this view, music was equated with the absolute foundations
of the cosmos. However, music was slowly drained of all this content. This ulti-
mate representation and boundary of meaning has, slowly but surely, retreated over
the centuries until the twentieth and twenty-first centuries have come to the view
that music cannot represent at all. In the end music has but a liberating effect. But,
counter to this drift many have argued that to see music in a formal way is to strip
it of something essential to it. In a sense, music stubbornly refuses to let go of this
world.

I do not claim by any means to have established that music can represent and
how in fact it does so. I have merely tried to motivate the view that if one seriously
looks at some of problems of musical representation then the arguments that lead to
the claim that music cannot represent can also be directed at other disciplines which
people, at least many people, would argue can represent.

Finally, the removal of music from this world makes nonsense of the history of
music itself. That is, if it is seen as some kind of abstract structure, then the idea
of “Viennese music” or “Renaissance music” becomes problematic. This, again,
strikes me as too formal of a view. Music is indeed part of this world and in its own
way, indicates other parts of this world.

But I would like to conclude on what could be called a Socratic note. As is
well-known, Socrates insisted on a definition of virtue prior to pondering whether
it could be taught. In general, he asked for a definition of X before asking anything
else about X . I have only briefly mentioned this issue, namely, the problem of saying
what is and is not music, although it is central to such discussions as I have offered
here. Many philosophers, however, shy away from it. In other words,what requires
clarification in this context is the musical ontology being employed. Is a clarinet
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scale or a piano riff truly a piece of music? I can make all sorts of sounds on a
clarinet, from random noises, mouse-like squeaks, to scales and what we might call
“tunes.” But when, exactly, have I passed from emitting sounds to playing music?
So, before even tackling the question of a piece of music resembling anything, there
would have to be an acceptable ontology of musical works.17

In this light one might ponder the nature of composer John Cage’s 4′3”, which is
simply a time span with no notes of any kind played. This takes Claude Debussy’s
comment “music is the space between the notes” to an extreme. Perhaps 4′3” qual-
ifies as truly formal music. It is all form; there is no content. Or perhaps it frees
music from all constraints, both form and content. Cage seems to offer such an
interpretation of 4′3” saying that it is not to be thought of as “empty space.” Instead,
it liberates the listener, not in Kivy’s liberation from this world, but a liberation to
more closely connect with this world and its depths, almost a Schopenhauerian twist.
Cage writes:

I think perhaps my own best piece, at least the one that I like the most, is the silent piece. . . .
I wanted my work to be free of my own likes and dislikes, because I think music should be
free of the feelings and ideas of the composer. I have felt and hoped to have led other people
to feel that the sounds of their environment constitute a music which is more interesting
than the music they would hear if they went into a concert hall. (Quoted from Davies (2005,
p. 14).)

I suggest that Boethius would have regarded 4’3” as embodying, at least in spirit,
the notion of his own musica mundane. In many ways, my musings have come full
circle.
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Chapter 26
Inscrutable Harmonies: The Continuous
and the Discrete as Reflected in the Playing
of Jascha Heifetz and Glenn Gould

Joel Bennhall

We owe the Pythagoreans the revelation that the harmonies of music derive from
number, that is, from the discrete. This must be seen as a triumph of inscrutabil-
ity. Inscrutable indeed is the resulting subsumption of music within mathematics, a
colourless, forbidding subject to most, indeed the polar opposite of music, whose
gaudy, yet profound, epiphanies offer a striking contrast. The Pythagoreans are to
be blamed for the fact that music came to find itself in the embrace of such unlikely
bedfellows as arithmetic, geometry and astronomy, the other members of the math-
ematical quadrivium.

Still, this evidence might cause a Marxist to respond that, while the basis of
musical organization is to be located in the discrete, its means of production origi-
nate in the realm of the continuous. For is not sound itself nothing more or less than
a continuous vibratory excitation of the atmospheric envelope, whether induced by
blowing, plucking, or striking a tensed string, beating a drum, blowing down a tube,
or straining one’s vocal cords? The Pythagorean discovery, at bottom, is an instance
of ex continuo discretum.

Musical instruments may be classed as continuous or discrete according to the
manner in which individual notes are sounded. Thus the voice, bowed string instru-
ments, and slide trombones are naturally identified as continuous, while valved wind
instruments such as the clarinet or oboe, plucked or struck string instruments such
as the lute or dulcimer, and keyboard instruments such as the harpsichord or piano
may be classified as discrete.
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Accomplished vocalists and players of continuous instruments have considerable
freedom both in determining the quality of individual notes and in the shaping of the
“line” engendered by the succession of notes. This freedom is manifested above all
in the case of the violin. In the violin the continuous and the discrete are truly united.
For while the violinist’s bow is the source par excellence of continuous sound, of
a variable intensity controlled by subtle alterations in pressure of the fingers on the
strings, in the hands of a virtuoso that very bow is also employed to spectacular
effect in engendering discreteness: witness, for example, spiccato, staccato and col
legno bowing.

With the violinist’s left hand the order of continuity and discreteness is reversed,
since the violinist’s digits are employed in the first instance to produce separate dis-
crete notes through “stopping” the strings. But just as the bow can generate discrete-
ness, so can the left hand generate continuity, e.g. through vibrato, the continuous
minute oscillation of pitch of a single note1; the portamento, the subtle continuous
movement from one note to another by gently gliding the finger along the string;
and the shift, the violinist’s equivalent of the mathematician’s continuous change of
coordinate system.

While the discrete instruments lack these refinements, they have one great advan-
tage over their continuous counterparts, namely, their capacity to support simultane-
ity. A mere tyro on the guitar plays multiply voiced chords as a matter of course,
while even a competent violinist may have difficulty in playing double-stops in
tune. With the keyboard instruments this natural capacity to engender simultaneity
has achieved its highest development in the polyphonic structures created by the
composers of the Baroque period, and above all by J.S. Bach. Bach raises keyboard
polyphony to undreamt-of heights, and certainly to a level far surpassing that achiev-
able on any single stringed instrument. Even that most elaborate four-part fugue in
the C major solo sonata cannot compare in complexity with the cyclopean edifice of
the Art of Fugue!

Now let us turn to consider two modern masters of their respective instruments—
Jascha Heifetz, the violinist whose technical command of the instrument is widely
regarded as supreme—and Glenn Gould, the wizard of piano polyphony. The one,
the master of the continuous, the other, the master of the discrete.

Jascha Heifetz—a name with which to conjure. For the present writer the name
evokes a cluster of associations, each of which involves the continuous in one way
or another. One recalls for example the famous exchange at the young Heifetz’s
New York debut between two members of an audience packed with musicians
eager to hear the new Wunderkind—Mischa Elman, great violinist, and Leopold
Godowsky, equally great pianist. To Elman’s ingenuous observation, “It’s hot in
here, isn’t it?”, no wittier response is conceivable than Godowsky’s “Yes, but not for
pianists!” In this instance the discrete could afford to smile at the embarrassment of

1 The trill—the rapid alternation of the main note with that a tone or semitone above it—is of
course a discrete effect.
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the continuous. (And yet it must be recalled that pianist-composers such as Liszt
and Chopin were strongly influenced by the virtuosity of Paganini.)

Consider also Heifetz’s celebrated definition of a Russian: one Russian—an
anarchist; two Russians—a game of chess; three Russians—a revolution; four
Russians—the Budapest String Quartet. Here one sees a striking progression from
the pure discreteness of the unit to the continuity of stringed instruments.

Even Virgil Thomson’s nastily dismissive description of Heifetz’s repertoire as
“silk underwear music” brings the continuous to mind.

But in truth Heifetz was the supreme master of silkiness, indeed of that ultimate
form of continuity that mathematicians call smoothness. This quality is best heard
in his recordings of the 1930s and 1940s, most arrestingly in encore pieces and
lightweight concertos such as those of Korngold and Gruenberg. In these latter
works the silky smoothness of Heifetz’s tone—endlessly imitated but never dupli-
cated by generations of violinists under his spell—almost surpasses belief.

Mathematicians have introduced the concept of a smooth topos, a mathematical
“world” in which all correlations are arbitrarily many times differentiable, there are
no jagged edges and in which, in Leibniz’s words, natura non facit saltus. There is
no question that Heifetz would be the canonical fiddler in such a world.

But Heifetz was also a master of the discrete effects achievable on the violin;
above all he could play detached notes on his preferred Guarnerius with blinding
celerity. A remarkable example of his facility in this respect is provided by his
recording of the Sinding Suite, in which the first, presto movement is despatched
with truly hair-raising speed and accuracy. There could not be a more striking con-
trast between this glittering flurry of notes and the smooth, yet sweetly earnest and
heartfelt manner in which Heifetz delivers the second, adagio movement.

The present writer did not have many opportunities to see Heifetz on the con-
cert platform, but they remain treasured experiences. Especially memorable was
the recital at the Royal Festival Hall in the 1950s at which Heifetz was due to
begin with the Vitali Chaconne. This piece, familiar to all violinists, begins with a
G minor chord, so when Heifetz picked up his violin and struck a G major chord the
ranks of violinists occupying the first few rows of seats fell back in shock. Heifetz
nonchalantly went on to play the English national anthem in G major.

Fortunately there are in existence a handful of filmed performances of Heifetz.
One of the most remarkable of these is the rendition of that famed encore piece the
Hora Staccato, transcribed by Heifetz from a Rumanian original. The writer once
had the experience of hearing this exacting morsel played by a gypsy fiddler in an
Amsterdam restaurant. While adequate, the performance could not compare with
that of Heifetz, who contrives to make the staccato effect sound discrete but appear
to the eye as continuous.

Now let us turn to Glenn Gould. While he was of course a master of the key-
board, with an unexampled command of polyphonic technique, one suspects that
he may have envied the string player and the singer their immediate contact with
the continuous. Grounds for this surmise are provided by his admitted inability to
suppress the vocalise which invariably accompanied his piano playing, and which
was such a source of vexation to critics and listeners alike.
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On the other hand, for Gould, in the final analysis, polyphony was all, and
polyphony, on the piano at least, is achieved by the systematic exploitation of dis-
creteness. So it is reasonable to suppose that at some point Gould made the con-
scious decision to celebrate the discreteness of the piano, to avoid the mimicking of
continuity by what he saw as contrived and hackneyed effects such as overpedalling
and the gratuitous use of legato. Thus he strove for a secco, detaché sound, with each
individual note rejoicing in its separateness. This approach is extraordinarily effec-
tive in Baroque works; and also with the twentieth century composers Gould most
admired: Schoenberg, Webern, Krenek,Hindemith. In the present writer’s opinion,
the approach is also effective in Beethoven, especially in the early works of that
master. With Mozart, however, the result is, to this writer’s ears at least, nothing
short of disastrous—but this was, of course, exactly what Gould, who disliked
Mozart’s music (with the conspicuous exception of the early sonatas K. 279–284 and
the Fantasy and Fugue K. 394) was trying to achieve. Here Gould carried discrete
deconstruction to the point of destruction.

It is to Gould’s transcendent performances of works by composers he esteemed
that one turns again and again. And above all, of course, to the compositions of J.S.
Bach. Although Gould was most famed for his recordings of the Goldberg Vari-
ations—a fame that led this work to be identified by his fans as the “Gouldberg”
Variations—the composition of Bach’s he revered above all others was the Art of
Fugue. And yet Gould produced no complete recording of this supreme, but alas,
unfinished, masterpiece of the polyphonist’s art. For this writer the most exciting
rendition of any part of this work is Gould’s 1967 Canadian radio broadcast of Con-
trapuncti IX, XI and XIII. Here Gould’s playing achieves what can only be described
as an ecstatic seamlessness fusing discreteness and continuity in an almost Hegelian
Aufhebung.

Finally, we must consider the question of how Heifetz and Gould would have
sounded had they played together. Would these supreme exponents of continuity
and discreteness have achieved a harmonious union?

The vast majority of Heifetz’s duo recordings were made with contract pianists—
able, but somewhat colourless. An exception is the magnificent recording of
Brahms’ op. 108 sonata Heifetz made in the 1950s with the brilliant American
pianist William Kapell (who died tragically young). Here the power of the pianist’s
playing comes close to matching Heifetz’s, driving the latter to peaks even he did
not always attain with his usual accompanists.

As for Gould, he made only a handful of recordings with violinists. One recalls
the curious rencontre with Yehudi Menuhin during which Gould persuaded the vio-
linist to play the Schoenberg Fantasy op. 47, a work to which, like all of Schoen-
berg’s output, Gould was partial, but which Menuhin later said he found totally
incomprehensible. In this connection it is pertinent to recall Heifetz’s similar antipa-
thy to Schoenberg’s oeuvre. Heifetz actually commissioned Schoenberg’s Violin
Concerto op. 36 but on seeing the score instantly rejected it, giving the scarcely
credible excuse that to play it would require him to grow a sixth finger. “I can wait,”
Schoenberg is reputed to have replied.
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Gould did record the Bach violin and keyboard sonatas with Jaime Laredo, a
good violinist, but who takes a back seat to Gould. The one string player who really
stood up to Gould in duet performance was the cellist Leonard Rose, who, in their
recording of Bach’s sonatas for cello and keyboard gives a robust performance fully
matching Gould’s powerful rendition.

The upshot is that we can only imagine the sound of a Heifetz/Gould recital.
One’s musical tongue waters at the idea of recordings by these two masters of the
Bach, Beethoven, or Brahms sonatas. The nearest approach we can make to this
ideal is to listen to the pair of Bach violin concertos (in E major and A minor) and
their keyboard transcriptions (in D major and G minor) as recorded, respectively,
by Heifetz and Gould. It is a rare treat to hear Bach’s sublime lines played first
continuously, and then with discrete elaboration.

If only Heifetz and Gould had collaborated! That would have been the ultimate
synthesis of the continuous and the discrete.
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