
1 Lecture 3: Operators in Quantum Mechanics

1.1 Basic notions of operator algebra.

In the previous lectures we have met operators:

x̂ and p̂ = −ih̄∇

they are called “fundamental operators”.
Many operators are constructed from x̂ and p̂; for example the Hamiltonian for a single particle:

Ĥ =
p̂2

2m
+ V̂ (x̂)

where p̂2/2m is the K.E. operator and V̂ is the P.E. operator. This example shows that we can
add operators to get a new operator. So one may ask what other algebraic operations one can
carry out with operators?
The product of two operators is defined by operating with them on a function.
Let the operators be Â and B̂, and let us operate on a function f(x) (one-dimensional for
simplicity of notation). Then the expression

ÂB̂f(x)

is a new function. We can therefore say, by the definition of operators, that ÂB̂ is an operator
which we can denote by Ĉ:

Ĉ is the product of operators Â and B̂.

The meaning of ÂB̂f(x) should be that B̂ is first operating on f(x), giving a new function,
and then Â is operating on that new function.

Example: Â = x̂ and B̂ = p̂ = −ih̄d/dx, then we have

ÂB̂f(x) = x̂p̂f(x)

We can of course also construct another new operator:

p̂x̂

Then, by definition of the operator product,

p̂x̂f(x)

means that x̂ is first operating on f(x) and then p̂ is operating on the function x̂f(x).
Compare the results of operating with the products p̂x̂ and x̂p̂ on f(x):

(x̂p̂− p̂x̂)f(x) = −ih̄

(

x
df(x)

dx
−

d

dx
(xf(x))

)

and hence by the product rule of differentiation:

(x̂p̂− p̂x̂)f(x) = ih̄f(x)
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and since this must hold for any differentiable function f(x), we can write this as an operator

equation:
x̂p̂− p̂x̂ = ih̄

Thus we have shown that the operator product of x̂ and p̂ is non-commuting.

Because combinations of operators of the form

ÂB̂ − B̂Â

do frequently arise in QM calculations, it is customary to use a short-hand notation:

[Â, B̂] ≡ ÂB̂ − B̂Â

and this is called the commutator of Â and B̂ (in that order!).
If [Â, B̂] 6= 0, then one says that Â and B̂ do not commute,
if [Â, B̂] = 0, then Â and B̂ are said to commute with each other.
An operator equation of the form of

[Â, B̂] = something

is called a commutation relation.
[x̂, p̂] = ih̄

is the fundamental commutation relation.

1.2 Eigenfunctions and eigenvalues of operators.

We have repeatedly said that an operator is defined to be a mathematical symbol that applied
to a function gives a new function.

Thus if we have a function f(x) and an operator Â, then

Âf(x)

is a some new function, say φ(x).
Exceptionally the function f(x) may be such that φ(x) is proportional to f(x); then we

have
Âf(x) = af(x)

where a is some constant of proportionality. In this case f(x) is called an eigenfunction of Â
and a the corresponding eigenvalue.

Example: Consider the function f(x, t) = ei(kx−ωt).
This represents a wave travelling in x direction.
Operate on f(x) with the momentum operator:

p̂f(x) = −ih̄
d

dx
f(x) = (−ih̄)(ik)ei(kx−ωt)

= h̄kf(x)

and since by the de Broglie relation h̄k is the momentum p of the particle, we have

p̂f(x) = pf(x)

Note that this explains the choice of sign in the definition of the momentum operator!
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1.3 Linear operators.

An operator Â is said to be linear if

Â(cf(x)) = cÂf(x)

and

Â(f(x) + g(x)) = Âf(x) + Âg(x)

where f(x) and g(x) are any two appropriate functions and c is a complex constant.
Examples: the operators x̂, p̂ and Ĥ are all linear operators. This can be checked by explicit
calculation (Exercise!).

1.4 Hermitian operators.

The operator Â† is called the hermitian conjugate of Â if
∫

(

Â†ψ
)∗
ψdx =

∫

ψ∗Âψdx

Note: another name for “hermitian conjugate” is “adjoint”.

The operator Â is called hermitian if
∫

(

Âψ
)∗
ψ dx =

∫

ψ∗Âψ dx

Examples:

(i) the operator x̂ is hermitian. Indeed:
∫

(x̂ψ)∗ ψ dx =
∫

(xψ)∗ ψ dx =
∫

ψ∗ xψ dx =
∫

ψ∗ x̂ψ dx

(ii) the operator p̂ = −ih̄d/dx is hermitian:

∫

(p̂ψ)∗ ψ dx =
∫

(

−ih̄
dψ

dx

)∗

ψ dx

= ih̄
∫

(

dψ

dx

)∗

ψ dx

and after integration by parts, and recognizing that the wfn tends to zero as x → ∞, we get
on the right-hand side

−ih̄
∫

ψ∗dψ

dx
dx =

∫

ψ∗p̂ψ dx

(iii) the K.E. operator T̂ = p̂2/2m is hermitian:

∫

(

T̂ψ
)∗
ψ dx =

1

2m

∫

(

p̂2ψ
)∗
ψ dx

=
1

2m

∫

(p̂ψ)∗ p̂ψ dx

=
1

2m

∫

ψ∗p̂2ψ dx

=
∫

ψ∗T̂ψ dx
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(iv) the Hamiltonian is hermitian:
Ĥ = T̂ + V̂ (x̂)

here V̂ is a hermitian operator by virtue of being a function of the hermitian operator x̂, and
since T̂ has been shown to be hermitian, so Ĥ is also hermitian.

Theorem: The eigenvalues of hermitian operators are real.
Proof: Let ψ be an eigenfunction of Â with eigenvalue a:

Âψ = aψ

then we have ∫

(

Âψ
)∗
ψ dx =

∫

(aψ)∗ ψ dx = a∗
∫

ψ∗ψ dx

and by hermiticity of Â we also have

∫

(

Âψ
)∗
ψ dx =

∫

ψ∗Âψ dx = a
∫

ψ∗ψ dx

hence
(a∗ − a)

∫

ψ∗ψ dx = 0

and since
∫

ψ∗ψ dx 6= 0, we get
a∗ − a = 0

The converse theorem also holds: an operator is hermitian if its eigenvalues are real.
The proof is left as an exercise.

Note: by virtue of the above theorems one can define a hermitian operator as an operator with
all real eigenvalues.

Corollary: The eigenvalues of the Hamiltonian are real.
In fact, since by definition the Hamiltonian has the dimension of energy, therefore the eigen-
values of the Hamiltonian are the energies of the system described by the wave function.

1.5 Expectation values.

Consider a system of particles with wave function ψ(x)
(x can be understood to stand for all degrees of freedom of the system; so, if we have a system
of two particles then x should represent
{x1, y1, z1; x2, y2, z2}).

The expectation value of an operator Â that operates on ψ is defined by

〈Â〉 ≡
∫

ψ∗ Âψ dx

If ψ is an eigenfunction of Â with eigenvalue a, then, assuming the wave function to be
normalized, we have

〈Â〉 = a
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Now consider the rate of change of the expectation value of Â:

d〈Â〉

dt
=

∫

∂

∂t

(

ψ∗ Â ψ
)

dx

=
∫

{

∂ψ∗

∂t
Âψ + ψ∗∂Â

∂t
ψ + ψ∗Â

∂ψ

∂t

}

dx

=

〈

∂Â

∂t

〉

+
i

h̄

∫

{(

Ĥψ
)∗
Âψ − ψ∗ÂĤψ

}

dx

where we have used the Schrödinger equation

ih̄
∂ψ

∂t
= Ĥψ

Now by hermiticity of Ĥ we get on the r.h.s.:

i

h̄

∫

{

ψ∗ĤÂψ − ψ∗ÂĤψ
}

dx

=
i

h̄

∫

ψ∗
(

ĤÂ− ÂĤ
)

ψ dx

hence
d〈Â〉

dt
=

〈

∂Â

∂t

〉

+
i

h̄
〈[Ĥ, Â]〉

Of particular interest in applications are linear hermitian operators that do not explicitly depend
on time, i.e. such that

∂Â/∂t = 0

For this class of operators we get the following equation of motion:

ih̄
d〈Â〉

dt
= 〈[Â, Ĥ]〉

Here the expectation values are taken with arbitrary square integrable functions. Therefore we
can re-write this equation as an operator equation:

ih̄
dÂ

dt
= [Â, Ĥ]

If in particular Â is an observable that commutes with Ĥ, i.e. if [Â, Ĥ] = 0, then

dÂ

dt
= 0

i.e. Â is a conserved observable.

We can also prove the following theorem:
if two operators Â and B̂ commute, then they have common eigenfunctions.
Proof: Let ψ be an eigenfunction of Â with eigenvalue a:

Âψ = aψ
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operating on both sides with B̂ we get

B̂(Âψ) = aB̂ψ

on the l.h.s. we can write B̂Âψ, and then since by assumption Â and B̂ commute, we get

ÂB̂ψ = aB̂ψ

thus B̂ψ is an eigenfunction of Â with the same eigenvalue as ψ; therefore B̂ψ can differ from
ψ only by a constant factor, i.e. we must have

B̂ψ = bψ

i.e. ψ is also an eigenfunction of B̂.

The converse theorem is also true but not as useful; I shall therefore omit the proof.

1.6 Angular momentum.

Often operators can be constructed by taking the corresponding dynamical variable of classical
mechanics, which is expressed in terms of coordinates and momenta, and replacing x by x̂, p
by p̂ etc. That was in fact the way we have constructed the Hamiltonian.

Now we apply this prescription to angular momentum.
In classical mechanics one defines the angular momentum by

~L = ~r × ~p

We get the angular momentum operator by replacing the vector ~r by the vector operator
r̂ = (x̂, ŷ, ẑ) and the momentum vector by the momentum vector operator

p̂ = −ih̄∇ = −ih̄(∂x, ∂y, ∂z)

where ∂x = ∂/∂x etc.

The complete fundamental commutation relations of the coordinate and momentum operators
are

[x̂, p̂x] = [ŷ, p̂y] = [ẑ, p̂z] = ih̄

and
[x̂, p̂y] = [x̂, p̂z] = . . . = [ẑ, p̂y] = 0

It will be convenient to use the following notation:
x̂1 = x̂, x̂2 = ŷ, x̂3 = ẑ

and
p̂1 = p̂x, p̂2 = p̂y, p̂3 = p̂z

we can then summarize the fundamental commutation relations by

[x̂i, p̂j] = ih̄δij

where δij is the Kronecker symbol:

δij =

{

1 if i = j
0 if i 6= j
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We can now find the commutation relations for the components of the angular momentum
operator. To do this it is convenient to get at first the commutation relations with x̂i, then
with p̂i, and finally the commutation relations for the components of the angular momentum
operator.

Thus consider the commutator [x̂, L̂x]: we have L̂x = ŷp̂z − ẑp̂y, and hence by the fundamental
commutation relations

[x̂, L̂x] = 0

Next consider [x̂, L̂y]: we have

L̂y = ẑp̂x − x̂p̂z

hence
[x̂, L̂y] = [x̂, ẑp̂x] − [x̂, x̂p̂z] = ih̄ẑ

and similarly
[x̂, L̂z] = −ih̄ŷ

etc. We can summarize the nine commutation relations:

[x̂i, L̂j] = ih̄εijkx̂k

where

εijk =











1 if (ijk) = (1, 2, 3) or (2, 3, 1) or (3, 1, 2)
−1 if (ijk) = (1, 3, 2) or (3, 2, 1) or (2, 1, 3)
0 if i = j or i = k or j = k

and summation over the repeated index k is implied.

Similarly one can show
[p̂i, L̂j] = ih̄εijkp̂k

after which it is straight forward to deduce:

[L̂i, L̂j] = ih̄εijkL̂k

The important conclusion from this result is that the components of angular momentum have

no common eigenfunctions.

Of course, we must also show that the angular momentum operators are hermitian. This is
of course plausible (reasonable) since we know that the angular momentum is a dynamical
variable in classical mechanics. The proof is left as an exercise.

We can construct one more operator that commutes with all components of L̂: define the square
of L̂ by

L̂2 = L̂2
x + L̂2

y + L̂2
z

then

[L̂x, L̂
2] = [L̂x, L̂

2
x + L̂2

y + L̂2
z]

= [L̂x, L̂
2
y] + [L̂x, L̂

2
z]
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Now there is a simple technique to evaluate a commutator like [L̂x, L̂
2
y]: write down explicitly

the known commutator [L̂x, L̂y]:

L̂xL̂y − L̂yL̂x = ih̄L̂z

multiply this on the left by L̂y, then multiply on the right by L̂y:

L̂yL̂xL̂y − L̂2
yL̂x = ih̄L̂yL̂z

L̂xL̂
2
y − L̂yL̂xL̂y = ih̄L̂zL̂y

and if we add these commutation relations we get

L̂xL̂
2
y − L̂2

yL̂x = ih̄(L̂yL̂z + L̂zL̂y)

and similarly
L̂xL̂

2
z − L̂2

zL̂x = −ih̄(L̂yL̂z + L̂zL̂y)

hence
[L̂x, L̂

2] = 0

and similarly
[L̂y, L̂

2] = [L̂z, L̂
2] = 0

Finally one can also show that the components of L̂ and L̂2 commute with p̂2, and therefore
also with the K.E. operator T̂ , and that they commute with r and hence with any function of
r.

The latter statement is most easily shown by working in spherical polar coordinates (r, θ, ϕ),
where θ is the polar angle and ϕ the azimuth. If we choose the polar axis along the cartesian z
direction, then we get after some tedious calculation the following expressions for the angular
momentum components:

L̂x = ih̄

(

sinϕ
∂

∂θ
+ cot θ cosϕ

∂

∂ϕ

)

L̂y = ih̄

(

− cosϕ
∂

∂θ
+ cot θ sinϕ

∂

∂ϕ

)

L̂z = −ih̄
∂

∂ϕ

We can therefore conclude that the angular momentum operators commute with the Hamilto-
nian of a particle in a central field, for example a Coulomb field, and that implies that L̂2 and
one of the components can be chosen to have common eigenfunctions with the Hamiltonian.
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