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PREFACE

This volume is intended to serve as a general text in solid state physics for under-

graduates in physics, applied physics, engineering, and other related scientific disci-

plines. I also hope that it will serve as a useful reference tool for the many workers

engaged in one type of solid state research activity or another, who may be without
formal training in the subject.

Since there are now many books on solid state physics available, some justifica-

tion is needed for the introduction of yet another at this time. This I can perhaps do

best by stating the goals I strove to achieve in the writing of it, and let the reader
judge for himself how successful the effort may have been.

First, I have attempted to cover a wide range of topics, which is consistent with my
purpose in writing a general and complete text which may also serve as an effective gen-

eral reference work. The wide coverage also reflects the immensely wide scope of cur-
ent research in solid state physics. But despite this, I have made a determined effort to
underline the close interrelationships between the disparate parts, and bring the unity and

coherence of the whole subject into perspective.
Second, I have tried to present as many practical applications as possible within

the limits of this single volume. ln this not only have I taken into consideration those

readers whose primary interest lies in the applications rather than in physics per se,

but I have also encouraged prospective physics majors to think in terms of the

practical implications of the physical results; this is particularly vital at the present

time, when great emphasis is placed on the contribution of science and technology to

the solution of social and economic problems.
Third, this book adheres to an interdisciplinary philosophy; thus, in addition to

the areas covered in traditional solid state texts in the first ten chapters, the last three

chapters introduce additional material to which solid state physicists have made many
significant contributions. The subjects include metallurgy, defects in solids, new
materials, and biophysics and are of great contemporary importance and practical
interest.

Fourth, I have made every effort to produce a modern, up-to-date text. Solid
state physics has progressed very rapidly in the past two or three decades, and yet
many advances have thus far failed to make their way into elementary texts, and
remain scattered haphazardly throughout many different sources in the literature. Yet



it is clear that early and thorough assimilation of the concepts underlying these
advances, particularly by the young student, is essential to the growth and develop-
ment in this field which await us in the future.

Fifth, and of greatest importance, this book is elementary in nature, and I have
made every effort to ensure that it is thoroughly understandable to the well-prepared
undergraduate student. I have attempted to introduce new concepts gradually, and to
supply the necessary mathematical details for the various steps along the way. I have
then discussed the final results in terms of their physical meaning, and their relation
to other more familiar situations whenever this seems helpful. The book is liberally
illustrated with figures, and a fairly complete list of references is supplied for those
readers interested in further pursuit of the subjects discussed here.

Chapter I covers the crystal structures of solids, and the interatomic forces
responsible for these structures. Chapter 2 includes the various experimental tech-
niques, such as x-ray diffraction, employed in structure analysis. Except at very low
temperatures, however, the atoms in a solid are not at rest, but rather oscillate around
their equilibrium positions; therefore, Chapter 3 covers the subject of lattice vibra-
tions, together with their effects on thermal, acoustic, and optical properties. This is
followed in Chapter 4by a discussion of the free-electron model in metals, whereby
the valence electrons are assumed to be free particles. A more realistic treatment of
these electrons is given in Chapter 5, on energy bands in solids. Before beginning
Chapter 5, the student should refresh his understanding of quantum mechanics by
reference to the appendix. The brief treatment of this complex subject there is not
intended to be a short course for the uninitiated, but rather a summary of its salient
points to be employed in Chapter 5, on the energy bands in solids. This is, in fact,
the central chapter of the book, and it is hoped that, despite its somewhat demanding
nature, the reader will find it rewarding in terms of a deeper understanding of the
electronic properties of crystalline solids.

Semiconductors are discussed in Chapter 6. The detailed coverage accorded
these substances is warranted not only by their highly interesting and wide-ranging
properties but also by the crucial role played by semiconductor devices in today's
technology. These devices are discussed at length in Chapter 7. When an electric
field, static or alternating, penerates a solid, the field polarizes the positive and
negative charges in the medium; the effects of polarization on the dielectric and
optical properties of solids are the subject of Chapter 8. The magnetic properties of
matter, including recent developments in magnetic resonances, are taken up in Chap-
ter 9, and the fascinating phenomenon of superconductivity in Chapter 10.

Chapter 1l is devoted to some important topics in metallurgy and defects in
solids, and Chapter 12 features some interesting and new substances such as amor-
phous semiconductors and liquid crystals, which are of great current interest; this
chapter includes also applications of solid state techniques to chemical problems.
Chapter 13 is an introduction to the field of molecular biology, presented in terms of
the concepts and techniques familiar in solid state physics. This is a rapidly expand-
ing and challenging field today, and one in which solid state physicists are making
most useful contributions.



Each chapter concludes with a number of exercises. These consist of two types:

Questions, which are rather short, and intended primarily to test conceptual under-

standing, and Problems, which are of medium difficulty and cover the entire chapter.

Virtually all the problems are solvable on the basis of material presented in the

chapter, and require no appeal to more advanced references. The exercises are an

integral part of the text and the reader, particularly the student taking a solid state

course for the first time, is urged to attempt most of them.
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CHAPTER I CRYSTAL STRUCTURES AND
INTERATOMIC FORCES

l.l Introduction
1.2 The crystalline state
1.3 Basic definitions
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Good order is the foundation of all good things.
Edmund Burke



I.1 INTRODUCTION

To the naked eye, a solid appears as a continuoas rigid body. Experiments have
proved, however, that all solids are composed of discrete basic units-atoms.
These atoms are not distributed randomly, but are arranged in a highly ordered
manner relative to each other. Such a group of ordered atoms is referred to as a
crystal. There are several types ofcrystalline structure, depending on the geometry
of the atomic arrangement; a knowledge of these is important in solid-state physics
because these structures usually influence the physical properties of solids. This
statement will be amply illustrated in the following chapters.

In the first part of this chapter, we shall expand on the meaning of the
crystalline structure, and introduce some of the basic mathematical definitions
employed in describing it. We shall then enumerate the various structures
possible, and introduce the concept of Miller indices. We shall also present a
few examples.

The atoms in some solids appear to be randomly arranged, i.e., the
crystalline structure is absent. Such noncrystalline-or amorphous-solids will
also be described briefly.

The chapter closes with an account of the interatomic forces that cause
bonding in crystals.

Chapter 2 will discuss the experimental determination of crystal structure
by x-rays.

1.2 THE CRYSTALLINE STATE

A solid is said to be a crystal if the atoms are arranged in such a way that their
positions are exactly periodic. Figure 1.1 illustrates the concept. The distance
between any two nearest neighbors along the x direction is a, and along the
y direction is D (the x and / axes are not necessarily orthogonal). A perfect
crystal maintains this periodicity (or repetitivity) in both the x and y directions
from -oo to oo. It follows from the periodicity that the atoms A, B, C, etc., are
equiualent.In other words, to an observer located at any of these atomic sites,
the crystal appears exactly the same.

ABU

Fig. 1.1 A crystalline solid. All the atoms are aranged periodically.

The same idea is often expressed by saying that a crystal possesses a
translational symmetry, meaning that if the crystal is translated by any yector
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joining two atoms, say R in Fig. 1.1, the crystal appears exactly the same as it did

before the translation. In other words, the crystal remains inrtariant under any

such translation. The consequences of this translational symmetry or invariance

are many, and a great portion of this book will be concerned with them.

Strictly speaking, one cannot prepare a perfect crystal. For example, even

the surface of a crystal is a kind of imperfectior because the periodicity is

interrupted there. The atoms near the surface see an environment different from

the environment seen by atoms deep within the crystal, and as a result behave

differently. Another example concerns the thermal vibrations of the atoms around

their equilibrium positions for any temperature T > 0"K. Because of these

vibrations, the crystal is always distorted, to a lesser or greater degree, depending

on T. As a third example, note that an actual crystal always contains some

foreign atoms, i.e., impurities. Even with the best crystal-growing techniques,

some impurities (= l012cm-3) remain, which spoils the perfect crystal structure.

Notwithstanding these difficulties, one can prepare crystals such that the

effects of imperfections on the phenomena being studied are extremely minor.

For example, one can isolate a sodium crystal so large (= I cm3) that the ratio

of surface atoms to all atoms is small, and the crystal is pure enough so that

impurities are negligible. At temperatures that are low enough, lattice vibrations

are weak, so weak that the effects of all these imperfections on, say, the optical

properties of the sodium sample are negligible. It is in this spirit that we speak

of a "perfect" crystal.
Imperfections themselves are often the main object of interest. Thus

thermal vibrations of the atoms are the main source of electrical resistivity in

metals. When this is the case, one does not abandon the crystal concept entirely,

but treats the imperfection(s) of interest as a small perturbation in the crystalline

structure.
Many of the most interesting phenomena in solids are associated with

imperfections. That is why we shall discuss them at some length in various

sections of this book.

1.3 BASIC DEFINITIONS

In order to talk precisely about crystal structures, we must introduce here a few

of the basic definitions which serve as a kind of crystallographic language. These

definitions are such that they apply to one-, two-, or three-dimensional crystals.

Although most of our illustrative examples will be two-dimensional, the results

will be restated later for the 3-D case.

The cr.',stal lattice

In crys-allography, only the geometrical properties of the crystal are of interest,

rather than those arising from the particular atoms constituting the crystal.

Therefcrre one replaces each atom by a geometrical point located at the
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equilibrium position of that atom. The result is a pattern of points having the
same geometrical properties as the crystal, but which is devoi&of any physical
contents. This geometrical pattern is the crystal lattice, or simply the lattice; all
the atomic sites have been replaced by lattice sites.

There are two classes of lattices: the Brauais and the non-Brauais. In a Bravais
Iattice, all lattice points are equivalent, and hence by necessity all atoms in the
crystal are of the same kind. On the other hand, in a non-Bravais lattice, some
of the lattice points are nonequivalent. Figure 1.2 shows this clearly. Here the
lattice sites A, B, C are equivalent to each other, and so are the sites A', B', C'
among themselves, but the two sites A and z4' are not equivalent to each other,
as can be seen by the fact that the lattice is not invariant under a translation by
AA'. This is so whether the atoms A and A'are of the same kind (for example, two
H atoms) or of different kinds (for example, H and Cl atoms). A non-Bravais
lattice is sometimes referred to as a lattice with a basis, the basis referring to the
set of atoms stationed near each site of a Bravais lattice. Thus, in Fig. 1.2, the
basis is the two atoms .,4 and A', or any other equivalent set.

B

Fig. 1.2 A non-Bravais lattice.

The non-Bravais lattice may be regarded as a combination of two or more
interpenetrating Bravais lattices with fixed orientations relative to each other.
Thus the points A, B, C, etc., form one Bravais lattice, while the points A,, 8,, C,,
etc., form another.

Basis vectors

Consider the lattice shown in Fig. 1.3. Let us choose the origin of coordinates
at a certain lattice point, say A. Now the position vector of any lattice point
can be written as

Rn:n1a*n2b, (l.l)

where a, b are the two vectors shown, and (rr, nr) is a pair of integers whose
values depend on the lattice point. Thus for the point D,(nr,nr): (0,2); for
B,(nr,nr) : (1,0), and for F,(nr,n2) : (0, - l).

The two vectors a and b (which must be noncolinear) form a set of Dasls
Dectors for the lattice, in terms of which the positions of all lattice points can be
conveniently expressed by the use of (1.1). The set of all vectors expressed by
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this eQuation is called the lattice uectors. We may also say that the lattice is

invariant under the group of all the translations expressed by (l.l). This is often
rephrased by saying that the lattice has a translational symmetry under all

displacements specified by the lattice vectors R,.

Fig. 1.3 Vectors a and b are basis vectors of the lattice. Vectors a and b' form another
set of basis vectors. Shaded and hatched areas are unit cells corresponding to first and
second set of basis vectors, respectively.

The choice of basis vectors is not unique. Thus one could equally well take

the vectors a and b'(: a + b) as a basis (Fig. 1.3). Other possibilities are algo

evident. The choice is usually dictated by convenience, but for all the lattices we

shall meet in this text, such a choice has already been made, and is now a matter

of convention.

The unit cell

The area of the parallelogram whose sides are the basis vectors a and b is called

a unit cell of the lattice (Fig. 1.3), in that, if such a cell is translated by all the

lattice vectors of (1.1), the area of the whole lattice is covered once and only

once. The unit cell is usually the smalle,s, area which produces this coverage.

Therefore the lattice may be viewed as composed of a large number of equivalent

unit cells placed side by side, like a mosaic pattern.

The choice of a unit cell for one and the same lattice is not unique, for the

same reason that the choice of basis vectors is not unique. Thus the parallelogram

formed by a and b'in Fig. 1.3 is also an acceptable unit cell; once again the

choice is dictated by convenience.
The following remarks may be helpful.

i) All unit cells have the same area. Thus the cell formed by a, b has the area

S : la x bl, while that formed by L, b' has the area 5' : la x b'l
: la x (a + b)l : la x bl : S,whereweusedtheresulta X 8:0' Therefore

the area of the unit cell is unique, even though the particular shape is not.

ii) If you are interested in how many lattice points belong to a unit cell, refer

to Fig. 1.3. The unit cell formed by a x b has four points at its corners, but
each of these points is shared by four adjacent cells. Hence each unit cell

has only one lattice point.
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Primitive versus nonprimitive cells

The unit cell discussed above is called a primitiue cell. It is sometimes more
convenient, however, to deal with a unit cell which is larger, and which exhibits
the symmetry of the lattice more clearly. The idea is illustrated by the Bravais
lattice in Fig. 1.4. Clearly, the vectors at, az can be chosen as a basis set, in which
case the unit cell is the parallelogram S,. However, the lattice may also be
regarded as a set of adjacent rectangles, where we take the vectors a and b as basis
vectors. The unit cell is then the area S, formed by these vectors. It has one
lattice point at its center, in addition to the points at the corner. This cell is a
nonprimitiue unit cell.

Fig. 1.4 Area S, is a primitive unit cell; area S, is a nonprimitive unit cell.

The reason for the choice of the nonprimitive cell S, is that it shows the
rectangular symmetry most clearly. Although this symmetry is also present in
the primitive cell S, (as it must be, since both refer to the same lattice), the
choice of the cell somehow obscures this fact.

Note the following points.

i) The area of the nonprimitive cell is an integral multiple of the primitive
cell. In Fig. 1.4, the multiplication factor is two.

ii) No connection should be drawn between nonprimitive cells and non-Bravais
lattices. The former refers to the particular (and somewhat arbitrary)
choice of basis vectors in a Bravais lattice, while the latter refers to the
physical fact of nonequivalent sites.

Three dimensions

All the previous statements can be extended to three dimensions in a straight-
forward manner. when we do so, the lattice vectors become three-dimensional,
and are expressed by

Rr:nra*n2b*nrc, (1.2)

where a, b, and c are three noncoplanar vectors joining the lattice point at the
origin to its near neighbors (Fig. 1.5); and nr, n2, n3 are a triplet of integers
0, +1, ]-2, etc., whose values depend on the particular lattice point.

The vector triplet a, b, and c.is the basis vector, and the parallelepipedwhose
sides are these vectors is a unit cell. Here again the choice of primitive cell is not

1.3
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unique, although all primitive cells have equal volumes. Also, it is sometimes

convenient to deal with nonprimitive cells, ones which have additional points
either inside the cell or on its surface. Finally, non-Bravais lattices in three

dimensions are possible, and are made up of two or more interpenetrating
Bravais lattices.

Fig. 1.5 A three-dimensional lattice. Vectors a, b, c are basis vectors.

I.4 THE FOURTEEN BRAVAIS
LATTICES AND THE SEVEN CRYSTAL SYSTEMS

There are only l4 different Bravais lattices. This reduction to what is a relatively
small number is a consequence of the translational-symmetry condition demanded

of a lattice. To appreciate how this comes about, consider the two-dimensional
case, in which the reader can readily convince himself, for example, that it is not
possible to construct a lattice whose unit cell is a regular pentagon. A regular
pentagon can be drawn as an isolated figure, but one cannot place many such
pentagons side by side so that they fit tightly and cover the whole area. In fact,
it can be demonstrated that the requirernent of translational symmetry in two
dimensions restricts the number of possible lattices to only five (see the problem

section at the end of this chapter).
In three dimensions, as we said before, the number of Bravais lattices is 14.

The number of non-Bravais lattices is much larger (230), but it also is finite.

Fig. 1.6 Unit cell specified by the lengths of basis vectors a, b, and c; also by the angles
between the vectors.



Crystal Structures and Interatomic Forces

I

I

I

1.4

Simple
orthorhombic

Simple
tetragonal

Base-centered

orthorhombic

Rffi
UY 1A>

Simple monoclini" 
T:;".T[i:o

Body-centered
orthorhombic

,^ffiffi(/t
I\/_I Nv_\r

Face-centered

cubic

Facerentered
orthorhombic

Body-centered
tetragonal

Body+entered
cubic

Trigonal Hexagonal

Fig. 1.7 The 14 Bravais lattices gouped into the 7 crystal systems.

Triclinic

+----t-

Simple cubic

a



1.4 The Fourteen Bravais Lattices and the Seven Crystal Systems

The 14 lattices (or crystal classes) are grouped into seven crystal systems,

each specified by the shape and symmetry of the unit cell. These systems are the
triclinic, monoclinic, orthorhombic, tetragonal, cubic, hexagonal, and the
trigonal (or rhombohedral). In every case the cell is a parallelepiped whose sides

are the bases a, b, c. The opposite angles are called a, B, and 7, as shown in Fig. 1.6.

Figure 1.7 shows the 14 lattices, and Table l.l enumerates the systems, lattices,

and the appropriate values for a, b, c, and a, B, and y. Both Fig. 1.7 and Table l.l
should be studied carefully, and their contents mastered. The column referring
to symmetry elements in the table will be discussed shortly.

Table 1.1

The Seven Crystal Systems Divided into Fourteen Bravais Lattices

System
Characteristic

Bravais lattice Unit cell characteristics symmetry elements

Triclinic

Monoclinic

Orthorhombic

Tetragonal

Cubic

Trigonal
(rhombohedral)

Hexagonal

Simple

Simple
Base-centered

Simple
Base-centered
Body-centered
Face-centered

Simple
Body-centered

Simple
Body-centered
Face-centered

Simple

Simple

a* b* c
a* 0*y+ 90"

a*b*c
a: f:90'+ y

a* b* c
o: fr:!:90"

a: b* c
q,:0:1r:90"

a: b: c
a: 0: 1l: 90"

a: b: c
a:9:y+90"

a: b* c
a: fr:9o"

T : 120"

None

One 2-fold rotation axis

Three mutually orthogonal
2-fold rotation axes

One 4-fold rotation
axis

Four 3-fold rotation axes

(along cube diagonal)

One 3-fold rotation
axis

One 3-fold rotation
axis

Note that a simple lattice has points only at the corners, a body-centered
lattice has one additional point at the center of the cell, and a face-centered
lattice has six additional points, one on each face. Let us again point out that
in all the nonsimple lattices the unit cells are nonprimitive.
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The 14 lattices enumerated in Table l.l exhaust all possible Bravais lattices,
although a complete mathematical proof of this statement is quite lengthy. It
may be thought, for example, that a base-centered tetragonal should also be
included in the table, but it can readily be seen that such a lattice reduces to the
simple tetragonal by a new choice of a unit cell (Fig. 1.8). other cases
can be treated similarly.

Fig. I.8 A base-centered tetragonal is identical to a simple tetragonal of a different unit
cell. Shaded areas are the basis oi the simple tetragonal cell.

The system we shall encounter most frequently in this text is the cubic one,
particularly the face-centered cubic (fcc) and the body-centered cubic (bcc). The
hexagonal system will also appear from time to time.

1.5 ELEMENTS OF SYMMETRY

Each of the unit cells of the 14 Bravais lattices has one or more types of
symmetry properties, such as inversion, reflection, or rotation. Let us consider
the meanings of these terms.

Inuersion center. A cell has an inversion center if there is a point at which the
cell remains invariant when the mathematical transformation r + -r is
performed on it. All Bravais lattices are inversion symmetric, a fact which can be
seen either by referring to Fig. 1.7 or by noting that, with every lattice vector
R, : n rr * nrb * nrc, there is associated an inverse lattice vector
R, = -R, : - nrt - nzb - n3c. A non-Bravais lattice may or may not have
an inversion center, depending on the symmetry of the basis.

Refiection plane. A plane in a cell such that, when a mirror reflection in this
plane is performed, the cell remains invariant. Referring to Fig. 1.7, we see that
the triclinic has no reflection plane, the monoclinic has one plane midway
between and parallel to the bases, and so forth. The cubic cell has nine

1.5
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reflection planes: three parallel to the faces, and six others, each of which passes

through two opposite edges.

Rotation axu. This is an axis such that, if the cell is rotated around it through
some angle, the cell remains invariant. The axis is called r-fold if the angle of
rotation is 2nln. When we look at Fig. 1.7 again, we see that the triclinic has

no axis of rotation (save the trivial l-fold axis), and the monoclinic has a 2-fold
axis (0 : 2nl2: z) normal to the base. The cubic unit cell has three 4-fold axes

normal to the faces, and four 3-fold axes, each passing through two opposite

corners.

We have discussed the simplest symmetry elements, the ones which we shall

encounter most frequently. More complicated elements also exist, such as

rotation-reflection axes, glide planes, etc., but we shall not pursue these at this
stage, as they will not be needed in this text.

You may have noticed that the symmetry elements may not all be independent.
As a simple example, one can show that an inversion center plus a reflection
plane imply the existence of a 2-fold axis passing through the center and normal
to the plane. Many similar interesting theorems can be proved, but we shall

not do so here.

Point groups, space groups, and non-Bravais lattices

A non-Bravais lattice is one in which, with each lattice site, there is associated

a cluster of atoms called the basls. Therefore one describes the symmetry of such

a lattice by specifying the symmetry of the basis in addition to the symmetry
of the Bravais lattice on which this basis is superimposed.

The symmetry of the basis, called point-group symmetry, refers to all possible

rotations (including inversion and reflection) which leave the basis invariant,
keeping in mind that in all these operations one point in the basis must remain
fixed (which is the reason for referring to this as point-group symmetry). A close

examination of the problem reveals that only 32 different point groups can

exist which are consistent with the requirements of translational symmetry for
the lattice as a whole. One can appreciate the limitation on the number of point
groups by the following physical argument: The shape or structure of the basis

cannot be arbitrarily complex, e.g., like the shape of a potato. This would be

incompatible with the symmetry of the interatomic forces operating between the
basis and other bases on nearby lattice sites. After all, it is these forces which
determine the crystal structure in the first place. Thus the rotation symmetries
possible for the basis must be essentially the same as the rotational sym-
metries of the unit cells of the 14 Bravais lattices which were enumerated in
Section 1.4.

When we combine the rotation symmetries of the point groups with the

translational symmetries, we obtain a space-group symmetry. In this manner
one generates a large number of space groups, 72 to be exact. It appears that there
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are also in addition some space groups which cannot be composed of simple
point groups plus translation groups; such groups involve symmetry elements
such as screw axes, glide planes, etc. When one adds these to the 72 space groups,
one obtains 230 different space groups in all (Buerger, 1963). Figure 1.9 shows a
tetragonal Drn space group. However, further discussion of these groups lies
outside the scope of this book.

Fig. 1.9 (a) A basis which has a Dropoint group symmetry (two horizontal 2-fold axes
plus two vertical reflection planes). (b) A simple tetragonal lattice with a basis having
the Dro point group.

1.6 NOMENCLATURE OF CRYSTAL
DIRECTIONS AND CRYSTAL PLANES; MILLER INDICES

In describing physical phenomena in crystals, we must often specify certain
directions or crystal planes, because a crystal is usually anisotropic. Certain
standard rules have evolved which are used in these specifications.

Crystal directions

Considerthestraightlinepassingthroughthelatticepoints,,4, B,C,etc.,inFig. 1.10.
To specify its direction, we proceed as follows: we choose one lattice point on
the line as an origin, say the point .,4. Then we choose the lattice vector joining ,,4.

to any point on the line, say point B. This vector can be written as

R:nra*nrb+nrc.
The direction is now specified by the integral triplet fnrnrnr). If the numbers
nl,nbn3 have a common factor, this factor is removed, i.e., the tripletlnrn2nsf
is the smallest integer of the same relative ratios. Thus in Fig. l.l0 the direction
shown is the I I l] direction.

1.6
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1.6 Nomenclature of Crystal Directions and Crystal Planes; Miller Indices

Note that, when we speak of a direction, we do not mean one particular
straight line, but a whole set of parallel straight lines (Fig. 1.10) which are
completely equivalent by virtue of the translational symmetry.

Fig. 1.10 The [ll] direction in a cubic lattice.

When the unit cell has some rotational symmetry, then there may exist several
nonparallel directions which are equivalent by virtue of this symmetry. Thus in a

cubic crystal the directions [00], [010], and [001] are equivalent. When this is
the case, one may indicate collectively all the directions equivalent to the

lnrn2n3f direction by (nrnrn.r), using angular brackets. Thus in a cubic system
the symbol (100) indicates all six directions: U001, [010], [001], [100], [010],
and [001]. The negative sign over a number indicates a negative value. Similarly
the symbol (l1l) refers to all the body diagonals of the cube. Of course the
directions (100) and (1ll) are not equivalent.

Note that a direction with large indices, e.g., [57], has fewer atoms per unit
length than one with a smaller set of indices, such as [ll].
Crystal planes and Miller indices

The orientation of a plane in a lattice is specified by giving its Miller indices,
which are defined as follows: To determine the indices for the plane P in
Fig. I .1 I (a), we find its intercepts with the axes along the basis vectors a, b, and c.

Let these intercepts be x,y, and z. Usually x is a fractional multiple of a, y L
fractional multiple of D, and so forth. We form the fractional triplet

(+'
invert it to obtain the triplet

(:

+,+),

+,+),
and then reduce this set to a similar one having the smallest integers by
multiplying by a common factor. This last set is called the Miller indices of the
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plane and is indicated by (hkl). Let us

intercepts are x : 2a, y : |b, and z : lc.

1.6

take an example: Suppose that the
We first form the set

: (2, t, r),

then invert it (1,3, l), and finally multiply by the common denominator, which
is 6, to obtain the Miller indices (346) (pronounced as "three four six").

(l l0) planes

(120) planes

Fig. 1.11 (a) The (122) plane. (b) Some equivalent, parallel planes represented by the
Miller indices. (c) Some of the planes in a cubic crystal. (d) Finding the interplanar
spacing.

We note that the Miller indices are so defined that all equivalent, parallel
planes are represented by the same set of indices. Thus the planes whose intercepts
are x,y,z;2x,2y,22; -3x, -3y, -32, etc., are all represented by the same set
of Miller indices. we can prove this by following the above procedure for
determining the indices. Therefore a set of Miller indices specifies not just one
plane, but an infinite set of equivalent planes, as indicated in Fig. l.ll(b). There

l+,+,+l

(d)(c)

z (lll)
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is a good reason for using such notation, as we shall see when we study x-ray
diffraction from crystal lattices. A diffracted beam is the result of scattering from
large numbers of equivalent parallel planes, which act collectively to diflract the
beam. Figure l.l1(c) shows several important planes in a cubic crystal.

[The reason for inverting the intercepts in defining the Miller indices is more
subtle, and has to do with the fact that the most concise, and mathematically
convenient, method of representing lattice planes is by using the so-called
reciprocal lattice. We shall discuss this in Chapter 2, where we shall clarify the
connection.]

Sometimes, when the unit cell has rotational symmetry, several nonparallel
planes may be equivalent by virtue of this symmetry, in which case it is

convenient to lump all these planes in the same Miller indices, but with curly
brackets. Thus the indices {ftkl} represent all the planes equivalent to the
plane (hkl) through rotational symmetry. As an example, in the cubic system

the indices {100} refer to the six planes (100), (010). (001). (T00), (0I0), and
(oo1).

Spacing between planes of the same l\{iller indices

In connection with x-ray diffraction from a crystal (see Chapter 2), one needs to
know the interplanar distance between planes labeled by the same Miller indices,
say (hkl). Let us call this distance dr1,. The actual formula depends on the
crystal structure, and we confine ourselves to the case in which the axes are

orthogonal. We can calculate this by referring to Fig. l.ll(d), visualizing
another plane parallel to the one shown and passing through the origin. The
distance between these planes, d111, is simply the length of the normal line drawn
from the origin to the plane shown. Suppose that the angles which the normal
line makes with the axes are a, fi,and y, and that the intercepts of the plane (ftkl)
with the axes are x, y, and z. Then it is evident from the figure that

d1,y1 : xcoSd, YcosB: zcosY'

But there is a relation between the directional cosines cos 4, cos p, and cos 7.
That is, cos2a+cos2B+cos27:1. If we solve for cosd, cosB, and cosT
from the previous equation, substitute into the one immediately above, and
solve for drorin terms of x, y, and z, we find that

dnu:
* ))''

(1.3)

Now x, y, and z are related to the Miller indices h, k, and /. If one reviews the
process of defining these indices, one readily obtains the relations

h:n!, k:n!, l:nL,

lt I

\;*F

(1.4)
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common factor used to reduce the indices
Solving for x, y, and z from (1.4) and

where r is the
integers possible.
(1.3), one obtains

1.7

to the smallest
substituting into

( t.s))-nuhkt - l h2 k2 l\ u2'

lt***a)
which is the req.uired formula. Thus the interplanar distance of the (lll) planes
in a simple cubic crystal is d : nalt/3, where a is the cubic edge.

1.7 EXAMPLES OF SIMPLE CRYSTAL STRUCTURES

In order to gain an appreciation of actual crystals, let us familiarize ourselves
with a few of the better-known structures, and with the sizes of their unit cells.
The cumulative knowledge obtained over the years on the structures of various
crystals is truly enormous, but here we shall touch on only the few simple and
better-known examples which we shall meet repeatedly in this book.

Face-centered and body-centered cubic

Many of the common metals crystallize in one or the other of these two lattices.
Thus the most familar metals-Ag, AI, Au, Cu, Co(B), Fe(7), Ni(B), Pb, and

Pt-all crystallize in the fcc structure (Fig. l.l2a). The unit cell contains four
atoms: one from the eight corner atoms which it shares with other cells, and three
from the six surface atoms it shares with other cells.

Fig. 1.12 (a) An fcc unit cell. (b) A bcc unit cell.

Some of the metals which crystallize in the bcc structure are: Fe(c), and the
alkalis Li, Na, K, Rb, and Cs (Fig. Ll2b). Here the unit cell has two atoms.
One is from the shared corner atoms and the other is the central atom, which
is not shared.

The sodium chloride structure

This is the structure assumed by ordinary table salt, NaCI. The structure is
cubic, and is such that, along the three principal directions (axes), there is an
alternation of Na and CI atoms, as shown in Fig. l.l3(a). In three dimensions the
unit cell appears as shown in Fig. l.l3(b). That is, the cell is a face-centered cubic
one. The positions of the four Na atoms are 000, ++0, +O+, O++, while those of
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Fig. 1.13 (a) A two-dimensional view of the NaCl structure. (b) The NaCl structure
in three dimensions. The Na atoms form an fcc structure which is interlocked with
another fcc structure composed of the Cl atoms. (c) The NaCl structure drawn close
to scale, with the ions nearly touching. The sodium atoms, small solid spheres, reside
in the octahedral voids between the chlorine atoms.

the four Cl atoms are located at #,00+, +00, OIO (the numbers refer to coordinates
given in fractions ofthe cubic edge).

We summarize this by saying that NaCl is a non-Bravais structure composed
of two interpenetrating fcc sublattices; one made up of Na atoms and the other
of Cl atoms, and the two sublattices are displaced relative to each other by ]a.

Many ionic crystals such as KCI and PbS also have this structure. For a
more complete list, including the lattice constants, refer to Table 1.2.

The cesium chloride structure

This again is a cubic crystal, but here the cesium and chlorine atoms alternate
on lines directed along the four diagonals of the cube. Thus the unit cell is a
bcc one, as shown in Fig. 1.14. There are, per unit cell, one Cs atom located
at the point 000 and one Cl atom located at +++. Therefore this is a non-Bravais
lattice composed of two sc (simple cubic) lattices which are displaced relative
to each other along the diagonal by an amount equal to one-half the diagonal.
For a list of certain ionic compounds crystallizing in this structure, see Table 1.2.

(a)
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Fig. 1.14 Structure of cesium chloride. The Cs atoms form an sc lattice interlocked with
another sc lattice formed by the Cl ions.

Table 1.2

Structures and Cell Dimensions of Some Elements and Compounds

Element or
compound Structure a,A c,A

AI
Be

Ca
C
Cr
Co
Cu
Ge
Au
Fe
Pt
Si
Ag
Na
Zn
LiH
NaCl
AgBr
MnO
CsCl
TlBr
CuZn (p-brass)

CuF
AgI
ZnS
CdS

fcc
hcp
fcc
Diamond
bcc
hcp
fcc
Diamond
fcc
bcc
fcc
Diamond
fcc
bcc
hcp
Sodium chloride
Sodium chloride
Sodium chloride
Sodium chloride
Cesium chloride
Cesium chloride
Cesium chloride
Zincblende
Zincblende
Zincblende
Zincblende

4.04
2.27 3.59
5.56
3.56

2.88
2.51 4.07
3.61

5.65
4.07

2.86

3.92

5.43
4.08

4.28
2.66 4.94
4.08

5.63
5.77
4.43

4.1 I

3.97
2.94

4.26
6.47

5.4r
5.82
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The diamond structure

The unit cell for this structure is an fcc cell with a basis, where the basis is made

up of two carbon atoms associated with each lattice site. The positions of the

two basis atoms are 000 and +++ A two-dimensional view of the cell is shown in
Fig. l.l5(a), and the whole cell in three dimensions is shown in Fig. l.l5(b).
There are eight atoms per unit cell. 'l

I

.t-ir (,'

,1'rr {i .,
' -tl '-' rl

L

'l,t n

_ r_,. ' i
I.
| '.t-

' {-: (.-

'{

Fig. 1.15 The diamond structure. (a) Projection of the atoms on the base of the cube.
One dark circle plus an adjacent white circle form a basis for the structure. (b) A
simplified three-dimensional view. Only one of the 4 white spheres is shown, together
with the tetrahedral coordination.

-._tt,t,0,rF
Note that tlie present structure is such that each atom finds itself surrounded

by four nearest atoms, which form a regular tetrahedron whose center is the

atom in question. Such a configuration is common in semiconductors, and is

referred to as a tetrahedral bond. This structure occurs in many semiconductors,
for example, Ge, Si, etc. Table 1.2 contains a few examples, with appropriate
numerical values.

The zinc sulfidei (ZnS) structure

This structure, named after the compound ZnS, is closely related to the diamond
structure discussed above, the only difference being that the two atoms forming
the basis are of different kinds, e.g., Zn and S atoms. Here each unit cell contains

four ZnS molecules, and each Zn (or S) atom finds itself at the center of a

tetrahedron formed by atoms of the opposite kind.
Many of the compound semiconductors-such as InSb, GaSb, GaAs, etc.-do

crystallize in this structure (Table 1.2).

The hexagonal close-packed structure

This is another structure that is common, particularly in metals. Figure l.16
demonstrates this structure. In addition to the two layers of atoms which form

a

(b)(a)

tl (n
I

),'1 .
'." a

t Also known as the zincblerde structure.
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the base and upper face of the hexagon, there is also an intervening layer of
atoms arranged such that each of these atoms rests over a depression between
three atoms in the base. The atoms in a hexagonal close-packed (hcp) structure
are thus packed tightly together, which explains why this structure is so common
in metals, where the atoms tend to assemble very close to each other. Examples
of hcp crystals are Be, Mg, Ca, Zn, and Hg-all divalent metals.

1.8

I

(a)

Fig. 1.16 (a) Hexagonal close-packed structure.
touching, as in the actual situation.

1.8 AMORPHOUS SOLIDS AND LIQUIDS

(b)

(b) The hcp when the atoms are nearly

Amorphous solids have received increasing attention in recent years, particularly
as a result of the discovery of the electrical properties of amorphous semiconductors
(Section 13.2). It behooves us, therefore, to glance at least briefly at the
structure of these solids.

The most familiar example of an amorphous solid is ordinary window glass.

Chemically the substance is a silicon oxide. Structurally it has no crystal
structure at all ; the silicon and oxygen are simply distributed in what appears to
be a random fashion.

Another familiar case of an amorphous structure is that of a liquid. Here
again the system has no crystal structure, and the atoms appear to have a random
distribution. As time passes, the atoms in the liquid drift from one region to
another, but their random distribution persists.

This suggests a strong similarity between liquids and amorphous solids,
even though the atoms in the latter are fixed in space and do not drift as they do
in liquids. This is why amorphous solids, such as glass, are sometimes referred to
as supercooled liquids. In fact, if one could take an instantaneous picture of
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the atoms in a liquid, the result would be the same as, and indistinguishable
from, that of an amorphous solid. The same mathematical formalism may
therefore be employed to describe both types of substance.

Even a liquid does actually have a certain kind of "order" or structure, even

though this structure is not crystalline. Consider the case of mercury, for
instance. This metal crystallizes in the hcp structure. When the substance is in
the solid state, below the melting point, all the atoms are in their regular positions,
and each atom is surrounded by a certain number of nearest neighbors, next-
nearest neighbors, etc., all of which are positioned at exactly defined distances

from the central atom. When the metal is heated and melts, the atoms no longer
hold to their regular positions, and the crystal structure as such is destroyed.

Yet as we view the system from the vantage point of the original atom, we discover
that insofar as the number of nearest and next-nearest neighbors and their
distances is concerned, the situation in the liquid state remains substantially the

same as it was in the solid state. Of course, when we speak of the "number of
nearest neighbors" in the liquid state, we actually mean the average number,
since the actual number is constantly changing as a result of the motion of the
atoms.

It is apparent, therefore, that a liquid has a structure, and that this structure
is quite evident from x-ray diffraction pictures of liquids. The important point,
however, is that the order in a liquid is restricted only to the few shells of
neighbors surrounding the central atom. As one goes to farther and farther
atoms, their distribution relative to the central atom becomes entirely random.
This is why we say that a liquid has only a short-range order. Long-range order is
absent. Contrast this with the case of a crystal. In a crystal, the positions of all
atoms, even the farthest ones, are exactly known once the position of the central
atom is given. A crystal therefore has both short-range and long-range orders,

i.e., perfect order.
It is not surprising that some order should exist, even in the liquid state.

After all, the interatomic forces responsible for the crystallinity of a solid remain
operative even after the solid melts and becomes a liquid. Furthermore, since

the expansion of volume that is concomitant with melting is usually small, the

average interatomic distances and hence the forces remain of the same magnitude
as before. The new element now entering the problem is that the thermal kinetic
energy of the atoms, resulting from heating, prevents them from holding to their
regular positions, but the interatomic forces are still strong enough to impart
a certain partial order to the liquid.

To turn now to the mathematical treatment: We take a typical atom and use

it as a central atom in order to study the distribution of other atoms in the
system relative to it. We draw a spherical shell of radius R and thickness AR

around this atom. The number of atoms in this shell is given by

AN(R) : r(R)4rR2 AR, (1.6)
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where r(R) is the concentration of atoms in the system. Note that the quantity
4nR2 LR is the volume of the spherical shell, which, when we multiply it by the
concentration, yields the number of particles. Note also that, since a liquid is

isotropic, we need not be concerned with any angular variation of the
concentration. Only the radial dependence is relevant here.

The structural properties of the liquid are now contained entirely in the
concentration r(R). Once this quantity and its variation with the radial distance
R are determined, the strLlcture of the liquid is completely known.

The concentration r(R) versus R in liquid mercury as revealed by x-ray
diffraction is shown in Fig. 1.17. The curve has a primary peak at R - 3A, beyond
which it oscillates a few times before reaching a certain constant value. The
concentration vanishes for R ( 2.2 4,.

Fig. 1.17 The atomic concentration n(R) in liquid mercury.
the atomic distribution in crystalline mercury.

A

Vertical lines indicate

These features can be made quite plausible on the basis of interatomic forces.
The vanishing of r(R) at small values of R is readily understandable; as other atoms
approach the central one very closely, strong repulsive forces arise which push
these atoms away (see the following two sections). These repulsive forces
therefore prevent the other atoms from overlapping the central atom, which
explains why n(R) : 0 at small R. One expects the value of R where r(R) : 0
to be nearly equal to the diameter of the atom.

The reason for the major peak (Fig. l.17) is closely related to the attractive
interatomic force. We shall explain below that, except at very short distances,
atoms attract each other. This force therefore tends to pull other atoms toward
the center, resulting in a particularly large density at a certain specific distance.
The other oscillations in the curve arise from an interplay between the force of
the central atom and the forces of the near neighbors acting on neighbors still
farther away.

At large values of R, the concentration r(R) approaches a constant value
ro, which is actually equal to the average concentration in the system. We
expect this result because we have seen that a liquid does not have a long-range

1.8
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order; thus at large R the distribution of the atoms is completely random, and

independent of the position of the central atom, i.e., independent of R.
Instead of n(R), it is customary to express the correlation between atoms by

introducing the so-called pair distribution function g(R). This is defined as

n(R)
e(R): ----

no

Thus this function has the meaning of a relative density, or probability. Since

ro is a constant, the shape of g(R) is the same as that of r(R), that is, the same as

in Fig. 1.17. Note in particular that g(R)- I as R + oo, which is the situation
corresponding to the absence of correlation between atoms.

As alluded to above, the pair function 9(R) is determined by x-ray
diffraction. We shall discuss this in Section 2.8.

1.9 INTERATOMIC FORCES

Solids are stable structures, e.9., a crystal of NaCl is more stable than a

collection of free Na and Cl atoms. Similarly, a Ge crystal is more stable than
a collection of free Ge atoms. This implies that the Ge atoms attract each other
when they get close to each other, i.e., an attractive interatomic force exists

which holds the atoms together. This is the force responsible for crystal
formation.

This also means that the energy of the crystal is lower than that of the free

atoms by an amount equal to the energy required to pull the crystal apart into a set

of free atoms. This is called the binding energy (also the cohesive energy) of the

crystal.

Fig. 1.18 Interatomic potential Z(R) versus interatomic distance.

The potential energy representing the interaction between two a,toms varies
greatly with the distance between the atoms. A typical curve of this pair
potential, shown in Fig. 1.18, has a minimum at some distance Ro. For * = *o,

(1.7)

V(R)
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the potential increases gradually, approaching 0 as r - oo, while for R < Ro the
potential increases very rapidly, approaching @ at small radius.

Because the system-the atom pair-tends to have the lowest possible energy,
it is most stable at the minimum point .4, which therefore represents the
equilibrium position; the equilibrium interatomic distance is Ro, and the binding
energy - Izo. Note that, since Vo 10, the system is stable, inasmuch as its energy
is lower than that state in which two atoms are infinitely far apart (free atoms).

A typical value for the equilibrium radius Ro is a few angstroms, so the
forces under consideration are, in fact, rather short-range. The decay of the
potential with distance is so rapid that once this exceeds a value of, say, l0 or
l5A, the force may be disregarded altogether, and the atoms may then be

treated as free, noninteracting particles. This explains why the free-atom model
holds so well in gases, in which the average interatomic distance is large.

The interatomic force F(R) may be derived from the potential I/(R). It is

well known from elementary physics that

AV (RI
F(R): - -7^ (1.8)

That is, the force is the negative of the potential gradient. If we apply this to the
curve of Fig. 1.18, we see that F(R) < 0 for Ro < R. This means that in the
range Ro < R the force is attractiue, tending to pull the atoms together. On the
other hand, the force f(R) > 0 for R0 > R. That is, when R < Ro, the force is
repulsioe, and tends to push the atoms apart.

It follows from this discussion that the interatomic force is composed of
two parts: an attractive force, which is the dominant one at large distances, and
a repulsive one, which dominates at small distances. These forces cancel each

other exactly at the point Ro, which is the point of equilibrium.
We shall discuss the nature of the attractive and repulsive forces in the following

section.

1.10 TYPES OF BONDING

The presence of attractive interatomic forces leads to the bonding of solids.
In chemist's language, one may say that these forces formbonds between atoms in
solids, and it is these bonds which are responsible for the stability of the crystal.

There are several types of bonding, depending on the physical origin and
nature of the bonding force involved. The three main types are: ionic bonding,
coualent bonding, and metallic bonding. Let us now take these up one by one,
and also consider secondary types of bonding which are important in certain
special cases.

The ionic bond

The most easily understood type of bond is the ionic bond. Take the case of
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NaCl as a typical example. [n the crystalline state, each Na atom loses its single
valence electron to a neighboring Cl atom, resulting in an ionic crystal
containing both positive and negative ions. Thus each Na* ion is surrounded
by six Cl- ions, and vice versa, as pointed out in Section 7.

If we examine a pair of Na and Cl ions, it is clear that an attractive electrostatic
coulomb force, e2f4rroR2, exists between the pairs of oppositelycharged ions. It
is this force which is responsible for the bonding of NaCl and other ionic
crystals.

It is more difficult, however, to understand the origin of the repulsive force at

small distances. Suppose the ions in NaCl were brought together very closely by

a (hypothetical) decrease of the lattice constant. Then a repulsive force would
begin to operate at some point. Otherwise the ions would continue to attract
each other, and the crystal would simply collapse-which is, of course, not in

agreement with experiment. We cannot explain this repulsive force on the basis

of coulomb attraction; therefore it must be due to a new type of interaction.
A qualitative picture of the origin of the repulsive force may be drawn as

follows: When the Na+ and Cl- ions approach each other closely enough
so that the orbits of the electrons in the ions begin to overlap each other, then
the electrons begin to repel each other by virtue of the repulsive electrostatic
coulomb force (recall that electrons are all negatively charged). Of course, the
closer together the ions are, the greater the repulsive force, which is in qualitative
agreement with Fig. l.l8 in the region R < Ro.

There is yet another equally important source which contributes to the
repulsive force: the Pauli exclusion principle. As ions approach each other, the
orbits of the electrons begin to overlap, i.e., some electrons attempt to occupy
orbits already occupied by others. But this is forbidden by the exclusion principle,
inasmuch as both the Na+ and Cl - ions have outermost shells that are completely
full. To prevent a violation of the exclusion principle, the potential energy of the
system increases very rapidly, again in agreement with Fig. 1.18, in the range
R<Ro.

The ionic bond is strong when compared with other bonds, a typical value
for the binding energy of a pair of atoms being about 5 eV. This strength is

attributed to the strength of the coulomb force responsible for the bonding.
Experimentally, this strength is characterized by the high melting temperatures
associated with ionic crystals. Thus the melting temperature for the ionic crystal
NaCl is 801'C, while the melting temperatures for the Na and K metals are
97.8'C and 63"C, respectively.

Ionic bonding is most likely to exist when the elements involved are of widely
differing electronegativities. Example: an electropositive alkali atom plus an

electronegative halogen atom, as in NaCl.

The covalent bond

To introduce this bond, we consider a well-known covalent solid: diamond.
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Recall from Section 7 that this crystal is formed from carbon atoms arranged
in a certain type of fcc structure in which each atom is surrounded by four others,
forming a regular tetrahedron. We cannot invoke the ionic bond to explain the
bonding in diamond, because here each atom retains its own electrons, i.e.,
there is no transfer of electrons between the atoms, and in consequence no ions are
formed. This is evident from the fact that all the atoms are identical. Hence no
reason exists for an electron to transfer from one atom to another.

Instead, the bonding in diamond takes place in the following manner: Each
atom has four valence electrons, and it forms four bonds with its four nearest
neighbors (Fig. l.l9). The bond here is composed of two electrons, one
contributed by each of the two atoms. This double-electron bond is well known
in chemistry and physics. It is referred to as a coualent bond. As an indication
of the appropriateness of this bond in the case of diamond, we note that as a
result of electron sharing, each C atom now has 8 electrons surrounding it,
resulting in a complete-and hence stable-shell structure for the valence shell at
hand (in this case the familiar p shell).

Fig. 1.19 The tetrahedral covalent
represents the charge distribution of
bond.

diamond. Each elongated region
electrons forming the corresponding

bond in
the two

This plausible account still does not explain just why a double-electron
arrangement produces a bond, i.e., an attractive interatomic force. The explanation
of the covalent bond can be given only through quantum mechanics. The simplest
known example of the covalent bond occurs in the hydrogen molecule (Hr), in
which the two atoms are held together by just this bond, i.e., they share their
two electrons. We discuss the quantum explanation of bonding in H, in Section
A.7, and its adaptation to the tetrahedral bond (as in diamond) in Section A.8.
Refer to these sections for further details.

The covalent bond is also strong, as attested to by the unusual hardness of
diamond, and its high melting point (> 3000'C). A typical value for covalent-bond
binding energy is a few electron volts per bond.

The covalent bond is particularly important for those elements in column IV
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of the periodic table. We have already mentioned diamond (C). Other elements

are Si, Ge, and Sn, all of which crystallize in the diamond structure and are
covalent crystals. The elements silicon (Si) and germanium (Ge) hold special
interest, since both are among the best known semiconductors. We shall study them
in considerable detail in Chapters 6 and 7, which concern the semiconducting
properties of solids.

Covalent crystals tend to be hard and brittle, and incapable of appreciable
bending. These facts are understandable in terms of the underlying atomic
forces. Since the bonds have well-defined directions in space, attempts to alter
them are strongly resisted by the crystal.

In our discussion of bonding, we have considered only pure ionic or pure
covalent bonds. There are, however, many crystals in which the bond is not
pure, but a mixture of ionic and covalent. A good example is the case of the

semiconductor GaAs. Here a charge transfer does take place, but the transfer
is not complete; only about 0.46 of an electron is transferred on the average
from the Ga to the As atom. This transfer accounts for part of the binding force
in GaAs, but the major part is due to a covalent-or electron-sharing-bond
between the Ga and neighboring As atoms.

The metallic bond

Most elements are metals. Metals are characterized by high electrical conductivity
and mechanical strength, and also by the property of being highly ductile. We are
particularly interested here in the bonding mechanism, but the model we shall
invoke for this purpose is capable of accounting for the above-mentioned
properties as well. (These properties will be the subject of ample discussions
later; see Chapters 4, 5, and 11.)

To understand the metallic bond, let us consider a typical simple metal:
sodium. How can an assembly of Na atoms, brought together to form a crystal,
attract each other and form a stable solid? Quick reflection tells us that neither the
ionic nor the covalent bond can account for the interatomic attraction in sodium
(why not?). The correct explanation is this: Each free Na atom has a single valence
electron which is only loosely bound to the atom. When a crystal is formed, the
valence electron detaches from its own atom and becomes an essentially free
electron, capable of moving throughout the crystal. This picture of free valence
electrons (in metals these are referred to as ualence or conduclion electrons) is

drastically different from the valence electrons in ionic and covalent solids, in
which the electrons are tightly bound to their atoms; it is, in fact, the primary
feature distinguishing metals from these latter crystals.

The model we now have of sodium metal is an assemblage of positive Na+
ions forming a bcc lattice, immersed in a gas of free electrons. The question
confronting us now is: Why is the energy of such a system lower than that of free
Na atoms? First, it is clear that the Na* ions would tend to repel each other
as a result of the electrostatic coulomb force. But this force, which acts against
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stability, is largely ineffective, because free electrons strongly screen ions from
each other, resulting in essentially neutralized noninteracting ions, much as in the
case of free atoms. But the great reduction in energy needed'for the bonding
can be explained only in quantum terms: It follows from quantum considerations
that when a particle is restricted to move in a small volume, it must by necessity
have a large kinetic energy. This energy is proportional to V-213, where I/ is
the volume of confinement (see Section A.3). The origin of this energy is entirely
quantum in nature, and is intimately related to the Heisenberg uncertainty
principle.

We now apply this interesting idea to the case of metals. When the Na atoms
are in the gaseous state, their valence electrons have large kinetic energies because
they are restricted to move in the very small atomic volumes. But, in the crystalline
state, the electrons are free to wander throughout the volume of the crystal, which
is very large. This results in a drastic decrease of their kinetic energies, and thus
an appreciable diminution in the total energy of the system, which is the source of
the metallic bonding. (Figuratively speaking, the free electrons, which are of
course negative, act as a glue that holds the positive ions together.)

The metallic bond is somewhat weaker than the ionic and covalent bonds
(for instance, the melting point of Na is only 97.8'C), but is still far from being
small or negligible.

To account briefly for the other metallic properties listed earlier, we note that
the high electical conductiuity is due to the ability of the valence electrons to
move readily under the influence of an electric field, resulting in a net electrical
current in the field direction. A similar explanation may be given for the high
thermal conductiuity. The high density is due to the fact that the metallic ions may
be packed together tightly, even though the free electrons produce a strong and
effective screening between them. The high ductility is a consequence of the fact
that the metallic bond is nondirectional, so that if an external bending torque is
applied and the ions change positions to accommodate this torque, the electrons,
being very small and highly mobile, readily adapt themselves to the new deformed
situation.

This metallic bonding model works well in the simple metals, particularly
the alkalis. More complicated metals-especially the transition elements such as
Fe, Ni, etc.-require more complex models, as one would expect. Thus in Fe and
Ni the 3d electrons have well-localized properties, and hence they tend to form
covalent bonds with their neighbors. This covalent bonding is in addition to the
contribution of the 4s valence electrons, which produce a metallic bonding.

Secondary bonds

In addition to the three primary bonds discussed above (ionic, covalent, and
metallic), there are other, weaker bonds which often play important roles in
explaining some of the "fine-scale" bonding properties. For example, the ice
crystal (HzO). First, consider the bonding in a single water molecule. A covalent
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bond is formed between the oxygen atom and each of the two hydrogen atoms
(Fig. 1.20a);the electron sharing makes it possible for the oxygen atom to have

8 valence electrons, i.e., a stable shell structure. Thus the atoms in an HrO
molecule are stongly bonded.

/,\
.,l.o'-

,'/l\Jra
o'-l'- Ht 02-
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H+H+ g+

(b)

(a)
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g+

Fig. 1.20 (a) Water molecule. (b) Arrangement of ice molecule as a result of hydrogen
bond. Arrows represent electric dipole moments of the molecules.

But when we consider the bonding between the water molecules themselves

to form ice, we find that the bonding strength is much weaker, e.9., the melting
point of ice is only 0'C. The explanation of this is that, although each H2O
molecule is, on the whole, electrically neutral, the distribution of internal charge
is such as to produce an interaction between the molecules. Thus in describing
the electron sharing in the H-O bond, we should also mention the fact that the

electrons are actually pulled more strongly toward the oxygen atom, resulting in
a net negative charge on the oxygen atom and a corresponding positive charge
on the hydrogen atom (Fig. 1.20b). This produces a so-called electric dipole in
the water molecule, as indicated by the vector in the figure. Now electric dipoles
attract each other. Thus water molecules are attracted to each other, forming
a crystal (Fig. 1.20b). (We can also appreciate the dipole attraction on a more
elementary level by noting that the negative oxygen atom in one water molecule
is attracted toward that corner in another water molecule which contains a
positive hydrogen atom.)

The bond described here is referred to as the hydrogen bond-sometimes also
known as the hydrogen bridge-because of the important role played by the small
hydrogen nucleus (which is a proton).

Another bond which plays an especially important role in inert-gas solids
isthe uan der Waals bond. You undoubtedly recall from basic chemistry that the
inert-gas elements-i.e., those that occur in column VIII of the periodic table
(He, Ne, Ar, etc.)-display extremely small attraction toward each other, or
other elements. So these elements do not usually participate in chemical reactions
(hence the name inert), and they form monatomic gases rather than diatomic ones

such as Hr, Or, or other polyatomic gases. The weakness of the interatomic forces
in the inert-gas solids is also illustrated by their low melting points:. -272.2, -248.7
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and -189.2'C for He, Ne, and Ar, respectively. In other words, He remains in
the liquid state down to a temperature of only about one degree from absolute
zeror I

If one uses the principles of quantum theory, it is not difficult to explain the
weakness of interatomic forces in the inert gases. In each of these gases, the atom
has an outer shell that is completely full. consequently an atom has very little
predilection to exchange or share electrons with other atoms. This rules out any
ionic and covalent forces, and likewise rules out any metallic-bonding forces in
inert-gas crystals.

Yet even the inert-gas atoms exhibit interatomic forces, albeit very weak ones.
The fact that Ne, for instance, solidifies at -248.7'C indicates clearly that some
interatomic forces are present, which are responsible for the freezing; by contrast,
a system of truly noninteracting atoms would remain gaseous down to the lowest
temperature. So our problem is not so much to explain the weakness of the
forces, but rather to account for their presence in the first place.

Without becoming embroiled in physical and mathematical complexities,
we may present the following model for the attraction in inert-gas elements.
Consider two such atoms. Each contains a number of orbital electrons, which
are in a continuous state of rotation around the nucleus. If their motion were such
that their charge was always symmetric around the nucleus, then the effect would
be to screen the nucleus completely from an adjacent atom, and the two atoms
would not interact. This supposition is not quite correct, however. Although
the distribution of the electrons is essentially symmetric, and is certainly so on the
average, as time passes there are small fluctuations, whose effect is to produce a
fluctuating electric dipole on each of the atoms. The dipoles tend to attract each
other (as mentioned in connection with the hydrogen bond), and this is the source
of the van der Waals force. The resulting potential is found to decrease with
distance as l/R6, far more rapidly than the ionic potential, which decreases only
as l/R.

Two reasons may be given to account for the smallness of the van der Waals
force (also known as the London force): (a) The fluctuating atomic dipoles are
small, and (b) the dipoles on the different atoms are not synchronized with each
other, a fact which tends to cancel their attractive effects. Following the various
steps in detail, however, one arrives at a net attractive force.
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QUESTIONS

l. What is the reason for the fact that the tetrahedral bond is the dominant bond in
carbon compounds?

2. Estimate the strength of the hydrogen bond in water (in electron volts per

bond).
3. Show that two parallel electric dipoles attract each other.
4. Estimate the strength of the van der Waals bond for neon.

PROBLEMS

l. Given that the primitive basis vectors of a lattice are a: (al2)(i + j), b: (a/z)(i + k)'
and c : (alz)(k + i), where i, j, and k are the usual three unit vectors along cartesian

coordinates, what is the Bravais lattice?
2. Using Table 1.2 and the data below, calculate the densities of the following solids:

Al, Fe, Zn, and Si, whose atomic weights are respectively 26.98,55.85, 65.37, and

28.09.
l.ZSnow that in an ideal hexagonal-close-packed (hcp) structure, where the atomic

\-/ spheres touch each other, the ratio cfa is given by

c / 8\rl2
;:(') :r633'

(The hcp structure is discussed in Section 7.)

47The packing ratio is defined as the fraction of the total volume of the cell that is

' filled by atoms. Determine the maximum values of this ratio for equal spheres

located at the points of simple-cubic, body-centered-cubic, and face-centered-cubic

crystals.
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5. Repeat Problem 4 for simple hexagonal, and rhombohedral lattices.
6. Repeat Problem 4 for an hcp structure.
7. Consider a face-centered-cubic cell. Construct a primitive cell within this larger

cell, and compare the two. How many atoms are in the primitive cell, and how
does this compare with the number in the original cell?

8. a) show that a two-dimensional lattice may not possess a S-fold symmerry.
b) Establish the fact that the number of two-dimensional Bravais lattices is five:

oblique, square, hexagonal, simple rectangular, and body-centered rectangular.
('The proof is given in Kittel, 1970.)

9. I)emonstrate the fact that if an object has two reflection planes intersecting at nf4,
it also possesses a 4-fold axis lying at their intersection.

10. Sketch the following planes and directions in a cubic unit cell: (122), U2z), (l1z),
UT2),

11. a) Determine which planes in an fcc structure have the highest density of atoms.
b) Evaluate this density in atoms/cm2 for Cu.

12. Repeat Problem 11 for Fe, which has a bcc structure.
13. show that the maximum packing ratio in the diamond structure is rJll16. lHint:

The structure may be viewed as two interpenetrating fcc lattices, arranged such
that each atom is surrounded by four other atoms, forming a regular tetrahedron.]

14. A quantitative theory of bonding in ionic crystals was developed by Born and
Meyer along the following lines: The total potential energy of the system is taken
to be

A ae2E:^/--,V
F" 

- 
4nesR'

where N is the number of positive-negative ion pairs. The first term on the right
represents the repulsive potential, where I and n arc constants determined from
experiments. The second term represents the attractive coulomb potential, where
d, known as the Madelung constant, depends only on the crystal structure of the
solid.
a) Show that the equilibrium interatomic distance is given by the expression

RJ-' : on'nn 
n'

b) Establish that the bonding energy at 
"q,rliu.iu- 

i,
aNez / 1\Eo: - 4n,*R"('-;/

c) calculate the constant n for Nacl, using the data in Table 1.2 and the fact that
the measured binding energy for this crystal is 1.83 kcal/mole (or 7.95 ev/mole-
cule). The constant q for NaCl is 1.75.
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2.1 INTRODUCTION

In this chapter we shall discuss the determination of crystal structures. One can
determine the structure ofa crystal by studying the diffraction pattern ofa beam of
radiation incident on the crystal. Beam diffraction takes place only in certain specific
directions, much as light is diffracted by a grating. By measuring the directions
of the diffraction and the corresponding intensities, one obtains information
concerning the crystal structure responsible for the diffraction.

Three types of radiation are used: x-rays, neutrons, and electrons. The
treatment of these three types is quite similar; therefore we shall examine in detail
only the x-ray case. After a brief discussion of the generation and absorption of
x-rays, we shall give a simple derivation of Bragg's law. We shall then proceed
to show that this law follows also from a more sophisticated treatment utilizing
the concepts of scattering theory. In this connection we shall discuss the
reciprocal lattice, and also experimental aspects of the determination of crystal
structure by x-rays. We shall then talk about neutron and electron diffractions
along the same lines, and point out their advantages.

Determining the structure of a liquid is discussed in Section 2.8, in which
it is shown how one can obtain the pair distribution by measuring the so-called
liquid structure factor.

Some of the concepts presented here, particularly diffraction and the reciprocal
lattice, will be found useful in the discussion of lattice vibrations in Chapter 3,
and of electron states in a crystal, in Chapter 5.

2.2 GENERATION AND ABSORPTION OF X-RAYS

X-rays are electromagnetic waves whose wavelengths are in the neighborhood
of I A. Except for the fact that their wavelength is so short, they have the same
physical properties as other electromagnetic waves, such as optical waves. The
wavelength of an x-ray is thus of the same order of magnitude as the lattice constants
of crystals, and it is this which makes x-rays useful in the analysis of crystal
structures. The energy of an x-ray photon is given by the Einstein relation E : hv,
where lr is Planck's constant and v is the frequency (Section A.l). Substituting
h:6.6 x 10-27 erg-s and ),: I A (recall that v -- cll), one finds an energy
E - lOa eV, which is a typical value.

The basic experimental arrangement {gq-generating an x-ray beam is sketched
in Fig.2. l. Electrons emitted from the 

-cg1!o-de of a vacuum tube are accelerated
by a large potential acting across the tube. The electrons thus acquire high
kinetic energy, and when they impinge on a metallic target, forming the ahdte at
the end of the tube, bursts of x-rays are emitted from the target. Some of the x-ray
radiation is then extracted from the tube and used for the intended purpose. The
emitted radiation has a wide continuous spectrum, on which is superimposed a

series of discrete lines. The continuous spectrum is due to emission of radiation
by the incident electrons as they are deflected by the nuclear charges in the target,
while the discrete lines are due to the emission by atoms in the target after they are
excited by the incident electrons. The maximum frequency of the continuous spec-
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potential by eV : ftyo, since the maximum
kinetic energy of the incident electron. The
by

(2.1)

where I/ is in kilovolts.
When an x-ray beam passes through a material medium it is partially absorbed.

The intensity of the beam is attenuated according to the relation

I : Io€-o", (2.2)

where 1, is the initial intensity at the surface of the medium and x the distance
traveled. The parameter a is known asthe absorption cofficient.Tl'rc attenuation
of the intensity expressed by (2.2) is due to the scattering and absorption of the
beam by the atoms of the medium.

^": # u,

-

Fig. 2.1 Generation of x-rays.

2.3 BRAGG'S LAW
4h /,{J

When a monochYomatic x-ray beam is incident on the surface of a crystal, it is
reflected. Ho-wever, the reflection takes place only when the angle of incidence has

certain values. These values depend on the wavelength and the lattice constants of
the crystal, and consequently it seems reasonable to attempt to explain the
selective reflectivity in terms of interference effects, as in physical optics. The model
is illustrated inFig.2.2(a),where the crystal is represented by a set of parallel planes,

corresponding to the atomic planes. The incident beam is reflected partially at
each ofthese planes, which act as mirrors, and the reflected rays are then collected
simultaneously at a distant detector. The reflected rays interfere at the detector and,
according to physical optics, the interference is constructive only if the

Voltage

Electrons
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Fig.2.2 (a) Reflection of x-rays from a crystal. The reflected rays are nearly parallel
because the detector is positioned far from the crystal. (b) Reflected intensity from a
KBr crystal. The reflecting planes for the various peaks are indicated.

difference between the paths of any two consecutive rays is an integral multiple
of the wavelength. That is,

(2.3)

where ,t is the wavelength and ,? a positive integer. The path difference A between
rays I and 2 in the figure is

L:TB+Ee -Ae,:2TB-Te,.
In equating TB and-BC, we have assumed that the reflection is specular, i.e., that
the angles of incidence equal the angles of reflection. when the interplanar dis-
tance is denoted by d, it follows from the figure that

-AB: disinl and -AC, 
:T-Ccosl: (2dltanO) x cosg,

where 0 is the glancing angle between the incident beam and the reflecting planes.
Substituting these into (2.3) and performing some trigonometric manipulation,
we arrive at the following condition for constructive interference:

2dsin0: n7. (2.4)

This is the celebrate d Bragg's law. The angles determined by (2.4), for a given d and
,1., are the only angles at which reflection takes place. At other angles the reflected
rays interfere with each other destructively, and consequently the reflected beam

2.3
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disappears, i.e., the incident beam passes through the crystal undisturbed. The
reflections correspondingto n:1,2, etc., are referred to as first order, second
order, etc., respectively. The intensity of the reflected beam decreases as the order
increases.f It is actually more appropriate to think of the reflection taking place
here as a diffraction, as the concept ofinterference is an essential part ofthe process.

The basic idea underlying the use of Bragg's law in studying crystal
structures is readily apparent from (2.4). Since ,tr can be determined independently,
and since 0 can be measured directly from the reflection experiment (it is half
the anlle between the incident and diffracted beams, as shown in the figure),
one may employ Q.\ to calculate the interplanar distance d. Note that,
according to (2.4), diffraction is possible only if ), <2d, which shows why optical
waves, for example, cannot be used here. Note also that if the crystal is rotated, a
new diffracted beam may appear corresponding to a new set of planes.
Figure 2.2(b) shows the Bragg reflection from KBr.

The model we have used in arriving at Bragg's law is oversimplified. In view
of the fact that the scattering of the x-ray beam is caused by the discrete atoms
themselves, one may object to representing the atomic planes by a set of
continuous reflecting mirrors. The proper treatment should consider the
diffracted beam to be due to the interference of partial rays scattered by all atoms

^" i-n the lattice. That is, one should treat the lattice as a three-dimensional diffraction
fi,Ng.utilg. In adding the contributions of the partial rays, one must pay particular

attention to the phases of these rays, as in the optical analog. This program,
which is developed in the following sections, leads us back to Bragg's law, but we
shall gain a much deeper appreciation of the diffraction process along the way.

2.4 SCATTERING FROM AN ATOM

The diffraction process can be divided naturally into two stages: (l) scattering by
individual atoms, and (2) mutual interference between the scattered rays. Since
the two stages are distinct from each other, we shall treat them independently, for
convenience.

Why does an atom scatter the x-ray beam? Well, any atom is surrounded by
electrons which undergo acceleration under the action ofthe electric field associated
with the beam. Since an accelerated charge emits radiation (a fact well known from
electromagnetism), so do the atomic electrons. In effect the electrons absorb energy
from the beam, and scatter it in all directions. But the electrons form a charge
cloud surrounding the atom, so when we are considering scattering from the atom
as a whole, we must take into account the phase differences between the rays
scattered from the different regions of the charge cloud. We do this as follows:

t In the remainder of this chapter and in the problem section, we shall consider only
fi rst-order reflections.

2.4
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Consider a single electron, as shown in Fig. 2.3(a). A plane-wave field given by

X1 : 1ri(ko'r-at1 (2.s)

(2.6)

whereJ is a paramete_r, kn_own as the scgttering !^ength of the 499_!ron, and D is the
radial distance from the electron to the point at which the field is evaluated. The
quantity k is the wave number of the scattered wave, and has the same magnitude
as ko. Note that the amplitude of the scattered wave decreases with distance as
l/D, a property shared by all spherical waves.

\

is incident on the electron, w]ulre- 4 is_.-tbe amplitude, ko the \{a-ve=ygltor
(ko:2n/D;and a the angular frequency. The scattered field is an outgoing

-sph-e-ilcal wave represented by

u':f"Ari{*o--t),

Scattered Ifav.- /l\+n\
Incident Electron

ray
(a)

tP,

so

JZ--_L\
r.\ 'v \r '-ElectrOns
(b) (c)

Fig. 2.3 Scattering from (a) a single electron, (b) two electrons. (c) The scattering
vector s. Note that the vectors ko, k, and s form an isosceles triangle.

v);'ii..

Suppose now that the incident wave acts on two electrons, as in Fig. 2.3(b).
ln this case, both electrons emit spherical waves, and the scattered field observed
at a distant point is the sum of the two partial fields, where their phase difference
has to be taken into account. Thus we have

(2.7)

5 = (P1M - P1N)Ztrlt: (r.S - r.S6)k,

f The distance D to the field point is assumed to be large, otherwise the denominator D
in (2.7) would not be the same for the two electrons. This cqndition simplifies the calcu-
lations, and is the reason why the detector is usually placed fir from the crystal.

u, :f.*kr, + ei(kD+6)l

where 6 is the phq!9 lag of the wave from.ele.ctron 1 behind that of electron 2.r
(Th--time factor has been omitted for the sake of brevity, but its presence is
implied.) Referring to the figure, we may write
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where r is the vector radius of electron 2 relative to electron l, and So and S are

the unit vectors in the incident and scattered directions, respectively. The

expression for 6 can be set forth in the form

s:2ksin0,

(2 8)

(2.ea)

(2.eb)

where 0 is half of the scattering angle. Substituting the expression (2.8) for d into
(2.7), one finds

6: s'r,

where the scattering uector s is defined as

s:k(S-So):k-ko.

As seen from Fig. 2.3(c), the magnitude of the scattering vector is given by

(2.10)

In deriving this we have chosen the origin of our coordinates at electron l.
But it is now more convenient to choose the origin at an arbitrary point, and in
this manner treat the two electrons on an equal footing. The ensuing expression

for the scattered field is then

u, :f.4",ro[l + e,"'.].

u, : f"}",oo [eis',, + 
","',,),

u, : f.ir,orIr,"',,,

(2.1 l)

where r, and r, are the position vectors of the two electrons relative to the new

origin. Equation (2.10) is a special case of (2.11), where rr :0, that is, where the

origin is chosen at electron l, as pointed out above. The generalization of (2.11)

to an arbitrary number of scatterers is now immediate, and the result is

(2.12)

where r, is the position of the /th electron, and the sum is carried out over all
the electrons. By analogy with the case of the single electron, Eq. (2.6), the

scattering length for the system as a whole is now given by the sum

f : f,fs'"'".
I

(2.13)

That is, the total scattering length is the sum of individual lengths with the phases

taken properly into account. The intensity I ofthe scattered beam is proportional
to the square of the magnitude of the field, and therefore

I - lf l' : fll'€*'l' (2.14)
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Results (2.13) and (2.14) are the basic equations in the treatment of scattering and
diffraction processes, and we shall use them time and again in the following pages.

We may digress briefly to point out an important aspect of the scattering
process: the coherence property involved in the scattering. This property means
that the scatterers maintain definite phase relationships with each other.
Consequently we can speak of interference between the partial rays. By contrast,
if the scatterers were to oscillate randomly, or incoherently, the partial rays would
not interfere, and the intensity at the detector would be simply the sum of the partial
intensities, that is,

I - N f.2, (2.1s)

where N is the number of scatterers. Note the marked difference between this
result and that of coherent scattering in (2.1a).

The scattering length of the electron is well known, and can be found in books
on electromagnetism. Its value is

f": l0 + cos2 20)12)tt2r,,

where r", the so-called classical radius of the electron, has a value of about
l0-ts m.t

We can now apply these results to the case of a single free atom. In attempting
to apply (2.13), where the sum over the electrons appears, we note that the
electrons do not have discrete positions, but are spread as a continuous charge
cloud over the volume of the atom. It is therefore necessary to convert the
discrete sum to the corresponding integral. This readily leads to

f,le"'' --,

where p(r) is the density of the cloud (in electrons per unit volume), and the
integral is over the atomic volume. The atomic scattering factor fa is defined as the
integral appearing in the above expression, i.e.,

(2.16)

(Note that f, is a dimensionless quantity.) The integral can be simplified when the
density p(r) is spherically symmetric about the nucleus, because then the
integration over the angular part of the element of volume can be readily per-

t For the sake of visual thinking, consider the electron to be in the form of a sphere whose
radius is roughly equal to the scattering length[. Thus the electron "appears" to the radius
as a circular obstacle of cross section z/!.

2.4

f" t oG) ei"'" d'r,

,^ : Io'r(r) 
e'"''



2.4 Scattering from an Atom 4l

formed (see the problems at the end of this chapter). The resulting expression is

(2.17)

where R is the radius of the atom (the nucleus being located at the origin). As seen

from (2.17), the scattering factor f depends on the scattering angle (recall that
s:2k sin0), and this comes about from the presence of the oscillating factor
(sin sr)/sr in the integrand. The wavelength of oscillation is inversely proportional
to s in Fig.2.4(a), and the faster the oscillation-i.e., the shorter the wavelength-
the smaller is /], due to the interference between the partial beams scattered by
different regions of the charge cloud. Recalling that s:2k sin 0, Eq. (2.9), we see

that as the scattering angle 20 increases, so also does s, and this results in a decreas-
ing scattering factor f^.

1.0

s:2& sin 0

(b)

Fig. 2.4 (a) Oscillating factor sin (sr)/sr. (b) Atomic scattering factor for a carbon
atom as a function of the scattering angle (after Woolfson).

To proceed further with the evaluation of f, we need to know the electron
density p(r) for the atom in question. For this information we have to turn to the

literature on atomic physics. Figure 2.4(b) shows the scattering factor for carbon.
There is one special direction for which f^canbe evaluated at once, namely the

forward direction. In this case, 0 : 0, s:0, and hence the oscillating factor
(sin sr)/sr reduces to unity (recall that sin 0/0 : l). Equation (2.17) then becomes

y^: f"+nrrp(r)dr,
.)

and the integral is simply equal to the total number of electrons in the atom, i.e.,

the atomic number Z. We may therefore write

,^: I:*'r(r){}dr,

f^(0 : o): z. (2.18)
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Thus for carbon f"(0:0):6 in agreement with Fig. 2.a(b). The physical
interpretation of (2.18) is quite apparent: when one looks in the forward direction
all the partial rays are in phase, and hence they interfere constructively.

2.5 SCATTERING FROM A CRYSTAL

our primary aim in this chapter is, of course, to investigate the scattering from a
crystal, and we shall now proceed to apply Eq. (2.13) to this situation. By analogy
with the atomic case, we define the crystal scattering factor f", as

f",: l''"'", (2.1e)

where the sum here extends over all the electrons in the crystal. To make use of
the atomic scattering factor discussed in the previous section, we may split the
sum (2.19) into two parts: First we sum over all the electrons in a single atom,
and then sum over all the atoms in the lattice. The double summation then amounts
to the sum over all the electrons in the crystal, as required by (2.19). since the first
of the above sums leads to the atomic scattering factor, Eq. (2. 19) may thus
be written in the form

.f", : Lfo, ei''*', (2.20)
I

where R, is the position of the /th atom, and f", thg cqffcspondiug_atomicestor.
It is now coiiverrient to rewrite (2.20) as a produ-t of two factors, one involving

a sum over the unit cell, and the other the sum over all unit cells in the crystal.
Thus we define the geometrical structure factor F as

F : lyo, ei''6i,
J

where the summation is over all the atoms in ,t. ,.ii ..lr, and D; is the relative
position of the 7th atom. Similarly we define the lattice structure factors as

c - F-is'nr("rU_LY
I

where the sum extends over all the unit cells in the crystal, and R|") is the position
of the /th cell. To express -f, in terms of F and S, we return to (2.20), write R, :
R,('r * 6;, and then use (2.21) and (2.22). The result is evidently

,f": F'S. (2.23)

Note that the lattice factor s depends only on the crystal system involved,
while F depends on the geometrical shape as well as the contents of the unit cell.
In the special case of a simple lattice, where the unit cell contains a single atom,
the factor F becomes equal to .f. The factorization of f", ?s shown in

(2.22)
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(2.23) merits some emphasis: We have separated the purely structural properties

of the lattice, which are contained in S, from the.atomic properties contained in F.

Great simplification is achieved thereby, because the two factors may now be

treated independently. Since the factor F involves a sum over only a few atomic

factors, it can be easily evaluated in terms of the atomic factors, as discussed in the

previous section. We shall therefore not concern ourselves with this straightforward

task for the moment, but press on and consider the evaluation of the lattice

factor S.

The lattice structure factor

The lattice structure factor S, defined in (2.22), is of vital importance in the

discussion of x-ray scattering. Let us now investigate its dependence on the

scattering vector s, and show that the values of s for which S does not vanish form
a discrete set, which is found to be related to Bragg's law.

s'a
O) (c)

Fig. 2.5 (a) Scattering from a one-dimensional lattice. (b) Diffraction maxima. (c) Dif-
fraction cones for first order (ft : 0) and second order (ft : l) maxima.

We start with the simplest possible situation, an x-ray beam scattered from a
one-dimensional monatomic lattice, as illustrated in Fig. 2.5(a). When we denote

the basis vector of the lattice by a, the structure factor becomes

, :,ir," , (2.24)

where we have substituted R[") : lz, and N is the total number of atoms'

The series in (2.2D is a geometric progression, the common ratio being ei"'',

s'2
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and can readily be evaluated. The result is

s: sin[(i)Ns.al
(2.2s)

sin [(,i

Physically, it is more meaningful to examine 52 than S, since this is the quantity
which enters directly into calculations of intensity. It is given by

2.5

(2.26)

We now wish to see how this function depends on the scattering vector s. As we
see from (2.26), 52 is the ratio of two oscillating functions having a common period
s'a:2n, but, because N is much larger than unity in any practical case, the
numerator oscillates far more rapidly than the denominator. Note, however, that
for the particular value s. a : 0, both the numerator and denominator vanish
simultaneously, but the limiting value of 52 is equal to M, a very large number.
similarly the value of s2 at s' a : 2n is equal to N2, as follows from the periodicity
of 52, mentioned above. The function 52 is sketched versus s. a in Fig. 2.5(b),
forthe range0 < s.a < 22. It hastwo primarymaxima, at s.a : 0and s. a : 2n,
separated by a large number of intervening subsidiary maxima, the latter resulting
from the rapid oscillations of the numerator in (2.26). calculations (see the
problem section) show that when the number of cells is very large, as it is in actual
cases, these subsidiary maxima are negligible compared with the primary ones.
For instance, the peak of the highest subsidiary maximum is only 0.04 that of a
primary maximum. It is therefore a good approximation to ignore alt the
subsidiary maxima, and take the function 52 to be nonvanishing only in the
immediate neighborhoods of the primary maxima. Furthermore, it can also be
demonstrated that the width of each primary maximum decreases rapidly as N
increases, and that this width vanishes in the limit as N + co. Therefore 52
is nonvanishing only at the values given exactly by s. a : 0,2n. But because 52
is periodic, with a period of 2n, it is also finite at all the values

s'a : 2nh, h: ar,y integer. (2.27)

At these values 52 is equal to N2, and hence S : N.
Equation (2.26) determines all the directions in which S has a nonzero value,

and hence the directions in which diffraction takes place. The physical
interpretation of this equation is straightforward. Recalling the definition of s,

Eq. (2.9), and referring to Fig. 2.5, we obtain

,. " 
:+(S - so) " 

: + Ge - -ps),

which is the phase difference between the two consecutive scattered rays. Thus

., _ sin2111)Ns .al
" - sin:(lr)s. al '
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Eq. (2.27) is the condition for constructive interference, i.e., the lattice
scattering factor survives only in these directions, which is hardly surprising.

For a given ft, the condition (2.27) does not actually determine a single direc-
tion, but rather an infinite number of directions forming a cone whose axis lies

along the lattice line. To see this, we can write (2.27) as

where ao is the angle between the incident beam and the lattice line and a is the
corresponding angle for the diffracted beam. Thus for a given h and as, the beam

diffracts along all directions for which a satisfies (2.28). These form a cone whose

axis lies along the lattice, and whose half angle is equal to a. The case /r : 0 is a
special one; its cone includes the direction of forward scattering. Diffraction cones

corresponding to several values of h are shown in Fig. 2.5(c).
In treating the lattice-structure factor, we have so far confined ourselves to

the case of a one-dimensional lattice. Now let us extend the treatment to the real

situation of a three-dimensional lattice. Referring to (2.22) and substituting for the
lattice vector,

p(c)- lrr+lrb+lrc,

where a, b, and c are the basis vectors, we find for the structure factor

2ra

- 
(cos d - cos as\ :2nh,

S: I ris'(lraalzbalsc),
I r,l z,l t

(2.28)

(2.2e)

where the triple summation extends over all the unit cells in the crystal' We can

separate this sum into three partial sums,

(2.30)

and in this manner we factor out S into a product of one-dimensional factors, and
we can therefore use the results we developed earlier. The condition for constructive

interference now is that each of the three factors must be finite individually, and
this means that s must satisfy the following three equations simultaneously:

s'a: h2n

s'b: k2n

s'c: l2n

(2.31)

where ft, k, and I are any set of integers. Written in terms of the angles made by

s with the basis vectors, in analogy with (2.27), these equations become

r : (p ,"',") (I ,''',') (I ,^',"),
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respectively

a(cosd-cosdo):lri
b(cosB - cosBo):761

c(cosy-cosyo):/2
(2.32)

where ae, 0o, and 7o are the angles which the incident beam makes with the basis
vectors, while a, B, and 7 are the corresponding angles for the diffracted beam.
Equations (2.31) and (2.32) are known asthe Laue equations, after the physicist who
first derived them.

The question is how to determine the values of the scattering vector s which
satisfy the diffraction condition (2.31). We shall show in the next section that these
values form a discrete set which corresponds to Bragg's law.

2.6 THE RECIPROCAL LATTICE AND X.RAY DIFFRACTION

Starting with a lattice whose basis vectors are a, b, and c, we can define a new set
of basis vectors t*, b*, and c* according to the relations

2.6

. 2tt 2na*: CL(bxc), b*: q(cxa),
2n

and c* : 
Cr. 

(a x b), (2.33)

where O. : a. (b x c), the volume of a unit cell. We can now use the vectors
r*, b*, and c* as a basis for a new lattice whose vectors are given by

Gn: nrL* * nrb* * n3c*, (2.34)

where rr, n2, and nr are any set of integers. The lattice we have just defined is
known as the reciprocal lattice, and a*, b*, and c* are called the reciprocal basis
tsectors.l

The relation of the reciprocal basis vectors t*, b*, and c* to the direct basis
vectors a, b, c is shown in Fig. 2.6. The vector a*, for instance, is normal to the

Fig. 2.6. Reciprocal basis vectors.

t For the construction of the reciprocal lattice to be valid, the real basis vectors a, b, and
c must form a primitive basis; in other words, the cell in the real lattice must be primitive
(Section 1.3).
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plane defined by the vectors b and c, and analogous statements apply to b* and c*.
Also note that if the direct basis vectors a, b, c form an orthogonal set, then t*, b*,
and c* also form another orthogonal set with a* parallel to a, b* parallel to b, and

c* parallel to c. In general, of course, neither set is orthogonal.
The following mathematical relations are useful in dealing with the reciprocal

lattice:

[er- -t bu*
u:L-

A*dG.EK= [
(2.3s)

The flrst row of equations, for instance, can be established as follows: To prove

the first of the equations, we substitute for a* from (2.33) and find that

a*'a: x c)'a.

But (b x c) ' a is also equal to the volume of the unit cell Q., and hence L* ' L : 2n,

as required. The second two equations in the first row reflect the fact, already
mentioned, that a* is perpendicular to the plane formed by b and c. The remainder
of the equation in (2.35) can be established in a similar manner.

Examples of reciprocal lattices are shown in Fig. 2.7. Figure 2.7(a) shows a
direct one-dimensional lattice and its reciprocal. Note that in this case a* is parallel

to a, and that a* :11a. Figure 2.7(b) shows a plane rectangular lattice and its
reciprocal.i Three-dimensional examples are more complex, but the procedure
for finding them is straightforward. One employs (2.33) to find the basis a*, b*, c*,
and then uses (2.34) to locate all the lattice points. It is evident, for instance, that
the reciprocal of an sc lattice of edge a is also an sc lattice with a cube edge equal

to 2nla (Fig. 2.8).
We can similarly establish that the reciprocal of a bcc is an fcc lattice, and

vice versa (see the problem section). One may extend the argument to other
crystal systems. When we realize that the reciprocal lattice is a lattice in its own
right, and that it possesses the same rotational symmetry as the direct lattice,
we see that the reciprocal lattice always falls in the same crystal system as its
direct lattice (see Table I . I ). Thus the reciprocals for monoclinic, triclinic, . . . and

hexagonal lattices are also monoclinic, triclinic,. . . and hexagonal, respectively.
(Note, however, that the two lattices need not have the same Bravais structure
within the same system; see the bcc and fcc examples above.)

f In one and two dimensions, Eq. (2.33), which defines the reciprocal lattice, does not
apply because the vector cross product is defined only in three dimensions. Therefore in
dealing with one- and two-dimensional lattices, we use instead (2.35) to define the
reciprocal lattice.

a*'a:2r, a*'b : a*'c : 0,

b*.b:2n, b*.a:b*.c:0,

c*'c:2n, c*'a : c*'b : 0.

2n
(bo"'
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Crystal lattice 
"# t#Il ,st

J "1 " ,f i I 1 I 1

Crystal lattice Reciprocal lattice

a*

Reciprocal lattice

(a)

Fig. 2.7 (a) Reciprocal lattice for a one-dimensional crystal lattice. (b) Reciprocal
lattice for a two-dimensional lattice.

a

Fig. 2.8 A part of the reciprocal lattice for an sc lattice.

The unit cell of the reciprocal is chosen in a particular manner. For the rectan-
gular lattice of Fig. 2.9,let O be the origin point, and draw the various lattice vectors
connecting the origin with the neighboring lattice points. Then draw the straight
lines which are perpendicular to these vectors at their midpoints. The smallest
area enclosed by these lines, the rectangle ,4 in the figure, is the unit cell we are
seeking, and is called the first Brillouin zone. This Brillouin zone (BZ) is an
acceptable unit cell because it satisfies all the necessary requirements. It also has

the property that its corresponding lattice point falls precisely at the cell center,
unlike the case of the direct lattice, in which the lattice points usually lie at the
corners ofthe cell. Ifthe first BZ is now translated by all the reciprocal vectors G,,
then the whole reciprocal lattice space is covered, as it must be, since the BZ is a
true unit cell.

(b)

Fig. 2.9 The first Brillouin zone for a rectangular lattice.



The Reciprocal Lattice and X-ray Difrraction

The Brillouin zone for a 3-dimensional lattice can be constructed in a similar
manner, but note that in this case the lattice vectors are bisected by perpendicular
planes, and that the first BZ is now the smallest uolume enclosed by these planes.
In the simplest case, the sc lattice, the BZ is a cube of edge 2nf a, centered at the
origin. The BZ's for the other cubic lattices are more complicated in shape, and we
shall defer discussion of these and other lattices to a later section.

Sometimes one also uses higher-order Brillouin zones, which correspond to
vectors joining the origin to farther points in the reciprocal lattice, but we shall
not discuss these here, as they will not be needed. We shall find that the concept
of the Brillouin zone is very important in connection wilh lattice vibrations
(Chapter 3), and electron states in a crystal (Chapter 5).

Having defined the reciprocal lattice and discussed some of its properties,
let us now proceed to demonstrate its usefulness. One important application lies

in its use in the evaluation of lattice sums, and this rests on the following
mathematical statement :

N d,r,c". (2.36)

Here A is an arbitrary vector, the summation is over the direct Iattice vectors,t
and N is the total number of cells in the direct lattice. Because of the delta symbol,
the meaning of (2.36) is that the lattice sum on the left vanishes whenever the vector
A is not equal to some reciprocal lattice vector G,. When it is equal to some G,,
however, the lattice sum becomes equal to N. To establish the validity of (2.36),
we shall first treat the case A : G,; to evaluate the exponent A'R, on the left of
(2.36),we substitute A: G, : nrt* I n2b* * r3c* and R,: /1a1 * lra, + lr,r,
and the result is

A.R, : G,. R, : (np* * n2b* * r.c*)' (/ra * lrb + lrc)

: (nrl, I nrl, I n3l3)2n, (2.37)

where in evaluating the scalar products of the basis vectors we used (2.35). For
example, a* ' a : 2t, a*'b : 0, etc. Each term in the sum in (2.36) is therefore
of the form ei'2n, where m is an integer and is consequently equal to unity. The
total sum is then equal to N, as demanded by (2.36). ln the case A * Gn, we can

follow the same procedure employed in evaluating (2.24), and the result is the same

as before, namely, that for large N the sum vanishes except for certain values of A.
The exceptional values are, in fact, those singled out above, that is, A : G,.

As a final point, we shall now show that the vectors of the reciprocal lattice
are related to the crystal planes of the direct lattice. In this manner, the somewhat

t To distinguish the real lattice from the reciprocal lattice, we shall refer to the former as

the direct lattice.

s ziA.Rr _
t=l
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Fig. 2.10 The reciprocal lattice vector G,rrlr is normal to the plane (ftkl).

abstract reciprocal vectors will acquire a concrete meaning. Consider the set of
crystal planes whose Miller indices are (hkl) and the corresponding reciprocal
lattice vector G111 : ha* * kb* + /c*, where the numbers h, k, and / are a set of
integers. We shall now establish the following properties:

i) The vector G111 is normal to the (hkl) crystal planes.

ii) The interplanar diitance doo, is related toil-magnitude of Gror by

dry1 :2nf G6,1. (2.38)

To establish these relations, we refer to Fig. 2.10, where we have drawn one of the
(ikl) planes. The intercepts of the plane with the axes are x, y, z and they are
related to the indices by

2.6

(2.3e)

where use is made of the definition of the Miller indices (Section 1.6). Note also
the vectors u and v which lie along the lines of intercepts of the plane with the xy
and yz planes, respectively. According to the figure, these vectors are given by
u : -xa + yb, and v : yb - zc. In order to prove relation (i) above, we need
only prove that G7,17 is orthogonal to both u and v. We have

u'Gr*r : (xa - yb). (ha* + kb* + /c*) : -2r(xh - yk) : 0,

where we have used (2.35) to establish the second equality; the last equality follows
from (2.39). In the same manner we can also show that Grs is orthogonal to v,
and this establishes property (i).

In order to prove (2.38), one observes that do1,r, the interplanar distance, is
equal to the projection of xa along the direction normal tothe (hkl) planes; this
direction can be represented by the unit vector Gn*t : GrorlGoor, since we have
already established that Go1, is normal to the plane. Therefore

(h,k,t)- (+ +,+),

d6,1 : xa'Gr,r,r : (xa. Goo)lGor,. (2.40)
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We now note that xL'G61,1 :2nhx, and this is equal to2x,because, according
to (2.39), xh : l. This completes the proof of (2.38).

The connection between reciprocal vectors and crystal planes is now quite

clear. The vector Grkr is associated with the crystal planes (hkl), which are, in fact,
normal to it, and the separation of these planes is 2n times the inverse of the

length Gro, in the reciprocal space. The crystallographer prefers to think in
terms of the crystal planes, which have a physical reality, and their Miller indices,

while the solid-state physicist prefers the reciprocal lattice, which is mathematically
more elegant; the two approaches are, however, equivalent, and one can change

from one to the other by using the relations connecting the two. Of the two
approaches, we shall mostly use the reciprocal lattice in this book.

2.7 THE DTFFRACTION CONDITION AND BRAGG'S LAW

We shall now employ the concept of the reciprocal lattice to evaluate the lattice-

structure factor S, which is involved in the x-ray scattering process. This factor is
given in (2.22). Comparing this with (2.36), we see that S vanishes for every value

of s except where

s : Gmr. (2.41)

The condition for diffraction is therefore that the scattering vector s is equal to a
reciprocal lattice vector. Equation (2.41) implies that s is normal ro the (hkl)
crystal planes [property (i) of Section 6], as shown in Fig. 2.I l. The equation can

be rewritten in a different form. Recalling that s: 2(2nlD sin 0, Goo,:2nfd61,1,

and substituting into (2.41), we find that

2d1,p1 sin0:i. (2.42)

This is exactly the same form as Bragg's law, Eq. (2.4), which is seen to follow from
the general treatment of scattering theory. It is therefore physically meaningful
to use the Bragg model (Section 3), and speak of reflection from atomic planes.

This manner of viewing the diffraction process is conceptually simpler than that of
scattering theory.

planes

["
s

]
t-$

Fie. 2.ll The scattering vector is equal to a reciprocal lattice vector.
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when the condition (2.a1) is satisfied, the structure factor is nonzero, and its
value is equal to N as seen from (2.36). Thus

Srtr : N. (2.43)

Substituting this into (2.23), we find the crystal scattering factor f. to be

and the intensity 1 is then

The scattered intensity vanishes in all directions except those in which the structure
factor S is nonvanishing. These latter directiohs are therefore the directions of
diffraction: they are the ones which satisfy the condition of constructive inter-
ference. When the Bragg condition is satisfied, then the incident beam is
diffracted into a single beam (neglecting higher orders), which is recorded at the
detector as a single spot on a film. This spot represents the whole set of
reflecting planes (hkl). whenthe crystal is rotated so that a new set of planes again
satisfies the Bragg condition, then this new set appears as a new spot on the film
at the detector. Therefore each spot on the film represents a whole set of
crystalline planes, and from the arrangement of these spots one can determine the
structure of the crystal, as discussed in Section 9.

According to our statements, each diffracted beam can be associated with a
set of planes of certain Miller indices; this is evident from (2.45). It is experi-
mentally observed, however, that diffraction from certain planes may be missing.
This is due to the geometrical structure factor Foo,, which depends on the shape and
contents of the unit cell. Thus, if F,,s is zero for certain indices, then the intensity
vanishes according to (2.45), even though the corresponding planes satisfy the
Bragg condition. To evaluate F1;,s, w€ return to (2.21). We assume the atoms to be
identical, and take 6; : U;a + Vjb + Wrc, where 6, is the position of the 7th
atom. Furthermore, we take

7.,, orr: NFn*r,

In*r - lf-, oo,l' - lFoo,l'

(2.44)

(2.4s)

(2.46)
Therefore

s: G*r : ht* + kb* + /c*.

Fnxt : f ol"i2t(hui+kui+twt).j

Consider, for instance, the bcc lattice. The unit cell has two atoms whose
coordinates are (u;,ui,wi): (0,0,0), and (+,+,+). Using (2.46), one has

Fn*t : f ,(l + eir(h+k+t)).

This expression can take only two values; when (ft + k + /) is even, Fn*r:2f u

Fcc X; U; E; rooo) r**r) *oi)to*t)
Fn.. = f" C I + gittt +k)* gir-( LtkTt CI( ( L+h) ]

it h l. I otrc all are.,rn on att odo\ Ftrru 4fo.
- \ ? - pc^rr\g UVen,p^nfu,Jd Ft r.t: o
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while Fro, : 0 when (h + k + /) is odd. Thus for the bcc lattice, the diffraction is

absent for all those planes in which the sum (h + k + /) is odd, and is present for
the planes in which (h + k + /) is even. We leave it as a problem to show that in
an fcc lattice the allowed reflections correspond to the cases in which h, k, I are

either all even or all odd. Note that the missing planes give direct information
concerning the symmetry of the unit cell.r

Equation (2.41) can be rewritten in still another form. We recall from (2.9a)

that s: U - Oo, where ko and k are the vectors of the incident and diffracted

beams. Substituting into (2.41), one finds

k:ko+G.
Multiplication of both sides by ft leads to

(2.47)

hk: hko + hG.

But the quantity ftk is the momentum of the x-ray photon associated with the

beam (see the deBroglie relation, Section A.l). Thus the above equation may be

viewed as momentum conservation, and the diffraction process as a collision
process between the x-ray photon and the crystal. In the collision the photon recoils

and gains a momentum fiG. Conversely, the crystal recoils in the opposite

direction with a momentum -frG. The recoil energy of the crystal is very small

because the motion is that of a rigid-body displacement, and therefore the kinetic

energy is (hG)2 lzM, where M is the total mass of the crystal. Since M is extremely

large compared with the mass of the atom, the recoil energy is very small, and may

be neglected. Therefore the collision process may be regarded as elastic; this has

been implicitly assumed throughout, of course, since we have taken k to be equal

to ko.

2.8 SCATTERING FROM LIQUIDS

X-ray scattering is also used in the investigation of liquid structure. By observing

the pattern of the scattered beam, one can determine the pair-distribution
function of the liquid (see Section 1.8). Returning to the general result
(2.2O), we write for the liquid scattering factor

.f,, : f ^I,'"'*',
(2.48)

where /" is the atomic factor and the summation is over all the atoms in the

liquid; we have assumed a monotonic liquid. But in a liquid the atoms are

continually moving from one region to another, unlike the case for a solid, in which

t The formula governing the missing planes is referred to as the extinction rule.
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they are restricted to certain sites, and the sum in (2.a8) is therefore difficult
to evaluate. This can be mitigated by dealing instead with the scattered intensity.
which is, after all, the quantity recorded experimentally. The intensity is propor-
tional to lfrrl2 which, with the use of (2.48),can be written as

l f,rl' : 7"2 l ris'(Rr-Rr)
j,t

(2.4e)

The liquid structure factor s,, is now defined as the double sum in this equation.
That is,

S,o: Iris'(Rr-R7),j,t
(2.50)

which is analogous to the lattice-structure factor s of (2.22). The sum can be
split into two different types of terms: Those for which j: l,that is, the indices
j and I referring to the same atom, and those for which j* l. The former type
is readily seen to add up to N-there being N terms in all-and the latter can be
expressed in terms of the pair-distribution function. The result is

srq/N: (2.s1)

where no is the average atomic density and g(R) the pair function (Section 1.8).
The integration is over the volume of the liquid. we note, however, that only the
deviation of g(R) from unity contributes to scattering because the remainder,
,(R) : l, corresponds to a uniform distribution which would allow the beam to
pass through without any scattering. Thus we may rewrite (2.51) as

Slo/N: I (2.s2)

The integral is now extended over all space, since tS(n) - ll decays rapidly at

(sk/ N)

0.5 1.0 1.5 x2r
s:2k sin 0

Fig. 2.12 The structure factor for liquid mercury (after Guinier)

2.8

t + ,otatn"'"'"g(R),

* notd'*r'''*[s(R) - r].
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large R (Section 1.8), and hence no appreciable error is introduced by extending

the integration range to include the whole space.

Equation (2.52) allows the computation of S,o if g(R) is given, but the
problem we usually face is the converse one. That is, S,n can be measured and

9(R) must be inferred from this measurement. We must therefore invert (2.52).

This inversion can be carried out using the Fourier-transform theorem. Examining
(2.52), we note that (S,, - \)lno is simply the Fourier transform of g(R) - l.
Therefore, using the Fourier-transform theorem, one writes at once

(2.s3)

the integral now being over the whole space of the scattering vector s. Figure 2'12

shows the structure factor of liquid mercury as determined by x-ray scattering
techniques. Another scattering technique which is increasingly used in the

study of liquid structures is that of neutron scattering, which is discussed in
Section I l.

2.9 EXPERIMENTAL TECHNIQUES

In this section we review the experimental techniques used in collecting x-ray
diffraction data. Our discussion is brief, and covers primarily the physical
principle underlying the methods used. This is not the place to discuss each method
in detail, nor the various practical difficulties or corrections attendant on each

method. Anyone interested in further details may refer to the books by Woolfson,
Cullity, Buerger, and Guinier, and the bibliographies given therein.

There are essentially three methods: The rotating-crystal method, the Laue
method, and the pow'der method. Regardless of the method used, the quantities

measured are essentially the same.

i) The scattering angle 20 between the diffracted and incident beams. By

substituting sin g into Bragg's law, one determines the interplanar spacing as well

as the orientation of the plane responsible for the diffraction.

ii) The intensity 1 of the diffracted beam. This quantity determines the cell-structure
factor, Fror, and hence gives information concerning the arrangement of atoms in
the unit cell.

The rotating-crystal method

This method is used for analysis of the structure of a single crystal. The
experimental arrangement is shown in Fig.2.13. The crystal is usually about
I mm in diameter, and is mounted on a spindle which can be rotated. A photo-
graphic film is placed on the inner side of a cylinder concentric with the axis of

s(R) - t : ***!0,',-'". [t"']-' ],
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Fig. 2.13 Experimental arrangement for the rotating-crystal method.

rotation. A monochromatic incident beam of wavelength ,t is collimated and
made to impinge on the crystal. The specimen is then rotated, if necessary, until a
diffraction condition obtains, that is, ), and 0 satisfy Bragg's law. when this
occurs, a diffracted beam (or beams) emerges from the crystal and is recorded as a
spot on the film.

By recording the diffraction patterns (both angles and intensities) for
various crystal orientations, one can determine the shape and size of the unit cell
as well as the arrangement of atoms inside the cell.

The Laue method

This method can be used for a rapid determination of the symmetry and
orientation of a single crystal. The experimental arrangement is shown in
Fig. 2.14(a). A white x-ray beam-i.e., one with a spectrum of continuous wave-
length- is made to fall on the crystal, whrch has a fixed orientation relative to the
incident beam. Flat films are placed in front of and behind the specimen. Since ,1.

covers a continuous range, the crystal selects that particular wavelength which
satisfies Bragg's law at the present orientation, and a diffracted beam emerges at the
corresponding angle. The diffracted beam is then recorded as a spot on the film. But
since the wavelength corresponding to a spot is not measured, one cannot deter-
mine the actual values of the interplanar spacings-only their ratios. Therefore one
can determine the shape but not the absolute size of the unit cell. A typical Laue
photograph is shown in Fig. 2.14(b).

Note that if the direction of the beam is an axis of symmetry of the crystal,
then the diffraction pattern should exhibit this symmerry. Figure 2.14(b) shows
the 6-fold symmetry of the symmetry axis in Mg, which has the hexagonal struc-
ture.

2.9
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Fig.2.l4 The Laue method: (a) Experimental arrangement. (b) Laue pattern for an
Mg crystal, with the x-ray beam parallel to the 6-flold symmetry axis. [After Barrett
(r e66)l

The powder method

This method is used to determine the crystal structure even if the specimen is not a
single crystal. The sample may be made up of fine-grained powder packed into a
cylindrical glass tube, or it may be polycrystalline, in which case it is made up of a
large number of small crystallites oriented more or less randomly. A mono-
chromatic beam impinges on the specimen, and the diffracted beams are recorded

on a cylindrical film surrounding it.
Because of the large number of crystallites which are randomly oriented,

there is always enough of these which have the proper orientation relative to the

incident monochromatic beam to satisfy Bragg's law, and hence a diffracted beam

emerges at the corresponding angle (Fig.2.15). Since both,1 and 0 are measurable,

one can determine the interplanar spacing.
Other sets of planes lead to other diffracted beams corresponding to diflerent

planar spacing for the same wavelength. Thus one can actually determine the

Fig. 2.15 The x-ray powder diflraction pattem for Cu. 2d is the scattering angle.

[After Cullity (1956)]
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lattice parameters quite accurately, particularly if the crystal structure is already
known. Note also that, since the specimen is symmetric under rotation around the
incident beam as an axis, the diffracted beam corresponding to each scattering angle
20 fans out along a cone whose axis lies along the incident beam.

2.10 OTHER X-RAY APPLICATIONS IN SOLID-STATE PHYSICS

The x-ray diffraction technique, in addition to its major use in analysis of crystal
structures, finds a multitude of other applications in solid-state physics.
Indeed much of our knowledge of the microscopic world has been derived from
the persistent use of x-ray techniques. To illustrate the usefulness of this powerful
tool, we shall consider some of the applications here. However, our discussion
will be extremely brief, and anyone who seeks more than a cursory acquaintance
should consult the many excellent references listed in the bibliography.

The most ambitious goal would be to plot the distribution of electrons inside
the solid, i.e., to draw an electron-density map, for this would be tantamount to
"seeing" the electronic cloud in the solid. In principle, it should be possible to
achieve this through the use of x-ray diffraction, since it is the electrons which are
responsible for the diffraction process. In order to see how this may be done,
refer to Eq. (2.21), in which we note that the electron density is contained in /u.
If the crystal-scattering factor is measured, then this equation can be inverted.
That is, one finds the electron density p(r) in terms of f,(s). The mathematical
procedure involves the use of the Fourier transform, in a manner somewhat similar
to that used in liquids, as indicated in the previous section.

Another important application is in the study of lattice imperfections, such as

foreign impurities, dislocations, regions of strain, etc. In the presence of such
imperfections, the diffraction pattern no longer corresponds to that ofa perfect cry-
stal, and by studying the deviation one can obtain information concerning the
type of imperfections and their distribution in the crystal. Such techniques are
in common use by chemists, metallurgists, and materials scientists.

In our study of pure crystals we have assumed perfect periodicity (except in the
previous paragraph). We have assumed, in other words, that each atom is located
at its lattice site at all times. However, it is well known that when the temperature
is above absolute zero, atoms undergo some vibration around their sites as a result
of the thermal excitations. The presence of these lattice uibrations leads to a modi-
fication in the x-ray diffraction pattern. In particular, some diffraction is observed
along directions which do not satisfy the Bragg condition; this is referred to as

diffuse scattering. This type of scattering has long been used in the study of lattice
vibrations, and has contributed greatly to our understanding of this important
subject. We shall examine lattice vibrations in considerable detail in the
following chapter.

Finally, x-ray diffraction is used to determine the structure of biological



2.tt Neutron Diffraction 59

molecules. Many of the recent great strides in our knowledge of molecular biology
have been accomplished in this manner. The discovery of the double-helical struc-
ture of the DNA molecule is but one example.

2.11 NEUTRON DIFFRACTION

We have already indicated that other forms of radiation, in addition to x-rays,

can also be used in the investigation of crystal structures and other related

problems. The primary requirements are these: First, the radiation should
possess a wave property So that the scattered waves can Superpose coherently, there-

by revealing the structure of the scattering medium. Second, the wavelength of
the radiation should be of the same order of magnitude as the lattice constant.

Neutron radiation satisfies these requirements.
The neutron (and other particles) has wave properties, as you recall from

elementary physics (see also Section A.l). The wavelength, also known as the
deBroglie wavelength, is given by the relation )': hlp, wherep is the momentum
of the neutron. The wavelength can also be expressed in terms of the energy

E : p2 lzm, where m is the mass. Substituting the mass value appropriate to the

neutron, one finds

0.28)-_" - B'1',',
(2.s4)

where ,t is in angstroms and E in electron volts. To be useful in structure analysis,

,t must be about I A, which, when substituted into (2.54), yields an energy of
about 0.08 eV. This energy is of the same order of magnitude as the thermal

energy kT at room temperature, 0.025 eV, and for this reason we speak of thermal
neutrons.

The scattering mechanism for the neutron is the interaction between it and the

atomic nuclei present in the crystal. This interaction is referred to as Ihe sftong

interaction; it is the reaction responsible for holding the nucleons (neutrons and
protons) together in the nucleus. Being electrically neutral, the neutron does not
interact with the electrons in the crystal. Thus, unlike the x-ray, which is scattered

entirely by electrons, the neutron is scattered entirely by nuclei (see below for an

exception).
Since the details of neutron diffraction are precisely the same as those for x-rays,

we need not go into it further here. The only difference lies in the fact that the neutron
analog to (2.6) now contains the scattering length of the neutron instead of that of
the electron. The results of interest to us here-e.g., Bragg's law, Laue equations,

etc.-are exactly the same as before. All these are direct consequences of the

structure factor which, being a lattice sum, depends only on the lattice structure
and not on the atomic scattering factor; the type of radiation used is irrelevant.

Neutron diffraction has several advantages over its x-ray counterpart.
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a) Light atoms such as hydrogen are better resolved in a neutron pattern because,
having only a few electrons to scatter the x-ray beam, they do not contribute
significantly to the x-ray diffracted pattern.

b) A neutron pattern distinguishes between different atomic isotopes, whereas an
x-ray pattern does not.

c) Neutron diffraction has made important contributions to the studies of magnetic
materials. In magnetic crystals the electrons of the atomic orbitals have a net spin,
and hence a net magnetic moment. The relative orientations of these moments may
be either random or parallel, or antiparallel, depending on the range of temperature
of the crystal. One can use neutron diffraction to reveal the crystalline magnetic
pattern because the neutron does interact with the moments. The interaction
results from the fact that the neutron also has a magnetic moment of its own (it
is a tiny magnet), which feels the field generated by the moments of the electrons.
Examples of the application oF neutron diffraction to this important branch of
magnetism are given in Sections 9.9 and 9.14.

d) The technique of neutron diffraction is far superior to that of x-rays in the studies
of lattice vibrations, which will be discussed in the following chapter.

The disadvantages of neutron diffraction techniques are:

a) The necessity for using nuclear reactors, which are not commonly available.
Furthermore, even the most powerful neutron sources have intensities of only about
l0-s the intensity available from common x-ray sources. Because of this, large
crystals are used in neutron diffraction, and the exposure time is made as long as
possible.

b) Neutrons, being electrically neutral, are harder to detect than the ionizing x-rays.
Therefore neutrons are converted first into ionizing radiation through their reaction
with, e.g., boron nuclei.

2.I2 ELECTRON DIFFRACTION

A beam of electrons incident on a crystal suffers Bragg diffraction in a manner
similar to the x-ray and neutron diffraction discussed previously. The electron,
like the neutron, possesses wave properties, and the wavelength is also given by
1 : hlp. Writingp in terms of the energy E, and the lattice in terms of the accelerat-
ing potential V,that is, E: eV, and inserting the values appropriate to the elec-
tron, one finds

),: J1$TV, (2.ss)

where 2 is in angstroms and Z in electron volts. For a ), : I A, the potential is
V:l50V,orE:l50eV.

The mechanism responsible for the electron scattering is the electric field
associated with the atoms in the solid. This field is produced both by the nucleus
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and by the orbital electrons in each atom. It is large at the nucleus, but decreases

rapidly away from the nucleus. In the latter region the nucleus is screened by the

orbital electrons.
Calculations show that the scattering length associated with the scattering

of the electron from an atom is large. This means that an electron beam is strongly

scattered, and hence has a short stopping distance. This distance is only about

50 A for V : 50 kV, for example. Even though the electron beam is restricted to a

rather small depth near the surface, this depth does nonetheless include a number

of atomic layers, so that a crystal diffraction pattern obtains (Fig. 2.16). It also

follows that the electron diffraction pattern is particularly sensitive to the physical

properties of the surface, which explains its wide use in the study of surfaces, e.g.,

Lxide layers forming on the surface of solids, thin films, and so forth.t

2.16 Continuous rotation electron diffraction pattern of a single crystal of silver.

axis of rotation is normal to the paper. [After Leighton]

f For a readable elementary review of the subject, see K. A. R. Mitchell, Contemp. Physics,

14, 251 (1973). The article discusses how the currently popularly LEED (low-energy

electron diffraction) technique may be used in studies of surface crystallography and
surface chemistry, and their bearing on understanding the interatomic bonds of surface

atoms, as well as such technologically important topics as surface catalysis, corrosion,
and epitaxial crystal growth.

Fig.
The
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We have been concerned here only with the diffraction of external electrons,
but internal electrons also suffer the same type of diffraction as they move through
the crystal. We shall find this concept to be very helpful in our discussion of the
electron states in crystals (Chapter 5).

Finally, a point of historical interest. The wave properties of material
particles were first demonstrated in connection with electron diffraction. In 1927,
Davisson and Germer observed the scattering of an electron beam from the surface
of a nickel crystal. In obtaining a diffraction pattern, they confirmed the wave prop-
erety ofthe electron, as postulated earlier by deBroglie. In recognition of this
work, Davisson was awarded the Nobel prize in 1937.

SUMMARY

The crystal structure is determined from the diffraction pattern observed when the
crystal is irradiated with an x-ray beam. The fundamental result isthe Bragg law,

2dsin0 : nA,

where d is the interplanar distance, 0 the glancing angle, and ,t the wavelength
of the beam. By measuring 0 and,l., one may determine d,and, eventually, the
crystal structure.

A more rigorous treatment of the diffraction process considers the crystal to
be composed of discrete electrons. The scattering factor is

f : l,'"'",
where the sum is over all the electrons in the system, and s is the scattering vector.

s:k-ko.

Applying the result to a single atom leads to the atomic scattering factor,

f^: f*oo r2p()s!:L 7r.
Jo sr

The factor /u decreases as the scattering angle 20 increases, because of the
interference between the various shells of the electronic cloud in the atom.

The scattering factor for a crystal may be written as a product

"f"' 
: FS'

where F is the geometrical structure factor and S the lattice-structure factor. These
are given, respectively, by

r' : I foiei..6t,
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the summation being over all the atoms in a unit cell, and

q 
- S ois'Rr(")"-+

this summation being over all unit cells in the crystal. The factor F depends only

on the atomic properties and the shape of the unit cell, and S depends only on the

lattice structure. The factorization of f, into F and S is useful because it enables

us to treat the atomic and lattice properties of the crystal independently.

An examination of the lattice factor S shows that it vanishes, except when

s: G.

That is, the scattering vector is equal to a reciprocal-lattice vector. This is the same

condition as Bragg's law for reflection from the atomic planes normal to G.

Liquid structures can also be studied by x-ray diffraction. By measuring the

liquid structure factor, one may evaluate the pair-distribution function for atoms

in the liquid.
The x-ray diffraction pattern is recorded on a film, which is sensitized by the

diffracted beams emerging from the crystal. Each beam represents a reflection

from a set of atomic planes in the crystal, and is recorded as a spot on the film.

The position and symmetry of the spot pattern contain the information needed to

decipher the crystal structure.
A neutron beam may also be used to determine the crystal structure. The

same formulas developed above apply here also, provided the deBroglie wave-

length
), : hlp

is used. The energy of the neutron is very small, about 0.1 V, and we speak of
thermal neutrons. The scattering of neutrons is accomplished by their interaction

with t\e nuclei of the crystal, and not their interactions with the electrons, as in

x-rays.
Electron diffraction has also been used in the analysis of crystal structure.

Since electrons interact very strongly with the atoms in a crystal, the stopping dis-

tance of the electron is very short-only about 50 A. Consequently, electron dif-
fraction is employed primarily in the study of surface phenomena'
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QUESTIONS

L What is the justification for drawing the scattered rays in Fie. 2.2(a) as nearly
parallel?

2. In the scattering ol x-rays by electrons, there is a small probability that the photon
may suffer Complon scattering by the electron-this in addition to the scattering
considered in this chapter, which is known as Thompson scattering. Compton
scattering is inelastic, and the photon loses some of its energy to the electron; the
energy loss depends on the scattering angle. would you expect compton
scattering to produce a diffraction pattern? Why or why not?

3. It was stated following Eq. (2.6) that the amplitude of the wave decreases as the
inverse of the radial distance from the scattering center. Justify this on the basis
of energy conservation.

4. The crystal scattering factor f., of (2.19) is a complex number. what is the
advantage of using complex representation?

5. Diamond and silicon have the same type of lattice structure, an fcc with a basis,
but different lattice constants. Is the lattice structure factor S the same for both
substances?

6. A reciprocal-lattice vector has a dimension equal to the reciprocal of length,
for example, cm-1. Is it meaningful to compare the magnitudes of a direct-lattice
vector R with a reciprocalJattice vector G? Is it meaningful to compare their
directions? If the latter answer is yes, find the angle between R and G in terms of
their components in a cubic crystal. what is the angle between p: [lll] and
6: [ll0]?

7. Does a real lattice vector have a corresponding unique reciprocal vector?
8. Draw a figure illustrating momentum conservation in the Bragg reflection considered

as a photon-crystal collision. Why is this collision elastic? Justify your answer
with numerical estimates.
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ll

Why is the energy ol a neutron so much smaller than that of an electron in
radiation beams employed in crystal diffraction?

Can a light beam be used in the analysis of crystal structure? Estimate the lattice

constant for a crystal amenable to analysis by visible light.
Why is the neutron more useful than the proton in structure analysis?

PROBLEMS

l. The minimum wavelength observed in x-ray radiation is ):1.23 A. What is the

kinetic energy, in eV, of the primary electron hitting the target?

2. The edge of a unit cell in a cubic crystal is a : 2.62 A. rino the Bragg angle

corresponding to reflection from the planes (100), (110), (1ll), (200), (210), and

(21 l), given that the monochromatic x-ray beam has a wavelength 7: l.5a A.

3. A Cu target emits an x-ray line of wavelength A: 1.54 A.

a) Given that the Bragg angle for reflection from the (lll) planes in Al is 19.2"

compute the interplanar distance for these planes. Recall that aluminum has an

fcc structure.
b) Knowing that the density and atomic weight of Al are, respectively, 2.7 gf cm3 and

27.0, compute the value of Avogadro's number.

4. a) The Bragg angle for reflection from the (l l0) planes in bcc iron is 22' for an

x-ray wavelength of ,t : 1.54 A. Compute the cube edge for iron.

b) What is the Bragg angle lor reflection from the (lll) planes?

c) Calculate the density of bcc iron. The atomic weight of Fe is 55.8.

5. Establish the validity of (2. ll) for an arbitrary origin.
6. Prove the result of (2.17).

7. Establish the result (2.20).

8. Establish the fact that Eq. (2.23) follows lrom (2.20) and the definitions (2.21) and

(2.22\.

9. The electron density in a hydrogen atom in its ground state is spherically symmetric,

and given by
P1r1 : e-2't'of naf;'

where ao, the first Bohr radius, has the value 0.53 A. Compute the atomic

scattering factor .f^for hydrogen, and plot it as a function of s : 2k sin 0 : 4n sin 0l )".

Explain physicaliy why the scattering factor is small for back reflection (0 : nl2\.

10. The crystal-structure factor .,7f,, depends on the origin of the coordinate system.

Show that the intensity, which is the observed quantity, is independent of the

choice of origin.
ll. Evaluate the first subsidiary minimum of 52 (Fig.2.5b), and show that it is equal

to 0.04N2, in the limit of large N.
12. The geometrical structure factor Foo, for a bcc lattice was evaluated in the text by

assuming the cell to contain one atom at a corner and another at the center of the

unit cell. Show that the same result is obtained by taking the cell to contain one-

eighth of an atom at each of its eight corners, plus one atom at the center.

13. Evaluate the geometrical structure factor Foo, for reflection from the (ftkl) planes in

an fcc lattice, and show that the factor vanishes unless the numbers h, k, and / are all

even or all odd.
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14. which of the following reflections would be missing in a bcc lartice: (100), (ll0),
(lll), (200), (210), (220), (211)? Answer a similar question for an fcc rattice.

15. Diamond has an fcc structure in which the basis is composed of two identical atoms,
one at the lattice point, and another at a point @la, ala, af 4) relative to the first atom,
where a is the edge of the cube (see Fig. 2. l5). Find the geometrical structure
factor for diamond, and express it in terms of the factor corresponding to an fcc
Bravais lattice. which of the reflections in problem l4 are missing in diamond?

16. Cesium chloride (CsCl) crystallizes in the bcc structure, in which one type of atom
is located at the corners and the other at the center of the cell. Calculate the
geometrical structure factor F,oo, assuming that /., :3lct. Explain why the
extinction rule derived in the text is violated here.

17. Repeat Problem l5 for GaSb, which crystallizes in the zincblende structure (see
Section 1.7), assuming that d, :2fc*

18. Show that the volume of the reciprocal cetl is equal to the inverse of the real
cell.

19. construct the reciprocal lattice for a two-dimensional lattice in which a: 1.25 A,
b : 2.50 A, and T : 120'.

20. A unitcell has the dimensionsa:44,b:6A, c:8A, s: 0:90",T:120..
Determine:

a) a*, b*, and c* for the reciprocal cell.
b) The volume of the real and reciprocal unit cells.
c) The spacing between the (210) planes.
d) The Bragg angle 0 for reflection from the above planes.

21. Show that if the crystal undergoes volume expansion, then the reflected beam is
rotated by the angle

60: - \tan0,
3

where 7 is the volume coefficient of expansion and 0 the Bragg angle.
22. Discuss the variation of the intensity with the half scattering angle 0. Include

the eflects of the lattice-structure factor, the geometrical-structure factor, and the
electron scattering length.

23. Write an essay on the experimental aspects of x-ray diffraction.
24. Prove the result (2.52).
25. A beam of 150-ev electrons falls on a powder nickel sample. Find the two

smallest Bragg angles at which reflection takes place, recalling that Ni has an fcc
lattice with a cube edge equal to 3.25 A.
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3.T TNTRODUCTION

In studying crystal structures in the last two chapters, we have assumed that the
atoms were at rest at their lattice sites. Atoms, however, are not quite stationary,
but oscillate around their equilibrium positions as a result of thermal energy.
Let us now discuss these lattice vibrations in detail, and include their influence
on the thermal, acoustic, and optical properties of crystals.

In this chapter we shall first consider crystal vibrations in the elastic long-
wavelength limit, in which the crystal may be treated as a continuous medium,
and we shall compare the various models used to explain specific heat. It is found
that agreement with experiment is achieved only through the use of quantum
concepts. Thus we shall introduce the phonon, the quantum unit ofsound waves.
This is followed by a discussion of lattice vibrations, taking into account the
discrete nature of the lattice, and we shall also take up the conduction of heat
by the lattice.

Direct observations of lattice waves, by the scattering of radiation (such as
x-rays) are also discussed. This is followed by a section on some interesting
aspects of lattice waves in the microwave region. Finally we shall discuss the
reflection and absorption of infrared light by lattice vibrations in ionic crystals.

3.2 ELASTIC WAVES

A solid is composed of discrete atoms, and this discreteness must be taken into
account in the discussion of lattice vibrations. However, wheQ the wavelength
is very long, one may disregard the atomic nature and"'treat the solid as a
continuous medium. Such vibrations are referred to as elastic v,aoes.

Let us now examine the propagation of an elastic wave in a sample in the
shape of a long bar (Fig.3.1). Suppose that the wave is longitudinal, and denote
the elastic displacement at the point x by a(x). The strain is defined as

(3.1)

which is the change of length per unit length. The srress s is defined as the force
per unit area, and is also a function of x. According to Hooke's lau,, the stress is
proportional to the strain. That is,

S: Ye,

where the elastic constant Y is known as young's modulus.

Fig. 3.1 Elastic wave in a bar.

To examine the dynamics of the bar, we choose an arbitrary segment of
length dx, as shown in the figure. Using Newton's second law, we can write for

du

dx'

(3.2)

68
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the motion of this segment,
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(3 3)

fJ
a>. . y

(pA'dx)ufi: ft'x + dx) - s(x)1,4',

where p is the mass density and A' the cross-sectional area of the bar. The term
on the left is simply the mass times the acceleration, while that on the right is the

net force resulting from the stresses at the ends of the segment. Writing
S(x + dx) - S(x) : 0SlAxdx for a short segment, substituting for S from (3.2),

and then using (3.1) for the strain, one can rewrite the dynamical equation (3.3) as

d'u p d'u
a?-7a7:o' (3'4)

which is the well-known waue equation in one dimension.

We now attempt a solution in the form of a propagating plane wave

U : Aeilsx - @t') 
, (3.5)

where 4, of course, is the wave number (q:2nll'), ro the frequency of the wave,

and A is its amplitude. Substitution in (3.a) leads to . (

N=,Fl a:t)"Q. - - -a (3.6)

where I

u" : lElp. --- -'- 
-T ',1/' - (3.7)

. \ =(
The relation (3.6) connecting the frequency and wave number is known as the

dispersion relalion. Since the velocity of the wave is equal to alq, a fact well known
fi6Et wave theory, it follows that the constant u" in (3.6) is equal to this velocity.
It is expressed in terms of the properties of the medium by (3.7). The wave under
discussion is the familiar sound wave.

Figure 3.2 shows the dispersion relation for the elastic wave. It is a straight
line whose slope is equal to the velocity of the sound. This type of dispersion
relation, where co is related linearly to q, is satisfied by other familiar waves. For
example, an optical wave traveling in vacuum has a dispersion relation
@ : cq, where c is the speed of light. Sound waves in liquids and gases satisfy

similar relations.

Fig. 3.2 Dispersion curve of an elastic wave.
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Deviations from the linear relationship are often observed, however, and
this is known as dispersion. We shall see in Section 6, for instance, that the effect
of lattice discreteness is to introduce a significant amount of dispersion into the
dispersion curve of Fig.3.2, particularly when the wavelength is so short as to be
comparable to the interatomic distance.

Equation (3.7) can be used to evaluate Young's modulus. Measurements
show that typical values in solids or€ u" : 5 x 105 cm/s and p : 5 glcm3, which
leads to Y :5 x (5 x t0s)2 :1.25 x 1012 gfcms2.

We have treated a longitudinal wave here, but the same type of analysis also
applies to a transverse, or shear wave. This introduces a shear elastic constant,
analogous to Young's modulus, and the velocity of the shear wave is related to it
by an equation similar to (3.7). The two elastic constants can then be used to
describe the propagation of an arbitrary elastic wave in the solid.

It has been tacitly assumed that the solid is isotropic. However, crystals are,
in fact, anisotropic, and the effect of anisotropy on the elastic properties is
readily demonstrated. This leads in general to the introduction of many more
elastic constants than the two needed for the isotropic solid. Considerations of
symmetry show, however, that many of these constants are interrelated, a fact
which results in a substantial decrease in the number of independent elastic
constants. For instance, in the important case of a cubic crystal, it can be shown
that only three independent constants are required. They are denoted by Crr, Crr,
and Coo. The constant C,, relates the compression stress and strain along the
[00] direction, e.9., the x-axis, while Coo relates the shear stress and strain in
the same direction. The constant C,, relates the compression stress in one
direction to the strain in another; these may, for instance, be the x- and y-
directions. The three constants Crr, Crr, and Coo are determined by measuring
the sound velocities in certain directions in the crystal. It can be shown, for
example, that the velocities of longitudinal and shear waves along the [00]
direction are, respectiuely, JCrrlp and JC*lO, which is expected on the basis
of (3.2). The constant C t2 can be determined from the velocity of the longitudinal
wave in the Ill] direction, which is found to be./(C, | +2C12 + 4Ca)13p.
Anyone interested in the further discussion of this topic should read the excellent
treatment in Kittel's book.r

3.3 ENUMERATION OF MODES; DENSITY OF STATES
OF A CONTINUOUS MEDIUM

Consider the elastic waves in the long bar of Fig. 3.1, in which the wave travels
in one dimension only. The solution has already been written in (3.5). That
is,

u : A e'4*, (3.8)

3.3

t References used most frequently in solid state physics are listed at the end of the book.



3.3 Enumeration of Modes; Density of States of a Continuous Medium

where we have omitted the temporal factor, since it is not relevant to the present

discussion. We shall now consider the effects of the boundary conditions on

the solution (3.8). These boundary conditions are determined by the external

constraints applied to the ends of the bar. For example, the ends might be

clamped as the interior of the bar vibrates, or they might be free to vibrate wilh
the rest of the bar. The type of boundary condition which we shall find most

convenient, and which is used throughout this book, is known as the periodic

boundary condition. By this we mean that the right end of the bar is constrained in

such a way that it is always in the same state of oscillalion as the left end. It is
as if the bar were deformed into a circular shape so that the right end joined the

left. Given that the length of the bar is L, if we take the origin as being at the

left end, the periodic condition means that

u(x:0): u(x: L), (3.e)

where a is the solution given in (3.8). If we substitute (3.8) into (3.9), we find

that
eiqL : l. (3. l0)

This equation imposes a condition on the admissible values of q; only those

values which satisfy (3.10) are allowed. Noting that einz": I for any integer r,
we conclude from (3.10) that the allowed values are

2n
O:n-., L'

(3.1 r )

where r : 0, * l, +z,etc. When these values are plotted along a q-axis, they form
a one-dimensional mesh of regularly spaced points, as shown in Fig. 3.3. The

spacing between the points is 2nlL. When the bar length is large, the spacing

becomes small and the points form a quasi-continuous mesh.

2r/L

Fig. 3.3 Allowed values of 4.

Eachq-valueof (3.11),oreachpointinFig.3.3,represents amode of vibration.i
Suppose we choose an arbitrary interval dq in q-space, and look for the number

of modes whose q's lie in this interval. We assume here that L is large, so that
the points are quasi-continuous; this is true, of course, for the macroscopic

f Note that q:2nf ),, where,l. is the wavelength of the wave. Thus "quantization" of
q in (3.1l) is equivalent to quantizing the wavelengths of the allowed waves in the bar.

Origin

I
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objects with which we are dealing. Since the spacing between the points is
2nlL, the number of modes is

(3. r 2)

But q and the frequency @ arc interrelated via the dispersion relation, and we
may well seek the number of modes in the frequency range da lying between
Qo, a + da). The density oJ'states g(,,) is defined such that g(a)da gives this
number. Comparing this defi nition with (3.12), one may write g (a) da : (L I 2r) dq,
or g(ot) : (Ll2n)l@aldq). We note from Fig. 3.4, however, thar in calculating
g(co) we must include the modes lying in the negative 4-region as well as in the
positive region. The former represent waves traveling to the left, and the latter
waves traveling to the right. The effect is to multiply the above expression for
SkD) by a factor of two. That is,

L
- da.
2n

L1
s@) : -----;=.rE d@ldq

(3. l 3)

(3.14)

This is a general result for the one-dimensional case, and we see that the density
of states 9(ro) is determined by the dispersion relation. For the linear relation
Eq. (3.6), daldq: o", and therefore

L1
s\@) :; 

%.

which is a constant independent of at.

Fig. 3.4 The enumeration of modes. The dispersion curve is composed of two segments:
a): osq and a-l: -urq. The former represents waves traveling to the right, the latter
waves traveling to the left.

Now let us extend the results to the three-dimensional case. The wave
solution analogous to (3.8) is now

U: lgilt,x+qyY+qzzl - Aeiq'r) (3. r s)

where the propagation is described by the wave vector q, whose direction specifies
that of the propagation, and whose magnitude is proportional to the inverse
wavelength. Here again we need to inquire into the effects of the boundary
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conditions. For the sake of simplicity, let us assume a cubic sample whose edge

is L. By imposing the periodic boundary conditions, one finds that the allowed
values of q must satisfy the condition

eilqxL+qyL+q"L) - l.

That is, the values are given by

(q,,q,q,) : (3. l 6)

where r, m, and I are any three integers.

o + d@ contour

Fig. 3.5 Allowed values of q for a wave traveling in 3 dimensions. (Only the cross section
intheq,qr-plane is shown.) The shaded circular shell is used for counting the modes.

If we plot these values in a q-space, as in Fig. 3.5, we obtain a three-
dimensional cubic mesh. The volume assigned to each point in this q-space is
(2nlL)3.

Each point in Fig. 3.5 determines one mode. Suppose we now wish to find

the number of modes inside a sphere whose radius is q. The volume of this sphere

is (4n13)q3, and since the volume per point is (2nlL)3, it follows that the number
we seek is

I 2n 2n 2n\('z'* r't r)'

I L\34n , V 4n ,

\il za' : 12ny1a"

where I/ : L3 is the volume of the sample.
This equation gives the number of all the allowed

a certain value, and which travel in all directions.
with respect to q, we obtain

(3. l 7)

waves whose q is less than
If we differentiate (3.17)

fionr"r, (3. I 8)
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which therefore gives the number of modes, or points, in the spherical shell
between the radii q and q * dq in Fig. 3.5.

We recall that the density of states g(@) is defined such that g(a) da is the
number of modes whose frequencies lie in the interval (a,a + da). This number
can be obtained from (3.18) by making a change of variable from q to ar, which
may be accomplished by the use of the dispersion relation. Using the relation
@ : u"q, Eq. (3.6), one finds

V t,ro\2dog@)da o4an (;) ;
This expression gives the number of points between the surface of constant
frequency at a; and a similar one at ot * da. Plotted in the q-space, these surfaces
are spheres, and the volume between them is the spherical shell shown in Fig. 3.5.
The above expression for g(a) do is the number of points inside the shell.

According to the above equation, the density of states 9(a;) is thus given
by

3.3

Va2
s@) : ,p;?. (3. l e)

This function is plotted versus ro in Fig. 3.6, where we see that g(o) increases
as a2, unlike the one-dimensional case in which g(cd) was a constant. The
increase in the present case is a reflection of the fact that the volume of the
spherical shell in Fig.3.5 increases asq2,and hence as ar2, since rr; is proportional
to q.

0

Fig. 3.6 Density of modes, or states,

@

in an elastic medium.

One last modification is necessary. In the above discussion we have associated
a single mode with each value of q. This is not quite true for the 3-dimensional
case, however, because for each q the wave may be either longitudinal or
transverse. There are actually three different modes, one Iongitudinal and two
transverse, associated with the same value of q. The dispersion relations for
the longitudinal and transverse waves are different, since they have different
velocities, but if we ignore this difference and assume a common velocity, we may

e@)
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obtain the total density of states from (3.19) by

factor of three. That is,

simply multiplying it by a

skD) : (3.20)

We shall make use of this formula shortly in connection with the Debye theory
of specific heat. Note incidentally that g(ar) is proportional to V, the volume of
the specimen. We shall often conveniently omit this factor by taking our volume

to be equal to unity.
A remark concerning the choice of the periodic boundary conditions: It can

be shown that, when the wavelengths of the modes are small compared with the

dimensions of the sample, the density-of-states function g(ar) is independent

of the choice of boundary conditions. In using the periodic conditions, we have

made the choice which is mathematically most convenient for our purposes'

3.4 SPECIFIC HEAT: MODELS OF EINSTEIN AND DEBYE

The specific heat per mole is defined as

LOt:ar'

where AQ is the heat required to raise the temperature of one mole by an amount
equal to A7. If the process is carried out at constant volume, then AQ - LE,
where AE is the increase in the internal energy of the system. The specific heat

at constant volume C, is therefore given by

3V af

--.2n' u."

(3.21)

The specific heat depends on the temperatur€ in the manner shown in Fig. 3.7.

At high temperatures the value of C, is close to 3R, where R is the universal gas

constant. Since R -2caU'K mole, at high temperatures C,=6cal/'K mole.

r,'K

,": (#),

Fig. 3.7 Dependence of specific heat of solids on temperature.
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This range usually includes room temperature. The fact that c, is nearly equal
to 3R at high temperatures regardless of the substance described is called the
Dulong-Petit law.

The deviation from this law in low-temperature regions is strikingly
demonstrated by the figure. As 7 decreases, C, also decreases, and vanishes
entirely at absolute zero. Another observation (which will be relevant to future
discussions) is that near absolute zero the specific heat c, is proportional to 73.

Let us now evaluate C, theoretically, and compare the value so obtained
with the experimental result. First, the so-called classical theory: The model
used to describe the solid is one in which each atom is bound to its site by a
harmonic force. When the solid is heated, the atoms vibrate around their sites
like a set of harmonic oscillators. The energy associated with this motion is the
energy E which appears in Eq. (3.21). Recall from elementary physics rhat the
average energy E for a one-dimensional oscillator is equal to kT,t where k is
the Boltzmann constant. That is,

E: kT. (3.22)

Therefore the average energy per atom, regarded as a three-dimensional
oscillator, is 3kI and consequently the energy per mole is

E:3NJT :3R7i (3.23)

where No is Avogadro's number. We have used the relation R : Nrk. When
we substitute (3.23) into (3.21), we find, when we have effected the differentiation,
that

C, : 3R. (3.24)

This result is certainly in agreement with experiment at high temperatures,
but it fails completely at low temperatures. Although it predicts a constant
value for C,, the actual value, as we have seen, decreases as ? decreases, and, in
fact, vanishes entirely as T --+ 0"K. This discrepancy between theory and
experiment was one of the outstanding paradoxes in physics until 1905, when
it was resolved by Einstein, when he used the then-new quantum mechanics.

The Einstein model

In this model, the atoms are treated as independent oscillators, but the energy
of the oscillator is given by quantum mechanics rather than by the classical
result (3.22). According to quantum mechanics, the energy of an isolated
oscillator is restricted to the values

en:nha, (3.2s)

t See, for instance, M. Alonso and E. J. Finn, 1968, Fundamental Llnioersity physics,
Volume III, Reading, Mass.: Addison-Wesley.
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o vzzzvzzzzzzz,o
Fig.3.8 Spectrum of a one-dimensional oscillator, according to quantum mechanics.

where n is a positive integer or zero.t That is, n:0, 1,2,.... The constant

a.r is the frequency of the oscillator. Thus the energy of the oscillator isquantized.

The ground state, corresponding to n :0, has an energy €o : 0, and the excited

states form a discrete, uniformly spaced spectrum, as shown in Fig. 3.8,

with an interlevel spacing equal to ftro.

Equation (3.25) refers to an isolated oscillator, but the atomic oscillators

in a solid are not isolated. They are continually exchanging energy with the

ambient thermal bath surrounding the solid. The energy of the oscillator is

therefore continually changing, but its average value at thermal equilibrium is given

bY 
o /o

€ : I ene-te-tktt I L r-,",0'.
r=0 | n=o

The exponerl|al e'enlkr is the well-known Boltzmann factor, which gives the

probability that the energy state <, is occupied, and the sum in the denominator

is inserted for correct normalization.I When we substitute from (3.25) into the

above equation and evaluate the series involved, we find the simple result$

_ha
- 

,nalkT _ 1'

1
€n

2

I

(3.26)

f Actually the exact expression is e, : (n + i)ha. The lowest state, n : 0, is the ground

state, while the higher states are the excited states. This shows that the oscillator executes

some motion even in the lowest possible state. This is referred to as zero-point motion,

and its energy as zero-point energy. Tero-point motion, since it is irrelevant to the dis-

cussion of specific heat, may be disregarded here.

f See Alonso and Finn, op. cit.

$ The above expression for the average energy may be written as

,: - 
^-LrlorrLn 

[,i ,-'"ft1.

When expression (3.25) is substituted for e,, the summation inside the logarithm becomes

an infinite geometric series. Summing the series and carrying out the differentiation leads

to (3.26).
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In Fig. 3.9, which plots the energy E versus temperature, we see that at high
temperature the energy e --+ kT, which is the same as the classical value given
above. But as the temperature decreases, the energy E decreases, and continues
to decrease until ? : OoK, at Which point the energy i vanishes entirely. This
behavior of e at low temperature is a consequence of the quantum nature of the
motion, and is responsible for the classically unexpected decrease in specific heat
in the low-temperature region.. \ .. { - \

\'iJ \ . >:'

t)

\ t,0 .t'
1n

^h"- ;
l/ r'

3.4

\ /Li

Fig. 3.9 Energy of the average oscillator versus temperature. The dished ciirve is the
classical result E : kI . Note that the quantum value for E is much less than the classical
value at low temperatures. h fl , _

Co = i:161- -'rl
The behavior shown in the figure ma'y'alfdbe'undersLood from the following

qualitative argument: An oscillator coupled to a thermal bath exchanges
with it an amount of energy which is on the average equal to kT. At high
temperature, we have kT ) ha, which means that the oscillator is in a highly
excited quantum state. Since the energy kT is much larger than the quantum
step frar, the quantum nature of the spectrum becomes unimportant, and one
expects to obtain the classical result < : kT. By contrast, at low temperature,
kT 4 hot, and the energy of exchange kI is not sufficient to lift the oscillator to
the first excited state. In this case the energy of the oscillator is much less than
kT, and is, in fact, very close to zero. as we have found above. Here the quantum
nature of the motion plays the dominant role.

Equation (3.26) is the same formula used by Planck in his theory of
blackbody radiation. It was there that the concept of the quantization of energy
was postulated for the first time. In fact, Einstein's treatment of specific heat
closely parallels Planck's theory of blackbody radiation.

We can now find the energy of the solid by noting that each atom is
equivalent to three oscillators, so that there is a total of 3Nn such oscillators.
The total energy is, therefore,

i r-'

(3.27)
ha.

E : 3Ne 
V;;ifi--,rkr _ l,

(ho/k't

where we used ots, the Einsteinfrequency, to denote the common frequency of the
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oscillators. The specific heat, found by differentiating this expression in
accordance with (3.21), is

(3.28)

This equation may be simplified by introducing,the Einstein temperature 0.,
where k0. : hote. Expression (3.28) then reduces to

i ha. \2 eh@E/krc':3R(-)@-'/tr--n

c,:3R (%r)'fu (3.2e)

If we now plot C, versus T using this equation, we obtain a curve of the same
general shape as Fig.3.7, which indicates that the theory is now in agreement
with experiment, at least qualitatively, over the entire temperature range. Note
in particular that C, + 0 as T - 0oK, a new and important feature of (3.29)
which was lacking in the classical theory.

The temperature 0, is an adjustable parameter chosen to produce the
best fit to the measured values over the whole temperature range. Figure 3.10

T,"K

Fig.3.10 Specific heat of copper versus temperature. The dots represent experimental
values, and the curve is given by the Einstein expression.

illustrates the procedure for copper, where 06 is found to be 240"K. The fact that
such a good agreement is obtained over such a wide temperature range by
adjusting only one parameter is indeed impressive.

We can calculate the Einstein frequency o)E once we have determined the
temperature 06. Thus, for 0n: 240"K, the frequency @p. : kOrfi is about
2.5 x l0r3 s-1, which is in the infrared region.

Let us now examine the behavior of C,, as given by (3.29) in extreme

temperature limits. In the high-temperature limit, where T ) 02, one may expand
the exponential eo'tr in a power series of 0r/7. Carrying this out and retaining
only the largest terms in the series, one finds that C, - 3R, which is the classical
result. This is to be expected, of course, because in the high-temperature region

v.5

i+
@^\J
Eo2
':ul

0
100
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the quantum aspects of the problem become
indicated.

In the low-temperature range, in which T
is much larger than unity. The expression for

irrelevant, as we have previously

( 0e, the exponent eo"tr tn 13.291
C, then reduces to

3.4

Cu=3R -ez/r = B(T) s-0.tr (3.30)

where B(?) is a function relatively insensitive to temperature. Because of the
exponential e-oetr, the specific heat approaches zero very rapidly-exponentially,
in fact-and vanishes at T : 0'K. Although the fact that C, - 0 as ? - OoK
agrees with experiment, the manner in which this is approached is not. Equation
(3.30) indicates that C, approaches zero exponentially, while experiments show
that C, approaches zero as 13. The decrease predicted by (3.30) is much faster
than warranted by experiment, and this, as we shall see, is the basic weakness of
the Einstein model.

The Einstein model may be summarized as follows: At high temperature,
the oscillator is fully excited, acquiring an average energy equal to k?", which leads
to a molar specific heat C, - 3R. On the other hand, at low temperature, the
oscillator is essentially unexcited, and hence Cu:0; in other words, the oscillator
is "frozen" in its ground state. This "freezing" is also the reason why the
vibrational modes in diatomic molecules, such as Hr, do not contribute to
specific heat, except at high temperatures.

In most respects, the Einstein model has been a remarkable success; its
results are in good agreement with experiment over most of the terhperature range.
Nevertheless, the model is incorrect at very low temperatures, at which it predicts
a specific heat that is much smaller than the observed value. This disagreement
is removed by the Debye model, to which we now turn.

The Debye model

The atoms in the Einstein model were assumed to oscillate independJntly of
each other. Actually, the idea of independence here is not a viable one because,
since the atoms do interact with each other, the motion of one atom affects its
neighbors. The motion of these in turn affects their neighbors, and so forth, so
that the motion of one atom anywhere in the solid, in fact, affects all other
atoms present. Thus we need to consider the motion of the lattice as a whole, and
not a single independent atom. That is, we must consider the collective lattice
modes.

The most familiar example of such collective modes is the sound waves
in solids, which were discussed in Section 3.3. When a sound wave propagates
in a solid, the atoms do not oscillate independently; their motions are
orchestrated in such a manner that they all move with the same amplitude and
with a fixed phase relationship.

(+)"
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Using sound waves as a prototype of lattice modes, Debye assumed that all
these modes have a character similar to sound waves, i.e., they obey the same
dispersion relation given in (3.6),

a : u"Q. (3.6)

We shall see shortly how this may be used to evaluate specific heat. Note that in
the Debye model the frequency of the lattice vibration covers a wide range of
values since, as 4 [or the wavelength in (3.6)] varies, so does co. This is unlike
the Einstein model, in which only a single frequency was assumed. The lowest
frequency in the Debye model is o.r : 0, corresponding to Q :0, or an infinite
wavelength; the highest allowed frequency is determined by a procedure which
will be discussed below.

The assumption that the sound-dispersion relation (3.6) holds for lattice
waves is an approximation, inasmuch as it ignores the discreteness of the lattice.
The approximation is expected to hold well for those waves of long wavelength,
or low frequency, where the consequences of discreteness are unimportant. But
when the wavelength is short enough to be comparable to interatomic spacing,
the Debye approximation (3.6) will certainly break down. The manner in which
(3.6) fails in the short-wavelength region will be discussed in detail in Section
3.5.

Now let us calculate specific heat on the basis of the Debye model. In finding
the energy of vibration, we note that each mode is equivalent to a single harmonic
oscillator whose average energy is, therefore, given by expression (3.26). The
total energy ofvibration for the entire lattice is now given by the expression

(3.3 r )

where the integration is effected over all the allowed frequencies. Here g(a;)
is the density-of-states function (Section 3.3), and Eq. (3.31) follows from noting
that g(a)dco is the number of modes in the range (a,a t da), and the energy
of each of these modes is equal to i(a-r). In other words, we are treating the
vibrating lattice as a set of collective modes which vibrate independently
of each other.t In evaluating (3.31), we substitute for i(ro) from (3.26). The
density of states 9(ro) is substituted from (3.20) because, in the Debye
approximation, the lattice vibrates as a continuous medium, as we pointed out
above in connection with Eq. (3.6). The ensuing expression for the total energy is

t : I e@) s(a)) da,

(3.32)

t We may treat the modes as independent of each other, but the atoms themselves must
interact. Thus two sound waves in a solid may propagate independently, but then atoms
have to interact with each other for any wave to propagate at all.

3V f^ haE: r"A)@" 7*'*r - ,da'
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Before we can evaluate the integral in (3.32), we need to know its limits,
namely, the lower and upper ends of the frequency spectrum. The lower limit is
evidently o : 0. The upper cutoff frequency was determined by Debye, by
requiring that the total number of modes included must be equal to the number
of degrees of freedom for the entire solid. Since this number is equal to 3No,
because each atom has three degrees of freedom, the above condition may be

expressed in terms of the density of states as

(3.33)

where the cutoff frequency, denoted by arr, is called the Debye Jrequency. Figure
3.ll shows graphically the manner in which this cutoffis accomplished. It may

Fig. 3.11 The Debye cutoff procedure. The shaded area is equal to the number of modes,
which is 3Nn.

be remarked, in justification of the Debye cutoff procedure, that it is a most
reasonable one. One must introduce some upper limiting frequency because

otherwise many difficulties would arise. For instance, if the upper frequency
in (3.32) were allowed to go to infinity, such an infinite energy would not make
any sense physically. (The presence of an upper cutoff frequency will arise
naturally when we discuss lattice waves in Section 3.6.)

The Debye frequency can be determined by substituting for g(o) from
(3.20) into (3.33), and carrying out the indicated integration. The result is
readily found to be

ao : u"(6n2 n)r 13 
, (3.34)

where r : N rlV is the concentration of atoms in the solid.
Equation (3.34) may also be derived geometrically. If we draw the contour

corresponding to the frequency (a : @o in the q-space of Fig. 3.5, we obtain
a sphere enclosing a number of q-points equal to No, as shown in Fig. 3.12.
(Recall that each point represents three modes, one longitudinal and two
transverse, so the number of modes is equal to 3Nn, the number of degrees of

t'" nt.,D da : 3N;,
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qo : (6n2n)rt3. (3.35)

The Debye frequency arp is now found by substituting this value for q, into
the dispersion relation (3.6), and the result is readily seen to lead to (3.34).

Fig.3.12 The Debye sphere.

Returning to (3.32), the total energy is now given by

3V f'o hot3
E : ,77")o v;in=id@' (3'36)

and the specific heat C,, which is found by differentiating this equation with
respect to T, is

freedom.) We shall call this surface the Debye sphere, and its radius the Debye
radius qj. Since the numbgr of points inside the sphere is

, l-4. 
''t,' v 4n-,'. i @jt",

it follows that the radius 4p must be such that

V 4n-
Qtr148: Nr'

Solving for qo from this equation, one finds that

(3.37\

We can simplify the appearance of this equation by changing to a dimensionless
variable x: hcolkT, and by defining the Debye temperature 0e as k9e: hcoo.

Equation (3.37) then takes the form

c.: eR (#)' jj"''

3V h2 f ,o -4"halkrC" : 751 kF ), Gn-;irr:Adr,

x4e'

tr'- r2'T', 
-_u ,

)v j\L

.,tj eY o\x

' *' r '- Y\' A-'

(3.38)

nY-
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where the velocity of sound u" has been eliminated by using (3.34). Equation
(3.38), which is the specific heat in the Debye model, is the result we have
sought.

-.d6r. 3a3'K

. AB, 226K
r Pb, 102'K
x c, 1860'K

00.sI
T/oo

Fig. 3.13 Specific heats versus reduced temperature for four substances. Numbers refer
to Debye temperatures. Note the high Debye temperature for diamond.

Table 3.1

Debye Temperatures

Element op, oK Compound op, oK

3.4

v
'4

,\ -jo 3

o,
U

I

Li
Na
K
Cu
Ag
Au
AI
Ga
Pb
Ge
Si
C

335
156

9l.l
343
226
r62
428
325
t02
378
647

l 860

NaCl 280
KCr 230
CaF, 47O

LiF 680
SiO2 (quartz) 255

To compare (3.38) with experimental results, one must know the Debye
temperature 0p. This is determined by choosing the value which, when substituted
into (3.38), yields the best fit over the whole temperature range. We see from
(3.38) that if C, is plotted versus a reduced temperature T/0o, then the same
curve should obtain for all substances. That is, there is a uniuersal curve for
specific heat. This observation is tested experimentally in Fig.3.l3 for four
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widely different substances, where

degree. The values for 0o have

list is given in Table 3.1.

The value of 0, depends on the given substance, but, as Table 3.1 shows,
a typical value is about 300"K. The corresponding Debye frequency @o : k9olh
is about 3 x 1013s-1, which lies in the infrared region of the spectrum. This
frequency may also be evaluated from (3.34). Substitution of the typical values
u":5 x l05cm/s and n:1022 atoms/cm3 yields ra,r.= 4 x 1013s-1, which is

of the same order as the value calculated above. We note that 0o - {Do - D"fr't',
and consequently

lw ln,"_ rl;*,,_ ,l;. ;;!),,' r lv\
where Y is Young's modulus and M the atomic mass (using p : nM). Therefore
0o depends primarily on the elastic constant of the substance Y and on the
atomic mass M. The stiffer the crystal and the smaller M,the higher is 0o. This
explains, for instance, why 0, is high for carbon (1860'K), which is stiff and
light, and low for lead (102"K), which is soft and heavy.

It may be demonstrated that C, as given by (3.38) has the correct values in
the appropriate temperature limits. 1\tl high temperatgp. T ) 0o, so the upper
limitoithiintegralisverysmall.ThEffindissmalloveritsentire
range, and *.rnuy make the approfimation e'\t * x. In the first approximation,
the integral reduces to [3' x2 dx: *(0olT).'', which leads to C, : 3R, in
agreement with the Dulon$-Pgtit law. This can also be seen from the following
intuitive argument: When T )'&p; dvery mode of oscillation is completely
excited, and has an energy equal to the classical value kT. That is, a : kT.
When we insert this into (3.31), we find that E : kT ! g(a) da : 3N ekT : 3Rf,,
which leads to Cu: 3R. Note also that this saturation in specific heat is already
evident when T :: 0o. Since 0o is typically close to room temperature, we see

that C, begins to approach its classical value 3R for I equal to room temperature

and above.
e low-temperature limit is more interesting. Here T ( 0o, and hence

the u?p-6i-1imft-6fTh-e-ifitegral (3.38) approaches o. The ensuing integral

l|l*nl@- - l)'ldx, which may be evaluated analytically, has the value 4n4ll5.
The specific heat is now given bY

Specific Heat: Models of Einstein and Debye

we see that it holds true to a remarkable
been tabulated in the literature, and a short

l2nac,: i R(T/oD)' (3.40)

This shows the T3-dependence referred to earlier.
The cubic dependence may also be appreciated from the following qualitative

argument: At low temperature, only a few of the modes are excited. These are

the modes whose quantum energy iar is less than kT. The number of these modes
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may be estimated by drawing a sphere in the q-space whose frequency a : kT lh,
and counting the number of points inside, as shown in Fig. 3.14. This sphere
may be called the thermal sphere, in analogy with the Debye sphere discussed
above. The number of modes inside the thermal sphere is proportional to
Q3 - a3 - T3. Each mode is fully excited and has an average energy equal to
kT. Therefore the total energy of excitation is proportional to 74, which leads
to a specific heat proportional to 73, in agreement with (3.40).

Fig. 3.14 The thermal sphere which is the frequency contour o: kTlh.

The reason for the error in the Einstein model at low temperature is now
evident. This model ignores the presence of the very low-frequency, long-
wavelength modes which can absorb heat even at very low temperature, because

their energies of quantization are very small. The exponential freezing of the
modes does not actually occur, and the specific heat has a finite value, small
though it may be.

Despite its impressive success, the Debye model also remains only an
approximation. The nature of the approximation, as pointed out previously,
lies in assuming the continuum dispersion relation to hold true for all possible
modes of excitation. Experimentally, the approximate nature of the Debye
model is shown by plotting 0o versus T over a wide temperature range, where 0o
is found at each temperature by matching the experimental value for C, with
(3.38) at that temperature. If the Debye model were strictly valid, the value of 0o
so obtained should be independent of T. Instead one finds that 0D varies with 7l
the variation reaching as much as lO/" or even more in some cases. In order to
improve on the Debye model, one needs to remove the long-wavelength
approximation and use, instead, the correct dispersion relation and the corres-
ponding density of states. This will be taken up in the following sections,
beginning with Section 3.6.

3.5 THE PHONON

Implicit in the Debye theory is a very important and far-reaching concept. We
have seen that the energy of each mode is quantized, the unit of quantum energy

3.5
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being frco. Since the modes are elastic waves, we have, in fact, quantized the

elastic energy of sound waves. The procedure is closely analogous to that used

in quantizing the energy of an electromagnetic field, in which the corpuscular

nature of the field is expressed by introducing the photon. In the present case,

the particle-like entity which carries the unit energy of the elastic field in a
particular mode is called a phonon. Jhe energy of the phonon is therefore given

by
e:ho. (3.4r )

Since the phonon also represents a traveling wave, it carries a momentum of
its own. By analogy with the photon (see also the deBroglie relation, Section

A.2), the momentum of thephonon isgiven by p: hlT,where tris the wavelength.

Writing )":2nlq, where q is the wave vector, we obtain for the momentum

of the phonon

9:hq. (3.42)

Just as we think of an electromagnetic wave as a stream of photons, we now view

an elastic sound wave as a stream of phonons which carry the energy and

momentum of the wave. The speed of travel of the phonon is equal to the

velocity of sound in the medium.
The number of phonons in a mode at thermal equilibrium can be found from

inspection of Eq. (3.26). Since the energy per phonon is equal to ha, and since

the average energy of phonons in the mode is given by i in (3.26), it follows that
the average number of phonons in the mode is given by

_ln:-" 

"halkT 
_ 1'

(3.43)

This number depends on the temperature; at T : O, i :0, but as T increases,

n' also increases, eventually reaching the value i : kTlha at high temperatures.

Here we see an interesting point: Phonons are created simply by raising the

temperature, and therefore the number of them in the system is not conserved.

This is unlike the case of the more familiar elementary particles of physics-e.g',
electrons or protons-in which the number is conserved.

The concept of the phonon is an extremely important one in solid-state
physics, and we shall encounter it time and again in this book. For instance, in
Section 3.10, we shall study the interaction of the phonon with other forms of
radiation, such as x-rays, neutrons, and light. These interactions will not only
validate Eqs. (3.a1) and (3.42) for the energy and momentum of the phonon, but
will also furnish valuable information on the state of vibration of the solid.

3.6 LATTICE WAVES

In discussing waves in solids, we have thus far treated the solid as a continuum,
in which the discreteness of the lattice played no significant role. In this section
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we shall seek to relax this serious oversimplification by treating a solid as the
entity composed of discrete atoms which we know it to be.

Of primary importance in our consideration of this point is the form of the
dispersion relation @ : @(q). We have already seen that in the long wavelength
limit, corresponding to q + 0, the linear relation a: D,Q holds good, because
there the interatomic spacing is so much smaller than the wavelength that the
medium may be treated as a continuum. However, as the wavelength decreases
and q increases, the discreteness of the lattice becomes more significant because
the atoms begin to scatter the wave. The effect of this scattering is to impede
the propagation by decreasing the velocity of the wave. As 4 increases further,
the scattering becomes greater, since the strength of scatlering increases as the
wavelength decreases (a fact well known in wave physics), and the velocity
decreases even further. The effect of this on the dispersion curve is to bend it
downward, as indicated in Fig. 3.15, because, as we shall see shortly, the slope of the
curve gives the velocity of the wave. Let us now show that the dispersion curve,
obtained by solving the equation of motion of the lattice, does indeed have the
general shape of Fig. 3. I 5.

Fig. 3.15 Expected dispersion curve of a discrete lattice. The dashed line is the con-
tinuum model approximation. Note that the two curves coincide at q : O.

For the sake of simplicity, we shall begin the quantitative discussion with
the one-dimensional Iattice.

The one-dimensional monatomic lattice
Figure 3.16 shows a one-dimensional monatomic lattice with a lattice constant
equal to a. When the lattice is at equilibrium, each atom is positioned exactly
at its lattice site. Now suppose that the lattice begins to vibrate, so that each atom
is displaced from its site by a small amount. Because the atoms interact with
each other, the various atoms move simultaneously, so that we must consider
the motion of the entire lattice.

Consider the rz'h atom. The force exerted on it as a result of its interaction
with the (r + I)'h atom is given by *u(u,,r - un), where &,, artd u,,t1 are the
displacements of the n'h and (r + l)'h atoms, respectively, and (u,*, - u,) is the
relative dis,placement of the atoms. The parameter a is known ur t9!t"Il!9-Uni.

Continuum/
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force constanl. The assumption that force is proportional to relative displacement'€
isTi6wn as the harmonic approximation, and it is expected to hold well, provided

the displacements are small. This approximation is equivalent to the well-known
Hooke's law, familiar from elementary elastic theory [see also Eq. (3.2)]. It is

as though the atoms were interconnected by elastic springs. The force exerted on

the n'h atom by the (r - I )th atom is similarly found to be * c(r.r,, r - un). Applying

Newton's second law to the motion of the rth alom, we have therefore

d2 u.-M#: +a(un+r - un) la(u,-r - un): -a(2u,- un*'t - u,-r), Q.44)

where M is the mass of the atom.

I t*' 3 3'l
n-t n n*l l-"-*]

Fig.3,16 A segment of a one-dimensional lattice. The arrows represent atomic dis-
placements from equilibrium positions (displacements are exaggerated for illustrative
purposes). Springs represent elastic forces between the atoms.

Note that we have neglected the interaction of the nth atom with all but its
nearest neighbors. Although these neglected interactions are small, as the force

decreases rapidly with distance, they are not negligible, and must be taken into

account in any realistic calculation. The simplified approximation of (3.aa) will
suffice, however, to illustrate the new physical concepts without involving

cumbersome mathematical complexities.
In attempting to solve (3.44), we note that the motion of the nth atom is

coupled to those of the (n + 1)'h and (, - l)'n atoms. Similarly the motion of the

(r + l)'h atom is found to be related to those of irs two neighbors, and so forth.
Mathematically speaking, one has to write an equation of motion similar to

(3.8) for each atom in the lattice, resulting in N coupled differential equations to

be solved simultaneously, where N is the total number of the atoms. In addition,
the boundary conditions applied to the end atoms of the lattice must also be

taken into account.
Let us now attempt a solution of the form

llr: lgi(aX"-at)'

where X, is the equilibrium position of the nth atom, that is, X,: n4. This

equation represents a traveling wave, in which all atoms oscillate with the same

frequency co and the same amplitude A. As expected of such a wave, the phases

ofthe atoms are interlocked such that the phase increases regularly from one atom

to the next by an amount 44.

a= eY

(3.4s)
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Note that a solution of the form (3.45) is possible only because of the
translational symmetry of the lattice, i.e., the presence of equal masses at regular
intervals. If, on the other hand, the masses had random values, or if theyiere
distributed randomly along the line, then the solution would be expected to be a
strongly attenuated wave. In extreme cases, a propagating solution may not even
bepossibleatall. Inthediscussionofextendedsystemsamodeofvibrationsuch
as (3.44), in which all elements of the system oscillate with the same frequency,
is referred to as a normal mode. In the case of the lattice, the normal mode is
a propagating wave.

If we substitute (3.45) into (3.44) and cancel the common quantities
(amplitude and time factors), we find

M (- <o') ,icna - - al2gitn" - eiq(n+ t)o 
- ,ic@- 11a1.

This equation can be further simplified by canceling the common factor ei,t,,o,
and making use of the Euler formula eiv + e-iv :2cosy. After a simple
trigonometric manipulation, we can write the result as

ar : r,.,-lsin (qal2)1, (3.46)

where cr.r. : (4alM)1t2, and where we have restricted <r.r to positive values only
because of the physical meaning of the frequency. Equation (3.46), which is
the dispersion relation for the one-dimensional lattice, is the result we have been
seeking. [t is sketched in Fig. 3.17, in which the dispersion curve is seen to be a
sinusoid with a period equal to 2nlain q-space, and a maximum frequency equal
to ro-.

-r/a 2o/a

Fig.3.17 The dispersion curve, o) versus q, for a one-dimensional lattice with nearest-
neighbor interaction. The curve is periodic, but is drawn as a dashed line outside the region
-nla<q<nla(seetext).

The dispersion relation (3.46) has severar important and intriguing properr.ies,
which we now examine in some detail, as they apply not only to one- but to
two- and three-dimensional lattices as well.

i) The long-x'auelength limit
Since the dispersion curve is periodic and symmetric around the origin, we may
confine our attention for the moment to the range o < q < nla. we see that the
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frequencies cover the continuous range 0 I @ I @^. These frequencies, and

only these, will be transmitted by the lattice, while other frequencies will be

strongly attenuated. The lattice therefore acts as a low-pass mechanicalfilter.

In the long-wavelength limit zs Q + 0, the dispersion relation (3'46) may be

approximated bY

(3.47)

which is a linear relation between @ and q. This result is expected because, in

this limit, the lattice behaves as an elastic continuum. The velocity of sound u" is

given by a^a12. We can use (3.47) to relate the interatomic force constant d to

the Young's modulus Y of Section 3.2.

Consider the cubic lattice shown in Fig. 3.18. The vibration of the atomic

planes satisfies the same equations as that of the one-dimensional lattice'
-Equating 

the velocities of sound obtained from (3.47) and (3.7), one finds that

a^al2: JYh. The substitution of a^: (4alM)'t' and P: Mla3 in this

equation leads to
a: aY, (3.48)

a useful relation for estimating a. Inserting typical values for a and Y, one

obtains a: (5 x l0-8)(101r):5 x l03dynes/cm, a typical value.* {rt

Fig. 3.18 Motion of atomic Planes.

Note, however, that as 4 increases, the dispersion curve begins to deviate

from the straight line, and bends downward, as predicted in Fig. 3.15. Eventually

the curve saturates at q: nla with a maximum frequency equal to ro,, which

we found to be

-:(ry)''

planes
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The dependence of this frequency on the force constant and the atomic mass
is as one would expect for a harmonic oscillator. In particular, o.r. is inversely
proportional to M,/2. The value of <o^ may be estimated. Substitutin!
o: 5 I- l03dynes/cm and M :2 x lO-24 g (for hydrogen), one findsa.,. J
2 x l0r3 s-1, which is in the infrared region.

The above results for the behavior of the dispersion curve in the range
0 < 4 < nf a may also be understood from the following qualitative argument.
For small Q, ) D a, and the atoms move essentially in phase with each other, as
indicated in Fig.3.l9(a). The restoring force on the atom due to its neighbors
is therefore small, which is the reason why a.r is aiso small. In fact for q :0, ,1. : co,
and the whole lattice moves as a rigid body, which results in the vanishing of the
restoring force. This explains why ro : 0 at q : 0. The opposite limit occurs
atq: rla (Fig.3.lgb),where,\ :2a. As we see from the figure, the neighboring
atoms are now out of phase, and consequently the restoring force and the
frequency are at a maximum.

Fig.3.19 (a) Atomic displacements in long-wavelength limit. (b) Atomic displacements
at wavelength ).:2a, which corresponds to q: nla.

This discussion may be made quantitative by introducing a force constant
which is q-dependent: If we return to (3.44), and substitute u,,1 : e.ie,, as
follows from (3.45), the former equation reduces to

3.6

(b)

, # = -[4a sin2 (qat2)]u",

which corresponds to a harmonic oscillator of force constant

(3.50)

(3.51)a(q) : 4a sin2 (qal2).

This force constant depends on q, or 2, because the motions of the atoms ale
correlated. The frequency of the oscillator described by (3.51) is given by the
familiar harmonic oscillator formula .:,/otql1u, which leads precisely to the
dispersion relation (3.46) found earlier.

ii) Phase and group uelocity
what is the velocity of the lattice wave? In wave theory, a distinction is made

tr)a
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between two,kinds of velocities phase uelocity and group oelocity. For an

arbitrary dispersion relation, phase velocity is given by

(3.s2)

and group velocitY bY

(3.53)

The physical distinction between these velocities is that uo is the velocity of
p.opugation for a pure wave of an exactly specified frequency co and a wave

,."ioiq, while o, describes the veldcity of a wave pulse whose average frequency

and wave vector are specified by a and q. Since energy and momentum are

transmitted, in practice, via pulses rather then by pure waves, group velocity is

physically the more significant.

Let ,, ,o* examine the behavior of u, for the discrete lattice. In the long-

wavelength limit, in whi-ch o : D"Q, Ds is equal to uo and both are equal to the

velocitylf sound u". Li this limit the lattice behaves as a continuum, and no

dispersion takes place. But as 4 increases, it is seen from Fig. 3.17 that ug' being

the slope of the dispersion curve [see (3.53)], decreases steadily and reaches a

value 4 : 0 at the point Q : nla. The reason for this decrease is that, as 4

increases, the scattering of the wave by discrete atoms becomes more pronounced,

as mentioned earlier in this section.

A particularly interesting situation arises at q : nla, in Fig. 3.17, where the

group velocity u, is found to vanish. What is unique about this value of q that

leads to the vanishing of on?

At this value of q, the wavelength ).:2a. Consequently, as seen in Fig.3.2O,

the wavelets scattered from the neighboring atoms are out of phase by an amount

z. But when the wavelet reflected from B reaches that reflected from A, the two are

in phase. Since this applies to other wavelets as well, it follows that, at Q : nla,

alllhe scattered wavelets interfere constructively, and consequently the reflection

is at a maximum. The situation is obviously the same as the Bragg condition

of Section 2.3, but applied here to elastic waves' We now understand

physically why u, : 0 at q : nla; it is $ecause the reflected wave is so strong

itut, *tr"n combined with the incident wave, it leads to a standing waoe,which,

of course, has a vanishing group velocity'

Incident wave \.:2a

up

us

ct)

q

0co

0q

Reflected wavelets

Fig. 3.20 Bragg reflection of lattice waves.
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The reappearance of the Bragg condition in the present context is an
important feature of lattice-dispersion curves. It is not surprising that such a
condition arises here, inasmuch as it is a consequence of the wave nature of the
incident field and the periodicity of the lattice ; the particular nature of the field-be
it electromagnetic or acoustic-is irrelevant.

iii) Symmetry in q-space: the first Brillouin zone

The dispersion curve, Fig. 3.17, has some interesting symmetry properties: It is
periodic in 4-space, and is symmetric with respect to reflection uiouna the origin
4 : o. we shall now show that these symmetries are not accidental, but follow
directly from the translational symmetry of the real lattice.

consider first the periodic symmetry, which is perhaps the most intriguing
property of all. The dispersion relation (3.46) shows that a(q)is periodic in a-spu"e,
with a period equal to 2nla. Thatis, 

,,, v, - 
-

a(q + 2nla) : @(q). rij , ii (3.s4)

The physical origin of this becomes clear from the following simple example:
Consider the points Q : nl2a and q' : q * 2rla. The wavelengths correspording
to these values are, respectively, 7 : 4a and l' : 4a15, and are drawn in Figl
3.21(a). Note from the figure that these two waves represent exactly the saie
physical motion. The shorter wave has more oscillations, but as far as the
motions of the atoms themselves (the only entities available for observation),
are concerned, the two waves in the figure are physically identical. The two
modes must therefore have the same frequency. The same conclusion may be
drawn about any two points q and q', where q' : q + n(2nla) for any integer n.
This explains why the frequency rrr is a periodic function of q with a period
2nla.

This discussion shows that, in a discrete lattice, the wavelength associated
with a certain wave is not a unique quantity, because to this wave many
equivalent q's may be assigned, which are related to each other by translations in
q-space equal to n2nla. To each of these q's there is a corresponding wavelength.
In order to make a unique representation, one must therefore choose a certain
interval in q-space whose length is equal to the period, which is, of course, 2nf a.
In principle, the choice is entirely arbitrary; however, the one we shall find most
convenient to take is q in the range

7t

--<q<a

In making this choice, we specify a wave by a unique q and hence a unique ,2,.

The choice is such that ), has the largest possible value consistent with a given
set of atomic displacements. The wavelengths corresponding to additional,
unobservable oscillations between the atoms have been eliminated. Figure

lt
a
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3.21(b) is a plot ofthe lattice dispersion curve confined to the chosen interval.

Figure 3.21(c) indicates some of the regions which are equivalent to the interval

O < q < nf a, and others that are equivalent to the interval - nla < q < O' Note

thatlhe intervals O<q<ala and -nla<4<0 are not equivalent, however,

because they cannot be related by a translation equal to nZnla'

-2r/a

Fig. 3.21 (a) Transverse waves corresponding to q : nl\a a.nd q' : s + Znla, or
),": qound 1' :4a/5, respectively. (b) Therange -nla<q <nla issufficient to give a

unique wavelength'for all physital oscillations in a one-dimensional lattice. (c) The

regions in 4-space connected by arrows are physically equivalent'

Note that the interval -nla < q < nla is, in fact, the first Brillouin zone

for the one-dimensional lattice (see Section 2.6). lt follows that we may confine

our consideration of q-space to the first zone only, disregarding thereby the

higher zones, which we have shown to be equivalent to the first zone. This is a

mathematical convenience which we shall also use in the three-dimensional

lattice, as well as in later discussions on electron states in crystals. Note also

that the Bragg condition is satisfied at the ends of the zone, that is, *zr/c, another

feature which will also be found to hold true in higher-dimensional lattices'

We turn next to the reflection symmetry in 4-space; that is,

a(- q) -- a(q). (3.5s)

To prove this, note that a mode q represents a wave traveling in the lattice

toward the right [see (3.45)], provided 4 > 0. The mode -q represents a wave

of the same wavelength, but traveling to the left. Since the lattice is equivalent

in these two directions, it responds in the same fashion to the two waves, and

the corresponding frequencies must be identical, as indicated by (3.55).

-r/a 0

(b)

0

(c)
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According to this discussion, symmetry properties should hold true in general,
regardless of the type of interaction between the atoms, because these properties
follow from the symmetry of the real lattice. For instance, if other intera-tions,
besides those of nearest neighbors, were included, the dispersion relation would
be more complicated than (3.46), but the translational and reflection symmetries
in 4-space would remain valid.

iv) The number of modes in the first zone

We have yet to consider the effects of the boundary conditions on the vibration
of the discrete lattice. As in the case of the continuous line (Section 3.3), we
shall assume periodic boundary conditions, which means that the first and last
atoms have exactly the same oscillation. Applying this to the solution (3.45), one
finds, again in analogy with the continuum case, that the only allowed values
of q are

2rq: nZ,

where r :0, + l, +2, etc. This leads to a uniform mesh of q-values, as marked
in Fig. 3.21(b), with a spacing equal ro 2nlL. when L is large, as would be the
case for any lattice of macroscopic size that we would meet in practice, the
allowed points come close together, their distribution along the q-aiis becoming
quasi-continuous. The total number of points inside the first zone is(2nla)lQtlL): Lla: N, where N is the total number of atoms, or unit cells
in the lattice. This is an important result which holds good in general : The
number of allowed 4-points is equal to the number of unit cells in the lattice.

This conclusion is expected, because the values of 4 inside the zone uniquely
describe all the vibration modes of the lattice. Therefore the number of these
values must be equal to the number of degrees of freedom in the lattice,
which is N.

Finally, Iet us mention a more general type of lattice motion than has
hitherto been considered. Namely, when several waves propagate simultaneously
in the lattice, then an atom vibrates with ail the corresponding frequencies at
the same time. By superposing all the normal modes, it is possible to produce
any arbitrary motion in the lattice. This assertion can be established through
Fourier analysis, in a manner analogous to that used in the discussion of the
vibrating string.t

The one-dimensional diatomic lattice

Now consider the one-dimensional diatomic lattice. In addition to having the
properties of the monatomic Iattice, the diatomic lattice also exhibits
important features of its own. Figure 3.22 shows a diatomic lattice in which the

3.6

(3.56)

t See any textbook on mathematical physics.
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unit cell is composed of two atoms of masses M , and M r, and, the distance
between two neighboring atoms is a. For example, in NaCl, the two masses are
those of the sodium and chlorine atoms.

2n-l 2n 2n* I F- o *lffi Mr Mz

Fig.3.22 A one-dimensional diatomic lattice. The unit cell has alength2a.

The motion of this lattice can be treated in a manner similar to the
motion of the monatomic lattice. Since there are two different types of atoms,
we shall write two equations of motion. By analogy with (3.44), we have

a \/4.* -.\-l ,,,)..'1.r.; :{:.- \

*rgfu : - od;,,, ,' . ');;' . )r,,,,). .

*rtff : -a(Zu2ntz - ,2n+t - u2n.3), .-

(3.s7)

where r is an integral index, and the subscripts on the displacements are such
that all atoms with mass Mr are labeled as even and those with mass M2 as odd.
The two equations in (3.57) are coupled. By writing a similar set for each cell in
the crystal, we have a total of 2N coupled differential equations that have to be
solved simultaneously (N is the number of unit cells in the lattice.) To proceed
with the solution, we rely on the discussion of the monatomic lattice, and look
for a normal mode for the diatomic lattice. Thus we attempt a solution in the
form of a traveling wave,

l::",.."):l:"":,:,",.."],-''"
which is written in an obvious matrix form. Note that all the atoms of mass
M, have the same amplitude Ar, and all those of mass Mrhave amplitude,,4r.
If we now substitute (3.58) into (3.57), and make some straightforward
simplifications, we find

(3.se)

which is a matrix equation equivalent to a set of two simultaneous equations
(write these out) in the unknowns A, and Ar. Since the equations are homo-
geneous, a nontrivial solution exists only if the determinant of the matrix in
(3.59) vanishes. This leads to the secular equation,

(3.58)

f 2a - M ,otz -2a cos (qa)l I A,f
l-2ucos(qa) 2a-M2a2l l,lrl 

:''

lza - l,t rt t2 - 2a cos (qo)l _ o
l-2acos(ea) 2a - Mra2 | "' (3.60)
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'"(+,* #,))'"

Fig.3.23 rhe two o,;l.,j"" u.un.n.., or u
frequency gap.

q
r/2a

diatomic lattice (M, . Mr), showing

This is a quadratic equation in <o2, which can be readily solved. Its two roots are

4 sin' (qa)
(3.61 )

M tM,

Corresponding to the two signs in (3.61), there are thus two dispersion relations,
and consequently two dispersion curves, or branches, associated with the

diatomic lattice.
Figure 3.23 shows these curves. The lower curve, corresponding to the

minus sign in (3.61), is lhe acoustic branch, while the upper curve is the optical
branch. The acoustic branch begins at the point 4 : 0, a : 0. As q increases, the

curve rises, linearly at first (which explains why this branch is called acoustic), but
then the rate of rise decreases. Eventually the curve saturates at the value

Q: nl2a, as can be seen from (3.61), at a frequency (2alMr)tt2. It is assumed

rhat M, < M 2. As for the optical branch, it begins at q -- O with a finite frequency

and then decreases slowly, saturating at q: nl\a with a frequency (2alMr)1t2.
The frequency of this branch does not vary appreciably over the entire q-range,

and, in fact, it is often taken to be approximately a constant.
The frequency range between the top of the acoustic branch and the bottom

of the optical branch is forbidden, and the lattice cannot transmit such a wave;
waves in this region are strongly attenuated. One speaks here of afrequency gop.

Therefore the diatomic lattice acts as a band-pass mechanical filter.
The dynamic distinction between the acoustic and optical branches can be

seen most clearly by comparing them at the value 4 : 0 (infinite wavelength).
We may use (3.59) to find the ratio of the amplitude Arf Ar. Inserting or:0, for
the acoustic branch, one finds that the equation is satisfied only if

a2 : q(#. ;), .;)'-"J(#

.:l^(#,*;))''',

Ar : Az' (3.62)
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Thus for this branch the two atoms in the cell, or molecule, have the same

amplitude, and are also in phase.t ln other words, the molecule (and indeed

the whole lattice) oscillates as a rigid body, with the center of mass moving back
and forth, as shown in Fig. 3.2a@). As 4 increases, the two atoms in the molecule

no longer satisfy (3.62) exactly, but they still move approximately in phase with
each other.

Optical

(b)

Fig.3.24 (a) Atomic displacements in the acoustic mode at infinite wavelength (q : 0\.
(b) Atomic displacements in the optical mode at infinite wavelength.

On the other hand, if we substitute

@-

for the optical branch, we find that

M LAr + M2A2: Q. (3.63)

This means that the optical oscillation takes place in such a way that the center

of mass of the cell remains fixed. The two atoms move ir out of phase with each

other, and the ratio of their amplitudes A2lAt: -MrlMr. This type of
oscillation around the center of mass is well known in the study of molecular
vibrations. As 4 increases beyond zero, the frequency of the diatomic vibration
decreases, but the decrease is not large because the atoms continue to oscillate

approximately z out of phase with each other throughout the entire q-range.

The reasons for referring to the upper branch as optical are: First, the

frequency of this branch is given approximatelyby (2alM)t/2, which has a typical
value of about (2 x 5 x 103/10-23)tt2 - 3 x 1013s-1, using typical values for
a and M. This frequency lies in the infrared region. Furthermore, if the atoms

are charged, as in NaCl, the cell carries a strong electric dipole moment as the

lattice oscillates in the optical mode, and this results in a strong reflection and

absorption of the infrared light by the lattice, as we shall see in Section 3.12.

M2Ml

l*G.;))"

f The diatomic lattice may be viewed as an array of diatomic molecules.
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Finally, we note that the dispersion curve for the diatomic lattice satisfies
the same symmetry properties in 4-space discussed in connection with the one-
dimensional lattice. For example, the dispersion wave is periodic with a period
rla, and has a reflection symmetry about 4 : g. Note that here the first
Brillouin zone lies in the range -nl2a < q < nl2a, since the period of the real
lattice is 2a and not a. These assertions concerning symmetry can be established
by referring either to (3.61) or Fig. 3.23. It can also be shown, using the periodic
boundary conditions, that the number of allowed q-values inside the first zone
is N, and consequently the total number of modes inside this zone is 2N, since
two modes-one acoustic and the other optical-correspond to each q. Therefore
the total number of modes inside the first zone is equal to the number of degrees
of freedom in the lattice, as must be the case.

This suggests that we may confine our attention to the flrst zone only, as
in the monatomic lattice, a procedure we have already followed implicitly.

Three-dimensional lattice

Let us now extend our discussion to the three-dimensional lattice. To avoid
mathematical details, which become quite involved here, we shall present an
essentially qualitative discussion. However, the results follow smoothly and
logically from the one-dimensional case treated previously.

Consider first the monatomic Bravais lattice, in which each unit cell has a
single atom. The equation of motion of each atom can be written in a manner
similar to that of (3.aa). Here also the atoms are coupled together because of
their mutual interactions. In attempting a normal-mode solution, we write

U, : 2{gi(c'r - ot;, (3.64)

where the wave vector q specifies both the wavelength and direction ofpropagation.
A vector is necessary here because propagation takes place in three dimensions.
The vector A specifies the amplitude as well as the direction of vibration of the
atoms. Thus this vector specifies the polarization of the wave, i.e., whether the
wave is longitudinal (A parallel to q) or transverse (A f q). (ln general the
wave in a lattice is neither purely longitudinal nor purely transverse, but a
mixture of both.)

When we substitute (3.64) into the equation of motion, we obtain three
simultaneous equations involving A", Ay, and A", the components of A. These
equations are coupled together and are equivalent to a 3 x 3 matrix equation.
Writing the secular equation for this matrix, we arrive at a 3 x 3 determinantal
equation, analogous to (3.60), which is cubic in <o2. The roots of this equation
lead to three different dispersion relations, or three dispersion curves, as shown
in Fig. 3.25(a). All three branches pass through the origin, which means that
in this lattice all the branches are acoustic. This is of course to be expected, since
we are dealing with a monatomic Bravais lattice.

3.6
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Note that, in this three-dimensional situation, the dispersion relations are

not nOcessarily isotropic in q-space, and the dispersion curve in Fig. 3.25

represents only the "profile" of the dispersion in a certain q-direction. If the
dispersion relations are plotted in another direction, a new profile will result
which may look quite different from the previous one. In the three-dimensional
case, therefore, a complete representation of the dispersion relations requires

giving the frequencies for points throughout the three-dimensional q-space. This
is often accomplished by plotting the frequency contours in this space.

t-6
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Fig. 3.25 (a) The three acoustic branches in a three-dimensional Bravais lattice. (b)
Dispersion curves for Al in [100] direction (right portion) and in [110] direction, left
portion. The TA branch in the [100] direction actually represents two coincident, or
degenerate, branches. (Note that because each branch is individually symmetric relative
to the origin, only half of each branch is plotted.) (c) Dispersion curves of Ge in the [l0O]
and [lll] directions.

The three branches in Fig. 3.25 differ in their polarization. When q lies

along a direction of high symmetry-for example, the [00] or I l0] directions-
these waves may be classified as either pure longitudinal or pure transverse waves.

In that case, two of the branches are transverse and one is longitudinal.t We

f Usually the longitudinal branch is higher than the transverse branches because the
restoring forces associated with longitudinal oscillations are greater.
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usually refer to these as the TA (transuerse acoustic) and LA (longitudinal
ocoustic) branches, respectively. However, along nonsymmetry directions the
waves may not be pure longitudinal or pure transverse, but have a mixed
character. one may still refer to the branches as TA or LA on the basis of their
polarizations along the directions of high symmetry. Figure 3.25(b) shows the
dispersion curves for Al in the U00l and D I ll directions. Note that in certain
high-symmetry directions, such as the [l00] in Al, the two transverse branches
coincide. The branches are then said to be degenerate.

As we have seen, the polarization and degeneracy of dispersion curves are
intimately related to the crystal symmetry relative to the direction of propagation.
We could carry the subject much further by using the elegant mathematical
methods of group theory, but that lies beyond the scope of this book.

We turn our attention now to the non-Bravais three-dimensional lattice.
Here the unit cell contains two or more atoms. If there are r atoms per cell, then
on the basis of our previous experience we conclude that there are 3r dispersion
curves. Of these, three branches are acoustic, and the remaining (3r - 3) are
optical. The mathematical justification for this assertion is as follows: We write
the equation of motion for each atom in the cell, which results in r equations.
Since these are vector equations, they are equivalent to 3r scalar equations, or
to a single matrix equation of the order of 3r x 3r. Therefore the secular
equation is of degree 3r in ot2, and has three roots, leading to 3r branches. It can
be shown that three of the roots always vanish at q : 0, which results in three
acoustic branches. The remaining (3r - 3) roots, therefore, belong to the
optical branches, as stated above.

The acoustic branches may be classified, as before, by their polarizations as
TA1, TA2, and LA. The optical branches can also be classified as longitudinal or
transverse when q lies along a high-symmetry direction, and one speaks of LO
and TO branches. As in the one-dimensional case, one can also show that, for an
optical branch, the atoms in the unit cell vibrate out of phase relative to each
other. As an example of a non-Bravais lattice, the dispersion curves for Ge are
shown in Fig. 3.25(c). Since there are two atoms per unit cell in germanium,
there are six branches: three acoustic and three optical. Note that the two
transverse branches are degenerate along the [00] direction, as indicated
earlier.

Lattice-dispersion curves are measured by inelastic x-ray or neutron-
scattering methods, as we shall see in Section 3.10. These curves can also be
calculated theoretically by a procedure similar to that employed in the one-
dimensional case. We assume force constants corresponding to the interaction
of the atom with its various neighbors. Substitution in the equations of motion,
and solution of the corresponding secular equations, leads to the dispersion
curves. We then compare these with those measured experimentally, and the
force constants are chosen so as to achieve agreement between the experimental
and theoretical results (de Launey, 1956).

3.6
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Symmetry in 4-space: the first Brillouin zone (three-dimensional)

The dispersion relation in the case of a three-dimensional lattice is of the form

a : ai(Q), (3.65)

where the index 7 specifies the branch of interest. The dispersion relation for
each individual branch satisfies symmetry properties similar to those discussed

in connection with the one-dimensional lattice. In the following discussion,

therefore, we shall omit the mathematical details, inasmuch as they are quite

similar to those for the one-dimensional case.

First a;;(4) satisfies the periodic property

oj(q+G):a;;(d, (3.66)

where G is any reciprocal lattice vector. This means that we may confine our
attention to the first BZ (Brillouin zone) only. Also the inversion symmetry

a/-d: ai(al (3.67)

holds true. Note again that these symmetries, following directly from the

translational symmetry of the real lattice, are always satisfied regardless of the

solid under consideration.

/\/r

(b)

Fig. 3.26 (a) The first BZ of Al: a tetrahedron truncated along the cubic axes. (b)
Frequency (ro) contours for the LA branch in Al (numbers are in units of 2rr x l0''
s ';. Note that only a cross section intbe q,qr-plane is shown. (After Walker.)

(a)
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In addition, the dispersion relation exhibits any rotational symmetry possessed
by the real lattice. For instance, in a cubic crystal, each dispersion relation
r.o;(f) exhibits cubic symmetry.

The various symmetries referred to are illustrated in Fig.3.26. Figure 3.26(a)
shows the BZ for Al, which has an fcc lattice, and Fig. 3.26(b) is a plot of the
frequency contours in this zone. It is readily seen from this figure that the
periodic, inversion, and rotational symmetries are all fulfilled.

In addition to their esthetic value, these symmetries are also important in a
practical sense. Thus we usually need to determine the dispersion curve in a small
region of the BZ only, and the remainder of the zone can then be completed by
using symmetry. Thus in a cubic crystal the dispersion curve need be determined
only in l/48'h of the BZ (the cubic rotational group has 48 elements).

Finally, note that the aforementioned symmetries apply to each dispersion
branch individually. They do not relate the different branches to each other.

3.7 DENSITY OF STATES OF A LATTICE

The density of states g(ar) is defined, as before, such that g(a) do gives the
number of modes in the frequency range (a,a -l do). This function plays an
important role in most phenomena involving lattice vibrations, particularly
specific heat. We have previously calculated this function for the continuous solid
(Section 3.3), and used it in connection with the Debye model of specific heat.
Here we shall derive the appropriate function for the discrete lattice, and then
use the result in the following section, devoted to the exact theory of specific
heat.

@D

Fig.3.27 Density of states for a one-dimensional lattice.
ol states for the continuum model is also shown.

Consider first the one-dimensional
the density of states previously, in Eq.

o

For comparison, the density

the general formula for

(3.68)

relation. Thus, for the

case. We derived
(3.13); that is,

LI
; Mdqs@):

We see that g(a) is calculated by using the dispersion
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continuous line, the dispersion relation a : D"4 leads to S@) : .L/2u", while
the lattice dispersion relation (3.46) leads to

2L
s@): a[cos (qal2))-'

fi40)m

This latter equation is plotted versus a in Fig. 3.27. Starting at a finite value

at a :0, it increases as ar increases, and reaches an infinite value at o) : o)-.

For ar > crl., the density g(ro) vanishes, because this corresponds to a region
outside the BZ.

The area under the curve, the stippled region, is equal to the total number
of modes, which is N. [This can be demonstrated by integrating g(a) of (3.69);

see the problem section at the end of this chapter.] The figure also shows, for
comparison, the density of states for the continuous line in which the upper
frequency rop is the Debye frequency, i.e., the cross-hatched area is equal to N.
Note the structure in g(rr;) for the lattice case, particularly the singularity at @^.

This is due to the fact that at e) : o)^ the dispersion curve, Fig. 3.17, is flat, and
consequently a large number of q-values-i.e., modes-are included even in a

very small frequency interval.

Fig.3.28 Counting the number of modes. The cross-hatched region represents a shell
well inside the BZ, while the shaded region illustrates the situation when the frequency is

so high that the frequency contours intersect the boundaries of the BZ.

To find g(a) for the three-dimensional lattice, we follow the same general

procedure used in Section 3.3. Consider theT'h branch; we plot the frequency
contours q(q) : ar and co;(q) : a * dro, as shown in Fig. 3.28, and then
count the number of modes enclosed between these surfaces. This number is
equal to gi(a)da, and in this manner determine Silr).

Figure 3.29 illustrates the general features of g{a). At low frequencies gr(ar)
increases as {D2, because the modes involved there are long-wavelength acoustic
modes. As o increases further, however, g;(ro) exhibits some structure
determined by the actual dispersion relation, which in turn determines the shape

(3.6e)
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of the shell in Fig. 3.28. (The dispersion relation is, of course, determined by the
interatomic force constants, and hence it depends on the crystal in question.) At
some frequency, the density O,(or) begins to decrease rapidly, and eventually it
vanishes entirely, as shown in the figure. This can be understood by referring
to Fig. 3.28. At some frequency the shell begins to intersect the boundaries of the
BZ, and when this occurs the number of modes inside the shell decreases (the
modes outside the BZ are not counted). When the radius of the shell is sufficiently
large for the shell to lie completely outside the zone, the density of states gr(ro)
vanishes entirely.

Fig.3.29 A typical density-of-states curve.

To find the total density of states, one sums the individual densities of all
the branches. That is,

s@)):\ st@).
J

(3.70)

The total density 9(ar) shows the same type of behavior as in Fig. 3.29, except
that the structure is even more complicated because of the interference of the
various branches. Figure 3.30 shows, for example, the density of states for
copper.

o, 1013 radls

Fig.3.30 Total density of states for Cu, as deduced from data on neutron scattering.
Dashed curve is the Debye approximation, which has the same area (under the curve)
as the solid curve.

sl')
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3.8 SPECIFIC HEAT: EXACT THEORY

In Section 3.4 we discussed the Debye model of specific heat. Recall that the
approximation was made there using the linear dispersion relation to describe
all vibration modes. In light of our discussion of lattice vibrations, this
approximation is justified only near the center of the BZ. In the remainder of the
zone, and particularly near the edges, the approximation breaks down entirely
because the effects of dispersion there are especially severe.

Also, the treatment of the optical modes lies completely outside the scope

of the above model, because their frequencies are essentially independent of q, and
are, in fact, more appropriately described by the Einstein model.

Now we can dispose of the long-wavelength approximation, and write a

general expression for the specific heat involving the actual density of states
of the lattice. The general expression for the thermal lattice energy is given
by Eq. (3.31). That is, , 4+X(i LL)

and the specific heat is found by differentiating this
temperature, which yields

(3.71)

expression with respect to

,hatk't lrhatkr _D-, g(co) da, (3.72)

since only ;(<o) in (3.71) depends on T.

To evaluate Cu, we must now substitute the actual density of states function
S@). For instance, the specific heat of copper may be evaluated by substituting

9(or) from Fig. 3.30, and carrying out the integral (3.72) numerically. The
agreement with experiment obtained in this manner is decidedly better than
that given by the Debye model, particularly in the intermediate-temperature
region.

It can readily be established that Eq. (3.72) reduces to the correct values

in the appropriate temperature limits. Thus at high temperature all modes

are excited, and one can show that C, - 3R, while at low temperature only the
long-wavelength phonons are excited. That is, we may take g(a) - a2, which
leads to the 73 behavior discussed earlier. The exact theory and the Debye
model have the same value at the extreme temperature limits. Where the two
theories diverge-i.e., in the intermediate range-the Debye model may be

viewed as a good, simple interpolation.

3.9 THERMAL CONDUCTIVITY

When the two ends of a sample of a given material are at two different
temperatures, T, and Tr(7, > T,), heat flows down the thermal gradient, i.e.,

, : | <l,t g(a) da,

,": rl(#)'
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from the hotter to the cooler end, as shown
that the heat current density Q (current per
temperature gradient (0f l0x). That is,

AT
Q: -K "ox

The proportionality constant K, known as the
of the ease of transmission of heat across the
that K is a positive quantity).

in Fig. 3.31. Observations show
unit area) is proportional to the

3.9

(3.73)

thermal conductirsity, is a measure
bar (the minus sign is included so

T1

+ + +
++

+ +

+T (rz> T)

Fig.3.31 Thermal conduction by lattice waves (phonons). Arrows represent phonons.

Heat may be transmitted in the material by several independent agents. In
metals, for example, the heat is carried both by electrons and by lattice waves,
or phonons, although the contribution of the electrons is much the larger. In
insulators, on the other hand, heat is transmitted entirely by phonons, since
there are no mobile electrons in these substances. Only transmission by phonons
will be considered in this section (conduction of heat by electrons is considered
in Section 4.6).

When we discuss transmission of heat by phonons, it is convenient to think
of these as forming a phonon gas, as shown in Fig. 3.31. In every region of
space there are phonons traveling randomly in all directions, corresponding to
all the q's in the Brillouin zone, much like the molecules in an ordinary gas.t
The advantage of using this gas model is that many of the familiar concepts
of the kinetic theory of gases can also be applied here. In particular, thermal
conductivity is given by

Y : ! C,al, (3.74)

T2

where C, is the specific heat per unit volum-e, o the speed of the particle, and / its
mean free path. In the prefent case, u and / refer, of course, to the speed and
mean free path of the phonon, respectively. (More explicitly, o and I are querage

t The process of conduction may be viewed as follows: Since the left end of the bar is
hotter, the atoms are moving more violently there than on the right end. Thus the
concentration of phonons is greater on the left, and since phonon gas is inhomogeneous,
phonons flow from the left to the right, i.e., diffuse down the temperature gradient,
carrying heat energy with them.
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quantities over all the
thermal conductivities

Thermal Conductivity 1(D

occupied modes in the Brillouin zone.) Table 3.2 lists the

and mean free paths for a few substances.

Table 3.2

Thermal Conductivities and Phonon Mean Free Paths

(T :2'73"K)
K, watt/m'"K /, A

(7: 20"K)
K, watt/m''K /, cm

SiO, (quartz)
CaF,
NaCl
Si
Ge

t4
ll
6.4

150

70

97

72

67

430
330

760
85

45

4200
I 300

7.5 x l0- 3

l.0x l0-3
2.3x lO-a
4.1x l0-2
4.5 x l0- 3

Values of / are calculated from (3.74) by substituting observed values of iK and u.

Let us now investigate the dependence of the thermal conductivity on

temperature. This can be understood by examining (3.74): The dependence of CD

on temperature has already been studied in detail (see Section 3.4), while the

velocity u is found to be essentially insensitive to temperature. The mean free path

/ depends strongly on temperature, as will be seen from the following argument.

Recall the analogy from kinetic theory, in which length / is the average distance

the phonon travels between two successive collisions. Therefore / is determined

by the collision processes operating in the solid. Three important mechanisms

may be distinguished: (a) The collision of a phonon with other phonons, (b) the

collision of a phonon with imperfections in the crystal, such as impurities and

dislocations, and (c) the collision of a phonon with the external boundaries of
the sample.

Consider a collision of type (a): When one phonon "sees" another phonon

in the crystal, the two scatter from each other, due to the anharmonic

interaction between them. In our treatment thus far, we have considered

phonons to be independent of each other, a conclusion based on the harmonic

approximation introduced in Section 3.6. This approximation becomes inadequate,

however, when the atomic displacements become appreciable, and this gives rise

to anharmonic coupling between the phonons, causing their mutual scattering.

It follows that phonon-phonon collision becomes particularly important at

high temperature, at which the atomic displacements are large. In this region,

the corresponding mean free path is inversely proportional to the temperature,

that is, I - ll].;. This is reasonable, since the larger T is, the greater the number

of phonons participating in the collision.
Crystal imperfections, such as impurities and defects, also scatter phonons
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because they partially destroy the perfect periodicity which is at the very basis
of the concept of a freely propagating lattice wave [see the discussion following
Eq. (3.a5)1. For instance, a substitutional point impurity having a mass different
from that of the host atom causes scattering of the wave at the impurity. The greater
the difference in mass and the greater the density of impurities, the greater is the
scattering, and the shorter the mean free path.

At very low temperature (say below l0'K), both phonon-phonon and
phonon-imperfection collisions become ineffective, because, in the former case,
there are only a few phonons present, and in the latter the few phonons which
are excited at this low temperature are long-wavelength ones. These are not
effectively scattered by objects such as impurities, which are much smaller in
size than the wavelength.t In the low-temperature region, the primary scattering
mechanism is the external boundary of the specimen, which leads to the so-called
size or geometrical effects. This mechanism becomes effective because the
wavelengths of the excited phonons are very long-comparable, in fact, to the
size of the specimen. The mean free path here is l- D, where D is roughly equal
to the diameter of the specimen, and is therefore independent of temperature.
The general behavior of the mean free path as a function of temperature is
therefore as shown in Fig. 3.32(a). At low temperature, / is a constant : D,
while at high temperature it decreases as l/7. Values of /are given in Table 3.2,

3.9

Yro
q
d

Avl

T,"K
(b)(u)

Fig. 3.32 Thermal conductivity of isotopically pure crystals of LiF. Curve I is for a bar
of cross section 1.23 x o.9l mm. curve 2 is for a barof cross section 7.55 x 6.97 mm.
(After P. D. Thatcher, Phys Rev. 156,975 (1967).)

t It is well known in wave physics that the strength ofscattering ofa wave by an object de-
pends on the ratio of the diameter of the object to the wavelength. The smaller this ratio-
i.e, the longer the wavelength-the weaker the scattering.

I 2 5 l0 20 50100
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where it is seen that / decreases by several orders of magnitude as 7 increases

from 20'K to, say, room temperature.
Figure 3.32(b) illustrates the temperature dependence of thermal conductivity

1(. At low temperature K - 73, the dependence resulting entirely from the specific
heat Cu [see (3.7a)], while at high temperature K - llT, the dependence now
being entirely due to /. These conclusions are in agreement with the experimental
results of Fig. 3.32(b).

In our discussion of phonon-phonon collision, we glossed over an important
but subtle point. Suppose that two phonons of vectors q, and q, collide, and
produce a third phonon of vector q.. Since momentum must be conserved, it
follows that q. : 9t I \2. Although both q, and q, lie inside the Brillouin
zone, q3 may not do so. If it does, then the momentum of the system before and
after collision is the same. Such a process has no effect at all on thermal resistivity,
as it has no effect on the flow of the phonon system as a whole. It is called a
normal process.t

Brillouin
zone

{z z.----.

{r

Fig.3.33 The umklapp process.

By contrast, if q, lies outside the BZ, an interesting new factor enters the
picture (Fig. 3.33). Since such a vector is not physically meaningful according
to our convention, we reduce it to its equivalent qo inside the first zone, where

er : g+ + G (the vector G is the appropriate reciprocal lattice vector). We see

that the effective phonon vector qn produced by the collision travels in a direction
almost opposite to either of the original phonons q1 and qr. (The difference
in momentum is transferred to the center of mass of the lattice.) This type of
process is thus highly effective in changing the momentum of the phonon, and is

responsible for the mean free path of the phonon at high temperature. It is known
as the umklapp process (German for "flipping over"). It is clear that the umklapp

aia--
t Thermal resistivity is simply the inverse of to-nductivity. What we are saying is that a
normal process conserves momentum, and consequently does not contribute to resistivity.
In other words, if the normal process was the only process taking place, then the resistivity
would be zero, and the thermal conductivity would be infinite. Thus resistivity is due
entirely to other collision processes.
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process can be effective only at high temperature, where many phonons near the
boundaries of the BZ are excited.

3.t0 SCATTERING OF X-RAYS, NEUTRONS, AND LIGHT By PHONONS

The dispersion curves of phonons in crystals are determined by the inelastic
scattering of x-rays or neutrons from these materials. We have already discussed
how the elastic scattering of these radiations is employed to determine the
crystalline structure of substances (Chapter 2). There we said that, because of the
crystalline arrangement of atoms in a solid, an incident beam underwent a Bragg
diffraction, and that this arrangement of atoms was determined by examining
the angle and intensity of the diffracted beam. Analogously, when the lattice
is in a mode of vibration, the incident beam may be scattered from this mode,
and examination of the scattered beam should yield information concerning the
mode.

Inelastic x-ray scattering

Consider first the x-ray scattering process. Figure 3.34 shows an incident beam
scattered from a lattice wave whose wave vector is q. Viewing the situation from
the quantum vantage point, one concludes that the incident photon absorbs a
phonon, and is consequently scattered in a new direction. The law ofconservation
of momentum requires that

k:ko*rI, (3.7s)

where k6 and k are the wave vectors for incident and scattered x-ray photons,
respectively. That is, the momentum transferred to the photon is equal to the
momentum of the absorbed phonon. The same equation also holds good if the

Emission
I

Absorption
I,l

Absorption

(c)(b)(a)

Fig. 3.34 Scattering of x-rays by phonons. (a) The vibrating lattice acts as a set of
planes at spacing equal to /.. Absorption of a phonon q and emission of a phonon -q
lead to the same momentum conservation, and hence the two processes are observed
simultaneously at the detector. Their frequencies are different, however. (b) Conservation
of momentum for x-ray photon-phonon collision. (c) Shifted x-ray frequencies.

+7/7-?ry7-vV7V77T ,6-",(0 @o og*o({)
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x-ray photon has instead emitted a phonon of wave vector -q. This is represented

by a lattice wave traveling in the opposite direction, as shown in Fig. 3.34(a). The

conservation of momentum (3.75) is illustrated graphically in Fig. 3.34(b).

Energy is also conserved in the scattering process, which requires that

a: @o + ro(q), (3.76)

where 6;0 and (D are the frequencies of the incident and scattered phonon,

respectively, and rr;(q) the frequency of the phonon involved. The positive sign

in (3.76) refers to the phonon-absorption case, while the minus sign refers to the

phonon-emission case [recall that co(-q) : co(q); see (3.67)].

The spectrum of the scattered beam, when analyzed at the detector, reveals

therefore two lines which are shifted from the incident frequency <oo by amounts

equal to the frequency of the phonon involved. The positively shifted line at

rr.ro * cr;(q) corresponds to the phonon absorption, and the line at coo - co(q) to

the phonon emission. The two shifted lines are situated symmetrically about the

unshifted frequency oo. The frequency of the phonons can thus be determined

from spectral analysis.
The phonon wave vector q can be determined from Fig. 3.3a(b)' Thg

magnitude of q is given by A- 
,^ - 

O* , ) ::

o^t
4:2kosin0:2r-lsin4,

where r is the index of refraction of the medium and g half the scattering angle.

In deriving (3.77), we have assumed that ar(q) ( aro, which is an excellent

approximation because usually h-o - l0a eV, while frro(q) - 0.03 eV. [Usually
the frequency coo is in the visible range, while rrl(q) is in the infrared region, or

lower.]r
By measuring the frequency shift and the scattering angle, one can therefore

determine both q and co(q), and this determines one point on the dispersion

curve of the lattice. By rotating the detector (or the crystal), thereby allowing

different phonons to enter the picture, one can sample other points in the Brillouin

zone, and by repeating this procedure as often as necessary one can cover the whole

zone. The x-ray technique is a standard method for measuring dispersion curves

in solids;the dispersion curve for Al shown in Fig. 3.26,for example, was obtained

in this manner.
The main disadvantage of the x-ray technique in the study of lattice vibrations

lies in the accurate determination of the frequency shift' The photon frequency

(3.77)

t The incident frequency olo does not appear at the detector because the angle 0 usually

does not satisfy the Bragg condition. Thus only the shifted frequencies are observed. This
type of x-ray icattering, which violates the Bragg condition, is referred to as dffised
iiattering. At those angles at which the Bragg condition is satisfied, the incident frequency
(oo appears together with the shifted frequencies'
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.,o is so much greater than the phonon frequency ar(q), typically co6/a;(q) - l0s,
that a considerable effort must be expended to achieve the needed resolution. This
difficulty is overcome by the use of neutron scattering, as will be discussed shortly.

N.B.: The scattering of x-rays by phonons, treated above from a quantum
point of view, may also be viewed as a classical process in which the electromagnetic
wave is diffracted from the acoustic wave. The lattice wave, in producing regions
of compression and rarefication in the medium, acts as a set of atomic piun.,
from which the x-ray beam suffers Bragg diffraction, the interplanar spacing being
equal to the wavelength. From this vantage point, the momentum equation
(3.75) is simply the Bragg condition for construcrive interference, Eq. (2.47).The
energy equation (3.76) follows from the fact that, since the wave is moving, the
x-ray beam should suffer a Doppler shift in its frequency. In the case of phonon
absorption, the wave is traveling toward the x-ray beam and the shift is positive,
while in the process of phonon emission, the wave travels away from the beanr
and the shift is negative. When the Doppler shift is treated quantitatively, it leads
precisely to (3.76), as you may convince yourself.

Inelastic neutron scattering

lnelastic scattering of neutrons by phonons may be discussed along the same
lines as x-ray scattering, and the details therefore will not be repeated. In particular,
the conditions of conservation of momentum and energy t(3.75) and (3.76)]
hold true here also. I n (3.76), however, the frequency of the neutron is the so-called
Einstein frequency, which is related to the energy by ar : Elh, where E is the
energy of the neutron (E: p2 l2m, where p is the momentum of the neutron).

Just as one can use x-rays, one can use neutron scattering to determine dis-
persion curves. The important advantage of the neutron technique over the
x-ray technique is that the energy of a thermal neutron is only about 0.0g ev
(see Section 2.ll), which is of the same order as the phonon frequency. The
relative shift in frequency is now appreciable, and can therefore be determined
with great accuracy. For this reason, the neutron technique is preferable to the
x-ray technique, and is used whenever suitable sources of neutrons are available.
The dispersion curve for Ge shown in Fig. 3.26(b) was determined by this method.

Light scattering: Brillouin and Raman

Light waves (or visible photons) may also be scattered by phonons, and this can
be used to study the dispersion curves of solids. when the phonon involved is
acoustic, the process is known as Brillouin scottering; when the phonon is optical,
it is Raman scattering.

Let us consider first Brillouin scattering. According to the law of conservation
of energy, (3.76), the spectrum of the scattered beam should reveal two lines
displaced relative to the incident frequency by an amount equal to the phonon
frequency, as in the x-ray case. The two lines, shown in Fig. 3.35, are known as
Brillouin wings. The central unshifted line is not produced by phonon scattering,
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of course, but by Rayleigh scattering caused by static impurities in the sample,

and is called the Rayleigh line.

Rayleigh
line

I

@o - a(q) 
F."qu;:"v---3+'(4)

Fig. 3.35 Raman spectrum, showing undisplaced Rayleigh line, as well as Stokes and

anti-Stokes lines.

The lower Brillouin wing, arising from phonon emission, is called the Stokes

line, and the upper wing, which arises from phonon absorption, is known as the

anti-Stokes line.
Let us now calculate the Brillouin shift in terms of the scattering angle. This

is simplified by the observation that for visible photons, the wave vector k is very

small, unlike the x-ray case, in which k is large. To see this, we note that k : 2nl).,

and for the typical value 2 : 5000 4,, k - lOs cm- 1. This value is to be compared

with the radius of theBZ which, being of the order of nla, is about l08cm-r.
Therefore k is smaller than the BZ radius by a factor of about l0- 3. Since the 4 for
the phonons involved in the scattering is of the same order as k, as seen from Fig'

3.34(b), (which should apply here also), it follows that 4 is also small, and only

long-wavelength phonons participate in light scattering. In other words, this

type of scattering probes only that region lying very close to the center of the zone,

unlike x-rays or neutrons, which probe the entire zone.

The long-wavelength approximation @(q) : u"q holds true near the center

of the BZ. Using this fact, and Eq. (3.77), one obtains for the Brillouin shift

aw'- 2atV L.,: *zrro(J!\ sino. (3.78)

ralo--21y'0:.(t(Ur,t*t "\c/
The shift increases wiih'the'scattering angle 0. Measurements are often made at

right angle to the incident beam-that is, at 0 : tl2-in order to avoid any

interference from this beam.
Note also, from (3'78), that Lol.lra,n - u"lc, which is the ratio of the velocity

of sound to the velocity of light. One can readily appreciate this if one views the

Brillouin scattering as a Doppler-shifted Bragg diffraction, as indicated earlier in

connection with x-rays. Since u"/c - l0-s, one sees that the relative shift Aal/o6

is very small (hence Aot : l0- s 
o-ro = l0r' r- t), and special painstaking techniques

ao * o(q)
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are needed for accurate measurements. The task is greatly facilitated by the use
of laser sources, in which the frequency can be controlled very accurately.

one can also see from (3.78) that the velocity of sound u" can be determined
from the Brillouin shift. Note that here the sound waves need not be generated
externally, as in usual velocity measurements, since the waves are already present
in the solid, by virtue of thermal excitations.i

Much of the above holds true for Raman scattering, in which optical phonons
are involved. Again stokes and anti-Stokes lines are observed, and probing
is restricted to the region very close to the center of the BZ. There are, however,
two primary points in which Raman scattering differs from Brillouin scattering.
(l) Raman scattering leads to a much larger frequency shift, since Aa;, being
equal to the optical-phonon frequency, is of the order of l0r3s-r, compared to
about 1011s-' or less for Brillouin scattering. (2) Inasmuch as the frequency of
the optical phonon is essentially independent of 4, the Raman shift does not
depend on the scattering angle to any significant extent.

Figure 3.36 shows the Raman shifts in ZnSe, the two lines shown corresponding
to the LO and TO phonons.

Wavelength shift, A

Fig.3.36 Raman spectrum of 7nSe, showing scattering from both longitudinal (252
cm ') and transverse (206 cm-') optical phonons. (After Mitra.)

Research on Raman and Brillouin scattering in solids has proliferated in
recent years, particularly since the advent of the laser. Such a source provides

t The linewidth of the Brillouin wing may be used to determine the lifetime of the phonon.
According to the uncertainty relation (Section A.l), the linewidth Aal and the lifetime r
are related by the equation Acoz - l. Thus the phonon tifetime is given by r - ll\,a.
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a beam which is both intense and monochromatic. The first property is needed

for the observation of a sufficiently strong signal, since both Raman and Brillouin
scattering, being nonlinear effects, are generally very weak. The high mono-

chromaticity is needed for good resolution of the scattered signal. (Conversely,

the phenomenon of light scattering by sound has made beneficial contributions

to laser technology. Thus Brillouin scattering is employed for light-beam deflection

in Q-switching, a technique for generating high laser pulses.)

Note also that these scatterings can be used to provide sources of tunable

coherent radiation. If the optical beam is coherent, which is the case for a laser

source, then the phonons emitted are phase-locked to the incident beam, and

consequently the scattered Stokes radiation is also coherent. (lt is assumed that

the temperature is sumciently low for the anti-Stokes radiation, which is incoherent,

to be suppressed.) Phonon beams have been generated in this manner extending

from l00kHz up to several GHz. In this respect, the lattice acts as a parametric

amplifier.

3.II MICROWAVE ULTRASONICS

Some of the most interesting phenomena associated with lattice waves are exhibited

in the study of those acoustic waves which lie in the microwave region, where

al - l0ro s-r; these are known as ultrasonic waves. We shall also see that these

phenomena hold the promise of providing extremely useful electronic devices.

This explains, at least in part, the considerable practical attention directed toward

these waves in recent Years.
It should be noted at the outset that, for co = l0ros-r, the wavelength,t is

about l0-scm, which is still much larger than the interatomic spacing. The

continuum approximation may therefore be employed in the ultrasonic

region.
Figure 3.37 shows a common method for generating an ultrasonic wave in

a sample. The sample is bonded to a quartz crystal rod, which in turn is coupled

to an electromagnetic microwave cavity. As the cavity is excited, its electro-

magnetic field couples to the end of the quartz rod through piezoelectric interaction,t

and causes the end to oscillate. The oscillation is then propagated as an elastic

wave down the quartz rod, and then through the sample. In effect, part of the

electromagnetic energy in the cavity has been converted into elastic energy.

The quartz rod acts as a lransducer, which is a convenient intermediary for

coupling the electromagnetic field to the sample. Were it not for this, the coupling

between the sample and the field would be weak, since the former is not usually

piezoelectric.
The efficiency of conversion decreases rapidly with the frequency, but is

typically of the order of l0-a. Therefore, to obtain an appreciable amount of
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elastic energy, the cavity is usually pulsed at high power, of the order of several
watts, for a short period of about I ps.

ln this manner one can generate a coherent ultrasonic phonon beam, which
can then be employed to study physical processes in the solid. Because one can
control the direction, frequency, and polarization of such a beam, it is more
amenable to accurate measurement than the ultrasonic phonons excited thermally;
these cannot be conveniently controlled, inasmuch as they are excited in all
directions, with all possible polarizations, and over a large frequency range.

Power input
and output

Liquid
helium

Quartz
transducer

Sample

*:T,i;*

Fig. 3.37 Experimental setup for ultrasonic studies.

The amount of information obtainable increases rapidly with the frequency
of the ultrasonic beam. Most of the work in the area has been performed in the
range l-l6GHz, although frequencies up to l00GHz have been generated and
studied.

The physical quantities measured are the velocity of sound and the attenuation
coefficient in the sample. From these one obtains information on the internal
structure of the solid, as we shall see. The velocity is determined by measuring
the travel time of the sound pulse as it propagates back and forth in the sample,
while the attenuation coefficient is determined from the amplitude of the reflected
echo pulse. The attenuation is often quite large, and increases rapidly with
frequency and temperature. To mitigate excessive attenuation, experiments are
often made at very low temperatures, near that of liquid helium.

One of the many applications of ultrasonic waves in electronics is in the
design of microwave acoustic delay lines and delay Iine amplifiers. In such devices,
an electromagnetic signal is fed into one end of the sample, where it is converted
into an acoustic wave. The wave propagates down the sample, amplified if necess-
ary, and is then reconverted to an electromagnetic signal at the other end of the
sample. Note, however, that the wave, being acoustic, travels in the sample with
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the slow speed of sound us. Had the signal not been converted, it would have

traveled with a much greater velocity, closer to the speed of light c. Since

u"lc = l0-s, the signal is, in fact, delayed significantly. The same delay can be

achieved acoustically as that achieved by purely electromagnetic means, using

a cable 10s times the length of the sample, e.g., a sample 5 cm long is equivalent

to a cable 5 km long. The size reduction is very striking indeed.

Many other applications are anticipated, and it is hoped that many of the

functions of microwave cavities will one day be accomplished by the use of
ultrasonic devices, at a great reduction in cost and size.

Let us now talk about some of the physical processes which take place when

a coherent beam of phonons travels along a crystalline sample. The coherent

beam of phonons is scattered by thermal phonons and by imperfections, of course

(as we discussed in connection with thermal conductivity in Section 3.9), and

also by conduction electrons in the case of metals. By measuring the effect of this

scattering on the coherent phonons, one obtains information about the thermal

phonons, and also about the imperfections.
N. S. Shiren has also studied the interaction between two coherent phonons. He

caused two waves of frequencies 16.45 GHz and 8.5 GHz to be propagated in an

MgO sample. These two waves coupled by anharmonic nonlinear interaction,

and Shiren found that by pumping at the higher frequency, he could also increase

the intensity of the lower frequency. Here the lattice acted as a parametric acoustic

amplifier.
A coherent beam of phonons may also be used in the study of spin-phonon

interaction. If the sample contains paramagnetic impurities-for example, Mn2*
in quartz or Cr3 + in MgO-the energy level of the impurity splits in the presence

of a magnetic field, as shown in Fig. 3.38.1

tro.,,

fsrin 
down

Fig. 3.38 Absorption of a phonon by a magnetic impurity.

If the frequency of the phonon is such that ha equals the energy split between

the spin levels, then the phonon is strongly absorbed by the spin system; for each

phonon absorbed, an atom in the system flips its spin. By studying the phonon

absorption, one therefore obtains information about the energy structure of the

impurities, and the strength of their coupling to the phonon. (The process

t Magnetic impurities are discussed in Section 9.6.
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discussed here is analogous to the more familiar electron spin resonance, in which
the spin flip results from photon absorption. See Section 9. 12.)

In the above example, the phonon beam suffers some attenuation. This is
the normal situation. Under some circumstances, however, the beam may actually
grow as it travels down the sample, and in that case the sample then acts as a phonon
amplffier. Many types of such amplifiers have been produced, but the one which
has received the most attention is the one that involves the acoustoelectric effect
in piezoelectric semiconductors. The physical principle underlying the operation
is as follows.

A semiconductor contains many free electrons which, under the application
of a suitably large electric field, can be made to drift down the sample at a high
velocity, as shown in Fig. 3.39(a). Suppose now that an acoustic wave also travels
down the sample. The wave then couples to the drifting electrons, the coupling
being particularly strong in piezoelectric materials. It can be shown that, if the
wave velocity u" is slightly less than the drift velocity u, then energy is transferred
from the electron beam to the wave, and hence the wave is amplified.l we can
appreciate the physical process if we refer to Fig. 3.39(b). Because of the wave,
the electrons find themselves effectively in a periodic electrostatic potential, with
more electrons on the leading side of the wave trough. The electrons, therefore,
tend to slide down the slope to the bottom of the trough, and the energy lost
thereby is then converted into an elastic energy in the wave. Useful acousto-
elastic delay line amplifiers have been built using CdS and Zno up to a frequency
of about l4GHz. An amplification up to l00dB/cm has been achieved for a
frequency of I to 2 GHz.

Electric field Acoustic
I <ts- wave

Drifting electrons

(a)

W
Trough

(b)

Fig. 3.39 The principle of the acoustoelectric amplifier. (a) Electrons are set adrift
at high velocity by application of a large electric field. (b) Electrons slide down the wave
trough, thereby releasing some of their energy to the wave, which is thus amplified.

Perhaps the most promising of all the microwave ultrasonic devices are those
employing surfoce lattice waves. These waves, also known as Rayleigh waues,
travel strictly along the surface of the sample, the amplitude damping out com-
pletely within a distance roughly equal to one wavelength from the surface. The

t A familiar analog is that of wind blowing over a wave in the sea. If the wind is faster
than the wave, then the wave is amplified by the transference of energy from the wind to
the wave.
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velocity of the surface waves is approximately the same as that of the bulk waves.
The former, however, are much more easily coupled to an external circuit either
at the input or output ends. Figure 3.40 shows the basic design of a surface-wave
delay line. The applications of surface waves will undoubtedly have a major
impact on electronic technology in the microwave region in the coming years.i

Fig. 3.40 Basic design of a surface-wave delay line.

3.12 LATTICE OPTICAL PROPERTIES IN THE INFRARED

Ionic crystals exhibit interesting optical properties associated with optical phonons.
The frequency range here lies in the infrared region of the spectrum, the region
in which optical phonons are active, as we said in Section 3.6. Characteristically,
an ionic crystal in the infrared region exhibits strong optical reflection, con-
comitant with a strong absorption. Let us now relate these observations to the
optical vibrations of the lattice in ionic crystals.

We can approach the discussion most conveniently via the dielectric function
of the medium. This quantity, denoted by e, is defined by

D:eE:€oE+P, (3.1e)

where D is the electric displacement, E the electric field, and P the polarization
in the medium; ee is the familiar dielectric constant associated with the vacuum.
We shall soon use this equation to evaluate the dielectric constant for an ionic
crystal. It may also be pointed out that, in writing (3.79) we assumed that E and
P lie in the same direction, and consequently D also points in the same direction.
In other words, the crystal is treated as an isotropic medium, for the sake of
simplicity, and the vector symbol may be deleted when writing these quantities.

Once the dielectric function e is known, it may be used to study the optical
properties of the medium. The procedure is as follows: The relative dielectric
function e,, defined as e, : e/es, can be written as

e,: (n I irc)2, (3.80)

t For an interesting discussion of these waves and their applications in electronics, and
optics, see "Acoustic Wave Amplifiers" by G. S. Kino and J. Shaw, Scientific American,
October 1972, page 50. The photographs in this article are excellent.



where ,? is the optical index of refraction and rc the-ex$nqion coefficient. The
quantities n and rc may now be used to calculate tlp \eflectiu))y and the absorption
of the medium according to the relationst - \--r
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R: (n-l)2+rc2
(n+l)2+K2

au, : 2rcq.

3.12

(3.8 r )

(3.82)

(3.83)

(3.84)

and

Here R is the reflectivity, evaluated at normal incidence to the surface, and dab

is the absorption coefficien l; q is the wave vector of the wave. We shall now apply
this procedure to an ionic crystal.

2n* |

+
ffi M2 Mr

Fig. 3.41 An ionic diatomic lattice.

Figure 3.41 shows a diatomic crystal in which the two atoms of the unit cell
have masses M, and M, and electrical charges e* and -e*. (The quantity e*,
called the effectiue charge, is smaller than the charge on the electron e because
the transfer of the electron-in the alkali halides, for example-from the alkali
atom to the halogen atom is not complete; in NaCl, e*:0.74e.) When an
alternating electric field 6 is applied to the crystal, the equations of motion for
the two ions may be written as

2n

I

0'u. , ,

M 1 ---:+L' : -ul2uz,*t - il2n - uzr*zf I e+ 6,
0t-

i'u "M r-;.# : -al2uzn - il2,- | - u2,+r) - e* E.
0t'

ln each of these equations, the first term on the right represents the short-range
elastic restoring force due to the interaction between the atoms, as used in
connection with (3.57), while the second term represents the force due to the
electric field. In comparing the present situation with that of Section 3.6, we note
that here we are discussing the forced vibration of the lattice, while the earlier
discussion was concerned with the free vibration. The forced term, of course,
arises from the electric field.

t See any intermediate-level textbook on optics or electromagnetism, e.g., G. R. Fowles,
1968, Inrroduction to Modern Optics, Holt, Rinehart, and Winston, New York.
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In solving the above equation, we take the field E tobe a propagating plane

wave,
E: Eoei(qx-@t) (3.8s)

Also, for the sake of simplicity, we assume that the wavelength is very large com-

pared to the interatomic distance, so that we may use the infinite wavelength

limit 4 : g. ln that case, all similar atoms have the same displacement, e.9.,

atoms of mass M, have the displacementu*, and those of mass M2 the displace-

ment u_, the positive and negative signs being used to label the positive and

negative ions. These displacements in the steady states have forms similar to the

forcing field (3.85). That is,

ll + : Llo +€-'tt , u - : lto -€- 
itt, (3.86)

(3.87)

(3.88)

where ao * and uo - are the amplitudes, and where we have set q : 0, in accordance

with our approximation. Substitution of (3.85) and (3.86) into the equations of
motion (3.83) and (3.84) leads to the determination of the ionic displacements

where r.,.r,2 : 2a(tlM, + tlM). Referring to Section 3.6, we note
fqequency verse

;6f the medium is as the electric dipole moment

per unit volume, which may therefore be written as

Pi: n^e*(uo* - uo-), (3.8e)

where r, is the number of molecules, or cells, per unit volume. Equation (3.89)

follows from noting that the electric dipole moment per molecule is e*(ze* - uo-).

In addition to the ionic polarization, there is also an electronic polarization due to
the fact that the electrons in the atomic shells of the ions also respond to, and

polarize in, the electric field. This polarization will be denoted by P..
The ionic polarization (3.S9) may be evaluated by using (3.87) and (3.88),

and when the result is substituted into (3.79) and the common factor E canceled,

we find

e*
uo+ : 

Mr1oi, - rs1 
Eo'

e'iLto-: 
tttrl,,r, - orr', 

Eo,

P- n-e*2 I
€r\@,1 : rt--; -r-

eo@ ,oa?F l - a2 lal'

rt-w

(3.e0)

where p : MrMzl(Mr* M) is the reduced mass of the two ions. On the

rilnt side, the second term represents the electronic contribution, and the third

t"lw)=
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term the ionic contribution. For or ( a.lr, both terms contribute, resulting in the
familiar static dielectric function e,(0). At the opposite end of the spectrum,
where co * a,, it is seen from (3.90) that the ionic contribution vanishes, because
the frequency there is too high for the ions to follow the oscillation of the field.
In that range the dielectric constant is denoted by e,(oo), and contains only the
electronic contribution. We may now rewrite (3.90) in the convenient form

(3.e r )

where the ionic contribution is contained entirely in the second term on the right
side. In this manner, the dielectric function is conveniently expressed in terms
of quantities which are directly measurable, that is <,(0), e,(oo), and a,.

Gr(a)

€r(0)

.r(-)

0

Fig.3.42 Dielectric function e,(ar) versus frequency. The function is singular at the
transverse frequency rr;, and vanishes at the longitudinal frequency @r. The former
condition represents resonance.

Figure 3.42 sketches the dielectric function e.(ar) versus a; over the entire
frequency range. An important feature of this figure is that e,(o) is negative in the
frequency range @t < @ < r.r.r,, where <r.r, is the frequency at which e,(rrr) vanishes,
asshown. This frequency can be determined from the expression (3.91), and is
readily found to be

e,(co):e,(oo)* t#tr, ,i

,,:(*@)''',,. (3.e2)

we shall shortly explain the physical significance of co,, but for the moment let
us continue our discussion of the dielectric function. Since e,(ro) is negative
in the range @t 1@ 1 a1, it follows from (3.80) that n: 0 and r * 0 which,
when substituted into (3.81), shows that the reflectivity R : l. That is, an incident
wave whose frequency lies in the range @t < @ < o.r, suffers total reflection. The
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wave in this range does not propagate inside the crystal, and we speak ofa/orbidden
gap. The dependence ofthe reflectivity on the frequency, as determined by (3.81),
is illustrated in Fig. 3.a3(a). Compare this with the experimental curve for NaCl

@t

(a)

60

\, l0-4 cm

(b)

60

tr, lO-acm
(c)

F

Fig.3.43 (a) Reflectivity versus frequency for an ideal crystal. (b) tnfrared reflectivity
versus wavelength for NaCl at room temperature. The frequencies a, and rr;, correspond
to,t: 6l and 38 x l0-acm, respectively. (c) Infrared transmissivity versus wavelength
for an NaCl thin film (of thickness 0.17 x l0-acm). Dip is at frequency cr.r,.

given in Fig. 3.a3(b). Note that the sharp edges of the reflectivity are rounded off
in the experimental curve. This can be explained partly by introducing a damping
term in the lattice equation of motion (3.83) and (3.84). Such a damping may be

due to any of the phonon-collision mechanisms discussed in Section 3.9. The
primary mechanism is the anharmonic phonon-phonon collision, which explains
why the shape of the reflectivity depends to some extent on the temperature.

Figure 3.a3(c) shows the observed infrared absorption in a thin film of NaCl.
As we have indicated previously, the absorption coefficient may be found from
(3.82). The reason for using a thin film is the strong reflection incurred in this
region. The point of maximum absorption marks the transverse frequency ro,

(recall that at cr-l, the function ."(ar) - co, and hence r and a have their maximum
values).

The phenomena of strong infrared reflection and absorption by the lattice
are sometimes referred to as reststrahlen (Cerman for "residual rays").
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The physical significance of co, is that it is the frequency of the longitudinal
optical photon, and it is to be contrasted with ar,, the frequency of the transverse
optical phonon. The reason for the distinction between these two types of
vibrations in an ionic crystal can be understood from the following argument:
If we use the Maxwell equation V.D:0, there being no net charge, and(3.79),
we may write

IY'E:--V'P, (3.e3)
€o

where we have solved for the field E in terms of the polarization of the medium P.
Now for a transverse wave the divergence V. P vanishes and this, in conjunction
with (3.93), indicates that V 'E :0. The field associated with this wave is
therefore a constant, and may be taken to be zero. By contrast, however, the
divergence Y.P + 0 for a longitudinal wave, which means that such a wave
has an associated electric field. This conclusion is also evident from Fig. 3.44,

Longitudinal mode
+

+

q

-++

+-

+-

=-
Fig. 3.44 Bunching of charges in the longitudinal mode.

where we see that the bunching together of electric charges, associated with the
longitudinal mode, leads to the creation of an electric field. The effect of this
field is to increase the restoring force beyond that of the short-range interaction,
and this makes the longitudinal frequency larger than the transverse frequency.

We have seen why the longitudinal frequency is larger than the transverse
frequency, but we have yet to show that the former is given by a.l, of Eq. (3.92).
To demonstrate this, we return to the equation V'D : 0, which we write, with
the assistance of (3.79), as

e,(a.l) V'E :0. (3.e4)

This condition must hold true whether the wave is transverse or longitudinal,
but the manner in which this is accomplished is very different in the two cases.

In the former, Y . E :0, and the condition (3.9a) is thus satisfied. But in the
longitudinal case V'E * O, and the only way in which (3.94) may be satisfied
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is if e,(a;) : Q. [n other words, the frequency of the longitudinal mode is equal

to the root of the dielectric cbnstant. Since co, was determined by putting e,(rr.r)

equal to zero, it follows that r-o, is equal to the frequency of the longitudinal mode.

Equation (3.91), relating @tto crr,, is known as the LST (Lyddane-Sachs-Teller)

relation.
Table 3.3 gives the optical parameters of some common ionic crystals. The

values for e,(0), e,(m), and @, are determined experimentally, while those of o1

are calculated from the LST relation. The effective charge ratio e* f e is determined

by comparing (3.91) with (3.90).

Table 3.3

lnfrared Lattice Data for Ionic Crystals

e,(0) €,(oo) cor, 1013 rad/s co,, 1013 rad/s e* le

LiF
NaF
NaCl
NaBr
KCI
KBr
KI
RbCI
RbBr
AeCl
AgBr
CsCl
CsBr

5.8
4.4
3.08
2.55
2;11
2.18
t.9l
2.24
1.69
1.94
1 .51

1.87
1.39

tz
7.8
5.0
3.9
4.0

2.64

3.4
2.5
3.1

0.87
0.93

0.14
0.69
0.80
0.76
0.69
0.84
0.82
0.78
0.73
0.85
0.78

8.9 1.9

5.3 1.'.15

5.62 2.25

5.99 2.62

4.68 2.r3
4.78 2.33
4.94 2.69

5 2.19
5 2.33

t2.3 4.04
13.1 4-62
7.20 2-60
6.51 2.87

The following remarks concerning the distinction between transverse and

longitudinal modes may be helpful. When an electromagnetic wave impinges
on the surface of the crystal at normal incidence, it excites TO phonons inside the

crystal if the frequency is matched correctly to that of the phonons. This is so

because both waves are transverse, and consequently they couple together. On the

other hand, LO phonons may not be excited in this manner, since these phonons,
being longitudinal, do not couple to the incident wave, which is transverse. Other
means must be used to excite these phonons. For example, if the incident wave

falls obliquely onto the surface, there is a longitudinal electric field at the surface

which then acts to excite the LO phonons.
The other point to note is that for a nonionic crystal, the frequencies ro, and

@t are identical (at q:0), as we can see from Fig. 3.25c for germanium. The

reason for this is that in such crystals the vibrating entities are electrically neutral,
and hence the ionic polarization is zero.
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The polariton

Interesting effects arise when one considers explicitly the influence of optical
phonons on a tanst)erse electromagnetic wave actually propagating in the
crystal. This influence can be taken into account via the dielectric function e,(ar)
of the medium. The dispersion relation for the electromagnetic wave, which is
rtt: cQ in vacuum, is now modified to @: cqtJ+A-, *h.r.../.1or;, being equal
to the index ofrefraction, introduces the effects of the medium on the velocity of
the wave in the usual manner. By substituting e,(co) from (3.90) into the above
equation, squaring both sides, and rearranging terms, one finds the dispersion
relation

(3.e5)

Equation (3.95) contains not one, but ,wo different dispersion relations.
We can see this algebraically by noting that, for a given 4, the equation, being
quadratic in co2, has two frequency roots. Thus when we vary 4, the two roots
trace two separate dispersion curves, as shown in Fig. 3.45. These results are
particularly interesting because the dispersion curves obtained do not conform
either to the photon, where r.o - Q, ot to the phonon, where co is independent of q.
And in fact the modes described here are neither pure photons nor pure phonons,
but a photon-phonon mixture, which is given the name of polariton (referring to
polar or ionic crystals). The reason for the photon-phonon mixing is that, in ionic
crystals, there is a strong coupling between the two pure modes, and because of
this the pure modes are modified to new coupled modes. Thus, startin g at each q
with a photon mode and a phonon mode, we find two new polariton modes.

Fig. 3.45 Dispersion curves for the polariton. Dashed curves represent free modes,
while solid curves describe interacting modes-the polariton.

There is a familiar analogy to the coupling scheme found above. Consider two
harmonic oscillators with frequencies co, and cor. Without mutual coupling
between them, the oscillators vibrate independently, each with its own frequency.

,,'[e,{oo) * ./L, 
_ ilfl5!): r'n,
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However, if they are connected by a spring, the two oscillators no longer vibrate
independently. They vibrate together, in two different modes, whose frequencies, no
longer equal to rrr, and o)2, can be expressed in terms of ar, ar, and the coupling
strength. In this analogy, the pure photon and pure phonon represent two
independent oscillators, which couple in an ionic crystal to produce new modes, the
polaritons.

We see from Fig. 3.45 that the coupling is strongest in the region @ = @t,

where the frequencies ofthe pure modes are nearly equal to the crossover point.
(This is the region of intersection of the dashed lines, representing the pure modes.)
This is expected because, in the oscillator analogy above, the two oscillators are
most strongly affected by the coupling if the frequencies rrr, and a., are nearly
equal. Conversely, in the region far from the intersection, the two mixed modes
reduce to essentially pure modes. Consider, for example, the lower polariton
curve in Fig. 3.45: At q - 0, the dispersion relation is rr.r: (c1utr1O1)q, and the
mode is essentially a pure photon mode. Since ro is much lower than the lattice
mode a,l,, the lattice vibrations are not dynamically evident, and the crystal merely
acts as a rigid medium of dielectric constant e.(0). In the opposite limit, where g
is large, , = a)t, and is independent of q; then the lower polariton mode becomes
almost a pure transverse phonon. The electric field associated with the wave be-
comes very small here, and the energy is almost entirely mechanical. However,
in the intermediate 4-region, the polariton is a mixture of both electromagnetic
and mechanical fields, and has the intermediate behavior described above.
Analogous comments can be made concerning the upper polariton curve.

Note also that no mode can propagate in the frequency interval @t < @ < o)b
which is the frequency gap encountered previously.

The reason for our interest in the polariton from a fundamental point of view
is twofold: (a) It results from thecoupling of two collective modes, and (b) it is
a collective mode in its own right. The subject of collective modes in solids has
received a great deal of attention in recent years. Many other examples of such
modes, both free and coupled, will be found throughout this text.

SUMMARY

This chapter concerned lattice vibrations and their influence on the thermal,
acoustic, and optical properties of solids.

The continuum model

In the long-wavelength limit, a crystal may be treated as a continuous medium
because the wavelength is much greater than the lattice constant. The dispersion
relation is linear,

{D : u"Q,

where u" is the velocity of sound. Consideration of boundary conditions shows
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that the modes of oscillations-the sound waves-have discrete values of q and a,r.

The density of modes is

u2
e@) : (2"):-;I

Specific heat

The atoms in the lattice are regarded as a set of harmonic oscillators, and the
thermal energy is the average energy of these oscillations. According to classical
theory, the average energy for a one-dimensional oscillator is

a:kT.

Thus the total thermal energy per mole is E : 3N 
^kT, 

where No is Avogadro's
number, and the molar specific heat C, : AEIAT is given by

C":3R'

where R : Nek is the universal gas constant. This result, known as the
Dulong-Petit law, asserts that C, is a constant independent of temperature.
This law is found to be valid only at high temperatures; at low temperatures,
specific heat decreases and then vanishes at I :0"K.

Einstein rectified this discrepancy by treating the oscillator quantum-
mechanically. The average thermal energy for the oscillator is then given by

_ hro

F;nr_1,

which approaches the classical value kT only at high temperatures. At low
temperatures, the quantum energy decreases very rapidly because of the
"freezing" of the motion. Treating the atoms as independent oscillators, vibrating
with a common frequency, Einstein found that the specific heat is

C,:3R (f) *_L,,,,_,y,

where 0. is the Einstein temperature. Specific heat approaches the classical value
3R at high temperatures, and vanishes at T * 0oK. Both these facts are in accord
with experiment.

Careful measurements show that the decrease in C, near absolute zero
is slower than predicted by Einstein. Debye explained this by treating the atoms not
as independent oscillators, but as coupled oscillators vibrating collectively as

sound waves. Making the long-wavelength approximation, he found that the
specific heat is given by

c, : eR (;)'l;"'' x4 e'

k' - qzdx'
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where 0o is the Debye temperature. This expression for C, approaches the

classical value 3R at high temperatures, but at low temperature C, - 1.3.

This latter result, known as the Debye T3-law, is in agreement with observation.
The agreement of Debye's model with experiment is good throughout the entire

range of temperature. Better agreement can be achieved only by removing the

long-wavelength approximation and treating the crystal as a discrete lattice.

The phonon

The elastic energy of sound waves in solids is quantized, and the quantum unit is
the phonon. The phonon carries an energy

and a momentum

e : h0),

P: h9,

where a; and q are the frequency and wave vector of the wave, respectively.

Lattice vibrations

The dispersion relation for a one-dimensional monatomic lattice, with nearest-

neighbor interaction, is

0): (D^sin(aql2),

where the cutoff frequency @n: @alM)tt'. The quantities a and M are,
respectively, the interatomic force constant and the atomic mass. The dispersion
curve is linear near Q : O, the long-wavelength regime, and saturates at large
values of 4. The lattice acts as a low-pass filter: Only waves whose frequencies
are lower than cr.r, are transmitted ; modes with frequencies exceedin g @n are heavily
attenuated.

The dispersion curves for a one-dimensional diatomic lattice consist of two
branches: the lower one the acoustic, and the upper the optical branch. The
character of the acoustic branch is similar to that of the monatomic case, while the

optical is essentially flat throughout the 4-space. There is a frequency gap between

the two branches, and thus the lattice acts as a band-pass filter.
The dispersion relation in a three-dimensional lattice is an extension of the

one-dimensional case. The wave vector q is now a three-dimensional vector, and

the frequency is a function of both the magnitude and direction of q. Thus the

dispersion has the form

a: ai(Q).

The subscriptjis the branch index. A Bravais lattice has three acoustic branches-
one longitudional and two transverse. A non-Bravais lattice, with r atoms per unit
cell, has 3r branches, three of which are acoustic and the remainder optical.

The dispersion curve exhibits symmetry properties in q-space. The translation-
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al symmetry @j(q + G) : rr.lj(q) enables us to restrict consideration to the first
Brillouin zone only, while the inversion symmetry @j( - q) : rrlj(q) and the rotation
symmetry establish the relation between various regions of the Brillouin zone.

The density of modes is found by counting the number of modes in each
branch, using the actual dispersion relation for that branch. The total density is
found by summing the densities of modes of all branches. When this density is
employed in calculations of specific heat, good agreement with experiment is

obtained.

Thermal conductivity

The conduction of heat in insulators is accomplished by lattice waves, or phonons.
Treating the phonons as a gas, and using results from kinetic theory, we find that
thermal conductivity is given by

K: +Cuu"l,

where / is the mean free path of the phonon.
The mean free path is determined by the scattering of a phonon by other

phonons, or by defects in the solid. At low temperatures, the scattering is due to
the boundaries of the sample, and / - D, where D is the diameter of the sample.
Scattering at high temperatures is due to anharmonic interaction between a phonon
and other phonons in the solid, and the mean free path is then found to vary
inversely with temperature. That is, l= llT. Impurities in the lattice also
contribute to scattering.

The scattering of radiation by phonons

Radiation-x-rays, neutrons, and light-may be scattered by phonons, and
scattering is used to measure the dispersion curves of the lattice. The law of
conservation of momentum requires that

k:ko*{,

where k and ko are the wave vectors of the incident and scattered particles, and
q is the wave vector of the phonon involved in the scattering process. The law
of conservation of energy requires that

a: @s* @(q),

where r-cr and roo are the frequencies of the incident and scattered beams, respectively,
and rr;(q) is that of the phonon. The plus sign refers to phonon absorption, and the
minus to a phonon emission process.

The scattered frequency is thus shifted from the incident frequency, and by
measuring this shift as a function of the wave vector q, one can determine the
dispersion curve of the lattice. X-rays and neutrons, being of short wavelength,
can be used to determine the dispersion curve throughout the zone. Light waves,
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on the other hand, have much greater wavelength, and sample only the region

near the center of the BZ.

Ultrasonic waves

Ultrasonic waves are important in research and applications. By employing coher-

ent ultrasonic phonons of carefully controlled frequency and polarization, one may

investigate several basic properties of solids, such as anharmonic interaction and
phonon-spin interaction. An important application is the acousto-electric ampli-
fier, in which the acoustic wave is amplified by absorbing energy from high-velocity
electrons. Such an amplifier is particularly useful in the design of acoustic delay

lines.

Infrared optical properties

Optical phonons in ionic crystals interact strongly with light, which leads to strong
reflection and absorption in the infrared region. Reflectivity and absorption can be

expressed in terms of the dielectric function of the lattice. This function is frequency

dependent, as

, .,(0) -.,(oo)..(co) : e,(o) * I _ @fb1.
where e.(0) is the static dielectric constant and e.(oo) the high-frequency dielectric
constant [.,(oo) : n2, where r is the optical index of refraction]. The quantity

co, is the frequency of the transverse phonon. As co increases and crosses @r,

the function e,(o) decreases from <,(0) to .,(oo), due to the fact that the ions are

no longer able to follow the field at high frequencies. Consequently the vibrations

of the optical phonons are suppressed.

The longitudinal phonon in an ionic crystal has a higher frequency than the

transverse phonon, due to the bunching of charges associated with longitudinal

oscillations. Longitudinal frequency is given by the relation

-,:('iQ),)"',*., \.,(o) /
A lattice exhibits total reflection in the frequency range @t to ar1. Thus light in this
range cannot propagate through the crystal, resulting in a frequency gap.
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QUESTIONS

l. Equation (3.11) gives the allowed values of 4 in a continuous line under periodic
boundary conditions. Plot a few of the corresponding wavelengths, and compare
with results from elementary physics for, say, a vibrating string.

2. Determine the density of states for a two-dimensional continuous medium using
periodic boundary conditions.

3. In the Einstein model, atoms are treated as independent oscillators. The Debye
model, on the other hand, treats atoms as coupled oscillators vibrating collectively.
However, the collective modes are regarded here as independent. Explain the meaning
of this independence, and contrast it with that in the Einstein model.

4. Would you expect to find sound waves in small molecules? [f not, how do you
explain the propagation of sound in gaseous substances?

5. Explain qualitatively why the interatomic force constant diminishes rapidly with
distance.

6. Show that the total number of allowed modes in the first BZ of a one-dimensional
diatomic lattice is equal to 2N, the total number ol degrees of freedom.

7. Suppose that we allow two masses M, and M2 in a one-dimensional diatomic lattice
to become equal. What happens to the frequency gap? Is this answer expected?
Compare the results with those of the monatomic lattice.

8. Derive an expression for the specific heat of a one-dimensional diatomic lattice.
Make the Debye approximation for the acoustic branch, and assume that the optical
branch is flat.

9. Figure 3.25(b) shows that the TA branches, as well as the TO branches, in Ge are
degenerate in the I I l] direction. Explain this qualitatively on the basis of symmetry.

10. Convince yourself that the BZ of an fcc lattice has the shape given in Fig. 3.26(b).
11. Give a physical argument to support the plausibility of (3.74) for thermal conductivity.
12. Explain the dependence of thermal conductivity on temperature as displayed in

Fie. 3.32(b).
13. ln the microwave generator of a miniature semiconductor, a considerable amount of

undesirable heat is generated in the conversion of dc to ac power. Explain why
diamond is being increasingly used as a heat sink to transport the heat away from
the device.
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14. Discuss two experimental techniques for measuring the mean free paths of phonons
in solids.

15. Verify (3.91).
16. Verify (3.92).
17. Draw a figure for a transverse oscillation in an ionic crystal and show that, unlike

the case of longitudinal oscillations, no charge bunching takes place.

PROBLEMS

l. The longitudinal and transverse velocities of sound in diamond, a cubic crystal, along
the [00] direction are, respectively, 1.76 and 1.28 x 106 cm/s. The longitudinal
velocity in the [ 11] direction is 1.86 x 106 cm/s. From these data, and the fact that
the density is 3.52 g/cm3, calculate the elastic constants Crr, Ctz, and Cno for
diamond.

2. In deriving (3.20) for the density of states for a continuous medium, it was assumed
that the longitudinal and transverse velocities u, and o, were equal. Derive the
density of states for a case in which this assumption is no longer true.

3. It is more convenient in practice to measure the specific heat at constant pressure,
C, than the specific heat at constant volume, C, but the latter is more amenable to
theoretical analysis.
a) Using a thermodynamic argument, show that the two specific heats are related

by
Co- Cu: q,zTvlK,

where a is the volume coefficient of thermal expansion and K the compressibility.
b) Show that C, - Cu: R for an ideal gas.

c) Show that C, = C, for a solid at room temperature. (Look up the needed param-
eters in appropriate reference works, e.g., the Handbook of Chemistry and
Physics.)

4. Using the Maxwell-Boltzmann distribution, show that the average energy of a
one-dimensional oscillator at thermal equilibrium is Z : kT.

5. Prove the result (3.25) for the average energy of a quantum oscillator.
6. a) If the classical theory of specific heat were valid, what would be the thermal

energy of one mole of Cu at the temperature T:0o? The Debye temperature
for Cu is 340'K.

b) Calculate the actual thermal energy according to the Debye theory (use Fig.
3.13), and compare with the classical value obtained above. (For the purpose of
this calculation, you may approximate the Debye curve by a straight line joining
the origin to the point on the Debye curve at T: 0o.)

c) What is the order of magnitude of the maximum displacement of a Cu atom at
the Debye temperature? Compare this displacement with the interatomic distance.

7. It was stated in the text that the Debye temperature 0o is proportionalto (YlM)t12,
where Y is Young's modulus and M the atomic mass. For solids of similar chemical
and structural characteristics, the parameters yare nearly equal, andthus 0o - I lM'l'.
Plot 0p versus M-rl2 for the alkali metals (Li, Na, K, Rb, Cs), the noble metals
(Cu, Ag, Au), the covalent crystals (C, Si, Ge, Sn), and discuss how well this prediction
is satisfied.
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8. Verify the mathematical reasoning between (3.36) and (3.38).
9. a) Derive the expression for the specific heat of a linear continuous chain according

to the Debye theory. Discuss the high and low temperature limits.
b) Repeat part (a) for a continuous sheet.

10. Determine the phase and group velocities for a monatomic lattice. Plot the results
versus the wave vector 4 and give a brief discussion of their significance.

I l. When the frequency of a wave in a one-dimensional lattice is greater than the cutoff
frequency on, the wave is heavily attenuated. Assuming that the solution may still
be expressed in the form (3.45), but with q being an imaginary number, calculate the
attenuation coemcient, i.e., the coefficient governing the exponential decay of the
intensity, and plot the result as a function of the frequen cy. IH int; Use the formula
cos iY : cosh Y.]

12. Verify (3.62) and (3.63).

13. Using the optical mode frequency for NaCl (Table 3.3), calculate the interatomic
force constant and Young's modulus for this substance. From these data and the
density (2.1 8 g/cm3), calculate the velocity of sound in NaCl.

14. What is the minimum wavelength for a wave traveling in the [l0O] direction in an fcc
structure? In the [1l] direction? Use Fig. 3.26(a), and assume that the cube edge
of the real unit cell is a : 5 A.

15. Using the density of states (3.69) for a one-dimensional monatomic crystal, show that
the total number of states is equal to N.

16. Using data on thermal conductivity, calculate the velocity of sound in Nacl at
T : ZO"K and I : 300'K. Compare your answer with that for problem 13.

17. In discussing the behavior of the phonon's mean free path we treated the various
collision processes separately. However, in most situations, several of these processes
act simultaneously to scatter the phonon. Show that the effective path in that case
is given by I I I : 2i I lli, where the /,'s refer to the mean free paths of the individual
collision mechanisms. fHint: You may use a probabilistic argument. A similar
approach is employed in Section 4.5 in connection with the scattering of electrons
in metals.l

18. The text stated that the equations for the conservation of momentum and energy
for the scattering of a photon by a phonon, Eqs. (3.75) and (3.76), may also be
derived by treating the scattering process as a Doppler-shifted Bragg reflection.
Prove this statement.

19. Brillouin scattering of a monochromatic light beam, 7o:6328A, from water at
room temperature leads to a Brillouin sideband whose shift from the central line
is Av : 4.3 x tOe Hz at scattering angle of 90'. Knowing that the refractive index
of water is 1.33, what is the velocity of sound in this substance at room temperature?

20. Fill in the entries left vacant in Table 3.3.
21. Solve for the two polariton dispersion relations from (3.86), and show that the

dispersion curves are as shown in Fig. 3.45.
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Freedom has a thousand charms to show,
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4.1 INTRODUCTION

Metals are of great importance in our daily lives. Iron is used in automobiles,
copper in electrical wiring, silver and gold as jewelry, to give only a few examples.
These and other metals have played an exceedingly important role in the growth
of our technological, industrial world from early historical times to the present, and
will continue to do so in the future.

Metals are characterized by common physical properties: great physical
strength, high density, good electrical and thermal conductivities, and high optical
reflectivity, which is responsible for their characteristic lustrous appearance.
The explanation of these properties is important to the physicist who is interested
in understanding the microscopic structure of materials, and also to the
metallurgist and engineer who wish to use metals for practical purposes.

In this chapter we shall see that these properties are intimately related. They
can all be explained by assuming that a metal contains a large concentration of
essentially free electrons which are able to move throughout the crystal. In the
introductory sections we develop the concept of the free-electron model. We then
describe how electrons can carry a current in the presence of an electric field.
After that we shall calculate the specific heat of electrons, and show that agreement
with experiment can be obtained only if the electrons obey the Pauli exclusion
principle. This introduces the important concepts of the Fermi level and Fermi
surface, which are then employed to develop a more refined description of electrical
and thermal conduction in metals.

The effects of a magnetic field on the motion of free electrons will also be

discussed. We shall point out, in particular, how cyclotron resonance and
measurements of the Hall effect can yield basic information on metals.

Some of the most interesting properties are associated with metals when studied
in the optical frequency range. We shall discuss these in some detail, and show
that the free-electron model is capable of explaining most of the observed proper-
ties. We shall also discuss thermionic emission of electrons from metals. Then,
finally, we shall criticize the free-electron model, and discuss its limitations.

4.2 CONDUCTION ELECTRONS

What are the conduction electrons? Let us answer this question by an example,
using the simplest metal, Na, as illustration. Consider first an Na gas, which is a
collection of free atoms, each atom having I I electrons orbiting around the nucleus.
In chemistry these electrens are grouped into two classes: The l0 core
electrons which comprise the stable structure of the filled first and second shells
(Bohr orbits), and a oalence electron loosely bound to the rest of the system.
This valence electron, which occupies the third atomic shell, is the electron which
is responsible for most of the ordinary chemical properties of Na. In chemical
reactions the Na atom usually loses this valence electron-it being loosely
bound-and an Na* ion is formcd. This is what happens, for example, in NaCl,
in which the electron is transferred from the Na to the Cl atom. The radius
of the third shell in Na is 1.9 A.

138
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Let us now bring the Na atoms together to form a metal. In the metallic

state, Na has a bcc structure (Section 1.7), and the distance between nearest

neighbors is 3.7 A. We see from Fig.4.l that in the solid state two atoms
overlap slightly. From this observation it follows that a valence electron is no
longer attached to a particular ion, but belongs to both neighboring ions at the

same time. This idea can be carried a step further: A valence electron really belongs

to the whole crystal, since it can move readily from one ion to its neighbor, and

then the neighbor's neighbor, and so on. This mobile electron, which is called

a valence electron in a free atom, becomes a conduclion electron in a solid.

3s electron

Fig 4.1 Overlap of the 3s orbitals in solid sodium.

Ofcourse, each atom contributes its own conduction electron, and each ofthese

electrons belongs to the whole crystal. These are called conduction electrons because

they can carry an electric current under the action of an electric field. The

conduction is possible because each conduction electron is spread throughout
the solid (delocalized) rather than being attached to any particular atom. On

the contrary, well localized electrons do not carry a current. For example, the

core electrons in metallic Na-i.e., those centered around the nuclei at the lattice
sites-do not contribute anything to the electric current. The states of these

electrons in the solid differ little from those in the free atom.
In summary: When free atoms form a metal, all the valence electrons become

conduction electrons and their states are profoundly modified, while the core

electrons remain localized and their character remains essentially unchanged.

Just as valence electrons are responsible for chemical properties, so conduction

electrons are responsible for most of the properties of metals, as we shall see'

One can calculate the number of conduction electrons from the valence of
the metal and its density. Thus in Na the number of conduction electrons is the
same as the number of atoms, and the same is true for K, and also for the noble

metals Cu, Ag, Au, all of which are monovalent. In divalent metals-such as

Be, Mg, Zn, and Cd-the number of electrons is twice the number of atoms, and

so on. If the density of the substance is p., then the atom concentration is
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atomic weight and
by 2,, one finds the

N :2,

4.3

No is Avogadro's number.
electron concentrationi

@^l M')Ne, where M' is the
Denoting the atomic valence

i.

.5
Lyl

P^N t
M'

-,-- I" t!' : (4.1)

4.3 THE FREE-ELECTRON GAS

In the free-electron model, which is the basis of this chapter, the conduction
electrons are assumed to be completely free, except for a potential at the surface
(see Fig. 4.2), which has the effect of confining the electrons to the interior of the
specimen. According to this model, the conduction electrons move about inside
the specimen without any collisions, except for an occasional reflection from the
surface, much like the molecules in an ideal gas. Because of this, we speak of a
free-electron gas.

Fig.4.2 The potential in the free-electron model.

Let us look at the model a little more closely. It is surprising that it should
be valid at all, because, at first sight, one expects the conduction electrons to inter-
act with the ions in the background, and also with each other. These interactions
are strong, and hence the electrons ought to suffer frequent collisions; a picture ofa
highly nonideal gas should therefore emerge. Why then does the free-electron model
work? The answer to this fundamental question was not known to the workers
who first postulated the model. We now know the answer, but since it requires
the use of quantum mechanics, we shall postpone the discussion to Chapter 5.
Only a brief qualitative statement is offered here.

The reason why the interaction between the ions appears to be weak is as
follows. Although the electron does interact with an ion through coulomb
attraction, quantum effects introduce an additional repulsiue potential, which tends
to cancel the coulomb attraction. The net potential-known as the pseudopoten-
tial-turns out to be weak, particularly in the case of alkali metals. Another way
of approaching this is to note that, when an electron passes an ion, its velocity

t In this chapter we use the symbol N for electron concentration. The symbol n will be
reserved for the optical index of refraction, discussed in Section 4.11.
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increases rather rapidly in the ion's neighborhood (Fig. a.3), due to the decrease
in the potential. Because of this, the electron spends only a small fraction of its
time near the ion, where the potential is strong. Most of the time the electron is
far away in a region in which the potential is weak, and this is why the electron
behaves like a free particle, to a certain approximation.t We shall talk about the
electron-ion interaction again in Section 5.3, and the pseudopotential in Section
5.9.

Fig. 4.3 Variation of the local velocity of electrons in space.

We.come now to the interaction between the conduction electrons themselves,
and the reason for the weakness of this interaction. There are actually two reasons:
First, according to the Pauli exclusion principle, electrons of parallel spins tend to
stay away from each other. Second, even if their spins are opposite, electrons tend
to stay away from each other, in order to minimize the energy of the system. If two
electrons come very close to each other, the coulomb potential energy becomes
exceedingly large, and this violates the tendency of the electron system to have the
lowest possible energy. When these two considerations are carried out mathe-
matically, the following situation results: Each electron is surrounded by a
(spherical) region which is deficient of other electrons. This region, calledahole,
has a radius ofabout I A (the exact value depends on the concentration ofelectrons).
As an electron moves, its hole-sometimes known as a Fermi hole-moves with it.
We see now why the interaction between electrons is weak. If we examine the
interaction between two particular electrons, we find that other electrons dis-
tribute themselves in such a manner that our two electrons are screened from each
other. Consequently there is very little interaction between them.

Free-electron gas in metals differs from ordinary gas in some important respects.
First, free-electron gas is charged (in ordinary gases the molecules are mostly

t Note that the interaction between the electron and ion is very weak when the distance
between them is large because the ions are screened by other electrons. This means that
the interaction has the form of a short-range screened coulomb potential rather than a
long-range pure coulomb potential.
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neutral). Free-electron gas is thus actually similar to a plasma. Second, the con-
centration of electrons in metals is large: N- l02e electrons-m-3. By contrast,
the ordinary gas has about 1025 molecules-m-3. We may thus think of free-electron
gas in a metal as a dense plasma.

Our model of the electron (sometimes called the jellium model) corresponds
to taking metallic positive ions and smearing them uniformly throughout a sample.
In this way there is a positive background which is necessary to maintain charge
neutrality. But, because ofthe uniform distribution, the ions exert zero field on the
electrons; the ions form a uniform jelly into which the electrons move.

4.4 ELECTRICAL CONDUCTIVITY

The law of electrical conduction in metals-Ohm's law- is

I:VIR, (4.2)

where l is the current, V the potential difference, and R the resistance of the wire.
We want to express this law in a form which is independent of the length and
cross section of the wire, since these factors are, after all, irrelevant to the basic
physics ofconduction. Suppose that L and A are, respectively, the length and cross
section of the wire; then

IVLor:T' E:T' and R:;' (4.3)

where J is the curuent density (current per unit arca), E the electric field, and p
the electrical resistiuity. The inverse of the resistivity is called the conductiuity,
denoted by o. That is,

Io--.

When we substitute (4.3) and (4.4) into (4.2), we arrive at

(4.4)

J : oE, (4.s)

which is the form of Ohm's law which we shall use. Since the dimension of p is
ohm-m, o has the dimension ohm-1-m-1. Now we want to express o in terms
of the microscopic properties pertaining to the conduction electrons.

The current is due to the motion of the conduction electrons under the
influence of the field. Because these particles are charged, their motion leads
to an electrical current; the motion of neutral particles does not lead to an electrical
current. We say that it is the conduction electrons which are responsible for the
current because the ions are attached to and vibrate about the lattice sites. They
have no net translational motion, and hence do not contribute to the current. Let
us now treat the motion of the conduction electrons in an electric field.
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Consider one typical electron: The field exerts on the electron aforce - eE.

There is also africtionforce due to the collision of the electron with the rest of the

medium. Let us assume that this friction force has the form - m*ulr, where u

is the velocity of the electron and r is a constant called the collision time. Using
Newton's law, we have

du
m* -:dr - eE - ^*L,

(4.6)

(4 7)

where m * isthe effectiue mass of the electron.l We see that the effect of the collision,
as usual in friction or viscous forces, tends to reduce the velocity to zero. We are

interested in the steady-state solution; that is, where duldt :0. The appropriate

solution of (a.6) in this case is

exD: - 
- 

E.
m*

This, then, is the steady-state t)elocity of the electron (in discussions of friction it
is usually called the terminal uelocity). It is opposite to d because the charge on the

electroa is negative. 1l

aDrifting
electrons

(a) (b)

Rig. 4.4 (a) An electric field applied to a metallic wire. (b) Random versus drift motion
of electrons. Circles represent scattering centers.

We should make a distinction here between the two different velocities

associated with the electron: The velocity appearing in @.7) is called the drift
uelociry. This is superimposed on a much higher velocity or speed, known as the

random aelocity, due to the random motion of the electron. Just as in an ordinary
gas, the electrons have random motion even in the absence of the field. This is due

to the fact that the electrons move about and occasionally scatter and change

direction. The random motion, which contributes zero current, exists also in the

t The effective mass of the electron in a metal, denoted by rr*, is in general different from
the free-electron rnass, usually denoted by m or no. This difference is due to the interaction
of the electron with the lattice, as will be discussed in Section 5. I 5. The effective masses in
various metals are listed in Table 4.1.
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presence of a field; but in that case there is an additional net velocity opposite to
the field, as given by (a.7). The distinction between random and drift motions
is shown in Fig. 4.4. we shall denote the two velocities by u, and rd; it will be
shown later that 044 u,.

The current density J can be calculated from (4.7). Since there is a charge
( - Ne) per unit volume, and since each electron has a drift velocity given by
(4.7),it follows that the amount of charge crossing a unit area per unit time is

L\ r [Jo

, \

The current is parallel to the field. Comparing (4.8) with Ohm's law, (4.5), one
finds the following expression for the conductivity,

Ne2r

m*' (4.e)

which is the expression we have been seeking. we see that o increases as N
increases. This is reasonable because, as N (or the concentration) increases, there
are more current carriers. The conductivity o is inversely proportional to m*,
which is again expected, since the larger nr* is, the more sluggish the particle, and
the harder it is for it to move. The proportionality to r follows because r is
actually the time between two consecutive collisions, i.e., the mean free lifetime.
Therefore the larger z is, the more time the electron has to be accelerated by the
field between collisions, and hence the larger the drift velocity (4.7), and. also the
larger o is.

we can evaluate the conductivity o if we know the quantities on the right of
(4.9). We shall take m* to be the same as the free mass tno:9.1 x 10-31 kg.
Then we can calculate N as discussed in Section 4.2. There remains the collision
time r; this is a quantity which is difficult to calculate from first principles, so we
shall postpone discussing it until Section 4.5. For the time being, we can use (4.8)
and the measured value of o to calculate t. Table 4.1 gives a list of o, N, r and other
related quantities for various common metals. Note that o is about 5 x I07
(ohm-m)-r. Note in particular that r has a value of about l0-,as. This is an
extremely small time interval on the common time scale, and we shall see later
that important conclusions may be drawn from this.

The time z is also called the relaxation time. Tosee the reason for this, let us
suppose that an electric field is applied, long enough for a drift velocity ur,o to be
established. Now let the field be suddenly removed at some instant. The drift
velocity after this instant is governed by

r : (-Ne)uo: ( -Ne) (_ *r):+,

duDl/lx--:-m*-
dta

(4.8)
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which follows from (4.6) for E :0. The solution appropriate to the initial
condition is now

ua\t): Dd.o€ "', (4.10)

showing that uoQ) approaches zero exponentially with a characteristic time z.

This behavior is called a relaxation process. Since we found above that r is very
short, it flollows that ur(r) relaxes to zero very rapidly.

Table 4.1

Electrical Conductivities and Other Transport Parameters for Metals

Ele- o,
ment ohm lm-l

T, DT,

s m/s
E , E (obs.), m* lmo
eV eV

t,

Am-

7.0 7.0 1.0
5.5

5.5

9.4 l l.0 0.85
7.5

11.8

1.82

t.62

2.02
l.9l
1.74

5.88
6.21
4.55

1.69

1.38
0.10

Li
Na
K
Rb
Cs

Cu
Ag
Au

Zn
Cd
Hg

AI
Ga
In

t.07x 107 4.6x1028 0.9x l0-14 l.3x 106 ll0 4.7
2.1t 2.5 3. r l. r 350 3. r

1.39 1.3 4.3 0.85 370 2.t
0.80 r.l 2.15 0.80 220 1.8
0_ 50 0.85 0.7 5 160 1.5

3.7 1.2
2.5 1.2
1.9 l.l

3.65

0.67
l.t4

8.45
5.85
5.90

13.10

9.28

18.06

I 5.30
r 1.5

r 1.6
10.3

8.6

2.7 1.6 420
4.1 1.4 570
2.9 1.4 410

Values quoted are for metals at room temperature. The concentration is found by using the usual
chemical valences. The Fermi velocity urand Erare evaluated by using m* - ftio and the appro-
priate equation from Section 4.6. The Fermi energy E (observed) is theexperimentally determined
value as discussed in Chapter 6. The effective mass rn* is d^etermined by using the experimental
value Eo (observed) and the relation EF : (h2l2m*)Qrll\D''',Eq. @3q.

We shall now rewrite (a.9) in a form which brings out some aspects of the
physics more clearly. Since z is the time between two successive collisions, it may
be expressed as

I
ur

(4.r 1)

where / is the distance between two successive collisions and u, is the random
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velocity. In terms of these, o becomes

Nez I
- 

m*D,

4.4

Let us compare the results of applying this formula to metals and semiconductors.
For the former, o = 5 x 107 (ohm-m)-', as we have seen, while for the latter,
o - I (ohm-m)-'. The difference can be accounted for by (4. l2). First, in
semiconductors, N - 1020 m-3, as compared with N - l02e m-3 in metals.
This reduces o by a factor of 10-e for semiconductors. Second, u, in metals is of
theorder of theFermi uelocity (Section4.7), whichisabout l06m-s lwhileitisonly
about lOa m-s-' in semiconductors.t If we include the effects of both N and
u., we find the conductivity to be the right order of magnitude for semiconductors.

Let us compare the magnitudes of u, and ur. The former has a value of about
106 m-s-r; on the other hand, ud can be evaluated from (4.7). When we

substitute for e, r, and m* in (4.7) their values: e - l0-re coul, t: l0-ra s,

m* = lO-3o kg, and E = lO V/m, wefind that uo = l0-2 m-s- r. Thus ur/u, - l0 8,

a very small ratio indeed.
We can also find the microscopic expression for the joule heat. The

power dissipated as joule heat must be equal to the power absorbed by the
electron system from the field. Recalling from elementary physics that
the power absorbed by a particle from force ^F is Fu, where u is the velocity of the
particles, we see that the power absorbed by the electron system per unit volume is

(4.12)

(4.13)

P: NFua: N( - ""(-'#)
Ne2t

raz

**-

The origin of collision time

We have introduced r as collision time due to some friction force, the source of
which was not discussed. It seems natural to assume that the friction force is

caused by the collision of electrons with ions. According to this particular
model of collision, an electron, as it moves in the lattice, collides with ions, which
has the effect of slowing down the electron's momentum. This model turns out to
be untenable because it leads to many points of disagreement with experiment.
To cite only one: The mean free path /can be calculated from (4.11).lf we substitute
thevaluesr - l0-rasand D, - 106ffi-S-1, wefind that I - l0-8 m - 102 A. This
means that, between two collisions, the electron travels a distance of more than

t In semiconductors, random velocity is given by the usual expression u,-- (3kTl6*1r/z
due to thermal motion. If we substitute 7': 300"K and m* : mol5, a typical value for
the effective mass in semiconductors, we find that r,.: IOa m's-r.
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20 times the interatomic distance. This is much larger than one would expect if
the electron really did collide with the ions whenever it passed them. Especially
in close-packed structures, in which the atoms are densely packed, it is difficult
to see how the electrons could travel so far between collisions.

This paradox can be explained only by the use of quantum concepts. The
essence of the argument is as follows: We saw in Section 2.12 that, according to
quantum mechanics, an electron has a wave character. The wavelength of the
electron in the lattice is given by the deBroglie relation (Section A.l),

"h
f/l* 0,

(4.14)

It is well known from the theory of wave propagation in discrete structurest that,
when a wave passes through a periodic lattice, it continues propagating indefinitely
without scattering. The effect of the atoms in the lattice is to absorb energy from the
wave and radiate it back, so that the net result is that the wave continues without
modification in either direction or intensity. The uelocity of propagation, however,
ls modified. This is what happens in the case of an electron wave in a regular
lattice, except that in this case we are dealing with a matter wave.

We discussed the mathematical reason why a regular lattice does not scatter
a wave in some detail in Chapter 2. There we saw that the wave-be it x-ray,
neutron, or electron-does not scatter or diffract except when the Bragg condition
is satisfied. Save under this special condition, the conduction electron should not
be scattered by a regular lattice of ions at all.

There is a familiar example in optics: A light wave traveling in a crystal is

not scattered at all. The only effect the crystal has is to introduce the index of
refraction r so that the velocity in the medium is cf n. Therefore we see that, if
the ions form a perfect lattice, there is no collision at all-that is, / : oo-and hence

r : oo, which in turn leads to infinite conductivity. It has been shown, however,
that the observed / is about 102 A. The finiteness of o must thus be due to the
deviation of the lattice from perfect periodicity; this happens either because of
thermal vibration of the ions, or because of the presence of imperfections or foreign
impurities, as we shall see in the next section.

4.5 ELECTRICAL RESISTIVITY VERSUS TEMPERATURE

The electrical conductivity of a metal varies with the metal's temperature in a

characteristic manner. This variation is usually discussed in terms of the behavior
of the resistivity p versus 7. Figure 4.5 shows the observed curve for Na.
At T - 0'K, p has a small constant value; above that, p increases with 7, slowly at
first, but afterward p increases linearly with 7. The linear behavior continues essen-

t See, e.g., L. Brillouin, 1953,Waoe Propagation in Periodic Structures, New York: Dover
Press.
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tially until the melting point is reached. This pattern is followed by
(except as noted below), and usually room temperature falls into the
The linear behavior is readily verified experimentally, as you may
elementary physics.

x lo-3 x lo-2

0 20 40 60 80 100

T,'K
(b)

4.5

most metals
linear range.
recall from

(4.16)

0610141822
T,"K

(a)

Fig. 4.5 The normalized resistivity p(T)lpQ90"K) versus Tnfor Na in the low-temperature
region (a), and at higher temperatures (b). p(290) - 2.10 x l0-8 O-m.

We want to explain this behavior of p in terms of the formulas developed in
Section 4.4. Recallingthat p : o-1, and using (4.9), we have

m*l
Nez 'c

(4.1s)

We note from the interpretation of r in the last section that llt is actually

-equal to tne proUaUitity o nit time.
-ThrIS]-iT-r : l0- ros. then the electron undergoes l0ra collisions in one selon-'d.3ut
in Section 4.4 we saw that the electron undergoes a collision only because the lattice
is not perfectly regular. We group the deviations from a perfect lattice into two
classes.

a) Lattice vibrations (phonons) of the ions around their equilibrium position
due to thermal excitation of the ions.

b) AII static imperfections, such as foreign impurities or crystal defects. Of this
latter group we shall take foreign impurities as an example. Now the probabilities
of electrons being scattered by phonons and by impurities are additive, since these
two mechanisms are assumed to act independently. Therefore we may write

lll
'C Xph Xi

5

i4
od1
q

Uzq

where the first term on the right is due to phonons and the second is due to



4.5 Electrical Resistivity versus Temperature 149

impurities. The former is expected to depend on I and the latter on impurities, but
not on T. When (a.16) is substituted into (4.15), we readily find

,n't*|mxl
Y: Yi r Pon\i/' Ne2 T, ' Nez trn

We note that p has split into two terms: a term p, due to scattering by impurities
(which is independent of T), called the residual resistiuity. Added to this is another

term pon(T) due to scattering by phonons; hence it is temperature dependent,

and is called the ideal resistioity, in that it is the resistivity of a pure specimen,

At very low T, scattering by phonons is negligible because the amplitudes of
oscillation are very small ; in that region Q1 + oo, Ppr, + 0, and hence P: P;, a
constant. This is in agreement with Fig.4.5. As T increases, scattering by phonons

becomes more effective, and pon(T) increases; this is why p increases. When

T becomes sufficiently large, scattering by phonons dominates and p = P*(T).
In the high-temperature region, pon(T) increases linearly with T, as we shall shortly
show. This is again in agreement with experiment, as shown in Fig. 4.5. The state-

ment that p can be split into two parts, one of which is independent of T, is known
as the Matthiessen rule. This rule is embodied in (a. l7).

We expect that p, should increase with impurity concentrations, and indeed

it will be shown that for small concentrations p, is proportional to the impurity
concentration N,. We also remark that, for small impurity concentration,
ppny' pi, except at very low I. Let us now derive approximate expressions for
r, and ror, using arguments from the kinetic theory of gases. We shall assume, for
simplicity, that the collision is of the hard-spheres (billiard-ball) type.

Consider first the collision of electrons with impurities. We write

li
'L )

ur
(4.18)

after (4.11), where /, is the mean free path for collision with impurities. Given

that the scattering cross section of an impurity is a,-which is the area an

impurity atom presents to the incident electron-then, using an argument familiar
from the kinetic theory of gases, one may write

l;o;Ni: I

I

tY ioi

V" ft- dectiorr vcbolf

I *lo'$.

(4.17)

(4.1e)

It is expected that o, is of the same magnitude as the actual geometrical area of the

impurity atom. That is, that o; - lA2. (Calculations of the exact value of
o, require quantum scattering theory.) By substituting from (a.18) and (4.19)

into (4.17), one can find p;. One then sees that p, is proportional to N,, the

concentration of i mpurities.



Calculating zo6 is more difficult, but
still hold. In particular, one may write
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equations similar to (4.18) and (4.19)

I
lpn :

Nio. oion'
(4.20)

where N,on is the concentration of metallic ions in the lattice and o,on is the scatter-
ing cross section per ion. We should note here that oio. has no relation to the
geometrical cross section of the ion. Rather it is the area presented by the
thermally fluctuating ion to the passing electron. Suppose that the distance of
deviation from equilibrium is x;then the average scattering cross section is about

oion = fi(x2), (4.21)

where (x2) is the average of x2. The value (x2) can be estimated as follows:
Since the ion is a harmonic oscillator (Section 3.4), the average of its potential
energy is equal to half the total energy. Thus

where we used the formula for the energy of a quantum oscillator (Section 3.4).
The frequency co is either the Einstein or the Debye frequency, because in this
rough argument we can ignore the difference between these two frequencies.
We may introduce the Debye temperature 0 so that ha : k0. When we make
these substitutions into (4.17), we find that prn(T) can be written as

! o(*') : \E) : eP-

lrhz\ I
Ppn(l) '\kolt)Vr _ |

P1,n(T) x l*)',

(4.22)

(4.23)

where M is the mass of the ion. In the range T > 0, this can be written as

(4.24)

which is linear in 7, as promised, and in agreement with experiment.
In the low-temperature range, Eq. @.23) predicts that prn(?) will decrease

exponentially as e-01r. However, the observed decrease is as 7s. The reason
for this discrepancy is that we used the Einstein model, in which the motion of the
neighboring ions was treated independently. When the correlation between ionic
motions is taken into account, as in the Debye theory of lattice vibrations, one
obtains the ?s behavior.

Deviations from Matthiessen's rule are often observed, the best known being
the Kondo effect. When some impurities of Fe, for example, are dissolved
in Cu, p does not behave as in Fig. 4.5 at low 7. Instead p has a minimum at
low T. This anomalous behavior is due to an additional scattering of electrons
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by the magnetic moments on the impurity centers. Also, deviations from
Matthiessen's rule attributable to complications in the band structure of the
conduction electrons have been reported. We see from these two examples that the
behavior of p versus T at very low ? may be much more complex than that
implied by the simple statement of Mathiessen's rule.

4.6 HEAT CAPACITY OF CONDUCTION ELECTRONS

In the free-electron model the conduction electrons are treated as free particles
which obey the classical laws of mechanics, electromagnetism, and statistical
mechanics. We have already pointed out the difficulty of treating collisions in
this model, and also how one must appeal to quantum concepts in order to salvage
the model. Another difficulty arises in connection with the heat capacity
of the conduction electrons.

Let us calculate the heat capacity per mole for the conduction electrons on
the basis of the Drude-Lorentz model. lt is well known from the kinetic theory of
gases that a free particle in equilibrium at temperature T has an average energy of
I kT. Therefore the average energy per mole is

(E) : NA(+kT) : ZRT, (4.2s)

where No is Avogadro's number and R : Nek. The electrons' heat capacity
C ": AlEflAT. Therefore

C.:*R - 3cal/mole"K.

The total heat capacity in metals, including phonons, should then be

C:Cr1*C",

which, at high temperature, has the value

C : 3R + +R : 4.5R = 9cal/mole'K.

(4.26)

(4.27)

(4.28)

Experiments on heat capacity in metals show, however, that C is very nearly equal
to 3R at high T, as is the case for insulators. Accurate measurements in which
the contributions of electrons to total heat capacity are isolated show that C"
is smaller than the classical value |R by a factor of about 10-2. To explain this
discrepancy, we must once again turn to quantum concepts.

The energy of the electron in a metal is quantized according to quantunl
mechanics. Figure 4.6(a) shows the quantum energy levels. The electrons in the
metal occupy these levels. In doing so, they follow a very important quantum
principle, the Pauli exclusion principle, according to which an energy level can
accommodate at most two electrons, one with spin up, and the other with spin down.
Thus in filling the energy levels, two electrons occupy the lowest level, two more
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the next level, and so forth, until all the electrons in the metal have been
accommodated, as shown in Fig. a.6@). The energy of the highest occupied level
is called the Fermi energy (orsimply the Fermi) leuel. we shall evaluate the Fermi
level in Section 4.7 . A typical value for the Fermi energy in metals is about 5 eV.

(a) (b)

Fig. 4.6 (a) Occupation of energy levels according to the Pauliexclusion principle. (b) The
distribution function /(E) versus E, at T : 0"K and 7 > 0oK.

The situation described obtains in metals at T : 0"K. Even at the lowest
possible temperature, the electron system has a considerable amount of energy,
by virtue of the exclusion principle. If it were not for this principle, all the
electrons would fall into the lowest level, and the total energy of the system would
be negligible. This corresponds to the assertion, usually made in classical mechan-
ics, that as T - 0"K all motion ceases, and the energy vanishes. This assertion
clearly does not apply to the conduction electrons.

The distribution of electrons among the levels is usually described by the
distribution function, /(E), which is defined as rhe probability that the level E
is occupied by an electron. Thus if the level is certainly empty, then /(E) : 0,
while if it is certainly full, then f (E):1. In general, /(E) has a value berween
zero and unity.

It follows from the preceding discussion that the distribution function for
electrons at T :0"K has the form

f(E):
E<Eo

Eo<E
(4.2e)

That is, all levels below E. are completely filled, and all those above Eo are
completely empty. This function is plotted in Fig. 4.6(b), which shows the
discontinuity at the Fermi energy.

We have thus far restricted our treatment to the tentperature at absolute
zero. When the system is heated ( T > 0"K), thermal energy excites the electrons.
But this energy is not shared equally by all the electrons, as would be the case in the
classical treatment, because the electrons lying well below the Fermi level E,
cannot abs;orb energy. If they did so, they would move to a higher level, which would
be already occupied, and hence the exclusion principle would be violated.

4.6

1

t.
[0,

f(D
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Recall in this context that the energy which an electron may absorb thermally
is of the order kT ( : 0.025 eV at room temperature), which is much smaller
than Eo, this being of the order of 5 eV. Therefore only those electrons close to
the Fermi level can be excited, because the levels above Eo are empty, and hence

when those electrons move to a higher level there is no violation of the exclusion
principle. Thus only these electrons-which are a small fraction of the total
number-are capable of being thermally excited, and this explains the low electronic
specific heat (or heat capacity).

The distribution function f (E) at temperature T + 0'K is given by

This is known as the Ferryi-Dirac distributiag! This function is also plotted
in Fig. 4.6(b), which siihii#mTMuMantially the same as the distribution
at T :0'K, except very close to the Fermi level, where some of the electrons are

excited from below E. to above it. This is, of course, to be expected, in view of the
above discussion.f

One can use the distribution function (4.30) to evaluate the thermal energy and
hence the heat capacity of the electrons, but this is a fairly tedious undertaking,
so instead we shall attempt to obtain a good approximation with a minimum of
mathematical effort. Since only electrons within the range kT of the Fermi level

are excited, we conclude that only a fraction kT IEF of the electrons is affected.
Therefore the number of electrons excited per mole is about No(kT/Eo), and

since each electron absorbs an energy kT, on the average, it follows that the

thermal energy per mole is given approximately by

= N 
^(kT)2

EF

and the specific heat C. = aEtar is

I
f(E): ^tE-E.ttkr, 1g Tl

KT
C ^:2R'EF

(4.30)

(4.3r)

We see that the specific heat of the electrons is reduced from its classical value, which
is of the order of R, by the factor kTlEr. For E.:5eV and T:300"K, this

t For a derivation see, for example, M. Alonso and E. J. Finn, 1968, Fundamental Uniuer-
sity Physics, Volume III, Reading Mass.: Addison-Wesley.

{ Note that, in the energy range far above the Fermi energy, (E - EilkT } I, and hence
the Fermi-Dirac distribution function has the form /(E) : "E.lkrr-e1rr: constant x
e- Etkr, which is the classical-or Maxwell-Boltzmann-distribution. Thus in the high
energy range, i.e., in the tail of the Fermi-Dirac distribution, electrons may be treated by
classical statistical mechanics.
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factor is equal to l/200. This great reduction is in agreement with experiment, as
pointed out previously.

The so-called Fermi temperature 7., which is sometimes used in this context,
is defined as Eo : kT r, and the specific heat may now be written as

/^'/-\1-/

T
C ":2R- .

A typical value for To, corresponding to E. : 5 eV, is 60,000'K. Thus in order
for the specific heat of the electrons in a solid to reach its classical value, the
solid must be heated to a temperature comparable to 7o. But this is not possible,
of course, as the solid would long since have melted and evaporated ! At all
practical temperatures, therefore, the specific heat of electrons is far below its
classical value.

Another interesting conclusion from (4.31) is that the heat capacity C" of the
electrons is a linear function of temperature. This is unlike the lattice heat
capacity Cr, which is constant at high temperature, and proportional to T3 at
low temperature.

An exact evaluation of the electronic heat capacity yields the value

c.:+-+, (4.32)

which is clearly of the same order of magnitude as the approximate expression
(4.31).

4.7 T}IE FERMI SURFACE

The electrons in a metal are in a continuous state of random motion. Because
these electrons are considered to be free particles, the energy of an electron is
entirely kinetic, and one may therefore write

g:lm*u2,

where o is the speed of the particle. Now let us introduce the concept of
,,. uelocity space, whose axes are rs,, u, and u,. Each point in this space represents a

unique velocity-both in magnitude and direction.
Consider the conduction electrons in this velocity space. These electrons

have many different velocities, and since these velocities are random, the points
representing them fill the space uniformly, as shown in Fig. 4.7. Note, however,
that there is a sphere outside which all points are empty. The radius of this sphere
is the Fermi speed uo, which is related to the Fermi energy by the usual relation

E, : lm* u2o. (4.33)
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The reason why all points outside the sphere are empty is that they correspond to
energies greater than E., which are unoccupied at T :0'K, as discussed in Section

4.6. All the points inside the sphere are completely full. This sphere is known as

the Fermi sphere, and its surface as the Fermi surface.

Fig. 4,7 The Fermi surface and the Fermi sphere'

The Fermi surface (FS), which is very significant in many solid-state

phenomena-for example, transport properties-is not affected appreciably by

temperature. When the temperature is raised, only relatively few electrons are

excited from the inside to the outside of the Fermi surface, and these have very

little effect, as we have seen. Thus the FS has an independent, permanent identity,
and should be regarded as a real physical characteristic of the metal.

The Fermi speed uF is very large. If we substitute Eo : 5 eV in (4.33) and

calculate u., we findthat ue : (2Erlm*)Lt2 = (2 x 5 x 1.6 x l0-1e/9 x 10-31)1/2

- 106 m.s- 1, which is about one-hundredth of the speed of light. Thus electrons

at the FS are moving very fast. Furthermore, the Fermi speed, like the Fermi sur-

face, is independent of temperature.
The value of the Fermi energy is determined primarily by the electron

concentration. The greater the conceatration, the higher the topmost energy

level required to accommodate all the electrons (refer to Fig. 4.6a), and hence the

higher the Eo. Section 5.12 will show that E. is given,by ( J.enfit,l Uf

r-z ,p N.lVWl eb&"^, anfi,.#i.i
EF: #(3n2 7t11ztt. V u3st-,t @.34)

If one substitutes the typical value N: 1028 m-3, one finds that E, = 5 eV,

in agreement with our earlier statements. Table 4.1 lists the Fermi energies for vari-
ous metals.

The Fermi surface will be discussed in much greater detail in Section 5.12,

where the interaction of the electrons with the lattice is taken into account. We

shall find there that the FS may be distorted from the simple spherical shape

il
d.etult
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considered here, this distortion being engendered by the electron-lattice
interaction. For the time being, however, the free-electron model and its FS
satisfy our purpose.

4.8 ELECTRICAL CONDUCTIVITY; EFFECTS OF THE FERMI SURFACE

We discussed electrical conductivity in Section 4.3,in which we treated electrons
on a classical basis. How are the results modified when the FS is taken into account?

Let us refer to Fig. 4.8. In the absence of an electric field, the Fejmi sphere
is centered at the origin (Fig. a.8a). The various electrons are all moving-some
at very high speeds-and they carry individual currents. But the total current of the
system is zero, because, for every electron at velocity v there exists another eleetron
with velocity - v, and the sum of their two currents is zero. Thus the total current
vanishes due to pairwise cancellation of the electron currents.

(a) (b)

Fig. 4.8 (a) The Fermi sphere at equilibrium. (b) Displacement of the Fermi qphere
due to an electric field.

The situation changes when a field is applied. If the field is in the positive
r-direction,eachelectronacquiresadriftvelocity t)a: - @rlm*)€,as given by @.j).
Thus the whole Fermi sphere is displaced to the left, as shown in Fig. 4.8(b).
Although the displacement is very small, and although the great majority of the
electrons still cancel each other pairwise, some electrons-in the shaded crescent
in the figure-remain uncompensated. It is these electrons which produce the
observed current.

Let us estimate the current density: The fraction of electrons which
remain uncompensated is approximately uofuo. The concentration of these
electrons is therefore N(uolur), and since each electron has a velocity of approxi-
mately - u., the current density is given by

4.8

J - - e N(uolur)(-up) : N e uu,



4.9 Thermal Conductivity in Metals 157

which, on substitution of ud : - (erlm*)d, yields

N e2r.r : d:6,
where r. is the collision time of an electron at the FS. The resulting electrical

conductivity is therefore

N e2r,
o : -'----;-. (4.35)

This is precisely the same as the result obtained classically, except that t is replaced

by r.. The expression (4.35), which is only an approximate derivation, can be

corroborated by a more detailed and accurate statistical analysis.

The actual picture of electrical conduction is thus quite different from the

classical one envisaged in Section 4.4, in which we assumed that the current is

carried equally by all electrons, each moving with a very small velocity or. The

current is, in fact, carried by very few electrons only, all moving at high velocity.

Both approaches lead to the same result, but the latter is the more accurate. This

can be seen from the fact that only the collision time for electrons at the FS, zo,

appears in expression (4.35) for o.

If we substitute t. : /o/uo into (4'35), we find that

Ne2l,
" - m\o'

The only quantity on the right side which depends on temperature is the mean free

path /o. Since /.- l/7 at high temperature, as we saw in Section 4.5, it follows that

o - llT or p - ?, in agreement with our previous discussion of electrical

resistivity.
The importance of the FS in transport phenomena is now clear. Since the

current is transported by electrons lying close to the Fermi surface, these phenom-

ena are very sensitive to the properties, shape, etc., of this surface. The inner

electrons are irrelevant so far as conduction processes are concerned.

The fact that essentially the same answer may be obtained classically as

quantum mechanically (with proper adjustment of the collision time) encourages

us to use the simpler classical procedure. This we shall do wherever feasible in the

following sections.

4.9 THERMAL CONDUCTIVITY IN METALS

When the ends of a metallic wire are at different temperatures, heat flows from the

hot to the cold end. (Recall our discussion in Section 3.9 on thermal conductivity

in insulators.) The basic experimental fact is that the heat current Q-that is'
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the amount of thermal energy crossing a unit area per unit time-,is proportional
to the temperature gradient,

o: - K#,
where K is the thermal conductivity. In insulators, heat is carried entirely by
phonons, but in metals heat may be transported by both electrons and phonons.
The conductivity K is therefore equal to the sum of the two contributions,

K: K. * Kpt,

where K" and Kor, refer to electrons and phonons, respectively. In most
metals, the contribution of the electrons greatly exceeds that of the phonons,
because of the great concentration of electrons; typically Kpr, - l0-2 K".
This being so, the conductivity of the phonons will henceforth be ignored in this
section.

T, T">7, T,.ztl

Fig. 4.9 The physical basis for thermal conductivity. Energetic electrons on the left
carry net energy to the right.

The physical process by which heat conduction takes place via electrons is
illustrated in Fig. 4.9. Electrons at the hot end (to the left) travel in all directions,
but a certain fraction travel to the right and carry energy to the cold end.
Similarly, a certain fraction of the electrons at the cold end (on the right) travel
to the left, and carry energy to the hot end. These oppositely traveling electron
currents are equal, but because those at the hot end are more energetic on the
average than those on the right, a net energy is transported to the right, resulting
in a current of heat. Note that heat is transported almost entirely by those electrons
near the Fermi levels, because those well below this level cancel each other's
contributions. once more it is seen that the electrons at the FS play a primary role
in transport phenomena.

To evaluate the thermal conductivity K quantitatively, we use the formula
rK : i c,v/, used in Section 3.9 in treating heat transport in insulators. we recall
thar c, is the specific heat per unit volume, u the speed, and / the mean free path of
the particles involved. In the present case, where electrons are involved, c, is the
electronic specific heat and should be substituted from @.32); also R should be
replaced by Nk, since we are dealing here with a unit volume rather than a mole.
In addition, o and lshould be replaced by r;o and /o, since only electrons at the

4.9

1
EF
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Fermi levels are effective. Thus
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(4.36)

Noting that

I /n2Nk2T\K:3 ( ., )u,,,.

Eo: !m* u2,

and that lrlro: ?F, we can simplify this expression for K to

o _ n2N kzT\o

3m*

which expresses thermal conductivity in terms of the electronic properties of the

metal. Substituting the usual values of the electrons' parameters, one finds

K = 50 cal/m 'K-s. Table 4.2 gives the measured values of K for some metals, and

shows that theory is in basic agreement with experiment'

Table 4.2

Thermal Conductivities and Lorenz Numbers (Room Temperature)

FeNiCdAIAuAgCuNaElement

(, cal/m "K's
L, cal'ohm/s''K

33 94

5.2x l0-e 5.4
100

5.6

7l
5.9

50
4.7

24

6.3

t4 16

3.'7 5.5

Many of the parameters appearing in the expression for K were also included

in the 
"iprerrio, 

for electricaf conductivity o. Recalling thal o : Ne2rrlm*,

we readily establish that the rario KloT is given by

l- (4.37)

This Lorenz number L, because it depends only on the universal constants k and e,

should be the same for a//metals. Its numerical value is 5.8 x l0-e cal-ohm/t'K''
This conclusion suggests that the electrical and thermal conductivities are intimately

related, which is to be expected, since both electrical and thermal current are

carried by the same agent: electrons.
Table 4.2lists Lorenz numbers for widely differing metals, and we see that they

are close to the predicted values. The fact that the agreement is not exact stems

+(+)'
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from (a) the use of the rather simple free-electron model, and (b) the simplified
treatment used in calculating the transport coefficients o and K. A more refined
treatment shows that L does indeed depend on the metal under discussion.

4.10 MOTION IN A MAGNETIC FIELD: CYCLOTRON RESONANCE AND
THE HALL EFFECT

The application of a magnetic field to a metal gives rise to several interesting
effects arising from the conduction electrons. The cyclotron resonance and the
Hall effect are two which we shall use to investigate the propertiesof conduction
electrons.

Cyclotron resonance

Figure 4. l0 illustrates the phenomenon of cyclotron resonance. A magnetic field
applied across a metallic slab causes electrons to move in a counterclockwise
circular fashion in a plane normal to the field. The frequency of this cyclotron
moilon, known as the cyclotron frequenc.r', is given by

M{1= evll

TYlt0 : ob =) t,: !'
If we substitute the value of the free-electron mass, we findt--
r = 

\ -- 4- v": a"f2n :2.8BGHz,

g uvtit *
. \^, (4.38)
ITF=lonft
that = loIqouSS

: lT
where Bis in kilogauss. ThusforB : I kG,thecyclotron frequency is v. - 2.gGHz,
which is in the microwave range.

(a) O)

Fig. 4.I0 (a) cyclotron motion. (b) The absorption coefficient d versus (o.

suppose now that an electromagnetic signal is passed through the slab in a
direction parallel to B, as shown in the figure. The electric field of the signal acts
on the electrons, and some of the energy in the signal is absorbed. The rate of

@c
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absorption is greatest when the frequency of the signal is exactly equal to the
frequency of the cyclotron:

@: @r. (4.3e)

This is so because, when this condition holds true, each electron moves
synchronously with the wave throughout the cycle, and therefore the absorption
continues all through the cycle. Thus Eq. (a.39) is the condition for cyclotron
resonance. On the other hand, when Eq. (4.39) is not satisfied, the electron is
in phase with the wave through only a part of the cycle, during which time it
absorbs energy from the wave. In the remainder of the cycle, the electron is out of
phase and returns energy to the wave. The shape of the absorption curve as a
function of the frequency is shown in Fig. 4.10(b).r

Cyclotron resonance is commonly used to measure the electron mass in
metals and semiconductors. The cyclotron frequency is determined from the
absorption curve, and this value is then substituted in (a.38) to evaluate the
effective mass. The accuracy with which rz* is determined depends on the
accuracy of co" and -8. One can measure the cyclotron frequency @c very
accurately, particularly if one uses a laser beam, and therefore the accuracy of
measurement of m* is limited only bythe accuracy of measurement of the magnetic
field and its homogeneity across the sample.

The Hall effect

The physical process underlying the Hall effect is illustrated in Fig. 4.11.
Suppose that an electric current J, is flowing in a wire in the x-direction, and a
magnetic field B, is applied normal to the wire in the z-direction. We shall show
that this leads to an additional electric field, normal to both J, and 8,, that is, in
the y-direction.

To see how this comes about, let us first consider the situation before the
magnetic field is introduced. There is an electric current flowing in the positive
x-direction, which means that the conduction electrons are drifting with a velocity
v in the negative x-direction. When the magnetic field is introduced, the Lorentz
force F : e(v x B) causes the electrons to bend downward, as shown in the figure.
As a result, electrons accumulate on the lower surface, producing a net negative
charge there. Simultaneously a net positive charge appears on the upper surface,
because of the deflciency of electrons there. This combination of positive and

t If the peak of the absorption curve is to be clearly discernible, and hence the cyclotron
frequency accurately determined, the condition a3 ) | must be satisfied. This means
that the electron can execute many cyclotron cycles during the time it takes to make a
single collision. If this condition is not fulfilled, the curve of the collision time is so broad
that no unique frequency a.r. is distinguishable.

To make the quantity o)cr as large as possible, one raises the frequency co. by using
very high magnetic fields-about 50 kG- and increases the collision time by cooling the
sample to low temperatures, e.g., 10"K.



Metals I: The Free-Electron Model 4.to

Fig.4.l1 Origin of the Hall field and Hall effect.

negative surface charges creates a downward electric field, which is called the
Hall field.

Let us evaluate this Hall field. The Lorentz force F1 which produces the charge

accumulation in the first place is in the negative y-direction, and has the value

F r : €l)tB'

where the sign is properly adjusted so that F. is negative, in accordance with
the figure (recall that ux, being to the left, is negative). Now the field created by the
surface charges produces a force which opposes this Lorentz force. The
accumulation process continues until the Hall force completely cancels the Lorentz
force. Thus, in the steady state, Fs : F.:

' eE, : - e urB or Es: urB,

which is the Hall field. It is convenient to express this in terms of measurable
quantities, and for this purpose the velocity u, is expressed in terms of the
current density J, : N( - e)u,. This leads to

'"1

Hal!
field

The Hall field is thus proportional both to the current and to the magnetic field.
The proportionality constant-that is, Erf J,B-is known as the Hall constqnt,

and is usually denoted by Rr. Therefore

1En: - NrJ'B-

IRH: - Ne

(4.40)

(4.41)

The result (a.41) is a very useful one in practice. Since R, is inversely
proportional to the electron concentration N, it follows that we can determine
N by measuring the Hall field. In fact, this is the standard technique for determin-
ing,electron concentration. The technique is particularly valuable because, apart



4-tl The AC Conductivity and Optical Properties r63

from N, the only other quantity on which R, depends is the charge on the electron,

- e, which is a fundamental physical constant whose value is known very

accurately. Table 4.3 gives Hall constants for some of the common metals.

Table 4.3

Hall Constants (in volt m3/amp weber at Room Temperature)

Li Na

- I .7 x lo- 1o 
-2.50

Cu Ag Au Zn Cd Al
-0.55 -0.84 -0.72 +0.3 +0.6 -0.30

Another useful feature of the Hall constant is that its sign depends on the sign

of the charge of the current carriers. Thus electrons, being negatively charged,

lead to a negative Hall constant. By contrast, we shall see in Chapter 5 that the

Hall coefficient due to conduction by holes (which are positively charged) is

positive.t Thus the sign of R, indicates the sign of the carriers involved, which is
very valuable information, particularly in the case of semiconductors. For
example, the Hall constants for both Zn and Cd are positive (see Table 4.3),

indicating that the curreht in these substances is carried by holes.

The above analysis shows another interesting aspect of the transport process

in the presence of a magnetic field : The current itself, flowing in the x-direction,
is uninfluenced by the field. Therefore electrical resistance is independent of
magnetic field. This result, even though it is a negative one, is interesting because

it is somewhat unexpected. The Lorentz force of the field, whichtends to influence

"I,, is canceled by the Hall force, so that the electrons flow horizontally through
the specimen, oblivious of the field.

4.11 THE AC CONDUCTIVITY AND OPTICAL PROPERTIES

We discussed static electrical conductivity in Section 4.4. Now let us consider

electrical conductivity in the presence of an alternating-current field. This is

intimately related to the optical properties, as we shall see shortly; the term
"optical" here covers the entire frequency range, and is not restricted to the visible

region only.
Consider a transverse EM wave, propagating in the x-direction and polarized in

the y-direction. Its electric field may thus be expressed as

Er: Eoei(qx-@tl (4.42)

The equation of motion of a conduction electron in the presence of this ac field

f These holes, which are different from the Fermi holes mentioned in Section 4.3, will
be introduced in Section 5.17, and discussed at length in Chapter 6 on semiconductors.
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is the same as Eq. (4.6), which yields the steady-state solution

erl..@uY-- 
m*l-i(,rr 

t' (4.43)

The current density J, : N( - e)u, which, in light of Eq. (4.43), leads to the ac
conductivity,

4.tt

6: 'o1-iar
(4.44)

(4.46)

(4.47)

where oo : Ne2rlm* is the familiar static conductivity. The conductivity is now
a complex quantity 6 : o' * r'o", whose real and imaginary components are

, OO ,, OOCL)To:;;rrr o:1a-42 (4.45)

The real part o' represents the in-phase current which produces the resistive joule
heating, while o" represents the nl2 out-of-phase inductive current. An
examination of o' and o" as functions of the frequency shows that in the low-
frequency region, orll, o"40'. That is, the electrons exhibit an essentially
resistive character. Since t-:-J€tq this spans the entire familiar frequency
range up to the far infrtiCf In the high}equency region , | ( ar, however, which
corresponds to the visible and ultraviolet regimes, o' 4 o", and the electrons
evince an essentially inductive character. No energy is absorbed from the field in
this range, and no joule heat appears.

Let us look at the response of the electrons from another point of view. We
recall one of the Maxwell equations

VxH:rrff*r,
where the first term on the right represents the displacement current associated
with the polarization of the ion cores (subscript L for lattice), while the second
term, J, is the conuectiue cutrent of the conduction electrons. We may group the
two currents together thus: Writing J:68: (ol - i.;o)AEllt for an ac field,
we rewrite Eq. (4.46) as

vxH:zoE.
At'

where E is the total dielectric constant,

(4.48)

We now view the conduction electrons as part of the dielectric medium, which is
plausible, since they merely oscillate around their equilibrium positions without a

_ -oe:eL+l-
0)
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net translational motion. Substitution of 6 from (4.45) into (4.48) yields, for the

relative dielectric constant, Z, -- Zf eo,

(4.4e)

The complex index of refraction of the medium n is defined as

fi : zrtz : n 1- iK, tr = (Yr+ ilr) L 
(4.50)

where r is the usual refractive index and rc lhe extinclion cofficient. In optical

experiments, one does not usually measure n and rc directly, however, but rather the

reflectivity R and the absorption coefficient a. It can be shownt that these are

related to r and rc by the expressions

(4.s r )

(4.s2)

(n-l\2+rc2
(n+l)'+rc'

2at
A:-K,

c

where c is the velocity of light in vacuum. Equations (4.49) through, (4.52) describe

the behavior of the electrons in the entire frequency range, but their physical

contents can best be understood by examining their implications in the various

frequency regions.

a) The low-frequency region otr41. The above equations show that E, reduces to

the imaginary value Z, = iel,' in this region, and hence

(4.s3)

The inverse of the absorption coefficient 6: lla is known as the skin depth.

[Recall that the intensity I : I o€- 
n' 

, and hence I /4, is a measure of the distance of
penetration of the optical beam into the medium before the beam is dissipated.]

We can now evaluate 6 as

lrl = lrcl : (+)''' : (*)'''

(4.s4)

In practice,6 has a very small value (for Cu at rr; : 107 s-1, d : l00p), indicating

that an optical beam incident on a metallic specimen penetrates only a short dis-

tance below the surface.

f See any textbook on optics. Also note that Eq. (4.51) gives the reflectivity at normal
incidence.

6:(*)'''
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b) The high-frequency region l4rat.
ranges. Equation (4.49) shows that

It

l1J =
lrx6.o>r/o'r( q#)

a) $/ nol ^ o.1lh
This region ioVers the
E, reduces to the real

visible and ultraviolet
value -- 21.i1;

where

and where we have made use of the relation oe: neztf m*. The frequency o;, is
known as the plasma frequency; its significance will be revealed shortly. we can
see from Eq. (a.55) that the high-frequency region can now be divided into two
subregions: In the subregion (0 <o)p, e, ( 0, and consequently, from (4.50),
n:0. In view of (4.51), this leads to R: L That is, the metal exhibits perfect
reflectiuity. In the higher subregion @p 1 @, however, 0 a .,, and hence, by similar
reasoning, rc:0. In this range, therefore, d:0, 0 < R < l, and the metallic
medium acts like a nonabsorbing transparent dielectric, e.g., glass.

Fig. 4.12 The plasma reflection edge.

Figure 4.12 illustrates the dependence of reflectivity on frequency, exhibiting
the dramatic discontinuous drop in R at ro : ar, which has come to be known as the
plasma reflection edge. The frequency coe as seen from (4.56) is proportional to the
electron density N. In metals, the densities are such that loofalls into the high visible
or ultraviolet range (Table 4.4).

Table 4.4

Reflection Edges (Plasma Frequencies) and
Corresponding Wavelengths for Some Metals

K Rb

.,:.r,'(l - #),

- Nez,;: n**,

(4.55)

e,Le *roru
l/ _- - Cr^, (4.56)

IIV-I T

^ U {--'t'.n .-.

*\

NaLi

()) p

).e

1.22x 1016s-'
1550 A

0.89 0.593 0.55
2100 3150 3400
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Another significant property of rr-le can be deduced from the Maxwell equation

V'D : eY'E :0, (4.s7)

where D : <E is the familiar electric displacement field (see also Section 8.2).

[Note that, since the conduction electrons have been included in the dielectric

treatment, the so-called free charge has been set equal to zero]. This equation

admits the existence of a longitudinal mode, for which Y ' I + 0, provided only that

e : €o€r:0. (4.58)

It may be seen from (4.55) that e, vanishes only at @ -- a.lr. This mode, known as

the plasma mode,has been observed in metals, and received much attention in the

1950's and 1960's.

Note that, of the two components of the dielectric constant, the real part e',

represents the polarization of the charges induced by the field, while ei' represents

the absorption of energy by the system. We can see this because Eqs- (4.48) and

(4.49) imply that e',' - o', and the latter quantity is related to the energy

absorption, as pointed out earlier in this section.

4.12 THERMIONIC EMISSION

When a metal is heated, electrons are emitted from its surface, a phenomenon

known as thermionic emission. This property is employed in vacuum tubcs, in

which the metallic cathode is usually heated in order to supply the electrons

required for the operation of the tube.

Fig. 4.13 Thermionic emission.

Figure 4.13 shows the energy-level scheme for electrons in metals, according
to the free-electron model. At T : 0"K, all levels are filled up to the Fermi level

E., above which all levels are empty. Note also that an electron at Eo cannot escape

from the metal because of the presence of an energy barrier at the surface. The

height of this barrier, denoted by 4|, is known as the work function. This function
varies from one metal to another, but generally falls in the range 1.5-5 eV.

Electron
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At T : 0'K, no electrons can escape from the metal. But as the temperature
is raised, the levels above Eo begin to be occupied because of the transfer of
electrons from below E.. Even the levels above the barrier-i.e., at energies higher
than (Eo * d)-become populated to some extent. The electrons in these latter
levels now have enough energy to overcome the barrier, and they are the ones
responsible for the observed emission from the surface.

Let us now evaluate the current density for the emitted electrons, taking the
metal surface to be normal to the x-direction. Consider the number of electrons
whose velocity components fall in the range (u,, o, u") to (u, * du,, u, + du,
u, * du,). Their concentration is given by

4.12

(4.5e)

We have used the Maxwell-Boltzmann distribution because the electrons
involved in the emission process are all so high above the Fermi level that they
can be described very accurately by this distribution (Section 4.6). The density
of the emitted current due to these electrons is given by

dJ": - eu*d3N, (4.60)

d3N:*(r_*L)t''"-n*(o!+oi+ol)t2krdudurdu,.

as follows from the reasoning used in writing (4.8). To find the current density
due to all the electrons, we must sum over all the velocities involved. Thus

t
J, : ld J *

I

- - e r (#)''' ! [ I r,,- ^+(u2x+ 
Dtr+ oz) du xetudu,.

When we carry out this integration over all the velocities, the ranges for r:, and o,
are both ( - oo, m), but the range for u, is such that i**u', 2 Ee * @, because only
these electrons have sufficient velocity in the relevant direction to escape from the
surface. We have therefore

J* : -, N ( .1. \t'' f* r*"-^*utrt2krdt)*," \znPr l J,-.

where o,o : l2(Eo + Q)l**l't'. The integration may be readily effected, and leads
to

J x : AT2e-0lk'r (4.61)

where,4 : m*ek2 l2n2h3. The numerical value of .4 is 120 amp/cm2."K2. The
result (4.61), known as the Richardson-Dushman equation, holds good experi-
mentally. It shows that the current density increases very rapidly with tem-
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perature. Since @ ) kT for the usual range of temperature, the current density
essentially increases exponentially with temperature. Table 4.5 gives the work
functions for some metals, as determined from measurements of thermionic
emission.

Table 4.5

Work Functions, eV

4.13 FAILURE OF THE FREE-ELECTRON MODEL

We have discussed the free-electron model in great detail to show how invaluable
it is in accounting for observed metallic properties. Nevertheless, the model is
only an approximation, and as such has its limitations. Consider the following
points.

a) The model suggests that, other things being equal, electrical conductivity is
proportional to electron concentration, according to (4.9). No definite conclusion
to the contrary can be drawn from the data (Table 4.1), since we do not know
the other quantities in the formula (because these were determined from o), but it is

surprising that the divalent metals (Be, Cd, Zn, etc.), and even trivalent metals
(Al, In), are consistently less conductive than the monovalent metals (Cu,
Ag, and Au) despite the fact that the former have higher concentrations of
electrons.

b) A far more damaging testimony against the model is the fact that some metals
exhibit positive Hall constants, for example, Be, Zn, Cd (Table 4.3). The
free-electron model always predicts a negative Hall constant.

c) Measurements of the Fermi surface indicate that it is often nonspherical in
shape (Section 5.12). This contradicts the model, which predicts a spherical FS.

These difficulties, and others which need not be enumerated here, can be

resolved by a more sophisticated theory which takes into account the interaction
of the electrons with the lattice. We shall take up this subject in the following
chapter.

SUMMARY

Conduction electrons

When atoms are packed together to form a metal, the oalence electrons detach
from their own atoms and move throughout the crystal. These delocalized electrons

PICsAgNiTaw

5.31.84.84.64.24.5
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are the conduction electrons. Their concentration is given by

n, -, 
P^Ne

l\ 
- 

Lo-;

where Zu is the atomic valence, and other symbols have their usual meanings.

Electrical conductivity

The electrical conductivity of conduction electrons, treated as free particles with a
collision time z, is

Ne2r
"- m*'

Comparing this result with experimental values shows that the collision time is
extremely short, of the order of l0-14 s at room temperature.

When one evaluates the collision time, one finds that a perfect lattice produces
no scattering. Only lattice vibrations or imperfections lead to scattering, and
hence determine the collision time. Treating lattice vibrations and static
impurities in the crystal as independent collision mechanisms, one finds that the
electrical resistivity p is

P:Ppn(T)*Pi,

where po6 - T is the resistivity due to collisions caused by lattice vibrations or
phonons, and p; is the residual resistivity due to collision of the electrons with
impurities within the crystal.

Thermal conductivity

The thermal conductivity of metals is given by the expression

K : LTo,

where L, a constant known as the Lorenz number, is

L:

Heat capacity

Experiments show that the heat capacity of conduction electrons is much smaller
than predicted by classical statistical mechanics. This is explained on the basis of
the exclusion principle. All the energy levels up to the Fermi level are occupied,
and when the system is heated, only those electrons near the Fermi level are excited.
The electron heat capacity per mole is

tt2 krC:-R-'28.

+eY
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The Fermi energy

The Fermi energy is determined by the concentration of electrons. Its value is

h2
E, : ;*.(3n2 t'11zrt.

Cyclotron resonance and the Hall effect

When a magnetic field is applied to a solid, the electrons execute a circular
cyclotron motion. The cyclotron frequency is

eB
@, - --i,

and its measurement enables one to determine the effective mass of the electron.
When a magnetic field is applied to a current-carrying wire, it produces an

electric field normal to both the current and the magnetic field. This electric
field, or Hallfield, has the form E^: RBJ, where the Hall constant is

I
D,.r_ _ 

IVr.

Measuring R yields the electron concentration N.

Optical properties

The complex conductivity of conduction electrons is

z: oo
" l+iat'

where oo is the static conductivity. The form of d indicates that the electrons have

a mixed resistive-inductive character. The resistive character dominates in the
low-frequency region a < 1lt, while the inductive character dominates in the high-
frequency region a> 1lr. Because z is very short, the former region includes all
frequencies up to and including microwaves.

The dielectric constant for the whole crystal, including both the lattice and the
electrons, is

;(r,r):'r+i6,

Once we know the dielectric constant, we can determine the reflective and
absorptive properties of the crystal. The following frequency regimes can be

delineated.
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a) Low'-frequency region,ot 4llt. The wave penetrates the metal a short distance,
known as the skir depth, whose value is

6 _ (2eoc2\tt2
\ ooat I

The reflectivity in this frequency range is very close to unity.

b) Intermediate-frequency region llr 4o < arr. The wave is evanescent in this
region, and the metal exhibits total reflection.

c) High-frequency region @p I @. The metal acts as a regular dielectric, through
which the wave propagates without attenuation.

The plasma mode

This mode refers to the longitudinal oscillation of the electron system. Its frequency
is equal to the plasma frequency ar: (Ne2 f ,rm*)'/'.

Thermionic emission

When a metal is heated, some electrons at the tail end of the Fermi distribution
acquire sufficient energy to escape from the surface of the metal. The thermionic
current density is

J : AT2e-olkr,

where .4 is a constant and $ is the work function of the metal.
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QUESTIONS

1. Explain the distinction between localized and delocalized (or core) electrons in solids.

Describe one experimental method of testing the difference between the two types.

2. The text said that the conduction electrons are better described as a plasma than an

ordinary gas. In what essential ways does a plasma differ from a gas?

3. Trace the steps which show that the electrical current ol the electrons is in the same

direction as the field, even though the particles are negatively charged.

4. Assuming that the conduction electrons in Cu are a classical gas, calculate the rms

value of the electron speed, and compare the value obtained with the Fermi velocity
(see Problem l).

5. Explain why electrons carry a net energy but not a net current in the case of thermal

conduction.
6. Show that if the random velocity of the electrons were due to the thermal motion

of a classical electron gas, the electrical resistivity would increase with the temperature

as T312 .

7. lna cyclotron resonance experiment, part of the signal is absorbed by the electrons.

What happens to this energy when the system is in a steady-state situation?
8. Explain qualitatively why the Hall constant Rs is inversely proportional to the

electron concentration N.
9. Demonstrate qualitatively that the Hall constant for a current of positive charges is

positive.
Equation (4.54) shows that the skin depth 6 becomes infinite at zero frequency'

Interpret this result.
Describe the variation of skin depth with temperature.

According to the discussion in Section 4.1 1, free electrons make a negative contribution
to the dielectric constant, while bound electrons make a positive contribution.
Explain this difference in electron behavior.

PROBLEMS

l. Copper has a mass density p^:8.95g/cm3, and an electrical resistivity P: 1.55x
l0-8ohm-m at room temperature. Assuming that the,effective mass ra*: rzo,

calculate:
a) The concentration of the conduction electrons
b) The mean free time t
c) The Fermi energY Eo

d) The Fermi velocitY uo

e) The mean free path at the Fermi level /.
2. Derive Eq. (4.19) for the mean free path.

3. The residual resistivity for I atomic percent of As impurities in Cu is 6.8x l0-8
ohm-m. Calculate the cross section for the scattering of an electron by one As

impurity in Cu.
4. Sodium has a volume expansion coefficient of 15x l0-soK-l. Calculate the per-

centage change in the Fermi energy Eo as the temperature is rqised from 7: OoK to
300"K. Comment on the magnitude of the change. D(v = f, (BYif

5. Repeat Problem 4 for silver, whose volume coefficient of expansioh-iS 18.6x l0-"
oK- l.

q. ((3;) A = #tg tN)'lt, ln?oh \*'n1 ,hr tro\,r'nt ergcrnlr, r,'I'it tk-{"Fa(

/Q. erl,:i) ft("n} r-z tr ow"= ( FJ)*- (Ej)t ,1 ta^,/kP(ok'1 w^'"o/,

10.

11.

12.
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6. Calculate the Fermi temperatures 7". for Cu, Na, aid Ag. AIso calculate the ratio

TlTrin each case for ?n:300'K. The effective masses of Cu and Na are 1.0 and
1.2 times rno.

7. Estimate the fraction of electrons excited above the Fermi level at room temperature
for Cu and Na.

8. Calculate the ratio of electrons to lattice heat capacities for Cu at T : O.3o , 4o , 20" ,
77",and 300'K. The lattice heat capacity of Cu is given in Fig.3. 10.

9. Plot the Fermi-Dirac function/(.8) versus the energy ratio Ef Eo at room temperature
7 : 300'K. (Assume E independent of temperature.) If Er : 5 eV, determine the
energy values at which / (E): 0.5, 0.7, 0.9, and 0.95.

10. Cyclotron resonance has been observed in Cu at a frequency of 24GHz. Given that
the effective mass of Cu is rz* : mo, what is the value of the applied magnetic field?

ll. Using Table 4.3, giving the Hall constants, calculate the electron concentrations in
Na, Cu, Cd, Zn, Al, and In. Compare these results with those given in Table 4.1.

12. a) Usingtheappropriatevalues of ey,,,oe, andzforAgatroomtemperature,calculate
the refractive index n and the extinction coefficient rc for Ag,andplot theseversus
co on the logarithmic scale.

b) Evaluate the optical reflectivity and plot it versus a,t. (Data on Ag are found in
Table 4.1.) The values of rr.r may be confined to the range co < 1016 s-r.

13. Evaluate the skin depth for Cu at room temperature, and plot the results versus the
frequency on a logarithmic scale. (Data are given in Table 4. l.) The value of a-l may
be confined to co < 1013 s-1.

14. Carry out the integration which leads to (4.61).
I5. Calculate the density of the thermionic emission current in Cs at 5OO, 1000, 1500,

and 2OOO.K.

5= (ftfi)i, cczorJl^g t..,o T,Ae- 4.t 6e^= .s-86 v-(01 ohn-'rn')

= t*#ff#T = oo&, /(Nt vh

{ol tr= frgo.Crr-*,^,qw = -l.o{' *t,r,t
J J 'U'-

€F = kslf Eo = S Q7'N;'t) 7t = Zr#f tlt^ritli
f-- Ia^(r- +. I rVtrvo';s )J x/qrl,'^^! funv Ef , Ff \lta) =Jst1'-

6

1 Frr EF = ftrl ,

' kJ;oo = o-l)t
er-)fi*z

{E? =

fu, L+-t")

\

e-"(etet^t) 4 
)

*= * t hrLnL!#,,l



CHAPTER 5 METALS II: ENE,RGY BANDS IN
SOLIDS

5.1 lntroduction
5.2 Energy spectra in atoms, molecules, and solids

5.3 Energy bands in solids; the Bloch theorem

5.4 Band symmetry in k-space; Brillouin zones

5.5 Number of states in the band

5.6 The nearly-free-electron model

5.7 The energy gap and the Bragg reflecfion

5.8 The tight-binding model
5.9 Calculations of energY bands

5.10 Metals, insulators, and semiconductors

5.11 Density of states

5.12 The Fermi surface

5.13 Velocity of the Bloch electron

5.14 Electron dynamics in an electric field

5.15 The dynamical effective mass

5.16 Momentum, crystal momentum, and physical origin

of the effective mass

5.17 The hole
5.18 Electrical conductivitY

5.19 Electron dynamics in a magnetic field: cyclotron
resonance and the Hall effect

5.20 Experimental methods in determination of band structure

5.21 Limit of the band theory; metal-insulator transition

On the surface there is infinite uariety
of things; at base a simplicity of cause-

RalPh Waldo Emerson



5.1 INTRODUCTION

ln Chapter 4 we talked about the motion of electrons in solids, using the free-
electron model. This model is oversimplified, however, because the crystal potential
is neglected. But this potential cannot be entirely disregarded if one is to explain
the experimental results quantitatively. In addition, some effects cannot be ex-
plained at all without taking this potential into account, as we pointed out at the end
of Chapter 4. The present chapter therefore treats the influence of the crystal
potential on the electronic properties of solids.

In the first part of the chapter we shall consider the energy spectrum of an
electron in a crystal. we shall see that the spectrum is composed of continuous
bands,unlike the case for atoms, in which the spectrum is a set of discrete levels.
We shall discuss the properties and the corresponding wave functions of these bands
in detail, and develop a useful criterion for distinguishing metals from insulators
in this band model. Then we shall deal with the density of states and the Fermi
surface, which serve as useful characteristics of a solid.

The electrons in a crystal are in a constant state of motion. Formulas are
developed for calculating the velocity of an electron, and its effective mass. We shall
study the effects of an electric field on the motion of an electron, and then derive
an expression for the electron's electrical conductivity. Although this expression
reduces to the one derived previously in chapter 4 under the appropriate cir-
cumstances, the form we shall develop here is more general, and brings out more
clearly the physical factors influencing conductivity.

Cyclotron resonance and the Hall effect will also be discussed again and we shall
show how these phenomena may be used to obtain information on a solid.

The last section will deal with the limitations of the energy-band model, and
the metal-insulator transition.

5.2 ENERGY SPECTRA IN ATOMS, MOLECULES, AND SOLIDS

The primary purpose of this section is to describe qualitatively the energy spectrum
of an electron moving in a crystalline solid. It is helpful, however, to begin the
discussion by considering the spectrum of a free atom, and see how this spectrum
is gradually modified as atoms are assembled to form the solid.

Let us take lithium as a concrete example. Consider a free lithium atom:
The electron moves in a potential well, as shown in Fig. 5.1(a). when we solve the
Schrcidinger equation, we obtain a series of discrete energy levels, as shown. As
in the case of the hydrogen atom, these levels are denoted by ls, 2s,2p, etc. The
lithium atom contains three electrons, two of which occupy the I s shell (completely
full), and the third the 2s subshell.

Now consider the situation in which two lithium atoms assemble to form
the lithium molecule Li2. The potential "seen" by the electron is now the double
well shown in Fig. 5.1(b). The energy spectrum here is comprised of a set of
discrete doublets: Each of the atomic levels-that is, the ls, 2s,2p, etc.-has split
into two closely spaced levels. Because of the close generic relation between the
atomic and molecular levels, we may also speak of the ls, 2s,2p, etc., molecular
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Fig. 5.1 The evolution of the energy spectrum of Li from an atom (a), to a molecule (b)'

to a solid (c).

energy levels, recognizing that each of these is, in fact, composed of two sublevels.

We can see why the atomic level splits into two, and only two, sublevels in a

diatomic molecule from our treatment of the hydrogen molecule ion Hlr (Section

A.7). The reason is essentially as follows: When the two Li atoms are far apart,

the influence of one atom on an electron in the other atom is very small, and may be

treated as a perturbation. In this approximation, the unperturbed levels ls, 2s'

etc., are each doubly degenerate, because an electron in a ls level, for instance, may

occupy that level in either atom; and since there are two atoms, the energy is thus

doubly degenerate. This degeneracy is strictly valid only if the interaction between

the atoms is neglected entirely. When this interaction is included, the double

degeneracy is lifted, and each level is split into its two sublevels. The molecular

orbitals corresponding to these sublevels are usually taken to be the symmetric

and antisymmetric combinations of the corresponding atomic orbitals, as in the case

of Hlr (Section A.7).
Each molecular level can accommodate at most two electrons, of opposite

spins, according to the exclusion principle. The Li2 molecule has six electrons;

four occupy the ls molecular doublet, and the other two the lower level of the 2s

doublet.
According to this discussion, the amount of splitting depends strongly on the

internuclear distance of the two atoms in the molecule. The closer the two nuclei,

the stronger the perturbation and the larger the splitting. The splitting also depends

on the atomic orbital: The splitting of the 2p level is larger than that of the 2s

level, which is larger still than that of the ls level. The reason is that the radius

of the ls orbital, for instance, is very small, and the orbital is therefore tightly bound

to its own nucleus. It is not greatly affected by the perturbation. The same is not

true for the 2s and 2p orbitals, which have larger radii and are only loosely bound to

their own nuclei. It follows that, generally speaking, the higher the energy, the

greater the splitting incurred.
The above considerations may be generalized to a polyatomic Li molecule

of an arbitrary number of atoms. Thus in a 3-atom molecule, each atomic level is

split into a triplet, in a 4-atom molecule into a quadruplet, and so forth. The lith-
ium solid may then be viewed as the limiting case in which the number of atoms has

(b)(a)

Solid

2p

2s
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become very large, resulting in a gigantic lithium molecule. what has happened
to the shape of the energy spectrum? we can answer this on the basis of the above
discussion: Each of the atomic levels is split into N closely spaced sublevels, where
N is the number of atoms in the solid. But since N is so very large, about 1023,
the sublevels are so extremely close to each other that they coalesce, and form
an energy band. Thus the ls,2s, 2p levels give rise, respectively, to the ls, 2s, and
2p bands, as shown in Fig. 5.1(c).

To illustrate how close to each other the sublevels Iie within the bands, consider
the following numerical example. Suppose that the width of the band is 5 ev
(a typical value). The energy interval between two adjacent levels is therefore of
the order 5/1023:5 x 10-23 ev. Since this is an extremely small value, the
individual sublevels are indistinguishable, so we can consider their distribution as a
continuous energy band.

To recapitulate, the spectrum in a solid is composed of a set of energy bands.
The intervening regions separating these bands are energy gaps-i.e., regions of
forbidden energy-which cannot be occupied by electrons. Contrast this situation
with that of a free atom or a molecule, in which the allowed energies form a set
of discrete levels. This broadening of discrete levels into bands is one of the most
fundamental properties of a solid, and one we shall use often throughout this book.

The width of the band varies, but in general the higher the band the greater its
width, because, as we recall from the case of molecules, a high energy state
corresponds to a large atomic radius, and hence a strong perturbation, which is the
cause of the level broadening in the first place. By contrast, low energy states
correspond to tightly bound orbitals, which are affected but slightly by the perturba-
tion.

a,

Distance of nearest neighbors, ao

Fig. 5.2 The broadening of the 2s and 2p levels into energy bands in a lithium crystal
(ao is the Bohr radius, 0.53 A).
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Figure 5.2 shows 2s and 2p bands for metallic lithium plotted as functions of
the lattice constants a. Note that the band widths increase as a decreases, as is

to be expected, since the smaller the interatomic distance the greater the perturba-

tion. Note also that, for a < 6as, the 2s and 2p bands broaden to the point at

which they begin to overlap, and the gap between them vanishes entirely.
The crystal orbitals-i.e., the wave functions describing the electronic states

in the bands-extend throughout the solid, unlike the atomic orbitals, which are

localized around particular atoms, and decay exponentially away from those

atoms. ln this sense, we refer to solid wave functions as delocalized orbitals.

We shall see shortly that these orbitals actually describe electron waves traveling

in the solid. The concept of delocalization is a basic one. It is responsible for all

electronic transport phenomena in solids, e.g., electrical conduction.
We have already presented many concepts related to electronic states in a

crystalline solid. In the following sections we shall place these concepts on a firmer,

more mathematical basis by writing the Schrddinger equation and discussing the

properties of its solution. This will also lead to many interesting and novel con-

cepts which we shall discuss as we go along.

5.3 ENERGY BANDS IN SOLIDS; THE BLOCH THEOREM

The Bloch function

The behavior of an electron in a crystalline solid is determined by studying the

appropriate Schrodinger equation. This may be written as (Section A.2),

(s.l)

where Iz(r) is the crystal potential "seen" by the electron, and r/(r) and E are,

respectively, the state function and energy of this electron. The potential I/(r)
includes the interaction of the electron with all atoms in the solid, as well as its

interaction with other electrons (we will get back to this later). At this point we make

the important observation that the potential lz(r) is periodic. It has the same

l- *v' + rzt.l] /(r) : E,t,G),

Fig.5.3 The crystal potential seen by the electron.
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translational symmetry as the lattice, that is,

Z(r+R):V(r), (s.2)

where R is a lattice vector. Such a potential is shown schematically in Fig. 5.3.
According to the Bloch theorem, the solution of (5.1) for a periodic potential

Iz(r) has the form

/u(r) : eik''uu(r), (5.3)

where the function rzu(r) has the same translational symmetry as the lattice, that is,

uy(r*R):au(r). (5.4)

The vector k is a quantity related to the momentum of the particle, as we shall see.
we shall now give a physical proof of the Bloch theorem. Anyone interested

may pursue the more rigorous treatment in the references cited in the bibliography,
e.g., Seitz (1940). The proof presented here is chosen to bring out the physical
concepts with a minimum of mathematical detail. Returning to Eq. (5.1), it is always
possible to write its solution as

f(r): f(r)u(r),

where a(r) is periodic, as in (5.4), and where the function /(r) is to be determined.
However, since the potential z(r) is periodic, one requires that all observable
quantities associated with the electron also be periodic. In particular, the quantity
l/(r) I ', which gives the electron probability, must also be periodic.t This imposes
the following condition on /(r):

lf?+R)l':lfG)l''
The only function which satisfies this requirement for all R's is one of the
exponential form e'k''. This demonstrates that the solution of the Schrddinger
equation has the Bloch form (5.3), as we set out to prove.

The state function ry'* of the form (5.3), known as the Bloch function, has
several interesting properties.

a) It has the form of a traveling plane wave, as represented by the factor eik'',
which implies that the electron propagates through the crystal like a free particle.
The effect of the function rzu(r) is to modulate this wave so that the amplitude
oscillates periodically from one cell to the next, as shown in Fig. 5.4, but this does
not affect the basic character of the state function, which is that of a traveling wave.

flt is well known in quantum mechanics that the quantity lrl(.)l' ls the probability density,
and as such is physically measurable. However, the wave function ry'(r) itself is nor
physically measurable.
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Fig. 5.4 The Bloch function or wave. The smooth curve represents the wave eik' which
is modulated by the atomicJike "wiggly" function u1(r).

If the electron were indeed entirely free, the state function ry'* would be given

by (llV rt2) eik'r , that is, the function uu(r) is a constant. But the electron is not free,

since it interacts with the lattice, and this interaction determines the special

character of the periodic function u1.

b) Because the electron behaves as a wave of vector k, it has a deBroglie wavelength

), : 2nlk, and hence a momentum

P: ftk, (5.s)

according to the deBroglie relation. We shall call the vector the crystal momentum

of the electron, and discuss its properties in later sections-

-e; 
fne Bloch function ry'1 is a crystal orbital, as it is delocalized throughout the solid,

and not localized around any particular atom. Thus the electron is shared by the

whole crystal. This is, of course, consistent with property (a) above, in which we

described the electron as a traveling wave. Note also that the function ry'1is so chosen

that the electron probability distribution lt*l' is periodic in the crystal.

In the above discussion, we have stressed the analogy between a crystalline

electron and a free one; this is very helpful in understanding the properties of
electrons in crystals. One should not, however, jump to the conclusion that the

two are identical in their behavior. The Bloch-function electron exhibits many

intriguing properties not shared by a free electron, properties which result from the

interaction of the electron with the lattice'

Energy bands

The discussion has thus far centered on the state function; nothing has been said

about energy. We now turn to the energy spectrum which results from solving

the Schrodinger equation (5.1). Toward this end, we rewrite this equation in a

different form. Substituting for ry'l from the Bloch form (5.3), and eliminating the

factor e'k'', after performing the necessary operations, we arrive at

(s.6)

which is actually the wave equation for the periodic function a*(r). This is an

eigenvalue equation, like the Schrddinger equation, and can therefore be solved in a

l-L(v+,k)2+l2m
1

Iz(r) | uu(r) : Ek /k(r),
_t
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similar manner. Note that the operator in the brackets is an explicit function of k,
and hence both the eigenfunctions and eigenvalues depend on k, a fact we have
already used explicitly by labeling them with the vector k. An eigenvalue equation
leads, however, not to one but to many solutions. For each value of k, therefore,
we find a large number of solutions, giving a set of discrete energies Er,k, E2,u, . . . ,
as shown in Fig. 5.5.t Since these energies depend on k, they uury 

"ortinrously 
as

k is varied over its range of values. Each level leads to an energy band, as shown
in the figure. we shall henceforth write the energy eigenvalue as E,(k), and refer
to the subscript n as the band index, for obvious reasons.

Third band

Fig.5.5 Energy bands and gaps. The cross-hatched regions indicate energy gaps.

The number of bands is large-usually infinite-but only the lowest ones are
occupied by electrons. Each band covers a certain energy range, extending from
the lowest to the highest value it takes when plotted in k-space. The energy intervals
interspersed between the bands constitute the energy gaps, which are forbidden
energies that cannot be occupied by electrons.

Note also that, since k is a vector quantity, a diagram such as Fig. 5.5 is a
plot ofthe energy bands in only one particular direction in k-space. Ifthese bands
were plotted in a different k-direction, their appearance would change, in general.
A complete representation ofthe bands therefore requires one to specify the energy
values throughout the k-space. often this is accomplished, at least partially, by
drawing the energy contours in k-space for the various bands, as we shall do in the
following sections. We shall also show that the bands satisfy certain important
symmetry relations that enable us to restrict our considerations to relatively small
regions in k-space.

The energy bands which have emerged from this analysis are the same as
those discussed in the previous section, and in fact we can establish a one-to-one
correspondence between the energy bands and the atomic levels from which they
arise. The particular significance of the present results is that here we can classify

t In other words, the energy is a multivalued function of k.
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the electron states within the band according to their momentum as given by k.

Such a classification, which we shall find extremely useful, was not evident from
the last section.

The crystal potential

We turn now to the crystal potential lz(r) which acts on the electron. This
potential is composed of two parts: the interaction of the electron with the ion
cores, forming the lattice, and its interaction with other Bloch electrons moving

through the lattice. In metallic sodium, for example, an electron in the 3s band

interacts with the Na+ ions forming the bcc structure, as well as with other

eleclrons in this band. We may therefore write Iz(r) as the sum

V(r) : Y,1", -f V"(r), (5'7)

where the first term on the right represents the interaction with the ion cores

and the second the interaction with the electrons.
The ionic part may be written as

V,(r): fu,(r - R;),
j

where u,(r - R;) is the potential of an ion located at the lattice vector Rr, as in

Fig. 5.6(a). and the summation is over all the ions. The potential [(r) obviously

has the same periodicity as that of the lattice.

(5.8)

distance

Fig. 5.6 (a) The interaction of an electron with ion cores. The small dots represent
electrons. (The spatial distribution of the electrons is not shown accurately. They
actually tend to be positioned primarily around the ions.) (b) The spectrum of an Na atom
(left),andanNasolid(right).[AfterJ.C.Slater, PhysicsToday2l,43(1968).Notethe
broadening of the 3s level into a 3s band in the solid, and that this band lies almost
entirely above the potential barriers of the atoms, which facilitates the delocalization of
the electrons in this band. By contrast, electrons in the 2p level or band are so highly
constrained by the barriers that they are localized.

(b)(a)

Electron

lh ion
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The electronic potential V"(r), the so-called electron-electron interaction,
presents several hurdles which make its treatment very difficult. First, we can
evaluate this term only if we know the states for all other electrons, but these states
are not given in advance. In fact, they are the very states we are trying to find. Second,
the potential v"(r) is not strictly periodic, since the electrons are in constant
motion through the lattice. Third, a proper treatment should really consider the
dynamics of all the electrons simultaneously, not one electron at a time, as we have
done above. This is a typical example of the many-body problems which are often
encountered in solid-state physics.

In view of these difficulties, it is fortunate that the electron-electron interaction
turns out to be quite weak, for the reason given in Section 4.3, because this fact
makes the above difficulties far less serious than they could otherwise be. The
major effect of this interaction is that the electrons distribute themselves primarily
around the ions, so that they screen these ions from other electrons. This has the
additional effect of making the electron-ion interaction weak even at long range,
which is another fortunate circumstance.

So we can write an approximate expression for the potential as

V(r):\u"(r-R;),
J

(5.e)

where u"(r - Rr.) is the potential of the screened ion located at the lattice point
Rj. And precisely because this potential rs once again periodic, it satisfies the
requirements of the Bloch theorem. Figure 5.6(b) shows the crystal potential for Na.

In discussing the crystal potential, we have so far tacitly assumed that the atoms
are at rest at their lattice sites. However, they are not in fact stationary. They
are in a constant state of oscillation as a result of their thermal excitation, as
discussed in Chapter 3. Clearly, then, our assumption of a stationary lattice is an
approximation, and the question now is: How good is our approximation?
One may answer this pragmatically by pointing out that band structures calculated
on the basis of a stationary lattice are usually in good agreement with experiment,
except at temperatures close to the melting point of the solid. The reason the
stationary-lattice approximation seems to hold so well is that amplitudes of lattice
vibrations are much smaller than the interatomic distance at all temperatures,
even up to the melting point.i Therefore the distortion of the lattice, as seen by
the electron, is not appreciable.

5.4 BAND SYMMETRY IN K-SPACE; BRILLOUIN ZONES

The energy eigenvalues E,(k) for the bands have many useful symmetry properties
when these bands are plotted in k-space. Before broaching this subject, however,
let us say a few words about the Brillouin zones.

5.4

f The average amplitude of the
melting point is typically about

atomic oscillation due to thermal excitation at the
5/o of lhe interatomic distance.
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Brillouin zones

We first encountered Brillouin zones in our discussion of Bragg diffraction of
x-rays in Section 2.6. When one draws the normal planes which bisect the reciprocal
lattice vectors, the regions enclosed between these planes form the various
Brillouin zones.

Fig.5.7 The first three Brillouin zones of the square lattice: First zone (cross-hatched),
second zone (shaded) and third zone (screened). Numbers indicate indices of zones.

Consider, for instance, the square lattice whose reciprocal-also a square lattice

of edge equal to 2nla-is shown, in Fig. 5.7, which also shows the reciprocal
vectois G,, - G,, Gr, and - G2, etc., as well as the corresponding normal
bisectors. The smallest enclosed region c6ntered around the origin (the cross-

hatched area) is the first zone. The shaded area (composed of four separate half-

t0l0l

[010]
k,

ku

(a)

The first Brillouin zone for

(b)

(a) an fcc lattice, and (b) a bcc lattice.

I

I

I
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Fig. 5.8
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diamond-shaped pieces enclosed between the normal bisectors to Gr, Gr, and
G, + Gr, etc.) forms the second zone. Similarly, the screened area (eight parts)
forms the third zone. As higher-order bisectors are included, higher-order zones
are also formed, which may have quite complicated shapes.

However, all the zones haue the same erea, regardless of the complexity of the
zone. Thus we can see in the figure that the second zone has the same area as the
first, that is, (2tla)2 . The same is true for the third zone, and this can also be shown
to hold true for all zones. This equality of the areas of the Brillouin zones holds
true for all plane lattices, not just for square lattices.

In three dimensions, the zones are three-dimensional volumes. Figure 5.8
shows the first zone for fcc (a truncated octahedron) and bcc (a regular rhombic
dodecahedron) lattices. Higher-order zones in these lattices are somewhat compli-
cated in appearance and difficult to visualize; they will not concern us further here.

Let us now discuss the relation ofthe Brillouin zones to the band structure.

5.4

Symmetry properties

It can be shown that
properties.

i)

ii)

iii) E,(k) has the same

each energy band E,(k) satisfies the following symmetry

E,(k + G): E,(k)

E,(-k): E,(k)

rotational symmetry as the real lattice.

Note that these properties are the same as those obeyed by the dispersion
relations of lattice vibrations (Section 3.6), and can be proved in a similar manner-
i.e., by invoking the symmetry properties of the real lattice-as will be discussed
later in this section.

Property (i) indicates that E,(k) is periodic, with a period equal to the reciprocal
lattice vector. In other words, any two points in k-space related to each other by a
displacement equal to a reciprocal lattice vector have the same energy. For instance,
in Fig. 5.9(a), the energy is the same at points P ,, P r, and P., because P, is related
to P, by a translation equal to -Gr, Pt is related to P, by a translation -G,,
and both -G, and -G2 are reciprocal lattice vectors.

Figure 5.9(b) illustrates how, by using this translational symmetry, the various
pieces of the second zones may be translated by reciprocal lattice vectors to fit
precisely over the first zone. Each two areas connected by an arrow are equiualent.
The first and second zones are equivalent. Similarly, higher-order zones can be

appropriately translated to fit over the first zone. It follows, therefore, that we
may confine our attention to the first zone only, since this contains all the necessary
information.

The inversion property (ii) shows that the band is symmetric with respect to
inversion around the origin k : 0. Thus, in Fig. 5.9(a), the energy at point Pl
is equal to that at P,.

(5. l0)

(5.r r)
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(c) (d)

Fig. 5.9 (a) Translational symmetry of the energy E(k) in k-space for a square lattice.
(b) Mapping of the second zone into the first. (c) Rotational symmetry of E(k) in k-space
for a square lattice. (d) Energy contours in the first zone.

Property (iii) asserts that the band has the same rotational symmetry as the
real lattice. For instance, in a square lattice, the energy should exhibit the
rotational symmetry of the square. Since this is symmetric with respect to a
rotation by rl2 (and its multiples), it follows that in Fig. 5.9(c) the energies at
points Q,, Qr, and Q, are equal to that at point P,, because these points may be

obtained from P, by symmetry rotations. [Note that Q, is the same as P" of Fig.
5.9(a); this is so for a square lattice, but it does not hold good for other lattices.]

In Fig. 5.9(d) energy contours are sketched for a band in the first zone of a

square lattice. This figure satisfies the various symmetry properties described above.
The symmetry properties are particularly important because we can use them

to reduce the labor involved in determining energy bands. For example, with inver-
sion symmetry, we need'to know the band in only half of the first zone, and

rotational symmetry usually enables us to reduce this even further. In the case

of a square lattice, for example, only one-eighth of the zone need be specified
independently, as you may see, and the remainder of the zone can then be com-
pleted by using symmetry properties.

The labor-saving is even greater in three-dimensional cases. Thus, in the case

of a cubic lattice, the band need be specified independently in only l/48th of the
first zone.

(b)

ku



188 Metals II: Energy Bands in Solids

Note that the symmetry properties discussed above refer to the same
band. They hold for every band separately, but do not relate one band to another.

Let us turn now to the proofs of the above properties. We shall only outline these
proofs here, leaving you to pursue the details in some of the advanced references
listed at the end of the chapter. consider first the translational property (i): The
Bloch function at the point k * G may be written as

/r.+c : ei(k*G)'tur*c : eik''.(eic''ux+c). (s.12)

Note that the factor inside the brackets of the last expression, which may be denoted
by u(r), is periodic in the r-space with a period equal to the lattice vector. That is,

o(r + R) - riG'(r+R)ru*c(r + R): e'c''r.rr,*"(r): (u)r.

This follows from the fact that u**" is periodic, ur6 riG'R : l, since G.R: n2n,
where n is some integer. The expression in the brackets in (5.12) has, therefore, the
same behavior as au(r) in Eq. (5.3). we have thus shown that the state function
ry'u*. has the same form as rlr p and consequently the two functions have the same
energy, since there is no physical basis for distinguishing between them.

Property (ii) may be established by noting that the Schrcidinger equation
analogous to (5.6), which corresponds to the point -k, is the same as the equation
obtained by writing the complex conjugate equation of (5.6). This means that the
corresponding eigenvalues are equal, that is, that E,(-k): EI(k). Since the
energy E,(k) is a real number, however, it follows that E,(-k): E,(k), which
is property (ii).

Property (iii) is derived by noting that if the real latrice is rotated by a symmetry
operation, the potential Iz(r) remains unchanged, and hence the new state function
obtained must have the same energy as the original state function. one
may show further that these new states correspond to rotations in k-space, and
this leads to the desired property.

5.5 NUMBER OF STATES IN THE BAND

we denoted the Bloch function by 0n,u,which indicates that each value of the band
index n and the vector k specifies an electron state, or orbital. we shall now show
that the number of orbitals in a band inside the first zone is equal to the number of
unit cells in the crystaL This is much the same as the statement made in connection
with the number of lattice vibrational modes (Section 3.3), and is proved in a like
manner, by appealing to the boundary conditions.

Consider first the one-dimensional case, in which the Bloch function has
the form

to@) : eik'uo(x). (5. l 3)
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If we impose the periodic boundary condition on this function, it follows that the

only allowed values of k are given by

(5.1 4)

where n:0, +1, *2, etc. [Note that uu(x) is intrinsically periodic, so the

condition uu(x * L) : uo?) is automatically satisfied.] As in Section 3.3, the

allowed values of k form a uniform mesh whose unit spacing is 2nlL. The

number of states inside the first zone, whose length is 2tla, is therefore equal to

(2rla)l(2rlL):Lla:N,

where N is the number of unit cells, in agreement with the assertion made

earlier.
A similar argument may be used to establish the validity of the statement in

two- and three-dimensional lattices.
It has been shown that each band has N states inside the first zone. Since

each such state can accommodate at most two electrons, of opposite spins, in
accordance with the Pauli exclusion principle, it follows that the maximum number

of electrons that may occupy a single band is 2N. This result is significant, as it will
be used in a later section to establish the criterion for predicting whether a solid
is going to behave as a metal or an insulator.

5.6 THE NEARLY-FREE-ELECTRON MODEL

In Section 5.3 and 5.4 we studied the general properties ofthe state functions, and

of the energies of an electron moving in a crystalline solid. To obtain explicit
results, however, we must solve the Schr<idinger equation (5.1) for the actual
potential 7(r) in the particular solid of interest. But the process of solving the
Schrcidinger equation for any but the simplest potentials is an arduous and time-
consuming task, inundated with mathematical details. Although this is essential

for obtaining results that may be compared with experiments, it is preferable to
start the discussion of explicit solutions by using rather simplified potentials. The

advantage is that we can solve the Schrcidinger equation with only minimal
mathematical effort and thus concentrate on the new physical concepts involved.

In the present section we shall treat the nearly-free'electron (NFE) model,

in which it is assumed that the crystal potential is so weak that the electron behaves

essentially like a free particle. The effects of the potential are then treated by the

use of perturbation methods, which should be valid inasmuch as the potential is

weak. This model should serve as a rough approximation to the valence bands

in the simple metals, that is, Na, K, Al, etc.

2nk:n-.
L
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In the following section, we shall treat the tight-binding model, in which the
atomic potentials are so strong that the electron moves essentially around a single
atom, except for a small interaction with neighboring atoms, which may then be
treated as a perturbation. This model lies at the opposite end from the NFE model
in terms of the strength of crystal potential involved, and should serve as a rough
approximation to the narrow, inner bands in solids, e.g., the 3d band in transition
metals.

The empty-lattice model

The starting point for the NFE model is the solution of the Schrcidinger equation
for the case in which the potential is exactly zero,i.e., the electron is entirely free.
However, we also require that the solutions satisfy the symmetry properties of
Section 5.4, which are imposed by the translational symmetry of the real lattice.
This leads to the so-called empty-lattice model.

Third band

2rr0r2r
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model, showing translational symmetry and the various bands. (c) Dispersion curves in
the empty-lattice model (first zone only).
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For a one-dimensional lattice, the state functions and energies for the empty-
lattice model are

,l,q) : #r'o',

Ei}]:H,

(5. r 5)
t: "
lt --r.- -

'r'"- ; )''/.)

t vYo {L) (5' 16)
and

where the superscript 0 indicates that the solutions refer to the unperturbed
state (Section A.7). The energy E[f] which is plotted versus k in Fig. 5.10(a)

exhibits a curve in the familiar parabolic shape. Figure 5.10(b) shows the result
of imposing the symmetry property (i) of Section 5.4. Segments of the parabola
of Fig. 5.10(a) are cut at the edges of the various zones, and are translated by

multiples of G : Zrla in order to ensure that the energy is the same at any two
equivalent points. Figure 5.10(c) displays the shape of the energy spectrum when

we confine our consideration to the first Brillouin zone only. [Conversely,
Fig.5.l0(b) may be viewed as the result of translating Fig. 5.10(c) by

multiples of G.l
The type of representation used in Fig. 5.10(c) is referred to as the reduced-

zone scheme. Because it specifies all the needed information, it is the one we shall

find most convenient. The representation of Fig. 5.10(a), known asthe extended-

zone scheme, is convenient when we wish to emphasize the close connection between

a crystalline and a free electron. However, Fig. 5.10(b) employs the periodic-

zone scheme, and is sometimes useful in topological considerations involving the

k-space. All these representations are strictly equivalent; the use ofany particular
one is dictated by convenience, and not by any intrinsic advantages it has over the

others.

The nearly-free-electron model

How is the energy spectrum of Fig. 5.10(c) altered when the crystal potential is

taken into account, or "turned on?" Figure 5.ll(a) shows this. The first and

second bands, which previously touched at the point A (and,4') in Fig. 5.10(c)

are now split, so that an energy gap is created at the boundary of the Brillouin
zone. A similar gap is created at the center of the zone, where bands 2 and 3 pre-

viously intersected (point B in Fig. 5.10c) and also at point C, where bands 3 and 4
previously intersected. Thus, in general, in the empty-lattice model, energy gaps

are created in k-space wherever bands intersect, which occurs either at the center

or the boundaries of the BZ. At these points the shape of the spectrum is strongly
modified by the crystal potential, weak as this may be. (In effect, what the crystal
potential has accomplished is to smooth over the sharp "corners" present in the

band structure of the empty lattice.)
In the remainder of the zone, however, the shape of the spectrum is affected

very little by the crystal potential, since this is assumed to be weak. In that region
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Fig. 5.11 (a) Dispersion curves in the nearly-free-electron model, in the reduced-zone
scheme. (b) The same dispersion curves in the extended-zone scheme.

of the k-space the bands essentially retain their parabolic shape inherited from the
empty-lattice model of Fig. 5.10(c), and the electron there behaves essentially like
a free electron.

By comparing Fig. 5.10(c) and Fig. 5.ll(a), one notes that a hint of a band
structure is almost present even in the empty-lattice model, except that the gaps
there vanish, since the bands touch at the zone boundaries. This vanishing is
foreseen, of course, since no energy gaps are expected to appear in the spectrum
of a free particle. The point is that even a weak potential leads to the creation of
gaps, in agreement with the results of Sections 5.2 and 5.3.

Figure 5.ll(b) shows the band structure for the NFE model, represented
according to the extended-zone scheme, which should be compared with
Fig.5.l0(a). Note that, except at the zone boundaries at which gaps arecreated,
the dispersion curve is essentially the same as the free-electron curve.

We made the above assertions without proofs; we shall now outline proofs on
the basis of the perturbation method of Section A.7. Suppose, for instance, that we
seek to find the influence ofthe crystal potential on the first band in Fig.5.l0(c).
When we treat the potential V(x) as a perturbation, the perturbed energy E,(k)
up to the second order of the potential is given by

-Toraa
(b)

-Toraa
(a)

(5.17)

Here the subscript I refers to the first band, which is the one of interest, and the
superscript 0 refers to the empty-lattice model of Eqs. (5.15) and (5.16). The second
term on the right side of (5.17), which is the first-order correction, is the average
value of the potential. The third term, giving the second-order correction, involves
summing over all states r?, k, except where these indices are equal to the state l, k
under investigation.

Er(k) : r{0r1t; + (dl}l vl,t[u)) * Zr_firor4ffi
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First we note that the first-order correction is equal to

( /1:t I v t,t\l,l) : +[" 
ik'v(x)eio'dx : jlrato.,

which is the average value ofthe potential over the entire lattice. It is independent

of k, and hence it is merely a constant. Its effect on the spectrum of Fig. 5.10(c)

is simply to displace it rigidly by a constant amount, without causing any change

in the shape of the energy spectrum. Since this term does not lead to anything of
interest to us here, it will be set equal to zero, which can be accomplished by shifting
the zero energy level.

We must therefore consider the second-order correction in Eq. (5.17). We

first assert that the quantity (n, k' I V I l, k> can be shown to vanish except when

k' : k, where both k and k'are restricted to the first zone. That is, the only states

which are coupled to the l,k state by the perturbation are those lying directly
above this state, as shown in Fig. 5.12.

Fig. 5.12 Only those states lying directly above the state ry'lo? in k-space are coupled to
it by the perturbation.

This assertion rests on the translational symmetry of the crystal potential
V (x).1 Furthermore, since the energy difference in the denominator of the third

t An arbitrary potential V (x) can always be expanded as a Fourier series

V(x):ZrV,,r'L",
where the summation is over all the allowed k's. The Fourier coefficient Z1 is given by

fLv*: (tlL) 
J- 

v@r-in'd*.

But if Z(x) is periodic, as is the case in a crystal, then only the values k : G contribute to
the above summation; that is, V*: O fot k + C. A periodic potential therefore has the
expansion

V (x) : Ze Vo r'o".

It can be shown that the bracket in the numerator of (5.17) is the Fourier coefficient
V1,,-p, and hence this bracket vanishes except for k' - k: G.

o k!
d
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term in (5.17) increases rapidly as the band ,4 rises, the major effect on band I arises
lrom its coupling to band 2. We may therefore write

E{k) = rtorlr; 1 I V - r,t,l'
EW() - EP\kl '

where V-2,1, is the Fourier component of the potential, that is,

V-zrto:

An explicit expression for E,(k) can be obtained by substituting the values for
4o)(t) ano fl0)1t;: namely 4')(t) : h2k2t2m, ana S0r1t; = h\k - zrrta)2t2m.
[Note that if 0 < k < nla, then the second band is obtained by translating that part
of the free-electron curve lying in the interval - 2nla < k < - nf a, as seen in
Fig. 5.10(b), and hence the above expression for Z!o)(k).1 But this is not really
necessary, because if the potential is weak, thenl V_r,,o | 

2 is very small, and the sec-
ond term in (5.18) is negligibly small compared with rhe firsr. In other words,
Er(k) - Eto)(k), and the effect of the lattice potential is negligible.

There is, however, one point in k-space at which the above conclusion breaks
down: the point k: nla at the zone edge. At this point the energies Eto)(k) and
Eo)(k) are equal [recall that bands I and2 touchthere; see Fig. 5.10(c)], the de-
nominator of the perturbation term in (5. I 8) vanishes, and hence the perturbation
correction becomes very large. Since the above perturbation theory presumes the
smallness of the correction, it follows that this theory cannot hold true in the
neighborhood of the zone edge. In this neighborhood, one should instead invoke
the degenerate perturbation theory, in which both bands I and 2 are treated
simultaneously, and on an equal footing. The resulting energy values are (Ziman,
le63),

E"(k): +{Elo)(/.) + Eo)(k) I t(Eto)(/c) - E(:)(k))2 + 4lv_2,t,12)r/2}, (5.19)

where the plus sign corresponds to the deformed upper band-i.e., band 2-near
the edge of the zone, and the minus sign refers to the deformed lower band-
i.e., band l.

Now let us substitute the values of Eto)(k) and f,ft(e into (5.19) and plot
E*(k) and E-(k)in the neighborhood of the zone edge. We obtain the spectrum
shown in Fig.5.ll(a). In particular, the energy Eap Es is equal to the difference
E*(k) - E-(k) evaluated at the point k : nlq. Using (5.19), we readily find that

En : 2l V-zonl. (s.20)

That is, the energy gap is equal to twice the Fourier component of the crystal
potential. In effect, band I has been depressed by an amount equal to I V _r,,,1
and band 2 has been raised by the same amount, leading to an energy gap given
by (s.20).

5.6

(5. r 8)

Ilv ale+i(2n/a)x dx.
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The same formula (5.19) may also be used to find the energy gap that arises

at the center of the zone, at the intersection between bands 2 and 3, except that
we now replace Eto)(k), Ey)(k) by Ef)(k) and trto)(k), respectively. We also

replace the potential term by Y-+nto. This leads to the splitting of bands 2and3,
as shown in Fig.5.l1(a), with an energy gap of 2lV-ont,l. Obviously the proce-

dure can be used to find both the splitting ofthe bands and the corresponding gaps

at all appropriate points.
In addition to the above results, two qualitative conclusions emerge from the

analysis. First, the higher the band, the greater its width;this is evident from re-

ferring back to the empty lattice model in Fig.5.l0(a), since the energy there

increases as k2. Second, the higher the energy, the narrower the gap; this follows
from the fact that the gap is proportional to a certain Fourier component of the

crystal potential, but note that the order of the component increases as the energy

rises (from V-ro,o to V-an1o in our discussion above). Since the potential is

assumed to be well behaved, the components decrease rapidly as the order increases,

and this leads to a decrease in the energy gap. It follows therefore that, as we

move up the energy scale, the bands become wider and the gaps narrower; i.e.,

the electron behaves more and more like a free particle. This agrees with the qualita-

tive picture drawn in Section 5.2.

Since the greatest effect of the crystal potential takes place near the points in
k-space at which two bands touch, let us examine the behavior there more closely.

If one applies the degenerate perturbation formula (5.17) to the splitting of bands

2 and 3 at the center of the zone, one finds that, for small k (k 4 nla),

and

E3(k): Eu t lv-ontol + fi;o*',

Er(k) : E, - lV-ootol - ! ot',
ztllo

(s.21)

(s.22)

(s.23)

results

where the parameter a is given by

- 4Eua: I + ,i
and Eu:h2(2nla)2l2ms is the energy of point B in Fig.5.10(c). These

are very interesting for several reasons.

a) Equation (5.21) shows that, for an electron near the bottom of the third band,

E - kz (ignoring the first two terms on the right, since they are simply constants),

which is similar to the dispersion relation of a free electron. In other words, the

electron there behaves like a free electron, with an effective mass rz* given by

m* : mold,
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which is different from the free mass. Referring to (5.23), one sees that the effective
mass increases as the energy gap Es increases. Such a relationship between rz*
and Eo is familiar in the study of semiconductors.

b) Equation (5.22) shows that, for an electron near the top of the second band,
E - - k2, which is like a free electron, except for the surprising fact that the
effective mass is negative. Such behavior is very unlike that ofa free electron, and
its cause lies, of course, in the crystal potential. The phenomenon of a negative
effective mass near the top of the band is a frequent occurrence in solids,
particularly in semiconductors, as we shall see later (Chapter 6).

We have thus far confined ourselves to a one-dimensional lattice, but we may
extend this treatment to two- and three-dimensional lattices in a straight-
forward fashion. We find again, as expected, that starting with the empty-lattice
model, the "turning on" of the crystal potential leads to the creation of energy
gaps. Furthermore, these gaps occur at the boundaries of the Brillouin zone.

5.7 THE ENERGY GAP AND THE BRAGG REFLECTION

In discussing the NFE model, we focused on energy values. But perturbation also
modifies state functions, and we shall now study this modification. If we apply
the perturbation theory to the one-dimensional empty lattice, we find that the
state function of the first band in Fig. 5.ll(a) is given by

tr,* :,t \o), + E#fuW vt":l, (s.24)

where-again because of the form of the potential and also the energy difference
in the denominator-the perturbation summation has been reduced to one term
only, involving the state function of the second band r!{ro,}.

The state functions r/toi and {tl2o) refer to a free electron; {L?}- "'r'represents a wave traveling to the right, while /tf) - si(k-2tla)x represents a wave
traveling to the left (note that I k | < nla). The effect of the lattice potential is then
to introduce a new left-traveling wave in addition to the incident free wave.
This new wave is generated by the scattering of the electron by the crystal potential.
If ft is not close to the zone edge, however, the coefficient of lrto) in (5.24) is
negligible. That is,

5.7

tr,*=,i!:i: fi"'.., (s.2s)

and the electron behaves like a free electron. The effects of the potential are
negligible there, which is in agreement with the conclusions reached in Section 5.6.

Near the zone edge, however, the energy denominator in the correction term
in (5.24) becomes very small, and the perturbation term large, which means that
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Fig. 5.13 Spatial functions r! * ar,drlt -.

distribution has a low energy. The function f *(x) therefore corresponds to the

energy at the top of band l, that is, point A1 in Fig' 5'11(a)'

By contrast, the function t -@) - sinnlax, depositing its electron mostly

between the ions (as shown in Fig. 5.13), corresponds to the bottom of band 2

in Fig. 5.ll(a), that is, poinl Ar. The gap arises, therefore, because of the two

different distributions for the same value k = nla, the distributions having different

energies.
Scrutinizing (5.26) from the viewpoint of scattering' we see that at the zone

edge, k : nla, the scattering is so strong that the reflected wave has the same

amplitude as the incident wave. As found above, the electron is represented there

byi standing wave, cos nlax or sin nf ax, very unlike a free particle. An interesting

result of this is that the electron, as a standing wave' has a zero velocity at

k : ila. This is a general result which is valid at all zone boundaries, and one

which we shall encounter often in the following sections'

We have seen that the periodic potential causes strong scattering at k: nla.

Recall from Section 3.6 on lattice vibrations that this strong scattering arises as

a result ofthe Bragg diffraction at the zone edge. In the present situation, the wave

diffracted is the electron wave, whose wavelength is )' : 2nlk'

the form (5.24) becomes invalid. As stated in Section 5.6, one must then use the

dege.,erate perturbation theory, in which the state functions rlt\o) and {\ol
are treated on an equal footing. One finds that, at the zone edge itself,

l.
* *(x) : -| lrl,"o,),.{x) + rlt(z?,lt.G, : jn(ei(Etatx + e- i(E/a)x). (5.26)

\/z

The function ,L *@) - cos (z/a)x, and hence the probability is proportional to

lf *(r) 12 - cos2(ftla)x. Such a state function distributes the electron so that it is
piled predominantly at the nuclei (recall that the origin x : 0 is at the center of
an ion) [see Fig. 5.13], and since the potential is most negative there, this

{ nJ' ){ -'12



198 Metals II: Energy Bands in Solids

In higher-dimension lattices, the Bragg condition is satisfied along all
boundaries of the Brillouin zone, as discussed in Section 2.6, and this results in
the creation of energy gaps along these boundaries, in agreement with the conclu-
sions of the last section.

5.8 THE TIGHT.BINDING MODEL

In the tight-binding model, it is assumed that the crystal potential is strong, which
is the same as saying that the ionic potentials are strong. It follows, therefore,
that when an electron is captured by an ion during its motion through the lattice,
the electron remains there for a long time before leaking, or tunneling, to the next
ion [see Fig. 5.14(a), which also shows that the energy of the electron is appreciably

5.8
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Fig. 5.14 The tight-binding model. (a) The crystal potential. (b) The atomic wave
functions. (c) The corresponding Bloch function.

lower than the top of the potential barrier]. During the capture interval, the elec-

tron orbits primarily around a single ion, i.e., its state function is essentially
that of an atomic orbital, uninfluenced by other atoms. Most of the time the
electron is tightly bound to its own atom. The mathematical analysis to be devel-
oped must reflect this important fact.

As we said in Section 5.6, the TB (tight-binding) model is primarily suited to
the description of low-lying narrow bands for which the shell radius is much smaller
than the lattice constant. Here the atomic orbital is modified only slightly by the
other atoms in the solid. An example is the 3d band, so important in transition metals.

Let us begin, then, with an atomic orbital, f ,(x), whose energy in a free atom
is E,. We wish to examine the effects of the presence of other atoms in the solid.
The index y characterizes the atomic orbital (for the atomic shell of interest).
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First, the one-dimensional case: It is necessary to choose a suitable Bloch function,
and while the choice is not unique, the following offers a reasonable form.

(s.27)

where the summation extends over all the atoms in the lattice. The coordinate
X, specifies the position of theT'h atom. That is, Xr:.74, where a is the lattice

constant. The function d,6 - X;) is the atomic orbital centered around the

i'h atom; it is large in the neighborhood of Xr, but decays rapidly away from this
point, as shown in Fig.5.l4(b). By the time the neighboring site at X;*r (or
X;- ,) is reached, the function d "Q - X;) has decayed so much that it has become

almost negligible. In other words, there is only a little overlap between neighboring
atomic orbitals. This is the basic assumption of the TB model. The factor Nr/2

is included in (5.27) to ensure that the function ry'u is normalized to unity (if the

atomic orbital @, is so normalized).
Let us turn now to the properties of the function ry'o(x), as defined by (5.27),

First, it is necessary to ascertain that this function is a Bloch function, namely, that

it can be written in the form (5.3). This can be established by rewriting $.27)
in the form

{r@) : ,-ik(x x)o,(x - x),

where it is now readily recognized that the factor defined by the summation is

periodic, with a period equal to the lattice constant a. Thus the function ry'1(x)

has indeed the desired Bloch form, i.e., it describes a propagating electron wave,

as shown in Fig 5.la(c).
Note also that near the center of the 7'h ion, the function ry'*(x) redirces to

{o@) = e'u', fu(x - X) - S"(x - X ). (5.28)

That is, the Bloch function is proportional to the atomic orbital. Thus in the

neighborhood of the j'h ion, the crystal orbital behaves much like an atomic

orbital, in agreement with the basic physical assumption of the TB model.
The function ry'*(x) therefore satisfies both the mathematical requirement of

the Bloch theorem and the basic assumption of the TB model, and as such is a

suitable crystal orbital. It will be used now to calculate the energy of the band.
The energy of the electron described by ry'o is given, according to quantum mech-

anics, by

*oG):fii,r'^'g"(x-X),

i*'*'i,

E(k): (0olHl,lto), (s.2e)
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where H is the Hamiltonian of the electront. Substituting for r!1, from (5.27),
one has

(N - t)l2
E(k) : I e'o*'(Q,(x)lHld,@ - x)),

j= -N12

where we have arbitrarily put Xi,: O in (5.30). By splitting the term./: 0 from
the others, one may write the above expression as

E(k): (d,(x)lH ld,(x)) *\.'eikxi16,(x)lH lg"(x- X)), (5.32)

The first term gives the energy ,t . 
"t'""t.on 

would have if it were indeed entirely
localized around the atom,/ : 0, while the second term includes the effects of the
electron tunneling to the various other atoms. The terms in the summation are
expected to be appreciable only for nearest neighbors-that is,7: I and j : -l-
because as 7 increases beyond that point, the overlap between the corresponding
functions and the state function at the origin becomes negligible (Fig.5.lab).
Note also that, since the property of electron delocalization is included entirely
in the second term of (5.32), it is this term which is responsible for the band
structure, and as such is of particular interest to us here.

To proceed with the evaluation of E(k), according to (5.32), we need to examine
the Hamiltonian H more closely. The expression for this quantity is given by

5.8

(5.30)

where the double summation overT and.7'extends over all the atoms in the lattice.
Note that each term in the summation is a function of the difference Xi - Xi,,
and not of X, and X, individually. Therefore, for each particular choice of 7',
the sum overTyields the same result, and sinceT'can take N different values, one
obtains N equal terms, which thus leads to

h2 d2
H : - =-- -- 

* V(x),
zmo clx-

(5.3 r )

(5.3 3)

where Z(x) is the crystal potential. Writing this potential as a sum of atomic
potentials, one has

V(x):\a(x - X).
J

(5.34)

f The Hamiltonian 11 is simply the quantum operator which represents the total energy
of theparticle.Thus 11 : -1h2 l2m)Y2 + V(r),wherethefirsttermontherightrepresents
kinetic energy and the second term potential energy. The expression (5.29) for the
energy is very plausible, since the term on the right is the average value of the energy in
quantum mechanics.



5.8 The Tight-Binding Model

In using this to evaluate the first term in Eq. (5.32), we shall find it convenient to
split V(x) into a sum of two terms

V (x) : u(x) + V'(x), (s.35)

where u(x) is the atomic potential due to the atom at the origin and V'(x) is that
due to all the other atoms. These potentials are plotted in Figs. 5.15(a) and (b),

j: -t j:o j:1

Fig. 5.f5 The splitting of the crystal potential into (a) an atomic potential and (b) the
remainder of the crystal potential.

respectively. Note in particular that V'(x) is small in the neighborhood of the

origin. The first term in (5.32) may now be written as

( d,(x) I H I d,(x)) : (r,,,,ll_ !*#+ D(x)]l o,t,l)

+ (d,(x) lV'(x) ld,(x)). (s.36)

The first term on the right is equal to E,, the atomic energy, since the operator
involved is the Hamiltonian for a free atom. The second term is an integral which
can be evaluated, and will be denoted by the constant -B' Explicitly,

(s.37)

where the minus sign is introduced so that B is a positive number.t Note that B

is a small quantity, since the function {,(x) is appreciable only near the origin,
whereas V'(x) is small there. Collecting the two terms above, we have

( d,(x) I H I d,(x)) : E" - P.

p : - !o:<.lv'(x)s,@)dx,

f The integral in (5.37) is negative because V'(x) is negative (Fig. 5.15b)

(5.38)
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Let us now turn to the interaction term, i.e., the summation in (5.32). The
term involving interaction with the nearest neighbor at X | : a involves an
integral which may be written as

h2 d2
(6,G1lH l0,G - d)) : (0"k)l - *"A?

* u(x - a)|6,G - a)> + (d,(x) lV'(x - a)le,@ - a)). (s.39)

The first rerm on the right is equal to E,(@,(x)10,G- a)), which is a

negligible quantity, since the two functions d,(x) and @,(x - a), being centered
at two different atoms, do not overlap appreciably. The second term on the right
of (5.39) is a constant which we shall call -7, that is,

- a) dx. (5.40)

Note that 7, though small, is still nonvanishing because V'(x - a) is appreciable
near the origin, that is, x : 0 (although not at x : a). The parameter 7 is called
the otserlap integral, since it is dependent on the overlap between orbitals centered
at two neighboring atoms.

The integral arisingfrom the termT: -l in the sum in (5.32), which is due
to the atom on the left side of the origin, yields the same result as (5.39) because

the atomic functions are symmetric.
Substituting the above results into (5.32), and restricting the sum to nearest

neighbors only, one finds

E(k):E'-0-Y 2'eikxi,
j= |

which may thus be written as

(5.4r)

E(k):E"-P-2ycoska. (s.42)

This is the expression we have been seeking. It gives band energy as a function of
k in terms of well-defined parameters which we can evaluate from our knowledge
of atomic energy and atomic orbitals.

Equation (5.42) may be rewritten more conveniently as

Jolr,t 
v'(x - a) Q"@

E(k) : Eo + 4y t^' (+), (5.43)

(s.44)
where

Eo:Eu-fr-2Y.

The energy E(k) is plotted versus k in Fig.5.l6, where k is restricted to the first
zone [although E(k) is obviously periodic in k, in agreement with property (i)
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of Section 5.4]. We see, as expected, that the original atomic level E, has broadened

into an energy band. The bottom of the band, located at k: 0, is equal to Eo'

and its width is equal to 4y.

Fig.5.16 The dispersion curve in the tight-binding model.

Note that the bottom of the band Eo is lower than the atomic energy E,,

which is to be expected, since one effect of the presence of the other atom is to

depress the potential throughout the system (refer to Fig. 5.14a). In addition to

Eo, the electron has an amount of energy given by the second term in (5.a3). This

is a kinetic energy, arising from the fact that the electron is now able to move

through the crystal.
Note also that the bandwidth, 4y, is proportional to the overlap integral.

This is reasonable, because, as we saw in Section 5.2, the greater the overlap the

stronger the interaction, and consequently the wider the band.

When the electron is near the bottom of the band, where k is small, one may

make the approximation sin (kalz) - kaf2, and hence

E(k) - Eo: ya2k2, (s.45)

which is of the same form as the dispersion relation of a free electron. An electron

in that region of k-space behaves like a free electron with an effective mass

h2 I**:*i (s.46)

It is seen that the effective mass is inversely proportional to the overlap integral y.

This is intuitively reasonable, since the greater the overlap the easier it is for the

electron to tunnel from one atomic site to another, and hence the smaller is the

inertia (or mass) of the electron. Conversely, a small overlap leads to a large

mass, i.e., a sluggish electron. Of course, in the TB model, the overlap is

supposed to be small, implying a large effective mass.

Note, however, that an electron near the top of the band shows unusual

behavior. If we define k' : nla - k, and expand the energy E(k) near the

E(k)
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maximum point, using (5.43), we arrive at

5.8

which shows that the electron behaves like a particle of negatioe effective mass

E(k') - E-u* : -t, O'.

h2
m* : - --i-.

o-y

(s.47)

(s.48)

This, you recall, is in agreement with the results obtained on the basis of the NFE
model.

The above treatment can be extended to three dimensions in a straight-
forward manner. Thus for a sc lattice, the band energy is given by

E(k): (s.4e)

where El is the energy at the bottom of the band. The energy contours for this
band, in the k, - k, plane, are shown in Fig. 5.17(a), and the dispersion curves
along the U00l and U I ll directions are shown in Fig. 5.17(b). The bottom of the
band is at the origin k : 0, and the electron there behaves as a free particle with an
effective mass given by (5.a6). The top of the band is located at the corner of the
zone along the I I l] direction, that is, at lnf a, rla, nlaf; the electron there has a
negative effective mass given by (5.a8). The width of the band is equal to l2y.

J1n/a

Fig. 5.17 (a) Energy contours for an sc lattice in the tight-binding model. (b) Dispersion
curves along the [00] and [ll] directions for an sc lattice in the TB model.

In this treatment of the TB model, we have seen how an atomic level broadens
into a band as a result of the interaction between atoms in the solid. In this manner,
each atomic level leads to its own corresponding band, and each band reflects the
character of the atomic level from which it has originated.

Es + 4y [',,'(?) *'^,(ry).' ,(ry))

0

(b)(a)
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In conclusion, we see that both the NFE and TB models lead to the same

qualitative results, although the models start from opposite points of view. The

principal results arrived at in both models are: (a) Energy gaps appear at zone

boundaries. (b) An electron near the bottom of the band behaves like a free

particle with a positive effective mass. (c) An electron near the top of the band

behaves like a free particle with a negative effective mass'

5.9 CALCULATIONS OF ENERGY BANDS

In the last few sections we have discussed some methods of calculating energy

bands. However, these methods-the NFE and TB models-are too crude

to be useful in calculations of actual bands which are to be compared with
experimental results. In this section we shall consider therefore some of the com-

mon methods employed in calculations of actual bands. Because this subject is

an advanced one, requiring a considerable background in quantum mechanics,

as well as meticulous attention to almost endless mathematical details, our discus-

sion will be brief, primarily qualitative, and somewhat superficial. We shall

nevertheless try to give the reader a glimpse of this fundamental subject in the hope

that he may pursue it further, if he so desires, by referring to books listed in the

bibliography at the end of the chapter.
Several different schemes for calculating energy bands have been used' Let

us now discuss them individuallY.

The cellular method

The cellular method was the earliest method employed in band calculations (Wigner

and Seitz, 1935). It was applied with success to the alkali metals, particularly
Na and K; we shall use Na as an example.

The Schrddinger equation whose solution we seek is

(s.50)

where I/(r) is the crystal potential and ry'* the Bloch function. Here we are interested

only in the 3s band. It is at once evident that this equation cannot be solved

analytically. We must therefore use an approximation procedure.

When we use the cellular method, we divide the crystal into unit cells; each

atom is centered at the middle of its cell, as shown in Fig. 5.18. Such a cell, known
as the Wigner-Seitz (WS) cel/, is constructed by drawing bisecting planes normal
to the lines connecting an atom A, say, to its neighbors, and "picking out" the
volume enclosed by these planes. (The procedure for constructing the WS cell,
you may note, is analogous to that used in constructing the Brillouin zone in
k-space.) For Na, which has a bcc structure, the WS cell has the shape of a regular

dodecahedron (similar to Fig. 5.8b, but in real space).

l-h'v'n
L 2mo

rG)] /- : E(k) f r,
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In order to solve (5.50), we now assume that the electron, when in a
particular cell, say ,4, is influenced by the potential of the ion in that cell only.
The ions in other cells have a negligible effect on the electron incell A because each
of these cells is occupied, on the average, by another conduction electron which
tends to screen the ion, thereby reducing its potential drastically. To ensure that
the function ry'u satisfies the Bloch form, it is necessary that zo-where r! y: eik',ut

-be periodic, that is, u1 has the same points on opposite faces of the cell, e.g.,
points P, and P2 in Fig. 5.18(a).

/, aO

(a) (b)

Fig. 5.18 (a) The WS cell. (b) The wave function ry'o at the bottom of the 3s band in Na
versus the radial distance, in units of the Bohr radius.

The procedure is now clear in principle: We attempt to solve (5.50) in a single
cell, using for Iz(r) the potential of afree ion, which can be found from atomic
physics. In Na, for instance, I/(r) is the potential of the ion core Na+. It is still
very difficult, however, to impose the requirements of periodicity on the function
for the actual shape of the cell (the truncated octahedron), and to overcome this
hurdle wigner and Seitz replaced the cell by a wS sphere of the same volume as
the actual cell, i.e., one employs a W S sphere. Using these simplifying assumptions
concerning the potential and the periodic conditions, one then solves the
Schrcidinger equation numerically, since an analytical solution cannot usually
be found. The resulting wave function r!o al the bottom of the band, k:0, is
shown in Fig. 5.18(b). The wave functions at other values of k near the bottom of
the band may then be approximated by

V. = #"'o,0o, (s.51)

which has the Bloch form.
The procedure is also capable of yielding the energy E(k). The energy Eo

of the bottom of the band is obtained from the same calculations which give ry'o,



5.9 Calculations of Energy Bands 207

and the energy at any other point k is obtained by using

(s.52)

where the wave function ry'1 is substituted from (5.51). The energy found in this

manner was used by Wigner and Seitz to evaluate the cohesive energy, and the

results are in satisfactory agreement with experiment.

One noteworthy feature of these results is the shape of the wave function in
Fig. 5.18(b). The wave function oscillates at the ion core, but once outside the core

the function is essentially a constant. This constancy of the wave function

holds true for almost 907" of the cell volume. Thus the wave function behaves like

a plane wave, aS seen from (5.51), over most of the cell, and hence over most of the

crystal. Looking at this in terms of the potential, we see that where the function is

a plane wave, the potential must be a constant. Thus the effectiue potential

acting on the electron is essentially a constant, except in the region at the ion core

itself. Viewing the motion of the electron in the crystal as a whole, we conclude

that the electron moves in a region of constant potential throughout most of the

crystal; only at the cores themselves does the electron experience any appreciable

potential. This surprising result explains why the conduction electrons in Na, for
ixample, may be regarded as essentially free electrons. Mathematically, it is a
consequence of the periodic conditions imposed on the wave function in the cell,

and this is particularly apparent when one realizes that the wave function for the

3s electron in a free Na atom is very unlike ry'o outside the ion core. The flatness of
ry'o is thus due to the imposition of the periodic conditions, and not to any special

pioperty of the ionic potential.t The effect of the periodic condition is to cancel

out the ionic potential outside the core, and thus render the potential a constant.

We shall find this result very useful in the development of other methods of band

calculation.
Despite its usefulness, the cellular method is greatly oversimplified, and is not

currently much in use. One of its chief disadvantages is that when one replaces

the WS cell by a sphere, one ignores the crystal structure entirely. All anisotropic

effects, for instance, are completely masked out.

The augmented-plane wave (APW) method

The APW method (Slater, 1937) uses the results of the cellular method, but is so

formulated as to avoid its shortcomings. Since the effective crystal potential was

found to be constant in most of the open spaces between the cores, the APW
method begins by assuming such a potential (Fig. 5.19), which is referred to as the

t Th. b.r"d'..y conditions require that the derivative of the function ry'6 vanish at the

surface of the WS sphere (why?). Thus the function is flat near the surface of this sphere,

as shown in Fig. 5.18(b).

E(k) : (*-, - fio'+ /(r),*-),
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Fig.5.19 The potential and wave function in the ApW method.

mufin-tin potential. The potential is that of a free ion at the core, and is strictly
constant outside the core. The wave function for the wave vector k is now taken
to be

wk: ,, ,",

,ar",
(s.53)

where r" is the core radius. Outside the core the function is a plane wave because
the potential is constant there. Inside the core the function is atomJike,
and is found by solving the appropriate free-atom schrcidinger equation. Also,
the atomic function in (5.53) is chosen such that it joins continuously to the plane
wave at the surface of the sphere forming the core; this is the boundary condition
here.

The function wu does not have the Bloch form, but this can be remedied
by forming the linear combination

(5.s4)

where the sum is over the reciprocal lattice vectors, which has the proper form.
The coefficients ak+c are determined by requiring that ry'o minimize the energy.i
In practice the series in (5.54) converges quite rapidly, and only four or five terms-
or even less-suffice to give the desired accuracy.

The APW method is a sound one for calculating the band structure in
metals, and has been used a great deal in the past few years. It incorporates the
essential features of the problem in a straightforward and natural fashion.

The pseudopotential method

Yet another method popular among solid-state physicists for calculating band struc-
ture in solids is the pseudopotential method, which is distinguished by the manner

5.9

* o: la**" \rk+Gt
G

t The "best" linear combination (5.54) is that which makes the energy as low as possible.
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in which the wave function is chosen. We seek a function which oscillates rapidly
inside the core, but runs smoothly as a plane wave in the remainder of the open

space of the WS cell. Such a function was chosen in the APW method

according to (5.53), but this is not the only choice possible. Suppose we take

w*:0t-Lo,r,,
i

(s.5s)

where {1 is a plane wave and ui an atomic function. The sum over f extends

over all the atomic shells which are occupied. For example, in Na, the sum

extends over the ls, 2s, and 2p shells. The coefficients a; are chosen such that the

function lu1, represoDting a 3s electron, is orthogonal to the core function u,.l

By requiring this orthogonality, we ensure that the 3s electron, when at the core,

does not occupy the other atomic orbitals already occupied. Thus we avoid violat-
ing the Pauli exclusion principle.

The function wu has the features we are seeking: Away from the core, the atomic
functions u, are negligible, and thus w1 = 0*, a plane wave. At the core, the atomic
functions are appreciable, and act so as to induce rapid oscillations, as shown in
Fig. 5.20.

(a) G)

Fie.5.20 The pseudopotential concept. (a) The actual potential and the corresponding
wave function, as seen by the electron. (b) The corresponding pseudopotential and
pseudofunction.

If one now substitutes wo into the Schrddinger equation

E(k)w*, (s.56)

f Two functions ry', and {2are said to b orthogonal if the integral .[tr*rlt2dlr:0.
This concept of orthogonality is very useful in quantum mechanics. The atomic functions
in the various atomic shells are all mutually orthogonal.

lh2t__
I 2*o

v'+ v)*o:
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and rearranges the terms, one finds that the equation may be written

5.10

in the form

(5.57)

(5.58)

I * v' + v')ox: E(k) o*,

where
V':V_

These results are very interesting: Equation (5.57) shows that the effective potential
is given by Iz, while (5.58) shows Lhat V'is weaker than Y, because the second
term on the right of (5.58) tends to cancel the first term. This cancellation of the
crystal potential by the atomic functions is usually appreciable, often leading to a
very weak potential I/'. This is known as the pseudopotential. Since I/' is so weak,
the wave function as seen from (5.57) is almost a plane wave, given by {*, and is
called the pseudofunction.

The pseudopotential and pseudofunction are illustrated graphically in
Fig. 5.20(b). Note that the potential is quite weak, and, in particular, the singularity
at the ion core is entirely removed. Correspondingly, the rapid "wiggles" in the
wave function have been erased, so that there is a smooth plane-wave-like function.

Now we can understand one point which has troubled us for some time:
why the electrons in Na, for instance, seem to behave as free particles despite
the fact that the crystal potential is very strong at the ionic cores. Now we

see that, when the exclusion principle is properly taken into account, the
effective potential is indeed quite weak. The free-particle behavior, Iong taken
to be an empirical fact, is now borne out by quantum-mechanical calculations.
The explanation of this basic paradox is one of the major achievements of the
pseudopotential method. This method has also been used to calculate band
structure in many metals and semiconductors (Be, Na, K, Ge, Si, etc.) with
considerable success.

The APW and pseudopotential methods, as well as other related systems,
require much numerical work which can feasibly be carried out only by modern
electronic computers. It often takes a whole year or more to develop the
necessary program and perform the calculations for one substance on a large com-
puter!

5.10 METALS, INSULATORS, AND SEMICONDUCTORS

Solids are divided into two major classes: Metals and insulators. A metal-or
conductor-is a solid in which an electric current flows under the application of
an electric field. By contrast, application of an electric field produces no current
in an insulator. There is a simple criterion for distinguishing between the two
classes on the basis of the energy-band theory. This criterion rests on the following
statement: A band which is completely full carries no electric current, eoen in the

Lb,(r,lVlu,).
i
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presence of an electric field. It follows therefore that a solid behaves as a metal

only when some of the bands are partially occupied. The proof of this statement

will be supplied later (Section 5.13), but we shall accept it for the time being as an

established fact.
Let us now apply this statement to Na, for example. Since the inner bands

ls,2s,2p are all fully occupied, they do not contribute to the current. We may

therefore concern ourselves only witl the topmost occupied band, the ualence

band. In Na, this is the 3s band. / As we saw in Section 5.5, this band can

accommodate 2N. electrons, wher^e { is ttre total number of primitive unit cells.

Now in Na, a Bravais bcc lpttice, each cell has one atom, which contributes one

valence (or 3s) electron'.- ThEi;fbre 
-it 

e lotai 'number 
oJ Valence electrons is N",

and as these eloctrons occupy the band, only half of it is filled, as shown in Fig.

5.21(a). Thus sodium behaves like a metal because its valence band is only
partially filled.

(a) O) (c) (d)

Fig.5.21 The distribution of electrons in the bands of (a) a metal, (b) an insulator,
(c) a semiconductor, and (d) a semimetal.

In a similar fashion, we conclude that the other alkalis, Li, K, etc., are

also metals because their valence bands-the 2s, 4s, etc., respectively-are only
partially full. The noble metals, Cu, Ag, Au, are likewise conductors for the same

reason. Thus in Cu the valence band (the 4s band) is only half full, because each

cell in its fcc structure contributes only one valence electron.

As an example of a good insulator, we mention diamond (carbon). Here the

top band originates from a hybridization of the 2s and 2p atomic states (Section

A.8), which gives rise to two bands split by an energy gap (Fig. 5'2lb') Since

these bands arise from s and p states, and since the unit cell here contains two atoms,

each of these bands can accommodate 8N" electrons. Now in diamond each atom

contributes 4 electrons, resulting in 8 valence electrons per cell' Thus the

!?
)
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valence band here is completely full, and the substance is an insulator, as stated
above.t

There are substances which fall in an intermediate position between metals
and insulators. If the gap between the valence band and the band immediately
above it is small, then electrons are readily excitable thermally from the former to
the latter band. Both bands become only partially filled and both contribute to
the electric condition. Such a substance is known as a semicortductor. Examples
are Si and Ge, in which the gaps are about I and 0.7 ev, respectively. By contrast,
the gap in diamond is about 7 ev. Roughly speaking, a substance behaves as a
semiconductor at room temperature whenever the gap is less than 2 ev.

The conductivity of a typical semiconductor is very small compared to that of
a metal, but it is still many orders of magnitude larger than that of an insulator.
It is justifiable, therefore, to classify semiconductors as a new class of substance,
although they are, strictly speaking, insulators at very low temperatures.

In some substances the gap vanishes entirely, or the two bands even overlap
slightly, and we speak of semimetals (Fig. 5.21d). The best-known example is Bi,
but other such substances are As, Sb, and white Sn.

An interesting problem is presented in this connection by the divalent ele-
ments, for example, Be, Mg, Zn, etc. For instance, Be crystallizes in the hcp
structure, with one atom per cell. Since there are two valence electrons per celi,
the 2s band should completely fill up, resulting in an insulator. In fact, however,
Be is a metal-although a poor one, in that its conductivity is small. The reason
for the apparent paradox is that the 2s and 2p bands in Be overlap somewhat,
so that electrons are transferred from the former to the latter, resulting in
incompletely filled bands, and hence a metal. The same condition accounts for the
metallicity of Mg, Ca, Zn, and other divalent metals.

A substance in which the number of valence electrons per unit cell is odd is
necessarily a metal, since it takes an even number of electrons to fill a band
completely. But when the number is even, the substance may be either an
insulator or a metal, depending on whether the bands are disparate or over-
Iapping.

f The case of hydrogen is of special interest. Although it is gaseous at atmospheric
pressure' hydrogen solidifies at high pressure. But the familiar solid hydrogen is an insula-
tor, having two atoms per unit cell, which causes the complete filling oi tt 

" 
t. band. Theory

predicts, however, that at very high pressure (-2 megibars), soila hydrogen undergoei
a crystal structure transformation and a concomitant change to a metallic state. Many
experimenters are currently attempting to observe this transformation, and tentative
successes have been reported, but definitive results are still lacking at the time ol writing.
Even diamond has been reported to undergo transition to thJmetallic state at high
pressure (- 1.5 megabars). Simultaneously a structural phase transformation to a body-
centered tetragonal structure occurs. The decrease in the lattice constant caused by the
pressure is about 17/".
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5.11 DENSTTY OF STATES-

The density of states for electrons in a band yields the number of states in a

certai-rr energy range. This function is important in electronic processes,

particularly in transport phenomena. When we denote the density-of-states

function by g(E), it is defined by the relation

g(E) dE: number of electron states per unit volume in the energy range

(E,E + dE). (5.s9)

This definition of g(E) is analogous to that of the phonon density of states g(ar),

so our discussion here parallels that presented in connection with g(o). (See

Sections 3.3 and 3.7; particularly 3.7.) To evaluate g(E) one applies the

definition (5.59): One draws a shell in k-space whose inner and outer surfaces are

determined by the energy contours E(k) : E and E(k) : E + dE, respectively,

as shown in Fig. 5.22. The number of allowed k values lying inside this shell then
gives the number of states which, when divided by the thickness of the shell dE,
yields the desired function g(E).

Fie. 5.22 Concentric shells in k-space used to evaluate the density of states 9(E)'

f t is evident that g(E) is intimately related to the shape of the energy contours,

and hence the band structure. The complexities of this structure are reflected

in the form taken by g(E). Let us first evaluate g(E) for the case in which the

dispersion relation for electron energy has the standard form

213

h2k2D-
2m*

(s.60)
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As we have seen earlier, such a dispersion relation often holds true for those states
lying close to the bottom of the band near the origin of the Brillouin zone. The
energy contours corresponding to (5.60) are clearly concentric spheres surrounding
the origin. The resulting density-of-states shell is then spherical in shape, as
illustrated by shell ,4 in Fig. 5.22, and since this is spherical, its volume is given by
4nk2 dk, where k is the radius and dk the thickness of the shell. Recalling from
Section 3.3 that the number of allowed k values per unit volume of k-space is
ll(2n)3, it follows that the number of states Iying in the shell-i.e., in the energy
range(E,E+dE)-ts

we may convert the right side by writing it in terms of E, the energy, rather than
in terms of k, by using (5.60). We then find that

Number of states : 
# 47tk2 dk.

Number or states : # (T)3t2 nrrzar.

Comparing this result with the definition (5.59), we infer that

c@) : lo(T)''' u'''

(5.61)

(s.62)

In order to take into account the spin degeneracy-i.e., the fact that each k state
may accommodate two electrons of opposite spins-we multiply this expression
by 2, which yields

s@):*(#)''"',' (s.63)

This shows that g(E)- Ert', which means that the curve g(E) has a parabolic
shape (Fig. 5.23). The function g(E) increases with E because, as we see irom Fig.
5.22,the larger the energy the greater the radius, and hence the volume of the shell,

Et

Fig. 5.23 The density of states.
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and consequently the larger the number of states lying within it. Also note that

S(E) - m*3/2. That is, the larger the mass the greater the density of states.
The result (5.63) is very useful, and will be used repeatedly in subsequent

discussions, but note that its validity is restricted to that region in k-space in which
the standard dispersion relation (5.60) is satisfied. As the energy increases, a point
is reached at which the energy contours become nonspherical-e.9., shell B in
Fig. 5.22, in which region Eq. (5.63) no longer holds. One must then resort to a

more complicated formula to evaluate S@). As a result, the shape of g(E) is no
longer parabolic at large energy, as shown in Fig. 5.23, the actual shape being
determined by the dispersion relation E : E(k) of the band. Note also that, at

sufficiently large energies, the shell begins to intersect the boundaries of the zone,

e.g., shell C in Fig. 5.22,in which case the volume of the shell begins to shrink, with
a concomitant decrease in the number of states. The density of states of the shell
plummets, and continues to decrease as the energy increases, until it vanishes

completely when the shell lies entirely outside the zone, as shown in Fig. 5.23.

The energy at which g(E) vanishes marks the top of the valence band. The density
of states remains zero for a certain energy range beyond that, this range marking
the energy gap, until a new energy band appears, with its own density of states.

In simple metals, such as alkalis and noble metals, the standard form (5.60)

holds true for most of the zone until the energy contours come close to the

boundaries of the zone. It follows therefore that for these substances the

expression (5.63) applies throughout most of the energy band, except close to the

top of the band.
It is sometimes useful to have an expression for the density of states in the energy

range lying close to the top ofthe band. This can be derived readily ifthe band there
can be represented by a negative effective mass, as is usually the case (see Section
3.6). We may then show, by following a procedure analogous to that in deriving
(5.63), that

(s.64)

where E, is the top of the valence band (note that here E < E,). Thus the density
function 9(E) has an inverted parabolic shape, where the parabola is at the

top of the band. (See Fig. 5.23.).
Figure 5.24 illustrates situations in which bands overlap each other. Figure

5.2a@) represents a circumstance typical of divalent metals, in which the top
of a band is at higher energy than the bottom of the next-higher band. Figure
5.24(b) shows the overlap of the 4s and 3d bands in transition metals. The 3d

band, narrow and high, lies in the midst of the wide and flat 4s band.
According to definition, the quantity S@) dE gives the number of states lying

in the energy range (E, E + dE). The number of electrons actually occupying this

s@) : * (l#)',',',,r, - E)''|"



c@)

2t6 Metals II: Energy Bands in Solids 5-12

Fig. 5.24 (a) The shape of the density of states when two bands overlap each other as, e.g.,
in divalent metals. (b) The overlap of the 3d and 4s bands in transition metals.

range of energy is then given by

dn(E) : f(E) s(E) dE, (s.65)

where /(E) is the Fermi-Dirac distribution function, f (E): (l + ,(E-Er)tka'r7-t,
discussed in Section 4.6. Expression (5.65) follows from the fact rhar since g(E) dE
gives the number of available states, and /(E) the probability that each of these
is occupied by an electron, then the product f (E) S@) dE must give the number of
electrons present in that energy range.

5.T2 THE FERMI SURFACE

In Section 4.7 we discussed the Fermi surJace (FS) in connection with the free-
electron model. There we saw that the significance of this surface in solid-state
physics derives from the fact that only those electrons lying near it participate in
thermal excitations or transport processes. Here we shall consider the Fermi sur-
face again, and now we shall incorporate tne effects of the crystal potential. The
significance of the FS remains unchanged, but its shape, in some cases, may be
considerably more complicated than the spherical shape of the free-electron model.
We shall now consider the effects of the crystal potential on the shape of the FS,
while in later sections we shall see how this change may influence the physical
properties of the crystal. Experimental determination of the FS will be considered
in Section 5.19.

As we recall, the FS is defined as the surface in k-space inside which all the states
are occupied by valence electrons.t All the states lying outside the surface are

t In Section 4.7 we discussed the FS in velocity space. However, for a free-like electron,
the velocity is given by v : hklm*. Thus v and k are proportional to each other, and one
could equally well speak of the FS in k-space, provided an appropriate change in scale
were made.

(b)(a)
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empty. The definition is strictly valid only at absolute zero, T : 0'K, but, as we

saw in Section 4.6, the effect of temperature on the FS is very slight, and the
surface remains sharp even at room temperature or higher. The shape of the FS

is determined by the geometry of the energy contours in the band, since the FS is

itself an energy contour, where E(k) : Er, Er being the Fermi energy. (Because

of this, the FS should display the same rotational symmetry as the lattice.)

Fermi surface

Fig.5.25 The evolution of the shape of the FS as the concentration of valence or
conduction electrons increases.

Figure 5.25 illustrates the evolution ofthe shape ofthe FS as the concentration
of valence electrons increases. For small n, only those states lying near the bottom
of the band at the center of the zone are populated, and the occupied volume is a
sphere in k-space, which is therefore bounded by a spherical FS. As r increases

and more states are populated, the "Fermi volume" expands, and so does the FS.

This surface, which is spherical near the origin, begins to deform gradually as r
increases, following the distortion in the contours at large energies (as discussed

previously) as seen in Fig. 5.25. The distortion in the shape of the FS may become
quite pronounced, particularly as the FS approaches the boundaries of the zone.

The distortion is even greater when the surface intersects the boundaries, as will
be discussed later in this section.

The alkali metals Li, Na, and K crystallize in the bcc structure, whose Brillouin
zone is a regular rhombic dodecahedron (Fig. 5.8b). As we saw in Section 5.6, the
valence band is half filled. The FS is still far from the boundaries, and since the
standard dispersion relation holds well throughout most of the zone, it follows that
the FS in these substances is essentially spherical in shape. Experiments confirm this,
showing that in Na and K the distortion of the FS from sphericity is of the order
of l0-3.

The noble metals Cu, Ag, and Au crystallize in the fcc structure. The shape

of the BZ here is that of a truncated octahedron (Fig. 5.26). Here again the
valence band is only half-filled, and consequently the FS, being far from the zone
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Fig. 5.26 The FS in noble metals. The surface protrudes toward the zone faces in the
Illl] directions.

boundaries, should be essentially spherical, which is substantially true for most of the
FS. However, along the (111) directions, the FS comes close to the zone
boundaries, because of the shape of the zone, and as a result the surface suffers
strong distortion in that region. As seen in Fig. 5.26, the FS protrudes along the
(lll) directions so much as to touch the zone face. [n effect the zone
boundaries have "pulled" the FS, giving it the shape shown in the figure-a sphere
with eight "necks" protrudingin the (lll) directions. In this respecr rhe FS
in the noble metals is quite different from that in the alkali metals.

The position of the Fermi level Er for various classes of solids is illustrated
in Fig. 5.27. Figure 5.27(a) illustrates the density of states and the position of E.

(a) (b)

Fie.5.27 The position of the Fermi energy in (a) a monovalent metal, and (b) a
divalent metal.

for a typical monovalent metal, where only half the band is filled, and the substance
acts as a conductor. Figure 5.27(b) shows a divalent metal. Here the bands over-
lap to some extent, and the number of valence electrons is so large that the FS

spills over into the higher band. Figure 5.28 shows an insulator, in which the

c(D
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Fig. 5.28 The position of the Fermi energy in an insulator.

valence band is completely filled and the Fermi level lies somewhere in the energy

gap.
We shall now determine the Fermi energy Eo for the case in which the

standard form(5.60) holds. As seen above, this applies to the alkali metals and, to a
lesser extent, to the noble metals as well. By its very definition, the Fermi energy

satisfies the relation (at T : 0"K)

s(E)dE: n, (s.66)

because the integral on the left gives the number of states from the bottom of the

band, E: 0, right up to the Fermi level. This number must be equal to the

number of electrons, which is the meaning of (5.66). lf we substitute for
g(E) from (5.63), perform the necessary integration (which can be readily
accomplished), and solve for E., we find that

I.'

E,: 
*(3n2n)2t3,

(s.67)

which is the result quoted previously in the case of the free-electron model
(Section 4.7). Refer to Table 4.1 for a list of Fermi levels, and note that Eo is
typically of the order of a few electron volts.

Let us now turn to the FS in polyvalent metals. Suppose that the number of
valence electrons is sufficiently large so that the FS intersects the boundaries of
the zone, as shown in Fig. 5.29(a). In constructing the FS here, we used the empty-
lattice model, so the crystal potential is set equal to zero. The FS is now seen to
extend over two zones. The part of the FS lying in the first zone is repeated in

Fig. 5.29(b). Note that it is composed of the four sides of a diamond-shaped

figure. Figure 5.29(c) replots the part of the FS lying in the second zone using the

reduced-zone scheme. We see that it is composed of the sides of four half-bubble-

shaped figures. When viewed in the various individual zones, the shape of the FS

appears quite complicated, even for a free electron, belying its original simplicity.
Of course, if one uses the extended-zone scheme, the original spherical shape of
Fig. 5.29(a) may be reconstructed, but this is not immediately apparent from
Fig. 5.29(b) or (c) individually. If we now turn on a weak crystal potential, the
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Fig. 5.29 The Harrison construction. (a) The FS in the emptyJattice model using the
extended-zone scheme. (b) The FS in the first zone. (c) The FS in the second zone.
(d) Band overlap.

shape of the FS in the two zones is affected only slightly, the effect being primarily
to round off the sharp corners. The point here is that the complicated FS's usually
observed in polyvalent metals are not necessarily the result of strong crystal
potentials (as was once thought to be the case). They may be due largely to the
crossing of the zone and the piecing together of the various parts of the FS. (The
procedure for reconstructing Fermi surfaces on the basis of the empty-lattice
model is known as the Harrison conslruction.)

Figure 5.29(d) shows the energy bands in the two zones plotted in two different
directions. The two bands overlap. The rop of the first band along the Illl]
direction is higher than the bottom of the second band in the [100] direction.
The Fermi level crosses both bands, and both contribute to the conduction process.

It is important to note here that the Fermi level crosses the lower band
(on the left in Fig. 5.29d) in a region in which the curvature of the band is down-
ward, i.e., a region of negative effective mass. As we shall see in Section 5.17,
such a situation is best described in terms of holes.

Figure 5.29(d) illustrates what is known as the two-band model for a metal.

Fermi surface

Second zone
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The electric current is transported by carriers in two bands: Electrons in the
higher band, holes in the lower. We shall exploit this model to full advantage in
Section 5.18.

Fig. 5.30 The Fermi surface of beryllium.

Finally, Fig. 5.30 shows the FS for Be (known also as the Be coronet).
Complicated as this appears to be, the surface is quite similar to the shape

obtained using the Harrison construction. Note the hexagonal symmetry, expected

as a consequence of the hexagonal crystal structure of Be.

5.T3 VELOCITY OF THE BLOCH ELECTRON

Now let us studythe motion of the Bloch electrons in solids. An electron in a state

ry'* moves through the crystal with a velocity directly related to the energy of that
state. Consider first the case of a free particle. The velocity is given by

v : plmo, where p is the momentum. Since P : frk, it follows that, for a free

electron, the velocity is given by

(s.68)

i.e., the velocity is proportional to and parallel to the wave vector k, as shown in
Fie.5.3l(a).

(a) (b)

Fig. 5.31 The velocity of (a) a free electron, and (b) a Bloch electron.

For a Bloch electron, the velocity is also a function of k, but the functional
relationship is not as simple as (5.68). To derive this relationship, we use a well-known

hk
v:-r

mo
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formula in wave propagation. That is, the group velocity of a wave packet is
given by

v : Vr rrr(k), (5.6e)

where co is the frequency and k the wave vector of the wave packet. Applying this
equation to the electron wave in the crystal, and noting the Einstein relation
ot : Elh, we may write for the velocity of the Bloch electron

vk E(k), (5.70)

which states that the velocity of an electron in state k is proportional to the gradient
of the energy in k-space. [Equation (5.70) can also be derived more rigorously
by writing the quantum expression for the velocity of the probability wave asso-
ciated with the Bloch electron and finding the quantum expectation value; see

Mott (1936).1 We assume implicitly that we are dealing here with the valence
band, and hence the band index has been suppressed, although it should be clear
from the derivation that (5.70) is valid in any band.

Since the gradient vector is perpendicular to the contour lines, a fact well
known from vector analysis, it follows that the velocity v at every point in
k-space is normal to the energy contour passing through that point, as shown in
Fig. 5.31(b). Because these contours are in general nonspherical, it follows that the
velocity is not necessarily parallel to the wave vector k, unlike the situation of a free
particle.

Note, however, that near the center of the zone, where the standard dispersion
relation E: h2k2 l2m* is expected to hold true, the relation (5.70) leads to

hk

m*

which is of the same form as the relation for a free particle, (5.68), except that mo
has been replaced by m*, the effective mass. This is to be expected, of course, since
we have often stated that a Bloch electron behaves in many respects like a free
electron, except for the difference in mass. [t follows that near the center of the zone
v is parallel to k, and points radially outward, as shown in Fig. 5.31 (b). It is near
the zone boundaries at which the energy contours are so distorted that this simple
relationship between v and k is destroyed, and so one must resort to the more
general result (5.70).

Note also that when an electron is in a certain state ry'*, it remains in that state
forever, provided only that the lattice remains periodic. Thus as long as this situa-
tion persists, the electron will continue to move through the crystal with the same
velocity v, unhampered by any scattering from the lattice.t In other words,

Iv--
h

(5.7 l)

t See the remarks about the propagation of waves in periodic lattices (Section 4.5).
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the velocity of the electron is a constant. Any effect the lattice may exert on the
propagation velocity has already been included in (5.70) through the energy E(k).

Deviations in the periodicity of the lattice would, of course, cause a scattering

of the electron, and hence a change in its velocity. For example, an electron moving
in a vibrating lattice suffers numerous collisions with phonons, resulting in a pro-

found influence being exerted on the velocity. Also, external fields-electric or
magnetic-lead to change in the velocity of the electron. We shall discuss these

effects in the following sections.

Fig.5.32 (a) The band structure, and (b) the corresponding electron velocity in a one-
dimensional lattice. The dashed line in (b) represents the free-electron velocity.

Figure 5.32(a) shows a typical one-dimensional band structure, and

Fig. 5.32(b) shows the corresponding velocity, which in this case reduces to

(s.72)

that is, the velocity is proportional to the slope of the energy curve. We see that as k
varies from the origin to the edge ofthe zone, the velocity increases at first linearly,
reaches a maximum, and then decreases to zero at the edge of the zone. We wish
now to explain this behavior on the basis of the NFE model, particularly the

seemingly anomalous decreases in the velocity near the edge of the zone. The
following discussion is closely related to the discussion in Section 5.7.

Near the zone center, the electron may be adequately represented by a single
plane wave t* - eik', and hence v : hklmo, explaining the linear region of Fig.
5.32(b). However, as k increases, the scattering of the free wave by the lattice

introduces a new left-traveling wave whose wave vector k' : k - 2nla, and which

(a)

(b)

taE
"- hak'
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is to be superimposed on the original right-traveling wave k. Therefore the electron
is now represented by the wave mixture

0r, = eik, + be- i(2tla-klx (5.73)

where the coefficient 6 is found from perturbation theory (Eq. 5.2q. The velocity
of this wave, according to quantum mechanics, is given by

(s.74)

where the first term on the right is the contribution of the right-traveling wave,
while the second term is the contribution of the left-traveling wave. At small k,
thq coefficient 6 is small, and u is given essentially by hklmo, as stated above. As k
increases, however, the coefficient of the scattered wave increases, and so the
second term in (5.74) becomes appreciable. Since the second term is negative
(k < 2nla), its effect tends to cancel the first term. Near the zone boundaries, the
coefficient D is so large that the resulting cancellation is greater than the increase
in the first term, which leads to a net decrease in the velocity, as we have seen.

At the zone boundary itself (k : nla), the scattered wave becomes equal
to the incident wave as a result of the strong Bragg reflection, that is, D: l,
which, when substituted into (5.74), yields u : 0, in agreement with Fig. 5.32(b).
We anticipated this result in Section 5.7, in which we found that at the zone
edge the electron is represented by a stdnding wave.

Similar applications of the NFE model in two and three dimensions explain
why the relationship between v and k near the zone boundaries differs considerably
from that for a free particle (see the problem section at the end of this chapter).

Now we shall derive a result which was used earlier in Section 5.10, namely,
that a completely filled band carries no electric current. To establish this, we note
that according to (5.70)

v(-k) : -v(k), (s.75)

where v(k) and v(-k) are the velocities of electrons in the Bloch states k and

- k, respectively (see Fig. 5.33). This equation follows from the symmetry relation

u:^o -bl']-('l-o\,ftts mo\a /

Fig.5.33 v(-k): -v(k).
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E(-k) : E(k), which was established in Section 5.4.

all electrons in the band is given by
The current density due to

J: (5.76)

where I/ is the volume, -e the electronic charge, and the sum is over all states

in the band. But as a consequence of (5.75), the sum over a whole band is seen to
vanish, that is, J :0, with the electrons' velocities canceling each other out in
pairs.

5.I4 ELECTRON DYNAMICS IN AN ELECTRIC FIELD

When an electric field is applied to the solid, the electrons in the solid are accelerated.

We can study their motions most easily in k-space. Suppose that an electric field
d is applied to a given crystal. As a result, an electron in the crystal experiences

a force F : - eE, andhence a change in its energy. The rate of absorption of energy

by the electron is

l_--( - e) ) v(k),
yk

dE(k\

;: - eE'v.

dkh*:-eE:F.

(s.77)

where the term on the right is clearly the expression for the power absorbed by a
moving object. If we write

dB(k) dk

i: vkE(k).7,

and use the expression (5.70) for v, then substitute these into (5.77), we find the

surprisingly simple relation P=fii.
J

r=h * (5.78)

This shows that the rate of change of k is proportional to-and lies in the same

direction as-the electric force F (i.e., opposite to the field E, by virtue of the

negative electron charge). This relation is a very important one in the dynamics
of Bloch electrons, and is known as the acceleration theorem.

Equation (5.78) is not totally unexpected. We have already noted the fact
that the vector ftk behaves like the momentum of the Bloch electron (Section 5.3).

In that context, Eq. (5.78) simply states that the time rate of change of the

momentum is equal to the force, which is Newton's second law.

Let us now consider the consequences of the acceleration theorem, starting

E=ikh
L,ah -Jh'- h(h-r ld. hn^''

-1h K*'-n 'JL
ak = h& kh-' Yvt*: h th-r)A



Metals II: Energy Bands in Solids 5.14

with the one-dimensional case. Equation (5.78) may be written in the form

(s.7e)

showing that the wave vector k increases uniformly with time. Thus, as r increases,
the electron traverses the k-space at a uniform rate, as shown in Fig. 5.34. If we

Fig. 5.34 (a) The motion of an electron in k-space in the presence of an electric field
(directed to the left). (b) The corresponding velocity.

use the repeated-zone scheme, the electron, starting from k : 0, for example,
moves up the band until it reaches the top (point ,4) and then starts to descend along
the path 8C. If we use the reduced-zone scheme, then once the electron passes

the zone edge at,4, it immediately reappears at the equivalent point A', then con-
tinues to descend along the palh A'B'C' . Recall that, according to the translational-
symmetry property of Section 5.4, the points B', C' are respectively equivalent
to the points B, C, so that we may use either of the two schemes.

Note that, in the presence of an electric field, the electron is in constant
motion in k-space; it is never at rest.

Also note that the motion in k-space is periodic in the reduced-zone
scheme, since after traversing the zone once, the electron repeats the motion.
The period of the motion is readily found, on the basis of (5.79), to be

2nh 2nhr : Fa: "s, .. (5',80)7 r
Figure 5.34(b) shows the velocity of the electron as it traverses the k-axis.

Starting at k :0, as time passes, the velocity increases, reaches a maximum,

dkF
dt h'

(b)
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decreases. and then vanishes at the zone edge. The electron then turns around
and acquires a negative velocity, and so forth. The velocity we are discussing is the
velocity in real space, i.e., the usual physical velocity. It follows that a Bloch
electron, in the presence of a static electric field, executes an oscillatory periodic
motion in real space, very much unlike a free electron. This is one of the
surprising conclusions of electron dynamics in a crystal.

Yet the oscillatory motion described above has not been observed, and the
reason is not hard to come by. The period 

" 
of (5.80) is about l0-s s for usual

values of the parameters, compared with a typical electron collision time
z: l0-la s at room temperature. Thus the electron undergoes an enormous
number of collisions, about 10e, in the time of one cycle. Consequently the oscilla-
tory motion is completely "washed out."t

Fig.5.35 The motion of an electron in a two-dimensional lattice in the presence of an
electric field (a) according to the reduced-zone scheme, (b) according to the repeated-zone
scheme.

Let us now consider the situation in two dimensions (Fig. 5.35). When an

electric force F is applied, the electron, starting at some arbitrary point P, moves

in a straight line in k-space, according to (5.78). As it reaches the zone edge at
point P,, it reappears at P',, continues on to Pr, and reappears at Pi. lt follows
the crisscross path shown in Fig. 5.35(a). If we used the repreated-zone scheme

instead (Fig. 5.35b), then the path of the electron in k-space would simply be the
straight line P PlP'; P'; (note that Pi is equivalent to Pr, P! to Pr, etc.).
This is one situation in which the repeated-zone scheme proves to be more
convenient than the extended-zone scheme.

5.15 THE DYNAMICAL EFFECTIVE MASS

When an electric field is applied to a crystal, the Bloch electron undergoes an

tl-eo Esaki and his collaborators are currently attempting to build a device for which
T 4t, by growing highly pure superlattices for which a= 50 - 100A. Such a Bloch
oscillator may be used as an oscillator or amplifier.

(b)(a)
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acceleration. This can be calculated as follows:
derivative of velocity, we have

du
a: -=,

clt

where we have chosen to treat
function of the wave vector k,
written as

the one-dimensional case first. But velocity is a
and consequently the above equation may be re-

du dk
"- dkdt'

5.15

Since acceleration is the time

(s.8 l)

(s.82)

which, when we substitute for the velocity from (5.72), and for dkldt from (5.78),
yields

This has the same form as Newton's second law, provided we define a dynamical
efectiue mass m* by the relation

IdzE-o: *7P ''

m*:h2 lff) (5.83)

Thus, insofar as the motion in an electric field is concerned, the Bloch electron
behaves like a free electron whose effective mass is given by (5.83).

The mass la* is inversely proportional to the curvature of the band; where the
curvature is large-that is, d2Eldk2 is large-the mass is small; a small curvature
implies a large mass (Fig. 5.36).

Large mass

k

Fig.5.36 The inverse relationship between the mass and the curvature of the energy
band.

We have previously used the concept of effective mass (Sections 5.6 and 5.8).
Those situations are now superseded by-and are in fact special cases of-the
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general relation (5.83). Thus, if the energy is quadratic in k,

E: akz,

where a is a constant. Then Eq. (5.83) yields

mx : hz l2a,

which is equivalent to rewriting (5.84) as E : hzk2 l2m*, the standard form.

E

229

(s.84)

(5.85)

kc!
a

Fis. 5.37 (a) The band structure, and (b) the effective mass ,r?* versus k.

Figures 5.37(a) and (b) show, respectively, the band structure and the effective

mass rz*, the latter calculated according to (5.83). Near the bottom of the band,

the effective mass rz* has a constant value which is positive, because the quadratic

relation (5.84) is satisfied near the bottom of the band. But as k increases, rn* is
no longer a strict constant, being now a function ofk, because the quadratic rela-

ion (5.84) is no longer valid.
-. Note also that beyond the infiection point k" the mass rz* becomes negative,

since the region is now close to the top of the band, and a negative mass is to be

expected (Sections 5.6 and 5.8).
The negative mass can be seen dynamically by noting that, according to Fig.

5.34, the velocity decreases for k > k,. Thus the acceleration is negative, i'e.,

opposite to the applied force, implying a negative mass. This means that in this
region ofk-space the lattice exerts such a large retarding (or braking) force on the

electron that it overcomes the applied force and produces a negative acceleration.

The above results may be extended to three dimensions. The acceleration is

(b)
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dY
1::.

dt

If we write this in cartesian coordinates, and use (5.70) and (5.78), we find that

s. I A2E
a': ) ..--F..t: / n? a*,at, 't' I'J : x'Y'z'

J

which leads to the definition of effective mass as

I A2E

Fat W , l,J: x,l,z. (5.86)

The effective mass is now a second-order tensor which has nine components.
When the dispersion relation can be written ast

E(k) : (ark2. + ark] + ark!), (s.87)

then using (5.86) leads to an effective mass with three components : m!, : h2 f\ar,
mir: h2 12a2, znd m!": h2 l2qt In this case the mass of the electron is
anisotropic, and depends on the direction of the external force. When the force
is along the k,-axis, the electron responds with a mass z],, while a force in the
kr-direction elicits an effective mass m|. A relation of the type (5.87),
corresponding to ellipsoidal contours, is a common occurrence in semiconductors,
e.g., Si and Ge. Note that in this case, unlike the free-electron case, the
acceleration is not, in general, in the same direction as the applied force.

It may also happen that one of the a,'s in (5.87) is negative. This means that
the mass in the corresponding direction is negative, while the other directions
exhibit positive masses. This again is vastly different from the behavior of the
free electron.

The concept of effective mass is very useful, in that it often enables us to treat
the Bloch electron in a manner analogous to a free electron. Nonetheless, the Bloch
electron exhibits many unusual properties which are alien to those of a free
electron.

5.16 MOMENTUM, CRYSTAL MOMENTUM, AND PHYSICAL ORIGIN OF
THE EFFECTIVE MASS

We have said on several occasions that a Bloch electron in the state ry'u behaves as

if it had a momentum fik. Basically, there are three different reasons to support
this statement.

f This is possible near a point at which the energy has a minimum, a maximum, or a
saddle point.

(*),,:
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a) The Bloch function has the form

rlt*: eik''ux' (5'89)

which, since atu is periodic, appears essentially as a plane wave of wavelength

). :2rlk. This, combined with the deBroglie relation, leads to a momentum

hk.

b) When an electric field is applied, the wave vector varies with time according to

d(hk\
T. : F._,, (5.90)

a momentum. Here F"*, refers to the externalagain indicating that ftk acts as

force applied to the crystal.

c) In collision processes involving a Bloch electron, the electron contributes a

momentum equal to ftk.

These reasons are sufficiently important to warrant identification of fik with

the momentum. The fact is, nevertheless, that hk is not equal to the actual

momentum of the Bloch electron. To make the distinction clear, let us denote

the vector ftk by p". That is,

9": hk'

We shall refer to this as the crystal momentum.

(5.e r )

The actual momentum of the electron p can be evaluated using quantum

methods. According to quantum mechanics the average momentum is given by

p : (ful - ihVlllk>, 6.92)

where - iftV is the momentum operator and rlry is the Bloch function. If one

evaluates this integral, using the properties of the wave function ry'1 (see the

problem section at the end of this chapter), one finds t\at

p: moY, Y = T-Vr I tt) (5.e3)

where m is the mass of the .free electron and v is the velocity as given by (5.70).

Thus the true momentum of the electron is equal to the true maSS rn times

the actual velocity v, which seems to be a plausible result.

In retrospect, one may have suspected the original identification of p. with the

actual momentum from the outset. Since the function rz1 in (5.89) is not a
constant, the Bloch function ry'1 is not quite a plane wave, and correspondingly the

vector fik is not quite equal to the momentum. Also, if P" : hk were the true
momentum, then the force appearing on the right of (5.90) should have been the

total force, and notjust the external force. As we shall see, there is a force exerted

by the lattice, yet this force does not appear to influence p".
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The above ideas may now be assembled to give a physical interpretation of
the effective mass. Since the vector p : ,.n ov is equal to the true momentum, one may
write

where F,o, and F, are, respectively, the total force and the lattice force acting on
the electron. By lattice force, we mean the force exerted by the lattice on the
electron as a result of its interaction with the crystal potential. The left side in
(5.94) can be readily expressed in terms of the effective mass, namely

du
*oA F,o, : F"*1 * F1,

du F.,,
*o d, *o **'

ni : m^ F"^r

" F",, +F,.

(5.e4)

(5.e5)

(5.e6)

as we can see by referring to Eqs. (5.81) through (5.83). substituting this into
(5.94), and solving for m*, one finds

Now we see that the reason why m* is different from mo, the free mass, lies in the
presence of the lattice force -Fr. If f', were to vanish, the effective mass would
become equal to the true mass.

The effective mass ra* may be smaller or larger than mo, or even negative,
depending on the lattice force. Suppose that the electron is "piled up" primarily
near the top of the crystal potential, as shown in Fig. 5.38(a). When an

+ Fext +fext

Fig. 5'38 (a) Electron spatial distribution leading to an effective mass rn + smaller than mo.
(b) A distribution leading to m* > m6.

external force is applied, it causes the electron to "roll downhill" along the
potential curve. As a result, a positive lattice force becomes operative and hence,
according to (5.96), m* I mo. This is what happens in alkali metals, for instance,
and in the conduction band in semiconductors. Here ru* is less than mo because the
lattice force assists the external force.

(b)(u)
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On the other hand, when the electron is piled mainly near the bottom of the
potential curve (Fig. 5.38b), then clearly the lattice force tends to oppose the
external force, resultingin m* > zo. This is the situation in the alkali halides, for
instance. If the potential wave is sufficiently steep, then ^F. becomes larger than
F",,, and z* becomes negative.

Note that the lattice force -Fr, which appears in (5.94), is a force induced
by the external force. Thus if F"*, : 0, then the velocity is constant (Section
5.13), and hence -F. : 0, according to (5.94). It is true that the lattice also exerts
a force on an otherwise-free electron even in the absence of F"*,, but that force has

already been included in the solution of the Schrcidinger equation, and hence in
the properties of the state ry'u. That force (as we stated in Sections 5.13 and 4.4)
does not scatter the wave ry'*.

However, the crystal momentum D" : hk is still a very useful quantity.
In problems of electron dynamics in external fields, crystal momentum is much
more useful than true momentum, since it is easier to follow motion in k-space
than in real space. Therefore we shall continue to use p" and refer to it as the momen-
tum, when there is no ambiguity, and even drop the subscript c.

In other words, the effective mass rn* and the crystal momentum ik are artifices
which allow us--formally at least-to ignore the lattice force and concentrate on
the external force only. This is very useful, because lattice force is not known
a priori, nor is it easily found and manipulated as is the external force.

5.17 THE HOLE

A hole occurs in a band that is completely filled except for one vacant state.
Figure 5.39 shows such a hole. When we consider the dynamics of the hole in an

Fig.5.39 The hole and its motion in the presence of an electric field.

external field, we find it far more convenient to focus on the motion of the vacant
site than on the motion of the enormous number of electrons filling the band. The
concept of the hole is an important one in band theory, particularly in semi-
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conductors, in which
e.g., the transistor.

Suppose the hole
current density of the

5.17

it is essential to the operation of many valuable devices,

is located at the wave vector k,, as shown in Fig. 5.39. The
whole system is

-pJr,: V )u.(U), (5.97)

where the sum is over all the electrons in the band, with the prime over the
summation sign, indicating that the state k, is to be excluded, since that
state is vacant. Since the sum over the filled band is zero, the current densitv
(5.97) is also equal to

l^ : ; u"(k,). (s.e8)

That is, the current is the same as if the band were empty, except for an electron
of positiue charge *e located at k,.

When an electric field is now applied to the system, and directed to the
left (Fig. 5.39), all the electrons move uniformly to the right, in k-space, and at the
same rate (Section 5.14). Consequently the vacant site also moves to the right,
together with the rest of the system. The change in the hole current in a time interval
6l can be found from (5.98):

6Jh:

which, when we use (5.70), (5.83), and (5.78), can be transformed into

i(#) r,# u,,

(s.ee)

where re*(k,) is the mass of an electron occupying state k,.
This equation gives the electric current of the hole, induced by the

electric field, which is the observed current.t Since the hole usually occurs near
the top of the band-due to thermal excitation of the electron to the next-higher
band, where the mass m*(k) is negative-it is convenient to define the mass of a
hole as

ml : - m*(k,), (5. r00)

t In practice a band contains not a single hole but a large number of holes, and in the
absence of an electric field the net current of these holes is zero because of the mutual
cancelation of the contributions of the various holes, i.e., the sum of the expression (5.98)
over the holes vanishes. When a field is applied, however, induced currents are created,
and since these are additive, as seen from (5.99), a nonvanishing net current is established.

e I I / -e2 t6Jn: v *\k)F 6t : v \^\or)' u''
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which is a positive quantity, and write (5.99) as
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(s. l0r )

(5.102)

u,^:;4e a,

Note that the hole current, like the electron current, is in the same direction as the

electric field.
By examining (5.98) and (5.101), we can see that the motion of the hole,

both with and without an electric field, is the same as that of a particle with a

positiue charge e and a positiue mass m[,. Viewing the hole in this manner results
in a great simplification, in that the motion of all the electrons in the band has been

reduced to that of a single "particle." This representation will be used frequently
in the following discussions.

We may note, incidentally, that according to (5.99), if the hole were to lie
near the bottom of the band, where m*(kr) > 0, then the current would be

opposite to the field. This means that the system would act as an amplifler,
with the field absorbing energy from the system. This situation is not likely to
occur, however, because the hole usually lies near the top of the band.t

5.18 ELECTRICAL CONDUCTIVITY

We discussed electrical conductivity previously in connection with the free-electron
model (Sections 4.4 and 4.8), in which we obtained the result

ne2tp

m*

The quantity n is the concentration of the conduction-or valence-electrons and
rp is the collision time for an electron at the Fermi surface. Now let us derive the
corresponding expression for electrical conductivity within the framework of band
theory.

When the system is at equilibrium-i.e., when there is no electric field-the
FS is centered exactly at the origin, as shown in Fig. 5.a0(a). Consequently the net
current is zero, because the velocities of the electrons cancel in pairs. That is, for
every electron in state k whose velocity is v(k), another electron exists in state -k
whose velocity v(-k): -v(k) is simply the reverse of the former. This result,
found in the free-electron model, also holds good in band theory, and accounts
for the vanishing of the current at equilibrium.

When an electric field is applied, each electron travels through k-space at a

f A proposal for an amplifier operating on essentially the same principle was advanced
by H. Kroemer, Phys. Reu. lO9, 1856 (1955).
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Fig. 5.40 (a) In the uur"lil" of an electric field the rs rc []rrt"."d at the origin, and the
electron currents cancel in pairs. (b) In the presence of an electric field, the FS is
displaced and a net current results.

uniform rate, as discussed in Section 5.14. That is,

eE6k': - i6,,
where 6k, is the displacement in a time interval dt. Since an electron usually "lives"
for an interval equal to the collision time z, the average displacement is

(5.103)

Consequently the FS is displaced rigidly by this amount, as shown in Fig. 5.40(b).
There are now some electrons which are no, compensated-i.e., canceled-by
other electrons, and which are indicated by the cross-hatched crescent-shaped
region. They contribute a net current.

The density of this current can be calculated as follows: It is given 6y

J, : - e Do,, x concentration of uncompensated electrons

: - eAr,,g(E) 6E

: - ele.*g(ur\?r) 
",u0,, 

(5.104)

where Do,, is the component of the Fermi velocity in the x-direction and the bar
indicates an average value.

Note that g(E.)6E gives the concentration of uncompensated electrons,
g(E") being the density of states at the FS and 6E the energy absorbed by the
electron from the field. Noting that 0El0k, : hop,*, and substituting for dk,
from (5.103). one obtains

5k-: - 9,.'h

J,: e2a?.,rrg(E)8, (5.105)



5.18 Electrical Conductivity 237

where the collision time has been designated as zp, inasmuch as we are clearly
dealing with electrons lying at the FS. Note that the current is in the same

direction as the field.
For a spherical FS, there is a spherical symmetry, and hence one lnay write

01,,: +a? which, when substituted into (5.105), leads finally to the following
expression for the electrical conductivity:

6 : I e2uzrrrg(Ep), (s.106)

which is the expression we have been seeking.

Note that o depends on the Fermi velocity and the collision time, but also note
the dependence on the density of states at the FS, g(E.). Often this is the predomin-
ant factor in determining the conductivity, as we shall see shortly.

Expression (5.106) is more general than the free-electron formula (5.102),

and far more meaningful. Equation (5.102) implies that conductivity is controlled
primarily by r, the electron concentration. However, conductivity is, in fact,
controlled primarily by the density of states 9(E.) instead. In the appropriate
limit, expression (5.106) reduces to (5.102) as a special case, as it must. To
establish this, we use the relation s@) : +n2(2m*lh2)3/2prtz [see (5.63)],
E, : !m*u2r, and EF : (h2l2m*)(3n2n)213 [from (5.67)], which we find
reduce (5.106) to (5.102).

Fig. 5.41 Position of the Fermi energy level in a monovalent metal and in an insulator.
In the former, S(Ei is large, while in the latter, g(Esl: O.

Figure 5.41 shows the density of states for a typical solid, indicating the
position of the Fermi level for a monovalent metal, and also for an insulator.
In the metal, the level E. is located near the middle of the band where g(E.) is
large, leading to a large conductivity, according to (5.106). In the insulator, the

level Eo is right at the top of the band, where g(Eo) : 0. Thus the conductivity
is zero, despite the fact that the Fermi velocity, which also appears in (5.106),

is very large.
The expression (5.106), though restricted to the case in which the FS is

spherical, is useful in unraveling the important role played by the density of states.

The results may be generalized to include the effects of more complex FS shapes

EIEF

c(q
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(as you will find by referring to the bibliography), which often lead to unwieldy
expressions.

Another important aspect of the electrical conduction process-and of trans-
port phenomena in general-is that they enable us to calculate the collision time
rp. We discussed this subject in a semiclassical fashion in Section 4.4for the free-
electron model, but a more rigorous treatment involves the use of quantum methods
(see Appendix A), and perturbation theory in particular. The scattering
mechanisms are the same as those discussed in connection with the free-election
model (Section 4.5)-scattering by lattice vibrations, impurities, and other lattice
defects-but the details of the calculation are highly complicated (Ziman, 1960),
and will not be given here.

5.I9 ELECTRON DYNAMICS IN A MAGNETIC FIELD: CYCLOTRON
RESONANCE AND THE HALL EFFECT

We discussed electron dynamics in a magnetic field in Section 4. l0 with respect
to the free-electron model, where we also treated cyclotron resonance and the
Hall effect. Here we shall discuss the way in which this is modified for a Bloch
electron, taking into account the interaction with the crystal potential. This subject
is more useful in practice, as the magnetic field is often used in studies of band struc-
ture.

Cyclotron resonance

The basic equation of motion describing the dynamics in a magnetic field is

-e[v(k)xB], (s.107)

where the left side is the time derivative of the crystal momentum, and the right
side the well-known Lorentz force due to the magnetic field. This equation
is a plausible one in light of the discussion in Sections 5.14 and 5.16, in
which we concluded that the momentum of the crystal usually acts as the familiar
momentum, provided only the external force is included. [The equation (5.107)
may also be derived from detailed quantum calculations.]

According to (5.107), the change in k in a time interval dr is given by

6k: - (elh)lv(k) x Bldt, (5. r 08)

which shows that the electron moves in k-space in such a manner that its displace-
ment dk is perpendicular to the plane defined by v and B. Since 6k is perpendicular
to B, this means that the electron trajectory lies in a plane normal to the
magnetic field. In addition, 6k is perpendicular to v which, inasmuch as y is normal
to the energy contour in k-space, means that 6k lies along such a contour. Putting
these two bits of information together, we conclude that the electron rotates along

dkh::
dt
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Fig. 5.42 Trajectory of the electron in k-space in the presence of a magnetic field.

an energy contour normal to the magnetic field (Ftg. 5.42), and in a counterclock-
wise fashion.

Also note that, because the electron moves along an energy contour, no energy

is absorbed from, or delivered to, the magnetic field, in agreement with the well-
known facts concerning the interaction of electric charges with a magnetic field.

As Fig. 5.42 shows, the motion of the electron in k-space is cyclic, since, after
a certain time, the electron returns to the point from which it started. The
period 7 for the motion is, according to (5.108), given by

(5.r0e)

where the circle on the integration sign denotes that this integration is to be

carried out over the complete cycle in k-space, i.e., a closed orbit. In
(5.109), the differential 6k is taken along the perimeter of the orbit, while
u(k) is the magnitude of the electron velocity normal to the orbit. Also
note that in deriving (5.109) from (5.108), we have used the fact that v is normal
to B, since the electron trajectory lies in a plane normal to B.

The angular frequency @c associated with the motion is crr" : 2nf T, which,
in light of (5.109), is given by

r:$at:+f#'

lr 6k
a, : (2neBlr)/ 

9.fO-----
(5.1 l0)

This is the cyclotron frequency for the Bloch electron. It is the generalization of
the cyclotron frequency (4.38) derived for the free-electron model.

We conclude that the motion of a Bloch electron in a magnetic field is a
natural generalization of the motion of a free electron in the same field. A free
electron executes circular motion in velocity space along an energy contour with
a frequency @": eBlm*. A Bloch electron executes a cyclotron motion along
an energy contour with a frequency given by (5.110). The energy contour in
this latter case may, of course, be very complicated.

Electron trajectory
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When the standard form E : h2k2 l2m* is applicable, the frequency or" in
(5.110) may be readily calculated. The cyclotron orbit is circular in this case,

and in evaluating the integral we note that o(k):hklm*, which is a constant
along the orbit, since the magnitude k of the wave vector is constant along this
contour trajectory. Thus

f 6k I f -- 2nk 2tm*
I ,t-l : wt*\! uo: t*t*.1: i'

rvhich, when substituted into (5.110), produces

@": eBlm*'

This, as expected, agrees with the result for the free-electron model.
But, of course, Eq. (5.110) is more general than the free-electron result, and

applies to a contour of arbitrary shape, although evaluating the integral
may become very tedious. In the problem section at the end of this chapter, you
will be asked to evaluate o. for contours which, although more complicated than
those in the free-electron model, are still simple enough to render the integral in
(5.110) tractable.

In discussing the above cyclotron motion, we have disregarded the effects of
collision. Of course, if this cyclotron motion is to be observed at all, the electron
must complete a substantial fraction of its orbit during one collision time; that is,
a"r I l. This necessitates the use of very pure samples at low temperature under
a very strong magnetic field.

The Hall effect

When we were discussing the Hall effect in the free-electron model (Section 4.10),
we found that the Hall constant is given by

IR.: --,fr"€ (s.1 l l)

where n" is the electron concentration. The negative sign is due to the negative
charge of the electron. The general treatment of the Hall effect for Bloch
electrons becomes quite complicated for arbitrary FS, requiring considerable
mathematical effort (Ziman, 1960). However, we can obtain some important
results quite readily.

Suppose that only holes were present in the sample. Then we could apply
to the holes the same treatment used for electrons in Section 4. 10, and would obtain
a Hall constant

I
Rrr : 

-,frt€
(s.ll2)
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where R is now positive because of the positive charge on the hole (nn is
the hole concentration).

Actually, in metals, holes are not present by themselves; there are always some

electrons present. Thus when two bands overlap with each other, electrons

are present in the upper band and holes in the lower. The expression for the

Hall constant when both electrons and holes exist simultaneously is given by

(see the problem section)

(s.r l3)

where R" and Rn are the contributions of the individual electrons and holes, as

given above, and oe and oh are the conductivities of the electrons and holes

(o.: n"e't"lm! and oh: nhezxlmf).
Equation (5.113) shows that the sign of the Hall constant R may be either

negative or positive depending on whether the contribution of the electrons or

the holes dominates. If we take n. : flh, which is the case in metals, then

lR"l : lRnl and the sign of R is determined entirely by the relative magnitudes

of the conductivities o,and on. Thus if o. > on-that is, if the electrons have small

mass and long lifetime-the electrons' contribution dominates and R is negative.

And when the opposite condition prevails, the holes'contribution dominates, and

R is positive. We can now understand why some polyvalent metals-e.g., Zn and

Cd-exhibit positive Hall constants (see Table 4.3)'

5.20 EXPERIMENTAL METHODS IN DETERMINATION OF BAND
STRUCTURE

Now let us discuss some of the experimental techniqttes used to determine the

band structure in metals. For example, how did physicists determine the Fermi

energies in Table 4.1, or the Fermi surfaces shown in Fig. 5.26 for Cu and

Fig. 5.30 for Be? This field of solid-state physics is a wide one, and has been

expanding at a rapid pace. Our discussion here will therefore be rather sketchy,

leaving it to the reader to pursue the subject in greater detail by referring to the

entries in the bibliograPhY.
One can determine the Fermi energy by the method of soft x-ray emission.

When a metal is bombarded by a beam of high-energy electrons, electrons from
the inner K shellt are knocked out, leaving empty states behind. Electrons in the

valence band now move to fill these vacancies, undergoing downward transitions,
as shown in Fig. 5.a3(a). The photons emitted in the transition, usually lying in the

soft x-ray region-about 200 eV-are recorded and their energies measured.

Figure 5.43(b) shows the intensity of the x-ray spectrum as well as the energy

f The atomic shells n : 0, 1, 2, etc., are usually referred to as the K, L, M, etc., shells,

respectively.

^ R"o? t R6of
u-r\- (o.+o)2
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Fig. 5.43 (a) Emission of soft x-rays. (b) Intensity of the spectrum of x-ray emission
versus energy for Li, Be, and Al.

range for several metals. Since the K shell is very narrow, almost to the point of
being a discrete level, the width of the range shown in Fig. 5.43(b) is due entirely
to the spread of the occupied states in the valence band, i.e., the width is equal
to the Fermi level. one can also extract information from Fig. 5.43(b) on the shape
of the density of states. In fact, the shape of the curve is determined primarily by
the density of states of the valence band.

Let us now turn to the determination of the FS, and discuss one of the
many methods in common use: the Azbel-Kaner cyclotron resonence (AKCR)
technique. A semi-infinite metallic slab is placed in a strong static magnetic
field Bo, which is parallel to the surface (Fig. 5.44). As a result, electrons in the

Fig. 5.44 Physical setup for Azbel-Kaner cyclotron resonance.

metal begin to execute a cyclotron motion, with a cyclotron frequency c.r..
Now an alternating electromagnetic signal of frequency ro, circularly polarized in
a counterclockwise direction, is allowed to travel parallel to the surface and along
the direction of the static field Bo. This signal penetrates the metal only to a

60

(b)(a)
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small extent, equal to the skin depth (see Section 4.ll), and so is confined to a
short distance from the surface. Only electrons in this region are affected by the

signal.
The electrons near the surface feel the field of the signal and absorb energy

from it. This absorption is greatest when the condition

(D: @" (s.l l4)

is satisfied, because the electron then remains in phase with the signal field through-

out the cycle. This is the resonance condition'
During a part of its cycle, the electron actually penetrates the metal

beyond the skin depth, where the signal field vanishes. A resonance condition is

still satisfied, provided only that, when the electron returns to the region at the

surface, it is again in phase with the field. In general, therefore, the condition

for resonance is
a: la)", (s.lls)

where / : l, 2, 3, etc., at all harmonics of the cyclotron frequency al..

The AKCR for Cu is shown in Fig. 5.45. (Usually the frequency a.r is held fixed

and the field is varied until the resonance condition is satisfied.)

a, kG

Fig. 5.45 AKCR spectrum in cu at T : 4,2"K. The crystal surface (upper surface) is

cui along the (l0O) plane. The ordinate of the curve represents the derivative of the

surface resistivity with respect to the field. [After Hai.issler and Wells, Phys. Reu., 152,

675, t9661

Not only is the method capable of determining ar" (and hence the effective

mass m*), but also the actual shape of the FS. In general, electrons in different

regions of the surface have different cyclotron frequencies, but the frequency

which is most pronounced in the absorption is the frequency appropriate to the

extremal orbit, i.e., where the FS cross section perpendicular to Bo is

greatest, or smallest. Therefore, by varying the orientation of Bo, one can measure

the extremal sections in various directions, and reconstruct the FS.
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The experiment is usually performed at very low temperatures, that is,
T - 4"K, on very pure samples, and at very strong fields-about 100 kG.
Under these conditions, the collision time r is long enough, and the cyclotron
frequency a;" high enough, so that the high-field condition a"r D r is satisfied.
In this limit, the electron executes many cycles in a single collision time, leading to
a sharp, well-resolved resonance. The frequency ar" usually falls in the microwave
range.

Optical ultraviolet techniques are also used in determining band structure.
Figure 5.46 shows the principle of the method. when a light beam impinges on a

Fig. 5.,16 Interband optical absorption.

metal, electrons are excited from below the Fermi level into the next-higher band.
This interband absorption may be observed by optical means-i.e., reflectance
and absorption techniques, which give information concerning the shape of the
energy bands. In this case, two bands are involved simultaneously, and the
results cannot be expressed in terms of the individual bands separately. But if
the shape of one of these is known, the shape of the other may be determined.
For further discussion of the optical properties of metals in the ultraviolet region-
which is where the frequencies happen to lie in the case of most metals-refer to
Section 8.9.

5.21 LIMIT OF THE BAND THEORY; METAI-INSULATOR TRANSITION

So far in this chapter we have based our discussion entirely on the so-called band
model of solids. This model has been of immense value to us;it is capable of
explaining all the observed properties of metals, and is the basis of the semi-
conductor properties to be discussed in chapters 6 and 7. yet this model has a
limitation which we now wish to probe.

consider, for example, the case of Na. This substance is a conductor because
the 3s band is only partially filled-half filled, to be exact. Suppose that we cause
the Na to expand by some means, so that the lattice constant a can be increased
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arbitrarily. Would the material then remain a conductor for any arbitrary value of
a? The answer must be yes, if one is to believe the band model, because, regardless

of the value of a, the 3s band would always be half full. It is true (the model

predicts further) that the conductivity o decreases as a increases, but the decrease

is gradual, as shown in Fig. 5.47.

Fig. 5.47 Electrical conductivity o versus lattice constant a.

In fact, however, this is not correct. As a increases, a critical value a. is reached

at which the conductivity drops to zero abruptly, rendering the solid an insulator,

and it remains so for all values a ) Q,. Thus for a sufficiently large lattice con-

stant, the metal is transformed into an insulator, and we speak of the melal-

insulator transition (also known as the Mott transition).
To explain this transition, we need to recall some of the fundamental concepts

underlying band theory. In this theory, Bloch electrons are assumed to be deloca-

lized, extending throughout the crystal, and it is this delocalization which is

responsible for metallic conductivity. As a delocalized particle, the Bloch electron

spends a fraction of its time (l/N, to be exact), at each atom. The interaction

between the various Bloch electrons is taken into account only in an average man-

ner, i.e., the interaction between individual electrons is neglected.

However, as a increases, the bandwidth decreases (recall the TB model, Section

5.8), until it becomes quite small at sufficiently large a. In that case, the band model

breaks down because it allows the presence of two or more electrons at the same

lattice site, which cannot happen because of the Coulomb repulsion between

electrons. When the band is wide, this is not serious, because electrons can

readjust their kinetic energies to compensate for the increase in the coulomb

potential energy. But for a narrow band the kinetic energy is, at bQst, quite small,

and this readjustment is not possible.

In effect, for very large a, the proper electronic orbitals in a crystal are not of
the Bloch type. They are localized orbitals centered around their respective sites,

which mitigates the large coulomb energy. Since the orbitals are localized, as in

the case of free atoms, conductivity vanishes, as depicted in Fig. 5.47.

Note that the above conclusion holds true even though the energy levels still
form a band, and even though the band is only half full. The point is that electronic

orbitals become localized, and hence nonconducting.
The metal-insulator transition has been observed in VO, (vanadium oxide)
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and other oxide materials. Although vo, is normally an insulator, it is trans-
formed into a metallic material at sufficiently high pressure.

SUMMARY

The Bloch theorem and energy bands in solids

The wave function for an electron moving in a periodic potential, as in the case of a
crystal, may be written in the Bloch form,

/*(r) : eik''ur(r),

where the function uu(r) has the same periodicity as the potential. The function
ry'* has the form of a plane wave of vector k, which is modulated by the
periodic function uu. Although the function ry'* itself is nonperiodic, the electron
probability density l/ul ' is periodic; i.e., the electron is delocalized, and is
deposited periodically throughout the crystal.

The energy spectrum of the electron is comprised of a set of continuous
bands, separated by regions of forbidden energies which are called energy gaps.
The electron energy is commonly denoted by E,(k), where r is the band index.

Regarded as a function of the vector k, the energy E(k) satisfies several
symmetry properties. First, it has translational symmetry

E(k+G):E(k),

which enables us to restrict our consideration to the first Brillouin zone only. The
energy function E(k) also has inversion symmetry, E(-k) : E(k), and
rotational symmetry in k-space.

The NFE and TB models

In the NFE model the crystal potential is taken to be very weak. Solving the
Schrcidinger equation shows that the electron behaves essentially as a free particle,
except when the wave vector k is very close to, or at, the boundaries of the zone.
In these latter regions, the potential leads to the creation of energy gaps. The
first gap is given by

Ec : 2lV-ronl,

where V-2o1ois a Fourier component of the crystal potential.
The wave functions at the zone boundaries are described by standing waves,

which result from strong Bragg reflection of the electron wave by the lattice.
The TB model, in which the crystal potential is taken to be strong, leads to the

same general conclusions as the NFE model, i.e., the energy spectrum is composed
of a set of continuous bands. The TB model shows that the width of the band
increases and the mobility of the electron becomes greater (the mass lighter) as
the overlap between neighboring atomic functions increases.
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Metals Yersus insulators

If the valence band of a given substance is only partially full, the substance acts

like a metal or conductor because an electric field produces an electric current
in the material. If the valence band is completely full, however, no current is

produced, regardless of the field, and the substance is an insulator.
When the gap between the valence band and the band immediately above it is

small, electrons may be thermally excited across the gap. This gives rise to a small
conductivity, and the metal is called a semiconductor.

Velocity of the Bloch electron

An electron in the Bloch state ry'1 moves through the crystal with a velocity

vkE(k).

This velocity remains constant so long as the lattice remains perfectly periodic.

Electron dynamics in an electric field

In the presence of an electric field, an electron moves in k-space according to the

relation t : - @lh)s.

The motion is uniform, and its rate proportional to the field. One obtains this
relation at once if one regards the electron as having a momentum hk.

Effective mass

The effective mass of a Bloch electron is given by

m* : h2l(d2Eldk\.

The mass is positive near the bottom of the band, where the curvature is positive.

But near the top, where the band curvature is negative, the effective mass is also

negative. The fact that the effective mass is different from the free mass is due to the

effect of the lattice force on the electron.

The hole

A hole exists in a band which is completely full, with one vacant state. The

hole acts as a particle of positive charge le. When the hole lies near the top
of the band, which is the usual situation, the hole also behaves as if it has a
positive effective mass.

Electrical conductivity

Electrical conductivity is given by

I

h

6 : t e2ulrps(E).
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This expression is a particularly sensitive function of g(Er), the density of states
at the Fermi energy. ln monovalent metals, o is Iarge because g(8.) is large, while
the opposite is true for polyvalent metals. In insulators, the electrical conductivity
vanishes because OG): O.

Under appropriate circumstances, the above expression for o reduces to the
familiar form o : ne2rFlm* of the free-electron model.

Cyclotron resonance and the Hall effect

The motion of a Bloch electron in a magnetic field is governed by

- e(v x B).

The electron moves along an energy contour in a trajectory perpendicular to
the field B, and the motion is referred to as cyclotron motion.

The cyclotron frequency is found to be

a": (2neBlD I 6y,
where the integral in the denominator is ,"nJr'.r", a closed contour. Measuring
this frequency gives information about the shape of the contour, and hence about
the shape of the band. The above expression reduces to the familiar form
@" : eBlm* for the case of a standard band.

when both electrons and holes are present in the metal, they both contribute
to the Hall constant. The resulting expression is

- R"o? + R6ofn: 1r* *!-'
when the electron term dominates, the Hall constant R is negative; when the hole
term dominates, the Hall constant R is positive.
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QUESTIONS

l. It was pointed out in Sections 6.3 and 4.3 that an electron spends only a little time
near an ion, because of the high speed of the electron there. At the same time it was

claimed that the ions are "screened" by the electrons, implying that the electrons are

so distributed that most of them are located around the ions. Is there a paradox here?

Explain.
2. Figure 5.10(c) is obtained from Fig. 5.10(a) by cutting and displacing various segments

of the free-electron dispersion curve. Is this rearrangement justifiable for a truly free

electron? How do you differentiate between an empty lattice and free space?

3. Explain why the function ry'o in Fig. 5.18(b) is flat throughout the Wigner-Seitz cell
except close to the ion, noting that this behavior is different from that of an atomic
wave function, which decays rapidly away from the ion. This implies that the coulomb
force due to the ion in cell I is much weakened in the flat region. What is the physical

reason for this?
4. Band ouerlap is important in the conductivity of polyvalent metals. Do you expect

it to take place in a one-dimensional crystal? You may invoke the symmetry properties

of the energy band.

PROBLEMS

1. Figure 5.7 shows the first three Brillouin zones of a square lattice.
a) Show that the area of the third zone is equal to that of the first. Do this by

appropriately displacing the various fragments of the third zone until the first
zone is covered completely.

b) Draw the fourth zone, and similarly show that its area is equal to that of the
first zone.

2. Draw the first three zones for a two-dimensional rectangular lattice for which the
ratio of the lattice vectors alb:2. Show that the areas of the second and third
zones are each equal to the area of the first.

3. Convince yourself that the shapes of the first Brillouin zones for the fcc and bcc
lattices are those in Fig. 5.8.

4. Show that the number of allowed k-values in a band of a three-dimensional sc lattice
is N, the number of unit cells in the crystal. hi6 : 5bn14+L k vul*U ltr l,t f X "f fq

5. Repeat Problem 4 for the first zone of an fcc lattice (zone shown in Fig. 5.8a).

6. Derive Eqs. (5.21) and (5.22).

7. Show that the first three bands in the emptyJattice model span the following energy

ranges.
. l-- r

e = -lt h- tl-l()r, r o to nzhz l2moaz ; Ezi n2h2 f moaz to zn2h2 f moaz ;
.ahA

zu E s.iota) , ZtLFlu. : 2n2h2lmoa2 toen2h212moa'.

8. a) Show that the octahedral faces of the first zone of the fcc lattice (Fig. 5.8a) are
due to Bragg reflection from the (lll) atomic planes, while the other faces are
due to reflection from the (200) planes.

b) Show similarly that the faces of the zone for the bcc lattice are associated with
Bragg reflection from the (l l0) atomic planes.

4. fhe vrfiru oP ItrBx il tlr. to,r^l^ Sa, d( uhttcp,(( of, -h reciproc6\f.d,
(*)), il*6.r+), kr= hi()+) ? k!= n.(+), k'=,nrt*)
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^((,uuu\ 

K u^(uej ir. ( l,x,,nd (on. Iai

ar( (+rlL*jt , *;= nl = fflr.,r*(,o eeils
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9. Suppose that the crystal potential in a one-dimensional lattice is composed of a series
of rectangular wells which surround the atom. Suppose that the depth of each well
is I/o and its width a/5.
a) Using the NFE model, calculate the values of the first three energy gaps. Compare

the magnitudes of these gaps.

b) Evaluate these gaps for the case in which Zo : 5 eV and a: 4 A.
10. Prove that the wave function used in the TB model, Eq. (5.27), is normalized to unity

if the atomic function f,, is so normalized. lHint: For the present purpose you may
neglect the overlap between the neighboring atomic functions.]

ll. The energy of the band in the TB model is given by

E(k): E"- P-!leik'*i,
j

where B and 7 are constants, as indicated in the text, and x, is the position of the/th
atom relative to the atom at the origin.
a) Find the energy expression for a bcc lattice, using the nearest-neighbor approxima-

tion. Plot the energy contours in the k,-k, plane. Determine the width of the
energy band.

b)

V")
Repeat part (a) for the fcc lattice.
Using the fact that the allowed values of k in a one-dimensional lattice are given

A
rb

by k: n(2nlL), show that the density ofelectron states in the lattice, for a lattuy K : n\LlLlt_), srluw Lflal rlle (Icnst[y oI eteclron slates ln tne latuce, Ior a lattlce.
of unit length, is given by the n,^ Le,f ,f \- uolvre! tr^. -tht lgryrU dk

t t/.t.\ df - ifu- rarresldrdlrrot ctlP,;;:IeiH""iln"frU'fu;i" I ffi @,), i I,[, I, l[I] ii=,
r TR moael ana nlnr -/F\ -o^',o rU 9Ce )J

fi*5. *n* nv,ub,rS lwo,tr b. .1rt"t q4 drp=

k^
b) Evaluate this density of states in the TB model, and plot .a(E) versus EI lLe)dE

13. Calculate the density of states for the first zone of an sc lattice according to the empty-
lattice model. Plot g(E), and determine the energy at which .gr(E) has its maximum.
Explain qualitatively the behavior of this curve.

14. a) Using the free-electron model, and denoting the electron concentration by r, show
' that the radius of the Fermi sphere in k-space is given by

ky: (3n2n)l13 -

b) As the electron concentration increases, the Fermi sphere expands. Show that
this sphere begins to touch the faces of the first zone in an fcc lattice when the
electron-to-atom ratio nfn^:1j6, where nu is the atom concentration.

c) Suppose that some of the atoms in a Cu crystal, which has a4 fcc lattice, are
grad-ual.ly replaced by Zn atoms. Considerin g that Zn is difrlent while Cu is
mondvaient, calculate the atomic ratio of Zn to Crt in a CuZn alloy (brass) at
which the Fermi sphere touches the zone faces. Use the free-electron model. (This
particular mixture is interesting because the solid undergoes a structural phase
change at this concentration ratio.)

15. a) Calculate the velocity of the electron for a one-dimensional crystal in the TB model,
and prove that the velocity vanishes at the zone edge.

b) Repeat (a) for a square lattice. Show that the velocity at a zone boundary is
parallel to that boundary. Explain this result in terms of the Bragg reflection.

h,
/)rl , fiv...eg L=
\T/
)de
/ -dKG). t#l
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c) Repeat for a three-dimensional sc lattice, and show once more that the electron
velocity at a zone face is parallel to that face. Explain this in terms of Bragg
reflection. Can you make a general statement about the direction of the velocity
at a zone face?

16./Suppose that a static electric field is applied to an electron at time r:0, at which
V instant the electron is at the bottom ofthe band. Show that the position of the elec-

tron in real space at time r is given by ,f,0b1!rJsrYwrrvJ^V^ll?J

| ,/ ..;)tAx: xo * G 
eQr: Ftl6,

where xo is the initial position and F: - eE is the electric force. Assume a one-
dimensional crystal, and take the zerp-energy level at the bottom ofthe band. Is the
motion in real space periodic? Explain.

17. a) Using the TB model, evaluate the effective mass for an electron in a one-
dimensional lattice. Plot the mass z* versus t, and show that the mass is indepen-
dent of k only near the origin and near the zone edge.

b) Calculate the effective mass at the zone center in an sc lattice using the TB model.
c) Repeat (b) at the zone corner along the [111] direction.

18. Prove Eq. (5.18).

19. a) Calculate the cyclotron frequency @c for an energy contour given by

h2^h2E(k):_^ *k:+ _Lz
zmi 2ml'"t'

where the magrretic field is perpendicular to the plane of the contour.

t l-V- r
I Answer: to": I *B,lL 4mim; J

b) Repeat (a) for an ellipsoidal energy surface

E(k): J-kl+ k)+ !-4,tmt zmi

where the field B makes an angle 0 with the k,-axis of symmetry of the ellipsoid.

1n,,,,,,," 
: l(#)' "o,, 

e * #,,,, uj''' .)

In Section 5.19 we discussed the motion of a Bloch electron in k-space in the presence

of a magrretic field. The electron also undergoes a simultaneous motion in r-space.
Discuss this motion, and in particular show that the trajectory in r-space lies in a
plane parallel to that in k-space, that the shapes of the two trajectories are the same

except that the one in r-space is rotated by an angle of -nlZ relative to the other, and
expanded by a linear scale factor ot (hleB). lHint: Use Eq. (5.108) to relate the
electron displacements in r- and k-space.]
Prove Eq. (5.113) for the Hall constant of an electron-hole system.

20.

2t_
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CHAPTER 6 SEMICONDUCTORS I: THEORY
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6.5 Impurity states
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There be none of Beauty's daughters
With a magic like thee.

Lord Byron



6.I INTRODUCTION

As a group, semiconductors are among the most interesting and useful substances
of all classes of solids. They exhibit a wide spectrum of phenomena, covering the
entire range from the strictly metallic to the insulator, and they are extremely
versatile in terms of applications. The wide variety of physical devices
employing semiconductors is truly impressive.

Although semiconductors have been studied for a long time-since the
1920's-they actually came into their own only after Shockley, Bardeen, and
Brattain invented the transistor in the late 1940's. Because of this invention, and
because of the ensuing development of other related devices, semiconductors have
become the most actively studied substances in solid-state physics. And in the
process, we have learned a great deal about the basic properties of these solids,
and how to utilize them in designing still newer and more efficient devices.

Because ofthe wide coverage given to semiconductors here, their study has been
divided into two chapters. The present chapter is devoted to the basic physical
properties, and the following one explores the use of these properties in the opera-
tion of important practical devices.

This chapter begins with the bonding forces in semiconductors, followed by
the band structure ofthese substances. Then we present a procedure for evaluating
the number of electrons and holes, the particles responsible for transporting the
electric current. Semiconductors are rarely used in a pure form, but are usually
doped with foreign impurities, and so we shall discuss the effects of impurities on
the supply of electrons and holes.

The most important property of a semiconductor is its electrical conductivity;
therefore this topic is considered in some detail. We then show how the cyclotron-
resonance and Hall-effect techniques are employed in measuring important
parameters. The special effects arising from high electric fields are examined in
connection with hot electrons and the Gunn effect.

The optical properties of semiconductors are also discussed, and the intimate
relationship between these properties and band structure is indicated. These
properties find applications in the phenomena of photoconductivity and lumines-
cence.

The chapter closes with a discussion of diffusion, a phenomenon which
arises whenever the electron (or hole) distribution is spatially nonuniform. Since
such a distribution obtains in many devices-in all devices, in fact, which contain
junctions between positive and negative materials-the diffusion process plays a
decisive part in many applications.

6.2 CRYSTAL STRUCTURE AND BONDING

Semiconductors include a large number of substances of widely different chemical
and physical properties. These materials are grouped into several classes of similar
behavior, the classification being based on the position in the periodic table ofthe
elements.

The best-known class is the Group IV semiconductors-C (diamond), Si,
Ge, and a-Sn (gray tin)-all of which lie in the fourth column of the periodic

254
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table. The semiconducting character of these elements was recognized quite
early in the history of solid-state research, and they have been studied intensively,
particularly Si and Ge, which have found many applications in electronic devices.

The elemental semiconductors all crystallize in the diamond structure. (See

Section 1.7 and Fig. 1.15.) The diamond structure has an fcc lattice with a basis
composed of two identical atoms, and is such that each atom is surrounded by
four neighboring atoms, forming a regular tetrahedron. Figure 6.1 gives a planar
view of this coordinational environment in Si, with the three-dimensional tetrahe-
dron projected on a plane.

Fig. 6.1 Tetrahedral bond in Si. Small solid circles represent electrons forming covalent
bonds. (See also Fig. 1.19).

Group IV semiconductors are covalent crystals, i.e., the atoms are held to-
gether by covalent bonds. These bonds (see Section A.7) consist of two electrons
of opposite spins distributed along the line joining the two atoms. Thus, in
Fig.6.l, each of the four bonds joining an Si atom to its neighbors is a double-
electron covalent bond. Each of the two atoms on the extremities contributes one
electron to the bond. Also the covalent electrons forming the bonds are hybrid
sp3 atomic orbitals (see Section A.8). These remarks on Si apply equally well to
other Group IV elements.

The picture which has emerged of a covalent crystal is one in which the
positive ion cores occupy the lattice sites, and are interconnected by an intricate
net of covalent bonds. The total charge on each atom is zero, because the ionic
charge is compensated by the covalent electrons for every atom.

Another important group of semiconductors is the Group III-V compounds,
so named because each contains two elements, one from the third and the other
from the fifth column of the periodic table. The best-known members of this group
are GaAs and InSb, but the list also contains compounds such as GaP, InAs,
GaSb, and many others.

These substances crystallize in the zincblende structure. As may be
recalled from Section 1.7, this is the same as the diamond structure, except that
the two atoms forming the basis of the lattice are now different. Thus, in GaAs,
the basis of the fcc lattige consists of two atoms, Ga and As. Because of this
structure, each atom is surrounded by four others of the opposite kind, and these
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latter atoms form a regular
6.2 shows this for the case

6.2

Figuretetrahedron, just as in the diamond structure.
of GaAs.

Fie.6.2 Tetrahedral bond in GaAs.

The bonding in the III-V compounds is also primarily covalent. The eight
electrons required for the four tetrahedral covalent bonds are supplied by the two
types of atoms, the trivalent atom contributing its three valence electrons, and the
pentavalent five electrons. One would expect the bonding in these substances to be
covalent because of the crystal structure, since the tetrahedral bond is usually
associated with covalent bonding.

The bonding in this group, however, is not entirely covalent. Because the
two elements in the compound are different, the distribution of the electrons along
the bond is not symmetric, but is displaced toward one of the atoms. As a result,
one of the atoms acquires a net electric charge. Such a bond is called heteropolar,
in contrast to the purely covalent bond in the elemental semiconductors, which is
called homopolar.

The distribution of electrons in the bond is displaced toward the atom of higher
electronegatiuity. ln GaAs, for instance, the As atom has a higher electronegativity
than the Ga, and consequently the As atom acquires a net negative charge, whose
value is -0.46e per atom (a typical value in Group III-V compounds). The Ga
atom correspondingly acquires a net positive charge of 0.46e. The transferred charge
per atom is known as the effectiue charge.

Charge transfer leads to an ionic contribution to the bonding in Group III-V
compounds. Their bonding is therefore actually a mixture of covalent and ionic
components, although covalent ones predominate in most of these substances.

The III-V compounds possess a polar character. Because of the opposite
charges on the ions, the lattice may be polarized by the application of an electric
field. Thus, in these substances, the ions' displacement contributes to the dielectric
constant. A particularly interesting manifestation of this is the strong dispersion
in the infrared region due to the interaction of light with the optical phonons (Sec-
tion 3.12).

Another class of substances which has received much attention lately is the
II-VI semiconductor, such as CdS and ZnS. Most of these compounds also
crystallize in the zincblende structure, indicating that the bonding is primarily
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covalent in nature. This is so, but the charge transfer here is greater than in
the III-V compounds (a typical value is 0.48e). Hence in the II-VI compounds
the ionic contribution to the bonding is greater and the polar character stronger.

And finally there is the important group of lead salts which form the IV-VI
compounds, for example, PbTe.

6.3 BAND STRUCTURE

A semiconductor was defined in Section 5.10 as a solid in which the highest
occupied energy band, the ualence band, is completely full at T : 0"K, but in
which the gap above this band is also small, so that electrons may be excited ther-
mally at room temperature from the valence band to the next-higher band, which is
known as the conduction band.t Generally speaking, the number of excited
electrons is appreciable (at room temperature) whenever the energy gap E, is less

lhan 2 eV. The substance may then be classified as a semiconductor. When the
gap is larger, the number of electrons is negligible, and the substance is an
insulator.

When electrons are excited across the gap, the bottom of the conduction
band (CB) is populated by electrons, and the top of the valence band (VB)
by holes. As a result, both bands are now only partially full, and would carry a
current if an electric field were applied. The conductivity of the semiconductor is
small compared with the conductivities of metals of the small number of electrons
and holes involved, but this conductivity is nonetheless sufficiently large for prac-
tical purposes.

Only the CB and VB are of interest to us here, because only these two bands
contribute to the current. Bands lower than the VB are completely full, and those
higher than the CB completely empty, so that neither of these groups of bands
contribute to the current; hence they may be ignored so far as semiconducting
properties are concerned. In characterizing a semiconductor, therefore, we need
describe only the CB and VB.

The simplest band structure of a semiconductor is indicated in Fig. 6.3.
The energy of the CB has the form

h2k2
E"(k) : Eo + 

2m: , (6.t)

where k is the wave vector and m! the effective mass of the electron. The energy
E, represents the energy gap. The zero-energy level is chosen to lie at the top of
the VB.

f A word of caution concerning terminology: When we are discussing metals, the words
"valence" and "conduction" are used interchangeably. Thus the delocalized electrons in
metals are called either valence electrons or conduction electrons. When we are dealing
with semiconductors, however, the words "valence" and "conduction" refer to two
distinctly different electrons or bands.
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We have used the standard band form to describe the CB, because we are
primarily interested in the energy range close to the bottom of the band, since it
is this range which contains most of the electrons. Recall from Section 5.6 that
the standard-band form holds true near the bottom of the band.

Fig. 6.3 Band structure in a semiconductor

The energy of the VB (Fig. 6.3) may be written as

6.3

h2 k2
E,(k) : - -r---r-,

zm;
(6.2)

where m{, is the effective mass of the hole. (Recall from Section 5.1 that,
because of the inverted shape of the VB, the mass of an electron at the top of the
VB is negative, equal ro -m[, but the mass of a hole is positive.) The VB
is again represented by the standard inverted form because we are interested only
in the region close to the top of the band, where most of the holes lie.

The primary band-structure parameters are thus the electron and hole
masses m" and mn (the asterisks have been dropped for convenience), and the band
Eap Ec. Table 6. I gives these parameters for various semiconductors. Note that
the masses differ considerably from-and are often much smaller than-the free-
electron mass, and that the energy gaps range from 0.18 eV in InSb to 3.7 eV in
ZnS. The table also shows that the wider the gap, the greater the mass of the
electron. We have already alluded to this property in the discussion of the NFE
model (see the remark following Eq. (5.23)1.

The energy gap for a semiconductor varies with temperature, but the variation
is usually slight. That a variation with temperature should exist at all can be

appreciated from the fact that the crystal, when it is heated, experiences a volume
expansion, and hence a change in its lattice constant. This, in turn, affects the band
structure, which, as we found in Chapter 5, is a sensitive function of the lattice
constant.

It also follows that the gap may be varied by applying pressure, as this too
induces a change in the lattice constant. Studies of semiconductors under high
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pressure have, in fact, proved very helpful in elucidating some of their
properties.

Table 6.1

Parameters for Band Structure of Semiconductors (Room Temperature)

Group Crystal En, eY
Effective mass,mf mu

Electrons Holes

IV

III_V

II-VI

IV-VI

C
Si

Ge
aSn
GaAs
GaP
GaSb
InAs
InP
InSb
CdS
CdSe
CdTe
ZnS
ZnSe
ZnTe
PbS
PbSe
PbTe

5.3

l.l
0.7
0.08
1.4
2.3

0.7
0.4
1.3

0.2
2.6
1.7

1.5

3.6

2_7

2.3

0.4
0.3
0.3

e: 0.97, mt: o.l9
mt: 7.6,mr : 0.08

0.07

0.12
0.20
0.03

0.07
0.01

0.21
0.13
0.14
0.40
0.10
0.10
0.25
0.33
0.22

0.5,0.16
0.3,0.04

0.09
0.50
0.39
o.o2
0.69
0.18
0.80
0.45
o.37
5.41
0.60
0.60
o.2s
o.34
o.29

Note: mt and rz, refer to longitudinal and transverse masses, respectively, of ellipsoidal energy
surfaces. When there is more than one value for hole mass, the values refer to heavy and light
holes (see Section 6.9).

The conduction and valence bands in semiconductors are related to the atomic
states. The discussion of the hydrogen molecule (Section A.7) states that, when
two hydrogen atoms are brought together to form a molecule, the atomic ls
state splits into two states: a low-energy bonding state and a high-energy
antibonding state. In solid hydrogen, these states broaden into bonding and anti-
bonding energy bands, respectively. In like fashion, the valence and conduction
bands in semiconductors are, respectively, the bonding and antibonding bands of
the corresponding atomic valence states. Thus the VB and CB in Si, for
example, result from the bonding and antibonding states of the hybrid 3s13p3

(see Section A.8). Similar remarks apply to the bands in Ge, C, and other semi-
conductors.

The band structure in Fig. 6.3 is the simplest possible structure. Band
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structures of real semiconductors are somewhat
see, but for the present the simple structure will

6.4

more complicated, as we shall
suffice for our purposes.

6.4 CARRIER CONCENTRATION; INTRINSIC SEMICONDUCTORS

In the field of semiconductors, electrons and holes are usually referred to as free
carriers, or simply carriers, because it is these particles which are responsible for
carrying the electric current. The number of carriers is an important property of a
semiconductor, as this determines its electrical conductivity. In order to
determine the number of carriers, we need some of the basic results of statistical
mechanics.

The most important result in this regard is the Fermi-Dirac (FD) distribution
function

f (E): F;r-"*,
This function,t which we encountered in Section 4.6, gives the probability that an
energy level E is occupied by an electron when the system is at temperature T.
The function is plotted versus E in Fig. 6.4.

(6.3)

0EF

Fig. 6.4 The Fermi-Dirac distribution function.

Here we see that, as the temperature rises, the unoccupied region below the
Fermi level Ep becomes longer, which implies that the occupation of high energy
states increases as the temperature is raised, a conclusion which is most plausible,
since increasing the temperature raises the overall energy of the system. Note
also that f (E): ] at the Fermi level (E: E) regardless of the temperature.
That is, the probability that the Fermi level is occupied is always equal to one-
half.

t In this chapter as well as in the following one, the Boltzmann constant is denoted by ks
rather than the usual k in order to avoid confusion, because the latter symbol has been
used to denote the wave vector in k-space in band theory. In the remainder of the book,
however, this confusion does not arise and the Boltzmann constant will therefore be
denoted by k, as usual.

.f(E)
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n.'t',,-' \t

In semiconductors it is the tail region of the FD distribution *t i"f, i, of
particular interest. In that region the inequality (P - E) > kBT holds true, and

or" rnuy therelbre neglect the term unity in the-dMoln-ffiIloiof (6.3). The FD
distribution then reduces to the form

f (E): rEt/ker r-Etker, (6.4)

which is the familiar Maxwell-Boltzmann, or classical, distribution. This
simple distribution therefore suffices for the discussion of electron statistics in
semiconductors.

We can calculate the concentration of electrons in the CB in the following
manner. The number of states in the energy range (E, E + dE) is equal to
g"(E) dE, where g"(E) is the density of electron states (Section 5.1l). Since each of
these states has an occupation probability f (E),the number of electrons actually
found in this energy range is equal to f (E)5"@)dE. The concentration of elec-

trons throughout the CB is thus given by the integral over the band

f(E)s .(E) dE, (6.s)

where ,E., and E", are the bottom and top of the band, respectively, as shown in
Fig. 6.s(a).

E"2

E E

Ect

EF ---------

f E.z
n: 

) u-,

Ec!

4'lTffil Eut

{fffiirdl'.,1
::.,--;$#ffif

rr, ' "'*'I#;'?'!"i':
(a)

Fig. 6.5 (a) Conduction and valence bands. (b) The distribution function. (c) Density
of states for electrons and holes: g"(E) and g^(e).

The distribution function is shown in Fig. 6.5(b). Note that the entire CB

falls in the tail region. Thus we may use the Maxwell-Boltzmann function for

/(E) in (6.5). (Proof of this statement will come later, when we show that the

Fermi energy lies very near the middle of the energy gap.)
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We calculated the density of states in Section 5.11, where the expression
appropriate to the standard band form is, according to Eq. (5.63), given by

6.4

(6.6)

where the zero-energy level has been chosen to lie at the top of the VB. Thus
g"(E) vanishes for E < En, and is finite only for En 1 E, as shown in Fig.6.5(c).

When we substitute for f (E) and g"(E) into (6.5), we obtain

s "(E) 
: * fff'' (u - En),/,,

, : * (#)''' u",^, 
I :"(E - En), tz e- EtkBr dE. (6.7)

For convenience, the top of the cB has been set equal to infinity. Since the inte-
grand decreases exponentially at high energies, the error introduced by changing
this limit from E"., to o is quite negligible. By changing the variable, and using
the result

tT-
bj + kI\n$ +*trt.t#i-r)

t @ _tlz

) o 
xrt2e-'dx: +,

one can readily evaluate the integral in (6.7). The el-eqron concentration then
reduces to the expression !' j ,-- t't -- 0. 0 )Jqv 

M, Ar,lVr)&(h

n l-,r(@rnor)','r",,*, 
"-r",),r. m nl L (6.8)

The electron concentration is still ,iot kno*, explicitly because the Fermi
energy Eo is so far unknown. This can be calculated in the following manner.
Essentially the same ideas employed above may also be used to evaluate the
number of holes in the vB. The probability that a hole occupies a level E in this
band is equal to I - f (E), since /(E) is the probability of electron occupation.
Thus the probability of hole occupation /n is

fn:r-f(E). (6.e)

Since thetnergy range involved here is much lower than E., the FD function of
(6.3) must be used rather than (6.4). Thus

{:1- I 
--'./h- I 

"(E-Er)rheT+ 
I - ,ttr-rwar a 1ag-ErlkeT"Elk'T, (6. l0)

where the approximation in the last expression follows as a result of the inequality
(Ee - E) * krT. The validity of this inequality in turn can be seen by
referring to Fig. 6.5(b), which shows that E. - E is of the order of Enl2, which
is much larger than kuT at room temperature.
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The density of states for the holes is

(6. r l)

which is appropriate for an inverted band [see also Eq. (5.64)]. Note that the

term (-E) in this equation is positive, because the zero-energy level is at the

top of the VB, and the energy is measured positive upward and negative downward
from this level.

The hole concentration is thus given by

sh@): *(T)',',',,-u,'''

r0
P: ) _*fn(E)s^(E)dE'

When we substitute for /n(E) and gn(E) from the above equations
the integral as in the electron 

l*,tYi 
obtain

,:?(#)'''"-"'"'

(6.12)

and carry out

|k,r tos(+.)

*,, ily[, t-
The electron and hole concentrationi have thus far been treated as

independent quantities. The two concentrations are, in fact, equal, because the

electrons in the CB are due to excitations from the VB across the energy gap,

and for each electron thus excited a hole is created in the VB. Therefore

n: P. (6.14)

If we substitute ru and p from (6.8) and (6.13), respectively, into (6.14), we

obtain an equation involving the only unknown, 8.. The solution of this equation ig

Eo:lEu* (6.15)

Since krT ( E, under usual circumstances, the second term on the right of
(6.15) is very small compared with the first, and the energy level is close to the
middle of the energy gap. This is consistent with earlier assertions that both the

bottom of the CB and the top of the VB are far from the Fermi level.t

The concentration of electrons may now be evaluated explicitly by using the
above value of E.. Substitution of (6.15) into (6.8) yields

, :, (#)''' {*"*n1'' 4 r- Es t 2kar (6. l 6)

The important feature of this expression is that r increases very rapidly-
exponentially-with temperature, particularly by virtue of the exponential factor.

t The fact that the Fermi level falls in the energy gap-the lorbidden region-poses no
difficulties. This level is a theoretical concept and no electrons need be present there.
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Thus as the temperature is raised, a vastly greater number of electrons is excited
across the gap. (This can be visualized by recalling that as the temperature is
raised, the tail of the FD distribution in the CB becomes longer, and more states
are occupied in this band.)

Figure 6.6 is a plot of log n versus 1lT. The curve is a straight line of slope
equal to (- Eslzk). [The l3l2-dependence in (6.16) is so weak in comparison with
the exponential dependence that the former may be disregarded for the purpose
of this discussion.)

6.4

l0l7

l016

T lotu

s 
lola

l0l3

1012

Fig.6.6 Electron concentration
Reu.96,28, 1954)

2.0 2.5 3.0 3.5 4.0

,? versus I/I in Ge. [After Morin and, Morita, Phys.

One can estimate the numerical value of n by substituting the values
Ec:l eY, ffi. : frh: mo, and 7 : 300"K. One finds n - lOrs electrons/cm3,
a typical value of carrier concentration in semiconductors.

Note that the expression (6.16) also gives the hole concentration, since n: p.
Our discussion of carrier concentration in this section is based on the premise

of a pure semiconductor. When the substance is r'rnpure, additional electrons or
holes are provided by the impurities, as will be seen in Section 6.5. In that case,
the concentrations of electrons and holes may no longer be equal, and the amount
of each depends on the concentration and type of impurity present. When the
substance is sufficiently pure so that the concentrations of electrons and holes
are equal, we speak of an intrinsic semiconductor. That is, the concentrations are
determined by the intrinsic properties of the semiconductor itself. On the other
hand, when a substance contains a large number of impurities which supply most
of the carriers, it is referred to as an extrinsic semiconductor.
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6.5 IMPURITY STATES

A pure semiconductor has equal numbers of both types of carriers, electrons
and holes. In most applications, however, one needs specimens which have one

type of carrier only, and none of the other. (This will be seen in Chapter 7 when we

discuss, for example, the junction transistor.) By doping the semiconductor with
appropriate impurities, one can obtain samples which contain either electrons only
or holes only.

Consider, for instance, a specimen of Si -which has been doped by As.
The As atoms (the impurities) occupy some of the lattice sites formerly occupied
by the Si host atoms. The distribution of the impurities is random throughout the
lattice. But their presence affects the solid in one very important respect: The
As atom is pentavalent (while Si is tetravalent). Of the five electrons of As, four
participate in the tetrahedral bond of Si, as shown in Fig. 6.7. The fifth electron
cannot enter the bond, which is now saturated, and hence this electron detaches

from the impurity and is free to migrate through the crystal as a conduction elec-

tron, i.e., the electron enters the CB. The impurity is now actually a positive ion.
As* (since it has lost one of its electrons), and thus it tends to capture the free

electron, but we shall show shortly that the attraction force is very weak, and not
enough to capture the electron in most circumstances.

Fig. 6.7 An As impurity in a Si crystal. The extra electron migrates through the crystal.

The net result is that the As impurities contribute electrons to the CB of the
semiconductors, and for this reason these impurities are called donors. Note
that the electrons have been created without the generation of holes.

When an electron is captured by an ionized donor, it orbits around the
donor much like the situation in hydrogen (Fig. 6.8). We can calculate the binding
energy by using the familiar Bohr model. However, we must take into account the
fact that the coulomb interaction here is weakened by the screening due to the
presence of the semiconductor crystal, which serves as a medium in which both
the donor and ion reside. Thus the coulomb potential is now given by

e2
Y(r): --- t

+Tlereor
(6. r 7)
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where e. is the reduced dielectric constant of the medium. The dielectric constant
€" : I 1.7 in Si, for example, shows a substantial decrease in the interaction force.
It is this screening which is responsible for the small binding energy of the electron
at the donor site.

Fig. 6.8 Orbit of an electron around a donor.

When one uses this potential in the Bohr model, one finds the binding energy,
corresponding to the ground state of the donor, to be - B,h)'iv.\ e^e'11

E,: +l (tt( I 'o^o I I ^t'L
Ea : 

: 1,r,\T-,*d, i" ,,.. :: ; ::Note that the effective mass tne has been usec

mass rno in (6.18) actually cancels out, and is inserted only for convenience.]
The last factor on the right in (6.18) is the binding energy of the hydrogen atom,
which is equal to 13.6 eV. The binding energy of the donor is therefore reduced
by the factor llel,and also by the mass factor m"lmo, which is usually smaller than
unity. If we used the typical values e, - l0 and m"lmo - 0.2, we would see that
the binding energy ofthe donor is about l/500th as much as the hydrogen energy,
i.e., about 0.01 eV. This is indeed the order of the observed values.

Conduction band

r 7 "/',','
Ea 

------It
Donor

7Z7Zv777Z
Valence band

Fig.6.9 The donor level in a semiconductor.

The donor level lies in the energy gap, very slightly below the conduction
band, as shown in Fig. 6.9. Because the level is so close to the CB, almost all the

6.5
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donors are ionized at
the CB. (Recall that

Table 6.2 Iists the

Impurity States 267

room temperature, their electrons having been excited into
the thermal energy kBT :0.025 eV at room temperature.)
binding energies of various crystals.

Table 6,2

Ionization Energies of Donors and Acceptors in Si and Ge
(in Electron Volts)

Impurity Si(<,:11.7; Ge (e, : 16.0)

Donors
Li
P
As
Sb
Bi

Acceptors
B
AI
Ga
In

0.033

0.044
0.049

0.039

0.069

0.045
0.057

0.065

0.16

o.ot2
0.013
0.096

0.010
0.010
0.011
0.011

It is instructive to evaluate the Bohr radius of the donor electron. Straight-
forward adaptation of the Bohr result leads to

td: e,(#\'", (6're)
\ffie t

where 4o is the Bohr radius, equal to 0.53 A. The radius of the orbit is thus much
larger than ao,by a factor of 50, if we use the previous values for e, and m". A typi-
cal radius is thus of the order of 30 A. Since this is much greater than the interatomic
spacing, the orbit of the electron encloses a great many host atoms (Fig. 6.8),
and our picture of the lattice acting as a continuous, polarizable dielectric is thus
a plausible one.

Since the donors are almost all ionized, the concentration of electrons is

nearly equal to that of the donors. Typical concentrations are about l01s cm-3.
But sometimes much higher concentrations are obtained by heavy doping of the
sample, for example, l0r8 cm-3 or even more.

Acceptors

An appropriate choice of impurity may produce holes instead of electrons. Sup-
pose that the Si crystal is doped with Ga impurity atoms. The Ga impurity resides
at a site previously occupied by a Si atom, but since Ga is trivalent, one of the
electron bonds remains vacant (Fig.6.l0). This vacancy may be filled by an elec-
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tron moving in from another bond, resulting in a vacancy (or hole) at this latter
bond. The hole is then free to migrate throughout the crystal. In this manner, by
introducing a large number of trivalent impurities, one creates an appreciable
concentration of holes. which lack electrons.

Fig. 6.10 A Ga impurity in a Si crystal. The extra hole migrates through the crystal.

The trivalent impurity is called an occeptor, because it accepts an electron to
complete its tetrahedral bond.

The acceptor is negatively charged, by virtue of the additional electron it has
entrapped. Since the resulting hole has a positive charge, it is attracted by the
acceptor. We can evaluate the binding energy of the hole at the acceptor in the
same manner followed above in the case of the donor. Again this energy is very
small, of the order of 0.01 eV. (See Table 6.2 for a list.) Thus essentially all the
acceptors are jonized at room temperature.

The acceptor level lies in the energy gap, slightly above the edge of the VB, as
shown in Fig.6.1l. This level corresponds to the hole being captured by the
acceptor. When an acceptor is ionized (an electron excited from the top of the
VB to fill this hole), the hole falls to the top of the VB, and is now a free carrier.
Thus the ionization process, indicated by upward transition of the electron on
the energy scale, may be represented by a downward transition of the hole on this
scale.

Conduction band

'// "r "'tt//

___ Acceptor

Valence band

The acceptor level in a semiconductor.

I
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We have just been saying that the energy levels of both donors and
acceptors have been found to lie in the energy gap of the crystal. Yet in Chapter 5

when we discussed the band model we emphasized that the energy range of the gap
is forbidden, and that no electron states could exist there. There is no contra-
diction, however, because the discussion in Chapter 5 was concerned with perfect
crystals, while the donor and acceptor levels are related to impurity states, and
thus to imperfections in the crystal. Another manifestation of this difference is
that impurity states, representing bound states, are localized, not delocalized, as

are Bloch electrons. Thus impurity states are nonconducting.

6.6 SEMICONDUCTOR STATISTICS

Semiconductors usually contain both donors and acceptors. Electrons in the
CB can be created either by interband thermal excitation or by thermal ionization
of the donors. Holes in the VB may be generated by interband excitation, or by
thermal excitation of electrons from the VB into the acceptor level. And in addi-
tion, electrons may fall from the donor levels to the acceptor level. Figure 6.12
indicates these various processes.

Valence band

Fig.6.12 The various electronic processes in a semiconductor (see text)

Finding the concentrations of carriers-both electrons and holes-under.the
most general of circumstances, taking all these processes into account, is quite
complicated. Instead of giving the details of such general calculations here,
we shall treat a few special cases instead, ones which are often encountered in
practice. Two regions may be distinguished, depending on the physical parameters

involved : The intrinsic and the extrinsic regions.

The intrinsic region

The concentration of carriers in the intrinsic region is determined primarily by
thermally induced interband transitions. Consequently we have, to a good
approximation,

Conduction band

n:p. (6.20)
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In that case, we find the carrier concentrations as we did in Section 6.4, namely

6.6

hr= .\Jru..tt, e-s
n : P : ,, : , (*g*)''' {*"*n1''4e- Est2kBr (6.21\

This is known as the intrinsic concentqtion, denoted by n,.

The intrinsic region obtains when the impurity doping is small. When we

denote the concentrations of donors and acceptors by N, and No, the requirement
for the validity of the intrinsic condition is

r,)(No-N,). (6.22)

The reason for this condition is readily understandable. There are N, electrons at the
donor level, but of these a number No may fall into the acceptors, leaving only
N, - No electrons to be excited from the donor level into the conduction band.
When condition (6.22) is satisfied, the ionization of all these remaining impurities
is not sufficient to appreciably affect the number of electrons excited thermally
from the VB. The semiconductor may then be treated as a pure sample, and the in-
fluence of impurities disregarded. This is precisely what we did in obtaining (6.21).

Since r, increases rapidly with temperature, the intrinsic condition becomes
more favorable at higher temperatures. All semiconductors, in fact, become
intrinsic at sufficiently high temperatures (unless the doping is unusually high).

The extrinsic region

Quite often the intrinsic condition is not satisfied. For the common dopings
encountered, about l0rs cm-3, the number of carriers supplied by the impurities
is large enough to change the intrinsic concentration appreciably at room tempera-
ture. The contribution of impurities, in fact, frequently exceeds those carriers that
are supplied by interband excitation. When this is so, the sample is in the
extrinsic region.

Two different types of extrinsic regions may be distinguished. The first occurs
when the donor concentration greatly exceeds the acceptor concentration, that is,

when N6 ) N,. In this case, the concentration of electrons may be evaluated quite
readily. Since the donor's ionization energy (the binding energy discussed in
Section 6.5) is quite small, all the donors are essentially ionized, their electrons
going into the CB. Therefore, to a good approximation.

n: Na. (6.23)

The hole concentration is small under this condition. To calculate this
concentration, we make the following useful observation. Returning to Section
6.4, we note that Eq. (6.8) is still valid, even in the case of a doped sample. Only
when we used (6. 14) to evaluate E. was the discussion restricted to an intrinsic
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sample. Similarly, Eq. (6.13) is also valid whether the sample is pure or doped. If
we multiply these two equations, we find that

(6.24)

Note that the troublesome Fermi energy has disappeared from the right side.

Thus the product rp is independent of Eo, and hence of the amount and type of
doping; the product rp depends only on the temperature. We also see from
comparison with (6.21) that the right side is equal to ni [which is reasonable,

since Eq. (6.20 is also valid in the intrinsic region, in which case the left side is
equal to n?). We may thus write

nP: n?' (6.2s)

This equation means that, if there is no change in temperature, the product np

is a constant, independent ofthe doping. Ifthe electron concentration is increased,

by varying the doping, the hole concentration decreases, and vice versa'

When the doping is primarily of the donor type, n = No, as shown by
(6.23). According to (6.25), the concentration of holes is

nl
D:-,Nd

Since we are in the extrinsic region, n;4Na, and hence P4Na:n. Thus

the concentration of electrons is much larger than that of holes.

A semiconductor in which r ) p is called an n'type semiconductor (n for
negative); this terminology dates back to the early days of semiconductors.

Such a sample is characterized, as we have seen, by a great concentration of
electrons (donors). (For a strongly n-type sample, n \ P, while for a weakly

/z-type sample, n /, p.)
The other type of extrinsic region occurs when No ) Nr, that is, the doping

is primarily by acceptors. Using an argument similar to the above, one then has

P=No, (6.27)

i.e., all the acceptors are ionized. The electron concentration, which is small, is
given by

n!
n:-

N"

Such a material is called a p-type semiconductor. It is characterized by a preponder-
ance of holes (acceptors).

In discussing ionization of donors (and acceptors), we assumed that the

temperature is sufficiently high so that all of these are ionized. This is certainly

nP : 4 (ffi)' r*"*h)3 t 2 e- EstkBr

(6.26)

(6.28)
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true at room temperature. But if the temperature is progressively lowered, a point
is reached at which the thermal energy becomes too small to cause electron
excitation. In that case, the electrons fall from the CB into the donor level, and the
conductivity of the sample diminishes dramatically. This is referred to as freeze-
out, in that the electrons are now "frozen" at their impurity sites. We can estimate
the temperature at *n,"n on Eo - krT,
which gives a temperature of about 100"K. "\--'^\-/--\

Fig. 6.13 Variation of electron concentration n with temperature in an r-type semi-
conductor.

The variation of the electron concentration with temperature in an n-type
sample is indicated schematically in Fig.6.13, in which the various regions-
freeze-out, extrinsic, intrinsic-are clearly marked.

6.7 ELECTRTCAL CONDUCTIVITY; MOBILITY

Electrical conductivity is, of course, the quantity of primary interest in semiconduc-
tors. Both electrons and holes contribute to electric current. But in order to simplify
the discussion, let us begin with a sample which contains only one type of carrier:
electrons. In other words, the sample is strongly n-type.

When an electric field is exerted, electrons drift opposite to the field and carry
a net electric current. Since the electrons are represented by an effective mass ,me,

it follows from Chapter 5 that they may be treated according to the free-electron
model of Chapter 4. The electrical conductivity (Section 4.4) is therefore given by

nezx"
o" : 

-,
me

where t" is the lifetime of the electron. To obtain an order-of-magnitude value
for o", we substitute r: l01s cm-3: 7027 m-3, ?": l0-12 s, and m.:Q.lmo.
This leads to o - I (ohm-m)-l, which is a typical figure in semiconductors.
Although this is many orders of magnitude smaller than the value in a typical
metal, where o - 107 (ohm-m)-r, the conductivity in a semiconductor is still
sufficiently large for practical applications.

6.7

(6.2e)
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The reason o" is so small in semiconduators lies, of course, in the smallness

of the electron concentration m. Although this is usually about 1028 m-3 in
metals, it is only about 102 I m-3 in semiconductors. The ratio of these figures

substantially accounts for the relative values of the conductivities.
Semiconductor physicists often use another transport coefficient: mobility.

This is defined as follows: The electron drift velocity in the field may be written as

according to (4.7). (The negative sign is due to the negative charge on the

electron.) The electron mobility,u" isdefined as the ratio o"f 6,that is, the velocity
per unit field strength. Therefore

€x. -D. : - 
- 

6,
me

€T"
P": -ffi.

(6.30)

(6.31)

(The sign is usually disregarded in the definition of mobility.) As defined, the

mobility is a measure of the rapidity, or swiftness, of the motion of the electron
in the field. The longer the lifetime of the electron and the smaller its mass, the
higher the mobility. Table 6.3 provides mobility values for many common

substances.

Table 6.3

Mobilities for Various Semiconductors
(Room Temperature)

Crystal p, cm2/volt-s

C
Si
Ge
GaAs
GaP
GaSb
lnAs
InP
InSb
CdS
CdSe

CdTe
ZnS
ZnSe
Zile

Electron
1800

I 350
3900

8500
t10

4000
33000
4600

80000
340
600
300
120
530
530

Hole
1600

475
1900

400
75

1400

460
t50
750

t8

65

5

16

900
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We can now express electrical conductivity in terms of mobility. Referring to
(6.29) and (6.31), we can write

oe: nepe, $.32)

indicating that o" is proportional to p". A typical value for lt. may be obtained
by substitutiDEo": I (ohm-m)-r andn:1021m-3. This yields

p" - lo-2 m27v-s : l00cm2/v-s,

in agreement with the figures quoted in Table 6.3.

What we have said about electrons in a strongly r?-type substance can be carried
over to a discussion of holes in a strongly p-type substance. The conductivity
of the holes is given by

pezTr,
oh: 

- 

: PePn,
mh

(6.33)

where pn is the hole mobility. The values of po for semiconductors are also quoted
in Table 6.3.

Fig. 6.14 The drift of electrons and holes in the presence of an electric field.

Let us now treat the general case, in which both electrons and holes are present.
When a field is applied, electrons stream opposite to the field and holes stream
in the same direction as the field, as Fig. 6.14 shows. The currents of the two
carriers are additive, however, and consequently the conductivities are also.
Therefore

o:6rlo6,

i.e., both electrons and holes contribute to the currents. In terms of the mobilities,
one may write

o:nepelpepn. (6.34)

The carriers' concentrations r and p need not be equal if the sample is doped,
as discussed in the previous section. And one or the other of the carriers may
dominate, depending on whether the semiconductor is r- or p-type. When the
substance is in the intrinsic region, however, il : p, and Eq. (6.34) becomes

8

Electrons

Holes

o:ne(lte*F), (6.35)
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where ,i : ni, the intrinsic concentration. Even now the two carriers do not
contribute equally to the current. The carrier with the greater mobility-usually the

electron-contributes the larger share.

Dependence on temperature

Conductivity depends on temperature, and this dependence is often pronounced.

Consider a semiconductor in the intrinsic region. Its conductivity is expressed by
(6.35). But in this situation the concentration r increases exponentially with
temperature, as may be recalled from (6.16). If we combine this with (6.35), we

may write the conductivity in the form

o : f (T)e- EotzkBr 
, (6.36)

where /(7) is a function which depends only weakly on the temperature, i.e.,

as a polynomial. (The function depends on the mobilities and effective masses of
the particles.) Thus conductivity increases exponentially with temperature because

of the exponential factor in (6.36). Such behavior is amply confirmed by the curve
in Fig. 6.15.

l0'

l0-

10" o.ml 0.002 0.003

t/7,'K-r

Fig. 6.15 Conductivity of Si o versus l/7 in the intrinsic range. [After Morin and
Morita, Phys. Reu.96,28, 19541

The result (6.36) is used to determine the energy gaps in semiconductors.

lf one takes the logarithms of both sides of the equation, one has

E^llogo:loef(T)- s 
-zkBT'

A plot of log o versus l/T should therefore yield a straight line whose slope,

- Eof2ks, determines the gap. [The weak temperature dependence of f Q)

103

rcz

rl0
I

?

-Ero



Semiconductors I: Theory

is neglected.] In the early days of semiconductors this was the standard procedure
for finding the energy gap. Nowadays, however, the gap is often measured by
optical methods (see Section 6.12).

When the substance is not in the intrinsic region, its conductivity is given by
the general expression (6.34). In that case the temperature dependence of o on
T is not usually as strong as indicated above. To see the reason for this, suppose
that the substance is extrinsic and strongly n-type. The conductivity is

Oe: nepe.

But the electron concentration r is now a constant equal to Nr, the donor (hole)
concentration, as pointed out in Section 6.6. And any temperature dependence
present must be due to the mobility of electrons or holes.

Mobility versus temperature: scattering mechanisms

Mobility of electrons (or holes) varies with temperature. This is best seen by re-
ferring to (6.31) that is,

€1.
F": 

-,me

where (for the sake of discreteness) we have taken the electrons only. Since the
lifetime of the electron, or its collision time, varies with temperature (recall
Section 4.5), its mobility also varies with temperature. In general, both lifetime and
mobility diminish as the temperature rises. (The effective mass of an electron is
independent of temperature.)

But the temperature dependence of r" in a semiconductor is quite different
from that in a metal. To see this, we write

, : l'
ur

(6.37)

where /" is the mean free path of the electron and u, is its random velocity (Section
4.4). Now electrons at the bottom of the conduction band in a semiconductor
obey the classical statistics of Section 6.4, and not the highly degenerate Fermi-
Dirac statistics prevailing in metals. These electrons thus have many different
speeds, depending on their location in the band. The higher they are in the band,
the greater their speed. Thus, in fact, according to (6.37), there is no unique
lifetime for the electrons. Different electrons have different lifetimes, and fast-
moving elections have shorter lifetimes than slower-moving ones. (The mean free
path /" is the same for all electrons.)

One then defines an aDerage lifetime ?", in which the averaging is over all the
electrons. Therefore

(6.31)

- -1"'e
uf

(6.38)
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and the mobility is now given by

€i.v": ;. (6.3e)

The relation between conductivity and mobility remains intact, as in (6.32).
Substituting (6.38) into (6.39) one finds that

el"
u---,

fr ri,

We can evaluate the average speed ofthe electrons by the usual procedure used
in the kinetic theory of gases. We recall from basic physics that

Thus

So we see

of T-1t2

l*"0?:+kBT.

t,":--L. (6.40)
m!213krT1tt2'

that using the statistical distribution of the electron introduces a factor
dependence in the mobility.

3

105

io
^\E3

104

3

103
10 30 100 300

Fig. 6.16 Electron mobility pe versus 7 in Ge. The dashed curve represents the pure
phonon scattering; numbers in parentheses refer to donor concentrations. [After Debye
and Conwelll

The mean free path /" also depends on the temperature, and in much the same
way as it does in metals. We recall from Section 4.5 that /" is determined by the
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various collision mechanisms acting on the electrons. (These mechanisms are the
collisions of electrons with phonons, the thermally caused lattice vibrations, and
collisions with impurities.) At high temperatures, at which collision with phonons
is the dominant factor, /" is inversely proportional to temperature, that is,
l"- T' 1. In that case, mobility varies &S l" - T-3t2. Figure 6.16 shows this for
Ge.

Another important scattering mechanism in semiconductors is that of ionized
impurities. We recall that when a substance is doped, the donors (or acceptors)
lose their electrons (or holes) to the conduction band. The impurities are thus
ionized, and are quite effective in scattering the electrons (holes), (much as a
free ion would scatter an electron passing in the neighborhood). At high
temperatures this scattering is masked by the much stronger phonon mechanism,
but at low temperatures this latter mechanism becomes weak and the ionized-
impurity scattering gradually takes over.

6.8 MAGNETIC FIELD EFFECTS: CYCLOTRON RESONANCE AND HALL
EFFECT

The effects of a magnetic field on the electronic properties of solids were
discussed in Section 4.10 and again in Section 5.19. In Section 4.10, the electrons
were treated according to the free-electron model; while in Section 5. 19, the band
model was employed. Here we shall apply the previously derived results to semi-
conducting solids, because, as we have said, magnetic effects are very useful in stud-
ies of the physical properties of solids.

Cyclotron resonance

It will be recalled that a charged particle in a magnetic field executes a (circular)
cyclotron motion of frequency a" : eBlm*, where B is the magnetic field. Let us
apply this result to a semiconductor containing both electrons and holes. When
a magnetic field is applied, the electrons execute a cyclotron motion with a
frequency

eB
0)"" : ----;-

m;
(6.4r)

(Fig. 6.17). The sense of the rotationis counterclockv'ise, a fact that you can readily
confirm. The holes simultaneously execute a cyclotron motion of frequency

eB
O)rh: * ,m;

(6.42)

but the sense of their rotation is clockwise, i.e., opposite to that of the electron.
This is, of course, a consequence of the positive charge of the hole.

There are thus two distinct cyclotron frequencies in the system: one
corresponding to the electrons, the other to the holes. Cyclotron resonance is
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achieved by sending an ac signal into the semiconductor slab, where the signal
is propagated in the same direction as the magnetic field. When the frequency

of the signal or is equal to o)c" or @ch, power is'absorbed by the electrons or by the
holes, respectively.

1,

Fig.6.17 Cyclotron motions of electrons (e) and holes (h) in a magnetic field B.

A useful result of this technique is that one can determine the effective mass of
the carriers. By measuring the cyclotron frequency and using (6.41) or (6.42),

one may determine the effective masses of the electrons and holes. This is a

standard procedure. In fact, the masses quoted in Table 6. I were determined in
this manner.

The technique ofcyclotron resonance is also capable ofdistinguishing between

electrons and holes. Suppose that the incident wave is plane-polarized. One can
then think of it as being resolved into two circularly polarized waves, one in the
clockwise and the other in the counterclockwise direction. The amplitudes of these

waves are equal. These waves pass through the sample, and let us suppose that
@ : @"", that is, there is an electron resonance. Now, since the electrons orbit
in the counterclockwise direction, they absorb energy only from the counter-
clockwise circular wave, leaving the other wave unaffected. Thus the transmitted
wave is no longer plane-polarized, but rather partially polarized in the clockwise
direction, and its polarization gives a clear indication that the absorption was by
electrons.

In the case of hole resonance, the absorption affects the clockwise wave, and
hence the transmitted wave would be polarized in a direction opposite to that of the
electrons.

Cyclotron resonance experiments are performed at low temperatures, and on
relatively pure samples. In order that the absorption frequency be clearly discerni-
ble, it is necessary that the product a"r y' l, where t is the collision time. This is
equivalent to saying that the particle must execute several circular orbits in a single
collision time. When one lowers the temperature to the neighborhood of 4"K,
and uses a relatively pure sample, one lengthens the collision time t, and one makes

the quantity cop larger.
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In most cyclotron resonance work, the frequency ro" lalls in the microwave
range. Recently, however, it has become possible to make more accurate deter-
minations of cyclotron frequencies by using signals from infrared lasers. Such
frequencies are known very accurately. Also, since ar. is in the infrared region
(which requires a very strong magnetic field, for example, 50 kG), and is so much
larger than typical microwave frequencies, the quantity rr;.r is very large, and the
cyclotron line is clearly discernible.

The Hall effect

We discussed the Hall effect for a single carrier in Section 4. 10, where we found
that the Hall constant for electrons is

ID-l'"- il
Similarly, the Hall constant for holes is

(6.43)

(6.44)

where the positive sign is due to the positive charge of the hole. Now let us derive
the appropriate expression when both types of carriers are present.

,o

6.8

1

Rt:-,
pe

i
I

he
/'--l '-

\/
Fig. 6.18 The Hall effect in a two-carrier semiconductor. The symbols e and h refer to the
electrons and holes, respectively.

Figure 6.18 shows the situation. An electric field E, is applied in the x-direc-
tion, and simultaneously a magnetic field B, is applied in the z-direction
(normal to the paper). Because of 6,, the carriers drift-electrons to the left,
holes to the right. Because of this drift, the magnetic field exerts Lorentz forces
on the carriers, which result in their deflections. (The deflections of the electrons
and holes are in opposite senses because of their opposite charges.) Both
electrons and holes are deflected toward the lower surface of the sample, and
therefore tend to cancel each other at the lower surface. But this cancellation is
incomplete, as will be shown shortly. Thus there is a net charge which accumulates

,r1 J,
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on the lower surface. An equal and opposite charge accumulates on the upper
surface, since the sample as a whole is electrically neutral. Because of these surface
charges, an electric field is produced in the y-direction. This is the Hall field, En.

We may calculate the Hall field in the following manner. The Lorentz force
acting on an electron is

Fr": - e(v" x B): * eu"B",

where u" is the drift velocity of the electrons. The force .Fr" is in the y-direction.
(Since u" is negative, the force F." is actually downward, i.e., in the negative
y-direction.) This force is equivalent to a Lorentz field

Ev.: - ts"B, (6.45)

acting on the electron. (The minus sign arises because the previous equation has

been divided by - ", 
the electron charge.) Since J" : - neue, the above equation

may also be written as

J ^B-
@Le 

- 

-.

ne

where "I" is that part of the current J, carried by the electrons.
Following the same procedure, we can establish the fact that the holes expe-

rience a Lorentz field in the y-direction, given by

", J rB,
@l-h 

- - 

-.

pe

[The carrier charge in (6.a6) is simply reversed.]
The problem as a whole is now viewed as follows: The carriers flow in the

x-direction, but they also experience several electric fields in the y-direction. These

fields are: Er" (felt by the electrons), E.n (felt by the holes), and the Hall field dn
(felt by both carriers). The total current density in the y-direction is therefore

Jn: netrt"Er"* pepn8rnl (nep"* pey)Er. (6.48)

But this current vanishes, because the particles are not allowed to flow in the
y-direction as a result of the presence of the surfaces of the sample. We therefore
set "/y : 0, and the resulting equation then serves to determine the Hall field dr.
We recall that the Hall constant R is defined as R: EH|J,B. By substituting
(6.46), (6.47) into (6.48), and noting that J" : lnp"l@tt" + pp)) J, and
Jn: J* - J", we find that

(6.46)

(6.47)

(6.4e\^ pfi - np'z.

" ,(nlr. + plrn\"

which is the result we have been seeking. It is clear that this expression reduces

to the special forms (6.43) and (6.44) for the cases of r-type and p-type samples,

respectively.
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According to (6.49), the Hall constant may be either negative, positive, or
zero, depending on the carriers'concentrations and mobilities. Thus, by measuring
R, one obtains information on the relation between these quantities in that
particular sample. [Note that the electron and hole terms in (6.49) have opposite
signs, and thus tend to cancel each other's contribution, as indicated earlier.]

The primary use of the Hall effect in semiconductors is to enable one to deter-
mine carrier concentration. It is clear from (6.43) and (6.44) that, in the case of
a single carrier, the concentration is readily obtainable once the Hall constant is

measured.
The Hall constant may also be used in determining the mobility. By com-

bining (6.32) and (6.43), one finds that

li. : o.R" (6.50)

for an n-type material. A similar relation holds true for the holes in a p-lype
material. Thus the mobilities of electrons and holes can be determined from
measuring both the electrical conductivity and Hall constant in extrinsic samples.
The product oR is usually referred to as the Hall mobility, and denoted by pr.

6.9 BAND STRUCTURE OF REAL SEMICONDUCTORS

ln treating semiconductor properties up to this point, we have assumed the

simplest possible band structure, namely, a conduction band of a standard form,
centered at the origin, k : 0, and a valence band of a standard inverted form, also
centered at the origin. Such a simple structure goes a long way toward elucidating
many observed phenomena, but it does not represent the actual band structures
of many common semiconductors. Only when one uses the actual band structure
is it possible to obtain a quantitative agreement between experiments and
theoretical analysis.

A material whose band structure comes close to the ideal structure is

GaAs (Fig.6.l9). Consider first the conduction band. lt has a minimum at
the origin k : 0, and the region close to the origin is well represented
by a quadratic energy dependence, E : h2k2 12m", where m" : O.O72mo.

Since the electrons are most likely to populate this region, one can

represent this band by a single effective mass.

Note, however, that as k increases, the energy E(k) is no longer quadratic
in k, and those states may no longer by represented by a single, unique effective
mass. Note in particular that the next-higher energy minimum occurs along the

[00] direction. The dependence of energy on k in the neighborhood of this
secondary minimum is quadratic, and hence an effective mass may be defined
locally, but its value is much greater than that of the primary minimum (at the
center). (The actual value is 0.36ms.)

There are actually other secondary minima equivalent to the one just described.
One of these occurs along the [T00] direction. This follows from the inverse
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symmetry of E(k) in k-space, as discussed in Section 5.4. There are similarly two
minima along the kr-axis, and two more along the k,-axis. These follow from the

fact that, inasmuch as the crystal has cubic symmetry, the energy band must also

have a rotational cubic symmetry [property (iii), Section 5.4]. Thus the band along

the kr- and k,-axes must have the same form as along the k,-axis. There are

therefore six equivalent secondary minima, or ualleys, in all along the (100)

directions.

Fig.6.19 Band structure of GaAs plotted along the [100] and [lll] directions.

It is true that these secondary valleys do not play any role under most

circumstances, since the electrons usually occupy only the central, or primary,

valley. In such situations, these secondary valleys may be disregarded altogether.

There are cases, however, in which an appreciable number of electrons transfer

from the central to the secondary valleys, and in those situations these valleys have

to be taken into account. Such is the case in the Gunn effect, to be discussed in

Section 6.1 l.
(There are also other secondary valleys in the (lll) directions, as shown

in Fig. 6.19. These are higher than the (100) valleys, and hence are even less

likely to be populated by electrons.)
The valence band is also illustrated in Fig. 6.19. Here it is composed of three

closely spaced subbands. Because the curvatures of the bands are different, so

are the effective masses of the corresponding holes. One speaks of light holes and

heauy holes.t

t The splitting of the valence band is due to the spin-orbit interaction. This interaction
is caused by the action of the magnetic field of the nucleus (as seen in the electron's frame of
reference) with the spin of the electron. The larger the Z of the atom, the greater the inter-
action and splitting.

E, eY
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similar to that ofOther Ill V semiconductors have band structures quite
GaAs.

Figure 6.20 shows the band structure of Si, whose conduction band has its
lowest (primary) minimum along the [00] direction, at about 0.85 the distance
from the center to the edge of the zone. Because of the cubic symmetry, there are
actually six equivalent primary valleys located along the (100) directions.
These are illustrated in Fig. 6.20(b). The energy surfaces at these valleys are com-
posed of prolate ellipsoidal surfaces of revolution, whose axes of symmetry are
along the (100) directions. The longitudinal mass is mt:0.97-mo. w-hile the
two identical transverse masses are mt:0.l9mo (see Table 6. l). The mass
anisotropy ratio mrf m, = 5.

l......-k,

(a) (b)

Fig. 6.20 (a) Band structure ol Si plotted along the [00] and I t l] directions.
(b) Ellipsoidal energy surfaces corresponding to primary valleys along the (100)
directions.

The valence band in silicon is represented by three different holes
(Fig. 6.20b). One of the holes is heavy (mn : O.5mo), and the other two are light.

The energy gap in Si, from the top of the valence band to the bottom of the
conduction band, is equal to L08 eV. (Note that the bottom ol the conduction

Si

Conduction

,1,"" ] \Y///

r@ w.,"
,t@
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band does not lie directly above the top of the valence band in k-space, but this is
irrelevant to the definition of the energy gap.)

Figure 6.21 shows the band structure in Ge. Note in part (a) that the conduc-

tion band has its minimum along the Il I l] direction at the zone edge. (There are

actually eight minima, as follows from the cubic symmetry.) These valleys, which

are more clearly shown in Fig. 6.21(b), are composed of eight half-prolate
ellipsoids of revolution, or four full ellipsoids. (Each two symmetrically placed

halves form one full ellipsoid, if we use the periodic-zone scheme of Section 5.6.)

The longitudinal and transverse masses are, respectively, m,:1.6mo, and m,:
O.O82mo. The mass anisotropy ratio m,f m, = 20, which is considerable.

(a)

Fig.6.2l (a) Band structure of Ge plotted
(b) Ellipsoidal energy surface corresponding to
tions.

I

(b)

along the [00] and I I l] directions.
primary valleys along the (l I l) direc-

The valence band of Ge is similar to that of Si, and is represented by one

heavy and two light holes. The energy gap is 0.66 eV. (Note also that the conduc-

tion band of Ge has secondary valleys along the (100) directions.)
How does one obtain such detailed information regarding the band structure?

The shapes of the energy surfaces are determined by techniques of cyclotron
resonance. Suppose that the energy surface is an ellipsoid of revolution, and a

_t
I

0.84

_t

-_l\
0.18 eV-T
eV

--T----
0.66 eV
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magnetic field B is applied at angle 0 relative ro the axisof symmetry (Fig.6.22).
Electrons execute cyclotron motion in planes along the energy surface and
normal to the field. It was shown (Problem 4. l9) that the cyclotron frequency
for this case is

(6.s1)

The cyclotron frequency depends not only on the longitudinal and transverse
masses. but also on the angle 0. By measuring the cyclotron frequency at various
angles, one can determine the effective masses m, and m,. (Only two measurements
are actually needed, in principle.)

Rig.6.22 Cyclotron motion for an electron of ellipsoidal energy surface.

The cyclotron resonance spectrum of Ge is shown in Fig. 6.23. The field B
is applied along the (l l0) plane at a 60' angle from the [100] direction. Nore that
there are only three electron lines, rather than the expected four. This is so

lcos20 sin20ftt2
@": €B l---=- + IL mi m,frt l

o
a

I

0.1

B, weber/m2

Fig. 6.23 Cyclotron resonance in Ge at 24 GHz and 4"K.
(ll0) plane at 60" from the [100] axis. [After Dresselhaus,
98, 376, 19551

The magnetic field is in the
Kip, and Kittel, Phys. ReD.
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because two of the ellipsoids make the same angle with the field, at the chosen

field orientation, and hence have the same cyclotron frequency (which two ellip-
soids?). Similarly two hole lines (rather than three) appear because the two
lighter holes have the same mass, and hence the same frequency. This is indicated
by the fact that the line corresponding to the light holes-the one at higher
frequencies-is more intense than that of the heavy hole. The reason is, of course,

that the two lighter holes absorb more strongly than a heavy one.
Judicious use of cyclotron resonance therefore yields a wealth of information

concerning band structure.

6.10 HIGH ELECTRIC FIELD AND HOT ELECTRONS

Semiconductors exhibit linear ohmic behavior-that is, J - 6-in the low
electric fields commonly encountered. In the high fields present in some devices,

however, considerable deviation from Ohm's law is observed, as shown in Fi9.6.24
for r-type germanium. The deviation becomes significant at some field E r, and for
E, < E the current lies below its expected ohmic value. Above a certain higher
field Er, the current actually saturates at a constant value until, at an extremely
high field, usually in the 100 kV/cm range, the sample undergoes an electrical
breakdown.

:" 107
tro*
'6
o
E ro6

H

rcz

Rig.6.24 Drift velocity versus electric
proportional to the velocity.

lo3 lo4

E,Y/cm

field in r-type Ge. The current density J : neu is

We shall now present a theory which gives the physical basis underlying this
non-ohmic behavior at high fields. Consider the average electron energy

E: rkBT. At high fields (taking an n-type sample for concreteness), the electron
receives considerable energy from the field because of the acceleration of the
electron between collisions, and also loses energy to the lattice (energy which

appears as Joule heat). In the steady state the rates of gain and loss of energy must

be equal. That is,

+ : (#),. (#) ,: (eEu) - 
E(r') 

--E(r) - o, (6.s2)
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where u is the electron drift velocity and rE the energy relaration time. We have

allowed for the possibility that the electron temperature T" may be higher that
that of the lattice, T, leading to the concepl of hot electrons. By substituting
E(7") : lkuT ", 

Eg rl : lkrT, u : lt"E, and solving the above equatiorr for the
electron's temperature, we find that

2 et^u^T":T t ^ -#6'J Ks

tte: tte,o(t -ffi*),

(6.53)

For tr : l0-rr s, l" : 103 cm2/V-s, and I : lO3 Y lcm, we find that
LT : T" - T - 100'K. That is, the electrons are hotter than the lattice by
100"K. The heating would be much greater at higher fields and/or mobility.

We recall from Eqs. (6.31) and (6.37) that p": el"fm"u,, where u" is the
random velocity of the electron, and since u, - Ttt2, it follows that l" - T-1t2.
We may thus write

(6.54)

where ,u",s is the familiar low-field mobility. Equations (6.53) and (6.54) are two
equations in T" and p., and can be employed in solving for these unknowns. In
the range in which the field is not too high, one finds

tte: tle,o(+)'''

(6.ss)

which explains the initial decrease in mobility just above the field 6 , in Fig. 6.24.

The situation in the intermediate field range is complicated, and will not be

discussed here.

One can explain the current saturation at high fields by assuming that the
electrons dissipate their energy by emitting optical phonons in the lattice. Since

these phonons have much greater energy than their acoustic counterparts, they
represent the most efficient means for the electrons to rid themselves of the energy
gained from the field, thus achieving a steady-state condition.

6.T1 THE GUNN EFFECT

The Cunn efibct is named after J. B. Gunn, who made the discovery in 1963, while
measuring the currents of hot electrons in GaAs and other lll*V compounds.
When he was measuring the current J versus the field 6 in n-type GaAs, he observed
an unexpected phenomenon: As d is increased from zero, the current increases
gradually and essentially linearly (Fig. 6.25a) until a field Eo is reached. As the
field is increased beyond Eo, the current suddenly becomes oscillatory (versus t,
not versus d). These oscillations are essentially coherent, provided the sample
is sufficiently thin. The field do necessary for the onset of the Gunn oscillation is
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called the threshold field. Typical values for
Eo = 3 kV/cm, thickness of the sample L : 2.5
oscillationsv-5GHz.
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GaAs, as found by Gunn, are
x l0-3 cm, and frequency of the

l: neprE

/ NDC region

J: nep2a

(a) (b)

Fig. 6.25 (a) A graphic summary of the Gunn effect. (b) The current "/ versus d in GaAs,
showing the NDC region (dashed curve).

Gunn then performed several related experiments to determine the character
of the oscillations with a view to discovering the physical mechanism responsible.
Figure 6.25(b) shows "I versus d for GaAs, as calculated theoretically. Note an
interesting fact: There is a certain field range in which J decreases as 6' increases
(the curve corresponding to this range is shown by the dashed line in the figure).
This behavior (contrary to the usual one, in which an increase in d causes an
increase in J), is described by saying that the sample has a negatiue dilJ'erentiol
contluctance (NDC).r We shall shortly discuss the source of NDC in GaAs, but
for the moment let us focus our attention on the NDC itself.

There is a general theorem in electrodynamics which states that an NDC
situation isanunstable one; in other words, NDC is unlikely to exist in a steady-
state situation. A system cannot remain in an unstable state indefiniely, and any
fluctuations which may be present will cause it to become increasingly unstable until
there is a sudden transition to a stable state. ln the case of the Gunn effect, the
unstable state of a steady current with an NDC behavior gives way to an
entirely different state-one in which the current oscillates coherently in time.
The threshold field do for the oscillations is the same as the field in which the NDC
region sets in, and this lends further support to the above argument.

In Chapter 7 we shall discuss those aspects of the Gunn effect that concern
semiconductor devices. We shall also talk further about instability, and the Gunn
mode which arises from it. Here let us simply say that the characteristic oscilla-
tion frequency is in the GHz range, and this suggests the Gunn device as a possible

tThe word'differential'is important. The differential conductivity is defined as 0JlA6,
compared with the actual conductivity defined by JlE. The negative differential con-
ductance is also often referred to as negatiue difi'erential resistance, and abbreviated NDR.
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microwave generator and/or an oscillator. These and other potential applications
underlie the great interest in the Gunn effect.

Let us turn now to the physical mechanism responsible for the appearance

of the NDC at high field in r-type GaAs. For this we must look at the structure of
the conduction band of GaAs, shown in Fig. 6.26. There are two types of valleys in

the conduction band (see Section 6.9).

a) There is one central valley, i.e., the bottom of the valley is located at k : 0,

the center of the BZ.

b) In addition, there are six secondary valleys whose bottoms are located along

the (100) directions in the BZ. These six valleys are equivalent to each other
by symmetry (cubic symmetry of the crystal), but they are not equivalent to the

central valley. In GaAs, the bottom of a secondary valley lies above that of the

central valley by an amount A : 0.36 eV.

Secondary
valley

Fie.6.26 Conduction band in GaAs, showing central and secondary valleys. (Only half
the band is shown.)

The central and secondary valleys have widely different masses and mobilities.
If we use the labels I and2 to denote the central and secondary valleys, respectively,

then for GaAs m, : O.072mo and p, : 5 x 103 cm2/V-s, while mr: 0.36mo

and pr: 100 cm2/V-s. Note that m2 is considerably larger than mr(m2 : 5m),
but, even more important, the mobility;r, is very much smaller than p, 111, : prl50).

This means that an electron in the secondary valley drifts much more slowly than
an electron in the central valley.

Under normal circumstances, all the electrons reside in the central valley.
(Let us suppose for the sake of concreteness that the sample is doped so that
the electron concentration n is about l01s to 1016 cm-3.) This is so because the

bottom of the secondary valley A (: 0.36 eV) is so much larger than kuT at room
temperature that only a negligible fraction of the electrons is excited to the secondary

valleys. Therefore we may write n, - n, and the current for a field d is given by

J:nre\r8:ne\tE. (6.56)

Since the secondary valleys are unoccupied, we may ignore them in discussing

transport properties (as we did in Section 6.6).
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However, when a strong electric field is applied to the system, the situation
changes significantly. As we have said (Section 6.10), such a large field causes the
electrons to become hot, i.e., to have a higher temperature than the lattice. At
sufficiently high fields, the electron temperature T. may, in fact, become quite
high. But at high temperature the secondary valleys become populated. When
this happens, the current should be given not by (6.56), but by the more general
formula

J : J t + J2 : nreprE * n2ep28, (6.57)

where "I, and J2 are, respectively the currents ofelectrons in the central valley
and in the secondary valleys (all six valleys). We can now see, by examining the
two terms in (6.57), how it is possible for an NDC to come about in a material.
But we must remember these two facts: The sum n1 I n2 is equal to n, which is a
constant independent of E, and lz 4 ltr As d increases from zero to a value just
below Eo, all the electrons are essentially in the central valley and
nr = n. The current is then given by

J = nepr8, (6.s6)

which, when plotted, is a straight line of slope appropriate to the mobility p,
(see Fig. 6.25h).1 But as d reaches E o, and the temperature rises, the concentration
r, decreases abruptly, and n, increases by the same amount. In this small field
increase, J, decreases rapidly because r, does. This decrease is partially offset
by an increase in J2. However, because p, is so very small, the increase in J2 is
very small, and does not even come close to compensating for the decrease in J,.
As a result, the total current J : J r * J, actually decreases, leading to an NDC.
As d increases further, more and more of the electrons transfer from the central
to the secondary valleys, leading to a further decrease in J. The NDC
resulting from this intervalley transfer is shown in Fig. 6.25(b). Eventually, at very
high field, all the electrons have essentially transferred to the secondary valleys,
so we may write

J = J2: neqzE. (6.58)

The current now begins to increase again with E,but with a slope appropriate to
p2 (see Fig.6.25(b)).The interpretation of the Gunn effect in the light of an NDC
arising from an intervalley transfer is due to Kroemer.I

The intervalley transfer and the rapidity with which this occurs is possible
because the density of states of the secondary valley is much larger than that of
the central valley. According to Section 5.11, gr(E) - ml3t', and dnce there are

f We neglect the variation of the mobilities p, and p, with the field, as discussed in
Section 6.10, since it is not essential to an understanding of the Gunn effect.

t Gunn himself considered this possibility, but rejected it on the grounds that not enough
electrons are excited to the secondary valleys at room temperature. He did not take into
consideration the fact that the electron temperature rises significantly with the field.



292 Semiconductors I: Theory 6.12

six valleys, it follows that g2(E) - 6*ltt'; on the other hand, gr(E) - ml't'.
For GaAs, Sz(E)lSr (E) - 60, so there are many more states available in the
secondary valleys than in the central valley for the same energy range.

The Gunn effect has also been observed in InP, GaAs,P,-,, CdTe, ZnSe-
InAs, and other semiconducting compounds. All have conduction-band
structures similar to that of GaAs, and the intervalley transfer is responsible for
Gunn oscillations in every case. Si and Ge have different band structures, and do not
show the Gunn effect.t

6.12 OPTICAL PROPERTIES: ABSORPTION PROCESSES

In this and the following sections we shall consider the optical properties of
semiconductors. These properties span a wide range of phenomena, and aid us

greatly in understanding the basic physical properties of semiconductors. These

phenomena are also used in the development of optical devices widely used in
research and industry.

First we may divide the optical properties into electronic and lattice properties.

Electronic properties, as the name implies, concern processes involving the elec-

tronic states of a solid, while lattice properties involve the vibration of the lattice
(creation and absorption of phonons). Lattice properties are of considerable
current interest, but it is electronic properties which receive most attention in
semiconductors, particularly so far as practical applications are concerned.

Therefore the discussion here centers almost entirely on electronic properties.
Let us first recollect the important optical lattice properties: Recall

Section 3.12, in which we said that ionic crystals exhibit strong absorption and
reflection in the infrared region as a result of the interaction of light
with optical phonons. Because of the partially ionic character of their bonds,

compound semiconductors such as GaAs, GaP, etc., should, and do, exhibit
these properties. (Even purely covalent crystals such as Si exhibit infrared lattice
absorption, but to explain this would mean consideration of higher-order
processes.).

In semiconductors, a number of distinct optical electronic processes take place

independently. Let us now look at them one by one.

The fundamental absorption process

The most important absorption process involves the transition of electrons from
the valence to the conduction band (Fig. 6.27). Because of its importance, the
process is referred Io as fundamental absorption.

f The Gunn effect has been observed in Ge under uniaxial pressure. The reason is that,
under such pressure, the (lll) valleys become inequivalent, leading to sets of
inequivalent bands. For certain directions of the field, the effective mobilities may be
sufficiently smaller than the lower valley so that Gunn oscillations result at high field.
The large anisotropy of the mass of the ( I I I ) valleys plays an important role here.
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In fundamental absorption, an electron absorbs a photon (from the incident
beam), and jumps from the valence into the conduction band. The photon
energy must be equal to the energy gap, or larger. The frequency must therefore be

v >- (Enlh).

The frequency vo : Enlh is referred to as the absorption edge.

and
Et:Ei+hv

kr:k,+q,

Fig.6.27 The fundamental absorption process in semiconductors.

ln the transition process (photon absorption), the total energy and
momentum of the electron-photon system must be conserved. Therefore

(6.se)

(6.60)

(6.61)

where E; and Et are the initial and final energies of the electron in the valence

and conduction bands, respectively, and k,, k, are the corresponding electron
momenta. The vector q is the wave vector for the absorbed photon. However,
recall from Section 3.10 that the wave vector ofa photon in the optical region is

negligibly small. The momentum condition (6.61) therefore reduces to

kr : k,' (6.62)

That is, the momentum of the electron alone is conserved. This selection rule

means that only vertical transitions in k-space are allowed between the valence

and conduction bands (Fie. 6.27).

Calculating the absorption coefficient for fundamental absorption requires
quantum manipulations. Essentially, these consist of treating the incident
radiation as a perturbation which couples the electron state in the valence band to
its counterpart in the conduction band, and using the technique of quantum
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perturbation theory (Section 4.6). One then finds that the absorption coefficient
has the form (Blatt, 1968)

da: A(hv - Eo)rt2, (6.63)

where,4 is a constant involving the properties of the bands, and E, is the energy
gap. [The meaning of the subscript d will become apparent shortly. Equation
(6.63) will also be derived later; see Section 8.9.1

The absorption coefficient increases parabolically with the frequency above the
fundamental edge (Fig. 6.28a). (Of course, da : 0 for v < vo.) The absorption
coefficient for GaAs in Fig. 6.28(b) is consistent with this analysis.
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Fig. 6.28 (a) The absorption coefficient d7 VeTSUS hy in a semiconductor. (b) The
absorption coefficient d versus ly in GaAs. [After Hilsum]

A useful application of these results is their use in measuring energy gaps in
semiconductors. Thus E, is directly related to the frequency edge, En: fivo.

This is now the standard procedure for determining the gap, and has all but re-
placed the earlier method based on conductivity [Section 6.7; also see the discussion
after (6.36)], because of its accuracy and convenience. The optical method also
reveals many more details about the band structure than the conductivity method.

Note that the absorption coefficient associated with fundamental absorption
is large, about lOa cm- 1. Thus absorption is readily observable even in thin samples.
(The sample must be thin, in fact, if a transmission is to be observed at all.)

Since the energy gaps in semiconductors are small-frequently I eV or less-
the fundamental edge usually occurs in the infrared region. Because of this, the

study of the infrared region of the spectrum has been greatly expanded by
semiconductor research. The development of a large variety of reliable infrared
detectors has been one of the many benefits which have accrued from this work
(see Section 7.8).
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The absorption process occurs in the so-called direct-gap semiconductors.

Here the bottom of the conduction band lies at k : 0, and hence directly abovd,the
top of the valence band. Electrons near the top of the valence band are able to
make transitions to states near the bottom of the conduction band, consistent
with the selection rule. Examples of such substances are GaAs, InSb, and many

other III-V and tl-VI compounds.
There are also indirect-gap semiconductors, in which the bottom of the

conduction band does not lie at the origin (Fig. 6.29a). Recall that both Si and Ge

fall in this class: Si has its minimum in the [00] direction, and Ge in the I I l]
direction. In this case, the electron cannot make a direct transition from the top of
the valence band to the bottom of the conduction band because this would
violate the momentum selection rule (6.62).
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Fig.6.29 (a) An indirect-gap semiconductor.
Ge. [After Dash and Newman]
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(b) The absorption coefficient versus lrv in

Such a transition may still take place, but as a two-step process. The electron
absorbs both a photon and a phonon simultaneously. The photon supplies the
needed energy, while the phonon supplies the required momentum. (The phonon
energy, which is only about 0.05 eV, is very small compared to that of the photon,
which is about I eV, and hence may be disregarded. The phonon momentum is

appreciable, however.)
Calculation of the indirect-gap absorption coefficient, which is more involved

than that of direct absorption, shows that the formula, given by Blatt (1968), is

qi: A'(T) (hv - E)2, (6.64)

where ,4'(T) is a constant containing parameters pertaining to the bands and the
temperature (the latter due to the phonon contribution to the process).
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Note that d, increases as the second power of (fiv - Er), much faster than the
half-power of this energy difference, as in the direct transition. So we may use
the optical method to discriminate between direct- and indirect-gap semi-
conductors, an improvement over the conductivity method. Figure 6.29(b) shows
the absorption spectrum for Ge.

Exciton absorption

ln discussing fundamental absorption, we assumed that the excited electron becomes
a free particle in the conduction band, and similarly, that the hole left in the valence
band is also free. The electron and hole attract each other, however, and may
possibly form a bound state, in which the two particles revolve around each other.
(More accurately, they revolve around their center of mass.) Such a state is
referred to as an exciton.

The binding energy of the exciton is small, about 0.01 eV, and hence the
excitaton level falls very slightly below the edge of the conduction band, as
indicated in Fig. 6.30. (The exciton level is in the same neighborhood as the
donor level.)

Conduction
band

I
E"*

T
,//////////////////

Exciton

Fig.6.30 The exciton level and associated absorption.

The energy of the photon involved in exciton absorption is given by

hv:Es-E",, (6.65)

where E"* is the exciton binding energy. The exciton spectrum therefore
consists of a sharp line, falling slightly below the fundamental edge. This line is
often broadened by interaction of the exciton with impurities or other similar
effects, and may well merge with the fundamental absorption band, although
often the peak of the exciton line remains clearly discernible. The effect of exciton
absorption on the absorption spectrum of Ge is shown in Fig. 6.31.

This illustrates a fact which is often observed: Absorption of an exciton
introduces complications into the fundamental absorption spectrum, particularly

Valence

band
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near the edge, and renders the determination of the energy gap in semiconductors
more difficult. However, exciton absorption is important in discussion of optical
properties of insulators in the ultraviolet region of the spectrum. For further
remarks, refer to Section 8.10.

5X 103

00

Fig. 6.31 Excitonic absorption in
(theory); full curve (experiment)
(Measurement at 7 : 2C"K.)

0.05 0.1

(hu - E,), eY

Ge. Dashed curve represents fundamental absorption
includes both fundamental and exciton absorptions.

Free-carrier absorption

Free carriers-both electrons and holes-absorb radiation without becoming
excited into the other band. In absorbing a photon, the electron (or hole) in
this case makes a transition to another state in the same band, as shown in Fig. 6.32.

Such a process is usually referred to as an intraband transition.

FiS. 6.32 Free-carrier absorption.

The free-carrier absorption may be treated in precisely the same manner
used in Section 4. ll for treating the optical properties of metals. (One now sees,

in retrospect, that the optical properties discussed there are associated with intra-
band transition in the valence band of the metal.) Thus we may simply quote
the results. For concreteness, take the substance to be n-type, so that only
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electrons are present. The real and imaginary parts of the dielectric constant are

and

, 6oIelr:e1,, :n2o-rc2

,, oo

'i' : ,'Gia1:2noK'

(6.66)

(6.67)

(6.68)

where the symbols have the same meaning as in Section 4.11. (We use n6 rather
than n for the iudex of refraction, to distinguish it from the electron concentra-
tion.)

Several different regimes may be distinguished. At low frequency and small
conductivity (low concentration), the lattice contribution e",, dominates the

dielectric polarization in (6.66). Thus the substance acts as a normal dielectric.
There is, however, a slight absorption associated with ei' of (6.67) which represents

the absorption of radiation by free carriers.
In the region of low frequency and high conductivity, the free-carrier term

in (6.66) dominates. Thus ei < 0, and the substance exhibits total reflection,
much as a metal does. This is to be expected, since the electron concentration is

very high, approaching (but still much smaller than) the electron concentration
in metals.

In the high-frequency (short-wavelength) region, ar y' | (but small
conductivity), the material acts like a normal dielectric with 16 -.1"t,!, and
the absorption coefficient is

ool
d,: 

;;;;;i 2 ,

Thus a - (o-2 or 12, which is verified experimentally by Fig. 6.33.
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Fig. 6.33 Free-carrier absorption coefficient versus 12 in r-type InSb. [After Moss]

Note that free-carrier absorption takes place even when hv < En, and

frequently this absorption dominates the spectrum below the fundamental edge.

n:6.2X lOrT
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For hv > E* of course, both types of absorption-fundamental and free-
carrier-occur simultaneously.

Absorption processes involving impurities

Absorption processes involving impurities often take place in semiconductors.
The type and degree of absorption depend on the type of impurity (or impurities)
present, and on its concentration.

////// '

Eo

v7r/7v77VV77il

Fig. 6.34 Various absorption processes involving impurities (see text).

Figure 6.34 depicts the main classes of such processes. Figure 6.34(a) shows

the case in which a neutral donor absorbs a photon and the electron makes a

transition to a higher level in the impurity itself or in the conduction band.
The transitions to higher impurity levels appear as sharp lines in the absorption
spectrum. Figure 6.34(b) shows the transition from the valence band to a neutral
acceptor, which is analogous to the donor-conduction-band transition above.
Figure 6.35 indicates the absorption spectrum associated with the valence-band-
acceptor transition in Si.
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Fig. 6.35 Absorption coefficient of a boron-doped Si sample versus photon energy hv.

[After Burstein, et al., Proc. Photoconductiuity Conference, New York: Wiley, 1956]
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For shallow impurities, the absorption lines associated with donors and
acceptors fall in the far infrared region (since the energy involved is small-only
about 0.01 eV). Such processes may serve in principle as a basis for detectors in
this rather difficult region of the spectrum. The spectrum may also serve as a

diagnostic technique for determining the type of impurity present.
Figure 6.3a(c) represents a process in which an electron is excited from the

valence band to an ionized donor (it must be ionized; why?), or from an ionized
acceptor to the conduction band. Such processes lead to absorption which is
close to the fundamental absorption, and are seldom resolved from it.

Figure 6.34(d) illustrates an absorption process involving transition from an
ionized acceptor to an ionized donor. The energy of the photon in this case is

hv:Es-Eo-Eo. (6.6e)

This leads to a discrete structure in the absorption curve, but this is often difficult
to resolve because of its proximity to the fundamental edge.

Impurities may also affect the absorption spectrum in other, indirect ways.
For instance, an exciton is often found to be trapped by an impurity. This may
happen as follows: The impurity first traps an electron, and once this happens
the impurity-now charged-attracts a hole through the coulomb force. Thus
both an electron and a hole are trapped by the impurity. The spectrum of this
exciton is different from that of a free exciton because of the interaction with the
impurity.

6.T3 PHOTOCONDUCTIVITY

The phenomenon of photoconductiuity occurs when an incident light beam impinges
upon a semiconductor and causes an increase in its electrical conductivity. This
is due to the excitation of electrons across the energy gap, as discussed in Section
6.12, which leads in turn to an increase in the number of free carriers-both elec-
trons and holes-and hence to an increase in conductivity. As we know, excitation
can occur only ifha > E' From a practical standpoint, photoconductivity is very
important, as it is this mechanism which underlies infrared solid-state detectors.

The concept of photoconductivity is illustrated in Fig. 6.36. A current flows
in a semiconductor slab. A light beam is turned on so as to inpinge on the
slab in a direction normal to its face. Before the light beam is turned on, the con-
ductivity is given by Eq. (6.34),

os: e(nsp" * popn), (6.70)

where ro and po are the concentrations at equilibrium, and oo is the conductivity
in the dark. When the light beam is turned on, the concentrations of the free
carriers increase by the amounts Ar and A,p, and the current increases abruptly.
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Since electrons and holes are always created in pairs, we

conductivity is now

o : oo * e L,n(P"+ /J : os * e A'nPo(l

where b : F.l Fr,, the mobility ratio. The relative increase
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have Ln: Lp. The

+ b), (6.7t)

in the conductivity is

Lo _eLnpn(l + b)

og 69
(6.72)

r{ig. 6.36 Basic experimental setup for photoconductivity.

We now need to evaluate Ln, and it is here that the optical properties of the

solid come in. An excess of free carriers is created, so that the situation becomes

one of nonequilibrium. There are two factors which lead to the variation of n
with time: (a) Free carriers are continually created by the incident beam, and (b)

excess carriers are also continually annihilated by recombining with each other.

This recombination is present whenever the concentration of carriers differs from

that of equilibrium. The variation of the concentration with time is therefore

governed by the following rate equation:

(6.73)

where g is the rate of generation of electrons per unit volume due to light absorp-

tion, and the second term on the right describes the rate of recombination of
electrons; r'is called the recombination time, which is essentially the lifetime for
a free carrier. In the steady state dnldt : O. That is, the two rates equal each

other. Therefore A n : n - no is given by

Ln: gr'. (6.74)

The generation rate can be related to the absorption coefficient and incident

intensity as follows. Given that dis the thickness of the slab, then a dis the fraction

dn_^ n-no
clt T'
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of power absorbed in the slab. [This is the definition of n (see Section 4.ll)].
Therefore, if N(rr;) is the number of photons falling on the medium per unit time,
it follows that the number of photons absorbed per unit time is adN (a), and hence

adN (ot)
"V

since each photon absorption leads to an electron-hole creation. The division by
the volume I/ is necessary because we wish to find the rate of generation per unit
volume. The number of incident photons N(rr;) is related to the intensity 1(al) by

where.4 is the area of the slab, I(a)Ais the incident power, andha is the photon
energy. Combining (6.74) and (6.76), we find that

I/UD\A
N(ar):;,

aI(a\
[4 - ----)-- 

-- 
it .

hat

When we substitute this into (6.72), we obtain

(6.75)

(6.76)

(6.77)

(6.78)
A,o

Og
^ al(a)r'p"y,(1 + b)

huos

Note that (Lolos) - I(a), and also particularly that (Loloo) - a(c,r), the
fundamental absorption coefficient we discussed in Section 6.12. Let us make a
numerical estimate. If we take r' - lO-a s, / = l0-a watts/cm2, and ha = 0.7 eV
(for Ge), we find Ln - 5 x l0ra cE-3, which is an appreciable increase in the
number of free carriers.

Our treatment of photoconductivity has been idealized in some respects.
For example, we have neglected recombination of the free carriers near the
surface, an effect known as surface recombination. The basic concepts responsible
for the phenomenon ofphotoconductivity have nevertheless been clearly portrayed.

6.14 LUMINESCENCE

Section 6.12 presented various processes whereby electrons may be excited by the
absorption of radiation. Once electrons have been excited, the distribution of
electrons is no longer in equilibrium, and they eventually decay into lower states,
emitting radiation in the process. This emission is referred to as luminescence.
Luminescence is therefore the inverse of absorption. Most of the absorption
processes discussed in Section 6.12 may also take place in the opposite direction,
leading to several types of luminescence mechanism.

Luminescence-i.e., the electron excitation mechanism-may be accomplished
by means other than absorption of radiation. Excitation by an electric current
in a p-njunction (Section 7.7) results in electroluminescence, while excitation by
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optical absorption (as in Section 6.12), produces photoluminescence. Catho-
doluminescence results when the excitation is achieved by a high-energy electron
beam, and thermoluminescence occurs at low temperatures when carriers are first
excited by some means, and the electrons are frozen in their trapping states. Then

as the solid is heated, thermal agitation assists the electrons to de-excite and

release radiation. (The straightforward process whereby the electrons are

excited thermally and then release radiation is known as incandescence.)

There are still other means of excitation, but this list includes the most common
methods.

Luminescent emission may take place during the time of excitation, in which
case the phenomenon is known asfluorescence. Phosphorescence is a luminescence

which continues for some time after the excitation has been accomplished.
The physical processes involved in luminescence are the same as those

discussed in Section 6.12, except that now they take place in the opposite direction.
The most prominent process is that of conduction-band-to-valence-band
transition. As an example, we show the photoluminescence spectrum of
n-type InAs in Fig. 6.37. The broad shape of the spectrum indicates the broad
density of states of the bands involved.
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Fig.6.37 Photoluminescence spectrum of r-type InAs due to electron-hole recombi-
nation. [After Mooradian and Fan, 7th Internat. Conf., Physics of Semiconductors,
Pasis, Dunod, 19651

Excitonic luminescence has also been observed, in addition to Iuminescence
involving transition between impurities and band states, or between band states

and impurities. Transition between donors and acceptors is also observed, as

well as luminescence due to intraband transition.
The study and characterization of these various processes in different materials

form one of the main fields of research on semiconductors today. This research
has yielded a variety of technological applications. A very common luminescent
device, for example, is the television screen. The images seen are formed by the

luminescent coating on the screen, which is excited by an electron beam within
the instrument. Another luminescent device is the semiconductor laser, in which

'5 roo
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the transition from the conduction band to the valence band produces an

intense beam of coherent radiation (see Section 7.7).

6.15 OTHER OPTICAL EFFECTS

In the last three sections we have described most of the important phenomena
associated with the optical properties of semiconductors. There are others, but
our limited space does not permit an exhaustive list (Pankove, l97l). We shall
mention in passing only some of the other activities which have engaged the
attention of physicists in recent years.

Because of the availability of intense beams of radiation-from lasers

nonlinear optical properties have come under increasing investigation. Harmonic
generation (multiplication of the incident frequency) has been observed in GaAs,
InP, and many other materials. Also frequency mixing (production of various
combinations of the frequencies of two incident beams) has been observed in
such substances as GaAs, InAs, Si, and Ge.

Other important nonlinear processes are Brillouin and Raman scattering from
the phonons in semiconductors. We discussed these nonlinear effects in
Section 3.4, in connection with phonons.

6.T6 SOUND.WAVE AMPLIFICATION (ACOUSTOELECTRIC EFFECT)

The acoustic properties of semiconductors have also been extensively investigated.
A primary motive for this research is the design of acoustic amplifiers, particularly
in the ultrasonic (microwave) region. The mathematical analysis is rather tedious,
so we shall indicate here only the physical concepts, and advise anyone interested
to consult the bibliography (Wang, 1966).

We have seen how the amplification of sound waves in semiconductors is

accomplished (Section 3.1l). Free carriers in the sample are set into a drift motion
by a high electric field. When the field is sufficiently high so that the drift velocity
u, is greater than the sound velocity, then energy is transferred from the carriers
to phonons traveling in the same direction as the carriers, and the sound wave
is amplified. For an efficient amplification, the coupling between carriers and
phonons, or lattice waves, must be strong. This condition obtains in strongly
piezoelectric crystals such as CdS.

The coefficient of acoustic gain as a function of the field has the form shown
in Fig. 6.38. The gain coefficient is negative for uo < u" (attenuation). That is,

in that region, carriers absorb energy from the wave. On the other hand, in the

region Da ) D", the gain is positive.
Acoustic amplification was first observed by Hutson, et al., in 1961 . As a

medium, they used insulating CdS, so initially there were no carriers. They then

introduced carriers by illuminating the sample so that electrons were excited into
the conduction band. They sent a shear wave in a direction parallel to the hexa-
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gonal axis of the crystal. (The wave was introduced at one end by converting an

electromagnetic into an acoustic signal via piezoelectric coupling.) Two frequencies

were used, l5 and 45 MHz. When the crystal was in the dark, only attenuation was

observed. However, when the crystal was illuminated, amplification was observed

above a certain critical field. The experimental result, shown in Fig. 6.39,

closely resembles Fig. 6.38.

Fig. 6.38 Acoustic gain coefficient versus u7/u..

The crossover point at which the amplification commences corresponds to a

field E : 700 V/cm. Since the mobility of electrons in CdS is 285 cm2iV-s, the

crossover drift velocity is 2.0 x 10s cm/s, very close to the velocity of sound in this
material.
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frequency 45 MHz.

One can also convert a sound amplifier into an acoustic oscillator by allowing
the wave to travel back and forth with the help of good acoustic reflectors at the

ends of the sample. Although the wave suffers some attenuation on the return
segment of its trip (since the velocity of propagation is opposite to the field), the

net gain over the whole trip may be positive. (ln fact, for a stable oscillator, this
gain must be exactly zero.)

3€
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E
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Fig.6.39 Gain coefficient (in decibels)

[Adapted from White, et al., Phys. Reo.
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6.17 DIFFUSION

Often the concentration of carriers in a semiconductor is nonuniJbr,m in space.
This occurs, for example, in all devices involving p-n junctions, such as transistors
(see Chapter 7). Whenever there is a nonuniform concentration, the phenomenon
of dffision takes place, and it often plays a major role in a given situation. It is
because of this that diffusion has received a great deal of attention in semiconductor
research. t

t2> tr> O

,[
to

(a)

a

xo

(b)

xo

(c) (d)

Fig.6.40 Diffusion under different circumstances: (a) A concentration pulse, n versus
x, at t : O. Arrows indicate particle currents. (b) The spread-out of a pulse due to
diflusion at three successive instants. (c) An electron pulse diffusing and drifting in an
electric field at three successive instants. (d) The disappearance of a pulse due to
recombination.

The concept of diffusion can be illustrated as follows. Suppose that a
concentration pulse is somehow created in a semiconductor at time r : 0, and that
the pulse is centered at the position x : xe (Fig. 6.40a). (A concentration pulse
is usually created by injecting carriers into the specimen from an external
circuit.) We assume that the concentration of carriers is in a nonequilibrium state
(the background is assumed to be uniform, and hence the concentration at
equilibrium must be uniform). So therefore a current begins to flow at both edges
of the pulse, as shown in Fig. 6.a0(a). This flow, in which n changes rapidly with

f Diffusion of atoms in solids, also of great practical importance, will be covered in
Section I 1.4.
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x, is called diffusion. The effect of the diffusion is eventually to bring the concen-

tration of carriers toward the equilibrium situation, in which the concentration is

uniform throughout. The shapes of the pulse at various later instants are

illustrated in Fig. 6.40(b). As time progresses, the pulse spreads out in both direc-
tions, and the peak decreases, although the pulse center remains at xo. We

say that the pulse diffuses.

If an electric field were also applied to the pulse, at the instant , : 0, then

the pulse would diffuse as before, but the center of the pulse would also drrf
opposite to the field, as shown in Fig. 6.a0(c).

Another, concomitant process is recombination. As discussed in Section 6. 13,

whenever the concentration of carriers is not in an equilibrium state, there is a
tendency for the excess carriers to disappear by recombining with carriers of
opposite charge, or by being trapped by impurities. The effect of recombination is

to bring the concentration of carriers toward equilibrium. Given that the recom-
bination time is r', the lifetime of the pulse is essentially equal to r', and during
the time t <'c' the pulse diffuses; for / > z' the pulse essentially dies out (Fig.
6.40d). Contrast the situation of Fig. 6.40(d) with that of Fig. 6.40(b) in which
recombination was neglected.

We have gained a fairly complete physical picture of the diffusion process.

Let us consider the above processes in a quantitative manner. The basic law
governing diffusion is Fick's law,which states that, for a nonuniform concentratiOn,

the particle current density J' (that is, the number of particles crossing a unit
area per unit time) is given by

J': (6.7e)

where D is a constant called the dffision coefficient. This law states that the

current is proportional to the concentration gradient AnlAx. Thus the more rapidly n
varies, the larger the current, which seems plausible.

The negative sign in (6.79) is introduced for convenience, in order to make D a
positive quantity. As seen from this equation, and also from Fig. 6.40, J' is

opposite to 1nl0x. Thus, ifn increases to the right, J'is to the left, and vice versa.

Equation (6.79) is valid whether the particles are neutral or charged. In semi-

conductors, the carriers-electrons and holes-are charged, and hence the
particle current J' also carries an electrical current. To obtain the electrical
current, one multiplies J by the charge of the carrier. Thus the currents for
electrons and holes are given respectively by

-Don -
6x

0n
J. : eD";

ox

0n
Jt : - eDt*

ox

(6.80a)

(6.80b)
and
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One can derive Fick's law by using statistical mechanics (the details are left
as an exercise). Statistical mechanics not only enables us to derive this law, but
also provides the Einstein relation,

D:HktT,
e

J:-eoL*+p"pa.

*,:,#- ufr@a,

(6.81)

between the diffusion coefficient and the mobility of the carrier. The relation is
valid for both electrons or holes, and is a useful formula in that it relates the
new quantity D to the mobility, which should be quite familiar to us (Section 6.6).
A relation such as (6.81) is expected, since D is, in fact,just another transport co-
efficient like p.

Let us now derive the diffusion equation, first for one type and then for two
types of carriers.

The diffusion equation for one type of carrier

Let us assume that we have only one type of carrier, which we shall take to be
holes, to avoid confusion arising from the sign of the charge. In the presence of
both a concentration gradient and an electric field, the total current is given by

(6.82)

[we have omitted the subscripts on D and p (referring to the hole) for simplicity.]
The first term on the right is the dffision current, and the second the drift current.

we now want to examine how the concentration p(x,t) varies with time at an
arbitrary position x. Note that the concentration p is a function of both x and ,.
we can see that p(x) varies with time, because of the flow of hores as given by
(6.73). This variation is given by the continuity equation,l which we write as

(6.83)

where we have substituted for J from (6.82). In addition to varying with time
because of the flow of holes, p varies with time because of recombination. This
variation can be written as

(6.84)

f The continuity equation is well known in both electrodynamics and fluid mechanics.
Its form in three dimensions is

4*v.J:0,
0t

where p is the density and J the current (see any textbook on electromagnetism).

(#).,"_

(aP\ - -P - Po

\d/,/n""o-r r' '
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where po is the equilibrium concentration and t' the recombination time of the
holes [see Eq. (6.73)]. The total rate of variation is given by

dp_lap\ -(ap\
at - \at )r'o* 

- 
\d/ /n""o-u'

which, when combined with (6.83) and (6.84), yields the partial differential
equation

This is the diffusion equationr which governs the space-time behavior of the
carrier concentration p. If we could solve this equation for any specific initial
conditions, we would know the concentration at every point x at any instant l.
We shall not be able to do this in general, however; but we shall solve the
equation for a few particular situations, and this will bring out its physical contents.

i) Stationary solution for E : O. We obtain the equation appropriate to this situa-
tion from (6.85) by setting Apl1t : 0 and E : O. The result is

!: o* - uloq -P - Po

ot ox- ox x

D*_P-Po-0.0x' x'

f The standard diffusion equation is
^^,op n o-P

At -" a7'
which is obtained from (6.85) by setting E :0, and neglecting recombination.

(6.85)

(6.86)

This is a standard differential equation, whose solution is readily found to be

Pt = P - Po : llg-x/(Dt')t/2, (6.87)

where I is a constant to be determined from boundary conditions. The excess

concentration p, decays exponentially with x, and essentially vanishes for
x > (Dx)tt2. This distance is known as the dffision length. and is denoted by Lr,

Lo : (Dr)1t2. (6.88)

The solution (6.87) is appropriate to the physical arrangement whereby we

have a semi-infinite specimen, 0 < x < oo (Fig. 6.41), with excess carriers injected

at the left face at a constant rate. As the carriers are injected they diffuse to the

right, but because of recombination they essentially live only a time z', and hence

travel a distance Lr. One can thus define an effective diffusion velocity u2 as

,,: + : (!n)''' (6.8e)
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The diffusion current is

"Ioirr : eppo --

which is the same result that one would
first term on the right of (6.82).

6.17

(6.e0)

obtain by substituting (6.87) into the

o*Lo-

Fig. 6.41 Steady-state solution for a hole stream injected from the left at x : 0, with or
without an electric field.

ii) Stationary solution with a unifurm field E + 0. The appropriate equation
for the excess concentration pt : p - po, as obtained from (6.85), is now

0'p, pE 0p r-a7- D a.-
This is also a standard differential equation,

(6.e1)

Pt - Ae-Y'lLP (6.e2)

(6.e3)

where

"0, (!r)'''

4:0.L;

whose solution is

y:y/f +7-s and s:pELol2D.

The solution has the same form as (6.87) in the absence of the field, the difference
beingthat the effective diffusion length is now Lofy, where y depends on the field
(Fig.6.al). Since 7 < I [from (6.93)], the effective diffusion length is now larger
than before. This is expected, since the particles are now "dragged" further by the
field as they diffuse. When d becomes large, s also becomes large, while 7 becomes
small ;this leads to a large value for the diffusion length Loly.

The physical arrangement for the present case is the same as for (i), except
that now a uniform field E is applied to the semi-infinite specimen.

The diffusion equation for two types of carrier

When there are two types of carrier, we have to deal with two diffusion equations
similar to (6.85). However, the two equations are not independent. They are coupled
together, and hence must be treated simultaneously. The coupling arises because
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the electric field E, which appears in both equations, is the total field inside the spec-

imen, not the external field do. We may, in fact, write

E:Eo+E', (6.e4)

where E' is that part of the field which is due to the diffusing electrons and holes.

The field d'is a consequence ofthe fact that the electrons and holes are electrically

charged. Hence these charges create their own field, which again acts on the charges.

The effect of this field is to pull the electrons and holes together so that they move

together, i.e., to couple the electron's and hole's diffusion equations.

The mathematical treatment for the diffusion of two carriers is fairly

complicated, and we shall not attempt it here (see McKelvey, 1966). We

shall take only one case, which is simple, but also of practical importance.

Suppose that we are dealing with a strongly extrinsic sample, say r-type; thus

no * po. And suppose that a pulse of holes is injected into the sample. Because

of the internal field, an electron pulse is generated which moves with the hole

pulse. The electrons and holes are called respectively the maiority and minority

carriers in this n-tyqe sPecimen.

The hole pulse moves essentially as if there are no electrons at all, that is, Eq.

(6.85) is satisfied, with parameters appropriate to the holes. The motion of the

electron pulse is much more complicated, because, since ro is large, the effect of
the pulse on the electron concentration is very small. Thus the neutralizing

background into which the hole pulse moves is unaffected by this pulse; hence

it moves as an independent hole pulse. The neutralizing background into which

the electron pulse moves (the holes) is drastically affected by the pulse.

In summary, it is easier to study the motion of the minority carriers than that of
the majority carriers in a two-carrier semiconductor. This point will be important

in our discussion of transistors in Chapter 7.

SUMMARY

Most semiconductors crystallize in the diamond or zincblende structures. In either

case, the atom is bonded covalently to its nearest neighbors. Each atom is

surrounded by four neighboring atoms, forming a regular tetrahedron.

The band structure of the simplest semiconductor consists of a parabolic,

isotropic conduction band,below which is an inverted, parabolic, isotropic oalence

bqnd. The two bands are separated by an energy gap,which plays an important
role in semiconductor Phenomena.

When foreign impurities are introduced into a semiconductor, additional

localized electronic states are usually created in the energy gap' These states are

often very close to the bottom of the conduction band or the top of the valence

band. In that case, the impurities-donors and/or acceptors-are readily

ionized, supplying free carriers (electrons and holes).
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Carrier concentration

Free carriers are created by thermal excitation of electrons across the energy gap,
or by the ionization of donors and acceptors. In an intrinsic (i.e., pure) sample,
only thermal excitation takes place, and the numbers of electrons and holes are
equal. rheir """*";.1';:'r,

: 2(ksT l2nh2)312 (mSnn13t4 e- Est2kBr 
.

This concentration rises very rapidly with temperature because of the exponential
factor.

In an extrinsic semiconductor, in which cross-gap ionization is negligible
compared with the ionization from impurities, the carrier concentrations are
given approximately by

n: Na P: No,

for r- and p-type samples, respectively.

Conductivity and mobility

Conductivity in semiconductors is usually written as a product

o : nep,

a relation which defines the mobility 4. In intrinsic substances, conductivity
increases rapidly with temperature because of the corresponding exponential
increase in the carrier concentration n. Although mobility also depends on
temperature, this dependence is very weak compared with its dependence on the
exponential factor.

Magnetic field effects

These effects, particularly cyclotron resonance and the Hall effect, are standard
techniques for measuring semiconductor parameters. Cyclotron resonance is
used primarily to determine effective masses, and the Halt effect to measure carrier
concentration.

Hot electrons and the Gunn effect

When a high electric field is applied to a semiconductor, the carriers (electrons and
holes) absorb appreciable energy from the field, and their temperature rises above
that of the lattice; i.e., they become "hot." The effect of this is a decrease in
their mobility.

In certain semiconductors of appropriate band structure, such as GaAs, the
heating of carriers results in a transfer of electrons to high-energy valleys of
very low mobility. In such a case the application of the electric field may produce a
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region of negatiue differential conductance. Because such a situation is inherently

unstable, the sample "breaks up" into coherent electrical oscillations, which is the

Gunn effect.

Optical absorption, photoconductivity, and luminescence

Optical absorption takes place in a semiconductor when an electron in the valence

band absorbs a photon from the optical beam, and transfers to the conduction

band. Such a fundamenta! absorption takes place only if the photon energy is

greater than the energy gap, that is, E, < /lv. The shape of the absorption curve is

a function ofthe band structure, and hence the absorption curve is often employed

in the study of the lattice.
Optical absorption may also take place due to excitonic excitation, or ionization

of donors and/or accePtors.

In photoconductioity, the conductivity of a semiconductor is raised by shining

a light beam on the sample. The optical beam causes additional carriers to be

excited across the energy gap, which causes a rise in conductivity'
Luminescence is the inverse of optical absorption: Electrons are first excited,

in some manner, to higher states, and are subsequently allowed to fall to lower

states, emitting photons in the process. It is these photons which give rise to lumin-

escence.

Diffusion

When the carrier concentration is spatially nonuniform, this nonuniformity causes

a current of particles. The direction of this current is such that it tends to remove

the nonuniformity, and leads to a uniform distribution of carriers. The basic re-

lation is Fick's law.

where J' is the particle current density. By employing statistical mechanics, one

can show that the diffusion coefficient D is related to the carrier mobility by the

Einstein relation
p : pk"T le.

A dynamical study of diffusion can be made by combining Fick's law with the

continuity equation. One can then solve the appropriate differential equation-
known as the diffusion equation-in a manner consisten{ with the initial and

boundary conditions of the problems.
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QUESTIONS

l. In discussing the tetrahedral bond in the Group IV semiconductors (and other

substances), we described the so-called bond model, in which each electron is

localized along rhe covalent bond line joining the two atoms. Explain how this may be

reconciled with the (delocalized) band model, in which the electron is described by a

Bloch function whose probability is distributed throughout the crystal.

2. Do the bond orbitals of the above bonds correspond to the conduction band or the

valence band? WhY?

3. Describe the bond model associated with the electrons in the conduction band of the

group IV semiconductors; i.e., state the spatial region(s) in which these electrons

reside.
4. What does the breaking of a bond correspond to in the band model?

5. Give one (or more) experimental reason affirming that the electrons associated with the

tetrahedral bond are delocalized.

6. The pre-exponential factor in Eq. (6.8), i.e., the factor preceding e- Edkar 
,is frequently

referred to as "the effective density of states of the conduction band'" How do you

justify this designation?

7. A cyclotron resonance experiment in rr+ype Ge exhibits only one electron line. In

which direction is the magnetic field?

8. Is it possible for a cyclotron resonance experiment in Si to show only one electron

line?

9. Does the fact that a sample exhibits intrinsic behavior necessarily imply that the

sample is pure?

10. An experimenter measuring the Hall effect in a semiconductor specimen finds to his

surprise that the Hall constant in his sample is vanishingly small even at room

temperature. He asks you to help him interpret this result. What is the likely

exPlanation?

1 I . In the expression for the electron temperature (6.53), the first power of the field d is

missing. Can you explain this by symmetry considerations? lf the general expression

for T , at an arbitrary field, which would be more complicated than Eq. (6.53), were

to be expanded in powers of d, would you expect the terms E' E3' E5' etc'' to

appear? why? Does your argument apply equally well to such materials as Ge and

GaAs?

12. In discussing hot electrons, one finds that the temperature of the electron is greater

than that of the lattice. Can you conceive of a situation in which the temperature of

the electrons might be lower than that of the lattice?

13. Suppose that, in working with a given semiconductor, you use an incident optical

beam which is very strong. Is it possible for a fundamental absorption to take

place even at a frequencY v < Enlh?

14. In an intrinsic semiconductor, is the Einstein relation valid for electrons and holes

individuallY?
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PROBLEMS

l. Derive (6. 13) for hole concentration.

?rn) Compute the concentration of electrons and holes in an intrinsic sample .rB?;l '"'
room temperature. You may take m.:0.7 mo and mn: po. kT = 0.0)ttv

b) Determine the position of the Fermi energy level under these conditions.
3.,Civen that the pre-exponenrial factors in (6.8) and (6. l3) are l.l x lOre and
--/0.51 x l0le cm-3, respectively, in Ge at room temperature, calculate:

a) The effective masses m" and mn for the electron and the hole.
b) The carrier concentration at room temperature.
c) The carrier concentration at 77"K, assuming the gap to be independent of
. temperature. a. [], (

_4.rhallium arsenide has a'dieleclric constant equal to 10.4.
" a) Determine the donor and accepror ionizarion energies. ( 6.lr)

b) Calculate the Bohr radii for bound electrons and holes. '
c) Calculate the temperature at which freeze-out begins to take place in an n-type

samnle. pr11
5. A silicon simple is doped by arsenic donors of concentration 1.0 x lo23 m-3.

The sample is maintained at room temperature.
a) Calculate the intrinsic electron concentration, and show that it is negligible

compared to the electron concentration supplied by the donors.
b) Assuming that all the impurities are ionized, determine the position of the

Fermi level.
c) Describe the effect on the Fermi level if acceptors are introduced in the above

sample at a concentration of 6.0 x 1021 m-3.
6. Given these data for Si : l": 1350 cm2/volt-s, ttn:47Scm2/volt-s, and En: l.l eV,

calculate the lollowing.
a) The lifetimes for the electron and for the hole.
b) The intrinsic conductivity o at room temperature.
c) The temperature dependence of o, assuming that electron collision is

dominated by phonon scattering, and plot log o versus l/I .

7. Repeat Problem 6 for Ge, using Tables 6.1 and, 6.2.
8. A sample of extrinsic semiconductor is in the shape of a slab whose length is 5 cm,

width 0.5 cm, and thickness I mm. when this slab is placed in a magnetic field of
0.6 Wb/m2 normal to the slab, a Hall voltage of 8 mv develops at a current of
l0 mA. Calculate: (a) the mobility of the carrier, (b) the carrier density.

9. A sample of ,r-type GaAs whose carrier concentration is l0l6 cm-3 has the same
dimensions, is in the same field, and carries the same current as in problem g.

calculate: (a) the Hall constant in this sample, (b) the Hall voltage developed across
the slab.

10. When we derived the Hall constant in Section 4.10, we assumed that the carrier mass
is isotropic;the mobility of the carrier is therefore also isotropic. However, we have
seen that carriers in some semiconductors have ellipsoidal masses.
a) Show that when current in an r-type Si sample flows in the [100] direction, the

Hall constant is given by

^ 3 p?+zp?
ne (pt * 2p,)2 '
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where lr: erlmt and p,: erlmt are the longitudinal and transverse mobility,

respectivelY.
b) Recalling that m,f m, - 5 in Si, evaluate the Hall constant lor n: 1616 

"rn-3'
c) What is the value of R, given that the current flows in the [010] direction (with the

orientation of the magnetic field appropriately rearranged)? [Hinr: Note that the

populations of the six valleys are equal to each other.l
I l. a) Show that the density of states corresponding to an ellipsoidal energy surface is

(m! mr1tt2 Elt2,

where rn, and nt, are the transverse and longitudinal masses, respectively. (The

energy surface is taken to be an ellipsoid of revolution.)
b) If we make the replacement m? *r : m) in the above expression, then 9(E) would

have the standard form for a spherical mass, (6.6), with mo substituted for m".For
this reason, the mass m, is usually called the density-oJ-states effbctiue mass.

Taking into account the many-valley nature of the conduction band in Ge, find

m, for this substance (expressing the results in units of m6)'

12. When a carrier has an ellipsoidal mass, e.g., the electrons in Si, the mobility is also

anisotropic. The longitudinal and transverse mobilities p, and p, are in inverse ratio to

the masses, i."', t',1 l',: mtlmt, as follows from (6'31)' (The collision time is

isotropic.) In tables such as Table 6.3, the so-called mobility y: Q\* 2p,)13 is

usually quoted. (This average is for an ellipsoid of revolution')
a) Calculate p, and p, for silicon'
b) An electric field is applied in the [100] direction, and the field is so high that it heats

the electrons (they become hot). But the valleys are heated at different rates

because of the difference in carrier mobility in the longitudinal and transverse

directions. Indicate which valleys become hotter than others'

c) Calculate the electric field at which the temperature of the hot valleys becomes

1000"K. (The lattice is at room temperature.) Take the energy relaxation time to

be 2 x lO-12 s. (Assume the mobility to be independent of the field')
d) Suppose that the valleys are in quasi-equilibrium with each other; electrons then

transfer from the hot to the cold valleys, and the valleys' populations are no

longer equal. Find the fraction of the total electrons still remaining in the hot

valleys at the field calculated in Problem l2(c).
e) Discuss the non-ohmic behavior resulting from this "intervalley transfer."

Plot "/ versus E up to a field three times the field calculated in Problem l2(c).

13. Estimate the value of the field for which an appreciable transfer of electrons takes

place from the central to the secondary valleys in GaAs' lHint'.The energy absorbed

by an electron in an interval of one lifetime must be of the order of the energy differ-

ence between valleys.l
14. a) Calculate the threshold photon energy for direct fundamental absorption of

radiation in GaAs at room temperature.
b) Determine the corresponding wavelength.
c) At what wavelength is the absorption coefficient equal to 1000 cm-'?

15. Suppose that you are a solid-state physicist, and a materials engineer asks you : Why

should silicon exhibit metallic luster when viewed in visible light, yet be transparent

when viewed in infrared light? What is your answer?

I / 2\3t2
s(E): 

-2.r\p)
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16. a) Determine the longest wavelength of light absorbed in ionizing an As donor in Si.
b) Using data from Table 6.2, repeat Problem l6(a) for a Ga acceptor in Si.

17. A slab of intrinsic GaAs, 3 cm long, 2 cm wide, and 0.3 cm thick is illuminated by a
monochromatic light beam, at which frequency the absorption coefficient is 500 cm- l.
The intensity of the beam is 5 x I 0 - a W cm- 2, and the sample is at room temperature.
a) Calculate the photon flux incident on the slab.
b) At what depth does the intensity decrease to 5/o of its value at the surface?
c) Calculate the number of electron-hole pairs created per second in the slab.

(Assume that the beam entering is totally absorbed through fundamental
transition.)

d) Calculate the increase in the conduclivity Ao due to the illumination. Take the
recombination time to be 2 x l0-a s. lData: The dielectric constant of GaAs is
10.41.

18. Establish the Einstein relation (6.81) between the mobility and diffusion coefficient.
Consider a sample in the shape of a rod along which a voltage is applied, but no
current may flow because the circuit is open. The sample has now both an electric
field and a concentration gradient. Assume Maxwell-Boltzmann statistics for the
carriers.

19. It is found experimentally that the mobility in Ge depends on the temperature as
T-t'66. The mobility of this substance at room temperature is 3900 cm2/volt-s.
Calculate the diffusion coefficient at room temperature (300"K) and at the
temperature of liquid nitrogen (77"K).

20. Suppose that the concentration of electrons in n-type Ge at room temperature
decreases linearly from 5 x 1016 cm-3 to zero over an interval of 2 mm.
a) Calculate the diffusion current.
b) What is the value of the electric field required to produce a drift current equal to the

diffusion current of part (a)? Use the average value of the concentration in
determining the drift current.

. c) Draw a diagram to show the direction of the field.

Tha- ile,n9\ u[ s+o.tes carrqr0o^d)^q+o ah, el(ipsuiJot €r\rgystrficqi5
Btel'= Ct/zr'; \Y/l') rI'(n1t'n,)* ef"

Lilc'l (' 'JiTi#Itr?Hi"' 
_==#( k-'+\,tk=')

/lxs ?n1 = Y(y ; yy\r = hr\ :itg) = + (+ 
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CHAPTER 7 SEMICONDUCTORS II: DEVICES

7.1 lntroduction
7.2 The p-n junction: the rectifier
7.3 The p-n junction: the junction itself
1.4 The junction transistor
7.5 The tunnel diode
7.6 The Gunn diode
7.7 The semiconductor laser

7.8 The field-effect transistor, the semiconductor lamp, and
other devices

7.9 Integrated circuits and microelectronics

. . . The morality of art consists
in the perfect use of an
imperfect medium

Oscar Wilde



7.T INTRODUCTION

In Chapter 6 we dealt with the physical principles governing the behavior
of semiconductors. Here we shall take up the applications of these principles
to practical electronic devices. The successful development of these devices,
particularly the transistor, stimulated great interest in semiconducting sub-
stances, and in solid-state physics and materials science in general. Semi-
conductor research, particularly since the early 1950's, has also enormously
expanded our understanding of the basic structure of matter.

We shall begin with the basic properties of the p-n junction, and explain its
rectification property. We shall then show how the joining of two such junctions,
resulting in the junction transistor, acts as an amplifier. In terms of practical
applications, this transistor is the most important of the solid-state devices. We

shall then discuss microwave devices operating on the principle of negative differen-
tial conductivity (particularly the tunnel and Gunn diodes); the semiconductor
laser; and other semiconductor devices. The chapter closes with a section on inte-
grated circuils, an area of increasing importance in solid-state devices.

7.2 Tt{E p-z JUNCTION: THE RECTIFIER

The p-n junction is a specimen made of a single-crystal semiconductor in which
there are two adjacent regions, an n-type and a p-type (Fig. 7. I a). The r region is

n

N7

x (b)

Na

x (c)

Fig.7.1 (a) A p-n junction. (b) A graded junction. (c) An abrupt junction.

doped with donor impurities, the p region with acceptor impurities. The variations
of donor and acceptor concentrations, I/d and N., across the junction and in its
neighborhood, are somewhat as shown in Fig. 7.1(b). Such a junction, in which the
impurity concentrations vary gradually, is called a graded junction. An abrupt
junction, in which the impurities change discontinuously, is shown in Fig.7.l(c).
The donor concentration is a constant, Nd, in the r region, and zero in the p region.
The acceptor concentration behaves similarly. To simplify the discussion, we shall
consider here only the abrupt junction because we can then illustrate the physical

320
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phenomena without inessential mathematical complications. Note, however, that
one cannot manufacture a strictly abrupt junction because impurities tend, to some

extent, to diffuse across the junction.
When we speak of a junction, we mean the region in which the p and r regions

meet. N.B.: The whole junction is one single piece of crystal, made of the same

semiconductor material, in which the two sides are doped differently, rather than
two different pieces joined together.

The most interesting electrical property of the junction is that a potential
dffirence develops across it even when the junction is at equilibrium. This is called
a contact potentiql, and usually has a value in the range 0. I - I .0 volt. To explain how
the contact potential arises, let us consider a p-n junction at the initial stage, when
the junction has just been prepared. At that instant there are only electrons in the
n region and holes in the p region, and the concentrations of free carriers are

constant on both sides of the junction. The electric field is zero everywhere, because

the charges of the free carriers are balanced by the charges of the ionized impurities,
e.g., electrons and ionized donors in the r region. The situation is not in equilib-
rium, however, despite the absence of an electrical field. The electrons begin to
diffuse across the junction from the n to the p region, and similarly the holes

diffuse from the p to the n region. The free carriers diffuse because there is initially a

large concentration gradient at the junction for both electrons and holes and, as we

saw in Section 6.16, such a gradient leads to a diffusion current in the direction of
decreasing concentration. Therefore, in Fig. 7 .1(a), electrons diffuse to the left and
holes to the right.

The diffusion currents do not continue indefinitely, however, because as

electrons diffuse to the p region, that region acquires a net negative charge. This is

enhanced further by holes leaving the p region and diffusing to the n side. The net
effect of the diffusion current is that the p region becomes negatively charged
relative to the r region. As a result, there develops a potential difference, which is

the abovementioned contact potential.
Figure 7.2 shows the positions of the conduction and valence bands near the

junction.t Because of charge transfer, the energies on the p side have been raised
relative to the r side. (The p side has acquired a net negative charge.) Given that
the contact potential is {, the energy difference between the two sides is e@. (Accord-
ing to the usual convention in electromagnetism theory, the potential of the r side is

higher than that of the p side by the amount @. In solid-state physics, however, one
plots the energy of an electron, and since the electron has a negative charge - e, it
follows that the p side has a higher electron energy, as shown in Fig. 7.2.)

The presence of the contact potential impedes the flow of the diffusion currents.
There is now actually an electric field equal to - dSldx acting at the junction to
oppose further diffusion of electrons and holes. Referring to Fig. 7.2, we can see

t In a real junction the sharp corners shown in the figure are rounded off, but this point is
unimportant for the present discussion.
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p reglon
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Fig.7.2 The p-n junction from the point of view of the energy band. Shown are the
contact potential { and the various fluxes associated with the junction.

that, of the electrons in the conduction band on the ,? side, only those of kinetic
energy larger than the barrier { are able to diffuse to thep side. As the charge trans-
fer continues, the potential continues to increase, and hence the diffusion flux con-
tinues to decrease until it becomes balanced by an electron flux flowing from thep to
the r side. lt is called th e generation fiu)r. Its source lies in the following phenomenon :

On the p side, electrons and holes are continually created by thermal generation; the

rate of generation depends on the temperature. Simultaneously, these electrons and
holes recombine with each other. However, at any one temperature, there is a
certain number of electrons and a certain number of holes, the relative concentration
of which depends on the concentration of impurities (as discussed in Section 7.6).

The electrons in the p region give rise to an electron flux flowing to the r region,
because some of them are likely to wander into the junction region itself . Once

there, they are quickly swept away to the r side by the strong electric field inside
the junction. Thus, looking at electrons alone, there are two fluxes flowing across

the junction: (l) A current from the n to the p side due to the large electron con-
centration on the r side, known as the recombination fluxt J,, (due to the fact that
electrons flowing into the p region eventually combine with holes there). (2) The
generationflux J,r, which flows from the p to the r side, and is due to the generation
and subsequent sweeping of electrons by the junction field. Equilibrium is achieved

when the two fluxes are equal,
I-IJnrO - JnoO. (7.1)

By the same token, holes in the valence band also flow across the junction, and

f In this chapter we must differentiate between the particle current and the electric
current associated with it. Thus the particle current associated with diffusion, that is,

- D*, will be called the diffusion flux and denoted by ,I. The electric current associated

with it will be called the current and denoted by /. Thus for electrons and holes we
have, respectively, /, - - eJ, and 1, - | e J,
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there is a hole recombination flux Jr, flowing from the p to the n side, and a hole
generation flux flowing in the opposite direction. At equilibrium, these fluxes must
also be equal,

Jo,s: Jpso. (7.2)

Thus the equilibrium situation is a dynamic one. Fluxes are flowing continually
across the junction, but there is no further charge transfer, since the fluxes cancel
each other for both types ofcarrier separately.

We can now explain the rectification property of a p-n junction. Suppose
that an external voltage Izo is applied to the junction in such a way that the p region
is positive, as shown in Fig. 7.3(a) (the p region is connected to the positive electrode

p reglon u regron

(a) (b)

Fig.7.3 (a) A forward-biased electrical connection of a p-n junction. (b) The effect of a
lorward bias on the energy-band diagram of a junction. Dashed lines indicate the
position of band edges without any bias (at equilibrium).

of the battery). This method of connecting the junction is called the forward bias;
the effect of this forward bias is shown in Fig. 7.3(b). The r region has been raised
by an amount evo. Let us now see what effect this has on the fluxes discussed
above (noting that the present situation is one of nonequilibrium). Starting with
the electron currents, we first see that the generation flux is unaffected by lzo. That
is,

I 
-IJng- Jngo, (7.3)

because there is still a field in the junction strong enough to sweep the electrons
coming from the p region, provided that V o < do, which is the situation encoun-
tered in practice. On the other hand, the recombination flux J,, has been affected
considerably. Since the electrons on the r side see a potential hill whose height has
been decreased by an amount eVs,the recombination flux is now increased by a

fas1sl sevolkar, assuming that the electrons obey Maxwell-Boltzmann statistics.
Thus we have

__t
"Yo-T

J n, : Jrro 
'evo/ksT

('1.4)
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There is therefore a net flow of electrons from the r to the p side. The actual
electrical current flows from left to right, as the electron has a negative charge - e,
and has the value

In : e(Jn, - J rr) : e J roo(e"Yolk" - l), (7.s)

where we used Eqs. (7.1) through (7.4).
A forward bias leads to a hole current of a form similar to (7.5). As we see

from Fig. 7.3(b), such a bias leads to an increase in the hole recombination current,
because the potential hill has also decreased by the amount eY s. (ln connection
with the energy diagram, we may visualize the hole as an air bubble which has a
tendency to float.) This leads to an increase of this current by a factor 

"eYotkar,while the generation flux remains the same as before. Therefore the electrical
current carried by the holes is

I o : e(J e, - J on) 
: eJ rno(e"'olo" - t). (7.6)

The total electrical current 1 is the sum of the currents carried by the electrons and
the holes. Since both Inand 1, are in the same direction (from the positive to the
negative electrode ofthe battery), we have, on the basis of (7.5) and (7.6),

I : I, * Io: e(Jnso + Jpso)lr"volkzr - l),

which is of the form
I:Io(eevolk"'-l),

where

Is: e(Jnrs * Jrno).

(Note thatlo is independent of the bias 7e.) Figure 7.4 plots l versus Izo; we see
that I rises sharply with I/6. The dependence of I on Zo is essentially exponential,
as can be seen from (7 .7) by noting that usually eV s * kuT (at room temperature
kjT le = 0.025 volt). Therefore, to a very good approximation,

I = Ioe"YolksT (7.e)

We have derived the I-V o relation (7.7) for a forward bias. Let us now derive
the corresponding relation for the reuerse Dlas, which is the case in which the p-n
junction is so biased that the p side is connected to the negative electrode of the
battery, as in Fig. 7.5(a). The effect of such a bias on the energy-level diagram is
shown in Fig. 7.5(b), in which we see that the height of the potential is now rz-
creased by the amount ello. Here again there are recombination and generation
currents for both electrons and holes. In attempting to find the influence of Zo we
can follow the same procedure used in the case of forward bias above. The con-
clusion now is that the generation fluxes are again unaffected by /0, because the
junction field is still strong enough to accomplish the sweeping. On the other hand,

(7.7)

(7.8)
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Fig.7.4 Current versus voltage (l-Vo characteristics) for a junction, illustrating the
rectification property. The first quadrant in the I-Vo plane refers to the condition of
forward bias, while the third quadrant refers to reverse bias. Note the change of scale
between these two quadrants.

p re$on

(a) (b)

Fig. 7.5 A reverse-bias connection (a) and its effect on the edges of the energy bands.

since the height of the potential barrier is increased, the generation flux for both
electrons and holes decreases by the factor e-"volft"r. In the case of electrons, for
example, there are now fewer of them with enough kinetic energy to go over the
potential barrier e($o + 7o). The total current from the r to the p side (positive to
negative electrode) is

I:In*Io:e\J,ns - J,,) + e(Joos- Jr,)

: e J,so(l - r-evolkarl + e J oro(l - "-evolkarl,

__l_
eTo-T

I--
e(Oo+ Yo)

I:10(l -r-evolkarl, (7. r0)
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where 1o is given by (7.8). Equation (7.10) is the l-V , relation for a reserve bias.
Since in usual circumstances eV s ) kBT, it follows that the exponential term in
(7.8) is so small that it can be neglected. Therefore, for a reverse bias, we have the
simple relation

I:Io. (7.1 l)
That is, the current is a constant independent of V o.

We note that both Eqs. (7.7) and (7.10) can be combined into a single equation,

I:Io(eevolk"'- l), (7.12)

if 7o is taken to be positive for forward bias and negative for reverse bias. Also, a
positive value for / implies that the current flows across the junction from thep to
the r side, while a negative value of I indicates a current in the opposite direction.
A complete plot of 1 v€rSUS I/e, using (7.12), and includingnegative bias, is shown
in Fig. 7.4. Obviously the current for a forward bias is very much larger than that
for a reverse bias (for the same lllol). This means that the junction acts as a
rectifier, allowing a current to flow much more readily from p to r than vice versa.
The quantity Io, which is the magnitude of the reverse-bias current, is called the
saturation current. A typical value of reverse-current density is l0-s A-cm-2, or a
current of about 10 pAlcm2. The forward current depends greatly on the voltage,
but a typical value is 100 mA for a bias of 0.2 V.

We have made one implicit assumption: When a bias voltage Izo is applied, all
of it appears across the junction region itself, and none is expended across the
remainder of the p and r regions. The justification for this is that the junction has a
much higher resistance than the remainder of the specimen because, as we shall see
in Section 7.3, thejunction region is depleted offree carriers. Since the resistance is
mainly at the junction, and since the current is usually not very large, taking the
voltage across the junction to be the same as the external voltage is a good
approximation.

Note also that if the reverse voltage is made very large, finally an electric
breakdown occurs, at which point the reverse current suddenly increases very
rapidly. The problem of breakdown itself is an interesting one. Two mechanisms
may be considered: (l) Aualanche breakdown, in which some of the electrons
accelerated by the large reverse voltage acquire enough energy to excite electron-
hole pairs, which if sufficiently energetic, go on to excite additional electron-hole
pairs, and so forth. (2) Zener breakdown, which is based on the observation that at
very high reverse voltage the thickness (not the height) of the potential barrier
between the two sides of the junction becomes so small that quantum tunneling
becomes possible. At that point, the current does increase rapidly. (Tunneling in
the context of a p-n junction is discussed in Section 7.5 on the tunnel diode.) In the
lower voltage range ( - 4 V), the Zener mechanism dominates, while for large
voltage ( = 8 V), avalanche breakdown is the dominant mechanism. In the
intermediate region, both mechanisms operate simultaneously.
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We wish now to derive an explicit expression for the saturation current Io of
(7.8). Consider the case of the forward bias only, and look more closely at the

conduction process. The current is carried by both electrons and holes. Let us

first discuss the hole current. In the forward bias, the potential barrier is reduced by
eVr, and additional holes are injected from the p side, where they are majority
carriers, to the n side, where they are minority carriers (Fig. 7.6).

Pn11

(b)

Junction (c)

Fig. 7.6 (a) The injection of minority carriers across a forward-bias junction. (b) Spatial
variations of minority-carrier concentrations in the forward condition, showing the effects
of minority-carrier injections. (c) Spatial variations of minority carriers in the reverse
condition, showing the effects of minority-carrier depletion near the junction.

Once on the n side, these holes diffuse freely, as there is no electric field. But,
because of recombination, the excess concentration of holes damps out to its
equilibrium value p,6 within a length .L, Thus we may write for the excess-hole
concentration in the n region

p,lx): p,(x)- Pno: (Po),=oe-"t", x> 0, (7. l 3)

where (p,r)*=o is the value of the concentration of excess holes immediately to the
right of the junction. The hole concentration decays exponentially in the z region
(Fig.7.6b). We can now understand how the hole current arises: It is a purely
diffusive current arising from the concentration gradient ofthe holes in the n region.

(a)

'po

Junction
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The ultimate source of this current is of course the continuous injection of holes
from the p to the r region. Thus we see that, in the case of the florward bias, the
current is due to the injection and subsequent diffusion of minority carriers.

To calculate the hole current, we need to know (pnr),=o, or equivalently
(p),=o. The reason (p),=o is different from the equilibrium valuep,6 is that the
potential barrier has been reduced by the amount eV o. We therefore expect, from
Boltzmann statistics, that

(P)"=o : pno envnlktr.

By comparing this with the value of (7.13) at x : 0, we find that

(Pn),=o : pro (e'volk"' - I ).

Substituting this into (7.13), we find that

(7.t4)

(7. r 5)

(7.t6)

(7 .t7 )

pnr: pno(sevolkal'- l)e-tlLr, x > 0,

for the concentration of excess holes in the p region. Using Fick's law (6.80), we
find for the hole diffusion flux

J--: - D- 
aP' : - D-oP" ."pn "o 0x "p Ox

lf we evaluate this current at x : 0, using (7.16), and multiply by e ro convert it to
an electrical current. we find

We have found the hole current at a specific point-immediately to the right of the
junction; however, a current of this value, associated with holes, flows at every
region of the crystal to the right of the junction.

We can find the electron current in a similar manner by arguing that the forward
bias injects electrons from the n to the p region (again injection of minority carriers)
which diffuse into the field-freep region, carrying an electron diffusion current. The
spatial distribution of the excess electrons is given by an equation similar to (7.16),
with suitable modifications, and has the shape shown in Fig. 7.6. The electron
current immediately to the left of the junction has a form analogous to (7.17).
Again this gives the electron current at every region of the crystal.

The total current / is given by 1, * 1r. Therefore, using (7.17) and its analog
for the electrons, we have

(l r,),=o :'"# Tr"votx'r - 11.

, : 
" (%# .'-#) (e"votkB'r - 1). (7. r 8)

We see that this is of the same form as (7.7). By noting (7.8), we conclude that the
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saturation current is given by
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(7.te)

We have thus evaluated the saturation current, or the generation current, in terms
of the properties of the materials involved, Dn, Ln, D, Lo, and in terms of the

equilibrium concentrations npo and pno of the minority carriers in the two regions of
the junction.

Equation (7.18) has some implications regarding the choice of material to be

used as a rectifier. Thus if the rectifier is to be used under conditions of high forward
current, we must make the reverse current /e small, Let us rewrite (7. l9) in terms of
the majority concentrations nno and pro by using the relation

frno Pno : Ppo npo : n?(T), (7.20)

where nf(T) is the intrinsic concentration, which is - r-E'1zxur (see Section 6.4).

Thus we may write Eq. (7.19) as

Io: r(J,so t Jou): r(L*.'-ff)

to: e,trrt(];. ;#) (7.21)

We now see that /o depends strongly on temperature, and although this dependence

arises from the dependence of the various quantities in (7.21) on T, by far the

strongest influence arises from the dependence of r,(T) on T. Since n;(T) - s- Ettz*er 
,

one may reduce ,I, by choosing a material with a large gap. This is the primary
reason for the preference of silicon over germanium for rectifiers operating under
conditions of high current and high temperature.

To return to the hole current in the r region tEq. (7.17)l: It is true that the

hole concentration decreases as the holes diffuse to the right, and consequently the

diffusion current carried by these holes also decreases. However, since the holes'
recombination, just to the right of the junction, depletes the electrons there, other
electrons flow into this region from the rest of the circuit to maintain charge
neutrality. These replacement electrons ultimately come from the far right side of
the z region, where the semiconductor is in contact with the metallic wire completing
the electric circuit. These replacement electrons carry their own electric current,
also in the n region (which is to the right). When the current is added to the local
hole diffusion current, there results a constant current whose value is given by
(7.17). Thus as we move from the junction to the right, in the r region, a larger and

larger fraction of the current is carried by replacement electrons. This same argu-
ment can also be used in the discussion of the electron current in the p region.

Consider the so-called injection fficiency 4. As we stated above, in a forward
bias, the current is carried by injection of minority carriers, both electrons and holes.

What fraction of this current is carried by electrons, and what fraction by holes?
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These fractions-called the electron and hole injection efficiencies-are denoted
by 4, and 4o, respectively. By inspecting (7.19) and noting (7.20) or (7.21), we
readily see that

7.3

D,I L, P,O

D,l L,pro I Drf Lrnno

and

4p: | - 4,. Q.22)

From this we see that if the D's and L's for electrons and holes are comparable, then

ftno
(7.23)4n= nro I Ppo

J noo
'tn 

Jnoo + Jpno

and n, = -1-' ftno t Ppo

That is, most of the current is carried by those carriers which are majority carriers
in the heavily doped region. In a symmetric junction, where z,o : ppo,it follows
from (7.23) that the current is carried equally by electrons and holes.

We have not discussed the effect of reverse bias on the carrier concentrations
near the junction. We recall that the effect of reverse bias is to increase the height
of the potential barrier by elV ol. Consider the effect of this on the holes near the
junction. The generation current, from the n to the p region, remains unaffected, but
the recombination current, from the p to the r region, decreases. Therefore more
holes flow from the n to the p region, and as a result the concentration of holes i n the
r region plummets below its equilibrium value near the junction (Fig. 7.6c).
Similarly, the concentration of electrons in the p region is reduced below its equilib-
rium value. Thus the overall effect ofa reverse bias in the steady state is to extract
minority carriers from the region near the junction.

7.3 THE p-n JUNCTION: THE JUNCTION ITSELF

In Section 7.2 we derived the rectification properties of a p-r junction by using
statistical arguments concerning the distribution of free carriers near the junction.
We did not need to consider the properties of the junction itself-e.g., the contact
potential and the width of the junction-because these quantities were not essential
to our discussion of the main topic, the current. A fuller understandingof a p-n
junction, however, requires some knowledge of the properties of the junction. Let
us look at these properties both at equilibrium and in the presence ofa bias voltage.
Incidentally, our findings in this section do not change those of Section 7.2;
rather they shed light on some of the steps we took there.

Consider first the equilibrium case. Because of the large concentration of
carriers present at the junction when it was originally formed, the majority carriers
diffuse to the opposite side. This emigration of carriers from both sides of the
junction leaves layers which are depleted of free carriers on both sides, as seen in
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Fig. 7.7(a). On the r side of the junction there is a layer of thickness w, which is

depleted ofelectrons; however, since ionized donors are still present, the layer has a
net positive charge. There is another depletion layer on thep side of the junction,
of thickness wo, which is negatively charged. We conclude therefore that the

immediate neighborhood of the junction is made up of a charged double layer
(or a dipole layer). This area of the junction is called the depletion, or space-charge,

region. In this region there is a strong electric field as a result of the charged double
layer (the field is directed to the left).

-l ',l '" l-

E"pZ

t0t

Depletion
region

(a)

(b) x:0

Fie.7.7 (a) The depletion region (double layer) at the junction. (b) The positions of band
edges at the junction; the contact potential {o.

Outside the depletion region, the carrier concentrations are unaffected by the
junction, and hence are uniform, so the field is zero because there is charge neutral-
ity. Figure 7.7(b) shows the effect of the junction on the energy-level diagram, as

well as the potential barrier e$o, as discussed in Section 7.2. (The equilibrium
contact potential, denoted by @ in Section 7 -2, will henceforth be designated by

do')
Let us calculate the contact potential dr. As seen from Fig. 7.7(b),

edo: E.p- E"n, (7.24)

where E., and E"nare the energies ofthe edges ofthe conduction bands in thep and

r regions, respectively. These energies can be related to the equilibrium concen-
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tration as follows,

ll rs : (J 
" 
r-(E"c- Ee)lkaT ftro : U 

" "-(E""- 
Er)lkeT, (7.2s)

where Uc :2(m.kaT 12fth2)3/2, as we see by referring to (6.8). Here E. is the Fermi
energy, which is the same throughout the junction, since we are discussing an
equilibrium situation. By finding the ratio n,olnpo from (7.25) and using (7.24), we
establish that

frno 
- ^ebolkaT

frpo

This gives @o in terms of the equilibrium electron concentrations on both sides of
the junction. It is more convenient, however, to express {o in terms of the majority
carriers on both sides, that is, rz,o and ppo. To eliminate rre from (7.26) in favor of
ppo, wa use (7.20), involving the intrinsic concentration r,. Combining these two
relations, one finds

7.3

(7.26)

(7.27)

We recall from Section 6.6, however, that usually n,s= Noand peo - No, where
N, and No are the concentrations of donors and acceptors, respectively. This means
that essentially all the impurities are ionized, which is true, except at fairly low
temperature, for example, < 50oK. Therefore the contact potential is given
approximately by

oo : k'T 
tog ("0 f'o)e\ni/

oo = 
kuT 

t"s (lv'+) 
,e \ nil (7.28)

a potential which depends on the properties of the semiconductor, the doping, and
the temperature. To get an idea of the magnitudes involved, recall that" krT le -
0.025 volt at room temperature. This gives do : 0.3 volt for germanium with
dopings Na : No : 1016 cm-3.

Finding the contact potential was a relatively easy matter. One has to work
harder in order to find other quantities, such as the width of the junction and the
electric field inside it. To obtain these, one usually needs to solve a Poisson's
equation which leads to a nonlinear differential equation.

For example: Suppose that we have a plane junction, perpendicular to the
x-axis. In this case, the Poisson's equation for the potential @ reduces to

d'O p@)

dx2 , '
(7.2e)

where p(x) is the charge density and e the dielectric constant of the medium. It is
through p(x) that the properties of the semiconductor and impurities enter. In the
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most general case, we may write at an arbitrary point x,

p(x):elp@) tNr(x) -n(x) -N.(x)1, (7.30)

where Nr(x) and N,(x) are the concentrations of ionized donors and acceptors, and
p(x) and n(x) are the carrier concentrations, all at point x. If we were to pursue
this general discussion, we would have to compute the quantities p(x), n(x), etc.,

which turn out to be functions of the local d(x), and when we substituted all these

into (7.30) and then into (7.29), we would find a nonlinear differential equation.
Let us instead simplify the discussion by assuming that the junction is abrupt,

and that there are no carriers at all in the depletion region, i.e., complete depletion.
These assumptions are realizable in practice. In the depletion region, Eq. (7.29)
now becomes (recall Fie.7.7)

(7.31)

d2 6o _ eN"
dx2 e -wrlr<0.

Here N, and N, are the concentrations of ionized impurities on both sides of the
junction; they are independent of x. We want to solve Eqs. (7.31) subject to the

following boundary conditions: (i) The electric field is zero outside the depletion
region (recall that E : - d$ldx). (ii) The electric field is continuous at the point
x : 0, the center of the junction. (iii) The potential is continuous at x : 0 (and is

chosen to be zero, since the potential has an arbitrary'additive constant). (iv) The
potential difference between the far ends of the depletion layers, x : wn altd
x - - wo, is equal to,fo, which we calculated above. This means that our solution
is restricted to the equilibrium case. Solving (7.31) subject to the above boundary
conditions is a straightforward matter, and the details are left as an exercise. The
results are

wnN 4: wrN o (a)

w, : l2e $s N,/Nd(Nd + N.)efitz (b)

w, : l2e do Nd/N.(Nd + N,)elt/2 (c) (7.32)

w:wn.tw,:l+(+.+)]"' (d)

Eo:26olw, (e)

where E o is the magnitude of the electric field at x : 0, the center of the junction.
From (a) we see that the total charges of the two depletion layers are equal in
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magnitude. From (b) (or c) we see that wn - N a- 
1/2 (the dependence of @o on N, is

weak, since it is logarithmic), and hence the heavier the doping, the thinner the
layer. Equation (b) states again that heavier doping leads to a thinner junction.
Finally, Eq. (e) states that do is also equal to twice the average fleld (do/w)
over the whole junction.

Figure 7.8 shows a plot of the variation of the field across the junction (the
negative sign means that the field is pointing to the left in Fig. 7.7). To show the
numerical values involved: For Ge, when N, - N,: 1016cm-3, do:0.3V,
wn:wp:O.l6p, w:0.33p, and Eo:21 kV/cm. The junction width is of the
order of a micron, and the field present is considerable.t

Fig.7.8 Spatial variation of the internal electric field in the neighborhood of the
junction.

Now let's extend the above results to the nonequilibrium case, in which a
certain bias voltage is applied across the junction. We can obtain the nonequilib-
rium results from those at equilibrium, (7.32), by making the following obser-
vations. The claim is that when an external bias Zo is applied across the junction,
almost the whole of this voltage actually appears across the depletion region only,
the voltage drop across the remainder of the junction being essentially negligible.
That is,

Voltage across depletion region : do - V o, (7.33)

where /o is positive or negative according to whether the bias is positive or negative,
respectively. The justification for (7.33) is that, since the depletion region essen-

tially has no carriers, it has a very high resistance. The rest of the junction has an
abundance of carriers, and hence a small resistance. Because the two resistances
are connected in series, almost all the voltage appears across the high resistance
region, i.e., the junction. However, the approximation (7.33) is more valid for

f The equilibrium contact potential @6 cannot be used to drive an electric current in an
external circuit. If the junction is connected to a metallic wire which completes the
circuit, additional contact potentials develop at the semiconductor-metal interface between
the wire and the two sides of the junction, and the effect of these additional contact
potentials is to cancel the original potential S6 entirely (see the question section).

7.3
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reverse than for forward bias, since in forward bias a large current fiows, and hence

some voltage drop occurs outside the depletion region, even though its resistance is

quite small. Equation (7.33) is usually a good approximation for both directions.
To solve for the width of the depletion region and the field in the junction in the

presence of a bias, we solve the appropriate Poisson's equation, subject to certain
boundary conditions. The procedure is exactly the same as in the equilibrium case,

except that in boundary condition (iv) we replace 0o by 0o - V o, in accordance
with (7.33). We therefore obtain results such as (7.32), except that @o is replaced
everywhere by 0o - Vo. That is, 0o - Vo for forward bias and do + llzol for
reverse bias. Note in parricular that r' - (do - V)tt2 and 6o - (4o- Vo)'t'.
Thus for forward bias the depletion region has contracted and the field has

decreased from their equilibrium values. Note also that if in the latter
case lZol ) @s, which is readily realizable, then r', Eo - lVol't', that is, both
the width and field increase as the square root of llzol.

7.4 T}{E. JUNCTION TRANSISTOR

Of all the semiconductor devices, the most useful is the transistor.t It has revolu-
tionized the communications industry and made computer technology possible. Of
the many available transistors, the junction transistor is the one most commonly
used. Therefore we shall discuss only this transistor in this chapter, and touch on
other transistors briefly later.

Figure 7.9 illustrates the basic concepts involved in the operation of a junction
transistor, a p-n-p transistor. Only the p-n-p transistor will be discussed here; the
operation of an n-p-njunction can then be deduced from the obvious symmetry of
the situation.

Diffusing holes

n

Rl Output

I

Ye

Emitter circuit Collector circuit

rl
yc

Fig.7.9 The basic construction and operation of the junction transistor.

f The name transistor was originally used as an abbreviation for "transferred
resistor," referring to the fact that the operation of a transistor involves the transfer of a
current from one circuit to another.
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A piece of single-substance crystal is so doped that the end regions are p-type,
while the middle region is n-Iype. In other words, we have two p-n junctions
joined together back-to-back, with a common n region. The junction to the left is
forward biased, the junction to the right is reverse biased. The forward-biased
junction and its circuit are the emitter electrode,the reverse-biasedjunction and its
circuit are the collector electrode (the reason for this terminology will become
evident shortly). The n region in the middle is called the base.

We can see the basic idea for the transistor acting as an amplifier by looking at
Fig.7.9,and thinking about our previous discussion of thep-r junction.The forward-
biased circuit on the left injects (or emits) holes across the junction and into the
base. Thereafter the holes diffuse into the base until they are collected by the reverse-
biased junction to the right. leading to a current flowing in the collector circuit. A
voltage signal applied to the emitter circuit leads to the injection of a hole pulse
across the emitter junction which, after diffusing through the base and being
received by the collector, appears as a current pulse which can be picked up across a
load resistor in the collector circuit. The reason for the amplification is that the
currents flowing in both circuits can be made essentially equal to each other,
regardless of the resistance of the load R,. Thus the output voltage ( across R, can
be made much larger than that of the input signal, and the same applies to the input
and output powers. Let us now go through the appropriate mathematical
analysis.

We denote the voltage and current in the emitter circuit by V"and 1"; they are
related by (7.12). That is,

I n -- I no eeYelkBT (7.34)

where 1"o is the saturation current in the emitter. [We neglected the term unity in
(7.12) in comparison with the exponential.l As we saw in Section i.2, a forward
bias emits holes into the r region, the base. The holes diffuse through the base
and are collected by the collector junction, but some of these holes may decay on the
way. Suppose that a fraction a of these holes survive; we can write for the current
in the collector,

Ir: I"o + aI", (7.3s)

where the first term is the saturation current of the collector (reverse bias and
e lv"l < kuT), and the second term is due to the surviving holes. Since /"o is very
small, we may neglect it and write

7.4

I" = 4I .'

The voltage drop across the load resistor is

(7.36)

(7.37)V1 : R1I": aRtl".

The above equations can be used in a straightforward manner to evaluate the gain
in voltage and also in power.
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Suppose that an input signal in the emitter circuit leads to a current increment
d 1". Wecan calculate the voltage gain dV,ld V.from (7.34) and (7.37),

d V, _ aRrI.
d V. k"T le

(7.38)

We can also calculate the power gain dP,ld P". By writing Pt: Vtl" and P":
V"1", and carrying out the necessary straightforward differentiations, we find that

dP,

dP"
2a2 I"R,

(k"T le) (l + Iog (I"lI"))
(7.3e)

The above gain equations give the small-signal dc gains of the transistor. If we
take I.: l0mA, 1"0: lOpA, and ksTle = 0.025V at T :300'K, a - l, and
Rt:2 x l03C), we find the voltage and power gains to be about 800 and 200,
respectively, which are quite appreciable.

The current gain of the device dI"ldl" is equal to a from (7.36); that is, it is
equal to the fraction of holes which survive between the emitter and the collector.
Clearly it is desirable to make a as large as possible in order to maximize the voltage
and power gains. Of course d cannot be larger than unity because some of the holes

-on account of recombination- do decay while diffusing through the base.

There is actually another reason why a is less than unity: The current at the
emitter junction is not wholly carried by holes injected into the base; a part of this
current is carried by electrons injected from the base into the p region to the left
lsee (7.22) and the related discussion]. These electrons eventually move into the
external parts of the circuit, and hence do not contribute to the amplification
process.

Including both hole-injection-efficiency and the hole-recombination factors,
we write

q: 4rf, (7.4o)

where ry, is the hole efficiency (Eq. 7.23) and f is a parameter called the base
transport factor. To maximize d, one increases/'by reducing the width of the base
so that the two junctions are quite close to each other. One also increases 4, by
doping the p region more heavily than the r region [see (7.23)]. By proper design,
including minimizing surface recombination, we can make a very close to unity;
for example, 0.99.

There is one fundamental limitation on the operation of a junction transistor:
the restriction to low frequency. Since the operation is inherently dependent on the
diffusion of holes in the base, complications arise at high frequencies due to a
"secondary" diffusion process between the peaks and troughs of the signal, as

shown in Fig. 7. 10. These effects have a tendency to "wash out" the signal increase
at higher frequencies.

We shall not go through the details here, but the result is that essentially there
is an upper cut-offfrequency beyond which the transistor cannot function properly.
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p

po x

high frequencies.Fie. 7.10 The additional dynamical diffusion arising at

This frequency, which depends on the diffusion properties of the holes as well as the
thickness ofthe base, is given by

(7.4t)

where ro is the hole recombination time in the base and Lo is the base width. For
example,inGe,vo : 0.56MHzforL, : 5 x l0-3cm,whileforL, : 5 x l0-acm,
vo : 56 MHz. The higher the desired cut-off frequency, the smaller the base width
must be. However, there are technological limitations on how thin the base can
be made, which makes the junction transistor a low-frequency device. The search
for devices of higher frequency range-e.g., in the microwave region-has ledto
other types of transistors, particularly to types such as the Gunn oscillator, which
will be discussed later in the chapter.

7.5 THE TUNNEL DIODE

The tunnel diode, invented by Esaki in 1958, is a device that can function efficiently
either as an amplifier or an oscillator. It may operate well even in the microwave
range. The principle on which it operates can be quite readily understood.
First we form a p-n junction in which both the n and p regions are heavily doped,
e.g., about lgte 

"rn-:. 
Under such heavy doping conditions, the contact potential

@o is large; the space-charge (depletion) region is very narrow, and the field in this
region is extremely high, about 900 kV/cm [see Eq. (7.32)f, as shown in Fig. 7.ll(a).

7.5

,,:'#lT - tl''',

E",

EF

E"n

Em

(a) (b)

Fig.7.11 The principle of the tunnel diode:
tunneling current for reverse bias. (c) Some
(d) Zero tunneling current for larger forward
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(a) Situation at equilibrium. (b) A large
tunneling current for small forward bias.
bias.
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The impurity levels have also "broadened" into impurity bands, which
overlap the conduction and valence bands. In fact, the concentration of carriers
is so large that the electrons and holes obey the degenerate Fermi-Dirac statistics
characteristic of metals, and the Fermi level Eo lies in the bands themselves. This is
shown in Fig.7.ll(a), in which it is also indicated that E, is the same throughout
the junction at equilibrium. Let us now see what type of I - I/o characteristics
such a diode possesses.

Consider the reverse-bias case first (Fig. 7.1 lb). Since the conduction band in
the n region has been lowered, by elVol, electrons in the valence band in the p
region can tunnel through the potential barrier and end up in the conduction band
in the n region. An electrical current flows in the process. The tunneling process is

entirely quantum mechanical in nature, and depends on the fact that the wave
function in quantum mechanics does penetrate a potential barrier [see Eisberg
l96l]. Energy is converted in the tunneling, and the tunnelingcurrent is appreciable
only if the potential barrier is quite thin, a condition prevailing in Fig. 7.ll(b).
[Note that tunneling is inhibited in Fig. 7.1 I (a) by the exclusion principle, because

the final states are already occupied.] The effect of a reverse bias is to introduce
empty states in the r region at energy levels parallel to those of the electrons in thep
region. The concentration of electrons in the valence band is large, and the field
in the space-charge region is also large. Therefore a very large tunneling current
flows. Essentially the device can support no reverse bias, and may be con-
sidered as exhibiting a Zener breakdown (Section 7 .2), even at very small voltage.

The interesting features of the tunnel diode appear only when we consider
the forward-bias situation. Figure 7.ll(c) shows the effect of a small forward
bias. The current now flows because the electrons on the r side are able to tunnel
into empty states on top of the valence band on the p side. As I/o increases initially,
the current increases, as more electrons are able to tunnel. However, beyond a
certain bias, the number of available empty states begins to decrease, and the
bands begin to "uncross." The current then begins to decrease, essentially reaching
azero value (Fig. 7.1 ld). As Zo continues to increase, the current begins to increase,

because minority carriers begin to diffuse across the junction. As the barrier
decreases in height, some electrons and holes begin to flow over it.

Figure 7.12 illustratesl-Vo characteristics of the tunnel diode. The interesting
feature of the curve is the presence of an NDC (negative differential conductivity)
region, in which an increase in the voltage actually leads to a decrease in the current.
A tunnel diode in the NDC region can be used either as an amplifier or an oscillator
in an electronic circuit.t

t The physical basis for amplification is as follows: When a signal is applied to a circuit
element of an NDC character, the current produced is opposite to the field. Hence
energy absorbed from the element and the signal fleld is amplified. To design an oscil-
lator, one connects the NDC element to a resistor whose resistance is equal and opposite
to that of the NDC element. The total resistance of the circuit is then equal to zero, and
an oscillation, once started, continues without decay.
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Fig.7.l2 The I-Vs characteristics for a tunnel diode.

The efficiency of the tunnel diode depends on the ratio of the peak to the valley
currents in Fig.7.l2. (The valley current does not appear to go to zero exactly,
probably because of the presence of some density-of-states tails, or some trapping
states.) This ratio can be made as large as l5 by using heavy doping densities,
and this may lead to really large peak currents for, say, dopings of the order of
1g2o "--r. Tunnel diodes have been made of silicon and gallium arsenide, to name
a few materials.

Finally, note that, because the tunneling process occurs almost instantaneously,
the tunnel diode can operate even at fairly high frequencies, for example, l0 GHz.

7.6 THE GUNN DTODEt

The Gunn diode operates on the principle of negative difference conductance
(NDC). It may be used as an amplifier, oscillator, or other related device. The
NDC property of the Gunn diode is a result of the transfer of electrons from the
low-energy high-mobility valley to the high-energy low-mobility valley at strong
electric-field values in GaAs and other semiconductors of similar band structure
(see Section 6.ll). An important characteristic of the Gunn diode is that it is a
bulk device, i.e., a device whose function depends on the microscopic properties of
the homogeneous material itself rather than on the surface properties of a p-n
junction. This sets the Gunn diode apart from most of the devices discussed earlier.
The bulk characteristic endows the Gunn diode with an advantage over junction
devices in that the number of carriers participating in a bulk-effect device can be
made much larger than in a junction device. (The name Gunn diode, incidentally,
is a misnomer, as there is no diode involved; the device is symmetric and can be

used equally well in either direction.)
A Gunn diode in the NDC region can operate in several diferent modes,

depending on the properties of the sample as well as on the external circuit to

t A detailed discussion of the Gunn diode and other hot electron devices is given in
J. E. Carroll, 1970, Hot Electron Microwaoe Generators, London: Edward Arnold Ltd.
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which the sample is connected. (Review Section 6. ll regarding the role of the
electric field in producing an NDC.)

Let us begin with the Cunn mode, which was the first to be discovered. In this
mode the sample acts as a microwave generator whose frequency, typically in the
GHz range, is essentially given by

vo: (7.42)

where L is the length of the sample and uo the average drift velocity of the electrons.
This relation establishes the Gunn mode as a transit-time effect, since the period of
the signal is equal to the time of transit of the electron from one end of the sample
to the other. What sort of a thing is propagating in the sample which leads to the
periodic signal observed?

Suppose that the sample is biased so that there is a uniform field E (: VIL)
inside the sample. and that the field is large enough so that the sample is in the
N DC region (Fig. 7. I 3a). That is, E > d,n, where d,6 is the threshold field. We want
to show that this condition is an unstable one, and not likely to be observed (but
see below). Figure 7.13(b) shows a thin layer of the sample, in which there is a
small excess of electrons; that is, n) ne, where no is the equilibrium uniform
concentration throughout the sample. This will now be called an accumulation
layer. Its initial existence may be due to thermal fluctuations of the electrons, or,
more Iikely, to some slight inhomogeneity in the doping. Under normal conditions,
the accumulation layer would quickly damp out, and the carrier concentration

Fig. 7.13 (a) "/ versus d, showing an NDC region. (b) Instability in the NDC region.
The trailing edge of the accumulation layer moves faster than the leading edge, which
leads to further growth of the domain. (c) Concentration n versus distance x, showing the
double layer associated with the domain. (d) Electric field E versus x, showing the high-
field domain.
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would remain essentially constant throughout the sample. In the unusual condition
of NDC, however, the accumulation layer grows instead.

Note first that the uniform field E is directed to the left in Fig. 7.13(b), and that
the electrons drift to the right. Note also that the accumulation layer itself is

drifting, due to the drift of electrons both inside and outside the layer. Because of
the net charge inside the layer, the field in the neighborhood is no longer uniform.
The field at the leading, front edge of the layer is slightly larger than that at the
trailing edge. (This can be deduced from simple reasoning, using Coulomb's law,
or more formally from Poisson's equations.) Figure 7.13(a) shows that a larger
field in the NDC region means a smaller velocity. Therefore electrons at the
leading edge of the layer move slowly, while those at the trailing edge move fast,
both contributing to growth in the layer. Thus, as the layer drifts from the cathode
to the anode, it grows simultaneously. The growth is eventually checked by
nonlinear effects (which need not be considered here), after which the accumulation
layer achieves a stable shape which drifts down the length of the sample with a

constant drift velocity.
The actual situation is even more interesting than described above. The drifting

object turns out to be not a single layer, but a double layer (Fig. 7.13c). The trailing
portion is composed of a narrow accumulation layer (n > n), while the leading
portion is composed of a somewhat broad depletion layer (n < no). The presence

of such an electric dipole layer modifies the field distribution as shown in Fig.
7.13(d), and a very large field is produced at the dipole layer. Looking at the field
distribution throughout the sample, we see that the distribution has split into two
parts: a strong-field region or domain at the layer, and a low-field region through-
out the remainder of the sample. Viewing the situation in terms of the high-field
domain, we can summarize the Gunn mode as being one in which a domain begins

to grow at the cathode, continues to grow as it drifts towards the anode, matures
and drifts, and eventually reaches the anode, where it collapses and disappears.The
cycle is then repeated again.

Figure 7.14 shows a computer-generated picture of the growth and drift of the
domain. Every time the domain disappears, a current pulse (an increase in the
current) is generated in the external circuit, and this is what Gunn observed
originally. The shape of the field domain along the sample has also been measured
experimentally.

It is interesting to determine the properties of the high-field domain, such as its
speed, the internal field, etc. However, the exact formulas for these factors are

rather complicated, and the answers can be obtained only by numerical solution of
the equations. We shall therefore be content with an approximate treatment.
Suppose that the average field inside the domain is denoted by E oo^and the outside
field by E' (Fig.7.l 3d). We determine these two fields as follows.

Using the "/-versus-d curve, we draw a horizontal line such that the two shaded

regions have equal areas (Fig. 7.15). Then we determine E' and doo- as indicated in
Fig.7.l5. This method for determining the fields is called the equal-areas rule.

7.6
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Note that this rule also determines the domain velocity oao- (Joo. : reu6o-). We
see that the original NDC unstable state has given way to a state in which the field
distribution has split into two regions: one with a low field E' and the other with a
high field doo.. The drift velocities for these two fields are equal, and hence the

Fie.1.l4 r";;." showing development in time of the hish-field domain in a 20u1t
sample of GaAs at room temperature (after McCumber and Chynoweth).

/do^

0 6do*

Fig.7.15 The "equal-areas" rule.

domain shape is stable. Note that now the differential conductivity is positive in
both regions. In terms of the conduction band, this means that the high-field
domain is populated essentially only with low-mobility electrons, while the remain-
der of the specimen is populated with high-mobility electrons. Because of the N-
shape ofthe J-E curve, the two sets ofelectrons have the same speed, even though
their mobilities are widely different. The field in the domain can be as large as

100 kV/cm, while E' can be less than I kV/cm.
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The width of the domain may be determined as follows : Given that the external
voltage is 7 and the width of the domain is w, then

V : Eoo^w -l E'(L - w), (7.43)

where the first term on the right is the drop across the domain, and the second

term is the drop across the remainder of the sample. Solving for w, assuming that
E' 4 E ao^, we find that

7.6

V _E'L
E oo^

(7.44)

Substituting V : 6Y, L : 200 U, E d,^: 102 kV/cm , and E' : 0. 1 kV/cm, we find
thatw=40p.

In order for the oscillations to have a satisfactory spectral purity, the sample
must be quite thin, i.e., of the order of 200 p. Otherwise several domains may form
along the length of the sample at any one time, and this contributes to the noise.
(The domain usually starts at the cathode, but this need not be so if the sample is

long, as the domain may then "nucleate" at some region of high resistivity along
the sample; after forming, the domain drifts toward the anode and collapses.)

As we have stated above, Gunn oscillations usually occur in the microwave
range. The power of the ac signal comes ultimately from the source of the dc field.
CW (continuous wave) devices with up to l00GHz and l00mW output and 5/"
efficiency have been built, and pulsed devices of 200-W peak output at 1.5 GHz and
5/o efrciency have also been reported. Table 7.1 outlines the performance of the
Gunn diode.

Table 7.1

Maximum CW and Pulsed Powers and Performance Data for Gunn Diodes

ActiveJayer Threshold
thickness,p voltage, V

Maximum output
power (CW) or

peak power (pulsed)

y, Efficiency, flo,

GHz % cm-3

CW
56mW
65

ll0
20

205 W
0.4

8 x l0r8
3 x 1015

6 x 101s

3 x l01a
6 x l0rs

40
25
t2

5

100

5

13.0

7.5

4.2
2.0

27
2.0

2.5

5

ll
50

1.5

50

5.2
2.3
3.0
3.3

6

9

Pulsed
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We have thus far discussed only the Gunn mode, but other modes of operation
are also possible. The Gunn domain requires especially favorable conditions,
particularly enough time for the growth process. lf these conditions are not
satisfied, the domains are unable to grow, and no Gunn oscillations are observed.
The diode can then be used as a different circuit element. A crucial factor in dis-
criminating between the various modes is the quantity noL,the concentration-length
product. Thus, in GaAs, we must have noL 

= 
10" cm-2 in order for the specimen

to operate in the Gunn mode.
Since the quantity n6L is so important, let us look into its origin. It is well

known that when excess charge density Ap is placed in a medium, the excess
density decays in time as

LP(t) : LP(0) e't/"",

where z, is called the dielectric relaxation time, which is related to the properties of
the medium by

€
LD - -;o

where e and o are, respectively, the dielectric constant and the conductivity of the
medium tAp(0) is the initial charge densityl. In the NDC region, the effective o
which enters (7.45) is actually negative, and hence an excess charge would grow in
time, as discussed above, according to

Lp(t) : (Lp),:n sttotte (7.46)

If we now apply this idea to the charge associated with the traveling domain, then,
in order for the domain to mature during its transit time, the exponent in (7.46)
must exceed unity. That is

(7.4s)

(7.47)

+:(;)+,,
When we substitute lol : noep, the inequality becomes

noL ) eualep,

where p is the average mobility llt: (n, Fr I nz pz)lnf. When we substitute the
numerical values appropriate to GaAs, we find that noL i 1012 cm-2.

Another important mode for the Gunn diode is the LSA (limited space charge
accumulation) mode, discovered by Copeland in 1966. In this mode, the domain is
inhibited from forming, or is quenched, and hence the field remains uniform
throughout the sample. The sample is also in the NDC region, unlike the case of
the Gunn mode, in which the NDC property actually disappears. In the LSA mode,
the domain is quenched by the application of a high-frequency bias to the sample;
see Fig. 7.16.
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Fig.7.16 The LSA mode.

During part of the cycle of the ac bias (there is also a driving dc bias), the

resultant field is lowered below the threshold d,n. The domain which had been

growing during the earlier part of the cycle suddenly collapses (unless it has already
reached the cathode). Therefore a necessary condition of the LSA mode is that
essentially

v)ve, (7.48)

where v is the circuit frequency and vo the intrinsic frequency of (7 .42). Substituting
from (7.42), we find thatvL ) oa - 107 cm/s in GaAs. Note that, if vL > 107 cm/s,
the diode would operate in the LSA mode regardless of the value of noL. When the

diode is in this mode it essentially retains its NDC property, and can be used as an
amplifier.

We see then that the mode of operation depends on both the noL and vL
properties. In addition to the Gunn and LSA modes, there are also other modes,

depending on the values ofthese products. For further details, refer to the literature
cited at the end of the chapter.

7.7 THE SEMICONDUCTOR LASER

One of the most interesting semiconductor devices is the semiconductor laser,

invented in 1963. It is, in fact, the only semiconductor device which can be used for
amplification in the infrared and optical ranges. All other devices are restricted to
the microwave range or below.

It is assumed that the reader is acquainted with the basic concepts of the laser

in general,t so that we need to review this subject only briefly here. Consider a gas

composed of atoms, and focus on two of the excited atomicenergy levels:levels I

t See for example, B. A. trngyel (197t),Lasers, second edition, Wiley, New York.
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unitand 2 shown in Fig. 7.1'7(a). The populations of these levels n, and n2per

volume at equilibrium are related by

ll2 ^- LEtkeT

nl

where AE : Ez - E, is the difference in energy between the two levels. We see

tha|n, < nt.
when an external signal of frequency a = LElh is passed through the gas, it

is strongly absorbed. Photons from the signal are absorbed by electrons in the

towe. twet l, which then make quantum transistions to the upper level 2. Given

that a sample has length L (the length of the tube containing the gas), then the

intensity of the signal at the end of the sample is given by

(7.s0)

ho--\r\Jt+
Et

Eo

(7.49)

I : loe-oL,

where a is the absorption coefficient and Io is the initial intensity.

E2

(b)(a)

Fig.7.l7 Basic principles of laser operation : (a) The two active levels E, and Er, and the

abiorption and emission processes. (b) A laser cavity'

There is actually another process which occurs simultaneously. Not only

does the signal help cause transitions from level I to level 2, but it also stimulates

transitions from upper level 2 to lower level I (provided that at = L'Elh). In this

process a photon of frequency a is emitted for every quantum transition. Since

ihis emission process is aided by the signal, it is called stimulated emission' It
reinforces the signal. It is difficult to explain stimulated emission classically, but

quantum mechanically it appears on the same footing as the absorption process'

and in fact the two processes have equal probabilities of occurring. we can now

understand why the signal undergoes absorption in passing through the gas: The

two processes-absorition and stimulated emission-act competitively on the

signai. Absorption weakens it and stimulated emission enhances it. Although

th-ey have equal probabilities, the net result is absorption because the lower level

t-Mirrors-1
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has a larger population, n1 ) n2. Thus we may write

a: B(nt - nz), (7.s 1)

where B is a proportionality constant, indicating that the population is proportional
to the population difference. Because n1 ) n2, it follows that a > 0.

The basic premise of the laser device lies in an attempt to amplify the signal by
making nz ) nr. That is, by inuerting the populations from their equilibrium
values. we can readily see that if n2 > r, , then d < 0 ; and, using (7.50), it follows
that

I:Iosl"lLr1r.
That is, the signal is amplified, because there are more emitting atoms than absorb-
ing ones.

In a laser operation, the sample is placed in an opticar cauity composed of two
parallel mirrors [a Fabry-Perot interferometer (Fig. 7.17b)], and the beam is
extracted through one of the mirrors. The laser beam has many advantages over
conventional sources: (i) extremely high spectral purity; (ii) high directionality
(the ability of the beam to travel a long distance with very small divergence), botL
properties being due to the fact that the photons of stimulated emission are emitted
in phase with the signal; (iii) very high intensity.

A necessary condition for lasing is that lal2L: l.t Usually the signal is also
absorbed partially by some mechanisms other than the atomic transitions described
above-e.g., other foreign ions-and we must include that part also. If we represent
all these losses by an absorption coefficient a', and, denote the lal due to amplifi-
cation by g (for gain), the condition for lasing becomes

(7.s2)

Population inversion can be achieved by pumping the gas with a strong beam
of frequency @o : (Ez - Eilh to excite more electrons to level 2, andhence give
it a larger population than level l.

The operation of the semiconductor laser is basically the same as that of the
gas laser. The necessary modifications appropriate to solids must be made,
however. First we recall from Section 6.12 that a light beam passing through a
semiconductor undergoes strong absorption near the band edge, that is, that hi Z
En. The absorption is due to interband transition between the valence and conduc-
tion bands. It follows from this and from our discussions above of the laser that
amplification should also be possible here if the population of the valence and con-
duction bands near the band edges could be inverted.

t This condition is derived for the situation where the laser operates as a cw oscillator.
Ihe intensity must return to its original value after the beam travels a full round trip
nside the cavity, i.e., a distance 2I.

7.7

(g-a'):+ or o:f+o'.
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n regron

(a) G)

Fig. 7.18 (a) A population-inversion arrangement in a semiconductor, suitable for laser
action. (b) Achievement of population inversion in a heavily doped junction.

Figure 7.18 illustrates the idea. Suppose that the material is so heavily doped
with n- and p-type impurities that the free carriers have essentially degenerate

distributions, with Fermi energies Eo. and 8., in the two bands. (The distribution
is not an equilibrium one, since it decays rapidly, and hence two different qaasi-
Fermilevels are possible.) A distribution such as this leads to amplification because

electrons, stimulated by the signal, make transitions from the conduction band
to the empty states (holes) at the top of the valence band, emitting photons of
frequency - Eslh in the process. Strong amplification is expected here, since we

found the interband transition to be quite strong. The necessary condition for
amplification is

(E." - Ee) >- hot. (7.s3)

The question now is how to create population inversion. This was first accom-
plished by using a highly doped p-r junction. Figure 7.18(b) shows that, when such a
junctiotr'is forward biased, there is a certain region in space in which the population
inversion of Fig. 7.18(a) is accomplished. Figure 7.18(b) shows a steady-state
situation. Electrons are continually injected from the right and recombine with
holes in the active region. These holes in turn have been injected from the left.
Because of the method of excitation, this device is known as an injection laser.

The active region is parallel to the junction face (Fig. 7.19a), and the laser

beam is extracted from the side of the junction. The optical cavity is formed by the
faces of the crystal itself, which are usually taken along the cleavage plane in GaAs,
for example, and are then polished.

There is a threshold requirement for the operation of a junction laser: The
population inversion must be strong enough for the gain made by downward
transitions to be larger than other absorption effects, e.9., by free carriers or other
draining effects, such as the partial transmission incurred every time the beam hits
the faces of the crystal. Thus there is a threshold carrier concentration r, which
can be related to a measurable quantity, i.e., the junction current. By using the
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Ac,ve rayer 
wavelength, A

(a) (b)

Fig. 7.19 (a) A schematic diagram of the junction laser. (b) Spectra of emitted
radiation from a GaAs junction laser below and above the threshold condition (aflter

Quist, er a/.).
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continuity equation in combination with the diffusion equation, we can

and / by
relate n

(7.54')
Ien
d- {'

where d is the width of the active region and r' the carrier recombination time.
Figure 7.19(b) shows the emission from GaAs below and above the threshold current.
The line narrowing above the threshold indicates the onset of laser action. A
typical value for the density of the threshold current is 100 A/cm2 at 7 : 0"K.
Threshold current depends on temperature. At intermediate and high 7 it varies as

73. This temperature dependence is due to several factors, one of which is that
some of the empty states at the top of the valence band become occupied at T >
0oK, even before the stimulated emission process takes place, thus inhibiting some
ofthe transition (the exclusion principle).

The first laser action in a semiconductor was observed in a GaAs junction.
The laser line in GaAs lies in the deep red (infrared) at ) :8400 A at 77'K, and
corresponds quite closely to the energy gap in GaAs.t As the temperature increases,

f The junction laser described can operate continuously only at low temperatures
(<77"K) because the large threshold current density (5 x l04A/cm2) produces far more
Joule's heat than can be transferred away. Recently a diode laser was developed which
operates continuously at room temperature, by requiring a much lower threshold
density (100 A/cm2). In this device the p-n junction is joined to other suitable crystals on
both sides of the junction, hence the name heterojunction laser; the effect of these new
substances is to increase the efficiency of the laser by: (a) confining the carriers to the
active region; and (b) confining the light to the active region. See M. B. Parish and
I. Hayashi, Scientffic American, 225, July 1972. For a more technical treatment, see

Milnes (1971).

8350 8400 8450 8500 8550 86m
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the wavelength of the laser increases, in agreement with the decrease of the energy
gap with temperature. The frequency can be increased and brought into the optical
region by alloying the material with phosphor, i.e., by using Ga(As), -,P, which has

a wider gap.

Since 1963, many other semiconductor compounds have been found to lase-
for example, InSb, InP, etc. (See Table 7.2), extending in frequency from the far
infrared into the ultraviolet. Table 7.2 shows that other means (besides current
injection) of creating population inversion are also possible. ln the electron-beam

method, an energetic electron beam is impinged on the medium, exciting many

electron-hole pairs, which then recombine radiatively, emitting photons. In the

optical method, a laser beam from one semiconductor may be used to invert the
population in another material.

Table 7.2
Some Semiconductor Laser Materials

Material Photon
energy, ev

Wavelength,

lt
Method of excitation or pumping

ZnS
CdS
CdSe
CdTe
Ga(As, -*P,)
GaAs

lnP
GaSb
InSb
PbS

PbTe

3.82
2.50
t.82
r.58

I .41-l .95
1.47

1.37
0.82
o.23
0.29
0. r9

0.32
0.49
0.68
0.78

0.88-O.63
0.84

0.90
t.5
5.2
4.26
6.5

Electron beam
Electron beam, optical
Electron beam
Electron beam
p-r junction
p-n junction, electron beam,
optical, avalanche
p-z junction
p-r junction, electron beam
p-n junction, electron beam, optical
p-z junction, electron beam
p-n junction, electron beam, optical

No laser action has been observed in silicon or germanium. This is not surpris-
ing, since these materials are indirect-gap semiconductors (Section 6.12). In them,

electrons and holes cannot recombine directly, since this would violate the law of
conservation of momentum. All the materials listed in Table 7.2 are direct-gap
compounds.

A semiconductor laser has many advantages over a gas laser. Its small size,

simplicity, and high efficiency-in addition to the fact that it can be mass-manufac-
tured and readily connected to electronic circuits-are among the most obvious
advantages. The semiconductor can also be tuned continuously by changing the

energy gap by pressure, for example. Disadvantages include its relatively poor
monochromaticity, due to the fact that the transitions are between bands and not
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between sharp atomic levels. There are also other effects which occur in the solid
which contribute to line broadening. The small size of the semiconductor laser
makes the quality of the beam collimation rather poor. Notwithstanding these
limitations, the semiconductor laser is an important device which would be
exceedingly useful in the quest for new developments in optical electronics.

Another semiconductor laser which has been discovered quite recently and
which promises to be a very useful device is the so-called spin-flip Raman (SFR)
laser. Consider the motion of electrons in the conduction band of, say, InSb, in
the presence of a strong magnetic field. The effect of the field is (1) it makes the
electrons move into cyclotron orbits (Section 7.4) and (2) it orients the spin
magnetic moment of the electron in a direction either parallel to or opposite to the
field. The difference in energy between the two levels is L,E : g 1tsB, where g is the
Landi factor, ;r, the Bohr magneton, and B the magnetic field. Orientation of the
dipole moment in a magnetic field is discussed at length in Chapter 9 on magnetism,
particularly in Section 9.6.

,,_r__I
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Fie.7.20 (a) The spin-flip Raman
(b) Spectra of scattered radiation
(after Patel and Sharv).
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scattering process responsible for the SFR laser.
from an InSb sample below and above threshold

Figure 7.20(a) illustrates the operation of an SFR laser. A light beam of
frequency roo falls on the system. An electron in the lower of the two spin levels
absorbs a photon of energy hao and makes a transition to a higher level E, after
which it makes a downward transition to the upper level of the same spin doublet.
In the downward process it emits a photon of energy ho" The net effect of the whole
process is that a photon fia;o is absorbed, a photon fto" is emitted, and the electron
flips its spin. From energy conservation, we know that the emitted frequency is
given by

@":@o -gttsB. (7.s5)
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Laser action according to the above scheme was reported by Patel and Shawt
in InSb and other materials (Fig.7.20b), obtaining an efficiency of about l/"ina
pulsed operation. The great advantage of the SFR is its tuneability. By varying B,
a relatively simple operation, one can change <o" continuously, and attain a con-
tinuous tuneability. Using a Q-switched CO, laser at 10.6p as the pump, Patel and
Shaw obtained a continuous tuning in the range 10.9-13.0p by varying B in the
range l5-100 kG in InSb. In further development of the SFR laser, an efficiency as

high as 5O/, at a threshold power of 50 mW in a CW operation was reported
(Bruek and Mooradian). Note from (7.55) that the range of tuneability increases

linearly with g. Therefore materials with large g-factors, such as InSb, are desirable.

7.8 THE FIELD-EFFECT TRANSISTOR, THE SEMICONDUCTOR LAMP,
AND OTHER DEVICES

There are many important semiconductor devices in addition to the few major
ones covered thus far. In fact their number is extremely large, making semiconduc-
tors by far the most versatile substances in electronics technology today. Our discus-
sion here is necessarily brief, but the reader will find ample coverage in the many
references appended to this chapter.

Field-effect and drift transistors

Although the transistor junction is the backbone of the semiconductor industry,
there are many other useful ones, many of which are particularly suited to specific
purposes. A most important member of this group is thefield-effect transistor, or
FET, first proposed in its modern form by Shockley in 1952. This device, shown
in Fig. 7.21 , is a small piece of semiconductor-e.9. silicon-which consists of

Yda

Fig.1.2l The FET. The cross-hatched regions represent depletion layers and the solid
region the ohmic contacts.

f C. K. N. Patel and E. D. Shaw, Pfrys. Reo.LettersU,45l (1970); also P}ys. Reu.3B,
1279 (1971).
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three layers of p, n, and p formed by proper doping of the sample (an n-p-n device
is also possible). A battery is connected across the middle nlayer, causing a current
to flow parallel to its surface. This current is then modulated by a transverse
electric field established by another battery. By superposing a signal on this field,
one can amplify the signal at the load resistor in the current circuit.

The physical principle underlying the operation of the FET is related to the pre-
sence ofthe two depletion layers separating the n and p regions (cross-hatched in the
figure). Recall from Section 7.3 that a depletion layer forms at any junction due
to the diffusion of free carriers across the junction. The effect of this on the situation
in Fig. 7 .21 is to reduce the width of the conducting layer (the r type), known as the
channel, and hence reduce the conductance of the device, because the depletion
layer (having no free carriers) does not contribute to the conduction process.
When we denote the geometrical width of the n layer by w, the width of the channel
in the absence ofthe transverse electric field is

Wc: tU - 2*o, (7.s6)

where wo is the width of each of the depletion layers in the n region and the factor 2

accounts for the presence of two of these layers, associated with each of the junc-
tions. The width wo is given by (7.32b). That is,

7.8

(7.s7)

where @e is the equilibrium junction voltage, and we have assumed that Nd < N".
Let us now consider the effect of the transverse field. This field is established by

a battery which is connected so that the p-n junctions are reverse-biased (Fig.7.2l).
The result of this bias is to increase the width of the depletion layer, thus decreasing
the width of the channel still further, and raising the resistivity. This field therefore
acts as a gate which controls the flow of electrons between the negative electrode of
the current circuit (the source) and the positive electrode (the drain). The greater
the transverse reverse-bias potential, the narrower the channel, and consequently
the smaller the current. In fact, at a sufficiently large potential, the depletion layers
may move so far into the channel that the channel vanishes, and further flow of the
current is blocked. The necessary voltage for this pinch-off to take place can be
found by replacing 0oby 0, * Vrin (7.57) and setting w" in (7.56) equal to zero.
The result is

*": (ryy)''' ,

eNow!
V :-'P 8e ) (7.58)

where we have assumed that Vo ) @e, so that the equilibrium junction voltage may
be dropped.
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Figure 7.22 shows the electrical characteristics-the drain current /, versus the
drain-source voltage Vo"-of the FET. Note that the current increases in an

essentially ohmic manner at first, and then begins to round off, eventually saturating
at high voltage values. To understand why, one must consider the I R voltage drop
along the length of the channel. At high currents this voltage is appreciable, and its
effect is to make the region near the drain far more positive than that near the
source. This therefore sets up an internal gate voltage of its own, which causes the
depletion layer to bulge into and narrow the channel, particularly near the drain,
as shown in Fig. 7 .23.

Fi9.7.22 Electrical characteristics
different gate voltages (expressed in
the amplifier.

of an FET. Curves represent characteristics at
arbitrary units); straight line represents operation of

Fig.7.23 The bulging of the depletion layer near the drain.

This internal voltage, which is present even in the absence of external voltage,
limits the current, and at sufficiently high value causes the current to saturate by
closing off the channel at the drain. (The current does not vanish entirely due to
this internal pinch-off, because then the IR voltage drop would also vanish, and no
channel narrowing would occur.)

The FET amplifier operates in the pinch-off region. The incident signal,
superimposed on the gate voltage, causes the gate voltage to vary (straight line in
Fig.7.22), and the output signal is then picked up at the load resistor. Theoretical
analysis shows that the current in this region is given by

-,)"^(+la: (7.se)



Semiconductors II : Devices 7.8

The mutual conductance parameterwhere /r" is the source-gate bias voltage.
g. : 0I al0V," is thus given bY

- (Vn" - Vo) (7.60a)

(7.60b)g- - Ilt'

To make the device sensitive to the signal and the operating voltage as low as

possible, the doping in the r channel is made small compared with that in the p
region. Consequently even a small change in I/r" produces a large change in the
width of the depletion layer, and a correspondingly appreciable change in the
current circuit. (Note that no transverse current flows in the FET, because the
junctions are reverse-biased; see the electrical connections in Fig. 7.21.)

The primary advantage the FET has over the junction transistor is that the
amplification in the FET is accomplished by the flow of majority carriers. The
junction transistor, on the other hand, operates by the flow of minority carriers,
and consequently is often quite sensitive to small disturbances in these carriers,
e.g., changes in temperature or exposure to atomic radiation.

The device discussed above is sometimes referred to as the junction FET, to
distinguish it from a similar device known as the MOS-or MOS field-effect-
transistor, which operates on the same principle as the FET, except that its outer
p layers are replaced by two insulating thin films, for example, SiO2, deposited on
the surface of the channel. A third thin film, this time of metal, is deposited on
top of the insulator, and the gate voltage is connected to this last layer. The three
layers consist of a metal, insulator (or oxide), and a semiconductor; hence the name
MOS. Although the gate is electrically insulated from the channel, the modulation
in this MOSFET device takes place via the transverse field transmitted through
the insulator.

Another transistor particularly suited to high-frequency operations is the
drift transistor, which has the same design as the ordinary junction transistor,
except that the base element is not uniformly doped. Instead the doping is graded,
so that it is greatest near the emitter, and decreases almost exponentially to a small
value near the collector junction. The effect of this nonuniform doping is that, in
the absence of electrical connections, carriers in the base diffuse toward the collector,
and in the process an electrical field is set up to balance this flow, in a manner
similar to that discussed in Section 6.17. When the transistor is connected for oper-
ation, the minority carriers injected into the base from the emitter find an already
existing field, whose polarity is such that it sweeps the carriers quickly toward the
collector. ln the ordinary transistor, the flow of the minority carriers in the base

region is governed by diffusion. In the drift transistor, the flow is governed by an
electric l-reld (hence the name drift), and by proper doping one can make the field

s^:+(?;-)
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so large as to significantly reduce the transit time, or equivalently, the effective width
ofthe base. A narrow base raises the operating frequency limit ofthe transistor, as

will be recalled from Section 7.4 [see Eq. (7.a1)]. Transistors operating at frequen-
cies higher that a gigahertzhave been manufactured by this technique.

Microwave devices

There are several devices in the microwave region besides the Gunn diode. For
example, a junction can be used as a Dqractor (variable-reactance element). The
junction has a capacitance, associated with the space-charge region, which depends,

in a nonlinear fashion, on the applied voltage (Section 7.2). Thus the varactor can

be used as a switching or modulation device for harmonic generation and frequency
conversion, since the controlling voltage has a much lower frequency than the signal.

Another microwave device is the IMPATT (impact and transittime) diode, which
employs the avalanche and transit-time properties of the junction to produce neg-

ative differential conductivity (NDC) at microwave frequencies. The device can

thus be used an an amplifier or oscillator.
Semiconductors can also be used as ultrasonic generators-performing the

same function as a transducer-and as ultrasonic amplifiers. For example, the

high-field domain in a Gunn diode is large enough to cause the ions of the lattice to
oscillate, and this can be used to generate sound waves in the microwave range.

Photodetectors and related devices

Another major use of semiconductors is in radiation detectors. Most of these

devices are based on the phenomenon of photoconductivity (Section 6.13). The
radiation to be detected is allowed to fall on a semiconductor sample, where it
excites electrons from the valence into the conduction band, thus creating electron-
hole pairs. These carriers are detected by the current they carry across the biased

sample. This current, being proportional to the intensity of the radiation, serves as

an electrical measure of the incident radiation. A typical photoconductor is CdS,

which has long been in use as a light meter in cameras. Its energy gap is 2.4eY,
and it is sensitive to radiation of wavelength ,. < 0.5 p, that is, of photon energy at
least equal to the energy gap.

A photoconductive detector has several advantages over thermal detectors such

as the thermopile or bolometer. It has a much shorter response time. Also a

bolometer measures the integrated intensity, over all wavelengths, while a photo-
detector responds only to those photons whose energies are greater than the energy
gap, and thus makes possible a certain degree of spectral analysis. A properly

designed photodetector should have a small, dark conductivity (o, in Section 6.13),

so that the relative change in o upon illumination is appreciable and readily detec-

table. This requires a large energy gap so that only a small amount of cross-gap

excitation takes place at room temperature. In addition, a relatively pure substance

must be used, so that carriers may not be thermally excited from the impurity
levels. Moreover, a good photodetector should have a large gain, or number of
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electrons recorded per absorbed photon. This number is often greater than unity,
because if the electron-hole recombination time is long, and if the holes are trapped
on some crystal defect, then after the original electron has drifted out of the sample
into the external circuit, another electron is recalled from the cathode to electrically
balance the trapped hole. This newly arrived electron is then also swept across the
sample, and recorded as another photoelectron. Therefore, if the recombination
time is much greater than the transit time, several electrons per photon are recorded
and the gain is high. This illustrates once more the influential role played by traps
and other impurities in the operation of semiconductor devices.

Although we have talked explicitly only about photodetectors in the visible
optical region, the same type of substances can also be employed as infrared (lR)
detectors. This area of research has received particular attention in recent years
because radiation in this region, though invisible, is emitted in great quantities by
bodies at room temperature. IR detectors are also increasingly helpful in connection
with research in far-infrared spectroscopy.

A useful infrared photodetector must meet several requirements. First, the
gap must be narrow enough for cross-gap excitation to take place even with the
low-energy infrared photons. To minimize dark conductivity, the sample must be
fairly pure. An IR photodetector is often cooled well below room temperature
to quench excitation either across the gap or from impurities.

Lead salts-the chalcogenides PbS, PbSe, and PbTe-have been widely used
as IR photodetectors, up to a wavelength of about 5 p. Also InSb and InAs, which
can be produced with high purity, have been used for this purpose. The former,
with an energy gap of 0. l8 eV, is useful up to a wavelength of 7 .3 p, and the latter,
with an energy gap of 0.35 eV, up to a wavelength of 3.5 p,

One can extend the detection capability further into the IR region by employing
substances which have smaller gaps. A smaller gap can be achieved nowadays in a
variety of ways; one is to alloy a semimetal with a semiconductor. Figure7.24
shows, for instance, the "tuning" of the gap as a result of alloying PbTe with
SnTe, the gap varying continuously between zero and 0.33 eV.

020406080100
f SnTe

Fi9.7.24 Energy gap versus composition in PbTe-SnTe
(After Dimmock, et al.\
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In the extreme long-wavelength IR region, it becomes more convenient to
detect radiation not through cross-gap excitation but by excitation of the carriers
from the impurities, these carriers being then detected by their photoconductive
currents. These are descirbed as extinsic photoconductors, as distinct from
intrinsic photoconductors. Germanium, which can be readily prepared with the
proper purity, is normally employed for this purpose, particularly since the energy
levels of many types of impurities in germanium have been studied extensively.
Recall (Section 6.5) that the impurity levels from the bands are usually about
0.01 eV, a fact which has been confirmed by experimental studies, such as optical
measurements (Section 6. l4). The use in Ge of impurities from the I I I or V column
in the periodic table produces reasonably good extrinsic detectors covering the
range l0 to 100 p.

The photodetecting devices discussed thus far are all of the bulk type, i.e.,

utilizing homogeneous samples. But junction photodetectors have also been devel-
oped. An important group is based on the photouoltaic effect, in which light falls on
a p-n junction, and at sufficiently high frequency electron-hole pairs are created by
cross-gap excitation. The carriers created in the depletion layer of the junction-i.e.,
the region toward which the light is primarily directed-are swept quickly by the
high electric field in the junction. The electrons are swept toward the a region, the
holes towards the p region. This flow of charge produces a momentary current in

the circuit which, under open-circuit conditions, creates a voltage across the ter-
minals, and this voltage serves as a measure of the intensity of the incident radiation;
i.e., the photocell serves as a photodetector.

When the circuit is closed a continuous current flows. We can now establish the
current-voltage relationship by referring to the junction equations of Section 7.2.

The total current in the circuit is now

I : lo(e"'tk"'- l) - 1", (7.6r)

where /", the short-circuit current, is the current due to the carriers created speci-

fically by the radiation and swept by the junction fleld. This current may be written
as Is : eqP, where 4 is the quantum efficiency and P the photon flux. The first
term on the right of (7.61) is the familiar junction current of Eq. (7.7), due to the

injection of minority carriers, as discussed in Section 7.2, and is present whether
the junction is illuminated or not. The illumination-induced current is taken to be

negative, - /", because it is opposite to the current of a forward-biased junction
(why?). Equation (7.61) indicates that the open-circuit voltage Vo.,that is, / : 0, is

(7.62)

This photovoltaic device, the photodiode, can also operate on a battery, thus
converting radiation into electrical energy. The maximum power output can be

close to 0.75V."11".

,".:ry'*(+)
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A potentially useful photovoltaic battery is the solar cell, which converts solar
radiation that strikes the earth into useful electrical energy. Such a battery has

indeed been built and operated, but its efficiency is not as great as one would wish.
The problen is complicated by the fact that solar radiation covers a wide range of
wavelengths. The greatest spectral intensity falls near I : 0.5 pr, but a good deal of
the incident energy falls well below and well above this wavelength. A diode with a

wide band gap, say 2 eV, would be effective in converting the solar energy at the
peak wavelength, but would lose all the infrared energy. Conversely, a narrow-gap
diode, say 0.5 eV, would absorb the incident photons, but much of the energy in the
near-infrared, visible, and ultraviolet regions would be lost, because ofthe absorbed
energy only the fraction necessary for band-band excitation is recovered as useful
electrical energy. Thus one must choose a band gap which will strike a happy
medium between these conflicting requirements. The maximum theoretical
efficiency for GaAs-the most suitable of the known semiconductors-is 24'/,;
GaAs solar cells of I I /, efficiency have been built. Silicon cells of l4/" efficiency
have also been built, compared to the theoretical limit of 20/, for silicon.

The semiconductor lamp

A semiconductingp-n junction, properly biased, can also serve as a light emitter,
i.e., a semiconductor lamp. A light-emitting diode (LED) has several advantages
over conventional lamps. It has much greater emission power per unit volume,
greater ruggedness, and can be built at considerably less cost. The LED can also be

modulated much more rapidly than the conventional lamp. The basic design of an
LED consists of a forward-biased p-n junction, as in the semiconductor laser
(see Fig.7. l8). However, the LED operates below the lasing threshold, and the
light is emitted as incoherent radiation. As explained in Section 7.7, electrons are

injected from the n region across the depletion layer and into the p region, where
they recombine with the majority carriers (the holes), thereby emitting radiation
from the diode. Simultaneously holes are injected from the p to the n region, where
they recombine with electrons, again contributing to the emitted radiation.

Several factors influence the operation of the LED as an electroluminescent
device, chief of which is the energy gap, which in fact determines the wavelength of
radiation. The best LED substance, GaAs, which has an energy gap of l.35eV,
emits radiation at l. :0.9 p, in the infrared, while a GaP diode, of Ec:2.25 eY,
emits in the visible region (the deep red).

Another important factor is the so-called internal quantum efficiency of the
LED. An electron-hole pair may recombine radiatioely, emitting a photon, or
nonradiatiuely, through several intermediate steps, in which energy is eventually
lost in the form of heat. ln an efficient device, the radiative process must be

dominant, so that most of the energy is converted into light. The quantum fficiency
is the ratio of radiative to nonradiative transitions. Other losses, such as loss of
joule heat, must also be minimized.

The band structure of the substance has an important bearing on the quantum
efficiency. Recall (Section 6.12) that radiative recombination and excitation are

7.8
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strongest in direct-gap semiconductors, such as GaAs, in which both conduction-
band and valence-band extrema are at the origin, k : 0. Recombination in indirect-
gap semiconductors, such as Ge and Si, takes place only by the intervention of
phonons, and this reduces the transition probability (although a recombination
and radiation does take place). This explains why GaAs is so much preferable to,
say, Si, for semiconductor lamps. Thus the overall efficiency of a device made of
GaP (an indirect-gap substance) is only about I /". (Overall efficiency is to be

distinguished from quantum efficiency. Overall efficiency takes into account other
factors; see below.)

As we have said, GaAs is the best-known substance for semiconductor lamps,
but it has the disadvantage that its emitted radiation falls in the infrared rather than
the visible region, because of its small gap. This gap can be widened by alloying the
GaAs with some other semiconductor such as GaP or AlAs, but since these are

indirect-gap substances their overall ratio must be rather small or the material will
turn into an indirect-gap diode. Researchers have been able to build a lamp of red
light, ,1 : 0.62 p, from an alloy of the semiconductors GaAs and AlAs.

A major factor in the consideration of the overall efficiency-particularly in
GaAs-is the total internal reflection of the radiation at the surface as it attempts to
leave the solid. GaAs has a relatively high index of refraction, n:3.4, and the
radiation making an angle of incidence 0 > sin - I 1t 7r; wlttr the surface is reflected

back into the diode, and eventually lost in the form of heat. Considering these

various factors, the overall efficiency-i.e., the ratio of the radiation energy to the
electrical energy of the injection current-of a GaAs lamp is slightly less than l0/..

Radiation is usually extracted from a window opened in the metallic contact
at the n side of the junction. Semiconductor lamps are used in many ways; for
example, they are often used in display devices.

Solid-state counters

Semiconductors are invaluable as particle detectors in high-energy physics. When a
high-energy particle-such as an electron, proton, a-particle, 7-particle, or x-ray-
falls on a semiconductor crystal such as silicon or germanium, it causes a large
number of electron-hole pairs to be created. These can be readily detected by
photoconductive devices, such as light photodetectors. The number of such pairs
can be estimated by determining the ratio of the energy of the incident particle
(usually several MeV) to the energy of creation of the electron-hole pair, of the
order of 3 eV. The pulse of the photoconductive current is proportional to the
energy of the stopped particle, and one can conveniently use a semiconductor
counter to determine this energy.

7.9 INTEGRATED CIRCUITS AND MICROELECTRONICS

One of the advantages of a transistor over a thermionic tube amplifier, it will be

recalled, is its considerably smaller size. Extremely small circuit elements-such as

resistors, capacitors, and transistors---can now be made by employing special
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techniques, as will be discussed below. Moreover, these microelements can be
deposited on the same surface, the substrate. Metallic leads between them can also
be deposited on the same surface, leading to a very sophisticated integrated circuit
(IC), capable of performing highly complex functions. The testament to this field of
microminiaturization can be readily appreciated when one considers the intricacy
and sophistication of such complicated devices as television sets, computers, and
electronic desk calculators, whose development without the integrated circuit
would have been prohibitively difficult.

Fig.7.25 (a) A microresistor, (b) a microcapacitor, (c), a microtransistor. Wavy lines
represent electrical leads, and letters in (c) refer to emitter, base, and collector.

Figure 7.25 shows three circuit elements manufactured from semiconductor
materials. Figure 7.25(a) is a resistor, whose resistance is determined by the
doping of the p layer. Figure 7 .25(b) is a capacitor, made up of a p-n junction. We
can appreciate the capacitor property of such a junction by referring to the treat-
ment in Section 7.3. Recall that a depletion bilayer is formed; the portion of this
layer in the n region is positively charged, while that in the p region is negatively
charged. The total charges of the two parts are equal in magnitude. It is this
positive-negative charge distribution which is responsible for the capacity of the
junction. The total charge in each of the two layers per unit area of the junction is

lQl : eN o wn. If we use (7.32), we find that

lg1 : 12'e QoN o N 
"ft12 -

L Nd+N, l

When a bias voltage lzo is applied across the junction, then @o should be replaced by
0o - Yo in the above equation (Izo is positive for forward bias). Thus

l0l :I 2, e(Qo -
Na*

vi NdN

N,
,l (7.63)

And if the voltage I/o is changed by a small increment, the charge also changes, and
the differential capacitance is given by

t ".i-,' ,,\-P-l
\Pz

ntyw

\ '\'- j-' ,''\ \_u .z' ./t-!-r'
n type

. _l aQ I _ t l- 2ee NrN, lr/,"-lA%'-TL@o-vn^t+^Ll (7.64)
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The capacitance depends, as expected, on the dopings; it is large when the
dopings are large, and vice versa. Note also that for a large reverse-bias voltage
C - ( - Vo)-'t', which is confirmed experimentally in abrupt junctions.

Figure 7.25(c) is a FET, and requires no further elaboration, as it was covered
in Section 7.8.

Recall that, in an integrated circuit, the elements are deposited on the same Si

substrate or chip, as illustrated in Fig. 7.26 for a resistor and a junction transistor.
Obviously, for proper operation, the two elements must be electrically insulated
from each other; i.e., no conduction through the z-type substrate should take place.
This is ensured by biasing this substrate with a high positive potential, so that the
resistor-substrate junction and the transistor-substrate junction are both reverse-
biased, and consequently only a negligible current can flow between the two
elements.

Fig.7.26 A microresistor and microtransistor on the same substrate. The positive
potential at the bottom is used for mutual isolation of the elements.

And finally some discussion is in order regarding the manner in which the
various dopings are deposited on the substrate. The traditional method of manu-
facturing a p-n junction was to start with, say, a rod-shaped piece of ,?-type germa-
nium, and alloy one side of it with a trivalent metal. One then heated the crystal to a
temperature of several hundred degrees until the metal melted and dissolved into
the Ge, then cooled the whole sample again to roornleqr_perature, allowing the
Ge to recrystallize with sufficient acceptors to form a p region on one side of the
sample.

But this technique is too crude to be used in integrated circuits, since the widths
of the layers involved here are usually very small and require highly controlled and
accurate techniques. There are now several such methods available.

l) Controlled dffision. A chip of the substrate material is placed in a chamber,
and a steady concentration of the desired impurities is maintained in a gaseous
phase surrounding it. As the whole system is raised to a high temperature, the
impurities diffuses into the chip. The depth of penetration depends on the tem-
perature, the duration of the process, and the nature of the impurities (Section I1.4)
By controlling these variables one can obtain a precise depth. [The resistor in
Fig.7.25(a) can be made in this manner.l

t 'r-'-P-''z' /''. --1-' 
"\-L-/

n type
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lf a different and new layer is required, as in the transistor, the new layer is
formed by diffusing it on top of the old layer, but to a lesser depth. This technique
has the disadvantage, however, that the new layer still has the old impurities
embedded in it, since diffusing the new impurities on top does not remove the old
ones. If one repeats the process with several layers, then one obtains a concentra-
tion of different impurities, resulting in a greater and greater conductivity. To
avoid this, a new technique, the epitaxial growth method, has been developed.

2) Epitaxial growth. Layers of the desired impurities (Si or Ge) are deposited on
the chip by placing it in a chamber within a gaseous reaction system, and the Si or
Ge layers are precipitated directly from the system. The precipitation takes place

so slowly and gradually that the crystalline continuity between the chip and the new

layers is maintained.

3) Ion implantation A third technique coming increasingly into use is the ion
implantation method, in which the desired impurities are shot toward the surface

of the semi-conductor, after being accelerated in a static accelerator. The depth
of penetration depends on the accelerating potential. By varying this depth, one

can prepare a wide range of impuritiy profiles. Potentials used for this purpose

are of the order of a few kV, and typical depths are about 100 A.t

By employing these techniques, one can make circuit elements extremely small.
For example, a silicon chip of area about 2mm2 contains more than 300 elements.

This trend toward microminiaturization is clearly the wave of the future. In recent

years the field has been developing very rapidly; already it amounts to about 30/o
of the total dollar market.

The integrated circuit's advantages over the conventional circuit are as follows.
(i) A drastic reduction in volume, particularly important in sophisticated devices

such as computers, (ii) greater reliability, (iii) considerable reduction in cost. The
main disadvantage of an IC is that once a part of the circuit-even a single
element-is damaged, the entire circuit is rendered useless, and must be replaced.

The impact of the IC concept on future engineering education may be illus-
trated by this quotation from Beeforth (1970): "Until the advent of integrated
circuits, it was necessary for electronic engineers to be familiar with basic circuit
design. In the future, this will no longer be so important, as a wide range of basic

circuits becomes readily available in the integrated form. The engineer will be free

to deal with overall systems, without having the actual circuitry involved; 'the
architect no longer needs to worry about how the individual bricks are made."'

f A readable discussion of the ion-implantation method, including tips on experimental
techniques and many illustrations, can be found in F. F. Morehead, Jr., and B. L.
Crowder, Scientific American,228, April 1973. An important point brought out is the fact
that, after exposure, the sample is annealed in order to eliminate the large number of
displaced host atoms and vacancies created by the collision of the incident beam with the
host atoms. The mechanism involved is discussed in Section 11.3.

7.9
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SUMMARY

The p-n junction and rectification

When a p-n junction is formed, free carriers-both electrons and holes-diffuse
across the junctions. Electrons flow from the n to the p side of the junction, while
holes flow in the opposite direction. Because of the charge flow, the p side acquires
a negatiue contact potential - 0o relative to the n side. The value of {o is

oo : k'r 
tog (& I' ') 

'e \ni /
where Na and N, are the concentrations ofthe donors and acceptors, respectively,
on the two sides of the junction.

The junction acts as a rectifier. The current-voltage relationship has the form

l:IolseYolkar -l),
where I/s is the bias voltage. When this voltage is in the forward direction, Vo ) O,

"evo/kar 
) l, and hence

I = Io(eevol*at 1'

The current is large, and increases rapidly with the voltage. But for a reverse bias,
Vo 10,"evslksT ( l, and

I : _ Io.

The current is now small, and independent of the voltage.

The junction transistor

A junction transistor is a structure comprised of two junctions connected back to
back. One, called the emitter, is forward biased; the other, called the collector, is
reverse biased. The emitter injects minority carriers into the base. The carriers
diffuse through the base, and are received at the collector.

When an electric signal is applied at the emitter, a corresponding carrier pulse
passes through the base and the collector, and the amplified signal is picked up at a
load resistor inserted into the collector circuit. The voltage gain is

dVr:aRrI"
d V" krT le'

The gain may be increased by raising the value of the parameter a, which is accom-
plished by increasing the injection efficiency and reducing the thickness of the base
layer.

The tunnel diode

When the dopings in a p-n junction are very high, the width of the junction becomes
very small, and tunneling of the carriers across the energy gap becomes possible.
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If the junction is biased in the forward direction, a region of negative differential
conductivity (NDC) results. This NDC is utilized in the design of electric amplifiers
and oscillators in the microwave range.

The Gunn diode

When a high electric field is impressed on a thin GaAs sample, or samples of similar
band structure, again a region of NDC is produced. This property may also be
used in the design of microwave amplifiers and oscillators.

Two different modes of oscillation are possible. In the Gunn mode, the sample
separates into two regions: a region of very high electric field-the Gunn domain-
and a region of low field (the rest of the sample). The oscillation frequency of the
Gunn mode is equal to the transit-time frequency,

,, _,0'o- L,
where u, is the electron drift velocity and I is the length of the sample.

In the other mode, the LSA mode, one preyents the domain from forming by
impressing a signal whose frequency is larger than vo. In this mode, the diode acts
as an element of true NDC character.

The semiconductor laser

Laser action in semiconductors is achieved by inverting the electron populations of
the valence and conduction bands. This inversion was first accomplished in a
highly doped p-n junction, although other means have also proved possible. The
frequency of the emitted coherent radiation is close to the fundamental edge of the
semiconductor, that is, Eolh. Laser action is possible only in direct-gap semi-
conductors because of the requirement of conservation of momentum.

Other semiconductor devices

There are many other semiconductor devices, chief among which are the light or
infrared detector, in which the intensity of the radiation is determined by measuring
the photoconductive current in the semiconductor specimen, and the field-effect
transistor (FET). Both have certain advantages over the junction transistor.
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QUESTIONS

l. Show qualitatively the position of the Fermi level in a p-r junction at equilibrium.
Use a figure similar to Fig. 1.2.

2. In the derivation of the rectification equation in Section 7.2 the approximation was
made that the whole bias voltage appeared across the junction. Does this approxi-
mation hold better for forward or reverse bias? Explain.



368 Semiconductors II: Devices

3. Describe a metal-semiconductor junction at equilibrium (McKelvey, 1966).
4. Suppose that a p-n function at equilibrium is short-circuited with a metallic wire.

Could the contact potential of the junction drive an electric current in the circuit?
Explain. Draw the appropriate energy-band diagram for the whole circuit.

5. Show qualitatively the position of the Fermi level(s) in a biased p-n junction.
6. When the holes in a p-n-p transistor diffuse through the base, a certain fraction of

them recombine with electrons and disappear. Does the fact that Si is an indirect-gap
semiconductor improve or hamper the operation of a silicon transistor?

7. Suppose that the difference in energy between the bottoms ol the central and
secondary valleys in GaAs is gradually reduced until it vanishes. Do you expect the
Gunn effect to be observed throughout this range? (Assume that the masses and
mobilities of the various valleys remain unchanged.)

8. The wavelength of the coherent radiation emitted from a GaAs laser decreases from
9000 A to 7000 A as the substance is alloyed with phosphorus, producing the
compound GaAsP. Explain why.

PROBLEMS

l. Establish Eq. (7.6) for the hole current in a forward-biased p-n junction.
2. The saturation current for a p-njunction at room temperature is 2 x 10-6 amp.

Plot the current versus voltage in the voltage range - 5 to I volt. Find the differential
resistance at a reverse bias of 1 volt and forward bias of 0.25 volt, and compare the
two values thus obtained.

3. Derive Eqs. (7.32) by solving the Poisson's equation (7.31), subject to the appropriate
boundary conditions.

4. a) Determine the contact potential for a p-n junction of germanium at room
temperature, given that the donor concentration is l0r8 cm-3 and the acceptor
concentration is 5 x 1016 cm-3. Assume the impurities to be completely ionized.

b) Calculate the widths of the depletion layer of the junction.
c) Calculate the electric field at the center of the junction.
d) The depletion double layer also acts as a capacitor, with the depletion regions on

the opposite sides of the junction having equal and opposite charges. Evaluate
the capacitance per unit area of the junction.

5. Repeat Problem 4 for silicon, whose dielectric constant is l2 e6.

6. Using the rectifier equation, determine the differential resistance of a 1 mm2 p-n
junction of Ge (Problem 4) under a condition of forward bias at 0.25 volt. Take
the recombination times x": xh: l0- 6 s. Compare the answer with the resistance of
an intrinsic sample of the same length as the depletion layer of the junction.

7. Draw the energy-band diagram for the p-rr-p transistor at equilibrium. Plot the
hole concentration versus the position along the length of the structure.

8. Repeat Problem 7 with the appropriate biases applied to the transistor.
9. Derive Eq. (7.38) for the voltage gain in a junction transistor.

10. Derive Eq. (7.39) for the power gain in a junction transistor.
ll. Describe the operation of an n-p-n transistor, and derive expressions for the

voltage and power gains in such a structure.
12. Read the description ofthe operation ofthe field-effect transistor given in Sze (1969).

Summarize the physical processes involved and the characteristics of this device.



13.

14.
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Estimate the dopings required for the operation of a GaAs tunnel diode. Take nd : na,

and assume that tunneling becomes appreciable when the horizontal distance of the

energy gap becomes 75 A. You may employ the results developed in Section 7.3.

a) Using the continuity equation and Poisson's equation, show that an excess

localized charge in a semiconductor decays in time according to the equation
Lp(t): Lp(o) s-", where r, : e/o is the dielectric relaxation time and

Ap(0) is the initial excess density.
b) Calculate z, for GaAs at low field for a carrier concentration of l02l m-3.
Draw a Cartesian coordinate system in which the abscissa represents the product

noL and the ordinate the product vI . Mark the various regions in this plane

corresponding to the Cunn mode and the LSA mode in GaAs.
Look up the derivation of (7.61) for the threshold current in an injection laser

(Sze, 1969).

The lasing operation in a semiconductor laser may be influenced by several factors,

such as temperature, pressure, magnetic field, etc. These eflects are summarized in

Chapter l0 of Pankove (1971). Read this chapter and give a brief summary.
Various procedures for population inversion in semiconductor lasers have been

employed in addition to the injection technique in a p-n junction. Read the review of
these procedures given in Pankove (1971), and give a brief summary of the results,

including diagrams of experimental setups.

15.

16.

17.

18.
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When lfe is lrue to the poles of nature, the
streams of truth will roll through us in songs.

Ralph Waldo Emerson



8.1 INTRODUCTION

In this chapter we shall discuss dielectric and optical properties of solids and
other phases of matter. These properties span an enormous range of frequencies,
from the static to the ultraviolet region, and provide valuable information on the
physical properties as well as the structure of matter.

After an elementary review, we shall relate the dielectric constant to the
polarization properties of the molecules constituting a given substance. Then we
shall consider the various sources of molecular polarization: dipolar, ionic, and
electronic contributions. Finally we shall consider two important properties:
piezoelectricity and ferroelectricity. Both are related to ionic polarizability.

8.2 REVIEW OF BASIC FORMULAS

Let us review some of the basic formulas which will be useful in the following
sections. A concept most important in this chapter is that of the electric dipole
and its moment. Think of an electric dipole as an entity composed of two
opposite charges of equal magnitudes, q and - 4, as in Fig.8.l. The moment
of this dipole is defined as

P:4d, (8.1)

where d is the vector distance from the negative to the positive charge.f The
electric moment is therefore equal to one of the charges times the distance
between them.

p

+_.:*@Vd
-qq

Fig.8.1 An electric dipole.

An electric dipole produces an electric field, which may be calculated by
applying coulomb's law to find the fields of the two charges separately, and then
adding the results. The field for the dipole is given by

- I 3(p.r)r-r2p

-

- 4neo rt '
(8.2)

which gives the field in terms of r, the vector joining the dipole to the field point,
and the moment p. In deriving this expression, we have assumed that r* d,
that is, expression (8.2) is valid only at points far from the dipole itself. In atoms
and molecules this condition is well satisfied, since d, being of the order of an
atomic diameter, is very small indeed.

t Using the symbol p to denote the dipole moment should not lead to confusion with
linear momentum, denoted by the same symbol, since linear momentum does not enter
into this chapter.
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When a dipole is placed in an external electric field, it interacts with the field.

The field exerts a torque on the dipole which is given by

1:pxE, (8.3)

where E is the applied field (Fig. 8.2). The magnitude of the torque is

r: pE sin0, where 0 is the angle between the directions of the field and the

moment, and the direction of t is such that it tends to bring the dipole into
alignment with the field. This tendency toward alignment is a very important
property, and one which we shall encounter repreatedly in subsequent discussions.

6+

Fig. 8.2 The torque exerted on one dipole by an electric fleld. Vectors q8 and - qE
represent the two forces exerted by the field on the point charges of the dipole.

Another, and equivalent, way of expressing the interaction of the dipole with
the field is in terms of the potential energy. This is given by

V:-p.E:-pEcos9, (8.4)

which is the potential energy of the dipole. We can see that the energy depends

on 0, the angle of orientation, and varies between -pE, when the dipole is

aligned with the field, and pE,when the dipole is opposite to the field. Because

the energy is least when the dipole is parallel to the field, it follows that this is the

most favored orientation, i.e., the dipole tends to align itself with the field. This

is, of course, the same conclusion reached above on the basis of torque

consideration.
In discussing dielectric materials, we usually talk about the polarization P

of the material, which is defined as the dipole moment per unit volume. If the

number of molecules per unit volume is N, and if each has a moment p, it follows
that the polarization is given byt

P: Np, (8 5)

where we have assumed that all the molecular moments lie in the same direction.

f In this chapter, the symbol N (not n) stands for the concentration, i.e. the number of
entities (molecules, atoms, etc.) per unit volume.
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When a medium is polarized, its electromagnetic properties change; this
is expressed through the well-known equation

D:eoE+P, (8 6)

where D is the electric displacement vector and 6 the electric field in the medium.
It is also well known that the displacement vector D depends only on

the external sources producing the external field, and is completely unaffected
by the polarization of the medium.f It follows that the external field 86, that is,
the field outside the dielectric, satisfies the relation

D : eoEo.

When we compare this with (8.6), we find that

(8.7)

IE: Eo - -P,€6

showing that the effect of the polarization is to modify the field inside the medium.
In general, this results in a reduction of the field.

Equation (8.6) is usually rewritten in the form

D:€E:eqe,E,

where the relatiue dielectric constant

<, : €l€o

expresses the properties of the medium. All the dielectric and optical characteris-
tics of the substance are contained in this constant, and indeed much of this
chapter is concerned with evaluating it under a variety of circumstances. Thus it
follows that we can gain much information about a medium by measuring its
dielectric constant. From this point on, we shall refer to the relative dielectric
constant e, as simply the dielectric constant, since we rarely need to use the actual
dielectric constant € : €o€r.

Figure 8.3 shows a simple procedure for measuring dielectric constant. The
plates of a capacitor are connected to a battery which charges the plates. When
there is no dielectric inside the capacitor, the electric field produced by the charges
is d6, which can be determined by measuring the potential difference Z6 across the
capacitor, and using the relation

Eo: VolL, (8.r l)

where L is the distance between the plates. This relation should be familiar
to the reader from his study of elementary physics. lf a dielectric slab
is now inserted between the plates, the field do induces the polarization of the

t See, for example, J. B. Marion (1965), Classical Eleuromagnetic Radiation, New York:
Academic Press.

8.2

(8.8)

(8.e)

(8. l0)
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Dielectric
Capacitor

plate

Fig. 8.3 Simple experimental setup for measuring dielectric constant. Note polarization
of molecules in the solid.

medium-i.e., the lining up of the dipole moments along the fleld-which, in
turn, modifies the field to a new value E. This new field can be determined by mea-

suring the new potential difference V by a voltmeter, and using the relation

E : VlL. (8.12)

The dielectric constant is given in terms of the fields Eo and d by the relation

e,: EslE, (8.13)

as can be seen by comparing (8.9) with (8.10). It follows, therefore, that

e,: VolV, (8'14)

where we used (8.11) and (8.12). We can thus obtain the dielectric constant by

measuring the potential differences across the capacitor, with and without the

presence ol the dielectric, and taking their ratio.

80
.->.++

Fig. 8.4 The field 6' due to polarization charges at the surfaces opposes external field

ds. Resultant internal field is d.



376 Dielectric and Optical Properties of Solids

Figure 8.4 shows why the polarization of the medium reduces the electlc
field. The effect of the polarization produces net polarization charges situated at
the faces ofthe dielectric, a positive charge on the right and a negative on the left.
(The dipolar charges inside the medium cancel each other.) These charges create
their own electric field which is directed to the left, and thus opposes the external
field 6'0. When we add this polarization field to the exrernal field 86, to obtain
the resultant field 8, we find that t a Uo, as previously stated. When we
combine this result with (8.12), we arrive at the useful conclusion that the dielectric
constant of a medium is always larger than unity.f

8.3 THE DIELECTRIC CONSTANT AND POLARIZABILITY;
THE LOCAL FIELD

Since the polarization of a medium-i.e., the alignment of the molecular moment-
is produced by the field, it is plausible to assume that the molecular moment is
proportional to the field. Thus we write

P: aE, (8. l s)

where the constant a is called the polarizability of the molecule. The expression
(8.15) is expected to hold good, except in circumstances in which the field becomes
very large, in which case other terms must be added to (8.15) to form what is, in
effect, a Taylor-series expansion of p in terms of d. Equation (8.15) may be re-
garded as the first term in this expansion. (Higher-order terms lead to nonlinear
effects.)

The polarization P can now be written as

P: Nqd

which, when substituted into (8.6), yields

D : eoE * NaE: ., (' . 
*)'

Comparing this result with (8.9), one finds

(8. r 6)

(8. l 7)

€,:l*(Na/ee), (8. l 8)

giving the dielectric constant in terms of the polarizability. This is a useful result
in that it expresses lhe macroscopic quantily, <,, in terms of the microscopic
quantity, a, thus forming a Iink between the two descriptions of dielectric materials.

The electic susceptibility y of a medium is defined by the relarion

P : eoXE,

f This is not necessarily true at high frequencies (see Section 8.9).

(8. le)
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which
(8. l 6),

Nax: ,o

and hence Eq. (8.18) may be written simply as
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relates the polarization to the field. By comparing this equation with
we find that the susceptibility and polarizability are interrelated by

(8.20)

,,:l*x. (8.21)

Thus the departure of the dielectric constant from unity, the value for vacuum,
is equal to the electric susceptibility.t (If several gaseous species are present,
than the factor Na in (8.20) should be replaced by l1N,a,.)

Equation (8.18) may also be written in terms of the density of the medium by
noting that N: gNe,lM, where p is the density, M the molar mass, and Nn
Avogadro's number. Thus

€,: I * (pNlleoM)u. (8.22)

This expression, indicating that e, increases linearly with density, holds in gases,

in which density can be conveniently varied over a wide range. This fact lends
support to the argument used in the derivation of (8.19), and in particular to
(8. l s).

Experiments do show, however, that Eqs. (8.18) or (8.22) do not hold well
in liquids or solids, i.e., in condensed physical systems. This point is important
to us here, as our primary interest lies in describing solid substances, and we must
therefore seek a better expression for the dielectric constant than (8.18). The root
of the difficulty lies in (8.15). It is implied here that the field acting on and polariz-
ing the molecules is equal to the field E , but a closer examination reveals that this is
not necessarily so. If it develops that the polarizing field is indeed different from E,
relation (8.15) should then be replaced by

D: ilEro", (8.23)

where 6',o" is, by definition, the polarizing field-also called the local field.
To evaluate E6" v,ta must calculate the total field acting on a certain typical

dipole, this field being due to the external field as well as all other dipoles in the
system. This was done by Lorentz as follows: The dipole is imagined to be sur-
rounded by a spherical cavity whose radius R is sufficiently large that the matrix
lying outside it may be treated as a continuous medium as far as the dipole is

t Actual dielectric media are anisotropic, i.e., the value of er, or X, depends on the
direction of the fleld. Thus the parameters €r and X are tensor quantities of the second
rank. In order to concentrate on the physical principles, we shall, however, ignore the
anisotropy and regard the dielectric as an isotropic medium, in which case the dielectric
constant is represented by a scalar, i.e., a single number.
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concerned (Fig. 8.5). The interaction of our dipole with the other dipoles lying
inside the cavity is, however, to be treated microscopically, which is necessary since
the discrete nature of the medium very close to the dipoles should be taken into
account. The local field, acting on the central dipole, is thus given by the sum

Eto": 8o + E, + E2 + 83, (8.24)

where do is the external field, E, the field due to the polarization charges lying
at the external surfaces of the sample,Erthe field due to the polarization charges
lying on the surface of the Lorentz sphere, and 6, the field due to other dipoles
lying within the sphere. Note that the part of the medium between the sphere
and the external surface does not contribute anything since, in effect, the volume
polarization charges compensate each other, resulting in a zero net charge in this
region.

Fig. 8.5 (a) The procedure lor computing the local field. (b) The procedure for calculat-
ingE2, the field due to the polarization charge on the surface ofthe Lorentz sphere.

Let us now evaluate the various fields which appeared above.

6, : This field, due to the polarization charges on the external surface, is also known
as the depolarization field, since it is obviously opposed to the external field. The
value of this field depends on the geometrical shape of the external surface, and
for the simple case of an infinite slab is given by

P, (8.25)

which you may confirm by using Gauss' law. The depolarization fields for other
geometrical shapes can be found in the references (Kittel, l97l), as well as in the
problems.

Er: The polarization charges on the surface of the Lorentz cavity may be
considered as forming a continuous distribution (recall that the cavity is large)

(b)(a)

El
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whose density is -Pcos0. The field due to the charge at a point located at the
center of the sphere is. according to Coulomb's law, given by

(8.26)

where the additional factor cos 0 is included because we are, in effect, evaluating
only the component of the field along the direction of P (other components
vanish by symmetry), and the factor 2nR2 sin 0 d0 is the surface element along the
sphere (see Fig. 8.5b). Integration of (8.26) leads to the simple result

s,: [" (- ffig) coso(2.,R2sinodo),

(8.27)

a field in the same direction as the external field.

d.: This field, which is due to other dipoles in the cavity, may be evaluated by
summing the fields of the individual dipoles using (8.2). The result obtained
depends on the crystal structure of the solid under consideration, but for the case

of a cubic structure it may readily be shown that the sum vanishes. That is,

Ez:0, (8.28)

as the reader will be asked to show in the problem section. In other structures the
dipolar field E, may not vanish, and it should then be included in the rest of the
discussion.

If the various fields are now substituted into (8.24), one finds that

2Ero.: Eo - 3roP,

which gives the polarizing field in terms of the external field and the polarization.
We may compare the value of Ero. obtained above with that of A in (8.8).

We discover that

1E2: ^ P,
J€o

IEb.: E + 
3eop,

(8.2e)

(8.30)

which shows that 86" is indeed different from E, as we have suspected. The former
field is, in fact, larger than the latter, so the molecules are more effectively polarized
than our earlier discussions have indicated. Equation (8.30) is known asthe Lorentz
relation.

The difference between 6, which is known as the Maxwell field, and the
Lorentz field d6" may be explained as follows. The field E is a macroscopic
quantity, and as such is an average field, the average being taken over a large
number of molecules (Fig. 8.6). It is this field which enters into the Maxwell
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Fig. 8.6 The difference between the Maxwell field d and the local field Ero". Solid circles
represent molecules.

equations, which, you will recall, are used for the macroscopic description of
dielectric media. In the present situation the field E is a constant throughout the
medium.

On the other hand, the Lorentz field E1o" is a microscoprc field which fluctuates
rapidly within the medium. As the figure indicates, this field is quite large at the
molecular sites themselves, and hence the molecules are more effectively polarized
than they would be in the average field E-

Let us now evaluate the dielectric constant. The polarization, according to
(8.23) and (8.16), is given by

p: Nadro",

which, when used in conjunction with (8.30), yields

(8.31)

8.3

":(+)' (8.32)

(8.33)

This relation between P and E supersedes the earlier one, (8.16), and we note
the fact that the denominator being less than unity contributes to the enhancement
of the polarization; the enhancement is due to the local fleld correction. When
the result (8.32) is substituted into (8.16) and (8.17), one finds the following
expression for the dielectric constant

2l+-Nd' 3.o

NaI _-
3.o

which is the relation we have been seeking. It is the generalization of (8.18) when
the local field correction is taken into account.

In gases, in which the molecular concentration N is small, the expression (8.33)
reduces to the earlier (8.18) without the field correction. This can be seen by noting
that (Na/3<o)< I in the denominator of (8.33), since N is small, so that one may
expand this denominator in powers of (Na/3eo), which in first order reduces pre-



8.4 Sources of Polarizability 38r

cisely to (8.18). This is expected, of course, because for small N the polarization P
is also small, which, according to (8-27), means that the local field becomes more
or less the same as the average field. In liquids and solids, however, the
polarization is no longer small, and Eq. (8.33) has a wider range of applicability.

Equation (8.30) is also frequently rewritten in the form

e,-l Nq
,, + 2: 3.o'

M / e, - 1\ N,c.d

p \.,*21- 3,o'

(8.34)

which is referred to as the Clausius-Mosotti relation We can also write this
equation as

(8.35)

which shows that the polarizability d may be determined from the measurable
quantities M, p, and e,. The expression on the right (and on the left) is known as

the mo lar p o I ari z abi lit y.

8.4 SOI.]RCES OF POLARIZABILITY

Let us now examine more closely the physical process which gives rise to
polarizability. Basically, polarizability is a consequence of the fact that the
molecules, which are the building blocks of all substances, are composed of both
positive charges (nuclei) and negative charges (electrons). When a field acts on a
molecule, the positive charges are displaced along the field, while the
negative charges are displaced in a direction opposite to that of the field. The
effect is therefore to pull the opposite charges apart, i.e., to polarize the molecule.

There are different types of polarization processes, depending on the structure
of the molecules which constitute the solid. If the molecule has a permanent
moment, i.e., a moment even in the absence of an electric field, we speak of
a dip-olar molecule, and a dipolar substance.

p:0

b--+--b:

(b)

moment. p : 1.9 debye unitsFig. 8.7 (a) The water molecule and its permanent
(l debye : l}-2e coul'm). (b) CO2 molecule.
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An example of a dipolar molecule is the H2O molecule in Fig. 8.7(a). The
dipote moments of the two OH bonds add vectorially to give a nonvanishing net
dipole moment. Some molecules are nondipolar, possessing no permanent
moments;a common example is the CO, molecule in Fig. 8.7(b). The moments
of the two CO bands cancel each other because of the rectilinear shape of the mole-
cule, resulting in a zero net dipole moment.

The water molecule has a permanent moment because the two OH bands do
not lie along the same straight line, as they do in the CO, molecule. The
moment thus depends on the geometrical arrangement of the charges, and by
measuring the moment one can therefore gain information concerning the

structure of the molecule.
Despite the fact that the individual molecules in a dipolar substance have

permanent moments, the net polarization vanishes in the absence of an external
field because the molecular moments are randomly oriented, resulting in a complete
cancellation of the polarization. When a field is applied to the substance, however,
the molecular dipoles tend to align with the field, as stated in Section 8.2, and this
results in a net nonvanishing polarization. This leads to the so-called dipolar
polarizability which will be evaluated in Section 8.5.

If the molecule contains ionic bonds, then the field tends to stretch the lengths
of these bonds. This occurs in NaCl, for instance, because the field tends to
displace the positive ion Na+ to the right (see Fig. 8.8), and the negative ion Cl-
to the left, resulting in a stretching in the length of the bond. The effect of this
change in length is to produce a net dipole moment in the unit cell where previously
there was none. Since the polarization here is due to the relative displacements of
oppositely charged ions, we speak of ionic polarizability.

8

-,)

Fig. 8.8 Ionic polarization in NaCl. The field displaces the
opposite directions, changing the length of the bond.

Na+ and Cl- in

Ionic polarizability exists whenever the substance is either ionic, as in NaCl,
or dipolar, as in HrO, because in each of these classes there are ionic bonds present.
But in substances in which such bonds are missing-such as Si and Ge-
ionic polarizability is absent.

The third type of polarizability arises because the individual ions or atoms
in a molecule are themselves polarized by the field. In the case of NaCl, each of
the Na+ and Cl- ions are polarized. Thus the Na+ ion is polarized because the

electrons in its various shells are displaced to the left relative to the nucleus, as

shown in Fig. 8.9. We are clearly speaking here of electronic polarizability.

8.4

lons
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Atom polarized as a result

Electronic polarizability arises even in the case of a neutral atom, again because
of the relative displacement of the orbital electrons.

In general, therefore, we may write for the total polarizability

d : d. * ai * as, (8.36)

which is the sum of the various contributionsi d.4 d;, and q.d are the electronic,
ionic, and dipolar polarizabilities, respectively. The electronic contribution is
present in any type of substance, but the presence of the other two terms depends
on the material under consideration. Thus the term di is present in ionic
substances, while in a dipolar substance all three contributions are present. In
covalent crystals such as Si and Ge, which are nonionic and nondipolar, the
polarizability is entirely electronic in nature.

The relative magnitudes of the various contributions in (8.36) are such that in
nondipolar, ionic substances the electronic part is often of the same order as the
ionic. In dipolar substances, however, the greatest contribution comes from the
dipolar part. This is the case for water, as we shall see.

The various polarizabilities may be segregated from each other because each
contribution has its own characteristic features which distinguish it from the others,
as we shall see in the remainder of this chapter. Dipolar polarizability, for instance,
exhibits strong dependence on temperature, while the other two contributions are
essentially temperature independent.

d

p
dN
6
oa

F

ad

_1___l_
di----T-r-f

I

I

I

Fig.8.I0 Total polarizability a versus frequency ar for a dipolar substan@.
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Another important distinction between the various polarizabilities emerges

when one examines the behavior of the ac polarizability that is induced by an

alternating field. Figure 8.10 shows a typical dependence of this polarizability on

frequency over a wide range, extending from the static all the way up to the ultra-
violet region. lt can be seen that in the range <o : 0 to o : cor, where aa (d for
dipolar) is some frequency usually in the microwave region, the polarizability is
essentially constant. In the neighborhood of rr.rr, however, the polarizability de-

creases by a substantial amount. This amount corresponds precisely, in fact, to the

dipolar contribution aa. The reason for the disappearance of a, in the frequency

range @ > co, is that the fleld now oscillates too rapidly for the dipole to follow,
and so the dipoles remain essentially stationary.

The polarizability remains similarly unchanged in the frequency range @d

to o);, and then plummets at the higher frequency. The frequency rrr, lies

in the infrared region, and corresponds to the frequency of the transverse optical
phonon in the crystal ar, (Section 3.12). For the frequency range , u .,, the ions

with their heavy masses are no longer able to follow the very rapidly oscillating
field, and consequently the ionic polarizibility a, vanishes, as shown in Fig' 8.10.

Thus in the frequency range above the infrared, only the electronic polariza-

bility remains effective, because the electrons, being very light, are still able to
follow the field even at the high frequency. This range includes both the visible

and ultraviolet regions. At still higher frequencies (above the electronic frequency

crr"), however, the electronic contribution vanishes because even the electrons are

too heavy to follow the field with its very rapid oscillations.
We see, therefore, that the dielectric constant of a dipolar substance may

decrease substantially as the frequency is increased from the static to the optical

region. For example, the dielectric constant of water is 8l at zero frequency, while

it is only 1.8 at optical frequencies.
The frequencies rr.r, and @,, characterizing the dipolar and ionic polarizabilities,

respectively, depend on the substance considered, and vary from one substance

to another. However, their orders of magnitude remain in the regions indicated

above, i.e., in the microwave and infrared, respectively. The various polarizabilities
may thus be determined by measuring the substance at various appropriate fre-
quencies.

Let us now evaluate the various polarizabilities, and show how measuring them

may give us information about the internal microscopic structure of a given

substance.

8.5 DIPOLAR POLARIZABILITY

We can obtain the expression for dipolar polarizability (also called orientational
polarizability) by applying the basic formulas of Section 8.2 and some elementary

statistical mechanics. Imagine that an electric field is applied to a dipolar system

in which the dipoles are able to rotate freely, as in a gas or liquid. Before the

8.5
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field was applied, the dipoles were oriented randomly, resulting in a vanishing
average polarization, but the presence of the field tends to align the dipoles, result-
ing in a net polarization in the direction of the field. It is this polarization that we

wish to calculate.
Suppose the field is along the x-direction. The potential energy of the dipole

is given, according to (8.4), by

V:-p.E:-pEcos9, (8.37)

where 0 is the angle made by the dipole with the x-axis (Fig. 8.1l). The dipole is

no longer oriented randomly. The probability of finding it along the 0-direction
is given by the distribution function

r -VlkT oE cos0/kT (8.38)

This expression is simply the Boltzmann factor, well known from statistical mech-
anics, with the potential energy being the orientational energy of (8.37). This
distribution function, shown in Fig. 8.1 I (b), indicates that the dipole is more likely
to lie along the field 0 - 0 than in other directions, in agreement with the picture
developed previously.

r/2 T

(b)

Fig. 8.11 (a) Aligning torque applied by the field to a dipole. (b) Distribution function
/(0) versus angle of orientation. (c) The integration over the solid angle defining the
orientation of the dipole. Shaded area represents the element of the spherical shell
specifying the orientation of the dipole.

The average value ofp,, the x-component of the dipole moment, is given by the

expression

P": (8.3e)

where the integration is over the solid angle, whose element is dO. By carrying
out the integration over the whole solid angle range (Fig.8.llc), we take into
account all the possible orientations of the dipole. The function/(0) is the distribu-
tion function of (8.38) with its dependence on 0 indicated, and the denominator
in (8.39) is included for a proper normalization of this distribution function. In
evaluating expression (8.39), we use the formulas p,: pcos0, dO:2nsin0d0

(c)(a)
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03
v- pt/RT

Fig.8.12 The Langevin function l(lr) versus r.

(where the factor 2z arises from the integration over the azimuthal angle 0),
f (0) taken from (8.38), and the limits on the integrals 0:0 and 0 : n. Thus

8.5

p,: [" p cos e ep| cos otkr 2n sin 0 d0 I I 
" ep| cos eftr 2tr sin 0 d0,

lJo
which, when evaluated, yieldst

where
p, - p L(u), (8.40)

(8.41)

The function L(u), known as the Langeuinfunction, is plotted in Fig.8.12.
Near the origin the function increases linearly, and one may show that L(u) = I u.

As z increases, the function continues to increase, monotonically, eventually
saturating at the value unity as u --+ @. The dipole moment p,, as a function of
pElkT, has the same shape as Fig. 8.12, except for a change of the vertical scale

by a constant p. Thus, for small values of the field, p, increases linearly, while at
very high field, p, saturates at the maximum value p. This shows that at very high
field the dipole points exactly along the field, which is a plausible result.

In most experimental situations, the ratio 11 : pElkT is very small. For
example, if we take pN 1O-2e coul'm, E:lOsVlm,and T:300'K, we find
u - l0-4, which is very small indeed compared with unity. Thus we may use the
low-field approximation

L(u):Coth (z; - 1u

D2
P,: fi78.

and ,:18 .
KT

(8.42)

f The evaluation of p, is facilitated by noting the following point: If the integral in the
denominator is denoted by Z, then it may be readily verified that the integral in the
numerator is l)ld(pElkf )fZ. That is, the derivative of Z with respect to the quantity
pElkr. Thus 1,:1010(pElkr))zlz:WA@El*r)l bs Z. Therefore !, may be
evaluated by finding Z, laking its logarithm, and carrying out the indicated
integration. The actual value one finds for Z is 4n sinh (pElkf)l@Elkf).

/----=
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That is, the net dipole moment is directly proportional
proportional to the temperature.

Dipolar Polarizability

to the field, and inversely

The result (8.42) may also be obtained from the following physical argument.
As we know, the effect of a field is to align the dipoles, whereas the effect of
temperature is to oppose this and to randomize the direction of the dipoles. There-
flore one may write

F,: p
orientational energy

thermal energy

If we substitute the values orientational energy : pE and thermal energy = kT,
we obtain

- pE pzE
rx ' kT kT'

which is the same as (8.42), except for the numerical factor ], which is of the
order of unity. We see therefore that at low field orientational energy is much less

than thermal energy, and consequently the net dipole moment p, is only a small
fraction of its maximum value p. On the other hand, at high field, orientational
energy dominates thermal energy, and consequently the net moment p" is very
close to its maximum value, that is, F* - p.

Dipolar polarizability, on the basis of (8.42), is given by

*_ p'
*o - 3kr'

r(#):*(..,.**),

(8.43)

When this is substituted into the Clausius-Mosotti relation (8.35), one
finds that

(8.44)

where a,; is the combined polarizability due to both electronic and ionic contribu-
tions. This polarizability is essentially temperature independent, as we shall see

in later sections.
If we plot the molar polarizability (MldlG,- l)l(e,+2)) versus the

inverse temperature, lfT, we should obtain a straight line the slope of which is
proportionalto p2, and its intercept should be proportional to a",. This graph
therefore leads to the determination of both the molecular dipole moment and
the nondipolar polarizability, both of which are very useful quantities.

Such a plot is shown in Fig. 8.13 for several gaseous substances. We can see

that the linear behavior predicted by (8.aa) is borne out experimentally.
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x l0-3

Fig.8.13 Total susceptibility
(Note that denominator on
materials.)

2 2.5 3 3.5 X lo-3

t/7,'K-1

- €r I versus llT for several gaseous substances.
3 for these gaseous

x
le tt side of Eq. (8.aa) is e, * 2 =

The graph indicates that the molecules CH3CI, CH2CI2, and CHCI3 are
all dipolar, while the molecules CClo and CHo, whose graphs are horizontal, are
nonpolar (no permanent moment). Indeed it is easy to understand why the
methane molecule CHa is nondipolar. Its structure, as shown in Fig. 8.14, is such
that the hydrogen atoms are located at the corners of a regular tetrahedron, with
the carbon atom at the center. There are four bonds joining the carbon to
each of the hydrogen atoms, and although each of these bonds has an electric mom-
ent, the total dipole moment of the molecule vanishes because of the symmetric
arrangement of the bonds. Note, however, that when one of the hydrogen atoms is
replaced by a chlorine atom, the resulting CH.CI molecule, no longer
symmetrical, acquires a permanent moment, in agreement with Fig. 8.13.

Fig. 8.f4 Geometrical structure of the methane molecule (CH4).

Table 8.1 gives dipole moments for various molecules, measured in the
manner indicated above. The moments are expressed in terms of the Debye unit,
which is equal to l0-2e coul . m. This convenient microscopic unit corresponds to a
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dipole of charge Q: lO_19 coul (: ell.6) and length l0-10m (: 1A).Since the

distances encountered in molecules are of the order of angstroms, and the charges

of the order of e, the moments encountered are of the order of the Debye unit'

Table 8.1

Permanent Dipole Moments of Some Dipolar Molecules

Substance Dipole moment,
debyes

Substance DiPole moment'
debyes

HF
HCI
HBr
HI
NO
CO
Nal
KCI

l.9l
Ll
0.8
0.38
0.1

0.1

4.9
6-3

NHr
cH3cl
cH2cl
cHCl3
Hzo
HzS
Soz

1.5

1.97
1.59
0.95
1.9
l.l0
1.6

8.6 DIPOLAR DISPERSION

Let us now discuss ac dipolar polarizability. When an electric field oscillates, the

dipoles in the system tend to fottow the field, flipping back and forth as the field

,"r"rr., its direction during each cycle. However, a dipole experiences some fric-

tion due to its collision with other molecules in the system. This means that some

energy is absorbed from the field, and we speak of dieleclic loss. This energy

appears eventually in the form of heat, which raises the temperature of the sub-

stance. Therefore studying the ac polarizability and the dielectric loss gives

information on the interaction between the molecules in the medium.

The equation we shall use to describe the motion of the dipolar polarization is

dpoQ)

dt | [r."r,l - r.(,)],
(8.45)

where poQ) is the actual dipolar moment at the instant t, while p'"(t) is the

saturat;a (or equilibrium) value of the moment, which would be the value

approached av po@ if the field were to retain its instantaneous value for a long time'

we have assumed that the rate of increase of poQ) is proportional to the departure

of this moment from its equilibrium value, and the quantity t is called the

relaxation time, also referred to as the collision time'

Let us illustrate the meaning of (8.a5) in a very simple situation. Suppose that

a static field is applied at the instant I : 0. In that case, pr"(r) : aaf : Po

(po is the permanent moment of the molecule), because this is the value reached
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0

Fig. 8.15 Instantaneous dipole

7

moment pd(r) versus time r in a static electric field.

by the moment long after the application of the field, where c6 is the static
polarizability calculated in Section 8.5. Equation (g.45) now reduces to

dpo . poU) po

dt r - x' (8.46)

which, as a first-order linear differential equation, can be readily solved,
yielding

paQ): ps(l - s-t/'1. (8.47)

Thus the moment rises toward its equilibrium value in an exponential fashion,
(Fig. 8.15), much like the direct-current rise in an R-L electrical circuit (of time
constant r) when the battery has just been connected.

Suppose, on the other hand, that the medium has been placed in a static field
for a sufficiently long interval for the moment to have achieved its equilibrium
value p6, and let this field be suddenry removed at / : 0. In apprying (g.45), we
now take pa":0, since this is the equilibrium value, and the equation now leads
to the solution

paQ) : po€-'/', (8.48)

showing that the moment relaxes to its equilibrium value of zero polarization
exponentially, where the rate of relaxation is determined by the relaxation time z.
The situation is the same as that of the current decay in an R-L circuit, of time con_
stant ?, when the switch has just been opened.

Let us now apply (8.45) to the case of an ac field

E(t) : A e-iat

The equilibrium moment is given by

Pa"(t) : aoQ)E(t) : aa(O)A e-i'',

where ar(O) is the static dipolar polarizability discussed in Section g.5. clearly
the expression (8.50) is the value which would be reached by poe)if the field were

(8.4e)

(8.50)
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to remain equal to E(t)at all subsequent times (that is, for /' > l). Equation (8.45)
now reduces to

(8.5 r )

Since the driving term on the right is varying harmonically in time, as indicated by
(8.49), we try a solution of the form

pr(t) : uo@)E(t) : o.a(a)A e-i'', (8.52)

where ar(ar) is, by definition, the ac polarizability. When this is substituted into
(8.51), one readily arrives at

dp|lt) po$) dr(0)--+ '-'E(t).
dlTa

4r(0)
aa\@) :;--------:-

| - l(Dt

e,(a): r' *#,

It can be seen that the ac polarizabllity is now a complex quantity, indicating that
the polarization is no longer in phase with the field. This gives rise to energy
absorption, as we shall see shortly.

To derive the corresponding expression for the dielectric constant e,(ro),
we write

.,(ar) : I + x"@)) + XdkD),

where X"(ar) and Xlco) are the electronic and dipolar susceptibilities, respectively.
We have assumed for simplicity that the icnic contribution is sufficiently small
to be negligible, and we have also ignored the local field correction, i.e., we have
used (8.18). Now in the frequency region in which dipolar dispersion is
significant-i.e., the microwave region-the electronic susceptibility is constant
because the electrons, being so light, can respond to the field essentially
instantaneously. We may therefore write the above equation as

.,(or): n2 + Xo(at), (8.54)

where n2: I * x. is the optical dielectric constant and n is the index of
refraction.

The dipolar contribution Xa(a) :..(rrr) - rz2 does not follow the field
instantaneously. There is a phase lag, as implied by the complex polarizability of
(8.53). Since ;g4 is proportional to a, (see 8.20), it follows that p(a) has the same
complex form as ar(ar) in (8.53), and one may then write (8.54) in the form

(8.s3)

(8.55)

where the numerator on the right gives the static value of the dipolar susceptibility,
that is, xa(O): e,(o)-n2. Equation (8.55) is the expression we have been
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seeking for the dielectric constant. This quantity is clearly frequency dependent,
signifying that the medium exhibits dispersion.

This dielectric constant, being a complex quantity, can be written as

8.6

and

e,(ro): e',(a) + ie,'(<o),

yielding for the real and imaginary parts

(8.56)

(8.s7a)

(8.57b)

2.0

versus log (<oz) for a dipolar

which are known as Debye's equations.

0

-2.O -1.0 0 1.0

Lng, ur

and imaginary parts e'r(a) an.d <','(a)Fig.8.16 Real
substance.

Figure 8.16 plots the components of the dielectric constant versus log cr.rz.

Note that the real part ei(co) is a constant, equal to e,(0) for all frequencies at
which co ( l/r (the quantity l/z is often called the collisionfrequency), a frequency
range which usually covers all frequencies up to the microwave region. As the

frequency increases to such an extent that co ) l/t, the real part ei(ro) decreases,

and eventually reaches the value n2, the high-frequency dielectric constant. This
confirms the statements made in Section 8.5.

Figure 8. l6 also shows that the imaginary part, ,1,' (a), achieves its
maximum, equal to (.,(0) - n2)l2,at the frequency <o: llr, and decreases as the
frequency departs from this value in either direction. The curve decreases to
half its maximum value when

c,{o)

on: (l + ot2i114,
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which gives the frequencies ot : 0.27 lr and a : 3.731r, the two values

corresponding respectively to the low and high frequencies of the ei'(ar) curve.
The function ei'(a;) is appreciable over a frequency range of more than one

order of magnitude, the range being centered around the collision frequency l/2.
The rate of energy loss in the system may be calculated as follows:

The polarization current density is

dPr:i, (8.s8)

and therefore the rate of joule heating per unit volume is given by

Q: JE, (8.se)

The polarization vector is given in terms of the dielectric constant by the relation

P(t) : eo [e,(ro) - llE(t)
: <o [(ef(ar) - l) + ie','(a))E(t),

which can also be written as

P(t) : eo .](ro) eio 81t7,

where e|(co): [(e"(a;) - l)'+ .|'21co11rtz and @ is an angle given by

(8.60)

(8.61)

(8.62)

(8.63)

, ,|'(a)
tAnA: 

-.

' e',(a) - |

It is evident from (8.61) that the polarization lags behind the field by an angle {
(recall that E(t) - s-i't1.

The density of the polarization current is now given according to (8.58) and
(8.61) by

J- -ia<oe!(a)etoE1t1
: oreo<I(r.o) ei(o-nt2) E(t),

(8.64)

rate is
rate is

which precedes the field by a phase angle Q' : e 0 + rl2). [Draw the figure.]
If we now substitute this value into (8.59) and determine the time average, we

obtain
a: +VllElcosQ'

: !eocL,._!(a)sinSlSl2
: t <ora,e,'(a) lEl2,

where we have used (8.62) in the last equation. Note that the loss

proportional to ae','(a), that is, essentially to ei'(co). Thus the loss

greatest near the collision frequency.
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Measuring the dielectric constant enables us to determine the relaxation time,
as we have just seen. This time depends on the interaction between the dipolar
molecule and the fluid in which it rotates. Debye has shown that, when we treat
the surrounding medium as a viscous fluid, the relaxation time for a spherical
molecule is given by

4n4R3

KT, (8.65)

where 4 is the viscosity of the fluid and R the radius of the molecule. For
water at room temperature, q = 0.01 poise, rR - 2A, leading to ? - 2.5 x l0-rrs,
in approximate agreement with experiment.

The time z increases as the temperature is lowered both because of T in the
denominator and because viscosity increases as temperature decreases. For exam-
ple, the relaxation time in ice at - 20'C is of the order of l0-7s, which is five
orders of magnitude greater than the value at room temperature. Table 8.2 lists
relaxation times for a few simple liquids at room temperature.

Table8.2

Relaxation Times at 20'C

Substance

E.7

Water
Alcohol
Chloroform
Acetone
Chlorobenzene
Toluene
t-butyl chloride

9.5 x l0-r1
l3
7.5
0.33

o.t2
0.75
0.48

The relaxation times in solids are much longer than in liquids, because the
dipoles in solids are more rigidly constrained against rotation, as we shall see in
Section 8.7.

8.7 DIPOLAR POLARIZATION IN SOLIDS

we derived the result (8.43) for dipolar polarizability on the basis of a model in
which the molecular dipole moment may rotate continuously and freely, except
for occasional collisions with the surrounding medium. Such a model is
applicable in gases and liquids, but not in solids, because in solids the molecular
moment does not rotate freely. It is constrained to a few discrete orientations
determined by the interaction of this dipole with neighboring ones. A dipole may
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hop back and forth between these various discrete orientations in a manner which
depends on the temperature and the electric field, but it is not a priori obvious that
the resulting polarizability would be governed by an expression similar to (8.43).

What is the actual behavior of the dipolar polarizability in a solid?
The answer depends on the particular solid and on the range of temperature.

In some solids, dipolar moments seem indeed to be frozen in their orientations, and

are unaffected by the field. In these solids, the dipolar polarizability vanishes

altogether. In other solids, however, applying a field results in transitions

between the orientations in such a manner as to result in a net polarization. One

then often finds that the polarizability shows essentially the same behavior as (8.43).

Consider, for instance, the base of hydrogen sulfide (HrS). The melting point
of this substance is T.: 188'K, yet, as Fig. 8.17 demonstrates, the dielectric

constant continues to rise as the temperature is lowered, just as it does in the
liquid state. The rise continues until a temperature To : 103"K is reached,

at which the dielectric constant drops appreciably, from 20 to 3. Below this it
remains constant. Although for the low-temperature range T < T o the dipoles

indeed seem to be frozen, in the intermediate range To < T < T,n lhe dipoles are

able to polarize, even though the substance is in the solid state. It is this ability
to polarize that we now wish to explore.

.10)

24

tm 160 2@
T,"K

Fig. 8.17 Static dielectric constant e,(0) for H2S versus temperature. [After Smyth and
Wallsl

Consider the following model which, despite its oversimplifications, illustrates

the basic concepts involved. We assume that each dipole of the lattice has only two
possible orientations, either to the right or to the left. The potential curve
is shown in Fig. 8.18, in which the potential energy is plotted versus the orientation
angle of a dipole. The bottom of the potential wells correspond to the two allowed
orientations. Intermediate orientations are forbidden because ofthe high potential
energy involved.

0L
80
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In the absence of an external field, the dipole is equally likely to point in the
left or right direction, and as a result the net polarization is zero in this equilibrium
situation. When a field is applied to the right, however, the well to the right is
lowered by an amount * pE, as shown by the dashed line in the figure, since it
corresponds to a dipole orientation parallel to the field, that is, 0 : 0 in (8.5).
At the same time, the well to the left is raised by an amount pE, corresponding
to 0 : z. The two wells are no longer equivalent, and since the left well is now
higher, it is populated to a lesser extent than the right well. Hence the net pola-
rization .

n/2

Fig. 8.18 Potential of a dipole in a solid versus orientation angle 6. The height of the
barrier @ is called the activation energy. Solid curve represents the situation in absence
of field; dashed curve the situation in presence of field.

When we denote the probability of the leftward orientation by w, it follows that

8.7

p
'+

l-w (8.66)

(8.67)

(8.68)

(8.6e)

where the term on the right is the Boltzmann factor, corresponding to a potential
difference 2pE (note that I - w is the probability of the rightward orientation).
Solving for w, we find that

e- 2 P8 /k'r
w: | +;4ierk,

which, in the condition pE ( kT which usually prevails, reduces to

w=te-2P8lkr'

The net moment along the field direction, the x-direction, is

F": p(l - w) - pw : p(l - 2r),

which, by use of (8.67), leads to

F*: P(l - e-2P8lkr).
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If one expands the exponential in
first power only, which is justified

leading to a dipolar polarizability
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powers of the field, retaining terms up to the
insofar as pE 4 k?, one finds

2p'E
rx kr'

2p'
*o - kT'

(8.70)

(8.71)

This, except for a numerical factor, is of the same form as the result (8.43) obtained
on the basis of the model of continuous rotation.

The two-orientation model explains, in principle at le-ast, the decrease in
dipolar polarizability with temperature in HrS (Fig. 8.17). At low temperatures
the field is able to orient all the dipoles to point to the right, but as the temperature
increases the dipole can flip its orientation more readily (the necessary energy
is supplied by thermal excitation), and the polarizability diminishes.

_T

Fig.8.19 (a) Potential
barrier. (b) Variation

-o/2 0 u

(a)

energy versus orientation angle
of potential Z with temperature.

To

(b)

0 in an asymmetric potential

The model we have used to describe the solid does not, however, explain the
apparent freezing of the molecular dipoles for T < To: 103'K in Fig. 8.17,

but this can be rectified by a slight change in the model. Suppose that the
potential curve versus the orientation is as shown in Fig.8.l9(a). Here again the
dipole has only two possible orientations, but the rightward orientation is favored
because it is lower than the leftward by a potential V. If V > kT, then all
the dipoles point to the right, in the absence of the field. Even when the field is

applied, the dipoles remain frozen in their original orientation, unaffected by the
field (unless the field is very strong).

To explain the behavior of HrS, the potential must depend on the temperature
in a manner somewhat like that shown in Fig. 8.19(b). The potential is large
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and constant at low temperature, but it vanishes as 7 approaches and passes To.t
In this manner, polarization is inhibited below the transition temperature To,
but it is allowed for the range T > To.

The model we used in connection with Fig. 8.18 may also be used to study
dielectric dispersion in solids. Thus the jumping frequency y may be written

V: VD e-$/*r, (8.72)

where vo is of the order of the Debye frequency, yo - 1013 Hz, and @ is the
activation energyl (see Fig. 8.18). The relaxation time (the jumping period) is
therefore

which is to be used in conjunction with the dispersion equations (8.57) to describe
dispersion in solids.

8.8 IONIC POLARIZABILITY

We turn now to ionic polarizability. We discussed this subject in Section 3.12 in
connection with the optical properties of lattice vibrations, and therefore we shall
be content here with quoting the results of that section, and with a brief discussion
of their relation to our present purpose. We found there that the frequency-
dependent dielectric constant is given by

, - 1 

"''r',yD
(8.73)

(8.74)

where or, is the frequency of the optical phonon and e,(0), e,(oo) are, respectively,
the static dielectric constant and the dielectric constant at high frequency
(co ) ar,).

In (8.7a) the first term on the right, .,(oo), contains only the electronic
polarizability, which is constant in the infrared region, where this expression is
useful. The second term on the right is the ac polarizability, the quantity
[.,(0) - .,(o)] being the static ionic susceptibility, and the frequency
dependence shown was derived in Section 3.12 from the equations of motion of
the ions. We ignored the local field correction in (8.74), since in calculating the

f The dependence ofthe potential on temperature, shown in this figure, is not as arbitrary
(or strange) as it may seem at first. Actually this potential is a "cooperative" interaction,
due to all the dipoles in the substance. As the temperature rises more and more dipoles
are able to flip over, and there are fewer and fewer dipoles in the original orientation which
produces the restraining potential.

f The exponential increase of y with temperature, given in (8.72), is due to the fact that the
dipole is able to flip only if the ion (or ions) involved has sufficient energy to go over the
potential barrier @ in Fig. 8.18.
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dielectric
bilities.

Ionic Polarizability 3E)

Equation (8.74) may also be rewritten in another form by recalling that
.,(oo) - n2, where r is the optical index of refraction, and the result is

constant we have simply added the electronic and the ionic suscepti-

(8.7s)

The dielectric constant e,(ar) is plotted versus <r.r in Fig. 8.20. For ar ( ar,,

.,(<o) : e,(0), the static dielectric constant, which is expected, since at low

frequency the ions are able to respond to the ac field essentially instantaneously.

However, in the range a ) @t, e,(co) = n2; the ionic contribution has vanished

because the field now oscillates too rapidly for the massive ions to follow.

Fig. 8.20 Dielectric constant e.(crr) versus rrr, showing dispersion in infrared region due

to optical phonons in an ionic crystal. Dashed curve indicates removal of divergence due to
collisions of ions.

The optical dielectric constant n2 may therefore be appreciably smaller than

the static dielectric constant e,(0), due to the absence of the ionic contribution.
In NaCl, for example, rt2 :2'25, while e.(0) : J's2' Table 8'3 illustrates this
point further for several alkali halide crystals.

Table 8.3

Static and Optical Dielectric Constants for Some lonic Crystals

Substance e,(0) er(a): n2

LiF
LiC
NaCl
KCI
RbCI

9.27
I t.0
5.62

4.&
5.10

1.90

2.7
2.32
2.17
2.l8
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We note from Fig. 8.20 that the substance exhibits great dispersion near the
optical phonon frequency a;,. This leads to strong optical absorption and reflection
in the infrared region, as discussed in Section 3.12.

We also observe from Fig. 8.20 that the dielectric constant diverges at @ : @t.
This divergence is attributable to the ionic susceptibility, and is expected since, as
the signal frequency becomes equal to the natural frequency of the system al, a
resononce condition is satisfied, and the response of the system becomes
infinitely large. In practice such a divergence is not observed, of course, because
of collisions experienced by the ions. These collisions arise from several mechanisms
which cause scattering of the optical phonons in the crystal, e.g., anharmonic
interaction, scattering by defects, etc., as discussed in Section 3.9. The effect of
collision is to round off the dielectric constant, as indicated by the dashed line in
Fig. 8.20, so that even though this constant is still quite large near the resonance
frequency, the troublesome divergence has been removed.

8.9 ELECTRONIC POLARIZABILITY

Now that we have discussed dipolar and ionic polarizabilities, let us look at elec-
tronic polarizability and dispersion. We shall give a classical treatment first as a
preliminary to the quantum discussiorl to follow.

Classical treatment

To find the static polarizability, we assume that the electrons form a uniform,
negatively charged sphere surrounding the atom. It can be shown through the
laws of electrostatics that when a field d is applied to this atom, the nucleus is
displaced from the center of the sphere by a distance

8.9

(8.76)

where R is the radius of the sphere (the atomic radius), and ze the nuclear
charge (see the problem section). The atom is thus polarized, and the dipole
moment, p : Zex, yields the electronic polarizability

d": 4neoR3 (8.77)

IfwesubstitutethetypicalvalueR : 10-ro m, wefindthata. ! 10-4r farad.m2,
in an order of magnitude which has actual polarizabilities given in Table 8.4.

To find the ac polarizabllity, we assume that the electrons in the atom exper-
ience an elastic restoring force corresponding to a resonant frequency rr;o.t

f Although an electron interacts with a bare nucleus according to the Coulomb law, the
classical screening of the nucleus by other electrons results in a harmonic-like force
between the electron and the nucleus.

.: (0";z*') n,
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Table 8.4

Electronic Polarizabilities for Some Inert Gases and Closed-Shell Alkali and
Halogenic Ions (in units of l0-ao farad m2).

lnert gases Alkali cores Halogenic closed-shell

He
Ne
Ar
Kr
Xe

0.18
0.35
1.74

2.2
3.6

Li+
Na+
K+
Rb+
Cs+

0.018
o.20
0.86
1.34
2.20

F-
cl-
Br-
I_

o.76
2.65
3_67

5.5

When the ac field is polarized in the x-direction, the appropriate equation of motion
for the electron is

dzx
m ,rz+ mafix: - eE. (8.78)

(8.80)

(8.8I)

Assuming an ac field E : E o e- i'' , one can readily solve for x and the polarization.
The polarizability is found to be

(8.7e)

If there are Z electrons per atom and N atoms per unit volume, the resulting
electric susceptibility is

e2 lm
u"(a) : --;-,.

@6 - (,)-

NZez leomx"(a): d_;F,
and the index of refraction is given by

n21a1: I + 
NZr"l'oT
@6 - ())'

Figure 8.21 plots the function n2(al) versus or, and shows strong dispersion at the
resonance frequency crro. Such behavior is typical of all resonant systems, and
reflects the strong interaction between the driving field and the system when the
frequency-matching condition is satisfied, that is, when e) = e)o. The
annoying divergence at @ -- @o can be removed by including a collision term
in Eq. (8.78), as we did in Section 4.11. [Indeed, the results thus obtained should
be the same as those in Section 4.1 l, if we Sot rr)6 : 0, that is, if we treat the electrons
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as free particles.] Note that at high frequencies, that is, @o 4@, n'7a1 - 1,

as for a vacuum, because at such high frequencies the electrons cannot follow the
rapid oscillations of the field.

Fig.8.21 Square of index of refraction ,21o.r; versus frequency, illustrating dispersion in
ultraviolet region due to motion of electrons.

Quantum theory

The motion of an electron in an atom is governed by quantum laws, and hence
an accurate treatment of electronic polarizability necessitates the use of quantum
mechanics (a brief review of the subject is given in the Appendix). Suppose that
the energy spectrum of an atom consists of two levels only, the ground state Eo

and the excited level Er. It can then be shown (Van Vleck, 1932),that the electronic
polarizability is given by

8.9

u"(a):e2 ,'f'o u,m (Dio - @-

a"(a): rI"#,*,

(8.82)

where orre: (E, - E)lh,the Einstein frequency for the two levels, and/,o is a
quantity expressing the coupling between the two wave functions ry'o and ry', by
the incident electric field;/ro is referred to as the oscillator strength, and is usually
of the order of unity. Note that the quantum result (8.82) is quite similar to the
classical expression (8.79). The static polarizability, a.(0) : lezfrofmazro)
from (8.82), can also be similarly related to a, of (8.77).

ln an atom containing many excited levels, expression (8.82) is generalized to

(8.83)

where ar;o : (Ei - E)lh, and 7 refers to the j'h excited level. The system now
has a number of resonance frequencies, and strong dispersion appears near each
of them.

n'(r)
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We can now see why a,(ro) is independent of temperature. Since E, - Eo is
typically of the order of a few electron volts, the thermal energy kT is too small
to excite the electrons to the higher levels; thus in the absence ofthe field the elec-
trons all lie in the ground level, which is the level to be used as the initial state in
(8.83).

Interband transition in solids

The expression (8.83) for a.Qo) is applicable to a single, isolated atom. It is thus
useful in the dielectric treatment of gases, since a gas may be considered as an
aggregate of independent atoms. However, the result (8.83) is not applicable to a
solid, since a solid's energy spectrum consists of continuous bands rather than
discrete levels, and the electron states are represented by delocalized Bloch functions
(Section 5.2) rather than localized atomic orbitals.

The quantum treatment which led to (8.83) can also be modified to yield the
appropriate expression for the case of a solid. It is convenient to begin the
discussion with ei', the imaginary component of the dielectric constant, which
represents the absorption of the EM wave by the system, as discussed in Section
4.11. It can be shown (Greenway, 1968) that ei'is given by

(8.84)

where E,(k) and E.(k) are the energies of the valence and conduction bands,
respectively, and k is the wave vector ofthe electron which absorbs the photon and
transfers from the valence to the conduction band. The integral in (8.8a) is over a
surface contour in the Brillouin zone which conserves the energy

E"(k) - E,(k): h@. (8.8s)

[The momentum conservation is guaranteed because k has the same value in both
bands, as shown in Eq. (8.84). The photon's momentum is negligibly small
(Section 3.a).1 The quantity /],(k) is the band-to-band oscillator strength, as in
Eq. (8.82).

Figure 8.22 illustrates the application of (8.84) to a direct-gap semiconductor.
The integration region consists of a sphere surrounding the origin, part of which
is shown in the figure. It can be shown (see the problem section) that
E"(k) - E,(k) : Eoth2k2l2p, where E, is the energy gap and p: m,m6l(m. * my)
is the electron-hole reduced mass. Substituting this into (8.84), and carrying out
the integration, one finds

A r . f,,(k)
e',' (a) : ;, J 

d, 
V pffirX nt,

Bel,'(a):frfn.- E)',', (8.86)

where B : rc(2plh13t2f,"A. This expression is valid for En <ha le','(a):0
for ho < Eo, as discussed in Section 6.12), and shows that ei'(o) increases
parabolically with co near the absorption edge; that is, ei'(or) - (ha - Es)1t2,

as noted in Section 6.12.
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Conduction
band

Ec$)- Elk)=ha

Valence
band

Fig. 8.22 The various states in k-space involved in the absorption process at light
frequency crl.

When expression (8.84) is applied to bands of more complicated shapes, the
integration may become exceedingly complex. In general, the integration
contour is multiply connected, and consists of several distinct "pockets" in the
Brillouin zone, each of which satisfies Eq. (8.85). But note also that the largest

contribution comes from those points in the zone at which E"(k) and E,(k) have

the same slope, because such points, known asthe critical points, produce singular-
ities in the integrand of Eq. (8.84).

Figure 8.23 shows ei'(rrl) for Ge, and correlates the various "shoulders" in
the curve with the critical points responsible for the high absorption values. One

can see that studies of optical absorption can be highly useful in the determination
of band structure, and particularly in delineating the various critical points in the
zone.

The real component of the dielectric constant ei(rrr) describes the polarization
aspects of the electronic system (Section 4.ll). Although e',' and ei describe
physically distinct phenomena, they are, in fact, mathematically related by an

important theorem known as the Kramers-Kronig relation (Brown, 1967). In
particular, the static dielectric constant may be written as

k,

(8.87)

where P implies that the principal part of the integral is to be taken. Thus we may
evaluate e,(0) by substituting <i'(ar) from (8.84) and carrying out the frequency
integration which illustrates that, like <i'(a.r), e,(0) is also directly dependent on
the band structure of the solid. Note in particular that a significant correlation
between e.(0) and the energy gap of the solid exists; since ei'(o) : 0 for hro < E*

e,(0) : .;(0) :, * + f [, ff ar,
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Fig.8.23 (a) Imaginary dielectric
(b) The band structure of Ge.
[After Phillips, 1966]

we may write Eq. (8.87) as

. troot I t+,l,ot to,o,ol* 
t*,*,oj

constant ej'(ar) versus photon energy ha for Ge.
Dashed arrows indicate various critical points.

e,(o): r.+r"i@a., (8.88)

where ar6 : Enlh is the frequency at the absorption edge. Clearly, the smaller the
gap, the smaller <r;o, and the greater e,(0), because of the factor co-1 in the inte-
grand. This explains why e.(0): 16 in Ge, whose En= I eV, while e,(0):5.6
in NaCl, whose E, : 7 eV.

2.*2.
Ge Y +Y ,* '

- + tJ

-Experiment 

' i ri
---Theory ll,l

I
I

aa* Ar

-/ 
rzs*

\
\

tru \\I Li -1"

t-l



fi6 Dielectric and Optical Properties of Solids 8.10

Interband electronic polarizability and its associated dielectric constant are
responsible for the optical properties of solids, particularly insulators and semi-
conductors, in the visible and ultraviolet ranges, because only such polarizability
is effective at high frequency ranges. Also of importance in insulators and
semiconductors is exciton absorption (Section 6.14).

As pointed out, the critical points assume a particularly significant role in the
interpretation of interband-transition spectroscopic data. Since these points
usually occur at symmetry points or along symmetry direction in the BZ, a

knowledge of the interband energy difference E"(k) - E,(k) and the symmetry
character (i.e., the location in the zone) of these points are highly useful in
elucidating the band structure of the solid. Although the energy difference may
be determined from the curve of ei'(ro) versus rrr (for example, Fig. 8.23), the
accuracy is limited due to the background absorption associated with the
noncritical regions of the zone. A special technique, known as modulqtion
spectroscopy, has been developed in recent years to overcome this difficulty. The
technique consists basically of devising an experimental procedure for extracting
the first (or higher) derivative, de,'(a)fdot, as a function of co. The reader can
readily see that one can locate the critical points more readily on the derivative
curve than on the original curve. Experimentally, this is achieved by superposing
on the solid, in addition to the signal, an external time-dependent perturbation
varying with a modulation frequency e)^, and measuring the relative change in
the dielectric function Le','le',' induced by the perturbation. Many different
types of perturbations have been used, e.g., temperature and hydrostatic pressure.
The symmetry character of the critical point is determined by applying a vector
perturbation, like an electric field, or a tensor perturbation as a uniaxial pressure,

For a brief review, see J. E. Fischer and D. E. Aspner, Comments on Solid State
Physics, IV, l3l; IV, 159. For a thorough treatment, see M. Cardona, 1968,

Modulation Spectroscopy, New York, Academic Press.

8.10 PIEZOELECTRICITY

In this and the following sections we turn to certain phenomena associated
with ionic polarization. The term piezoelectricily refers to the fact that, when a

crystal is strained, an electric field is produced within the substance. As a result
of this field, a potential difference develops across the sample, and by measuring
this potential one may determine the field. The inverse effect-that an applied field
produces strain-has also been observed. (It was discovered in about 1880.)

The piezoelectric effect is very small. A field of 1000 V/cm in quartz produces a

strain of only l0-7. That is, a rod I cm long changes its length by 10A.

Conversely, even small strains can produce enormous electric fields.
The piezoelectric effect is often used to convert electrical energy into

mechanical energy, and vice versa; i.e., the substance is used as a transducer.
For instance, an electric signal applied to the end of a quartz rod generates a

mechanical strain, which consequently leads to the propagation of a mechanical
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wave-a sound wave-down the rod. (One can reconvert the mechanical energy
into electrical energy at the other end of the rod, if desired, by picking up the
electric field produced there.) Quartz is the most familiar piezoelectric substance,
and the one most frequently used in transducers.

The microscopic origin of piezoelectricity lies in the displacement of ionic
charges within the crystal. In the absence of strain, the distribution of the
charges at their lattice sites is symmetric, so the internal electric field is zero.
But when the crystal is strained, the charges are displaced. If the charge distribution
is no longer symmetric, then a net polarization, and a concomitant electric field,
develops. It is this field which operates in the piezoelectric effect.

P:0

L9__9___o_ l

Stress

I ,:o
[C- o-- o I
lo o ol
L_e___g___o__l

t
Stressed

r----------'looo
oo@

(a) (b)

Fig. 8.24 Crystal with center of inversion exhibits no piezoelectric effect. (b) Origin of
piezoelectric effect in quartz: crystal lacks a center of inversion.

It follows that a substance can be piezoelectric only if the unit cell lacks a
center of inuersion. Figure 8.24(a) shows this, and demonstrates that if a center of
inversion rs present, it persists even after distortion, and consequently the
polarization remains zero. However, when there is no center of inversion, as in
Fig. 8.24(b), distortion produces a polarization. We can now understand, for
example, why no regular cubic lattice can exhibit piezoelectricity.

Table 8.5

Some Piezoelectric Crystals (in Decreasing Value of Piezoelectric Coefficient)

Crystal Chemical formula Relative strength

Unstressed Unstressed

o2

Rochelle salt
ADP
KDP
a-Quartz

NaKCnHoOu .4HzO
NH4H2PO4
KH2PO4
sio2

Very strong
Strong
Moderate
Weak

Of the 32 crystal classes, 2O are noncentrosymmetric, and these are candidates
for piezoelectric materials. The lack of inversion center, however, is not sufficient
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to guarantee piezoelectricity, and only relatively few substances, some of which are
listed in Table 8.5, exhibit this phenomenon.

Another common application of piezoelectrics, in addition to their use in
transducers, is in delay lines. When an electric signal is converted into a mechanical
wave, it travels through a quartz rod at the velocity of sound, which, since it is

much less than the velocity of light, leads to considerable delay of the signal .[Also
piezoelectrics and related electro-optic crystals are now widely used in the fields
of laser technology and modern optics. For instance, the cavity length of a laser

may be varied continuously in a controlled manner by the application of a voltage
to a piezoelectric crystal situated at one end of the cavity.]

8.11 FERROELECTRICITY

We have often commented that ionic susceptibility is not sensitive to variations in
temperature. Although this is true for most substances, there is a class of
materials which exhibits a marked departure from this rule: the ferroelectric
materials. In these substances,the static dielectric constant changes with temperature
according to the relation

8.ll

C€r: B + , _ rr, T ,7", (8.8e)

where B and C are constants independent of temperature. This relation is known
as the Curie-W eiss law', and the parameters C and Tq are called the Curie constant

and Curie temperature, respectively.
This behavior is valid in the temperature range T > Tr. In the range T < Tr,

the material becomes spontaneously polarized, i.e., an electric polarization develops
in it without the help of an external field. (This phenomenon is analogous to the

spontaneous magnetization which takes place in ferromagnetic materials.)
A phase transition occurs at the temperature 7.. Above the transition

temperature, the substance is in the paraelectric phase, in which the elementary
dipoles of the various unit cells in the crystal are oriented randomly. The
dielectric constant is given by (8.89), whose form is illustrated in Fig. 8.25a.

Below the transition temperature, the elementary dipoles interact with each

Fig. 8.25 (a) Dielectric constant €r versus 7 in a ferroelectric substance. (b) Spontaneous
polarization P" versus 7 in a ferroelectric substance.

(b)(a)
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150 2N
7,'K

(a)

100 150 2N 250 300 0 r3o r7o 2lo zso 290 330 370 4loT,"K T,"K
(b) (c)

Fig.8.26 (a)Log€rversusTforRochellesaltalonga-,b-and,c-axes. (AfterHalbliitzel)
(b) Log €r versus Tfor KDP along a- and c-axes. (After Busch) (c) €r versus Tfor BaTiO..
(After Merz)

other, and this gives rise to an internal field, which lines up the dipoles. The
direction of this field and the associated polarization lie in a certain favgrable
orientation in the crystal. Figure 8.25(b) shows the variation of the spontaneous
polarization P" with temperature for 7 < 7.. This polarization increases gradually
as the temperature is lowered.

The second term in (8.89) is usually much larger than the first. Thus, although
typically B = 5, e, = 1000 or even larger near the transition temperature. We
may therefore ignore B, and write to a good approximation

*'4{
Q1

2

I

C

x 103

€r: T-7" (8.e0)
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There are three major ferroelectric groups: The Rochelle salt group, the
KDP (potassium dihydrogen phosphate) group, and the perovskites group, headed

by barium titanate. Table 8.6 gives data on these substances, and Fig.8.26 presents
the variation of temperature of the dielectric constants. Note in particular the enor-
mous value of the dielectric constant in barium titanate, for which e, - l0s near
the transition temperature.

Table 8.6

Ferroelectric Data

Crystal Chemical formula Ic('K) C, 
OK P", coul/m2

Rochelle-salt NaK(CnHnO). 4H2O 297 (upper)
group 255 (lower)

LiNH4(C4H4O6. H2O 106

KDP group

Perovskites

KH2PO4
KD2PO4
RbH2PO4
CsH2AsOa

BaTiO.
SrTiO.
Wo.

178

3 100

1.7 x lOs

267 x l}-s

220

5330
9000
5600

26,000
3000

[at 278"K]

[es]

te6l

Ie0]

lze6)
t4l

123

213
147

143

393

32
223

The microscopic model

Let us now inquire into the microscopic source of ferroelectricity. The most
obvious explanation is to assume a dipolar substance and use the Lorentz local
field correction obtained in (8.30). This leads to a dielectric constant

r+3x
l-*r (8.e 1)

If we set X = Xa, thus neglecting electronic and ionic contributions, which is
appropriate in dipolar substances, and substitute for X, from (8.43), we find that

(8.e2)

where C:2Np2 lgrok and T.: Np'l9rok. If we ignore the term T in the
numerator, it is evident that Eq. (8.92) has the same form as (8.90). In
particular, the dipolar model predicts that e, diverges as T approaches T. from
above, and consequently one expects the system to become unstable and make a

transition to a new phase, the "ferroelectric phase." The divergence at Tc is

referred to as the polarization cqtastrophe.

T+C
r-Tc'
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Despite the fact that the dipolar model seems to lead naturally to ferro-
electricity, the model is inadequate to account for observations. If we apply this
model to water, for instance, for which N = 1 x l02e m-3 and P:0.62 debye,

it predicts that water would become ferroelectric at Tc : I 100'K. In fact, however'

water never becomes ferroelectric, not even below its freezing point.
Another fact which underscores the failure of the model is its prediction that any

dipolar substance should become ferroelectric at a sufficiently low temperature.
Instead, however, all known ferroelectrics are nondipolar in nature. We must

therefore look elsewhere for the explanation of ferroelectricity.
Ferroelectricity is associated with ionic polarizability. To see this, let us con-

sider an ionic substance. The ac dielectric constant is given by

where we have used (8.74), and denoted X,Q)a? by the constant ,4.

static dielectric constant, according to (8.93), is given by

^Ae,(ar): n" *----;-=,' @;-@-

^Ae,(0;: n' + g.

(8.e3)

The

(8.e4)

This expression shows that e,(0) increases as crr, decreases, and indeed e.(0) diverges

aS Al, + 0.
But why should <o, decrease? We shall now show that the inclusion of the

local field does indeed lead to a reduction in the value of this frequency.
According to Eqs. (3.83 and 3.84), the transverse motion for the unit cell is

governed by the equation

u *4 * 2fiu:0, (8.95)

where p is the reduced mass of the unit cell, u the relative displacement between

the ions, and B the force constant between the ionst (Section 3.6). This

expression leads to a mode of oscillation with a frequency

(8.e6)

which is the frequency of the long-wavelength optical phonon.

t The force constant is denoted here by B rather than ot, as in Chapter 3, in order to avoid
any confusion with polarizability.

.2a
@;:-

p
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The equation of motion (8.95), however, requires modification if we consider
the local field correction, because there is a polarization P : Ne*u associated with
the displacement ,r, and hence a Lorentz electric field

(8.e7)

(8.e8)

where we have used Eq. (8.96).
The frequency a,lf is less than a,, the frequency obtained by neglecting the

local field. It is easy to see the reason for this reduction: When rhe lattice is
displaced, a local field is created in the same direction as u. The effect of this
field is to reduce the restoring force, and consequently the oscillator frequency.
The origin of the force constant B lies in the short-range elastic forces between the
ions, while the local field is due to the familiar long-range Coulomb forces
between these ions.

The expression (8.94) for the dielectric constant should now be replaced by

e,(O) : n2 (8.ee)

The effect ofthe local field is to increase the dielectric constant. Ifthe second term
on the right of (8.98) is large enough to cancel the first term, then a.lf - 0, and
the dielectric constant becomes infinite. What happens, in fact, is that the
system feels the instability and makes an adjustment to avoid the divergence, i.e.,
undergoes a transition to the ferroelectric phase. It is thus expected that the system

*_ P _Ne*u- 3t'

where e* is the effective charge on the ion. Because of this field there is now an
electric force acting on the unit cell given by 2exE, which modifies the equation of
motion (8.95) to

d2u
PZp * 2Bu:2e*E-

If one substitutes for E from (8.97), and rearranges the equation, one finds that

d2u / 2Ne*2 Iu#* \rP -;;)u: o,

which is the equation for a harmonic oscillator of frequency rof given by

_.*2 2p 2Ne*
wt

lt Seou

.,li:fi-!'*,
5eoF

A
I-' ,!''
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would also undergo a simultaneous transition into a more stable crystal structure.
This is indeed found to be the case in all ferroelectric transitions.

Tc-7,'K

Fig.8.27 Transverse lrequency <of versus (Tc - T) in antimony sulphoiodide (SbSI).
(After Perry and Agrawal, Solid State Comm.8,225, 1970)

Figure 8.27 illustrates the observed decrease in phonon frequency as the
temperature approaches the Curie temperature. Note that the frequency here is
about l0 cm-l, or v:3 x l}e Hz, considerably smaller than a typical optical
phonon frequency of l0t3 Hz.f

#*N
or- o
Ti4+ o

Fig.8.28 Structure of BaTiO, in cubic phase (above 76).

As a concrete example of ferroelectric structure transformation, Fig. 8.28
shows the appropriate structure for BaTiO.. Above the Curie temperature the
structure is cubic, but as the temperature is lowered to Tr, the Ba2+ and Tia*
ions are displaced as shown, producing a slightly compressed cubic structure.
Although the displacement is small-only about 0.15 A-it is enough to give the

50

q

t30
o
*:, 20

l0

-Y)
G-T

IN,'M,, -c)

t The mode whose frequency vanishes at the Curie temperature is called the sof mode.
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observed polarization. It is this relative displacement of the internal structure which
gives the model its name: the displaciue model.

We have shown that the Lorentz calculation of the local field is misleading
when applied to dipolar substances; yet we have used the same procedure for
evaluating this field when it is associated with the ionic polarization. There is no
contradiction here, because Onsager showed, many years ago, that while the
Lorentz procedure is valid in evaluating the field associated with electronic and
ionic polarizabilities, the procedure is inapplicable when one is dealing with
orientational polarizability. Onsager demonstrated that the actual local field
associated with the dipolar polarizability is much smaller than that provided by
the Lorentz procedure, and it is this overestimation which leads to the erroneous
conclusions concerning ferroelectricity. You can find a detailed discussion of
this point in Frrilich (1958).

Ferroelectricity, like piezoelectricity, can occur only in noncentrosymmetric
crystals, The requirements of ferroelectricity are, however, more stringent,
requiring the existence ofa favorable axis ofpolarity. Only l0 crystal classes have
sufficiently low degrees of symmetry to permit the occurrence of ferroelectricity.

Ferroelectric domains

A substance which is in its ferroelectric phase undergoes spontaneous polarization,
but the direction of the polarization is not the same throughout the sample. The
material is divided into a number of small domains, in each of which the
polarization is constant. But the polarization in the different domains are
different, so that the net total polarization of the whole sample vanishes in the
equilibrium situation (Fig. 8.29).

Fig. 8.29 Domain structure in an unpolarized ferroelectric sample.

When an external field is applied, the domains whose polarization is parallel
to the field grow, while the domains of opposite polarization shrink. These growing
and shrinking processes continue as the field increases until, at a sufficiently high
field, the whole of the sample is polarized parallel to the field.

We shall discuss the concept of domains, and the associated hysteresis loop,
in detail in connection with ferromagnetic materials (Section 9.11).

t I
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SUMMARY

The dielectric constant and molecular polarizability

The dielectric constant e is defined by the equation

D: eE,

where D is the electric displacement and E the average field inside the dielectric.
In terms of the polarization P, the displacement vector D is

D:eoE+P.

The polarization P arises as a result of the polarization of the molecules, and is
given by

P: Np,

where N is the concentration of molecules and p the electric moment of each of
these molecules. The electric moment is proportional to the field, and is given by

P: aE'

where a is the molecular polarizability. Substituting this into the above
equations, we may express the relative dielectric constant in terms of the
polarizability,

€,:l.l(Na/.o).

This result, which ignores the local-field correction, holds well in gases.

In liquids and solids, however, the local-field correction is appreciable, and must
be included. We then find the local field to be

Eto": E + (]eo)P,

which leads to the Clausius-Mosotti relation,

€r_l:No
e, I 2 3.o'

Dipolar polarizability

Molecular polarizability is, in general, the additive result of dipolar, ionic, and
electronic contributions. Statistical treatment of dipolar polarization gives the
following expression for dipolar polarizability,

ao: p2 f3kT,

which decreases as the inverse of the temperature. The dielectric constant is

e, : I + Na";/eo + Np2l3eokT.
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By plotting €r versus lfT, one may determine both the permanent moment p
and the electronic-ionic polarizability a",. This information sheds light on the
geometrical structure of the molecules.

The ac dipolar polarizability may be calculated by assuming that the
dipole does not follow the field instantaneously, but with a certain relaxation time r.
One then finds the frequency-dependent dielectric constant

e,(o) : n' *'&-J,

where r is the optical index of refraction and <, (0) the static dielectric constant.
As the frequency co increases from the range @ 4llr to the range lfu 4a,
the dipolar contribution decreases from the value [e,(0) - nzf to 0, because at
high frequencies the dipoles no longer follow the field. The imaginary part of the
dielectric constant is related to the energy absorbed by the dielectric from the field.

Ionic polarizability

Ionic crystals exhibit dispersion in the infrared region, as a result of the strong
interaction of the electromagnetic wave with the optical phonons of the substance.
The dielectric constant is

" e,(O) - n2
e,(c.r): n, * y_@lS,

where <r-r, is the optical phonon frequency. As ar varies from the range @ < @t

to the range @, ( <o, the ionic contribution decreases from [.,(0) - n21 to O,

because the ions no longer follow the field at high frequencies.

Electronic polarizability

A simplified classical treatment of static electronic polarizability yields

a" : 47c'oR3,

where R is the atomic radius. The classical ac electronic polarizability, obtained
by treating the electron as a classical particle bound to the remainder of the atom
by a harmonic force, is

e2 lmd,\@): ;A=;:2,

where aro is the natural oscillation frequency of the bound electron. This yields
an optical dielectric constant nz given by

n2: | *Yl:{.
a'o - a''

Quantum treatment Ieads to a similar result.



References 417

In solids, dielectric and optical properties are related directly to the structure
of the energy band of the substance.

Piezoelectricity

In noncentrosymmetric ionic crystals, the mechanical straining of a substance
produces an internal electric field, and vice versa. This property is widely utilized
in transducers, i.e., devices whrch convert electrical into mechanical energy, and
vice versa.

Ferroelectricity

A ferroelectric substance is one which exhibits spontaneous polarization below a
certain temperature. Above this Curie temperature 7. the dielectric constant is
given by the Curie-Werss law,

e-:B+ C
, T_7,

The ferroelectric property can be explained by the displaciue model: As the
temperature approaches ?. from above, one of the optical phonon modes becomes
so soft-due to the local-field correction-that €r + @, causing a structural phase
transition and a concomitant spontaneous polarization.
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QUESTIONS

l. Let A and .B refer to two different atoms. Using symmetry arguments, determine
whether the following types of molecules are dipolar or not: AA, AB, ABA (rec-
tilinear arrangement) , ABA (triangular arrangement),,483 (planar arrangement with
.4 at center of triangle), ABa (tetrahedral arrangement). Give one example of each
type.

2.ThestaticdielectricconstantofwaterisSl,anditsindexofrefractionl.33. Whatis
the percentage contribution of ionic polarizability?

3. For a typical atom, estimate the field required to displace the nucleus by a distance
equal to l/o of the radius. [Refer to Eq. (8.79).]

4. Explain physically why ionic polarizability is rather insensitive to temperature. Do
you expect a slight change in temperature to lead to an increase or a decrease in the
polarizability as I rises? Explain.

5. Referring to Table 6.4, one notes that the polarizabilities of the alkali ions are
consistently lower than those of the halide ions. Give a physical, i.e., qualitative,
explanation of this fact.

6. In the classical treatment of electronic ac polarizability, the restoring force on the
electron is assumed to have a harmonic form. How do you justify this in view of the
fact that the force due to the nucleus has a coulomb form which is very different from
the harmonic form? Give an expression for the natural frequency coo in terms of the
properties of the atom.

7. If one sets @o equal to zero in (8.85), one obtains the same electron dielectric
constant found in Section 4.! l. Explain why.
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8. Suppose that a light beam passing through a semiconductor is absorbed either by
electrons excited from the valence band to the conduction band (fundamental
absorption), or by excitons. Describe an experimental electrical procedure for testing
which of these two mechanisms is the operative one.

PROBLEMS

l. Using Coulomb's law, derive the expression (8.2) for the field of an electric dipole.
Assumethatd4r.

2. a) Derive Eq. (8.3), that is, show that the torque exerted on a dipole p by a uniforn.r
field E is given by

1:pxg.
b) Derive Eq. (8.a), that is, show that the potential energy of a dipole in a field is

given by
y: _ pE cos0,

where 0 is the angle between the dipole and the field.
3. The dipole moment for a general distribution of charges is defined as the sum

P : lci ri,

where q, and r, are the charge and position, respectively, of the ilh charge, and the
summation is over all the charges present. The choice of the origin of coordinates is
arbitrary.
a) Show that the above reduces to expression (8.1) for the special case of two equal

and opposite charges. (Take an arbitrary origin.)
b) Prove that if the charge system has an overall electrical neutrality, then the dipole

moment is independent of the choice of origin.
4. Determine the dipole moment for the following charge distributions: 1.5 prcoul each at

the points (0,3), (0,5), where the coordinate numbers are given in centimeters.
5. A parallel-plate capacitor of area 4 x 5 cm2 is filled with mica (.,: 6). The

distance between the plates is I cm, and the capacitor is connected to a 100-V battery.
Calculate:
a) The capacitance of this capacitor
b) The free charge on the plates
c) The surface charge density due to the polarization charges
d) The field inside the mica. (what would the field be if the mica sheet were

withdrawn?)
6. Prove that when a molecule is polarized by a field E, a potential energy is stored in this

molecule. The value of this energy is t a 82, where a is the molecular polarizability.
what is the value of this energy for an Ar atom in a field of 103 volt/m? The
polarizability of this atom is 1.74 x l0-ao farad-m2.

7. a) Show that the surface charge density of the polarization charges on the outer
surface of a dielectric is given by

oP: P'fi'
where fi is a unit vector normal to the surface.
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b) Prove Eq. (8.25). That is, show that the depolarization field in an infinite slab,
in which the field is normal to the slab, is given by

Sr: - LP.
€9

c) The depolarization field E, depends on the geometrical shape of the specimen.
When the shape is such that the polarization inside is uniform, the depolarization
tactor L is defined such that

s,: - LP-
€g

Show that the depolarization factor for an infinite slab with field normal to the slab
is l, while for a slab in which the field is parallel to the face,Z : 0. Also show that
1 : j for a sphere, and L :0 or j for a cylinder, depending on whether the
fleld is parallel or normal to the axis of the cylinder, respectively. put these
results in tabular form.

8. a) Prove Eq. (8.28), showing that the field E3 due to the dipoles inside a spherical
cavity vanishes in a cubic crystal.

b) Suppose that the Lorentz cavity is chosen to have a cubic shape. Calculate the
field E2 due to the charges on the surface of this cavity.

c) Does this new choice of cavity modify the value of the local field? Explain. Use
your answer to evaluate the field 6. due to the dipoles inside the cavity. (You may
take the crystal to be cubic.)

9. The field E. of Eq. (8.24) due to the dipole inside a cavity depends on the symmetry of
the crystal, and in general does not vanish in a noncubic crystal. Assuming that this
field has the form

E3: (ble()P,

where D is a constant, calculate the dielectric constant e, in such a substance.
10. Show that Eq. (8.33) reduces to (8.18) in gaseous substances, i.e., substances in

which Na/e6 is very small.
I 1. Establish Eq. (8.a0) by carrying out the necessary integration.
12. a) Expand the Langevin function L(u)of (8.41) in powers of rz up to and including

the third power in u, and show that

L(u): ull- u3l+S+ ..., u 41.
b) Calculate the field required to produce polarization in water equal to lO/o of the

saturation value at room temperature.
13. a) Using Fig.8.l3 and Table 8.1, calculate the molecular concentration of CHCI3,

CHzClz, and CHrCI at which the measurements reported in the figure were made.
b) Calculate the electronic-ionic polarizability a", in each of these substances.

14. The molar polarizability of water increases from 4 x l0-5 to 6.8 x l0-s m3 as the
temperature decreases from 500'K to 300"K. Calculate the permanent moment of the
water molecule.

15. calculate the real and imaginary parts of the dielectric constant ei(or) and e','(a) for
water at room temperature. Plot these quantities versus (o up to the frequency
l}r2 Hz. (Use semilogarithmic graph paper.)



Problems 421

16. We expressed the absorption in dipolar substances in terms of the imaginary
dielectric constant, e','(a). It is also frequently expressed in terms of the so-called
loss angle 6, which is defined as

tan6:

where the quantity tan 6 is called the loss tangent.
a) Show that the electric displacement vector is

D : ,olrl2 * e'r'2)rlz 
"ia 

u.

b) Calculate the loss tangent as a function ofthe frequency, and plot the result versus
@T.

c) Show that the power absorbed by a dielectric (per unit volume) is

Q: tese',atan5E2.

Express the loss angle tan 6 in terms of the ratio of the dissipated energy to the
energy stored in the dielectric.

d) Calculate the loss tangent in water at room temperature at frequency 10 GHz.
Also calculate the energy dissipated per unit volume, given that the field strength
is 5 volts/m.

Assuming that the jumping period r decreases exponentially with temperature as in
(8.73), explain how the real and imaginary parts ol the dielectric constant ei and
e',' vary with temperature. Plot the results versus l/7. (Assume that all quantities
other than r are independent of temperature.) Does the loss tangent increase or
decrease with temperature? Explain.
In deriving the result (8.74) for the dielectric constant involving ionic polarizability, it
was assumed that the ions experience no collision or loss during their motion.
Postulate the existence of a collision mechanism whose time is r,, and reevaluate the
(complex) dielectric constant. Plot the real and imaginary parts ei(rr;), ei'(ro)
versus (o, and compare with Fig. 8.20.
The crystal NaCl has a static dielectric constant .,(0) : 5.6 and an optical index of
refraction n: 1.5.

a) What is the reason for the difference between e,(O) and n2?

b) Calculate the percentage contribution of the ionic polarizability.
c) Use the optical phonon for NaCl quoted in Table 3.3, and plot the dielectric

constant versus the frequency, in the frequency range 0.lar, to l0 crrr.

Using the data in the previous problem and Table 8.4, calculate the nearest distance
between Na and Cl atoms. Calculate the lattice constant of NaCl, and compare the
result with the value quoted in Table 1.2. (Sodium chloride has an fcc structure.)
Calculate the static polarizability for the hydrogen atom, assuming that the
charge on the electron is distributed uniformly throughout a sphere of a Bohr
radius. Also calculate the natural electron frequency r.r.ro.

Show that expression (8.80) leads to a static susceptibility equal to that given by
(8.77). Use elementary electrostatic arguments to find @o in terms of atomic
characteristics.

ef_;,
€t

17.

18.

19.

20.

21.

))
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Modify expression (8.80) for the electronic polarizability to include the presence of a
collision mechanism of time r. Evaluate the high-frequency dielectric constant,
both real and imaginary parts.
Carry out the steps leading to the expression (8.86) for ei'(o) due to interband
transition in solids.
The Kramers-Kronig relations, which lead to (8.88), are derived
Read the discussion there and present your own summary.
a) An acoustic oscillator is made of a quartz rod. Explain

frequency of this oscillator is given by

23

24.

25.

26.

in Brown (1966).

why the resonant

l's
y 

- -.2l

27.

28.

29.

where / is the length of the rod and u" the velocity of sound in the specimen.
b) Show that this frequency is also given by the expression

v:r lI
2l 

^J 
P'

where I' is Young's modulus and p the mass density of the rod.
c) Taking I/:8.0 x l0ll dyne/cm2 and p:2.6 g/cm3 for quartz, calculate the

length of a 5-kHz-oscillator.
d) Calculate the potential difference across the rod for a strain of 2 x l0-8.

The piezoelectric coefficient P/S: 0.17 coul/m2.
Many applications of piezoelectric crystals are discussed in Mason (1950). Make a
summary of these.
In evaluating the local field correction in (8.97), we neglected the electronic contri-
bution. Reevaluate the correction including this contribution,,and calculate the new
optical phonon frequency o.r| and the dielectric constant.
A dielectric has a very small electrical conductivity. However, if a very strong electric
field is applied, the conductivity suddenly increases as the field reaches a certain high
value. This phenomenon, known as dielectic breakdown, is due to the fact that a
strong field ionizes the electrons from their atoms, and as these electrons are
accelerated they ionize other atoms, etc. Read the discussion of dielectric breakdown
presented in N. F. Mott and R. W. Gurney (1953), Electronic Processes in lonic
Crystals, second edition, Oxford University Press, and write your own review of
this phenomenon.
The discussion of dielectric and optical properties in the text was limited to the
linear region, i.e., the field is sufficiently small that polarization is a linear function of
the field. Nonlinear effects become important at high fields, which are now
conveniently available from laser sources. Read the discussion of such effects given
in A. Yariv (1971), Introduction to Optical Electronics, Holt, Rinehart, and
Winston, and write a brief summary.

30.
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9.I INTRODUCTION

The magnetic properties of matter have fascinated physicists, chemists, and
engineers for many years. In recent times these properties have been the subject
of especial interest because of the information they yield about the constitution of
matter, and the interactions involved therein. This information, being truly
interdisciplinary, is of interest not only to physicists, but also to other scientists
and engineers. Magnetic materials have wide-ranging technical applications, from
transformer cores in electrical machinery, to magnetic tapes in computers.

After a brief elementary review, we shall discuss the magnetic behavior of free
independent atoms, and then the magnetic properti,es of conduction electrons in
ordinary metals. Next we shall talk about ferromagnetic insulators and metals, with
special attention to the internal magnetic field responsible for ferromagnetism.
We shall also cover the practical subject of ferromagnetic domains and their role
in the magnetization process. Then we shall move on to the various types of
magnetic resonances. This subject is very important because it yields information
on the dynamical aspects of magnetic moments, unlike the previous studies which
gave only information of a static nature. The chapter ends with a discussion of spin
waves, the excitation modes in a spin system.

9.2 REVIEW OF BASIC FORMULAS

In this section we shall review some of the basic formulas which will be used in
this chapter; most of these should be familiar to the reader from his study of
elementary physics. Let us begin with the fundamental concept of the
magnetic dipole momert. Consider two magnetic charges, q^and -q,, which are
equal and opposite. They form a magnetic dipole whose moment is given by

P-: 4^d, (e.t1

where d is the vector joining the negative to the positive charge, as shown in Fig. 9.1.
Note the similarity between this definition and that used in connection with the
moment of an electric dipole, (8.1). This similarity will appear frequently in our
discussion.

-Q*B

Fig.9.1 Magnetic dipole and torque exerted on it by a magnetic field.

When our magnetic dipole is placed in a magnetic field whose induction is B,
then, becarrse a charge 4. experiences a force

F : q,B,

4U

(e.2)
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Review of Basic Formulas

the dipole itself (composed of two opposite charges) experiences a couple whose
torque is

1 : p. X B. (9.3)

The effect of this torque is to turn the dipole and align it with the field, in a manner
similar to the way an electric field aligns an electric dipole. Because of the torque,
the dipole has an orientation potential energy given by

V : - p..B: - p^Bcos9, (e.4)

where 0 is the angle between the field and the dipole directions. The minimum
energy, - lt-B, occurs at 0 : 0, where the dipole lies along the field. The maximum
energy is achieved at 0 : r, where the dipole is oriented opposite to the field.

We have defined the magnetic dipole in terms of magnetic charges, but such
charges do not, in fact, exist. All the known magnetic properties of matter are
attributable to the rotation of electric charges. We recall from elementary physics

that an electric current loop acts like a magnetic dipole of moment

lt^: IA, (9.5)

where 1 is the current and A the area of the loop. The direction of p., which
is a vector, is normal to the plane of the loop, and such that the current flows
counterclockwise relative to an observer standing along p, (Fig. 9.2).

Fig.9.2 Magnetic dipole moment pm associated with a current loop; l represents electric
current. Vector L is angular momentum of electron producing the current.

The current loops in an atom are composed of rotating electrons. In this
case we can establish a simple relation between p- and the angular momentum
L of the electron. Noting that / : e(al2n), A: nr2, and L: mr2(D, where o.r

is the angular velocity, we may show with the help of (9.5) that

(e.6)l'-: ( - *)'

The negative sign indicates that p, is opposite to L. The coefficient - el2m
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Magnetism and Magnetic Resonances 9.2

relating p- to L is called the gyromagnetic ratio. The usefulness of (9.6)
derives from the fact that it expresses p- in terms of L, which is a familiar quantity
in quantum mechanics (see Appendix).

In addition to its orbital rotation, the electron also rotates about its own
axis, a motion referred to as sprr?. Thus there is a magnetic moment associated
with the spin, and this moment may be related to the spin angular momentum S.

The relation is

p':(-,,t )t' (e.7)

(e.8)

t from (9.3), and for L from (9.6),

which shows that the spin gyromagnetic ratio (- elm) is twice the value obtained
for the orbital motion in (9.6). The classical derivation of this ratio does not apply
to the spin motion because this motion is entirely quantum in nature.

Fig. 9.3 Precession of a dipole moment p in a magnetic induction B.

Let us now think about the dynamics of a classical dipole in a magnetic field.
The equation of motion is

dL
dt:a'

where t is the torque. If we substitute for
we obtain

xB. (e.e)

(The subscript on p will be deleted henceforth, for brevity, and since this leads to
no confusion.) This relation represents a precessional motion (see Fig. 9.3), of
frequency

d1r

-: -dt

e\
2*)t'

eB
@t-: 

-,
zm

(e. l 0)
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known as the Larmor frequency- The dipole simply precesses around the direction
of the field, always maintaining the same angle. For an electron at B :0.1 Wb/m1
or, = l0 GHz.

This statement concerning the Larmor precession seems to cast some doubt
on our earlier assumption that the dipole tends to align itself with the field.
But in the precession, the dipole merely rotates around B without ever getting closer

to the direction of the field. The point is well taken. In a pure Larmor precession

no alignment takes place. In practical situations, however, this precession is usually
accompanied by numerous collisions, during which the dipole loses energy. As it
does so, it gradually approaches the direction of B, until eventually it lines

up exactly with the field. This process of gradual magnetization is referred to as

relqxation. We shall discuss it in more detail in Section 9.12.

The potential energy of the dipole, Eq. (9.4), can also be written as

eE: * ^ L,B,
lm

(e.l l )

where we have used (9.6). Here B is taken to be in the z-direction, and L, is the

z-component of the angular momentum. We recall that, according to quantum

mechanics (Section A.4), the component L, is quantized by L,: msh, where m,

is an integer which takes the values - l, - I + 1,"', I - l,/, and where /is the
orbital quantum number for the angular momentum of the electron. Thus Eq.
(9.11) may also be written as

r: (!\ a*,.
\2m/

The ratio p, : (ehl2m) is called the Bohr magneton, and has the numerical value

9.3 x 10 24 J m'lwb. We may therefore write

B: prBmy (e.r2)

As la, takes its various allowed values, the energy also takes its appropriate values

in the presence of the magnetic field. For I: l,mttakes the values - 1,0, and l,
and the corresponding three energy levels are illustrated in Fig. 9.4.

ml

I

0

-l

Fig. 9.4 Splitting of an atomic level by a magnetic field (Zeeman effect) for / : 1.
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The splitting of an atomic level by the magnetic field in the manner just
described is known as Zeeman splitting. The interval between any two adjacent
levels is the same, and is given by

L,E : paB. (e. r 3)

Note that the lowest level, m,: - l, corresponds to the orientation in which L
is the opposite to B, and hence p is parallel to B, in agreement with the classical
picture. Similarly, the highest level, mr: l, corresponds to the orientation in
which p is opposite to the field.

In the case of the spin, the Zeeman energy (9.12) is given by

E :2psBm", (e.r4)

where the factor 2 arises from the fact that the spin gyromagnetic ratio is twice
the classical value. Since the spin quantum number 5 : ], the allowed values are
n,: - j and * j. The corresponding Zeeman splitting, composed of only two
Iines, is shown in Fig. 9.5. The difference in energy between the two levels is

L,E :2psB,

which is double the orbital separation.

(e. r s)

Fig. 9.5 Ze,eman effect for the spin case.

It is useful to establish a correspondence between the classical and quantum
descriptions of the dipole motion in a magnetic field. Note that for the orbital
case, theenergy splitting LE: psB is alsoequal to ha.,where at1 is theLarmor
frequency given by (9.10). Thus the quantum frequency for the transition between
the Zeeman levels is equal to the classical Larmor frequency. The same correspon-
dence applies to spin, where both the Larmor frequency and the Zeeman spacing are
twice as large.

In this section the orbital and spin angular momenta have been treated
separately, but when an electron has both types of momenta, as frequently
happens, there is an interaction between them, and the two should be treated
simultaneously. This situation and its bearing on magnetism will be discussed
in Section 9.6.
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9.3 MAGNETIC SUSCEPTIBILITY

A magnetic field can be described by either of two vectors: The magnetic induction

B or the magnetic field intensity af , which are related in vacuum by

B: pot,

where pe :4n x l0-7 H/m is the permeability of free space.

When a material medium is placed in a magnetic field, the medium is
magnetized. This magnetization is described by the magnetization vector M, the
dipole moment per unit volume. The magnetic induction inside the medium is

then given by the relation

B: potr * loM, (e.17)

which you should recall from basic physics. The induction is composed of two
parts: The part pohf generated by theexternal sources, and the part preM, due

to the magnetization of the medium.
Since the magnetization is induced by the field, we may assume that M is

proportional to df . That is,

M: Xff, (e. l 8)

the proportionality constant X being known as the magnetic susceptibility of the

medium.t When this expression for M is inserted into (9.17), it leads to

p: po(J -t x)

(e.1e)

(e.20)

(e.21)

is known as the permeability of the medium. It is often more convenient to use the

relative permeability ;r,, which is defined oS trr, : p/p6. Therefore

p,:l*x, o.22)

a relation connecting the permeability and susceptibility of the medium.t

t The magnetic susceptibility X bears no physical relationship to the electric susceptibility
of Section 8.2, although the same symbol is used for both. No confusion should arise,
however, since electric susceptibility will not appear in this chapter'

f ,Our discussion assumes that the medium is magnetically isotropic. But real crystals are
anisotropic, and the susceptibility and permeability are represented by second-rank
tensors. In order to avoid mathematical complications, however, we shall ignore
anisotropic effects in our treatment.

(e. r 6)

B:po(l +ilyf.

Thus the vectors B and lf are proportional to each other,

B: Fff,
and the proportionality constant
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Our approach here clearly parallels that used in the electric case (Section 8.3),
and relation (9.22)is the analog of (8.21). Note, however, that in writing (9.18)
we assumed that M is proportional to lf , the external field, and in doing so we in
effect ignored such things as demagnetization field, local field correction, etc.,
which we felt obliged to include in the electric case. The neglect of these factors is
justifiable in the magnetic case because M is very small compared to lf, (typically
X: Mltr - 10-s), unlike the electric case, in which X - 1. But when we deal
with ferromagnetic materials, where M is quite large, this omission is no longer
tenable, and the above effects must be included, as we shall see in Section 9.11.

9.4 CLASSIFICATION OF MATERIALS

Materials may be grouped into three magnetic classes, depending on the sign and
magnitude of the susceptibility. Those materials for which x is positive-that is,
for which M is parallel to Jf 

-are 
known as pqramagnelic, whereas those for which x

is negative-that is, for which M is oppositeto lf-are diamagnetic. Table 9.1
gives susceptibilities for some representative substances, and emphasizes once more
the smallness of the magnitude of ;.

Table 9.1

Magnetic Susceptibilities (per cm- 3)

Material

9.4

Paramagnetic
AI
Mn
w

Diamagnetic
Cu
Au
Hg
Water
H

* 2.2 x lO-5
+98
+36

- 1.0 x l0-s
- 3.6

- 3.2

- 9.0

- 0.2 x l0-8

l) Paramagnetic materials. The best-known examples of paramagnetic materials
are the ions of transition and rare-earth ions. The fact that these ions have incom-
plete atomic shells is what is responsible for their paramagnetic behavior.
2) Diamagnetic materials. Ionic and covalent crystals are diamagnetic. These sub-
stances have atoms or ions with complete shells, and their diamagnetic behavior
is due to the fact that a magnetic field acts to distort the orbital motion.
3) Ferromagnetic materials. The magnetic suscepiibility of ferromagnetic materials
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may be very large (l0t cm-3) and a ferromagnetic substance becomes

spontaneously magnetized below a certain temperature. Examples are the

ferromagnetic metals Fe, Co, and Ni, and their alloys. We shall discuss them,

and enumerate some of the interesting phenomena they display, later in this

chapter.

9.5 LANGEVIN DIAMAGNETISM

Let us now establish the fact that the effect of a magnetic field on the orbital
motion of an electron is such as to produce a diamagnetic susceptibility. Consider

an electron rotating about the nucleus in a circular orbit, and let a magnetic field

be applied perpendicular to the plane of the paper, as shown in Fig. 9.6(a). Before

this field is applied, we have, according to Newton's second law,

Fo : ma2or, (e.23\

where Fo is the attractive coulomb force between the nucleus and the electron, and

rrrn is the angular velocity. The magnetic moment of the electron is

tto: IA: tror', (e.24)

where r is the radius of the electron's orbit. Thls moment is parallel to the field

for the geometry and sense of rotation shown in the figure.

Fig. 9.6 Atomic origin of diamagnetism. (a) The Lorentz force F1- opposes the Coulomb
force Fo; v is the electron velocity. (b) Three-dimensional nature of electron orbits.

When the field is applied, an additional force starts to act on the electron:
the Lorentz force - e(v x B). For the geometry of Fig. 9.6, the effect is to
produce a radially outward force given by eBra, and Eq. (9.23) should therefore
be amended to

(b)(a)

F6-eBra:m@2r. (e.2s)
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Thus the angular frequency is now different from oto, and its value may be
determined from this relation. The solution of this quadratic equation in ar, in
the limit of the small field, is given by

9.5

which shows that the rotation of the electron has been slowed down. This
reduction in frequency produces a corresponding change in the magnetic moment
which, according to (9.24), is

eB
tD:0)o--I-r

.Lm

A,p:-(#)'

A,1t: - l#),

u^e2-)- lNzY'1'
6m

(e.26)

(e.2e)

(e.27)

Since the moment parallel to the field has been reduced, the induced moment is
opposite to the field, i.e., the response of the electron is diamagnetic.

It can be readily appreciated that if we initially chose an electron which was
rotating counterclockwise, the initial moment would be opposite to the z-axis,
i.e., negative. The effect of the field would then be to speed up the electron,
resulting in an even more negative moment. That is, the induced moment would
again be negative-diamagnetic and given by (9.27). Thus the diamagnetic
response of an orbiting electron holds good in general, and in fact may be shown
to follow directly from the familiar Lenz's law.

When applied to an atom, Eq. (9.27) requires some modification, because the
electron orbits around a spherical surface rather than in a circle (see Fig. 9.6b).
However, only the cross section normal to the field is effective in the diamagnetic
response, and hence on the average we should replace r2 in 19.271 by Zrr,the new r
being the radius of the sphere, which leads to

(e.28)

we can now readily evaluate the magnetic susceptibility. Given that the atom
has Z electrons and that there are N atoms per unit volume, the susceptibility
x: Ml.* : poNZL'plB, or

where ru is the average square radius of the electron. The averaging is done over
all the occupied orbitals in the atom. This expression yields values which are of
the same order of magnitude as those obtained by measurements. Thus for
N : l02e m-3, Z : lo, rz : 1g-zo ffi2, and appropriate values for the
constants in (9.29), we find X - l0-t, in agreement with the values listed in
Table 9.2.
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Table 9.2

Diamagnetic Susceptibilities per Gram-Ion for Rare-Gas Atoms and
for Ions of Filled Shell Structure

Element Element

He
Ne
Ar
Kr
Xe
F-
cl-
Br-

Li+
Na+
K+
Mg'*
Ca2+
Sr2+

- 1.9 x 10-6

- 7.6

-19
-29
-44
- 9.4

- 24.2

- 34.s

0.7 x 10-6
6.1

14.6

4.3
10.7
18.0

Diamagnetic susceptibility is observed most clearly in those solids in which
the atomic shells are completely filled. Examples of these are provided by rare-gas

crystals, and also ionic crystals, whose magnetic susceptibilities are given in Table
9.2. ln the case of covalent crystals, which are also diamagnetic, Eq. (9.29) can be

applied only to the core electrons. The electrons forming the bond have orbitals
which are far from circular, and hence the derivation leading to (9.29) does not
apply here. The susceptibility of a covalent crystal may be written as

X:I:-f 7, (e.30)

where 1; includes the effect of the core electrons (the ions), and ,1 the effect of the
bonding electrons. One can determine the value of tr for a specific bond empirically
in a given compound, and use this value in other compounds in which it occurs.

When some of the atomic shells in a solid are incompletely filled, the
substance then has a paramagnetic contribution in addition to the diamagnetic

contribution. The net susceptibility is the difference between the two
contributions, but since the paramagnetic one is usually larger, it masks the

diamagnetic contribution.

9.6 PARAMAGNETISM

An atom whose shells are not completely filled has a permanent magnetic moment,

which (as we shall see) arises from the combination of the orbital and spin motions
of its electrons. For the time being we shall accept this moment as a given quantity,
and discuss the effect of a magnetic field on such a moment-first classically,

and then quantum mechanically.
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Classical theory

The potential energy of a magnetic dipole in a magnetic field is given by

V: _F.B,

according to (9.4). The energy is least when the moment is parallel to the field,
and thus the moment tends to line up with the field. The effect of temperature is
to randomize the direction of the dipole. The result of these two competing
processes is that some magnetization is produced. We can solve the problem
analytically the same way we solved the problem of dipolar electrical polarization
(Section 8.5), which leads to

11" : 1tL(o), (e.31)

where 17, is the average of p,, the component of the moment along the direction of
the field (taken in the z-direction) and L(u) is the Langevin function,t

IL(u):Cothu--
u

,UBanO D:-.
KT

(e.32)

Figure 9.7 shows a plot of f, versus ltBlkT. We see that, at low field, p, is
proportional to the magnetizing field B, but as ,El increases in value, p, begins to
saturate, eventually reaching the maximum value p. It achieves this maximum
value when the dipole lies exactly parallel to the field.

0l
D: pB/kt

Fig. 9.7 Average dipole moment component rz versus 11 : ltBlkT. Dashed line represents
low-field approximation.

(e.33)

f Langevin derived the formula (9.31) for dipolar magnetization before its electrical
analog. His treatment was adapted to the electrical case by Debye.

ln most practical situations, the ratio pBlkT is very small compared to unity.
Thus for lt: ps, 8:0. I Wb/m2,and T : 100'K, this ratio is about 0.001.
Therefore we may approximate the function L(u) = ] u, which leads to

i-: !'B
3kr
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9.6

The magnetizarion is given by

N t'BM : Nlt,: 3lrr,
where N is the atomic concentration, and the susceptibility is given by

N PoP'
" 3kr

which, you will note, is of the same form as the electric susceptibility of (8.a3).

Equation (9.3a)is referred to as the Curie lav'. If one substitutes N: 1026m-3

and T:100'K, one finds that y - l0-s, in agreement with observation (see

Table 9.1).
The susceptibility given by Eq. (9.3a) is also referred to as the Langeuin para-

magnetic susceptibility. Note in particular that 1 is inversely proportional to
temperature. This is in marked contrast to the diamagnetic susceptibility, which is

essentially temperature independent.

Quantum theory

We can express the magnetic moment p of the atom in terrns of the total angular

momentum J as

Paramagnetism 435

(e.34)

(e.35)

where g is a constant known as the Landi factor. Its value depends on the

relative orientations of the orbital and spin angular momenta. Expression
(9.35) is the same as the classical expression (9.6), except for the factor g.

Fig.9.8 Quantum description of paramagnetic susceptibility. Arrows under p indicate
the orientation of the moment for the various levels.

When a magnetic field is applied to the atom, a Zeeman splitting results

(Section 9.2). The Zeeman energy is

E- - tt'B: gpsBmi. (e.36)

If the angular momentum quantum number j is j, the component mj can take the

values mj: - j or * ], resulting in a double splitting, as shown in Fig. 9.8. The

,:, ( - *)',
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436 Magnetism and Magnetic Resonances

difference in energy between the levels is

A, E : OpsB.

Note that the lower level, m, : - i, corresponds to the moment
to the field, while the upper level corresponds to the moment opposite
field.

The magnetization M is given by

(e.37)

parallel
to the

(e.3e)

(e.40)

M:gttr(N,-Nz), (e.38)

where gps is the z-component of the moment when it is fully aligned with the
field, and Nr, Nz are the concentrations of atoms in the lower and upper levels,
respectively. These two concentrations are related by

where the term in the exponent on the right is the familiar Boltzmann factor.
Since these concentrations also satisfy the relation N1 + N2 : N, where N is the
total concentration, we may use these two equations to solve for N, and Nr.
When we do this, and substitute the results into (9.38), we obtain

N, : o- LErkr

Nr

oX 
- 

o r
M -- Ngprfi = NSps tanh(x).

where x : gpuBlkT.

x- gpsB/kr

Fig.9.9 Magnetization M versus x : gltBBlkT for a system withi : +.

The magnetization is plotted versus the field in Fig. 9.9. At low field, M is
proportional to B, but at higher fields M begins to saturate, eventually reaching
the maximum value Ngpu when all the dipoles are in exact alignment with the
field. Qualitatively, this is the same conclusion reached earlier on the basis of the
classical treatment.

Let us take a closer look at the physical process of magnetization in the quantum
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treatment. For j : |, the dipole can take only two orientations, one parallel to

the field, corresponding to the lower level of Fig. 9.8, and the other opposite to
the field, corresponding to the upper level. As the magnetic field is raised, the

spacing between the levels increases and the dipoles drop from the higher to the

lower level, leading to magnetization.
For a weak field, the ratio x ( I and tanh x - x, which, when substituted into

(9.40), leads to the susceptibility

PoN (g Pr)'x:7. (e.41)

This is the same as the classical result, provided we assume that the effective

moment of the atom is given by p"r, : J3 Spr.
Our quantum derivation was based on the simplest type of Zeeman splitting,

i.e., one involving only two levels. If j were larger than j, then, in general, the

number of levels would be (2i + l), which leads to the susceptibility

PoN P?rr
!:-"3kr' (e.42)

where p.1s : ppr, and

Iteff : Pps and p: suj+ Dltt2 (e.43)

The number p is called the effectiue number of Bohr magnetons for the atom.

(we shall consider the derivation of (9.42) in the problem section.) we can see,

therefore, that quantum-mechanical treatment leads to the same conclusions as

classical treatment.

The atomic origin of magnetism

We can explain the atomic origin of magnetism by considering orbital and spin

motions, and the interaction between them. The total orbital angular momentum

of the atom is defined as

, : T,,,
where the sum is over all the electrons. Since the sum over a complete shell is

zero, however, we must carry out the summation only over the incomplete

shell. Similarly, the total spin angular momentum is

. : I',,
where again the sum is over the incomplete shell. The total angular momentum

of the atom J is given by

J:L+S. (e.M)
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The angular momenta L and S interact with each other via the spin-orbit
interaction. [This interaction exists above and beyond the Coulomb interaction,
between the electrons and the nucleus, and the interaction between the electrons
themselves.] Because of this interaction, the vectors L and S are no longer con-
stants. However, the total angular momentum J remains constant.f Thus the
vectors L and S precess around J, as indicated in Fig.9.l0.

Fig.9.10 The spin-orbit interaction, including derivation of the Lande factor.

The dipole moments, 14: - @l2m)L and pr: - (elm)S, corresponding
to the orbital and spin momenta, also precess around J. However, note that the
total moment p: pr * ps is not collinear with J, as in the pure moments pL
and pr, but is tilted toward the spin because of its larger gyromagnetic ratio.
The vector p makes an angle 0 with J, and this moment also precesses around J.
Since the precession frequency is usually quite high, only the component of p along
J is observed; the other component averages out to zero. One can show that

*),
where

ltu,g:pCOSg:, (-

(e.4s)

This is the g-factor, which we have used previously. For a pure orbital motion,
s:0,,t: l, and g: l, while for a pure spin motion l:0, j:r, and g:2.
These values agrce with the discussion in Section 9.2. Note now that the p we used
earlier in this section is equal to lo,e, where the subscript was dropped.

t In effect, we are saying that each of the vectors L and S applies a torque on the other
which causes it to precess. There is no torque on the total momentum J, however, and
hence it does not precess; i.e., it remains constant.
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How may we determine l, j, and.r for an atom if all we know is the number of
electrons in the incomplete shell and the angular momentum of this shell? We do
this by following Hund's rules.

i) The spin number s takes its maximum value allowed by the exclusion principle.

ii) Then / also takes its maximum value allowed by the same principle, consistent
with (i).

iii) If the shell is less than half full, j : I I - .t l, and if the shell is more than half
full,7: 7 1 r.

Let us apply these rules to the carbon atom. There are only two electrons in
the 2p subshell (/ : l) which can accommodate a maximum of six electrons. To
determine the angular momentum, we can make the two spins parallel to each
otherwithout violatingthe exclusion principle, resulting in s -- 2 x s : 2 x j : l.
The maximum / consistent with the exclusion principle is / : I (why?). Since the
shell is less than half full, j: ll- sl:0. Thus in the ground state the carbon
atom has zero magnetic moment, and exhibits no paramagnetism. In most cases

involving incomplete shells, however,T is other than zero, and the atom then shows
paramagnetism.

Rare-earth ions

Experiments on rare-earth ions in crystals show that they obey the Curie law, with
an effective number of magnetons in agreement with the theory of spin-orbit inter-
action. Table 9.3 confirms this. In these ions, therefore, the angular momenta L
and S are strongly coupled, and the moment of the ion can respond freely to the
external field.

Table 9.3

Effective Number of Magnetons for Rare-Earth Ions

Ion Ground state

Theory
p: s Ji Q'+ r)

Experiment (Eq.9.a3)
p

La3+
Pr3+
Nd3+
Dy'*

,So

tHo
tlr,,
uHrr,

0
3.58
3.62

10.6

Diamagnetic
3.6
3.6

10.6

This result is not surprising. In these ions-from La to Lu in the periodic
table-the 4f shell is incompletely filled. The outer 5p shell is completely filled,
while the 5d and 6s shells which are still further out are stripped of their
electrons to form the ionic crystal (Fig.9.ll). Thus the only incomplete shell is



40 Magnetism and Magnetic Resonances

the 4f shell, and this is the one in which the magnetic behavior occurs. Since
electrons in this shell lie deep within the ion, screened by the outer 5p and 5d shells,
they are not appreciably affected by other ions in the crystal. Magnetically their
behavior is much like that of a free ion. Typical values for the spin-orbit and the
crystal-fieldinteractionsinthesematerialsarel03cm-rand l02cm-l,respectively.f

Fig. 9.11 Various shells in rare-earth ions. The incomplete 4f shell is screened from
other atoms by the fifth shell. (The sixth shell is usually ionized.)

Iron-group ions

Table 9.4 shows that iron-group (ferric or ferrous) ions behave magnetically as if
i - s; that is, only the spin moment can contribute to magnetization. We can
see this by means of the following argument. The magnetic properties of this
group of elements are due to the electron in the incomplete 3d shell. Since

Table 9.4

Iron-Group Ions

9.6

Ion Ground
state

,So
,D,,,
,F,
oFr,,
usrz
tDo
,D,,,

Theory

p:sJi(i+1)

Experiment
(Eq.9.a3)

p:2vs(s+ D p

K+, Ca3+
Ti3+, v4*
v3+
v2+, cr3+, Mn4+
Mn2+, Fe3+
Fe2 

+

Ca2*

0
r.55
1.63

0.77
s.92
6.70
3.55

0
1.73

2.83
3.87
5.92
4.90
1.73

Diamagnetic
1.7

2.8
3.8
5.9
5.4
1.9

t Another reason why the free-ion treatment applies to the rare-earth ions is that the spin-
orbit interaction is strong in these substances, because this interaction is proportional to
Z, the atomic number of the element concerned, and all the rare-earth ions have large Z's.
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electrons in this outermost shell interact strongly with neighboring ions, the
orbital motion is essentially destroyed, or quenched, leaving only the spin moment
to contribute to the magnetization. In other words, in these ions, the strength
of the crystal field is much greater than the strength of the spin-orbit interaction,
just the reverse of the situation in rare-earth ions. Typical strengths of the crystal
field and spin-orbit interactions in the iron group are l0a cm-1 and 102 cffi-1,
respectively.

9.7 MAGNETISM IN METALS

Most metals are paramagnetic. There are also a few important metals which
exhibit ferromagnetism. In this section we shall treat only paramagnetic metals;
we shall discuss ferromagnetic metals in Section 9.10. The conduction electrons
in the metal make two contributions: A paramagnetic one due to their spins, and a
diamagnetic one due to their orbital motions, induced by the magnetic field. The
net electronic susceptibilily is the difference between these contributions.

Spin paramagnetism

Spin paramagnetism arises from the fact that each conduction electron carries a

spin magnetic moment which tends to align with the field. In calculating the
susceptibility, one may be inclined to use result (9.41), with;: s: *, which gives

- _ poN tti
^- kr '

(e.46)

where we have also set g : 2, since we are dealing with a pure spin motion.
This shows that y - I lT .

Experiments show, however, that spin susceptibilities in metals are
essentially independent of temperature. The observed values are also
considerably smaller than predicted by (9.46). These facts clearly cast strong
doubts on the applicability of (9.a1) to the conduction electrons.

The source of the difficulty lies in the fact that Eq. (9.41) was derived on the
basis of localized electrons obeying the Boltzmann distribution. The conduction
electrons, on the other hand, are delocalized, and satisfy the Fermi-Dirac distri-
bution (see Section 4.6).

The proper treatment, taking this into account, is illustrated in Fig. 9.12. ln
the absence of the field, half the electrons have spins pointing in the positive
z-direction, and the other halfin the negative direction (Fig.9.l2a), resulting in a

vanishing net magnetization. When a field is applied along the z-direction, the
energy of the spins parallel to B is lowered by the amount prB, while the energy of
spins opposite to B is raised by the same amount (Fig. 9.12b). The situation
which ensues is energetically unstable, and hence some electrons near the Fermi
level begin to transfer from the opposite-spin half to the parallel-spin one, lead-
ing to a net magnetization. Note that only relatively few electrons near the Fermi
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level are able to flip their spins and align with the field. The other electrons, lying
deep within the Fermi distribution, are prevented from doing so by the exclusion
principle (see the similar discussion in Section 4.6).

Fig. 9.12 (a) When B : 0, the two halves of the Fermi-Dirac distribution are equal,
and thus M : 0; (b) When a field B is applied, spins in the antiparallel half flip into
the parallel half, resulting in a net parallel magnetization.

We can now derive a good estimate of the magnetic susceptibility. The elec-
trons participating in the spin flip occupy an energy interval of thickness about
equal to psB (Fig. 9.12). Thus their concentration is given by N"rr : i g (E)pnB,
where g(Eo) is the density of states at the Fermi energy level [the factor t is

inserted because g(Eo) as defined in Section 6.ll includes both spin directions,
while in the present circumstances only one spin direction is involved in the
flipping]. Since each spin flip increases the magnetization by 2pu (from - ls to
* ls), it follows that the net magnetization is given by

M - N"r2pr:*g(E)ps2Ua: p2ug(Ep)B,

leading to a paramagnetic susceptibility

Xo = popzrg(E). (9.47)

The susceptibility is thus determined by the density of states at the Fermi level ;

and the quantity 9(E), which is so important in transport phenomena
(Section 6.18), plays a major role here also. One can thus obtain information on

S@) by measuring xr.
According to (9.47),lo is essentially independent of temperature. This is seen

from the fact that temperature has only a small effect on the Fermi-Dirac
distribution of the electrons, and consequently the derivation leading to (9.47)
remains valid.

9.7

(b)(a)

B=0
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If we apply (9.47) to a band of standard type, we have g(Eo) :3N|2EF
[see Eqs. (5.63) and (4.34)]. The equation then leads to

T
xp=1x -lp (e.48)

where X is the classical susceptibility of (9.46) and T. the Fermi temperature
(Er : kT). Since 7o is very large, often 30,000'K or higher, we can see that

X, is smaller than X-by a factor of about 102-again in agreement with
experiment.

In transition metals, the paramagnetic susceptibility is exceptionally large,
because g(8.) is large, by virtue of the narrow and high 3d band.

Diamagnetism

Conduction electrons also exhibit diamagnetism on account of the cyclotron motion
they execute in the presence of the magnetic field, as shown in Fig.9. 13. Each
electron loop is equivalent to a dipole moment whose direction is opposite to that
of the applied field.

Fig. 9.13 Diamagnetic effect of cyclotron motion in metals. Electrons at the boundaries
tend to cancel the effect o[ the bulk electrons.

Classical treatment shows that the total diamagnetic contribution of all
electrons is zero. The effect of the closed electron loops is canceled by the effect
of the electron traveling in the opposite direction along the boundaries.t

f Note that the area of the loop at the boundary is equal to the total area of all the inner
loops. Since the magnetic moment of a current loop is proportional to the area of the loop,
it follows that the moment of the surface loop just cancels that of the inner loop. The fact
that the total magnetic susceptibility for any charge and current is zero, according to
classical electrodynamics, is known as the Van Leeuwen theorem. For a proof, see

Van Vleck (1932).
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Quantum treatment, which is too complicated to present here (see Martin, 1967),

shows that there is a nonvanishing diamagnetic contribution which is equal to
one-third of the spin paramagnetic susceptibility given by (9.a8). The net response
is therefore paramagnetic.

Table 9.5

Susceptibilities of Some Monovalent and Divalent Metals x 106

(Room Temperature)

9.8

Experimental Theoretical

Element X,o,", (expt) X"o* Xelectron : Xrctul- X"or. Xelectron: Xspin * Xorbir

K
Rb
Cu
Ag
Au
Mg
Ca

0.47
0.33

- 0.76

- 2.1

- 2.9
0.95
1.7

- 0.31

- 0.46

-2.0
- 3.0

- 4.3

- 0.22

- 0.43

0.76
0.79
1.24
0.9
1.4

1.2

2.1

0.35
0.33
0.65
0.60
0.60
0.65
0.5

In comparing theoretical results with experiment, one must also include the
diamagnetic effect of the ion cores, which can be treated according to Section 9.5.
Table 9.5 gives the results for some metallic elements.

9.8 FERROMAGNETISM IN INSULATORS

Ferromagnetlsz is the phenomenon of spontaneous magnetization. The best-
known examples of ferromagnets are the transition metals Fe, Co, and Ni,
but other elements and alloys involving transition or rare-earth elements also
show ferromagnetism. Thus the rare-earth metals Gd, Dy, and the insulating
transition metal oxide CrO2 all become ferromagnetic under suitable circumstances.

Ferromagnetism involves the alignment of an appreciable fraction of the
molecular magnetic moments in some favorable direction in the crystal. The
fact that the phenomenon is restricted to transition and rare-earth elements
indicates that ft is related to the unfilled 3d and 4f shells in these substances.

Ferromagnetism appears only below a certain temperature, which is known
as the ferromagnetic transition temperature or simply as the Curie temperature.
This temperature depends on the substance, but its order of magnitude is about
1000'K, as seen from Table 9.6. Thus the ferromagnetic range often includes the
whole of the usual temperature region.

Above the Curie temperature, the moments are oriented randomly, resulting
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9.8 Ferromagnetism in Insulators 445

in a zero net magnetization. In this region the substance is paramagnetic, and its
susceptibility is given by

C

" r-ri
which is known as the Curie-Weiss lav'. The constant C is called the Curie
constant and T,-the Curie temperature. Expression (9.49) is of the same form
as (9.34), the Langevin susceptibility, except that the origin of temperature is shifted
from 0 to Tr. Figure 9. l4 illustrates the applicability of the Curie-Weiss law to Ni ;

notable deviation appears only near the Curie point.

Table 9.6

Curie Temperature and Saturation Magnetizations for Ferromagnetic Substancest
(n u is the number of magnetons per unit at 0"K)

Substance Tt,"K M", at 0"K r", at 0oK

(e.4e)

Fe
Co
Ni
Gd
Dy
CrO,
MnOFe2O.
FeOFerO.
YrFerO,r(YIG)

r 043

I 403

63r
289

r05

5r5
4r0
480
r30

1.74 x 106 amp'm-r
r.45
0.5

2.01

2.92

0.2

2.22
1.72

0.54
7.t0
l0.l

2.03

5.0
5.0

t Temperatures listed are actual ferromagnetic transition temperatures, which are slightly lower
than those values lor the Curie law in the paramagnetic region. The law does not hold well very
near the transition point.

Fig. 9.14 The reciprocal of susceptibility per gram of Ni (a ferromagnetic substance)
near the Curie point (358"C). The quantity p is the mass density. Dashed line represents
extrapolation from high-temperature region.
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Note that Eq. (9.49) predicts a divergence in X as the temperature is lowered
toward 7r. This is an indication of the oncoming transition to the ferromagnetic
phase.

In the temperature range T < Ty, spontaneous magnetization is referred to as

saturation magnetization. This magnetization increases as the temperature is

lowered (Fig.9.l5), reaching its maximum atT :0"K. Thus, as the temperature
is reduced, more and more dipoles line up in the magnetization direction.
Table 9.6 gives values of saturation magnetization in various materials.

0 0.2 0.4

Fig. 9.f5 Ratio of saturation magnetization at temperature 7nto that at 0'K, Ms(T)l MsQ)
versus i"/7, for Fe, Co, and Ni. Solid curve is obtained from Weiss theory, Eq. (9.55),
tori:4.

Ferromagnetism appears in both metals and insulators. It is simpler to treat
the latter materials, however, and therefore we shall limit our discussion here to
these materials. We shall talk about ferromagnetic materials in Section 9.10.

The molecular field theory

In the ferromagnetic region the moments are magnetized spontaneously, which
implies the presence of an internal field to produce this magnetization. We shall
follow Weiss and assume that this field is proportional to the magnetization

ffw: )M, (e.s0)

where I is the l/erss cotlstont. For agreement with experiments, l" turns out
to be very large-about l0a. The origin of this enormous field .*'* will be

discussed later in the section, but for the moment we shall take it as a

phenomenologically given field which acts to align the molecules. Ultimately,
of course, it must arise as a result of the interaction between the molecules, and is
referred to as the molecular field.
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We can use (9.40) to evaluate the magnetization produced by the field tr *.
Assuming for simplicity thatT: j, for which (9.40) is applicable, we write

M : N g ttatanh (pog plM I kT), (e.5 r )

in which the field is entirely due to the internal field of (9.50). This is a transcendental
equation in M, which we shall solve in the following graphical fashion. We denote
the argument of the hyperbolic function by x. That is,

KT
M:-.Y.

ttog lta)

Equation (9.51) now takes the form

M : Ngttetanh x.

These two equations are solved simultaneously by plotting them on an M-uersus-
.v graph, and finding the points of intersection. Figure 9.16 shows the hyper-
bolic curve corresponding to (9.53), and the straight line corresponding to
(9.52); this line is plotted for several temperatures. For temperatures below a
certain critical value, the two curves intersect at a point such as l, which
represents finite spontaneous magnetization. Thus the molecular field (9.50)

does indeed lead to ferromagnetism. The other intersection point, at the origin,
represents a nonmagnetized state, but this state is energetically unstable.

Fig.9.16 The curves M - x, a straight line, and M - tanh x versus x. The intersection
point A represents spontaneous magnetization, i.e., a ferromagnetic state.

The critical temperature is the temperature at which the straight line (9.54)

becomes tangential to the hyperbolic curve at the origin. Making the approxima-
tion tanh x = x, valid for small x, and equating M in the two equations (9.52)

and (9.53) yields the result

(e.52)

(e.s3)

1: krr
(e.54)

poN(gp)''

which relates the Weiss constant tr to the Curie temperature 4, and since the latter
is a measurable quantity, we have here a method for determining ,1. If one sets
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7r: 103"K, N: l02e m-3, and appropriate values for the other constants, one
finds ,1 - l0a, as we have previously stated.

It is evident from Fig. 9.16 that the maximum magnetization is M(0) : Nglts,
which is achieved as T + Q'11. Equation (9.51) may also be written as

9.8

(e.5s)

whereweused(9.54). ThusifweplotthereducedmagnetizationMlM(O)versusthe
reduced temperature T f 71, we obtain a universal curve applicable to all
magnetic substances of the same value ofj. This is confirmed by Fig. 9.15.

The molecular field also, leads to the Curie-Weiss law in the paramagnetic
region T > Tt. The total field is now

ffror: ff + Jfw,

where ff is the applied field and ffyi the molecular field. When we use (9.40),

assuming that the total field is small, we have

M : M(o)ts9l!6 + 1M),
KT

which may be written, with the help of (9.54), as

M:(lL\ ' *.\1lT-rr
The susceptibility is given by

Cx: T -Tr'
where C : Trll : poN (S p)z 1k, which is of the form of the Curie-Weiss law.

The physical origin of the molecular field

The presence of the molecular field indicates that neighboring moments interact
with each other, and that the interaction is spin-dependent. The interaction
energy between two moments may be written as

V.*: - J's1 's2, (9.56)

where s, and s, are the two spins,t and J' is called the exchange constant. The
energy I/", is referred to as the exchange energy.

f The vectors s1 and s, are related to the actual angular momenta by the relations
Sr : sr h, and S, : szh. Thus s is a dimensionless vector in the same direction as S and
has the length [i(s + l)]+ where s is the angular momentum quantum number. The
constant ./' has the dimension of energy. The definition of dimensionless spin vectors is
made here for convenience.

M /T\
tanh l- l.M(o) \rr l'
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ln order for the above interaction to lead to ferromagnetism, the constant

J' must be positive, because the parallel-spin state-that is, sr : sz-has an

energy _ J'ri, while the antiparallel-spin state, sr : - s2, has an energy J's2'

Consequently the former is lower than the latter only if J' > 0'

The exchange constant J' is related to the Weiss constant ,1' lf we assume

that the dipole experiences exchange interaction only with its nearest

neighbors (the constant J' decreases very rapidly with the distance between the

aipoles), the total exchange for the dipole is - zJ's2, where z is the number of

nearest neighbors. This is equivalent to a molecular magnetic field .t'* given by

zJ,s2: \gstrr)(po**), (e.s1)

where gs43 is the value of the magnetic moment. The maximum value of :ffr1

is equai tt2M(0) : ).Ngsus, according to (9.50), which, when inserted in (9.57),

yields

.. /nN(gps)'..t' - 

- 

A.
z

As expected, J' is proportional to tr, both being measures of the strength of the

molecular field, and consequently also proportional to the Curie temperature.

Substitution of the appropriate values for the various constants yields a value

J'=O.l ev, which is a typical value for the exchange energy between two

neighboring moments in a ferromagnetic crystal.

We now turn to the origin of the interaction energy (9.56). The most natural

suggestion is the so-called dipole-dipole interaction, which gives an energy of the

order

Vr, = Po#,

where r is the distance between the dipoles. If one substitutes a typical

value for r, however, one finds that v tz - l0-a ev, which is about three orders

of magnitude smaller than the observed value. Thus the dipole-dipole interaction

.urroi account for ferromagnetism, and we must look for another, much stronger,

type of interaction.
The correct approach to the problem was made first by Heisenberg. The

requirement of the Pauli exclusion principle introduces forces which are

spin-rtependerl, because the statement of the principle includes the spin. These

so-called exchange forces are strong because they are of the same order as the

Coulomb force.f Consider, for example, the hydrogen molecule. There are two

(e.58)

f The reason lor using the word "exchange" in connection with these forces is that they

follow from a quantum principle which states that electrons cannot be distinguished from

each other. Thus if any two electrons are permuted or exchanged, the observable

properties of the system do not change. This principle is essentially equivalent to the

Pauli exclusion princiPle.
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electrons moving in the Coulomb field of two nuclei, and there are two possible
arrangements for the spins of the electrons: either parallel or antiparallel. If they
are parallel, the exclusion principle requires the electrons to remain far apart. lf
they are antiparallel, the electrons may come closer together and their wave
functions overlap considerably. These two arrangements have different energies
because, when the electrons are close together, the energy rises as a result of the
large Coulomb repulsion. This factor alone favors the parallel-spin state, but there
are other factors which compensate and favor the antiparallel-spin state.
which state actually exists depends on which of these factors prevails. In the
hydrogen molecule, the ground state corresponds to the antiparallel arrangement,
i.e., the nonmagnetic state. In ferromagnetic substances, however, the opposite
situation prevails, and the parallel arrangement has the lower energy.

The point is that the exclusion principle gives rise to a spin-dependent force
between the moments, whose strength is essentially given by the coulomb
interaction,

Vr, = 
j-,
+ft€ or

which is far stronger than the dipole-dipole interaction. you can show that this
gives the correct order of magnitude for the interaction.

Slater suggested a criterion for the occurrence of ferromagnetism. The critical
iactor is the ratio rf2ro, where r is the interatomic distance and ru the atomic
radius' Figure 9.17 is a plot of J versus the above ratio for various transition metals.
It is only when the ratio exceeds 1.5 that J' becomes positivg and the material shows
ferromagnetism. The substances Fe, Ni, and Co satisfy the criterion, but cr and
Mn fail, and these latter are not, in fact, ferromagnetic.

r/2r o

Fig. 9.17 Exchange constant ,/' versus interatomic distance for transition elements.

Slater's criterion underscores the importance of the 3d shell in the
origin of ferromagnetism. The fact that the radius of this shell is small plays a
crucial role in the appearance of the phenomenon. A similar comment applies
to the 4f shell in the rare-earth ferromagnets.

9.9 ANTIFERROMAGNETISM AND

The only type of magnetic order
ferromagnetism, in which, in the fully

FERRIMAGNETISM

which has been considered thus far is
magnetized state, all the dipoles are aligned
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in exactly the same direction (Fig.9.l8a). There are, however, substances which

show different types of magnetic order. Figure 9.18(b) illustrates an antdbruo-

magnetic arrangement, in which the dipoles have equal moments, but adjacent

dipoles point in opposite directions. Thus the moments balance each other, re-

sulting in a zero net magnetization. Another type of arrangement commonly
encountered istheferrimagneticpatternshown in Fig.9.l8(c). Neighboringdipoles
point in opposite directions, but since in this case the moments are unequal,

they do not balance each other completely, and there is a finite net

magnetization. Other more complicated arrangements, some of which are

variations on the ones already mentioned, have been observed, but the three

major classes of Fig.9.l8 will suffice for our purposes here. Let us now briefly
discuss the antiferromagnetic and ferrimagnetic arrangements.

lllllllltltl
(a) (b) (c)

Fig. 9.18 Magnetic arrangements: (a) ferromagnetic, (b) antiferromagnetic, (c) ferri-
magnetic.

Antiferromagnetism

Antiferromagnetism is exhibited by many compounds involving transition metals.

The crystal MnF, shown in Fig. 9.19 is an ionic crystal in which electrons have

been transferred from the manganese to the fluorine atoms (chemical notation
Mn2*F;). The manganese ions are magnetic because of their incomplete 3d

shell, and are distributed over an fcc structure. The substance is antiferromagnetic
because the ions at the corners all point in one direction, while the ions at the

cube center all point in the opposite direction.

Q,"
.F

j"

Fig.9.19 Spin structure of MnFr.
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As in ferromagnetism, antiferromagnetism also disappears at a certain point
as the temperature is raised. The transition point is called the N iel temperature T 

^.Above this point the substance is paramagnetic, and the susceptibility is well
represented by the formula

x: (e.5e)

where C and Ti are constants depending on the substance. This behavior is
shown in Fig. 9.20 for MnFr, whose Neel temperature is I : 72'K. Note that the
susceptibility does not diverge at the transition point, unlike the ferromagnetic
case.

0r.
0 r00 300

Fig.9.20 Susceptibility I versus Tfor MnFr, whose [r : 78"K. (The quantities X11 and

X. below 7, refer to susceptibilities for the field parallel to and perpendicular to the spon-
taneous spin direction, respectively. [After Bizette and Tsai, Compt. rend. (Paris), 238,
l57s (1954).I

The temperatures Tn and Ti, are listed in Table 9.7 for some substances.
One can relate these temperatures to parameters characterizing the magnetic
interactions in the material. This is done by generalizing the molecular-field
theory of ferromagnetism to the present situation by introducing two Weiss
constants, 7, and ,1.r, where ,1., describes the interaction of the dipole with other
equivalent dipoles, and 7, the interaction with the dipoles of the opposite
orientation (nearest neighbors). One may then establish that

9.9

C

7a4'

30

Io
a20
-9o

Ero
x

r-::(t,-1,) and rk: : (1, - t,). (e.60)

We may well ask: Since the net magnetization M : 0 for an antiferromagnetic
phase, how can this be distinguished from a nonmagnetic state when there is no
magnetic order at all? An obvious answer can be given on the basis of the
behavior of susceptibility as a function of temperature. A paramagnetic substance
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obeys the Curie law X -llT at all temperatures, while an antiferromagnetic sub-

stance exhibits the behavior shown in Fig. 9.20. One can also ascertain the magnetic
order in the antiferromagnetic phase by means of neutron diffraction. Below the
N6el temperature, the dipoles form what amounts to two interpenetrating magnetic
lattices of opposite spins, which give rise to Bragg reflection of the neutron beam.

Table 9.7

Antiferromagnetic Data

Substance 7p, oK r i,,'K

MnO
FeO
CoO
Nio
MnS
MnTe
MnF,
CrrO.

I l6
198

291

525
160

307
67

307

610

570
330

- 2000

528
690

82

485

Ferrimagnetism

Ferrimagnetic substances, often referred to as ferriteJ, are ionic oxide crystals
whose chemical composition is of the form XFerOo, where X signifies a divalent
metal. These often crystallize in the spinel structure, shown in Fig. 9.21 (spinel
is actually the compound MgAlrOo).

The most familiar example of this group is magnetite (lodestone), whose chem-
ical formula is Fe.On. More explicitly, the chemical composition is (Fe2+02-)
(Fe]+O]-), showing that there are two types of iron ions: ferrous (doubly
charged), and ferric (triply charged). The compound crystallizes in the spinel
structure of Fig. 9.21, with the ferrous ions replacing Mg and the ferric ions replac-
ing aluminium. The unit cell contains 56 ions, 24 of which are iron ions and the
remainder oxygen. The magnetic moments are located on the iron ions.

If we study the unit cell closely, we find that the Fe ions are located in either of
two different coordinate environments: A tetrahedral one, in which the Fe ion
is surrounded by 4 oxygen ions, and an octahedral one, in which it is surrounded
by 6 oxygen ions. Of the l6 ferric ions in the unit cell, 8 are in one type of position
and 8 are in the other. Furthermore, the tetrahedral structure has moments oriented
opposite to those of the octahedral one, resulting in a complete cancellation of the
contribution of the ferric ions. The net moment therefore arises entirely from
the 8 ferrous ions which occupy octahedral sites. Each of these ions has six 3d

electrons, whose spin orientations are t1t11J. Hence each ion carries a moment
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equal to 4 Bohr magnetons.
by x-ray analysis, is 8.37 A,
4prla' : 0.56 x 106 A/m.

Since the length of the edge of the cubic cell, as given
it follows that the saturation magnetization is M" :

Fig. 9.21 The spinel structure of MgAlrOo. The ,4 and B sites are occupied by Mg and
Al atoms, respectively. (After Azaroff)

Other metallic ions may be substituted for the ferrous ions in Fe3Oa, resulting
in other ferrimagnetic compounds. Examples of these are Ni, Mn, Mg, Zn, etc.

In modern applications, ferrites are the most useful of all magnetic
materials, because, in addition to their magnetic properties, they are also good
electrical insulators, unlike the ferromagnetic metals. Thus losses due to free
electrons are eliminated.

9.10 FERROMAGNETISM IN METALS

The mo,lel we have used in discussing ferromagnetism in insulators cannot be
applied directly to metals. This model assumes that the electrons are localized
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around the lattice sites, while in metals the electrons are delocalized, extending over
the whole crystal. The scheme used to describe the magnetic properties of such
electrons is called the itinerant-eleclron model, and was first developed by Stoner.

The failure of the localized model to account for ferromagnetism in metals
can be illustrated by the following. If this model were applicable, then the
magnetic moment per atom would be sp", where s is an integer or half integer.
By contrast, this number is found to be 2.22, 1.72, and 0.54 for Fe, Co, and Ni,
respectively.

We shall now proceed with the itinerant model. The electrons of interest
occupy the 3d band (this band overlaps the 4s band, but the latter does not
contribute to ferromagnetism and hence is ignored in the present discussion).

Figure 9.22(a) shows this band divided into two subbands, representing the two
possible orientations, up and down. In the nonmagnetic state shown in
Fig. 9.22(a), the two subbands are equally populated, resulting in a zero
magnetization.

(a) (b)

Fie.9.22 Magnetization process in the itinerant model.

Let us now assume that there is an exchange interaction. This tends to align
the moments in the up direction. Thus, in order to lower their energies, the
electrons transfer from the down to the up direction. But when this happens, a
net magnetization develops, and the energies of the two subbands are no longer
equal. The down-subband is displaced upward relative to the up-subband, as

shown in Fig. 9.22(b). The resulting magnetization is the saturation magnetization
observed in ferromagnetism. The amount of this magnetization depends on the
relative displacement of the subbands, which, in turn, is determined by the strength
of the exchange interaction and the shape of the band.

Let us express these ideas quantitatively. When an electron flips its moment,
it loses an amount of exchange energy +BM:L@tri114:lpo),M2, where
af * is the molecular field (the factor ] arises because we are calculating the self
energy). For a flip of one electron, M : 2lru, because the electron has reversed its

,tB:0



456 Magnetism and Magnetic Resonances 9.r0

moment from - ps to I ps. Thus the loss of energy is t p).(2pu)' : 2po),p?u.

It would seem at first that the system could achieve the lowest energy when all the
down electrons flipped their moments, so that the system was completely magnetized
in the up direction.

This is not the case, however, because, as Fig. 9.22(b) shows, the transferred
electrons gain in kinetic energy; they are now farther from the bottom of the band.
Therefore, in order for the electron to make the transfer the loss in exchange
energy must exceed the gain in kinetic energy. We calculated the loss in exchange
energy above, and we can estimate the gain in kinetic energy as follows. Suppose
that r electrons near the Fermi level are transferred from the down- to the up-
subband. The new energy range AE occupied above Eo in the up-subband is
given by n : t g(E.)A,E, where g(E.) is the density of states at the Fermi level.

[The factor ] is included because g(E.) was defined to include both spin directions,
while here we are considering only the up-subband.] For a transfer of one
electron, n: 1, and hence the kinetic energy gain is LE:2lS(E). Therefore
the condition for ferromagnetism may be expressed as

2ttoAp3, fu (e.61)

For this to be satisfied, the exchange constant must be large, which requires an
atomic shell of small radius (see Fig. 9. I 7). Also 9 (8.) must be large, which requires
a narrow band. These requirements are consistent because the smaller the radius
of the shell, the less the overlap of the wave functions, and hence the narrower
the band. These requirements are satisfied by the 3d band in Fe, Co, and Ni,
and also by the 4f band in Gd and Dy.

The fact that a large g(Er) enhances ferromagnetism is evident from the
following consideration. When g(8.) is large, the band can accommodate a large
number of electrons in a small energy range, and thus the gain in kinetic energy
occasioned by the electron flipping its moment is small. But when g(Eo) is small,
the band is essentially flat, like the 4s band, and the gain in kinetic energy is quite
large. This rules out ferromagnetism in such a band.

Figure 9.23 illustrates the band picture of the ferromagnetic state in Ni.

tl 0 54 ho,e.W'rum"
4s 3dl 3dl

Fi9.9.23 Occupation of the 3d and 4s bands in nickel;0.54 electron per atom, on the
average, is transferred from the 3dJ to the 4s band.
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Our presentation of the itinerant model is naturally a simplified one, and

condition (9.61) should be viewed only as a semi-quantitative guide. The basic

difficulty in constructing such a model is that the band concept, despite its useful-

ness, begins to break down somewhat when applied to narrow bands. ln these

bands the electrons tend to have a measure of localization around atomic sites,

which means that the electron-electron correlation also becomes important'
Yet such correlation is entirely ignored in the usual band model. This point is

relevant to ferromagnetism because both the 3d and the 4f are narrow bands.

Although much work is now beingapplied to it- and much progress hasbeenmade-
this problem remains essentially unsolved.

9.11 FERROMAGNETIC DOMAINS

Ferromagnetic materials in their natural state are usually found to be demagnetized

even below the Curie temperature. To explain this, Weiss postulated that the sub-

stance is divided into a large number of small domains, in which each domain is

magnetized, but the directions of magnetization in the various domains are such

that they tend to cancel each other, leading to a vanishing net magnetization. Though

Weiss originally formulated this postulate on theoretical grounds, it has since been

confirmed experimentally. One can observe the domain structure by carefully

polishing the surface of the ferromagnetic substance, and spreading over it a fine

powder of ferromagnetic particles. The particles collect along the domain

boundaries. Figure 9.24 shows the powder pattern for a silicon-iron crystal.
(Domains may also be observed by the use of a polarizing microscope; see the

question section at the end of this chapter.)
The formation of the domain, and its shape, depend on the competition among

a number of energy terms present in the magnetic crystal. Suppose that the

whole crystal is in a state of uniform magnetization, as in Fig. 9.25(a).

This state has the lowest possible exchange energy, since all adjacent spins are

parallel to each other. However, it also has a large amount of magnetostatic

energy. Because of the magnetization, there is a positive magnetic charge on the

lower surface. These charges produce a magnetic field opposite to M, which is

called the demagnetization field Bo. Because M is opposite to Br, there is a

positive magnetostatic energy whose density is given, according to (9.4), by

E,,: !M87. (e.62)

The value of B, depends on the shape of the surface, and is usually written as

Ba : - poDM, where D is the demagnetization factor.t This factor, which is

large for a flat sample and small for an elongated sample, is equal to unity for a

sample in the shape of a thin, flat disc normal to the field. The magnetostatic

energy is of the order of I06 J/m3.

f The demagnetization factor is the same as the depolarization factor for a sample of the

same geometrical shape (see Problem 8.7).
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Fi9.9.24 Domains and domain walls in a ferromagnetic Si-Fe crystal. (From walter
J. Moore, Seuen Solid Srales, New York: W. A. Benjamin, 1967.)

In order to reduce the magnetostatic energy, the sample divides into domains.
Thus, a division into two opposite domains, as in Fig. 9.25(b), causes the sample's
magnetostatic energy to be reduced by about one-half, because the demagnetizing
field inside the sample is reduced significantly. Much of this field is nowconfined
to the end regions of the specimen. (Note that the crystal structure is unaffected
by the domains.) Further reduction in energy can be achieved if the sample
divides into still smaller domains, and it may seem at first that the divisions
can continue indefinitely.

There are other factors, however, which should be considered. It requires
some energy to create the "wall" separating two domains, because the direction

TOSHIBA
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of spin changes in that region. We recall from (9.56) that the exchange energy

between two neighboring moments is

E"*: - J's,'52: -J's2coS0. (e.63)

If the wall is infinitely thin, then 0: tr, for the two moments on opposite sides of
the wall are antiparallel, and E,*: J's2. When we estimate this for a unit area,

we find that its value is appreciable. Furthermore, the more domains present, the

larger the total area ofthe domains and the greater the total exchange energy. This

fact therefore opposes the magnetostatic energy by acting to limit the number of
domains.

Fig.9.25 (a) A ferromagnet in a state of uniform magnetization;Bdrepresents demag-
netization field due to surface magnetic charges. Note the field lines. (b) A ferromagnet
divided into two ferromagnetic domains. Note that field lines are now confined primarily
to end regions.

The wall described is known as a Bloch wall. lts thickness is not infinitely small,

but it has a finite value, i.e., the spin orientation changes gradually in the transition
region (Fig. 9.26). In this manner the spin reversal is accomplished over a number

of steps, and hence the spin rotation between two neighboring moments is rather

small. This leads to a reduction in the exchange energy associated with the wall.

For iron, the wall is about 1000 A thick, and its energy about l0-3 J/m2.

On the subject of the Bloch wall, we may also mention another factor which

plays a role in determining its thickness. Experiments on ferromagnetic materials

show that it is easier to magnetize a substance in one direction than in another.

Figure 9.27 shows that iron is more easily magnetized in the [100] direction than

in the I I l] direction. The more favorable direction is referred to as the easy

direction, while the least favorable is known asthe hard direction. Since it requires

a larger field to magnetize the substance in the hard direction, the magnelization
requires a larger energy. The difference in energy between the easy and hard direc-

tions is called the magnetic anisotopy energy. The effect of this energy on the

(b)(a)
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wall is to reduce its thickness, because the thicker the wall, the more dipoles point
in the hard direction. Thus, although exchange energy favors a thick wall, aniso-
tropic energy favors a thin wall, and a balance is struck by minimizing the sum of
these two energy terms.

Fig. 9.26 Successive rotation of spin direction inside Bloch wall.

x l0-2

0 16 32 48 Xl03
,., urp a-I

Fie.9.27 Magnetization curve for single-crystal iron.

Closer examination of the domain structure reveals the presence of small
transverse domains near the end of the sample (Fig. 9.28). These are called
closure domains, and for good reason, as they have the effect of closing the
"magnetic loop" between two adjacent domains, resulting in a further decrease in
magnetostatic energy. These closure domains are small, however, and the reason
lies in yet another energy term, the magnetostiction energy. These regions, whose
magnetization is not along the easy axis, undergo an elastic deformation because

;
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of the magnetization, an effect known as magnetostriction. The magnitude of this
energy is about 50 J/m3. Thus an additional elastic energy is required for these

domains, and the larger these are, the greater is this energy. Again a balance is

struck between this term and the reduction in the magnetostatic energy.

Fig. 9.28 Closure domains, at end regions of sample.

The magnetization process

As we have stated previously, a ferromagnetic sample is usually in the demagnetized

state. In order to magnetize it, one applies an external field. Figure 9.29 illustrates

the progress of the magnetization process as the external field increases. Starting

at the origin, the magnetization M increases slowly at first, but more rapidly as the
field is increased, and eventually M saturates at the point,4.

Fig.9.29 Hysteresis loop in a ferromaglet'

lfthe field is now reduced, the new curve does not retrace the original curve O A;
rather it follows the line ,4D shown in the figure. Even when the field is reduced

to zet1, Some magnetization M", known as remanent magnetizatio,?, Still survives.

To destroy the magnetization completely, a negative field - lf" is tequired,
which is called the coerciue force. The sample clearly exhibits hysteresis, and if the

field tr alternates periodically, the magnetization traces the solid curve in Fig.9.29,
which is the hysteresis loop.

Mr
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Hysteresis implies the existence of energy losses in the system. These Iosses are
proportional to the area of the loop. One may demonstrate this by noting that as

M increases by the amount dM ,the energy absorbed by the system (per unit volr.rme)
is y6,s(dM. When this is integrated over the closed loop, it yields the total loss

E : Fo{, natw,

which, aside from the factor po, is indeed the area of the loop.
The relative mobility p, as we recall, is defined as p : I + (Ml//,)-see

(9.17). But in this region, in which the magnetization curve departs appreciably
from linearity, as in Fig.9.29, it is more useful to define the differential permea-
bility as

p,: 1

which is, of course, related to the slope of the magnetization curve. In ferromagnetic
materials, this quantity can be very large-as much as 10s.

How is magnetization accomplished? Starting from the demagnetized state,
and as the field is raised, the domains whose magnetization is parallel to the field
are energetically more favored than the others, and hence they grow at the expense
of the less-favored domains. For a small field this growth is reversible, and if the
field is removed the sample returns to the original demagnetized state. But for
large field the growth becomes irreversible, and some magnetization is retained even
if the field is removed altogether. When a very large field is applied, not only is the
maximum growth accomplished, but even the last few remaining unfavorable
domains rotate so as to align with the field.t

But just how does the growth process take place, and why is it reversible in
some circumstances and irreversible in others? The answer is not simple, and not
as yet fully understood. However, broadly speaking we can say that the growth of
a favorable domain is accomplished by the outward motion of its Bloch walls.
The higher the field, the greater the motion. For a small field, the walls move back
once the field is removed, but for a large field they cannot quite return to their

f A type of domain known as a magnetic bubble has been discovered recently. It is of
great potential importance to computer technology. In thin films of certain orthoferrites,
for example, Y3Fe5O12, as a magnetic fleld is applied normal to the film, the size of the
domains of magnetization opposite to the field decreases until at higher fields they
shrink into very small (few p's) cylinders which are the bubbles mentioned above. The
bubbles are stable, mobile, and repel each other. They can also be moved and
manipulated by the application of a suitable magnetic field in the plane of the film.

In computer design, the-bubbles may be used as digital bits. It is also necessary that
their density (number/cm2) be high, as well as their mobility in the magnetio film.
Their advantage over electromechanical storage devices is that the latter's inherent
difficulties, such as wear, head crash, dirt, etc., are eliminated. Also the new device would
have greater lifetime, e.g.40 years. See G. S. Almasi , Proc. IEEE 61,438 (1972\.

dM
I-' d./{'
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original positions, particularly if the sample contains appreciable amounts of
impurities and other crystalline imperfections. These tend to prevent a complete
return by "pinning down" the walls in their final positions. Experiments show

that the more imperfect the sample, the greater the remanent moment M,.

Table 9.8

Data for Permanent (Hard) and Soft Magnetic Materials (After Hutchison and
Baird, 1963, Engineering So/rZs, New York : Wiley)

Permanent materials made from powder

Cobalt ferrite
Fe-Co
Fe-Co ferrite

B,: FoM,,Wb' m-2
o_4

0.92
0.60

ffr, amp' m- |

4xlOa
8

13

Permanent materials made from alloys

Alnico I I
Alnico 5

Carbon steel

Cobalt steel

4.7 x lOa

5.4
0.4
2

0.73
1.27
1.0

1.0

Soft materials

p,(max) 4, Wb' --'t ff",amp'm-1

Fe (commercial)
Fe (pure)
Fe (a% Si)
Supermalloy

6,000
350,000

6,500
106

2.16
2.16
2.Ol
0.80

90
0.9

40
0.34

t .8" refers to the saturation value B": ltoM".

Generally speaking, magnetic materials are employed in two main types of
application: (a) permanent magnets or (b) transformer cores. In permanent
magnets, one requires a large remanent magnetization and large coercive force,
resulting in magnetically hard materials, which are often impure, strained, and

contain grain boundaries. Transformer cores utilize magnetically soft materials,
which have low values of ,ff" and high permeability. These should be highly
purified, carefully annealed, and properly oriented for magnetization in the easy
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direction, so as to leave the Bloch walls free to move without hindrance. Table 9.8
gives data for an assortment of hard and soft substances.

9.I2 PARAMAGNETIC RESONANCE; THE MASER

So far, in discussing magnetic effects, we have concerned ourselves only with
static situations: A static field is applied and the induced magnetization is observed
after sufficient time has elapsed for the system to have reached its final equilibrium
state. Although much information can be gleaned from these measurements, as

we have seen, a great deal more can be attained by using alternating magnetic fields.
We can then obtain accurate information on the magnetic state of the dipoles, the
interaction between dipoles, and also the interaction between dipoles and lattice.

In this section we shall deal with paramagnetic systems only, systems in which
the interaction between dipoles is weak. (Ferromagnetic systems will be
considered in Section 9. 14.) We shall find that, with appropriate field arrangements,
the system may exhibit paramagnetic resonence corresponding to the case in which
the external frequency is equal to the Larmor frequency of the system. From
studying the position and shape of the resonance line, one can obtain the above
information.

Resonance

Let us begin with the mathematical description. The magnetization vector M
represents the magnetic state of the system. When a magnetic field is applied, the
vector M moves according to the equation

-yMxB, (e.64)

where we have used (9.9), and y is the gyromagnetic ratio (gelzm).t Our
concern now is with the type of motion executed by M as a function of time.
When B is a constant field, M simply precesses around B with the Larmor frequency

@t: TB, (e.6s)

as we recall from the discussion in Section 9.2. But if the field is variable, then
the motion is more complicated.

We suppose that the field B is composed of two parts, a large static component
Bo in the z-direction, and a small alternating transverse component b in the xy
plane. That is,

B:kBo+b, (e.66)

where [< is a unit vector in the z-direction (Fig. 9.30). Because b is so small, we

t We obtain Eq. (9.64) from (9.9) by multiplying (9.9) by the factor N, the concentration
of dipoles.

dM
dt
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Fig. 9.30 Arrangement of magnetic fields, both Bo and b, and precession of magneti-
zation vector in paramagnetic resonance.

may neglect it in the zero'h order and visualize the vector M as precessing around
the z-axis with a Larmor frequency

@o: lBo. (e.67)

The presence of b, does, however, affect this motion, and we can study this by
returning to the equation of motion (9.64). For the sake of simplicity, the calcula-
tions will be carried only to the first order in b. For convenience, we shall split
the magnetization M as follows:

M: [<M, + m, (e.68)

where M, is the "longitudinal" component, parallel to Bo, and m the "transverse"
component in the xy plane. It is assumed that the transverse component is much
smaller than the longitudinal one. If we substitute from (9.66) and (9.68) into
(9.64), we find that

dm-

;:-y(m,Bs-M,by)

!!, : - y(M,b* - m,Bo)
cll

(9.69a)

(e.6eb)

dM_

. 
: - !(m,bn - mrb") :9, (9.69c)

which are three equations in the unknowns m", my, and M, that should be solved
simultaneously.

In (9.69c), the quantity dM,ldt has been set equal to zero because it isof
second order, e.g., the term m"b, is a product of two small quantities. Thus, to
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first order, the projection M,is a constant independent of time, meaning that the
vector M simply precesses around the z-axis.

The complete solution depends on the form of the small transverse field b.
We shall assume that the system is subjected to a plane-polarized alternating signal
of frequency a.r. That is,

b : boe''', (e.70)

where we have employed the usual complex notation.t Because of this, the
transverse magnetization is expected to have a similar form also, and hence we
attempt the solution

m: moei'', (e.71)

where mo is the vector amplitude of the magnetization. When we substitute from
(9.71) into the two equations (9.69a) and (9.69b), we are led to two simultaneous
equations in m* and m, only, whose solution is (see the problem section)

These two equations, giving the magnetization in terms of the applied field,
can be used to determine the susceptibility. One readily finds that

^,: -! -z k))ob, + ia)by)
@6-@-

*, :,1!.- ( - i,,b, + <osbr).' @6- @'

ltoT@oM "Lxx Lvv ) .2" @6-@-

y __! __.lto!@M, 9r Lxv ).@6-@-

(9.72a)

(e.72b)

(9.73a)

(e.73b)

and

There are several interesting features in these results: First, the susceptibility X

is a tensor with nonvanishing off-diagonal components. Thus the magnetization
mis not in the same direction as b, but m lags behind b, as shown in Fig. 9.31(a).
If we follow the curve traced by the magnetization vector m as a function of time,
we obtain an ellipse whose major axis lies in the direction of the applied field, as

t In previous discussions of oscillatory phenomena, we have taken the time factor as
e-i't rather than ei''. The mathematical difference between the two cases is trivial,
however, and one can modify all the subsequent results in this section by simply reversing
the sign of a; everywhere.
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in Fig.9.3l(b) [this may be demonstrated simply by setting br--0in(9.72),and
noting the phase relation and amplitudes of mr and mr). Thus the total vector M
precesses around Bo, tracing an elliptical cone, with a frequency cr.r.

(a) (b)

Fig.9.31 (a) Phase difference between transverse field b and transverse magnetization.
(b) Elliptical curve traced by transverse magnetization m.

Second, and more important, the results (9.73) show that the susceptibility
becomes infinite when o : aro. This is hardly surprising, because, as we noted in
(9.65), o.ro is the natural frequency for the system, and when at : (Do the applied
field is synchronous with the precessional motion, leading to a very large increase
in the magnetization. This is the condition for electron paramagnetic resonance,
often abbreviated EPR,

o"o
Right Left

Fig.9.32 Right and left circular polarization.

We can simplify the analysis significantly by using circular polarization instead
of the plane polarization used above. Thus, for a right-handed polarization,
b,: bo cos rll, and bn:60 sin rol. That is, b: boei'', and hence

b, : - ib,, Q.7aa)

according to the complex notation (see also Fig.9.32). Analogously, the following
relation holds true for a left-handed polarization:

bv : ib"' (e.74b)
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If one substitutes (9.74a) into (9.69), one finds for the right-handed susceptibility

l.tolM,x.: ;=;. (e.75a)

Similarly, one finds the susceptibility for the left-handed polarization to be

These expressions are simpler than their plane-polarization counterparts (9.73).

Also note that" yp exhibits resonance at the frequency @o while X, does not. This
is because the Larmor precession takes place in the counterclockwise direction.
Thus by adopting the convention of circular polarization, we have discovered not
only the frequency of resonance coe, but also its sense of rotation. For this type
of precessional motion, circular polarization offers the natural choice. A plane-

polarized motion can, of course, always be analyzed into its two circular compon-
ents, and then treated by the use of (9.75).

Relaxation

Our description of the precessional motion of the dipole is still incomplete in one

respect: We have not introduced a coupling mechanism to account for the
interaction between dipoles and their environment. That such a mechanism exists

should be evident from the following considerations. When a static field is applied
to a system of dipoles, these dipoles eventually turn around and align themselves
predominantly with the field. But in doing so, they lose some magnetic energy. Since

total energy is always conserved, this loss of dipole energy must be dissipated, which
can happen only if the dipoles are coupled to their environment in some manner.

Let us now take this coupling into account.
Instead of (9.64), we shall use the following expressions as our equations

of motion:

lto! M 
"trr. - ao+ u)

(e.i5b)

(e.76)

(e.77)

dm-..

;: - 7(M xB),,v

dM_

i:-7(MxB),

- 
frlt,v 

.
t2

_M.- Mo

Tl

These are known as the Bloch equations. The first describes the motion of either
mxor my, where an obvious notation is used. The second describes the motion of
M". The quantities z, and t, are time constants whose meaning will be elucidated
shortly. Let us think about the justification for-and significance of-these impor-
tant equations.

Consider Eq. (9.77). It is the same as (9.64), except for the new second term
on the right side. In this term, M" is the instantaneous z-component of the
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magnetization, while M-6 is the equilibrium magnetization in that direction. The
term expresses the fact that, starting at some arbitrary value, M, will approach Mo
at a rate proportional to the departure from equilibrium, and the proportionality
constant is l/rr. Such a form, characteristic of relaxation phenomena (see, for
example, Section 9.6), represents a magnetic relaxation whose time is r,. If we solve
(9.77) for a static field Bo in the z-direction, we find that M, spirals toward its
equilibrium value Mo, as shown in Fig. 9.33, and the time taken to complete the
magnetization process is approximately rr.

Fig. 9.33 Magnetic relaxation.

The time z, is known as the longitudinal time, or, more descriptively, as the
spin-lattice relaxation time. The designation indicates that an exchange of energy
is involved: the magnetization loses some energy, and this is transferred to the
lattice. The details of the interaction are complicated, but broadly speaking the
vibration of the lattice atoms surrounding the dipole creates an oscillating field which
acts on the dipole and absorbs energy from it. Thus the higher the temperature,
the greater the interaction, and the shorter the time rr. lt is usually found that
rt - llT; a typical value at nitrogen temperature is z1 - 10-6s.

Fig. 9.34 Relaxation of transverse magnetization m when transverse field b : 0.

We now return to (9.76), which describes the transverse motion. We should
now be able to understand it more easily in light of the above discussion.
Again the new term is the second one on the right side. To understand its effect
clearly, we may also consider the case in which B : Bo, a static field in the z-
direction. Figure 9.34 indicates what happens here: Starting with its initial value,
the vector m approaches its final equilibrium value m : 0 after a time approximately
equal to rr. Thus 12 is a relaxation time for the transverse motion.
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The time 12 is known asthe tqnsDerse relaxation time, or, more descriptively,
as the spin-spin relaxation time. It arises because neighboring dipoles, coupled
via the familiar magnetic dipole-dipole interaction, attempt to break up any initial
coherence between the directions of the individual transverse moments. The time z,
is usually very short, often of the order of l0-lo s, and is independent of tempera-
ture. It does, however, depend strongly on the concentration of the magnetic
atoms;the larger the concentration the closer the dipoles, which leads to a strong
interaction and consequently a shorter relaxation time 22.

How does this great disparity between r, and r, affect our picture of the
magnetization process, and why does such a disparity exist in the first place?

Let us begin with the first question. Suppose that there are only three dipoles,
which were originally in complete alignment with each other at the instant / : 0
(Fig. 9.35a). A static field Bo in the z-direction is applied, after which we observe
the subsequent precessional motion of the dipoles. Since r, ( 21, the first thing
to take place is that m - 0 (Fig. 9.35b). The phases between the individual
moments have been quickly reshuffied to yield a vanishing transverse magnetiza-
tion. For this reason, the time z2 is sometimes referred to as the dephasing time.
After the dephasing, the moments begin to spiral toward the direction of the field,
resulting in an increased magnetization in that direction (Fig.9.35c) after a time r,.

Fig.9.35 (a) Initial orientation of the three spins. (b) Situation after transverse re-
laxation. (c) Situation after longitudinal relaxation.

The essential reason for the disparity in the magnitudes or t, and r, is that
the longitudinal relaxation process involves a dissipation of energy, whereas the
transverse does not. When the moments try to tilt toward Bo, they do so only if
they can release some of their energy, and the faster they can do this the shorter
is r,. However, conditions for exchanging large amounts of energy are rather
stringent in magnetic interactions. It is this difficulty in disposing of their energy
quickly that makes the moments magnetize slowly. Note that transverse

relaxation requires no tilt toward Bo, and hence no energy exchange.

(c)(b)(a)

t:0 I)rl
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Now let us solve Eqs. (9.76) and (9.77), using a method similar to that
employed in solving (9.69). We assume a steady-state situation, that is, we
set dM"ldt:0 in (9.17) and m: Ino ei-'in 19.761, presuming, of course, that the
ac signal is circularly polarized in the right-hand direction. We then find (see the
problem section) for the susceptibility y : X' + iX",

(an - a)tf
I * (oo - a)'rtr * r1r2(ybo)2'

I + (aro - a)'rtr + trt2(ybo)z'

The susceptibility is complex because the signal is now partially absorbed. Figure
9.36 is a sketch of 1' and X" versus the frequency, and shows a typical resonance
behavior aI o : cr.re, which is of course anticipated. The troublesome divergence
at co6 has been removed by the inclusion of relaxation mechanisms.

Fig. 9.36 Real and imaginary susceptibilities, X' and X", as functions of frequency ro,
in EPR.

x'@) : tttoMo

X"ko) : TttoMo

The information to be gained from

a)The g-factor- This quantity can be

frequency co6, because

x2

(9.78a)

(e.78b)

these curves is as follows.

determined by measuring the resonance

e
(Do : lBo: 9; Bo.

In a crystal, this factor is not given by (9.45), but is strongly influenced by the crystal
field.

b)The time rr. This is determined most conveniently from the linewidth of X".
It can be seen from (9.78b) that

tr2 : (a' - @o)2, (9.79)

where ar' is the half-width frequency, i.e., the frequency at which X" reduces to
half its resonance value.
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c)The time tr. This is again determined from X"
susceptibility has the approximate expression

9.12

Near resonance, this

(e.80)

(e.81)

which shows that y" decreases as the signal strength, represented by bo, increases.
This phenomenon, referred to as saturation, can be used to determine rr, because

X" decreases to half its value when t,tr(yb,)' :7, and 12 and 6o can be deter-
mined independently.

The quality of the resonance-i.e., its sharpness-is enhanced by a long rr;
otherwise the line would be too broad to be detected. This is usually accomplished
by diluting the magnetic ions in the host crystal. Similarly the time ?1 must not
be too short, or else the resonance will be masked again. This often happens at
room temperature, and to offset this, experiments are usually conducted at liquid-
nitrogen temperatures, or even lower.

Figure 9.37 is a diagram of an assembly used to observe paramagnetic reson-
ance. The resonance frequency ctro, for a field of a few kilogauss, lies in the micro-
wave range, i.e., about l01o Hz. The real part of the susceptibility X' is
measured by the change in the inductance of the coil due to the presence of the
sample, while the imaginary part y" is determined from the absorption in the
sample. One can show that the power absorbed per unit volume is given by

p : !ax"(a)b\.
lto

An important practical comment which should be interjected here is that in
resonance measurements one usually varies the static field Bo rather than the
frequency o, because one can vary Bo far more conveniently than ro. The
measurement is made at a fixed frequency ar which is swept by the field.

Magnet

ffiffi

Microwave
cavity

Fig.9.37 Schematic diagram for experimental arrangement in EPR measurements.

The technique of paramagnetic resonance is widely used in physics, chemistry,
biology, and other fields, and is one of the principal tools employed in the analysis
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of matter. We shall indicate here its primary uses in physics, and in Chapters l3
and l4 we shall deal with its applications in chemistry and biology.

Paramagnetic resonance has been used intensively in the study of the magnetic
properties of 3d, 4d, and 5d ions, as well as 4f and 5f ions in salts. Table 9.9 gives

data on these materials. Note the wide range of g-values, engendered by the
crystal field. Most of these have been calculated theoretically, and the agreement
with experiment is generally good.

Table 9.9

Data on Transition Metals, Rare-Earth and Actinide Ions, Obtained lrom EPR
Measurements (After Morrish, I 965)

Configuration Effective spin Range of g-valueslon

cr3*, v2*
Fe3 

+

Mos*
Ru3+
Ce3+
Nd3+
Er3 +

1Npo2)2*
(PuO2)2 +

3d3

3ds
4d1

4ds
4f1

4f3

4ft I

5f1

5f2

3
2
I

I

I
)
I
2
I

I
z
I
)
Iz

1.992
0.7-2.6
1.95
t.o-3.24
0.95-2.18
2.0-3.6
1.47-8.9
0.20-3.40
0-o.59

The EPR technique is also used in studying paramagnetic molecules, notably
in 02, NO, and N02. Unlike most other molecules, the spins in these molecules

are unbalanced, resulting in a net magnetic moment, and consequently they
exhibit EPR.

The maser

Much of the research on EPR was originally sparked by the observation of maser

action in ruby in the mid-1950's.t We can see the principle of this action and its
relation to EPR by looking at Fig. 9.38. The two levels E, and E, are a Zeeman
doublet formed by the application of a static magnetic field Bo. The energy difference
LE : Ez - Et is given by

L,E : hao: hyBo: OttaBo. (e.82)

Suppose that the system is at equilibrium in the presence of the field Bo.

The populations N, and N, of the two levels are related by

N, 
- --or/0,

Nr
(e.83)

t The word maser is an acronym for Microwave Amplification by Stimulated Emission of
Radiation.
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which shows that N, < N1. That is, the upper level is less densely populated, a
conclusion we may have anticipated. At room temperature and usual field,
kT > LE, and the two levels are essentially equally populated, the thermal
energy being so large that the atoms can easily transfer from one level to the other.

Fig. 9.38 Principles of maser emission: Electrons are pumped from level Eo to level Er,
they then flip their spins, going into a lower level E, and emitting coherent radiation of
frequency corr.

At low temperature, however, kT < LE, and most of the atoms fall to the
lower level, i.e., their moments are parallel to the field. If under these circumstances
a signal of frequency al passes through the system, then the signal may be absorbed.
This occurs when an atom absorbs a photon, and transfers from the lower to the
upper level. This can happen only if L,E: ho\ according to Bohr's rule (Section
A.5). Comparing this with (9.82), we find that

a: 0)s, (e.84)

which is, of course, the same criterion for resonance obtained previously on
classical grounds. Thus we see that the signal is absorbed at low temperature, the
absorbed energy being used in exciting the spin system.

Let us suppose that the population of the levels are arranged so that
N, ) N,, which means that the upper level is the more densely populated. [This
condition of population inuersion cannot be achieved at equilibrium, of course, but
it can be realized by other means.] In that case, and when the resonance
condition a : @o is satisfied, the signal is amplified, because more atoms are
stimulated to transfer downward (emitting photons) than upward, with a net
enhancement of the signal. This amplification is what is responsible for the maser
action.

Figure 9.38 illustrates how the condition of population inversion may be
accomplished, in the simplest possible case. Atoms are transferred from the
ground level Eo to the upper level E2 of the Zeeman doublet by "pumping"
the system with an external radiation of frequency (Dzo: (E2 - E)lh. These
atoms now make spontaneous transitions to E, and Ee, but if the spin-lattice
relaxation time z, for transitions from E2 to Er is long, then it is possible-at
low temperature-for more atoms to exist in E, than in Er. The system is then
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inverted, and if a signal with a frequency @zr: @2- E)lh passes through the
system, it may be amplified.

It is evident that maser action is simply the converse of EPR. The best-known
maser, made of ruby, involves the spin states of the chromium impurities in this
material. More details can be found in Yariv (1966), and in other references on
quantum electronics.

9.13 NUCLEAR MAGNETIC RESONANCE

Nuclear magnetic resonqnce (NMR) is the nuclear analog of electron paramagnetic
resonance. Instead of the electrons spinning, the nuclei have the resonant
moments. A nucleus is composed of protons and neutrons packed into an extremely
small volume (radius about l0-tt "rn). These nucleons have spins, and the
spin of the nucleus as a whole is the vector sum of the spins of the individual
nucleons. The spin quantum number for the nucleus is denoted by 1, whose value,
in analogy with the electron, must be either an integer or a half-integer. The
angular momentum is therefore given by

t:th, (e.8s)

where I specifies both the magnitude and direction of the angular momentum
vector. [Actually the magnitude of the angular momentum vector is [1(/ + l)]+i.]

Associated with the nuclear spin motion there is also a nuclear magnetic
moment, which we shall denote by p,. In analogy with the electron case, this
moment is related to the angular momentum, and we may write

(e.86)

where gn is the nuclear g-factor, M, the proton mass, and pu^: ehf2M, the
nuclear Bohr magneton. Table 9.10 provides values of l and gnfor a number of
nuclei. The values of gn are of the order of unity.

The nuclear moment differs from the electronic moment in two respects.
First, the nuclear moment is of the order of pr" which-because the proton
mass M, is 1839 times larger than the electron mass-is about one-2000th the size

of the electron moment. Nuclear moments are therefore much smaller than
electron moments, as a result of the enormous difference in mass. Second,
the value of gn may be either positive or negative, depending on the nucleus. Thus
the moment vector Fn may be either parallel or antiparallel to I*, unlike the case

of the electron, in which the two vectors are always antiparallel.
When a field Bo is applied to a system of nuclei, their moments precess around

Bo with the Larmor frequency,

tln: en(fr)r: gpsnr,

@o: lnBo: (g"el2Mr)Bo, (e.87)
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n1

p1

H2
He3
Li?
cl3
N14

Table 9.10

Nuclear Magnetic Moments and Spins (p"n
:5.05 x l0-27ampm2)

Isotope F"
(in units of ,unn)

9.13

- 1.913
2.793
0.8574

- 2.127
3.256
o.7022
0.4036

1
2
L
2

I
t-
2

*
L
2

1

as follows from the equation of motion (9.9) and from (9.86). If an alternating
signal of frequency or, whose field is normal to Bo, then impinges on the system,
nuclear resonance takes place. It is accompanied by strong absorption at o) : o)o,

that is.
e): @o: (g"el2Mr)Bo

v :0.213 g^BoMHz,

(e.88)

where 86 is in Wb/m2. For a typical value of the field-for example, Bo : 0.5

Wb/m2-the resonance frequency lies in the rf region, that is, 106 - l0? Hz. This is a
very convenient range, as lumped-parameter circuits may be used here, and
great accuracy attained.

Fig. 9.39 Zeeman splitting of a nuclear level for 1 : 2.

Quantum mechanically, NMR may be viewed as a transition between nuclear
Zeeman sublevels. lf I:2, for example, the level splits into (21 * l):5
sublevels as a result of the application of the magnetic field Bo (Fig. 9.39). The
spacing between the equidistant sublevels is given by

ml

2

I

0

-l
-2

LE : g,1ts^Bs. (e.8e)
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When an external ac signal is applied, a transition between these sublevels is

induced when

LE:hA, (e.e0)

and this results in the absorption of the signal. Note that Eq. (9.90) is the same

as the resonance condition (9.87), showing that significant absorption takes place

only at resonance, a conclusion we could have anticipated.
Equation (9.90) is based on the transition between adjacent Zeeman sublevels

only. Transitions between nonadjacent levels are forbidden by the selection rule
Lmr: * l, where ru, is the quantum number for the z-component of the

angular momentum.
We have not as yet discussed nuclear magnetic relaxation, but we can do this

by using the same method we used in the case of EPR. Again we have two
relaxation times r, and rr, characterizing the interactions of the nuclear moment
with its environment. These times can be determined from the height and width
of the NMR line, much as in the case of the electron. The details need not be

repeated here.
Resonance is commonly achieved by varying the field Be rather than the

frequency ro until the resonance condition is satisfied. Thus the experiment is

performed at a constant frequency; most common NMR spectrometers are

designed for the frequencies 60, 100, or 220 MHz, with the field to be adjusted
for the various nuclei.

In order to determine a nuclear property accurately-for example, pn-one
must determine both the frequency and the field to the same degree of accuracy

[see (9.87)]. The frequency can be determined to one part in 106 or better, but
unavoidable inhomogeneities in the field introduce an accuracy limit of about one

part in 104. This is the accuracy of NMR measurements!
The NMR technique, like the EPR technique, is a tool that is widely used in

physics, chemistry, biology, etc., because it yields information about the micro-
scopic constitution of matter. Let us now look at some of its uses in physics;
we shall get around to the chemical and biological applications of NMR in
Chapters 12 and 13.

r) Nuclear datq. One obtains data on the nucleus from NMR because, as indicated
by (9.87), these measurements give 9,, or equivalently, the nuclear moment pn.

The spin 1 is not determined, but other types of resonance measurements can yield

this also. Therefore NMR is a highly useful technique in nuclear physics.

11) Enuironmental effects. In our discussion of NMR, we have treated the

nucleus as if it were isolated. In solid-state phenomena, however, the nucleus

is not isolated, but is surrounded by its electrons, as well as by nearby atoms and

molecules, which form its natural environment. The interaction of the nucleus

with its environment causes the shape of the resonance line to be altered in a manner
characteristic of the environment. Thus NMR can be used to study the micro-
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scopic environment. It is for this reason that NMR is so valuable in physics, as

well as chemistry and other fields.

1i1) Resonance in solids. The transverse relaxation time rr, which may be

determined from the linewidth, is due to spin-spin interaction. When one
resonant nuclear moment interacts with another nearby, there is a magnetic field
acting on the first moment given by

B: * Ito F^(3 cos2 0 - l)
G-----;i-' (e.e l )

where r is the distance between the moments and 0 the angle between Bo and the
line joining the moments (Fig. 9.40). The plus sign refers to the case in which the
moments are parallel, and the minus sign the case in which they are antiparallel.
If there are several other moments simultaneously acting on the central one, we
can find the local field, ofcourse, by adding all the individual contributions.

1,, +t),
l--€ ,"
,tY

Fig. 9.40 Spin-spin interaction between two dipoles, I and 2.

The total field experienced by the resonant moment is found by adding (9.90)
to the applied field -86. Since the field B can take many different values, depending
on the relative spin orientations of the neighboring moments, we see that the
total field may take a number of values which are close to Bo, which lead, in effect,
to the splitting and broadening of the resonance line. From the shape of this line,
we can go a long way toward identifying the environment surrounding the nuclear
moment.

iv) Resonance in liquids and gases. Scientists also use NMR techniques to examine
liquids and gases. The linewidth in liquids and gases is much narrower than in
solids. For the reason, recall Eq. (9.22), which describes spin-spin interaction.
This interaction is also present in liquids, except that in a liquid the nuclei rotate
and move rapidly. Therefore the local environment changes rapidly, and the
local field averages out to a very small value, resulting in a small linewidth. This
phenomenon is known as motional narrov,'ing.

v) Cooling by adiobatic demagnetization. There are some experiments which
necessitate the use of very low temperatures-well below l'K. These temperatures
cannot be attained by the usual method of direct cooling using liquid helium. So
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the standard technique
play the phenomena of

Ferromagnetic Resonancel Spin Waves

Fig. 9.41 Entropy S versus temperature T for a spin system, with and without a magnetic
field. Adiabatic cooling (dashed line) is accomplished by repeated application and
removal of the magnetic field.

Consider a paramagnetic salt which has been cooled to a temperature of
about 1'K. The sample is placed in a magnetic field of I Wb/m2, and the spins align
with the field. As they do so, these spins lose energy, which is dissipated into the
lattice. Consequently the lattice warms up to some extent, though the temperature
is held down by keeping the sample in thermal contact with the liquid-helium bath.
When the heat due to magnetization has been removed completely, the sample is
thermally isolated, and the magnetic field is reduced to zero. In the absence of the
field, the spins tend to randomize (demagnetize adiabatically), which requires some
energy. This energy is absorbed from the lattice, which consequently cools even
further, resulting in a lower temperature. These steps can be repeated many times
(Fig. 9.41), until the desired temperature is reached. Temperatures as low as 0.0I'K
have been obtained using paramagnetic demagnetization, and these have been
reduced even further by the use of nuclear demagnetization.

9.r4 FERROMAGNETIC RESONANCE; SPIN WAVES

When an external field is applied to a ferromagnetic material, the magnetization
vector M begins to precess around the field. We therefore have the possibility of
fbrromagnetic resonence (FMR), which is analogous to the spin resonance
discussed in Section 9.12. As a matter of fact, the two types of resonance were
observed almost simultaneously in 1946, at about the time of the first reported
observation of NMR.

FMR is particularly important in physics and engineering, for several reasons.
(l)It is a powerful tool for studying ferromagnetic substances and their
fascinating phenomena. (2) It is the basis of many useful microwave devices.

Let us begin our analytic discussion with the Bloch equation,

is adiabatic demagnetization, a

paramagnetic or nuclear spins.
method which calls into

dM
dt: - 7M x B' (e.e2)
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which is the analog of (9.64). Here y : (gel2nr) is the gyromagnetic ratio. Unlike
the case of EPR, however, the field B is generally quite different from the applied
field because of the many other contributions usually present in a ferromagnetic
substance. Given that ./1'n is the applied external field, the most general

expression for the internal field B is

B : po(*o - DM + Jf. + ./{"), (e.e3)

where - DM is the demagnetizing field, .//'othe field due to the magnetic aniso-
tropy, and 3f " the field due to exchange energy. The various terms of (9.93)

are the magnetic analogs of the electrical terms in (8.24), although the nature of the

interactions is very different in the two cases.

Obviously the complicated nature of the field in (9.93) means that the
resonance frequency depends in a complex manner on the various interactions
in the crystal, and for this reason the resonance can yield information concerning
these interactions. To keep the discussion simple, we shall illustrate the situation
by taking the simplest possible circumstances: We shall neglect 2f o and ,1f 

", 
and

retain only the demagnetizing field - DM in addition to the external field lf s.
The demagnetization factor D depends on the shape and orientation of the sample.

For a flat disc normal to Bo, D: l, and hence

B: po(tro - Mo), (9.94)

where Mo is the saturation magnetization. Since M6 lies in the same direction
as ffo, we may also write

B: po(tro - Mi. (e.es)

If we substitute (9.94) into (9.92), we are led to conclude that M precesses around
lf , with a Larmor frequency

@o: trol(tro - Md, (e.e6)

which is the.ferromagnetic resonance Jrequency. Note that the demagnetizing field
has acted to reduce the resonance frequency. The frequency oo lies in the micro-
wave region for fields in the range Bo = lWb/m2, that is, in the same region as the
EPR, which is not surprising, since y is essentially the same in both cases. The

FMR in supermalloy is shown in Fig.9.42.
Resonances have also been reported in antiferromagnetic and ferrimagnetic

substances. The above classical treatment can be readily extended to deal with these

materials.
A major area of application related to FMR involves Faraday rotation'. Suppose

that a plane-polarized signal, in the xy plane, passes through a block of a ferro-
magnetic material with a field Bo, and that the signal travels along the z-axis,

as in Fig. 9.43. We can split the signal into two circular components, one right-
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Fie.9.42 Real and irnaginary permeability in supermalloy, showing FMR. [After
Bloembergen, Phys. Reu.78, 572 (1950)l

handed and the other left-handed. The two components travel with different
velocities, and consequently when the wave emerges from the other side of the
block, its plarre of polarization has rotated by a certain Faraday angle.

Let us evaluate the Faraday angle. Because of the gyromagnetic motion of the
magnetization M, t-he medium presents a permeability

ttn:tto(, .r#_,,)

ttt-:Mo( ,-#)

(9.97a)

(e.e7b)

depending on whether the wave is right-handed or left-handed, respectively.
We have used (9.75), where ro, : lltoMo.

Fig. 9.43 A plane polarized wave k is resolved into circularly polarized waves in a
Faraday rotation.
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For an incident signal of the form

b: [og-i('r-ft2),

the two circular components have wave vectors

kn: ttt:t-/lne
and

kL: a.t Pre,

where e is the dielectric constant. Since the phase angle changes by
kd as the wave passes through a block of thickness d, it follows that

9-t4

(9.98a)

(e.e8b)

the amount

(e.ee)

as we can see by looking at Fig. 9.43. If we substitute from (9.97) into (9.98),

and then into (9.99), we find for the Faraday rotation, per unit length,

^ 0^ - 0, (kR - kL)d
tr-- 22

0 f7a*7:-J;2,'

Microwave
Tl cavityll-
t_l

Faraday
rctatioY

Microwave +

(e.100)

where c is the velocity of light. For manganese zinc ferrite, where @M : 2.6 x
l01o s- 1 and ./.0 -- 23, we find lld : I l8 degrees/cm. (It has been assumed that
olo, a^ 4 a.)

Iransducer I /l\" r
Vs" / am*,a

./ propagatton
Microwave t /

cavlty I I I+
Fig.9.44 Principle of the isolator: Vectors at the cavities indicate direction of resonan t
modes in each cavity.

Faraday rotation is the basis of many ferromagnetic microwave devices. The
simplest of these, the isolator, is illustrated in Fig. 9.44. Two microwave cavities
are arranged so that their polarizations are at right angles to each other. A wave
traveling forward has its plane rotated by 90' so that it can pass through the
second cavity. However, a wave traveling backward retains the same polarization,
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because Faraday rotation is nonreciprocal, and hence is rejected by the first cavity.
The arrangement therefore allows waves to travel only in one direction, and hence

can be used to isolate waves according to their direction of propagation. Isolators
used in combination can be used to design other devices, such as gyrators,
circulators, etc. More details can be found in Wang (1966).t

Spin waves

There is another interesting dynamical aspect of the spin motion in a ferromagnet:
spin waoes. The spins precess around the vector Mo in such a manner that the
orientations of the various spins along the line are correlated, as depicted in
Fig. 9.45(a). Such a wave propagates through the lattice with a certain velocity,
which will be calculated below.

l- a+l
(a)

O@O
(b)

Fig.9.45 (a) Spin wave motion. (Wavelength ),: l6a, where a is the lattice constant.)
(b) Angle 0 between adjacent spins. (Planar view from top of spin system.)

The restoring force responsible for the oscillation is the exchange force
between the spins (Section 9.8). The lowest energy of the system occurs when all
spins are parallel to each other in the direction of Mo. When one of the spins is tilted
or disturbed, however, it begins to precess-due to the field of the other spins-
and because of the exchange interaction the disturbance propagates as a wave
through the system.

Spin waves are analogous to lattice waves (Section 3.6). In lattice waves, atoms
oscillate around their equilibrium positions, and their displacements are correlated

and related effects are coming into use also in modern
See, for example, R. F. Pearson, Contemp. Physics, 14,2Ol,

f The Faraday rotation
magneto-optic technology.
1973.

\12-l
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through elastic forces. In spin waves, the spins precess around the equilibrium
magnetization and their precessions are correlated through exchange forces.

We shall note many points of similarity between the two types of waves.

But first let us calculate the dispersion relation for spin waves. For this, we

shall use a procedure used earlier in connection with lattice waves. Recall from
Section 9.8 that the exchange energy between two spins is given by E: - J's2
cos 0, where 6 is the angle between the spins. Referring to Fig. 9.45(b), we note that
each spin is influenced by two other spins on its opposite sides (nearest-neighbor

interaction), and hence the exchange energy is

E: -2J's2cos0.
The relative energy-i.e., the increase in energy above the ground state-is
therefore

LE : - 2J's2 cos? - (- 2 J's2)

: +2J's2(l -cos0)

: 4 J's2 sin2

The frequency of oscillation is, according to quantum mechanics, given by
or : A E/ft, which yields

,:(+),,",(*)
The angle 0 is the phase difference between two adjacent spins. Therefore
0 : (al ),)2n : aq, where a is the lattice constant and q the wave vector of the wave.

When we substitute this into the above equation, we find that

(+)

,:(+),,,,(T).
which is the desired dispersion relation.

(e. r 01)

Fig. 9.46 Dispersion curve for a spin wave.

The dispersion curve for the spin wave is shown in Fig. 9.46. The spin "lattice"
can support waves whose frequencies range between zero and the maximum value
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a,, : 4J's2 lh. There is therefore an upper cutoff frequency, above which the wave
is scattered very strongly, and no propagation takes place. This again is
reminiscent of lattice waves. The upper frequency lies in the microwave range, as

one can see by substituting for J' the approximate value derived in Section 9.8,
that is, J'= 0. I eV.

Note that for small q, a is also very small. This is because the spins at long
wavelength are still almost parallel to each other, and hence the restoring exchange
force is small. For large q, however, the spins become appreciably unparallel, and
hence a large restoring exchange force arises. The maximum value of the
restoring force occurs when the lattice constant is equal to ),12, that is, atq : rcla,
in agreement with Fig. 9.46. This occurs at the boundary of the Brillouin zone.

Our remarks concerning the symmetry of the lattice-wave curve in the
Brillouin zone (see Section 3.6) apply here also, and hence they will not be

repeated.
Note that in the long-wavelength limit,

a=Aqz (e. r 02)

That is, at is proportional to q2. This differs from the case of lattice waves, in which
a - e. Because of the form (9.102), the phase and group velocities of the spin
wave are unequal, even in the long-wavelength region.

The dispersion curve can be determined by neutron diffraction. Since the
neutron carries a magnetic moment, it is coupled to the field of the spin wave, and
this results in the diffraction of the neutron beam. The equation for the con-
servation of momentum is

k':k-fQ, (9. r 03)

where k and k' are the initial and final wave vectors of the neutron and q is the wave
vector of the spin wave.

Spin waves are quantized in much the same way as lattice waves. The unit
of quantization (or magnetic excitation) is called the magnon. A magnon of wave
vector q carries an energy

a momentum

and a magnetic moment

E: ha(q),

P: hq,

m : g4s,

(e.104)

(9. r 05)

(e. r 06)

this moment being oriented opposite to Mo. As far as magnetization is concerned,
each magnon excitation is equivalent to a reversal of one spin.
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In addition to evaluating the magnetization associated with thermal magnon
excitation, we can evaluate the specific heat. The number of magnons in the mode
q, at thermal equilibrium, is given by the Bose-Einstein function,

I
n@): V;"xiii= (e. r07)

(e. t08)

this density
3.7). When
(9.r02) (the

(9. r0e)

Thus the energy is

hatig(at)dot,

where g(ro) is the magnon density of states. We can calculate
of states from the dispersion relation, as in the phonon case (Section

we do this, and when we use the long-wavelength approximation
Debye approximation!), we find that E - T5/2, and hence

C' - 7t/z '

This is in agreement with experiment at low temperature.
The magnetization M(T) can similarly be written as

f-^MG): M(0)- stt"l ns(a)du.
Jo

ln the same approximation used above, we find that the decrease in magnetization
as a result of thermal excitation is

L,M: M(0)- M(T)-73/2, (e.l r 0)

which is known as Bloch's lqw,in honor of the man who first postulated the existence
of spin waves. This result is also in agreement with experiment.

Fig,9.47 Interaction between acoustic and spin-wave modes. Dashed lines indicate
free modes, while solid curves represent coupled modes.

Now let us take a look at the interaction between spin and elastic waves. When
an external field is applied to a ferromagnetic sample, the dispersion relation
(9.102) for the spin wave is modified to

,: T:

<o: yBo + Aqz (e.r r r)



Summary

where the first term on the right is due to the external field, and the second to the

exchange iiteraction.
Figure 9.47 plots the dispersion curves for both spin and elastic waves. In

the region of crossover, the two modes couple strongly and repel each other, in
much the same fashion (Section 3.12) as electromagnetic and lattice waves. Note
also how the modes change character as 4 increases. In YIG (yttrium iron
garnet) the crossover frequency is co: 0.46 GHz for Bo:0.3 Wb/m2.

This coupling has been employed to generate acoustic waves by converting
magnetic energy into acoustical energy. This suggests possible interesting
applications in acoustical amplifiers.

SUMMARY

The magnetic induction B and the magnetic freld a( in a material medium are
related by the equation

B: potr * loM,

where M is the magnetization vector of the medium. The magnetization M is

proportional to the field,

M: Xff,

and the constant X is the magnetic susceptibility. Substituting this equation into
the previous relation, one may write this as

B: F*,
where the permeability p is defined as

p: po[ + il.
The relative permeability tr,: plFo is thus

p,:l+x.
There are two basic types of contributions to the susceptibility: A diamagnetic

contribution resulting from the deformation of the orbits of the electrons by the
magnetizing field, and a pqramagnelic contribution due to the alignment of the
magnetic moments of the electrons (if such moments are present) with the field.

Langevin diamagnetism

When one treats the orbits of electrons around atoms as circular current loops,
one finds that a magnetic field produces a diamagnetic susceptibility

u^e2
x: ---(NZrz).om
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Langevin paramagnetism

Given that the typical atom has a net moment p, one can then show that the
alignment of the moments with the field leads to a classical paramagnetic
susceptibility

N trot'r: 3kr '

The quantum treatment yields the same result, provided that p : Slj( j + l)f't'pu.
This formula holds well in transition and rare-earth ions.

Magnetism in metals

In metals, the conduction electrons make a spin paramagnetic contribution

Xp: tto\?sg(E),

which is independent of temperature. The conduction electrons also have a dia-
magnetic effect due to their cyclotron motion. In a metal of simple band structure,
the magnitude of the electrons' cyclotron contribution is equal to one-third of
their spin contribution. The ion cores also introduce a diamagnetic effect, which
must be added to the previous two for comparision with experiments.

Ferromagnetism

A ferromagnetic substance is one which exhibits spontaneous magnetization below
its Curie temperature. Above this temperature, the substance is paramagnetic,
and obeys the Curie-Weiss law,

C
/: T - \'

where Iy is the Curie temperature.
The ferromagnetic phase appears because of an internal magnetic field lf, : AM.

This field, in turn, has its genesis in an exchange interaction between the magnetic
dipoles of the substance.

Other magnetic structures besides the ferromagnetic are observed; examples
are the antiferromagnetic and ferrimagnetic substances. These also owe their
existence to exchange interactions between magnetic moments.

Ferromagnetism is also observed in some metals, but the theoretical treat-
ment there becomes difficult because the 3d electrons are only partially localized.
Ferromagnetism is favored in those metals of narrow but dense energy bands, and
large exchange constants.

Magnetic resonance

When a magnetic field Bo is applied to a substance, the dipole moments of the atoms
precess around the field with frequency

@o: !Bo,
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where 7 is the gyromagnetic ratio of the dipole. When a signal of frequency
@ : @o passes through the system, power is absorbed from the signal by the

dipoles. This is the phenomenon of electon paramagnetic resonance (EPR).

One can determine relaxation effects by introducing appropriate relaxation times.

Nuclear magnetic resononce (NMR) is the nuclear analog of EPR.
Ferromagnetic resonance (FMR) is the same as EPR, except that the internal

magnetic field, which is now strong, has to be explicitly taken into account.

This field is a function of several types of interaction ; these can therefore be studied

by the FMR technique.

Spin waves

Spin waves are collective excitations in spin systems. The interaction responsible

for these modes is the exchange interaction between the moments of the system.

Spin waves carry both energy and momentum. As the temperature is raised,

energy is absorbed by the excitations of the spin waves, and the magnetization also

decreases.

REFERENCES

R. Kubo and T. Nagamiya, editors, 1969, Solid State Physics, New York: McGraw-Hill
D. H. Martin,1967, Magnetism in Solids, Cambridge, Mass.: M.l.T. Press

A. H. Morrish, 1965, Physical Principles of Magnetism, New York: John Wiley
J. H. van Vleck, 1932, The Theory of Electric and Magnetic Susceptibiliry, Oxford:

Oxford University Press

R. M. White,1970, Quantum Theory of Magnetism, New York: McGraw-Hill

Ferromagnetism, antiferromagnetism, and ferrimagnetism

R. M. Bozorth, 1951, Ferromagnetisn, New York: Van Nostrand
S. Chikazumi , 1964, Physics of Magnetisrn, New York: John Wiley
B. Lax and K. J. Button, 1962, Microwaue Fenites and Ferrimagnetism, New York:

McGraw-Hill
D. H. Martin, op. cit.
A. H. Morrish, op. cit.
G. T. Rado and H. Suhl, editors, 1963, Magnetrsrn, New York: Academic Press

J. S. Smart, 1965, Effectiue Field Theories oJ Magnetism, Philadelphia: W. B. Saunders

J. S. Smart and H. P. J. Wijn, 1959, Ferrites, New York: John Wiley
J. Smit, editor, 1971, Magnetic Properties of Materials, New York:McGraw-Hill

Magnetic resonances

A. Abragam, 196l , Nuclear Magnetism, Oxford: Oxford University Press

W. Low, l960, "Paramagnetic Resonance in Solids," Solid State Physics, Supplement 2,

New York: Academic Press

B. Lax and K. J. Button, op. cit.
A. H. Morrish, op. cit.



490 Magnetism and Magnetic Resonances

G. E. Pake, 1956, "Nuclear Magnetic Resonance," in Solid State Physics, Volume 2,

New York: W. A. Benjamin
G. E. Pake, 1962, Paramagnetic Resonance, New York: W. A. Benjamin
R. T. Schumacher, 1970, Introduction to Nuclear Magnetic Resonance, New York:W. A.

Benjamin
C. P. Slichter,1963, Principles of Magnetic Resonance, New York: Harper and Row
M. Sparks, 1964, Ferromagnetic Relaxation Theory, New York: McGraw-Hill
A. Yariv, 1966, Quantum Electronics, New York: John Wiley

QUESTIONS

l. The text stated that the diamagnetic response associated with the orbital motion of
atomic electrons can be predicted on the basis of Lenz's law. Prove this statement.

2. Do you expect the constant ,1 in (9.30) describing the susceptibility of the covalent
bond to be positive or negative? Why?

3. Given that the total angular momentum quantum number 7 for an atom is 7: j,
does this necessarily mean that the angular momentum is pure spin, and hence

s : 2? Illustrate your answer with an example.
4. You may have realized, after reading Section 9.6, that the formula for paramagnetic

susceptibility is valid only if one considers the ground state of the atom. But other
excited atomic levels are also present. Explain the following.

a) Why is it usually permissible to disregard these higher levels when calculating the
susceptibility?

b) How you would modify Eq. (9.42), or the original formula lrom which it is

derived, if the temperature were high enough for some of the excited levels to be

appreciably populated?

5. Given that the precession frequency due to spin-orbit interaction is l0 GHz, estimate
the effective magnetic field experienced by the spin moment as a result of this inter-
action.

6. Referring to Questions 4 and 5, estimate the temperature above which the simple
formula (9.42) breaks down for the strength of spin-orbit interaction given in
Question 5.

7. Give a sufficient condition for the existence of paramagnetic susceptibility in terms of
the number of electrons in the atom (or ion).

8. The spin paramagnetic susceptibility of conduction electrons is given in (9.47).

What is its value for a full band? Is the answer surprising? Explain.
9. Neither Mn nor Cr are ferromagnetic by themselves, yet some ol their alloys (with

other elements) are. Explain how this may be possible. Refer to Fig. 9.17.
10. Solid-state theorists often conjecture that any spin system would eventually become

ferromagnetic at sufficiently low temperature. Can you justify this conjecture in light
of the discussion in Section 9.8? Given that the dipole-dipole electrostatic interaction
is the one responsible for such a ferromagnetic transition, estimate the Curie
temperature. (How would you account for the iact that only relatively few spin sys-

tems are observed in the ferromagnetic phase, even at very low temperatures?)



Problems

11. Can the domain structure in a ferromagnetic substance be detected by x-ray
diffraction? By neutron diffraction?

12. Equation (9.80) shows that X" decreases as the strength of the signal is increased, a

phenomenon known as saturation. Explain the physical original of this phenomenon.

Hint: Think of y" as it relates to the rate of absorption. Also note that the quantum
picture of the EPR is more helpful in explaining this phenomenon than the

classical picture.
13. Explain why the condition trrr(ybs)2 ( 1 is necessary for the observation of EPR.

Refer to Eqs. (9.78).

14. Prove Eq. (9.81).

15. The condition of population inversion in a maser is often stated by ascribing a

negative absolute temperature (!) to the system. Explain why this is meaningful ;

refer to Eq. (9.83). Calculate the temperature of the system, given that A'E: I GHz
and Nrf Nr:2.

16. Is the nuclear factor g, positive or negative for the nucleus illustrated in Fig.9.39?
17. The neutron has a magnetic moment (Table 9.10), and yet this particle is electrically

neutral. Does the existence of this moment puzzle you? Explain. Also discuss how
such a moment may be possible if one endows the neutron with a submicroscopic
structure.

18. What is the precise physical meaning of the word adiabatic in connection with the

technique of cooling by adiabatic demagnetization? Why are nuclear rather than
electron spins used at very low temperatures?

19. The NMR technique is most useful in organic chemistry, due to the proton resonance

of hydrogen. What are the two other commonest elements in this field of chemistry,
and why are they not usually useful in NMR?

20. Another standard technique for observing ferromagnetic substances is by using a

polarizing microscope. If a thin section is cut off the substance, and the plane of the
section is normal to the easy-axis direction, then, when one adjusts the polarizing
filter on the microscope, half the domains appear bright and the other half dark.
Explain why.

21. Usingthefactthatthespecificheatof thespinsystem isC -7312 atlowtemperature,
give a physical derivation for the dependence of the magnon density of states g(at)
on o in the long-wavelength region. Compare your result with the answer given in
Problem 25.

PROBLEMS

l. Prove the validity of Eqs. (9.3) and (9.4).

2. Establish the result (9.6).

3. a) Prove the Larmor theorem, i.e., that a classical dipole p in a magnetic field B
precesses around the field with a frequency equal to the Larmor frequency
@t: eBl2m'

b) Evaluate the Larmor frequency, in hertz, for the orbital moment of the electron in
afieldB:lWb/m2.

c) What is the precession frequency for a spin dipole moment in the same field?
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4. The diamagnetic susceptibility due to the ion cores in metallic copper is - 0.20 x l0 - 6.

Knowing that the density of Cu is 8.93 g/cm3 and that its atomic weight is 63.5,
calculate the average radius of the Cu ion.

5. a) The susceptibility of Ge is - 0.8 x l0- s. Taking the radius of the ion core to be

0.44 A, estimate the percentage of the contribution of the covalent bond to the
susceptibility. Germanium has a density of 5.38 g/cm3 and an atomic weight of
72.6.

b) Given that the applied field is 2f :5 x lOa amp'm-r, calculate the magne-
tization in Ge; also the magnetic induction.

6. A system of spins (i: s: ]) is placed in a magnetic field .//': 5 x lOa amp'm.
Calculate the following.

a) The fraction of spins parallel to the fleld at room temperature (f : 300'K).

b) The average component of the dipole moment along the field at this temperature.

c) Calculate the field for which p,: i ltr.
d) Repeat parts (a) and (b) at the very low temperature of 1'K.

7. Establish the result (9.42) lor an arbitrary value of7. (This result is derived under the
condition prB ( kT .) Estimate the field below which the result is valid at room
temperature.

8. Prove that the average dipole moment of an atom, including the effect of the spin-orbit
interaction, is given by pu"e: Se el2m)J, where the Lande factor g is given by
(e.45).

9. Verify the theoretical values of p given in the third column in Table 9.3.

10. Repeat Problem 9 for the third and fourth columns in Table 9.4.
I l. a) The spin susceptibility of conduction electrons at I : 0'K is given in Eq. (9.47).

Express this result in terms of the electron concentration for an energy band of
standard form.

b) Calculate the spin susceptibility for K, whose density is 0.87 g/cm3 and whose
atomic weight is 39.1.

c) Calculate the diamagnetic susceptibility of the conduction electrons in K.

d) Using the above results and Table 9.5, calculate the average radius of the K ion in
the metallic state.

12. Iron has a bcc structure with a lattice constant a:2.86 A.

a) Using the value of the saturation magnetization in Table 9.6, show that the
dipole moment of an Fe atom is equal to 2.22 pr. The density of Fe is 1.92 glcm3,
and its atomic weight is 55.6. (You may assume, for the present purpose, that the
3d electrons are completely localized.)

b) Calculate the Weiss exchange constant ,t and the molecular field in iron.

c) Evaluate the Curie constant in iron.

d) Estimate the exchange energy for a dipole interacting with its nearest neighbors.

13. Repeat Problem 12 for Co (hcp, a:2.51, c:4.1 A), and Ni (hcp, a:2.66,
c : 4.29 L). The densities of Co and Ni are 8.67 and 9.04 gicm3, respectively.

14. a) Applying the Weiss model, with two exchange constants ,1, and A.r, to an anti-
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ferromagnetic substance, derive the N6el formula for the susceptibility at high
temperature [Pq. (9.59)].

b) Evaluate the exchange constants ,1, and ,1, for MnFr.

c) Explain why 7r> )r.
15. Carry out the steps leading to Eq. (9.'72).

16. a) Discuss the splitting of a Cr3+ ion in a static magnetic field.

b) Calculate the field for which the electron resonance for this ion occurs at l0 GHz.

I 7. Solve the Bloch equations (9.66) and (9.67) in the presence of a static field Bo but in the
absence of the signal, and show that the magnetization spirals toward its equilibrium
value as described in Fig. 9.33. Take the initial angle between magnetization and the
field to be 100, the longitudinal and transverse time to be 10-6 and 5 x l0-7s,
respectively, and plot the longitudinal and transverse components of the magneti-
zation versus time, in the interval 0 < I < 5 x 10-6 s.

18. Carry out the steps leading to Eq. (9.78).

19. Nuclear magnetic resonance in water is due to the protons of hydrogen.

a) Find the field necessary to produce NMR at 60 MHz.

b) Find the maximum power absorbed per unit volume, given that the strength of
the signal is such that trr2y2 b3: 1 ana rt: rz: 3s.

20. Carry out the steps leading to (9.100).

21. Many microwave magnetic devices are discussed in Lax and Button (1962). Make a
brief study of these devices, and present a review report.

22. The text said that spin waves are modes which describe the collective excitations ola
spin system. It also pointed out the close analogy between spin waves (magnons) and
lattice waves (phonons). What is the spin mode of excitation analogous to the
Einstein mode in the lattice? That is, what are the localized spin excitation modes?
Assuming that these are the only modes of excitation possible (which is incorrect),
calculate the magnetization and spin specific heat for the system as functions of the
temperature.

23. Discuss why spin waves are more favorable as modes of excitation than local spin
modes, particularly at low temperatures.

24. Determine the expressions for the phase and group velocities of spin waves.

Calculate the group velocity in iron at wavelength ,. : I cm. (Use results of
Problem 12.)

25. Show that the magnon density ofl states g(a) in the long-wavelength limit is given by

skD): (+n2)(hl J'sz a2)3t2 x cttt/z.

26. Many ferromagnetic, ferrimagnetic, and antiferromagnetic substances, such as the
oxides and chalcogenides of the 3d transition metals, exhibit a small amount of
electrical conductivity, i.e., they are semiconductors. Although we have not
discussed this subject here, it is a lively area of research today and is reviewed in
depth in J. P. Suchet, 1971, Crysral Chemistry and Semiconduction, New York:
Academic Press. Study the highlights of this book and write a review report.
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Take her up tenderly,
Lift her with care;
Fashion'd so slenderly
Young' and so fair! 

Thomas Hood



10.1 INTRODUCTION

One of the most interesting properties of solids at low temperatures is that, in many
metals and alloys, electrical resistivity vanishes entirely below a certain temp-
erature-the temperature depending on the substance. This zero resistivity (or
infinite conductivity) is known as superconductioity. Scientists' efforts to explain
this fascinating phenomenon have contributed greatly to our understanding of
solids in general, and particularly solids at low temperatures. Superconductivity
has been applied in the design of superconducting magnets, computer switches, and
many other technical devices. In addition, engineers are proposing the use of
superconductivity in the field of transportation and in the transmission of power
without pollution.

We begin our discussion with the electrical properties of superconductors. We
shall then consider the Meissner effect-the fact that a superconductor expels a
magnetic flux-and we shall further explore the effects of a magnetic field by show-
ing that it may destroy the superconducting property.

Thermodynamic considerations suggest the presence of a gap in the energy
spectrum of the electrons at the Fermi surface.

We next discuss the London theory of superconductor electrodynamics,
which describes the distributions of fields and currents in superconductors. Al-
though semi-phenomenological in nature, this theory is extremely useful in giving a
simple account of many phenomena associated with superconductivity. This is

followed by consideration of the microscopic theory of superconductivity-due to
Bardeen, Cooper, and Schrieffer-commonly referred to as the BCS theory. This
theory shows that the physical origin of superconductivity lies in the interaction
between conduction electrons and the ions of the lattice.t We shall also discuss
tunneling phenomena involving superconductors, including the Josephson effect.
These phenomena are among the best-known illustrations of the basic concepts of
quantum mechanics.

The chapter closes with a look at miscellaneous subjects related to super-
conductivity.

10.2 ZERO RESISTANCE

Superconductivity was first observed in l9l I by the Dutch physicist H. K. Onnes in
the course of his experiments on the electrical conductivities of metals at low temp-
eratures. He observed that as purified mercury is cooled, its resistivity vanishes
abruptly at 4.2"K(Fig. 10.1). Above this temperature the resistivity is small, but
finite, while the resistivity below this point is so small that it is essentially zero. The
temperature at which the transition takes place is called the critical temperature.

Onnes surmised correctly that he was dealing with a new state of matter below
the critical temperature, and coined the term superconducting state. Above the

t For this great scientific achievement, Bardeen, Cooper, and Schrieffer were awarded the
1972 Nobel prize in physics. Bardeen, who had already received a Nobel prize for his
work on the transistor, thus has the unprecedented distinction of getting two Nobel prizes
in the same field.

496
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Fig. 10.1 Resistivity p versus temperature T for a superconductor. The resistivity vani-
shesforT4T,.

critical temperature [, the substance is in the familiar normal stqte, but below 7" it
enters an entirely different superconducting state. This transition may be likened to
other familiar phase transitions, such as that of vapor-liquid at the vaporization
point, or the ferromagnetic transition at the Curie point.

Onnes found that the superconducting transition is reoersible: When he heated

the superconducting sample it recovered its normal resistivity at the temperature
?.. This confirmed his supposition that here was a new state of matter, one which
depends on the state variables, such as temperature, rather than on the history ofthe
sample.

We can gain some insight into the nature of superconductivity using the free-
electron model of Chapter 4. lt was shown in Section 4.4 that the resistivity of a
metal may be written as

where z is the collision time, and pointed out that p decreases as the temperature is

lowered, because, as Tdecreases, the lattice vibrations begin to "freeze," and hence

the scattering of the electrons diminishes. This results in a longer r and hence a

smaller p, as indicated by the above equation. If t becomes infinite at sufficiently
low temperatures, then the resistivity vanishes entirely, which is what is observed in
superconductivity. We shall see in Section 10.5 that, as the temperature is lowered
below [, a fraction of the electrons become superconducting, in the sense that
they have infinite collision times. These electrons undergo no scattering whatsoever,
even though the substance may contain some impurities and defects. It is these

electrons which are responsible for superconductivity.
One usually measures the resistivity of a superconductor by causing a current to

flow in a ring-shaped sample (one can start the current by induction after removing
a magnetic flux linking the ring), and observing the current as a function of time.
If the sample is in the normal state, the current damps out quickly because of the
resistance of the ring. But if the ring has zero resistance, the current, once set up,
flows indefinitely without any decrease in value. Physicists have made experiments
to test this, and found that even after several years of operation the current in the

m
lt - ------;- ,

ne-T
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ring remained constant, as far as they could tell. For instance, they found that the
upper limit for the resistivity of a superconducting lead ring was about l0- 25 ohm-
m. The fact that this is about lll}*11 as large as the value at room temperature
does indeed justify taking p : 0 for the superconducting state.

The superconducting transition is not always sharp. But if the specimen is
made up of a metallic element, which is pure and structurally perfect, the transition
is usually sharp. Pure Ga, prepared under these conditions, has a transition range
of less than l0-s"K. By contrast, a metallic alloy which is strained may have a
broad transition range of 0. l"K or more. This is illustrated by Fig. I0.2.

Fig. 10.2 Effect of impurities on superconducting transition in tin.

Occurrence of superconductivity

Superconductivity is not a rare phenomenon. lt is exhibited by an appreciable
number of elements (27 asof now), and many alloys. Table 10. I lists most of the
superconducting elements, and the better-known superconducting alloys, together
with their critical temperatures.

Note that the critical temperature varies widely-from 0.01'K for W to 20.8'K
for NbAlGe. It would be useful to have superconductors with much higher critical
temperatures, particularly approaching room temperature, but efforts to achieve
this have met with failure. The highest known critical temperature is close to
20"K, and this has remained the case for a number of years, although physicists
still hope that someday they will find materials that have higher critical temp-
eratures.t

Since superconductivity appears only in some substances, and not in all, and
since I varies widely, it is useful to have criteria which indicate the expected value
of 7" and the likelihood of observing superconductivity in a particular substance.
The rules given below are due to B. Matthias, who, on the basis of these rules,
discovered thousands of new superconductors.

tThe latest record critical temperature is 23.2"K and occurs in NbrGe. This discovery,
made during the Fall of 1973, is expecially significant because the new temperature lies
above the boiling temperature of hydrogen, and it is possible therefore to begin moving
superconductivity technology from one based on liquid helium to a more practical one
using liquid hydrogen.

3.70 3.72 3.74 3.76 3.78
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Table 10.1

Transition Temperatures of Superconductors

Element 7","K Compound r., tK

AI
Cd
Ga
ln
Ir
La (a)

La (0)
Pb
He (a)
tte$)
Mo
Nb
Os

Rh
Ru
Ta
Tc
TI
Th
Sn

Ti
w
U(a)
U (B)

Zn
Zr

1.2

0.5
1.1

3.4
0.1

4.8
4.9
7.2
4.2
4.O

0.9
9.3

0.7

'1.7
0.5
4.5
8.2
2.4
1.4

3.'7

0.4
0.0r
0.6
r.8
5.3

0.9
0.8

20.1
r 8.l
17.5

1 t.5
16.0

12.0

r 6.5

Nb.Alo.rGeo.,
NbrSn
Nb3Al
Nb.Au
Nb3N
MoN
V.Ga

a) Superconductivity occurs only in substances in which the valence number
per atom is between 2 and 8. In general, superconducting elements lie in the inner

columns of the periodic table. The phenomenon has not yet been observed in the

alkali or noble metals.

b) The valence numbers 3, 4.7, 6.4 (nearly odd) are particularly favorable,
i.e., they result in higher critical temperatures, while the numbers 2, 4 and 5.6

(nearly even) are particularly unfavorable. This is illustrated in Fig. 10.3, in which

the valence number is varied continuously in the alloy ZrNbMoRe.

c) A small atomic volume, accompanied by a small atomic mass, favors super-

conductivity.
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0uZrNbMoRe
45678

Average number of valence el@trons per atom

Fig. 10.3 Variation of critical temperature with valence number for alloys of elements
in the second transition series of the periodic table.

Although these rules were prescribed by Matthias on empirical grounds, some
of them may be related, albeit loosely, to the BCS theory.

IO.3 PERFECT DIAMAGNETISM, OR THE MEISSNER EFFECT

In 1933, two German physicists, Meissner and Ochsenfeld, observed that a super-
conductor expels magnetic flux completely, a phenomenon known as the Meissner
effect. In a series of experiments on superconducting cylinders, they demonstrated
that, as the temperature is lowered to 4, the flux is suddenly and completely
expelled as the specimen becomes superconducting, as shown in Fig. 10.4. (The
flux expulsion continues for all T < 7".) They established this by carefully measur-
ing the magnetic field in the neighborhood of the specimen. Furthermore, they
demonstrated that the effect is reuersible: When the temperature is raised from
below [, the flux suddenly penetrates the specimen after it reaches [, and the
substance is in the normal state.

The magnetic induction inside the substance is given by

B : po(tr + M): po(l + fl/f , (10. l)

wherc ff is the external intensity of the magnetic field, M the magnetization in the

vl0
t\ ) ii

Normal
sphere

T1T"

Superconducting
sphere

T)7,

Fig. 10.4 The Meissner effect:
that is, for T < 7".

The magnetic flux is expelled from a superconductor,
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medium, and X its magnetic susceptibility. Since B : 0 in the superconducting
state, it follows that

M:-/f,
meaning that the magnetization is equal to and opposed

therefore diamagnetic, and the susceptibility is

X: - l'

Such a condition-in which the magnetization cancels

exactly-is referred to as perJbct diamagnetism. Figure 10.5

ization in a superconductor.

(10.2)

tolf . The medium is

(10.3)

the external intensity
illustrates the magnet-

Fig. 10.5 Magnetization curve for a superconductor.

Compare this behavior with that of a normal metal. The metal is also dia-
magnotic-if the spin susceptibility is ignored-but in that case X - - 10-s,
which is much smaller than that given by (10.3). [t follows that some new mech-

anism operates in superconductors in order to give such an enormous diamagnetism.

The Meissner eflect is a powerful means of shedding light on the superconduct-

ing state, and it has been speculated that, had the effect been discovered before

1933, the full understanding of superconductivity would have come much earlier.
The Meissner effect is particularly interesting because it contradicts classical laws,

as we shall see shortly.

10.4 THE CRITICAL FIELD

Shortly after Onnes first observed superconductivity, it was found that super-

conductivity can be destroyed by the application of a magnetic field. lf a strong
enough magnetic field, called the critical field, is applied to a superconducting

specimen, it becomes normal and recovers its normal resistivity even at T < 7,.
The critical field depends on the temperature. For a given substance, the field

decreases as the temperature rises from T : 0"K to T : 7". It has been found
empirically that the variation is represented by

[,- (;)'].rf "(T) 
: lf ,(0) ( r0.4)
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which holds approximately for many substances, as shown in Fig. 10.6. Thus the
field has its maximum value, ff"(O), at T:0oK, and vanishes at T : ?". This
result is expected, of course, because at T : 7: the specimen is already normal,
and no field is necessary to accomplish the transition. The critical field is typically
of the order of several hundred gauss. Table 10.2 gives the critical fields for some
superconductors.

012 345 6 7 8

7, "K

Fig.10.6 Critical field versus temperature for several superconductors.

Table 10.2

Critical Fields of Some Superconductors

Element

d{

lfo

AI
Cd
Ga
Pb
Hg(a)
He(f)
Ta
Sn

A/m
0.79 x
0.24
0.4r
6.4

3.3

2.7

6.6

2.4

gauss

104 99
30

5l
803

413

340

830
306

The critical field need not be external. A current flowing in a superconducting
ring creates its own magnetic field, and if the current is large enough so that its
own field reaches the critical value, then superconductivity is also destroyed.

x 100
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This places a limitation on the
conductor, and this is, in fact,
field superconducting magnets.
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strength of the current which may flow in a super-
the primary limitation in the manufacture of high-

IO.5 THERMODYNAMICS OF THE SUPERCONDUCTING TRANSITION

The purpose of the discussion of thermodynamics in this section is to unify the

various observations described thus far. Even though the discussion will not lead to
conclusive statements about the microscopic forces involved (thermodynamics is

essentially a macroscopic science), it will provide clues as to the nature
of the transition.

Figure 10.7 illustrates the variation of specific heat with temperature for a

superconductor. The peaking of C, just below I indicates an appreciable increase

in entropy-or disorder-as T increases toward 7", and transition to the normal
state becomes imminent. Thus the superconducting state has a greater degree of
order than the normal state.

r, "K

Fig. 10.7 Molar specific heat of tin versus temperature. The dashed curve is an extra-
polation which represents what the specific heat would have been if the normal state had
persistedforT<7".

Experiments at very low temperatures indicate that the specific heat of the

electrons in that region decreases exponentiallyt

Cu - qa-ur1r"1 (las)

This exponential behavior implies the presence of an energy gap in the energy

spectrumof theelectrons. Thisgap,whichlies justattheFermi level(Fig. 10.8),

prevents the electrons from being readily excitable. It also leads to a very small
specific heat. The width of the gap A must be of the order of k[, because when the

t To obtain the total specific heat of a superconductor, one-must add to this the specific
heat of the lattice. The lattice contribution - T3 at low temperatures, as we recall from
Chapter 3.
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substance is raised to 7., it
excited. Thus

L, - kT". (10.6)

Substituting T.:5'K, a typical value, one finds that A - l0-aeV. This energy
gap is very small compared with the gaps we have encountered previously, and it is
for this reason that superconductivity appears only at very low temperatures.

We have noted that the superconducting state has a higher degree of order than
the normal state. One may, in fact, view the superconducting transition as similar
to the condensation of a vapor into the more ordered liquid state. Similarly, one
expects a reduction in energy as a result ofthe transition. Let us now calculate the
"condensation" (or latent) energy associated with the superconducting transition.

Fig. 10.8 The density of states g(E) versus E for a superconductor, illustrating the super-
conducting gap at the Fermi energy level. The gap is greatly magnified for purposes of
illustration, the actual value of A/Er being about 0.0001. The screened area represents
the region occupied at 7: 0'K.

Figure 10.9 plots the critical field,tr" versus T. The curve dividestheff"-T
plane into two regions: the normal and the superconducting. Suppose that the
specimen is at temperature T, < 7". When the specimen starts at point ,4 and
follows the vertical path .AN-that is, gradually increasing the field-it becomes
normal at the point N. Thus the "condensation" energy is

L,E: Ex - E*

Superconducting

(10.7)

Tr Tc

Fig.10.9 Calculation of the superconducting "condensation" energy.

10.5

becomes normal and its electrons are then readily



r0.5 Thermodynamics of the Superconducting Transition

This energy can be readily calculated. Since the specimen acts as a perfect dia-
magnet along the path ,4N, AE is equal to the demagnetization energy,

( 10.8)

per unit volume. This is the amount of energy needed to convert a system from the

superconducting into the normal state, and, conversely, it is the amount lost by the

system when it makes the transition from the normal to the superconducting state.

Since a system always seeks to be in a state which has the lowest possible energy, it
follows that the superconducting state is the more stable one for T < 7" (Fig. 10. l0).

The maximum amount of condensation energy is

LE : +po/{?(o), (10.e)

and occurs, of course, atT :0"K. lf one substitutes a typical value of 3f .(O):
500 G, one finds AE : 103 Ji m3.

Fig.10.10 The energies E" and E, of the superconducting and normal states, versus
temperature.

A useful relation can now be established between the critical field and the

critical temperature, We calculated the condensation energy in terms of the field,
but it may also be estimated in terms of [. To do this, we must realize that only a
fraction of the electrons-those lying within a shell kT" of the Fermi surface-are
affected by the superconducting transition. This is because those electrons lying
deep inside the Fermi sphere require much greater energy for excitation, in the

neighborhood of 5 eV per electron, while we have seen that, in superconductivity,
energies of the order of only l0-a eV are involved. Thus we may estimate that the

concentration of effectiue electrons is

kT"
n.ff = n--=-,

Lp

where r is the total concentration of conduction electrons. Each of the effective

electrons acquires an additional energy ofabout k7" in order to be excited across

L,E: - [*" 
ua* : - ,"|i" *e dn: i potr?

/E,

(l 0. l0)



the gap. Therefore

(kr")'
LE = n.r,kT": nt', (l0.ll)

which is the same as the energy calculated in (10.9). Equating these energies, one
finds that

/2nk2 \rtz
.tr,(o) = (r"u./ T,.
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(10. l 2)

That is, the critical field is proportional to the critical temperature. Thus the higher
the transition temperature, the greater the field required to destroy superconduct-
ivity. You may readily verify the validity of (10.12) by comparing the figures in
Tables l0.l and 10.2.

Equation ( 10. l2) may be used to estimate ,tr 
"(0) 

if 7. is given, and vice versa.
Thus if one substitutes ?. : 5"K, EF: 5eV, and n: l02e m-3, one finds that
.8"(0):0.01 W/m2(: l00G), which is in excellent agreement with observed
values.

The two-fluid model

ln 1934, in order to explain thermodynamic properties of superconductors in
fuller detail, Gorter and Casimir introduced the two-fluid model of superconduct-
ioity. According to this model, the conduction electrons in a superconducting
substance fall into two classes: superelectrons and, normal electrons. The normal
electrons behave in the usual fashion discussed in Chapter 4, that is, as charged
particles flowing in a viscous medium. But the superelectrons have several novel
properties which endow the superconductor with its distinctive features. These
electrons experience no scattering, have zero entropy (perfect order), and a long
coherence length (aboul 104 A), or spatial extension over which the superelectron is
spread.

The number of superelectrons depends on the temperature. To obtain agree-
ment with experiment, Gorter and Casimir found that the concentration of these
electrons is given by the formula

'": nl'- ("t)'l ' (10.13)

which is plotted in Fig. 10. ll. Thus,atT :0'K, all the electrons are superelec-
trons, but as T increases, the superelectrons decrease in number, and eventually
they all become normal electrons at T : 7".

The two-fluid model explains the zero-resistance property of the supercon-
ductor. For T < [, some superelectrons are present, and since these have infinite
conductivity-recall that they experience no scattering-they essentially short-
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0t-7
Fig. 10.1f The fraction of superelectrons nrf n versus temperature.

circuit the normal electrons, resulting in infinite conductivity for the sample as a

whole.
This model may be readily related to the concept of the energy gap discussed

above. All the electrons below the gap are essentially frozen in their state of motion
by virtue ofthe gap (see Fig. 10.8); hence these are the superelectrons. Those above

the gap are normal electrons. The gap decreases as the temperature increases, and

vanishes entirely atT : [, as shown in Fig. 10.12. Thus, as T --+ 7. and the gap

vanishes, all the electrons become normal.t

A(r)

ao

Fig. 10.12 Decrease of the superconducting gap A(?n) with temperature.

10.6 ELECTRODYNAMICS OF SUPERCONDUCTORS

The most interesting superconducting phenomena, and the most useful in practice,

are the electrodynamic properties. The theory underlying these phenomena was

put forward by the London brothers (F. and H. London) in 1935, and was elabor-
ated and expanded by F. London in his book published in 1950. The theory is

semi-phenomenological in nature, in that it uses an additional equation which
could not at that time be derived from first principles, but it is nevertheless

extremely useful because it explains known observations with minimum mathemat-
ical effort.

t The decrease of the gap with temperature and the vanishing of the gap at T : T 
" 

is

expected, since the superconducting transition is a collective effect. (See a similar
remark made in connection with dipolar polarization in solids, Section 8.7).
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Let us use the two-fluid model. The equation of motion for a superelectron in
the presence of an electric field is

10.6

which follows, since the only force acting on the electron is the force due to the

electric field. The collision force is absent because this type of electron undergoes

no collision. The density of the supercurrent J" is thus given by

dv-*d: - 'E'

J" : n"( - e) v,,

which, when combined with (10.14), yields

. n-e2J": !d'
m

(r0.14)

(r0.r5)

(r0.16)

(10.20)

where the dot over J, denotes time differentiation. ln the steady state, the current in
a superconductor is constant. Therefore it follows from (10. 16) that j":0, or

E :0. (r0.17)

This important conclusion asserts that, in the steady state, the electric f eld inside a

superconductor uanishes. In other words, the voltage drop across a superconductor
is zero.

Equation (10.17) leads immediately to another important result. When this
relation is combined with the Maxwell equation,

B:-YxE, (10.r8)

one finds that

B:0. (10.19)

This affirms that in the steady state the magnetic fleld is constant.
But Eq. (10.19) is at variance with the Meissner effect. This equation states that

B is constant regardless of the temperature, whereas we recall from Section I0.3
that when 7 is raised toward 7", the flux suddenly penetrates the sample as the

transition point is reached. Thus the above formalism requires some modification.
To proceed with this modification, let us substitute for E from (10.16) into

(10.18), which yields

B:- *rvri,.
ft"€-

This equation is invalid, as has just been seen, because it predicts that B : 0. To
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rectify this, London postulated the relation
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(10.23)

(10.24)

B- - (10.21)

which has the same form as (10.20), except that the time differentiations have been

eliminated. We shall see presently that relation (10'21)' known as the London

equation,leads to results that are in agreement with experiment.

Equation (10.21) is a relation between B and J". These quantities are also

related by the Maxwell equation

V x B: loJ". (10.22)

If we eliminate J" between (10.21) and (10.22) [we can take the curl of (10.22),

substitute for v x J" from (10.21), and then use the identity of v x v x B:
V(V.B) - V2B : - Y2 B, where use is made of V'B:01, we find that

V2B: t'ob" B.

Let us apply this field equation to a situation of simple geometry. The specimen

is semi-inflnite, with its surface lying in the yz plane (Fig. 10.13), and the field is

apptied in the y-direction. Since quantities vary only in the x-direction, Eq. (10.23)

reduces to

*L,u,: 
uolr""' u,.

Fig. 10.13 Solution of the London equation. The magnetic field decays exponentially

within the superconductor.

!.y , J",
fi"€-
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The solution to this simple differential equation is

Br(x) : Br(O) e-'tt,

A : (ml po n"e2)1t2.

(10.25)

(10.26).

where

Equation (10.25) shows that the field decreases exponentially as one proceeds from
the surface into the superconductor. Thus the field vanishes inside the bulk of the
medium, in accord with the Meissner effect. This lends support to the London
equation (10.21). As a matter of fact, this agreement was the primary motivation
for postulating the London equation in the first place.

Note, however, that Eq. (10.25) predicts that the field penetrates the sample to
some extent, the distance of penetration being roughly equal to,t. Thus the flux is
not expelled entirely from the superconductor, as was once thought, but there
is a small region near the surface in which there is an appreciable field. The
parameter ,1 is known as the London penetration depth.

This prediction was later verified experimentally, and was a great triumph for
the London theory. If one substitutes appropriate values for the parameters in
(10.26), one finds that )= 500A, which is close to the experimentally observed
values, as shown in Table 10.3.

Table 10.3

Penetration Depths
(Measured Values)

Element ,.(0), A

AI
Cd
Hg
In
Nb
Pb
Sn

500
I 300

380-450
640
470

390
510

Another impressive confirmation of the London theory is its prediction of the
variation of /. with temperature. If one substitutes for n" from (10. l3) into (10.26),
one obtains

,t : ,tfOl [f -
T4j - tt2,

T] (10.27)

( 10.28)

where

,1(0) : (mf pone2)tt2
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is the penetration depth at T : 0. According to (10.27),,1. increases as T increases

from 0'K, and becomes infinite at T :7., as shown in Fig. 10. 14. This latter
conclusion is expected, because at T : I the substance becomes normal, and the
field penetrates the whole specimen, i.e., the specimen has an inflnite depth of
penetration. The temperature dependence predicted by (10.27) is well confirmed by
experiment.

Tc

Fig. 10.14 Increase of the penetration depth tr with
theory.

temperature, according to the London

A third conclusion from the London theory is the existence of an electric
current flowing near the surface. If one substitutes for B from (10.25) into (10.21)
and solves for the current, one finds

(10.2e)

which is a current flowing in the negative z-direction. Since this current decays

exponentially as one moves into the superconductor, it is essentially a surfoce
current. Therefore the Meissner effect is accompanied by a surface current, and it is
this current which acts to shield the inner superconductor from the external
magnetic field, resulting in a perfectly diamagnetic medium. (In other words, the
magnetic field due to the surface current completely cancels the external field
inside the medium.)

So we get a very interesting picture: The current in a current-carrying super-
conductor (the supercurrent)is restricted to the region very close to the surface. If,
for example, the specimen is in the shape of a cylinder, the current flows only along
the surface of the cylinder, leaving the whole inner region free of any current. This
is very different from a normal conductor, in which the current is uniform through-
out the sample.

10.7 THEORY OF SUPERCONDUCTIVITY

The modern theory of superconductivity was promulgated by Bardeen, Cooper,

l"(x): - (!t:\''' ,,t*): - J"(o) e-Qt^),
\lom/
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and Schrieffer in their classic paper in 1957.t The BCS theory has now gained
universal acceptance because it has proved capable of explaining all observed
phenomena relating to superconductivity. Starting from first principles and
employing a completely quantum treatment, their theory explains the various
observable effects such as zero resistance, the Meissner effect, etc. Because their
theory is so steeped in quantum mechanics, one cannot discuss it meaningfully
without using advanced quantum concepts and mathematical techniques. There-
fore, in the interest of simplicity, let us instead give a brief, qualitative, conceptual
exposition of the BCS theory.

Consider a metal in which the conduction electrons lie inside the Fermi sphere.
Suppose that two electrons lie just inside the Fermisurface (Fig. 10.15), and repel
each other because of coulomb interaction. But this coulomb force is reduced
substantially on account of the screening due to the presence of other electrons in
the Fermi sphere (recall the discussion of the Fermi hole, Section 4.3). After the
screening is taken into account, the interaction between the two electrons disappears
almost entirely, although a small repulsive residue persists.

Fermi energy

Fig. 10.t5 Interaction between two electrons, I and 2, near the Fermi surface in a metal.

However, something new may occur. Suppose that, for some reason, the two
electrons attract each other. Cooper showed that the two electrons would then form
a bound state (provided they were very close to the Fermi surface). This is very
important, because, in a bound state, electrons are paired to form a single system,
and their motions are correlated. The pairing can be broken only if an amount of
energy equal to the binding energy is applied to the system.

Our two electrons are called a Cooper pair. The binding energy is strongest
when the electrons forming the pair have opposite moments and opposite spins, that
is, kJ, -kJ. It follows, therefore, that if there is any attraction between them, then
all the electrons in the neighborhood of the Fermi surface condense into a system of
Cooper pairs. These pairs are, in fact, the superelectrons discussed in Sections 10.5

t Phys. Reu. lO6, 162 (1957). A similar theory was published shortly afterward by
N. Bogolubov, Nuouo Cimento 7: 6,794 (1958).

Superelectrons
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and 10.6, and the binding energy corresponds to the energy gap introduced in
Section 10.5.

We have been talking about the consequences of electron-electron attraction,
but how does this attraction come about in the first place? In superconductive
materials, it results from the electron-lattice interaction (Fig. 10.16).

Fig.10.16 The screening of electron I by the positive ions of the lattice. Solid circles
represent the two electrons considered.

Suppose that the two electrons, I and 2, pass each other. Because electron I is
negatively charged, it attracts positive ions toward itself (electron-lattice inter-
action). Thus electron 2 does not "see" the bare electron l. Electron I is screened

by ions. The screening may greatly reduce the effective charge of this electron;
in fact, the ions may overrespond and produce a net positive charge. Ifthis happens,

then electron 2 will be attracted toward l. This leads to a net attractive interaction,
as required for the formation of the Cooper pair.

The ions' overresponse may be understood qualitatively. Since electron I is

near the Fermi surface, its speed is great. At the same time the ions, because of
their heavy masses, respond rather slowly. By the time they have felt and completely
responded to electron l, electron I has left its initial region, at least partially, thus
stimulating the overcompensation. One can also reason that this process is most
effective when electron I and electron 2 move in opposite directions (why?).

(In technical literature, one says that each electron is surrounded by a "phonon
cloud," and that the two electrons establish an attractive interaction by exchanging
phonons; for example, electron I emits phonons which are very quickly absorbed
by electron 2, as in Fig. l0.l7.t Since the phonon is involved twice-once in
emission and once in absorption-the attraction between electrons is a second-

order process.)
As a result of this binding between electron I and electron 2, an energy gap

appears in the spectrum of the electron. This gap straddles the Fermi energy level,

t Imagine a situation in which one person throws massive balls to another person, who
receives them. We can readily see that such a process leads to a repulsiue force between
the persons; the first person recoils backward when he throws the ball ; the second person
recoils by the same amount when he receives the ball. However, if the two persons were
to exchange helium-filled balloons in air, the result would be an attractive force between
them.

..'l,o
."t r,
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Fig.10.17 The phonon exchange responsible for the attractive interaction between
electrons I and 2.

as shown in Fig. 10.18, in which are plotted the density of states for a
superconductor.

The states in the energy range (Er - i Lo, E, + * Ao) are now forbidden.
These states have been "pulled" both down and up, resulting in a peaking of the
density of states just below and just above the gap. Far from the Fermi energy, the
density of states for the superconductor is the same as in the normal metal.

Fig. 10.18 The density ofstates g(E)versus Efor a superconductor, illustrating the energy
gap. The cross-hatched region is fully occupied at T: 0"K.

\ Phonon I

l*1

The theory shows that the gap at zero temperature is given by

Lo: 4haoe-Qlc@)v'),

where ar, is the Debye frequency, g(E6) is the density of states for the normal metal at
the Fermi level, and /' is the strength of the electron-lattice interaction. The Debye
frequency appears in (10.30) because of the exchange of a phonon between the
electrons of the Cooper pair. Several interesting results follow at once from this
expression.

a) Roughly speaking, L,o - ha4, the latter being the energy of a typical
phonon. This also yields the correct order of magnitude, since /rroo - 70-27 x
l0+r3 - l0-1aerg - lO-2 eV. When the exponential factor of (10.30) is included,
it reduces Ao to about l0-a eV, in agreement with observation.

b) Since @o- M- 1/2, where M is the mass of the vibrating ion [Eq. (3.39)],
it follows that Ao - M- 1t2. Thus the gap-and hence the critical temperature [-

( r 0.30)
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decrease as M increases. This is observed experimentally by varying the isotope
ratio of the metal, and is referred to as lhe isotope effect. This effect was observed

long before the advent of the BCS theory, and was the strongest clue to the fact
that the lattice is somehow involved in the process of superconductivity.

c) The gap increases, and so does 7., as the electron-lattice interaction I/'
increases. In other words, a strong /' favors superconductivity. This is plausible

because the ions are then attracted more strongly to the electron, increasing the

chance of overcompensation occurring. This result is curious, on the other hand,
because I/'is also responsible for the resistivity in the normal state, in which the

larger the V' , the higher the resistivity. We therefore reach the seemingly paradox-

ical conclusion that poor normal conductors make good superconductors, while
good normal conductors are poor superconductors. This is, however, in agreement

with experiment: The former group includes, for instance, Pb and Nb, and the
latter group includes the alkali and noble metals, which exhibit no superconduct-
ivity whatsoever, even at the lowest attainable temperatures.

The BCS theory shows that the critical temperature is given by

Lo : 3.52 kT,. (r0.31)

This relation can be tested experimentally, because Ao and T, can be measured

independently; observations confirm the validity of the relation to a good approx-
imation. Typically it is found that Ao : 4 kT, (Table 10.4).

Table 10.4

Ratio of Measured Gap
to kT",L,olkT"

Element LolkBT.

In 4.1

Sn 3.6
Hg 4.6
v 3.4
Pb 4.1

The energy gap decreases with temperature, as mentioned in connection with
Fig. 10.1 l. This behavior is also derived from the BCS theory, and the agreement

with experiment is good.t
The energy gap can be determined experimentally by any of several means.

f According to the BCS theory, the variation of the gap with temperature is given by
A(rYAo : tanh lr "L@\lr 

Lof.
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One involves infrared absorption. If a beam of infrared light shines on a super-
conductor at very low temperature, absorption of infrared radiation takes place
only when the frequency of the radiation is sufficiently high that a Cooper pair is

excited across the gap.t That is,

ha Z 2Lo. (10.32)

The gap can therefore be determined from the frequency at which the absorption
commences. Since Ao - l0-4eV, the corresponding frequency Iies in the infrared
region. (N.B.: The BCS theory explains the zero-resistance property as follows:
Once set in a drift motion, a Cooper pair may be scattered only if the collision
mechanism imparts an energy to the pair which is at least equal to 2Ao. But at
low temperatures this amount of energy cannot be supplied by the phonons,
because only very low-energy phonons are excited. Thus the Cooper pair continues
its drift motion indefinitely.)

10.8 TUNNELING AND THE JOSEPHSON EFFECT

When a thin junction involving a superconductor is prepared, tunneling may take
place across the junction, and the tunneling current may be used to study the
physical properties of the superconductor. Figure 10.19(a) shows such a junction,
in which two pieces of metal, in the superconducting and normal state, respectively,
are joined by a thin insulating film, of thickness of about S0 A. the film acts as a
potential barrier as far as the flow of electrons across the junction is concerned,
but because the film is thin, it does not completely inhibit the flow. According to
quantum mechanics, electrons are still able to tunnel under a thin potential barrier.

Insulator

I

Fig. 10.19 Tunneling in a normal-superconductor junction. (a) Tunneling (dashed
arrow) is inhibited by the exclusion principle. Note that the Fermi level Ep is the same
throughout the system, and passes through the midgap of the superconductor. (b) Current
l versus voltage V in the junction.

f The minimum energy required to excite a Cooper pair is 2Ae, twice the gap, and not Ao.
It is not possible to excite only one member of an electron pair, because the pair form an
indivisible whole unit. If the pair is broken up for any reason, then we have two single
normal electrons, i.e., both electrons have been excited across the gap simultaneously.

10.8

(b)(a)

Lo/2e
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lf a small voltage Ir is applied across the junction (taking the field to be

directed to the left), the energy band of the left side is raised by the amount eV, bil
the electrons are still unable to flow to the right because the states lying horizon-
ally across are already occupied. But if the voltage is increased further so that the

energy band of the superconductor is raised by A'o12, then the corresponding
horizontal states on the right are now empty, and the current proceeds to flow.
This results in the current-voltage characteristic shown in Fig. 10. l9(b). The
voltage at which the current begins to flow is such that

a,sf2: ev, ( r 0.33)

and from this the superconducting gap may be determined.
The above tunneling is referred to as normal, or single-electron tunneling,

because single electrons tunnel to the right. Another type of tunneling, one which
involves Cooper pairs, has received a great deal of attention recently, and is

responsible for the J osephson effect.l The underlying principle is that if the insulating
film is very thin-i.e., about l0A 

-then 
the pairs would not tunnel readily across

the junction, but also their (quantum) wave functions on both sides would be

highly correlated. In fact, the effect of the film is merely to introduce a phase

difference @o between the two parts of the wave function on opposite sides of the
junction, as shown in Fig.10.20. The current density across the junction is given in
terms of this phase by the relation (see Feynman, 1963)

J: Jr sinSo, (10.34)

where J1 is a measure of the probability of transition across the junction.
In the absence of any potential difference across the junction, the phase @o

adjusts its value to that ofthe actual current, so that Eq. (10.34) is satisfied.

Let us now suppose that a static potential Zo is applied across the junction.

We recall from quantum mechanics that the phase of the wave function in quantum

Fig. 10.20 Wave function of an electron at the junction of two superconductors; note
the phase shift in the wave function.

tFor predicting this effect bearing his name, Brian D. Josephson received the 1973

Nobel Prize in physics. Also sharing the prize were lvor Giaver and Leo Esaki for their
work on normal tunneling in superconductors (above) and the tunnel diode (see 7.5),
respectively.

Insulator
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mechanics is given by

( r 0.35)

where E is the total energy of the system. Let us apply this to calculate the addi-
tional phase difference experienced by the Cooper pair as it tunnels across the
junction. In this case E : (2e)Vs, in which the factor 2 is introduced because the
system here involves a pair ofelectrons. Therefore

ETL0: h.

2eV^tL0:;,
which now alters ( 10.34) to the new form

( r 0.36)

( 10.37)

( 10.38)

J : Jr sin(@o + Ad)

: rr sin (r, * +,),
which represents an alternating current. This result is interesting because a static
potential is seen to lead to an ac current, and the frequency

.: 2"vo
h

is readily tuned by varying I/0. Numerically

v : 484 VsGHz,

for Vo is in millivolts. Since I/o is usually of the order of several millivolts, the
Josephson frequency falls in the microwave range. The tunneling current (10.37)
was observed very soon after it was first predicted by Josephson in 1962. One
method of observation involves measuring the emission of microwave radiation
from the junction. Agreement between theory and experiment is very good.

The Josephson effect has many applications. An important one is its recent use

in the redetermination of the fundamental physical constants. We can see this from
the fact that the frequency in (10.38) includes the ratio 2efh, containing both the
charge on the electron and Planck's constant. It has been possible to determine the
ratio to an accuracy of 6 ppm.

10.9 MISCELLANEOUS TOPICS

Now let us take a look at some other important topics related to superconducti-
vity.

The intermediate state

In discussing the critical field (Section 10.4), we said that the flux was expelled by a

superconductor until a field lf, 
" 

was reached, whereupon the whole specimen made



10.9 Miscellaneous Topics 519

a discontinuous transition into the normal state. Actually, however, the transition
is discontinuous only for specimens with simple geometries and particular field
orientations: for example, a cylinder whose axis is oriented parallel to the field.

Consider, on the other hand, the case in which the axis of the cylinder is normal
to the field. Figure 10.21 shows the distribution of the field in the neighborhood of
the cylinder. The field is stronger at the points AA' than at the points DD' because

of the "crowding" of the field lines at points AA'. lt can be shown, in fact, that the

AA' field is twice as strong as the DD' one. Thus as the intensity of the field is

raised, it reaches its critical value at the points AA' before it does at DD' , and the

sides of the cylinder thus turn into a normal state at the field sf : itr". As the
intensity of the field is raised further, the specimen divides into alternate normal
and superconducting laminae parallel to the field, as shown in Fig. 10.21, and the
specimen is said to be in the intermediate state. And when the intensity of the field
is raised still further, the normal regions grow until, at tr: lf ", the whole
specimen becomes completely normal.

(a) (b)

Fig. 10.21 Intermediate state in a cylinder whose axis is normal to the field: (a) The
situation for./f < H"12. (b) The situation for |ff,<Jf < J3,, showing the inter-
mediate state.

Because of the division into thin laminae, the field distribution is "straightened
out," which leads to a reduction in the demagnetization energy of the super-
conducting regions, i.e., essentially the whole flux passes through the normal region.
The number of laminae, however, is kept finite by virtue of the fact that there is a
surface energy associated with the wall between the superconducting and normal
regions.

Critical field in a small specimen

The critical field depends also on the size of the specimen, if the specimen is small.
We shall demonstrate this by estimating the field for a thin film. The field distribu-

Superconducting
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tionforsuchasampleisillustratedinFig. 10.22. rNe recall fromSectionl0.5that
the condensation energy per unit volume is proportionalto lf!. However, since
the width of the demagnetized region is essentially (d - U,) rather than r/, where d is
the thickness of the film, because of the flux penetration, it follows that

(d-2),)tr','=dtr?,

where ff" is the critical field for the film, while.//', is the field for a bulk sample
(where the effects of field penetration may be ignored). Therefore

( 10.3e)

The field ff|islarger than /f,,, and if dis small the increase may be by as much
as a factor of 10. This property finds applications in some switching devices
employing thin superconducting films.

Fig. 10.22 Field distribution in a superconducting thin film.

Type II superconductors

There is an important class of superconductors which does not behave in quite
the manner described so far. The Meissner effect begins to break down in these
substances, at least partially, well before the critical field is reached, even when the
field distribution is uniform. This class is referred to as type II superconductors, in
contrast to the substances we have hitherto described, which are called type I
superconductors. Figure 10.23(a) shows the magnetic induction .B versus the
intensity ff for a type II specimen. The Meissner effect is satisfied up to a field
ff",, after which the flux partially penetrates the specimen, and the substance

becomes completely normal at the still higher field 3f ,, which is the critical field.
Type II mirterials are hard superconductors because they usually have high critical
fields.

In the field interval ,?f ,,lo Jf 
", 

the substance is said to be in the mixed state. A
close examination of the structure of the specimen in this state reveals the presence

of small circular regions in the normal state, which are surrounded by a large super-

*''= (-i-^rr)''' *"'
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Fig. 10.23 (a) lnduction ,B versus ff for a type II superconductor. Dashed line represents
a type I superconductor, and dashed line a normal metal. (b) The mixed state, showing
normal cores surrounded by circulating supercurrents.

conducting region forming the remainder of the specimen (Fig. 10.23b). The small
normal regions are referred to as uortices or fluxoids. The vortex structure of the
mixed state is too fine to be seen by the naked eye, but its existence has been experi-
mentally verified.

The reason for the appearance of the vortices is that the coherence length ( in
type ll superconductors is very short; specifically, ( < ,1., where,L is the penetration
depth. It can be shown (Rose-lnnes, 1969) that, if this condition is satisfied, the
surface energy is negative, which means that the substance tends to reduce its
energy by forming normal-superconducting surfaces by creating vortices well
below the critical field.

Materials with high critical temperatures tend to fall in the type II category,
and the reason is qualitatively as follows. The coherence length represents the
extension of the wave function of the superelectron. Using the position-momentum
uncertainty relation, we write

(10.40)

where Ap is the uncertainty in momentum. But a superelectron lies within an energy
interval x kT, from the Fermi surface, and hence the uncertainty of its energy is

L,E = kT".

Since E : p212m, it follows that AE : pA'plm, or L,p * L,E: kT., which, when
substituted into (10.40) yields

Ir --=4 (r0.4r )

Thus ( is inversely proportional to 7", or 3f 
", 

and the greater the 7" the shorter the
coherence length.

(b)(a)

hr-_, - Lp,
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Transition metals and alloys usually fall in the type II class. The coherence
length in these substances is shortened by the relatively large amount of scattering
present.

Superconductivity, in a sense, has had a rather unfortunate history. Most of
the substances studied up to the late 1940's were actually type II materials to which,
as we now know, the simple London theory does not quite apply. Yet workers in the
field tried to apply the theory 1o these substances, resulting in only partial success

and much frustration. It was only in the 1950's that the situation was completely
clarified, and the theory of superconductivity reached its golden age.f

SUMMARY

Zero resistance

When the temperature of a would-be superconductor is lowered below the critical
temperature 7., the substance enters a new state of matter, the superconducting
state, in which its resistivity vanishes entirely. The critical temperature depends on
the substance, the observed values ranging from about 0.01'K to about 20'K.

The Meissner effect

A superconductor expels a magnetic flux completely, so that the magnetic induction
inside the substance is zero, that is, B : 0.

Critical field

If a sufficiently large magnetic field is applied to a superconductor, the substance
reverts to the normal state. This critical field decreases with temperature as

3r.

andvanishes atT :7".

t Recently Heeger, et al., have reported what may turn out to be a very significant
development. They claim to have observed the onset of superconducting-like transition in a
material at the high temperature of 60'K. The material involved is an organic salt
(ATTF) (TCNQ). Above 60oK the substance is in a one-dimensional metallic state, and
as the temperature is lowered toward 60'K, the conductivity increases very rapidly in a
manner analogous to the usual superconducting transition. Unfortunately just then the
lattice itself becomes unstable and the crystal deforms into a new structure, and the sub-
stance becomes a semiconductor instead of a superconductor. Efforts are currently
underway to stabilize the hoped-for superconducting state by preventing the lattice
transformation. See Heeger, et al., in Solid State Communicatiors (March 1973).

: /r"(o)(, - fr),
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Thermodynamical aspects

The specific heat of a superconductor decreases exponentially with temperature, as

e-b(rtr"),which implies the existence of an energy gap in the energy spectrum of the

superconductor. The gap is of the order of kT"; more accurately it is close to 3.5

kT". The existence of this gap, laterderived by the BCS theory, is the most basic

feature of the superconducting state.

Many properties of superconductors can be explained by the two-fluid model,

in which the electrons are divided into two classes: normal electrons and super-

electrons. The unusual properties ofsuperconductors are due to the superelectrons,

which experience no collision and also have zero entropy (perfect order).

Electrodynamics

In order to explain the Meissner effect, the Londons postulated the field equation
V x B : - (mln"e21Y x J" in a superconductor, where r" and J" are the concen-

tration and current density, respectively, of the superelectrons. When this equation
is combined with Maxwell equations, it yields the solution B : 0 inside a super-

conductor (Meissner effect).
Two other effects also predicted by the London equation: (a) A penetration of

the superconductor by magnetic flux for a small distance ,1 (the penetration depth);
and (b), a supercurrent flowing along the surface of the superconductor.

The BCS theory

According to the BCS theory, superelectrons exist as Cooper pairs. Each pair forms

a bound state, the attractive interaction necessary for such a state being created by

phonons exchanged between the pair.

Tunneling

When a metal and a superconductor, or two superconductors, are separated by a

thin insulating film, electrons can tunnel across the film. The current-voltage
characteristics of the junction may be used in the determination of the super-

conducting gap.

lf the film between the superconductors is very thin, Cooper pairs themselves

may tunnel across the junction, leading to the Josephson effect. A static voltage

across the junction produces an ac current of frequency v : 2 eVol h.
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QUESTIONS

l. What is the expected composition of a ZrNb alloy which has the highest 7"? Answer
the same question for a NESn alloy.

2. It was stated, following Eq. (10. l2) that the critical field lf .(O) is essentially
proportional to the critical temperature ir.. (This will also be confirmed by your plot
in Problem 3.) Yet the electron concentration n also appears in (10.12), and this
concentration differs from one superconductor to another. Why does the linear
relationship still hold, nonetheless?

3. Discuss at least two different experimental methods for determining the critical
temperature of a superconductor.

4. Experiments show that even though a superconductor exhibits zero static resistance,
its ac resistance is finite, albeit very small. Explain how this is possible. [Hrrl: Use
the two-fluid model. An electric circuit representation is also useful.]

5. Derive Eq. (10.29) lor the surface current in a superconductor.

6. A footnote in Section 10.5 said that the gap A(I) decreases with temperature
because of the collective nature of the superconducting transition. Explain this point
more fully, relying on the concept of the Cooper pair.

7. Isthesuperconductor-normal junctionof Fig. 10. l9(a)electricallysymmetric,ornot?

8. A cytinder in the intermediate state is "hown in Fig. 10.21(b). Describe one
experimental electrical method for distinguishing this state from the superconducting
state shown in Fig. 10.21(a).

PROBLEMS

l. Consider a lead solenoid wound around a doughnut-shaped tube. The total number of
turns is 2500, and the diameter of the lead wire is 30 cm. The solenoid is cooled below
the critical point, at which an electric current is induced in the coil. Assuming the lead
resistivity in the superconducting state to be less than l0-2s ohm-m, calculate the
minimum time interval needed for the current to damp out by 0.01/,. (Assume the
length olthe wire to be sufficiently large for the infinite-length approximation to hold.)

2. a) Figure 10.7 indicates a discontinuity in specific heat at the transition point as the
substance becomes superconducting. The size of the discontinuity can be
calculated using a thermodynamical argument. Show that the size ol the
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discontinuity per mole is given by

C.-Cr:V^Tr(Y\',"' \ dr lr.
where V 

^ 
is the molar volume.

b) Calculate this difference lor tin, and compare your answer with the value given in
Figure 10.7. The density and atomic weight of tin are 1.O gfcn'P and 119,

respectively. lHint: ln part (a), recall that

asc:T 
- 

and
AT

EE(- __
A'r

where S is the entropy and E the lree energy of the system.]

3. Plot ffr(O) versus T, for a lew superconductors using data lrom Tables 10. I and
10.2, and verify the linear relationship predicted in Eq. (10.12).

4. The superconducting gap A(7 ) decreases with temperature, as indicated in Fig. 10. I 2 .

The BCS theory shows that this decrease is given by A(f )/Ao : tanh
(T"L(T)lTLd,forT< 7". Using this relation andTablel0.4, plot A(7) versus 7
for tin, in the range 0 < T < 7".

5. Section 10.5 said that the exponential behavior of the specific heat (10.5) implies the

existence of an energy gap. This can be seen most readily by calculating the speciflc
heat of an intrinsic semiconductor, in which the gap plays a very important role.
Carry out this calculation, and establish the exponential behavior indicated above.

6. The London equation (10.21) is equivalent to the condition of perfect diamagnetism of
a superconductor. A basic (and controversial) question often arises: Which is the

more electrodynamic property of a superconductor, perfect conductivity or perfect

diamagnetism? By this we mean: Does one of these two properties imply the other,
or are they independent? Answer this question. [Hin l: Note that the electric field and
magnetic induction are related to each other by the Maxwell equations, in particular,

E: - 0A,l0t and B: V x A, where A is the vector potential.]

7. Prove that the magnetic flux linking a superconducting ring is quantized according to
A : n@l2e), where O is the flux and r an integer. This quantization was predicted by
F. London (1950), and verified experimentally in 1961. lHint: Use the Wilson-
Sommerfeld quantization condition,t and take the path of integration in the

interior of the ring. Recall also that the momentum of an electron in a magnetic
field is given by D: mv * eA.] (The quantization formula given by London was

actually erroneous in one respect, because the concept of the Cooper pair was

unknown in 1950. What do you expect the original London formula to have been?)

8. Discuss the Josephson tunneling current, given that, in addition to the static bias, an
alternating voltage is also impressed across the junction. Enumerate the frequencies

of the various modes of excitation.

tThiscondition is $nidoi: nh,wheren isaninteger,andtl,andp,are a coordinate and
its conjugate momentum. Thus the Bohr condition for quantizing the angular momentum,
L: nh, can be obtained from the integral by taking ei: 0 and pi: L, where 0 is the
angle and /- the angular momentum.
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The coherence length ( of a superelectron, which is the spatial extension of a super-
electron (or of a Cooper pair), may be viewed as the quantum uncertainty in the
position resulting from the uncertainty in the electron energy. Estimate the value of
this coherence length for a typical superconductor.

Applications of superconductivity to the design of technical devices, including
superconducting magnets, are discussed in Newhouse (1964) and Williams (1970).
Study the highlights of these books and write a brief report-

9.

10.
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II.I INTRODUCTION

In our discussion of metals, which has occupied a large part of this book, the
emphasis has been on electrons, which play the central role in electrical, optical,
and magnetic properties. Little has been said about atoms, apart from their
somewhat passive role in forming a crystal-lattice background in which the electrons
move. There is some justification lor this emphasis. Great strides have indeed
been made recently in our understanding of the electronic properties of metals, and
semiconductors in particular. However, we should not forget the important role of
atoms in solids, particularly in determining structural and mechanical properties
which are of great concern to the nretallurgist, the materials scientist, and the
engineer. we shall therefore devote this chapter to atoms, their arrangement, and
their motion in metals, alloys and other solids, with special attention to structural
and mechanical effects.

we shall first classify types of crystalline imperfections, with emphasis on
vacancies. The motion of these vacancies leads us to the subject o[atomic diffusion,
and thence to metallic alloys, with special attention to the various metallic phases
and their stability. We shall then discuss dislocations and their influence on the
mechanical strength of metals and alloys. After a brief treatment of ionic con-
ductivity, the chapter closes with a discussion of the photographic process and
radiation damage in solids, two topics of great practical value.

II.2 TYPES OF IMPERFECTIONS

The concept of a perfect crystal is an extremely useful and appealing one. In fact, it
lormed the underpinning for most of this book. But we have said repeatedly that
real crystals are not perfect. By taking great pains, one can reduce crystal imper-
fections, or defects, considerably, but one can never eliminate them entirely. In
some situations defects are, in fact, highly desirable, as in the case of donor and
acceptor impurities, which are essential to the operation of the transistor.

As the name implies, a defect is a region involving a break, or an irregularity, in
the crystal structure. The most important types of defects are: (l) point defects,
(2) line defects, and (3) surface defects, depending on the geometrical shape of
the defect.

l. a\ Point defect. An irregularity in the crystal structure, localized in the lattice.
An example is a loreign atom, or impurity, in the crystal. A crystal usually contains
all sorts of impurities which attach themselves to it during the crystallization
process, particularly small atoms present in the atmosphere in which the crystal is
grown, such as oxygen, hydrogen, and nitrogen. An impuri ty is substitutional if it
occupies a lattice site f,rom which a host atom has been expelled, and interstitial if iI
occupies a position between the host atoms. The region surrounding an impurity is
strained, the extent of the strain depending on the kind of impurity atom and its
location. An appreciable number of substitutional impurities may be present only
if the size of the impurity is not far from that of the host atom, otherwise the strain
energy required would be prohibitive. Similarly, only small atoms can exist in
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large numbers as interstitial impurities because the space between host atoms is

small, especially in metals, in which the atoms are tightly packed.

b) Vacancy. An empty lattice site from which the regular atom has been re-

moved. In metals, as in other solids, vacancies are created by thermal excitation,
provided the temperature is sufficiently high, because, as the atoms vibrate around
their regular positions, some acquire enough energy to leave the site completely.
When the regular atom leaves, the region surrounding a vacancy is distorted
because the lattice relaxes, as it were, in order to partially fill the void left by the
atom. This contributes further to the irregularity of the lattice in the immediate
neighborhood of the vacancy.

c) A regular atom in an interstitial position. Considerable energy is needed to
pull an atom from a regular to an interstitial position. This type of defect is created
thermally only at high temperatures, near the melting point of the solid. One can

also create this kind of defect by subjecting the solid to an external radiation-e.g.,
a neutron beam in a reactor-in which collision of incident particles with atoms
causes these atoms to be dislodged from their sites into interstitial positions. It is
evident that vacancies are also created in this same process.

Fig. 11.1 Grain boundaries in molybdenum ( x 250). (After O. K. Riegger).
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2. Line deJbct. A line defect, also called a dislocation, is a linear array of mis-
placed atoms extending over a considerable distance inside a lattice. As we shall
see in Section 11.6, in which we shall consider dislocations in some detail, this type
of defect is primarily responsible for the sofltness and ductility of pure metals.

3. Surface deJbct. In a surface defect, the crystalline irregularity extends in two
dimensions. Most solids are not single crystals but polyuystals, in which a sample
is composed of a large number of single crystal pieces, or grains,joined together to
form one solid (Fig. ll.l). At each grain boundary, the crystal undergoes an
abrupt change oforientation; the whole boundary therefore acts as a surface defect.
These defects exert much influence on the properties of a polycrystal, particularly
on its mechanical strength. Another surface defect, almost too obvious to be
noticed, is the surface of the sample itself. This surface has a decisive effect on the
properties of samples such as thin films and fibers.

All these types of defects play important roles in metallurgical and chemical
processes in solids, and for this reason there has been much research on defects
lately, with the result that they are now much better understood. The interested
reader will find a great deal of new information in the references at the end of the
chapter.

IT3 VACANCIES

There are two types of vacancy. In one type the displaced atom migrates in succes-
sive steps and eventually settles at the surface; this is a Schottky defect (Fig. I I .2).
In the second type, called a Frenkel defect, the defect includes both atom and
vacancy. Because of the additional elastic energy involved in squeezing an atom
into an interstitial position, the Frenkel defect requires a large amount of energy,
and for this reason is not usually present in metals except under special circumstan-
ces. Therefore vacancies usually exist only near free surfaces, grain boundaries,
and dislocations, rather than inside a perfect crystal, because only at surfaces,
boundaries, or dislocations can they be created without a concomitant formation of
interstitials. In other words, these extended defects act as vacancy sources. We
shall therefore talk primarily about Schottky dcfects.
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Schottky defect. (b) A Frenkel deflect.
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We can estimate the energy required to create a vacancy-the Jbrmation
energy-in order of magnitude, by visualizing an atom, at its lattice site, "attached"

to its neighbors by a number of chemical bonds which hold it in its position.

When it is removed to create the vacancy, the bonds are broken, and this requires

an energy roughly equal to the number of bonds (the coordination number) times

the energy per bond. Since the energy per bond is typically about 0.5 eV, we should

expect a formation of about I eV per vacancy, and this agrees with observations.
We can evaluate the number of vacancies generated by thermal excitation by

using well-known results from statistical mechanics. Suppose that the crystal is at
equilibrium at temperature T. Now, according to Chapter 3, each atom oscillates

back and forth around its equilibrium position. Its average energy, at high tem-
perature, is 3kT. This energy is about 0.08 eV at room temperature, which is much

less than the formation energy E, of the vacancy. One may therefore conclude

that no vacancies can be created when the crystal is at room temperature. However,

the quantity 3kT gives only the aoerage energy of the atom, and not the actual

energy at every instant during the motion. According to statistical mechanics, the

atom, at thermal equilibrium, may have any energy E. The probability of its having

this energy is given by the Boltzmann factor e-Etkr. The fact that the exponential

decreases rapidly with energy means that the atom has a very small probability of
having a high energy. Now a vacancy is created when the atom has an energy equal

to the formation energy, because the atom has then acquired sufficient energy to
leave its site. Since the probability of this happening is given by s-r'r*t, it follows
that the number of vacancies N, is given by

N, : N e-E"lkr, (ll.l)

where N is the total number of atoms in the crystal. At low temperature the number

of vacancies is small because kT < Eu, but this number increases rapidly as the tem-

perature rises. Thus for N : l02e atoms/m3 and E, : I eV, the number of vacan-

cies at 300"K is N, - 1012 vacancies/m3, while at 900"K it is about 1022 vacancies/

m3. Therefore raising the temperature by only a factor of three causes the number

of vacancies to increase by ten orders of magnitude.

Fig. 11.3 Log (N"l N) versus l/?i where N, is the number of vacancies.

We see from (11.1) that if we plot log(N,/N) versus liT we obtain a straight

line whose slope is - E,lk, as shown in Fig. 11.3, and the slope can therefore be

e
t
10

Et

t/r
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used to determine the formation energy. This procedure is commonly followed,
and gives good results. Table ll.l gives the vacancy formation energies for a few
common metals.

Table l1.l
Energies of Vacancy Formation (k cal/mole)

Ag
25.1

Au
26.5

Cu
21.6

AI
l5

Several methods can be used to measure the number of vacancies-or rather
their concentration-all of which lead to the same result, as they should when
properly employed. The basis of all of them is that the presence of vacancies leads
to a change in some physical property of the sample, and therefore by measuring the
change one may obtain information about the vacancy. For instance, the presence

of vacancies causes an expansion in volume proportional to the concentration of the
vacancies, and by measuring the change in volume one can deduce this concentra-
tion. Another common method is to measure the changes in electrical resistivity,
which should be proportional to the concentration of vacancies. Since the vacancies
act as scattering centers (see Section 4.5), we should expect that

LP: le-Evtkr,

where,4 is some positive constant. This type of experiment is usually performed on
samples that have been quenched, that is, samples that have been cooled rapidly
from a high temperature. The rapid cooling, in effect, freezes the vacancies, which
are plentiful at high temperature, because they are not allowed enough time to move
about in the crystal and disappear at grain boundaries and dislocations. In this
manner one can prepare a sample with a large number of vacancies at a relatively
low temperature. Because of this, the temperature in the above equation should
refer to the quenching temperature Tr, and not the lower temperature at which the
resistivity is measured. By varying 7n continuously and measuring the corres-
ponding resistivity, one can evaluate the variation of concentration of vacancies
with temperature and obtain the formation energy.

When a quenched sample is heated slowly, vacancies are able to move through
the crystal again, and tend to move toward surfaces and other extended delects
where they may disappear. ln this way some of the excess vacancies are annihilated,
and the equilibriunr distribution is reestablished, at least in part. When the concen-
tration of vacancies is large, some of the vacancies sometimes cluster into groups of
two, three, or more. One speaks olsuch entitiesas diuacancies,tritacancies,etc. For
further information on this and related subjects, refer to the review article by
Takamura cited in the bibliography.

ll.3
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11.4 DIFFUSIONT

When the concentration of atoms in a sample is not uniform, atoms migrate from a
region of high concentration to one of low concentration, the process continuing
until the distribution of atoms becomes unifornrthrsughout the-solid. This flow
down the concentration gradient is referred to as atomic dffision, and is of major
importance in many metallurgical processes. For instance, the hardening of steel
involves the diffusion of atoms of carbon and other elements through iror, which is

_accomplished by heating the iron in an environment rich in carbon and other
required elements. In the manufacture of transistors, the sample has to be doped by
impurities, both donors and acceptors, in a controlled manner. This is most
commonly accomplished by diffusing the required impurities into a highly purified
specimen of a semiconductor in such a way that they have the proper spatial
distribution. Since the operatidn of many solid-state devices depends on very
careful distribution of atoms, the control of diffusion is becoming increasingly
important.

Let us begin our discussion with a macroscopic treatment involving setting up
and solving the appropriate differential equations, followed by a microscopic
treatment in terms of the movement of individual atoms. Then we shall connect the
two treatments and arrive at a microscopic expression for the diffusion parameter.

The basis for the macroscopic treatment is thelrst Fick's law, which states that
the diffusion current (number flux density) J is related to the concentration
gradient by

J: (1 1.2)

where the parameter D, supposedly a constant, is called the dffision cofficient. The
minus sign is inserted to make D a positive quantity and ensure that the current
flows down the concentration gradient. The expression (11.2) also applies to
unidirectional flow in which the concentration varies along the x-direction only,
but a suitable generalization to a three-dimensional situation can readily be made.

+A+

Fig. ll.4 Jumping motion of atoms in planes I and2 which leads to diffusion.

tl.4

0c
-D ^ .

ox

t Note a partial similarity between
diflusion of carriers in semiconductors

the discussion here and the discussion of the
(Section 6.17).
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A justification for Fick's law may be given in terms of the following kinetic
model. Consider a sample (Fig. I 1.4), and let us calculate the rate of flow across a

section S normal to the concentration gradient. The concentrations at two adjacent
atomic planes straddling the section are indicated by c, and cz (cr ) cr). Now
atoms on plane I jump both to the left and to the right randomly, but only when
they jump to the right do they cross section S. Similarly, atoms on plrne 2 cross S

only when they jump to the left. However, since c1 ) c2, there are more atoms
crossing to the right than to the left, and consequently there is a net diffusion to the
right, i.e., down the concentration gradient. Quantitatively, if the frequency of the
jump of the atoms is v, then the diffusion current to the right is

1 : )nrv _ irr.u,

where the two terms on the right give the diffusion rates for atoms starting from the
c, and c, planes, respectively, and the factor j is inserted because atoms on each
plane can jump either to the right or left, but they cross S only half the time. The
quantities nt and nrrefer to the number concentrations in the two planes, and are
related to c, and c2, tha fractional concentrations, by the relations nt : c$ zfid
n2 : c2e1 where a is the distance between the planes. Substituting into the above
equation yields

I : lv a(c, - c).

lf the concentration does not vary rapidly between adjacent planes, a condition
which obtains in almost all practical situations, we may write c, - cz = - a 0cf Ax,

which amounts to treating c as a continuous function. When we substitute this
into the above expression for J, we find that

^0cJ : - Lvo. ôx
(r 1.3)

which is the same expression as Fick's law, with a diffusion constant given by

p:tva2. (l 1.4)

We have actually imposed more restriction on the motion than necessary, because,
since the problem is in fact a three-dimensional one, we have to allow for circum-
stances in which the atoms in, say, plane c, may jump parallel to the plane rather
than to the right or left. This means that under random jumping the atom crosses

S only one-sixth of the time, and Eq. (l 1.4) should therefore be replaced by

p:Iva2, ( l l.s)

Numerical values for D in metals and in semiconductors near room temperature
fall in the broad range of l0-20 to l0-to -/r'. This enormous difference must be
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accounted for by a difference in v, the jump frequency, since the interplanar
distance a is roughly the same for all these materials. As an estimate of v, if we

substitute the values D : 1g-zo m/s2 and a :3 A, into (l1.5), we find a jump
frequency of about I s-1. On the other hand, a value of D: l0-5om/s2 yields
y - lQ-3os-r, that is, an atom makes one jump every 1027 years! We shall
examine the physical meaning of the jump frequency more closely later in this
section.

c(x,l)

Fig. 11.5 (a) Diffusion of atoms in a metallic bar. (b) Profile of a diffusion pulse as a
function of distance and time.

One can measure the diffusion coefficient by depositing on the sample a thin
film of the atoms whose diffusion in a specific metal is sought, and monitoring the
concentration of the solute atoms at several depths x11 x2, 13, etc. (Fig. ll.5a),
after allowing sufficient time for diffusion to take place. From these measurements

one can calculate the coefficient D.

There are two methods of measuring the concentration of solute atoms
versus depth of diffusion: One is to employ an ordinary chemical analysis at various
depths in the sample. The other is much more convenient, and employs a radio-
active isotope to tag the diffusing atoms. One then determines the con-
centration of solute atoms by measuring radioactive intensity as a function
of depth. One does this by slicing the sample parallel to the x-axis and placing it
over a prepared film. The emulsion in the film is sensitized by the radioactivity,
and the degree of darkness over various parts of the film is a measure of the con-
centration of the diffusing isotope.f

t In practice, this autoradiographic technique does not yield sufficiently accurate data.
Instead one measures the concentration of solute atoms in the slices by using electronic
counters.

11 x2 x3

(u)

(tt < t2)
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The equation which describes this experiment is derived by combining Fick's
law with the continuity equation in one dimension,

0c AJ

o, + a*:o'
When we substitute from (l 1.2) in the above equation, the result is

( l r.6)

where it is assumed, in the second equation, that D is independent of x, or, equival-
ently, that D is independent of the concentration. The solution of Eq. (l 1.6)-this
equation is known as Fick's second law-tnder the boundary conditions imposed in
the experiment is

*:*? *L):D#,

[J;,' ,a,tta*f t* ,{*,ia*]',

(l 1.7)

l

i

where ,4 is a constant determined by the initial concentration of solute atoms at
x : 0. That is, by the concentration in the initially deposited layer. Figure I1.5(b)
gives the profiles ofconcentration versus depth at various instants.

One can find a simple measure of depth of diffusion of solute atoms as a
function of time by evaluating the average root mean square (rms) value of x. That
is,

By substituting from (11.7) into this equation, and by using tables of integrals to
evaluate standard integrals, you should arrive at the important result,

,: J2a. (11.8)

Thus the diffusion front propagates to the right with a travel distance proportional
to tt12, a time dependence characteristic of all diffusion processes, with an ever-
decreasing speed. Later in this section we shall be able to derive (11.8) from a
microscopic model, and so the equation serves as a bridge between the macro-
scopic and microscopic descriptions.

There are two types of diffusion: self-dffision and interdiffusion. In self-
diffusion, the diffusing atoms are of the same type as the solvent background, e.g.,
copper in copper. In interdiffusion, the two types ofatom are different. Ifthe con-
centration of the solute is appreciable-as in the case of an alloy, in which the
distinction between solvent and solute tends to disappear-then the two kinds of
atom tend to diffuse into each other. Since the diffusion coefficients of the two
kinds are usually unequal, the boundary between them moves along the bar of
sample material progressively as time passes. This was observed in the Kirkendall
experiment, in which two bars, one zinc and the other brass (a copper-zinc alloy),
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were joined. The boundary moved into the brass region, indicating that zinc
diffuses more rapidly than copper. In the case of interdiffusion, the effectiue
diffusion coefficient for the combined system is

D:CtDn+CBDA,

in which A and .B refer to the two different atoms. (The C's refer to fractional
concentrations.)

The microscopic model

Diffusion occurs when atoms migrate between adjacent lattice sites, and therefore
one should be able to describe the process in terms of a microscopic model involving
the motion of the individual atoms. However, the atomic motion is random, and
this must somehow lead to an organized macroscopic motion down the concen-
tration gradient.

-d*#
Fig. 11.6 Diffusion of an atom in a one-dimensional lattice.

The simplest model we can choose (Fig. I I .6) is a one-dimensional lattice an d
an atom placed originally at a lattice site, say x : 0. The atom hops to adjacent
sites at a frequency v, but at every site the direction of hopping is completely
random, i.e., it may jump either to the right or to the left with equal probability.
Where is the atom likely to be found after it has made r jumps, given that it started
atx:0?

The problem is exactly equivalent to a well-known one in statistics, the random-
walk problem, in which one asks where a person is likely to be after taking n steps if,
after each step, he is equally likely in the next step to move either forward or back-
ward. Let x, denote the position of the atom after n jumps. Then

x,:dt+d2+ + dn,

where dr, dr,..., all have a magnitude equal to d, thelattice constant, although
they may differ in sign. The average value ofx, is zero, because the average ofeach
step is zero, and the atom is most likely to be found at x :0, the initial point,
which is to be expected from the symmetrical nature of the problem. However,
there is a finite probability that the atom is to be found at other sites-i.e., that the
atom will have made a net displacement-and this probability is measured by the
standard mean deviation or, equivalently, the rms value of xn. Denoting this by x,
onehas 

x:JT.
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Substituting for x, from the previous equation and noting that, af,ter squaring, rf
is the same for all steps and equal to d2, one arrives at

The distance x, which is proportional to ntt2, should be compared with L: nd,

which is the distance the atom would lrave covered had it jumped in only one
direction. Thus

i: Lln't2.

which means that, for large n, the situation in which this statistical analysis has any
validity, X <L. Although a random motion may lead to a net motion, the motion
is greatly impeded by the random character. Thus if the atom is to move a distance
of I micron, it has to make, with d: I A, 100 jumps; for a jump frequency of
I s-1 this requires about two yearsl

One can generalize the discussion by allowing the atom to move along a three-
ciimensional lattice in all directions consistent with the lattice. The result is the same

as (11.9). except that i should be replaced by the radial distance R, because the
atom now migrates radially outward in all directions. lf the macroscopic geo-

metrical arrangement is unidirectional, as in Fig. 11.3, then we would be interested
only in .x and not R, although the atom in fact diffuses in all directions. ln the

symmetrical case, in which 7 :V:7, one can readily show that?: +n',
and therefore Eq. (l 1.9) is generalized to

(r r.r0)

It is now convenient to introduce the jump frequency into the expression. We do
this by noting that n : vr, where t is the time interval. Equation ( I I .10) can then be

written as

(l l.l l)

This is seen to be of exactly the same form as (l1.8), and the two equations become
identical if the diffusion coefficient is taken to be

i : ,i, d'.

vd2D--.
6

ln d2

v3

l, d'-x: l-t-,V3

( r l.e)

( l l.l2)

which is the same expression as Eq. (l1.5), derived earlier on the basis of macro-
scopickineticanalysis[notethatdin(ll.l2)isthesameasain(11.5)]. Indevel-
oping the microscopic analysis here, we have unearthed the statistical basis for the
diffusion process.
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Diffusion mechanisms and temperature dependence

Experiments show that the diffusion coefficient increases sharply with temperature,
and that it is well interpreted by the formula

D: Doe-Q/*r, (rl.r3)

where Do is a constant insensitive to temperature. The energy Q in the exponent,
called the actiDatiotl energy, is typically about 2 eV or 46,000 cal/mole. To explain
the origin of the temperature dependence of (l l.l3), we must inspect the micro-
scopic expression for the diffusion coefficient, Eq.(ll.l2), and pay particular
attention to the jump frequency r,,. The question of jump frequency requires a
close examination of the diffusion mechanism on a microscopic level.

Several different mechanisms may lead to diffusion, or atomic migration, in a

lattice. If enough interstitial atoms are present, diffusion can occur by their hopping
between interstices dovzn the concentration gradient, as in the case of diffusion of
carbon atoms in steel. In the case of substitutional alloys or substitutional impurities
diffusion may occur through the consecutive exchange of places among the atoms
(Fig. ll .7). A third mechanism involves migration of vacancies (also illustrated in
Fig. I L7), which occurs when many atoms in succession fill the vacancy, and the
vacancy consequently migrates in the opposite direction.

Thus if foreign atoms are deposited on the left side of a sample, the vacancies

inside it diffuse to the left to compensate for those annihilated by the intruding
atoms, and the foreign atoms migrate to the right. Other diffusion mechanisms
could be included; in general they all operate simultaneously to produce the net
diffusion observed. In metals, however, the vacancy diffusion mechanism is most
important,, and for this reason it is the one we shall discuss in detail.

ooo
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(b)ooo Vacancy

oooo oo
Fig. 11.7 Process (a), diffusion through interchange of substitutional atoms. Process
(b), diffusion by vacancy migration.

Figure ll.8 shows the energy involved in a vacancy migration. The solid
circle represents the atom whose migration is under consideration; it must have

an energy at least equal to E. in order to be able to leave its site and exchange
places with the vacancy. The origin of this potential barrier lies in the fact that the
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atom, in moving, pushes other atoms sideways, and consequently the lattice is
strained in that region;E- represents the maximum strain energy incurred. In the
present context, E. is often called the activation energy for the transition, i.e., it is
the minimum energy required for the transition to proceed. Its value varies from
one metal to another, but is typically about I eV.

O+ o

Fig. 11.8 Energy barrier E^ seen by diffusing atom. Solid circle indicates an atom,
open circle a vacancy.

The atom in Fig. ll.8 oscillates around its equilibrium position with a fre-
quency vo, as discussed in Chapter 3, but usually its energy is far too small at
ordinary temperatures to allow it to jump the potential barrier. However, during a
fraction of time equal to the Boltzmann factor e-Entkr, the atom has energy equal
to E., and is then able to make the transition. At an oscillation frequency vo, the
atom hits the barrier v, times per second. The probability of escape for each time is
e-Entkr. Thus the jump frequency of the atom is

| - voe-E^/kr'

This expression has to be generalized to allow for the fact that an atom in a three-
dimensional lattice can jump into any of its z neighboring sites, and also that this
can take place only ifthe final site has a vacancy. Since the probability ofa vacancy
at a site is e-'"to', it follows that the jump frequency for the diffusing atom is

V : Z to e- EulkT e-E^lk1: : Z Vo e-(8"+ E,")lkT,

which may also be written as

v : Zroe-Qltr, (ll.r4)

where Q: E, + E^. Substituting this into expression (ll.12) for the diffusion
coefficient yields

O : t z vs a2 s-Q/k'r - Do e-Ql*r, (ll.ls)

which is precisely the same form as (l l. I 3), where Do : t z vo a'. W e see that the
activation energy Q is the sum the of vacancy-formation energy plus the atomic-
transition energy, and is divided roughly equally between them, each being about
I eV.

The values of Do and Q for a substance can be determined by plotting log D
versus l/7 which, according to (ll.l5), should give a straight line whose intercept
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is log Do and slope - Qlk; an example is shown in Fig. 11.9. Table ll.2 gives a

list of Do and Q for some substances, as determined by this method.

Log D

0

Fig. f f.9 Variation of diffusion coefficient with temperature.

The vacancy-diffusion method, besides yielding the correct temperature

dependence of D, also gives a value for Do in agreement with experiment. If we

choose thereasonablevalues z:12, as for an fcc lattice, vo: 1013 s-t,a:24,
and,Q :2 eV, we find Do : 8 x l0-' -'i t, which is of the same order of magnitude

as the values given in the table'

Table 11.2

Diffusion Parameters

t/r

Metals Do x 104,m2/s Q,calfmole

Fe in Fe (y phase)

Cu in Cu
Pb in Pb
Ag in Ag
Au in Au
Al inAl
Zn in Cu
C in Fe (a phase)

C in Fe (y phase)

1.4

0.69
0.28
0.4
0.09
0.18

0.34
0.02
0.15

5.65 x lOa

5.02
2.42
4.41

4.17
3.01

4.56
2.00
3.4

The point that should be especially stressed in connection with the diffusion

coefficient is that its increase with temperature is very rapid. Thus for the D,

estimated above, and for an activation energy Q:2eY, one finds that at T :
300'K,D - 8 x l0-5 x l0-3a = l0-38m/s2,whileatT : 1500'K,D = 8 x l0-5
e-16 = 8 x l0-s x l0-7 - l0-1'm/s', an increase of 27 orders of magnitude

due to raising the temperature by a factor of five. Therefore diffusion rates can be

greatly enhanced by raising the temperature, a fact often used in practice.
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Diffusion by interstitial atoms can be treated in a similar manner, and the

result is much the same, except that now the activation energy Q is the same as the
transition energy E-, which is needed to overcome the elastic-strain energy incurred
when the interstitial atom pushes the regular atoms aside.

Diffusion also takes place in liquids. A typical value for the diffusion coefficient
is about l0-rom/s2 at a temperature just above the freezing point. It is found
experimentally that the diffusion distance is well represented by an equation such

as (ll.ll), that is, that the tt/2 dependence also obtains in liquids. A theoretical
treatment for diffusion in liquids is more complicated than that for solids, because

the concepts of crystal lattice, a fixed jumping step, and a well-defined jump
flrequency do not apply Instead we use a model in which the atoms move freely
between collisions, and apply the concept of mean free path. The result obtained is

the same as Eq. (1l.ll). This method is essentially that used by Einstein in his

explanation of Brownian motion.

II.5 METALLIC ALLOYS

Metals are rarely used in their pure form in industrial applications because pure

metals, among other drawbacks, are too soft and ductile. Thus carbon and other
metals are added to iron to harden it to steel, and aluminum is strengthened by

adding copper, silicon, and other elements to it. Brass is an alloy of copper and zinc.
ln all these cases one deals with a metallic alloy in which atoms of one or more ele-

ments are dissolved in a metal. An alloy is therefore a solid solutior. It differs from
a chemical compound in that, in a solid solution, the range of concentration of the

solute relative to the solvent may vary, while in a chemical compound this con-

centration is fixed.
In an alloy the solute atoms take up positions either at the interstices or at

regular lattice sites. In the first case, the alloy is interstitial, e.g., carbon in steel. In
the second case, the alloy is substitutional, e.g., zinc in copper (brass). Clearly an

interstitial alloy can be formed only if the solute atoms are small enough to fit into
the interstices without the expenditure of a large amount of energy. In general,

interstitial solubility in metals is limited because the atoms in a metal are relatively
closely packed. In a substitutional alloy, the solute atoms occupy regular lattice
sites in more or less random fashion. As more solute atoms are added they occupy

more sites and the crystal simply grows in size. The crystal structure remains

unaltered except, perhaps, for a slight change in the lattice constant. This type of
alloy is called a primary solid solution. ln some cases, however, the crystal structure
may undergo a change as the concentration of the solute becomes appreciable, in
which case we speak of a secondary solid solution. In general, when the crystal
structure of the solution is different from the crystal structures of the pure metal
components, the solution is said to be in an intermediate phase.

In this section we are interested primarily in substitutional alloys and their
properties. To simplify the discussion, we shall confine ourselves to binary (two-
component) alloys, and keep the physical concepts in the foreground.
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Rules for primary solubilitY

Two metals can form a primary solution only when they are similar. For instance,

silver and gold, which are quite similar, form a primary solution over the entire

composition range, from pure silver all the way to pure gold. Under less-ideal

conditions, two metals form a primary solution only over a limited range.

For example, copper can be dissolved in silver only up to about l5/" atomic

weight before the alloy undergoes a phase change. The conditions favoring primary

solubility were studied carefully by Hume-Rothery and coworkers, whose results

are summarized by the following four rules.

a) Atomic size eflect. The solute and solvent atoms should be close in size. The

difference in diameter of atoms should not exceed l5'/.. For silver and gold, the

difference is only 0.2/..

b) Crystal structure effect. In order for there to be extensive solubility, the

structures of the solute and solvent metals should be similar. Both silver and gold,

for example, have an fcc structure.

c\ Electronegatiue ualence effect. The two elements must have similar electro-

chemical characteristics. By contrast, an electropositive element such as silver and

an electronegative element such as bromine would form a chemical compound, not

an alloy.

d) Relatiue ualence effect. This rule asserts that it is easier to dissolve a metal of
higher valence into one of lower valence than the reverse. For instance, aluminum

dissolves more readily in copper than copper in aluminum because, apparently,

in the former situation it is relatively easy for the excess aluminum electrons to

detach themselves from their own atoms and accommodate themselves in the alloy.

lf copper is dissolved in aluminum, however, there is a deficiency of conduction

electrons at the copper sites, and the electrons that tend to neutralize this deficiency

have high energy.

Even if all these rules are satisfied, the two metals still may not dissolve into
each other appreciably, because-although these rules are necessary-they are not

sufficient by themselves. They only state the circumstances most favorable for

stability.

The phase diagramt

The phase diagram is a convenient graphical summary of the melting characteristics

of an alloy. The simplest type of phase diagram is illustrated in Fig. I1.10, in which

the abscissa represents the concentration of component B and the ordinate repre-

sents the temperature. The solidus and liquidus lines divide the figure into three

separate regions: (a) Below the solidus, the alloy is a homogeneous solid solution

t Also called tllre equilibrium diagram.
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phase for every composition. (b) Above the liquidus, the alloy is a honrogeneous
liquid solution phase for every composition. (c) Between solidus and liquidus lines,
the alloy is composed of two different phases, a solid and a liquid, coexisting in
equilibrium with each other.

AclccSB

Fig. f f.10 Phase diagram for a binary alloy A-8.

Suppose that an alloy of composition c is gradually heated. The vertical arrow
indicates the path followed by the specimen. At the outset, the alloy is a homoge-
neous solid, and it remains so until it reaches D, the intersection with the solidus line.
At this point some of the solid begins to melt, and the first few droplets of molten
alloy begin to form. As the temperature is raised further, more of the solid is
converted into liquid. The system is now a solid and a liquid phase coexisting with
each other. However, the phases have different compositions. At temperature e,
for instance, the composition of the liquid is given by the point F on the liquidus
line, while that of the solid is given by the point G on the solidus line. These two
concentrations are indicated by c"and cr, respectively. Since cs ) ct, the solid has
more element I than the liquid phase does. If the temperature is raised still further,
more and more of the solid is converted into liquid, until point E is reached, when
the alloy is entirely in the liquid phase. The composition is now equal to c, the same as
that of the initial solid. Any further heating leaves the alloy in the liquid phase,
until evaporation takes place.

The composition of the solid and liquid phases in the region between the solidus
and liquidus lines can be evaluated from the phase diagram. Suppose that the
ten'lperature is 7i; because mass is conserved, we may write

c(S+I):csS*crl,
where s and L are the amounts of solid and liquid. By rearranging, we can write
this equation as

L _cr- c

S c-ct

T^

T2

Tr

( l l.l6)
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which is known asthe leoerformula. It expresses .L and S in terms of concentrations
obtainable from the phase diagram. (Note that cs - c is the length along the
abscissa between c and cr.)

An interesting conclusion follows from the phase diagram: An alloy of a fixed
composition does not melt at a fixed temperature. The melting takes place over a
range of temperatures, usually a few degrees. This is unlike a pure metal, for which
there is a fixed, well-defined melting point. This contrast is also evident in the phase
diagram, because the solidus and liquidus lines converge only at the endpoints at
which the alloy reduces to one or the other of the two pure metals.

Thermodynamics: free energy and entropy

To gain a deeper understanding of phase diagrams and related effects, we need the
concept of free energy. ln thermodynamics there are two different free energies : The
Helmholtz energy, F: E - 7S, and the Gibbs energy, G:F *plz, where the
symbols on the right sides of these equations have the usual meaning. Most experi-
ments are performed at atmospheric pressure, which is so low that the pv term may
be neglected, compared with the other terms, without serious error. Therefore it is
sufficient for our purpose to use the free energy,

F:E-TS. (lr.l7)

The term E represents the total internal energy, both potential and kinetic, of the
system, and S is the total entropy. A well-known principle in thermodynamics-the
principle of minimum free energy-asserts that if a system is allowed several
alternative states, it will choose the one with the lowest free energy.

To clarify the meaning of this principle, we shall apply it quantitatively to a
solid. The energy F has its lowest possible value when the internal energy E is as low
as possible, and at the same time the entropy is as large as possible. Now E (which
in a solid is primarily potential) is a negative quantity, and is minimized by placing
all atoms at their regular sites, because each atom then rests at the bottom of its
potential well. But this arrangement has a very low entropy value, because entropy
is proportional to disorder, and the above arrangement has a high degree of order.
So the requirements of minimizing E and maximizing s conflict with each other.
The actual state adopted by the system is one which balances these two factors,
that is, a state in which most of the atoms oscillate around their positions. The
maximization of .F necessitates the presence of vacancies in the amount given by
Eq. (ll.l) (see the problems section at the end of this chapter).

The thermodynamic definition of entropy is

rc dQ CedT
TT (l r.l8)

where dQ is the amount of heat absorbed by the system in a reversible process and
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C, the specific heat at constant pressure. In statistical mechanics, the entropy of a

system is defined as

S : k logp, ( il. re)

where p is the number of microstales corresponding to the same macrostale of the
system. One defines a macrostate, or thermodynamic state, by specifying the

average values of a few macroscopic parameters of the system, such as volume,
pressure, energy, etc. A macrostate can be verified experimentally. On the other
hand, to define a microstate would require specifying the positions and velocities of
all particles making up the system. ln general, there are many different micro-
states which correspond to the same macrostate, and consequently these are not

distinguishable experimentally. This number is the quantity p given in (ll.l9).
Texts on thermodynamics and statistical mechanics show that the two definitions
for entropy, (l l.l8) and (l l.l9), are entirely equivalent, and therefore they will be

used interchangeably here. We shall shortly have the chance to use (ll.l9) in
calculating the entropy of a substitutional alloy.

Polymorphic transformation

When a metal or alloy is heated, at some temperature it undergoes a transformation
to a new crystal structure (or solid phase). This happens most frequently in the

transition metals and their alloys. A well-known example is iron which, when

heated to 910"C, makes a transition from a bcc (a-iron) to an fcc (B-iron) structure.

Other transition metals show similar polymorphic transformations.
The phenomenon can be understood in terms of the free-energy principle.

Using Eqs. (l l.l7) and ( I l. l8), one can show (see the problem section) that the free

energy at temperature T is given by the expression

11.5

(l l.20)

where Eo and So are the internal energy and entropy at absolute zero,t respectively.

Fig. 11.11 Polymorphic transformation. Free energy F versus T, fot a system in two
different solid phases, A and B.

F: Eo- rSo - I:$:ry!ar')ar,

t In a pure metal the entropy So vanishes, according to the third law of thermodynamics.
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Let us compare two possible but different structures for the system, A and B
( Fig. I l.l I ). The structure ,4 has a lower Eo, and hence is more stable at low temp-
erature than B. Since .4 is more tightly bound, it also has a higher Einstein, or
Debye, temperature, and consequently a rather low specific heat Cr(Section 3.4).
It follows from (11.20) that as the temperature increases, the free energy F,
decreases at a lower rate than Fr, and hence the curves for F n and F, versus I will
intersect at some temperature 7", as shown in Fig. ll.ll. Below 7", Fn<- Fr, and
,4 is the more stable of the two structures, while above 4, the situation is reversed.
Of course, the transformation is observed only if the transition temperature is
below the melting point;otherwise the solid would melt before it had a chance to
undergo the polymorphic transformation.

Figure ll.ll can also be used to describe the melting transition of a metal,
where .4 and B then refer to the solid and liquid phases, respectively.

The mixing entropy of a substitutional alloy

When two metals at the same temperature are mixed to form an alloy, the entropy
of the system increases by virtue of the mixing process. This increase is called
the entropy of mixing, or entropy of disorder. We expect the increase intuitively
because the system becomes more disordered. We shall now calculate the increase
in entropy using the statistical definition ( I I . I 9).

Suppose that the alloy has N atoms in all, of which z are B type and the remain-
der, N - n, are A type. To assign numbers for the two types of atom is, in effect,
to specify the macrostate, and to calculate p of (l 1.19) we need to count the number
of different macrostates, i.e., the number of atomic arrangements consistent with
the macrostate. If all the atoms really were different, there would be N ! different
arrangements, because the first atom can be placed in any ofN different lattice sites,
the second atom in any of (N - l) sites, and so forth. Since all the,4 atoms are
identical, however, any two arrangements differing from each other only by the
interchange of two or more of these atoms cannot be counted as different arrange-
ments. The same reservation applies to the identity of the B atoms. Since the ,4

atoms can be interchanged among themselves in (N - r)!different ways, and the
B atoms in r ! different ways, it follows that the number of distinct arrangements, or
microstates, for the N atoms is

-_ N!
, nt (N _ n)!.

When we take the logarithm of p and use the Stirling formula,

(l l.2l)

logN! =NlogN-N,
[the factorials n !, (N - n)t are treated similarly], an approximation valid for the
large numbers of atoms encountered in solids, and then substitute into (ll.l9),
we find for the entropy of mixing

S- -Nk[clogc*(l -c)log(l -c)], (11.22)
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where c : nlN, the concentration of the B atoms. The concentration of the ,4

atoms is, of course, (l - c). Note that S is positive, since the logarithmic terms are

negative, by virtue of the fact that c, (l - c) < l.

A 0.5

Fig. 11.12 The mixing entropy of a
entropy has a maximum at c: 0.5,

substitutional alloy
whose value is 1.4

S versus concentration c. The
cal/mole.

The variation of entropy with composition is indicated in Fig. I 1.12, where S

has a maximum at c : 0.5, the point of maximum disorder, and decreases on either

side ofthis point; it reaches zero at the endpoints at which, in each case, a state of
complete order prevails. Numerically the maximum entropy is 1.4 cal/mole. lt is

important to note that near the endpoints S increases very rapidly as the other

element is added. This means that there is a strong tendency toward solution at

low concentration, regardless of other possibly unfavorable factors.

Melting and structure

Why does a solid melt when it is heated, and why does this take place at a certain

fixed temperature, different for each substance? The answer must be that above

this temperature the free energy of the liquid phase becomes lower than that of the

solid phase. We may compare the free energies of the two phases at the same tem-

perature by writing

L,F : Et- Es - T(S, - Ss) : AE - T AS. (r r.23)

The energy difference AE is positive because in the liquid phase many of the atoms

occupy interstitial positions, which results in a high energy. The volume is also

larger in the liquid than in the solid phase, so that the atoms are pulled away from
each other with some expenditure of energy. However, AS is also positive, because

the liquid phase, being more disordered than the solid, has a higher entropy. For

T a T^, where 7. is the melting temperature, the term AE dominates, that is'

AF > 0, and consequently no melting takes place, while for f ) T,n the entropy
term dominates, and the solid melts completely. At T : T^, the energy and entropy

terms exactly balance each other, LE:0, and the two phases are in equilibrium
with each other.
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Free energy of alloy phases

Free energy can be used to study the stability of an alloy as the composition is
varied over a wide range. Suppose that the free energy of the alloy in its homo-
geneous solid phase is given by the solid U-shaped curve of Fig. I l.l3(a). We also
suppose that in this phase the alloy is a primary solid solution throughout the
concentration range. We shall show that the homogeneous-solution phase is more
stable than any other structure.

Fig. f1.13 (a) A free-energy-versus-concentration diagram leading to a stable, homo-
geneous phase. (b) A free-energy-versus-concentration diagram leading to a stable phase
mixture in the concentration range c' < c < c".

Referring to Fig. 11.13, note that at composition c the free energy for the
homogeneous-solution phase is F. Compare this with another possibility, namely,
that the system breaks up into two coexisting solid phases, one ofconcentration c'
and the other of concentration c". A state of this type is called a phase mixture.
It can be shown (see the problems at the end of this chapter) that the free energy for
a phase mixture of components c'and c" varies with concentration along the straight
line F'F" as the concentration increases from c' to c". Therefore at concentration c

the free energy of the phase mixture is F, . Since the free energy of the homogeneous
phase F is less than that of the phase mixture F,, the former is the more stable
structure. By choosing different c' and c", one can change the energy F ,, but, for the

type of free-energy curve of Fig. I l. I 3(a), one cannot make it less than F. Therefore
the homogeneous-single phase is the stable structure. Examples of systems with
free-energy curves resembling this figure are the Ag-Au and Cu-Ni alloys.

The situation is quite different when the free-energy curve has the W-shape of
Fig. I I .13(b). Again the homogeneous-solid phase is represented by the solid curve.
The straight line F'f" is the common tangent to this curve, and c' and c" are the
concentrations corresponding to the tangential points. There are now three
possibilities: lf c<c',thelowestfreeenergyisgivenbythecurveFrF',thatis,the
system is a primary solid solution rich in ,4. Similarly, if c > c", the free energy is

given by F" F u, and the system is a solid solution rich in .8. However, in the range
c' < c < c", the lowest free-energy curve is lrot given by the solid curve F'F F' ,

(b)

c

(a)

llrt
lt
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but rather by the straight line F'F". In physical terms, this means that in this last
concentration range the system breaks into a phase mixture whose components
have concentrations c' and c", the former being richer in ,4 than the latter. The
concentrations c'and c" mark the limits of primary solubility of the elements,4 and
B into each other. When 0 1 c I c', for example, the whole system is in a single
homogeneous phase, in which A and B atoms are distributed randomly on the
lattice sites. On the other hand, for the range c' < c < c", the system breaks up
into two phases, of concentrations c' and c", coexisting side by side (clusters of c'
and c" intermingled with each other) in equilibrium, not unlike a liquid-solid
phase mixture of ice in water, for example. As the concentration increases from
c' to c", the c" phase grows at the expense of the other, and the transformation is
completed as c reaches c". The amounts of matter in the two phases are given by
the lever formula

c- c'

c -c
which we can derive the same way we did ( I I . I 6).

The justification for the assertion that the free energy in the range c' < c < c" is
given by the common tangent straight line F'F" follows from an argument used to
establish a similar significance for F'F" in Fig. ll.l3(a). Since at every c in this
range .F, < F' (Fig. I l.l3b), it follows that the phase-mixture structure is the more
stable one in the range c' < c < c".

Most binary metallic alloys exhibit the behavior shown in Fig. ll.l3(b),
including, for example, the Cu-Ag and Cd-Bi alloys.

Free energy of a substitutional alloy: microscopic model

Let us calculate the free energy of a substitutional solid solution, using a simple
atomic model, and compare the results with the free-energy curves we have dis-
cussed. The free energy for the solution is

F:E-TS:

(tr.24)

where the various terms of energy and entropy mean the following: Eo is the
energy at absolute zero, the first integral is the increase in thermal energy, the
second integral results from the thermal entropy [see (ll.l8)], and the last term is
the mixing entropy (11.22). We note that if the two types of atoms are not dis-
similar, then the integral terms are insensitive to compositional changes, and may
be ignored ifwe are interested only in the shape ofthe curve F versus c.

We can calculate Eo as follows: If we call the energy of an A-Abond Von,
then the total energy of the A-A bonds in the whole crystal is

x"
x'

," * 
I ,cedT - rlic,f ar* Nkr[clogc + (l - c)log(l - c)],

+.N(l - c) Z(l - c) V,rt. : *N Z (I - c)2 Vnn,



ll.5 Metallic Alloys 55r

where Z is the coordination number of the crystal structure. We can arrive at this
expression by noting that N(l - c) is the total number of ,4 atoms, while Z(l - c)

is the number of .4 atoms surrounding an 1 site, on the average, provided the atoms
are distributed randomly. The factor ] is necessary because otherwise each bond
would have been doubly counted. The energies of the B-B and A-B bonds can be

similarly calculated, and the result for the total internal energy Eo is therefore

Eo : iNZ(l - c)2 Yee + +NZc', Vua + +NZ c(l - c)V4, (11.25)

where V* and Vn, are the energies for a B-B and A-B bond, respectively' This
equation may be recast in the following useful form:

Eo: i*rlrVAA+ (t - c)Vss +2c(t - n(r^r- '^^ ; 
n" 

)) (r r 26)

This expression now has to be inserted in (11.24), and the result plotted versus c.

You can verify that only curves of the types shown in Fig. ll.13 are obtained.
More specifically, the U-shaped curve of Fig. ll.l3(a) is obtained when I/76 (
(Ve,t * Vr)12, while the type shown in Fig. ll.l3(b) is obtained when /r, >
(Vne * Vu)l2.Thus the latter type holds true when the attraction between the
different atoms is less strong than the average attraction between similar atoms.t
From this point of view, you can see why, in this case, like atoms prefer to segregate

into two separate phases, as we discovered previously. There is a range of primary
solubility near the endpoints because the mixing entropy there increases very
rapidly, forcing a certain amount of solubility, limited though it may be.

The phase diagram and free energy

The concept of free energy leads readily to the phase diagram (Fig' 11.10) for a

binary alloy. This can be seen from Fig. I 1.14, in which we plot the free energy for a

F

AcBA
(a)

clc c2 B

(b) (c)

Fig. 11.14 (a) Free energies of solid and liquid phases of an alloy below its melting
range. (b) Free energies of solid and liquid phases within the melting range of the alloy.
(c) Free energies of the two phases above melting point.

t Recall that the potential termsVa,a,Vm,Vas are all negative, because they represent
attractive forces.
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completely miscible binary alloy at three progressively higher temperatures T, 7,,
and T" (T < T' < T"). The diagrams show the energy for both the solid and
liquid phases at each temperature. At temperature Tthe solid's curve lies entirely
below that of the liquid curve, and therefore the alloy is in the solid phase. However,
at some higher temperature T', the liquid's curve crosses the solid curve (Fig.
ll.l4b). In this situation, the structure of the system depends on the average
composition c. once we know c, we can infer the structure by using the rules
developed previously for rninimizing rhe free energy. Thus in Fig. I l.l4(b) we draw
the common tangent PQ which determines the concentrations c, and c2. Then, if
, 1 ,r, the minimum free energy is represented by the curve ,4'p, corresponding to a
solid solution rich in A. For c ) c2, the free energy is given by eB, corresponding
to a liquid solution rich in B. However, in the intermediate-composition range
cr I c < cr, the free energy is given by the straight line Pe, representing a mixture

c

(a)

c

"oXI0"r

(c)

l0
Weight f Cu
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Ag Atomic f Cu Cu

(fl)

Fig. ll.l5 (a),(b),(c) and(d): Freeenergiesolsolidandliquidphasesforasolidsolution
described by Fig. ll.l3(b), at increasingly higher temperatures (T< T'< T" < 7",\.
(e) Phase diagram for the system. (f) Phase diagram of Ag-Cu system. (After Cottrell,
r 948)
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of solid phase of composition c, and liquid phase of composition c2. The amount of
liquid phase versus solid phase can be found by the appropriate lever formula. The

situation at the temperature T'corresponds to that at Trin the phase diagram in

Fig. 11.10, and the concentrations c1, c2; used there are the same astheoneswe
find here. The reader can see, after a little reflection, that if the free-energy curves for
the liquid and solid phases are given at all temperatures at which they cross each

other-i.e., near T'-then he can, in fact, plot the solidus and liquidus line of
Fig. I 1.10 and determine the phase diagram for the alloy. We can also see why the

melting process of an alloy extends over a range of temperatures. The reason is

that the crossing and uncrossing ofthe solid and liquid curves in Fig. 11.14 is

accomplished over a finite range of temperature.

At the temperature T" the alloy is completely melted, because the liquid curve

lies entirely below that of the solid.
It is now useful to infer the phase diagram for a system whose free energy, for

the solid solution, is given by Fig. I 1.13(b). Figure I l.l5 plots the free energies for
the solid and liquid phases at four different temperatures, T, T',T", and T"', near

the melting range at which T<T'<7" <7"'. In Fig. 11.15(a) the system is

either a primary solution of phase a, rich in A, or a solution in phase p, rich in B, or
a phase mixture of a and B, depending on the concentration as indicated above.

No liquid phase appears because the free energy of the liquid phase is too high. At a
higher temperature T', shown in Fig. ll.l5(b), a situation obtains in which the

tangents of the a and B phases also touch the liquid curve, and this gives rise to

several possibilities, depending on the concentration. A particularly interesting

one occurs when the composition is equal to c"; here the three phases-a, fr, and

the liquid phase-coexist. Such a composition is called the eutectic composition,

and the corresponding temperature is called lhe eutectic temperature. At still higher

temperatures, the curves appear as shown in Figs. ll.l5(c) and (d). The phase

diagram resulting from this situation is shown in Fig. 11.15(e). A characteristic

feature of such a phase diagram is that elements A and B show only limited solid

solubility in each other. They tend to segregate into phase mixtures or turn into a
liquid phase. A well-known example of this type of system is the Cu-Ag alloy

shown in Fig. I l.l5(f ).

Intermediate phases

ln our discussion of solid solutions, we have so far assumed that the solution has

the same crystal structure throughout the entire composition range. However,

some other solid phases may have a low free energy at intermediate compositions.

This possibility is illustrated in Fig. 11.16(a) for three different solid phases, a, B,

and y. Using the rules developed for minimizing free energy, one can determine the

possible phase structure at various values of composition.
When the temperature is raised, the positions of the various intermediate

phases may change relative to each other. Eventually, when the temperature is

sufficiently high, melting starts. The phase diagram for this system can be inferred
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from observing the evolution of the free-energy diagram with temperature, and using
the rules of minimization. The phase diagram of the Mg-Pb alloy of Fig. I l.l6(b)
is a typical result. This diagram is more complex than Fig. ll.l5(e), and in fact
may be viewed as a set of two eutectic diagrams joined together. In most practical
alloys in which there are several elements and several intermediate phases, the phase
diagram is very complex indeed.

Weight f Pb

90

Atomicf Pb

(a) (b)

Fig. 11.16 (a) Intermediate phases of a solid solution. (b) Intermediate phases of the
Mg-Pb system. (After Wert, 1970)

Electron concentration and the zone theory of alloy phases

ln our discussion of structural properties of alloys, the conduction electrons have
so far played no role. The energy of these electrons should, in fact, be added to the
internal energy Eo to arrive at the total internal energy, but in an alloy in which the
two elements are of the same valence, such as the Ag-Au or Cu-Ag systems, the
electron/atom ratio remains unchanged as the composition is varied, and con-
sequently the energy ofconduction electrons remains essentially unaffected through-
out the composition range. This is why we were justified in omitting this energy
term. However, in alloys involving Cu, Ag, or Au with other metals of higher
valence, the electron/atom ratio changes with composition, and this leads to
interesting effects on the crystal structure. It was first observed by Hume-Rothery
that the a-phase (fcc) of such alloys as CuZn, CuAl and AgMg becomes unstable
when theelectron/atom ratio approaches the value 1.4, and a complete transfor-
mation to the B-phase (bcc) takes place when the ratio is near 1.5.

Since the critical factor in this type of transformation is the concentration of
electrons, we look for an explanation of the above transition in terms of the band
structure, as described in Chapter 6. Figure I l. I 7 shows the density of states for
the free-electron model, as well as for the fcc and bcc structures. As we stressed in

af MgiPb
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Chapter 5, the density-of-states function deviates from the free-electron value
appreciably only when the Fermi surface begins to touch the Brillouin zone, which
occurs at the energies E'and E" for the fcc and bcc structures, respectively.

EF E,

Fig. 11.17 Density of states ,I(E) versus energy E for an fcc structure and a bcc structure.
Dashed line represents free-electron model; cross-hatched area represents region occupied
by electrons.

As the concentration of electrons increases, starting in the fcc structure, EF

also increases, until the energy E' is reached. Beyond this point, any increase in
electrons would lead to a rapid increase in Eo [because g(E) of curve I decreases
rapidly], and hence to a rapid increase in the energy of the electrons. To obviate
this increase in energy, the system begins to transform partially into the bcc phase

and thus lessens its energy, the transformation being completed at E". We leave it to
you to show that, according to the free-electron model (Section 4.7), the points E'
and E" occur at electron/atom ratios of 1.36 and 1.48, respectively, in close agree-
ment with the observed values.

11.6 DISLOCATIONS AND THE MECHANICAL STRENGTH OF METALS

Metals have distinctive mechanical properties which make them highly useful in
industrial applications. They can be stretched into wire, hammered into sheets,
molded, and bent. They can also, with proper treatment, be made to withstand a
great amount of stress, e.9., the steel beams used in building construction. Also
metals, when pure, are very soft and can be readily deformed. For instance,
pure iron itself is a rather soft material, and it is only after it has been alloyed with
carbon and other metals that it acquires enough strength for industrial uses.

Mechanical strength-and its relation to the impurity contents of a given substance

-is of great concern to the engineer and metallurgist. It is also of interest to the
physicist because, as it turns out, the explanation requires explicit consideration of
the movement of individual atoms in the crystal lattice. The concept of dislocation
lies at the very heart of this discussion.

A dislocation is a linear defect in a crystal, i.e., it involves a large number of
atoms arranged along a line. There are basically two different types, an edge
dislocation and a screw dislocation. Figure I I .18 illustrates an edge dislocation: An

s(D
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extra half-plane AB of atoms has been embedded into the upper half of the crystal,
as shown in cross section. The half-plane terminates at the point ,4, which, in three
dimensions, represents a linear array of atoms normal to the plane of the paper,
and this array is the dislocation. Typically it extends over many tens of angstroms.
The region in the neighborhood of the dislocation experiences a noticeable dis-
tortion relative to the normal crystalline arrangement. The upper region, in which
the half-plane is introduced, is compressed because the atoms are squeezed against
each other, while the lower region of the crystal is somewhat expanded. Far away
from the dislocation the crystal regains its regularity.

,r-*."l]|J
ttll

Fig. 11.18 An edge dislocation. The dislocation is a line of atoms perpendicular to the
paper at point l.

The formation energy for a dislocation-i.e., the associated elastic-strain
energy-is usually about l0eV per atomic length, which is considerable when
compared with thermal energies at, say, room temperature. Consequently dis-
locations are not created thermally, but by mechanical treatment such as bending
or hammering.

Fig. 11.19 A screw dislocation.
represent vertical atomic planes.
B and B' were coincident before

The dislocation is represented by line,4D. Lines on top
Shaded area ABB'indicates region of slippage. (Points
the dislocation was created.)
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A screw dislocation is illustrated in Fig. ll.l9. This may be created, one may
imagine, as a planar cvt ABCD made in the crystal. The left side is then slipped up
past the right side. The line AD is the dislocation, and it lies at the end of the step

BAB' created by the slip. The reason for referring to this as a screw dislocation is

that if one moves in the atomic plane around the dislocation, as indicated by the

arrows, one finds that the plane actually spirals. The region of a screw dislocation
is also one of considerable strain due to the slippage, but it is a shear-type strain
with no attendant change in volume, unlike an edge dislocation, which involves

considerable dilatation. The energy of formation of a screw dislocation has about
the same value as the energy of formation of an edge dislocation, so these dis-
locations must also be created by nonthermal methods.

x 104

Shear
force

Fig. 11.20 (a) Application of a stress to a metallic bar. (b) Stress strain curve for a Cu
single crystal (nearly pure) at room temperature. [After H. Birnbaum, quoted in Wert
(1970)l (c) Microscopic view of actual strain process, showing slippage ol the atomic
planes past each other. (d) Calculation of shear force along slip plane.

Let us now try to relate this concept of dislocation to the mechanical strength

of metals. A force F is applied to a metallic sample, usually rod-shaped, of length
L (Fig. I 1.20a), and as the force is gradually increased the elongation is measured.

When the elongation is small, the sample returns to its original shape once the load
force is removed. This elastic property is shared by all solids. However, if the

stretching process is continued, a point is reached beyond which the deformation
becomes permanent, even when the load is removed. This is called plastic deform-
ation. Instead of using force and elongation to discuss this phenomenon, we use

stress o and strain e, which are defined, respectively, as the force per unit area and
the fractional increase in length,

Fo:--A'
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The advantage of using o and e instead of F and L is that they are independent of the
shape of the specimen.f Figure I 1.20(b) shows the observed stress-strain curve
for a sample of copper, where the elastic and plastic regions are clearly
indicated. In the elastic region the strain is proportional to the stress (Hooke's
law), and the proportionality constant

oY:-
€

(11.27)

is known as Young's modulus, as you will recall from basic physics. Of course,
Hooke's law is not obeyed in the plastic region. The line DCE in Fig. 11.20(b)
indicates the stress-strain curve for a sample which had already suffered some
plastic deformation.

It is important to understand the phenomenon of plasticity, as it is a common
occurrence in pure metals even at very small strain. In fact, pure metals start to
deform plastically at much less strain than expected, a fact which gives some clue to
their internal structure. Returning to Fig. I 1.20(a), one might expect, at first
thought, that strain is a consequence of atomic planes being pulled apart by
applied force, and that a larger strain (larger atomic separation) requires a larger
stress. This is indeed what occurs in the elastic region. In the plastic region,
however, various regions of the crystal appear to slip against each other (Fig.
I 1.20c). The crystalline units undergoing slippage are called slip bands,and it is the
sliding of these bands past each other that is responsible for plastic elongation.
It is now clear why our metallic rod does not recover its original length: because the
bands do not slip back to their original positions once the load is removed.

Before we talk about how the slippage takes place microscopically, we may
note that it is caused by the shear component of the applied stress. I magine a plane
cut into the sample (Fig. ll.20d). The applied force F can then be decomposed
into two forces, one parallel and the other normal to the plane. The parallel force is
a shear force, and has a value F sin 6, where 0 is the angle between F and the normal
to the plane. The shear stress r in this plane is given by

Fsin0
Alcos0

( l r.28)
o: osin0cos0: ^ sin20,
2

where we used the fact that the sliced surface has an area of , /cos 0. The maximum
value of z, which is o/2, occurs at 0 : 45'. Slippage along a plane occurs when z

along that plane exceeds a certain critical value. In an isotropic material the slippage
should therefore take place in a plane inclined at 45" relative to the applied force.
Crystals are not isotropic, however, and certain planes having lower critical
stresses than others act as slippage planes; these planes usually have high atomic

t We used o and e in earlier chapters to denote electrical quantities; now we are using
o and e to denote mechanical quantities. But this should cause no confusion, because
here we are discussing mechanical properties only.
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concentration. For instance, the (lll) planes in an fcc lattice show the least
resistance to shear, and are therefore the planes along which slippage takes place.

ln these "easy-slip" planes, some directions are more favorable than others, and
act as easy-slip directions. These directions also have large concentrations of atoms,

e.g., the [10] direction in the fcc lattice.
Now that we are convinced that the slip process does occur, the question is

just how the slip takes place on a microscopic scale. An obvious model is that one
whole plane of atoms slips past a neighboring one-along the slip plane. But such a
model cannot be correct, because it would lead to critical stress larger than the
observed value by several orders of magnitude.

__-!_r- 
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Fig. f f.2l Rigid model ol slip motion. Top: the slippage process. Middle: potential
energy versus slip displacement. Bottom: shear stress versus slip displacement.

For example, Fig. ll.2l shows a row of atoms / slipping past another row B,

and also shows the potential that an atom of .4 "feels" as it moves to the right.
Since the shear stress at any position is proportional to the derivative ofthe poten-
tial, the curve ofthe shear versus position may have the shape shown in the figure.
This can be represented approximately by the sinusoidal expression

(n.2e)

where z. is the critical stress. When r I x 
" 

the atoms of ,4 are displaced from equilib-
rium only slightly, and return to this state as soon as r is removed. However, for
x ) r.; the atoms "roll" over the potential hill, and therefore never return to their
original positions even if the stress is removed. The value of ?" can be estimated by

,. ri, (zrl) ,
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comparing the results of ( I I .29) for small displacement with those of elastic theory,
which are known to hold under these conditions of small displacement. For small
displacement x, Eq. (l L29) can be written approximately as

r:2nr, 2n t"a, ( r r.30)

u - xf a being the shear angle, as shown in Fig. ll.2l. ln the theory of elasticity
the ratio r/a is the shear modulus, or rigidity. Denoting this by p, and using ( I I .30),

one arrives at

p

z7t

relating the critical stress ?. to the elastic shear modulus. A typical value for p in
metals is about lOt1N/m2, yielding r":1010N/m'. Observed values for r" in
pure crystals are, however, much smaller than this, typically about 106 N/m2, four
orders of magnitude less than the predicted value. In other words, the observed
limit of elastic strain is much smaller than the model of Fig. I l.2l suggests. Instead
ofan a-value ofabout 0.1 radian, or 6', the observed angle is about l0-s, or halfa
millidegree. In metals, this surprising softness, or great tendency toward plastic
flow, needs explanation; here the concept of dislocation comes to the rescue.

-----)
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Rig. 11.22 The real model of slip motion: (a) Arrows indicate successive displacements
of an edge dislocation under the influence of an external shear stress. (b) Final shape
of crystal after slip motion has taken place.
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Figure 11.22 shows an edge dislocation. When a shear stress t is applied as

shown, one can think of plastic deformation as a result of a consecutive motion of
dislocation,4 to positions 1,2,3, etc., until it reaches the surface, as shown in
Fig. I 1.22(b). The net result is the same as if the upper half of the crystal had been

rigidly displaced by one interatomic distance past the lower half. However, the

stress required to trigger the motion of the dislocation is much less than that needed

in a rigid displacement because the number of atoms involved in the motion, in
each step, is much smaller.t Also, since the dislocation region is already strained,
the atoms are not in a highly stable equilibrium situation to begin with, so it
requires only a small stress to accomplish the motion, and consequently the plastic

deformation.
We conclude that the softness of pure metal is due essentially to the presence of

dislocations, which lessen the resistance of the metal-to-plastic flow, as the dis-

locations are relatively free to move.

The concept of dislocations helps us to understand other phenomena of
metallic behavior. For example, impure metals and alloys are usually much stron-
ger than pure metals because the impurities and defects are usually attracted to a
dislocation, since they can accommodate themselves more easily there. But a

dislocation which is "loaded" with impurities is no longer able to move readily
because it has to drag all the impurities with it. In effect the dislocation is "pinned
down" by the impurities. The crystal therefore shows greater resistance to plastic

deformation, a phenomenon known as impurity hardening.

Another interesting effect is that a metal becomes harder after being strained
(the slope of the curve in Fig. I 1.20 increases in the plastic region), which is known
as work hardening. For instance, if one attempts to bend a wire which has already
been bent at one point, the new bend forms far from the original bend. The explan-
ation is that a plastically deformed sample already contains an unusually large

number of dislocations created by the original strain; further dislocation motion is

impeded because the dislocations interfere with each other, being oriented at
different angles.

Many other effects confirm the existence of dislocations. For further details
refer to the literature cited at the end of the chapter.

Direct observation of dislocations can be accomplished by chemical etching of
the crystal surface, which, after magnification, reveals those dislocations that inter-
sect the surface, as shown in Fig. 11.23. Other dislocations which lie entirely
within the crystal are more difficult to observe, but even these can be seen in some

transparent substances, such as silver bromide.
We have said that under normal circumstances the mechanical strength of pure

metals is determined not by interatomic forces but by structural defects. What is

the mechanical strength of a dislocation-free metal, i.e., a structurally perfect metal?

t As a familiar analogy, when you try to smooth a ripple in a rug, it is easier to push the
ripple gradually than to cause the rug to slide by pulling at the edge.
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Fig. 11.23 Spiral growth pattern in CdIr. (Photograph by K. A. Jackson)

It is hard to grow such a specimen, especially because dislocations play an important
role in the process of crystal growth. As the melt begins to freeze into various
crystalline nuclei, the new atoms attaching themselves to the nuclei already formed
prefer to settle at a dislocation step (ABB'in Fig. ll.19) because there are more
atoms there to attract them than there are on a flat surface. Thus, as a crystalline
nucleus grows, a dislocation fills up, and spirals in the process. We can see this
type of spiraling in many crystals after the surface has been polished and etched.
Notwithstanding the difficulties in growing dislocation-free metals, it has recently
become possible to grow such crystals. Whiskers of some metals such as tin have
been obtained, either intentionally or accidentally, which were free of any disloca-
tions. Experiments on these samples have revealed them to be exceptionally strong,
with a strength closely approaching the theoretical value (ll.3l), determined by
the cohesive energy due to interatomic forces.
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II.7 IONIC CONDUCTIVITY

lonic crystals such as alkali and silver halides are excellent insulators because their
wide band gaps inhibit electronic excitation and conduction. Nevertheless, the
electrical conductivity in these crystals-small as it is-does not vanish entirely,
and an appreciable value, for example,0. I (Ocm)-1, can be measured at high
temperatures. The conduction here takes place not via the transport of electrons or
holes, but by the movement of the lattice ions themselves, in a manner similar to the
electrolytic current which flows in water containing a solution of, say, NaCl. ln
fact, metal is deposited at the cathode end of the sample. When one weighs the
amount deposited, one finds that Faraday's law is satisfied, as in the familiar
electrolytic solutions, confirming that ions are indeed transported in this situation.

Ionic conductivity depends strongly on temperature. ln most cases it obeys the
simple relation

o : oor-(Et/krt, (11.32)

where E, is a constant energy parameter and oo is a slowly varying function of
temperature. Thus a increases rapidly with temperature, and reaches appreciable
value near the melting point of the solid.

t'4 2'2 
,iror,'J't 
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Fig. 11.24 Ionic conductivity o versus inverse temperature for AgBr. Curve (a) is for
a high-purity sample; curves (6) and (c) are for a crystal containing 0.028 and 0.12 mole/"
of CdBrr. (After Brown)

It is found experimentally that two regions may be distinguished, the high-
temperature (or intinsic) region and the low-temperature extrinsic region (Fig.
11.24). ln both regions the exponential relation (11.32) is obeyed, but in the
high-temperature case the energy E1 (the slope in the figure) is much larger, and the
factor oo is several orders of magnitude larger than in the low-temperature region.
The factor oo in the low-temperature region, unlike o, in the intrinsic region, is also

I
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highly dependent on the impurity contents in the crystal. The parameters for
NaCl and AgBr in the intrinsic region are, respectively, oo : 3.5 x 106 (Ocm)-1,
Er: l.86eV, and oo:1.8 x 105(Ocm)*1, Er:0.19eY.

The form of (l 1.32) suggests that the energy E, is an activation energy for the
movement or hopping of the ions. Clearly such an ionic movement is not possible
in a perfect crystal. The presence ofdefects, especially vacancies, is essential to the
occurrence of this phenomenon. The activation energy E, must therefore be
related to the formation and activation energies of the vacancy, as discussed in
Sections ll.3 and 11.4.

Think of conduction taking place by the ion jumping from one vacancy to
another, or, equivalently, by the motion of the vacancy in the opposite direction.
Employing this model, we may give a simplified derivation of (l 1.32) by using the
Einstein relation between mobility and the diffusion coefficient, Eq. (6.81), at least
in the intrinsic region. Thus ionic conductivity may be written as

o : Nu€ ltu: Nuek 
T D'

e

: kT NuDu,

where N, and Du are the concentration and diffusion coefficients of the vacancy,
respectively. Substituting for N, from (l I .l ), and for D, from ( I I . l3), one finds

o: (k TNDo) e-(E"+Q)tkr (il.33)

which is the form of (l1.32) with E, : E" * Q.
For comparison with actual experiments, this argument must be extended to

account for the presence and transport of both positive and negative ions in the
crystal. The treatment must also take special notice of the type of vacancy, whether
ofthe Schottky or Frenkel type (Section ll.2). In Frenkel vacancies, interstitial
ions are also present, and contribute to conduction, adding further to the conduc-
tivity. This explains why silver halides, whose defects are primarily of the Frenkel
type, generally have higher conductivity than alkali halides, whose defects are
primarily of the Schottky type.

The behavior in the extrinsic region is more complicated, and depends on a
variety of additional new factors. Thus the conductivity could be appreciable if the
sample is quenched from high temperature by rapid cooling, so that the substance
may contain a large number of vacancies even at low temperature (the vacancies
are essentially "frozen in," as discussed in Section I1.3). This reduces the acti-
vation energy, as can readily be seen from the above discussion, since the vacancies
are present, and need not be generated thermally.

IT.8 THE PHOTOGRAPHIC PROCESS

Because modern photographic techniques are such an essential part of present-day
technology, this section is devoted to some basic aspects of this subject. The active
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Fig. I1.25 Photomicrograph of AgBr grains in emulsion, showing photolysis of silver

after exposure. (After Webb)
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component of a negative emulsion plate consists of a large number of silver halide
microcrystals suspended in a gelatin solution. When the plate is exposed to light,
the silver ions in the crystal, usually AgBr or AgBr-Agl, are chemically reduced by
being supplied with the necessary electrons. The resulting neutral silver atoms
cluster into dark colloidal specks which are visible under a microscope (Fig. I L25).
It is these specks, several million atoms in size, which form the image of the photo-
graphed object. The photographic plate may be considered as a light detector, not
unlike a semiconductor detector (Section 7.8). Properly made films can be extremely
sensitive, recording radiation of only a few quanta of light.

Viewed chemically, the photographic process is essentially a photolysis of, say,
AgBr, into Ag and Br atoms. But an understanding of the process also requires
some solid-state concepts. Before discussing the physical processes involved, let us
distinguish between the following two situations: First, the level of light exposure
is so high that the dark metallic silver specks may be seen; this is the printout
effect. Second, in ordinary photography, the specks are far too small to be seen

except after the film has been developed. ln this case we also speak of the latent
image. Let us take the printout effect first; our treatment closely follows Mott ( 1948).

We have said that the structure of an emulsion plate consists of a large number
of AgBr microcrystals, or grains, suspended in a gelatin solution. These grains
have a flat shape, about 0. l,rz along the surface, and about 0.01 ,ri thick. Depending
on the quality and type of film, the crystallites may be smaller or larger, and there
may even be a distribution of sizes. There are two basic experimental facts which
demand explanation: First, the quantum efficiency is nearly equal to unity,
except at too great exposures. By this we mean that for every photon absorbed, a

silver atom is added to one of the silver specks. Second, these silver atoms are
finally localized on a few small specks on the surfaces of the crystallites. The theory
must therefore explain how a photon absorbed at one point can give rise to a silver
atom located a considerable distance away.

Gurney and Mott in 1938 advanced a very useful and simple theory which
explains most of the observed effects. They assumed that when a photon is ab-
sorbed, an electron is excited to the conduction band of the AgBr. Being light and
mobile, the electron can travel a considerable distance in a very short time, and thus
if it encounters an already formed silver speck, it adheres to this speck. (How the
speck formed originally will be discussed later in this section.) The speck, now
negatively charged, sets up an electric field in the surrounding region. Responding
to this field, silver ions in the crystal move toward the speck to neutralize the charge,
and this results in additional silver atoms on the speck. The ionic conductivity of
the silver ions is thus essential to the photographic process, and this explains the
enhancing effect of high temperature. The higher the temperature, the greater the
ionic conductivity, and the faster the rate of growth of the silver speck. Illumination
is also esscntial for the continual growth, for so long as new electrons are newly
excited and transported to the specks, more thermally generated Ag ions are
attracted to neutralize the additional electronic charge.
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An important assumption of the Gurney-Mott theory is that holes, created

simultaneously with the electrons, are trapped, and thus can't move to neutralize
(and thereby inhibit the growth of) the specks. Just how and why the holes are

trapped is not clear, and this weakness of the theory has been criticized by some

workers. The holes are not trapped indefinitely, however. Presumably they even-

tually find their way to the surface and recombine with some halogen ions, after

which the resulting atoms escape from the surface of the halide crystal.
It is also plausible to expect, on the basis of this model, that the specks do not

grow within the body of the grain, which would create a considerable strain, but

on the surface, or possibly on cracks within the grain.
The model also suggests a simple treatment for the growth kinetic of the specks,

and its relation to illumination intensity and temperature. Suppose that the speck

contains r unneutralized electrons. The electric field set up by this charge is

E: nel4rer2. Iftheneutralizingionsflowfromtheinnersideofthespeck,thetotal
ionic current is 2rr2 oE : neo l2e. Thus the number of ions flowing in per second is

p : nol2e. In the steady state, this numberp must also be equal to the number of
electrons created per second from photon absorption.

The number of electrons on the speck is also governed by another consideration:
/, must not be so large as to keep further electrons from adhering to the speck. The

requirement can be written semi-quantitatively as

ne2

4n €R 
< kr'

where the left side is the coulomb repulsion energy, and the right the random

thermal kinetic energy of the electron. tf this inequality is satisfied, the new electron
has enough energy to overcome the repulsion, with a certain probability of being

captured by the speck.
Substituting this value for r, we find that the limiting value for the number of

electrons per second which may lead to future silver atoms is

2nkTRo
P- 1

e-
(r 1.34)

If there are N specks per grain, each of radius R, the number of photons which

leads to silver atoms is

2rrkTNRop : -----7- .

Figure I 1.26 shows the dependence of the rate of growth intensity on illumination I
and on temperature. Thus the rate of growth saturates at a value of I - P, and the

saturation value rises with temperature, in agreement with experiment. Taking

N: l0 and R :50p, Mott found that in AgBr(< : l2eo), p:2(o: l0-r3
cm-r O-') ut - 100"C and p:2 x 105 (o: l0-8 cm-t O-t) at 20"C.
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Fig. 11.26 Rate of growth of silver specks p versus illumination intensity 1, according to
the Gurney-Mott theory. Curve I is for room temperature, and curve 2 is for low tem-
perature.

We turn now to the question of low exposure and the latent image. Presumably
even here very small silver specks are also formed (though too small to be visible)
and serve as nuclei for growth during the development process. These submicro-
scopic specks have their origin in the trapping of an initial electron at some foreign
impurity, known as a "sensitivity speck." The action of the developer is thought to
proceed as follows: The AgBr dissolves in the developer, and the Ag ions move
through the solution toward the silver speck due to the difference in potential
between the bromide and the silver.

rT.9 RADIATION DAMAGE IN SOLIDS

We conclude this chapter by discussing the effects of radiation on solids. The term
radiation here is not restricted to photons, but is quite general, and includes
incident neutrons, protons, and almost any particle that may bombard the solid.
Our interest here is not so much in detecting radiation (as in Section 7.8), but in the
changes in the solid due to radiation. In the case ofstrong radiation, these changes

are sometimes deleterious, significantly affecting, for example, the electrical
conductivity and mechanical stability of the substance.

There are at least two reasons for the importance of studies of radiation damage.
Practically speaking, materials are necessarily subjected to strong radiation in
some circumstances by virtue of the operation concerned. For instance, materials
used for moderating nuclear reactors are bombarded by strong fluxes of neutrons
and other fission fragments emitted by the active radiative substance. Similarly,
transistors used at high altitude (as in space flight) are exposed to high-energy
cosmic rays emanating from the sun, which affect the performance of the devices

incorporating them. Thus studies of radiation damage help us design better reactor
materials and more reliable transistors.

Solid-state physicists are interested in the nature of defects in various solids.
Defects canbe generated by quenching hot samples (Section ll.3), but the most
satisfactory method of producing defects in a well-controlled manner involves
radiation. This accounts for the popularity of this technique, and the use of reactors
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for this purpose. After the defects are created, their type and density can be studied
by the methods discussed in Section 11.3.

Let us assume that the intensity of the incident collimated radiation beam is 1,

that is, I is the number of particles, such as neutrons, per unit area per unit time.
The intensity can also be written as

I:n0, ( l 1.35)

where n is the number density and u the velocity of the radiation particles. The
incident beam is attenuated as it penetrates the solid, because the incident particles
are scattered (and in some cases absorbed) by the atoms in the solid. The atten-
uation follows the usual exponential law, familiar in such situations [see Eq.
(2.2) on the attenuation of x-rays],

f(x): lse-'tt, (l1.36)

where x is the distance traveled by the beam in the solid and / is a parameter of the

solid. Since I decreases very rapidly for x > /, the parameter / is known as the
penetration depth of the radiation.

The depth / can be expressed in terms of the microscopic properties of the
scattering atoms on the solid, and the interaction between these and the incident
particles. One deflnes the cross section o of the scattering or target atom as the
area "seen" by the incident particle. Thus an incident beam of unit area sees a

cross section of No, where N is the atomic concentration, and a fraction Noll of
the particles is scattered. Thus in a distance dx,the decrease in intensity is

-dt:(-No)Idx,
which, as a differential equation, can be integrated to yield (11.36), with

It-_
No

(l r.37)

Not surprisingly, the result is the same as the mean free path of an electron scat-

tered by atoms in metals (Section 4.5). We may estimate the penetration depth for
aneutron: Thescatteringisaccomplishedbythenuclei ofthesolid. Thuso - nRz,
where R is the nuclear radius. Since R is typically about 10-1acm (somewhat
smaller than the actual geometrical radius), o - 10-28 cm2. (The area 10-" cm',
referred to as a barn, is frequently used as a unit of area in nuclear physics.)
Noting that N - lo2e m-3 in a solid, we find, upon substitution in (11.37), that
/ = 0.1 m is the penetration depth of the neutron.

We are particularly interested here in the number and type of defects produced.
The neutron interacts with the nuclei of the solid, and the loss of energy involved in
the stopping of the particle is in part expended in displacing atoms from their
crystalline sites, thereby creating Frenkel defects. There are several processes
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involved: First, the fastfission neutons, of energy about 1.5 MeV from uranium,
knock atoms out of their regular positions. Subsequently the slow (pile) neutrons
continue to dislodge further atoms. Simultaneously, the atoms thus dislodged,
known as primary etoms, may also have enough energy to displace olher secondary
atoms. The problem thus becomes quite complicated. The reader can find detailed
explanations in the references at the end ofthe chapter.

Some estimates can be made, however. By regarding the collision as a hard-
sphere type of interaction, one can show that the maximum energy that can be

imparted to the target is

11.9

(l1.38)

where E; is the energy of the incident particle, be it neutron or a primary atom, and
Mu M are the masses of the incident and target particles, respectively. Thus if a
neutron has E, : 1.5 MeV, a primary Cu can acquire only about lOs eV, that is.

only about 6/" of the incident energy is imparted to the atom. This primary atom
is, however, very effective in dislodging further atoms because of the similarity in
masses. In estimating the number of atoms to be dislodged further, we take the
displacement energy as about 25 eY. This is much greater than the formation
energy found by thermal means (Section ll.3), about 5eV, because the atom in
the thermal method has essentially an inflnite time in which to be dislodged. In the
radiation method, however, the atom must react almost instantaneously, or else

the incident particle would pass it by. This requires higher energy. The number of
atoms dislodged by the primary atoms is thus about l0s/25 : 4000 atoms. Given
that the integrated intensity from the reactor is about 1023 fast neutron/m2, then
the number of dislodged atoms is about 4 x 1026 per m3, that is, about I /, of the
total number of Cu atoms in the solid.

A particularly important type of defect, which is found in metals and other
crystalline solids forming the cladding of nuclear reactors, is the uoid. A void is a
cavity inside the solid; its size varies from a few angstroms to more than 15004.
The void is essentially empty, although a gas at very low concentration may be

present in it.
Voids are created in solids which have been subjected to high doses of neutron

radiation, for example, 1023 neutron/cm2 at the moderately high temperatures
present in fast reactor operations, for instance, 500'C. The creation of voids
produces volume expansion in the substance, reaching as much as l5/" or more at
high radiation doses, and this leads after some years to deleterious effects on the
substance. Consequently, the subject of voids has assumed great practical impor-
tance in the design of new reactors, and will even be more so in the yet-to-come
fusion reactor, operating at very high temperatures.

A void is formed by the coalescence of a large number of vacancies. Initially
these vacancies are created by irradiation at random points in the solid, but at
moderately high temperatures these vacancies are quite mobile and cluster together

4M, M
LE : -------:- E,.(Mt+ M)'.
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to form voids. In order that the void may grow in size, a mechanism must operate
to dispose of the interstitials which are generated simultaneously with the vacancies.
lf no suitable sink is found, the interstitials recombine with the vacancies. pro-
hibiting further growth of voids. lt is now certain that edge dislocations present in
the solid act as sinks for the interstitials. This suggests the possibility of reducing
the effect of voids by introducing impurities and other traps which reduce the
mobility of vacancies and interstitials as well as the growth of voids. See R.
Bullough and A. B. Lidiard, Comments on Solid State Physics, [V,69 (1972):
also A. Seeger, ibid.,lY,79 (1972).

Neutron radiation damage has been discussed specifically because of its
importance in reactor materials, but charged particles such as protons, a-particles,
electrons, etc., may also produce defects. These particles are rather ineffective in
producing atomic defects, however. Thus the heavier charged particles, such as

protons, lose most of their energy in exciting electrons, and, although such an

ionization process is very important in insulators and semiconductors, it is not so in
nretals, in which the large number of free electrons quickly neutralizes the effect.
In the case ofelectron radiation, the light charged particle, the electron, is further
rendered ineffective in producing atomic defects because, since its mass is so small,
it imparts very little energy to the much heavier atom. Just as in the case of a ball
bouncing offa wall, the ball retains most of its kinetic energy.

SUMMARY

Imperfections

Real (as opposed to ideal) crystals usually contain several types of imperfections,
such as substitutional and interstitial atoms, as well as vacancies or holes. Dis-
locations and surface defects are also usually present in crystals.

The number of vacancies is given by

N, : N e-Evlkr,

where E, is the formation energy of the vacancy.

Diffusion

New atoms placed at a crystal surface diffuse through the crystal. The diffusion
distance is found to be

7:Jzor.
The diffusion coefficient increases exponentially with temperature, according to the
formula

D : Doe-Qlxr,

where Q is the activation energy.
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Metallic alloys

Two elements may form a solid solution (alloy) if they satisfy the Hume-Rothery
rules: The atoms must have comparable sizes and similar electronegativities.
The crystals must have sinrilar structures and similar electronegativities. The
solute must have greater valence than the solvent.

A phase diagram is a graph which describes the melting characteristics of
an alloy. It may be derived theoretically if the free energy of the alloy is given.
This energy is defined as

F:E-?S.

The most stable phase or phase mixture is that having the minimum free energy.

Dislocations

Dislocations greatly influence the mechanical properties and strength of metals.
The reason why pure metals are usually soft and ductile is that they contain an
appreciable number of dislocations which are free to move. Pure, dislocation-
free metals are very strong.
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QUESTIONS

l. The text said that vacancy concentration is normally measured in quenched samples,

at room temperature.
a) why is it necessary to quench the sample, rather than to cook it slowly?

b) Is the quenched sample in thermal equilibrium?

c) If the vacancies in a quenched sampte are annealed out under adiabatic conditions,

will the solid heat up or cool down? And by how much?

2. What is the justification for calling Eq. (ll.16) the "lever formula?"

3. What is the meaning of the fact that the solidus and liquidus lines in the phase diagram

converge at the endPoints?

PROBLEMS

l. a) Calculate the atomic percentages of interstitials and vacancies at the melting point

in Cu (1356"K). The formation energies for these defects in Cu are, respectively,

4.5 and 1.5 eV.
b) Repeat the calculations at room temperature.

2. Verify that expression 11.7 satisfies both Fick's second law (11.6) and the initial

conditions of the Problem.
3. a) Carry out the integrations leading to the diffusion distance (ll'8)'

b) Calculate the diffusion velocity, and explain physically why this velocity decreases

in time, as it does.
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The text estimated that an atom in a crystal diffuses a distance of about lp in two
years, if the lattice constant d: I L and the jump frequency is I s. Estimate the
distance the atom would travel in the same time interval if the atom were able to jump
always in the same direction, e.9., to the right.
Other solutions to Fick's second law, besides the one reported in the text, are
frequently quoted in the literature. These solutions correspond to boundary
conditions different from those chosen here. Verify that the expression

c^f 2 fxl2(Drlt/2 I(x,r):; 
L 

, - ,'J, e-" du 
l

is also a solution of Fick's law corresponding to the following initial conditions:
c(x,O): cs for x( 0, and :0for O< x. Plot c(x,l) versus x at various instants
(0 < ,), and show that c(0, t) : t at all times. [The term in the brackets involving the
integral is known as the error function, and denoted by erf (xl2(Dt)'/\.)

6. The diffusion activation energy of carbon in y-iron (austenite) is 3.38 x l0a cat/mole,
and Do : 0.21 cm2/sec. Calculate the diffusion coefficient at 800oC and I l0O"C.

7. The carburizing of steel is accomplished by placing iron in a carbon-rich atmosphere,
and allowing sufficient time for the carbon atoms to diffuse through the solid. If you
want to achieve a carbon concentration of l/, (in weight) at a depth of 3 mm after l0
hours of carburizing time at 1200"C, calculate the carbon concentration in weight per

cent which must be maintained at the surface. Take the iron to be in the y-phase, and
use the data of Problem 6. lHint: Use the solution given in Problem 5.]

8. The atomic size factor favors solid solubility for the following alloys. What is the
effect of the relative valency factor in each case?

5.

Soluent: Cu

I

Solute; Si
9. a) Construct the phase diagram for

(Moffat, 1964).

Weight/,Ni :

Liquidus 7 :

Sn Ag
ll
Ag Mg

Cu-Ni alloy, using the following data

Ge

I

si
the

0 20 40 60 80 100

1083 ll95 1275 1345 l4l0 1453

10.

11.

12.

r3.

SolidusT : 1083 ll35 1205 l29O 1375 1453

b) Starting with a liquid alloy of 6O/" Ni and cooling it gradually, state the
composition of the solid that forms first.

c) How much solid per kilogram can be extracted from the melt at 1300'C?
Establish the validity of Eq. (11.20) for the free energy.
Find the derivative of the mixing entropy (0sl0c), and show that it is infinite at c : 0.
Referring to Fig. 11.13(a), show that the free energy for a phase mixture (where the
concentrations ofthe phases are given by c'and c") is given by the straightline F' F"
in the average concentration range c" < c < c',
Prove the lever formula for a phase mixture whose free-energy diagram has the shape
shown in Fig. 11.13(b).
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14. Confirm that the free-energy diagrams ofFigs. ll.l5(a)-ll.l5(d) lead to the phase

diagram ll.l5(f). Indicate on this latter figure suitable values for the temperatures
T,T',7", and I"'indicated in the former figures.

15. The phase diagram for the Cu-Ag alloy is shown in Fig. ll.l5(f).
a) Confirm that the atomic /n and weight o./o scales indicated are consistent with each

other.
b) Determine the atomic percentage of the a-phase at the eutectic concentration just

after solidification.
c) Determine the percentage of the same phase at the temperature 850oC, and the Cu

concentration in atomic o/o.

16. a) Starting with a Cu-Ag alloy in the liquid phase and 6O/"weight Cu, indicate the
various phases which appear as the system is cooled progressively from the liquid
to the solid phase.

b) What is the weight fraction of the f phase at 850"C?
17. Prove that the Fermi surface begins to touch the boundaries of the Brillouin zone in the

fcc and bcc structures when the electron/atom ratios are 1.36 and 1.48, respectively.

[Refer to Fig. 5.8.]
18. Show that the shear strain on any crystal plane vanishes if the solid is placed under

hydrostatic pressure.
I 9. a) Show that in an fcc lattice the (l I I ) planes have the highest atomic concentration.

b) Show that the [100] direction in the (111) plane has the highest atomic
concentration.
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r2.I INTRODUCTION

This chapter deals with two topics: materials and solid-state chemistry. These
topics are actually intimately related, because, to prepare and characterize new
materials, scientists must understand their basic physical and chemical nature.
The rapid advances in solid-state physics and chemistry in the past 20 years have been
made possible by physicists and chemists working side by side, opening new
vistas.

We shall first discuss amorphous semiconductors, and the effects of non-
crystallinity on their band structure and mobility. We shall then describe liquid
crystals-a class of substance exhibiting characteristics of both liquids and
solids and their mechanical and optical properties. The mechanical and melting
properties of polymers are also considered, and these properties are related to the
long chainlike structure of the molecules that constitute them.

Many of the recent discoveries in physics have been taken over by chemists,
and have now become standard tools for investigations in chemistry. Outstanding
among these discoveries are nuclear magnetic resonance, electron spin resonance,
and Mcissbauer spectroscopies. We shall talk about all these, with particular refer-
ence to their applications in chemistry.

12.2 AMORPHOUS SEMICONDUCTORS

Many amorphous substances exhibit significant electrical conduction. We refer
to these as amorphous semiconductors. This type of conduction is associated with
electrons rather than ions in the solid, because the contribution of ions to the
conductivity is usually very small. Although crystalline semiconductors have
received most attention in the past (Chapters 6 and 7), scientists are expending great
effort toward understanding amorphous ones. one reason for this increase in
interest lies in the fact that some amorphous substances show certain unusual
switching properties, which could be important in applications such as switching
and memory devices. Also amorphous elements are usually cheaper to manufac-
ture than crystalline ones, so the widespread use of amorphous elements in electron-
ics could lead to a significant reduction in cost. Until recently, the electronic proper-
ties of amorphous semiconductors were poorly understood, because it is harder
to treat electron states in a disordered solid than in a crystal, due to the absence
of periodic symmetry. Although our understanding of crystalline structures rests
on secure foundations today, there is still much to be learned in the field of
amorphous semiconductors. This subject is a challenge not only to the physicist,
but to the chemist and materials scientist, all of whose expertise is needed to unravel
the many complexities of the topic. Undoubtedly many useful applications remain
undiscovered.

For our discussion, let us divide amorphous semiconductors into four classes.

a) Elemental amorphous semiconductors, for example, Ge, Si, Sl, Te

b) Coualent amorphous semiconductors (binary), for example, As2Se., GeTe
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c)Coualent amorphous semircnductor.s (multicomponent), lor example, chalco-
genide, boride and arsenide glasses

d) Ionic amorphous semiconductors. for example, Al2O3. VrOr, and other
transition-metal oxides.

ln the first three classes, the atoms are held together by covalent bonds;
in the last class, the binding is due primarily to ionic bonds. Since the ionic
bonds involved are quite strong, of the order of l0 eV per bond, the electrons in
class (d) are strongly bound to their ions, and are usually unable to participate
in electrical conduction to any significant extent; we shall therefore omit these

substances from further consideration.
Atomic order in a solid has an important bearing on the treatment of

electronic states, as we have seen. So let us look into this question once more in
connection with amorphous materials. Recall that the structure of a solid in the
amorphous state is the same as that of a supercooled liquid;it is as though we are
able to take a liquid and, at some instant "freeze" the position of every atom in the
system. We recall from Section 1.8 that a liquid has a good short-range order:
The positions of nearest neighbors are essentially the same as in the solid state.
But a liquid, unlike a crystal, has no long-range order, so at a distance far from the
atom in question, the other atoms appear to be randomly distributed.

The same situation prevails in an amorphous substance: Although long-
range order is absent and far-away atoms seem to be randomly distributed,
short-range order does exist. For instance, in amorphous Ge, each atom is
surrounded by four nearest neighbors, forming the familiar tetrahedral bond,
much as in the solid state. But if we look at the second-nearest neighbors,
we discover that there are two different ways in which they can be arranged
in such a way that the atoms at the apex of the tetrahedron are the
centers of new tetrahedra. One of these arrangements leads to the fcc structure
observed in crystalline Ge, the other to the wurtzite structure. In amorphous
Ge both arrangements occur with essentially equal likelihood, and this leads to
some disorder in the second-nearest neighbors. When this process is extended
further and further away from the original atom, one discovers that the number
of possible positions multiplies rapidly, resulting in complete disorder at long range.
Our comments concerning Ge apply equally to Si, and also to other class (a)
semiconductors, with appropriate modifications to accommodate the possibility
of a different structure.

The type of disorder just discussed is a positional disorder. An additional type
is encountered in the covalent semiconductors of classes (b) and (c). Thus in CeTe,
for example, not only is there long-range disorder in the positions of the atoms,
but even the chemical composition of the atom is uncertain, there being an equal
probability of finding either a Ge or a Te atom at any position. This uncertainty
is referred to as compositional disorder. Thus a binary amorphous semi-
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conductor has both positional and compositional disorders, and thus is more

disordered than an elemental semiconductor. There is even more compositional
disorder when multicomponent substances in class (c) are considered. We should
emphasize, however, that in spite of this, a good short-range order exists in all the

substances discussed. For instance, even in the alloy As2oSe5oGenoTelo, the atoms

are so arranged that each Ge atom is surrounded by four nearest neighbors,
forming a tetrahedral covalent bond. To explain the observed electronic properties

of amorphous semiconductors, we need to use concepts both of short-range
order and long-range disorder.

Band structure

We are interested now in electronic states in an amorphous semiconductor,
since this knowledge is essential to the understanding of electrical and optical
properties. Because of the extensive disorder present, the Bloch theorem (Section

5.3) does not hold here. And since this theorem is the basis of much of our
treatment of electronic structure in crystals, many of the results derived in Section

5.3 do not apply directly to amorphous solids. [n particular, the concept of the

wave vector k, characterizing the electron function, is no longer meaningful. This
also holds for the k-space and Brillouin zones. These concepts, which are direct
consequences of the translational periodicity of a crystalline lattice, and which
we found so useful in treating the electron states in crystals (Chapter 5), have to
be discarded when we consider an amorphous solid.

Other concepts used in connection with crystals remain useful, however, even

in disordered states. Figure 12.1(a) shows the density of states g(E) for a

crystalline semiconductor. The bottom of the conduction band (CB) is at 8",

and the top of the valence band (VB) at E,. The range between these two energies,

Euto E", is the energy gap, where no electron can exist in a perfectly pure crystal.
The density of states vanishes completely in the entire range of the energy gap.

Note that the edges of the CB and VB are infinitely sharp in the crystalline case.

Figure l2.l(b) shows the density-of-states function for the amorphous
state of the same substance. The primary difference between Figs. l2.l(a) and

12.l(b) is that in l2.l(b) the density of states has extended into the gap from both

the CB and the VB sides. Each of these bands now has a "tail" entirely within
what was formerly a forbidden gap (the band tails are shaded in Fig. 12.1b).

To understand this result, we may start with the crystalline state, begin to introduce
some disorder, and then examine its effects on g(E). Since we are allowed to
introduce only long-range disorder, the effect of this on the energy levels is rather
small (only a few percent), because an electron on a particular site interacts most

strongly with nearest neighbors. In general, the effect of the disorder is therefore
to shift the levels-up or down-by only a small amount throughout the band.

There is one region, however, in which the effect of disorder is conspicuous: near

the band edge. Here the effect of disorder is to displace some levels right into the

energy gap, creating the band tail. Although the shift here may not be large, it is
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Fig. 12.1 From top to bottom: density of states g(E) versus energy E for a crystalline
semiconductot; S(E) versus E for an amorphous semiconductor; mobility ,u versus E
for an amorphous semiconductor. Shaded regions in middle figure represent band tails
introduced by the disorder.

significant, because the electron states in the tail have a different character from
those in the remainder of the band. The band tailing occurs for both CB and VB,
although the CB tail is likely to be larger because it is at a higher energy.
(Explain !)

We must now make a clear distinction between localized and delocalized
electron states. In a localized state, the electron is restricted to movement around
only one particular atomic site, while in a delocalized state the electron is extended
throughout the solid (existing partly at every atomic site). ln the case of a crystal,
all states are delocalized in accordance with the Bloch theorem (however, see

Section 5.3). In the case of an amorphous solid, both types of states occur
simultaneously. Those states in the main body of the band are delocalized just as

are those in a crystal. On the other hand, the states in a band tail represent localized
electrons. It is not too surprising that these latter states, falling in what was once
an energy gap, arc localized, as the reader will recall that the localized impurity
states in a doped semiconductor did fall in the energy gap. In a certain sense we may
well use the impurity model (Section 6.5) to treat the localized states in amorphous
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semiconductors. We may also speak of localized and delocalized holes in
connection with the VB.

Electronic conduction

The concept of delocalization is important in electronic conduction. A delocalized

electron moves readily through the solid (Section 5.3). Since electrons are already
distributed throughout the solid, they need only a little push-e.g., from an

electric field-to set them adrift, carrying an electric current. This process is known
as metallic conduction. By contrast, a localized electron is strongly bound to its
site, and lies deep within its potential well, separated from the neighbors by high,
thick potential barriers. lt can move from one site to a neighboring one only if
it is energetically excited above the potential barrier. But, since the barrier is
usually about I eV, relatively few electrons are excited at room temperature. This
process is known as hopping, and the thermal excitation process as actiuotion.

Figure l2.l(c) illustrates this graphically by plotting the mobility p of the

electron as a function of the energy. Since the mobility of a localized electron
is essentially zero, we see that for the CB, for example, the mobility drops sharply
amd suddenly as the energy decreases from the main band to the band tail. A
similar situation exists for the VB. So, although no sharp density-of-state gap

exists, there is a sharp mobility gap (in the energy range in which p : 0), and this
gap is approximately the same as the energy gap in the crystalline solid.

Let us now derive formulas for the conduction mobilities for delocalized and
localized states. For the delocalized state, we may use the same argument we used

in treating crystalline states (Section 6.7), and the result is the same as Eq. (6.31).

That is,

lto : (12. l)

Note, however, that the collision time r is now much shorter, due to the additional
scattering caused by the disorder, which leads to a significant reduction in the
mobility-by two orders of magnitude or so. The scattering of the electron due to
the disorder is so strong that the mean free path is typically only a few times the
interatomic distances, or about l0 A.

A localized electron can drift through the solid by hopping between atomic
sites only if it acquires the energy necessary to overcome the potential barrier.
It acquires this excitation energy from thermal excitation of the solid. The problem
is similar to the atomic diffusion case treated in Section 11.4 and the result is a
hopping mobility of the form

ET

*-

Pa : Ae-wlkr, (12.2)
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where W is the activation energy. The mobility p, decreases rapidly with reduced
temperature, and at low temperature is negligible. Even at ordinary temperatures
pr, is much smaller than pe, typically three orders of magnitude less. Because it
is so small, the hopping mobility will be neglected in the following discussion.

To calculate electrical conductivity-the quantity which is actually measured-
one uses the relation (6.32), that is,

o : nep,

where r is the concentration of carriers. In an intrinsic amorphous semiconductor,
carriers are generated by exciting electrons from the VB to the CB across the gap,

as in the crystalline case. Adding the contributions of both delocalized electrons and
holes, one finds that

O : 6O9-EtlkT, (12.3)

where effective activation energy E,n, which is equal to (Eg12 + W), is typically
about 0.5 eV. The conductivity increases rapidly with temperature because, as

in the crystalline case, at higher temperature more free carriers are created.
This prediction is confirmed in a general way by experiment on amorphous Ge,
Si, and other substances, as shown in Fig. 12.2 for Si.

o24681012
(ro3/D, "r-1

Fie. 12.2 Resistivity p versus 103 lT for evaporated film of Si. The different curyes cor-
respond to various stages of growth and annealing. [Brodsky, et al., Phys. Reo. Bl,
2632 (1970)l

It is also noted experimentally that electrical conduction in amorphous
semiconductors is insensitive to impurities, and that it is primarily p-type, i.e.,
the current is carried primarily by holes. The insensitivity to impurities, in marked

E
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contrast to the crystalline case, can be understood on the basis of the model of
Fig. l2.l (b) by noting that if a donor-As, for example-is added, the extra electron
can be accommodated in the band tail of the CB, where it contributes nothing
to the current. The p-type character of the conduction can also be explained if
one assumes that the band tail is larger for the CB than for the VB. In that case

the Fermi level, which lies somewhere near the middle of the new energy gap, is
closer to E, than 8., resulting in more delocalized holes than delocalized electrons,
leading to the p-type character indicated above.

To explain some of the properties of the chalcogenides, in which disorder
becomes extensive, Cohen, Fritzsche, and Ovshinsky (CFO) proposed the model
shown in Fig. 12.3: Here the two bands extend so far into the gap that they actually
overlap each other. When such an overlap takes place, repopulation ensues, with
electrons transferring from the higher region of the VB tail into the lower region
ofthe CB tail. Since the states involved are localized, this results in the creation of
large concentrations of positively and negatively charged centers, or traps. It
should be apparent that electrical conduction in the CFO model obeys an

equation of the same form as (12.3).

Fig. 12.3 The CFO model. Positive and negative signs indicate ionization of impurities
due to overlap of bands.

Optical absorption

Optical absorption is a standard technique for investigating band structure,
and it is therefore of interest to study absorption in amorphous semi-
conductors. As seen from Fig. 12.4, the absorption for Ge in the amorphous
state is much the same as for the crystalline state, the main difference
occurring near the fundamental absorption edge, where the cutoff frequency
in the amorphous state is lower and not so sharply defined. This can

be understood by noting that the absorption edge of the amorphous state is
determined by exciting electrons from localized states in the VB to delocalized
states in the CB. The diffused nature of the edge arises therefore from the diffused
nature of the VB tail, and since this extends into the gap, it follows that the cutoff
frequency is less than the crystalline absorption edge (8" - E,)lh. Note also
that an absorption which involves exciting an electron from localized VB to
localized CB states is not effective here, since absorption takes place only if the

c@)
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Fig. 12.4 Absorption coefficient fl versus photon energy in amorphous Ge. Curves
I and 2 represent measurements by different workers. The dashed curve is for a single
crystal. [From various sources; see Owen (1970)]

two states concerned are in the same spatial region, i.e., absorption is by independent
atoms. This, however, is much weaker than absorption involving delocalized
states, since these overlap over large spatial regions involving many atoms
simultaneously.

Switching

Some amorphous semiconductors exhibit characteristics which make them useful
as switching and memory components in electronic circuits. Many different types
of switching phenomena have been observed, the best known at present being
that reported by Ovshinskyf in 1968, which is shown in Fig. 12.5.

If a voltage Iz is applied across a special chalcogenide sample, the current
increases along the line Oab. At the threshold ooltage V, the sample undergoes a
transition (6c) to a new state of extremely small resistance. In this On state,
the I-V characteristic is indicated by the line ec, where the current is essentially
independent of the voltage. The voltage Z, necessary to maintain the On state is
known as the holding uoltage. When the current is reduced below a certain point
e, the sample switches back (ea) to the high-impedance, or Off state. The threshold
voltage I/7 increases linearly with the thickness of the sample, and can

readily be varied from 2.5 to 300 V, by increasing the thickness. On the other
hand, the holding voltage is independent of the thickness, but can be varied
between 0.5 and 1.5 V by varying the composition of the glass. The switching from
the Off to the On state occurs very rapidly, in about I ns, while the On-to-Off

t S. R. Ovshinsky, Phys. Rers. Letts.2l, 1450 (1968).
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switching is much slower, taking about I ps. Furthermore, the device is symmetric
and operates equally well with the reverse polarity. This type of device is now
referred to as an Ovshinsky (or Ovonic) diode, after its discoverer.

VT

Fig. 12.5 The current-voltage characteristics of an Ovonic diode. The dashed lines
represent fast discontinuous changes.

Although there is not yet a complete understanding of the switching process
and related phenomena, there is general agreement that the reason for the
decrease in the resistance (in the On state) is that certain regions in the substance
crystallize as a result of Joule heating, and that these form channels in which most
of the current flows. Because the channels are crystalline, they have greater con-
ductivity than the remainder of the sample, and consequently the sample as a whole
has a smaller resistance. This accounts for the situation in a so-called read-mostly
device, in which the material remains in the low-resistance state when the
voltage is on. In a threshold switch, however, the crystallization process does not
take place. For more details, refer to the February 1973 issue of IEEE
Transactions on Electronic Deuices, which is devoted to amorphous semi-
conductors.

Xerography

One of the most familiar applications of amorphous semiconductors is the
xerographic process. This involves depositing a thin film of amorphous selinium
on a metallic substrate (usually Al), and the surface of the fiim is electrically charged
all over by means of a corona discharge. The pattern of light to be copied is then
allowed to fall on the film, causing the illuminated regions to be photoconductive,
and the corresponding charge is allowed to leak away. The dark regions (dark
conductivity about l0-16Qcm-') remain charged. A finely powdered,
pigmented resin is then sprayed on the surface and clings to the charges. Finally
the powdered pattern is transferred to a sheet of paper, and attached to it by
heating.
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r2.3 LIQUID CRYSTALS

Another class of substances which has elicited much interest lately from chemists,

physicists, and other materials scientists is liquid crystals. The interest is due in
part to the promise these substances hold as potential electro-optical devices,

but their unusual properties, which were hitherto not well understood, have also

challenged the curiosity of these scientists.
In 1888, Reinitzer observed that, as he heated cholesteryl benzoate, the solid

melted at i45'C into a liquid of a white, turbid, murky appearance. When

this liquid is heated further, it undergoes another transition at 179"C, this time
into a clear, transparent liqfid. The substance was further investigated by

Lehman, who found that the liquid actually exhibits optical anisotropy-i.e.,
birefringence-when in the turbid region, much as a crystal does. The unusual fact
that the substance has the mechanical properties of a liquid-e.g., ability to flow
and low viscosity-and the anisotropic optical properties of a crystal prompted

Lehman to coin the descriptive name liquid crystals, which has been retained

ever since. The liquid crystalline phase is often called the mesophase, and a sub-
stance having such character a mesogen.

The appearance of a liquid crystal, resembling that of a colloidal solution, led

to early suggestions that suclt a substance is also a colloidal solution. We know
that this is incorrect because a liquid crystal has well fixed lower and upper

temperatures, an indication that we are dealing here with true phase transition, and
hence a distinct phase of matter. X-ray studies also clearly establish that the

substance has orientational order in the mesophase.

The molecules in liquid crystals are long and rodlike, a typical length range

being l5-40 A. ttre large anistropy of the molecule is essential for the appearance

of the mesophase, as we shall see.

Liquid crystals are not rare substances. A large number of these is now known,
essentially all being organic compounds, many of which contain aromatic
molecules in their structure.

The mesogens discussed here are thermotropic, i.e., they are obtained by heat-

ing solids. There are also lyotropic liquid crystals, formed by dissolving certain

crystals in suitable solutions. This latter group is relevant to the structure of
biological membranes, which also appear to have a liquid crystalline structure.
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Fig. 12.6 The (a) nematic, (b) cholesteric, and (c) smectic phases of liquid crystals.
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Classification

We have said that the molecules in a liquid crystal are long. In the mesophase these
long molecules tend to align parallel to each other along a certain preferred
direction. There are also additional structures present, on the basis of which Friedel
divided liquid crystals into three different phases: nematic, cholesteric, and smectic.

i) The nematict phase has the simplest structure. The molecules are parallel to each
other, but otherwise their spatial distribution is random, as in a liquid (Fig. 12.6a).
There is thus an orientational order, but the molecules are able to move around
from one region to another as in a liquid-a fact responsible for the low viscosity.
Each molecule is, of course, free to rotate around its axis, because of its rodlike
shape. A liquid in the nematic phase also has a turbid appearance. An example of
a nematic crystal is p-azoxyanisole, whose temperature range of existence is

I l6-136"C.

ii) In the cholesteric phase, the molecules are also aligned parallel to each other,
but the direction of alignment twists progressively, resulting in a helical structure
(Fig. 12.6b). Thus the substance consists ofparallel sheets, or layers. In each sheet
the molecules are aligned parallel to each other. The pitch of the helix is typically
around 2000 A, but this can be lengthened by the application of suitable external
fields.

Because ofthe helical structure, a cholesteric substance exhibits optical activity,
i.e., the plane of polarization of a light beam is rotated as it travels in the substance
in a direction parallel to the axis of the helix. The amount of the optical activity
is enormous in some cases, e.g., an activity of 6 x 104"/mm has been observed.
That is, the plane ofpolarization is rotated through an angle of6 x 104" in a plate
I mm thick, which can be compared with an activity of only 300'/mm in an ordinary
organic compound.

Chemically, cholestrogens are usually ester cholesterols, a fact responsible
for the name "cholesteric phase." An example is cholesteryl cinnamate, whose
range of existence is 156-197'C. Mechanically, a cholesteric liquid has a somewhat
higher viscosity than a nematic one.

iii) The structure of the smectigl phase is illustrated by Fig. 12.6(c). It consists of
a series of layers, in which the molecules are all parallel to each other and normal
to the layer plane. The layers interact only weakly, and can readily slip past each
other, or be made to rotate relative to each other. It is these motions which are
responsible for the liquid-like mechanical properties.

t The term nematic (meaning "threadlike" in Greek) alludes to the fact that these
substances appear as long, thin filaments when they are viewed under a microscope.

I Smectic is from a Greek word implying association with soap, an allusion to the fact
that first discovered substances of this kind were among soaps.
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In addition to the orientational order, the molecules also exhibit a regularity
in their distribution pattern within their own layer, i.e., a certain amount of spatial
order exists in each layer. The type of spatial pattern as well as the amount of tilt
of the direction of alignment relative to the layer plane (the direction of
alignment is not always normal to the plane) have led to further finer subclassifica-

tions of the smectic phase. In the smectic ,4 phase, the axis is normal to the layers,

while in the C mesophase the axis is tilted. In the smectic B phase the molecules

are thought to have an hcp structure within the layers, and in the D phase the

structure is known to be cubic.
An example of a smectogen is ethyl p-azoxybenzoate, whose existence range is

tt4-t20"c.
Of all mesophases, the smectic is closest to a solid structure. The only difference

between a smectogen and a solid is the lamellar structure of the smectogen, which
permits the slip and rotational motions. The smectogen is essentially a two-
dimensional solid.

Some substances exhibit more than one type of mesophase, depending on the

temperature. For instance, 4,4'-di-n-heptyloxyanoxybenzene is smectic in the

range 74-95'C and nematic in the range 95-124'C. Above 124"C, the compound
turns into a regular isotropic liquid. The fact that the smectic phase occurs at a lower
temperature than the nematic is expected, inasmuch as the figure has a higher order.

Orientational order and intermolecular forces

We mentioned that the molecules in a mesophase are oriented with their long axes

parallel to each other. At every point in space there is a preferred direction along
which the molecules tend to align themselves. The system therefore has an

orientational order. The preferred direction is specified by a unit vector n(r),
which points along this direction everywhere in space; n(r) is known as the

director. Since the preferred direction may vary from point to point, the director
n(r) is a function ofthe position vector r, a fact indicated explicitly in the notation.

Let us begin our discussion of order with the nematic phase, since it has the

simplest structure. The molecules are not actually perfectly aligned along n(r),
but fluctuate on both sides of this direction. The angular fluctuation may be apprec-
iable-more than l0o-and the fluctuation time is usually very short, about I 0 - I I s.

To specify the degree of order, we define the orientationalorderJitnction S as

S:(3cos20 -l)12, (12.4)

where g is the angle between the axis of a typical molecule and the director, and

the bar signifies a time average over a whole period of molecular fluctuation.
For a situation of perfect order, the molecule points along n(r) at all times-that is,

0 : 0-and consequently S : L For a complete absence of order, i.e., random
orientation, all values of 0 are equally likely, leading to S : 0. A partial order is

therefore represented by a value of S between zero and unity; the greater the

order, the closer S is to unity.
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The definition of S chosen in (12.4) is the most convenient, although other
definitions are possible in principle, One may think that the simplest choice would
be S : cos?, that is, the projection of the molecular length along the director, but
this is inadmissible for the following reason: Despite its elongated shape, the
molecule has a center of symmetry, and thus the two directions along the molecular
axis are equivalent. In other words, the two orientations for the molecule, 0 and
n - 0, are completely equivalent, and consequently the angular must be chosen
so that its value is the same at 0 and z - 0. The function must therefore be even
in cos 0 [recall cos (zr - 0) : - cos 0], and the choice made in (12.a) is the simplest
such function. [The angular function in (12.4) is the familiar Legendre function
Pr(0).1

[Also note that although the bar in (12.4) signifies a time average, it may
alternatively be regarded as an average over the molecules in a particular neigh-
borhood at a certain instant. This ensemble average leads to the same result as
the time average, as asserted by Gibbs in his hypothesis in statistical mechanics.]

The order function S depends on temperature. For T 1 T o, where To is
the critical temperature-i.e., the temperature at which the mesogen melts into
the isotropic liquid phase-S decreases monotonously with T, and shows an
abrupt jump from 0.4 to 0 at To (Fig. 12.7). Also, when plotted as a funcrion of
the normalized temperature TlTo, the curve has a universal validity; i.e., it is
followed by all nematogens.

0.9 0.92 0.94 0.96 0.98 1.0

r/ro,%

Fig. 12.7 Orientational order S versus fl7o for the nematic phase.

The order function may be measured by any of several techniques; the most
direct method employs NMR spectoscropy.

We turn now to the forces responsible for the order. Since the order is
spontaneous, it must be due to anisotropic intermolecular forces. A dipole-
dipole electrical force of the form discussed in Section 9.2 would produce an
orientational order, as first suggested by Born, but this cannot be entirely correct,
since the molecules in many liquid crystals are nondipolar. But it can be shown
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by quantum considerations that two elongated molecules, i and j, have an
anisotropic potential

Vii : - u(r,.,) \3 cos' 0,, - 1)12,

where r,, is the intermolecular distance, 0,, the angle between the axes, and

u\ri): -bLa2lrfr;

(r 2.s)

(12.6)

D is a positive constant. The quantity La : a, - dr is the polarizability anistropy,
i.e., the difference between the molecular polarizability along the molecular axis,
d11 , and perpendicular to it, dr. The nature of the force here is the same as the
polarization force discussed in connection with inert gas crystals (Section l.l0). The
orientation force is stronger here because of the considerable asymmetry in
molecular shape, but is still not very strong, the critical temperature being about
100'c.

By summing the intermolecular potential (12.5) over all molecules, and
calculating the total free energy, one finds that this vanishes at

u:4.54kT, (t2.7)

where u is the average of u(rr,) over the intermolecular distances. Equation (12.7)
thus determines the critical temperature. Combining this with (12.5), one sees

that V,t - 7o, leading to the fact that S(T) : S(T/To), and hence the universal
character of the order-temperature curve, Fig. 12.7.

This discussion suggests that in principle any molecular substance with
anisotropic molecules should exhibit a mesophase character. The fact that
relatively few compounds do is explained by noting that the much stronger scalar
intermolecular potential acting in addition to V,, of (12.5) usually causes the freezing
of the liquid at a temperature higher than To, thus inhibiting the formation of the
mesophase. To encourage the occurrence of the mesophase, one thus attempts
either to increase the molecular anisotropy or to depress the freezing point. Many
new liquid crystals have been synthesized on the basis ofthese rules.

Measurements on smectogens indicate that the order function is essentially
independent of temperature. The explanation is that the temperature is so low
that S is close to its low-temperature limit.

Elasticity

The orientation-inducing forces contribute to the elastic properties of a liquid
crystal. The corresponding elastic energy is zero when the director n(r) is the
same everywhere, but if the crystal is deformed the elastic energy increases in a
manner depending on the type of deformation. The mo6t general expression for
the energy density, which must be even in n(r), is

E.(r) : *{K,[V. n(r)]' + K2[n(r).V x n(r)]2 : + Ks[n(r) x (Vx n)]'z], (12.8)
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where the first term on the right represents a pure divergence, and the second a
pure twisting, and the last a pure bending of the field lines of the director (Fig. 12.8).
The elastic constants Kr, K, and K, are small, - 10-6 dyne, and decrease
rapidly as the temperature is raised.

(a) (b) (c)

Fig. 12.8 The (a) divergence, (b) twisting, and (c) bending deforma tions of the director.

Magnetic effects

A magnetic field produces important effects in liquid crystals. A macroscopic
free liquid crystal system is actually isotropic. The reason is that even though the
system in any one small neighborhood is anisotropic, the director n(r) varies
continuously from one region to another, so that the system as a whole is isotropic.
(The situation is analogous to a ferromagnetic system, in which the random
directions of the oriented domains result in an isotropic solid.) But when an
external magnetic field is applied, the director tends to align with the field every-
where. The system is no longer isotropic, as can be detected, for example, by
measuring the dielectric constants along and perpendicular to the field, e;1 and .r.
Such measurement shows that e;; ) €r. A complete orientation of the mesophase
may be achieved by applying a field of a few kilogausses. This is a relatively small
field, indicating once more that the internal forces involved are rather weak.

The reason for the alignment of n(r) with the magnetic field is that the magnetic
susceptibility in the direction parallel to n(r), X 11, 

is greater than in the perpendicular
susceptibility, 1r. One can show that the density of the magnetic energy is

E^ : - (LDB2(3 cos26 - 1116, (12.e)

where AX : Xlt - 1, is the susceptibility anisotropy and $ the angle between
n(r) and the magnetic field B. Note that E. is even in cos 0, as it should be, and that
the angular factor is Pr(0), except for a factor of j, resulting from the fact that
the magnetization process takes place gradually as the field is raised from 0 to the
final value of B. The energy is smallest at 0 :0, where n(r) is parallel to B,
and greatest at O : nf2, where n(r) is normal to B.

The fact that the director aligns with the field means that X.t < Xy1, which can
be attributed to the fact that the molecules are more readily magnetized along their
axes than in the normal direction. This can of course be related to the microscopic
structure of the molecules. In particular one notes that in a chain of benzene-
related rings, the magnetization is larger in the plane of the rings than in the
normal direction.
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Usually another effect must be considered in connection with magnetic

measurements (which are often carried out by sandwiching the system between

two glass plates): the surface. The effects of the surface on the orientation of the

director are little understood at present, but it is known that if a pretreated glass

surface has been rubbed many times, the system is uniformly oriented, with the

director parallel to the surface and the rubbing direction.

Fig. 12.9 Twisting of the director due to a magnetic field in the region close to the

surface.

Let us now study the combined effects of the surface and the magnetic fleld.

Figure 12.9 shows that, as the distance from the surface x increases, the director
gradually aligns with the field. The alignment does not take place abruptly
because of the elasticity of the medium. Since the field B is uniform, the

director simply twists as x increases. Thus

E" : )K 2(d$ldx)2,

according to (12.8). The total energy is the sum ofthe elastic and magnetic energies

E : E. + E.: l{Kr(d$idx)' - LXB cos'@}, (r 2.10)

where, in substituting for E,, from Eq. (12.9), we have ignored the constant term,

as it is irrelevant to the following discussion. The rate at which the director twists

can now be found by minimizing the total energy (12. l0), which leads to (see the

problem section at the end of the chapter),

tan(012) - e-'tt,

1:1XrlL,fltt2lB.

For small x-that is, very close to the surface-tan (dl2) - l, and Q: nl2,

that is, n is normal to B. But as 1 increases, tan ($12) decreases and so does {-
that is, n is approaching B, until at x * €, A : 0, and n is exactly along B. The

v'n{4: ff and

where

(12.r r)

(12.12)

Field
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length (, which represents the width of the transition region near the surface, is
called the colwence length. This depends on B, and for B : 5 kG, ( is typically
about 2p.

Very interesting effects are produced when a magnetic field is applied to a
cholesteric liquid crystal. Suppose that the field is normal to the helical axis,
i.e., the field is parallel to the plane of the cholesteric sheets. In view of the above
discussion, the field tends to align the molecules parallel to B, and thus "unwind
the helix," but this is resisted by the internal molecular forces which have produced
the helical structure in the first place. The result is a compromise; the effect of
the field is to lengthen the pitch of the helix. A quantitative treatment is carried
out by writing the total energy

(r2.13)

where @ is again measured from the direction of B. In writing the elastic energy,
the first term on the right, we have subtracted the apparent strain associated with
the free (natural) twtst,2nlZo, leaving only the real strain, dQldx - 2rlZo. The
new pitch Z is found by minimizing E and solving the resulting equation.
Although the procedure is straightfo-rward, the solution of the differential equation
is rather involved. The results are in good agreement with experiment (Fig. 12. l0).

B/8,

Fig. 12.10 The pitch Zf Zoversus the magnetic field BlB, for the cholesteric mixture of
cholestric acetate in 4, 4-dimethoxyazoxybenzine (lll) at I19"C. [After R. B. Meyer,
Appl. Phys. Lett. 14,208 (1969)l

The mathematical solution also shows another interesting result: The pitch
of the helix becomes infinite at a critical field B" : n'1K11A,X1,t2 lZo. At rhis field
the cholesteric structure disappears entirely, and the system enters a nematic
phase. Such a field-induced transition from a cholesteric to a nematic phase has
indeed been observed, and the observed field is in good agreement with theoretical
predictions.

E : +{.,(# - +| - LxB"o" d}.
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The effects of a magnetic field on a smectic phase are very slight, due to the fact
thattheinternalforcesareappreciablylargerthanthoseofthefield. Butevensuch
a substance can be reoriented by the field, if this is applied to the isotropic liquid
and the system is cooled through the critical temperature. The molecules in the
isotropic phase, being free to rotate, align in clusters parallel to the field, and then
serve as nuclei of growth for the smectic phase as the substance is cooled down.

Optical properties

The importance of the optical properties of liquid crystals has already been

emphasized, when we stated that it was the anisotropy of the index of refraction
which first led to the recognition of the mesophase as a distinct state of matter.
We shall elaborate further on these properties here, beginning with the nematic
and smectic phases. The cholesteric phase has its own peculiar optical character-
istics, which will be considered subsequently.

In a completely oriented nematic or smectic phase, the index of refraction is

anisotropic. Specifically, the system acts as auniaxialmedium, in which the index
of refraction along the director ri; is greater than the index of refraction in the normal
direction rl (the prime is used to distinguish the index of refraction from the

director). The result n'1 I n'11 is attributed to the fact that the molecules are more
easily polarized along their axes than in the perpendicular direction, as we have
mentioned previously. The anisotropy in the refractive index leads to a large,
positive birefringence, typically about 0.3, which is to be compared with the

small value 0.01 in quartz.
Dichroism is also observed in liquid crystals, i.e., the absorption of a light wave

depends on the directions of propagation and polarization of the wave. This
property has been used in manufacturing polaroid plates from liquid crystal
materials.

The turbid appearance of the nematic phase is due to the strong scattering
of the light beam from the substance. This scattering is caused by the thermal
fluctuations of the director around its equilibrium direction. The relaxation time
for these fluctuations is about l0-7s, but the actual value depends on the tempera-
ture.

We have already remarked on the great optical activity in the cholesteric phase.

Another interesting property in this phase is that the phase exhibits selective
reflection, depending on the wavelength ofthe beam and the helical pitch. Regard-
ing the substance as a periodic structure with a period equal to the pitch Zo, and
applying Bragg's law, one has

ZZssin9 : )..

For a typical value of Zo,25OO A, the reflected beam falls in the visible range. It
is this type of reflection which is responsible for the fascinating colors exhibited
by thin films of cholestrogens. The reflected beam may also be modulated by a

magnetic field which, as discussed above, lengthens the pitch and consequently
shifts the beam toward the red side of the spectrum.
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Applications
The properties of liquid crystals have been used in the development of many
physical devices, particularly those of the electro-optical variety. These devices
have not yet been put to use on a large scale, but it is hoped that they will soon.

Cholesteric substances are used for various purposes. Since the forces
responsible for the helical structure are weak, even small perturbations of
pressure, temperature, and electric or magnetic fields produce a sufficienl change in
the helical pitch to be readily detected by observing the light reflected from the
substance. Thus cholestrogens are used to measure stresses and temperatures,
as well as fields. They are also used as detectors of ultrasonic or electromagnetic
radiation (because the energy absorbed by the substance raises its temperature)
and in the manufacture of polaroid plates.

Nematic substances have been used in electro-optical display devices. When
a thin layer is placed between two electrodes, the layer appears transparent at first
because the substance is presumably oriented by the surface. If a voltage above a
certain threshold value of, say, 5 V is applied across the electrodes, the compound
suddenly turns murky white, i.e., scattering light. If one of the electrodes has a cer-
tain design on its surface, this design can be displayed optically, and modulated
electrically. The physical process responsible for the murky appearance is probably
the following: In the absence of voltage, the molecules are oriented with their axes
parallel to the surface. When voltage is applied, ionic impurities in the substance
are accelerated by the field and set into a drift motion between the electrodes.
Since the drift velocity is normal to the axes of the molecules, the impurities collide
frequently with the molecules, causing much turbulence, which is responsible for the
light scattering (usually referred to in this context as dynamic scattering).

It also seems plausible that an ac voltage applied to a turbulent nematic may
turn it into a transparent liquid, provided the frequency is high enough (the static
voltage is presumed to be removed), because an ac field tends to orient the molecules
parallel to it; and since these are free to rotate, they flip back and forth with the
field. However, the ionic impurities, being massive, cannot follow the field at high
frequency, and hence they remain stationary. This effect has indeed been observed
at a frequency of 4000 Hz with a voltage of amplitude 50 V.

Another application of liquid crystals in display devices involves the operation
of the liquid crystal in the so-called tw,isted nematic mode. The substance is

sandwiched between two transparent electrodes, with two external polarizers
placed adjacent to the electrodes, one on each side. The electrodes' surfaces are
treated such that the axes molecules at the two electrodes are rotated at 90'
relative to each other. The polarizers are also set such that their directions are 90'
relative to each other. A plane-polarized light from the first polarizer has its
polarization rotated as it passes the medium and thus passes through the second
polarizer. If a voltage is applied, the molecular axes rotate, the polarization is not
properly rotated in the medium, and little or no light passes the second polarizer.
With a segmented display, the areas over which voltage is applied appear dark on
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a light background. (lf the polarizers were set in -parallel directions, these
segments would appear bright on a dark background.)

The advantages of liquid crystal electro-optical devices are: (a) Low power
consumplion, since the device does not generate light but merely reflects it. (b)
Claritf of image under normal lighting conditions (no dimming of the'ambient
light is necessary, as in the case of a conventional television screen). (c) Many
liquid crystals are inexpensive and readily available.

12.4 POLYMERS

Polymers have molecules that are very long and chainlike, usually extending over
several thousand angstroms. Because of their great length these molecules, which
are usually organic, are referred to as macromolecules. Polymers include several
classes of materials which we encounter frequently in our daily life, such as natural
rubber, wood (which is primarily cellulose), hair, and skin. Synthetic polymers
include foam rubber, plastics, many synthetic fibres (nylon, dacron, etc.),
and adhesives, among other materials. Indeed the rapid advances in the
technology of synthetic polymers are likely to produce a major irnpact on the
materials we shall be using in the years to come. Some polymers are also
important in the functions of biological organisms, but we shall postpone dis-
cussion of these biopolymers until Chapter 13.

Because of their molecular construction, polymers exhibit some conlmon
physical properties, and in this section we shall study these properties and show
how they are related to the structure of the molecule.

M-MMMM

Fig. 12.11 (a) Arrangement of a polymer as a chain of monomers. (b) Structure of poly-
ethylene; dashed line encloses the monomer. (c) Structure of ethylene group as it enters
polyethylene. (d) Structure of free polyethylene molecule.

The structural arrangement of a single macromolecule is shown schematically
in Fig. l2.ll(a). It is composed of a repetition of building block M, called a
monomer, i.e., the molecule is a chain of monomers. The binding forces holding the
monomers together are usually covalent, or ionic, in nature, and consequently
very strong. In addition, two neighboring macromolecules are held together by
lateral weak van der Waals forces. A common polymer having a simple structure
is polyethylene, which is shown in Fig. l2.ll(b). The monomer here is the
ethylene group, CrHo, whose structure is shown in Fig. l2.ll(c). A free
ethylene molecule in the gaseous state actually has the structure shown in

HHHH
llt
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Fig. l2.l I (d), but since the carbon atom has a proclivity for the classic tetrahedral
bond, it requires only a little additional energy to break one of the carbon
double bonds and "open up" the molecule, as indicated by Fig. l2.l I (c). The group
is now ready to join with other ethylene groups to form the macromolecule of
Fig. l2.ll(b). The number of monomers in a single macromolecule is called the
degree of polymerization (DP), which is typically l0a, or even more.

Fig. 12.12 (a) The vinyl chloride group. (b) Polyvinyl chloride; dashed rectangle encloses
the monomer. (c) The styrene group. (d) Polystyrene.

If one uses a vinyl chloride group (CrH.Cl), in which one of the hydrogen
atoms in ethylene is replaced by chlorine, as shown in Fig. 12.12(a), the result is the
polyvinyl chloride polymer illustrated in Fig. 12.12(b). It is also possible for
one of the hydrogen atoms in the ethylene monomer to be replaced by a large and
complex group. [n a styrene monomer, for example, this side group is a benzene
molecule, Fig. 12.12(c), and the resulting polystyrene macromolecule is shown in
Fig. 12.12(d). The type of side group involved has an important bearing on the
mechanical properties of the polymer. In the substances mentioned so far, the back-
bone of the molecule consisted of carbon atoms, but some of these may be replaced
by other atoms, such as oxygen or sulfur; this also can influence the mechanical
properties.

If the macromolecule has short chains attached to it, replacing some side
groups, as shown in Fig. 12.13(a), we have a branched polymer. Note that the
branch is attached to the main molecule by a strong covalent bond. A branch
joining two long chains is called a cross link, and a polymer may contain a large

I

H-C H
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(b) A branched polymer.

Benzene
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Fig.12.13 (a) A short chain replaces a side group.
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number of these. The effect of these links is to produce a polymer which is
strong, but also one which tends to be brittle, as the links resist bending.

Polymeric substances are grouped according to the amount of cross-linkage
present. A thermosettreg polymer has a large number of cross links, forming what
amounts to a complex network of long chains connected by short branches. Such
material is strong'at room temperature, and retains its shape; an example of this
type is bakelite. At the same time, such material tends to be brittle, like glass, and
cannot withstand any bending. When a thermosetting polymer is heated, many
of the links are broken and the strength is reduced; this phenomenon is referred
to as degradation. The other type of polymer is thermoplastic. Here the cross-
linking is fairly limited. The material is weak and can readily be molded into
any desired shape; when heated it becomes quite plastic.

Fig. 12.14 A polymer in the liquid state.

Effects of temperature

One of the important characteristics of polymers is their sensitivity to temperature.
At high enough temperature, a polymer exists in the liquid state, in which it usually
has a thick, rubbery texture. Each molecule is folded around itself, and around
others, many times over, resulting in a very complex molecular arrangement
(Fig. 12.14), rather like the strands in a bowl of spaghetti. The molecules are
constantly twisting and wriggling, due to thermal excitation, so that each molecule
constantly changes its shape and position, but at any one instant the result is an
amorphous distribution of molecular matter. When the temperature is lowered,
changes take place in the system, and Fig. 12.15 illustrates this by plotting the

?o Tn

Fig. 12.15 Various possible states in cooling of a polymer.
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specific volume versus the temperature. The volume decreases gradually until the
melting point T. is reached, whereupon, if the cooling is accomplished slowly,
the polymer undergoes a discontinuous decrease in volume. The system is now in a
crystalline state, and further reduction of the temperature causes a further
decrease in the volume. The system is composed not of one single crystal, but of a
large number of crystallites separated from each other by regions of supercooled
liquid, as shown in Fig. 12.16.

Fig. 12.16 Fringed micell structure. [After P. J. Flory, (1953)]

This description of the polymeric crystalline state is referred to as the fringed
micell modeL Note that within each crystallite the macromolecules are aligned
parallel to each other, somewhat as in a regular crystal. Note also that a single
molecule may participate in several crystallites. However, under particularly
favorable conditions, a truly single crystal can be grown from dilute polymer
solution, such as the polyethylene shown in Fig. 12.17.

Fig. 12.17 Folded-chain structure for polyethylene.

Under most circumstances a liquid polymer does not actually crystallize at the
temperature T-, but enters a supercooled liquid state, as shown in the upper curve
of Fig. 12. 15. Here the system behaves as a highly viscous liquid. The molecules
are arranged randomly so that the structure is an amorphous one, but they
continue to move and wriggle, though to a lesser extent than in the true liquid
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state. At some yet lower temperature Tn,the system undergoes another change

to a new glassy, or vitreous, state. Here the system behaves as an amorphous solid
which is strong and brittle, much as an ordinary glass is.

In the practical uses of polymers, the values of the temperatures To and T^

with respect to room temperature T arc of vital importance. If T < Ts, the sub-

stance is in the glassy state, and is strong and brittle. On the other hand, if Ts <
T I T^, the substance, as a highly viscous liquid, is plastic and ductile. Of course,

in most applications, polymers are used in the glassy state, since only then do they
have the required mechanical strength.

The values of T^ and To depend on the nature of the molecular bonds of
the side-group molecules, and on the length and flexibility of the molecules. The

stronger the bonds, the higher are these temperatures. However, since the bonding
is due to weak forces, these temperatures are relatively low (100-200'C).
The temperatures 7. and To may be raised if side molecules with polar bonds are

introduced. By employing appropriate manufacturing techniques or varying
chemical composition, in general one can arrange it so that To and T^ fall within
a range suitable for the given application.

The reason that it is usually hard to achieve crystallization in polymers is

primarily that the length of the molecules and the complexities of the side groups
make it hard for the molecules to enter an ordered state. Thus polyethylene crystal-
lizes quite readily because of the simplicity of its structure, but the chlorine atoms
in polyvinyl chloride, being larger and more complex than hydrogen atoms,
interfere with crystallization, and have the effect of depressing the melting point,
or even preventing crystallization altogether. This applies even more forcefully
to the effect of the benzene rings on the crystallization of polystyrene. The cross-

linkage that may be present also inhibits the tendency of the molecule to go into
the ordered state demanded by crystallization. Let us look at the liquid-crystal
transition from a thermodynamic point of view. The change in free energy upon
crystallization is (see Section 12.5)

L,F: LE - TAS, (12.14)

where AE and AS are the changes in the internal energy and entropy of the system,

respectively.
Now AE is negative because each molecule, upon crystallization, is at its equili-

brium position, but its magnitude is small, since the forces involved are of the van

der Waals type. By contrast, AS is large and negative, because the entropy of the

liquid state far exceeds that of the crystalline state. To appreciate this, remember
that a macromolecule can bend at every one of its many joints, and therefore has an

enormous number of possible orientations. Since entropy increases with the number
of possible orientations (see Section 11.5), there is a great amount of entropy
associated with the liquid polymeric state. It follows therefore that the entropy
term in (12.14) usually dominates the internal-energy term, that is, AF > 0, and the

system is prevented from crystallizing.
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Mechanical properties

Polymers exhibit a diverse range of physical properties, but it is the mechanical
properties which are usually of prime interest. Mechanical properties depend on
the state of the polymer. Here we shall concentrate mostly on the supercooled and
glassy states. If a tensile stress is applied to a supercooled polymer, the
substance flows plastically, as shown in Fig. 12.18, which depicts the strain as a
function of time; the substance acts as a viscous liquid. Experiments show, however,
that the response of the system also depends more precisely on the time scale of the
applied stress, and that, if a rapidly alternating stress is applied, the supercooled
polymer shows some elasticity. This property, combining both viscosity and
elasticity, is referred to as oiscoelasticity. A polymer in the glassy state also
exhibits viscoelasticity, except that the viscoelastic strength is much larger than the
strength in the supercooled state.

Time I

Fig. 12.18 Strain e versus time / for a polymer, illustrating viscous property.

Another property is the great extensibility and flexibility of rubber. Under
tensile stress, the sample may increase to several times its original length. A
material capable of this behavior is known as an elastomer. Rubber is the best-
known example.

All these properties can be explained in terms of molecular structure. We
have seen that the molecules in a polymer are coiled in a very complicated manner
around themselves and around each other, and furthermore, above Tn, they are
wriggling about due to thermal excitation. When a tensile stress is applied, it acts
by pulling at the ends of each molecule, causing it to uncoil. This is how the
molecule, and consequently the sample, elongates. If the stress is maintained for a
long time, the molecule, after the uncoiling process is completed, begins to slide
past neighboring molecules. This sliding is an irreversible process. Once it has

occurred, the polymer never returns to its original shape. Herein lies the physical
basis for plastic flow and its attendant viscosity. Note, however, that before
sliding takes place, the uncoiling process is reversible. When the stress is removed,
each molecule coils back to its original shape. This is the basis for the elastic pro-
perty mentioned above.

Let us now delve more deeply into the uncoiling mechanism. A straightforward,
but incorrect, model suggests itself : that the folded molecules uncoil by sliding past
each other as a result of the pulling action, much as a ball of string would straighten

U)
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out if pulled at the ends. Since such sliding is irreversible, this model can account
neither for the elastic property mentioned above nor for the substantial
decrease in the Young's modulus observed as the temperature increases in the

supercooled range (To. T . T^).
The correct model is based on the fact that the uncoiling process is accomplished

by rotations of the various segments in the backbone of the polymer molecule
around the C-C bonds. The point is illustrated in Fig. 12.19, showing an ethane
molecule connected by a single C-C bond. The right side of the molecule can ro-
tate around the axis as shown, and may take up several positions, or conformations.
These conformations are not necessarily all of the same energy, but if the energy

differences involved are less than, or comparable to, kT, then all conformations
are accessible, and the molecule flips back and forth between them as a result
of the thermal excitations. The speed of the rotation increases rapidly with
temperature, as in all similar processes. In a long molecule various segments of
the molecule are incessantly rotating between available conformations, in a
random fashion. When a stress is applied, the molecules accommodate this by
rotating to those conformations which make the molecules longest without sliding
taking place. Conversely, when the stress is removed, the molecule returns through
segmental rotations to the shape with the greatest disorder, which is, more or less,

the original shape.

H

b--"{/o
H

Fig. 12.19 Possibility of rotation in ethane molecule.

The elasticity of rubber is explained in the same manner as the thermally
induced uncoiling and coiling processes. The above model suggests that there is

no energy change involved in stretching a piece of rubber. The resistance to
stretching is caused not by the increase in internal energy, but by the decrease in
entropy when the molecule uncoils. A useful analog is the case of an ideal gas,

which resists compression because of the reduction in entropy associated with the
decrease in volume, and not by an increase in energy, which remains constant
under isothermal conditions. Just as the pressure of an ideal gas is proportional
to its absolute temperature 7", so the elastic constant (Young's modulus) is also
proportional to Z The great elasticity of rubber is possible only when the side
groups are simple enough not to interfere with the segmental rotations of the
molecules.
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Electrical properties

Let us now take a look at the electrical, dielectric, and optical properties of poly-
mers. Most pure polymers exhibit very small electrical conductivity; in fact, some
of them are used for insulation purposes. The addition of impurities may
significantly increase the electrical conductivity. Many hydrophilic (water-absorb-
ing) polymers show good conduction when wet, and poor conduction when dry.
This type of conductivity seems to be associated with the ionic conductivity of
the protons. Generally speaking, hydrophobic (water-repelling) polymers are highly
resistive.

The question of electronic conductivity in polymers is an interesting one, and
some polymeric substances do, in fact, show appreciable conductivity of an
electronic nature, but we shall postpone discussion of these to Chapter 13.

Dielectric properties are investigated by the use of a static or low-frequency
electric field. Many polymers have high dielectric constants, and are sometimes
used in the manufacture of capacitors. The polarization responsible for the
dielectric property is primarily due to the polarization induced in the side groups,
and is particularly large in polar side groups, such as chlorine and hydroxyl ions.
The motion and orientation of these groups can be studied by measuring the
frequency-dependent dielectric constant, and examining both the real and imaginary
parts, as described in Section 8.9. The relaxation time is the inverse of the peak
frequency of the imaginary part. These measurements indicate that one needs to
introduce several relaxation times-not just a single one-which is expected, since
some side groups are more mobile than others, depending on their local
environments.

The optical properties of polymers are similar to those of other insulators.
Since the frequency of the impressed field is large, only the electronic contribution
to polarization is effective. Dipolar and atomic contributions cannot follow the
field (Sections 8.6 and 8.8). Thus the index of refraction r is determined primarily
by the polarization of the clouds of electrons around the ionic centers and in the
various bonds. In crystalline polymers the index of refraction is anisotropic, and
the material exhibits optical birefrigence. Even amorphous substances may exhibit
birefringence under some circumstances. For example, by stretching the
substance, one can orient the planes of benzene rings of polystyrene in a certain
direction. Since the z-electrons are more polarizable along the plane of the ring
than perpendicular to it, the index of refraction is larger in the plane of the rings
than in other directions, and the material becomes birefringent.

12.5 NUCLEAR MAGNETIC RESONANCE IN CHEMISTRY

Nuclear magnetic resonance (NMR) is one of the principal spectroscopic tools the
modern chemist uses to study molecular structure. Other spectroscopic methods
have been used-including optical, infrared, and even Raman spectroscopy-but
the development of the NMR technique since the early 1950's has provided the

t2.5
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chemist with one of the most accurate methods for determining molecular structure.
The method can also be used in chemical analysis, and in studies of rates of chemical
reaction.

We discussed the physical basis of the NMR technique in Section 9.13, in
connection with the magnetic properties of matter. We shall review it here only
briefly, with particular bias toward chemical applications. An atomic nucleus has
a magnetic dipole moment p which may be expressed as

Lt : gnLtsnl , (r2.ls)

where gun is the nuclear magneton and I the spin quantum number. The nuclear
g-factor gn is a numerical constant which varies from one nucleus to another, and
depends on the manner in which the moments of the nucleons, which make up
the nucleus, are coupled to each other. The allowed values of the spin 1 are 0,

l, l, etc. When 1 : 0, then lrn : 0, and the nucleus evinces no magnetic response

and is of no further interest to us here. When 1 > 0, the nucleus exhibits magnetic
response.

The nucleus of most interest in NMR is the proton, for which I : +. (Other
nuclei commonly present in organic compounds, made up of carbon, hydrogen,
and oxygen are Crz and 016, both of which are nonmagnetic.) This nucleus
may be visualized, semiclassically, as a rotating spherical charge with the magnetic
moment pointing along the axis of rotation. Those nuclei for which I > j cannot
be represented so simply, because in addition to their dipole moments they also
have quadrupole and even higher moments, indicating a nonspherical distribution
of nuclear charge. Since our interest lies primarily in the proton, we shall be
concerned here only with the dipole moment.

When an external field tr o is applied to the sample,t the energy of the nucleus
is split into (21 * l) sublevels, corresponding to this number of orientations of
the nuclear moments relative to the field (note that the orientation direction is
quantized, Section 8.2). For the proton, the multiplicity factor 2I + | :2, and
hence the nuclear level splits into two sublevels, as shown in Fig. 12.20. (This is
the nuclear analog of Zeeman splitting.)

The lower level corresponds to the proton moment pointing along the field,
while the upper level corresponds to the moment pointing in the opposite direction.
The energy difference between the two levels is L, E : 2y"tro. As we said in Sec-
tion 8.2, the system of nuclei is in resonance with an electromagnetic signal of
frequency v when the condition hv : A E is satisfied. That is

(12.16),:T*o,

t We follow the common convention in NMR literature and use the cgs system in this
section (and the next section also). Recall that I gauss or I oersted : 10-a Wb/m2.
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Big. 12.20 Two levels of a proton corresponding to two possible orientations in a mag-
netic field. Arrows at levels indicate orientations of the proton moment in these levels.

provided that the magnetic field of the signal is properly oriented relative to ffo,
the former being circularly polarized and normal to tro.f The resonance here
reflects the fact that when (12.16) is satisfied, a proton in the lower level may
absorb a photon from the signal in the upper level.

It is clear from (12.16) that by measuring the resonance frequency v at a certain
field, one may determine the nuclear moment ptr. Such information would be

useful to the nuclear physicist interested in measuring nuclear moments, but it is
of no use to the chemist whose interest lies in the environment outside the nucleus.
The usefulness of NMR in chemistry, as in solid-state science, is based on the
observation that the field felt by a nucleus inside the substance is not precisely
equal to the external field tro. Rather this field is modified by a smallfield due to
the environment in which the nucleus resides, and it is by measuring this additional
field that we obtain information about the environment. The nucleus acts as our
probe for investigating the internal structure through its monitoring of the
environmental field.

Before discussing actual applications, let us say a little about experirnental
procedures: First, one holds the frequency fixed and varies the field, rather than
the other way round, until resonance is achieved, because it is easier to vary the
field than the frequency. Second, because the nuclear moment is so small compared
with the electron moment (Section 9.13), the frequency v lies in the radiofrequency
(rf) range for the fields commonly used. This can be seen from (12.16), which
may be written as

v :2.739nff, (12.17)

where v is in MHz and tr in kilo-oersteds. Thus, using g, - 2.8 for a free
proton and ,ffo: l0kOersted, one finds that v 11 60 MHz, which is in the rf
range. The corresponding signal wavelength is about I meter. Spectroscopy in
this range is easier than irr the optical range because the circuit elements may be

represented accurately by lumped parameters. In determining the internal magnetic
field, one is not interested in the absolute value of this field because not only is

f If the signal is plane polarized, it may be resolved into appropriate circularly polarized
waves, in the usual fashion, and only half the signal is effective.

mI
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it difficult to measure, but also it cannot be conveniently compared with theory,
since the type of calculation involved is very complicated. One circumvents this
by measuring only the relative field shift, by dissolving the substance in a standard
liquid under standard conditions. One then compares the resonances of various
protons in this substance, or with protons of a different substance dissolved in the
same standard liquid at a different time. Several organic solvents have been used
as reference liquids. These days, tetramethylsilane (TMS) is the one most favored,
It is chemically inert, magnetically isotropic, and miscible with most organic solutes
used.

Finally, the resolution in NMR spectroscopy is extremely good, about I part
in 108. To take full advantage of this fact, the external field //o must be uniform
throughout the sample, to the same degree of accuracy, in order that all protons
see exactly the same external field.

The principal effect underlying the usefulness of the NMR technique in chemis-
try is the chemical shift. This refers to the fact that the field at the nucleus is not
ffo,but one which is modified by the chemical environment. As a result of the
presence of ffo, new electric currents are created in the electronic clouds surround-
ing the nucleus, and these produce a small field which opposes of o. That is, the
induced currents act to magnetically shield the nucleus. Let us denote this shielding
field by af,"n. Then we may write, for the actual field seen by the nucleus,

,# : *o - ff"r,: *o - offo, (12. l8)

where we have indicated that the shielding field is proportionalto lf,o, which is a
reasonable supposition, since the induced currents are created by tro itself. The
proportionality parameter o is the shielding constant.

Let us illustrate this by an example. Figure 12.21(a) shows the low-resolution
NMR spectrum for the protons in ethanol C2H5OH (structure is shown in Fig.
l2.2lb). Three absorption lines are evident. Their intensities, as measured by the
areas under the curve, are in the ratios l:2:3. The lines are associated with the
protons in the different radicals. There is one proton in the hydroxyl radical,
in the methylene (-CHr-) two equivalent protons, and in the methyl (-CHJ
three equivalent protons. This explains the above ratios, as the intensity for each
radical is proportional to the number of equivalent protons therein. Since the
observed frequency v is fixed, the field tr is the same for all lines, their
differences lying in the different values ofthe shielding fields at the various resonance
fields s€s. The shielding fields are given by

#"i: ffo - ff,

and hence the differences between the shielding fields at the various protons can
be read directly from the figure. The shielding field increases from hydroxyl to
methylene to methyl radicals. Although we cannot measure the absolute value of
Jf,"n, due to lack of knowledge of lf,, the differences between the three different
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Fig. 12.21 (a) Low-resolution NMR spectrum of protons in ethanol at 210 MHz and
9400 gauss: absorption intensity versus sweep field. Numbers in parentheses are experi-
mental figures for areas under the corresponding peaks. [After Roberts (1959)] (b) The
structure of ethanol.

Jf 
"6's 

are indeed given by the differences between the peak fields in the figure.

One now understands why the term "chemical shift" is used: The lines are shifted
from each other by the shielding effect. It has also been demonstrated experimentally
that the spacing between the lines increases in direct proportion to ffo, when
this field is varied, in accordance with the supposition made in (12. l8).

In preparing tables of the chemical shift, one does not list o, as it is far too
small. Instead one lists a parameter 6, which is defined as

HHtt
H-C-C-OH

llHH

u -(tr---zro) x lo6, (l2.le)

where.*s,, and ffs," are, respectively, the resonance fields for a selected proton
of the reference liquid and the proton of the substance under investigation which
has been dissolved in the reference liquid. Using (12.18), one may write

6:(o"-o,)106,

showing that 6 gives the relative change in the shielding field in parts per
million. In fact, the so-called r-scale is commonly used, for convenience, where
z is defined as

r:10+6.
Table l2.l lists the z-values for a few different groups of protons.
In principle, the procedure for using NMR in chemical analysis and determina-

tion of molecular structure is now clear. For use in chemical analysis, one can
prepare a chart for the proton resonance fields for all available radicals (see the
bibliography). In examining an unknown substance, you may compare your lines
with those on the chart, and from this infer which protonic environments are present

in the substance.
Here is an example of the use of charts in the determination of structurel

Before the development of NMR techniques, the structure of diborane, BrHo,
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Table 12.1
Observed Chemical Shifts of Protons in Some
Aromatic Compounds (After Paudler, 197 l)

Compound Group Chemical shift, r

609

Toluene
Cumene
Tetralin

Dibenzyl
Napthalene

-CH.
-cHad-c}{2-

fr-CHz-
-CHr-a-CH:
6-CH:

7.66
8.77
7.30
8.22
7.O5

2.27
2.63

was unresolved between the two possibilities of the "bridge" structure and the
ethane structure shown in Fig. 12.22. Since the observed spectrum indicates two
different types of protons, the latter is ruled out, and the bridge structure is the
correct one.

HHH

Fie. 12.?2 The two

HH

possible structures of diborane.

When you examine a resonance line more closely, using high-resolution
techniques, you often find that it is composed of several finely spaced lines. The
high-resolution spectrum for ethanol in Fig. 12.23 shows that the methylene and
methyl lines are composed of four and three different lines, respectively. The
total lines in the groups are still in the ratio l:2:3, as before.

o
E

rco 
"*""p

Fig. 12.23 High-resolution NMR spectrum of ethanol.
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The origin of line-splitting lies in the spin-spin interaction between the nuclei.

Let us take the example of a proton in the methyl radical. Such a proton experiences

a small magnetic field whose source is the dipole on the methylene radical (this in
addition to the chemical shift discussed earlier), because, in effect, this radical
acts as a tiny magnet. Now the field depends on the moment of the source dipole.

There are four ways in which the two moments can couple to each other, as

shown in Fig. 12.24:- Both moments are pointing upward, opposite to each other,
or both downward. (Note that there are two different ways in which the protons

may be oriented opposite each other, as shown in the figure.)

t2

., ll,,, ll
,t 12 zr

,:______tl +l--.. ll li
-'-.. 

I I
l2

Fig. l2.A Four possible arrangements of the two proton moments in methylene group.
Middle row indicates the two possibilities in which the moments cancel each other.

As time passes, the methylene radical occupies the various magnetic arrange-
ments shown in the figure, with probability ratios l:2:l (why?). Each state

has a different net dipole, and it is this which produces the field that acts on the

resonating proton in the methyl group. It is clear, therefore, that the latter proton
should split into three lines, in agreement with Fig. 12.23. The strongest line is due

to the middle state of Fig. 12.24, and since this state has a zero moment, its field is
zero and the line is actually undisplaced; the other two lines are placed symmetric-
ally around it.

The number of high-resolution lines depends on the number of states available
to the other radicals producing the field, and in turn the number of these states

depends on how many equivalent protons are in the radical. The amount of splitting
depends on the strength of the spin-spin interaction between the two radicals,
and is denoted by J. This parameter J depends strongly on the distance between

the radicals, falling rapidly with increasing distance. (Note that the spacing of the

multiplet J is independent of the field .zf o, unlike the case of the chemical shift,
which is proportional to lf,s.)

The same type of argument also shows that the line structure of the

methylene line is a quartet, in agreement with Fig. 12.23.
A detailed investigation of the many features of the NMR spectrum-

chemical shift, line splitting, intensities, etc.-can yield a wealth of information



12.6 Electron Spin Resonance in Chemistry 611

about a sLlbstance. Like any other powerful technique, the NMR method has grown
immensely in recent years, and our brief coverage has highlighted only the basic
aspects of the subject. You can find much more information in the references
listed in the bibliography appended to this chapter. Applications of NMR in
biology will be considered in Chapter 13.

12.6 ELECTRON SPIN RESONANCE IN CHEMISTRY

A perceptive reader, after the previous section on NMR, might ask whether a
similar technique using electron spin resonance might be possible. Indeed it is,
and the ESR technique is also widely used by chemists and materials scientists to
investigate the microscopic properties of materials. This technique is also used
increasingly in biological applications.

The physical basis of ESR, also called electron paramagnetic resonance (EPR),
was discussed in Section 9.12. Here we shall review the subject only briefly, with
the purpose of applying it to chemistry.

An electron in an atomic or molecular orbital has a magnetic moment p,
which may be expressed as

lL: - qPss, (r2.20)

where ps is the Bohr magneton and s the spin quantum number vector of the
electron.f The factor g is 2 for a free electron, but in a substance the g-value may
differ from this significantly because of the effects of the environment on the
atomic orbital. The spin number s may take the values 0, +, l, etc., depending on
the number of unpaired electrons and the manner in which they are coupled
(Section 9.6).

When an external magnetic field,l€s is applied to the sample, the electronic
energy level splits into (2s * l) sublevels, corresponding to this number of
orientations of the moment p relative to the direction of tr s. This can be seen
by noting that the additional energy arising from the interaction of the spin with
the field, the Zeeman energy [see Eq. (9.36)], is

Ez: -lL'ffo: - gpsffi"*o, (12.2t)

where we have used (12.20). The number ru" is the projection of s along the z-axis
and is called the magnetic quantum number. We recall from Section 5.6 that m"
may take any of the values s, s - l, ..., - s, which are (2s * l) in numbers;
substitution ofthese into (12.21) leads to (2s + l) equally spaced energy levels.

Consider the simplest possible case: a single, unpaired electron for which
s : 1. In this case the original level splits into two sublevels, corresponding
to m" : t and m": - +, as indicated in Fig. 12.22. The spacing between the
levels is

L,E:2gthffo. (12.22)

t The vector s is defined as S/ft where S is the angular momentum vector see (Section A.4).
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The ESR frequency v is given by

L E 2gprffou: h 
:- 

h '
(r2.23)

as in the NMR case. This resonance condition is due to the fact that an electron
in the lower level can absorb a photon and make a transition to the upper level,

flipping its spin in the process. Note that since pru is much larger than p", by a factor
of about 103, the frequency of the ESR is this much larger than the frequency
of the NMR. This places ESR frequencies at about I GHz-in the microwave
range. For example,if lf,o:3.4kOersted, g:2 are substituted into (12.23),

one finds v : 9.5 GHz. In practice, the frequency is held fixed, and resonance is

achieved by sweeping the field until conditi on (12.23) is satisfied. This is done for
convenience, as we stated in connection with NMR.

The ESR of a free electron is not of interest in chemistry. What is of interest
is to use ESR to study the internal structure of matter. One does this by comparing
the spectrum for an electron inside the sample with that of a free electron. The two
spectra differ in several respects. In the first place, the g-value for an electron in an

atom or molecule is generally quite different from 2, the value for a free electron.
The reason, as we recall from Section 9.6, is that g depends on the way the spin
and orbital angular momenta are coupled. But the orbital momentum is greatly

affected by the environment (often quenched almost entirely, Section 9.6), and this
fact is reflected in a different value for g. The g-value ofa resonance line therefore
gives information about the electron orbital in the molecule, and extensive tables

for g are available in the literature [see Bershon (1966)].

Another effect of the environment is to cause a splitting in the resonance
line. Let us illustrate this effect for the simplest case: the hydrogen atom.
The hydrogen electron, when placed in an externalfield,/f s, sees not only this field,
but an additional small field due to the proton, because the proton acts as a tiny
magnet which generates its own field that acts on the electron. This magnetic
electron-nuclear coupling is referred to as hyperfine interaction. When we denote

the hyperfine field by ffhf,it follows that the total field seen by the electron is

tr:tro1ffti.
Note, however, that ff0, depends on the orientation of the proton moment (the

source). Since the proton has a spin number I : i, it has two different orientations,
one parallel and the other opposite to /(o. Therefore the electron sees two
different fields

af:tro*ffnr, (t2.24)

the upper corresponding to the proton moment parallel to Jf o. Substituting
this into (12.21) for the Zeeman energy, one finds

12.6

E: Ez a Enr: - Apem"(ffo t trn). (t2.2s)
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hyperfine interaction. For the case
levels are doubly split, as shown

6Enr: gttsffu. (12.26)

In Fig. 12.25, the split levels are also labeled by the value of the proton magnetic
spin number rzr. Note that since ff o1 is usually much smaller than ff o, hyperfine
splitting is far smaller than Zeeman splitting.

Rig. 12.25 Splitting of an electron level in a magnetic field. Arrows at the levels indicate
orientations of electron moment.

There are four levels in Fig. 12.26, and there are several possibilities for
transitions between them; hence the possibility for several resonance frequencies.

Note, however, that the transition I --+ 2 corresponds to the proton flipping its
spin, the spin of the electron remaining unchanged. The process is thus one of
nuclear resonance, which we examined in Section 12.5. This process, and the
similar transition 3 --, 4, will therefore be excluded from further discussion here.

Fig. 12.26 Zeeman and hyperfine splitting in hydrogen. (The hyperfine splitting is greatly
exaggerated.) Arrows indicate orientations of electron and proton moments in the various
levels. Wavy lines indicate allowed transitions.
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We shall now show that the transitions I - 3 and 2 + 4 are forbidden by
the selection rules. To see this, recall that the photon absorbed in the transition
has a spin angular momentum of fi, and since the total angular momentum (of
electron, proton, and photon) must be conserved, it follows that the allowed ESR
processes must satisfy the relations

Lm,: + 1, Lm,: g. (12.27)

That is, rnr must be conserved. The only allowed transitions are therefore the
two that correspond to I + 4 and 2 - 3. If the external field were fixed, there
would be two resonance frequencies, but since, in practice, the field is actually
varied, one observes two different resonance fields, as shown in Fig. 12.27.

Fig. 12.27 (a) Intensity of ESR absorption in hydrogen versus sweep field. (b) Intensity
derivative.

We can see that the difference between these fields is twice the hyperfine field

[note that the difference in energy between the two transitions is twice that of
A, Eo, of (12.26)). That is,

A,tr :2ffn:, (12.28)

and we have here a method for measurinE#u as a measure of the strength of the
hyperfine interaction. The quantity which is actually measured in ESR experiments
is not the intensity itself, but its derivative; i.e., the slope of Fig.12.27(a), which is

shown in Fig. 12.27(b). The observed spectrum of hydrogen does indeed have this
shape, with a line separation of 508 oersteds. This separation is very large compared
with other observed separations, and is due to the fact that the hydrogenic electron,
being in the ls state, is piled rather heavily at the nucleus.

We have so far considered only the simplest possible case, and we now need

to look into more complicated ones. If the nuclear spin / > t, each Zeeman level
is split into more than two sublevels. Thus for I: 1, as in laN, there are three
hyperfine sublevels. Using the selection rules (12.27), we see that there are three
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resonance fields, equally spaced, with spacing eqval to 2/1 h' . Similarly, radicals
containing "As, I : ], exhibit a 4-line ESR spectrum.

A more interesting situalion obtains when the electron interacts with
more than one nucleus, as is often the case in molecules. Consider the case of the
hydrogen molecule ion, Hl', in which the electron interacts with two protons.
As a result, each Zeeman level splits into several levels; the number of levels is equal
to the number of different states that the two protons can take.

There are four such possibilities, as indicated in Fig. 12.28(a), but the two
possibilities shown in the middle are physically indistinguishable. Thus in Hj
each Zeeman level is split into three levels, the middle one being undisplaced,
since it corresponds to m, :0. Using the selection rules (12.27), we see that there
are three equally spaced lines, as shown in Fig. 12.28(b). Note, however, that the
lines have intensities in the ratios l:2:1. This can be explained by the fact that the
middle line, due to mr - 0, corresponds to the two possibilities in Fig. 12.28(a).
(Note that the line multiplicity of Fig. 12.28(b) can be distinguished from the case

of a single nucleus with 1 : I by the unequal intensities of the lines.)

*l:1

21

il m,:o

mI: - |

(a) (b)

Fig. 12.28 Hyperfine splitting of ESR line in hydrogen molecule ion Hl.

The situation is even more complicated when more than two nuclei are
involved, as for example in the methyl radical "CH., in which the electron on the
C atom is acted on by the field of the three protons of hydrogen. You can show
that there are four possibilities for the proton states, which occur in the ratios
1:3:3:1. The hyperfine spectrum for the methyl radical shown in Fig. 12.29

confirms this prediction. The line spacing here is 23 oersteds.
In the cases considered so far, all the magnetic nuclei in the molecule were

equivalent. As an example of nonequivalent nuclei, consider the methyl radical

"CH.. Note that 13C has a spin 1 : l. ln addition to feeling the field of the three
protons, the electron also feels the field due to the nucleus 13C. Since this nucleus
has two different states, each of the above levels is doubly split by it. Because

the odd electron in question is piled nearer to the carbon nucleus than to the
proton, the hyperfine splitting due to the carbon nucleus is greater than that due
to the proton, somewhat as shown in Fig. 12.30(a). The resulting spectrum
consists of eight lines, as in Fig. 12.30(b). The lines, in fact, are close enough so
that some of them overlap. The actual spectrum is shown in Fig. 12.30(c).
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Fie. 12.29 Spectrum of methyl radical r 2C3.

12.6

I/ splitting
by "c

Irlsplitting
by protons

I

(b)*\/\/w
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20 oersteds

(r) (c)

Fig. 12.30 (a) Hyperfine splitting in methyl radical 'tCH.. (b) Hypothetical spectrum
of this radical. (c) Observed spectrum of mixture of r2CH. and r3CH..
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Now let us look at the type of electron-nuclear hyperfine interactions commonly
encountered in molecules. There are two types: dipolar interaction and contact
interaction. In dipolar interaction, the electron does not appreciably overlap the
nucleus, and the interaction is a long-range magnetic dipole-dipole interaction
(as for example in the methyl radical "CH, considered above). By contrast,
contact interaction refers to the case in which electrons pile up over the nucleus
in question, as in splitting due to the 13C nucleus in the methyl radical t'CH..

The two types of interaction have different characters, which can be

differentiated experimentally. For instance, dipolar interaction is anisotropic,
depending on the distribution of the nuclei relative to the external field ffo, so
that, as the substance is rotated, the lines move about to some extent. On the
other hand, contact interaction is isotropic, since it depends only on the piling of
electron charge at the nucleus. Usually the strength of contact interaction is a

measure of the s-character of the electronic orbital. Recall from atomic physics
(Section A.5) that only s-orbitals pile the electrons appreciably at the nucleus, while
p, d, etc. orbitals show very little overlap with the nucleus.

The power of the ESR technique in studying molecular orbitals should now be
evident. By examining the spectrum-the number of Iines and their separations,
intensities, character, etc.-one can glean a great deal of information. [n fact,
the ESR technique is the most accurate and detailed method now available for
studying molecular orbitals in molecules and solids.

A new, but related, technique which is gaining recognition as a powerful,
highly accurate spectroscopic method is the double-resonance technique. This
involves both NMR and ESR processes used in tandem. For an example of one
such type of resonance, called ENDOR (electron-nuclear double resonance) look
back at Fig. 12.23. Suppose a strong microwave signal is used to causethe transition
I --+ 4 in the system. After some time interval, the populations of the two levels
are equalized,t and the ESR absorption becomes very weak. Suppose now that
an rf signal, appropriate to the induced transition 4 - 3, is applied. This causes

some of the electrons in level 4 to make transitions to level 3, an NMR process.
As a result, the population in 4 is then less than in l, and the ESR absorption rises
sharply once more. The hyperfine splitting is thus obtained as a series of rf peaks,
corresponding to differences in nuclear levels, and the resolution is often
enormously improved.

I2.7 CHE^'{ICAL APPLICATIONS OF THE NACiSSSAUTR EFFECT

The Mcissbauer effect (ME) was discovered by R. Mcissbauer while he was investi-
gating y-ray absorption in various nuclei. The discovery was announced in 1958,

and in l96l Mcissbauer received the Nobel prize for this remarkable achievement,
which has found wide applications not only in physics, but also in chemistry and
biology.

t This is the phenomenon of saturation, referred to in Section 9. 12.
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Consider a nucleus in its excited state, whose energy is E (Fig. 12.31). After
a certain time, the nucleus makes a transition to the ground state, emitting a y-ray

photon in the process. (In the terminology of nuclear physics, the nucleus is
radioactive.) The frequency of the photon is given by the Einstein relation
hv : E. If this photon impinges on another identical nucleus in its ground state,

the photon may be absorbed, resulting in the transfer of the nucleus to its excited
state. This process, which is possible only because the energy of the photon is

exactly equal to the energy of the excited state of the second nucleus, is a case of
resonant absorption. lt is analogous to the familiar resonance between two identical

tuning forks. The energy of the 7-ray photon, typically of the order of l0s eV,

is much greater than the energy of the visible photon, about 5 eV, by virtue of the

strong nuclear forces involved in the nuclear transition.

Absorber

E

Fig. 12.31 Resonance absorption.

As a matter offact, the above resonant absorption does not take place, because

when the emitting nucleus (emitter) ejects the photon, the nucleus recoils backward,

absorbing a small fraction of the energy, so that, in effect, the photon's energy is

slightly less than E. That is,

E":E-EI, 02'29)

where E" is the energy of the emitted photon and E^ the recoil energy of the emitter.

Similarly, the absorbing nucleus (the absorber) recoils forward as it absorbs the

photon, acquiring some translational kinetic energy, and consequently, if the

absorption is to take place, the photon's energy must be slightly greater than E.

That is,
E,: E + En, (12.30)

where E, is the energy of the absorbed photon. Figure 12.32 shows the positions

of E" and E, relative to the hypothetical recoil-free situation, and since E" < Eo,

the emitted photon does not appear to have enough energy to excite the second

nucleus, which explains why resonant absorption is not usually observed in

nuclear physics.
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I

I* zo-l* ro
I

Ee

Energy

Fig. 12.32 Energy shifts of emitter and absorber due to recoil motion.

The recoil energy E^ can be calculated from the law of conservation
of momentum. Applying this law to the emitter, we have

MVR + hvlc :0, ( 12.31)

where M and VR are the mass and recoil velocity of the emitter, respectively, and
hvlc is the momentum of the emitted photon. The recoil energy ER:+MV?,
which, when we substitute for V* from (12.31), yields

I hzvzD-
"R -, Mcl' (12.32)

For a typical nucleus whose mass M is 50 times the mass of the proton, one finds
E^ = 0.01 eV, which, though small, is significant because the energy levels of the
nucleus are very sharp.

The situation described thus far represents the actual state of affairs up to the
time Mcissbauer made his observations. He found, to his surprise, however, that
if the temperature of the system is lowered to the liquid helium range, a significant
amount of y-ray absorption actually does take place. The explanation, also supplied
by Mcissbauer, is that the system solidifies at such a low temperature. The nuclei
are situated inside a solid, and furthermore, the atoms in the solid are essentially
at rest. Since a nucleus or, equivalently, its atom, is strongly coupled to the
remainder of the solid (Chapter 3), it follows that the emitting nucleus does not
recoil individually, as in the gaseous state, but the solid recoils as a whole.
Consequently the mass which should now be inserted il (12.32) is the mass of the
entire solid. Since this mass is far greater than the mass of a single nucleus, the recoil
energy is negligible. The same argument, of course, applies to the solid absorber,
and we have here, in effect, a truly recoil-free situation, leading to resonant
absorption, as described in the beginning of the section.

There is yet another aspect of the ME which makes it a highly useful tool:
The absorption process can be modulated by rigidly moving either the emitter,
the absorber, or both. Thus if the emitter moves toward the observer with a velocity
u, the emitted photon undergoes a Doppler shift, according to the formula
v : vo/(l - ulc), where vo is the frequency of radiation from a stationary emitter. If
the emitter and absorber are "tuned" to begin with, the motion of the emitter causes
"detuning" and reduces the absorption. Conversely, if the emitter and absorber
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are detuned at the beginning, the motion of the emitter can be so arranged as to
bring in the desired tuning.

It can be readily shown from the above Doppler formula that if E" and Eo are

the energies of the emitter and the absorber, respectively, then the velocity of the

emitter required to establish the tuning is

Eo- E"
(12.33)

This affords the possibility of a high-accuracy velocity spectrometer, since Eo and
E" are usually known very accurately.

In solid-state physics and in chemistry, however, we are usually interested not
in velocity measurements, but in energy levels and how they change when a given

nucleus is placed in various solids. A typical usage of the ME in such situations
is as follows: The emitter solid is doped by suitable radioactive nuclei under
controlled standard conditions. The absorber is also doped by the same nuclei.
The absorber solid may differ greatly from the emitter solid, and hence the way

the energy levels of the nuclei are modified by the surrounding environment in the

two solids may also differ. By studying the absorption of 7-rays and its dependence

on the velocity of the emitter, one can study the environment in the absorber, in

effect using the nuclei as microscopic probes. The most commonly used nucleus

is s7Fe, but others of great chemical interest, such as 12eI and l1eSn, have

also been used.

Let us now consider specific applications of the Mcissbauer effect to chemistry.
These applications rest on the following properties'

i)The isomer shiJi.I The shift of the nuclear levels, both ground and excited

states, is brought about by the coulomb interaction between the active nucleus and

the orbital electrons. Of all these electrons, only the s electrons have an appreciable
effect, because only these overlap the nucleus and cause an appreciable coulomb
interaction. It can be shown (Wertheim, 1964), that the net shift, including the

energy displacements of both the ground and excited states, is

Eo

^ 
E : 4^c:.- R;") t./(o)t', (t2.34)

where R"* and Rra are the radii of the emitting nucleus in the excitedand ground

states. The quantity r/(0) is the wave function of the s electrons evaluated at the

center of the nucleus. The presence of lrl(0)|'z in (123$ is expected, since it
represents the probability of the presence of the electron at the nucleus, i.e., the

overlap of the electron with the nucleus.

t Two nuclei are isomeric if they contain the same number of protons. When a nucleus

decays into another nucleus by the emission of a y-ray, the two nuclei are isomeric, since
the number of protons is the same, because no electrical charge was emitted.
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The quantity observed in the ME is actually the difference in shifts between
the absorber and emitter. Therefore

(12.35)

where the subscripts on the wave functions refer to the absorber and the emitter.
Aside from the numerical factor, the shift consists of a product of two factors-
one purely nuclear and the other purely atomic. Once the first factor is determined
for a specific nucleus, Eq. (12.35) can be used to obtain the atomic factor under
various conditions. It is evident once more that the ME does not determine the
absolute value of l/ (0)l' itself, but only the difference between its values in the
emitter and absorber.

For example, consider iron-containing compounds, which we often encounter
in chemistry and biochemistry, since many important biological molecules
contain iron. In ionic salts, iron usually exists either as a divalent (Fe2+) or
trivalent (Fe3*) ion. Measurements of chemical shift have shown that the shift
is consistently larger in Fe3+ than in Fe2*. This is surprising, since both ions
have the same number of outer s electrons (3s2), and differ only in the number
of d electrons-Fe3+(3ds) and Fe2*(3d6)-which are not expected to produce
any shift. However, the 3s electrons spend a fraction of their time outside the 3d
shell, and during that time the nucleus is more screened (relative to the s electron)
in Fe2 * than in Fe3 *, because in Fe3 

* one more d electron has been ionized. One
may say that the 3s electrons are more tightly pulled to the nucleus in Fe3 * than in
Fe2+, and hence the larger shift. We see from this example that ME measurements
yield information about not only s electrons, but other electrons as well.

As another example, the shifts of KI and KIO3 are -0.052 and 0. l6 cm/s,
respectively. (The active nucleus is r2eI as absorber, and r2e Te as emitter.) The
interpretation of these results is as follows: In the ionic compound KI, the iodine
atom acquires an additional electron, resulting in an outer shell whose electronic
structure is 5s2p6. But in the iodate KIO., the iodine atom lies at the center of an
octahedron whose corners are occupied by O atoms. There are six I-O mutually
covalent orthogonal bonds, which we assume to be formed by the p electrons.
Thus the p electrons are pulled toward the O atoms, causing a decrease in the
screening on the s electron. That is, this causes a large shift, in agreement with
experiment. The ME in this case sheds light on the nature of the chemical bond.

ii) Quadrupole splitting. Another source of interaction of a nucleus with its
chemical environment relates to the coulomb interaction between the nucleus and
its neighboring ions (the ligands). These ions produce an electric field at the
nucleus. Since the nucleus has no electric dipole moment, the dipole interaction
vanishes. However, a nucleus is not usually spherical in shape, but ellipsoidal.
(This is so when the nuclear spin number L +; see Section 12.5.) Because of this,
the nucleus has an electrical quadrupole moment. This moment couples not to the

Ze2
A Eou, : ft; r^3_ - R3.l lr/,(0)l' - l/.(0)lrl,
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ligand field itself, but to its gradient (evaluated at the nucleus), producing a
shift in the energy level of the nucleus, which depends on the orientation of the
nucleus relative to its environment. But since a nucleus has several allowed orienta-
tions (corresponding to allowed spin orientations), there are several possible
shifts. That is, quadrupole coupling produces a splitting in the nuclear energy
level. The character and magnitude of this splitting thus gives information about
the environment.

The electric field gradient (EFG) is a tensor of 9 componenlsi V,,,Vr, V,r,
etc., where V,y -- A2V lA,A, etc., and V is the coulomb potential of the ligands.
By a suitable choice of axes, one can always reduce the number of components to
three: V",, Vrr,4", that is, the principal elements. Only two of these are indepen-
dent because they must satisfy the Laplace equation V,, + Vyy * V"": 0. The
convention is to choose the two independent parameters as V", (often denoted by
q), and the asymmetry parameter q : (V"* - Vyy)|V,". The axis of highest
symmetry is usually chosen to be the z-axis. If this axis has a 4-fold symmetry
(octahedral coordination), the asymmetry parameter 4 vanishes, and the gradient
tensor then has cylindrical symmetry. Even a lower-symmetry 3-fold axis leads to
a vanishing asymmetry parameter.

An example is the hydrated ferric chloride FeCl. '6H2O, in which it has long
been assumed that the iron ion is surrounded by an octahedral environment of
water molecules (Fig. 12.33a). But the substance exhibits appreciable splitting,
which suggests a symmetry which is lower than octahedral. Careful x-ray studies
confirmed that the actual structure is another isomer, as shown in Fig. 12.33(b).

(a) (b)

Fig. 12.33 (a) Incorrect and (b) correct structures of FeCl. . 6H2O.

iii) Magnetic hyperfine splitting. If the nuclear state has a magnetic dipole moment
(1 > 0), the hyperfine interaction between the nucleus and the magnetic field of
the orbital electrons splits the level into (21 + l) sublevels (Section 12.5). In
general, both the ground and excited states of an ME-active nucleus split, and 7-
radiation occurs between the magnetic sublevels of the excited state and those of
the ground state. We can use the splitting of the line to determine the properties
of the internal magnetic field, i.e., the hyperfine interaction. For example, in a
ferromagnetic substance splitting should decrease as the temperature rises until

Hzo
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it vanishes entirely at the Curie temperature. Thus the Curie point may be

determined from ME measurements.
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QUESTIONS

l. For the magnetic fields used, the magnetic energy is too small compared to the thermal
energy, and hence the field does not orient single molecules; yet the field does orient
the director. How do you resolve this apparent paradox?

2. Suppose that you prepare a mixture of two cholesteric liquid crystals which rotate the
polarization in opposite senses. What is the phase of the product?

3. Could expression (12.8) be valid for a cholesteric liquid crystal? If not, find a
plausible expression.

4. Show that the asymmetry parameter 4 (n a Mcissbauer effect) vanishes for a solid
which has a 3-fold axis of symmetry.

PROBLEMS

l. Read the articles by Adler (1971) and Owen (1970), and write a brief report.
2. Derive expression (12.3) for conductivity.
3. Prove that il the molecules in a nematic phase have random orientations, the order

function S vanishes.
4. Plot the intermolecular anisotropic potential in the nematic phase V ,rversus the angle

0 between the molecular axes of the two molecules involved, and point out the most
favorable orientations.

5. Derive Eq. (12.9) for the orientational magnetic energy density.
6. Derive Eq. (12.1l).
7. The molecular weight of a polyethylene molecule is 100,000. What is its length if the

length of the C-C bond is 1.54 A?
8. The monomer isoprene

HzC:C-C:CHz
II

CH, H

is the basic unit in natural rubber. Draw the complete molecular structure of rubber.
What feature of this structure allows vulcanization to take place (the formation of
sulfur cross links between adjacent chains)?

9. The difference in chemical shifts between two protons in a 60-MHz field is 700 Hz.
What would be the difference in a 100-MHz field?

10. The proton resonance of a substance dissolved in TMS occurs at - 500H2 relative to
the standard. Calculate 6 and r flor the proton.

ll. The NMR spectrum of leF U : il in olefin, C3H4F2, consists of two sets of peaks:
A doublet of doublets with coupling constants at 45 and l0 Hz, respectively.
The other set of peaks consists of a quadruplet with coupling constants of 45 and 8 Hz,
respectively.
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a) Determine the structure of this compound.
b) Predict the proton NMR spectrum for olefin'

12. The frequency-shift formula (12.33), derived in the text on the basis of the Doppler
effect, may also be obtained from the laws of conservation of energy and momentum.

Carry out this derivation.
t3. Derive Eq. (12.3a).
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What admits no doubt in my mind is
that the Creator must haue known a great
deal of waue mechanics and solid state
physics, and must haue applied them.

A. Szent-Gytirgyi, in
Introduction to a Submolecular Biology



13.I INTRODUCTION

of all the scientific disciplines, molecular biology is undergoing the most rapid
progress at the present time. Major breakthroughs are made almost every year,
bringing us ever nearer to the understanding of life itself at its most fundamental
Ievel, the atomic-molecular level.

There are two reasons why solid-state physics is relevant in the study of mole-
cular biology. These reasons prompted the inclusion of this chapter in the present
work. First, the concepts of quantum mechanics are being increasingly applied to
the study of biomolecules, and since many of these concepts have close parallels
in solid-state physics, some ofthe theoretical techniques which have proved success-
ful in solid-state physics can also be used in molecular biology. Second, accurate
experimental techniques developed principally by solid-state physicists are being
increasingly employed in the study of biomolecules and their structure. Thus
x-ray diffraction is a standard technique of the molecular biologist, and other
techniques-such as electron microscopy, ESR spectroscopy, etc.-are coming
into further use every day. Modern biology is no longer a set of dry, empirical
facts, but an exciting interplay of modern concepts of physics, chemistry, and
engineering, all of which are finding their place in the unraveling of the problems
of molecular biology. The structure of the collagen molecule, for example, was
determined primarily by the great chemist, Linus Pauling, while of the three
scientists (watson, Crick, and wilkins) responsible for the discovery of the DNA
structure, two (Wilkins and Crick), are physicists by training.

This chapter presents a modest introduction to biology in a language that should
be readily understood by the solid-state student. Though the subject matter may
not closely resemble the typical solid-state coverage of the first twelve chapters of
this book, it is based on concepts such as electron delocalization that will be well
understood and appreciated by the reader. The material presented here covers
almost the minimum background required by a student of physics who may con-
template entering the exciting field of molecular biology, or merely be
interested in following current developments in the subject.

After this introduction, we present the quantum theory of delocalized electrons
in biological molecules, particularly in benzene, in which this delocalization is
especially important. we then define several "electronic indices", and indicate
their relevance to the biological activity of the molecule. In the three remaining
sections, the knowledge gained in the first part ofthe chapter is brought to bear on
the study of nucleic acids, proteins, and miscellaneous topics, such as carcino-
genesis.

If there is one unifying theme of this chapter, it is that of electron delocaliza-
tion. Just as this profound concept is responsible for the most interesting pheno-
mena in metals, semiconductors, and other solids, it is also of critical importance
in biology. we quote from Pullman (1963, page l0): "The existence of delocalizerl
z electrons . . . is not only the essentially new property of conjugated molecules.
It is also their most important property: The principal chemical, physico-chemical,
and also, as will be seen later in detail, biochemical properties of such systems are
determined by their z electrons. The reason for this is that these electrons are much
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more mobile
chemical and

Biological Applications of Delocalization in Molecules

than the o electrons, and therefore participate more readily in
biochemical processes."

13.2 BIOLOGICAL APPLICATTONS OF DELOCALIZATION IN MOLECULES

Biomolecules, unlike typical inorganic molecules, are usually very large, often

containing several thousand atoms. In addition to carbon and hydrogen, the

primary ingredients, these macromolecules often contain other atoms, such as nitro-
gen, oxygen, or phosphorus. In such a situation, the question of electron delocali-

zation may be raised, and since this concept was an extremely important one irt

our understanding of the properties of metals and semiconductors, one may well

ask whether delocalization also plays a significant role in biochemistry. We shall

see that this is indeed the case, and the method closely parallels that previously

employed in traditional solid-state physics.
We begin the discussion with the rather simple case of the benzene molecule

(Fig. l3.l), ahexagonal ringwith six C atoms atthe corners,andan H atom at each

of the C atoms. Some of the bonds are denoted as double bonds to satisfy the quad-

rivalent character of the C atom. Some of the electrons associated with the

double bonds are not actually localized between specific atomic pairs, but revolve

around the entire ring. These electrons, known asthe n-electrons, are thus delocal-

ized, and hence are of particular interest to us here.

n--- ,zt\ .,'H-cv -cl
I llo.llt

,.-t;,<t\,
I

I

H

Fig. 13.1 The benzene molecule.

Without getting too involved in details, we state that of the four electrols
on each of the C atoms, three occupy hybridized sp orbitals, analogous to the

hybridized orbitals discussed in Section A.8. These orbitals, known as

o-orbitals, are highly localized along the lines joining the atoms. The atomic P,

orbitals, however (where y is the direction normal to the plane of the ring), overlap

with their neighboring atoms enough for the electrons occupying these orbitals

to be able to jump from one atom to the next, and eventually to rotate around the

ring, somewhat as in the case of crystalline solids. These are the zr-electrons

described above.

H

I
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To proceed further, we have to solve the appropriate Schrcidinger equation,
and as this cannot be done exaitly, an approximate procedure must be employed.
It would appear from our brief description that the tight-binding model of Section
5.8 would be particularly appropriate here, since it introduces delocalization
without a complete obliteration of localization. That is, the model occupies a

middle ground between solid-state physics and traditional chemistry. This model,
infact, is widelyused in biochemistry, in which it is known asthe Hilckle method,
after the great chemist who first used it in this context.

As in Section 5.8, the molecular orbital (MO) is taken to be a linear
combination of atomic orbitals. That is,

r : +"r" (13'l)

where the @,'s refer to the atomic P, orbitals of the various atoms in the ring,
and the summation is over the six C atoms. The c,'s are constants to be determined.
The Schrcidinger equation (SE) for a delocalized electron is

(13.2)

where V, is the atomic potential of the rth atom, and hence f Z, is the ring potential.
To obtain the energy E and the MO ,/, we follow a common approach in quantum
mechanics: We multiply Eq. (13.2) lrom the left by OT, O:, etc., respectively,
and integrate over space in each case. When one follows this procedure, one obtains
a set of homogeneous algebraic equations in the c,'s, and from the corresponding
secular equation of this set one can solve for the energy E (see Pullman, 1963,

for details). One can write the energy as

E:a+kB, (r 3.3)

where a is the free atomic energy and B the overlap integral between two neigh-
boring C atoms. [a and B are analogous to E, and 7, respectively, in Section 5.8.

Note also that both a and B are negative numbers for the same reason given there.]
The parameter k which thus specifies the energy is obtained from the secular
equation.

For the case of benzene, the roots of this equation are k :2, I (twice), - I

(twice), and -2. The first two roots lead to the energies Er: o * 2B and Er:
d + P, which, being of lower value than a, lead to bonding orbitals, as in the case

of the H, molecule (Section A.7). Two z-electrons (of opposite spins) occupy
the first level, and four the second level, which exhausts all the six available
electrons. The other energy levels lead to antibonding orbitals (why?), and are
not occupied.

By inserting the various k roots into the original equations, one can solve
for the coefficients, the c,'s, and hence determine how the electron, for each orbital,

lh2t__lz* o'* I v,),t,: n,t,,
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is distributed around the ring. Thus lc,l2 is the probability of theelectron being
at atom l, lcrl' the same for atom 2, and so forth. In the case of benzene,

lc,l' : f, as follows from the symmetry of the ring.
We shall illustrate the importance of delocalization by evaluating the energy

of the z-electrons in the localized and delocalized models, respectively. ln the
localized case, the total energy is 6a * 68, the second term arising from the fact
that there are three double bonds, each occupied by two electrons. In the
delocalized model, however, the total energy is 2(a * 2b + a@ + P):6a + 88.
Since B is negative, the ring energy is reduced by the amount 2lBl due to
delocalization. This is the factor responsible for the great stability of the benzene
molecule (and other aromatic molecules). (The decrease in energy due to delocali-
zation is known in chemistry as resonance energy.)

The tight-binding (TB) model can also be used in the treatment of substitutecl
molecules, in which one or more of the C atoms is replaced by, for example, an
N or O atom. A different a must be used for the new atom, of course, and also a

new p for bonds involving this atom, but otherwise the procedure remains
unchanged.

The TB model also yields a great deal of useful information about the
molecule, in addition to its binding energy. When these data (described below)
are available, one knows much more about the behavior of the molecule than can
be gleaned from the structural formula, which is simply a statement of the chemical
composition.

In addition to the resonance energy, one may calculate other useful energy
parameters. For instance, the ionization potential, which is the energy required
to remove an electron from the molecule, is important because the smaller the
ionization energy the greater the capacity of the molecule to lose one of its elec-
trons-in other words, to act as an electron donor.

Another parameter is electron ffinity, which is the energy needed to remove
an electron from a singly charged negative ion. The larger the affinity the greater
the capacity of the molecule to attract an electron and act as at acceptor. When
a donor and acceptor happen to be close to each other, an electron is likely to
transfer, forming a charge-transfer complex. Such a process occurs frequently in
biochemistry.

Another important quantity is the electronic charge on the various atoms in
the molecule. The electronic charge on the rth atom is (in units of e)

Q,:2LC,,U'

where the summation is over occupied MO's, and the factor 2 is due to the
double occupancy of each orbital. Experimental information about 4, for the
various atoms can be obtained, for example, by NMR techniques (Section 12.5)
because the greater the 4, the larger the chemical shift.
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Figure 13.2 shows the electronic charges in cytosine, as given by Pullman.
NMR measurements (by Jardetsky) show that the proton on the C5 atom has the
greatest chemical shift. This is in agreement with the figure.

Also important are lhe net charges on the various atoms. The net charge on
tlre rth atom is Q,: | - q,. When 0 < Q,, the atom acts as a center for
interaction between the molecule and external negative ions, and vice versa.
Good agreement between theory and experiment has been obtained in many cases.

The bond order P," for a particular bond (rs) is a measure of how close this
bond is to a pure double bond. It can be shown that P," : 2luc,.uc",n, where
r and s are the end atoms of the bond. For a pure double bond, P,": l, but
for most common molecules it is usually less than that. The various bond orders
in the molecule can be investigated spectroscopically or calorimetrically, in a
manner similar to the lattice vibrations discussed in Chapter 3, since the energies
of single and double bonds differ widely.

1.80
NH"t-

I

,.Co-
t.+a |r- 

\Cu l.l7

tl_.tl,.9"r_ 
_.c40.83o- -r.rit'4e rI

Fig. 13.2 (a) Electronic charges and (b) free valences of various atoms in cytosine. Some
of the H atoms are omitted for clarity. (After Pullman)

Finally, let us mention free ualence. If we define N,: I"P,", where the
summation is over all atoms adjacent to r, then free valence is defined as F. : J3 -
N,. [The term v5 is obtained from calculations related to the valence of carbon;
see Pullman (1963).] When F, is large, the atom tends to act as a center for
interaction of the molecule with externalfree radicals. Such entities have received
increasing attention recently, and are thought to play a dominant role in bio-
chemical processes.

Many workers, particularly the Pullmans, have applied the TB model to calcu-
late the above parameters for various molecules, and were able to explain many
biochemical phenomena. You will find a great many examples discussed in their
book.

13.3 NUCLEIC ACIDS

The nucleic acids, DNA and RNA, are of great biological importance because
they transmit the genetic code from parent to offspring. Both types of acids
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consist of very long molecules, called polynucleotides; the backbone of the mole-
cules consists of sugar (ribose for RNA and deoxyribose for DNA) and phosphate
groups. Attached to the molecule chain are side groups consisting of purine and
pyrimidine rings, which are somewhat analogous to the benzene ring, but more
complicated, and containing nitrogen atoms. As a matter of fact, the DNA
molecule consists of not only one but lu:o strands, which are entwined. They twist
into a helical structure known as the double ftelir (Watson, 1968).

The two strands in DNA are bonded together via the hydrogen bond (Section
l.l0) between the side rings on the chains. This hydrogen bond is simply a reson-
ance energy due to the additional delocalization experienced by the z-electrons
as the side rings fuse together.

Watson and Crick arrived at the double-helical structure of DNA from
their interpretation of the x-ray diffraction pattern of the substance. The x-ray
diffraction theory for helical structures can be developed in a manner analogous to
that used for regular crystalline structures (Chapter 2). Although we shall not
give details (see Dickerson, 1964). let us point out that helical structures have
characteristic patterns which are distinguished by the absence of certain
diffraction lines. The absence of these lines is taken as an indication of helical
structures. From such observations, Watson and Crick determined that the pitch
of the helix in DNA is 34 A and its diameter 20 A. The x-ray methods which
play such a critical role in solid-state physics play much the same role in
biology.f

Radiation damage

The study of radiation damage in biological materials is one of the most interesting
fields in contemporary biology. Such studies not only afford a better understanding
of biological materials, but also suggest means for protection against such damage.
The human body is constantly bombarded by many types of radiation: from
nuclear explosions, from television sets, from x-ray machines, and most of all
from the sun itself.

When the DNA or other molecule is exposed to radiation, transformations
take place, and a new set of product molecules emerges. The transformation is
due, of course, to various rearrangements of atoms and ions, taking advantage
of the energy absorbed from the incident radiation. This chemical reaction is

not a simple one-step affair, but the result of several intermediate reactions which

t In recent years, the neutron diffraction technique (Section 2.ll) has also come into
increasing use in the study of the structure of biological molecules. The advantages of the
neutron over the x-ray technique, as explained in Section 2.11, are: (a) The hydrogen
atom, which is of great biological importance, is more readily detected by the neutron
diffraction method. (b) Using the neutron diffraction method, one can distinguish
between different isotopes of the same element, e.9., hydrogen versus deuterium.
(c) Neutron radiation, having much smaller energy than x-radiation, is far less
damaging to the biological sample.
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take place in rapid succession. The initial and final substances are amenable

to classical chemical techniques, but these techniques are not useful in the identi-
fication of the intermediate compounds; it is here that solid-state methods are
especially useful.

Particularly common intermediates are free radicals-i.e., molecules containing
single, unpaired electrons. Free radicals are highly reactive, and combine quickly
with each other, producing stable molecules with paired electrons. But while a

radical is in the free state, it possesses a net spin, and is consequently amenable
to ESR analysis (Section 12.6).

Figure 13.3(a) shows the most abundant radical present in irradiated thymine-
enriched DNA samples. It is produced from thymine by the rupture of a C:C
bond and the addition of a hydrogen atom. The ESR spectrum of this radical,
shown in Fig. 13.3(b) to consist of eight well-resolved lines, can be interpreted as

follows (recall Section 12.6): A MO calculation shows that the unpaired electron
resides primarily in the neighborhood of the two C atoms where the bond was

ruptured. Thus the electron interacts most strongly with the protons in the
methylene group (CH2) and the methyl group (CH.). Considering first the inter-
action with the CHr, the ESR line should split into an equally spaced triplet. The
interaction with the CH3 then causes each of these sublines to split further into a
quartet (the CH. rotates freely)-a total of twelve lines. It appears that some of
these lines overlap, however, resulting in a diminution of the number to eight, as in
Fig. 13.3(b).

o

i[ -CHz
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Fig. 13.3 (a) Thymidine free radical (dot represents unpaired electron). (b) Derivative
ESR spectrum of DNA, irradiated and recorded at 300'K.

I3.4 PROTEINS

Proteins serve many vital functions in a living organism, and their functions vary
over a wide range. Like polynucleotides, protein molecules are very long polymeric

(b)(a)
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chains containing a large number-typically of the order of 1000-of repeat units,
giving a typical molecular weight of l0s. However, unlike polynucleotides, in which
the repeat units are nucleic acids, the repeat units in proteins are amino acids.
There are 2l different amino acids. Depending on the acids and on the order in
which they are arranged along the polymeric chain (the polypeptide), the various
kinds of protein molecules are formed.

Myoglobin and hemoglobin molecules

Let us illustrate the application of solid-state methods to proteins by discussing
the important hemoglobir molecule, which is the central character in the
respiratory process. It transports oxygen from the lungs to the brain and muscles,
and returns carbon dioxide to the lungs.

The active part of the hemoglobin molecule is the heme group, an iron-
containing compound; O, and CO, are transported by attaching themselves to the
Fe atom in this group. So the function of the hemoglobin molecule is greatly
influenced by the electronic state of the Fe atom. Becase this atom is especially
amenable to solid-state techniques, many measurements have been carried out on
hemoglobin.

The hemoglobin molecule is very long, containing 574 amino acids and 4 heme
groups. A related but simpler molecule is that of myoglobin, which has 150 amino
acids and only one heme group. (Globin stores oxygen in the muscles.) This
molecule is still far from simple, and it took Kendrew and Preutz years of pains-
taking effort to determine its structure. Their primary tool was x-ray diffraction,
but they were also aided by ESR measurements.

Figure 13.4 shows the heme group in myoglobin, which consists of a conjugated
planar molecule at whose center lies the Fe atom, surrounded by four nitrogen
atoms. The heme plane is normal to the axis of the molecule. In addition to the
four N atoms, the Fe atom is also attached to two other atoms (or groups), lying
on opposite sides of the plane. One of these is the remainder of the molecule, the
globin, and the other is normally either oxygen, carbon dioxide, or another oxygen
compound. If the oxygen compound is replaced by another unit, the function of
the molecule is altered. Sometimes this unit may be readily removed-e.g., as in
fluorine-and in other cases, such as in cyanide, the removal is almost impossible
and the function of the molecule is quenched irrevocably (poisoning).

ctouin i
Fig. 13.4 The heme group.
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To consider the ESR aspect of the molecule, we must examine the spin state

of the Fe atom. In fact, Fe exists as an ion, and there are two possible ionic states,

the ferric (Fe'*) and the ferrous (F"'*) states. Let us examine the simplest useful

application, in which the ion is ferric. The ion contains five electrons (the neutral
Fe atom has eight, but three of these have been transferred to adjacent atoms),
which must be distributed among the 3d orbitals of Fe3+. Since there are five

such orbitals, the electrons may occupy these singly, or doubly if the electrons have

opposite spins. To determine wl-rich possibility is the more stable, we refer to
Hund's rule, which states that individual spins align themselves parallel to each

other to the maximum extent allowed by the exclusiorl principle (Section 9.7).

Thus the stable state in our case occurs where the electrons occupy the d orbital
singly, with all the spins parallel to each other, giving a total spin of s : 5 x i: *
for the Fe3+ ion. (This is the so-called high-spin state.) This is encouraging
because it means that the substance is magnetically active, and may exhibit ESR

absorption.
When a magnetic field is applied to the ion, the spin angular momentum takes

up various quantized orientations corresponding to the components ffi" : - s,

- s f 1,..., J (Section 9.6),where S.: m,h istheangular-momentumcomponent
along the field. But there are two different fields that must be distinguished here:

an internal field due to the interaction of Fe3+ with its adjacent atoms (this field
is normal to the heme plane), and the externql field applied in the ESR experiment.
The general discussion from this point on depends on the relative values of these

fields (lngram, 1969; Ayscough, 1967).
In our case, the internal field is far greater, and it is the one primarily responsible

for the splitting of the magnetic level of the ion. The Fe3+ level splits into three

Zeeman sublevels, as shown in Fig. 13.5. Note that there are only three, not the

expectedsix,Zeemansublevels[2s + I :2(il + I :6] becausethelevelsz": 11
and - j are degenerate, as are ms: +, and m": + i. The reason for this
degeneracy is the following: The splitting is caused primarily by the interaction
with the atoms in the heme plane, and since the plane is symmetric relative to the

up-down directions (normal to the piane), the orientations m" : + + and - *
along the axis of the molecule are physically equivalent, and so have the same

energy. The same argument applies to the other sublevels. Note also that the

splitting between the sublevels is large because the internal field is appreciable.
Now when an external field tr is applied, each of the sublevels splits further

into a doublet (Fig. 13.5), corresponding to the two possible values of m". In
other words, the external field removes the degeneracy associated with the

internal field. We need concern ourselves only with the doublet associated with
m": i and - j, because the photons involved in the usual ESR experiments
don't have enough energy to make a transition between the widely split levels of
the internal field. Also, aJ room temperature, only the lowest doublet is occupied.
Thus in our experiment, we expect to obtain only one absorption line, correspond-
ing to the transition n, : - i to m" : ;.

13.4
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Fig. 13.5 Splitting ol magnetic level of ferric iron by internal field in heme group. Dashed
lines represent splitting of lowest magnetic sublevel (m",: I *) by the external field
(not to scale).

But even this single line carries a useful piece of information: the orientation
of the external field ,* relative to the heme plane. When ff is normal to the plane,
,ff is parallel to the internal field, and the Land6 factor (Section 9.6) for Fe3*
is gll : 2, as in the free-electron case. But when ff is parallel to the plane, the
effective value for this factor is much larger, namely gt:6. The reason for this
large g-anisotropy is that the external field in the latter case is considerably modified
by the internal field. So if one includes this complication by defining an effective g
(as if the internal field were absent), one then finds 91 :6 (Ingram, 1969).

Quantitively, one has, for the different orientations,

A, E : hv : 29rpBff | : 2Qltsff b ( r 3.4)

where A E is the energy of the absorbed photon, v is the standard frequency of the
ESR spectrometer employed, and .tr1y and 2f , are the fields at which resonance is
observed in the two different orientations. It is assumed, as is the customary prac-
tice, that resonance is achieved by holding the frequency fixed and sweeping the
magnetic field.

The obvious conclusion from this discussion is that the orientation of the
heme plane can be determined from ESR measurement. Thus if we rotate the
myoglobin molecule in a myoglobin crystal until we obtain a g-value equal to 2,

we can then be certain that the plane is normal to the field, or, equivalently, that the
myoglobin molecule is parallel to the field. Results of x-ray diffraction then
establish the orientation of the remainder of the molecule relative to this axis.
The structure of the myoglobin molecule was actually determined in this manner.

Let us now move on to the hemoglobin molecule, which contains four heme
groups. Their orientations relative to each other and to the remainder of the
molecule are naturally of particular interest. Before ESR measurements were carried
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out, it was assumed that these heme planes were probably parallel to each other.
However, ESR measurements show that this is not the case (Fig. 13.6).

The fact that there are four separate curves, rather than a single one,
demonstrates that the planes are tilted relative to each other. It is possible, from
this and other geometric considerations, to determine the angles between these

planes. These ESR results were also used to investigate the structure of the
hemoglobin molecule.

Our discussion has covered only the simplest aspect of the myoglobin and
hemoglobin molecules. Nothing has been said, for instance, about the ferrous
state, nor the effect of covalent bonding on the spin state. The effect of oxygen
or other groups on the ESR spectrum is also important. Information on these

and other related factors, can be obtained from ESR measurements; limitations
of space require us here to simply refer you to the literature for further details
(lngram, 1969; Ayscough, I966, and the references listed therein).

320 0 40 80 120 160

Angle from a axis

Fig. 13.6 Anistropy of the .4-values of the four heme groups in hemoglobin. (After
Ingram)

Many experimenters have made Mcissbauer measurements on hemoglobin
which have yielded information on some of the questions raised above.
M6ssbauer measurements sometimes give information not available from ESR
measurements, and the two techniques complement each other. By using
Mcissbauer measurements, for example, Long and Marshall were able to determine
the splitting between the levels caused by the internal magnetic field (Fig. 13.5).

For further discussion of biological applications of the Mdssbauer technique,
refer to the review by Maling and Weissblutt (Wyard, 1969), and the review by
Johnson (1971), who provides many recent references.

Data obtained from NMR measurements made in recent years on hemoglobin
and its derivatives confirm and/or complement data obtained by the other
techniques discussed above. Resonating nuclei are the protons of the hydrogen
atoms in the molecule. By comparing their chemical shifts in the heme group with
those of other protons in the polypeptide chain, one can find at least partial
explanations of the polypeptide-heme interaction, effecls of oxygen bonding and
its relation to structural changes during biochemical reactions, and many other

d axls
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phenomena. A recent brief review by
bibliography. could be a starting point
area of biophysical research.

Other electronic properties of proteins

We conclude this section on proteins by a discussion of their general
electronic properties. We note here that electronic conjugation in polypeptide chains
lies almost entirely in the peptide bonds themselves, the remainder of the molecule
consisting of saturated amino acid fragments. This bond conjugation involves
four z-electrons, two from the C:O bond and two from the lone pair of the
N atom. The n conjugation is less extensive in proteins than in nucleic acids, so
the delocalization effects are somewhat less important in proteins, and consequently
have received less attention. An exception is those few amino acids (four) which
contain aromatic molecules in their side chains. In these four amino acids,
delocalization is significant.

It was postulated many years ago by Szent-Gycirgyi that intrinsic electronic
semiconduction takes place in some proteins, and that this conduction is
responsible for the principal mode of energy transfer in these biosubstances. It
has not yet been definitely established whether or not a significant amount of energy
is in fact transported this way, but many experiments (by Eley and his associates)
on dry proteins indicate that electronic conduction does take place, and that it
has the familiar form

6:619-(Ee/2k'rl , (r 3.5)

where E, is the energy gap [see Eq. (6.36)]. The energy gaps for myoglobin and
hemoglobin are 2.97 and 2.75 eV, respectively. These values, showing that En
is close to 3 eV, indicate that electrons in these substances are not appreciably
excited at room temperature, and that these materials are consequently good
insulators. This is one of the major difficulties inherent in the Szent-Gyorgyi
postulate regarding semiconduction as a mechanism for biochemical interaction.

The reader may well ask how semiconduction and its inherent delocalization
is possible in proteins if the z-electrons are localized at the peptide bonds, as
stated above. The answer is that the adjacent peptide linkages interact with each
other via hydrogen bonds. By adopting this view, we see that the z-electrons extend
to their neighboring groups, and eventually to the whole polypeptide, leading to
the desired delocalization. Theoretical calculations along these lines (references
in Pullman, 1963) indicate the presence of energy gaps which are in reasonable
agreement with experiments. However, there are many complications involved in
the comparison between theory and experiment, demanding extreme caution. Many
of these difficulties are discussed by the Pullmans.

According to MO calculations, the aromatic amino acids are, in general,
electron donors rather than acceptors. Their capacity in this regard, however,

Proteins

Wiithrich and Schulman (1970), and its
for anyone interested in this promising
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is rather poor, except for tryptophan, whose k-value is 0.53. T'his acid tends to
form charge-transfer complexes (by losing its electron). Tryptophan's capacity
as a donor may well be responsible for its role as a coenzyme in the metabolic
process.

I3.5 MISCELLANEOUS TOPICS

Let us further illustrate the application of solid-state physics to biological problems
by a brief discussion of three important subjects. The choice of topics is somewhat
arbitrary, and is intended only to indicate the potential of these methods in
modern biology.

Enzyme studies

Enzymes are protein substances which act as catalysts for biochemical reactions.
In almost all cases the reaction is a multistage one, many of the intermediate
compounds being free radicals. The ESR technique is especially useful in identifying
these radicals, and hence in elucidating the microscopic nature of the reaction.

For example, peroxidase is an important enzyme which aids in the transfer
of oxygen from hydrogen peroxide (HrOr) to other biochemical substances. If
the biochemical substance is ascorbic acid (vitamin C), then the acid is oxydized,
and the radical shown in Fig. 13.7(a) is expected. This is verified by ESR measure-
ment (Fig. 13.7b), and, as anticipated, the level is doubly split by only one of the
protons at the B carbon.

-tI
1.7 gauss

(b)(a)

Fig. 13.7 (a) Free radical of oxidized ascorbic acid. (b) ESR spectrum of radical in part
(a). (After Piette, et al.\

Given the importance of enzyme functions and the power of the ESR technique,
this method promises to be a most useful biological tool.
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Photosyntlesis

Plants synthesize sugar from carbon dioxide and water, with chlorophyl acting as a
catalyst. Here again the process is multistage, and free radicals appear as inter-
mediates. The process is also activated by light from the sun.

Green algae Chlorella pyrenoidso produce free-radical ESR signals upon illum-
ination. The signal is absent when a mutant lacking chlorophyl is used, or after
cessation of the illumination. The signal also increases with the concentration of
chlorophyl.

Carcinogenic activity

Several proposals have been made to account for the carcinogenic (cancer-prod-
ing) activity of certain molecules in terms of their electronic structure. Although
this complex problem has not yet been clarified to the point at which one of these
proposals is definitely favored over the others, we shall describe briefly the most
promising of these proposals, due to the Pullmans (1963). They postulated that
carcinogenesis takes place through the interaction of highly reactive aromatic
molecules with cellular material in the following manner: The carcinogenic
aromatic molecule has certain highly reactive centers around its periphery. once
a cellular molecule comes in contact with such a center, the z-electrons of the car-
cinogenic molecule spread out throughout the system, thus binding the cellular
material to the aromatic hydrocarbon.

To determine the centers of reactivity around the aromatic molecule, one intro-
duces the concept of localization energy, which is the energy required to take one
(or more) electrons out of the pool of z-electrons, and localize it at a particular
C atom (or substituent) or a bond. If this energy is small, then such localization is
readily achieved, and the particular atom or bond is suitable for strong reactivity
with other reagents-nucleophilic, electrophilic, or free radicals. The localization
energy can be calculated using the Hiickle theory. The details can be found in
Pullman (1963).

More specifically, the Pullmans developed the following criterion for a
carcinogenic molecule. If it has two regions K and L (Fig. 13.8a), the localization
energy for the K region must be smaller than 3.31lBl, and that of region L greater
than 5.66 l0l , 0beine the overlap integral of Section 13.2. consider, for instance,
the anthracene molecule (Fig. 13.8b). The localization energy indices shown do
not favor carcinogenesis according to the Pullman criterion, but as further rings
are added, these indices change. Figure 13.8(c) shows that the particular molecule
(1,2,5,6-dibenzanthracene) does satisfy the criterion of localization energies.
Experiments confirm the carcinogenic activity of this molecule.

Another postulate for the carcinogenic mechanism involves transfer of an
electron from the highest occupied level of the protein to an empty level in the
associated hydrocarbon. In this case, one expects the donor and acceptor to exhibit
ESR signals, because of the unpairing of the remaining electrons. Such signals
have been observed in some carcinogenic reactions, indicating the formation of
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rffiW^
Fig. 13.8 (a) The Pullmans' criterion for carcinogenesis. (b) Localization energies in
anthracene. (c) Localization energies in 1,2,5,6-dibenzanthracene.

charge-transfercomplexes, but no definite correlation has been established between

all carcinogenic activities and the appearance of ESR signals. The situation is far
from clear, and represents a major challenge to the modern biochemist.
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A.T BASIC CONCEPTS

Einstein assumed that electromagnetic radiation is composed of photons. The
energy and momentum of each photon are given, respectively, by

Heisenberg established the fact that the uncertainties in the position and
momentum of a particle-that is, Ax and Ap-satisfy the relation

where y and A are the frequency and wavelength of the radiation, h : hl2n, and
k :2nlA, the wave vector of the wave. Equation (A.la) is known asthe Einstein
relation-

DeBroglie assumed that Eqs. (A.l) apply also to particles. That is,

E: hv:ha (a), ,:?:1: oo (b),

t:h or k:+ (b)ph

inlv(r,r) : l- # v'z + v)Y(r, r),

ot : Elh (a),

LrLp-h.

A similar relation obtains also for time and energy,

Lt L,E = h,

where Ar is usually identified with the lifetime of the particle.

A.2 THE SCHRODINGER EQUATION

The deBroglie wave satisfies the Schrcjdinger equation (SE)

(A.l)

(A.2)

(A.3)

(A.4)

(A 5)

where Y is the wave function of the particle and V its potential energy. lY(r,t)12 d3r
gives the probability of finding the particle in the volume element d3r atlhe instant
r. The function must satisfy the normalization condition

I lYl2 d3r : l, (A.6)

the integration being over all space.
If I/ is time-independent, the function Y may be factorized as

Y : ry'(r) e-i(Eth)t,

and the space-dependent part ry'(r), satisfies

l- * v, + vl r(r) : Et,G),

&4

(A.7)



A.4 The Angular Momentum

also known as the Schr6dinger equation. Solving this equation subject to the
appropriate boundary conditions yields the allowed energies and their correspond-
ing wave functions.

A.3 ONE-DIMENSIONAL EXAMPLES

Energies and wave functions of free particles are given by

h2 k2
E : 

2* 
(a)' Ir*: Aeik' (b), (A 8)

(A.e)

(A.10)

(A.rl)

where,4 is a constant; k is the wave vector of the plane wave.
A particle in a box, of length L, has energies and wave functions as in (A.8),

except that the vector k is quantized as

which follows from the periodic boundary conditions (see Section 3.2). Thus

t : n2], n :0,+ l, + 2, etc..
L

E.:*(?|* (a), (,": #"i(2rtL\nx (b).

Generalization to a three-dimensional box is straightforward
The energies of a harmonic oscillator are given by

E,: (n + ilha, n:0,1,2,e|c.,

where o is the classical natural frequency of the oscillator.

A.4 THE ANGULAR MOMENTUM

The magnitude of the orbital angular momentum is quantized according to the

formula
(A.12)

where /: 0, 1,2, etc. The states0, l,2,etc., are referred to as s, p, d, etc., states.

The z-component of the angular momentum is also quantized according to

Lr: fllth, (A.13)

where mr: - l, - I + l, ...,1 - l, or /.
The spin angular momentum is also quantized as in Eqs. (A.12) and (A.13),

except that the only allowed value for s is s: 1.
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A.5 THE HYDROGEN ATOM; MULTIELECTRON ATOMS;
PERIODIC TABLE OF THE ELEMENTS

When the coulomb potential is substituted in the Schrcidinger equation, and this
is solved, the allowed energies are found to be

-hz 1E": t{^i (A.14)

where r, a positive integer, is known as the principal quantum numberl
ao :  "nhzeolmez lhe first Bohr radius. The allowed orbital angular momentum
number for each n is I : O, l, 2, . . . , n - l, and for each / the allowed values of rz,

are all the integers between - / and /, inclusive. An electron can make the
transition between two energy levels by the absorption or emission of a photon,
provided that

A,E: hot, (A.15)

where AE is the difference in energy between the levels. This equation is known as

the Bohr frequency .formula.
The wave function for any state has the form

r!,6,(r,0, dl : R,,(r)Y,^,(O, $\. (A.16)

where r, 0, and $ are spherical polar coordinates. The radial function R,, is an
oscillating function whose peaks determine the various atomic shells (Bohr
orbits), and Y,^,, a so-called spherical harmonic, describes the rotation of the
electron around the proton.

In multielectron atoms, the various electrons occupy the allowed states,
beginning with the lowest energies, in accordance with the Pauli exclusion principle:
A quantum state can accommodate at most two electrons of opposite spins. Each

atomic shell-that is, a given value of n-can accommodate at most 2n2 electrons.
The outermost occupied shell, the oalence shell, determines the chemical

properties of the atom. If the valence shell is partially full, the atom is reactive.
A completely full valence shell leads to an inert atom, e.g., helium.

Within each shell, the various subshells-i.e., various /'s-have different
energies due to the manner in which the corresponding electrons are distributed
relative to the nucleus. In particular, the s subshell (/: 0) has the lowest energy
because its electron has an appreciable probability of being very close to the
nucleus.

Several important series of elements have significant magnetic properties
related to their atomic characteristics. The first transition series, the row from
Sc to Ni (Z :21 to 28), has the outer 4s subshell occupied before the inner 3d

subshell, due to the effect described above. (The periodic table of the elements is
given inside the front cover.) The second transition series, extending from Y to Pd,



Perturbation Theory

is also similar due to the filling of the 5s before the 4d subshell. The rare-earth
elements, or lanthanides, which extend from La to Lv (Z:57 to 7l), are also
similar, in that the outer 6s subshell is filled before the 4f.

A.6 PERTURBATION THEORY

Atoms are usually studied in the laboratory by applying external fields and
observing their effects on the atomic properties. Both magnetic and electric fields
alter the atomic spectrum (which may be observed by spectroscopic techniques),
and from this one may gain information about the structure of the atom.

In the presence of the applied field, the potential becomes

V:Vot)+V'(r),

where Izo(r) is the atomic potential and V'(r) is the potential due to the field. In
principle, one has to solve the SE again using the new potential, with the field
included. Unfortunately, one can do this exactly in only a few special cases.

However, if the field is weak, and hence the additional potential Z'(r) small, one
may develop a satisfactory approximate procedure for calculating the energies and
wave functions. The procedure is tantamount to a Taylor-series expansion in
powers of the field. One can evaluate the energies and wave functions to the desired
accuracy by including sufficiently high powers in the expansion.

The details of this method, known as perturbation theory, may be found in
books on quantum mechanics. The results are

and

E,- E',o'+ (nlv'1n) -l'l9.*y#
m um Dn

VmlV,ln)lz
,lr, = ,lr!,o'

(A.r7)

(A.18)

Here E[o) and rltlo) are the energy and wave function for an arbitrary level n in
the absence of the field-i.e., the unperturbed energy and wave function-while
E, and r!,arethe corresponding quantities in the presence of the field. The pointed
brackets have the following meanings:f

t The integral (mlv'ln) is referred to as the matrix element of the potential Z'
between the states $lot and rlrf).

(n lv' I n> = l,Lf'. 
v',1,!,o) d' r,

(mlV'l n> = t,tf,t.v't!,o\d'r.
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The summations in (A.17) and (A.18) are over all quantum states other than the
rth one, which is the one under investigation. (The exclusion of the term m : n
frorn the sum is signified by the prime over the summation sign.) Both the energy
and wave function are given to the second order in V'.

The Zeeman effect

As an application of these results, let us consider the effect of a magnetic field on
the spectrum of a hydrogen atom. To find the perturbation potential V'(r), we
note. that, by virtue of its rotation, the electron has a magnetic moment

(el2m)L, where L is the angular momentum. When an external field is
applied, the dipole is coupled to it, and the potential energy is

V, : _ lL.B,

where Bi,s the field (see Section 9.2). Assuming that the field is in,the z-direction,
we h,ave

V':-pt,B:l (A.1e)

which is.the perturbation potential we are seeking. This potential produces a shift
in the energy given to the first order by

(r) "'

(nlv'lrr: #(nlL,ln), (A.20)

accordi,ng to (A.17). The shift is therefore proportional to the average value of
the z-component of the angular momentum (recall the meaning of the angular
bracket).

Let us apply this result to hydrogen. For the ground state, the ls state, the
angular rnonrertum is zero. Thus (ls ll,l ls) : 0, and there is no magnetic effect
on that state, as shown in Fig. A.l. There is similarly no effect on the 2s state.

2s_

/ri;''.,/',./
,/r,r'//./'

Fig. A.1 The Zeeman effect- The s levels are unaffected by the magnetic field, while
a p level splits into three sublevels.
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The situation is different, however, for the 2p state. This corresponds to /: l,
and hence (2p lL,l2p) cantake the values - h,0, or fi, corresponding to the three
possible orientations of L relative to the z-axis (which is the direction of the field)
(Section A.4). Thus rhe 2p level splits into three equidistant magnetic sublevels,
with a spacing

eBOU: *h:!sB, (A.21)

as shown in the figure. The quantity 4" : ehl2nt, known as the Bohr magneton,
has the value 9.27 x 10-24 amp.m2.

In general, a subshell of angular momentum l splits into (21 * l) equidistant
levels, with a unit spacing given by (A.21). This splitting, engendered by the
magnetic field, is known as the Zeeman efiect. The effect is studied by observing
the splitting of the various spectral lines as the field is turned on. For instance,
the line due to the 2p - ls transition is split into three lines because of the triple
splitting of the 2p level. The Zeeman effect can thus be employed to determine
the angular momentum of the various atomic states.

Crystal-field splitting

When an atom is placed inside a crystal, the wave functions (or atomic orbitals)
of the atom are altered, because the neighboring ions exert an electric field on the
atomic electrons, which results in the distortion of the orbitals and splitting of the
energy levels. This electric field is known as the crystal field. Its effect can be
treated by perturbation theory, provided the field is not too large.

Fig. A.2 Crystal-field splitting. (a) Charge distribution of the p,, py, and, p, orbitals.
(b) Splitting of the orbitals' energies.

(b)
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The crystal field depends on the number and geometrical arrangement of the

neighboring ions. The most common coordination numbers are 2, 4, 6 (and 8),

corresponding, respectively, to a linear, tetrahedral, octahedral (and square anti-
prismatic) arrangement of the surrounding ions. By observing the splitting, one

may determine the symmetry of the environment, which is equivalent to knowing
the coordinalion number. We illustrate this by examining the effects on a p orbital.

Suppose that the arrangement is linear, as shown in Fig. A.2(a), with two
positive ions along the z-axis. The three p orbitals are shown: p,, py, and p,.

Note that the p, orbital deposits its electron primarily in the dumbbell-shaped
distribution along the z-axis, where it is strongly attracted by the positive ions.

Therefore the p, orbital is lowered in energy relative to the other two orbitals
which lie along the x- and /-axes. Consequently the three orbitals, which were

of equal energies, now acquire different energies, and the level is split, as shown

in Fig. A.2(b). This crystol-field splitting is particularly significant in magnetic

and optical properties of transition and rare-earth ions (Section 9.6), and also in
electron paramagnetic resonance techniques (Section 9.12).

A.7 THE HYDROGEN MOLECULE AND THE COVALENT BOND

When two hydrogen atoms are placed close together, they attract each other, and

combine to form a hydrogen molecule, Hr, which is stable. The two atoms are

held together by the two electrons present in the molecule, and we speak of the

hydrogen bond. The orbitals of the electrons in this bond are distributed in a

special fashion around the atoms. This double-electron bond, called a coualent

bond, is present in other molecules as well.
Consider first the case of the hydrogen molecule ion, Hj. As an ionized H2

molecule, it has only one electron, which moves in the field of the two protons
(Fig. A.3a). We wish now to find the energies and wave functions for this
molecule, particularly for the ground state. The potential energy is

V: (4.22)
4ne6a 4neor, 4reor2

where the first term is due to the repulsion between the protons, and the last two
are due to the attraction of the electron by the two protons. This potential is

substituted into the SE, and the resulting differential equation is then solved.

Although this problem can be solved analytically, the details are tedious and we

prefer a simple approximate procedure.
When the electron is close to either proton, it behaves as a hydrogenic ls

atomic orbital. It is therefore reasonable to expect the molecular orbital for Hl
to be a linear combination of the two ls orbitals centered at the two protons.

There are two possibilities,

e2e2e2

0": *, * rlt, (A.23)
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H-z' r+
Proton u Proton

(c)

Fig. A.3 (a) The hydrogen molecule ion. (b) The wave function * ". 
(") The wave function

,1., 

".

and 0,: t, - ,1,r, (A.24)

where ry', and rlt2 represent the ls states centered at the two protons, respectively,
and the subscripts e and o signify even and odd combinations. Symmetry
considerations preclude any other linear combinations, since the distribution of
electron charge must be symmetric with respect to the two protons, and only these

combinations satisfy this requirement (why?). The molecular orbitals rtt. and r!"
are sketched in Fig. A.3.

The charge distributions for these orbitals are given as lttl 
"12 

and lr!,12 (Fig. A.a).
It can be seen that ry', deposits the electron primarily in the region between the

A

Fig. A.4 (a) Charge distribution in profile
,l/". (b\ Charge distribution for ry',.

(b)

and contour representations for the function

(a)

(b)

Electron
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protons, while ry', deposits the electron around the protons individually, and away
from the intermediate region.

The two molecular orbitals have different energies, as illustrated in Fig. A.5,
which shows the energies as a function of the internuclear distance. The even orbital,
usually denoted orls, has a lower energy than the odd orbital, o,ls. Thus the
electron favors the even orbital. Furthermore, the even orbital has a negative
energy (the zero energy reference is that of a hydrogen atom-in its ground state-
and a proton infinitely distant from each other). Thus is it a bonding orbital
leading to a stable state. At the equilibrium situation, corresponding to the
minimum energy, the internuclear separation is a = 2q, - 1.06 A, and the
bonding energy is - 2.65 eV. The odd orbital is antibonding (unstable), and
has an energy of 10.2 eV at the equilibrium distance.

-2.65 eY

Fig. A.5 Energies of ground and excited states for hydrogen molecule ion versus inter-
nuclear distance (ao : 0.53 A, the Bohr radius).

Recapitulating, we note that the Hf molecule is a stable one. The repulsion
between the protons is more than compensated for by the attraction between the
electron and the protons. By adjusting its orbital properly, the electron is able
to hold the protons together (like a glue!). This is what might be called a single-
electron bond.

The above concepts can be readily adapted to the hydrogen molecule,
which has two electrons. Both can occupy the bonding orbital orls, provided that
their spins are opposite to each other. Ofcourse, the two electrons repel each other
to some extent, and some adjustment for this must be made in the orbital. The
energy of the H, molecule is shown in Fig. ,4.6 as a function of the internuclear
distance.

The equilibrium separation is 0.74 A, and the binding energy 4.48 eV (relative
to two infinitely distant hydrogen atoms in their ground states). Since both elec-

a: 1.06 A
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Fig. A.6 Energies of ground and excited states for hydrogen molecule versus internuclear
distance.

trons are in the orls state, the electrons are deposited between the nuclei, and
hence are equally shared by the two protons. The concept of electon sharing in
the covalent bonds is stressed repeatedly in the literature.

A.8 DIRECTED BONDS

Carbon is an important chemical element. Both in molecules and solids, carbon
forms tetrahedral bonds with its nearest neighbors. The carbon atom is positioned

at the center of a tetrahedron, at whose four corners the neighboring atoms are

located. The crystal structure in diamond, for instance, is such that each carbon
atom is surrounded tetrahedrally by four other carbon atoms (Fig. A.7). Tetra-
hedral coordination occurs also in other elements of the fourth column in the
periodic table, such as Si and Ge, as well as in many semiconducting compounds
such as GaAs and InSb.

To explain the tetrahedral arrangement in diamond, we note that each C atom
has four electrons in the second shell. Since there are four bonds joining the
central atom to its neighbors, one may think of each bond as being covalent. Its
two electrons are contributed, one by the central atom and the other by a neigh-
boring atom. In this manner, each C atom surrounds itself by eight valence elec-

trons, which is a stable structure in that the second shell of C is now completely
full.

Although this reasoning is sound, it does not explain why the arrangement
should be a regular tetrahedron, with the angle between the bonds I l0'. To
understand this, we must look more closely at the spatial distribution of the orbitals
of the valence electrons. An isolated C atom has four valence electrons: two 2s

electrons and two 2p electrons, the s electrons being slightly lower in energy. The
s states are spherically symmetric, and the p states represent charge distributions

crls orls tl

icntsl2 ll
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Fig. A.7 The diamond structure and the tetrahedral bond.

lying along two of the three Cartesian axes. These states do not explain the observed
spatial distribution of charge in diamond, in which the charges are distributed
along the tetrahedral bonds. However, the situation can easily be remedied. We
imagine that one of the 2s electrons is excited to one of the 2p states, resulting in
a ls2p3 configuration. This excitation is possible because the energy difference
between the 2s and 2p orbitals is rather small. We now form the linear
combinations

0r: lG + p* + p, * p,)

tz:I@+p"+py-p,)
ts:lG*P,-Py-P,)
Vo:iG-P"-py-p,)

If one plots the densities ltrl',lrl,rl', etc., corresponding to these new orbitals,
one finds that they are indeed distributed along the tetrahedral directions of
Fig. A.7. This shows that these new orbitals give a better representation of the
electrons' states than the old s, p*, py, and p, orbitals.

By occupying the new orbitals, electrons of neighboring atoms can have a
maximum degree of overlap, which is the primary rule for chemical stability. Even
though some energy is required to excite a 2s electron to a 2p state, this is more
than compensated for by the reduction in the energy of interaction with the
adjacent atom. (We also see from this example that the lowest-energy electron
configuration in a molecule may be different from the lowest-energy configuration
in an isolated atom.)

The mixing of the s and p states in (A.25) is referred to as hybridization. The
particular one operating in diamond is known as sp3 hybridization. We see that,

A.8

(4.25)
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by forming different types of hybrids, one can arrive at many different kinds of
directional bonds.

The sp3 hybridization occurs also in Si and Ge. In Si, one 3s and three 3p
states combine to form the four tetrahedral bonds, while in Ge the sp3 hybridiza-
tion involves one 4s and three 4p electrons.
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Absorption,infrared,l2lff,292ff Augmented-plane-wave(APW)method,
optical, 165,403 2lO

Absorption coefficient, 122, 125,294,298 Avalanche breakdown, 326
Absorption ed,ge,293 Axes, crystal, 7ff
Acceleration theorem, 225 Azbel-Kaner resonance, 242

Acceptors, 267

ionization energy,267 Band gap, 178, 182

Acoustic iunplifier, 120, 3M table,259
Acoustic branch, 98 Band overlap, 212,215
Acoustoelectric effect, 3M Band structure, conductor, 21 1

Activation energy, 539 insulator, 211

table, 541 semiconductor, 212
Adiabatic demagnetization, 478 semimetal, 212
Alkali halides, dielectric constant, l2lff ,405 Band theory, of solids, l79ff

index of refraction,401 Barium titanate,4l3
infrared absorption, 125 Basis vectors, 4
ionic conductivity, 563 bcc lattice, l0
lattice structure, 16, l7 BCS theory of superconductivity, 496, 512
table of properties, 127 Bloch, function, 180

Alkali metals, band structure, 2l I equations, 468
Alloys, 542ff T'/'law, 486

rules for, 543 theorem. 180
Alnico,463 wall,459
Amorphous semiconductors, 578ff waves, 180

Amorphous solids, structure, 20 Bohr frequency formula, 646
Anharmonic interaction, 109, 400 Bohr magneton, 427,649
Anistropy energy, 459 effective,437
Antibonding ofiital, 652 Bohr radius, impurities, 267
Antiferromagnetism, 450 Boltzmann distribution, 153,261

table,453 Boltzmann factor,11
Anti-Stokes line, 115 Bonding orbitals, 630,652
APW method, 207 Bond(s), 24ff
Atomic coordinates, 17 covalent, 25,652
Atomic scattering factor, 40 directed, 653
Atomic size effect, 543 hybridized,,654
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ionic, 24
metallic, 27

sp3, 654
tetrahedral, 19, 26, 653
van der Waals, 29

Boundary conditions, 7 1, 189

Bragg reflection, 35
Bragg's law, 35

Bravais lattices. 4
table, 8

Brillouin scattering, I l4
Brillouin zone, 48, 94, 185

bcc lattice, 185

fcc lattice, 185

rectangular lattice, 48
square lattice, 185

Brownian motion, 542
Bubbles, magnetic,462

Carrier concentration, 260ff
extrinsic, 270
intrinsic,263

Carrier lifetime,272
Carrier mobilities, 273

table,273
Cell, unit,5

primitive, 6

Wigner-Seitz, 205

Cellular method, 205
Cesium chloride structure, l7
Chemical shift,607
Clausius-Mosotti relation, 38 I
Closure domains, 460
Coercive force, 461

Cohen-Fritzsche-Ovshinsky (CFO) model, 584
Coherence length, superconductor, 506

liquid crystal, 594
Cohesive energy,23
Collector, 336

Colfision time, 143, 236
dependence on temperature, 148

origin of, 146

table, 145

Conduction band,257
Conduction electrons, 139

Conduction electron ferromagnetism, 454ff
Conduction electron susceptibility, 441

Conductivity, electrical, l42ff , 235ff
high frequency, 165

ionic, 563
table, 145

Conductivity, thermal, 107, 157

tables, 109, 159

Contact potential, 321

Continuity equation, 308

Cooling, adiabatic demagnetization, 478
Cooper pairs, 512
Coordinates, atomic, 17

Coordination number, 53 I
Copper, Fermi surface, 217
Coupled modes, 128,486
Covalent bond, 25, 652
Critical field, superconductor, 501

liquid crystal, 594
thin film,519

Critical points, 502

Critical temperature (superconductors), 496
table, 499

Crystal field interaction, 440
Crystal field splitting, 649
Crystal momentum, conservation in collision,

lr2,293
electron, l8l, 213

phonon, 87, 112

Crystal orbitals, 179

Crystal planes, l3
Crystal potential, 183

Crystal systems, 7ff
Crystallinity, 2ff
Cubic lattices, 9, 10

Cubic symmetry, 9, 104, 283
Curie, constant, 408, 445

temperature, 408,445
rable,445

Curie-Weiss law , 408, 445
Cyclotron frequency, 160, 239, 286
Cyclotron resonance, 160, 238

copper,243
germanium, 286
metals, 238
semiconductors, 285
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Damping, metals, 165 electron gas, 165

De Broglie relation,644 poles, 124

De Broglie wavelength, 59,644 zeroes, 127, 167

Debye, approximation, 80ff Dielectric loss, 389, 393

equations, 392 Dielectric polarization, 273,376ff
frequency, 82 Dielectric relaxation, 390
model, lattice heat capacity, 80ff Dielectric response, electron gas, l64ff
radius, 83 Dielectric susceptibility, 376
sphere, 83 Diffraction, electron, 60
T3 law, 85 neutron, 59
temperature, 83 X-ray, 5lff
temperature, table, 84 Diffraction conditions, 51

unit, 388 Diffused scattering, 113

Defects, equilibrium number, 531 Diffusion, atoms, 533ff
Frenkel,530 liquid,542
Schottky, 530 semiconductors, 306ff
vacancy, 529,530ff self,536

Delocalized states, 179, 181 vacancies, 539
Demagnetization factor, 457 Diffusion coefficient, 307,533
Density of modes, copper, 106 table, 541

one dimension,72, 105 Diffusion current, 307

three dimensions, 73, 105 Diffusion length, 309

Density of states, divalent metals, 215 Dipolar polarizability, 382, 384ff
electrons, 213ff Dipolar relaxation, 389

monovalent metals, 215 power dissipation, 393

transition metals, 216 time constant, 394

Depletion layer, junction, 332 Dipole moment, electric,372
Gunn diode, 242 magnetic, 424ff

Depolarization, factors, 420 Direct gap, 395

field, 378 Direct lattice, 49

Diamagnetism, 430 Direct optical transition, 395

atom, 43 lff Directed bonds, 653
conduction electrons, 443 Dislocation, 555ff
superconductor,500 edge,555

Diamond, phase transition under pressure, screw, 555, 557

ZtZ slip, 558ff
structure, 19 Disorder, compositional, 579

Diatomic lattice, waves in, 96ff positional, 579
Dielectric breakdown, 422 Dispersion, defined, 70
Dielectric constant, 123, l@tt,376ff ,403tf Dispersion relation, acoustic wave, 69

complex, l64,39lff,403tt electron,Z22
measurement, 374 Kramers, Kronig, 404
relative, 374 magnon, 484
table,72'7,399 phonon, 90, 98

Dielectric function (see also Dielectric Distribution function, Fermi-Dirac, 153

constant) Maxwell-Boltzmann, 153,261
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Divalent metals, 212, 215
DNA,632
Domain, field,342
Domain walls, 459
Domains, ferroelectric, 4 I 4

ferromagnetic, 457ff
Donors, 265

ionization energy,266
table,267

Double helix, 633
Drift mobility, 27 3, 277
Drift transistor, 356
Drift velocity, 143

Drude-Lorentz model (see Free electron
model)

Dulong-Petit law,76

Easy magnetization direction, 459
Edge dislocation, 555
Effective charge, 122, 256
Effective mass, 143, 195. 203. 227ft

measurement, l6l
physical origin,232
table, 145

Einstein, model, 76ff
relation,308
temperature, 79

Elastic constants, 70
Elastic waves, 68
Electric field, local, 377ff

Lorentz, 380
Electrical conductivity, I 42ff

table, 145

Electrical resistivity (see Electrical
conductivity)

Electron/atom ratio, 554
Electron diffraction, 60
Electron-electron interaction, 141, 184
Electron gas, 140

dielectric response, 164

paramagnetism, 441

specific heat (heat capacity), 151

Electron-hole interaction (exciton), 296
Electron-hole recombination, 301
Electron paramagnetic resonance (EPR),

464ff,6t1ff

Electron scattering, by impurities, 149

by phonons, 150

Electron spin resonance (ESR), 464ff ,6llff
contact interaction, 617
dipolar interaction, 6 l7
hyperfine interaction, 6 I 2

Electronic polarizability, 282, 400
Eltipsoidal energy surface, 284, 285, 286,3 l7
Energy bands, calculation methods, 205ff

definition, 178, l8l
GaAs. 282
Li, 178

Si and Ge, 284ff
sodium, 183

symmetry, l84ff.
Emitter, 336
Empty-lattice model, 190

Energy gap, definition, 178, 182
semiconductors, table, 259
superconducting, 503, 5 14

superconductors, table, 5 15

Entropy, mixing, 547

EPR (see Electron paralxagnetic resonance)
Epitaxial growth, 364
Equilibrium diagram, 543
Esaki diode, 38

ESR (see Electron paramagnetic resonance)
Eutectic composition, 553
Exchange, constant, 448

energy, 448
force, 448ff
interaction, 448 ff

Exciton absorption, 296
Excitons, 296
Exclusion principle, 25, l5l, 442
Extended zone scheme, 191,227
Extinction coefficient, 122, 165
Extremal orbits, 243

Extrinsic region,270

Faraday rotation, 480
devices, 482

fcc lattice, Brillouin zone, 185

Fermi-Dirac distribution function, I 53
Fermi energy, metals, 152

table. 145



Fermi hole, 141

Fermi level, 263

Fermi surface, 154, 156,216tf
construction, 219

copper,2lT
Fermi speed, 154

Fermi temperature, 154

Ferrimagnetism, 453
Ferrites, 453
Ferroelectric compounds, table, 410
Ferroelectric domains, 414
Ferroelectric transition, 408

Ferromagnetic crystals, table, 445
Ferromagnetic domains, 457

Ferromagnetic resonance (FMR), 479, 48O

Ferromagnetism, 444ff
anisotropy energy,459
exchange interaction, 448

molecular field theory, 446

Fick's law, 307, 533, 536
Field domains, 342
Field-effect transistor, 253

First Brillouin zone (see Brillouin zone)
Fluorescence, 303

Flux quantization, 525
Fluxoid, 521

FMR (ferromagnetic resonance), 179, 180

Formation energy,531
table,532

Fourier analysis, crystal potential, 193

Free carrier absorption, 297

Free electron model, l40ff
Free energy, 545

metallic alloy, 546ff
polymers,60l

Free radicals, 632,634
Free valence, 632
Frenkel defect, 530
Frequency gap,98,125
Fringed micell model, 600
Fundamental absorption, 292ff
Fundamental edge (see Absorption edge)

g-factor, 438

Gallium arsenide, band structure, 282
Geometric structure factor, 42
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Germanium, band structure, 285
phonon branches, 101

Glass, transition temperature, 601

Grain boundary, 530, 531

Group, point, l1
space, I I

Group velocity , electron,222
lattice waves, 93

Growth spiral, 562
Gunn effect, 288ff, 340ff

concentration, length product, 345

field domain, 342

frequency, 341

LSA mode, 345

negative differential conductance, 289

rable,344
Gyromagnetic ratio, 426, 460

Hall constant (coefficient), 162
positive, 163,241
table, 163

two carrier types,247
Hall effect, 16l, 240, 280
Hall field, 162
Hall mobility, 282

Hamiltonian, 200
Hard direction, 459

Hard superconductors, 520
Hardening, impurity, 561

work,561
Harmonic approximation, 89
hcp structure, 19

Heat conduction (see Thermal conductivity)
Hexagonal close-packed, 19
High field conduction, 287
High field domain,242
Harrison construction, 219
Heat capacity (specific heat), electrons, l5lff

Debye model, 80ff
Einstein model, T6ff
lattice,75ff
magnons,486
superconductors, 503

Hemoglobin molecule, 635
Hexagonal lattice, 9

Hole, 233ff
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Hopping conductiom, 582
Hot electrons, 287

Hume-Rothery ruIes,543
Huckle method, 630
Hund's rules, 39
Hybridization, 654
Hydrogen,

bond, 29
molecule, 652
molecule ion, 650
phase transition, 212

Hydrogen sulfide, dielectric constant, 652
Hyperfine interaction, 6 12

Hysteresis, 461

Imperfections (see Defects)
Impurity states, 265ff
Index of refraction (refractive index), 399
Indices, Miller, l3
Indirect gap,295
Indirect optical transitions, 295
Inelastic scattering, neutrons, I 14

photons, I 14

X-rays, 112

Inert-gas crystals, bonding, 29
Infrared absorption, lattice, 125
Infrared detectors, 357

Infrared lattice vibrations, 99
Infrared reflectivity, 124
Injection efficiency, 329
Insulator, band structure, Integrated circuits,

36rff
Interatomic potential, 23

Interrnediate state, 5 1 8

Interstitial impurity diffusion, 542
Interstitials, 529
Intervalley transfer, 29 I
Intrinsic carrier concentration, 263
Intrinsic region, 269
Inversion symmetry, l0
Ion implantation, 364

Ionic bond, 24
Ionic conductivity, 563

Ionic crystals, parameters, 127
Ionic polarization, 398

Ionization energies, table, 267
Isomer shift, 620

Isotope effect, superconductivity, 5 15

Itinerant rnodel, 455

Jellium model, 142
Josephson etrect,5l7
Jumping frcquency, polarization, 398

diftusion,540
Junction, p-n, 32off , 330ff

contact potential, 321, 332
forward biased, 323
I-V characteristics of, 325
reverse biaxd,324

KDP group,4l0
Kondo effect, 150

Kramers-Kronig relation, 4M

Land6 splitting factor, 438
Langevin, diamagnetism, 431

function,386
Larmor frequency, 427
Laser, 346ff

materials, table, 351
heterojunction, 350
junction, 346ff
spin-flip, 352

Latent image, 566
Lattice, definition, 3

Bravais, 4
Lattice constant, table, 18

Lattice scattering, 42ff
Lattice specific heat, 75ff
Lattice thermal conductivity, 87ff

table, 109

Lattice vibrations, 68ff
Debye model, 80
density of modes, lM
Einstein model, 76

Lattice waves, 87ff
Laue, equations, 46

method, 56
LEED,6I
Lever formula, 545
Lifetime, excess carriers, 301, 308

Light-emitting diodes (LED), 360

Line defects, 530
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Liquid crystals, 587ff Magneton, Bofu, 427,649
cholesteric, 588 effective,437
nematic,588 nuclear,475
order function, 589 Magnetostatic energy, 457ff
smectic, 588 Magnetostriction, 461

Liquid, structure factor, 54 Magnons, 485
Liquids, scattering, 53 dispersion relation, 484
Liquidus line, 543 magnetic moment,485
Lithium, energy band, 178 thermal excitation, 486
Local field, 377ff Majority carriers, 311,32'7
Localized states, 581 Maser, 473
London equation, 509 Matthiessen's rule, 149

London penetration depth, 510 Maxwell-Boltzmann distribution (see

table, 510 Boltzmann distribution)
Longitudinal relaxation time,469 Mean free path, electron, 145
Long-range order,2l electron, table, 145
LO phonons, 102 phonon, 108

Lorentz, local field, 379 phonon, table, 109
relation, 379 Mean free time, electron (see Collision time)

Lorenz number, table, 159 Meissner effect, 500
Loss tangent, 421 Melting, alloy, 551
LSA mode, 345 and free energy, 548
Luminescence, 302 Metal-insulator transition, 245
Lyddane-Sachs-Teller (LST) relation, 127 Metallic solutions, 542ff

Metals, l38ff
Macromolecules,597,629 heat capacity, l5l
Macroscopic electric field, 379 optical properties, l63ff
Madelung constant, 32 reflectivity, 166
Magnetic bubbles, 462 refractive index, 165
Magnetic dipole moment,424ff thermal conductivity, 157

nuclear, 475 Microwave devices, 357
orbital, 425 Microwave ultrasonics, 117
spin, 426 Miller indices, 13
total, 438 Minority carriers, 311,327

Magnetic domains, 457ff Mobility, defined,Zl3
Magnetic energy,451ff tables,273
Magnetic materials, table, 463 Mobility gap, 582
Magnetic relaxation, 168ff Modulation spectroscopy,406
Magnetic saturation, 445 Molecular field,446

table,445 Molecular field theory, 446ff
Magnetic susceptibility,429 Momentum, crystal (see crystal momentum)

tables, 430, 433 Momentum space (q and k spaces), 94ff,
Magnetite,453 184tr
Magnetization,429 Monoclinic system, 9

saturation, 446 MOS transistor, 356
spontaneous, 144 Miissbauer effect, 6l7ff

Magnetocrystalline anisotropy, 459 Motional narrowing, 478



Moft transition, 245

Mott-Gumey model, 566
Muffin-tin potential, 208
Myoglobin molecule, 635

n-type semiconductor, 27 I
Nearly-free-electron (NFE) model, l9l
N6el temperatve,452

table, 453
Negative differential conductance (and

resistance),289
Negative mass, 196, 2U,229
Neutron diffraction, 59
Neutron scattering, by phonons, 114
NFE model, 191

Nickel, ferromagnetic state, 456
NMR (see Nuclear magnetic resonance)
Normal modes, 90
np prodttct,2ll
Nuclear magnetic resonance (NMR), 475ff,

604ff
Nuclear magneton, 475
Nuclear moments. 475

table,476
Nuclear-spin cooling, 478
Nucleic acids, 632

Ohm's law, 142

Optical absorption, ionic crystals, 125

Optical branch, 98

Optical properties, ionic crystals, 125,389
metals, l63ff

Order, long-ran ge, 21, 579
short-range, 2l , 579

Orientational polarizability (see Dipolar
polarizability)

Orthogonality, wave functions, 209
Orthorhombic system,9
Oscillator strength, 402
Overlap, bands, 212, 215
Overlap integral,202
Overlap repulsion, 25

Ovshinsky's effect (switching), 585

p-type semiconductor, 271
Packing ratio, 3l
Pair distribution function, 23

Paramagnetic resonance (see Electron
paramagnetic resonance)

Paramagnetic susceptibility, 435
table, 430

Paramagnetism, electron gas, 443
iron-group, 440
magnetic atoms, 433ff
rare-earth ions, 439

Pauli exclusion principle, 25, l5l , 442
Penetration depth, 510
Periodic boundary conditions, 71, 189

Periodic potential, 179

Periodic table, inside cover
Periodic zone scheme, l9l
Permeability, magnetic, 429
Permanent magnets, table, 463
Perovskites, 410
Perturbation theory, l92ft, 647
Phase diagram, 543
Phase transition, alloys, 540,554

fenoelectric, 408
liquid-solid, 548
magnetic,444
superconducting, 504

Phase velocity, lattice waves, 93
Phonon(s), defined, 86

acoustic,98
LA,IO2
LO, 102

optical,98
TA, 102

TO, 102

Phonon mean free path, 108

table, 109

Phonon momentum, 87
Phonon-photon interaction, 128
Phonon scattering mechanisms, l09ff
Phonon scattering, normal process, 1 1 I

Umklapp process, 111

Phosphorescence, 303

Photoconductivity, 300
Photographic process, 564ff
Photon scattering, by phonons, I 12ff, I 15ff
Pi (z) electrons, 628, 630
Piezoelectricity, 406
Plasma frequency, 166

Plasma oscillation mode, 167



Plasma reflection edge, 166

Plastic deformation, 557
P-njunctions, 320ff

rectification property, 326
Point defects, 528
Polar (dipolar) molecules, 381, 288

moments, table, 389
Polar semiconductors, 256
Polariton, 128

Polarizability, dipolar (orientational), 384
electronic, 400ff
ionic, 398

Polarization, 373
Polarization catastrophe, 4 I 0
Polyethylene, 597 , 600
Polymers, branched, 598

crystals, 600
glass transition temperatures, 601

Polymer structures, fringed micelle, 600
glassy, 601

Polymorphic transformation, 546
Polymorphism, 546
Polypeptide chain, 635

Population inversion, laser, 348, 349
maser,474

Powder method, 57

Primitive cell, 6
Pseudofunction, 210
Pseudopotenti al, 140, 210
Pseudopotential method, 208ff

q-space, 94

Quadrupole moment,621
Quadrupole splitting, 621

Quantum harmonic oscillator, 76
Quantum mechanics, 6zl4ff
Quenching, orbital angular momentum, 441

point defects, 632

Radiation detectors, 357

Radiation damage, 568, 633
penetration depth, 569

Radiative recombination, 360
Radioactive tracers, 535
Raman scattering, 114, I 16

Random walk problem, 537
Rare-earth ions, paramagnetism, 439
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Rayleigh scattering, I l5
Reciprocal lattice, 46ff

bcc lattice, 47
fcc lattice, 47
one-dimensi on al lattice, 47
sc lattice,4T
two dimensions, 47

Reciprocal lattice vectors, 47
Recombination, 301
Recombination time, 301
Rectification, 326
Reduced zone scheme, 191

Reflection coefficient, 122, 165
Reflectivity, ionic crystals, 124

metals, 66
Refractive index (see a/so Index of

refraction)
anisotropy, 595

Relaxation, magnetic, 468ff
Relaxation time, dielectric, 389

table,394
electronic, 44
Debye, 390,394
longitudinal, 469
transverse, 470

Repeated zone scheme, 191

Residual resistivity, 149
Resistivity, electrical, (see also Electrical

conductivity)
ideal, 149

residual, 149

Resonance, cyclotron, 160, 240, 278, 285
electron spin, (see Electron spin

resonance)
ferromagnetic, 179, 180
nuclear, (see Nuclear magnetic resonance)

Resonance energy, 631
Reststrahlen, 125

Richardson-Dushman relation, 168

Rotating crystal method, 55
Rotation axis, I I

n-fold, I I
Rubber elasticity, 603

Saturation, 472
Saturation cunent, 326
S aturati on magnetization, 446
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Scattering cross section, 149

Scattering factor, atomic, 40ff
crystal, 42ff

Scattering length, 38
Scattering vector, 39
Schottky defect, 530
Schrodinger equation, 179, 18l, 630, 644,

645
Screw dislocation, 555-57
Selection rules, for optical transition,293
Self-diffusion, 536
Semiconductor statistics, 269
Semiconductors, amorphous, 578ff

band structure, 257
crystalline, 254ff
IV group, 254
homopolar, 256
polar (heteropolar), 256
rable,259
III-V group, 255

Semimetal,2l2
Short-range order, 2 I
Silicon, band structure, 284
Size effects, 1 l0
Skin depth, 165

Slip, 558ff
Sodium, electrical conductivity, 147

Fermi surface, 217
wave functions, 206

Sodium chloride structure, l6
Solid state counters, 361

Solidus line, 543

Space charge region, 332
Space group, I I
Specific heat (see also Heat capacity)

electronic, 151ff
lattice, 75ff
superconductors, 503

Spectroscopic splitting factor, (see g-factor)
Spin-flip Raman laser, 352
Spin-lattice relaxation time, 469
Spin-orbit interaction, 438
Spin resonance (see Electron spin resonance)
Spin-spin interaction, 6 l0
Spin-spin relaxation time, 470
Spin waves, 483ff
Spinel structure,453

Spontaneous magnetization, 444
Spontaneous polarization, 408
Square lattice, 185

Brillouin zones, 186

Stimulated emission, 347
Stokes line, l5
Structure factor, geometrical, 42

lattice, 43ff
Substitutional alloys, 542
Substitutional impurities, 528
Superconducting magnets, 496
Superconducting solids, tables, 499, 502
Superconducting state, 504
Superconducting transition, 496
Superconductivity, BCS theory, 496, 5llff
Superconductor, energy gap, 503, 515

intermediate state, 5 18

mixed state,519
tunneling, 576ff
two-fluid model, 506
type I, 520
type II, 520

Surface energy, superconductor, 5 19

Surface waves, 120

Susceptibility, electric, 376
magnetic,429

Switching, 585
Symmetry, inversion, l0

rotational, I 1

translational, 2

in k-space, 184ff
in q-space, 94ff

TB model,98
Temperature, Curie, 408, 445

Debye, 83
Einstein, 79
Fermi, 154

Ndel, 452
Tetragonal structure, 9
Tetrahedral bond, 19, 26,653
Thermal conductivity, electronic, l57ff

electronic, table, 159

lattice, 107ff
lattice, table, 109

Thermionic emission, 167

Threshold field, 289



Tighrbinding (TB) model, 198

Transistor, field effect, 253
junction, 335ff
MOS,3s6

Transition metal ions, table,473
Transition series, 646
Transition temperature, antifenomagnetic,

452,453
ferroelectric, 408
fenomagnetic, 444
superconducting, 496

Translational symmetry, 2

Transverse relaxation time, 470

Triclinic structure, 9
Trigonal structure, 9
Tunnel diode, 338

Tunneling, Josephson, 5 l7
superconductors, 516

Two-band model, 220
Two-fluid model, 506
Type I superconductor, 520

Type II superconductor, 520

Ultrasonic waves, I 17

Ultraviolet transmission, metals, 166

Umklapp process, 111

Unit cell, 5

Vacancies, 529,530tf
diftusion,539
formation energy, 531

Van der Waals attraction, 29

Van Leeuven theorem, 443

Varactor, 357
Vector potential, 525
Voids,570
Vortex, superconductivity, 521

Index

Wall, domain,459
Waves, lattice, 87ff
Weiss, constant, 446

field,446
theory,446

Wigner-Seitz cell, 205

Wigner-Seitz cellular method, 205

Work function, 167

table, 169

Xerography, 586

X-ray, absorption, 35

atomic scattering factor, 40ff
Bragg's law, 35

crystal structure determination, 55

diffraction, 5lff
emission,34
soft,24l
structure factor, 43ff

YIG.487

Zeeman, effect, 428, 648

energy, 435

splitting, 428,648
Zenner breakdown. 326
Zero-point energy,77
Zero-point motion, 77

Zero resistance, 496

Zinc sulphide structure, 19

Zincblende structure, 19

Zone boundaries, 194, 217
Zone scheme, extended, 19l

periodic, 191

reduced, 191
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