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Preface

This book evolved from a set of lecture notes for a course on `Introduction to

Mathematical Physics', that I have given at California State University, Stanislaus

(CSUS) for many years. Physics majors at CSUS take introductory mathematical

physics before the physics core courses, so that they may acquire the expected

level of mathematical competency for the core course. It is assumed that the

student has an adequate preparation in general physics and a good understanding

of the mathematical manipulations of calculus. For the student who is in need of a

review of calculus, however, Appendix 1 and Appendix 2 are included.

This book is not encyclopedic in character, nor does it give in a highly mathe-

matical rigorous account. Our emphasis in the text is to provide an accessible

working knowledge of some of the current important mathematical tools required

in physics.

The student will ®nd that a generous amount of detail has been given mathe-

matical manipulations, and that `it-may-be-shown-thats' have been kept to a

minimum. However, to ensure that the student does not lose sight of the develop-

ment underway, some of the more lengthy and tedious algebraic manipulations

have been omitted when possible.

Each chapter contains a number of physics examples to illustrate the mathe-

matical techniques just developed and to show their relevance to physics. They

supplement or amplify the material in the text, and are arranged in the order in

which the material is covered in the chapter. No eÿort has been made to trace the

origins of the homework problems and examples in the book. A solution manual

for instructors is available from the publishers upon adoption.

Many individuals have been very helpful in the preparation of this text. I wish

to thank my colleagues in the physics department at CSUS.

Any suggestions for improvement of this text will be greatly appreciated.

Turlock, California TA I L. CHOW

2000
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1

Vector and tensor analysis

Vectors and scalars

Vector methods have become standard tools for the physicists. In this chapter we

discuss the properties of the vectors and vector ®elds that occur in classical

physics. We will do so in a way, and in a notation, that leads to the formation

of abstract linear vector spaces in Chapter 5.

A physical quantity that is completely speci®ed, in appropriate units, by a single

number (called its magnitude) such as volume, mass, and temperature is called a

scalar. Scalar quantities are treated as ordinary real numbers. They obey all the

regular rules of algebraic addition, subtraction, multiplication, division, and so

on.

There are also physical quantities which require a magnitude and a direction for

their complete speci®cation. These are called vectors if their combination with

each other is commutative (that is the order of addition may be changed without

aÿecting the result). Thus not all quantities possessing magnitude and direction

are vectors. Angular displacement, for example, may be characterised by magni-

tude and direction but is not a vector, for the addition of two or more angular

displacements is not, in general, commutative (Fig. 1.1).

In print, we shall denote vectors by boldface letters (such as A) and use ordin-

ary italic letters (such as A) for their magnitudes; in writing, vectors are usually

represented by a letter with an arrow above it such as ~A. A given vector A (or ~A)

can be written as

A � AÂ; �1:1�

where A is the magnitude of vector A and so it has unit and dimension, and Â is a

dimensionless unit vector with a unity magnitude having the direction of A. Thus

Â � A=A.

1



A vector quantity may be represented graphically by an arrow-tipped line seg-

ment. The length of the arrow represents the magnitude of the vector, and the

direction of the arrow is that of the vector, as shown in Fig. 1.2. Alternatively, a

vector can be speci®ed by its components (projections along the coordinate axes)

and the unit vectors along the coordinate axes (Fig. 1.3):

A � A1ê1 � A2ê2 � Aê3 �
X3
i�1

Aiêi; �1:2�

where êi (i � 1; 2; 3) are unit vectors along the rectangular axes xi �x1 � x; x2 � y;

x3 � z�; they are normally written as î; ĵ; k̂ in general physics textbooks. The

component triplet (A1;A2;A3) is also often used as an alternate designation for

vector A:

A � �A1;A2;A3�: �1:2a�
This algebraic notation of a vector can be extended (or generalized) to spaces of

dimension greater than three, where an ordered n-tuple of real numbers,

(A1;A2; . . . ;An), represents a vector. Even though we cannot construct physical

vectors for n > 3, we can retain the geometrical language for these n-dimensional

generalizations. Such abstract ``vectors'' will be the subject of Chapter 5.

2
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Figure 1.1. Rotation of a parallelpiped about coordinate axes.

Figure 1.2. Graphical representation of vector A.



Direction angles and direction cosines

We can express the unit vector Â in terms of the unit coordinate vectors êi. From

Eq. (1.2), A � A1ê1 � A2ê2 � Aê3, we have

A � A
A1

A
ê1 �

A2

A
ê2 �

A3

A
ê3

� �
� AÂ:

Now A1=A � cos�;A2=A � cosþ, and A3=A � cos ÿ are the direction cosines of

the vector A, and �, þ, and ÿ are the direction angles (Fig. 1.4). Thus we can write

A � A�cos�ê1 � cosþê2 � cos ÿê3� � AÂ;

it follows that

Â � �cos�ê1 � cosþê2 � cos ÿê3� � �cos�; cosþ; cos ÿ�: �1:3�

3
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Figure 1.3. A vector A in Cartesian coordinates.

Figure 1.4. Direction angles of vector A.



Vector algebra

Equality of vectors

Two vectors, say A and B, are equal if, and only if, their respective components

are equal:

A � B or �A1;A2;A3� � �B1;B2;B3�
is equivalent to the three equations

A1 � B1;A2 � B2;A3 � B3:

Geometrically, equal vectors are parallel and have the same length, but do not

necessarily have the same position.

Vector addition

The addition of two vectors is de®ned by the equation

A� B � �A1;A2;A3� � �B1;B2;B3� � �A1 � B1;A2 � B2;A3 � B3�:
That is, the sum of two vectors is a vector whose components are sums of the

components of the two given vectors.

We can add two non-parallel vectors by graphical method as shown in Fig. 1.5.

To add vector B to vector A, shift B parallel to itself until its tail is at the head of

A. The vector sum A� B is a vector C drawn from the tail of A to the head of B.

The order in which the vectors are added does not aÿect the result.

Multiplication by a scalar

If c is scalar then

cA � �cA1; cA2; cA3�:
Geometrically, the vector cA is parallel to A and is c times the length of A. When

c � ÿ1, the vector ÿA is one whose direction is the reverse of that of A, but both

4
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Figure 1.5. Addition of two vectors.



have the same length. Thus, subtraction of vector B from vector A is equivalent to

adding ÿB to A:

Aÿ B � A� �ÿB�:
We see that vector addition has the following properties:

(a) A� B � B� A (commutativity);

(b) (A� B� � C � A� �B� C� (associativity);

(c) A� 0 � 0� A � A;

(d) A� �ÿA� � 0:

We now turn to vector multiplication. Note that division by a vector is not

de®ned: expressions such as k=A or B=A are meaningless.

There are several ways of multiplying two vectors, each of which has a special

meaning; two types are de®ned.

The scalar product

The scalar (dot or inner) product of two vectors A and B is a real number de®ned

(in geometrical language) as the product of their magnitude and the cosine of the

(smaller) angle between them (Figure 1.6):

A � B � AB cos � �0 � � � ��: �1:4�
It is clear from the de®nition (1.4) that the scalar product is commutative:

A � B � B � A; �1:5�
and the product of a vector with itself gives the square of the dot product of the

vector:

A � A � A2: �1:6�
IfA � B � 0 and neitherA nor B is a null (zero) vector, thenA is perpendicular to B.

5

THE SCALAR PRODUCT

Figure 1.6. The scalar product of two vectors.



We can get a simple geometric interpretation of the dot product from an

inspection of Fig. 1.6:

�B cos ��A � projection of B onto A multiplied by the magnitude of A;

�A cos ��B � projection of A onto B multiplied by the magnitude of B:

If only the components of A and B are known, then it would not be practical to

calculate A � B from de®nition (1.4). But, in this case, we can calculate A � B in

terms of the components:

A � B � �A1ê1 � A2ê2 � A3ê3� � �B1ê1 � B2ê2 � B3ê3�; �1:7�
the right hand side has nine terms, all involving the product êi � êj . Fortunately,
the angle between each pair of unit vectors is 908, and from (1.4) and (1.6) we ®nd

that

êi � êj � �ij ; i; j � 1; 2; 3; �1:8�
where �ij is the Kronecker delta symbol

�ij �
0; if i 6� j;

1; if i � j:

(
�1:9�

After we use (1.8) to simplify the resulting nine terms on the right-side of (7), we

obtain

A � B � A1B1 � A2B2 � A3B3 �
X3
i�1

AiBi: �1:10�

The law of cosines for plane triangles can be easily proved with the application

of the scalar product: refer to Fig. 1.7, where C is the resultant vector of A and B.

Taking the dot product of C with itself, we obtain

C2 � C � C � �A� B� � �A� B�
� A2 � B2 � 2A � B � A2 � B2 � 2AB cos �;

which is the law of cosines.

6
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Figure 1.7. Law of cosines.



A simple application of the scalar product in physics is the work W done by a

constant force F: W � F � r, where r is the displacement vector of the object

moved by F.

The vector (cross or outer) product

The vector product of two vectors A and B is a vector and is written as

C � A� B: �1:11�
As shown in Fig. 1.8, the two vectors A and B form two sides of a parallelogram.

We de®ne C to be perpendicular to the plane of this parallelogram with its

magnitude equal to the area of the parallelogram. And we choose the direction

of C along the thumb of the right hand when the ®ngers rotate from A to B (angle

of rotation less than 1808).

C � A� B � AB sin �êC �0 � � � ��: �1:12�
From the de®nition of the vector product and following the right hand rule, we

can see immediately that

A� B � ÿB� A: �1:13�
Hence the vector product is not commutative. If A and B are parallel, then it

follows from Eq. (1.12) that

A� B � 0: �1:14�
In particular

A� A � 0: �1:14a�
In vector components, we have

A� B � �A1ê1 � A2ê2 � A3ê3� � �B1ê1 � B2ê2 � B3ê3�: �1:15�

7

THE VECTOR (CROSS OR OUTER) PRODUCT

Figure 1.8. The right hand rule for vector product.



Using the following relations

êi � êi � 0; i � 1; 2; 3;

ê1 � ê2 � ê3; ê2 � ê3 � ê1; ê3 � ê1 � ê2;
�1:16�

Eq. (1.15) becomes

A� B � �A2B3 ÿ A3B2�ê1 � �A3B1 ÿ A1B3�ê2 � �A1B2 ÿ A2B1�ê3: �1:15a�
This can be written as an easily remembered determinant of third order:

A� B �
ê1 ê2 ê3

A1 A2 A3

B1 B2 B3

þþþþþþþ
þþþþþþþ: �1:17�

The expansion of a determinant of third order can be obtained by diagonal multi-

plication by repeating on the right the ®rst two columns of the determinant and

adding the signed products of the elements on the various diagonals in the result-

ing array:

The non-commutativity of the vector product of two vectors now appears as a

consequence of the fact that interchanging two rows of a determinant changes its

sign, and the vanishing of the vector product of two vectors in the same direction

appears as a consequence of the fact that a determinant vanishes if one of its rows

is a multiple of another.

The determinant is a basic tool used in physics and engineering. The reader is

assumed to be familiar with this subject. Those who are in need of review should

read Appendix II.

The vector resulting from the vector product of two vectors is called an axial

vector, while ordinary vectors are sometimes called polar vectors. Thus, in Eq.

(1.11), C is a pseudovector, while A and B are axial vectors. On an inversion of

coordinates, polar vectors change sign but an axial vector does not change sign.

A simple application of the vector product in physics is the torque s of a force F

about a point O: s � F� r, where r is the vector from O to the initial point of the

force F (Fig. 1.9).

We can write the nine equations implied by Eq. (1.16) in terms of permutation

symbols "ijk:

êi � êj � "ijkêk; �1:16a�

8
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a1 a2 a3
b1 b2 b3
c1 c2 cc

2
4

3
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--

ÿ
ÿ
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ÿ
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ÿ

!



where "ijk is de®ned by

"ijk �
�1
ÿ1
0

if �i; j; k� is an even permutation of �1; 2; 3�;
if �i; j; k� is an odd permutation of �1; 2; 3�;
otherwise �for example; if 2 or more indices are equal�:

8<
: �1:18�

It follows immediately that

"ijk � "kij � "jki � ÿ"jik � ÿ"kji � ÿ"ikj :

There is a very useful identity relating the "ijk and the Kronecker delta symbol:

X3
k�1

"mnk"ijk � �mi�nj ÿ �mj�ni; �1:19�

X
j;k

"mjk"njk � 2�mn;
X
i;j;k

"2ijk � 6: �1:19a�

Using permutation symbols, we can now write the vector product A� B as

A� B �
X3
i�1

Aiêi

ý !
�

X3
j�1

Bjêj

ý !
�

X3
i;j

AiBj êi � êj
ÿ � � X3

i;j;k

AiBj"ijk
ÿ �

êk:

Thus the kth component of A� B is

�A� B�k �
X
i;j

AiBj"ijk �
X
i;j

"kijAiBj:

If k � 1, we obtain the usual geometrical result:

�A� B�1 �
X
i;j

"1ijAiBj � "123A2B3 � "132A3B2 � A2B3 ÿ A3B2:
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Figure 1.9. The torque of a force about a point O.



The triple scalar product A E (B�C)

We now brie¯y discuss the scalar A � �B� C�. This scalar represents the volume of

the parallelepiped formed by the coterminous sides A, B, C, since

A � �B� C� � ABC sin � cos� � hS � volume;

S being the area of the parallelogram with sides B and C, and h the height of the

parallelogram (Fig. 1.10).

Now

A � �B� C� � A1ê1 � A2ê2 � A3ê3� � �
ê1 ê2 ê3

B1 B2 B3

C1 C2 C3

þþþþþþþþ

þþþþþþþþ
� A1�B2C3 ÿ B3C2� � A2�B3C1 ÿ B1C3� � A3�B1C2 ÿ B2C1�

so that

A � �B� C� �
A1 A2 A3

B1 B2 B3

C1 C2 C3

þþþþþþþ
þþþþþþþ: �1:20�

The exchange of two rows (or two columns) changes the sign of the determinant

but does not change its absolute value. Using this property, we ®nd

A � �B� C� �
A1 A2 A3

B1 B2 B3

C1 C2 C3

þþþþþþþ
þþþþþþþ � ÿ

C1 C2 C3

B1 B2 B3

A1 A2 A3

þþþþþþþ
þþþþþþþ � C � �A� B�;

that is, the dot and the cross may be interchanged in the triple scalar product.

A � �B� C� � �A� B� � C �1:21�
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Figure 1.10. The triple scalar product of three vectors A, B, C.



In fact, as long as the three vectors appear in cyclic order, A ! B ! C ! A, then

the dot and cross may be inserted between any pairs:

A � �B� C� � B � �C� A� � C � �A� B�:
It should be noted that the scalar resulting from the triple scalar product changes

sign on an inversion of coordinates. For this reason, the triple scalar product is

sometimes called a pseudoscalar.

The triple vector product

The triple product A� �B� C) is a vector, since it is the vector product of two

vectors: A and B� C. This vector is perpendicular to B� C and so it lies in the

plane of B and C. If B is not parallel to C, A� �B� C� � xB� yC. Now dot both

sides with A and we obtain x�A � B� � y�A � C� � 0, since A � �A� �B� C�� � 0.

Thus

x=�A � C� � ÿy=�A � B� � � �� is a scalar�
and so

A� �B� C� � xB� yC � ��B�A � C� ÿ C�A � B��:
We now show that � � 1. To do this, let us consider the special case when B � A.

Dot the last equation with C:

C� �A� �A� C�� � ���A � C�2 ÿ A2C2�;
or, by an interchange of dot and cross

ÿ�A � C�2 � ���A � C�2 ÿ A2C2�:
In terms of the angles between the vectors and their magnitudes the last equation

becomes

ÿA2C2 sin2 � � ��A2C2 cos2 �ÿ A2C2� � ÿ�A2C2 sin2 �;

hence � � 1. And so

A� �B� C� � B�A � C� ÿ C�A � B�: �1:22�

Change of coordinate system

Vector equations are independent of the coordinate system we happen to use. But

the components of a vector quantity are diÿerent in diÿerent coordinate systems.

We now make a brief study of how to represent a vector in diÿerent coordinate

systems. As the rectangular Cartesian coordinate system is the basic type of

coordinate system, we shall limit our discussion to it. Other coordinate systems
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will be introduced later. Consider the vector A expressed in terms of the unit

coordinate vectors �ê1; ê2; ê3�:

A � A1ê1 � A2ê2 � Aê3 �
X3
i�1

Aiêi:

Relative to a new system �ê 01; ê 02; ê 03� that has a diÿerent orientation from that of

the old system �ê1; ê2; ê3�, vector A is expressed as

A � A 0
1ê

0
1 � A 0

2ê
0
2 � A 0ê 03 �

X3
i�1

A 0
i ê

0
i :

Note that the dot product A � ê 01 is equal to A 0
1, the projection of A on the direction

of ê 01; A � ê 02 is equal to A 0
2, and A � ê 03 is equal to A 0

3. Thus we may write

A 0
1 � �ê1 � ê 01�A1 � �ê2 � ê 01�A2 � �ê3 � ê 01�A3;

A 0
2 � �ê1 � ê 02�A1 � �ê2 � ê 02�A2 � �ê3 � ê 02�A3;

A 0
3 � �ê1 � ê 03�A1 � �ê2 � ê 03�A2 � �ê3 � ê 03�A3:

9>>=
>>; �1:23�

The dot products �êi � ê 0j � are the direction cosines of the axes of the new coordi-

nate system relative to the old system: ê 0i � êj � cos�x 0
i ; xj�; they are often called the

coe�cients of transformation. In matrix notation, we can write the above system

of equations as

A 0
1

A 0
2

A 0
3

0
B@

1
CA �

ê1 � ê 01 ê2 � ê 01 ê3 � ê 01
ê1 � ê 02 ê2 � ê 02 ê3 � ê 02
ê1 � ê 03 ê2 � ê 03 ê3 � ê 03

0
B@

1
CA A1

A2

A3

0
B@

1
CA:

The 3� 3 matrix in the above equation is called the rotation (or transformation)

matrix, and is an orthogonal matrix. One advantage of using a matrix is that

successive transformations can be handled easily by means of matrix multiplica-

tion. Let us digress for a quick review of some basic matrix algebra. A full account

of matrix method is given in Chapter 3.

A matrix is an ordered array of scalars that obeys prescribed rules of addition

and multiplication. A particular matrix element is speci®ed by its row number

followed by its column number. Thus aij is the matrix element in the ith row and

jth column. Alternative ways of representing matrix ~A are [aij] or the entire array

~A �

a11 a12 ::: a1n

a21 a22 ::: a2n

::: ::: ::: :::

am1 am2 ::: amn

0
BBBB@

1
CCCCA:
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~A is an n�m matrix. A vector is represented in matrix form by writing its

components as either a row or column array, such as

~B � �b11 b12 b13� or ~C �
c11

c21

c31

0
B@

1
CA;

where b11 � bx; b12 � by; b13 � bz, and c11 � cx; c21 � cy; c31 � cz.

The multiplication of a matrix ~A and a matrix ~B is de®ned only when the

number of columns of ~A is equal to the number of rows of ~B, and is performed

in the same way as the multiplication of two determinants: if ~C= ~A ~B, then

cij �
X
k

aikbkl :

We illustrate the multiplication rule for the case of the 3� 3 matrix ~A multiplied

by the 3� 3 matrix ~B:

If we denote the direction cosines ê 0i � êj by �ij, then Eq. (1.23) can be written as

A 0
i �

X3
j�1

ê 0i � êjAj �
X3
j�1

�ijAj: �1:23a�

It can be shown (Problem 1.9) that the quantities �ij satisfy the following relations

X3
i�1

�ij�ik � �jk � j; k � 1; 2; 3�: �1:24�

Any linear transformation, such as Eq. (1.23a), that has the properties required by

Eq. (1.24) is called an orthogonal transformation, and Eq. (1.24) is known as the

orthogonal condition.

The linear vector space Vn

We have found that it is very convenient to use vector components, in particular,

the unit coordinate vectors êi (i � 1, 2, 3). The three unit vectors êi are orthogonal

and normal, or, as we shall say, orthonormal. This orthonormal property

is conveniently written as Eq. (1.8). But there is nothing special about these
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orthonormal unit vectors êi. If we refer the components of the vectors to a

diÿerent system of rectangular coordinates, we need to introduce another set of

three orthonormal unit vectors f̂1; f̂2, and f̂3:

f̂i f̂j � �ij �i; j � 1; 2; 3�: �1:8a�

For any vector A we now write

A �
X3
i�1

ci f̂i; and ci � f̂i � A:

We see that we can de®ne a large number of diÿerent coordinate systems. But

the physically signi®cant quantities are the vectors themselves and certain func-

tions of these, which are independent of the coordinate system used. The ortho-

normal condition (1.8) or (1.8a) is convenient in practice. If we also admit oblique

Cartesian coordinates then the f̂i need neither be normal nor orthogonal; they

could be any three non-coplanar vectors, and any vector A can still be written as a

linear superposition of the f̂i

A � c1 f̂1 � c2 f̂2 � c3 f̂3: �1:25�

Starting with the vectors f̂i, we can ®nd linear combinations of them by the

algebraic operations of vector addition and multiplication of vectors by scalars,

and then the collection of all such vectors makes up the three-dimensional linear

space often called V3 (V for vector) or R3 (R for real) or E3 (E for Euclidean). The

vectors f̂1; f̂2; f̂3 are called the base vectors or bases of the vector space V3. Any set

of vectors, such as the f̂i, which can serve as the bases or base vectors of V3 is

called complete, and we say it spans the linear vector space. The base vectors are

also linearly independent because no relation of the form

c1 f̂1 � c2 f̂2 � c3 f̂3 � 0 �1:26�

exists between them, unless c1 � c2 � c3 � 0.

The notion of a vector space is much more general than the real vector space

V3. Extending the concept of V3, it is convenient to call an ordered set of n

matrices, or functions, or operators, a `vector' (or an n-vector) in the n-dimen-

sional space Vn. Chapter 5 will provide justi®cation for doing this. Taking a cue

from V3, vector addition in Vn is de®ned to be

�x1; . . . ; xn� � �y1; . . . ; yn� � �x1 � y1; . . . ; xn � yn� �1:27�

and multiplication by scalars is de®ned by

��x1; . . . ; xn� � ��x1; . . . ; �xn�; �1:28�
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where � is real. With these two algebraic operations of vector addition and multi-

plication by scalars, we call Vn a vector space. In addition to this algebraic

structure, Vn has geometric structure derived from the length de®ned to be

Xn
j�1

x2j

ý !1=2

�
���������������������������
x21 � � � � � x2n

q
�1:29�

The dot product of two n-vectors can be de®ned by

�x1; . . . ; xn� � �y1; . . . ; yn� �
Xn
j�1

xjyj: �1:30�

In Vn, vectors are not directed line segments as in V3; they may be an ordered set

of n operators, matrices, or functions. We do not want to become sidetracked

from our main goal of this chapter, so we end our discussion of vector space here.

Vector diÿerentiation

Up to this point we have been concerned mainly with vector algebra. A vector

may be a function of one or more scalars and vectors. We have encountered, for

example, many important vectors in mechanics that are functions of time and

position variables. We now turn to the study of the calculus of vectors.

Physicists like the concept of ®eld and use it to represent a physical quantity

that is a function of position in a given region. Temperature is a scalar ®eld,

because its value depends upon location: to each point (x, y, z) is associated a

temperature T�x; y; z�. The function T�x; y; z� is a scalar ®eld, whose value is a

real number depending only on the point in space but not on the particular choice

of the coordinate system. A vector ®eld, on the other hand, associates with each

point a vector (that is, we associate three numbers at each point), such as the wind

velocity or the strength of the electric or magnetic ®eld. When described in a

rotated system, for example, the three components of the vector associated with

one and the same point will change in numerical value. Physically and geo-

metrically important concepts in connection with scalar and vector ®elds are

the gradient, divergence, curl, and the corresponding integral theorems.

The basic concepts of calculus, such as continuity and diÿerentiability, can be

naturally extended to vector calculus. Consider a vector A, whose components are

functions of a single variable u. If the vector A represents position or velocity, for

example, then the parameter u is usually time t, but it can be any quantity that

determines the components of A. If we introduce a Cartesian coordinate system,

the vector function A(u) may be written as

A�u� � A1�u�ê1 � A2�u�ê2 � A3�u�ê3: �1:31�
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A(u) is said to be continuous at u � u0 if it is de®ned in some neighborhood of

u0 and

lim
u!u0

A�u� � A�u0�: �1:32�

Note that A(u) is continuous at u0 if and only if its three components are con-

tinuous at u0.

A(u) is said to be diÿerentiable at a point u if the limit

dA�u�
du

� lim
�u!0

A�u��u� ÿ A�u�
�u

�1:33�

exists. The vector A 0�u� � dA�u�=du is called the derivative of A(u); and to diÿer-

entiate a vector function we diÿerentiate each component separately:

A 0�u� � A 0
1�u�ê1 � A 0

2�u�ê2 � A 0
3�u�ê3: �1:33a�

Note that the unit coordinate vectors are ®xed in space. Higher derivatives of A(u)

can be similarly de®ned.

If A is a vector depending on more than one scalar variable, say u, v for

example, we write A � A�u; v�. Then
dA � �@A=@u�du� �@A=@v�dv �1:34�

is the diÿerential of A, and

@A

@u
� lim

�u!0

A�u��u; v� ÿ A�u; v�
@u

�1:34a�

and similarly for @A=@v.

Derivatives of products obey rules similar to those for scalar functions.

However, when cross products are involved the order may be important.

Space curves

As an application of vector diÿerentiation, let us consider some basic facts about

curves in space. If A(u) is the position vector r(u) joining the origin of a coordinate

system and any point P�x1; x2; x3� in space as shown in Fig. 1.11, then Eq. (1.31)

becomes

r�u� � x1�u�ê1 � x2�u�ê2 � x3�u�ê3: �1:35�
As u changes, the terminal point P of r describes a curve C in space. Eq. (1.35) is

called a parametric representation of the curve C, and u is the parameter of this

representation. Then

�r

�u
� r�u��u� ÿ r�u�

�u

� �
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is a vector in the direction of �r, and its limit (if it exists) dr=du is a vector in the

direction of the tangent to the curve at �x1; x2; x3�. If u is the arc length smeasured

from some ®xed point on the curve C, then dr=ds � T̂ is a unit tangent vector to

the curve C. The rate at which T̂ changes with respect to s is a measure of the

curvature of C and is given by dT̂/ds. The direction of dT̂/ds at any given point on

C is normal to the curve at that point: T̂ � T̂ � 1, d�T̂ � T̂�=ds � 0, from this we

get T̂ � dT̂=ds � 0, so they are normal to each other. If N̂ is a unit vector in this

normal direction (called the principal normal to the curve), then dT̂=ds � �N̂,

and � is called the curvature of C at the speci®ed point. The quantity � � 1=� is

called the radius of curvature. In physics, we often study the motion of particles

along curves, so the above results may be of value.

In mechanics, the parameter u is time t, then dr=dt � v is the velocity

of the particle which is tangent to the curve at the speci®c point. Now we

can write

v � dr

dt
� dr

ds

ds

dt
� vT̂

where v is the magnitude of v, called the speed. Similarly, a � dv=dt is the accel-

eration of the particle.

Motion in a plane

Consider a particle P moving in a plane along a curve C (Fig. 1.12). Now r � rêr,

where êr is a unit vector in the direction of r. Hence

v � dr

dt
� dr

dt
êr � r

dêr
dt

:
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Now dêr=dt is perpendicular to êr. Also jdêr=dtj � d�=dt; we can easily verify this

by diÿerentiating êr � cos �ê1 � sin �ê2: Hence

v � dr

dt
� dr

dt
êr � r

d�

dt
ê�;

ê� is a unit vector perpendicular to êr.

Diÿerentiating again we obtain

a � dv

dt
� d2r

dt2
êr �

dr

dt

dêr
dt

� dr

dt

d�

dt
ê� � r

d2�

dt2
ê� � r

d�

dt
ê�

� d2r

dt2
êr � 2

dr

dt

d�

dt
ê� � r

d2�

dt2
ê� ÿ r

d�

dt

� �2

êr 5
dê�
dt

� ÿ d�

dt
êr

� �
:

Thus

a � d2r

dt2
ÿ r

d�

dt

� �2
" #

êr �
1

r

d

dt
r2
d�

dt

� �
ê�:

A vector treatment of classical orbit theory

To illustrate the power and use of vector methods, we now employ them to work

out the Keplerian orbits. We ®rst prove Kepler's second law which can be stated

as: angular momentum is constant in a central force ®eld. A central force is a force

whose line of action passes through a single point or center and whose magnitude

depends only on the distance from the center. Gravity and electrostatic forces are

central forces. A general discussion on central force can be found in, for example,

Chapter 6 of Classical Mechanics, Tai L. Chow, John Wiley, New York, 1995.

Diÿerentiating the angular momentum L � r� p with respect to time, we

obtain

dL=dt � dr=dt� p� r� dp=dt:
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The ®rst vector product vanishes because p � mdr=dt so dr=dt and p are parallel.

The second vector product is simply r� F by Newton's second law, and hence

vanishes for all forces directed along the position vector r, that is, for all central

forces. Thus the angular momentum L is a constant vector in central force

motion. This implies that the position vector r, and therefore the entire orbit,

lies in a ®xed plane in three-dimensional space. This result is essentially Kepler's

second law, which is often stated in terms of the conservation of area velocity,

jLj=2m.

We now consider the inverse-square central force of gravitational and electro-

statics. Newton's second law then gives

mdv=dt � ÿ�k=r2�n̂; �1:36�
where n̂ � r=r is a unit vector in the r-direction, and k � Gm1m2 for the gravita-

tional force, and k � q1q2 for the electrostatic force in cgs units. First we note that

v � dr=dt � dr=dtn̂� rdn̂=dt:

Then L becomes

L � r� �mv� � mr2�n̂� �dn̂=dt��: �1:37�
Now consider

d

dt
�v� L� � dv

dt
� L � ÿ k

mr2
�n̂� L� � ÿ k

mr2
�n̂�mr2�n̂� dn̂=dt��

� ÿk�n̂�dn̂=dt � n̂� ÿ �dn̂=dt��n̂ � n̂��:
Since n̂ � n̂ � 1, it follows by diÿerentiation that n̂ � dn̂=dt � 0. Thus we obtain

d

dt
�v� L� � kdn̂=dt;

integration gives

v� L � kn̂� C; �1:38�
where C is a constant vector. It lies along, and ®xes the position of, the major axis

of the orbit as we shall see after we complete the derivation of the orbit. To ®nd

the orbit, we form the scalar quantity

L2 � L � �r�mv� � mr � �v� L� � mr�k� C cos ��; �1:39�
where � is the angle measured from C (which we may take to be the x-axis) to r.

Solving for r, we obtain

r � L2=km

1� C=�k cos �� �
A

1� " cos �
: �1:40�

Eq. (1.40) is a conic section with one focus at the origin, where " represents the

eccentricity of the conic section; depending on its values, the conic section may be
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a circle, an ellipse, a parabola, or a hyperbola. The eccentricity can be easily

determined in terms of the constants of motion:

" � C

k
� 1

k
j�v� L� ÿ kn̂j

� 1

k
�jv� Lj2 � k2 ÿ 2kn̂ � �v� L��1=2

Now jv� Lj2 � v2L2 because v is perpendicular to L. Using Eq. (1.39), we obtain

" � 1

k
v2L2 � k2 ÿ 2kL2

mr

" #1=2

� 1� 2L2

mk2
1

2
mv2 ÿ k

r

� �" #1=2

� 1� 2L2E

mk2

" #1=2

;

where E is the constant energy of the system.

Vector diÿerentiation of a scalar ®eld and the gradient

Given a scalar ®eld in a certain region of space given by a scalar function

��x1; x2; x3� that is de®ned and diÿerentiable at each point with respect to the

position coordinates �x1; x2; x3�, the total diÿerential corresponding to an in®ni-

tesimal change dr � �dx1; dx2; dx3� is

d� � @�

@x1
dx1 �

@�

@x2
dx2 �

@�

@x3
dx3: �1:41�

We can express d� as a scalar product of two vectors:

d� � @�

@x1
dx1 �

@�

@x2
dx2 �

@�

@x3
dx3 � r�� � � dr; �1:42�

where

r� � @�

@x1
ê1 �

@�

@x2
ê2 �

@�

@x3
ê3 �1:43�

is a vector ®eld (or a vector point function). By this we mean to each point

r � �x1; x2; x3� in space we associate a vector r� as speci®ed by its three compo-

nents (@�=@x1; @�=@x2; @�=@x3): r� is called the gradient of � and is often written

as grad �.

There is a simple geometric interpretation of r�. Note that ��x1; x2; x3� � c,

where c is a constant, represents a surface. Let r � x1ê1 � x2ê2 � x3ê3 be the

position vector to a point P�x1; x2; x3� on the surface. If we move along the

surface to a nearby point Q�r� dr�, then dr � dx1ê1 � dx2ê2 � dx3ê3 lies in the

tangent plane to the surface at P. But as long as we move along the surface � has a

constant value and d� � 0. Consequently from (1.41),

dr � r� � 0: �1:44�
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Eq. (1.44) states that r� is perpendicular to dr and therefore to the surface (Fig.

1.13). Let us return to

d� � �r�� � dr:
The vector r� is ®xed at any point P, so that d�, the change in �, will depend to a

great extent on dr. Consequently d� will be a maximum when dr is parallel to r�,

since dr � r� � jdrjjr�j cos �, and cos � is a maximum for � � 0. Thus r� is in

the direction of maximum increase of ��x1; x2; x3�. The component of r� in the

direction of a unit vector û is given by r� � û and is called the directional deri-

vative of � in the direction û. Physically, this is the rate of change of � at

(x1; x2; x3� in the direction û.

Conservative vector ®eld

By de®nition, a vector ®eld is said to be conservative if the line integral of the

vector along any closed path vanishes. Thus, if F is a conservative vector ®eld

(say, a conservative force ®eld in mechanics), thenI
F � ds � 0; �1:45�

where ds is an element of the path. A (necessary and su�cient) condition for F

to be conservative is that F can be expressed as the gradient of a scalar, say

�:F � ÿgrad �:Z b

a

F � ds � ÿ
Z b

a

grad� � ds � ÿ
Z b

a

d� � ��a� ÿ ��b�:

it is obvious that the line integral depends solely on the value of the scalar � at the

initial and ®nal points, and
H
F � ds � ÿ H

grad� � ds � 0.

21

CONSERVATIVE VECTOR FIELD

Figure 1.13. Gradient of a scalar.



The vector diÿerential operator r
We denoted the operation that changes a scalar ®eld to a vector ®eld in Eq. (1.43)

by the symbol r (del or nabla):

r � @

@x1
ê1 �

@

@x2
ê2 �

@

@x3
ê3; �1:46�

which is called a gradient operator. We often write r� as grad �, and the vector

®eld r��r� is called the gradient of the scalar ®eld ��r�. Notice that the operator

r contains both partial diÿerential operators and a direction: it is a vector diÿer-

ential operator. This important operator possesses properties analogous to those

of ordinary vectors. It will help us in the future to keep in mind that r acts both

as a diÿerential operator and as a vector.

Vector diÿerentiation of a vector ®eld

Vector diÿerential operations on vector ®elds are more complicated because of the

vector nature of both the operator and the ®eld on which it operates. As we know

there are two types of products involving two vectors, namely the scalar and

vector products; vector diÿerential operations on vector ®elds can also be sepa-

rated into two types called the curl and the divergence.

The divergence of a vector

If V�x1; x2;x3� � V1ê1 � V2ê2 � V3ê3 is a diÿerentiable vector ®eld (that is, it is

de®ned and diÿerentiable at each point (x1; x2; x3) in a certain region of space),

the divergence of V, written r � V or div V, is de®ned by the scalar product

r � V � @

@x1
ê1 �

@

@x2
ê2 �

@

@x3
ê3

� �
� V1ê1 � V2ê2 � V3ê3� �

� @V1

@x1
� @V2

@x2
� @V3

@x3
: �1:47�

The result is a scalar ®eld. Note the analogy with A � B � A1B1 � A2B2 � A3B3,

but also note that r � V 6� V � r (bear in mind that r is an operator). V � r is a

scalar diÿerential operator:

V � r � V1

@

@x1
� V2

@

@x2
� V3

@

@x3
:

What is the physical signi®cance of the divergence? Or why do we call the scalar

product r � V the divergence of V? To answer these questions, we consider, as an

example, the steady motion of a ¯uid of density ��x1; x2; x3�, and the velocity ®eld

is given by v�x1; x2; x3� � v1�x1; x2; x3�e1 � v2�x1; x2; x3�e2 � v3�x1; x2; x3�e3. We
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now concentrate on the ¯ow passing through a small parallelepiped ABCDEFGH

of dimensions dx1dx2dx3 (Fig. 1.14). The x1 and x3 components of the velocity v

contribute nothing to the ¯ow through the face ABCD. The mass of ¯uid entering

ABCD per unit time is given by �v2dx1dx3 and the amount leaving the face EFGH

per unit time is

�v2 �
@��v2�
@x2

dx2

� �
dx1dx3:

So the loss of mass per unit time is �@��v2�=@x2�dx1dx2dx3. Adding the net rate of

¯ow out all three pairs of surfaces of our parallelepiped, the total mass loss per

unit time is

@

@x1
��v1� �

@

@x2
��v2� �

@

@x3
��v3�

� �
dx1dx2dx3 � r � ��v�dx1dx2dx3:

So the mass loss per unit time per unit volume is r � ��v�. Hence the name

divergence.

The divergence of any vector V is de®ned as r � V. We now calculate r � � fV�,
where f is a scalar:

r � �f V� � @

@x1
� fV1� �

@

@x2
� fV2� �

@

@x3
� fV3�

� f
@V1

@x1
� @V2

@x2
� @V3

@x3

� �
� V1

@f

@x1
� V2

@f

@x2
� V3

@f

@x3

� �
or

r � � fV� � fr � V� V � rf : �1:48�
It is easy to remember this result if we remember that r acts both as a diÿerential

operator and a vector. Thus, when operating on f V, we ®rst keep f ®xed and let r
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operate on V, and then we keep V ®xed and let r operate on f �r � f is nonsense),

and as rf and V are vectors we complete their multiplication by taking their dot

product.

A vector V is said to be solenoidal if its divergence is zero: r � V � 0.

The operator r2, the Laplacian

The divergence of a vector ®eld is de®ned by the scalar product of the operator r
with the vector ®eld. What is the scalar product of r with itself ?

r2 � r � r � @

@x1
ê1 �

@

@x2
ê2 �

@

@x3
ê3

� �
� @

@x1
ê1 �

@

@x2
ê2 �

@

@x3
ê3

� �

� @2

@x21
� @2

@x22
� @2

@x23
:

This important quantity

r2 � @2

@x21
� @2

@x22
� @2

@x23
�1:49�

is a scalar diÿerential operator which is called the Laplacian, after a French

mathematician of the eighteenth century named Laplace. Now, what is the diver-

gence of a gradient?

Since the Laplacian is a scalar diÿerential operator, it does not change the

vector character of the ®eld on which it operates. Thus r2��r� is a scalar ®eld

if ��r� is a scalar ®eld, and r2�r��r�� is a vector ®eld because the gradient r��r�
is a vector ®eld.

The equation r2� � 0 is called Laplace's equation.

The curl of a vector

If V�x1; x2; x3� is a diÿerentiable vector ®eld, then the curl or rotation of V,

written r� V (or curl V or rot V), is de®ned by the vector product

curl V � r� V �

ê1 ê2 ê3

@

@x1

@

@x2

@

@x3

V1 V2 V3

þþþþþþþþþþ

þþþþþþþþþþ
� ê1

@V3

@x2
ÿ @V2

@x3

� �
� ê2

@V1

@x3
ÿ @V3

@x1

� �
� ê3

@V2

@x1
ÿ @V1

@x2

� �

�
X
i;j;k

"ijkêi
@Vk

@xj
: �1:50�
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The result is a vector ®eld. In the expansion of the determinant the operators

@=@xi must precede Vi;
P

ijk stands for
P

i

P
j

P
k; and "ijk are the permutation

symbols: an even permutation of ijk will not change the value of the resulting

permutation symbol, but an odd permutation gives an opposite sign. That is,

"ijk � "jki � "kij � ÿ"jik � ÿ"kji � ÿ"ikj ; and

"ijk � 0 if two or more indices are equal:

A vector V is said to be irrotational if its curl is zero: r� V�r� � 0. From this

de®nition we see that the gradient of any scalar ®eld ��r� is irrotational. The proof
is simple:

r� �r�� �

ê1 ê2 ê3

@

@x1

@

@x2

@

@x3

@

@x1

@

@x2

@

@x3

þþþþþþþþþþþþ

þþþþþþþþþþþþ
��x1; x2; x3� � 0 �1:51�

because there are two identical rows in the determinant. Or, in terms of the

permutation symbols, we can write r� �r�� as

r� �r�� �
X
ijk

"ijkêi
@

@xj

@

@xk
��x1; x2; x3�:

Now "ijk is antisymmetric in j, k, but @2=@xj@xk is symmetric, hence each term in

the sum is always cancelled by another term:

"ijk
@

@xj

@

@xk
� "ikj

@

@xk

@

@xj
� 0;

and consequently r� �r�� � 0. Thus, for a conservative vector ®eld F, we have

curl F � curl (grad �� � 0.

We learned above that a vector V is solenoidal (or divergence-free) if its diver-

gence is zero. From this we see that the curl of any vector ®eld V(r) must be

solenoidal:

r � �r � V� �
X
i

@

@xi
�r � V�i �

X
i

@

@xi

X
j;k

"ijk
@

@xj
Vk

ý !
� 0; �1:52�

because "ijk is antisymmetric in i, j.

If ��r� is a scalar ®eld and V(r) is a vector ®eld, then

r� ��V� � ��r � V� � �r�� � V: �1:53�
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We ®rst write

r� ��V� �

ê1 ê2 ê3

@

@x1

@

@x2

@

@x3

�V1 �V2 �V3

þþþþþþþþþþ

þþþþþþþþþþ
;

then notice that

@

@x1
��V2� � �

@V2

@x1
� @�

@x1
V2;

so we can expand the determinant in the above equation as a sum of two deter-

minants:

r� ��V� � �

ê1 ê2 ê3

@

@x1

@

@x2

@

@x3

V1 V2 V3

þþþþþþþþþþþ

þþþþþþþþþþþ
�

ê1 ê2 ê3

@�

@x1

@�

@x2

@�

@x3

V1 V2 V3

þþþþþþþþþþþ

þþþþþþþþþþþ
� ��r � V� � �r�� � V:

Alternatively, we can simplify the proof with the help of the permutation symbols

"ijk:

r� ��V� �
X
i; j;k

"i jkêi
@

@xj
��Vk�

� �
X
i; j;k

"i jkêi
@Vk

@xj
�
X
i; j;k

"ijkêi
@�

@xj
Vk

� ��r � V� � �r�� � V:

A vector ®eld that has non-vanishing curl is called a vortex ®eld, and the curl of

the ®eld vector is a measure of the vorticity of the vector ®eld.

The physical signi®cance of the curl of a vector is not quite as transparent as

that of the divergence. The following example from ¯uid ¯ow will help us to

develop a better feeling. Fig. 1.15 shows that as the component v2 of the velocity

v of the ¯uid increases with x3, the ¯uid curls about the x1-axis in a negative sense

(rule of the right-hand screw), where @v2=@x3 is considered positive. Similarly, a

positive curling about the x1-axis would result from v3 if @v3=@x2 were positive.

Therefore, the total x1 component of the curl of v is

�curl v�1 � @v3=�@x2 ÿ @v2=@x3;

which is the same as the x1 component of Eq. (1.50).
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Formulas involving r
We now list some important formulas involving the vector diÿerential operatorr,

some of which are recapitulation. In these formulas, A and B are diÿerentiable

vector ®eld functions, and f and g are diÿerentiable scalar ®eld functions of

position �x1; x2; x3�:
(1) r� fg� � frg� grf ;

(2) r � � fA� � fr � A�rf � A;
(3) r� � fA� � fr� A�rf � A;

(4) r� �rf � � 0;

(5) r � �r � A� � 0;

(6) r � �A� B� � �r � A� � Bÿ �r � B� � A;

(7) r� �A� B� � �B � r�Aÿ B�r � A� � A�r � B� ÿ �A � r�B;
(8) r� �r � A� � r�r � A� ÿ r2A;

(9) r�A � B� � A� �r � B� � B� �r � A� � �A � r�B� �B � r�A;
(10) �A � r�r � A;

(11) r � r � 3;

(12) r� r � 0;

(13) r � �rÿ3r� � 0;

(14) dF � �dr � r�F� @F

@t
dt �F a diÿerentiable vector ®eld quantity);

(15) d' � dr � r'� @'

@t
dt (' a diÿerentiable scalar ®eld quantity).

Orthogonal curvilinear coordinates

Up to this point all calculations have been performed in rectangular Cartesian

coordinates. Many calculations in physics can be greatly simpli®ed by using,

instead of the familiar rectangular Cartesian coordinate system, another kind of
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system which takes advantage of the relations of symmetry involved in the parti-

cular problem under consideration. For example, if we are dealing with sphere, we

will ®nd it expedient to describe the position of a point in sphere by the spherical

coordinates (r; �; ��. Spherical coordinates are a special case of the orthogonal

curvilinear coordinate system. Let us now proceed to discuss these more general

coordinate systems in order to obtain expressions for the gradient, divergence,

curl, and Laplacian. Let the new coordinates u1; u2; u3 be de®ned by specifying the

Cartesian coordinates (x1; x2; x3) as functions of (u1; u2; u3�:
x1 � f �u1; u2; u3�; x2 � g�u1; u2; u3�; x3 � h�u1; u2; u3�; �1:54�

where f, g, h are assumed to be continuous, diÿerentiable. A point P (Fig. 1.16) in

space can then be de®ned not only by the rectangular coordinates (x1; x2; x3) but

also by curvilinear coordinates (u1; u2; u3).

If u2 and u3 are constant as u1 varies, P (or its position vector r) describes a curve

which we call the u1 coordinate curve. Similarly, we can de®ne the u2 and u3 coordi-

nate curves throughP.We adopt the convention that the new coordinate system is a

right handed system, like the old one. In the new system dr takes the form:

dr � @r

@u1
du1 �

@r

@u2
du2 �

@r

@u3
du3:

The vector @r=@u1 is tangent to the u1 coordinate curve at P. If û1is a unit vector

at P in this direction, then û1 � @r=@u1=j@r=@u1j, so we can write @r=@u1 � h1û1,

where h1 � j@r=@u1j. Similarly we can write @r=@u2 � h2û2 and @r=@u3 � h3û3
,

where h2 � j@r=@u2j and h3 � j@r=@u3j, respectively. Then dr can be written

dr � h1du1û1 � h2du2û2 � h3du3û3: �1:55�
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The quantities h1; h2; h3 are sometimes called scale factors. The unit vectors û1, û2,

û3 are in the direction of increasing u1; u2; u3, respectively.

If û1, û2, û3 are mutually perpendicular at any point P, the curvilinear coordi-

nates are called orthogonal. In such a case the element of arc length ds is given by

ds2 � dr � dr � h21du
2
1 � h22du

2
2 � h23du

2
3: �1:56�

Along a u1 curve, u2 and u3 are constants so that dr � h1du1û1. Then the

diÿerential of arc length ds1 along u1 at P is h1du1. Similarly the diÿerential arc

lengths along u2 and u3 at P are ds2 � h2du2, ds3 � h3du3 respectively.

The volume of the parallelepiped is given by

dV � j�h1du1û1� � �h2du2û2� � �h3du3û3�j � h1h2h3du1du2du3

since jû1 � û2 � û3j � 1. Alternatively dV can be written as

dV � @r

@u1
� @r

@u2
� @r

@u3

þþþþ
þþþþdu1du2du3 � @�x1; x2; x3�

@�u1; u2; u3�
þþþþ

þþþþdu1du2du3; �1:57�

where

J � @�x1; x2; x3�
@�u1; u2; u3�

�

@x1
@u1

@x1
@u2

@x1
@u3

@x2
@u1

@x2
@u2

@x2
@u3

@x3
@u1

@x3
@u2

@x3
@u3

þþþþþþþþþþþþþþ

þþþþþþþþþþþþþþ
is called the Jacobian of the transformation.

We assume that the Jacobian J 6� 0 so that the transformation (1.54) is one to

one in the neighborhood of a point.

We are now ready to express the gradient, divergence, and curl in terms of

u1; u2, and u3. If � is a scalar function of u1; u2, and u3, then the gradient takes the

form

r� � grad� � 1

h1

@�

@u1
û1 �

1

h2

@�

@u2
û2 �

1

h3

@�

@u3
û3: �1:58�

To derive this, let

r� � f1û1 � f2û2 � f3û3; �1:59�
where f1; f2; f3 are to be determined. Since

dr � @r

@u1
du1 �

@r

@u2
du2 �

@r

@u3
du3

� h1du1û1 � h2du2û2 � h3du3û3;
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we have

d� � r� � dr � h1 f1du1 � h2 f2du2 � h3 f3du3:

But

d� � @�

@u1
du1 �

@�

@u2
du2 �

@�

@u3
du3;

and on equating the two equations, we ®nd

fi �
1

hi

@�

@ui
; i � 1; 2; 3:

Substituting these into Eq. (1.57), we obtain the result Eq. (1.58).

From Eq. (1.58) we see that the operator r takes the form

r � û1
h1

@

@u1
� û2
h2

@

@u2
� û3
h3

@

@u3
: �1:60�

Because we will need them later, we now proceed to prove the following two

relations:

(a) jruij � hÿ1
i ; i � 1, 2, 3.

(b) û1 � h2h3ru2 �ru3 with similar equations for û2 and û3. (1.61)

Proof: (a) Let � � u1 in Eq. (1.51), we then obtain ru1 � û1=h1 and so

jru1j � jû1jhÿ1
1 � hÿ1

1 ; since jû1j � 1:

Similarly by letting � � u2 and u3, we obtain the relations for i � 2 and 3.

(b) From (a) we have

ru1 � û1=h1; ru2 � û2=h2; and ru3 � û3=h3:

Then

ru2 �ru3 �
û2 � û3
h2h3

� û1
h2h3

and û1 � h2h3ru2 �ru3:

Similarly

û2 � h3h1ru3 �ru1 and û3 � h1h2ru1 �ru2:

We are now ready to express the divergence in terms of curvilinear coordinates.

If A � A1û1 � A2û2 � A3û3 is a vector function of orthogonal curvilinear coordi-

nates u1, u2, and u3, the divergence will take the form

r � A � divA � 1

h1h2h3

@

@u1
�h2h3A1� �

@

@u2
�h3h1A2� �

@

@u3
�h1h2A3�

� �
: �1:62�

To derive (1.62), we ®rst write r � A as

r � A � r � �A1û1� � r � �A2û2� � r � �A3û3�; �1:63�
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then, because û1 � h1h2ru2 �ru3, we express r � �A1û1) as

r � �A1û1� � r � �A1h2h3ru2 �ru3� �û1 � h2h3ru2 �ru3�
� r�A1h2h3� � ru2 �ru3 � A1h2h3r � �ru2 �ru3�;

where in the last step we have used the vector identity: r � ��A� �
�r�� � A� ��r � A�. Now rui � ûi=hi; i � 1, 2, 3, so r � �A1û1) can be rewritten

as

r � �A1û1� � r�A1h2h3� �
û2
h2

� û3
h3

� 0 � r�A1h2h3� �
û1
h2h3

:

The gradient r�A1h2h3� is given by Eq. (1.58), and we have

r � �A1û1� �
û1
h1

@

@u1
�A1h2h3� �

û2
h2

@

@u2
�A1h2h3� �

û3
h3

@

@u3
�A1h2h3�

� �
� û1
h2h3

� 1

h1h2h3

@

@u1
�A1h2h3�:

Similarly, we have

r � �A2û2� �
1

h1h2h3

@

@u2
�A2h3h1�; and r � �A3û3� �

1

h1h2h3

@

@u3
�A3h2h1�:

Substituting these into Eq. (1.63), we obtain the result, Eq. (1.62).

In the same manner we can derive a formula for curl A. We ®rst write it as

r� A � r� �A1û1 � A2û2 � A3û3�

and then evaluate r� Aiûi.

Now ûi � hirui; i � 1, 2, 3, and we express r� �A1û1� as

r� �A1û1� � r � �A1h1ru1�
� r�A1h1� � ru1 � A1h1r�ru1

� r�A1h1� �
û1
h1

� 0

� û1
h1

@

@u1
A1h1� � � û2

h2

@

@u2
A2h2� � � û3

h3

@

@u3
A3h3� �

� �
� û1
h1

� û2
h3h1

@

@u3
A1h1� � ÿ û3

h1h2

@

@u2
�A1h1�;
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with similar expressions for r� �A2û2� and r� �A3û3�. Adding these together,

we get r� A in orthogonal curvilinear coordinates:

r� A � û1
h2h3

@

@u2
A3h3� � ÿ @

@u3
A2h2� �

� �
� û2
h3h1

@

@u3
A1h1� � ÿ @

@u1
A3h3� �

� �

� û3
h1h2

@

@u1
A2h2� � ÿ @

@u2
�A1h1�

� �
: �1:64�

This can be written in determinant form:

r� A � 1

h1h2h3

h1û1 h2û2 h3û3

@

@u1

@

@u2

@

@u3

A1h1 A2h2 A3h3

þþþþþþþþþþ

þþþþþþþþþþ
: �1:65�

We now express the Laplacian in orthogonal curvilinear coordinates. From

Eqs. (1.58) and (1.62) we have

r� � grad� � 1

h1

@�

@u1
û1 �

1

h2

@�

@u2
û� 1

h3

@�

@u3
û3;

r � A � divA � 1

h1h2h3

@

@u1
�h2h3A1� �

@

@u2
�h3h1A2� �

@

@u3
�h1h2A3�

� �
:

If A � r�, then Ai � �1=hi�@�=@ui, i � 1, 2, 3; and

r � A � r � r� � r2�

� 1

h1h2h3

@

@u1

h2h3
h1

@�

@u1

� �
� @

@u2

h3h1
h2

@�

@u2

� �
� @

@u3

h1h2
h3

@�

@u3

� �� �
: �1:66�

Special orthogonal coordinate systems

There are at least nine special orthogonal coordinates systems, the most common

and useful ones are the cylindrical and spherical coordinates; we introduce these

two coordinates in this section.

Cylindrical coordinates ��; �; z�

u1 � �; u2 � �; u3 � z; and û1 � e�; û2 � e�û3 � ez:

From Fig. 1.17 we see that

x1 � � cos�; x2 � � sin�; x3 � z
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where

� � 0; 0 � � � 2�;ÿ1 < z < 1:

The square of the element of arc length is given by

ds2 � h21�d��2 � h22�d��2 � h23�dz�2:
To ®nd the scale factors hi, we notice that ds2 � dr � dr where

r � � cos�e1 � � sin�e2 � ze3:

Thus

ds2 � dr � dr � �d��2 � �2�d��2 � �dz�2:
Equating the two ds2, we ®nd the scale factors:

h1 � h� � 1; h2 � h� � �; h3 � hz � 1: �1:67�
From Eqs. (1.58), (1.62), (1.64), and (1.66) we ®nd the gradient, divergence, curl,

and Laplacian in cylindrical coordinates:

r� � @�

@�
e� �

1

�

@�

@�
e� �

@�

@z
ez; �1:68�

where � � ���; �; z� is a scalar function;

r � A � 1

�

@

@�
��A�� �

@A�

@�
� @

@z
��Az�

� �
; �1:69�
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Figure 1.17. Cylindrical coordinates.



where

A � A�e� � A�e� � Azez;

r� A � 1

�

e� �e� ez

@

@�

@

@�

@

@z

A� �A� Az

þþþþþþþþþþ

þþþþþþþþþþ
; �1:70�

and

r2� � 1

�

@

@�
�
@�

@�

� �
� 1

�2
@2�

@�2
� @2�

@z2
: �1:71�

Spherical coordinates �r; �; ��

u1 � r; u2 � �; u3 � �; û1 � er; û2 � e�; û3 � e�

From Fig. 1.18 we see that

x1 � r sin � cos�; x2 � r sin � sin�; x3 � r cos �:

Now

ds2 � h21�dr�2 � h22�d��2 � h23�d��2

but

r � r sin � cos�ê1 � r sin � sin�ê2 � r cos �ê3;
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Figure 1.18. Spherical coordinates.



so

ds2 � dr � dr � �dr�2 � r2�d��2 � r2 sin2 ��d��2:

Equating the two ds2, we ®nd the scale factors: h1 � hr � 1, h2 � h� � r,

h3 � h� � r sin �. We then ®nd, from Eqs. (1.58), (1.62), (1.64), and (1.66), the

gradient, divergence, curl, and the Laplacian in spherical coordinates:

r� � êr
@�

@r
� ê�

1

r

@�

@�
� ê�

1

r sin �

@�

@�
; �1:72�

r � A � 1

r2 sin �
sin �

@

@r
�r2Ar� � r

@

@�
�sin �A�� � r

@A�

@�

� �
; �1:73�

r � A � 1

r2 sin �

êr rê� r sin �ê�

@

@r

@

@�

@

@�

Ar rAr r sin �A�

þþþþþþþþþþ

þþþþþþþþþþ
; �1:74�

r2� � 1

r2 sin �
sin �

@

@r
r2
@�

@r

� �
� @

@�
sin �

@�

@�

� �
� 1

sin �

@2�

@�2

" #
: �1:75�

Vector integration and integral theorems

Having discussed vector diÿerentiation, we now turn to a discussion of vector

integration. After de®ning the concepts of line, surface, and volume integrals of

vector ®elds, we then proceed to the important integral theorems of Gauss,

Stokes, and Green.

The integration of a vector, which is a function of a single scalar u, can proceed

as ordinary scalar integration. Given a vector

A�u� � A1�u�ê1 � A2�u�ê2 � A3�u�ê3;

then Z
A�u�du � ê1

Z
A1�u�du� ê2

Z
A2�u�du� ê3

Z
A3�u�du� B;

where B is a constant of integration, a constant vector. Now consider the integral

of the scalar product of a vector A�x1; x2; x3) and dr between the limit

P1�x1;x2; x3) and P2�x1; x2; x3�:

35

VECTOR INTEGRATION AND INTEGRAL THEOREMS



Z P2

P1

A � dr �
Z P2

P1

�A1ê1 � A2ê2 � A3ê3� � �dx1ê1 � dx2ê2 � dx3ê3�

�
Z P2

P1

A1�x1; x2;x3�dx1 �
Z P2

P1

A2�x1; x2; x3�dx2

�
Z P2

P1

A3�x1; x2; x3�dx3:

Each integral on the right hand side requires for its execution more than a knowl-

edge of the limits. In fact, the three integrals on the right hand side are not

completely de®ned because in the ®rst integral, for example, we do not the

know value of x2 and x3 in A1:

I1 �
Z P2

P1

A1�x1; x2; x3�dx1: �1:76�

What is needed is a statement such as

x2 � f �x1�; x3 � g�x1� �1:77�

that speci®es x2, x3 for each value of x1. The integrand now reduces to

A1�x1; x2; x3� � A1�x1; f �x1�; g�x1�� � B1�x1� so that the integral I1 becomes

well de®ned. But its value depends on the constraints in Eq. (1.77). The con-

straints specify paths on the x1x2 and x3x1 planes connecting the starting point

P1 to the end point P2. The x1 integration in (1.76) is carried out along these

paths. It is a path-dependent integral and is called a line integral (or a path

integral). It is very helpful to keep in mind that: when the number of integration

variables is less than the number of variables in the integrand, the integral is not yet

completely de®ned and it is path-dependent. However, if the scalar product A � dr is
equal to an exact diÿerential, A � dr � d' � r' � dr, the integration depends only

upon the limits and is therefore path-independent:Z P2

P1

A � dr �
Z P2

P1

d' � '2 ÿ '1:

A vector ®eld A which has above (path-independent) property is termed conser-

vative. It is clear that the line integral above is zero along any close path, and the

curl of a conservative vector ®eld is zero �r � A � r� �r'� � 0�. A typical

example of a conservative vector ®eld in mechanics is a conservative force.

The surface integral of a vector function A�x1; x2; x3� over the surface S is an

important quantity; it is de®ned to beZ
S

A � da;
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where the surface integral symbol
R
s stands for a double integral over a certain

surface S, and da is an element of area of the surface (Fig. 1.19), a vector quantity.

We attribute to da a magnitude da and also a direction corresponding the normal,

n̂, to the surface at the point in question, thus

da � n̂da:

The normal n̂ to a surface may be taken to lie in either of two possible directions.

But if da is part of a closed surface, the sign of n̂ relative to da is so chosen that it

points outward away from the interior. In rectangular coordinates we may write

da � ê1da1 � ê2da2 � ê3da3 � ê1dx2dx3 � ê2dx3dx1 � ê3dx1dx2:

If a surface integral is to be evaluated over a closed surface S, the integral is

written as I
S

A � da:

Note that this is diÿerent from a closed-path line integral. When the path of

integration is closed, the line integral is write it asI
ÿ
^ A � ds;

where ÿ speci®es the closed path, and ds is an element of length along the given

path. By convention, ds is taken positive along the direction in which the path is

traversed. Here we are only considering simple closed curves. A simple closed

curve does not intersect itself anywhere.

Gauss' theorem (the divergence theorem)

This theorem relates the surface integral of a given vector function and the volume

integral of the divergence of that vector. It was introduced by Joseph Louis

Lagrange and was ®rst used in the modern sense by George Green. Gauss'
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Figure 1.19. Surface integral over a surface S.



name is associated with this theorem because of his extensive work on general

problems of double and triple integrals.

If a continuous, diÿerentiable vector ®eld A is de®ned in a simply connected

region of volume V bounded by a closed surface S, then the theorem states thatZ
V

r � AdV �
I
S

A � da; �1:78�

where dV � dx1dx2dx3. A simple connected region V has the property that every

simple closed curve within it can be continuously shrunk to a point without

leaving the region. To prove this, we ®rst writeZ
V

r � AdV �
Z
V

X3
i�1

@Ai

@xi
dV;

then integrate the right hand side with respect to x1 while keeping x2x3 constant,

thus summing up the contribution from a rod of cross section dx2dx3 (Fig. 1.20).

The rod intersects the surface S at the points P and Q and thus de®nes two

elements of area daP and daQ:Z
V

@A1

@x1
dV �

I
S

dx2dx3

Z Q

P

@A1

@x1
dx1 �

I
S

dx2dx3

Z Q

P

dA1;

where we have used the relation dA1 � �@A1=@x1�dx1 along the rod. The last

integration on the right hand side can be performed at once and we haveZ
V

@A1

@x1
dV �

I
S

�A1�Q� ÿ A1�P��dx2dx3;

where A1�Q� denotes the value of A1 evaluated at the coordinates of the point Q,

and similarly for A1�P�.
The component of the surface element da which lies in the x1-direction is

da1 � dx2dx3 at the point Q, and da1 � ÿdx2dx3 at the point P. The minus sign
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Figure 1.20. A square tube of cross section dx2dx3.



arises since the x1 component of da at P is in the direction of negative x1. We can

now rewrite the above integral asZ
V

@A1

@x1
dV �

Z
SQ

A1�Q�da1 �
Z
SP

A1�P�da1;

where SQ denotes that portion of the surface for which the x1 component of the

outward normal to the surface element da1 is in the positive x1-direction, and SP

denotes that portion of the surface for which da1 is in the negative direction. The

two surface integrals then combine to yield the surface integral over the entire

surface S (if the surface is su�ciently concave, there may be several such as right

hand and left hand portions of the surfaces):Z
V

@A1

@x1
dV �

I
S

A1da1:

Similarly we can evaluate the x2 and x3 components. Summing all these together,

we have Gauss' theorem:Z
V

X
i

@Ai

@xi
dV �

I
S

X
i

Aidai or

Z
V

r � AdV �
I
S

A � da:

We have proved Gauss' theorem for a simply connected region (a volume

bounded by a single surface), but we can extend the proof to a multiply connected

region (a region bounded by several surfaces, such as a hollow ball). For inter-

ested readers, we recommend the book Electromagnetic Fields, Roald K.

Wangsness, John Wiley, New York, 1986.

Continuity equation

Consider a ¯uid of density ��r� which moves with velocity v(r) in a certain region.

If there are no sources or sinks, the following continuity equation must be satis-

®ed:

@��r�=@t�r � j�r� � 0; �1:79�
where j is the current

j�r� � ��r�v�r� �1:79a�
and Eq. (1.79) is called the continuity equation for a conserved current.

To derive this important equation, let us consider an arbitrary surface S enclos-

ing a volume V of the ¯uid. At any time the mass of ¯uid within V is M � R
V �dV

and the time rate of mass increase (due to mass ¯owing into V ) is

@M

@t
� @

@t

Z
V

�dV �
Z
V

@�

@t
dV ;
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while the mass of ¯uid leaving V per unit time isZ
S

�v � n̂ds �
Z
V

r � ��v�dV ;

where Gauss' theorem is used in changing the surface integral to volume integral.

Since there is neither a source nor a sink, mass conservation requires an exact

balance between these eÿects:Z
V

@�

@t
dV � ÿ

Z
V

r � ��v�dV ; or

Z
V

@�

@t
�r � ��v�

� �
dV � 0:

Also since V is arbitrary, mass conservation requires that the continuity equation

@�

@t
�r � ��v� � @�

@t
r � j � 0

must be satis®ed everywhere in the region.

Stokes' theorem

This theorem relates the line integral of a vector function and the surface integral

of the curl of that vector. It was ®rst discovered by Lord Kelvin in 1850 and

rediscovered by George Gabriel Stokes four years later.

If a continuous, diÿerentiable vector ®eld A is de®ned a three-dimensional

region V, and S is a regular open surface embedded in V bounded by a simple

closed curve ÿ, the theorem states thatZ
S

r� A � da �
I
ÿ

A � dl; �1:80�

where the line integral is to be taken completely around the curve ÿ and dl is an

element of line (Fig. 1.21).
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Figure 1.21. Relation between da and dl in de®ning curl.



The surface S, bounded by a simple closed curve, is an open surface; and the

normal to an open surface can point in two opposite directions. We adopt the

usual convention, namely the right hand rule: when the ®ngers of the right hand

follow the direction of dl, the thumb points in the da direction, as shown in Fig.

1.21.

Note that Eq. (1.80) does not specify the shape of the surface S other than that

it be bounded by ÿ; thus there are many possibilities in choosing the surface. But

Stokes' theorem enables us to reduce the evaluation of surface integrals which

depend upon the shape of the surface to the calculation of a line integral which

depends only on the values of A along the common perimeter.

To prove the theorem, we ®rst expand the left hand side of Eq. (1.80); with the

aid of Eq. (1.50), it becomesZ
S

r� A � da �
Z
S

@A1

@x3
da2 ÿ

@A1

@x2
da3

� �
�
Z
S

@A2

@x1
da3 ÿ

@A2

@x3
da1

� �

�
Z
S

@A3

@x2
da1 ÿ

@A3

@x1
da2

� �
; �1:81�

where we have grouped the terms by components of A. We next subdivide the

surface S into a large number of small strips, and integrate the ®rst integral on the

right hand side of Eq. (1.81), denoted by I1, over one such a strip of width dx1,

which is parallel to the x2x3 plane and a distance x1 from it, as shown in Fig. 1.21.

Then, by integrating over x1, we sum up the contributions from all of the strips.

Fig. 1.21 also shows the projections of the strip on the x1x3 and x1x2 planes that

will help us to visualize the orientation of the surface. The element area da is

shown at an intermediate stage of the integration, when the direction angles have

values such that � and ÿ are less than 908 and þ is greater than 908. Thus,

da2 � ÿdx1dx3 and da3 � dx1dx2 and we can write

I1 � ÿ
Z
strips

dx1

Z Q

P

@A1

@x2
dx2 �

@A1

@x3
dx3

� �
: �1:82�

Note that dx2 and dx3 in the parentheses are not independent because x2 and x3
are related by the equation for the surface S and the value of x1 involved. Since

the second integral in Eq. (1.82) is being evaluated on the strip from P to Q for

which x1 � const., dx1 � 0 and we can add �@A1=@x1�dx1 � 0 to the integrand to

make it dA1:

@A1

@x1
dx1 �

@A1

@x2
dx2 �

@A1

@x3
dx3 � dA1:

And Eq. (1.82) becomes

I1 � ÿ
Z
strips

dx1

Z Q

P

dA1 �
Z
strips

A1�P� ÿ A1�Q�� �dx1:
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Next we consider the line integral of A around the lines bounding each of the

small strips. If we trace each one of these lines in the same sense as we trace the

path ÿ, then we will trace all of the interior lines twice (once in each direction) and

all of the contributions to the line integral from the interior lines will cancel,

leaving only the result from the boundary line ÿ. Thus, the sum of all of the

line integrals around the small strips will equal the line integral ÿ of A1:Z
S

@A1

@x3
da2 ÿ

@A1

@x2
da3

� �
�

I
ÿ

A1dl1: �1:83�

Similarly, the last two integrals of Eq. (1.81) can be shown to have the respective

values I
ÿ

A2dl2 and

I
ÿ

A3dl3:

Substituting these results and Eq. (1.83) into Eq. (1.81) we obtain Stokes'

theorem: Z
S

r� A � da �
I
ÿ

�A1dl1 � A2dl2 � A3dl3� �
I
ÿ

A � dl:

Stokes' theorem in Eq. (1.80) is valid whether or not the closed curve ÿ lies in a

plane, because in general the surface S is not a planar surface. Stokes' theorem

holds for any surface bounded by ÿ.

In ¯uid dynamics, the curl of the velocity ®eld v�r� is called its vorticity (for

example, the whirls that one creates in a cup of coÿee on stirring it). If the velocity

®eld is derivable from a potential

v�r� � ÿr��r�
it must be irrotational (see Eq. (1.51)). For this reason, an irrotational ¯ow is also

called a potential ¯ow, which describes a steady ¯ow of the ¯uid, free of vortices

and eddies.

One of Maxwell's equations of electromagnetism (AmpeÁ re's law) states that

r� B � �0j;

where B is the magnetic induction, j is the current density (per unit area), and �0 is

the permeability of free space. From this equation, current densities may be

visualized as vortices of B. Applying Stokes' theorem, we can rewrite AmpeÁ re's

law as I
ÿ

B � dr � �0

Z
S

j � da � �0I ;

it states that the circulation of the magnetic induction is proportional to the total

current I passing through the surface S enclosed by ÿ.
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Green's theorem

Green's theorem is an important corollary of the divergence theorem, and it

has many applications in many branches of physics. Recall that the divergence

theorem Eq. (1.78) states thatZ
V

r � AdV �
I
S

A � da:

Let A � ýB, where ý is a scalar function and B a vector function, then r � A
becomes

r � A � r � �ýB� � ýr � B� B � rý:

Substituting these into the divergence theorem, we haveI
S

ýB � da �
Z
V

�ýr � B� B � rý�dV : �1:84�

If B represents an irrotational vector ®eld, we can express it as a gradient of a

scalar function, say, ':

B � r':

Then Eq. (1.84) becomesI
S

ýB � da �
Z
V

�ýr � �r'� � �r'� � �rý��dV : �1:85�

Now

B � da � �r'� � n̂da:
The quantity �r'� � n̂ represents the rate of change of � in the direction of the

outward normal; it is called the normal derivative and is written as

�r'� � n̂ � @'=@n:

Substituting this and the identity r � �r'� � r2' into Eq. (1.85), we haveI
S

ý
@'

@n
da �

Z
V

�ýr2'�r' � rý�dV : �1:86�

Eq. (1.86) is known as Green's theorem in the ®rst form.

Now let us interchange ' and ý, then Eq. (1.86) becomesI
S

'
@ý

@n
da �

Z
V

�'r2ý�r' � rý�dV :

Subtracting this from Eq. (1.85):I
S

ý
@'

@n
ÿ '

@ý

@n

� �
da �

Z
V

ýr2'ÿ 'r2ý
ÿ �

dV : �1:87�
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This important result is known as the second form of Green's theorem, and has

many applications.

Green's theorem in the plane

Consider the two-dimensional vector ®eld A � M�x1; x2�ê1 �N�x1; x2�ê2. From
Stokes' theoremI

ÿ

A � dr �
Z
S

r� A � da �
Z
S

@N

@x1
ÿ @M

@x2

� �
dx1dx2; �1:88�

which is often called Green's theorem in the plane.

Since
H
ÿ A � dr � H

ÿ�Mdx1 �Ndx2�, Green's theorem in the plane can be writ-

ten as I
ÿ

Mdx1 �Ndx2 �
Z
S

@N

@x1
ÿ @M

@x2

� �
dx1dx2: �1:88a�

As an illustrative example, let us apply Green's theorem in the plane to show

that the area bounded by a simple closed curve ÿ is given by

1

2

I
ÿ

x1dx2 ÿ x2dx1:

Into Green's theorem in the plane, let us put M � ÿx2;N � x1, givingI
ÿ

x1dx2 ÿ x2dx1 �
Z
S

@

@x1
x1 ÿ

@

@x2
�ÿx2�

� �
dx1dx2 � 2

Z
S

dx1dx2 � 2A;

where A is the required area. Thus A � 1
2

H
ÿ x1dx2 ÿ x2dx1.

Helmholtz's theorem

The divergence and curl of a vector ®eld play very important roles in physics. We

learned in previous sections that a divergence-free ®eld is solenoidal and a curl-

free ®eld is irrotational. We may classify vector ®elds in accordance with their

being solenoidal and/or irrotational. A vector ®eld V is:

(1) Solenoidal and irrotational if r � V � 0 and r� V � 0. A static electric

®eld in a charge-free region is a good example.

(2) Solenoidal if r � V � 0 but r� V 6� 0. A steady magnetic ®eld in a current-

carrying conductor meets these conditions.

(3) Irrotational if r� V � 0 but r � V � 0. A static electric ®eld in a charged

region is an irrotational ®eld.

The most general vector ®eld, such as an electric ®eld in a charged medium with

a time-varying magnetic ®eld, is neither solenoidal nor irrotational, but can be
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considered as the sum of a solenoidal ®eld and an irrotational ®eld. This is made

clear by Helmholtz's theorem, which can be stated as (C. W. Wong: Introduction

to Mathematical Physics, Oxford University Press, Oxford 1991; p. 53):

A vector ®eld is uniquely determined by its divergence and curl in

a region of space, and its normal component over the boundary

of the region. In particular, if both divergence and curl are

speci®ed everywhere and if they both disappear at in®nity

su�ciently rapidly, then the vector ®eld can be written as a

unique sum of an irrotational part and a solenoidal part.

In other words, we may write

V�r� � ÿr��r� � r � A�r�; �1:89�
where ÿr� is the irrotational part and r� A is the solenoidal part, and �(r) and

A�r� are called the scalar and the vector potential, respectively, of V�r). If both A

and � can be determined, the theorem is veri®ed. How, then, can we determine A

and �? If the vector ®eld V�r� is such that

r � V�r� � �; and r� V�r� � v;

then we have

r � V�r� � � � ÿr � �r�� � r � �r � A�
or

r2� � ÿ�;

which is known as Poisson's equation. Next, we have

r� V�r� � v � r� �ÿr��r� A�r��
or

r2A � v;

or in component, we have

r2Ai � vi; i � 1; 2; 3

where these are also Poisson's equations. Thus, both A and � can be determined

by solving Poisson's equations.

Some useful integral relations

These relations are closely related to the general integral theorems that we have

proved in preceding sections.

(1) The line integral along a curve C between two points a and b is given byZ b

a

r�� � � dl � ��b� ÿ ��a�: �1:90�
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Proof: Z b

a

r�� � � dl �
Z b

a

@�

@x
î � @�

@y
ĵ � @�

@z
k̂

� �
� �dxî � dyĵ � dzk̂�

�
Z b

a

@�

@x
dx� @�

@y
dy� @�

@z
dz

� �

�
Z b

a

@�

@x

dx

dt
� @�

@y

dy

dt
� @�

@z

dz

dt

� �
dt

�
Z b

a

d�

dt

� �
dt � ��b� ÿ ��a�:

�2�
I
S

@'

@n
da �

Z
V

r2'dV : �1:91�

Proof: Set ý � 1 in Eq. (1.87), then @ý=@n � 0 � r2ý and Eq. (1.87) reduces to

Eq. (1.91).

�3�
Z
V

r'dV �
I
S

'n̂da: �1:92�

Proof: In Gauss' theorem (1.78), let A � 'C, where C is constant vector. Then

we have Z
V

r � �'C�dV �
Z
S

'C � n̂da:

Since

r � �'C� � r' � C � C � r' and 'C � n̂ � C � �'n̂�;
we have Z

V

C � r'dV �
Z
S

C � �'n̂�da:

Taking C outside the integrals,

C �
Z
V

r'dV � C �
Z
S

�'n̂�da

and since C is an arbitrary constant vector, we haveZ
V

r'dV �
I
S

'n̂da:

�4�
Z
V

r� BdV �
Z
S

n̂� Bda �1:93�
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Proof: In Gauss' theorem (1.78), let A � B� C where C is a constant vector. We

then have Z
V

r � �B� C�dV �
Z
S

�B� C� � n̂da:

Since r � �B� C� � C � �r � B� and �B� C� � n̂ � B � �C� n̂� � �C� n̂� � B �
C � �n̂� B�; Z

V

C � �r � B�dV �
Z
S

C � �n̂� B�da:

Taking C outside the integrals

C �
Z
V

�r � B�dV � C �
Z
S

�n̂� B�da

and since C is an arbitrary constant vector, we haveZ
V

r� BdV �
Z
S

n̂� Bda:

Tensor analysis

Tensors are a natural generalization of vectors. The beginnings of tensor analysis

can be traced back more than a century to Gauss' works on curved surfaces.

Today tensor analysis ®nds applications in theoretical physics (for example, gen-

eral theory of relativity, mechanics, and electromagnetic theory) and to certain

areas of engineering (for example, aerodynamics and ¯uid mechanics). The gen-

eral theory of relativity uses tensor calculus of curved space-time, and engineers

mainly use tensor calculus of Euclidean space. Only general tensors are

considered in this section. The general de®nition of a tensor is given, followed

by a concise discussion of tensor algebra and tensor calculus (covariant diÿeren-

tiation).

Tensors are de®ned by means of their properties of transformation under

coordinate transformation. Let us consider the transformation from one coordi-

nate system �x1; x2; . . . ; xN� to another �x 01; x 02; . . . ; x 0N� in an N-dimensional

space VN . Note that in writing x�, the index � is a superscript and should not

be mistaken for an exponent. In three-dimensional space we use subscripts. We

now use superscripts in order that we may maintain a `balancing' of the indices in

all the general equations. The meaning of `balancing' will become clear a little

later. When we transform the coordinates, their diÿerentials transform according

to the relation

dx� � @x�

@x 0� dx
0�: �1:94�
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Here we have used Einstein's summation convention: repeated indexes which

appear once in the lower and once in the upper position are automatically

summed over. Thus,

XN
��1

A�A
� �A�A

�:

It is important to remember that indexes repeated in the lower part or upper part

alone are not summed over. An index which is repeated and over which summa-

tion is implied is called a dummy index. Clearly, a dummy index can be replaced

by any other index that does not appear in the same term.

Contravariant and covariant vectors

A set of N quantities A��� � 1; 2; . . . ;N� which, under a coordinate change,

transform like the coordinate diÿerentials, are called the components of a contra-

variant vector or a contravariant tensor of the ®rst rank or ®rst order:

A� � @x�

@x 0� A
0�: �1:95�

This relation can easily be inverted to express A 0� in terms of A�. We shall leave

this as homework for the reader (Problem 1.32).

If N quantities A��� � 1; 2; . . . ;N� in a coordinate system �x1; x2; . . . ; xN� are
related to N other quantities A 0

��� � 1; 2; . . . ;N� in another coordinate system

�x 01; x 02; . . . ; x 0N� by the transformation equations

A� � @x
0 �

@x�
A� �1:96�

they are called components of a covariant vector or covariant tensor of the ®rst

rank or ®rst order.

One can show easily that velocity and acceleration are contravariant vectors

and that the gradient of a scalar ®eld is a covariant vector (Problem 1.33).

Instead of speaking of a tensor whose components are A� or A� we shall simply

refer to the tensor A� or A�.

Tensors of second rank

From two contravariant vectors A� and B� we may form the N2 quantities A�B�.

This is known as the outer product of tensors. These N2 quantities form the

components of a contravariant tensor of the second rank: any aggregate of N2

quantities T�� which, under a coordinate change, transform like the product of
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two contravariant vectors

T�� � @x�

@x 0�
@x�

@x 0þ T
0
�þ; �1:97�

is a contravariant tensor of rank two. We may also form a covariant tensor of

rank two from two covariant vectors, which transforms according to the formula

T�� �
@x 0�
@x�

@x 0þ
@x�

T 0
�þ: �1:98�

Similarly, we can form a mixed tensor T�
� of order two that transforms as

follows:

T�
� �

@x�

@x 0�
@x 0þ
@x�

T 0�
þ: �1:99�

We may continue this process and multiply more than two vectors together,

taking care that their indexes are all diÿerent. In this way we can construct tensors

of higher rank. The total number of free indexes of a tensor is its rank (or order).

In a Cartesian coordinate system, the distinction between the contravariant and

the covariant tensors vanishes. This can be illustrated with the velocity and

gradient vectors. Velocity and acceleration are contravariant vectors, they are

represented in terms of components in the directions of coordinate increase; the

gradient vector is a covariant vector and it is represented in terms of components

in the directions orthogonal to the constant coordinate surfaces. In a Cartesian

coordinate system, the coordinate direction x� coincides with the direction ortho-

gonal to the constant-x� surface, hence the distinction between the covariant and

the contravariant vectors vanishes. In fact, this is the essential diÿerence between

contravariant and covariant tensors: a covariant tensor is represented by com-

ponents in directions orthogonal to like constant coordinate surface, and a

contravariant tensor is represented by components in the directions of coordinate

increase.

If two tensors have the same contravariant rank and the same covariant rank,

we say that they are of the same type.

Basic operations with tensors

(1) Equality: Two tensors are said to be equal if and only if they have the same

covariant rank and the same contravariant rank, and every component of

one is equal to the corresponding component of the other:

A�þ
� � B�þ

�:
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(2) Addition (subtraction): The sum (diÿerence) of two or more tensors of the

same type and rank is also a tensor of the same type and rank. Addition of

tensors is commutative and associative.

(3) Outer product of tensors: The product of two tensors is a tensor whose rank

is the sum of the ranks of the given two tensors. This product involves

ordinary multiplication of the components of the tensor and it is called

the outer product. For example, A�
��Bþ

� � C��
��þ is the outer product

of A�
�� and Bþ

�.

(4) Contraction: If a covariant and a contravariant index of a mixed tensor are

set equal, a summation over the equal indices is to be taken according to the

summation convention. The resulting tensor is a tensor of rank two less than

that of the original tensor. This process is called contraction. For example, if

we start with a fourth-order tensor T�
��

�, one way of contracting it is to set

� � �, which gives the second rank tensor T�
��

�. We could contract it again

to get the scalar T�
��

�.

(5) Inner product of tensors: The inner product of two tensors is produced by

contracting the outer product of the tensors. For example, given two tensors

A�þ
� and B�

�, the outer product is A�þ
�B

�
� . Setting � � �, we obtain the

inner product A�þ
�B

�
�.

(6) Symmetric and antisymmetric tensors: A tensor is called symmetric with

respect to two contravariant or two covariant indices if its components

remain unchanged upon interchange of the indices:

A�þ � Aþ�;A�þ � Aþ�:

A tensor is called anti-symmetric with respect to two contravariant or two

covariant indices if its components change sign upon interchange of the

indices:

A�þ � ÿAþ�;A�þ � ÿAþ�:

Symmetry and anti-symmetry can be de®ned only for similar indices, not

when one index is up and the other is down.

Quotient law

A quantity Q�...
�... with various up and down indexes may or may not be a tensor.

We can test whether it is a tensor or not by using the quotient law, which can be

stated as follows:

Suppose it is not known whether a quantity X is a tensor or not.

If an inner product of X with an arbitrary tensor is a tensor, then

X is also a tensor.

50

VECTOR AND TENSOR ANALYSIS



As an example, let X � P���;A
� be an arbitrary contravariant vector, and A�P���

be a tensor, say Q��: A
�P��� � Q��, then

A�P��� �
@x 0�

@x�
@x 0þ

@x�
A 0ÿP 0

ÿ�þ:

But

A 0ÿ � @x 0ÿ

@x�
A�

and so

A�P��� �
@x 0�

@x�
@x 0þ

@x�
@x 0ÿ

@x�
A 0�P 0

ÿ�þ:

This equation must hold for all values of A�, hence we have, after canceling the

arbitrary A�,

P��� �
@x 0�

@x�
@x 0þ

@x�
@x 0ÿ

@x�
P 0

ÿ�þ;

which shows that P��� is a tensor (contravariant tensor of rank 3).

The line element and metric tensor

So far covariant and contravariant tensors have nothing to do each other except

that their product is an invariant:

A 0
�B

0� � @x�

@x 0�
@x 0�

@xþ
A�A

þ � @x�

@xþ
A�A

þ � ��þA�A
þ � A�A

�:

A space in which covariant and contravariant tensors exist separately is called

a�ne. Physical quantities are independent of the particular choice of the mode

of description (that is, independent of the possible choice of contravariance or

covariance). Such a space is called a metric space. In a metric space, contravariant

and covariant tensors can be converted into each other with the help of the metric

tensor g�� . That is, in metric spaces there exists the concept of a tensor that may be

described by covariant indices, or by contravariant indices. These two descrip-

tions are now equivalent.

To introduce the metric tensor g�� , let us consider the line element in VN . In

rectangular coordinates the line element (the diÿerential of arc length) ds is given by

ds2 � dx2 � dy2 � dz2 � �dx1�2 � �dx2�2 � �dx3�2;
there are no cross terms dxidx j . In curvilinear coordinates ds2 cannot be repre-

sented as a sum of squares of the coordinate diÿerentials. As an example, in

spherical coordinates we have

ds2 � dr2 � r2d�2 � r2 sin2 �d�2

which can be in a quadratic form, with x1 � r; x2 � �; x3 � �.
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A generalization to VN is immediate. We de®ne the line element ds in VN to be

given by the following quadratic form, called the metric form, or metric

ds2 �
X3
��1

X3
��1

g��dx
�dx� � g��dx

�dx�: �1:100�

For the special cases of rectangular coordinates and spherical coordinates, we

have

~g � �g��� �
1 0 0

0 1 0

0 0 1

0
B@

1
CA; ~g � �g��� �

1 0 0

0 r2 0

0 0 r2 sin2 �

0
B@

1
CA: �1:101�

In an N-dimensional orthogonal coordinate system g�� � 0 for � 6� �. And in a

Cartesian coordinate system g�� � 1 and g�� � 0 for � 6� �. In the general case of

Riemannian space, the g�� are functions of the coordinates x��� � 1; 2; . . . ;N�.
Since the inner product of g�� and the contravariant tensor dx�dx� is a scalar

(ds2, the square of line element), then according to the quotient law g�� is a

covariant tensor. This can be demonstrated directly:

ds2 � g�þdx
�dxþ � g 0

�þdx
0�dx 0þ:

Now dx 0� � �@x 0�=@x��dx�; so that

g 0
�þ

@x 0�

@x�
@x 0þ

@x�
dx�dx� � g��dx

�dx�

or

g 0
�þ

@x 0�

@x�
@x 0þ

@x�
ÿ g��

ý !
dx�dx� � 0:

The above equation is identically zero for arbitrary dx�, so we have

g�� �
@x 0�

@x�
@x 0þ

@x�
g 0
�þ; �1:102�

which shows that g�� is a covariant tensor of rank two. It is called the metric

tensor or the fundamental tensor.

Now contravariant and covariant tensors can be converted into each other with

the help of the metric tensor. For example, we can get the covariant vector (tensor

of rank one) A� from the contravariant vector A�:

A� � g��A
�: �1:103�

Since we expect that the determinant of g�� does not vanish, the above equations

can be solved for A� in terms of the A�. Let the result be

A� � g��A�: �1:104�
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By combining Eqs. (1.103) and (1.104) we get

A� � g��g
��A�:

Since the equation must hold for any arbitrary A�, we have

g��g
�� � ��

� ; �1:105�

where ��
� is Kronecker's delta symbol. Thus, g�� is the inverse of g�� and vice

versa; g�� is often called the conjugate or reciprocal tensor of g��. But remember

that g�� and g�� are the contravariant and covariant components of the same

tensor, that is the metric tensor. Notice that the matrix (g��) is just the inverse of

the matrix (g��).

We can use g�� to lower any upper index occurring in a tensor, and use g�� to

raise any lower index. It is necessary to remember the position from which the

index was lowered or raised, because when we bring the index back to its original

site, we do not want to interchange the order of indexes, in general T�� 6� T��.

Thus, for example

Ap
q � grpArq;A

pq � grpgsqArs;A
p
rs � grqA

pq
s:

Associated tensors

All tensors obtained from a given tensor by forming an inner product with the

metric tensor are called associated tensors of the given tensor. For example, A�

and A� are associated tensors:

A� � g�þA
þ; A� � g�þAþ:

Geodesics in a Riemannian space

In a Euclidean space, the shortest path between two points is a straight line

joining the two points. In a Riemannian space, the shortest path between two

points, called the geodesic, may be a curved path. To ®nd the geodesic, let us

consider a space curve in a Riemannian space given by x� � f ��t� and compute

the distance between two points of the curve, which is given by the formula

s �
Z Q

P

����������������������
g��dx

�dx�
q

�
Z t2

t1

����������������������
g��d _x�d _x�

q
dt; �1:106�

where d _x� � dx�=dt, and t (a parameter) varies from point to point of the geo-

desic curve described by the relations which we are seeking. A geodesic joining
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two points P and Q has a stationary value compared with any other neighboring

path that connects P and Q. Thus, to ®nd the geodesic we extremalize (1.106), and

this leads to the diÿerential equation of the geodesic (Problem 1.37)

d

dt

@F

@ _x

� �
ÿ @F

@x
� 0; �1:107�

where F �
�����������������
g�þ _x

� _xþ
q

; and _x � dx=dt. Now

@F

@xÿ
� 1

2
g�þ _x

� _xþ
� �ÿ1=2 @g�þ

@xÿ
_x� _xþ;

@F

@ _xÿ
� 1

2
g�þ _x

� _xþ
� �ÿ1=2

2g�ÿ _x
�

and

ds=dt �
�����������������
g�þ _x

� _xþ
q

:

Substituting these into (1.107) we obtain

d

dt
g�ÿ _x

� _sÿ1
ÿ �ÿ 1

2

@g�þ
@xÿ

_x� _xþ _sÿ1 � 0; _s � ds

dt

or

g�ÿ �x
� � @g�ÿ

@xþ
_x� _xþ ÿ 1

2

@g�þ
@xÿ

_x� _xþ � g�ÿ _x
��s _sÿ1:

We can simplify this equation by writing

@g�ÿ

@xþ
_x� _xþ � 1

2

@g�ÿ

@xþ
� @gþÿ

@x�

� �
_x� _xþ;

then we have

g�ÿ �x
� � �þ; ÿ� � _x� _xþ � g�ÿ _x

��s _sÿ1:

We can further simplify this equation by taking arc length as the parameter t, then

_s � 1; �s � 0 and we have

g�ÿ
d2x�

ds2
� �þ; ÿ� � dx

�

ds

dxþ

ds
� 0: �1:108�

where the functions

��þ; ÿ� � ÿ�þ;ÿ � 1

2

@g�ÿ

@xþ
� @gþÿ

@x�
ÿ @g�þ

@xÿ

� �
�1:109�

are called the Christoÿel symbols of the ®rst kind.

Multiplying (1.108) by g�ÿ , we obtain

d2x�

ds2
�

�

�þ

( )
dx�

ds

dxþ

ds
� 0; �1:110�
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where the functions

�

�þ

( )
� ÿ�

�þ � g�ÿ��þ; ÿ� �1:111�

are the Christoÿel symbol of the second kind.

Eq. (1.110) is, of course, a set of N coupled diÿerential equations; they are the

equations of the geodesic. In Euclidean spaces, geodesics are straight lines. In a

Euclidean space, g�þ are independent of the coordinates x�, so that the Christoÿel

symbols identically vanish, and Eq. (1.110) reduces to

d2x�

ds2
� 0

with the solution

x� � a�s� b�;

where a� and b� are constants independent of s. This solution is clearly a straight

line.

The Christoÿel symbols are not tensors. Using the de®ning Eqs. (1.109) and the

transformation of the metric tensor, we can ®nd the transformation laws of the

Christoÿel symbol. We now give the result, without the mathematical details:

�ÿ��;� � ÿ
�þ;ÿ

@x�

@�x�
@xþ

@�x�
@xÿ

@�x�
� g�þ

@x�

@x�
@2xþ

@�x�@�x�
: �1:112�

The Christoÿel symbols are not tensors because of the presence of the second term

on the right hand side.

Covariant diÿerentiation

We have seen that a covariant vector is transformed according to the formula

�A� � @x�

@�x�
A�;

where the coe�cients are functions of the coordinates, and so vectors at diÿerent

points transform diÿerently. Because of this fact, dA� is not a vector, since it is the

diÿerence of vectors located at two (in®nitesimally separated) points. We can

verify this directly:

@ �A�

@�xÿ
� @A�

@xþ
@x�

@�x�
@xþ

@�xÿ
� A�

@2x�

@�x�@�xÿ
; �1:113�
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which shows that @A=@xþ are not the components of a tensor because of the

second term on the right hand side. The same also applies to the diÿerential of

a contravariant vector. But we can construct a tensor by the following device.

From Eq. (1.111) we have

�ÿ�
�ÿ

� ÿ�
��

@x�

@�x�
@x�

@�xÿ
@�x�

@x�
� @2x�

@�x�@�xÿ
@�x�

@x�
: �1:114�

Multiplying (1.114) by �A� and subtracting from (1.113), we obtain

@ �A�

@�xÿ
ÿ �A�

�ÿ�
�ÿ � @A�

@xþ
ÿ A�ÿ

�
�þ

� �
@x�

@�x�
@xþ

@�xÿ
: �1:115�

If we de®ne

A�;þ � @A�

@xþ
ÿ A�ÿ

�
�þ; �1:116�

then (1.115) can be rewritten as

�A�;ÿ � A�;þ

@x�

@�x�
@xþ

@�xÿ
;

which shows that A�;þ is a covariant tensor of rank 2. This tensor is called the

covariant derivative of A� with respect to xþ. The semicolon denotes covariant

diÿerentiation. In a Cartesian coordinate system, the Christoÿel symbols vanish,

and so covariant diÿerentiation reduces to ordinary diÿerentiation.

The contravariant derivative is found by raising the index which denotes diÿer-

entiation:

A�;� � g��A�
;�: �1:117�

We can similarly determine the covariant derivative of a tensor of arbitrary

rank. In doing so we ®nd the following simple rule helps greatly:

To obtain the covariant derivative of the tensor T ���
��� with respect to

x�, we add to the ordinary derivative @T ���
���=@x

� for each covariant

index ��T ���
����:� a term ÿÿ�

��T
���
����:, and for each contravariant index

��T �������
��� � a term �ÿ�

��T
�������
... .

Thus,

T��;� � @T��

@x�
ÿ ÿþ

��Tþ� ÿ ÿþ
��T�þ;

T�
�;� � @T�

�

@x�
ÿ ÿþ

��T
�
þ � ÿ�

þ�T
þ
�:

The covariant derivatives of both the metric tensor and the Kronnecker delta

are identically zero (Problem 1.38).
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Problems

1.1. Given the vector A � �2; 2;ÿ1� and B � �6;ÿ3; 2�, determine:

(a) 6Aÿ 3B, (b) A2 � B2, (c) A � B, (d) the angle between A and B, (e) the

direction cosines of A, ( f ) the component of B in the direction of A.

1.2. Find a unit vector perpendicular to the plane of A � �2;ÿ6;ÿ3� and

B � �4; 3;ÿ1�.
1.3. Prove that:

(a) the median to the base of an isosceles triangle is perpendicular to the

base; (b) an angle inscribed in a semicircle is a right angle.

1.4. Given two vectors A � �2; 1;ÿ1�, B � �1;ÿ1; 2� ®nd: (a) A� B, and (b) a

unit vector perpendicular to the plane containing vectors A and B.

1.5. Prove: (a) the law of sines for plane triangles, and (b) Eq. (1.16a).

1.6. Evaluate �2ê1 ÿ 3ê2� � ��ê1 � ê2 ÿ ê3� � �3ê1 ÿ ê3��.
1.7. (a) Prove that a necessary and su�cient condition for the vectors A, B and

C to be coplanar is that A � �B� C� � 0:

(b) Find an equation for the plane determined by the three points

P1�2;ÿ1; 1�, P2�3; 2;ÿ1� and P3�ÿ1; 3; 2�.
1.8. (a) Find the transformation matrix for a rotation of new coordinate system

through an angle � about the x3�� z�-axis.
(b) Express the vector A � 3ê1 � 2ê2 � ê3 in terms of the triad ê 01ê

0
2ê

0
3 where

the x 0
1x

0
2 axes are rotated 458 about the x3-axis (the x3- and x 0

3-axes

coinciding).

1.9. Consider the linear transformation A 0
i �

P3
j�1 ê

0
i � êjAj �

P3
j�1 �ijAj. Show,

using the fact that the magnitude of the vector is the same in both systems,

that

X3
i�1

�ij�ik � �jk � j; k � 1; 2; 3�:

1.10. A curve C is de®ned by the parametric equation

r�u� � x1�u�ê1 � x2�u�ê2 � x3�u�ê3;

where u is the arc length of C measured from a ®xed point on C, and r is the

position vector of any point on C; show that:

(a) dr=du is a unit vector tangent to C;

(b) the radius of curvature of the curve C is given by

� � d2x1
du2

ý !2

� d2x2
du2

ý !2

� d2x3
du2

ý !2
2
4

3
5ÿ1=2

:
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1.11. (a) Show that the acceleration a of a particle which travels along a space

curve with velocity v is given by

a � dv

dt
T̂ � v2

�
N̂;

where T̂ , N̂, and � are as de®ned in the text.

(b) Consider a particle Pmoving on a circular path of radius r with constant

angular speed ! � d�=dt (Fig. 1.22). Show that the acceleration a of the

particle is given by

a � ÿ!2r:

1.12. A particle moves along the curve x1 � 2t2; x2 � t2 ÿ 4t; x3 � 3tÿ 5, where t

is the time. Find the components of the particle's velocity and acceleration

at time t � 1 in the direction ê1 ÿ 3ê2 � 2ê3.

1.13. (a) Find a unit vector normal to the surface x21 � x22 ÿ x3 � 1 at the point

P(1,1,1).

(b) Find the directional derivative of � � x21x2x3 � 4x1x
2
3 at (1, ÿ2;ÿ1) in

the direction 2ê1 ÿ ê2 ÿ 2ê3.

1.14. Consider the ellipse given by r1 � r2 � const: (Fig. 1.23). Show that r1 and r2
make equal angles with the tangent to the ellipse.

1.15. Find the angle between the surfaces x21 � x22 � x23 � 9 and x3 � x21 � x22 ÿ 3.

at the point (2, ÿ1, 2).

1.16. (a) If f and g are diÿerentiable scalar functions, show that

r� fg� � frg� grf :

(b) Find rr if r � �x21 � x22 � x23�1=2.
(c) Show that rrn � nrnÿ2r.

1.17. Show that:

(a) r � �r=r3� � 0. Thus the divergence of an inverse-square force is zero.
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(b) If f is a diÿerentiable function and A is a diÿerentiable vector function,

then

r � � fA� � �rf � � A� f �r � A�:

1.18. (a) What is the divergence of a gradient?

(b) Show that r2�1=r� � 0.

(c) Show that r � �r � r� 6� �rr�r.
1.19 Given r � E � 0;r �H � 0;r� E � ÿ@H=@t;r�H � @E=@t, show that

E and H satisfy the wave equation r2u � @2u=@t2.

The given equations are related to the source-free Maxwell's equations of

electromagnetic theory, E and H are the electric ®eld and magnetic ®eld

intensities.

1.20. (a) Find constants a, b, c such that

A � �x1 � 2x2 � ax3�ê1 � �bx1 ÿ 3x2 ÿ x3�ê2 � �4x1 � cx2 � 2x3�ê3
is irrotational.

(b) Show that A can be expressed as the gradient of a scalar function.

1.21. Show that a cylindrical coordinate system is orthogonal.

1.22. Find the volume element dV in: (a) cylindrical and (b) spherical coordinates.

Hint: The volume element in orthogonal curvilinear coordinates is

dV � h1h2h3du1du2du3 �
@�x1; x2; x3�
@�u1; u2; u3�
þþþþ

þþþþdu1du2du3:
1.23. Evaluate the integral

R �1;2�
�0;1� �x2 ÿ y�dx� �y2 � x�dy along

(a) a straight line from (0, 1) to (1, 2);

(b) the parabola x � t; y � t2 � 1;

(c) straight lines from (0, 1) to (1, 1) and then from (1, 1) to (1, 2).

1.24. Evaluate the integral
R �1;1�
�0;0� �x2 � y2�dx along (see Fig. 1.24):

(a) the straight line y � x,

(b) the circle arc of radius 1 (xÿ 1�2 � y2 � 1.
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1.25. Evaluate the surface integral
R
S A � da � R

S A � n̂da, where A � x1x2ê1ÿ
x21ê2 � �x1 � x2�ê3, S is that portion of the plane 2x1 � 2x2 � x3 � 6

included in the ®rst octant.

1.26. Verify Gauss' theorem for A � �2x1 ÿ x3�ê1 � x21x2ê2 ÿ x1x
2
3ê3 taken over

the region bounded by x1 � 0; x1 � 1; x2 � 0; x2 � 1; x3 � 0; x3 � 1.

1.28 Show that the electrostatic ®eld intensity E�r� of a point charge Q at the

origin has an inverse-square dependence on r.

1.28. Show, by using Stokes' theorem, that the gradient of a scalar ®eld is irrota-

tional:

r� �r��r�� � 0:

1.29. Verify Stokes' theorem for A � �2x1 ÿ x2�ê1 ÿ x2x
2
3ê2 ÿ x22x3ê3, where S is

the upper half surface of the sphere x21 � x22 � x23 � 1 and ÿ is its boundary

(a circle in the x1x2 plane of radius 1 with its center at the origin).

1.30. Find the area of the ellipse x1 � a cos �; x2 � b sin �.

1.31. Show that
R
S r� n̂da � 0, where S is a closed surface which encloses a

volume V.

1.33. Starting with Eq. (1.95), express A 0� in terms of A�.

1.33. Show that velocity and acceleration are contravariant vectors and that the

gradient of a scalar ®eld is a covariant vector.

1.34. The Cartesian components of the acceleration vector are

ax �
d2x

dt2
; ay �

d2y

dt2
; az �

d2z

dt2
:

Find the component of the acceleration vector in the spherical polar co-

ordinates.

1.35. Show that the property of symmetry (or anti-symmetry) with respect to

indexes of a tensor is invariant under coordinate transformation.

1.36. A covariant tensor has components xy; 2yÿ z2; xz in rectangular coordi-

nates, ®nd its covariant components in spherical coordinates.

60

VECTOR AND TENSOR ANALYSIS

Figure 1.24. Paths for a path integral.



1.37. Prove that a necessary condition that I � R tQ
tP

F�t; x; _x�dt be an extremum

(maximum or minimum) is that

d

dt

@F

@ _x

� �
ÿ @F

@x
� 0:

1.38. Show that the covariant derivatives of: (a) the metric tensor, and (b) the

Kronecker delta are identically zero.

61

PROBLEMS



2

Ordinary diÿerential equations

Physicists have a variety of reasons for studying diÿerential equations: almost all

the elementary and numerous of the advanced parts of theoretical physics are

posed mathematically in terms of diÿerential equations. We devote three chapters

to diÿerential equations. This chapter will be limited to ordinary diÿerential

equations that are reducible to a linear form. Partial diÿerential equations

and special functions of mathematical physics will be dealt with in Chapters 10

and 7.

A diÿerential equation is an equation that contains derivatives of an

unknown function which expresses the relationship we seek. If there is only one

independent variable and, as a consequence, total derivatives like dx=dt, the

equation is called an ordinary diÿerential equation (ODE). A partial diÿerential

equation (PDE) contains several independent variables and hence partial deriva-

tives.

The order of a diÿerential equation is the order of the highest derivative appear-

ing in the equation; its degree is the power of the derivative of highest order after

the equation has been rationalized, that is, after fractional powers of all deriva-

tives have been removed. Thus the equation

d2y

dx2
� 3

dy

dx
� 2y � 0

is of second order and ®rst degree, and

d3y

dx3
�

���������������������������
1� �dy=dx�3

q

is of third order and second degree, since it contains the term (d3y=dx3�2 after it is
rationalized.
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A diÿerential equation is said to be linear if each term in it is such that the

dependent variable or its derivatives occur only once, and only to the ®rst power.

Thus

d3y

dx3
� y

dy

dx
� 0

is not linear, but

x3
d3y

dx3
� ex sin x

dy

dx
� y � ln x

is linear. If in a linear diÿerential equation there are no terms independent of y,

the dependent variable, the equation is also said to be homogeneous; this would

have been true for the last equation above if the `ln x' term on the right hand side

had been replaced by zero.

A very important property of linear homogeneous equations is that, if we know

two solutions y1 and y2, we can construct others as linear combinations of them.

This is known as the principle of superposition and will be proved later when we

deal with such equations.

Sometimes diÿerential equations look unfamiliar. A trivial change of variables

can reduce a seemingly impossible equation into one whose type is readily recog-

nizable.

Many diÿerential equations are very di�cult to solve. There are only a rela-

tively small number of types of diÿerential equation that can be solved in closed

form. We start with equations of ®rst order. A ®rst-order diÿerential equation can

always be solved, although the solution may not always be expressible in terms of

familiar functions. A solution (or integral) of a diÿerential equation is the relation

between the variables, not involving diÿerential coe�cients, which satis®es the

diÿerential equation. The solution of a diÿerential equation of order n in general

involves n arbitrary constants.

First-order diÿerential equations

A diÿerential equation of the general form

dy

dx
� ÿ f �x; y�

g�x; y� ; or g�x; y�dy� f �x; y�dx � 0 �2:1�

is clearly a ®rst-order diÿerential equation.

Separable variables

If f �x; y� and g�x; y� are reducible to P�x� and Q�y�, respectively, then we have

Q�y�dy� P�x�dx � 0: �2:2�
Its solution is found at once by integrating.
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The reader may notice that dy=dx has been treated as if it were a ratio of dy and

dx, that can be manipulated independently. Mathematicians may be unhappy

about this treatment. But, if necessary, we can justify it by considering dy and

dx to represent small ®nite changes �y and �x, before we have actually reached the

limit where each becomes in®nitesimal.

Example 2.1

Consider the diÿerential equation

dy=dx � ÿy2ex:

We can rewrite it in the following form ÿdy=y2 � exdx which can be integrated

separately giving the solution

1=y � ex � c;

where c is an integration constant.

Sometimes when the variables are not separable a diÿerential equation may be

reduced to one in which they are separable by a change of variable. The general

form of diÿerential equation amenable to this approach is

dy=dx � f �ax� by�; �2:3�
where f is an arbitrary function and a and b are constants. If we let w � ax� by,

then bdy=dx � dw=dxÿ a, and the diÿerential equation becomes

dw=dxÿ a � bf �w�
from which we obtain

dw

a� bf �w� � dx

in which the variables are separated.

Example 2.2

Solve the equation

dy=dx � 8x� 4y� �2x� yÿ 1�2:

Solution: Let w � 2x� y, then dy=dx � dw=dxÿ 2, and the diÿerential equation

becomes

dw=dx� 2 � 4w� �wÿ 1�2

or

dw=�4w� �wÿ 1�2 ÿ 2� � dx:

The variables are separated and the equation can be solved.
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A homogeneous diÿerential equation which has the general form

dy=dx � f �y=x� �2:4�

may also be reduced, by a change of variable, to one with separable variables.

This can be illustrated by the following example:

Example 2.3

Solve the equation

dy

dx
� y2 � xy

x2
:

Solution: The right hand side can be rewritten as �y=x�2 � �y=x�, and hence is a

function of the single variable

v � y=x:

We thus use v both for simplifying the right hand side of our equation, and also

for rewriting dy=dx in terms of v and x. Now

dy

dx
� d

dx
�xv� � v� x

dv

dx

and our equation becomes

v� x
dv

dx
� v2 � v

from which we have

dv

v2
� dx

x
:

Integration gives

ÿ 1

v
� ln x� c or x � Aeÿx=y;

where c and A �� eÿc� are constants.

Sometimes a nearly homogeneous diÿerential equation can be reduced to

homogeneous form which can then be solved by variable separation. This can

be illustrated by the by the following:

Example 2.4

Solve the equation

dy=dx � �y� xÿ 5�=�yÿ 3xÿ 1�:
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Solution: Our equation would be homogeneous if it were not for the constants

ÿ5 and ÿ1 in the numerator and denominator respectively. But we can eliminate

them by a change of variable:

x 0 � x� �; y 0 � y� ÿ;

where � and ÿ are constants specially chosen in order to make our equation

homogeneous:

dy 0=dx 0 � �y 0 � x 0�=y 0 ÿ 3x 0:

Note that dy 0=dx 0 � dy=dx. Trivial algebra yields � � ÿ1; ÿ � ÿ4. Now let

v � y 0=x 0, then

dy 0

dx 0 �
d

dx 0 �x 0v� � v� x 0 dv
dx 0

and our equation becomes

v� x 0 dv
dx 0 �

v� 1

vÿ 3
; or

vÿ 3

ÿv2 � 4v� 1
dv � dx 0

x 0

in which the variables are separated and the equation can be solved by integra-

tion.

Example 2.5

Fall of a skydiver.

Solution: Assuming the parachute opens at the beginning of the fall, there are

two forces acting on the parachute: the downward force of gravity mg, and the

upward force of air resistance kv2. If we choose a coordinate system that has y � 0

at the earth's surface and increases upward, then the equation of motion of the

falling diver, according to Newton's second law, is

mdv=dt � ÿmg� kv2;

where m is the mass, g the gravitational acceleration, and k a positive constant. In

general the air resistance is very complicated, but the power-law approximation is

useful in many instances in which the velocity does not vary appreciably.

Experiments show that for a subsonic velocity up to 300 m/s, the air resistance

is approximately proportional to v2.

The equation of motion is separable:

mdv

mgÿ kv2
� dt
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or, to make the integration easier

dv

v2 ÿ �mg=k� � ÿ k

m
dt:

Now

1

v2 ÿ �mg=k� �
1

�v� vt��vÿ vt�
� 1

2vt

1

vÿ vt
ÿ 1

v� vt

� �
;

where v2t � mg=k. Thus

1

2vt

dv

vÿ vt
ÿ dv

vÿ vt

� �
� ÿ k

m
dt:

Integrating yields

1

2vt
ln

vÿ vt
v� vt

� �
� ÿ k

m
t� c;

where c is an integration constant.

Solving for v we ®nally obtain

v�t� � vt�1� B exp�ÿ2gt=vt��
1ÿ B exp�ÿ2gt=vt�

;

where B � exp�2vtC�.
It is easy to see that as t ! 1, exp(ÿ2gt=vt� ! 0, and so v ! vt; that is, if he

falls from a su�cient height, the diver will eventually reach a constant velocity

given by vt, the terminal velocity. To determine the constants of integration, we

need to know the value of k, which is about 30 kg/m for the earth's atmosphere

and a standard parachute.

Exact equations

We may integrate Eq. (2.1) directly if its left hand side is the diÿerential du of

some function u�x; y�, in which case the solution is of the form

u�x; y� � C �2:5�
and Eq. (2.1) is said to be exact. A convenient test to see if Eq. (2.1) is exact is

does

@g�x; y�
@x

� @f �x; y�
@y

: �2:6�

To see this, let us go back to Eq. (2.5) and we have

d�u�x; y�� � 0:

On performing the diÿerentiation we obtain

@u

@x
dx� @u

@y
dy � 0: �2:7�
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It is a general property of partial derivatives of any well-behaved function that

the order of diÿerentiation is immaterial. Thus we have

@

@y

@u

@x

� �
� @

@x

@u

@y

� �
: �2:8�

Now if our diÿerential equation (2.1) is of the form of Eq. (2.7), we must be able

to identify

f �x; y� � @u=@x and g�x; y� � @u=@y: �2:9�
Then it follows from Eq. (2.8) that

@g�x; y�
@x

� @f �x; y�
@y

;

which is Eq. (2.6).

Example 2.6

Show that the equation xdy=dx� �x� y� � 0 is exact and ®nd its general solu-

tion.

Solution: We ®rst write the equation in standard form

�x� y�dx� xdy � 0:

Applying the test of Eq. (2.6) we notice that

@f

@y
� @

@y
�x� y� � 1 and

@g

@x
� @x

@x
� 1:

Therefore the equation is exact, and the solution is of the form indicated by Eq.

(2.7). From Eq. (2.9) we have

@u=@x � x� y; @u=@y � x;

from which it follows that

u�x; y� � x2=2� xy� h�y�; u�x; y� � xy� k�x�;
where h�y� and k�x� arise from integrating u�x; y� with respect to x and y, respec-

tively. For consistency, we require that

h�y� � 0 and k�x� � x2=2:

Thus the required solution is

x2=2� xy � c:

It is interesting to consider a diÿerential equation of the type

g�x; y� dy
dx

� f �x; y� � k�x�; �2:10�

68

ORDINARY DIFFERENTIAL EQUATIONS



where the left hand side is an exact diÿerential �d=dx��u�x; y��, and k�x� on the

right hand side is a function of x only. Then the solution of the diÿerential

equation can be written as

u�x; y� �
Z

k�x�dx: �2:11�

Alternatively Eq. (2.10) can be rewritten as

g�x; y� dy
dx

� � f �x; y� ÿ k�x�� � 0: �2:10a�
Since the left hand side of Eq. (2.10) is exact, we have

@g=@x � @f =@y:

Then Eq. (2.10a) is exact as well. To see why, let us apply the test for exactness for

Eq. (2.10a) which requires

@

@x
�g�x; y�� � @

@y
� f �x; y� ÿ k�x�� � @

@y
� f �x; y��:

Thus Eq. (2.10a) satis®es the necessary requirement for being exact. We can thus

write its solution as

U�x; y� � c;

where

@U

@y
� g�x; y� and

@U

@x
� f �x; y� ÿ k�x�:

Of course, the solution U�x; y� � c must agree with Eq. (2.11).

Integrating factors

If a diÿerential equation in the form of Eq. (2.1) is not already exact, it sometimes

can be made so by multiplying by a suitable factor, called an integrating factor.

Although an integrating factor always exists for each equation in the form of Eq.

(2.1), it may be di�cult to ®nd it. However, if the equation is linear, that is, if can

be written

dy

dx
� f �x�y � g�x� �2:12�

an integrating factor of the form

exp

Z
f �x�dx

� �
�2:13�

is always available. It is easy to verify this. Suppose that R�x� is the integrating

factor we are looking for. Multiplying Eq. (2.12) by R, we have

R
dy

dx
� Rf �x�y � Rg�x�; or Rdy� Rf �x�ydx � Rg�x�dx:
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The right hand side is already integrable; the condition that the left hand side of

Eq. (2.12) be exact gives

@

@y
�Rf �x�y� � @R

@x
;

which yields

dR=dx � Rf �x�; or dR=R � f �x�dx;
and integrating gives

lnR �
Z

f �x�dx

from which we obtain the integrating factor R we were looking for

R � exp

Z
f �x�dx

� �
:

It is now possible to write the general solution of Eq. (2.12). On applying the

integrating factor, Eq. (2.12) becomes

d�yeF �
dx

� g�x�eF ;

where F�x� � R
f �x�dx. The solution is clearly given by

y � eÿF

Z
eFg�x�dx� C

� �
:

Example 2.7

Show that the equation xdy=dx� 2y� x2 � 0 is not exact; then ®nd a suitable

integrating factor that makes the equation exact. What is the solution of this

equation?

Solution: We ®rst write the equation in the standard form

�2y� x2�dx� xdy � 0;

then we notice that

@

@y
�2y� x2� � 2 and

@

@x
x � 1;

which indicates that our equation is not exact. To ®nd the required integrating

factor that makes our equation exact, we rewrite our equation in the form of Eq.

(2.12):

dy

dx
� 2y

x
� ÿx
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from which we ®nd f �x� � 1=x, and so the required integrating factor is

exp

Z
�1=x�dx

� �
� exp�ln x� � x:

Applying this to our equation gives

x2
dy

dx
� 2xy� x3 � 0 or

d

dx
x2y� x4=4
ÿ � � 0

which integrates to

x2y� x4=4 � c;

or

y � cÿ x4

4x2
:

Example 2.8

RL circuits: A typical RL circuit is shown in Fig. 2.1. Find the current I�t� in the

circuit as a function of time t.

Solution: We need ®rst to establish the diÿerential equation for the current

¯owing in the circuit. The resistance R and the inductance L are both constant.

The voltage drop across the resistance is IR, and the voltage drop across the

inductance is LdI=dt. Kirchhoÿ 's second law for circuits then gives

L
dI�t�
dt

� RI�t� � E�t�;

which is in the form of Eq. (2.12), but with t as the independent variable instead of

x and I as the dependent variable instead of y. Thus we immediately have the

general solution

I�t� � 1

L
eÿRt=L

Z
eRt=LE�t�dt� keÿRt=L;

71

FIRST-ORDER DIFFERENTIAL EQUATIONS

Figure 2.1. RL circuit.



where k is a constant of integration (in electric circuits, C is used for capacitance).

Given E this equation can be solved for I�t�. If the voltage E is constant, we

obtain

I�t� � 1

L
eÿRt=L E

L

R
eÿRt=L

� �
� keÿRt=L � E

R
� keÿRt=L:

Regardless of the value of k, we see that

I�t� ! E=R as t ! 1:

Setting t � 0 in the solution, we ®nd

k � I�0� ÿ E=R:

Bernoulli's equation

Bernoulli's equation is a non-linear ®rst-order equation that occurs occasionally

in physical problems:

dy

dx
� f �x�y � g�x�yn; �2:14�

where n is not necessarily integer.

This equation can be made linear by the substitution w � ya with � suitably

chosen. We ®nd this can be achieved if � � 1ÿ n:

w � y1ÿn or y � w1=�1ÿn�:

This converts Bernoulli's equation into

dw

dx
� �1ÿ n� f �x�w � �1ÿ n�g�x�;

which can be made exact using the integrating factor exp�R �1ÿ n� f �x�dx�.

Second-order equations with constant coe�cients

The general form of the nth-order linear diÿerential equation with constant coef-

®cients is

dny

dxn
� p1

dnÿ1y

dxnÿ1
� � � � � pnÿ1

dy

dx
� pny � �Dn � p1D

nÿ1 � � � � � pnÿ1D� pn�y � f �x�;

where p1; p2; . . . are constants, f �x� is some function of x, and D � d=dx. If

f �x� � 0, the equation is called homogeneous; otherwise it is called a non-homo-

geneous equation. It is important to note that the symbol D is meaningless unless

applied to a function of x and is therefore not a mathematical quantity in the

usual sense. D is an operator.
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Many of the diÿerential equations of this type which arise in physical problems

are of second order and we shall consider in detail the solution of the equation

d2y

dt2
� a

dy

dt
� by � �D2 � aD� b�y � f �t�; �2:15�

where a and b are constants, and t is the independent variable. As an example, the

equation of motion for a mass on a spring is of the form Eq. (2.15), with a

representing the friction, c being the constant of proportionality in Hooke's law

for the spring, and f �t� some time-dependent external force acting on the mass.

Eq. (2.15) can also apply to an electric circuit consisting of an inductor, a resistor,

a capacitor and a varying external voltage.

The solution of Eq. (2.15) involves ®rst ®nding the solution of the equation with

f �t� replaced by zero, that is,

d2y

dt2
� a

dy

dt
� by � �D2 � aD� b�y � 0; �2:16�

this is called the reduced or homogeneous equation corresponding to Eq. (2.15).

Nature of the solution of linear equations

We now establish some results for linear equations in general. For simplicity, we

consider the second-order reduced equation (2.16). If y1 and y2 are independent

solutions of (2.16) and A and B are any constants, then

D�Ay1 � By2� � ADy1 � BDy2; D2�Ay1 � By2� � AD2y1 � BD2y2

and hence

�D2 � aD� b��Ay1 � By2� � A�D2 � aD� b�y1 � B�D2 � aD� b�y2 � 0:

Thus y � Ay1 � By2 is a solution of Eq. (2.16), and since it contains two arbitrary

constants, it is the general solution. A necessary and su�cient condition for two

solutions y1 and y2 to be linearly independent is that the Wronskian determinant

of these functions does not vanish:

y1 y2

dy1
dt

dy2
dt

þþþþþþþ
þþþþþþþ 6� 0:

Similarly, if y1; y2; . . . ; yn are n linearly independent solutions of the nth-order

linear equations, then the general solution is

y � A1y1 � A2y2 � � � � � Anyn;

where A1;A2; . . . ;An are arbitrary constants. This is known as the superposition

principle.
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General solutions of the second-order equations

Suppose that we can ®nd one solution, yp�t� say, of Eq. (2.15):
�D2 � aD� b�yp�t� � f �t�: �2:15a�

Then on de®ning

yc�t� � y�t� ÿ yp�t�
we ®nd by subtracting Eq. (2.15a) from Eq. (2.15) that

�D2 � aD� b�yc�t� � 0:

That is, yc�t� satis®es the corresponding homogeneous equation (2.16), and it is

known as the complementary function yc�t� of non-homogeneous equation (2.15).

while the solution yp�t� is called a particular integral of Eq. (2.15). Thus, the

general solution of Eq. (2.15) is given by

y�t� � Ayc�t� � Byp�t�: �2:17�

Finding the complementary function

Clearly the complementary function is independent of f �t�, and hence has nothing

to do with the behavior of the system in response to the external applied in¯uence.

What it does represent is the free motion of the system. Thus, for example, even

without external forces applied, a spring can oscillate, because of any initial

displacement and/or velocity. Similarly, had a capacitor already been charged

at t � 0, the circuit would subsequently display current oscillations even if there

is no applied voltage.

In order to solve Eq. (2.16) for yc�t�, we ®rst consider the linear ®rst-order

equation

a
dy

dt
� by � 0:

Separating the variables and integrating, we obtain

y � Aeÿbt=a;

where A is an arbitrary constant of integration. This solution suggests that Eq.

(2.16) might be satis®ed by an expression of the type

y � ept;

where p is a constant. Putting this into Eq. (2.16), we have

ept�p2 � ap� b� � 0:

Therefore y � ept is a solution of Eq. (2.16) if

p2 � ap� b � 0:
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This is called the auxiliary (or characteristic) equation of Eq. (2.16). Solving it

gives

p1 �
ÿa�

���������������
a2 ÿ 4b

p

2
; p2 �

ÿaÿ
���������������
a2 ÿ 4b

p

2
: �2:18�

We now distinguish between the cases in which the roots are real and distinct,

complex or coincident.

(i) Real and distinct roots (a2 ÿ 4b > 0�
In this case, we have two independent solutions y1 � ep1t; y2 � ep2t and the general

solution of Eq. (2.16) is a linear combination of these two:

y � Aep1t � Bep2t; �2:19�
where A and B are constants.

Example 2.9

Solve the equation �D2 ÿ 2Dÿ 3�y � 0, given that y � 1 and y 0 � dy=dx � 2

when t � 0.

Solution: The auxiliary equation is p2 ÿ 2pÿ 3 � 0, from which we ®nd p � ÿ1

or p � 3. Hence the general solution is

y � Aeÿt � Be3t:

The constants A and B can be determined by the boundary conditions at t � 0.

Since y � 1 when t � 0, we have

1 � A� B:

Now

y 0 � ÿAeÿt � 3Be3t

and since y 0 � 2 when t � 0, we have 2 � ÿA� 3B. Hence

A � 1=4; B � 3=4

and the solution is

4y � eÿt � 3e3t:

(ii) Complex roots �a2 ÿ 4b < 0�
If the roots p1, p2 of the auxiliary equation are imaginary, the solution given by

Eq. (2.18) is still correct. In order to give the solutions in terms of real quantities,

we can use the Euler relations to express the exponentials. If we let

r � ÿa=2; is �
���������������
a2 ÿ 4b

p
=2, then

ep1t � erteist � ert�cos st� i sin st�;
ep2t � erteist � ert�cos stÿ i sin st�
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and the general solution can be written as

y � Aep1t � Bep2t

� ert��A� B� cos st� i�Aÿ B� sin st�
� ert�A0 cos st� B0 sin st� �2:20�

with A0 � A� B;B0 � i�Aÿ B�:
The solution (2.20) may be expressed in a slightly diÿerent and often more

useful form by writing B0=A0 � tan �. Then

y � �A2
0 � B2

0�1=2ert�cos � cos st� sin � sin st� � Cert cos�stÿ ��; �2:20a�
where C and � are arbitrary constants.

Example 2.10

Solve the equation �D2 � 4D� 13�y � 0, given that y � 1 and y 0 � 2 when t � 0.

Solution: The auxiliary equation is p2 � 4p� 13 � 0, and hence p � ÿ2� 3i.

The general solution is therefore, from Eq. (2.20),

y � eÿ2t�A0 cos 3t� B0 sin 3t�:
Since y � l when t � 0, we have A0 � 1. Now

y 0 � ÿ2eÿ2t�A0 cos 3t� B0 sin 3t� � 3eÿ2t�ÿA0 sin 3t� B0 cos 3t�
and since y 0 � 2 when t � 0, we have 2 � ÿ2A0 � 3B0. Hence B0 � 4=3, and the

solution is

3y � eÿ2t�3 cos 3t� 4 sin 3t�:

(iii) Coincident roots

When a2 � 4b, the auxiliary equation yields only one value for p, namely

p � � � ÿa=2, and hence the solution y � Ae�t. This is not the general solution

as it does not contain the necessary two arbitrary constants. In order to obtain the

general solution we proceed as follows. Assume that y � ve�t, where v is a func-

tion of t to be determined. Then

y 0 � v 0e�t � �ve�t; y 00 � v 00e�t � 2�v 0e�t � �2ve�t:

Substituting for y; y 0, and y 00 in the diÿerential equation we have

e�t�v 00 � 2�v 0 � �2v� a�v 0 � �v� � bv� � 0

and hence

v 00 � v 0�a� 2�� � v��2 � a�� b� � 0:
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Now

�2 � a�� b � 0; and a� 2� � 0

so that

v 00 � 0:

Hence, integrating gives

v � At� B;

where A and B are arbitrary constants, and the general solution of Eq. (2.16) is

y � �At� B�e�t �2:21�

Example 2.11

Solve the equation (D2 ÿ 4D� 4�y � 0 given that y � 1 and Dy � 3 when t � 0:

Solution: The auxiliary equation is p2 ÿ 4p� 4 � �pÿ 2�2 � 0 which has one

root p � 2. The general solution is therefore, from Eq. (2.21)

y � �At� B�e2t:
Since y � 1 when t � 0, we have B � 1. Now

y 0 � 2�At� B�e2t � Ae2t

and since Dy � 3 when t � 0,

3 � 2B� A:

Hence A � 1 and the solution is

y � �t� 1�e2t:

Finding the particular integral

The particular integral is a solution of Eq. (2.15) that takes the term f �t� on the

right hand side into account. The complementary function is transient in nature,

so from a physical point of view, the particular integral will usually dominate the

response of the system at large times.

The method of determining the particular integral is to guess a suitable func-

tional form containing arbitrary constants, and then to choose the constants to

ensure it is indeed the solution. If our guess is incorrect, then no values of these

constants will satisfy the diÿerential equation, and so we have to try a diÿerent

form. Clearly this procedure could take a long time; fortunately, there are some

guiding rules on what to try for the common examples of f (t):
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(1) f �t� � a polynomial in t.

If f �t� is a polynomial in t with highest power tn, then the trial particular

integral is also a polynomial in t, with terms up to the same power. Note

that the trial particular integral is a power series in t, even if f �t� contains
only a single terms Atn.

(2) f �t� � Aekt.

The trial particular integral is y � Bekt.

(3) f �t� � A sin kt or A cos kt.

The trial particular integral is y � A sin kt� C cos kt. That is, even though

f �t� contains only a sine or cosine term, we need both sine and cosine terms

for the particular integral.

(4) f �t� � Ae�t sin ÿt or Ae�t cosÿt.

The trial particular integral is y � e�t�B sin ÿt� C cos ÿt�.
(5) f �t� is a polynomial of order n in t, multiplied by ekt.

The trial particular integral is a polynomial in t with coe�cients to be

determined, multiplied by ekt.

(6) f �t� is a polynomial of order n in t, multiplied by sin kt.

The trial particular integral is y � �n
j�0�Bj sin kt� Cj cos kt�t j. Can we try

y � �B sin kt� C cos kt��n
j�0 Djt

j? The answer is no. Do you know why?

If the trial particular integral or part of it is identical to one of the terms of the

complementary function, then the trial particular integral must be multiplied by

an extra power of t. Therefore, we need to ®nd the complementary function before

we try to work out the particular integral. What do we mean by `identical in

form'? It means that the ratio of their t-dependences is a constant. Thus ÿ2eÿt

and Aeÿt are identical in form, but eÿt and eÿ2t are not.

Particular integral and the operator D �� d=dx�
We now describe an alternative method that can be used for ®nding particular

integrals. As compared with the method described in previous section, it involves

less guesswork as to what the form of the solution is, and the constants multi-

plying the functional forms of the answer are obtained automatically. It does,

however, require a fair amount of practice to ensure that you are familiar with

how to use it.

The technique involves using the diÿerential operator D � d� �=dt, which is an

interesting and simple example of a linear operator without a matrix representa-

tion. It is obvious that D obeys the relevant laws of operator algebra: suppose f

and g are functions of t, and a is a constant, then

(i) D� f � g� � Df �Dg (distributive);

(ii) Daf � aDf (commutative);

(iii) DnDmf � Dn�mf (index law).
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We can form a polynomial function of D and write

F�D� � a0D
n � a1D

nÿ1 � � � � � anÿ1D� an

so that

F�D� f �t� � a0D
nf � a1D

nÿ1f � � � � � anÿ1Df � an f

and we can interpret Dÿ1 as follows

Dÿ1Df �t� � f �t�
and Z

�Df �dt � f :

Hence Dÿ1 indicates the operation of integration (the inverse of diÿerentiation).

Similarly Dÿmf means `integrate f �t�m times'.

These properties of the linear operator D can be used to ®nd the particular

integral of Eq. (2.15):

d2y

dt2
� a

dy

dt
� by � D2 � aD� b

ÿ �
y � f �t�

from which we obtain

y � 1

D2 � aD� b
f �t� � 1

F�D� f �t�; �2:22�

where

F�D� � D2 � aD� b:

The trouble with Eq. (2.22) is that it contains an expression involving Ds in the

denominator. It requires a fair amount of practice to use Eq. (2.22) to express y in

terms of conventional functions. For this, there are several rules to help us.

Rules for D operators

Given a power series of D

G�D� � a0 � a1D� � � � � anD
n � � � �

and since Dne�t � �ne�t, it follows that

G�D�e�t � �a0 � a1D� � � � � anD
n � � � ��e�t � G���e�t:

Thus we have

Rule (a): G�D�e�t � G���e�t provided G��� is convergent.
When G�D� is the expansion of 1=F�D� this rule gives

1

F�D� e
�t � 1

F��� e
�t provided F��� 6� 0:
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Now let us operate G�D� on a product function e�tV�t�:
G�D��e�tV�t�� � �G�D�e�t�V�t� � e�t�G�D�V�t��

� e�t�G��� � G�D��V�t� � e�tG�D� ���V�t��:
That is, we have

Rule (b): G�D��e�tV�t�� � e�tG�D� ���V�t��:
Thus, for example

D2�e�tt2� � e�t�D� ��2�t2�:
Rule (c): G�D2� sin kt � G�ÿk2� sin kt:
Thus, for example

1

D2
�sin 3t� � ÿ 1

9
sin 3t:

Example 2.12 Damped oscillations (Fig. 2.2)

Suppose we have a spring of natural length L (that is, in its unstretched state). If

we hang a ball of mass m from it and leave the system in equilibrium, the spring

stretches an amount d, so that the ball is now L� d from the suspension point.

We measure the vertical displacement of the ball from this static equilibrium

point. Thus, L� d is y � 0, and y is chosen to be positive in the downward

direction, and negative upward. If we pull down on the ball and then release it,

it oscillates up and down about the equilibrium position. To analyze the oscilla-

tion of the ball, we need to know the forces acting on it:
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(1) the downward force of gravity, mg:

(2) the restoring force ky which always opposes the motion (Hooke's law),

where k is the spring constant of the spring. If the ball is pulled down a

distance y from its static equilibrium position, this force is ÿk�d � y�.
Thus, the total net force acting on the ball is

mgÿ k�d � y� � mgÿ kd ÿ ky:

In static equilibrium, y � 0 and all forces balances. Hence

kd � mg

and the net force acting on the spring is just ÿky; and the equation of motion of

the ball is given by Newton's second law of motion:

m
d2y

dt2
� ÿky;

which describes free oscillation of the ball. If the ball is connected to a dashpot

(Fig. 2.2), a damping force will come into play. Experiment shows that the damp-

ing force is given by ÿbdy=dt, where the constant b is called the damping constant.

The equation of motion of the ball now is

m
d2y

dt2
� ÿkyÿ b

dy

dt
or y 00 � b

m
y 0 � k

m
y � 0:

The auxiliary equation is

p2 � b

m
p� k

m
� 0

with roots

p1 � ÿ b

2m
� 1

2m

�������������������
b2 ÿ 4km

p
; p2 � ÿ b

2m
ÿ 1

2m

�������������������
b2 ÿ 4km

p
:

We now have three cases, resulting in quite diÿerent motions of the oscillator.

Case 1 b2 ÿ 4km > 0 (overdamping)

The solution is of the form

y�t� � c1e
p1t � c2e

p2t:

Now, both b and k are positive, so

1

2m

�������������������
b2 ÿ 4km

p
<

b

2m

and accordingly

p1 � ÿ b

2m
� 1

2m

�������������������
b2 ÿ 4km

p
< 0:
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Obviously p2 < 0 also. Thus, y�t� ! 0 as t ! 1. This means that the oscillation

dies out with time and eventually the mass will assume the static equilibrium

position.

Case 2 b2 ÿ 4km � 0 (critical damping)

The solution is of the form

y�t� � eÿbt=2m�c1 � c2t�:
As both b and m are positive, y�t� ! 0 as t ! 1 as in case 1. But c1 and c2 play a

signi®cant role here. Since eÿbt=2m 6� 0 for ®nite t, y�t� can be zero only when

c1 � c2t � 0, and this happens when

t � ÿc1=c2:

If the number on the right is positive, the mass passes through the equilibrium

position y � 0 at that time. If the number on the right is negative, the mass never

passes through the equilibrium position.

It is interesting to note that c1 � y�0�, that is, c1 measures the initial position.

Next, we note that

y 0�0� � c2 ÿ bc1=2m; or c2 � y 0�0� � by�0�=2m:

Case 3 b2 ÿ 4km < 0 (underdamping)

The auxiliary equation now has complex roots

p1 � ÿ b

2m
� i

2m

�������������������
4kmÿ b2

p
; p2 � ÿ b

2m
ÿ i

2m

�������������������
4kmÿ b2

p
and the solution is of the form

y�t� � eÿbt=2m c1 cos
�������������������
4kmÿ b2

p� � t

2m
� c2 sin

�������������������
4kmÿ b2

p t

2m

� �h i
;

which can be rewritten as

y�t� � ceÿbt=2m cos�!tÿ ��;
where

c �
��������������
c21 � c22

q
; � � tanÿ1 c2

c1

� �
; and ! �

�������������������
4kmÿ b2

p
=2m:

As in case 2, eÿbt=2m ! 0 as t ! 1, and the oscillation gradually dies down to

zero with increasing time. As the oscillator dies down, it oscillates with a fre-

quency !=2�. But the oscillation is not periodic.
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The Euler linear equation

The linear equation with variable coe�cients

xn
dny

dxn
� p1x

nÿ1 d
nÿ1y

dxnÿ1
� � � � � pnÿ1x

dy

dx
� pny � f �x�; �2:23�

in which the derivative of the jth order is multiplied by xj and by a constant, is

known as the Euler or Cauchy equation. It can be reduced, by the substitution

x � et, to a linear equation with constant coe�cients with t as the independent

variable. Now if x � et, then dx=dt � x, and

dy

dx
� dy

dt

dt

dx
� 1

x

dy

dt
; or x

dy

dx
� dy

dt

and

d2y

dx2
� d

dx

dy

dx

� �
� d

dt

1

x

dy

dt

� �
dt

dx
� 1

x

d

dt

1

x

dy

dt

� �
or

x
d2y

dx2
� 1

x

d2y

dt2
� dy

dt

d

dt

1

x

� �
� 1

x

d2y

dx2
ÿ 1

x

dy

dt

and hence

x2
d2y

dx2
� d2y

dt2
ÿ dy

dt
� d

dt

dy

dt
ÿ 1

� �
y:

Similarly

x3
d3y

dx3
� d

dt

d

dt
ÿ 1

� �
d

dt
ÿ 2

� �
y;

and

xn
dny

dxn
� d

dt

d

dt
ÿ 1

� �
d

dt
ÿ 2

� �
� � � d

dt
ÿ n� 1

� �
y:

Substituting for x j�d jy=dx j� in Eq. (2.23) the equation transforms into

dny

dtn
� q1

dnÿ1y

dtnÿ1
� � � � � qnÿ1

dy

dt
� qny � f �et�

in which q1, q2; . . . ; qn are constants.

Example 2.13

Solve the equation

x2
d2y

dx2
� 6x

dy

dx
� 6y � 1

x2
:
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Solution: Put x � et, then

x
dy

dx
� dy

dt
; x2

d2y

dx2
� d2y

dt2
ÿ dy

dt
:

Substituting these in the equation gives

d2y

dt2
� 5

dy

dt
� 6y � et:

The auxiliary equation p2 � 5p� 6 � �p� 2��p� 3� � 0 has two roots: p1 � ÿ2,

p2 � 3. So the complementary function is of the form yc � Aeÿ2t � Beÿ3t and the

particular integral is

yp �
1

�D� 2��D� 3� e
ÿ2t � teÿ2t:

The general solution is

y � Aeÿ2t � Beÿ3t � teÿ2t:

The Euler equation is a special case of the general linear second-order equation

D2y� p�x�Dy� q�x�y � f �x�;
where p�x�, q�x�, and f �x� are given functions of x. In general this type of

equation can be solved by series approximation methods which will be introduced

in next section, but in some instances we may solve it by means of a variable

substitution, as shown by the following example:

D2y� �4xÿ xÿ1�Dy� 4x2y � 0;

where

p�x� � �4xÿ xÿ1�; q�x� � 4x2; and f �x� � 0:

If we let

x � z1=2

the above equation is transformed into the following equation with constant

coe�cients:

D2y� 2Dy� y � 0;

which has the solution

y � �A� Bz�eÿz:

Thus the general solution of the original equation is y � �A� Bx2�eÿx2 :
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Solutions in power series

In many problems in physics and engineering, the diÿerential equations are of

such a form that it is not possible to express the solution in terms of elementary

functions such as exponential, sine, cosine, etc.; but solutions can be obtained as

convergent in®nite series. What is the basis of this method? To see it, let us

consider the following simple second-order linear diÿerential equation

d2y

dx2
� y � 0:

Now assuming the solution is given by y � a0 � a1x� a2x
2 � � � �, we further

assume the series is convergent and diÿerentiable term by term for su�ciently

small x. Then

dy=dx � a1 � 2a2x� 3a3x
2 � � � �

and

d2y=dx2 � 2a2 � 2 � 3a3x� 3 � 4a4x2 � � � �:
Substituting the series for y and d2y=dx2 in the given diÿerential equation and

collecting like powers of x yields the identity

�2a2 � a0� � �2� 3a3 � a1�x� �3� 4a4 � a2�x2 � � � � � 0:

Since if a power series is identically zero all of its coe�cients are zero, equating to

zero the term independent of x and coe�cients of x, x2; . . . ; gives

2a2 � a0 � 0; 4� 5a5 � a3 � 0;

2� 3a3 � a1 � 0; 5� 6a6 � a4 � 0;

3� 4a4 � a2 � 0; � � �
and it follows that

a2 � ÿ a0
2
; a3 � ÿ a1

2� 3
� ÿ a1

3!
; a4 � ÿ a2

3� 4
ÿ a0

4!

a5 � ÿ a3
4� 5

� a1
5!

; a6 � ÿ a4
5� 6

� ÿ a0
6!

; . . . :

The required solution is

y � a0 1ÿ x2

2!
� x4

4!
ÿ x6

6!
�ÿ � � �

ý !
� a1 xÿ x3

3!
� x5

5!
ÿ� � � �

ý !
;

you should recognize this as equivalent to the usual solution

y � a0 cos x� a1 sin x, a0 and a1 being arbitrary constants.
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Ordinary and singular points of a diÿerential equation

We shall concentrate on the linear second-order diÿerential equation of the form

d2y

dx2
� P�x� dy

dx
�Q�x�y � 0 �2:24�

which plays a very important part in physical problems, and introduce certain

de®nitions and state (without proofs) some important results applicable to equa-

tions of this type. With some small modi®cations, these are applicable to linear

equation of any order. If both the functions P and Q can be expanded in Taylor

series in the neighborhood of x � �, then Eq. (2.24) is said to possess an ordinary

point at x � �. But when either of the functions P or Q does not possess a Taylor

series in the neighborhood of x � �, Eq. (2.24) is said to have a singular point at

x � �. If

P � ��x�=�xÿ �� and Q � ��x�=�xÿ ��2

and ��x� and ��x� can be expanded in Taylor series near x � �. In such cases,

x � � is a singular point but the singularity is said to be regular.

Frobenius and Fuchs theorem

Frobenius and Fuchs showed that:

(1) If P�x� and Q�x� are regular at x � �, then the diÿerential equation (2.24)

possesses two distinct solutions of the form

y �
X1
��0

a��xÿ ��� �a0 6� 0�: �2:25�

(2) If P�x� and Q�x� are singular at x � �, but �xÿ ��P�x� and �xÿ ��2Q�x�
are regular at x � �, then there is at least one solution of the diÿerential

equation (2.24) of the form

y �
X1
��0

a��xÿ ����� �a0 6� 0�; �2:26�

where � is some constant, which is valid for jxÿ �j < ÿ whenever the Taylor

series for ��x� and ��x� are valid for these values of x.

(3) If P�x� and Q�x� are irregular singular at x � � (that is, ��x� and ��x� are
singular at x � ��, then regular solutions of the diÿerential equation (2.24)

may not exist.
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The proofs of these results are beyond the scope of the book, but they can be

found, for example, in E. L. Ince's Ordinary Diÿerential Equations, Dover

Publications Inc., New York, 1944.

The ®rst step in ®nding a solution of a second-order diÿerential equation

relative to a regular singular point x � � is to determine possible values for the

index � in the solution (2.26). This is done by substituting series (2.26) and its

appropriate diÿerential coe�cients into the diÿerential equation and equating to

zero the resulting coe�cient of the lowest power of xÿ �.This leads to a quadratic

equation, called the indicial equation, from which suitable values of � can be

found. In the simplest case, these values of � will give two diÿerent series solutions

and the general solution of the diÿerential equation is then given by a linear

combination of the separate solutions. The complete procedure is shown in

Example 2.14 below.

Example 2.14

Find the general solution of the equation

4x
d2y

dx2
� 2

dy

dx
� y � 0:

Solution: The origin is a regular singular point and, writing

y � �1
��0a�x

����a0 6� 0� we have

dy=dx �
X1
��0

a���� ��x���ÿ1; d2y=dx2 �
X1
��0

a���� ����� �ÿ 1�x���ÿ2:

Before substituting in the diÿerential equation, it is convenient to rewrite it in the

form

4x
d2y

dx2
� 2

dy

dx

( )
� yf g � 0:

When a�x
��� is substituted for y, each term in the ®rst bracket yields a multiple of

x���ÿ1, while the second bracket gives a multiple of x��� and, in this form, the

diÿerential equation is said to be arranged according to weight, the weights of the

bracketed terms diÿering by unity. When the assumed series and its diÿerential

coe�cients are substituted in the diÿerential equation, the term containing the

lowest power of x is obtained by writing y � a0x
� in the ®rst bracket. Since the

coe�cient of the lowest power of x must be zero and, since a0 6� 0, this gives the

indicial equation

4���ÿ 1� � 2� � 2��2�ÿ 1� � 0;

its roots are � � 0, � � 1=2.
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The term in x��� is obtained by writing y � a��1x
����1 in ®rst bracket and

y � a�x
��� in the second. Equating to zero the coe�cient of the term obtained in

this way we have

f4��� �� 1���� �� � 2��� �� 1�ga��1 � a� � 0;

giving, with � replaced by n,

an�1 � ÿ 1

2��� n� 1��2�� 2n� 1� an:

This relation is true for n � 1; 2; 3; . . . and is called the recurrence relation for the

coe�cients. Using the ®rst root � � 0 of the indicial equation, the recurrence

relation gives

an�1 �
1

2�n� 1��2n� 1� an

and hence

a1 � ÿ a0
2
; a2 � ÿ a1

12
� a0

4!
; a3 � ÿ a2

30
� ÿ a0

6!
; . . . :

Thus one solution of the diÿerential equation is the series

a0 1ÿ x

2!
� x2

4!
ÿ x3

6!
�ÿ � � �

ý !
:

With the second root � � 1=2, the recurrence relation becomes

an�1 � ÿ 1

�2n� 3��2n� 2� an:

Replacing a0 (which is arbitrary) by b0, this gives

a1 � ÿ b0
3� 2

� ÿ b0
3!

; a2 � ÿ a1
5� 4

� b0
5!

; a3 � ÿ a2
7� 6

� ÿ b0
7!

; . . . :

and a second solution is

b0x
1=2 1ÿ x

3!
� x2

5!
ÿ x3

7!
�ÿ � � �

ý !
:

The general solution of the equation is a linear combination of these two solu-

tions.

Many physical problems require solutions which are valid for large values of

the independent variable x. By using the transformation x � 1=t, the diÿerential

equation can be transformed into a linear equation in the new variable t and the

solutions required will be those valid for small t.

In Example 2.14 the indicial equation has two distinct roots. But there are two

other possibilities: (a) the indicial equation has a double root; (b) the roots of the
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indicial equation diÿer by an integer. We now take a general look at these cases.

For this purpose, let us consider the following diÿerential equation which is highly

important in mathematical physics:

x2y 00 � xg�x�y 0 � h�x�y � 0; �2:27�
where the functions g�x� and h�x� are analytic at x � 0. Since the coe�cients are

not analyic at x � 0, the solution is of the form

y�x� � xr
X1
m�0

amx
m �a0 6� 0�: �2:28�

We ®rst expand g�x� and h�x� in power series,

g�x� � g0 � g1x� g2x
2 � � � � h�x� � h0 � h1x� h2x

2 � � � �:
Then diÿerentiating Eq. (2.28) term by term, we ®nd

y 0�x� �
X1
m�0

�m� r�amxm�rÿ1; y 00�x� �
X1
m�0

�m� r��m� rÿ 1�amxm�rÿ2:

By inserting all these into Eq. (2.27) we obtain

xr�r�rÿ 1�a0 � � � �� � �g0 � g1x� � � ��xr�ra0 � � � ��
� �h0 � h1x� � � ��xr�a0 � a1x� � � �� � 0:

Equating the sum of the coe�cients of each power of x to zero, as before, yields a

system of equations involving the unknown coe�cients am. The smallest power is

xr, and the corresponding equation is

�r�rÿ 1� � g0r� h0�a0 � 0:

Since by assumption a0 6� 0, we obtain

r�rÿ 1� � g0r� h0 � 0 or r2 � �g0 ÿ 1�r� h0 � 0: �2:29�
This is the indicial equation of the diÿerential equation (2.27). We shall see that

our series method will yield a fundamental system of solutions; one of the solu-

tions will always be of the form (2.28), but for the form of other solution there will

be three diÿerent possibilities corresponding to the following cases.

Case 1 The roots of the indicial equation are distinct and do not diÿer by an

integer.

Case 2 The indicial equation has a double root.

Case 3 The roots of the indicial equation diÿer by an integer.

We now discuss these cases separately.
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Case 1 Distinct roots not diÿering by an integer

This is the simplest case. Let r1 and r2 be the roots of the indicial equation (2.29).

If we insert r � r1 into the recurrence relation and determine the coe�cients

a1, a2; . . . successively, as before, then we obtain a solution

y1�x� � xr1�a0 � a1x� a2x
2 � � � ��:

Similarly, by inserting the second root r � r2 into the recurrence relation, we will

obtain a second solution

y2�x� � xr2�a0*� a1*x� a2*x
2 � � � ��:

Linear independence of y1 and y2 follows from the fact that y1=y2 is not constant

because r1 ÿ r2 is not an integer.

Case 2 Double roots

The indicial equation (2.29) has a double root r if, and only if,

�g0 ÿ 1�2 ÿ 4h0 � 0, and then r � �1ÿ g0�=2. We may determine a ®rst solution

y1�x� � xr�a0 � a1x� a2x
2 � � � �� r � 1ÿg0

2

� �
�2:30�

as before. To ®nd another solution we may apply the method of variation of

parameters, that is, we replace constant c in the solution cy1�x� by a function

u�x� to be determined, such that

y2�x� � u�x�y1�x� �2:31�
is a solution of Eq. (2.27). Inserting y2 and the derivatives

y 0
2 � u 0y1 � uy 0

1 y 00
2 � u 00y1 � 2u 0y 0

1 � uy 00
1

into the diÿerential equation (2.27) we obtain

x2�u 00y1 � 2u 0y 0
1 � uy 00

1 � � xg�u 0y1 � uy 0
1� � huy1 � 0

or

x2y1u
00 � 2x2y 0

1u
0 � xgy1u

0 � �x2y 00
1 � xgy 0

1 � hy1�u � 0:

Since y1 is a solution of Eq. (2.27), the quantity inside the bracket vanishes; and

the last equation reduces to

x2y1u
00 � 2x2y 0

1u
0 � xgy1u

0 � 0:

Dividing by x2y1 and inserting the power series for g we obtain

u 00 � 2
y 0
1

y1
� g0

x
� � � �

� �
u 0 � 0:

Here and in the following the dots designate terms which are constants or involve

positive powers of x. Now from Eq. (2.30) it follows that

y 0
1

y1
� xrÿ1�ra0 � �r� 1�a1x� � � ��

xr�a0 � a1x� � � �� � 1

x

ra0 � �r� 1�a1x� � � �
a0 � a1x� � � � � r

x
� � � �:
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Hence the last equation can be written

u 00 � 2r� g0
x

� � � �
� �

u 0 � 0: �2:32�

Since r � �1ÿ g0�=2 the term �2r� g0�=x equals 1=x, and by dividing by u 0 we
thus have

u 00

u 0 � ÿ 1

x
� � � �:

By integration we obtain

ln u 0 � ÿ ln x� � � � or u 0 � 1

x
e�...�:

Expanding the exponential function in powers of x and integrating once more, we

see that the expression for u will be of the form

u � ln x� k1x� k2x
2 � � � �:

By inserting this into Eq. (2.31) we ®nd that the second solution is of the form

y2�x� � y1�x� ln x� xr
X1
m�1

Amx
m: �2:33�

Case 3 Roots diÿering by an integer

If the roots r1 and r2 of the indicial equation (2.29) diÿer by an integer, say, r1 � r

and r2 � rÿ p, where p is a positive integer, then we may always determine one

solution as before, namely, the solution corresponding to r1:

y1�x� � xr1�a0 � a1x� a2x
2 � � � ��:

To determine a second solution y2, we may proceed as in Case 2. The ®rst steps

are literally the same and yield Eq. (2.32). We determine 2r� g0 in Eq. (2.32).

Then from the indicial equation (2.29), we ®nd ÿ�r1 � r2� � g0 ÿ 1. In our case,

r1 � r and r2 � rÿ p, therefore, g0 ÿ 1 � pÿ 2r. Hence in Eq. (2.32) we have

2r� g0 � p� 1, and we thus obtain

u 00

u 0 � ÿ p� 1

x
� � � �

� �
:

Integrating, we ®nd

ln u 0 � ÿ�p� 1� ln x� � � � or u 0 � xÿ�p�1�e�...�;

where the dots stand for some series of positive powers of x. By expanding the

exponential function as before we obtain a series of the form

u 0 � 1

xp�1
� k1
xp

� � � � � kp

x
� kp�1 � kp�2x� � � �:
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Integrating, we have

u � ÿ 1

pxp
ÿ � � � � kp ln x� kp�1x� � � �: �2:34�

Multiplying this expression by the series

y1�x� � xr1�a0 � a1x� a2x
2 � � � ��

and remembering that r1 ÿ p � r2 we see that y2 � uy1 is of the form

y2�x� � kpy1�x� ln x� xr2
X1
m�0

amx
m: �2:35�

While for a double root of Eq. (2.29) the second solution always contains a

logarithmic term, the coe�cient kp may be zero and so the logarithmic term may

be missing, as shown by the following example.

Example 2.15

Solve the diÿerential equation

x2y 00 � xy 0 � �x2 ÿ 1
4�y � 0:

Solution: Substituting Eq. (2.28) and its derivatives into this equation, we obtainX1
m�0

��m� r��m� rÿ 1� � �m� r� ÿ 1
4�amxm�r � P1

m�0

amx
m�r�2 � 0:

By equating the coe�cient of xr to zero we get the indicial equation

r�rÿ 1� � rÿ 1
4 � 0 or r2 � 1

4 :

The roots r1 � 1
2 and r2 � ÿ 1

2 diÿer by an integer. By equating the sum of the

coe�cients of xs�r to zero we ®nd

��r� 1�r� �rÿ 1� ÿ 1
4�a1 � 0 �s � 1�: �2:36a�

��s� r��s� rÿ 1� � s� rÿ 1
4�as � asÿ2 � 0 �s � 2; 3; . . .�: �2:36b�

For r � r1 � 1
2, Eq. (2.36a) yields a1 � 0, and the indicial equation (2.36b)

becomes

�s� 1�sas � asÿ2 � 0:

From this and a1 � 0 we obtain a3 � 0, a5 � 0, etc. Solving the indicial equation

for as and setting s � 2p, we get

a2p � ÿ a2pÿ2

2p�2p� 1� �p � 1; 2; . . .�:
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Hence the non-zero coe�cients are

a2 � ÿ a0
3!

; a4 � ÿ a2
4� 5

� a0
5!

; a6 � ÿ a0
7!

; etc:;

and the solution y1 is

y1�x� � a0
���
x

p X1
m�0

�ÿ1�mx2m
�2m� 1�! � a0x

ÿ1=2
X1
m�0

�ÿ1�mx2m�1

�2m� 1�! � a0
sin x���

x
p : �2:37�

From Eq. (2.35) we see that a second independent solution is of the form

y2�x� � ky1�x� ln x� xÿ1=2
X1
m�0

amx
m:

Substituting this and the derivatives into the diÿerential equation, we see that the

three expressions involving ln x and the expressions ky1 and ÿky1 drop out.

Simplifying the remaining equation, we thus obtain

2kxy 0
1 �

X1
m�0

m�mÿ 1�amxmÿ1=2 �
X1
m�0

amx
m�3=2 � 0:

From Eq. (2.37) we ®nd 2kxy 0 � ÿka0x
1=2 � � � �. Since there is no further term

involving x1=2 and a0 6� 0, we must have k � 0. The sum of the coe�cients of the

power xsÿ1=2 is

s�sÿ 1�as � asÿ2 �s � 2; 3; . . .�:
Equating this to zero and solving for as, we have

as � ÿasÿ2=�s�sÿ 1�� �s � 2; 3; . . .�;
from which we obtain

a2 � ÿ a0
2!

; a4 � ÿ a2
4� 3

� a0
4!

; a6 � ÿ a0
6!

; etc:;

a3 � ÿ a1
3!

; a5 � ÿ a3
5� 4

� a1
5!

; a7 � ÿ a1
7!

; etc:

We may take a1 � 0, because the odd powers would yield a1y1=a0. Then

y2�x� � a0x
ÿ1=2

X1
m�0

�ÿ1�mx2m
�2m�! � a0

cos x���
x

p :

Simultaneous equations

In some physics and engineering problems we may face simultaneous dif-

ferential equations in two or more dependent variables. The general solution
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of simultaneous equations may be found by solving for each dependent variable

separately, as shown by the following example

Dx� 2y� 3x � 0

3x�Dyÿ 2y � 0

)
�D � d=dt�

which can be rewritten as

�D� 3�x� 2y � 0;

3x� �Dÿ 2�y � 0:

)

We then operate on the ®rst equation with (Dÿ 2) and multiply the second by a

factor 2:

�Dÿ 2��D� 3�x� 2�Dÿ 2�y � 0;

6x� 2�Dÿ 2�y � 0:

)

Subtracting the ®rst from the second leads to

�D2 �Dÿ 6�xÿ 6x � �D2 �Dÿ 12�x � 0;

which can easily be solved and its solution is of the form

x�t� � Ae3t � Beÿ4t:

Now inserting x�t� back into the original equation to ®nd y gives:

y�t� � ÿ3Ae3t � 1
2Be

ÿ4t:

The gamma and beta functions

The factorial notation n! � n�nÿ 1��nÿ 2� � � � 3� 2� 1 has proved useful in

writing down the coe�cients in some of the series solutions of the diÿerential

equations. However, this notation is meaningless when n is not a positive integer.

A useful extension is provided by the gamma (or Euler) function, which is de®ned

by the integral

ÿ��� �
Z 1

0

eÿxx�ÿ1dx �� > 0� �2:38�

and it follows immediately that

ÿ�1� �
Z 1

0

eÿxdx � �ÿeÿx�10 � 1: �2:39�

Integration by parts gives

ÿ��� 1� �
Z 1

0

eÿxx�dx � �ÿeÿxx��10 � �

Z 1

0

eÿxx�ÿ1dx � �ÿ���: �2:40�
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When � � n, a positive integer, repeated application of Eq. (2.40) and use of Eq.

(2.39) gives

ÿ�n� 1� � nÿ�n� � n�nÿ 1�ÿ�nÿ 1� � . . . � n�nÿ 1� � � � 3� 2� ÿ�1�
� n�nÿ 1� � � � 3� 2� 1 � n!:

Thus the gamma function is a generalization of the factorial function. Eq. (2.40)

enables the values of the gamma function for any positive value of � to be

calculated: thus

ÿ�72� � �52�ÿ�52� � �52��32�ÿ�32� � �52��32��12�ÿ�12�:
Write u � � ���

x
p

in Eq. (2.38) and we then obtain

ÿ��� � 2

Z 1

0

u2�ÿ1eÿu2du;

so that

ÿ�12� � 2

Z 1

0

eÿu2du � ���
�

p
:

The function ÿ��� has been tabulated for values of � between 0 and 1.

When � < 0 we can de®ne ÿ��� with the help of Eq. (2.40) and write

ÿ��� � ÿ��� 1�=�:
Thus

ÿ�ÿ 3
2� � ÿ 2

3ÿ�ÿ 1
2� � ÿ 2

3 �ÿ 2
1�ÿ�12� � 4

3

���
�

p
:

When � ! 0;
R1
0 eÿxx�ÿ1dx diverges so that ÿ�0� is not de®ned.

Another function which will be useful later is the beta function which is de®ned

by

B�p; q� �
Z 1

0

t pÿ1�1ÿ t�qÿ1dt �p; q > 0�: �2:41�

Substituting t � v=�1� v�, this can be written in the alternative form

B�p; q� �
Z 1

0

vpÿ1�1� v�ÿpÿqdv: �2:42�

By writing t 0 � 1ÿ t we deduce that B�p; q� � B�q; p�.
The beta function can be expressed in terms of gamma functions as follows:

B�p; q� � ÿ�p�ÿ�q�
ÿ�p� q� : �2:43�

To prove this, write x � at (a > 0) in the integral (2.38) de®ning ÿ���, and it is

straightforward to show that

ÿ���
a�

�
Z 1

0

eÿatt�ÿ1dt �2:44�
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and, with � � p� q, a � 1� v, this can be written

ÿ�p� q��1� v�ÿpÿq �
Z 1

0

eÿ�1�v�ttp�qÿ1dt:

Multiplying by v pÿ1 and integrating with respect to v between 0 and 1,

ÿ�p� q�
Z 1

0

v pÿ1�1� v�ÿpÿqdv �
Z 1

0

v pÿ1dv

Z 1

0

eÿ�1�v�tt p�q�1dt:

Then interchanging the order of integration in the double integral on the right and

using Eq. (2.42),

ÿ�p� q�B�p; q� �
Z 1

0

eÿttp�qÿ1dt

Z 1

0

eÿvtv pÿ1dv

�
Z 1

0

eÿtt p�qÿ1 ÿ�p�
tp

dt; using Eq: �2:44�

� ÿ�p�
Z 1

0

eÿttqÿ1dt � ÿ�p�ÿ�q�:

Example 2.15

Evaluate the integral

Z 1

0

3ÿ4x2dx:

Solution: We ®rst notice that 3 � eln 3, so we can rewrite the integral asZ 1

0

3ÿ4x2dx �
Z 1

0

�eln 3��ÿ4x2�dx �
Z 1

0

eÿ�4 ln 3�x2dx:

Now let (4 ln 3)x2 � z, then the integral becomesZ 1

0

eÿzd
z1=2�����������
4 ln 3

p
ý !

� 1

2
�����������
4 ln 3

p
Z 1

0

zÿ1=2eÿzdz � ÿ�12�
2

�����������
4 ln 3

p �
���
�

p

2
�����������
4 ln 3

p :

Problems

2.1 Solve the following equations:

(a) xdy=dx� y2 � 1;

(b) dy=dx � �x� y�2.
2.2 Melting of a sphere of ice: Assume that a sphere of ice melts at a rate

proportional to its surface area. Find an expression for the volume at any

time t.

2.3 Show that �3x2 � y cos x�dx� �sin xÿ 4y3�dy � 0 is an exact diÿerential

equation and ®nd its general solution.
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2.4 RC circuits: A typical RC circuit is shown in Fig. 2.3. Find current ¯ow I�t�
in the circuit, assuming E�t� � E0.

Hint: the voltage drop across the capacitor is given Q/C, with Q(t) the

charge on the capacitor at time t.

2.5 Find a constant � such that �x� y�� is an integrating factor of the equation

�4x2 � 2xy� 6y�dx� �2x2 � 9y� 3x�dy � 0:

What is the solution of this equation?

2.6 Solve dy=dx� y � y3x:

2.7 Solve:

(a) the equation �D2 ÿDÿ 12�y � 0 with the boundary conditions y � 0,

Dy � 3 when t � 0;

(b) the equation �D2 � 2D� 3�y � 0 with the boundary conditions y � 2,

Dy � 0 when t � 0;

(c) the equation �D2 ÿ 2D� 1�y � 0 with the boundary conditions y � 5,

Dy � 3 when t � 0.

2.8 Find the particular integral of �D2 � 2Dÿ 1�y � 3� t3.

2.9 Find the particular integral of �2D2 � 5D� 7� � 3e2t.

2.10 Find the particular integral of �3D2 �Dÿ 5�y � cos 3t:

2.11 Simple harmonic motion of a pendulum (Fig. 2.4): Suspend a ball of mass m

at the end of a massless rod of length L and set it in motion swinging back

and forth in a vertical plane. Show that the equation of motion of the ball is

d2�

dt2
� g

L
sin � � 0;

where g is the local gravitational acceleration. Solve this pendulum equation

for small displacements by replacing sin � by �.

2.12 Forced oscillations with damping: If we allow an external driving force F�t�
in addition to damping (Example 2.12), the motion of the oscillator is

governed by

y 00 � b

m
y 0 � k

m
y � F�t�;
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a constant coe�cient non-homogeneous equation. Solve this equation for

F�t� � A cos�!t�:
2.13 Solve the equation

r2
d2R

dr2
� 2r

dR

dr
ÿ n�n� 1�R � 0 �n constant�:

2.14 The ®rst-order non-linear equation

dy

dx
� y2 �Q�x�y� R�x� � 0

is known as Riccati's equation. Show that, by use of a change of dependent

variable

y � 1

z

dz

dx
;

Riccati's equation transforms into a second-order linear diÿerential equa-

tion

d2z

dx2
�Q�x� dz

dx
� R�x�z � 0:

Sometimes Riccati's equation is written as

dy

dx
� P�x�y2 �Q�x�y� R�x� � 0:

Then the transformation becomes

y � ÿ 1

P�x�
dz

dx

and the second-order equation takes the form

d2z

dx2
� Q� 1

P

dP

dx

� �
dz

dx
� PRz � 0:
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2.15 Solve the equation 4x2y 00 � 4xy 0 � �x2 ÿ 1�y � 0 by using Frobenius'

method, where y 0 � dy=dx, and y 00 � d2y=dx2.

2.16 Find a series solution, valid for large values of x, of the equation

�1ÿ x2�y 00 ÿ 2xy 0 � 2y � 0:

2.17 Show that a series solution of Airy's equation y 00 ÿ xy � 0 is

y � a0 1� x3

2� 3
� x6

2� 3� 5� 6
� � � �

ý !

� b0 x� x4

3� 4
� x7

3� 4� 6� 7
� � � �

ý !
:

2.18 Show that Weber's equation y 00 � �n� 1
2 ÿ 1

4 x
2�y � 0 is reduced by the sub-

stitution y � eÿx2=4v to the equation d2v=dx2 ÿ x�dv=dx� � nv � 0. Show

that two solutions of this latter equation are

v1 � 1ÿ n

2!
x2 � n�nÿ 2�

4!
x4 ÿ n�nÿ 2��nÿ 4�

6!
x6 �ÿ � � � ;

v2 � xÿ �nÿ 1�
3!

x3 � �nÿ 1��nÿ 3�
5!

x5 ÿ �nÿ 1��nÿ 3��nÿ 5�
7!

x7 �ÿ � � � :

2.19 Solve the following simultaneous equations

Dx� y � t3

Dyÿ x � t

)
�D � d=dt�:

2.20 Evaluate the integrals:

(a)

Z 1

0

x3eÿxdx:

(b)

Z 1

0

x6eÿ2xdx �hint : let y � 2x�:

(c)

Z 1

0

���
y

p
eÿy2dy �hint : let y2 � x�:

(d)

Z 1

0

dx������������ÿ ln x
p �hint : letÿ ln x � u�:

2.21 (a) Prove that B�p; q� � 2

Z �=2

0

sin2pÿ1 � cos2qÿ1 �d�.

(b) Evaluate the integral

Z 1

0

x4�1ÿ x�3dx:

2.22 Show that n! � ��������
2�n

p
nneÿn. This is known as Stirling's factorial approxima-

tion or asymptotic formula for n!.
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3

Matrix algebra

As vector methods have become standard tools for physicists, so too matrix

methods are becoming very useful tools in sciences and engineering. Matrices

occur in physics in at least two ways: in handling the eigenvalue problems in

classical and quantum mechanics, and in the solutions of systems of linear equa-

tions. In this chapter, we introduce matrices and related concepts, and de®ne some

basic matrix algebra. In Chapter 5 we will discuss various operations with

matrices in dealing with transformations of vectors in vector spaces and the

operation of linear operators on vector spaces.

De®nition of a matrix

A matrix consists of a rectangular block or ordered array of numbers that obeys

prescribed rules of addition and multiplication. The numbers may be real or

complex. The array is usually enclosed within curved brackets. Thus

1 2 4

2 ÿ1 7

� �
is a matrix consisting of 2 rows and 3 columns, and it is called a 2� 3 (2 by 3)

matrix. An m� n matrix consists of m rows and n columns, which is usually

expressed in a double su�x notation:

~A �

a11 a12 a13 � � � a1n

a21 a22 a23 . . . a2n

..

. ..
. ..

. ..
.

am1 am2 am3 . . . amn

0
BBBB@

1
CCCCA: �3:1�

Each number ai j is called an element of the matrix, where the ®rst subscript i

denotes the row, while the second subscript j indicates the column. Thus, a23
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refers to the element in the second row and third column. The element ai j should

be distinguished from the element aji.

It should be pointed out that a matrix has no single numerical value; therefore it

must be carefully distinguished from a determinant.

We will denote a matrix by a letter with a tilde over it, such as ~A in (3.1).

Sometimes we write (ai j) or (aij�mn, if we wish to express explicitly the particular

form of element contained in ~A.

Although we have de®ned a matrix here with reference to numbers, it is easy to

extend the de®nition to a matrix whose elements are functions fi�x�; for a 2� 3

matrix, for example, we have

f1�x� f2�x� f3�x�
f4�x� f5�x� f6�x�

� �
:

A matrix having only one row is called a row matrix or a row vector, while a

matrix having only one column is called a column matrix or a column vector. An

ordinary vector A � A1ê1 � A2ê2 � A3ê3 can be represented either by a row

matrix or by a column matrix.

If the numbers of rows m and columns n are equal, the matrix is called a square

matrix of order n.

In a square matrix of order n, the elements a11; a22; . . . ; ann form what is called

the principal (or leading) diagonal, that is, the diagonal from the top left hand

corner to the bottom right hand corner. The diagonal from the top right hand

corner to the bottom left hand corner is sometimes termed the trailing diagonal.

Only a square matrix possesses a principal diagonal and a trailing diagonal.

The sum of all elements down the principal diagonal is called the trace, or spur,

of the matrix. We write

Tr ~A �
Xn
i�1

aii:

If all elements of the principal diagonal of a square matrix are unity while all

other elements are zero, then it is called a unit matrix (for a reason to be explained

later) and is denoted by ~I . Thus the unit matrix of order 3 is

~I �
1 0 0

0 1 0

0 0 1

0
B@

1
CA:

A square matrix in which all elements other than those along the principal

diagonal are zero is called a diagonal matrix.

A matrix with all elements zero is known as the null (or zero) matrix and is

denoted by the symbol ~0, since it is not an ordinary number, but an array of zeros.
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Four basic algebra operations for matrices

Equality of matrices

Two matrices ~A � �ajk� and ~B � �bjk� are equal if and only if ~A and ~B have the

same order (equal numbers of rows and columns) and corresponding elements are

equal, that is

ajk � bjk for all j and k:

Then we write

~A � ~B:

Addition of matrices

Addition of matrices is de®ned only for matrices of the same order. If ~A � �ajk�
and ~B � �bjk� have the same order, the sum of ~A and ~B is a matrix of the same

order

~C � ~A� ~B

with elements

cjk � ajk � bjk: �3:2�
We see that ~C is obtained by adding corresponding elements of ~A and ~B.

Example 3.1

If

~A � 2 1 4

3 0 2

� �
; ~B � 3 5 1

2 1 ÿ3

� �
hen

~C � ~A� ~B �
2 1 4

3 0 2

ý !
�

3 5 1

2 1 ÿ3

ý !
�

2� 3 1� 5 4� 1

3� 2 0� 1 2ÿ 3

ý !

�
5 6 5

5 1 ÿ1

ý !
:

From the de®nitions we see that matrix addition obeys the commutative and

associative laws, that is, for any matrices ~A, ~B, ~C of the same order

~A� ~B � ~B� ~A; ~A� � ~B� ~C� � � ~A� ~B� � ~C: �3:3�
Similarly, if ~A � �ajk� and ~B � �bjk) have the same order, we de®ne the diÿer-

ence of ~A and ~B as

~D � ~Aÿ ~B
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with elements

djk � ajk ÿ bjk: �3:4�

Multiplication of a matrix by a number

If ~A � �ajk� and c is a number (or scalar), then we de®ne the product of ~A and c as

c ~A � ~Ac � �cajk�; �3:5�
we see that c ~A is the matrix obtained by multiplying each element of ~A by c.

We see from the de®nition that for any matrices and any numbers,

c� ~A� ~B� � c ~A� c ~B; �c� k� ~A � c ~A� k ~A; c�k ~A� � ck ~A: �3:6�

Example 3.2

7
a b c

d e f

� �
� 7a 7b 7c

7d 7e 7f

� �
:

Formulas (3.3) and (3.6) express the properties which are characteristic for a

vector space. This gives vector spaces of matrices. We will discuss this further in

Chapter 5.

Matrix multiplication

The matrix product ~A ~B of the matrices ~A and ~B is de®ned if and only if the

number of columns in ~A is equal to the number of rows in ~B. Such matrices

are sometimes called `conformable'. If ~A � �ajk� is an n� s matrix and
~B � �bjk� is an s�m matrix, then ~A and ~B are conformable and their matrix

product, written ~C � ~A ~B, is an n�m matrix formed according to the rule

cik �
Xs

j�1

ai jbjk; i � 1; 2; . . . ; n k � 1; 2; . . . ;m: �3:7�

Consequently, to determine the ijth element of matrix ~C, the corresponding terms

of the ith row of ~A and jth column of ~B are multiplied and the resulting products

added to form ci j.

Example 3.3

Let

~A � 2 1 4

ÿ3 0 2

� �
; ~B �

3 5

2 ÿ1

4 2

0
B@

1
CA
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then

~A ~B �
2� 3� 1� 2� 4� 4 2� 5� 1� �ÿ1� � 4� 2

�ÿ3� � 3� 0� 2� 2� 4 �ÿ3� � 5� 0� �ÿ1� � 2� 2

ý !

�
24 17

ÿ1 ÿ11

ý !
:

The reader should master matrix multiplication, since it is used throughout the

rest of the book.

In general, matrix multiplication is not commutative: ~A ~B 6� ~B ~A. In fact, ~B ~A is

often not de®ned for non-square matrices, as shown in the following example.

Example 3.4

If

~A �
1 2

3 4

ý !
; ~B �

3

7

ý !

then

~A ~B � 1 2

3 4

� �
3

7

� �
� 1� 3� 2� 7

3� 3� 4� 7

� �
� 17

37

� �
:

But

~B ~A � 3

7

� �
1 2

3 4

� �
is not de®ned.

Matrix multiplication is associative and distributive:

� ~A ~B� ~C � ~A� ~B ~C�; � ~A� ~B� ~C � ~A ~C � ~B ~C:

To prove the associative law, we start with the matrix product ~A ~B, then multi-

ply this product from the right by ~C:

~A ~B �
X
k

aikbkj;

� ~A ~B� ~C �
X
j

X
k

aikbkj

ý !
cjs

" #
�

X
k

aik
X
j

bkjcjs

ý !
� ~A� ~B ~C�:

Products of matrices diÿer from products of ordinary numbers in many

remarkable ways. For example, ~A ~B � 0 does not imply ~A � 0 or ~B � 0. Even

more bizarre is the case where ~A2 � 0, ~A 6� 0; an example of which is

~A � 0 1

0 0

� �
:
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When you ®rst run into Eq. (3.7), the rule for matrix multiplication, you might

ask how anyone would arrive at it. It is suggested by the use of matrices in

connection with linear transformations. For simplicity, we consider a very simple

case: three coordinates systems in the plane denoted by the x1x2-system, the y1y2-

system, and the z1z2-system. We assume that these systems are related by the

following linear transformations

x1 � a11y1 � a12y2; x2 � a21y1 � a22y2; �3:8�
y1 � b11z1 � b12z2; y2 � b21z1 � b22z2: �3:9�

Clearly, the x1x2-coordinates can be obtained directly from the z1z2-coordinates

by a single linear transformation

x1 � c11z1 � c12z2; x2 � c21z1 � c22z2; �3:10�
whose coe�cients can be found by inserting (3.9) into (3.8),

x1 � a11�b11z1 � b12z2� � a12�b21z1 � b22z2�;
x2 � a21�b11z1 � b12z2� � a22�b21z1 � b22z2�:

Comparing this with (3.10), we ®nd

c11 � a11b11 � a12b21; c12 � a11b12 � a12b22;

c21 � a21b11 � a22b21; c22 � a21b12 � a22b22;

or brie¯y

cjk �
X2
i�1

ajibik; j; k � 1; 2; �3:11�

which is in the form of (3.7).

Now we rewrite the transformations (3.8), (3.9) and (3.10) in matrix form:

~X � ~A ~Y ; ~Y � ~B ~Z; and ~X � ~C ~Z;

where

~X �
x1

x2

ý !
; ~Y �

y1

y2

ý !
; ~Z �

z1

z2

ý !
;

~A �
a11 a12

a21 a22

ý !
; ~B �

b11 b12

b21 b22

ý !
; C

:::
�

c11 c12

c21 c22

ý !
:

We then see that ~C � ~A ~B, and the elements of ~C are given by (3.11).

Example 3.5

Rotations in three-dimensional space: An example of the use of matrix multi-

plication is provided by the representation of rotations in three-dimensional
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space. In Fig. 3.1, the primed coordinates are obtained from the unprimed coor-

dinates by a rotation through an angle � about the x3-axis. We see that x 0
1 is the

sum of the projection of x1 onto the x 0
1-axis and the projection of x2 onto the x 0

1-

axis:

x 0
1 � x1 cos �� x2 cos��=2ÿ �� � x1 cos �� x2 sin �;

similarly

x 0
2 � x1 cos��=2� �� � x2 cos � � ÿx1 sin �� x2 cos �

and

x 0
3 � x3:

We can put these in matrix form

X 0 � R�X ;

where

X 0 �
x 0
1

x 0
2

x 0
3

0
B@

1
CA; X �

x1

x2

x3

0
B@

1
CA; R� �

cos � sin � 0

ÿ sin � cos � 0

0 0 1

0
B@

1
CA:
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The commutator

Even if matrices ~A and ~B are both square matrices of order n, the products ~A ~B

and ~B ~A, although both square matrices of order n, are in general quite diÿerent,

since their individual elements are formed diÿerently. For example,

1 2

1 3

� �
1 0

1 2

� �
� 3 4

4 6

� �
but

1 0

1 2

� �
1 2

1 3

� �
� 1 2

3 8

� �
:

The diÿerence between the two products ~A ~B and ~B ~A is known as the commu-

tator of ~A and ~B and is denoted by

� ~A; ~B� � ~A ~Bÿ ~B ~A: �3:12�
It is obvious that

� ~B; ~A� � ÿ� ~A; ~B�: �3:13�
If two square matrices ~A and ~B are very carefully chosen, it is possible to make the

product identical. That is ~A ~B � ~B ~A. Two such matrices are said to commute with

each other. Commuting matrices play an important role in quantum mechanics.

If ~A commutes with ~B and ~B commutes with ~C, it does not necessarily follow

that ~A commutes with ~C.

Powers of a matrix

If n is a positive integer and ~A is a square matrix, then ~A2 � ~A ~A, ~A3 � ~A ~A ~A, and

in general, ~An � ~A ~A � � � ~A (n times). In particular, ~A0 � ~I .

Functions of matrices

As we de®ne and study various functions of a variable in algebra, it is possible to

de®ne and evaluate functions of matrices. We shall brie¯y discuss the following

functions of matrices in this section: integral powers and exponential.

A simple example of integral powers of a matrix is polynomials such as

f � ~A� � ~A2 � 3 ~A5:

Note that a matrix can be multiplied by itself if and only if it is a square matrix.

Thus ~A here is a square matrix and we denote the product ~A � ~A as ~A2. More fancy

examples can be obtained by taking series, such as

~S �
X1
k�0

ak ~A
k;

where ak are scalar coe�cients. Of course, the sum has no meaning if it does not

converge. The convergence of the matrix series means every matrix element of the
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in®nite sum of matrices converges to a limit. We will not discuss the general

theory of convergence of matrix functions. Another very common series is de®ned

by

e
~A �

X1
n�0

~An

n!
:

Transpose of a matrix

Consider an m� n matrix ~A, if the rows and columns are systematically changed

to columns to rows, without changing the order in which they occur, the new

matrix is called the transpose of matrix ~A. It is denoted by ~AT:

~A �

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

..

. ..
. ..

. ..
.

am1 am2 am3 . . . amn

0
BBBB@

1
CCCCA; ~AT �

a11 a21 a31 . . . am1

a12 a22 a32 . . . am2

..

. ..
. ..

. ..
.

an1 a2n a3n . . . amn

0
BBBB@

1
CCCCA:

Thus the transpose matrix has n rows and m columns. If ~A is written as (ajk), then
~AT may be written as �akj).

~A � �ajk�; ~AT � �akj�: �3:14�
The transpose of a row matrix is a column matrix, and vice versa.

Example 3.6

~A � 1 2 3

4 5 6

� �
; ~AT �

1 4

2 5

3 6

0
B@

1
CA; ~B � �1 2 3�; ~BT �

1

2

3

0
B@

1
CA:

It is obvious that � ~AT�T � ~A, and � ~A� ~B�T � ~AT � ~BT. It is also easy to prove

that the transpose of the product is the product of the transposes in reverse:

� ~A ~B�T � ~BT ~AT: �3:15�

Proof:

� ~A ~B�Ti j � � ~A ~B�ji by definition

�
X
k

AjkBki

�
X
k

BT
ikA

T
kj

� � ~BT ~AT�i j
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so that

�AB�T � BTAT q:e:d:

Because of (3.15), even if ~A � ~AT and ~B � ~BT, � ~A ~B�T 6� ~A ~B unless the matrices

commute.

Symmetric and skew-symmetric matrices

A square matrix ~A � �ajk� is said to be symmetric if all its elements satisfy the

equations

akj � ajk; �3:16�
that is, ~A and its transpose are equal ~A � ~AT. For example,

~A �
1 5 7

5 3 ÿ4

7 ÿ4 0

0
B@

1
CA

is a third-order symmetric matrix: the elements of the ith row equal the elements

of ith column, for all i.

On the other hand, if the elements of ~A satisfy the equations

akj � ÿajk; �3:17�
then ~A is said to be skew-symmetric, or antisymmetric. Thus, for a skew-sym-

metric ~A, its transpose equals minus ÿ ~A: ~AT � ÿ ~A.

Since the elements ajj along the principal diagonal satisfy the equations

ajj � ÿajj , it is evident that they must all vanish. For example,

~A �
0 ÿ2 5

2 0 1

ÿ5 ÿ1 0

0
B@

1
CA

is a skew-symmetric matrix.

Any real square matrix ~A may be expressed as the sum of a symmetric matrix ~R

and a skew-symmetric matrix ~S, where

~R � 1
2 � ~A� ~AT� and ~S � 1

2 � ~Aÿ ~AT�: �3:18�

Example 3.7

The matrix

~A � 2 3

5 ÿ1

� �
may be written in the form ~A � ~R� ~S, where

~R � 1

2
� ~A� ~AT� � 2 4

4 ÿ1

� �
~S � 1

2
� ~Aÿ ~AT� � 0 ÿ1

1 0

� �
:
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The product of two symmetric matrices need not be symmetric. This is

because of (3.15): even if ~A � ~AT and ~B � ~BT, � ~A ~B�T 6� ~A ~B unless the matrices

commute.

A square matrix whose elements above or below the principal diagonal are all

zero is called a triangular matrix. The following two matrices are triangular

matrices:

1 0 0

2 3 0

5 0 2

0
B@

1
CA;

1 6 ÿ1

0 2 3

0 0 4

0
B@

1
CA:

A square matrix ~A is said to be singular if det ~A � 0, and non-singular if

det ~A 6� 0, where det ~A is the determinant of the matrix ~A.

The matrix representation of a vector product

The scalar product de®ned in ordinary vector theory has its counterpart in matrix

theory. Consider two vectors A � �A1;A2;A3� and B � �B1;B2;B3� the counter-

part of the scalar product is given by

~A ~BT � �A1 A2 A3�
B1

B2

B3

0
B@

1
CA � A1B1 � A2B2 � A3B3:

Note that ~B ~AT is the transpose of ~A ~BT, and, being a 1� 1 matrix, the transpose

equals itself. Thus a scalar product may be written in these two equivalent forms.

Similarly, the vector product used in ordinary vector theory must be replaced

by something more in keeping with the de®nition of matrix multiplication. Note

that the vector product

A� B � �A2B3 ÿ A3B2�ê1 � �A3B1 ÿ A1B3�ê2 � �A1B2 ÿ A2B1�ê3
can be represented by the column matrix

A2B3 ÿ A3B2

A3B1 ÿ A1B3

A1B2 ÿ A2B1

0
B@

1
CA:

This can be split into the product of two matrices

A2B3 ÿ A3B2

A3B1 ÿ A1B3

A1B2 ÿ A2B1

0
B@

1
CA �

0 ÿA2 A2

A3 0 ÿA1

ÿA2 A1 0

0
B@

1
CA B1

B2

B3

0
B@

1
CA
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or

A2B3 ÿ A3B2

A3B1 ÿ A1B3

A1B2 ÿ A2B1

0
B@

1
CA �

0 ÿB2 B2

B3 0 ÿB1

ÿB2 B1 0

0
B@

1
CA A1

A2

A3

0
B@

1
CA:

Thus the vector product may be represented as the product of a skew-symmetric

matrix and a column matrix. However, this de®nition only holds for 3� 3

matrices.

Similarly, curl A may be represented in terms of a skew-symmetric matrix

operator, given in Cartesian coordinates by

r� A �
0 ÿ@=@x3 @=@x2

@=@x3 0 ÿ@=@x1

ÿ@=@x2 @=@x1 0

0
B@

1
CA A1

A2

A3

0
B@

1
CA:

In a similar way, we can investigate the triple scalar product and the triple vector

product.

The inverse of a matrix

If for a given square matrix ~A there exists a matrix ~B such that ~A ~B � ~B ~A � ~I ,

where ~I is a unit matrix, then ~B is called an inverse of matrix ~A.

Example 3.8

The matrix

~B � 3 5

1 2

� �
is an inverse of

~A � 2 ÿ5

ÿ1 3

� �
;

since

~A ~B � 2 ÿ5

ÿ1 3

� �
3 5

1 2

� �
� 1 0

0 1

� �
� ~I

and

~B ~A � 3 5

1 2

� �
2 ÿ5

ÿ1 3

� �
� 1 0

0 1

� �
� ~I :

An invertible matrix has a unique inverse. That is, if ~B and ~C are both inverses

of the matrix ~A, then ~B � ~C. The proof is simple. Since ~B is an inverse of ~A,
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~B ~A � ~I . Multiplying both sides on the right by ~C gives �~B ~A� ~C � ~I ~C � ~C. On the

other hand, ( ~B ~A� ~C � ~B� ~A ~C� � ~B~I � ~B, so that ~B � ~C. As a consequence of this

result, we can now speak of the inverse of an invertible matrix. If ~A is invertible,

then its inverse will be denoted by ~Aÿ1. Thus

~A ~Aÿ1 � ~Aÿ1 ~A � ~I : �3:19�
It is obvious that the inverse of the inverse is the given matrix, that is,

� ~Aÿ1�ÿ1 � ~A: �3:20�
It is easy to prove that the inverse of the product is the product of the inverse in

reverse order, that is,

� ~A ~B�ÿ1 � ~Bÿ1 ~Aÿ1: �3:21�
To prove (3.21), we start with ~A ~Aÿ1 � ~I , with ~A replaced by ~A ~B, that is,

~A ~B� ~A ~B�ÿ1 � ~I :

By premultiplying this by ~Aÿ1 we get

~B� ~A ~B�ÿ1 � ~Aÿ1:

If we premultiply this by ~Bÿ1, the result follows.

A method for ®nding ~Aÿ1

The positive power for a square matrix ~A is de®ned as ~An � ~A ~A � � � ~A (n factors)

and ~A0 � ~I , where n is a positive integer. If, in addition, ~A is invertible, we de®ne

~Aÿn � � ~Aÿ1�n � ~Aÿ1 ~Aÿ1 � � � ~Aÿ1�n factors�:
We are now in position to construct the inverse of an invertible matrix ~A:

~A �

a11 a12 . . . a1n

a21 a22 . . . a2n

..

. ..
. ..

.

an1 an2 . . . ann

0
BBBB@

1
CCCCA:

The ajk are known. Now let

~Aÿ1 �

a 0
11 a 0

12 . . . a 0
1n

a 0
21 a 0

22 . . . a 0
2n

..

. ..
. ..

.

a 0
n1 a 0

n2 . . . a 0
nn

0
BBBB@

1
CCCCA:
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The a 0
jk are required to construct ~Aÿ1. Since ~A ~Aÿ1 � ~I , we have

a11a
0
11 � a12a

0
12 � � � � � a1na

0
1n � 1;

a21a
0
21 � a22a

0
22 � � � � � a2na

0
2n � 0;

..

.

an1a
0
n1 � an2a

0
n2 � � � � � anna

0
nn � 0:

�3:22�

The solution to the above set of linear algebraic equations (3.22) may be facili-

tated by applying Cramer's rule. Thus

a 0
jk �

cofactor akj

det ~A
: �3:23�

From (3.23) it is clear that ~Aÿ1 exists if and only if matrix ~A is non-singular (that

is, det ~A 6� 0).

Systems of linear equations and the inverse of a matrix

As an immediate application, let us apply the concept of an inverse matrix to a

system of n linear equations in n unknowns �x1; . . . ; xn�:
a11x1 � a12x2 � � � � � a1nxn � b1;

a21x2 � a22x2 � � � � � a2nxn � b2;

..

.

an1xn � an2xn � � � � � annxn � bn;

in matrix form we have

~A ~X � ~B; �3:24�
where

~A �

a11 a12 . . . a1n

a21 a22 . . . a2n

..

. ..
. ..

.

an1 an2 . . . ann

0
BBBB@

1
CCCCA; ~X �

x1

x2

..

.

xn

0
BBBB@

1
CCCCA; ~B �

b1

b2

..

.

bn

0
BBBB@

1
CCCCA:

We can prove that the above linear system possesses a unique solution given by

~X � ~Aÿ1 ~B: �3:25�
The proof is simple. If ~A is non-singular it has a unique inverse ~Aÿ1. Now pre-

multiplying (3.24) by ~Aÿ1 we obtain

~Aÿ1� ~A ~X� � ~Aÿ1 ~B;
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but

~Aÿ1� ~A ~X� � � ~Aÿ1 ~A� ~X � ~X

so that

~X � ~Aÿ1 ~B is a solution to �3:24�; ~A ~X � ~B:

Complex conjugate of a matrix

If ~A � �ajk� is an arbitrary matrix whose elements may be complex numbers, the

complex conjugate matrix, denoted by ~A*, is also a matrix of the same order,

every element of which is the complex conjugate of the corresponding element of
~A, that is,

�A*�jk � a*jk: �3:26�

Hermitian conjugation

If ~A � �ajk� is an arbitrary matrix whose elements may be complex numbers, when

the two operations of transposition and complex conjugation are carried out on
~A, the resulting matrix is called the hermitian conjugate (or hermitian adjoint) of

the original matrix ~A and will be denoted by ~Ay. We frequently call ~Ay A-dagger.
The order of the two operations is immaterial:

~Ay � � ~AT�* � � ~A*�T: �3:27�
In terms of the elements, we have

� ~Ay�jk � a*kj : �3:27a�
It is clear that if ~A is a matrix of order m� n, then ~Ay is a matrix of order n�m.

We can prove that, as in the case of the transpose of a product, the adjoint of the

product is the product of the adjoints in reverse:

� ~A ~B�y � ~By ~Ay: �3:28�

Hermitian/anti-hermitian matrix

A matrix ~A that obeys

~Ay � ~A �3:29�
is called a hermitian matrix. It is very clear the following matrices are hermitian:

1 ÿi

i 2

� �
;

4 5� 2i 6� 3i

5ÿ 2i 5 ÿ1ÿ 2i

6ÿ 3i ÿ1� 2i 6

0
B@

1
CA; where i �

�������
ÿ1

p
:
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Evidently all the elements along the principal diagonal of a hermitian matrix must

be real.

A hermitian matrix is also de®ned as a matrix whose transpose equals its

complex conjugate:

~AT � ~A* �that is; akj � a*jk�: �3:29a�
These two de®nitions are the same. First note that the elements in the principal

diagonal of a hermitian matrix are always real. Furthermore, any real symmetric

matrix is hermitian, so a real hermitian matrix is a symmetric matrix.

The product of two hermitian matrices is not generally hermitian unless they

commute. This is because of property (3.28): even if ~Ay � ~A and ~By � ~B,

� ~A ~B�y 6� ~A ~B unless the matrices commute.

A matrix ~A that obeys

~Ay � ÿ ~A �3:30�
is called an anti-hermitian (or skew-hermitian) matrix. All the elements along the

principal diagonal must be pure imaginary. An example is

6i 5� 2i 6� 3i

ÿ5� 2i ÿ8i ÿ1ÿ 2i

ÿ6� 3i 1ÿ 2i 0

0
B@

1
CA:

We summarize the three operations on matrices discussed above in Table 3.1.

Orthogonal matrix (real)

A matrix ~A � �ajk�mn satisfying the relations

~A ~AT � ~In; �3:31a�
~AT ~A � ~Im �3:31b�

is called an orthogonal matrix. It can be shown that if ~A is a ®nite matrix satisfy-

ing both relations (3.31a) and (3.31b), then ~A must be square, and we have

~A ~AT � ~AT ~A � ~I : �3:32�
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Table 3.1. Operations on matrices

Operation Matrix element ~A ~B If ~B � ~A

Transposition ~B � ~AT bi j � aji m� n n�m Symmetrica

Complex conjugation ~B � ~A* bi j � a*i j m� n m� n Real
Hermitian conjugation ~B � ~AT* bi j � a*ji m� n n�m Hermitian

a For square matrices only.



But if ~A is an in®nite matrix, then ~A is orthogonal if and only if both (3.31a) and

(3.31b) are simultaneously satis®ed.

Now taking the determinant of both sides of Eq. (3.32), we have (det ~A�2 � 1,

or det ~A � �1. This shows that ~A is non-singular, and so ~Aÿ1 exists.

Premultiplying (3.32) by ~Aÿ1 we have

~Aÿ1 � ~AT: �3:33�
This is often used as an alternative way of de®ning an orthogonal matrix.

The elements of an orthogonal matrix are not all independent. To ®nd the

conditions between them, let us ®rst equate the ijth element of both sides of
~A ~AT � ~I ; we ®nd that Xn

k�1

aikajk � �i j: �3:34a�

Similarly, equating the ijth element of both sides of ~AT ~A � ~I , we obtainXn
k�1

akiakj � �i j: �3:34b�

Note that either (3.34a) and (3.34b) gives 2n�n� 1� relations. Thus, for a real

orthogonal matrix of order n, there are only n2 ÿ n�n� 1�=2 � n�nÿ 1�=2 diÿer-

ent elements.

Unitary matrix

A matrix ~U � �ujk�mn satisfying the relations

~U ~Uy � ~In; �3:35a�
~Uy ~U � ~Im �3:35b�

is called a unitary matrix. If ~U is a ®nite matrix satisfying both (3.35a) and

(3.35b), then ~U must be a square matrix, and we have

~U ~Uy � ~Uy ~U � ~I : �3:36�
This is the complex generalization of the real orthogonal matrix. The elements of

a unitary matrix may be complex, for example

1���
2

p 1 i

i 1

� �
is unitary. From the de®nition (3.35), a real unitary matrix is orthogonal.

Taking the determinant of both sides of (3.36) and noting that

det ~Uy � �det ~U)*, we have

�det ~U��det ~U�* � 1 or jdet ~Uj � 1: �3:37�
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This shows that the determinant of a unitary matrix can be a complex number of

unit magnitude, that is, a number of the form ei�, where � is a real number. It also

shows that a unitary matrix is non-singular and possesses an inverse.

Premultiplying (3.35a) by ~Uÿ1, we get

~Uy � ~Uÿ1: �3:38�
This is often used as an alternative way of de®ning a unitary matrix.

Just as in the case of an orthogonal matrix that is a special (real) case of a

unitary matrix, the elements of a unitary matrix satisfy the following conditions:Xn
k�1

uikujk* � �i j;
Xn
k�1

ukiukj* � �i j : �3:39�

The product of two unitary matrices is unitary. The reason is as follows. If ~U1

and ~U2 are two unitary matrices, then

~U1
~U2� ~U1

~U2�y � ~U1
~U2� ~Uy

2
~Uy
1� � ~U1

~Uy
1 � ~I ; �3:40�

which shows that U1U2 is unitary.

Rotation matrices

Let us revisit Example 3.5. Our discussion will illustrate the power and usefulness

of matrix methods. We will also see that rotation matrices are orthogonal

matrices. Consider a point P with Cartesian coordinates �x1; x2; x3� (see Fig.

3.2). We rotate the coordinate axes about the x3-axis through an angle � and

create a new coordinate system, the primed system. The point P now has the

coordinates �x 0
1; x

0
2; x

0
3� in the primed system. Thus the position vector r of

point P can be written as

r �
X3
i�1

xiêi �
X3
i�1

x 0
i ê

0
i : �3:41�
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Taking the dot product of Eq. (3.41) with ê 01 and using the orthonormal relation

ê 0i � ê 0j � �i j (where �i j is the Kronecker delta symbol), we obtain x 0
1 � r � ê 01.

Similarly, we have x 0
2 � r � ê 02 and x 0

3 � r � ê 03. Combining these results we have

x 0
i �

X3
j�1

ê 0i � êjxj �
X3
j�1

�ijxj ; i � 1; 2; 3: �3:42�

The quantities �ij � ê 0i � êj are called the coe�cients of transformation. They are

the direction cosines of the primed coordinate axes relative to the unprimed ones

�i j � ê 0i � êj � cos�x 0
i ; xj�; i; j � 1; 2; 3: �3:42a�

Eq. (3.42) can be written conveniently in the following matrix form

x 0
1

x 0
2

x 0
3

0
B@

1
CA �

�11 �12 �13

�21 �22 �23

�31 �32 �33

0
B@

1
CA

x1

x2

x3

0
B@

1
CA �3:43a�

or

~X 0 � ~���� ~X ; �3:43b�
where ~X 0 and ~X are the column matrices, ~���� is called a transformation (or

rotation) matrix; it acts as a linear operator which transforms the vector X into

the vector X 0. Strictly speaking, we should describe the matrix ~���� as the matrix

representation of the linear operator �̂. The concept of linear operator is more

general than that of matrix.

Not all of the nine quantities �i j are independent; six relations exist among the

�i j, hence only three of them are independent. These six relations are found by

using the fact that the magnitude of the vector must be the same in both systems:

X3
i�1

�x 0
i �2 �

X3
i�1

x2i : �3:44�

With the help of Eq. (3.42), the left hand side of the last equation becomes

X3
i�1

X3
j�1

�ijxj

ý ! X3
k�1

�ikxk

ý !
�

X3
i�1

X3
j�1

X3
k�1

�ij�ikxjxk;

which, by rearranging the summations, can be rewritten as

X3
k�1

X3
j�1

X3
i�1

�ij�ik

ý !
xjxk:

This last expression will reduce to the right hand side of Eq. (3.43) if and only if

X3
i�1

�ij�ik � �jk; j; k � 1; 2; 3: �3:45�
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Eq. (3.45) gives six relations among the �i j, and is known as the orthogonal

condition.

If the primed coordinates system is generated by a rotation about the x3-axis

through an angle � as shown in Fig. 3.2. Then from Example 3.5, we have

x 0
1 � x1 cos �� x2 sin �; x 0

2 � ÿx1 sin �� x2 cos �; x 0
3 � x3: �3:46�

Thus

�11 � cos �; �12 � sin �; �13 � 0;

�21 � ÿ sin �; �22 � cos �; �23 � 0;

�31 � 0; �32 � 0; �33 � 1:

We can also obtain these elements from Eq. (3.42a). It is obvious that only three

of them are independent, and it is easy to check that they satisfy the condition

given in Eq. (3.45). Now the rotation matrix takes the simple form

~���� �
cos � sin � 0

ÿ sin � cos � 0

0 0 1

0
B@

1
CA �3:47�

and its transpose is

~�T��� �
cos � ÿ sin � 0

sin � cos � 0

0 0 1

0
B@

1
CA:

Now take the product

~�T���~���� �
cos � sin � 0

ÿ sin � cos � 0

0 0 1

0
B@

1
CA cos � ÿ sin � 0

sin � cos � 0

0 0 1

0
B@

1
CA �

1 0 0

0 1 0

0 0 1

0
B@

1
CA � ~I ;

which shows that the rotation matrix is an orthogonal matrix. In fact, rotation

matrices are orthogonal matrices, not limited to ~���� of Eq. (3.47). The proof of

this is easy. Since coordinate transformations are reversible by interchanging old

and new indices, we must have

~�ÿ1
ÿ �

ij
� êoldi � ênewj � ênewj � êoldi � �ji � ~�T

ÿ �
i j
:

Hence rotation matrices are orthogonal matrices. It is obvious that the inverse of

an orthogonal matrix is equal to its transpose.

A rotation matrix such as given in Eq. (3.47) is a continuous function of its

argument �. So its determinant is also a continuous function of � and, in fact, it is

equal to 1 for any �. There are matrices of coordinate changes with a determinant

of ÿ1. These correspond to inversion of the coordinate axes about the origin and
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change the handedness of the coordinate system. Examples of such parity trans-

formations are

~P1 �
ÿ1 0 0

0 1 0

0 0 1

0
B@

1
CA; ~P3 �

ÿ1 0 0

0 ÿ1 0

0 0 ÿ1

0
B@

1
CA; ~P2

i � I :

They change the signs of an odd number of coordinates of a ®xed point r in space

(Fig. 3.3).

What is the advantage of using matrices in describing rotation in space? One of

the advantages is that successive transformations 1; 2; . . . ;m of the coordinate

axes about the origin are described by successive matrix multiplications as far

as their eÿects on the coordinates of a ®xed point are concerned:

If ~X �1� � ~�1
~X ; ~X �2� � ~�2

~X�1�; . . . ; then

~X�m� � ~�m
~X �mÿ1� � �~�m

~�mÿ1 � � � ~�1� ~X � ~R ~X

where

~R � ~�m
~�mÿ1 � � � ~�1

is the resultant (or net) rotation matrix for the m successive transformations taken

place in the speci®ed manner.

Example 3.9

Consider a rotation of the x1-, x2-axes about the x3-axis by an angle �. If this

rotation is followed by a back-rotation of the same angle in the opposite direction,
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that is, by ÿ�, we recover the original coordinate system. Thus

~R�ÿ�� ~R��� �
1 0 0

0 1 0

0 0 1

0
B@

1
CA � ~Rÿ1��� ~R���:

Hence

~Rÿ1��� � ~R�ÿ�� �
cos � ÿ sin � 0

sin � cos � 0

0 0 1

0
B@

1
CA � ~RT ���;

which shows that a rotation matrix is an orthogonal matrix.

We would like to make one remark on rotation in space. In the above discus-

sion, we have considered the vector to be ®xed and rotated the coordinate axes.

The rotation matrix can be thought of as an operator that, acting on the unprimed

system, transforms it into the primed system. This view is often called the passive

view of rotation. We could equally well keep the coordinate axes ®xed and rotate

the vector through an equal angle, but in the opposite direction. Then the rotation

matrix would be thought of as an operator acting on the vector, say X, and

changing it into X 0. This procedure is called the active view of the rotation.

Trace of a matrix

Recall that the trace of a square matrix ~A is de®ned as the sum of all the principal

diagonal elements:

Tr ~A �
X
k

akk:

It can be proved that the trace of the product of a ®nite number of matrices is

invariant under any cyclic permutation of the matrices. We leave this as home

work.

Orthogonal and unitary transformations

Eq. (3.42) is a linear transformation and it is called an orthogonal transformation,

because the rotation matrix is an orthogonal matrix. One of the properties of an

orthogonal transformation is that it preserves the length of a vector. A more

useful linear transformation in physics is the unitary transformation:

~Y � ~U ~X �3:48�
in which ~X and ~Y are column matrices (vectors) of order n� 1 and ~U is a unitary

matrix of order n� n. One of the properties of a unitary transformation is that it
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preserves the norm of a vector. To see this, premultiplying Eq. (3.48) by
~Y y�� ~Xy ~Uy) and using the condition ~Uy ~U � ~I , we obtain

~Y y ~Y � ~Xy ~Uy ~U ~X � ~Xy ~X �3:49a�
or Xn

k�1

yk*yk �
Xn
k�1

xk*xk: �3:49b�

This shows that the norm of a vector remains invariant under a unitary transfor-

mation. If the matrix ~U of transformation happens to be real, then ~U is also an

orthogonal matrix and the transformation (3.48) is an orthogonal transformation,

and Eqs. (3.49) reduce to

~YT ~Y � ~XT ~X ; �3:50a�

Xn
k�1

y2k �
Xn
k�1

x2k; �3:50b�

as we expected.

Similarity transformation

We now consider a diÿerent linear transformation, the similarity transformation

that, we shall see later, is very useful in diagonalization of a matrix. To get the

idea about similarity transformations, we consider vectors r and R in a particular

basis, the coordinate system Ox1x2x3, which are connected by a square matrix ~A:

R � ~Ar: �3:51a�
Now rotating the coordinate system about the origin O we obtain a new system

Ox 0
1x

0
2x

0
3 (a new basis). The vectors r and R have not been aÿected by this

rotation. Their components, however, will have diÿerent values in the new system,

and we now have

R 0 � ~A 0r 0: �3:51b�
The matrix ~A 0 in the new (primed) system is called similar to the matrix ~A in the

old (unprimed) system, since they perform same function. Then what is the rela-

tionship between matrices ~A and ~A 0? This information is given in the form

of coordinate transformation. We learned in the previous section that the com-

ponents of a vector in the primed and unprimed systems are connected by a

matrix equation similar to Eq. (3.43). Thus we have

r � ~Sr 0 and R � ~SR 0;
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where ~S is a non-singular matrix, the transition matrix from the new coordinate

system to the old system. With these, Eq. (3.51a) becomes

~SR 0 � ~A ~Sr 0

or

R 0 � ~Sÿ1 ~A ~Sr 0:

Combining this with Eq. (3.51) gives

~A 0 � ~Sÿ1 ~A ~S; �3:52�
where ~A 0 and ~A are similar matrices. Eq. (3.52) is called a similarity transforma-

tion.

Generalization of this idea to n-dimensional vectors is straightforward. In this

case, we take r and R as two n-dimensional vectors in a particular basis, having

their coordinates connected by the matrix ~A (a n� n square matrix) through Eq.

(3.51a). In another basis they are connected by Eq. (3.51b). The relationship

between ~A and ~A 0 is given by Eq. (3.52). The transformation of ~A into ~Sÿ1 ~A ~S

is called a similarity transformation.

All identities involving vectors and matrices will remain invariant under a

similarity transformation since this arises only in connection with a change in

basis. That this is so can be seen in the following two simple examples.

Example 3.10

Given the matrix equation ~A ~B � ~C, and the matrices ~A, ~B, ~C subjected to the

same similarity transformation, show that the matrix equation is invariant.

Solution: Since the three matrices are all subjected to the same similarity trans-

formation, we have

~A0 � ~S ~A ~Sÿ1; ~B 0 � ~S ~B ~Sÿ1; ~C 0 � ~S ~C ~Sÿ1

and it follows that

~A 0 ~B 0 � � ~S ~A ~Sÿ1�� ~S ~B ~Sÿ1� � ~S ~A~I ~B ~Sÿ1 � ~S ~A ~B ~Sÿ1 � ~S ~C ~Sÿ1 � ~C 0:

Example 3.11

Show that the relation ~AR � ~Br is invariant under a similarity transformation.

Solution: Since matrices ~A and ~B are subjected to the same similarity transfor-

mation, we have

~A 0 � ~S ~A ~Sÿ1; ~B 0 � ~S ~B ~Sÿ1

we also have

R 0 � ~SR; r 0 � ~Sr:
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Then

~A 0R 0 � � ~S ~A ~Sÿ1��SR� � ~S ~AR and ~B 0r 0 � � ~S ~B ~Sÿ1��Sr� � ~S ~Br

thus

~A 0R 0 � ~B 0r 0:

We shall see in the following section that similarity transformations are very

useful in diagonalization of a matrix, and that two similar matrices have the same

eigenvalues.

The matrix eigenvalue problem

As we saw in preceding sections, a linear transformation generally carries a vector

X � �x1; x2; . . . ; xn� into a vector Y � �y1; y2; . . . ; yn�: However, there may exist

certain non-zero vectors for which ~AX is just X multiplied by a constant �

~AX � �X: �3:53�
That is, the transformation represented by the matrix (operator) ~A just multiplies

the vector X by a number �. Such a vector is called an eigenvector of the matrix ~A,

and � is called an eigenvalue (German: eigenwert) or characteristic value of the

matrix ~A. The eigenvector is said to `belong' (or correspond) to the eigenvalue.

And the set of the eigenvalues of a matrix (an operator) is called its eigenvalue

spectrum.

The problem of ®nding the eigenvalues and eigenvectors of a matrix is called an

eigenvalue problem. We encounter problems of this type in all branches of

physics, classical or quantum. Various methods for the approximate determina-

tion of eigenvalues have been developed, but here we only discuss the

fundamental ideas and concepts that are important for the topics discussed in

this book.

There are two parts to every eigenvalue problem. First, we compute the eigen-

value �, given the matrix ~A. Then, we compute an eigenvector X for each

previously computed eigenvalue �.

Determination of eigenvalues and eigenvectors

We shall now demonstrate that any square matrix of order n has at least 1 and at

most n distinct (real or complex) eigenvalues. To this purpose, let us rewrite the

system of Eq. (3.53) as

� ~Aÿ �~I�X � 0: �3:54�
This matrix equation really consists of n homogeneous linear equations in the n

unknown elements xi of X:
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a11 ÿ �� �x1 � a12x2 � � � � � a1nxn � 0

a21x1 � a22 ÿ �� �x2 � � � � � a2nxn � 0

. . .

an1x1 � an2x2 � � � � � ann ÿ �� �xn � 0

9>>>>>=
>>>>>;

�3:55�

In order to have a non-zero solution, we recall that the determinant of the coe�-

cients must be zero; that is,

det� ~Aÿ �~I� �

a11 ÿ � a12 � � � a1n

a21 a22 ÿ � � � � a2n

..

. ..
. ..

.

an1 an2 � � � ann ÿ �

þþþþþþþþþþ

þþþþþþþþþþ
� 0: �3:56�

The expansion of the determinant gives an nth order polynomial equation in �,

and we write this as

c0�
n � c1�

nÿ1 � c2�
nÿ2 � � � � � cnÿ1�� cn � 0; �3:57�

where the coe�cients ci are functions of the elements ajk of ~A. Eq. (3.56) or (3.57)

is called the characteristic equation corresponding to the matrix ~A. We have thus

obtained a very important result: the eigenvalues of a square matrix ~A are the

roots of the corresponding characteristic equation (3.56) or (3.57).

Some of the coe�cients ci can be readily determined; by an inspection of Eq.

(3.56) we ®nd

c0 � �ÿ1�n; c1 � �ÿ1�nÿ1�a11 � a22 � � � � � ann�; cn � det ~A: �3:58�
Now let us rewrite the characteristic polynomial in terms of its n roots

�1; �2; . . . ; �n

c0�
n � c1�

nÿ1 � c2�
nÿ2 � � � � � cnÿ1�� cn � �1 ÿ �� � �2 ÿ �� � � � � �n ÿ �� �;

then we see that

c1 � �ÿ1�nÿ1��1 � �2 � � � � � �n�; cn � �1�2 � � ��n: �3:59�
Comparing this with Eq. (3.58), we obtain the following two important results on

the eigenvalues of a matrix:

(1) The sum of the eigenvalues equals the trace (spur) of the matrix:

�1 � �2 � � � � � �n � a11 � a22 � � � � � ann � Tr ~A: �3:60�
(2) The product of the eigenvalues equals the determinant of the matrix:

�1�2 � � ��n � det ~A: �3:61�
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Once the eigenvalues have been found, corresponding eigenvectors can be

found from the system (3.55). Since the system is homogeneous, if X is an

eigenvector of ~A, then kX, where k is any constant (not zero), is also an eigen-

vector of ~A corresponding to the same eigenvalue. It is very easy to show this.

Since ~AX � �X , multiplying by an arbitrary constant k will give k ~AX � k�X .

Now k ~A � ~Ak (every matrix commutes with a scalar), so we have
~A�kX� � ��kX�; showing that kX is also an eigenvector of ~A with the same

eigenvalue �. But kX is linearly dependent on X, and if we were to count all

such eigenvectors separately, we would have an in®nite number of them. Such

eigenvectors are therefore not counted separately.

A matrix of order n does not necessarily have n linearly independent

eigenvectors; some of them may be repeated. (This will happen when the char-

acteristic polynomial has two or more identical roots.) If an eigenvalue occurs m

times, m is called the multiplicity of the eigenvalue. The matrix has at most m

linearly independent eigenvectors all corresponding to the same eigenvalue. Such

linearly independent eigenvectors having the same eigenvalue are said to be degen-

erate eigenvectors; in this case, m-fold degenerate. We will deal only with those

matrices that have n linearly independent eigenvectors and they are diagonalizable

matrices.

Example 3.12

Find (a) the eigenvalues and (b) the eigenvectors of the matrix

~A � 5 4

1 2

� �
:

Solution: (a) The eigenvalues: The characteristic equation is

det� ~Aÿ �~I� � 5ÿ � 4

1 2ÿ �

þþþþ
þþþþ � �2 ÿ 7�� 6 � 0

which has two roots

�1 � 6 and �2 � 1:

(b) The eigenvectors: For � � �1 the system (3.55) assumes the form

ÿx1 � 4x2 � 0;

x1 ÿ 4x2 � 0:

Thus x1 � 4x2, and

X1 �
4

1

� �
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is an eigenvector of ~A corresponding to �1 � 6. In the same way we ®nd the

eigenvector corresponding to �2 � 1:

X2 �
1

ÿ1

� �
:

Example 3.13

If ~A is a non-singular matrix, show that the eigenvalues of ~Aÿ1 are the reciprocals

of those of ~A and every eigenvector of ~A is also an eigenvector of ~Aÿ1.

Solution: Let � be an eigenvalue of ~A corresponding to the eigenvector X, so

that

~AX � �X :

Since ~Aÿ1 exists, multiply the above equation from the left by ~Aÿ1

~Aÿ1 ~AX � ~Aÿ1�X ) X � � ~Aÿ1X :

Since ~A is non-singular, � must be non-zero. Now dividing the above equation by

�, we have

~Aÿ1X � �1=��X :

Since this is true for every value of ~A, the results follows.

Example 3.14

Show that all the eigenvalues of a unitary matrix have unit magnitude.

Solution: Let ~U be a unitary matrix and X an eigenvector of ~U with the eigen-

value �, so that

~UX � �X :

Taking the hermitian conjugate of both sides, we have

Xy ~Uy � �*Xy:

Multiplying the ®rst equation from the left by the second equation, we obtain

Xy ~Uy ~UX � ��*XyX :

Since ~U is unitary, ~Uy ~U= ~I , so that the last equation reduces to

XyX�j�j2 ÿ 1� � 0:

Now XyX is the square of the norm of X and hence cannot vanish unless X is a

null vector and so we must have j�j2 � 1 or j�j � 1; proving the desired result.
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Example 3.15

Show that similar matrices have the same characteristic polynomial and hence the

same eigenvalues. (Another way of stating this is to say that the eigenvalues of a

matrix are invariant under similarity transformations.)

Solution: Let ~A and ~B be similar matrices. Thus there exists a third matrix ~S

such that ~B � ~Sÿ1 ~A ~S. Substituting this into the characteristic polynomial of

matrix ~B which is j ~B�ÿ ~I j, we obtain

j ~Bÿ �I j � j ~Sÿ1 ~A ~S ÿ �~I j � j ~Sÿ1� ~Aÿ �~I� ~Sj:
Using the properties of determinants, we have

j ~Sÿ1� ~Aÿ �~I� ~Sj � j ~Sÿ1jj ~Aÿ �~I jj ~Sj:
Then it follows that

j ~Bÿ �~I j � j ~Sÿ1� ~Aÿ �~I� ~Sj � j ~Sÿ1jj ~Aÿ �~I jj ~Sj � j ~Aÿ �~I j;
which shows that the characteristic polynomials of ~A and ~B are the same; their

eigenvalues will also be identical.

Eigenvalues and eigenvectors of hermitian matrices

In quantum mechanics complex variables are unavoidable because of the form of

the SchroÈ dinger equation. And all quantum observables are represented by her-

mitian operators. So physicists are almost always dealing with adjoint matrices,

hermitian matrices, and unitary matrices. Why are physicists interested in hermi-

tian matrices? Because they have the following properties: (1) the eigenvalues of a

hermitian matrix are real, and (2) its eigenvectors corresponding to distinct eigen-

values are orthogonal, so they can be used as basis vectors. We now proceed to

prove these important properties.

(1) the eigenvalues of a hermitian matrix are real.

Let ~H be a hermitian matrix and X a non-trivial eigenvector corresponding to the

eigenvalue �, so that

~HX � �X : �3:62�
Taking the hermitian conjugate and note that ~Hy � ~H, we have

Xy ~H � �*Xy: �3:63�
Multiplying (3.62) from the left by Xy, and (3.63) from the right by Xy, and then

subtracting, we get

��ÿ �*�XyX � 0: �3:64�
Now, since XyX cannot be zero, it follows that � � �*, or that � is real.
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(2) The eigenvectors corresponding to distinct eigenvalues are orthogonal.

Let X1 and X2 be eigenvectors of ~H corresponding to the distinct eigenvalues �1

and �2, respectively, so that

~HX1 � �1X1; �3:65�
~HX2 � �2X2: �3:66�

Taking the hermitian conjugate of (3.66) and noting that �* � �, we have

X
y
2
~H � �2X

y
2 : �3:67�

Multiplying (3.65) from the left by X
y
2 and (3.67) from the right by X1, then

subtracting, we obtain

��1 ÿ �2�Xy
2 � X1 � 0: �3:68�

Since �1 � �2, it follows that X
y
2X1 � 0 or that X1 and X2 are orthogonal.

If X is an eigenvector of ~H, any multiple of X, �X , is also an eigenvector of ~H.

Thus we can normalize the eigenvector X with a properly chosen scalar �. This

means that the eigenvectors of ~H corresponding to distinct eigenvalues are ortho-

normal. Just as the three orthogonal unit coordinate vectors ê1; ê2; and ê3 form

the basis of a three-dimensional vector space, the orthonormal eigenvectors of ~H

may serve as a basis for a function space.

Diagonalization of a matrix

Let ~A � �ai j� be a square matrix of order n, which has n linearly independent

eigenvectors Xi with the corresponding eigenvalues �i: ~AXi � �iXi. If we denote

the eigenvectors Xi by column vectors with elements x1i; x2i; . . . ; xni, then the

eigenvalue equation can be written in matrix form:

a11 a12 � � � a1n

a21 a22 � � � a2n

..

. ..
. ..

.

an1 an2 � � � ann

0
BBBBB@

1
CCCCCA

x1i

x2i

..

.

xni

0
BBBBB@

1
CCCCCA � �i

x1i

x2i

..

.

xni

0
BBBBB@

1
CCCCCA: �3:69�

From the above matrix equation we obtain

Xn
k�1

ajkxki � �ixji: �3:69b�

Now we want to diagonalize ~A. To this purpose, we can follow these steps. We

®rst form a matrix ~S of order n� n whose columns are the vector Xi, that is,
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~S �

x11 � � � x1i � � � x1n

x21 � � � x2i � � � x2n

..

. ..
. ..

.

xn1 � � � xni � � � xnn

0
BBBBB@

1
CCCCCA; � ~S�i j � xi j : �3:70�

Since the vectors Xi are linear independent, ~S is non-singular and ~Sÿ1 exists. We

then form a matrix ~Sÿ1 ~A ~S; this is a diagonal matrix whose diagonal elements are

the eigenvalues of ~A.

To show this, we ®rst de®ne a diagonal matrix ~B whose diagonal elements are �i

�i � 1; 2; . . . ; n�:

~B �

�1

�2

. .
.

�n

0
BBBBB@

1
CCCCCA; �3:71�

and we then demonstrate that

~Sÿ1 ~A ~S � ~B: �3:72a�
Eq. (3.72a) can be rewritten by multiplying it from the left by ~S as

~A ~S � ~S ~B: �3:72b�
Consider the left hand side ®rst. Taking the jith element, we obtain

� ~A ~S�ji �
Xn
k�1

� ~A�jk� ~S�ki �
Xn
k�1

ajkxki: �3:73a�

Similarly, the jith element of the right hand side is

� ~S ~B�ji �
Xn
k�1

� ~S�jk� ~B�ki �
Xn
k�1

xjk�i�ki � �ixji: �3:73b�

Eqs. (3.73a) and (3.73b) clearly show the validity of Eq. (3.72a).

It is important to note that the matrix ~S that is able to diagonalize matrix ~A is

not unique. This is because we could arrange the eigenvectors X1;X2; . . . ;Xn in

any order to construct ~S.

We summarize the procedure for diagonalizing a diagonalizable n� nmatrix ~A:

Step 1. Find n linearly independent eigenvectors of ~A; X1; X2; . . . ;Xn.

Step 2. Form the matrix ~S having X1;X2; . . . ;Xn as its column vectors.

Step 3. Find the inverse of ~S, ~Sÿ1.

Step 4. The matrix ~Sÿ1 ~A ~S will then be diagonal with �1; �2; . . . ; �n as its succes-

sive diagonal elements, where �i is the eigenvalue corresponding to Xi.
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Example 3.16

Find a matrix ~S that diagonalizes

~A �
3 ÿ2 0

ÿ2 3 0

0 0 5

0
B@

1
CA:

Solution: We have ®rst to ®nd the eigenvalues and the corresponding eigen-

vectors of matrix ~A. The characteristic equation of ~A is

3ÿ � ÿ2 0

ÿ2 3ÿ � 0

0 0 5ÿ �

þþþþþþþ
þþþþþþþ � ��ÿ 1���ÿ 5�2 � 0;

so that the eigenvalues of ~A are � � 1 and � � 5.

By de®nition

~X �
x1

x2

x3

0
B@

1
CA

is an eigenvector of ~A corresponding to � if and only if ~X is a non-trivial solution

of (�~I ÿ ~A� ~X � 0, that is, of

�ÿ 3 2 0

2 �ÿ 3 0

0 0 �ÿ 5

0
B@

1
CA

x1

x2

x3

0
B@

1
CA �

0

0

0

0
B@

1
CA:

If � � 5 the above equation becomes

2 2 0

2 2 0

0 0 0

0
B@

1
CA

x1

x2

x3

0
B@

1
CA �

0

0

0

0
B@

1
CA or

2x1 � 2x2 � 0x3

2x1 � 2x2 � 0x3

0x1 � 0x2 � 0x3

0
B@

1
CA �

0

0

0

0
B@

1
CA:

Solving this system yields

x1 � ÿs; x2 � s; x3 � t;

where s and t are arbitrary values. Thus the eigenvectors of ~A corresponding to

� � 5 are the non-zero vectors of the form

~X �
ÿs

s

t

0
B@

1
CA �

ÿs

s

0

0
B@

1
CA�

0

0

t

0
B@

1
CA � s

ÿ1

1

0

0
B@

1
CA� t

0

0

1

0
B@

1
CA:
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Since

ÿ1

1

0

0
B@

1
CA and

0

0

1

0
B@

1
CA

are linearly independent, they are the eigenvectors corresponding to � � 5.

For � � 1, we have

ÿ2 2 0

2 ÿ2 0

0 0 ÿ4

0
B@

1
CA

x1

x2

x3

0
B@

1
CA �

0

0

0

0
B@

1
CA or

ÿ2x1 � 2x2 � 0x3

2x1 ÿ 2x2 � 0x3

0x1 � 0x2 ÿ 4x3

0
B@

1
CA �

0

0

0

0
B@

1
CA:

Solving this system yields

x1 � t; x2 � t; x3 � 0;

where t is arbitrary. Thus the eigenvectors corresponding to � � 1 are non-zero

vectors of the form

~X �
t

t

0

0
B@

1
CA � t

1

1

0

0
B@

1
CA:

It is easy to check that the three eigenvectors

~X1 �
ÿ1

1

0

0
B@

1
CA; ~X2 �

0

0

1

0
B@

1
CA; ~X3 �

1

1

0

0
B@

1
CA;

are linearly independent. We now form the matrix ~S that has ~X1, ~X2, and ~X3 as its

column vectors:

~S �
ÿ1 0 1

1 0 1

0 1 0

0
B@

1
CA:

The matrix ~Sÿ1 ~A ~S is diagonal:

~Sÿ1 ~A ~S �
ÿ1=2 1=2 0

0 0 1

1=2 1=2 0

0
B@

1
CA 3 ÿ2 0

ÿ2 3 0

0 0 5

0
B@

1
CA ÿ1 0 1

1 0 1

0 1 0

0
B@

1
CA �

5 0 0

0 5 0

0 0 1

0
B@

1
CA:

There is no preferred order for the columns of ~S. If had we written

~S �
ÿ1 1 0

1 1 0

0 0 1

0
B@

1
CA
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then we would have obtained (verify)

~Sÿ1 ~A ~S �
5 0 0

0 1 0

0 0 1

0
B@

1
CA:

Example 3.17

Show that the matrix

~A � ÿ3 2

ÿ2 1

� �
is not diagonalizable.

Solution: The characteristic equation of ~A is

�� 3 ÿ2

2 �ÿ 1

þþþþ
þþþþ � ��� 1�2 � 0:

Thus � � ÿ1 the only eigenvalue of ~A; the eigenvectors corresponding to � � ÿ1

are the solutions of

�� 3 ÿ2

2 �ÿ 1

� �
x1

x2

ý !
� 0

0

� �
) 2 ÿ2

2 ÿ2

� �
x1

x2

ý !
� 0

0

� �

from which we have

2x1 ÿ 2x2 � 0;

2x1 ÿ 2x2 � 0:

The solutions to this system are x1 � t; x2 � t; hence the eigenvectors are of the

form

t

t

� �
� t

1

1

� �
:

A does not have two linearly independent eigenvectors, and is therefore not

diagonalizable.

Eigenvectors of commuting matrices

There is a theorem on eigenvectors of commuting matrices that is of great impor-

tance in matrix algebra as well as in quantum mechanics. This theorem states that:

Two commuting matrices possess a common set of eigenvectors.
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We now proceed to prove it. Let ~A and ~B be two square matrices, each of order

n, which commute with each other, that is,

~A ~Bÿ ~B ~A � � ~A; ~B� � 0:

First, let � be an eigenvalue of ~A with multiplicity 1, corresponding to the eigen-

vector X, so that

~AX � �X : �3:74�
Multiplying both sides from the left by ~B

~B ~AX � � ~BX :

Because ~B ~A � ~A ~B, we have

~A� ~BX� � �� ~BX�:
Now ~B is an n� n matrix and X is an n� 1 vector; hence ~BX is also an n� 1

vector. The above equation shows that ~BX is also an eigenvector of ~A with the

eigenvalue �. Now X is a non-degenerate eigenvector of ~A, any other vector which

is an eigenvector of ~A with the same eigenvalue as that of Xmust be multiple of X.

Accordingly

~BX � �X ;

where � is a scalar. Thus we have proved that:

If two matrices commute, every non-degenerate eigenvector of

one is also an eigenvector of the other, and vice versa.

Next, let � be an eigenvalue of ~A with multiplicity k. So ~A has k linearly inde-

pendent eigenvectors, say X1; X2; . . . ; Xk, each corresponding to �:

~AXi � �Xi; 1 � i � k:

Multiplying both sides from the left by ~B, we obtain

~A� ~BXi� � �� ~BXi�;
which shows again that ~BX is also an eigenvector of ~A with the same eigenvalue �.

Cayley±Hamilton theorem

The Cayley±Hamilton theorem is useful in evaluating the inverse of a square

matrix. We now introduce it here. As given by Eq. (3.57), the characteristic

equation associated with a square matrix ~A of order n may be written as a poly-

nomial

f ��� �
Xn
i�0

ci�
nÿi � 0;
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where � are the eigenvalues given by the characteristic determinant (3.56). If we

replace � in f ��� by the matrix ~A so that

f � ~A� �
Xn
i�0

ci ~A
nÿi:

The Cayley±Hamilton theorem says that

f � ~A� � 0 or
Xn
i�0

ci ~A
nÿi � 0; �3:75�

that is, the matrix ~A satis®es its characteristic equation.

We now formally multiply Eq. (3.75) by ~Aÿ1 so that we obtain

~Aÿ1f � ~A� � c0 ~A
nÿ1 � c1 ~A

nÿ2 � � � � � cnÿ1
~I � cn ~A

ÿ1 � 0:

Solving for ~Aÿ1 gives

~Aÿ1 � ÿ 1

cn

Xnÿ1

i�0

ci ~A
nÿ1ÿi

" #
; �3:76�

we can use this to ®nd ~Aÿ1 (Problem 3.28).

Moment of inertia matrix

We shall see that physically diagonalization amounts to a simpli®cation of the

problem by a better choice of variable or coordinate system. As an illustrative

example, we consider the moment of inertia matrix ~I of a rotating rigid body (see

Fig. 3.4). A rigid body can be considered to be a many-particle system, with the
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distance between any particle pair constant at all times. Then its angular momen-

tum about the origin O of the coordinate system is

L �
X
�

m�r� � v� �
X
�

m�r� � �x� r��

where the subscript � refers to mass ma located at r� � �x�1; x�2; x�3�, and x the

angular velocity of the rigid body.

Expanding the vector triple product by using the vector identity

A� �B� C� � B�A � C� ÿ C�A � B�;
we obtain

L �
X
�

m�br2�xÿ r��r� � x�c:

In terms of the components of the vectors r�and x, the ith component of Li is

Li �
X
�

m� !i

X3
k�1

x2�;k ÿ x�;i
X3
j�1

x�; j!j

" #

�
X
j

!j

X
�

m� �i j
X
k

x2�;k ÿ x�;ix�;j

" #
�

X
j

Ii j!j

or

~L � ~I ~!:

Both ~L and ~! are three-dimensional column vectors, while ~I is a 3� 3 matrix and

is called the moment inertia matrix.

In general, the angular momentum vector L of a rigid body is not always

parallel to its angular velocity x and ~I is not a diagonal matrix. But we can orient

the coordinate axes in space so that all the non-diagonal elements Ii j �i 6� j�
vanish. Such special directions are called the principal axes of inertia. If the

angular velocity is along one of these principal axes, the angular momentum

and the angular velocity will be parallel.

In many simple cases, especially when symmetry is present, the principal axes of

inertia can be found by inspection.

Normal modes of vibrations

Another good illustrative example of the application of matrix methods in classi-

cal physics is the longitudinal vibrations of a classical model of a carbon dioxide

molecule that has the chemical structure O±C±O. In particular, it provides a good

example of the eigenvalues and eigenvectors of an asymmetric real matrix.
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We can regard a carbon dioxide molecule as equivalent to a set of three par-

ticles jointed by elastic springs (Fig. 3.5). Clearly the system will vibrate in some

manner in response to an external force. For simplicity we shall consider only

longitudinal vibrations, and the interactions of the oxygen molecules with one

another will be neglected, so we consider only nearest neighbor interaction. The

Lagrangian function L for the system is

L � 1
2m� _x21 � _x23� � 1

2M _x22 ÿ 1
2 k�x2 ÿ x1�2 ÿ 1

2 k�x3 ÿ x2�2;

substituting this into Lagrange's equations

d

dt

@L

@ _xi

� �
ÿ @L

@xi
� 0 �i � 1; 2; 3�;

we ®nd the equations of motion to be

�x1 � ÿ k

m
�x1 ÿ x2� � ÿ k

m
x1 �

k

m
x2;

�x2 � ÿ k

M
�x2 ÿ x1� ÿ

k

M
�x2 ÿ x3� �

k

M
x1 ÿ

2k

M
x2 �

k

M
x3;

�x3 �
k

m
x2 ÿ

k

m
x3;

where the dots denote time derivatives. If we de®ne

~X �
x1

x2

x3

0
B@

1
CA; ~A �

ÿ k

m

k

m
0

ÿ k

M
ÿ 2k

M

k

M

0
k

m
ÿ k

m

0
BBBBBBB@

1
CCCCCCCA

and, furthermore, if we de®ne the derivative of a matrix to be the matrix obtained

by diÿerentiating each matrix element, then the above system of diÿerential equa-

tions can be written as

�~X � ~A ~X :
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This matrix equation is reminiscent of the single diÿerential equation �x � ax, with

a a constant. The latter always has an exponential solution. This suggests that we

try

~X � ~Ce!t;

where ! is to be determined and

~C �
C1

C2

C3

0
B@

1
CA

is an as yet unknown constant matrix. Substituting this into the above matrix

equation, we obtain a matrix-eigenvalue equation

~A ~C � !2 ~C

or

ÿ k

m

k

m
0

ÿ k

M
ÿ 2k

M

k

M

0
k

m
ÿ k

m

0
BBBBBBBBB@

1
CCCCCCCCCA

C1

C2

C3

0
B@

1
CA � !2

C1

C2

C3

0
B@

1
CA: �3:77�

Thus the possible values of ! are the square roots of the eigenvalues of the

asymmetric matrix ~A with the corresponding solutions being the eigenvectors of

the matrix ~A. The secular equation is

ÿ k

m
ÿ !2 k

m
0

ÿ k

M
ÿ 2k

M
ÿ !2 k

M

0
k

m
ÿ k

m
ÿ !2

þþþþþþþþþþþþþþ

þþþþþþþþþþþþþþ
� 0:

This leads to

!2 ÿ!2 � k

m

� �
ÿ!2 � k

m
� 2k

M

� �
� 0:

The eigenvalues are

!2 � 0;
k

m
; and

k

m
� 2k

M
;
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all real. The corresponding eigenvectors are determined by substituting the eigen-

values back into Eq. (3.77) one eigenvalue at a time:

(1) Setting !2 � 0 in Eq. (3.77) we ®nd that C1 � C2 � C3. Thus this mode is

not an oscillation at all, but is a pure translation of the system as a whole, no

relative motion of the masses (Fig. 3.6(a)).

(2) Setting !2 � k=m in Eq. (3.77), we ®nd C2 � 0 and C3 � ÿC1. Thus the

center mass M is stationary while the outer masses vibrate in opposite

directions with the same amplitude (Fig. 3.6(b)).

(3) Setting !2 � k=m� 2k=M in Eq. (3.77), we ®nd C1 � C3, and

C2 � ÿ2C1�m=M�. In this mode the two outer masses vibrate in

unison and the center mass vibrates oppositely with diÿerent amplitude

(Fig. 3.6(c)).

Direct product of matrices

Sometimes the direct product of matrices is useful. Given an m�m matrix ~A

and an n� n matrix ~B, the direct product of ~A and ~B is an mn�mn matrix,

de®ned by

~C � ~Aþ ~B �

a11 ~B a12 ~B � � � a1m ~B

a21 ~B a22 ~B � � � a2m ~B

..

. ..
. ..

.

am1
~B am2

~B � � � amm
~B

0
BBBBB@

1
CCCCCA:

For example, if

~A �
a11 a12

a21 a22

ý !
; ~B �

b11 b12

b21 b22

ý !
;

then
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~Aþ ~B � a11 ~B a12 ~B

a21 ~B a22 ~B

ý !
�

a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

0
BBBB@

1
CCCCA:

Problems

3.1 For the pairs ~A and ~B given below, ®nd ~A� ~B, ~A ~B, and ~A2:

~A � 1 2

3 4

� �
; ~B � 5 6

7 8

� �
:

3.2 Show that an n-rowed diagonal matrix ~D

~D �

k 0 � � � 0

0 k � � � 0

..

. ..
. ..

.

k

0
BBBB@

1
CCCCA

commutes with any n-rowed square matrix ~A: ~A ~D � ~D ~A � k ~A.

3.3 If ~A, ~B, and ~C are any matrices such that the addition ~B� ~C and the

products ~A ~B and ~A ~C are de®ned, show that ~A( ~B� ~C� � ~A ~B+ ~A ~C. That

is, that matrix multiplication is distributive.

3.4 Given

~A �
0 1 0

1 0 1

0 1 0

0
B@

1
CA; ~B �

1 0 0

0 1 0

0 0 1

0
B@

1
CA; ~C �

1 0 0

0 0 0

0 0 ÿ1

0
B@

1
CA;

show that [ ~A; ~B� � 0, and [ ~B; ~C� � 0, but that ~A does not commute with ~C.

3.5 Prove that ( ~A� ~B�T � ~AT � ~BT.

3.6 Given

~A � 2 ÿ3

0 4

� �
; ~B � ÿ5 2

2 1

� �
; and ~C � 0 1 ÿ2

3 0 4

� �
:

(a) Find 2 ~Aÿ 4 ~B, 2( ~Aÿ 2 ~B)

(b) Find ~AT; ~BT; � ~BT�T
(c) Find ~CT; � ~CT�T
(d) Is ~A� ~C de®ned?

(e) Is ~C � ~CT de®ned?

( f ) Is ~A� ~AT symmetric?
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(g) Is ~Aÿ ~AT antisymmetric?

3.7 Show that the matrix

~A �
1 4 0

2 5 0

3 6 0

0
B@

1
CA

is not invertible.

3.8 Show that if ~A and ~B are invertible matrices of the same order, then ~A ~B is

invertible.

3.9 Given

~A �
1 2 3

2 5 3

1 0 8

0
B@

1
CA;

®nd ~Aÿ1 and check the answer by direct multiplication.

3.10 Prove that if ~A is a non-singular matrix, then det( ~Aÿ1� � 1= det� ~A).
3.11 If ~A is an invertible n� n matrix, show that ~AX � 0 has only the trivial

solution.

3.12 Show, by computing a matrix inverse, that the solution to the following

system is x1 � 4, x2 � 1:

x1 ÿ x2 � 3;

x1 � x2 � 5:

3.13 Solve the system ~AX � ~B if

~A �
1 0 0

0 2 0

0 0 1

0
B@

1
CA; ~B �

1

2

3

0
B@

1
CA:

3.14 Given matrix ~A, ®nd A*, AT, and Ay, where

~A �
2� 3i 1ÿ i 5i ÿ3

1� i 6ÿ i 1� 3i ÿ1ÿ 2i

5ÿ 6i 3 0 ÿ4

0
B@

1
CA:

3.15 Show that:

(a) The matrix ~A ~Ay, where ~A is any matrix, is hermitian.

(b) � ~A ~B�y � ~By ~Ay:
(c) If ~A; ~B are hermitian, then ~A ~B� ~B ~A is hermitian.

(d) If ~A and ~B are hermitian, then i� ~A ~Bÿ ~B ~A� is hermitian.

3.16 Obtain the most general orthogonal matrix of order 2.

[Hint: use relations (3.34a) and (3.34b).]

3.17. Obtain the most general unitary matrix of order 2.
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3.18 If ~A ~B � 0, show that one of these matrices must have zero determinant.

3.19 Given the Pauli spin matrices (which are very important in quantum

mechanics)

�1 �
0 1

1 0

� �
; �2 �

0 ÿi

i 0

� �
; �3 �

1 0

0 ÿ1

� �
;

(note that the subscripts x; y, and z are sometimes used instead of 1, 2, and

3). Show that

(a) they are hermitian,

(b) �2
i � ~I ; i � 1; 2; 3

(c) as a result of (a) and (b) they are also unitary, and

(d) [�1; �2� � 2I�3 et cycl.

Find the inverses of �1; �2; �3:

3.20 Use a rotation matrix to show that

sin��1 � �2� � sin �1 cos �2 � sin �2 cos �1:

3.21 Show that: Tr ~A ~B � Tr ~B ~A and Tr ~A ~B ~C � Tr ~B ~C ~A � Tr ~C ~A ~B:

3.22 Show that: (a) the trace and (b) the commutation relation between two

matrices are invariant under similarity transformations.

3.23 Determine the eigenvalues and eigenvectors of the matrix

~A � a b

ÿb a

� �
:

Given

~A �
5 7 ÿ5

0 4 ÿ1

2 8 ÿ3

0
B@

1
CA;

®nd a matrix ~S that diagonalizes ~A, and show that ~Sÿ1 ~A ~S is diagonal.

3.25 If ~A and ~B are square matrices of the same order, then

det( ~A ~B� � det� ~A� det� ~B�: Verify this theorem if

~A � 2 ÿ1

3 2

� �
; ~B � 7 2

ÿ3 4

� �
:

3.26 Find a common set of eigenvectors for the two matrices

~A �
ÿ1

���
6

p ���
2

p���
6

p
0

���
3

p���
2

p ���
3

p ÿ2

0
B@

1
CA; ~B �

10
���
6

p ÿ ���
2

p���
6

p
9

���
3

p

ÿ ���
2

p ���
3

p
11

0
B@

1
CA:

3.27 Show that two hermitian matrices can be made diagonal if and only if they

commute.
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3.28 Show the validity of the Cayley±Hamilton theorem by applying it to the

matrix

~A � 5 4

1 2

� �
;

then use the Cayley±Hamilton theorem to ®nd the inverse of the matrix ~A.

3.29 Given

~A � 0 1

1 0

� �
; ~B � 0 ÿi

i 0

� �
;

®nd the direct product of these matrices, and show that it does not com-

mute.
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4

Fourier series and integrals

Fourier series are in®nite series of sines and cosines which are capable of repre-

senting almost any periodic function whether continuous or not. Periodic func-

tions that occur in physics and engineering problems are often very complicated

and it is desirable to represent them in terms of simple periodic functions.

Therefore the study of Fourier series is a matter of great practical importance

for physicists and engineers.

The ®rst part of this chapter deals with Fourier series. Basic concepts, facts, and

techniques in connection with Fourier series will be introduced and developed,

along with illustrative examples. They are followed by Fourier integrals and

Fourier transforms.

Periodic functions

If function f �x� is de®ned for all x and there is some positive constant P such that

f �x� P� � f �x� �4:1�
then we say that f �x� is periodic with a period P (Fig. 4.1). From Eq. (4.1) we also
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have, for all x and any integer n,

f �x� nP� � f �x�:

That is, every periodic function has arbitrarily large periods and contains arbi-

trarily large numbers in its domain. We call P the fundamental (or least) period,

or simply the period.

A periodic function need not be de®ned for all values of its independent vari-

able. For example, tan x is unde®ned for the values x � ��=2� � n�. But tan x is a

periodic function in its domain of de®nition, with � as its fundamental period:

tan(x� �� � tan x.

Example 4.1

(a) The period of sin x is 2�, since sin(x� 2��, sin(x� 4��; sin�x� 6��; . . . are all
equal to sin x, but 2� is the least value of P. And, as shown in Fig. 4.2, the period

of sin nx is 2�=n, where n is a positive integer.

(b) A constant function has any positive number as a period. Since f �x� �
c (const.) is de®ned for all real x, then, for every positive number P,

f �x� P� � c � f �x�. Hence P is a period of f. Furthermore, f has no fundamental

period.

(c)

f �x� �
K for 2n�x � �2n� 1��

ÿK for �2n� 1�� � x < �2n� 2��

(
n � 0;�1;�2;�3; . . .

is periodic of period 2� (Fig. 4.3).

145

PERIODIC FUNCTIONS

Figure 4.2. Sine functions.
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Fourier series; Euler±Fourier formulas

If the general periodic function f �x� is de®ned in an interval ÿ� � x � �, the

Fourier series of f �x� in [ÿ�; �] is de®ned to be a trigonometric series of the form

f �x� � 1
2 a0 � a1 cos x� a2 cos 2x� � � � � an cos nx� � � �
� b1 sin x� b2 sin 2x� � � � � bn sin nx� � � � ; �4:2�

where the numbers a0; a1; a2; . . . ; b1; b2; b3; . . . are called the Fourier coe�cients of

f �x� in �ÿ�; ��. If this expansion is possible, then our power to solve physical

problems is greatly increased, since the sine and cosine terms in the series can be

handled individually without di�culty. Joseph Fourier (1768±1830), a French

mathematician, undertook the systematic study of such expansions. In 1807 he

submitted a paper (on heat conduction) to the Academy of Sciences in Paris and

claimed that every function de®ned on the closed interval �ÿ�; �� could be repre-

sented in the form of a series given by Eq. (4.2); he also provided integral formulas

for the coe�cients an and bn. These integral formulas had been obtained earlier by

Clairaut in 1757 and by Euler in 1777. However, Fourier opened a new avenue by

claiming that these integral formulas are well de®ned even for very arbitrary

functions and that the resulting coe�cients are identical for diÿerent functions

that are de®ned within the interval. Fourier's paper was rejected by the Academy

on the grounds that it lacked mathematical rigor, because he did not examine the

question of the convergence of the series.

The trigonometric series (4.2) is the only series which corresponds to f �x�.
Questions concerning its convergence and, if it does, the conditions under

which it converges to f �x� are many and di�cult. These problems were partially

answered by Peter Gustave Lejeune Dirichlet (German mathematician, 1805±

1859) and will be discussed brie¯y later.

Now let us assume that the series exists, converges, and may be integrated term

by term. Multiplying both sides by cos mx, then integrating the result from ÿ� to

�, we haveZ �

ÿ�

f �x� cosmx dx � a0
2

Z �

ÿ�

cosmx dx�
X1
n�1

an

Z �

ÿ�

cos nx cosmxdx

�
X1
n�1

bn

Z �

ÿ�

sin nx cosmxdx: �4:3�

Now, using the following important properties of sines and cosines:Z �

ÿ�

cosmx dx �
Z �

ÿ�

sinmxdx � 0 if m � 1; 2; 3; . . . ;

Z �

ÿ�

cosmx cos nx dx �
Z �

ÿ�

sinmx sin nx dx �
0 if n 6� m;

� if n � m;

(
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Z �

ÿ�

sinmx cos nx dx � 0; for all m; n > 0;

we ®nd that all terms on the right hand side of Eq. (4.3) except one vanish:

an �
1

�

Z �

ÿ�

f �x� cos nx dx; n � integers; �4:4a�

the expression for a0 can be obtained from the general expression for an by setting

n � 0.

Similarly, if Eq. (4.2) is multiplied through by sin mx and the result is integrated

from ÿ� to �, all terms vanish save that involving the square of sin nx, and so we

have

bn �
1

�

Z �

ÿ�

f �x� sin nx dx: �4:4b�

Eqs. (4.4a) and (4.4b) are known as the Euler±Fourier formulas.

From the de®nition of a de®nite integral it follows that, if f �x� is single-valued
and continuous within the interval �ÿ�; �� or merely piecewise continuous (con-

tinuous except at a ®nite numbers of ®nite jumps in the interval), the integrals in

Eqs. (4.4) exist and we may compute the Fourier coe�cients of f �x� by Eqs. (4.4).

If there exists a ®nite discontinuity in f �x� at the point x0 (Fig. 4.1), the coe�-

cients a0; an; bn are determined by integrating ®rst to x � x0 and then from x0 to �,

as

an �
1

�

Z x0

ÿ�

f �x� cos nx dx�
Z �

x0

f �x� cos nx dx
� �

; �4:5a�

bn �
1

�

Z x0

ÿ�

f �x� sin nx dx�
Z �

x0

f �x� sin nx dx
� �

: �4:5b�

This procedure may be extended to any ®nite number of discontinuities.

Example 4.2

Find the Fourier series which represents the function

f �x� � ÿk ÿ� < x < 0

�k 0 < x < �
and f �x� 2�� � f �x�;

�

in the interval ÿ� � x � �.
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Solution: The Fourier coe�cients are readily calculated:

an �
1

�

Z 0

ÿ�

�ÿk� cos nx dx�
Z �

0

k cos nx dx

� �

� 1

�
ÿk

sin nx

n

þþþþ0
ÿ�

� k
sin nx

n

þþþþ�
0

�
� 0

"

bn �
1

�

Z 0

ÿ�

�ÿk� sin nx dx�
Z �

0

k sin nx dx

� �

� 1

�
k
cos nx

n

þþþþ0
ÿ�

ÿ k
cos nx

n

þþþþ�
0

�
� 2k

n�
�1ÿ cos n��

"

Now cos n� � ÿ1 for odd n, and cos n� � 1 for even n. Thus

b1 � 4k=�; b2 � 0; b3 � 4k=3�; b4 � 0; b5 � 4k=5�; . . .

and the corresponding. Fourier series is

4k

�
sin x� 1

3
sin 3x� 1

5
sin 5x� � � �

� �
:

For the special case k � �=2, the Fourier series becomes

2 sin x� 2

3
sin 3x� 2

5
sin 5x� � � � :

The ®rst two terms are shown in Fig. 4.4, the solid curve is their sum. We will see

that as more and more terms in the Fourier series expansion are included, the sum

more and more nearly approaches the shape of f �x�. This will be further demon-

strated by next example.

Example 4.3

Find the Fourier series that represents the function de®ned by

f �t� � 0; ÿ� < t < 0

sin t; 0 < t <�

�
in the interval ÿ � < t < �:
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Solution:

an �
1

�

Z 0

ÿ�

0 � cos nt dt�
Z �

0

sin t cos nt dt

� �

� ÿ 1

2�

cos�1ÿ n�t
1ÿ n

� cos�1� n�t
1� n

� � �

0

� cos n�� 1

��1ÿ n�2 ; n 6� 1

þþþþþ ;

a1 �
1

�

Z �

0

sin t cos t dt � 1

�

sin2 t

2

þþþþ�
0

� 0;

bn �
1

�

Z 0

ÿ�

0 � sin nt dt�
Z �

0

sin t sin nt dt

� �

� 1

2�

sin�1ÿ n�t
1ÿ n

ÿ sin�1� n�t
1� n

� ��
0

� 0

b1 �
1

�

Z �

0

sin2 t dt � 1

�

t

2
ÿ sin 2t

4

� ��
0

� 1

2
:

Accordingly the Fourier expansion of f �t� in [ÿ�; �] may be written

f �t� � 1

�
� sin t

2
ÿ 2

�

cos 2t

3
� cos 4t

15
� cos 6t

35
� cos 8t

63
� � � �

� �
:

The ®rst three partial sums Sn�n � 1; 2; 3) are shown in Fig. 4.5: S1 � 1=�;

S2 � 1=�� sin t=2, and S3 � 1=�� sin �t�=2ÿ 2 cos �2t�=3:
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Gibb's phenomena

From Figs. 4.4 and 4.5, two features of the Fourier expansion should be noted:

(a) at the points of the discontinuity, the series yields the mean value;

(b) in the region immediately adjacent to the points of discontinuity, the expan-

sion overshoots the original function. This eÿect is known as the Gibb's

phenomena and occurs in all order of approximation.

Convergence of Fourier series and Dirichlet conditions

The serious question of the convergence of Fourier series still remains: if we

determine the Fourier coe�cients an; bn of a given function f �x� from Eq. (4.4)

and form the Fourier series given on the right hand side of Eq. (4.2), will it

converge toward f �x�? This question was partially answered by Dirichlet.

Here is a restatement of the results of his study, which is often called

Dirichlet's theorem:

(1) If f �x� is de®ned and single-valued except at a ®nite number of point in

�ÿ�; ��,
(2) if f �x� is periodic outside �ÿ�; �� with period 2� (that is, f �x� 2�� � f �x��,

and

(3) if f �x� and f 0�x� are piecewise continuous in �ÿ�; ��,
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then the series on the right hand side of Eq. (4.2), with coe�cients an and bn given

by Eqs. (4.4), converges to

(i) f �x�, if x is a point of continuity, or

(ii) 1
2 � f �x� 0� � f �xÿ 0��, if x is a point of discontinuity as shown in Fig. 4.6,

where f �x� 0� and f �xÿ 0� are the right and left hand limits of f �x� at x and

represent lim"!0 f �x� "� and lim"!0 f �xÿ "� respectively, where " > 0.

The proof of Dirichlet's theorem is quite technical and is omitted in this treat-

ment. The reader should remember that the Dirichlet conditions (1), (2), and (3)

imposed on f �x� are su�cient but not necessary. That is, if the above conditions

are satis®ed the convergence is guaranteed; but if they are not satis®ed, the series

may or may not converge. The Dirichlet conditions are generally satis®ed in

practice.

Half-range Fourier series

Unnecessary work in determining Fourier coe�cients of a function can be

avoided if the function is odd or even. A function f �x� is called odd if

f �ÿx� � ÿf �x� and even if f �x� f �ÿx� � f �x�. It is easy to show that in the

Fourier series corresponding to an odd function fo�x�, only sine terms can be

present in the series expansion in the interval ÿ� < x < �, for

an �
1

�

Z �

ÿ�

fo�x� cos nx dx � 1

�

Z 0

ÿ�

fo�x� cos nx dx�
Z �

0

fo�x� cos nx dx
� �

� 1

�
ÿ
Z �

0

fo�x� cos nx dx�
Z �

0

fo�x� cos nx dx
� �

� 0 n � 0; 1; 2; . . . ; �4:6a�
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but

bn �
1

�

Z 0

ÿ�

fo�x� sin nx dx�
Z �

0

fo�x� sin nx dx
� �

� 2

�

Z �

0

fo�x� sin nx dx n � 1; 2; 3; . . . : �4:6b�

Here we have made use of the fact that cos(ÿnx� � cos nx and sin�ÿnx� �
ÿ sin nx. Accordingly, the Fourier series becomes

fo�x� � b1 sin x� b2 sin 2x� � � � :
Similarly, in the Fourier series corresponding to an even function fe�x�, only

cosine terms (and possibly a constant) can be present. Because in this case,

fe�x� sin nx is an odd function and accordingly bn � 0 and the an are given by

an �
2

�

Z �

0

fe�x� cos nx dx n � 0; 1; 2; . . . : �4:7�

Note that the Fourier coe�cients an and bn, Eqs. (4.6) and (4.7) are computed in

the interval (0, �) which is half of the interval (ÿ�; �). Thus, the Fourier sine or

cosine series in this case is often called a half-range Fourier series.

Any arbitrary function (neither even nor odd) can be expressed as a combina-

tion of fe�x� and fo�x� as
f �x� � 1

2 f �x� � f �ÿx�� � � 1
2 f �x� ÿ f �ÿx�� � � fe�x� � fo�x�:

When a half-range series corresponding to a given function is desired, the

function is generally de®ned in the interval (0, �) and then the function is speci®ed

as odd or even, so that it is clearly de®ned in the other half of the interval �ÿ�; 0�.

Change of interval

A Fourier expansion is not restricted to such intervals as ÿ� < x < � and

0 < x < �. In many problems the period of the function to be expanded may

be some other interval, say 2L. How then can the Fourier series developed

above be applied to the representation of periodic functions of arbitrary period?

The problem is not a di�cult one, for basically all that is involved is to change the

variable. Let

z � �

L
x �4:8a�

then

f �z� � f ��x=L� � F�x�: �4:8b�
Thus, if f �z� is expanded in the interval ÿ� < z < �, the coe�cients being deter-

mined by expressions of the form of Eqs. (4.4a) and (4.4b), the coe�cients for the
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expansion of F�x� in the interval ÿL < x < L may be obtained merely by sub-

stituting Eqs. (4.8) into these expressions. We have then

an �
1

L

Z L

ÿL

F�x� cos n�
L

x dx n � 0; 1; 2; 3; . . . ; �4:9a�

bn �
1

L

Z L

ÿL

F�x� sin n�
L

x dx; n � 1; 2; 3; . . . : �4:9b�

The possibility of having expanding functions in which the period is other than

2� increases the usefulness of Fourier expansion. As an example, consider the

value of L, it is obvious that the larger the value of L, the larger the basic period

of the function being expanded. As L ! 1, the function would not be periodic at

all. We will see later that in such cases the Fourier series becomes a Fourier

integral.

Parseval's identity

Parseval's identity states that:

1

2L

Z L

ÿL

� f �x��2dx � a0
2

� �2

� 1

2

X1
n�1

�a2n � b2n�; �4:10�

if an and bn are coe�cients of the Fourier series of f �x� and if f �x� satis®es the

Dirichlet conditions.

It is easy to prove this identity. Assuming that the Fourier series corresponding

to f �x� converges to f �x�

f �x� � a0
2
�
X1
n�1

an cos
n�x

L
� bn sin

n�x

L

� �
:

Multiplying by f �x� and integrating term by term from ÿL to L, we obtainZ L

ÿL

� f �x��2dx � a0
2

Z L

ÿL

f �x�dx

�
X1
n�1

an

Z L

ÿL

f �x� cos n�x
L

dx� bn

Z L

ÿL

f �x� sin n�x
L

dx

� �

� a20
2
L� L

X1
n�1

a2n � b2n
ÿ �

; �4:11�

where we have used the resultsZ L

ÿL

f �x� cos n�x
L

dx � Lan;

Z L

ÿL

f �x� sin n�x
L

dx � Lbn;

Z L

ÿL

f �x�dx � La0:

The required result follows on dividing both sides of Eq. (4.11) by L.
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Parseval's identity shows a relation between the average of the square of f �x�
and the coe�cients in the Fourier series for f �x�:

the average of f f �x�g2 is
R L

ÿL � f �x��2dx=2L;
the average of (a0=2� is (a0=2�2;
the average of (an cos nx� is a2n=2;
the average of (bn sin nx� is b2n=2.

Example 4.4

Expand f �x� � x; 0 < x < 2, in a half-range cosine series, then write Parseval's

identity corresponding to this Fourier cosine series.

Solution: We ®rst extend the de®nition of f �x� to that of the even function of

period 4 shown in Fig. 4.7. Then 2L � 4;L � 2. Thus bn � 0 and

an �
2

L

Z L

0

f �x� cos n�x
L

dx � 2

2

Z 2

0

f �x� cos n�x
2

dx

� x � 2

n�
sin

n�x

2

� �
ÿ 1 � ÿ4

n2�2
cos

n�x

2

� �� �2
0

� ÿ4

n2�2
cos n�ÿ 1� � if n 6� 0:

If n � 0,

a0 �
Z L

0

xdx � 2:

Then

f �x� � 1�
X1
n�1

4

n2�2
cos n�ÿ 1� � cos n�x

2
:

We now write Parseval's identity. We ®rst compute the average of � f �x��2:

the average of � f �x��2 � 1
2

Z 2

ÿ2

f �x�f g2dx � 1
2

Z 2

ÿ2

x2dx � 8

3
;

154

FOURIER SERIES AND INTEGRALS

Figure 4.7.



then the average

a20
2
�
X1
n�1

a2n � b2n
ÿ � � �2�2

2
�
X1
n�1

16

n4�4
cos n�ÿ 1� �2:

Parseval's identity now becomes

8

3
� 2� 64

�4

1

14
� 1

34
� 1

54
� � � �

� �
;

or

1

14
� 1

34
� 1

54
� � � � � �4

96

which shows that we can use Parseval's identity to ®nd the sum of an in®nite

series. With the help of the above result, we can ®nd the sum S of the following

series:

1

14
� 1

24
� 1

34
� 1

44
� � � � � 1

n4
� � � � :

S � 1

14
� 1

24
� 1

34
� 1

44
� � � � � 1

14
� 1

34
� 1

54
� � � �

� �
� 1

24
� 1

44
� 1

64
� � � �

� �

� 1

14
� 1

34
� 1

54
� � � �

� �
� 1

24
1

14
� 1

24
� 1

34
� 1

44
� � � �

� �

� �4

96
� S

16

from which we ®nd S � �4=90.

Alternative forms of Fourier series

Up to this point the Fourier series of a function has been written as an in®nite

series of sines and cosines, Eq. (4.2):

f �x� � a0
2
�
X1
n�1

an cos
n�x

L
� bn sin

n�x

L

� �
:

This can be converted into other forms. In this section, we just discuss two alter-

native forms. Let us ®rst write, with �=L � �

an cos n�x� bn sin n�x �
���������������
a2n � b2n

q
an���������������

a2n � b2n
p cos n�x� bn���������������

a2n � b2n
p sin n�x

ý !
:
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Now let (see Fig. 4.8)

cos �n �
an���������������

a2n � b2n
p ; sin �n �

bn���������������
a2n � b2n

p ; so �n � tanÿ1 bn
an

� �
;

Cn �
���������������
a2n � b2n

q
; C0 � 1

2 a0;

then we have the trigonometric identity

an cos n�x� bn sin n�x � Cn cos n�xÿ �n� �;
and accordingly the Fourier series becomes

f �x� � C0 �
X1
n�1

Cn cos n�xÿ �n� �: �4:12�

In this new form, the Fourier series represents a periodic function as a sum of

sinusoidal components having diÿerent frequencies. The sinusoidal component of

frequency n� is called the nth harmonic of the periodic function. The ®rst har-

monic is commonly called the fundamental component. The angles �n and the

coe�cients Cn are known as the phase angle and amplitude.

Using Euler's identities e�i� � cos �� i sin � where i2 � ÿ1, the Fourier series

for f �x� can be converted into complex form

f �x� �
X1
n�ÿ1

cne
in�x=L; �4:13a�

where

c�n � an þ ibn

� 1

2L

Z L

ÿL

f �x�eÿin�x=L dx; for n > 0: �4:13b�

Eq. (4.13a) is obtained on the understanding that the Dirichlet conditions are

satis®ed and that f �x� is continuous at x. If f �x� is discontinuous at x, the left

hand side of Eq. (4.13a) should be replaced by � f �x� 0� � f �xÿ 0��=2.
The exponential form (4.13a) can be considered as a basic form in its own right:

it is not obtained by transformation from the trigonometric form, rather it is
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constructed directly from the given function. Furthermore, in the complex repre-

sentation de®ned by Eqs. (4.13a) and (4.13b), a certain symmetry between the

expressions for a function and for its Fourier coe�cients is evident. In fact the

expressions (4.13a) and (4.13b) are of essentially the same structure, as the follow-

ing correlation reveals:

x � L; f �x� � cn � c�n�; ein�x=L � eÿin�x=L;
X1
n�ÿ1

� � � 1

2L

Z L

ÿL

� �dx:

This duality is worthy of note, and as our development proceeds to the Fourier

integral, it will become more striking and fundamental.

Integration and diÿerentiation of a Fourier series

The Fourier series of a function f �x� may always be integrated term-by-term to

give a new series which converges to the integral of f �x�. If f �x� is a continuous

function of x for all x, and is periodic (of period 2�) outside the interval

ÿ� < x < �, then term-by-term diÿerentiation of the Fourier series of f �x�
leads to the Fourier series of f 0�x�, provided f 0�x� satis®es Dirichlet's conditions.

Vibrating strings

The equation of motion of transverse vibration

There are numerous applications of Fourier series to solutions of boundary value

problems. Here we consider one of them, namely vibrating strings. Let a string of

length L be held ®xed between two points (0, 0) and (L, 0) on the x-axis, and then

given a transverse displacement parallel to the y-axis. Its subsequent motion, with

no external forces acting on it, is to be considered; this is described by ®nding the

displacement y as a function of x and t (if we consider only vibration in one plane,

and take the xy plane as the plane of vibration). We will assume that �, the mass

per unit length is uniform over the entire length of the string, and that the string is

perfectly ¯exible, so that it can transmit tension but not bending or shearing

forces.

As the string is drawn aside from its position of rest along the x-axis, the

resulting increase in length causes an increase in tension, denoted by P. This

tension at any point along the string is always in the direction of the tangent to

the string at that point. As shown in Fig. 4.9, a force P�x�A acts at the left hand

side of an element ds, and a force P�x� dx�A acts at the right hand side, where A

is the cross-sectional area of the string. If � is the inclination to the horizontal,

then

Fx � AP cos��� d�� ÿ AP cos�; Fy � AP sin��� d�� ÿ AP sin�:
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We limit the displacement to small values, so that we may set

cos� � 1ÿ �2=2; sin� � � � tan� � dy=dx;

then

Fy � AP
dy

dx

� �
x�dx

ÿ dy

dx

� �
x

� �
� AP

d2y

dx2
dx:

Using Newton's second law, the equation of motion of transverse vibration of the

element becomes

�Adx
@2y

@t2
� AP

@2y

@x2
dx; or

@2y

@x2
� 1

v2
@2y

@t2
; v �

���������
P=�

p
:

Thus the transverse displacement of the string satis®es the partial diÿerential wave

equation

@2y

@x2
� 1

v2
@2y

@t2
; 0 < x < L; t > 0 �4:14�

with the following boundary conditions: y�0; t� � y�L; t� � 0; @y=@t � 0;

y�x; 0� � f �x�; where f �x� describes the initial shape (position) of the string,

and v is the velocity of propagation of the wave along the string.

Solution of the wave equation

To solve this boundary value problem, let us try the method of separation vari-

ables:

y�x; t� � X�x�T�t�: �4:15�
Substituting this into Eq. (4.14) yields

�1=X��d2X=dx2� � �1=v2T��d2T=dt2�.
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Since the left hand side is a function of x only and the right hand side is a function

of time only, they must be equal to a common separation constant, which we will

call ÿ�2. Then we have

d2X=dx2 � ÿ�2X ; X�0� � X�L� � 0 �4:16a�
and

d2T=dt2 � ÿ�2v2T dT=dt � 0 at t � 0: �4:16b�
Both of these equations are typical eigenvalue problems: we have a diÿerential

equation containing a parameter �, and we seek solutions satisfying certain

boundary conditions. If there are special values of � for which non-trivial solu-

tions exist, we call these eigenvalues, and the corresponding solutions eigensolu-

tions or eigenfunctions.

The general solution of Eq. (4.16a) can be written as

X�x� � A1 sin��x� � B1 cos��x�:
Applying the boundary conditions

X�0� � 0 ) B1 � 0;

and

X�L� � 0 ) A1 sin��L� � 0

A1 � 0 is the trivial solution X � 0 (so y � 0); hence we must have sin��L� � 0,

that is,

�L � n�; n � 1; 2; . . . ;

and we obtain a series of eigenvalues

�n � n�=L; n � 1; 2; . . .

and the corresponding eigenfunctions

Xn�x� � sin�n�=L�x; n � 1; 2; . . . :

To solve Eq. (4.16b) for T�t� we must use one of the values �n found above. The

general solution is of the form

T�t� � A2 cos��nvt� � B2 sin��nvt�:
The boundary condition leads to B2 � 0.

The general solution of Eq. (4.14) is hence a linear superposition of the solu-

tions of the form

y�x; t� �
X1
n�1

An sin�n�x=L� cos�n�vt=L�; �4:17�
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the An are as yet undetermined constants. To ®nd An, we use the boundary

condition y�x; t� � f �x� at t � 0, so that Eq. (4.17) reduces to

f �x� �
X1
n�1

An sin�n�x=L�:

Do you recognize the in®nite series on the right hand side? It is a Fourier sine

series. To ®nd An, multiply both sides by sin(m�x=L) and then integrate with

respect to x from 0 to L and we obtain

Am � 2

L

Z L

0

f �x� sin�m�x=L�dx; m � 1; 2; . . .

where we have used the relationZ L

0

sin�m�x=L� sin�n�x=L�dx � L

2
�mn:

Eq. (4.17) now gives

y�x; t� �
X1
n�1

2

L

Z L

0

f �x� sin n�x
L

dx

� �
sin

n�x

L
cos

n�vt

L
: �4:18�

The terms in this series represent the natural modes of vibration. The frequency

of the nth normal mode fn is obtained from the term involving cos�n�vt=L� and is

given by

2�fn � n�v=L or fn � nv=2L:

All frequencies are integer multiples of the lowest frequency f1. We call f1 the

fundamental frequency or ®rst harmonic, and f2 and f3 the second and third

harmonics (or ®rst and second overtones) and so on.

RLC circuit

Another good example of application of Fourier series is an RLC circuit driven by

a variable voltage E�t� which is periodic but not necessarily sinusoidal (see Fig.

4.10). We want to ®nd the current I�t� ¯owing in the circuit at time t.

According to Kirchhoÿ 's second law for circuits, the impressed voltage E�t�
equals the sum of the voltage drops across the circuit components. That is,

L
dI

dt
� RI �Q

C
� E�t�;

where Q is the total charge in the capacitor C. But I � dQ=dt, thus diÿerentiating

the above diÿerential equation once we obtain

L
d2I

dt2
� R

dI

dt
� 1

C
I � dE

dt
:
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Under steady-state conditions the current I�t� is also periodic, with the same

period P as for E�t�. Let us assume that both E�t� and I�t� possess Fourier

expansions and let us write them in their complex forms:

E�t� �
X1

n�ÿ1
Ene

in!t; I�t� �
X1
n�ÿ1

cne
in!t �! � 2�=P�:

Furthermore, we assume that the series can be diÿerentiated term by term. Thus

dE

dt
�

X1
n�ÿ1

in!Ene
in!t;

dI

dt
�

X1
n�ÿ1

in!cne
in!t;

d2I

dt2
�

X1
n�ÿ1

�ÿn2!2�cnein!t:

Substituting these into the last (second-order) diÿerential equation and equating

the coe�cients with the same exponential ein�t, we obtain

ÿn2!2L� in!R� 1=C
ÿ �

cn � in!En:

Solving for cn

cn �
in!=L

� 1=CL� �2ÿn2!2� � i R=L� �n!En:

Note that 1/LC is the natural frequency of the circuit and R/L is the attenuation

factor of the circuit. The Fourier coe�cients for E�t� are given by

En �
1

P

Z P=2

ÿP=2

E�t�eÿin!tdt:

The current I�t� in the circuit is given by

I�t� �
X1
n�ÿ1

cne
in!t:
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Orthogonal functions

Many of the properties of Fourier series considered above depend on orthogonal

properties of sine and cosine functionsZ L

0

sin
m�x

L
sin

n�x

L
dx � 0;

Z L

0

cos
m�x

L
cos

n�x

L
dx � 0 �m 6� n�:

In this section we seek to generalize this orthogonal property. To do so we ®rst

recall some elementary properties of real vectors in three-dimensional space.

Two vectors A and B are called orthogonal if A � B � 0. Although not geome-

trically or physically obvious, we generalize these ideas to think of a function, say

A�x�, as being an in®nite-dimensional vector (a vector with an in®nity of compo-

nents), the value of each component being speci®ed by substituting a particular

value of x taken from some interval (a, b), and two functions, A�x� and B�x� are
orthogonal in (a, b) if Z b

a

A�x�B�x�dx � 0: �4:19�

The left-side of Eq. (4.19) is called the scalar product of A�x� and B�x� and

denoted by, in the Dirac bracket notation, hA�x�jB�x�i. The ®rst factor in the

bracket notation is referred to as the bra and the second factor as the ket, so

together they comprise the bracket.

A vector A is called a unit vector or normalized vector if its magnitude is unity:

A � A � A2 � 1. Extending this concept, we say that the function A�x� is normal

or normalized in (a, b) if

hA�x�jA�x�i �
Z b

a

A�x�A�x�dx � 1: �4:20�

If we have a set of functions 'i�x�; i � 1; 2; 3; . . . ; having the properties

'm�x�h j'n�x�i �
Z b

a

'm�x�'n�x�dx � �mn; �4:20a�

where �nm is the Kronecker delta symbol, we then call such a set of functions an

orthonormal set in (a, b). For example, the set of functions 'm�x� �
�2=��1=2 sin�mx�;m � 1; 2; 3; . . . is an orthonormal set in the interval 0 � x � �.

Just as in three-dimensional vector space, any vector A can be expanded in the

form A � A1ê1 � A2ê2 � A3ê3, we can consider a set of orthonormal functions 'i

as base vectors and expand a function f �x� in terms of them, that is,

f �x� �
X1
n�1

cn'n�x� a � x � b; �4:21�
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the series on the right hand side is called an orthonormal series; such series are

generalizations of Fourier series. Assuming that the series on the right converges

to f �x�, we can then multiply both sides by 'm�x� and integrate both sides from a

to b to obtain

cm � h f �x�j'm�x�i �
Z b

a

f �x�'m�x�dx; �4:21a�

cm can be called the generalized Fourier coe�cients.

Multiple Fourier series

A Fourier expansion of a function of two or three variables is often very useful in

many applications. Let us consider the case of a function of two variables, say

f �x; y�. For example, we can expand f �x; y� into a double Fourier sine series

f �x; y� �
X1
m�1

X1
n�1

Bmn sin
m�x

L1

sin
n�y

L2

; �4:22�

where

Bmn �
4

L1L2

Z L1

0

Z L2

0

f �x; y� sinm�x

L1

sin
n�y

L2

dxdy: �4:22a�

Similar expansions can be made for cosine series and for series having both sines

and cosines.

To obtain the coe�cients Bmn, let us rewrite f �x; y� as

f �x; y� �
X1
m�1

Cm sin
m�x

L1

; �4:23�

where

Cm �
X1
n�1

Bmn sin
n�y

L2

: �4:23a�

Now we can consider Eq. (4.23) as a Fourier series in which y is kept constant

so that the Fourier coe�cients Cm are given by

Cm � 2

L1

Z L1

0

f �x; y� sinm�x

L1

dx: �4:24�

On noting that Cm is a function of y, we see that Eq. (4.23a) can be considered as a

Fourier series for which the coe�cients Bmn are given by

Bmn �
2

L2

Z L2

0

Cm sin
n�y

L2

dy:
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Substituting Eq. (4.24) for Cm into the above equation, we see that Bmn is given by

Eq. (4.22a).

Similar results can be obtained for cosine series or for series containing both

sines and cosines. Furthermore, these ideas can be generalized to triple Fourier

series, etc. They are very useful in solving, for example, wave propagation and

heat conduction problems in two or three dimensions. Because they lie outside of

the scope of this book, we have to omit these interesting applications.

Fourier integrals and Fourier transforms

The properties of Fourier series that we have thus far developed are adequate for

handling the expansion of any periodic function that satis®es the Dirichlet con-

ditions. But many problems in physics and engineering do not involve periodic

functions, and it is therefore desirable to generalize the Fourier series method to

include non-periodic functions. A non-periodic function can be considered as a

limit of a given periodic function whose period becomes in®nite, as shown in

Examples 4.5 and 4.6.

Example 4.5

Consider the periodic functions fL�x�

fL�x� �
0 when ÿL=2 < x < ÿ1

1 when ÿ1 < x < 1

0 when 1 < x < L=2

8><
>: ;

164

FOURIER SERIES AND INTEGRALS

Figure 4.11. Square wave function: �a� L � 4; �b� L � 8; �c� L ! 1.



which has period L > 2. Fig. 4.11(a) shows the function when L � 4. If L is

increased to 8, the function looks like the one shown in Fig. 4.11(b). As

L ! 1 we obtain a non-periodic function f �x�, as shown in Fig. 4.11(c):

f �x� � 1 ÿ1 < x < 1

0 otherwise

�
:

Example 4.6

Consider the periodic function gL�x� (Fig. 4.12(a)):
gL�x� � eÿjxj when ÿ L=2 < x < L=2:

As L ! 1 we obtain a non-periodic function g�x� : g�x� � limL!1 gL�x� (Fig.

4.12(b)).

By investigating the limit that is approached by a Fourier series as the period of

the given function becomes in®nite, a suitable representation for non-periodic

functions can perhaps be obtained. To this end, let us write the Fourier series

representing a periodic function f �x� in complex form:

f �x� �
X1
n�ÿ1

cne
i!x; �4:25�

cn �
1

2L

Z L

ÿL

f �x�eÿi!xdx �4:26�

where ! denotes n�=L

! � n�

L
; n positive or negative: �4:27�

The transition L ! 1 is a little tricky since cn apparently approaches zero, but

these coe�cients should not approach zero. We can ask for help from Eq. (4.27),

from which we have

�! � ��=L��n;

165

FOURIER INTEGRALS AND FOURIER TRANSFORMS

Figure 4.12. Sawtooth wave functions: �a� ÿL=2 < x < L=2; �b� L ! 1.



and the `adjacent' values of ! are obtained by setting �n � 1, which corresponds

to

�L=���! � 1:

Then we can multiply each term of the Fourier series by �L=���! and obtain

f �x� �
X1
n�ÿ1

L

�
cn

� �
ei!x�!;

where

L

�
cn �

1

2�

Z L

ÿL

f �x�eÿi!xdx:

The troublesome factor 1=L has disappeared. Switching completely to the !

notation and writing �L=��cn � cL�!�, we obtain

cL�!� �
1

2�

Z L

ÿL

f �x�eÿi!xdx

and

f �x� �
X1

L!=��ÿ1
cL�!�ei!x�!:

In the limit as L ! 1, the !s are distributed continuously instead of discretely,

�! ! d! and this sum is exactly the de®nition of an integral. Thus the last

equations become

c�!� � lim
L!1

cL�!� �
1

2�

Z 1

ÿ1
f �x�eÿi!xdx �4:28�

and

f �x� �
Z 1

ÿ1
c�!�ei!xd!: �4:29�

This set of formulas is known as the Fourier transformation, in somewhat diÿer-

ent form. It is easy to put them in a symmetrical form by de®ning

g�!� �
������
2�

p
c�ÿ!�;

then Eqs. (4.28) and (4.29) take the symmetrical form

g�!� � 1������
2�

p
Z 1

ÿ1
f �x 0�eÿi!x 0

dx 0; �4:30�

f �x� � 1������
2�

p
Z 1

ÿ1
g�!�ei!xd!: �4:31�
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The function g�!� is called the Fourier transform of f �x� and is written

g�!� � Ff f �x�g. Eq. (4.31) is the inverse Fourier transform of g�!� and is written

f �x� � Fÿ1fg�!�g; sometimes it is also called the Fourier integral representation

of f �x�. The exponential function eÿi!x is sometimes called the kernel of trans-

formation.

It is clear that g�!� is de®ned only if f �x� satis®es certain restrictions. For

instance, f �x� should be integrable in some ®nite region. In practice, this means

that f �x� has, at worst, jump discontinuities or mild in®nite discontinuities. Also,

the integral should converge at in®nity. This would require that f �x� ! 0 as

x ! �1.

A very common su�cient condition is the requirement that f �x� is absolutely
integrable. That is, the integral Z 1

ÿ1
f �x�j jdx

exists. Since j f �x�eÿi!xj � j f �x�j, it follows that the integral for g�!� is absolutely
convergent; therefore it is convergent.

It is obvious that g�!� is, in general, a complex function of the real variable !.

So if f �x� is real, then
g�ÿ!� � g*�!�:

There are two immediate corollaries to this property:

(1) f �x� is even, g�!� is real;
(2) if f �x� is odd, g�!� is purely imaginary.

Other, less symmetrical forms of the Fourier integral can be obtained by working

directly with the sine and cosine series, instead of with the exponential functions.

Example 4.7

Consider the Gaussian probability function f �x� � Neÿ�x2 , where N and � are

constant. Find its Fourier transform g�!�, then graph f �x� and g�!�.

Solution: Its Fourier transform is given by

g�!� � 1������
2�

p
Z 1

ÿ1
f �x�eÿi!x dx � N������

2�
p

Z 1

ÿ1
eÿ�x2eÿi!xdx:

This integral can be simpli®ed by a change of variable. First, we note that

ÿ�x2 ÿ i!x � ÿ�x ����
�

p � i!=2
����
�

p �2 ÿ !2=4�;

and then make the change of variable x
����
�

p � i!=2
����
�

p � u to obtain

g�!� � N���������
2��

p eÿ!2=4�

Z 1

ÿ1
eÿu2du � N������

2�
p eÿ!2=4�:
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It is easy to see that g�!� is also a Gaussian probability function with a peak at the

origin, monotonically decreasing as ! ! �1. Furthermore, for large �, f �x� is

sharply peaked but g�!� is ¯attened, and vice versa as shown in Fig. 4.13. It is

interesting to note that this is a general feature of Fourier transforms. We shall see

later that in quantum mechanical applications it is related to the Heisenberg

uncertainty principle.

The original function f �x� can be retrieved from Eq. (4.31) which takes the

form

1������
2�

p
Z 1

ÿ1
g�!�ei!xd! � 1������

2�
p N������

2�
p

Z 1

ÿ1
eÿ!2=4�ei!xd!

� 1������
2�

p N������
2�

p
Z 1

ÿ1
eÿ� 0!2

eÿi!x 0
d!

in which we have set � 0 � 1=4�, and x 0 � ÿx. The last integral can be evaluated

by the same technique, and we ®nally ®nd

1������
2�

p
Z 1

ÿ1
g�!�ei!xd! � 1������

2�
p N������

2�
p

Z 1

ÿ1
eÿ� 0!2

eÿi!x 0
d!

� N������
2�

p ������
2�

p
eÿ�x2

� Neÿ�x2 � f �x�:

Example 4.8

Given the box function which can represent a single pulse

f �x� � 1 jxja
0 xj j > a

�
®nd the Fourier transform of f �x�, g�!�; then graph f �x� and g�!� for a � 3.
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Solution: The Fourier transform of f �x� is, as shown in Fig. 4.14,

g�!� � 1������
2�

p
Z 1

ÿ1
f �x 0�eÿi!x 0

dx 0 � 1������
2�

p
Z a

ÿa

�1�eÿi!x 0
dx 0 � 1������

2�
p eÿi!x 0

ÿi!

a

ÿa

þþþþþ
�

���
2

�

r
sin!a

!
; ! 6� 0:

For ! � 0, we obtain g�!� � ��������
2=�

p
a.

The Fourier integral representation of f �x� is

f �x� � 1������
2�

p
Z 1

ÿ1
g�!�ei!xd! � 1

2�

Z 1

ÿ1

2 sin!a

!
ei!xd!:

Now Z 1

ÿ1

sin!a

!
ei!xd! �

Z 1

ÿ1

sin!a cos!x

!
d!� i

Z 1

ÿ1

sin!a sin!x

!
d!:

The integrand in the second integral is odd and so the integral is zero. Thus we

have

f �x� � 1������
2�

p
Z 1

ÿ1
g�!�ei!x d! � 1

�

Z 1

ÿ1

sin!a cos!x

!
d! � 2

�

Z 1

0

sin!a cos!x

!
d!;

the last step follows since the integrand is an even function of !.

It is very di�cult to evaluate the last integral. But a known property of f �x� will
help us. We know that f �x� is equal to 1 for jxj � a, and equal to 0 for jxj > a.

Thus we can write

2

�

Z 1

0

sin!a cos!x

!
d! � 1 jxja

0 jxj > a

�
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Figure 4.14. The box function.



Just as in Fourier series expansion, we also expect to observe Gibb's

phenomenon in the case of Fourier integrals. Approximations to the Fourier

integral are obtained by replacing 1 by �:Z �

0

sin! cos!x

!
d!;

where we have set a � 1. Fig. 4.15 shows oscillations near the points of disconti-

nuity of f �x�. We might expect these oscillations to disappear as � ! 1, but they

are just shifted closer to the points x � �1.

Example 4.9

Consider now a harmonic wave of frequency !0, e
i!0t, which is chopped to a life-

time of 2T seconds (Fig. 4.16(a)):

f �t� � ei!0t ÿT � t � T

0 jtj > 0
:

(

The chopping process will introduce many new frequencies in varying amounts,

given by the Fourier transform. Then we have, according to Eq. (4.30),

g�!� � �2��ÿ1=2

Z T

ÿT

ei!0teÿi!tdt � �2��ÿ1=2

Z T

ÿT

ei�!0ÿ!�tdt

� �2��ÿ1=2 ei�!0ÿ!�t

i�!0 ÿ !�
þþþþT
ÿT

� �2=��1=2T sin�!0 ÿ !�T
�!0 ÿ !�T :

This function is plotted schematically in Fig. 4.16(b). (Note that

limx!0 �sin x=x� � 1.) The most striking aspect of this graph is that, although

the principal contribution comes from the frequencies in the neighborhood of

!0, an in®nite number of frequencies are presented. Nature provides an example

of this kind of chopping in the emission of photons during electronic and nuclear

transitions in atoms. The light emitted from an atom consists of regular vibrations

that last for a ®nite time of the order of 10ÿ9 s or longer. When light is examined

by a spectroscope (which measures the wavelengths and, hence, the frequencies)

we ®nd that there is an irreducible minimum frequency spread for each spectrum

line. This is known as the natural line width of the radiation.

The relative percentage of frequencies, other than the basic one, present

depends on the shape of the pulse, and the spread of frequencies depends on

170

FOURIER SERIES AND INTEGRALS

Figure 4.15. The Gibb's phenomenon.



the time T of the duration of the pulse. As T becomes larger the central peak

becomes higher and the width �!�� 2�=T� becomes smaller. Considering only

the spread of frequencies in the central peak we have

�! � 2�=T ; or T� � 1:

Multiplying by the Planck constant h and replacing T by �t, we have the relation

�t�E � h: �4:32�
A wave train that lasts a ®nite time also has a ®nite extension in space. Thus the

radiation emitted by an atom in 10ÿ9 s has an extension equal to 3� 108 � 10ÿ9 �
3� 10ÿ1 m. A Fourier analysis of this pulse in the space domain will yield a graph

identical to Fig. 4.11(b), with the wave numbers clustered around

k0�� 2�=�0 � !0=v�. If the wave train is of length 2a, the spread in wave number

will be given by a�k � 2�, as shown below. This time we are chopping an in®nite

plane wave front with a shutter such that the length of the packet is 2a, where

2a � 2vT , and 2T is the time interval that the shutter is open. Thus

ý�x� � eik0x; ÿa � x � a

0; jxj > a
:

(

Then

��k� � �2��ÿ1=2

Z 1

ÿ1
ý�x�eÿikxdx � �2��ÿ1=2

Z a

ÿa

ý�x�eÿikxdx

� �2=��1=2a sin�k0 ÿ k�a
�k0 ÿ k�a :

This function is plotted in Fig. 4.17: it is identical to Fig. 4.16(b), but here it is the

wave vector (or the momentum) that takes on a spread of values around k0. The

breadth of the central peak is �k � 2�=a, or a�k � 2�.
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Figure 4.16. (a) A chopped harmonic wave ei!0t that lasts a ®nite time 2T . �b�
Fourier transform of e�i!0t�; jtj < T , and 0 otherwise.



Fourier sine and cosine transforms

If f �x� is an odd function, the Fourier transforms reduce to

g�!� �
���
2

�

r Z 1

0

f �x 0� sin!x 0dx 0; f �x� �
���
2

�

r Z 1

0

g�!� sin!xd!: �4:33a�

Similarly, if f �x� is an even function, then we have Fourier cosine transforma-

tions:

g�!� �
���
2

�

r Z 1

0

f �x 0� cos!x 0dx 0; f �x� �
���
2

�

r Z 1

0

g�!� cos!xd!: �4:33b�

To demonstrate these results, we ®rst expand the exponential function on the

right hand side of Eq. (4.30)

g�!� � 1������
2�

p
Z 1

ÿ1
f �x 0�eÿi!x 0

dx 0

� 1������
2�

p
Z 1

ÿ1
f �x 0� cos!x 0dx 0 ÿ i������

2�
p

Z 1

ÿ1
f �x 0� sin!x 0dx 0:

If f �x� is even, then f �x� cos!x is even and f �x� sin!x is odd. Thus the second

integral on the right hand side of the last equation is zero and we have

g�!� � 1������
2�

p
Z 1

ÿ1
f �x 0� cos!x 0dx 0 �

���
2

�

r Z 1

0

f �x 0� cos!x 0dx 0;

g�!� is an even function, since g�ÿ!� � g�!�. Next from Eq. (4.31) we have

f �x� � 1������
2�

p
Z 1

ÿ1
g�!�ei!xd!

� 1������
2�

p
Z 1

ÿ1
g�!� cos!xd!� i������

2�
p

Z 1

ÿ1
g�!� sin!xd!:
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Since g�!� is even, so g�!� sin!x is odd and the second integral on the right hand

side of the last equation is zero, and we have

f �x� � 1������
2�

p
Z 1

ÿ1
g�!� cos!xd! �

���
2

�

r Z 1

0

g�!� cos!xd!:

Similarly, we can prove Fourier sine transforms by replacing the cosine by the

sine.

Heisenberg's uncertainty principle

We have demonstrated in above examples that if f �x� is sharply peaked, then g�!�
is ¯attened, and vice versa. This is a general feature in the theory of Fourier

transforms and has important consequences for all instances of wave propaga-

tion. In electronics we understand now why we use a wide-band ampli®cation in

order to reproduce a sharp pulse without distortion.

In quantum mechanical applications this general feature of the theory of

Fourier transforms is related to the Heisenberg uncertainty principle. We saw

in Example 4.9 that the spread of the Fourier transform in k space (�k) times

its spread in coordinate space (a) is equal to 2� �a�k � 2��. This result is of

special importance because of the connection between values of k and momentum

p : p � pk (where p is the Planck constant h divided by 2�). A particle localized in

space must be represented by a superposition of waves with diÿerent momenta.

As a result, the position and momentum of a particle cannot be measured simul-

taneously with in®nite precision; the product of `uncertainty in the position deter-

mination' and `uncertainty in the momentum determination' is governed by the

relation �x�p � h�ap�k � 2�p � h, or �x�p � h;�x � a�. This statement is

called Heisenberg's uncertainty principle. If position is known better, knowledge

of the momentum must be unavoidably reduced proportionally, and vice versa. A

complete knowledge of one, say k (and so p), is possible only when there is

complete ignorance of the other. We can see this in physical terms. A wave

with a unique value of k is in®nitely long. A particle represented by an in®nitely

long wave (a free particle) cannot have a de®nite position, since the particle can be

anywhere along its length. Hence the position uncertainty is in®nite in order that

the uncertainty in k is zero.

Equation (4.32) represents Heisenberg's uncertainty principle in a diÿerent

form. It states that we cannot know with in®nite precision the exact energy of a

quantum system at every moment in time. In order to measure the energy of a

quantum system with good accuracy, one must carry out such a measurement for

a su�ciently long time. In other words, if the dynamical state exists only for a

time of order �t, then the energy of the state cannot be de®ned to a precision

better than h=�t.
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We should not look upon the uncertainty principle as being merely an unfor-

tunate limitation on our ability to know nature with in®nite precision. We can use

it to our advantage. For example, when combining the time±energy uncertainty

relation with Einstein's mass±energy relation (E � mc2) we obtain the relation

�m�t � h=c2. This result is very useful in our quest to understand the universe, in

particular, the origin of matter.

Wave packets and group velocity

Energy (that is, a signal or information) is transmitted by groups of waves, not a

single wave. Phase velocity may be greater than the speed of light c, `group

velocity' is always less than c. The wave groups with which energy is transmitted

from place to place are called wave packets. Let us ®rst consider a simple case

where we have two waves '1 and '2: each has the same amplitude but diÿers

slightly in frequency and wavelength,

'1�x; t� � A cos�!tÿ kx�;
'2�x; t� � A cos��!��!�tÿ �k��k�x�;

where �! � ! and �k � k. Each represents a pure sinusoidal wave extending to

in®nite along the x-axis. Together they give a resultant wave

' � '1 � '2

� A cos�!tÿ kx� � cos��!��!�tÿ �k��k�x�f g:
Using the trigonometrical identity

cosA� cosB � 2 cos
A� B

2
cos

Aÿ B

2
;

we can rewrite ' as

' � 2 cos
2!tÿ 2kx��!tÿ�kx

2
cos

ÿ�!t��kx

2

� 2 cos 1
2
��!tÿ�kx� cos�!tÿ kx�:

This represents an oscillation of the original frequency !, but with a modulated

amplitude as shown in Fig. 4.18. A given segment of the wave system, such as AB,

can be regarded as a `wave packet' and moves with a velocity vg (not yet deter-

mined). This segment contains a large number of oscillations of the primary wave

that moves with the velocity v. And the velocity vg with which the modulated

amplitude propagates is called the group velocity and can be determined by the

requirement that the phase of the modulated amplitude be constant. Thus

vg � dx=dt � �!=�k ! d!=dk:
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The modulation of the wave is repeated inde®nitely in the case of superposition of

two almost equal waves. We now use the Fourier technique to demonstrate that

any isolated packet of oscillatory disturbance of frequency ! can be described in

terms of a combination of in®nite trains of frequencies distributed around !. Let

us ®rst superpose a system of n waves

ý�x; t� �
Xn
j�1

Aje
i�kjxÿ!j t�;

where Aj denotes the amplitudes of the individual waves. As n approaches in®nity,

the frequencies become continuously distributed. Thus we can replace the sum-

mation with an integration, and obtain

ý�x; t� �
Z 1

ÿ1
A�k�ei�kxÿ!t�dk; �4:34�

the amplitude A�k� is often called the distribution function of the wave. For

ý�x; t� to represent a wave packet traveling with a characteristic group velocity,

it is necessary that the range of propagation vectors included in the superposition

be fairly small. Thus, we assume that the amplitude A�k� 6� 0 only for a small

range of values about a particular k0 of k:

A�k� 6� 0; k0 ÿ " < k < k0 � "; " � k0:

The behavior in time of the wave packet is determined by the way in which the

angular frequency ! depends upon the wave number k : ! � !�k�, known as the

law of dispersion. If ! varies slowly with k, then !�k� can be expanded in a power

series about k0:

!�k� � !�k0� �
d!

dk

þþþþ
0

�kÿ k0� � � � � � !0 � ! 0�kÿ k0� �O �kÿ k0�2
h i

;

where

!0 � !�k0�; and ! 0 � d!

dk

þþþþ
0
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Figure 4.18. Superposition of two waves.



and the subscript zero means `evaluated' at k � k0. Now the argument of the

exponential in Eq. (4.34) can be rewritten as

!tÿ kx � �!0tÿ k0x� � ! 0�kÿ k0�tÿ �kÿ k0�x
� �!0tÿ k0x� � �kÿ k0��! 0tÿ x�

and Eq. (4.34) becomes

ý�x; t� � exp�i�k0xÿ !0t��
Z k0�"

k0ÿ"

A�k� exp�i�kÿ k0��xÿ ! 0t��dk: �4:35�

If we take kÿ k0 as the new integration variable y and assume A�k� to be a slowly

varying function of k in the integration interval 2", then Eq. (4.35) becomes

ý�x; t� � exp�i�k0xÿ !0t��
Z k0�"

k0ÿ"

A�k0 � y� exp�i�xÿ ! 0t�y�dy:

Integration, transformation, and the approximation A�k0 � y� � A�k0� lead to

the result

ý�x; t� � B�x; t� exp�i�k0xÿ !0t�� �4:36�
with

B�x; t� � 2A�k0�
sin��k�xÿ ! 0t��

xÿ ! 0t
: �4:37�

As the argument of the sine contains the small quantity �k;B�x; t� varies slowly
depending on time t and coordinate x. Therefore, we can regard B�x; t� as the

small amplitude of an approximately monochromatic wave and k0xÿ !0t as its

phase. If we multiply the numerator and denominator on the right hand side of

Eq. (4.37) by �k and let

z � �k�xÿ ! 0t�
then B�x; t� becomes

B�x; t� � 2A�k0��k
sin z

z

and we see that the variation in amplitude is determined by the factor sin (z�=z.
This has the properties

lim
z!0

sin z

z
� 1 for z � 0

and

sin z

z
� 0 for z � ��; � 2�; . . . :
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If we further increase the absolute value of z, the function sin (z�=z runs alter-

nately through maxima and minima, the function values of which are small com-

pared with the principal maximum at z � 0, and quickly converges to zero.

Therefore, we can conclude that superposition generates a wave packet whose

amplitude is non-zero only in a ®nite region, and is described by sin (z�=z (see Fig.
4.19).

The modulating factor sin (z�=z of the amplitude assumes the maximum value 1

as z ! 0. Recall that z � �k�xÿ ! 0t), thus for z � 0, we have

xÿ ! 0t � 0;

which means that the maximum of the amplitude is a plane propagating with

velocity

dx

dt
� ! 0 � d!

dk

þþþþ
0

;

that is, ! 0 is the group velocity, the velocity of the whole wave packet.

The concept of a wave packet also plays an important role in quantum

mechanics. The idea of associating a wave-like property with the electron and

other material particles was ®rst proposed by Louis Victor de Broglie (1892±1987)

in 1925. His work was motivated by the mystery of the Bohr orbits. After

Rutherford's successful �-particle scattering experiments, a planetary-type

nuclear atom, with electrons orbiting around the nucleus, was in favor with

most physicists. But, according to classical electromagnetic theory, a charge

undergoing continuous centripetal acceleration emits electromagnetic radiation
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continuously and so the electron would lose energy continuously and it would

spiral into the nucleus after just a fraction of a second. This does not occur.

Furthermore, atoms do not radiate unless excited, and when radiation does

occur its spectrum consists of discrete frequencies rather than the continuum of

frequencies predicted by the classical electromagnetic theory. In 1913 Niels Bohr

(1885±1962) proposed a theory which successfully explained the radiation spectra

of the hydrogen atom. According to Bohr's postulates, an atom can exist in

certain allowed stationary states without radiation. Only when an electron

makes a transition between two allowed stationary states, does it emit or absorb

radiation. The possible stationary states are those in which the angular momen-

tum of the electron about the nucleus is quantized, that is, mvr � np, where v is

the speed of the electron in the nth orbit and r is its radius. Bohr didn't clearly

describe this quantum condition. De Broglie attempted to explain it by ®tting a

standing wave around the circumference of each orbit. Thus de Broglie proposed

that n� � 2�r, where � is the wavelength associated with the nth orbit. Combining

this with Bohr's quantum condition we immediately obtain

� � h

mv
� h

p
:

De Broglie proposed that any material particle of total energy E and momentum p

is accompanied by a wave whose wavelength is given by � � h=p and whose

frequency is given by the Planck formula � � E=h. Today we call these waves

de Broglie waves or matter waves. The physical nature of these matter waves was

not clearly described by de Broglie, we shall not ask what these matter waves are ±

this is addressed in most textbooks on quantum mechanics. Let us ask just one

question: what is the (phase) velocity of such a matter wave? If we denote this

velocity by u, then

u � �� � E

p
� 1

p

������������������������
p2c2 �m2

0c
4

q

� c

���������������������������
1� �m0c=p�2

q
� c2

v
p � m0v�������������������

1ÿ v2=c2
p

ý !
;

which shows that for a particle with m0 > 0 the wave velocity u is always greater

than c, the speed of light in a vacuum. Instead of individual waves, de Broglie

suggested that we can think of particles inside a wave packet, synthesized from a

number of individual waves of diÿerent frequencies, with the entire packet travel-

ing with the particle velocity v.

De Broglie's matter wave idea is one of the cornerstones of quantum

mechanics.
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Heat conduction

We now consider an application of Fourier integrals in classical physics. A semi-

in®nite thin bar (x � 0), whose surface is insulated, has an initial temperature

equal to f �x�. The temperature of the end x � 0 is suddenly dropped to and

maintained at zero. The problem is to ®nd the temperature T�x; t� at any point

x at time t. First we have to set up the boundary value problem for heat conduc-

tion, and then seek the general solution that will give the temperature T�x; t� at
any point x at time t.

Head conduction equation

To establish the equation for heat conduction in a conducting medium we need

®rst to ®nd the heat ¯ux (the amount of heat per unit area per unit time) across a

surface. Suppose we have a ¯at sheet of thickness�n, which has temperature T on

one side and T ��T on the other side (Fig. 4.20). The heat ¯ux which ¯ows from

the side of high temperature to the side of low temperature is directly proportional

to the diÿerence in temperature �T and inversely proportional to the thickness

�n. That is, the heat ¯ux from I to II is equal to

ÿK
�T

�n
;

where K, the constant of proportionality, is called the thermal conductivity of the

conducting medium. The minus sign is due to the fact that if �T > 0 the heat

actually ¯ows from II to I. In the limit of�n ! 0, the heat ¯ux across from II to I

can be written

ÿK
@T

@n
� ÿKrT :

The quantity @T=@n is called the gradient of T which in vector form is rT .

We are now ready to derive the equation for heat conduction. Let V be an

arbitrary volume lying within the solid and bounded by surface S. The total
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amount of heat entering S per unit time isZZ
S

KrT� � � n̂dS;

where n̂ is an outward unit vector normal to element surface area dS. Using the

divergence theorem, this can be written asZZ
S

KrT� � � n̂dS �
ZZZ

V

r � KrT� �dV : �4:38�

Now the heat contained in V is given byZZZ
V

c�TdV ;

where c and � are respectively the speci®c heat capacity and density of the solid.

Then the time rate of increase of heat is

@

@t

ZZZ
V

c�TdV �
ZZZ

V

c�
@T

@t
dV : �4:39�

Equating the right hand sides of Eqs. (4.38) and (4.39) yieldsZZZ
V

c�
@T

@t
ÿr � KrT� �

� �
dV � 0:

Since V is arbitrary, the integrand (assumed continuous) must be identically zero:

c�
@T

@t
� r � KrT� �

or if K, c, � are constants

@T

@t
� kr � rT � kr2T ; �4:40�

where k � K=c�. This is the required equation for heat conduction and was ®rst

developed by Fourier in 1822. For the semiin®nite thin bar, the boundary condi-

tions are

T�x; 0� � f �x�;T�0; t� � 0; jT�x; t�j < M; �4:41�
where the last condition means that the temperature must be bounded for physical

reasons.

A solution of Eq. (4.40) can be obtained by separation of variables, that is by

letting

T � X�x�H�t�:
Then

XH 0 � kX 00H or X 00=X � H 0=kH:
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Each side must be a constant which we call ÿ�2. (If we use ��2, the resulting

solution does not satisfy the boundedness condition for real values of �.) Then

X 00 � �2X � 0; H 0 � �2kH � 0

with the solutions

X�x� � A1 cos�x� B1 sin�x; H�t� � C1e
ÿk�2t:

A solution to Eq. (4.40) is thus given by

T�x; t� � C1e
ÿk�2t�A1 cos�x� B1 sin�x�

� eÿk�2t�A cos�x� B sin�x�:
From the second of the boundary conditions (4.41) we ®nd A � 0 and so T�x; t�
reduces to

T�x; t� � Beÿk�2t sin�x:

Since there is no restriction on the value of �, we can replace B by a function B���
and integrate over � from 0 to 1 and still have a solution:

T�x; t� �
Z 1

0

B���eÿk�2t sin�xd�: �4:42�

Using the ®rst of boundary conditions (4.41) we ®nd

f �x� �
Z 1

0

B��� sin�xd�:

Then by the Fourier sine transform we ®nd

B��� � 2

�

Z 1

0

f �x� sin�xdx � 2

�

Z 1

0

f �u� sin�udu

and the temperature distribution along the semiin®nite thin bar is

T�x; t� � 2

�

Z 1

0

Z 1

0

f �u�eÿk�2t sin�u sin�xd�du: �4:43�

Using the relation

sin�u sin�x � 1
2 �cos��uÿ x� ÿ cos��u� x��;

Eq. (4.43) can be rewritten

T�x; t� � 1

�

Z 1

0

Z 1

0

f �u�eÿk�2t�cos ��uÿ x� ÿ cos��u� x��d�du

� 1

�

Z 1

0

f �u�
Z 1

0

eÿk�2t cos��uÿ x�d�ÿ
Z 1

0

eÿk�2t cos��u� x�d�
� �

du:
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Using the integral Z 1

0

eÿ��2

cosÿ�d� � 1

2

����
�

�

r
eÿÿ2=4�;

we ®nd

T�x; t� � 1

2
�������
�kt

p
Z 1

0

f �u�eÿ�uÿx�2=4ktduÿ
Z 1

0

f �u�eÿ�u�x�2=4ktdu
� �

:

Letting �uÿ x�=2 �����
kt

p � w in the ®rst integral and �u� x�=2 �����
kt

p � w in the second

integral, we obtain

T�x; t� � 1���
�

p
Z 1

ÿx=2
���
kt

p eÿw2

f �2w
�����
kt

p
� x�dwÿ

Z 1

x=2
���
kt

p eÿw2

f �2w
�����
kt

p
ÿ x�dw

" #
:

Fourier transforms for functions of several variables

We can extend the development of Fourier transforms to a function of several

variables, such as f �x; y; z�. If we ®rst decompose the function into a Fourier

integral with respect to x, we obtain

f �x; y; z� � 1������
2�

p
Z 1

ÿ1
þ�!x; y; z�ei!xxd!x;

where þ is the Fourier transform. Similarly, we can decompose the function with

respect to y and z to obtain

f �x; y; z� � 1

�2��2=3
Z 1

ÿ1
g�!x; !y; !z�ei�!xx�!yy�!zz�d!xd!yd!z;

with

g�!x; !y; !z� �
1

�2��2=3
Z 1

ÿ1
f �x; y; z�eÿi�!xx�!yy�!zz�dxdydz:

We can regard !x; !y; !z as the components of a vector ! whose magnitude is

! �
���������������������������
!2
x � !2

y � !2
z

q
;

then we express the above results in terms of the vector !:

f �r� � 1

�2��2=3
Z 1

ÿ1
g�x�eix�rdx; �4:44�

g�x� � 1

�2��2=3
Z 1

ÿ1
f �r�eÿ�ix�r�dr: �4:45�
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The Fourier integral and the delta function

The delta function is a very useful tool in physics, but it is not a function in the

usual mathematical sense. The need for this strange `function' arises naturally

from the Fourier integrals. Let us go back to Eqs. (4.30) and (4.31) and substitute

g�!� into f �x�; we then have

f �x� � 1

2�

Z 1

ÿ1
d!

Z 1

ÿ1
dx 0f �x 0�ei!�xÿx 0�:

Interchanging the order of integration gives

f �x� �
Z 1

ÿ1
dx 0f �x 0� 1

2�

Z 1

ÿ1
d!ei!�xÿx 0�: �4:46�

If the above equation holds for any function f �x�, then this tells us something

remarkable about the integral

1

2�

Z 1

ÿ1
d!ei!�xÿx 0�

considered as a function of x 0. It vanishes everywhere except at x 0 � x, and its

integral with respect to x 0 over any interval including x is unity. That is, we may

think of this function as having an in®nitely high, in®nitely narrow peak at

x � x 0. Such a strange function is called Dirac's delta function (®rst introduced

by Paul A. M. Dirac):

��xÿ x 0� � 1

2�

Z 1

ÿ1
d!ei!�xÿx 0�: �4:47�

Equation (4.46) then becomes

f �x� �
Z 1

ÿ1
f �x 0���xÿ x 0�dx 0: �4:48�

Equation (4.47) is an integral representation of the delta function. We summarize

its properties below:

��xÿ x 0� � 0; if x 0 6� x; �4:49a�
Z b

a

��xÿ x 0�dx 0 � 0; if x > b or x < a

1; if a < x < b
;

�
�4:49b�

f �x� �
Z 1

ÿ1
f �x 0���xÿ x 0�dx 0: �4:49c�
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It is often convenient to place the origin at the singular point, in which case the

delta function may be written as

��x� � 1

2�

Z 1

ÿ1
d!ei!x: �4:50�

To examine the behavior of the function for both small and large x, we use an

alternative representation of this function obtained by integrating as follows:

��x� � 1

2�
lim
a!1

Z a

ÿa

ei!xd! � lim
a!1

1

2�

eiax ÿ eÿiax

ix

� �
� lim

a!1
sin ax

�x
; �4:51�

where a is positive and real. We see immediately that ��ÿx� � ��x�. To examine

its behavior for small x, we consider the limit as x goes to zero:

lim
x!0

sin ax

�x
� a

�
lim
x!0

sin ax

ax
� a

�
:

Thus, ��0� � lima!1�a=�� ! 1, or the amplitude becomes in®nite at the singu-

larity. For large jxj, we see that sin�ax�=x oscillates with period 2�=a, and its

amplitude falls oÿ as 1=jxj. But in the limit as a goes to in®nity, the period

becomes in®nitesimally narrow so that the function approaches zero everywhere

except for the in®nite spike of in®nitesimal width at the singularity. What is the

integral of Eq. (4.51) over all space?Z 1

ÿ1
lim
a!1

sin ax

�x
dx � lim

a!1
2

�

Z 1

0

sin ax

�x
dx � 2

�

�

2
� 1:

Thus, the delta function may be thought of as a spike function which has unit area

but a non-zero amplitude at the point of singularity, where the amplitude becomes

in®nite. No ordinary mathematical function with these properties exists. How do

we end up with such an improper function? It occurs because the change of order

of integration in Eq. (4.46) is not permissible. In spite of this, the Dirac delta

function is a most convenient function to use symbolically. For in applications the

delta function always occurs under an integral sign. Carrying out this integration,

using the formal properties of the delta function, is really equivalent to inverting

the order of integration once more, thus getting back to a mathematically correct

expression. Thus, using Eq. (4.49) we haveZ 1

ÿ1
f �x���xÿ x 0�dx � f �x 0�;

but, on substituting Eq. (4.47) for the delta function, the integral on the left hand

side becomes Z 1

ÿ1
f �x� 1������

2�
p

Z 1

ÿ1
d!ei!�xÿx 0�

� �
dx
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or, using the property ��ÿx� � ��x�,Z 1

ÿ1
f �x� 1������

2�
p

Z 1

ÿ1
d!eÿi!�xÿx 0�

� �
dx

and changing the order of integration, we haveZ 1

ÿ1
f �x� 1������

2�
p

Z 1

ÿ1
d!eÿi!x

� �
ei!x

0
dx:

Comparing this expression with Eqs. (4.30) and (4.31), we see at once that this

double integral is equal to f �x 0�, the correct mathematical expression.

It is important to keep in mind that the delta function cannot be the end result of a

calculation and has meaning only so long as a subsequent integration over its argu-

ment is carried out.

We can easily verify the following most frequently required properties of the

delta function:

If a < b Z b

a

f �x���xÿ x 0�dx � f �x 0�; if a < x 0 < b

0; if x 0 < a or x 0 < b

�
; �4:52a�

��ÿx� � ��x�; �4:52b�

� 0�x� � ÿ� 0�ÿx�; � 0�x� � d��x�=dx; �4:52c�

x��x� � 0; �4:52d�

��ax� � aÿ1��x�; a > 0; �4:52e�

��x2 ÿ a2� � �2a�ÿ1 ��xÿ a� � ��x� a�� �; a > 0; �4:52f�Z
��aÿ x���xÿ b�dx � ��aÿ b�; �4:52g�

f �x���xÿ a� � f �a���xÿ a�: �4:52h�
Each of the ®rst six of these listed properties can be established by multiplying

both sides by a continuous, diÿerentiable function f �x� and then integrating over

x. For example, multiplying x� 0�x� by f �x� and integrating over x givesZ
f �x�x� 0�x�dx � ÿ

Z
��x� d

dx
�xf �x��dx

� ÿ
Z

��x� f �x� � xf 0�x�� �
dx � ÿ

Z
f �x���x�dx:

Thus x��x� has the same eÿect when it is a factor in an integrand as has ÿ��x�.
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Parseval's identity for Fourier integrals

We arrived earlier at Parseval's identity for Fourier series. An analogy exists for

Fourier integrals. If g��� and G��� are Fourier transforms of f �x� and F�x�
respectively, we can show that

Z 1

ÿ1
f �x�F*�x�dx � 1

2�

Z 1

ÿ1
g���G*���d�; �4:54�

where F*�x� is the complex conjugate of F�x�. In particular, if F�x� � f �x� and
hence G��� � g���, then we have

Z 1

ÿ1
f �x�j j2dx �

Z 1

ÿ1
g���j jd�: �4:54�

Equation (4.53), or the more general Eq. (4.54), is known as the Parseval's iden-

tity for Fourier integrals. Its proof is straightforward:

Z 1

ÿ1
f �x�F*�x�dx �

Z 1

ÿ1

1������
2�

p
Z 1

ÿ1
g���eÿi�xd�

� �

� 1������
2�

p
Z 1

ÿ1
G*�� 0�ei� 0xd� 0

� �
dx

�
Z 1

ÿ1
d�

Z 1

ÿ1
d� 0g���G*�� 0� 1

2�

Z 1

ÿ1
eix��ÿ� 0�dx

� �

�
Z 1

ÿ1
d�g���

Z 1

ÿ1
d� 0G*�� 0���� 0 ÿ �� �

Z 1

ÿ1
g���G*���d�:

Parseval's identity is very useful in understanding the physical interpretation of

the transform function g��� when the physical signi®cance of f �x� is known. The
following example will show this.

Example 4.10

Consider the following function, as shown in Fig. 4.21, which might represent the

current in an antenna, or the electric ®eld in a radiated wave, or displacement of a

damped harmonic oscillator:

f �t� � 0 t < 0

eÿt=T sin!0t t > 0
:

�
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Its Fourier transform g�!� is

g�!� � 1������
2�

p
Z 1

ÿ1
f �t�eÿi!tdt

� 1������
2�

p
Z 1

ÿ1
eÿt=Teÿi!t sin!0tdt

� 1

2
������
2�

p 1

!�!0 ÿ i=T
ÿ 1

!ÿ !0 ÿ i=T

� �
:

If f �t� is a radiated electric ®eld, the radiated power is proportional to j f �t�j2
and the total energy radiated is proportional to

R1
0 f �t�j j2dt. This is equal toR1

0 g�!�j j2d! by Parseval's identity. Then jg�!�j2 must be the energy radiated

per unit frequency interval.

Parseval's identity can be used to evaluate some de®nite integrals. As an exam-

ple, let us revisit Example 4.8, where the given function is

f �x� �
1 xj j < a

0 xj j > a

(

and its Fourier transform is

g�!� �
���
2

�

r
sin!a

!
:

By Parseval's identity, we haveZ 1

ÿ1
f �x�f g2dx �

Z 1

ÿ1
g�!�f g2d!:
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This is equivalent to Z a

ÿa

�1�2dx �
Z 1

ÿ1

2

�

sin2 !a

!2
d!;

from which we ®nd Z 1

0

2

�

sin2 !a

!2
d! � �a

2
:

The convolution theorem for Fourier transforms

The convolution of the functions f �x� and H�x�, denoted by f �H, is de®ned by

f �H �
Z 1

ÿ1
f �u�H�xÿ u�du: �4:55�

If g�!� and G�!� are Fourier transforms of f �x� and H�x� respectively, we can
show that

1

2�

Z 1

ÿ1
g�!�G�!�ei!xd! �

Z 1

ÿ1
f �u�H�xÿ u�du: �4:56�

This is known as the convolution theorem for Fourier transforms. It means that

the Fourier transform of the product g�!�G�!�, the left hand side of Eq. (55), is

the convolution of the original function.

The proof is not di�cult. We have, by de®nition of the Fourier transform,

g�!� � 1������
2�

p
Z 1

ÿ1
f �x�eÿi!xdx; G�!� � 1������

2�
p

Z 1

ÿ1
H�x 0�eÿi!x 0

dx 0:

Then

g�!�G�!� � 1

2�

Z 1

ÿ1

Z 1

ÿ1
f �x�H�x 0�eÿi!�x�x 0�dxdx 0: �4:57�

Let x� x 0 � u in the double integral of Eq. (4.57) and we wish to transform from

(x, x 0) to (x; u). We thus have

dxdx 0 � @�x; x 0�
@�x; u� dudx;

where the Jacobian of the transformation is

@�x; x 0�
@�x; u� �

@x

@x

@x

@u

@x 0

@x

@x 0

@u

þþþþþþþþþ

þþþþþþþþþ
� 1 0

0 1

þþþþ
þþþþ � 1:
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Thus Eq. (4.57) becomes

g�!�G�!� � 1

2�

Z 1

ÿ1

Z 1

ÿ1
f �x�H�uÿ x�eÿi!udxdu

� 1

2�

Z 1

ÿ1
eÿi!u

Z 1

ÿ1
f �x�H�uÿ x�du

� �
dx

� F

Z 1

ÿ1
f �x�H�uÿ x�du

� �
� F f �Hf g: �4:58�

From this we have equivalently

f �H � Fÿ1 g�!�G�!�f g � �1=2��
Z 1

ÿ1
ei!xg�!�G�!�;

which is Eq. (4.56).

Equation (4.58) can be rewritten as

F ff gF Hf g � F f �Hf g �g � F ff g;G � F Hf g�;
which states that the Fourier transform of the convolution of f(x) and H(x) is equal

to the product of the Fourier transforms of f(x) and H(x). This statement is often

taken as the convolution theorem.

The convolution obeys the commutative, associative and distributive laws of

algebra that is, if we have functions f1; f2; f3 then

f1 � f2 � f2 � f1 commutative;

f1 � � f2 � f3� � � f1 � f2� � f3 associative;

f1 � � f2 � f3� � f1 � f2 � f1 � f3 distributive:

9>>=
>>; �4:59�

It is not di�cult to prove these relations. For example, to prove the commutative

law, we ®rst have

f1 � f2 �
Z 1

ÿ1
f1�u� f2�xÿ u�du:

Now let xÿ u � v, then

f1 � f2 �
Z 1

ÿ1
f1�u� f2�xÿ u�du

�
Z 1

ÿ1
f1�xÿ v� f2�v�dv � f2 � f1:

Example 4.11

Solve the integral equation y�x� � f �x� � R1
ÿ1 y�u�r�xÿ u�du, where f �x� and

r�x� are given, and the Fourier transforms of y�x�; f �x� and r�x� exist.
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Solution: Let us denote the Fourier transforms of y�x�; f �x� and r�x� by

Y�!�;F�!�; and R�!� respectively. Taking the Fourier transform of both sides

of the given integral equation, we have by the convolution theorem

Y�!� � F�!� � Y�!�R�!� or Y�!� � F�!�
1ÿ R�!� :

Calculations of Fourier transforms

Fourier transforms can often be used to transform a diÿerential equation which is

di�cult to solve into a simpler equation that can be solved relatively easy. In

order to use the transform methods to solve ®rst- and second-order diÿerential

equations, the transforms of ®rst- and second-order derivatives are needed. By

taking the Fourier transform with respect to the variable x, we can show that

�a� F
@u

@x

� �
� i�F�u�;

�b� F
@2u

@x2

ý !
� ÿ�2F�u�;

�c� F
@u

@t

� �
� @

@t
F�u�:

9>>>>>>>>>=
>>>>>>>>>;

�4:60�

Proof: (a) By de®nition we have

F
@u

@x

� �
�

Z 1

ÿ1

@u

@x
eÿi�xdx;

where the factor 1=
������
2�

p
has been dropped. Using integration by parts, we obtain

F
@u

@x

� �
�

Z 1

ÿ1

@u

@x
eÿi�xdx

� ueÿi�x

þþþþ1
ÿ1

� i�

Z 1

ÿ1
ueÿi�xdx

� i�F�u�:
(b) Let u � @v=@x in (a), then

F
@2v

@x2

ý !
� i�F

@v

@x

� �
� �i��2F�v�:

Now if we formally replace v by u we have

F
@2u

@x2

ý !
� ÿ�2F�u�;
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provided that u and @u=@x ! 0 as x ! �1. In general, we can show that

F
@nu

@xn

� �
� �i��nF�u�

if u; @u=@x; . . . ; @nÿ1u=@xnÿ1 ! �1 as x ! �1.

(c) By de®nition

F
@u

@t

� �
�

Z 1

ÿ1

@u

@t
eÿi�xdx � @

@t

Z 1

ÿ1
ueÿi�xdx � @

@t
F�u�:

Example 4.12

Solve the inhomogeneous diÿerential equation

d2

dx2
� p

d

dx
� q

ý !
f �x� � R�x�; ÿ1 � x � 1;

where p and q are constants.

Solution: We transform both sides

F
d2f

dx2
� p

df

dx
� q f

( )
� ��i��2 � p�i�� � q�F f �x�f g

� F R�x�f g:
If we denote the Fourier transforms of f �x� and R�x� by g��� and G���, respec-
tively,

F f �x�f g � g���; F R�x�f g � G���;
we have

�ÿ�2 � ip�� q�g��� � G���; or g��� � G���=�ÿ�2 � ip�� q�
and hence

f �x� � 1������
2�

p
Z 1

ÿ1
ei�xg���d�

� 1������
2�

p
Z 1

ÿ1
ei�x

G���
ÿ�2 � ip�� q

d�:

We will not gain anything if we do not know how to evaluate this complex

integral. This is not a di�cult problem in the theory of functions of complex

variables (see Chapter 7).
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The delta function and the Green's function method

The Green's function method is a very useful technique in the solution of partial

diÿerential equations. It is usually used when boundary conditions, rather than

initial conditions, are speci®ed. To appreciate its usefulness, let us consider the

inhomogeneous diÿerential equation

L�x� f �x� ÿ �f �x� � R�x� �4:61�
over a domain D, with L an arbitrary diÿerential operator, and � a given con-

stant. Suppose we can expand f �x� and R�x� in eigenfunctions un of the operator

L�Lun � �nun�:
f �x� �

X
n

cnun�x�; R�x� �
X
n

dnun�x�:

Substituting these into Eq. (4.61) we obtainX
n

cn��n ÿ ��un�x� �
X
n

dnun�x�:

Since the eigenfunctions un�x� are linearly independent, we must have

cn��n ÿ �� � dn or cn � dn=��n ÿ ��:
Moreover,

dn �
Z
D

un*R�x�dx:

Now we may write cn as

cn �
1

�n ÿ �

Z
D

un*R�x�dx;

therefore

f �x� �
X
n

un
�n ÿ �

Z
D

un*�x 0�R�x 0�dx 0:

This expression may be written in the form

f �x� �
Z
D

G�x; x 0�R�x 0�dx 0; �4:62�

where G�x; x 0� is given by

G�x; x 0� �
X
n

un�x�un*�x 0�
�n ÿ �

�4:63�

and is called the Green's function. Some authors prefer to write G�x; x 0;�� to

emphasize the dependence of G on � as well as on x and x 0.
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What is the diÿerential equation obeyed by G�x; x 0�? Suppose f �x 0� in Eq.

(4.62) is taken to be ��x 0 ÿ x0), then we obtain

f �x� �
Z
D

G�x; x 0���x 0 ÿ x0�dx � G�x; x0�:

Therefore G�x; x 0� is the solution of

LG�x;x 0� ÿ �G�x;x 0� � ��xÿ x 0�; �4:64�
subject to the appropriate boundary conditions. Eq. (4.64) shows clearly that the

Green's function is the solution of the problem for a unit point `source'

R�x� � ��xÿ x 0�.

Example 4.13

Find the solution to the diÿerential equation

d2u

dx2
ÿ k2u � f �x� �4:65�

on the interval 0 � x � l, with u�0� � u�l� � 0, for a general function f �x�.

Solution: We ®rst solve the diÿerential equation which G�x; x 0� obeys:
d2G�x; x 0�

dx2
ÿ k2G�x; x 0� � ��xÿ x 0�: �4:66�

For x equal to anything but x 0 (that is, for x < x 0 or x > x 0), ��xÿ x 0� � 0 and

we have

d2G<�x; x 0�
dx2

ÿ k2G<�x; x 0� � 0 �x < x 0�;

d2G>�x; x 0�
dx2

ÿ k2G>�x; x 0� � 0 �x > x 0�:

Therefore, for x < x 0

G< � Aekx � Beÿkx:

By the boundary condition u�0� � 0 we ®nd A� B � 0, and G< reduces to

G< � A�ekx ÿ eÿkx�; �4:67a�
similarly, for x > x 0

G> � Cekx �Deÿkx:
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By the boundary condition u�l� � 0 we ®nd Cekl �Deÿkl � 0, and G> can be

rewritten as

G> � C 0�ek�xÿl� ÿ eÿk�xÿl��; �4:67b�
where C 0 � Cekl.

How do we determine the constants A and C 0? First, continuity of G at x � x 0

gives

A�ekx ÿ eÿkx� � C 0�ek�xÿl� ÿ eÿk�xÿl��: �4:68�
A second constraint is obtained by integrating Eq. (4.61) from x 0 ÿ " to x 0 � ",

where " is in®nitesimal:Z x 0�"

x 0ÿ"

d2G

dx2
ÿ k2G

" #
dx �

Z x 0�"

x 0ÿ"

��xÿ x 0�dx � 1: �4:69�

But Z x 0�"

x 0ÿ"

k2Gdx � k2�G> ÿ G<� � 0;

where the last step is required by the continuity of G. Accordingly, Eq. (4.64)

reduces to Z x 0�"

x 0ÿ"

d2G

dx2
dx � dG>

dx
ÿ dG<

dx
� 1: �4:70�

Now

dG<

dx x�x 0

þþþþþ � Ak�ekx 0 � eÿkx 0 �

and

dG>

dx x�x 0

þþþþþ � C 0k�ek�x 0ÿl� � eÿk�x 0ÿl��:

Substituting these into Eq. (4.70) yields

C 0k�ek�x 0ÿl� � eÿk�x 0ÿl�� ÿ Ak�ekx 0 � eÿkx 0 � � 1: �4:71�
We can solve Eqs. (4.68) and (4.71) for the constants A and C 0. After some

algebraic manipulation, the solution is

A � 1

2k

sinh k�x 0 ÿ l�
sinh kl

; C 0 � 1

2k

sinh kx 0

sinh kl
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and the Green's function is

G�x; x 0� � 1

k

sinh kx sinh k�x 0 ÿ l�
sinh kl

; �4:72�

which can be combined with f �x� to obtain u�x�:

u�x� �
Z l

0

G�x; x 0� f �x 0�dx 0:

Problems

4.1 (a) Find the period of the function f �x� � cos�x=3� � cos�x=4�.
(b) Show that, if the function f �t� � cos!1t� cos!2t is periodic with a

period T, then the ratio !1=!2 must be a rational number.

4.2 Show that if f �x� P� � f �x�, thenZ a�P=2

aÿP=2

f �x�dx �
Z P=2

ÿP=2

f �x�dx;
Z P�x

P

f �x�dx �
Z x

0

f �x�dx:

4.3 (a) Using the result of Example 4.2, prove that

1ÿ 1

3
� 1

5
ÿ 1

7
�ÿ � � � � �

4
:

(b) Using the result of Example 4.3, prove that

1

1� 3
ÿ 1

3� 5
� 1

5� 7
ÿ� � � � � �ÿ 2

4
:

4.4 Find the Fourier series which represents the function f �x� � jxj in the inter-

val ÿ� � x � �.

4.5 Find the Fourier series which represents the function f �x� � x in the interval

ÿ� � x � �.

4.6 Find the Fourier series which represents the function f �x� � x2 in the inter-

val ÿ� � x � �.

4.7 Represent f �x� � x; 0 < x < 2, as: (a) in a half-range sine series, (b) a half-

range cosine series.

4.8 Represent f �x� � sin x, 0 < x < �, as a Fourier cosine series.

4.9 (a) Show that the function f �x� of period 2 which is equal to x on �ÿ1; 1�
can be represented by the following Fourier series

ÿ i

�
ei�x ÿ eÿi�x ÿ 1

2
e2i�x � 1

2
eÿ2i�x � 1

3
e3i�x ÿ 1

3
eÿ3i�x � � � �

� �
:

(b) Write Parseval's identity corresponding to the Fourier series of (a).

(c) Determine from (b) the sum S of the series 1� 1
4 � 1

9 � � � � � P1
n�1 1=n

2.
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4.10 Find the exponential form of the Fourier series of the function whose de®-

nition in one period is f �x� � eÿx;ÿ1 < x < 1.

4.11 (a) Show that the set of functions

1; sin
�x

L
; cos

�x

L
; sin

2�x

L
; cos

2�x

L
; sin

3�x

L
; cos

3�x

L
; . . .

form an orthogonal set in the interval �ÿL;L�.
(b) Determine the corresponding normalizing constants for the set in (a) so

that the set is orthonormal in �ÿL;L�.
4.12 Express f �x; y� � xy as a Fourier series for 0 � x � 1; 0 � y � 2.

4.13 Steady-state heat conduction in a rectangular plate: Consider steady-state

heat conduction in a ¯at plate having temperature values prescribed on the

sides (Fig. 4.22). The boundary value problem modeling this is:

@2u

@2x2
� @2u

@2y2
� 0; 0 < x < �; 0 < y < ÿ;

u�x; 0� � u�x; ÿ� � 0; 0 < x < �;

u�0; y� � 0; u��; y� � T ; 0 < y < ÿ:

Determine the temperature at any point of the plate.

4.14 Derive and solve the following eigenvalue problem which occurs in the

theory of a vibrating square membrane whose sides, of length L, are kept

®xed:

@2w

@x2
� @2w

@y2
� �w � 0;

w�0; y� � w�L; y� � 0 �0 � y � L�;

w�x; 0� � w�x;L� � 0 �0 � y � L�:
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4.15 Show that the Fourier integral can be written in the form

f �x� � 1

�

Z 1

0

d!

Z 1

ÿ1
f �x 0� cos!�xÿ x 0�dx 0:

4.16 Starting with the form obtained in Problem 4.15, show that the Fourier

integral can be written in the form

f �x� �
Z 1

0

A�!� cos!x� B�!� sin!xf gd!;

where

A�!� � 1

�

Z 1

ÿ1
f �x� cos!x dx; B�!� � 1

�

Z 1

ÿ1
f �x� sin!x dx:

4.17 (a) Find the Fourier transform of

f �x� � 1ÿ x2 jxj < 1

0 jxj > 1
:

(

(b) Evaluate Z 1

0

x cos xÿ sin x

x3
cos

x

2
dx:

4.18 (a) Find the Fourier cosine transform of f �x� � eÿmx;m > 0.

(b) Use the result in (a) to show thatZ 1

0

cos px

x2 � �2
dx � �

2�
eÿp� �p > 0; � > 0�:

4.19 Solve the integral equationZ 1

0

f �x� sin�x dx � 1ÿ � 0 � � � 1

0 � > 1

�
:

4.20 Find a bounded solution to Laplace's equation r2u�x; y� � 0 for the half-

plane y > 0 if u takes on the value of f (x) on the x-axis:

@2u

@x2
� @2u

@y2
� 0; u�x; 0� � f �x�; u�x; y�j j < M:

4.21 Show that the following two functions are valid representations of the delta

function, where " is positive and real:

�a� ��x� � 1���
�

p lim
"!0

1���
"

p eÿx2="

�b� ��x� � 1

�
lim
"!0

"

x2 � "2
:
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4.22 Verify the following properties of the delta function:

(a) ��x� � ��ÿx�,
(b) x��x� � 0,

(c) � 0�ÿx� � ÿ� 0�x�,
(d) x� 0�x� � ÿ��x�,
(e) c��cx� � ��x�; c > 0.

4.23 Solve the integral equation for y�x�Z 1

ÿ1

y�u�du
�xÿ u�2 � a2

� 1

x2 � b2
0 < a < b:

4.24 Use Fourier transforms to solve the boundary value problem

@u

@t
� k

@2u

@x2
; u�x; 0� � f �x�; u�x; t�j j < M;

where ÿ1 < x < 1; t > 0.

4.25 Obtain a solution to the equation of a driven harmonic oscillator

�x�t� � 2ÿ _x�t� � !2
0x�t0 � R�t�;

where ÿ and !0 are positive and real constants.
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5

Linear vector spaces

Linear vector space is to quantum mechanics what calculus is to classical

mechanics. In this chapter the essential ideas of linear vector spaces will be dis-

cussed. The reader is already familiar with vector calculus in three-dimensional

Euclidean space E3 (Chapter 1). We therefore present our discussion as a general-

ization of elementary vector calculus. The presentation will be, however, slightly

abstract and more formal than the discussion of vectors in Chapter 1. Any reader

who is not already familiar with this sort of discussion should be patient with the

®rst few sections. You will then be amply repaid by ®nding the rest of this chapter

relatively easy reading.

Euclidean n-space En

In the study of vector analysis in E3, an ordered triple of numbers (a1, a2, a3) has

two diÿerent geometric interpretations. It represents a point in space, with a1, a2,

a3 being its coordinates; it also represents a vector, with a1, a2, and a3 being its

components along the three coordinate axes (Fig. 5.1). This idea of using triples of

numbers to locate points in three-dimensional space was ®rst introduced in the

mid-seventeenth century. By the latter part of the nineteenth century physicists

and mathematicians began to use the quadruples of numbers (a1, a2, a3, a4) as

points in four-dimensional space, quintuples (a1, a2, a3, a4, a5) as points in ®ve-

dimensional space etc. We now extend this to n-dimensional space En, where n is a

positive integer. Although our geometric visualization doesn't extend beyond

three-dimensional space, we can extend many familiar ideas beyond three-dimen-

sional space by working with analytic or numerical properties of points and

vectors rather than their geometric properties.

For two- or three-dimensional space, we use the terms `ordered pair' and

`ordered triple.' When n > 3, we use the term `ordered-n-tuplet' for a sequence
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of n numbers, real or complex, (a1, a2, a3; . . . ; an); they will be viewed either as a

generalized point or a generalized vector in a n-dimensional space En.

Two vectors u � �u1; u2; . . . ; un� and v � �v1; v2; . . . ; vn� in En are called equal if

ui � vi; i � 1; 2; . . . ; n �5:1�
The sum u� v is de®ned by

u� v � �u1 � v1; u2 � v2; . . . ; un � vn� �5:2�
and if k is any scalar, the scalar multiple ku is de®ned by

ku � �ku1; ku2; . . . ; kun�: �5:3�
If u � �u1; u2; . . . ; un� is any vector in En, its negative is given by

ÿu � �ÿu1;ÿu2; . . . ;ÿun� �5:4�
and the subtraction of vectors in En can be considered as addition: vÿ u �
v� �ÿu�. The null (zero) vector in En is de®ned to be the vector 0 � �0; 0; . . . ; 0�.

The addition and scalar multiplication of vectors in En have the following

arithmetic properties:

u� v � v� u; �5:5a�
u� �v� w� � �u� v� � w; �5:5b�

u� 0 � 0� u � u; �5:5c�
a�bu� � �ab�u; �5:5d�

a�u� v� � au� av; �5:5e�
�a� b�u � au� bu; �5:5f�

where u, v, w are vectors in En and a and b are scalars.
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We usually de®ne the inner product of two vectors in E3 in terms of lengths of

the vectors and the angle between the vectors: A � B � AB cos �; � � þ �A;B�. We

do not de®ne the inner product in En in the same manner. However, the inner

product in E3 has a second equivalent expression in terms of components:

A � B � A1B1 � A2B2 � A3B3. We choose to de®ne a similar formula for the gen-

eral case. We made this choice because of the further generalization that will be

outlined in the next section. Thus, for any two vectors u � �u1; u2; . . . ; un� and

v � �v1; v2; . . . ; vn� in En, the inner (or dot) product u � v is de®ned by

u � v � u1*v1 � u2*v2 � � � � � un*vn �5:6�
where the asterisk denotes complex conjugation. u is often called the prefactor

and v the post-factor. The inner product is linear with respect to the post-factor,

and anti-linear with respect to the prefactor:

u � �av� bw� � au � v� bu � w; �au� bv� � w � a*�u � v� � b*�u � w�:
We expect the inner product for the general case also to have the following three

main features:

u � v � �v � u�* �5:7a�
u � �av� bw� � au � v� bu � w �5:7b�
u � u � 0 �� 0; if and only if u � 0�: �5:7c�

Many of the familiar ideas from E2 and E3 have been carried over, so it is

common to refer to En with the operations of addition, scalar multiplication, and

with the inner product that we have de®ned here as Euclidean n-space.

General linear vector spaces

We now generalize the concept of vector space still further: a set of `objects' (or

elements) obeying a set of axioms, which will be chosen by abstracting the most

important properties of vectors in En, forms a linear vector space Vn with the

objects called vectors. Before introducing the requisite axioms, we ®rst adapt a

notation for our general vectors: general vectors are designated by the symbol j i,
which we call, following Dirac, ket vectors; the conjugates of ket vectors are

denoted by the symbol h j, the bra vectors. However, for simplicity, we shall

refer in the future to the ket vectors j i simply as vectors, and to the h js as

conjugate vectors. We now proceed to de®ne two basic operations on these

vectors: addition and multiplication by scalars.

By addition we mean a rule for forming the sum, denoted jý1i � jý2i, for
any pair of vectors jý1i and jý2i.

By scalar multiplication we mean a rule for associating with each scalar k

and each vector jýi a new vector kjýi.
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We now proceed to generalize the concept of a vector space. An arbitrary set of

n objects j1i; j2i; j3i; . . . ; j�i; . . . ; j'i form a linear vector Vn if these objects, called

vectors, meet the following axioms or properties:

A.1 If �j i and 'j i are objects in Vn and k is a scalar, then �j i � 'j i and k �j i are
in Vn, a feature called closure.

A.2 �j i � 'j i � 'j i � �j i; that is, addition is commutative.

A.3 ( �j i � 'j i� � ýj i � �j i � � 'j i � ýj i); that is, addition is associative.

A.4 k� �j i � 'j i� � k �j i � k 'j i; that is, scalar multiplication is distributive in the

vectors.

A.5 �k� �� �j i � k �j i � � �j i; that is, scalar multiplication is distributive in the

scalars.

A.6 k�� �j i� � k� �j i; that is, scalar multiplication is associative.

A.7 There exists a null vector 0j i in Vn such that �j i � 0j i � �j i for all �j i in Vn.

A.8 For every vector �j i in Vn, there exists an inverse under addition, ÿ�j i such
that �j i � ÿ�j i � 0j i.

The set of numbers a; b; . . . used in scalar multiplication of vectors is called the

®eld over which the vector ®eld is de®ned. If the ®eld consists of real numbers, we

have a real vector ®eld; if they are complex, we have a complex ®eld. Note that the

vectors themselves are neither real nor complex, the nature of the vectors is not

speci®ed. Vectors can be any kinds of objects; all that is required is that the vector

space axioms be satis®ed. Thus we purposely do not use the symbol V to denote

the vectors as the ®rst step to turn the reader away from the limited concept of the

vector as a directed line segment. Instead, we use Dirac's ket and bra symbols, j i
and jh , to denote generic vectors.

The familiar three-dimensional space of position vectors E3 is an example of

a vector space over the ®eld of real numbers. Let us now examine two simple

examples.

Example 5.1

Let V be any plane through the origin in E3. We wish to show that the points in

the plane V form a vector space under the addition and scalar multiplication

operations for vector in E3.

Solution: Since E3 itself is a vector space under the addition and scalar multi-

plication operations, thus Axioms A.2, A.3, A.4, A.5, and A.6 hold for all points

in E3 and consequently for all points in the plane V. We therefore need only show

that Axioms A.1, A.7, and A.8 are satis®ed.

Now the plane V, passing through the origin, has an equation of the form

ax1 � bx2 � cx3 � 0:
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Hence, if u � �u1; u2; u3� and v � �v1; v2; v3� are points in V, then we have

au1 � bu2 � cu3 � 0 and av1 � bv2 � cv3 � 0:

Addition gives

a�u1 � v1� � b�u2 � v2� � c�u3 � v3� � 0;

which shows that the point u� v also lies in the plane V. This proves that Axiom

A.1 is satis®ed. Multiplying au1 � bu2 � cu3 � 0 through by ÿ1 gives

a�ÿu1� � b�ÿu2� � c�ÿu3� � 0;

that is, the point ÿu � �ÿu1;ÿu2;ÿu3� lies in V. This establishes Axiom A.8.

The veri®cation of Axiom A.7 is left as an exercise.

Example 5.2

Let V be the set of all m� n matrices with real elements. We know how to add

matrices and multiply matrices by scalars. The corresponding rules obey closure,

associativity and distributive requirements. The null matrix has all zeros in it, and

the inverse under matrix addition is the matrix with all elements negated. Thus the

set of all m� n matrices, together with the operations of matrix addition and

scalar multiplication, is a vector space. We shall denote this vector space by the

symbol Mmn.

Subspaces

Consider a vector space V. If W is a subset of V and forms a vector space under

the addition and scalar multiplication, then W is called a subspace of V. For

example, lines and planes passing through the origin form vector spaces and

they are subspaces of E3.

Example 5.3

We can show that the set of all 2� 2 matrices having zero on the main diagonal is

a subspace of the vector space M22 of all 2� 2 matrices.

Solution: To prove this, let

~X �
0 x12

x21 0

ý !
~Y �

0 y12

y21 0

ý !

be two matrices in W and k any scalar. Then

k ~X �
0 x12

kx21 0

ý !
and ~X � ~Y �

0 x12 � y12

x21 � y21 0

ý !

and thus they lie in W. We leave the veri®cation of other axioms as exercises.
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Linear combination

A vector Wj i is a linear combination of the vectors v1j i; v2j i; . . . ; vrj i if it can be

expressed in the form

Wj i � k1jv1i � k2jv2i � � � � � krjvri;
where k1; k2; . . . ; kr are scalars. For example, it is easy to show that the vector

Wj i � �9; 2; 7� in E3 is a linear combination of v1j i � �1; 2;ÿ1� and

v2j i � �6; 4; 2�. To see this, let us write

�9; 2; 7� � k1�1; 2;ÿ1� � k2�6; 4; 2�
or

�9; 2; 7� � �k1 � 6k2; 2k1 � 4k2;ÿk1 � 2k2�:
Equating corresponding components gives

k1 � 6k2 � 9; 2k1 � 4k2 � 2; ÿk1 � 2k2 � 7:

Solving this system yields k1 � ÿ3 and k2 � 2 so that

Wj i � ÿ3 v1j i � 2 v2j i:

Linear independence, bases, and dimensionality

Consider a set of vectors 1j i; 2j i; . . . ; rj i; . . . nj i in a linear vector space V. If every

vector in V is expressible as a linear combination of 1j i; 2j i; . . . ; rj i; . . . ; nj i, then
we say that these vectors span the vector space V, and they are called the base

vectors or basis of the vector space V. For example, the three unit vectors

e1 � �1; 0; 0�; e2 � �0; 1; 0�, and e3 � �0; 0; 1� span E3 because every vector in E3

is expressible as a linear combination of e1, e2, and e3. But the following three

vectors in E3 do not span E3 : 1j i � �1; 1; 2�; 2j i � �1; 0; 1�, and 3j i � �2; 1; 3�.
Base vectors are very useful in a variety of problems since it is often possible to

study a vector space by ®rst studying the vectors in a base set, then extending the

results to the rest of the vector space. Therefore it is desirable to keep the spanning

set as small as possible. Finding the spanning sets for a vector space depends upon

the notion of linear independence.

We say that a ®nite set of n vectors 1j i; 2j i; . . . ; rj i; . . . ; nj i, none of which is a

null vector, is linearly independent if no set of non-zero numbers ak exists such

that Xn
k�1

ak kij � j0i: �5:8�

In other words, the set of vectors is linearly independent if it is impossible to

construct the null vector from a linear combination of the vectors except when all
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the coe�cients vanish. For example, non-zero vectors 1j i and 2j i of E2 that lie

along the same coordinate axis, say x1, are not linearly independent, since we can

write one as a multiple of the other: 1j i � a 2j i, where a is a scalar which may be

positive or negative. That is, 1j i and 2j i depend on each other and so they are not

linearly independent. Now let us move the term a 2j i to the left hand side and the

result is the null vector: 1j i ÿ a 2j i � 0j i. Thus, for these two vectors 1j i and 2j i in
E2, we can ®nd two non-zero numbers (1, ÿa� such that Eq. (5.8) is satis®ed, and

so they are not linearly independent.

On the other hand, the n vectors 1j i; 2j i; . . . ; rj i; . . . ; nj i are linearly dependent if

it is possible to ®nd scalars a1; a2; . . . ; an, at least two of which are non-zero, such

that Eq. (5.8) is satis®ed. Let us say a9 6� 0. Then we could express 9j i in terms of

the other vectors

9j i �
Xn

i�1;6�9

ÿai
a9

ij i:

That is, the n vectors in the set are linearly dependent if any one of them can be

expressed as a linear combination of the remaining nÿ 1 vectors.

Example 5.4

The set of three vectors 1j i � �2;ÿ1; 0; 3�, 2j i � �1; 2; 5;ÿ1�; 3j i � �7;ÿ1; 5; 8� is
linearly dependent, since 3 1j i � 2j i ÿ 3j i � 0j i.

Example 5.5

The set of three unit vectors e1j i � �1; 0; 0�; e2j i � �0; 1; 0�, and e3j i � �0; 0; 1� in
E3 is linearly independent. To see this, let us start with Eq. (5.8) which now takes

the form

a1 e1j i � a2 e2j i � a3 e3j i � 0j i
or

a1�1; 0; 0� � a2�0; 1; 0� � a3�0; 0; 1� � �0; 0; 0�
from which we obtain

�a1; a2; a3� � �0; 0; 0�;
the set of three unit vectors e1j i; e2j i, and e3j i is therefore linearly independent.

Example 5.6

The set S of the following four matrices

1j i � 1 0

0 0

� �
; 2j i � 0 1

0 0

� �
; j3i � 0 0

1 0

� �
; 4j i � 0 0

0 1

� �
;
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is a basis for the vector spaceM22 of 2� 2 matrices. To see that S spansM22, note

that a typical 2� 2 vector (matrix) can be written as

a b

c d

ý !
� a

1 0

0 0

ý !
� b

0 1

0 0

ý !
� c

0 0

1 0

ý !
� d

0 0

0 1

ý !

� a 1j i � b 2j i � c 3j i � d 4j i:
To see that S is linearly independent, assume that

a 1j i � b 2j i � c 3j i � d 4j i � 0j i;
that is,

a
1 0

0 0

� �
� b

0 1

0 0

� �
� c

0 0

1 0

� �
� d

0 0

0 1

� �
� 0 0

0 0

� �
;

from which we ®nd a � b � c � d � 0 so that S is linearly independent.

We now come to the dimensionality of a vector space. We think of space

around us as three-dimensional. How do we extend the notion of dimension to

a linear vector space? Recall that the three-dimensional Euclidean space E3 is

spanned by the three base vectors: e1 � �1; 0; 0�, e2 � �0; 1; 0�, e3 � �0; 0; 1�.
Similarly, the dimension n of a vector space V is de®ned to be the number n of

linearly independent base vectors that span the vector space V. The vector space

will be denoted by Vn�R� if the ®eld is real and by Vn�C� if the ®eld is complex.

For example, as shown in Example 5.6, 2� 2 matrices form a four-dimensional

vector space whose base vectors are

1j i � 1 0

0 0

� �
; 2j i � 0 1

0 0

� �
; 3j i � 0 0

1 0

� �
; 4j i � 0 0

0 1

� �
;

since any arbitrary 2� 2 matrix can be written in terms of these:

a b

c d

� �
� a 1j i � b 2j i � c 3j i � d 4j i:

If the scalars a; b; c; d are real, we have a real four-dimensional space, if they are

complex we have a complex four-dimensional space.

Inner product spaces (unitary spaces)

In this section the structure of the vector space will be greatly enriched by the

addition of a numerical function, the inner product (or scalar product). Linear

vector spaces in which an inner product is de®ned are called inner-product spaces

(or unitary spaces). The study of inner-product spaces enables us to make a real

juncture with physics.
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In our earlier discussion, the inner product of two vectors in En was de®ned by

Eq. (5.6), a generalization of the inner product of two vectors in E3. In a general

linear vector space, an inner product is de®ned axiomatically analogously with the

inner product on En. Thus given two vectors Uj i and Wj i

Uj i �
Xn
i�1

ui ij i; Wj i �
Xn
i�1

wi ij i; �5:9�

where Uj i and Wj i are expressed in terms of the n base vectors ij i, the inner

product, denoted by the symbol U Wj ih , is de®ned to be

hU Wj i �
Xn
i�1

Xn
j�1

ui*wj i jj ih : �5:10�

Uh j is often called the pre-factor and Wj i the post-factor. The inner product obeys
the following rules (or axioms):

B.1 U Wj i � W Uj i*hh (skew-symmetry);

B.2 UjUh i � 0; � 0 if and only if Uj i � 0j i (positive semide®niteness);

B.3 U Xj i � Wj i� � U Xj i � U Wj ihhh (additivity);

B.4 aU Wj i � a* U Wj i; U bWj i � b U Wj ihhhh (homogeneity);

where a and b are scalars and the asterisk (*) denotes complex conjugation. Note

that Axiom B.1 is diÿerent from the one for the inner product on E3: the inner

product on a general linear vector space depends on the order of the two factors

for a complex vector space. In a real vector space E3, the complex conjugation in

Axioms B.1 and B.4 adds nothing and may be ignored. In either case, real or

complex, Axiom B.1 implies that U Uj ih is real, so the inequality in Axiom B.2

makes sense.

The inner product is linear with respect to the post-factor:

Uh jaW � bXi � a Uh jWi � b Uh jXi;
and anti-linear with respect to the prefactor,

aU � bX Wj i � a* U Wj i � b* X Wj i:hhh
Two vectors are said to be orthogonal if their inner product vanishes. And we

will refer to the quantity hU Uj i1=2 �kU k as the norm or length of the vector. A

normalized vector, having unit norm, is a unit vector. Any given non-zero vector

may be normalized by dividing it by its length. An orthonormal basis is a set of

basis vectors that are all of unit norm and pair-wise orthogonal. It is very handy

to have an orthonormal set of vectors as a basis for a vector space, so for hij ji in
Eq. (5.10) we shall assume

ih j ji � �ij �
1 for i � j

0 for i 6� j

(
;
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then Eq. (5.10) reduces to

Uh jWi �
X
i

X
j

ui*wj�ij �
X
i

ui*
X
j

wj�ij

ý !
�

X
i

ui*wi: �5:11�

Note that Axiom B.2 implies that if a vector Uj i is orthogonal to every vector

of the vector space, then Uj i � 0: since U � 0ijh for all j i belongs to the vector

space, so we have in particular U Uj i � 0h .

We will show shortly that we may construct an orthonormal basis from an

arbitrary basis using a technique known as the Gram±Schmidt orthogonalization

process.

Example 5.7

Let jUi � �3ÿ 4i�j1i � �5ÿ 6i�j2i and jWi � �1ÿ i�j1i � �2ÿ 3i�j2i be two vec-

tors expanded in terms of an orthonormal basis j1i and j2i. Then we have, using

Eq. (5.10):

Uh jUi � �3� 4i��3ÿ 4i� � �5� 6i��5ÿ 6i� � 86;

Wh jWi � �1� i��1ÿ i� � �2� 3i��2ÿ 3i� � 15;

Uh jWi � �3� 4i��1ÿ i� � �5� 6i��2ÿ 3i� � 35ÿ 2i � Wh jUi*:

Example 5.8

If ~A and ~B are two matrices, where

~A �
a11 a12

a21 a22

ý !
; ~B �

b11 b12

b21 b22

ý !
;

then the following formula de®nes an inner product on M22:

~A
ÿ þþ ~B� � a11b11 � a12b12 � a21b21 � a22b22:

To see this, let us ®rst expand ~A and ~B in terms of the following base vectors

1j i � 1 0

0 0

� �
; 2j i � 0 1

0 0

� �
; 3j i � 0 0

1 0

� �
; 4j i � 0 0

0 1

� �
;

~A � a11 1j i � a12 2j i � a21 3j i � a22 4j i; ~B � b11 1j i � b12 2j i � b21 3j i � b22 4j i:
The result follows easily from the de®ning formula (5.10).

Example 5.9

Consider the vector jUi, in a certain orthonormal basis, with components

Uj i � 1� i���
3

p � i

ý !
; i �

�������
ÿ1

p
:
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We now expand it in a new orthonormal basis je1i; je2i with components

e1j i � 1���
2

p 1

1

� �
; e2j i � 1���

2
p 1

ÿ1

� �
:

To do this, let us write

Uj i � u1 e1j i � u2 e2j i
and determine u1 and u2. To determine u1, we take the inner product of both sides

with he1j:

u1 � e1h jUi � 1���
2

p 1 1� � 1� i���
3

p � i

ý !
� 1���

2
p �1�

���
3

p
� 2i�;

likewise,

u2 �
1���
2

p �1ÿ
���
3

p
�:

As a check on the calculation, let us compute the norm squared of the vector and

see if it equals j1� ij2 � j ���
3

p � ij2 � 6. We ®nd

u1j j2 � u2j j2 � 1

2
�1� 3� 2

���
3

p
� 4� 1� 3ÿ 2

���
3

p
� � 6:

The Gram±Schmidt orthogonalization process

We now take up the Gram±Schmidt orthogonalization method for converting a

linearly independent basis into an orthonormal one. The basic idea can be clearly

illustrated in the following steps. Let j1i; j2i; . . . ; jii; . . . be a linearly independent

basis. To get an orthonormal basis out of these, we do the following:

Step 1. Rescale the ®rst vector by its own length, so it becomes a unit vector.

This will be the ®rst basis vector.

e1j i � 1j i
1j ij j ;

where 1j ij j � �������������
1 j 1h ip

. Clearly

e1 j e1h i � 1 j 1h i
1j ij j � 1:

Step 2. To construct the second member of the orthonormal basis, we subtract

from the second vector j2i its projection along the ®rst, leaving behind

only the part perpendicular to the ®rst.

IIj i � 2j i ÿ e1j i e1j2h i:
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Clearly

e1jIIh i � e1j2h i ÿ e1je1h i e1j2h i � 0; i:e:; �II j?je1i:
Dividing jIIi by its norm (length), we now have the second basis vector

and it is orthogonal to the ®rst base vector je1i and of unit length.

Step 3. To construct the third member of the orthonormal basis, consider

jIIIi � j3i ÿ je1ihe1jIIIi ÿ je2i2jIIIi
which is orthogonal to both je1i and je2i. Dividing by its norm we get

je3i.
Continuing in this way, we will obtain an orthonormal basis je1i; je2i; . . . ; jeni.

The Cauchy±Schwarz inequality

If A and B are non-zero vectors in E3, then the dot product gives A � B � AB cos �,

where � is the angle between the vectors. If we square both sides and use the fact

that cos2 � � 1, we obtain the inequality

�A � B�2 � A2B2 or A � Bj j � AB:

This is known as the Cauchy±Schwarz inequality. There is an inequality corre-

sponding to the Cauchy±Schwarz inequality in any inner-product space that

obeys Axioms B.1±B.4, which can be stated as

Uh jWij j � jUj Wj j; Uj j �
�������������
Uh jUi

p
etc:; �5:13�

where jUi and jWi are two non-zero vectors in an inner-product space.

This can be proved as follows. We ®rst note that, for any scalar �, the following

inequality holds

0 � U � �Wh jU � �Wij j2 � U � �Wh jU � �Wi
� Uh jUi � �Wh jUi � Uh j�Wi � �Wh j�Wi

� Uj j2��* Vh jUi � � Uh jWi � �j j2 Wj j2:
Now let � � �hUjWi*=jhUjWij, with � real. This is possible if jWi 6� 0, but if

hUjWi � 0, then Cauchy±Schwarz inequality is trivial. Making this substitution

in the above, we have

0 � Uj j2 � 2� Uh jWij j � �2 Wj j2:
This is a quadratic expression in the real variable � with real coe�cients.

Therefore, the discriminant must be less than or equal to zero:

4 Uh jWij j2ÿ4 Uj j2 Wj j2 � 0
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or

Uh jWij j � Uj j Wj j;
which is the Cauchy±Schwarz inequality.

From the Cauchy±Schwarz inequality follows another important inequality,

known as the triangle inequality,

U �Wj j � Uj j � Wj j: �5:14�
The proof of this is very straightforward. For any pair of vectors, we have

U �Wj j2� U �Wh jU �Wi � Uj j2 � Wj j2 � Uh jWi � Wh jUi

� Uj j2 � Wj j2 � 2 Uh jWij j
� Uj j2 � Wj j2 � 2 Uj j Wj j� Uj j2 � Wj j2�

from which it follows that

U �Wj j � Uj j � Wj j:
If V denotes the vector space of real continuous functions on the interval

a � x � b, and f and g are any real continuous functions, then the following is

an inner product on V:

fh jgi �
Z b

a

f �x�g�x�dx:

The Cauchy±Schwarz inequality now givesZ b

a

f �x�g�x�dx
� �2

�
Z b

a

f 2�x�dx
Z b

a

g2�x�dx

or in Dirac notation

fh jgij j2 � fj j2 gj j2:

Dual vectors and dual spaces

We begin with a technical point regarding the inner product hujvi. If we set

jvi � �jwi � ÿjzi;
then

hujvi � �hujwi � ÿhujzi
is a linear function of � and ÿ. However, if we set

jui � �jwi � ÿjzi;
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then

hujvi � hvjui* � �*hvjwi*� ÿ*hvjzi* � �*hwjvi � ÿ*hzjvi
is no longer a linear function of � and ÿ. To remove this asymmetry, we can

introduce, besides the ket vectors j i, bra vectors h j which form a diÿerent vector

space. We will assume that there is a one-to-one correspondence between ket

vectors j i, and bra vectors h j. Thus there are two vector spaces, the space of

kets and a dual space of bras. A pair of vectors in which each is in correspondence

with the other will be called a pair of dual vectors. Thus, for example, hvj is the
dual vector of jvi. Note they always carry the same identi®cation label.

We now de®ne the multiplication of ket vectors by bra vectors by requiring

huj � jvi � hujvi:
Setting

uh j � wh j�*� zh jÿ*;
we have

hujvi � �*hwjvi � ÿ*hzjvi;
the same result we obtained above, and we see that wh j�*� zh jÿ* is the dual

vector of �jwi � ÿjzi.
From the above discussion, it is obvious that inner products are really de®ned

only between bras and kets and hence from elements of two distinct but related

vector spaces. There is a basis of vectors jii for expanding kets and a similar basis

hij for expanding bras. The basis ket jti is represented in the basis we are using by

a column vector with all zeros except for a 1 in the ith row, while the basis hij is a
row vector with all zeros except for a 1 in the ith column.

Linear operators

A useful concept in the study of linear vector spaces is that of a linear transfor-

mation, from which the concept of a linear operator emerges naturally. It is

instructive ®rst to review the concept of transformation or mapping. Given vector

spaces V and W and function T
~
, if T

~
associates each vector in V with a unique

vector in W, we say T
~
maps V into W, and write T

~
: V ! W . If T

~
associates the

vector jwi inW with the vector jvi in V, we say that jwi is the image of jvi under T
~

and write jwi �T
~
jvi. Further, T

~
is a linear transformation if:

(a) T
~
�jui � jvi� � T

~
jui � T

~
jvi for all vectors jui and jvi in V.

(b) T
~
�kjvi� � kT

~
jvi for all vectors jvi in V and all scalars k.

We can illustrate this with a very simple example. If jvi � �x; y� is a vector in

E2, then T
~
�jvi� � �x; x� y; xÿ y� de®nes a function (a transformation) that maps
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E2 into E3. In particular, if jvi � �1; 1�, then the image of jvi under T
~

is T
~�jvi� � �1; 2; 0�. It is easy to see that the transformation is linear. If

jui � �x1; y1� and jvi � �x2; y2�, then
jui � jvi � �x1 � x2; y1 � y2�;

so that

T
~

uj i � vj i� � � x1 � x2; �x1 � x2� � �y1 � y2�; �x1 � x2� ÿ �y1 � y2�� �

� x1; x1 � y1; x1 ÿ y1� � � x2; x2 � y2; x2 ÿ y2� �
� T

~
uj i� � � T

~
vj i� �

and if k is a scalar, then

T
~
k uj i� � � kx1; kx1 � ky1; kx1 ÿ ky1� � � k x1; x1 � y1; x1 ÿ y1� � � kT

~
uj i� �:

Thus T
~
is a linear transformation.

If T
~

maps the vector space onto itself (T
~
: V ! V), then it is called a linear

operator on V. In E3 a rotation of the entire space about a ®xed axis is an example

of an operation that maps the space onto itself. We saw in Chapter 3 that rotation

can be represented by a matrix with elements �ij �i; j � 1; 2; 3�; if x1; x2; x3 are the
components of an arbitrary vector in E3 before the transformation and x 0

1;x
0
2; x

0
3

the components of the transformed vector, then

x 0
1 � �11x1 � �12x2 � �13x3;

x 0
2 � �21x1 � �22x2 � �23x3;

x 0
3 � �31x1 � �32x2 � �33x3:

9>>=
>>; �5:15�

In matrix form we have

~x0 � ~����~x; �5:16�
where � is the angle of rotation, and

~x0 �
x 0
1

x 0
2

x 0
3

0
B@

1
CA; ~x �

x1

x2

x3

0
B@

1
CA; and ~���� �

�11 �12 �13

�21 �22 �23

�31 �32 �33

0
B@

1
CA:

In particular, if the rotation is carried out about x3-axis, ~���� has the following

form:

~���� �
cos � ÿ sin � 0

sin � cos � 0

0 0 1

0
B@

1
CA:
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Eq. (5.16) determines the vector x 0 if the vector x is given, and ~���� is the operator
(matrix representation of the rotation operator) which turns x into x 0.

Loosely speaking, an operator is any mathematical entity which operates on

any vector in V and turns it into another vector in V. Abstractly, an operator L
~
is

a mapping that assigns to a vector jvi in a linear vector space V another vector jui
in V: jui � L

~
jvi. The set of vectors jvi for which the mapping is de®ned, that is,

the set of vectors jvi for which L
~
jvi has meaning, is called the domain of L

~
. The

set of vectors jui in the domain expressible as jui � L
~
jvi is called the range of the

operator. An operator L
~
is linear if the mapping is such that for any vectors

jui; jwi in the domain of L
~

and for arbitrary scalars �, ÿ, the vector

�jui � ÿjwi is in the domain of L
~
and

L
~
��jui � ÿjwi� � �L

~
jui � ÿL

~
jwi:

A linear operator is bounded if its domain is the entire space V and if there exists a

single constant C such that

jL
~
jvij < Cjjvij

for all jvi in V. We shall consider linear bounded operators only.

Matrix representation of operators

Linear bounded operators may be represented by matrix. The matrix will have a

®nite or an in®nite number of rows according to whether the dimension of V is

®nite or in®nite. To show this, let j1i; j2i; . . . be an orthonormal basis in V; then

every vector j'i in V may be written in the form

j'i � �1j1i � �2j2i � � � � :
Since L

~
ji is also in V, we may write

L
~
j'i � ÿ1j1i � ÿ2j2i � � � � :

But

L
~
j'i � �1L

~
j1i � �2L

~
j2i � � � � ;

so

ÿ1j1i � ÿ2j2i � � � � � �1L
~
j1i � �2L

~
j2i � � � � :

Taking the inner product of both sides with h1j we obtain

ÿ1 � h1jL
~
j1i�1 � h1jL

~
j2i�2 � þ11�1 � þ12�2 � � � � ;
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Similarly

ÿ2 � h2jL
~
j1i�1 � h2jL

~
j2i�2 � þ21�1 � þ22�2 � � � � ;

ÿ3 � h3jL
~
j1i�1 � h3jL

~
j2i�2 � þ31�1 � þ32�2 � � � � :

In general, we have

ÿi �
X
j

þij�j ;

where

þij � ih jL
~
jj i: �5:17�

Consequently, in terms of the vectors j1i; j2i; . . . as a basis, operator L
~
is repre-

sented by the matrix whose elements are þij.

A matrix representing L
~
can be found by using any basis, not necessarily an

orthonormal one. Of course, a change in the basis changes the matrix representing

L
~
.

The algebra of linear operators

Let A
~

and B
~
be two operators de®ned in a linear vector space V of vectors j i. The

equation A
~
�B

~
will be understood in the sense that

A
~
j i � B

~
j i for all j i 2 V :

We de®ne the addition and multiplication of linear operators as

C
~
� A

~
� B

~
and D

~
� A

~
B
~

if for any j i
C
~
j i � �A

~
� B

~
�j i � A

~
j i � B

~
j i;

D
~
j i � �A

~
B
~
�j i � A

~
�B
~
j i�:

Note that A
~
� B

~
and A

~
B
~
are themselves linear operators.

Example 5.10

(a) �A
~
B
~
��� uj i � ÿ vj i� � A

~
���B

~
uj i� � ÿ�B

~
vj i�� � ��A

~
B
~
� uj i � ÿ�A

~
B
~
� vj i;

(b) C
~
�A
~
� B

~
� vj i � C

~
�A
~
vj i � B

~
vj i� � C

~
A
~
j i � C

~
B
~
j i,

which shows that

C
~
�A
~
�B

~
� � C

~
A
~
�C

~
B
~
:
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In general A
~
B
~
6� B

~
A
~
. The diÿerence A

~
B
~
ÿB

~
A
~
is called the commutator of A

~
and B

~
and is denoted by the symbol �A

~
;B
~
]:

�A
~
;B
~
� � A

~
B
~
ÿB

~
A
~
: �5:18�

An operator whose commutator vanishes is called a commuting operator.

The operator equation

B
~
� �A

~
� A

~
�

is equivalent to the vector equation

B
~
j i � �A

~
j i for any j i:

And the vector equation

A
~
j i � �j i

is equivalent to the operator equation

A
~
� �E

~

where E
~
is the identity (or unit) operator:

E
~
j i � j i for any j i:

It is obvious that the equation A
~
� � is meaningless.

Example 5.11

To illustrate the non-commuting nature of operators, let A
~
� x;B

~
� d=dx. Then

A
~
B
~
f �x� � x

d

dx
f �x�;

and

B
~
A
~
f �x� � d

dx
xf �x� � dx

dx

� �
f � x

df

dx
� f � x

df

dx
� �E

~
�A

~
B
~
� f :

Thus,

�A
~
B
~
ÿB

~
A
~
� f �x� � ÿE

~
f �x�

or

x;
d

dx

� �
� x

d

dx
ÿ d

dx
x � ÿE

~
:

Having de®ned the product of two operators, we can also de®ne an operator

raised to a certain power. For example

A
~

mj i � A
~

A
~

� � � A
~
j i:

216

LINEAR VECTOR SPACES

|�������������{z�������������}
m factor



By combining the operations of addition and multiplication, functions of opera-

tors can be formed. We can also de®ne functions of operators by their power

series expansions. For example, e
A
~ formally means

e
A
~ � 1� A

~
� 1

2!
A
~

2 � 1

3!
A
~

3 � � � �:

A function of a linear operator is a linear operator.

Given an operator A
~
that acts on vector j i, we can de®ne the action of the same

operator on vector h j. We shall use the convention of operating on h j from the

right. Then the action of A
~
on a vector h j is de®ned by requiring that for any jui

and hvj, we have

f uh jA
~
g vj i � uh jfA

~
vj ig � uh jA

~
vj i:

We may write �jvi � j�vi and the corresponding bra as h�vj. However, it is

important to note that h�vj � A*hvj.

Eigenvalues and eigenvectors of an operator

The result of operating on a vector with an operator A
~
is, in general, a diÿerent

vector. But there may be some vector jvi with the property that operating with A
~

on it yields the same vector jvi multiplied by a scalar, say �:

A
~
jvi � �jvi:

This is called the eigenvalue equation for the operator A
~
, and the vector jvi is

called an eigenvector of A
~
belonging to the eigenvalue �. A linear operator has, in

general, several eigenvalues and eigenvectors, which can be distinguished by a

subscript

A
~
jvki � �kjvki:

The set f�kg of all the eigenvalues taken together constitutes the spectrum of the

operator. The eigenvalues may be discrete, continuous, or partly discrete and

partly continuous. In general, an eigenvector belongs to only one eigenvalue. If

several linearly independent eigenvectors belong to the same eigenvalue, the eigen-

value is said to be degenerate, and the degree of degeneracy is given by the number

of linearly independent eigenvectors.

Some special operators

Certain operators with rather special properties play very important roles in

physics. We now consider some of them below.
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The inverse of an operator

The operator X
~
satisfying X

~
A
~
� E

~
is called the left inverse of A

~
and we denote it

by A
~

ÿ1
L . Thus, A

~

ÿ1
L A

~
� E

~
. Similarly, the right inverse of A

~
is de®ned by the

equation

A
~
A
~

ÿ1
R � E

~
:

In general, A
~

ÿ1
L or A

~

ÿ1
R , or both, may not be unique and even may not exist at all.

However, if both A
~

ÿ1
L and A

~

ÿ1
R exist, then they are unique and equal to each

other:

A
~

ÿ1
L � A

~

ÿ1
R � A

~

ÿ1
;

and

A
~
A
~

ÿ1 � A
~

ÿ1
A
~
� E

~
: �5:19�

A
~

ÿ1 is called the operator inverse to A
~
. Obviously, an operator is the inverse of

another if the corresponding matrices are.

An operator for which an inverse exists is said to be non-singular, whereas one

for which no inverse exists is singular. A necessary and su�cient condition for an

operator A
~
to be non-singular is that corresponding to each vector jui, there

should be a unique vector jvi such that jui � A
~
jvi:

The inverse of a linear operator is a linear operator. The proof is simple: let

ju1i � A
~
jv1i; ju2i � A

~
jv2i:

Then

jv1i � A
~

ÿ1ju1i; jv2i � A
~

ÿ1ju2i

so that

c1jv1i � c1A
~

ÿ1ju1i; c2jv2i � c2A
~

ÿ1ju2i:

Thus,

A
~

ÿ1�c1ju1i � c2ju2i� � A
~

ÿ1�c1A
~
jv1i � c2A

~
jv2i�

� A
~

ÿ1
A
~
�c1jv1i � c2jv2i�

� c1jv1i � c2jv2i
or

A
~

ÿ1�c1ju1i � c2ju2i� � c1A
~

ÿ1ju1i � c2A
~

ÿ1ju2i:
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The inverse of a product of operators is the product of the inverse in the reverse

order

�A
~
B
~
�ÿ1 � B

~

ÿ1
A
~

ÿ1
: �5:20�

The proof is straightforward: we have

A
~
B
~
�A
~
B
~
�ÿ1 � E

~
:

Multiplying successively from the left by A
~

ÿ1 and B
~

ÿ1
, we obtain

�A
~
B
~
�ÿ1 � B

~

ÿ1
A
~

ÿ1
;

which is identical to Eq. (5.20).

The adjoint operators

Assuming that V is an inner-product space, then the operator X
~

satisfying the

relation

uh jX
~
vj i � vh jA

~
uj i* for any jui; jvi 2 V

is called the adjoint operator of A
~
and is denoted by A

~

�. Thus

uh jA
~

� vj i � vh jA
~
uj i* for any jui; jvi 2 V: �5:21�

We ®rst note that h jA
~

� is a dual vector of A
~
j i. Next, it is obvious that

�A
~

��� � A
~
: �5:22�:

To see this, let A
~

� � B
~
, then (A

~

��� becomes B
~

�, and from Eq. (5.21) we ®nd

vh jB
~

� uj i � uh jB
~
vj i*; for any jui; jvi 2 V :

But

uh jB
~
vj i* � uh jA

~

� vj i* � vh jA
~
uj i:

Thus

vh jB
~

� uj i � uh jB
~
vj i* � vh jA

~
uj i

from which we ®nd

�A
~

��� � A
~
:
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It is also easy to show that

�A
~
B
~
�� � B

~

�
A
~

�
: �5:23�

For any jui; jvi, hvjB
~

� and B
~
jvi is a pair of dual vectors; hujA

~

� and A
~
jui is also a

pair of dual vectors. Thus we have

vh jB
~

�
A
~

� uj i � f vh jB
~

�gfA
~

� uj ig � �f uh jA
~
gfB

~
vj ig�*

� uh jA
~
B
~
vj i* � vh j�A

~
B
~
�� uj i

and therefore

�A
~
B
~
�� � B

~

�
A
~

�
:

Hermitian operators

An operator H
~
that is equal to its adjoint, that is, that obeys the relation

H
~
� H

~

� �5:24�

is called Hermitian or self-adjoint. And H
~
is anti-Hermitian if

H
~
� ÿH

~

�
:

Hermitian operators have the following important properties:

(1) The eigenvalues are real: Let H
~
be the Hermitian operator and let jvi be an

eigenvector belonging to the eigenvalue �:

H
~
jvi � �jvi:

By de®nition, we have

vh jA
~
vj i � vh jA

~
vj i*;

that is,

��*ÿ �� v vj ih � 0:

Since hvjvi 6� 0, we have

�* � �:

(2) Eigenvectors belonging to diÿerent eigenvalues are orthogonal: Let jui and
jvi be eigenvectors of H

~
belonging to the eigenvalues � and ÿ respectively:

H
~
jui � �jui; H

~
jvi � ÿ jvi:
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Then

uh jH
~
vj i � vh jH

~
uj i*:

That is,

��ÿ ÿ�hvjui � 0 �since �* � ��:
But � 6� ÿ, so that

hvjui � 0:

(3) The set of all eigenvectors of a Hermitian operator forms a complete set:

The eigenvectors are orthogonal, and since we can normalize them, this

means that the eigenvectors form an orthonormal set and serve as a basis

for the vector space.

Unitary operators

A linear operator U
~

is unitary if it preserves the Hermitian character of an

operator under a similarity transformation:

�U
~
A
~
U
~

ÿ1�� � U
~
A
~
U
~

ÿ1
;

where

A
~

� � A
~
:

But, according to Eq. (5.23)

�U
~
A
~
U
~

ÿ1�� � �U
~

ÿ1��A
~
U
~

�
;

thus, we have

�U
~

ÿ1��A
~
U
~

� � U
~
A
~
U
~

ÿ1
:

Multiplying from the left by U
~

� and from the right by U
~
, we obtain

U
~

��U
~

ÿ1��A
~
U
~

�
U
~
� U

~
�U

~
A
~
;

this reduces to

A
~
�U
~

�
U
~
� � �U

~
�U

~
�A
~
;

since

U
~

��U
~

ÿ1�� � �U
~

ÿ1
U
~
�� � E

~
:

Thus

U
~

�
U
~
� E

~
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or

U
~

� � U
~

ÿ1
: �5:25�

We often use Eq. (5.25) for the de®nition of the unitary operator.

Unitary operators have the remarkable property that transformation by a uni-

tary operator preserves the inner product of the vectors. This is easy to see: under

the operation U
~
, a vector jvi is transformed into the vector jv 0i � U

~
jvi. Thus, if

two vectors jvi and jui are transformed by the same unitary operator U
~
, then

u 0ÿ þþv 0� � hU
~
ujU

~
vi � uh jU

~

�
U
~
vi � u vj ih ;

that is, the inner product is preserved. In particular, it leaves the norm of a vector

unchanged. Thus, a unitary transformation in a linear vector space is analogous

to a rotation in the physical space (which also preserves the lengths of vectors and

the inner products).

Corresponding to every unitary operator U
~
, we can de®ne a Hermitian opera-

tor H
~
and vice versa by

U
~
� e

i"H
~ ; �5:26�

where " is a parameter. Obviously

U
~

� � e
�i"H

~
��
=e

ÿi"H
~ � U

~

ÿ1
:

A unitary operator possesses the following properties:

(1) The eigenvalues are unimodular; that is, if U
~
jvi � �jvi, then j�j � 1.

(2) Eigenvectors belonging to diÿerent eigenvalues are orthogonal.

(3) The product of unitary operators is unitary.

The projection operators

A symbol of the type of juihvj is quite useful: it has all the properties of a linear

operator, multiplied from the right by a ket j i, it gives jui whose magnitude is

hvj i; and multiplied from the left by a bra h j it gives hvj whose magnitude is hjui.
The linearity of juihvj results from the linear properties of the inner product. We

also have

f uj i vh jg� � vj i uh j:
The operator P

~
j � jj i jh j is a very particular example of projection operator. To

see its eÿect on an arbitrary vector jui, let us expand jui:
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uj i �
Xn
j�1

uj jj i; uj � jh jui: �5:27�

We may write the above as

uj i �
Xn
j�1

jj i jh j
ý !

uj i;

which is true for all jui. Thus the object in the brackets must be identi®ed with the

identity operator:

I
~
�

Xn
j�1

jj i jh j �
Xn
j�1

P
~
j: �5:28�

Now we will see that the eÿect of this particular projection operator on jui is to
produce a new vector whose direction is along the basis vector j ji and whose

magnitude is h jjui:

P
~
j uj i � jj i jh jui � jj iuj:

We see that whatever jui is, P
~
jjui is a multiple of j ji with a coe�cient uj which is

the component of jui along j ji. Eq. (5.28) says that the sum of the projections of a

vector along all the n directions equals the vector itself.

When P
~
j � jj i jh j acts on j ji, it reproduces that vector. On the other hand, since

the other basis vectors are orthogonal to j ji, a projection operation on any one of

them gives zero (null vector). The basis vectors are therefore eigenvectors of P
~
k

with the property

P
~
k jj i � �kj jj i; � j; k � 1; . . . ; n�:

In this orthonormal basis the projection operators have the matrix form

P
~
1 �

1 0 0 � � �
0 0 0 � � �
0 0 0 � � �
..
. ..

. ..
. . .

.

0
BBBB@

1
CCCCA; P

~
2 �

0 0 0 � � �
0 1 0 � � �
0 0 0 � � �
..
. ..

. ..
. . .

.

0
BBBB@

1
CCCCA; P

~
N �

0 0 0 � � �
0 0 0 � � �
0 0 0 � � �
..
. ..

. ..
. . .

.

1

0
BBBBB@

1
CCCCCA:

Projection operators can also act on bras in the same way:

uh jP
~
j � uh j ji jh j � uj* jh j:
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Change of basis

The choice of base vectors (basis) is largely arbitrary and diÿerent representations

are physically equally acceptable. How do we change from one orthonormal set of

base vectors j'1i; j'2i; . . . ; j"ni to another such set j�1i; j�2i; . . . ; j�ni? In other

words, how do we generate the orthonomal set j�1i; j�2i; . . . ; j�ni from the old

set j'1i; j'2i; . . . ; j'n? This task can be accomplished by a unitary transformation:

j�ii � U
~
j'ii �i � 1; 2; . . . ; n�: �5:29�

Then given a vector Xj i � Pn
i�1 ai 'ij i, it will be transformed into jX 0i:

jX 0i � U
~
jXi � U

~

Xn
i�1

ai 'ij i �
Xn
i�1

U
~
ai 'ij i �

Xn
i�1

ai �ij i:

We can see that the operator U
~
possesses an inverse U

~

ÿ1 which is de®ned by the

equation

j'ii � U
~

ÿ1j�ii �i � 1; 2; . . . ; n�:

The operator U
~
is unitary; for, if Xj i � Pn

i�1 ai 'ij i and Yj i � Pn
i�1 bi 'ij i, then

X jYh i �
Xn
i;j�1

ai*bj 'ij'j

ÿ � � Xn
i�1

ai*bi; hUX jUYi �
Xn
i;j�1

ai*bj �ij�j
ÿ � � Xn

i�1

ai*bi:

Hence

Uÿ1 � U�:

The inner product of two vectors is independent of the choice of basis which

spans the vector space, since unitary transformations leave all inner products

invariant. In quantum mechanics inner products give physically observable quan-

tities, such as expectation values, probabilities, etc.

It is also clear that the matrix representation of an operator is diÿerent in a

diÿerent basis. To ®nd the eÿect of a change of basis on the matrix representation

of an operator, let us consider the transformation of the vector jXi into jYi by the
operator A

~
:

jYi � A
~
j�Xi: �5:30�

Referred to the basis j'1i; j'2i; . . . ; j'i; jXi and jYi are given by

jXi � Pn
i�1 ai 'iij and jYi � Pn

i�1 bij'ii, and the equation jYi � A
~
jXi becomes

Xn
i�1

bi 'ij i � A
~

Xn
j�1

aj 'j

þþ �
:
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Multiplying both sides from the left by the bra vector h'ij we ®nd

bi �
Xn
j�1

aj 'ih jA
~
'j

þþ � � Xn
j�1

ajAij : �5:31�

Referred to the basis j�1i; j�2i; . . . ; j�ni the same vectors jXi and jYi are

jXi � Pn
i�1 a

0
i �iij , and jYi � Pn

i�1 b
0
i j�ii, and Eqs. (5.31) are replaced by

b 0
i �

Xn
j�1

a 0
j �ih jA

~
�j
þþ � �

Xn
j�1

a 0
j A

0
ij ;

where A 0
ij � h�ijA

~
�ji
þþ , which is related to Aij by the following relation:

A 0
ij � �ih jA

~
�j
þþ � � U'ih jA

~
U'j

þþ � � 'ih jU*A
~
U 'j

þþ � � �U*A
~
U�ij

or using the rule for matrix multiplication

A 0
ij � �ih jA

~
�j
þþ � � �U*A

~
U�ij �

Xn
r�1

Xn
s�1

Uir*ArsUsj: �5:32�

From Eqs. (5.32) we can ®nd the matrix representation of an operator with

respect to a new basis.

If the operator A
~
transforms vector jXi into vector jYi which is vector jXi itself

multiplied by a scalar � : jYi � �jXi, then Eq. (5.30) becomes an eigenvalue

equation:

A
~
jXi � � jXi:

Commuting operators

In general, operators do not commute. But commuting operators do exist and

they are of importance in quantum mechanics. As Hermitian operators play a

dominant role in quantum mechanics, and the eigenvalues and the eigenvectors of

a Hermitian operator are real and form a complete set, respectively, we shall

concentrate on Hermitian operators. It is straightforward to prove that

Two commuting Hermitian operators possess a complete ortho-

normal set of common eigenvectors, and vice versa.

If A
~
and A

~
jvi � �jvi are two commuting Hermitian operators, and if

A
~
jvi � �jvi; �5:33�

then we have to show that

B
~
jvi � ÿjvi: �5:34�
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Multiplying Eq. (5.33) from the left by B
~
, we obtain

B
~
�A
~
jvi� � ��B

~
jvi�;

which using the fact A
~
B
~
� B

~
A
~
, can be rewritten as

A
~
�B
~
jvi� � ��B

~
jvi�:

Thus, B
~
jvi is an eigenvector of A

~
belonging to eigenvalue �. If � is non-degen-

erate, then B
~
jvi should be linearly dependent on jvi, so that

a�B
~
jvi� � bjvi � 0; with a 6� 0 and b 6� 0:

It follows that

B
~
jvi � ÿ�b=a�jvi � ÿjvi:

If A is degenerate, then the matter becomes a little complicated. We now state

the results without proof. There are three possibilities:

(1) The degenerate eigenvectors (that is, the linearly independent eigenvectors

belonging to a degenerate eigenvalue) of A
~
are degenerate eigenvectors of B

~
also.

(2) The degenerate eigenvectors of A
~
belong to diÿerent eigenvalues of B

~
. In this

case, we say that the degeneracy is removed by the Hermitian operator B
~
.

(3) Every degenerate eigenvector of A
~
is not an eigenvector of B

~
. But there are

linear combinations of the degenerate eigenvectors, as many in number as

the degrees of degeneracy, which are degenerate eigenvectors of A
~

but

are non-degenerate eigenvectors of B
~
. Of course, the degeneracy is removed

by B
~
.

Function spaces

We have seen that functions can be elements of a vector space. We now return to

this theme for a more detailed analysis. Consider the set of all functions that are

continuous on some interval. Two such functions can be added together to con-

struct a third function h�x�:
h�x� � f �x� � g�x�; a � x � b;

where the plus symbol has the usual operational meaning of `add the value of f at

the point x to the value of g at the same point.'

A function f �x� can also be multiplied by a number k to give the function p�x�:
p�x� � k � f �x�; a � x � b:
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The centred dot, the multiplication symbol, is again understood in the conven-

tional meaning of `multiply by k the value of f �x� at the point x.'

It is evident that the following conditions are satis®ed:

(a) By adding two continuous functions, we obtain a continuous function.

(b) The multiplication by a scalar of a continuous function yields again a con-

tinuous function.

(c) The function that is identically zero for a � x � b is continuous, and its

addition to any other function does not alter this function.

(d) For any function f �x� there exists a function �ÿ1� f �x�, which satis®es

f �x� � ��ÿ1� f �x�� � 0:

Comparing these statements with the axioms for linear vector spaces (Axioms

A.1±A.8), we see clearly that the set of all continuous functions de®ned on some

interval forms a linear vector space; this is called a function space. We shall

consider the entire set of values of a function f �x� as representing a vector j f i
of this abstract vector space F (F stands for function space). In other words, we

shall treat the number f �x� at the point x as the component with `index x' of an

abstract vector j f i. This is quite similar to what we did in the case of ®nite-

dimensional spaces when we associated a component ai of a vector with each

value of the index i. The only diÿerence is that this index assumed a discrete set

of values 1, 2, etc., up to N (for N-dimensional space), whereas the argument x of

a function f �x� is a continuous variable. In other words, the function f �x� has an
in®nite number of components, namely the values it takes in the continuum of

points labeled by the real variable x. However, two questions may be raised.

The ®rst question concerns the orthonormal basis. The components of a vector

are de®ned with respect to some basis and we do not know which basis has been

(or could be) chosen in the function space. Unfortunately, we have to postpone

the answer to this question. Let us merely note that, once a basis has been chosen,

we work only with the components of a vector. Therefore, provided we do not

change to other basis vectors, we need not be concerned about the particular basis

that has been chosen.

The second question is how to de®ne an inner product in an in®nite-dimen-

sional vector space. Suppose the function f �x� describes the displacement of a

string clamped at x � 0 and x � L. We divide the interval of length L into N equal

parts and measure the displacements f �xi� � fi at N point xi; i � 1; 2; . . . ;N. At

®xed N, the functions are elements of a ®nite N-dimensional vector space. An

inner product is de®ned by the expression

fh jgi �
XN
i�1

figi:
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For a vibrating string, the space is real and there is no need to conjugate anything.

To improve the description, we can increase the number N. However, as

N ! 1 by increasing the number of points without limit, the inner product

diverges as we subdivide further and further. The way out of this is to modify

the de®nition by a positive prefactor � � L=N which does not violate any of the

axioms for the inner product. But now

fh jgi � lim
�!0

XN
i�1

figi� !
Z L

0

f �x�g�x�dx;

by the usual de®nition of an integral. Thus the inner product of two functions is

the integral of their product. Two functions are orthogonal if this inner product

vanishes, and a function is normalized if the integral of its square equals unity.

Thus we can speak of an orthonormal set of functions in a function space just as

in ®nite dimensions. The following is an example of such a set of functions de®ned

in the interval 0 � x � L and vanishing at the end points:

emj i ! m�x� �
����
2

L

r
sin

m�x

L
; m � 1; 2; . . . ;1;

emh jeni �
2

L

Z L

0

sin
m�x

L
sin

n�x

L
dx � �mn:

For the details, see `Vibrating strings' of Chapter 4.

In quantum mechanics we often deal with complex functions and our de®nition

of the inner product must then modi®ed. We de®ne the inner product of f �x� and
g�x� as

fh jgi �
Z L

0

f *�x�g�x�dx;

where f * is the complex conjugate of f. An orthonormal set for this case is

m�x� � 1������
2�

p eimx; m � 0; � 1; � 2; . . . ;

which spans the space of all functions of period 2� with ®nite norm. A linear

vector space with a complex-type inner product is called a Hilbert space.

Where and how did we get the orthonormal functions? In general, by solving

the eigenvalue equation of some Hermitian operator. We give a simple example

here. Consider the derivative operator D � d� �=dx :
Df �x� � df �x�=dx; Dj f i � dj f i=dx:

However, D is not Hermitian, because it does not meet the condition:Z L

0

f *�x� dg�x�
dx

dx �
Z L

0

g*�x� df �x�
dx

dx

� �
*
:
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Here is why: Z L

0

g*�x� df �x�
dx

dx

� �
* �

Z L

0

g�x� df *�x�
dx

dx

� g f *

L

0

ÿ
Z L

0

f *�x� dg�x�
dx

dx:

þþþþþ
It is easy to see that hermiticity of D is lost on two counts. First we have the term

coming from the end points. Second the integral has the wrong sign. We can ®x

both of these by doing the following:

(a) Use operator ÿiD. The extra i will change sign under conjugation and kill

the minus sign in front of the integral.

(b) Restrict the functions to those that are periodic: f �0� � f �L�.
Thus, ÿiD is a Hermitian operator on period functions. Now we have

ÿi
df �x�
dx

� �f �x�;

where � is the eigenvalue. Simple integration gives

f �x� � Aei�x:

Now the periodicity requirement gives

ei�L � ei�0 � 1

from which it follows that

� � 2�m=L; m � 0;�1;�2;

and the normalization condition gives

A � 1����
L

p :

Hence the set of orthonormal eigenvectors is given by

fm�x� �
1����
L

p e2�imx=L:

In quantum mechanics the eigenvalue equation is the SchroÈ dinger equation and

the Hermitian operator is the Hamiltonian operator. Quantum mechanically, a

system with n degrees of freedom which is classically speci®ed by n generalized

coordinates q1; . . . ; q2; qn is speci®ed at a ®xed instant of time by a wave function

ý�q1; q2; . . . ; qn� whose norm is unity, that is,

ýh jýi �
Z

ý�q1; q2; . . . ; qn�j j2dq1; dq2; . . . ; dqn � 1;
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the integration being over the accessible values of the coordinates q1; q2; . . . ; qn.

The set of all such wave functions with unit norm spans a Hilbert space H. Every

possible state of the system is represented by a function in this Hilbert space, and

conversely, every vector in this Hilbert space represents a possible state of the

system. In addition to depending on the coordinates q1; q2; . . . ; qn, the wave func-

tion depends also on the time t, but the dependence on the qs and on t are

essentially diÿerent. The Hilbert space H is formed with respect to the spatial

coordinates q1; q2; . . . ; qn only, for example, the inner product is formed with

respect to the qs only, and one wave function ý�q1; q2; . . . ; qn) states its complete

spatial dependence. On the other hand the states of the system at diÿerent instants

of time t1; t2; . . . are given by the diÿerent wave functions

ý1�q1; q2; . . . ; qn�; ý2�q1; q2; . . . ; qn� . . . of the Hilbert space.

Problems

5.1 Prove the three main properties of the dot product given by Eq. (5.7).

5.2 Show that the points on a line V passing through the origin in E3 form a

linear vector space under the addition and scalar multiplication operations

for vectors in E3.

Hint: The points of V satisfy parametric equations of the form

x1 � at; x2 � bt; x3 � ct; ÿ1 < t < 1:

5.3 Do all Hermitian 2� 2 matrices form a vector space under addition? Is there

any requirement on the scalars that multiply them?

5.4 Let V be the set of all points (x1; x2) in E2 that lie in the ®rst quadrant; that

is, such that x1 � 0 and x2 � 0. Show that the set V fails to be a vector space

under the operations of addition and scalar multiplication.

Hint: Consider u=(1, 1) which lies in V. Now form the scalar multiplication

�ÿ1�u � �ÿ1;ÿ1�; where is this point located?

5.5 Show that the set W of all 2� 2 matrices having zeros on the principal

diagonal is a subspace of the vector space M22 of all 2� 2 matrices.

5.6 Show that jWi � �4;ÿ1; 8� is not a linear combination of jUi � �1; 2;ÿ1�
and jVi � �6; 4; 2�.

5.7 Show that the following three vectors in E3 cannot serve as base vectors ofE3:

1j i � �1; 1; 2�; 2j i � �1; 0; 1�; and 3j i � �2; 1; 3�:
5.8 Determine which of the following lie in the space spanned by j f i � cos2 x

and jgi � sin2 x: (a) cos 2x; �b�3� x2; �c�1; �d� sin x.
5.9 Determine whether the three vectors

1j i � �1;ÿ2; 3�; 2j i � �5; 6;ÿ1�; 3j i � �3; 2; 1�
are linearly dependent or independent.
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5.10 Given the following three vectors from the vector space of real 2� 2

matrices:

1j i � 0 1

0 0

� �
; 2j i � 1 1

0 1

� �
; 3j i � ÿ2 ÿ1

0 ÿ2

� �
;

determine whether they are linearly dependent or independent.

5.11 If S � 1j i; 2j i; . . . ; nj if g is a basis for a vector space V, show that every set

with more than n vectors is linearly dependent.

5.12 Show that any two bases for a ®nite-dimensional vector space have the same

number of vectors.

5.13 Consider the vector space E3 with the Euclidean inner product. Apply the

Gram±Schmidt process to transform the basis

j1i � �1; 1; 1�; j2i � �0; 1; 1�; j3i � �0; 0; 1�
into an orthonormal basis.

5.14 Consider the two linearly independent vectors of Example 5.10:

jUi � �3ÿ 4i�j1i � �5ÿ 6i�j2i;

jWi � �1ÿ i�j1i � �2ÿ 3i�j2i;
where j1i and j2i are an orthonormal basis. Apply the Gram±Schmidt pro-

cess to transform the two vectors into an orthonormal basis.

5.15 Show that the eigenvalue of the square of an operator is the square of the

eigenvalue of the operator.

5.16 Show that if, for a given A
~
, both operators A

~

ÿ1
L and A

~

ÿ1
R exist, then

A
~

ÿ1
L � A

~

ÿ1
R � A

~

ÿ1:

5.17 Show that if a unitary operator U
~
can be written in the form U

~
� 1� ie F

~
,

where e is a real in®nitesimally small number, then the operator F
~

is

Hermitian.

5.18 Show that the diÿerential operator

p
~
� p

i

d

dx

is linear and Hermitian in the space of all diÿerentiable wave functions ��x�
that, say, vanish at both ends of an interval (a, b).

5.19 The translation operator T�a� is de®ned to be such that T�a���x� �
��x� a�. Show that:

(a) T�a� may be expressed in terms of the operator

p
~
� p

i

d

dx
;
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(b) T�a� is unitary.

5.21 Verify that:

�a� 2

L

Z L

0

sin
m�x

L
sin

n�x

L
dx � �mn:

�b� 1������
2�

p
Z 2�

0

ei�mÿn�dx � �mn:
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6

Functions of a complex variable

The theory of functions of a complex variable is a basic part of mathematical

analysis. It provides some of the very useful mathematical tools for physicists and

engineers. In this chapter a brief introduction to complex variables is presented

which is intended to acquaint the reader with at least the rudiments of this

important subject.

Complex numbers

The number system as we know it today is a result of gradual development. The

natural numbers (positive integers 1, 2, . . .) were ®rst used in counting. Negative

integers and zero (that is, 0, ÿ1;ÿ2; . . .) then arose to permit solutions of equa-

tions such as x� 3 � 2. In order to solve equations such as bx � a for all integers

a and b where b 6� 0, rational numbers (or fractions) were introduced. Irrational

numbers are numbers which cannot be expressed as a/b, with a and b integers and

b 6� 0, such as
���
2

p � 1:41423; � � 3:14159

Rational and irrational numbers are all real numbers. However, the real num-

ber system is still incomplete. For example, there is no real number x which

satis®es the algebraic equation x2 � 1 � 0 : x � �������ÿ1
p

. The problem is that we

do not know what to make of
�������ÿ1

p
because there is no real number whose square

is ÿ1. Euler introduced the symbol i � �������ÿ1
p

in 1777 years later Gauss used the

notation a� ib to denote a complex number, where a and b are real numbers.

Today, i � �������ÿ1
p

is called the unit imaginary number.

In terms of i, the answer to equation x2 � 1 � 0 is x � i. It is postulated that i

will behave like a real number in all manipulations involving addition and multi-

plication.

We now introduce a general complex number, in Cartesian form

z � x� iy �6:1�
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and refer to x and y as its real and imaginary parts and denote them by the

symbols Re z and Im z, respectively. Thus if z � ÿ3� 2i, then Re z � ÿ3 and

Im z � �2.

A number with just y 6� 0 is called a pure imaginary number.

The complex conjugate, or brie¯y conjugate, of the complex number z � x� iy

is

z* � xÿ iy �6:2�
and is called `z-star'. Sometimes we write it �z and call it `z-bar'. Complex con-

jugation can be viewed as the process of replacing i by ÿi within the complex

number.

Basic operations with complex numbers

Two complex numbers z1 � x1 � iy1 and z2 � x2 � iy2 are equal if and only if

x1 � x2 and y1 � y2.

In performing operations with complex numbers we can proceed as in the

algebra of real numbers, replacing i2 by ÿ1 when it occurs. Given two complex

numbers z1 and z2 where z1 � a� ib; z2 � c� id, the basic rules obeyed by com-

plex numbers are the following:

(1) Addition:

z1 � z2 � �a� ib� � �c� id� � �a� c� � i�b� d�:
(2) Subtraction:

z1 ÿ z2 � �a� ib� ÿ �c� id� � �aÿ c� � i�bÿ d�:
(3) Multiplication:

z1z2 � �a� ib��c� id� � �acÿ bd� � i�ad ÿ bc�:
(4) Division:

z1
z2

� a� ib

c� id
� �a� ib��cÿ id�

�c� id��cÿ id� �
ac� bd

c2 � d2
� i

bcÿ ad

c2 � d2
:

Polar form of complex numbers

All real numbers can be visualized as points on a straight line (the x-axis). A

complex number, containing two real numbers, can be represented by a point in a

two-dimensional xy plane, known as the z plane or the complex plane (also

known as the Gauss plane or Argand diagram). The complex variable

z � x� iy and its complex conjugation z* are labeled in Fig. 6.1.
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The complex variable can also be represented by the plane polar coordinates

(r; �):

z � r�cos �� i sin ��:

With the help of Euler's formula

ei� � cos �� i sin �;

we can rewrite the last equation in polar form:

z � r�cos �� i sin �� � rei�; r �
���������������
x2 � y2

q
�

�������
zz*

p
: �6:3�

r is called the modulus or absolute value of z, denoted by jzj or mod z; and � is

called the phase or argument of z and it is denoted by arg z. For any complex

number z 6� 0 there corresponds only one value of � in 0 � � � 2�. The absolute

value of z has the following properties. If z1; z2; . . . ; zm are complex numbers, then

we have:

(1) jz1z2 � � � zmj � jz1jjz2j � � � jzmj:
(2)

z1
z2

ÿÿÿÿ
ÿÿÿÿ � jz1j

jz2j
; z2 6� 0.

(3) jz1 � z2 � � � � � zmj � jz1j � jz2j � � � � � jzmj.
(4) jz1 � z2j � jz1j ÿ jz2j.
Complex numbers z � rei� with r � 1 have jzj � 1 and are called unimodular.
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We may imagine them as lying on a circle of unit radius in the complex plane.

Special points on this circle are

� � 0 �1�
� � �=2 �i�
� � � �ÿ1�
� � ÿ�=2 �ÿi�:

The reader should know these points at all times.

Sometimes it is easier to use the polar form in manipulations. For example, to

multiply two complex numbers, we multiply their moduli and add their phases; to

divide, we divide by the modulus and subtract the phase of the denominator:

zz1 � �rei���r1ei�1� � rr1e
i����1�;

z

z1
� rei�

r1e
i�1

� r

r1
ei��ÿ�1�:

On the other hand to add two complex numbers we have to go back to the

Cartesian forms, add the components and revert to the polar form.

If we view a complex number z as a vector, then the multiplication of z by ei�

(where � is real) can be interpreted as a rotation of z counterclockwise through

angle �; and we can consider ei� as an operator which acts on z to produce this

rotation. Similarly, the multiplication of two complex numbers represents a rota-

tion and a change of length: z1 � r1e
i�1 ; z2 � r2e

i�2 , z1z2 � r1r2e
i��1��2�; the new

complex number has length r1r2 and phase �1 � �2.

Example 6.1

Find �1� i�8.

Solution: We ®rst write z in polar form: z � 1� i � r�cos �� i sin ��, from which

we ®nd r � ���
2

p
; � � �=4. Then

z �
���
2

p
cos �=4� i sin �=4� � �

���
2

p
ei�=4:

Thus

�1� i�8 � �
���
2

p
ei�=4�8 � 16e2�i � 16:

Example 6.2

Show that

1� ���
3

p
i

1ÿ ���
3

p
i

þ !10

� ÿ 1

2
� i

���
3

p

2
:
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1� i
���
3

p

1ÿ i
���
3

p
þ !10

� 2e�i=3

2eÿ�i=3

þ !10

� e2�i=3
� �10

� e20�i=3

� e6�ie2�i=3 � 1 cos�2�=3� � i sin�2�=3�� � � ÿ 1

2
� i

���
3

p

2
:

De Moivre's theorem and roots of complex numbers

If z1 � r1e
i�1 and z2 � r2e

i�2 , then

z1z2 � r1r2e
i��1��2� � r1r2�cos��1 � �2� � i sin��1 � �2��:

A generalization of this leads to

z1z2 � � � zn � r1r2 � � � rnei��1��2������n�

� r1r2 � � � rn�cos��1 � �2 � � � � � �n� � i sin��1 � �2 � � � � � �n��;
if z1 � z2 � � � � � zn � z this becomes

zn � �rei��n � rn�cos�n�� � i sin�n���;
from which it follows that

�cos �� i sin ��n � cos�n�� � i sin�n��; �6:4�
a result known as De Moivre's theorem. Thus we now have a general rule for

calculating the nth power of a complex number z. We ®rst write z in polar form

z � r�cos �� i sin ��, then
zn � rn�cos �� i sin ��n � rn�cos n�� i sin n��: �6:5�

The general rule for calculating the nth root of a complex number can now be

derived without di�culty. A number w is called an nth root of a complex number

z if wn � z, and we write w � z1=n. If z � r�cos �� i sin ��, then the complex num-

ber

w0 �
��
rn

p
cos

�

n
� i sin

�

n

� �
is de®nitely the nth root of z because wn

0 � z. But the numbers

wk �
��
rn

p
cos

�� 2�k

n
� i sin

�� 2�k

n

� �
; k � 1; 2; . . . ; �nÿ 1�;

are also nth roots of z because wn
k � z. Thus the general rule for calculating the nth

root of a complex number is

w � ��
rn

p
cos

�� 2�k

n
� i sin

�� 2�k

n

� �
; k � 0; 1; 2; . . . ; �nÿ 1�: �6:6�
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It is customary to call the number corresponding to k � 0 (that is, w0) the princi-

pal root of z.

The nth roots of a complex number z are always located at the vertices of a

regular polygon of n sides inscribed in a circle of radius
��
rn

p
about the origin.

Example 6.3

Find the cube roots of 8.

Solution: In this case z � 8� i0 � r�cos �� i sin ��; r � 2 and the principal argu-

ment � � 0. Formula (6.6) then yields���
8

3
p

� 2 cos
2k�

3
� i sin

2k�

3

� �
; k � 0; 1; 2:

These roots are plotted in Fig. 6.2:

2 �k � 0; � � 08�;
ÿ1� i

���
3

p �k � 1; � � 1208�;
ÿ1ÿ i

���
3

p �k � 2; � � 2408�:

Functions of a complex variable

Complex numbers z � x� iy become variables if x or y (or both) vary. Then

functions of a complex variable may be formed. If to each value which a complex

variable z can assume there corresponds one or more values of a complex variable

w, we say that w is a function of z and write w � f �z� or w � g�z�, etc. The
variable z is sometimes called an independent variable, and then w is a dependent
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variable. If only one value of w corresponds to each value of z, we say that w is a

single-valued function of z or that f �z� is single-valued; and if more than one value

of w corresponds to each value of z, w is then a multiple-valued function of z. For

example, w � z2 is a single-valued function of z, but w � ���
z

p
is a double-valued

function of z. In this chapter, whenever we speak of a function we shall mean a

single-valued function, unless otherwise stated.

Mapping

Note that w is also a complex variable and so can be written in the form

w � u� iv � f �x� iy�; �6:7�
where u and v are real. By equating real and imaginary parts this is seen to be

equivalent to

u � u�x; y�; v � v�x; y�: �6:8�
If w � f �z� is a single-valued function of z, then to each point of the complex z

plane, there corresponds a point in the complex w plane. If f �z� is multiple-valued,

a point in the z plane is mapped in general into more than one point. The

following two examples show the idea of mapping clearly.

Example 6.4

Map w � z2 � r2e2i�:

Solution: This is single-valued function. The mapping is unique, but not

one-to-one. It is a two-to-one mapping, since z and ÿz give the same square.

For example as shown in Fig. 6.3, z � ÿ2� i and z � 2ÿ i are mapped to the

same point w � 3ÿ 4i; and z � 1ÿ 3i and ÿ1� 3i are mapped into the same

point w � ÿ8ÿ 6i.

The line joining the points P�ÿ2; 1� and Q�1;ÿ3� in the z-plane is mapped by

w � z2 into a curve joining the image points P 0�3;ÿ4� and Q 0�ÿ8;ÿ6�. It is not
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very di�cult to determine the equation of this curve. We ®rst need the equation of

the line joining P and Q in the z plane. The parametric equations of the line

joining P and Q are given by

xÿ �ÿ2�
1ÿ �ÿ2� �

yÿ 1

ÿ3ÿ 1
� t or x � 3tÿ 2; y � 1ÿ 4t:

The equation of the line PQ is then given by z � 3tÿ 2� i�1ÿ 4t�. The curve in

the w plane into which the line PQ is mapped has the equation

w � z2 � �3tÿ 2� i�1ÿ 4t��2 � 3ÿ 4tÿ 7t2 � i�ÿ4� 22tÿ 24t2�;
from which we obtain

u � 3ÿ 4tÿ 7t2; v � ÿ4� 22tÿ 24t2:

By assigning various values to the parameter t, this curve may be graphed.

Sometimes it is convenient to superimpose the z and w planes. Then the images

of various points are located on the same plane and the function w � f �z� may be

said to transform the complex plane to itself (or a part of itself).

Example 6.5

Map w � f �z� � ���
z

p
; z � rei�:

Solution: There are two square roots: f1�rei�� �
��
r

p
ei�=2; f2 � ÿf1 �

��
r

p
ei���2��=2.

The function is double-valued, and the mapping is one-to-two. This is shown in

Fig. 6.4, where for simplicity we have used the same complex plane for both z and

w � f �z�.

Branch lines and Riemann surfaces

Wenow take a close look at the functionw � ���
z

p
ofExample 6.5. Supposewe allow z

to make a complete counterclockwise motion around the origin starting from point
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A, as shown in Fig. 6.5. AtA, � � �1 and w � ��
r

p
ei�=2. After a complete circuit back

to A; � � �1 � 2� and w � ��
r

p
ei���2��=2 � ÿ ��

r
p

ei�=2. However, by making a second

complete circuit back to A, � � �1 � 4�, and so w � ��
r

p
ei���4��=2 � ��

r
p

ei�=2; that is,

we obtain the same value of w with which we started.

We can describe the above by stating that if 0 � � < 2� we are on one branch of

the multiple-valued function
���
z

p
, while if 2� � � < 4� we are on the other branch

of the function. It is clear that each branch of the function is single-valued. In

order to keep the function single-valued, we set up an arti®cial barrier such as OB

(the wavy line) which we agree not to cross. This arti®cial barrier is called a

branch line or branch cut, point O is called a branch point. Any other line

from O can be used for a branch line.

Riemann (George Friedrich Bernhard Riemann, 1826±1866) suggested another

way to achieve the purpose of the branch line described above. Imagine the z plane

consists of two sheets superimposed on each other.We now cut the two sheets along

OB and join the lower edge of the bottom sheet to the upper edge of the top sheet.

Then on starting in the bottom sheet and making one complete circuit about O we

arrive in the top sheet. We must now imagine the other cut edges to be joined

together (independent of the ®rst join and actually disregarding its existence) so

that by continuing the circuit we go from the top sheet back to the bottom sheet.

The collection of two sheets is called a Riemann surface corresponding to the

function
���
z

p
. Each sheet corresponds to a branch of the function and on each

sheet the function is singled-valued. The concept of Riemann surfaces has the

advantage that the various values of multiple-valued functions are obtained in a

continuous fashion.

The diÿerential calculus of functions of a complex variable

Limits and continuity

The de®nitions of limits and continuity for functions of a complex variable are

similar to those for a real variable. We say that f �z� has limit w0 as z approaches
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z0, which is written as

lim
z!z0

f �z� � w0; �6:9�

if

(a) f �z� is de®ned and single-valued in a neighborhood of z � z0, with the

possible exception of the point z0 itself; and

(b) given any positive number " (however small), there exists a positive number

� such that f �z� ÿ w0j j < " whenever 0 < zÿ z0j j < �.

The limit must be independent of the manner in which z approaches z0.

Example 6.6

(a) If f �z� � z2, prove that limz!z0 ; f �z� � z20
(b) Find limz!z0 f �z� if

f �z� � z2 z 6� z0

0 z � z0
:

(

Solution: (a) We must show that given any " > 0 we can ®nd � (depending in

general on ") such that jz2 ÿ z20j < " whenever 0 < jzÿ z0j < �.

Now if � � 1, then 0 < jzÿ z0j < � implies that

zÿ z0j j z� z0j j < � z� z0j j � � zÿ z0 � 2z0j j;

z2 ÿ z20
ÿÿ ÿÿ < �� zÿ z0j j � 2 z0j j� < � 1� 2 z0j j� �:

Taking � as 1 or "=�1� 2jz0j�, whichever is smaller, we then have jz2 ÿ z20j < "

whenever 0 < jzÿ z0j < �, and the required result is proved.

(b) There is no diÿerence between this problem and that in part (a), since in

both cases we exclude z � z0 from consideration. Hence limz!z0 f �z� � z20. Note

that the limit of f �z� as z ! z0 has nothing to do with the value of f �z� at z0.
A function f �z� is said to be continuous at z0 if, given any " > 0, there exists a

� > 0 such that f �z� ÿ f �z0�j j < " whenever 0 < zÿ z0j j < �. This implies three

conditions that must be met in order that f �z� be continuous at z � z0:

(1) limz!z0 f �z� � w0 must exist;

(2) f �z0� must exist, that is, f �z� is de®ned at z0;

(3) w0 � f �z0�.
For example, complex polynomials, �0 � �1z

1 � �2z
2 � �nz

n (where �i may be

complex), are continuous everywhere. Quotients of polynomials are continuous

whenever the denominator does not vanish. The following example provides

further illustration.
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A function f �z� is said to be continuous in a region R of the z plane if it is

continuous at all points of R.

Points in the z plane where f �z� fails to be continuous are called discontinuities

of f �z�, and f �z� is said to be discontinuous at these points. If limz!z0 f �z� exists
but is not equal to f �z0�, we call the point z0 a removable discontinuity, since by

rede®ning f �z0� to be the same as limz!z0 f �z� the function becomes continuous.

To examine the continuity of f �z� at z � 1, we let z � 1=w and examine the

continuity of f �1=w� at w � 0.

Derivatives and analytic functions

Given a continuous, single-valued function of a complex variable f �z� in some

region R of the z plane, the derivative f 0�z��� df=dz� at some ®xed point z0 in R is

de®ned as

f 0�z0� � lim
�z!0

f �z0 ��z� ÿ f �z0�
�z

; �6:10�

provided the limit exists independently of the manner in which �z ! 0. Here

�z � zÿ z0, and z is any point of some neighborhood of z0. If f
0�z� exists at z0

and every point z in some neighborhood of z0, then f �z� is said to be analytic at z0.

And f �z� is analytic in a region R of the complex z plane if it is analytic at every

point in R.

In order to be analytic, f �z� must be single-valued and continuous. It is

straightforward to see this. In view of Eq. (6.10), whenever f 0�z0� exists, then

lim
�z!0

f �z0 ��z� ÿ f �z0�� � � lim
�z!0

f �z0 ��z� ÿ f �z0�
�z

lim
�z!0

�z � 0

that is,

lim
�z!0

f �z� � f �z0�:

Thus f is necessarily continuous at any point z0 where its derivative exists. But the

converse is not necessarily true, as the following example shows.

Example 6.7

The function f �z� � z* is continuous at z0, but dz*=dz does not exist anywhere. By

de®nition,

dz*

dz
� lim

�z!0

�z��z�*ÿ z*

�z
� lim

�x;�y!0

�x� iy��x� i�y�*ÿ �x� iy�*
�x� i�y

� lim
�x;�y!0

xÿ iy��xÿ i�yÿ �xÿ iy�
�x� i�y

� lim
�x;�y!0

�xÿ i�y

�x� i�y
:
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If �y � 0, the required limit is lim�x!0 �x=�x � 1. On the other hand, if

�x � 0, the required limit is ÿ1. Then since the limit depends on the manner

in which �z ! 0, the derivative does not exist and so f �z� � z* is non-analytic

everywhere.

Example 6.8

Given f �z� � 2z2 ÿ 1, ®nd f 0�z� at z0 � 1ÿ i.

Solution:

f 0�z0� � f 0�1ÿ i� � lim
z!1ÿi

�2z2 ÿ 1� ÿ �2�1ÿ i�2 ÿ 1�
zÿ �1ÿ i�

� lim
z!1ÿi

2�zÿ �1ÿ i���z� �1ÿ i��
zÿ �1ÿ i�

� lim
z!1ÿi

2�z� �1ÿ i�� � 4�1ÿ i�:

The rules for diÿerentiating sums, products, and quotients are, in general, the

same for complex functions as for real-valued functions. That is, if f 0�z0� and

g 0�z0� exist, then:
(1) � f � g� 0�z0� � f 0�z0� � g 0�z0�;
(2) � fg� 0�z0� � f 0�z0�g�z0� � f �z0�g 0�z0�;

(3)
f

g

� � 0
�z0� �

g�z0� f 0�z0� ÿ f �z0�g 0�z0�
g�z0�2

; if g 0�z0� 6� 0:

The Cauchy±Riemann conditions

We call f �z� analytic at z0, if f
0�z� exists for all z in some � neighborhood of z0;

and f �z� is analytic in a region R if it is analytic at every point of R. Cauchy and

Riemann provided us with a simple but extremely important test for the analyti-

city of f �z�. To deduce the Cauchy±Riemann conditions for the analyticity of

f �z�, let us return to Eq. (6.10):

f 0�z0� � lim
�z!0

f �z0 ��z� ÿ f �z0�
�z

:

If we write f �z� � u�x; y� � iv�x; y�, this becomes

f 0�z� � lim
�x;�y!0

u�x��x; y��y� ÿ u�x; y� � i�same for v�
�x� i�y

:

There are of course an in®nite number of ways to approach a point z on a two-

dimensional surface. Let us consider two possible approaches ± along x and along
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y. Suppose we ®rst take the x route, so y is ®xed as we change x, that is, �y � 0

and �x ! 0, and we have

f 0�z� � lim
�x!0

u�x��x; y� ÿ u�x; y�
�x

� i
v�x��x; y� ÿ v�x; y�

�x

� �
� @u

@x
� i

@v

@x
:

We next take the y route, and we have

f 0�z� � lim
�y!0

u�x; y��y� ÿ u�x; y�
i�y

� i
v�x; y��y� ÿ v�x; y�

i�y

� �
� ÿi

@u

@y
� @v

@y
:

Now f �z� cannot possibly be analytic unless the two derivatives are identical.

Thus a necessary condition for f �z� to be analytic is

@u

@x
� i

@v

@x
� ÿi

@u

@y
� @v

@y
;

from which we obtain

@u

@x
� @v

@y
and

@u

@y
� ÿ @v

@x
: �6:11�

These are the Cauchy±Riemann conditions, named after the French mathemati-

cian A. L. Cauchy (1789±1857) who discovered them, and the German mathema-

tician Riemann who made them fundamental in his development of the theory of

analytic functions. Thus if the function f �z� � u�x; y� � iv�x; y� is analytic in a

region R, then u�x; y� and v�x; y� satisfy the Cauchy±Riemann conditions at all

points of R.

Example 6.9

If f �z� � z2 � x2 ÿ y2 � 2ixy, then f 0�z� exists for all z : f 0�z� � 2z, and

@u

@x
� 2x � @v

@y
; and

@u

@y
� ÿ2y � ÿ @v

@x
:

Thus, the Cauchy±Riemann equations (6.11) hold in this example at all points z.

We can also ®nd examples in which u�x; y� and v�x; y� satisfy the Cauchy±

Riemann conditions (6.11) at z � z0, but f
0�z0� doesn't exist. One such example

is the following:

f �z� � u�x; y� � iv�x; y� � z5=jzj4 if z 6� 0

0 if z � 0

(
:

The reader can show that u�x; y� and v�x; y� satisfy the Cauchy±Riemann condi-

tions (6.11) at z � 0, but that f 0�0� does not exist. Thus f �z� is not analytic at

z � 0. The proof is straightforward, but very tedious.
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However, the Cauchy±Riemann conditions do imply analyticity provided an

additional hypothesis is added:

Given f �z� � u�x; y� � iv�x; y�, if u�x; y� and v�x; y� are contin-

uous with continuous ®rst partial derivatives and satisfy the

Cauchy±Riemann conditions (11) at all points in a region R,

then f �z� is analytic in R.

To prove this, we need the following result from the calculus of real-valued

functions of two variables: If h�x; y�; @h=@x, and @h=@y are continuous in some

region R about �x0; y0�, then there exists a function H��x;�y� such that

H��x;�y� ! 0 as ��x;�y� ! �0; 0� and

h�x0 ��x; y0 ��y� ÿ h�x0; y0� �
@h�x0; y0�

@x
�x� @h�x0; y0�

@y
�y

�H��x;�y�
�������������������������������
��x�2 � ��y�2

q
:

Let us return to

lim
�z!0

f �z0 ��z� ÿ f �z0�
�z

;

where z0 is any point in region R and �z � �x� i�y. Now we can write

f �z0 ��z� ÿ f �z0� � �u�x0 ��x; y0 ��y� ÿ u�x0; y0��
� i�v�x0 ��x; y0 ��y� ÿ v�x0; y0��

� @u�x0y0�
@x

�x� @u�x0y0�
@y

�y�H��x;�y�
�������������������������������
��x�2 � ��y�2

q

� i
@v�x0y0�

@x
�x� @v�x0y0�

@y
�y

�

� G��x;�y�
�������������������������������
��x�2 � ��y�2

q �
;

where H��x;�y� ! 0 and G��x;�y� ! 0 as ��x;�y� ! �0; 0�.
Using the Cauchy±Riemann conditions and some algebraic manipulation we

obtain

f �z0 ��z� ÿ f �z0� �
@u�x0; y0�

@x
� i

@v�x0; y0�
@x

� �
��x� i�y�

� H��x;�y� � iG��x;�y�� �
�������������������������������
��x�2 � ��y�2

q
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and

f �z0 ��z� ÿ f �z0�
�z

� @u�x0; y0�
@x

� i
@v�x0; y0�

@x

� H��x ��y� � iG��x ��y�� �
�������������������������������
��x�2 � ��y�2

q
�x� i�y

:

But �������������������������������
��x�2 � ��y�2

q
�x� i�y

ÿÿÿÿÿÿ
ÿÿÿÿÿÿ � 1:

Thus, as �z ! 0, we have ��x;�y� ! �0; 0� and

lim
�z!0

f �z0 ��z� ÿ f �z0�
�z

� @u�x0; y0�
@x

� i
@v�x0; y0�

@x
;

which shows that the limit and so f 0�z0� exist. Since f �z� is diÿerentiable at all

points in region R, f �z� is analytic at z0 which is any point in R.

The Cauchy±Riemann equations turn out to be both necessary and su�cient

conditions that f �z� � u�x; y� � iv�x; y� be analytic. Analytic functions are also

called regular or holomorphic functions. If f �z� is analytic everywhere in the ®nite

z complex plane, it is called an entire function. A function f �z� is said to be

singular at z � z0, if it is not diÿerentiable there; the point z0 is called a singular

point of f �z�.

Harmonic functions

If f �z� � u�x; y� � iv�x; y� is analytic in some region of the z plane, then at every

point of the region the Cauchy±Riemann conditions are satis®ed:

@u

@x
� @v

@y
; and

@u

@y
� ÿ @v

@x
;

and therefore

@2u

@x2
� @2v

@x@y
; and

@2u

@y2
� ÿ @2v

@y@x
;

provided these second derivatives exist. In fact, one can show that if f �z� is

analytic in some region R, all its derivatives exist and are continuous in R.

Equating the two cross terms, we obtain

@2u

@x2
� @2u

@y2
� 0 �6:12a�

throughout the region R.
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Similarly, by diÿerentiating the ®rst of the Cauch±Riemann equations with

respect to y, the second with respect to x, and subtracting we obtain

@2v

@x2
� @2v

@y2
� 0: �6:12b�

Eqs. (6.12a) and (6.12b) are Laplace's partial diÿerential equations in two inde-

pendent variables x and y. Any function that has continuous partial derivatives of

second order and that satis®es Laplace's equation is called a harmonic function.

We have shown that if f �z� � u�x; y� � iv�x; y� is analytic, then both u and v are

harmonic functions. They are called conjugate harmonic functions. This is a

diÿerent use of the word conjugate from that employed in determining z*.

Given one of two conjugate harmonic functions, the Cauchy±Riemann equa-

tions (6.11) can be used to ®nd the other.

Singular points

A point at which f �z� fails to be analytic is called a singular point or a singularity

of f �z�; the Cauchy±Riemann conditions break down at a singularity. Various

types of singular points exist.

(1) Isolated singular points: The point z � z0 is called an isolated singular point

of f �z� if we can ®nd � > 0 such that the circle jzÿ z0j � � encloses no

singular point other than z0. If no such � can be found, we call z0 a non-

isolated singularity.

(2) Poles: If we can ®nd a positive integer n such that

limz!z0�zÿ z0�nf �z� � A 6� 0, then z � z0 is called a pole of order n. If

n � 1, z0 is called a simple pole. As an example, f �z� � 1=�zÿ 2� has a

simple pole at z � 2. But f �z� � 1=�zÿ 2�3 has a pole of order 3 at z � 2.

(3) Branch point: A function has a branch point at z0 if, upon encircling z0 and

returning to the starting point, the function does not return to the starting

value. Thus the function is multiple-valued. An example is f �z� � ���
z

p
, which

has a branch point at z � 0.

(4) Removable singularities: The singular point z0 is called a removable singu-

larity of f �z� if limz!z0 f �z� exists. For example, the singular point at z � 0

of f �z� � sin�z�=z is a removable singularity, since limz!0 sin�z�=z � 1.

(5) Essential singularities: A function has an essential singularity at a point z0 if

it has poles of arbitrarily high order which cannot be eliminated by multi-

plication by �zÿ z0�n, which for any ®nite choice of n. An example is the

function f �z� � e1=�zÿ2�, which has an essential singularity at z � 2.

(6) Singularities at in®nity: The singularity of f �z� at z � 1 is the same type as

that of f �1=w� at w � 0. For example, f �z� � z2 has a pole of order 2 at

z � 1, since f �1=w� � wÿ2 has a pole of order 2 at w � 0.
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Elementary functions of z

The exponential function ez (or exp(z))

The exponential function is of fundamental importance, not only for its own sake,

but also as a basis for de®ning all the other elementary functions. In its de®nition

we seek to preserve as many of the characteristic properties of the real exponential

function ex as possible. Speci®cally, we desire that:

(a) ez is single-valued and analytic.

(b) dez=dz � ez.

(c) ez reduces to ex when Im z � 0:

Recall that if we approach the point z along the x-axis (that is, �y � 0;

�x ! 0), the derivative of an analytic function f 0�z� can be written in the form

f 0�z� � df

dz
� @u

@x
� i

@v

@x
:

If we let

ez � u� iv;

then to satisfy (b) we must have

@u

@x
� i

@v

@x
� u� iv:

Equating real and imaginary parts gives

@u

@x
� u; �6:13�

@v

@x
� v: �6:14�

Eq. (6.13) will be satis®ed if we write

u � ex��y�; �6:15�

where ��y� is any function of y. Moreover, since ez is to be analytic, u and v must

satisfy the Cauchy±Riemann equations (6.11). Then using the second of Eqs.

(6.11), Eq. (6.14) becomes

ÿ @u

@y
� v:
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Diÿerentiating this with respect to y, we obtain

@2u

@y2
� ÿ @v

@y

� ÿ @u

@x
�with the aid of the first of Eqs: �6:11��:

Finally, using Eq. (6.13), this becomes

@2u

@y2
� ÿu;

which, on substituting Eq. (6.15), becomes

ex� 00�y� � ÿex��y� or � 00�y� � ÿ��y�:
This is a simple linear diÿerential equation whose solution is of the form

��y� � A cos y� B sin y:

Then

u � ex��y�
� ex�A cos y� B sin y�

and

v � ÿ @u

@y
� ÿex�ÿA sin y� B cos y�:

Therefore

ez � u� iv � ex��A cos y� B sin y� � i�A sin yÿ B cos y��:
If this is to reduce to ex when y � 0, according to (c), we must have

ex � ex�Aÿ iB�
from which we ®nd

A � 1 and B � 0:

Finally we ®nd

ez � ex�iy � ex�cos y� i sin y�: �6:16�
This expression meets our requirements (a), (b), and (c); hence we adopt it as the

de®nition of ez. It is analytic at each point in the entire z plane, so it is an entire

function. Moreover, it satis®es the relation

ez1ez2 � ez1�z2 : �6:17�
It is important to note that the right hand side of Eq. (6.16) is in standard polar

form with the modulus of ez given by ex and an argument by y:

mod ez � jezj � ex and arg ez � y:
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From Eq. (6.16) we obtain the Euler formula: eiy � cos y� i sin y. Now let

y � 2�, and since cos 2� � 1 and sin 2� � 0, the Euler formula gives

e2�i � 1:

Similarly,

e��i � ÿ1; e��i=2 � �i:

Combining this with Eq. (6.17), we ®nd

ez�2�i � eze2�i � ez;

which shows that ez is periodic with the imaginary period 2�i. Thus

ez�2�nI � ez �n � 0; 1; 2; . . .�: �6:18�
Because of the periodicity all the values that w � f �z� � ez can assume are already

assumed in the strip ÿ� < y � �. This in®nite strip is called the fundamental

region of ez.

Trigonometric and hyperbolic functions

From the Euler formula we obtain

cos x � 1

2
�eix � eÿix�; sin x � 1

2i
�eix ÿ eÿix� �x real�:

This suggests the following de®nitions for complex z:

cos z � 1

2
�eiz � eÿiz�; sin z � 1

2i
�eiz ÿ eÿiz�: �6:19�

The other trigonometric functions are de®ned in the usual way:

tan z � sin z

cos z
; cot z � cos z

sin z
; sec z � 1

cos z
; cosec z � 1

sin z
;

whenever the denominators are not zero.

From these de®nitions it is easy to establish the validity of such familiar for-

mulas as:

sin�ÿz� � ÿ sin z; cos�ÿz� � cos z; and cos2 z� sin2 z � 1;

cos�z1 � z2��cos z1 cos z2 þ sin z1 sin z2; sin�z1 � z2��sin z1 cos z2 � cos z1 sin z2

d cos z

dz
� ÿ sin z;

d sin z

dz
� cos z:

Since ez is analytic for all z, the same is true for the function sin z and cos z. The

functions tan z and sec z are analytic except at the points where cos z is zero,

and cot z and cosec z are analytic except at the points where sin z is zero. The
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functions cos z and sec z are even, and the other functions are odd. Since the

exponential function is periodic, the trigonometric functions are also periodic,

and we have

cos�z� 2n�� � cos z; sin�z� 2n�� � sin z;

tan�z� 2n�� � tan z; cot�z� 2n�� � cot z;

where n � 0; 1; . . . :

Another important property also carries over: sin z and cos z have the same

zeros as the corresponding real-valued functions:

sin z � 0 if and only if z � n� �n integer�;
cos z � 0 if and only if z � �2n� 1��=2 �n integer�:

We can also write these functions in the form u�x; y� � iv�x; y�. As an example,

we give the details for cos z. From Eq. (6.19) we have

cos z � 1

2
�eiz � eÿiz� � 1

2
�ei�x�iy� � eÿi�x�iy�� � 1

2
�eÿyeix � eyeÿix�

� 1

2
�eÿy�cos x� i sin x� � ey�cos xÿ i sin x��

� cos x
ey � eÿy

2
ÿ i sin x

ey ÿ eÿy

2

or, using the de®nitions of the hyperbolic functions of real variables

cos z � cos�x� iy� � cos x cosh yÿ i sin x sinh y;

similarly,

sin z � sin�x� iy� � sin x cosh y� i cos x sinh y:

In particular, taking x � 0 in these last two formulas, we ®nd

cos�iy� � cosh y; sin�iy� � i sinh y:

There is a big diÿerence between the complex and real sine and cosine func-

tions. The real functions are bounded between ÿ1 and �1, but the

complex functions can take on arbitrarily large values. For example, if y is real,

then cos iy � 1
2 �eÿy � ey� ! 1 as y ! 1 or y ! ÿ1.

The logarithmic function w � ln z

The real natural logarithm y � ln x is de®ned as the inverse of the exponential

function ey � x. For the complex logarithm, we take the same approach and

de®ne w � ln z which is taken to mean that

ew � z �6:20�
for each z 6� 0.
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Setting w � u� iv and z � rei� � jzjei� we have

ew � eu�iv � eueiv � rei�:

It follows that

eu � r � zj j or u � ln r � ln zj j
and

v � � � arg z:

Therefore

w � ln z � ln r� i� � ln zj j � i arg z:

Since the argument of z is determined only in multiples of 2�, the complex

natural logarithm is in®nitely many-valued. If we let �1 be the principal argument

of z, that is, the particular argument of z which lies in the interval 0 � � < 2�,

then we can rewrite the last equation in the form

ln z � ln zj j � i��� 2n�� n � 0; � 1; � 2; . . . : �6:21�
For any particular value of n, a unique branch of the function is determined, and

the logarithm becomes eÿectively single-valued. If n � 0, the resulting branch of

the logarithmic function is called the principal value. Any particular branch of the

logarithmic function is analytic, for we have by diÿerentiating the de®nitive rela-

tion z � ew,

dz=dw � ew � z or dw=dz � d�ln z�=dz � 1=z:

For a particular value of n the derivative of ln z thus exists for all z 6� 0.

For the real logarithm, y � ln x makes sense when x > 0. Now we can take a

natural logarithm of a negative number, as shown in the following example.

Example 6.10

ln ÿ4 � lnj ÿ4j � i arg�ÿ4� � ln 4� i��� 2n��; its principal value is ln 4� i���,
a complex number. This explains why the logarithm of a negative number makes

no sense in real variable.

Hyperbolic functions

We conclude this section on ``elementary functions'' by mentioning brie¯y the

hyperbolic functions; they are de®ned at points where the denominator does not

vanish:

sinh z � 1

2
�ez ÿ eÿz�; cosh z � 1

2
�ez � eÿz�;

tanh z � sinh z=cosh z; coth z � cosh z=sinh z;

sech z � 1=cosh z; cosech z � 1=sinh z:
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Since ez and eÿz are entire functions, sinh z and cosh z are also entire functions.

The singularities of tanh z and sech z occur at the zeros of cosh z, and the

singularities of coth z and cosech z occur at the zeros of sinh z.

As with the trigonometric functions, basic identities and derivative formulas

carry over in the same form to the complex hyperbolic functions (just replace x

by z). Hence we shall not list them here.

Complex integration

Complex integration is very important. For example, in applications we often en-

counter real integrals which cannot be evaluated by the usual methods, but we can

get help and relief from complex integration. In theory, the method of complex

integration yields proofs of some basic properties of analytic functions, which

would be very di�cult to prove without using complex integration.

The most fundamental result in complex integration is Cauchy's integral theo-

rem, from which the important Cauchy integral formula follows. These will be the

subject of this section.

Line integrals in the complex plane

As in real integrals, the inde®nite integral
R
f �z�dz stands for any function whose

derivative is f �z�. The de®nite integral of real calculus is now replaced by integrals

of a complex function along a curve. Why? To see this, we can express z in terms

of a real parameter t: z�t� � x�t� � iy�t�, where, say, a � t � b. Now as t varies

from a to b, the point (x; y) describes a curve in the plane. We say this curve is

smooth if there exists a tangent vector at all points on the curve; this means that

dx/dt and dy/dt are continuous and do not vanish simultaneously for a < t < b.

Let C be such a smooth curve in the complex z plane (Fig. 6.6), and we shall

assume that C has a ®nite length (mathematicians call C a recti®able curve). Let

f �z� be continuous at all points of C. Subdivide C into n parts by means of points

z1; z2; . . . ; znÿ1, chosen arbitrarily, and let a � z0; b � zn. On each arc joining zkÿ1

to zk (k � 1; 2; . . . ; n) choose a point wk (possibly wk � zkÿ1 or wk � zk) and form

the sum

Sn �
Xn
k�1

f �wk��zk �zk � zk ÿ zkÿ1:

Now let the number of subdivisions n increase in such a way that the largest of the

chord lengths j�zkj approaches zero. Then the sum Sn approaches a limit. If this

limit exists and has the same value no matter how the zjs and wjs are chosen, then
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this limit is called the integral of f �z� along C and is denoted by

Z
C

f �z�dz or

Z b

a

f �z�dz: �6:22�

This is often called a contour integral (with contour C) or a line integral of f �z�.
Some authors reserve the name contour integral for the special case in which C is

a closed curve (so end a and end b coincide), and denote it by the symbol
H
f �z�dz.

We now state, without proof, a basic theorem regarding the existence of the

contour integral: If C is piecewise smooth and f(z) is continuous on C, thenR
C f �z�dz exists.

If f �z� � u�x; y� � iv�x; y�, the complex line integral can be expressed in terms

of real line integrals as

Z
C

f �z�dz �
Z
C

�u� iv��dx� idy� �
Z
C

�udxÿ vdy� � i

Z
C

�vdx� udy�; �6:23�

where curve C may be open or closed but the direction of integration must be

speci®ed in either case. Reversing the direction of integration results in the change

of sign of the integral. Complex integrals are, therefore, reducible to curvilinear

real integrals and possess the following properties:

(1)
R
C � f �z� � g�z��dz � R

C f �z�dz� R
C g�z�dz;

(2)
R
C kf �z�dz � k

R
C f �z�dz, k � any constant (real or complex);

(3)
R b

a f �z�dz � ÿ R a

b f �z�dz;
(4)

R b

a f �z�dz �
Rm

a f �z�d � R b

m f �z�dz;
(5) jRC f �z�dzj � ML, where M � max j f �z�j on C, and L is the length of C.

Property (5) is very useful, because in working with complex line integrals it is

often necessary to establish bounds on their absolute values. We now give a brief
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proof. Let us go back to the de®nition:Z
C

f �z�dz � lim
n!1

Xn
k�1

f �wk��zk:

Now

Xn
k�1

f �wk��zk

ÿÿÿÿÿ
ÿÿÿÿÿ � Xn

k�1

f �wk�j j �zkj j � M
Xn
k�1

�zkj j � ML;

where we have used the fact that j f �z�j � M for all points z on C and thatP j�zkj represents the sum of all the chord lengths joining zkÿ1 and zk, and

that this sum is not greater than the length L of C. Now taking the limit of

both sides, and property (5) follows. It is possible to show, more generally, thatZ
C

f �z�dz
ÿÿÿÿ

ÿÿÿÿ �
Z
C

f �z�j j dzj j: �6:24�

Example 6.11

Evaluate the integral
R
C�z*�2dz, where C is a straight line joining the points z � 0

and z � 1� 2i.

Solution: Since

�z*�2 � �xÿ iy�2 � x2 ÿ y2 ÿ 2xyi;

we haveZ
C

�z*�2dz �
Z
C

��x2 ÿ y2�dx� 2xydy� � i

Z
C

�ÿ2xydx ��x2 ÿ y2�dy�:

But the Cartesian equation of C is y � 2x, and the above integral therefore

becomes Z
C

�z*�2dz �
Z 1

0

5x2dx� i

Z 1

0

�ÿ10x2�dx � 5=3ÿ i10=3:

Example 6.12

Evaluate the integral Z
C

dz

�zÿ z0�n�1
;

where C is a circle of radius r and center at z0, and n is an integer.
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Solution: For convenience, let zÿ z0 � rei�, where � ranges from 0 to 2� as z

ranges around the circle (Fig. 6.7). Then dz � riei�d�, and the integral becomesZ 2�

0

riei�d�

rn�1ei�n�1�� �
i

rn

Z 2�

0

eÿin�d�:

If n � 0, this reduces to

i

Z 2�

0

d� � 2�i

and if n 6� 0, we have

i

rn

Z 2�

0

�cos n�ÿ i sin n��d� � 0:

This is an important and useful result to which we will refer later.

Cauchy's integral theorem

Cauchy's integral theorem has various theoretical and practical consequences. It

states that if f �z� is analytic in a simply-connected region (domain) and on its

boundary C, then I
C

f �z�dz � 0: �6:25�

What do we mean by a simply-connected region? A region R (mathematicians

prefer the term `domain') is called simply-connected if any simple closed curve

which lies in R can be shrunk to a point without leaving R. That is, a simply-

connected region has no hole in it (Fig. 6.7(a)); this is not true for a multiply-

connected region. The multiply-connected regions of Fig. 6.7(b) and (c) have

respectively one and three holes in them.
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Although a rigorous proof of Cauchy's integral theorem is quite demanding

and beyond the scope of this book, we shall sketch the main ideas. Note that the

integral can be expressed in terms of two-dimensional vector ®elds A and B:I
C

f �z�dz �
I
C

�udxÿ vdy� � i

Z
C

�vdx� udy�

�
I
C

A�r� � dr� i

I
C

B�r� � dr;

where

A�r� � uê1 ÿ vê2; B�r� � vê1 � uê2:

Applying Stokes' theorem, we obtainI
C

f �z�dz �
ZZ

R

da � �r � A� ir� B�

�
ZZ

R

dxdy ÿ @v

@x
� @u

@y

� �
� i

@u

@x
ÿ @v

@y

� �� �
;

where R is the region enclosed by C. Since f �x� satis®es the Cauchy±Riemann

conditions, both the real and the imaginary parts of the integral are zero, thus

proving Cauchy's integral theorem.

Cauchy's theorem is also valid for multiply-connected regions. For simplicity

we consider a doubly-connected region (Fig. 6.8). f �z� is analytic in and on the

boundary of the region R between two simple closed curves C1 and C2. Construct

a cross-cut AF. Then the region bounded by ABDEAFGHFA is simply-connected

so by Cauchy's theoremI
C

f �z�dz �
I
ABDEAFGHFA

f �z�dz � 0

or Z
ABDEA

f �z�dz�
Z
AF

f �z�dz�
Z
FGHF

f �z�dz�
Z
FA

f �z�dz � 0:
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But
R
AF f �z�dz � ÿ R

FA f �z�dz, therefore this becomesZ
ABDEA

f �z�dzy�
Z
FGHF

f �z�dzy � 0

or I
C

f �z�dz �
I
C1

f �z�dz�
I
C2

f �z�dz � 0; �6:26�

where both C1 and C2 are traversed in the positive direction (in the sense that an

observer walking on the boundary always has the region R on his left). Note that

curves C1 and C2 are in opposite directions.

If we reverse the direction of C2 (now C2 is also counterclockwise, that is, both

C1 and C2 are in the same direction.), we haveI
C1

f �z�dzÿ
I
C2

f �z�dz � 0 or

I
C2

f �z�dz �
I
C1

f �z�dz:

Because of Cauchy's theorem, an integration contour can be moved across any

region of the complex plane over which the integrand is analytic without changing

the value of the integral. It cannot be moved across a hole (the shaded area) or a

singularity (the dot), but it can be made to collapse around one, as shown in Fig.

6.9. As a result, an integration contour C enclosing n holes or singularities can be

replaced by n separated closed contours Ci, each enclosing a hole or a singularity:I
C

f �z�dz �
Xn
k�1

I
Ci

f �z�dz

which is a generalization of Eq. (6.26) to multiply-connected regions.

There is a converse of the Cauchy's theorem, known as Morera's theorem. We

now state it without proof:

Morera's theorem:

If f(z) is continuous in a simply-connected region R and the Cauchy's theorem is

valid around every simple closed curve C in R, then f �z� is analytic in R.
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Example 6.13

Evaluate
H
C dz=�zÿ a� where C is any simple closed curve and z � a is (a) outside

C, (b) inside C.

Solution: (a) If a is outside C, then f �z� � 1=�zÿ a� is analytic everywhere inside
and on C. Hence by Cauchy's theoremI

C

dz=�zÿ a� � 0:

(b) If a is inside C and ÿ is a circle of radius 2 with center at z � a so that ÿ is

inside C (Fig. 6.10). Then by Eq. (6.26) we haveI
C

dz=�zÿ a� �
I
ÿ

dz=�zÿ a�:

Now on ÿ, jzÿ aj � ", or zÿ a � "ei�, then dz � i"ei�d�, andI
ÿ

dz

zÿ a
�

Z 2�

0

i"ei�d�

"ei�
� i

Z 2�

0

d� � 2�i:

Cauchy's integral formulas

One of the most important consequences of Cauchy's integral theorem is what is

known as Cauchy's integral formula. It may be stated as follows.

If f(z) is analytic in a simply-connected region R, and z0 is any

point in the interior of R which is enclosed by a simple closed curve

C, then

f �z0� �
1

2�i

I
C

f �z�
zÿ z0

dz; �6:27�

the integration around C being taken in the positive sense (counter-

clockwise).
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To prove this, let ÿ be a small circle with center at z0 and radius r (Fig. 6.11),

then by Eq. (6.26) we haveI
C

f �z�
zÿ z0

dz �
I
ÿ

f �z�
zÿ z0

dz:

Now jzÿ z0j � r or zÿ z0 � rei�; 0 � � < 2�. Then dz � irei�d� and the integral

on the right becomes

I
ÿ

f �z�
zÿ z0

dz �
Z 2�

0

f �z0 � rei��irei�
rei�

d� � i

Z 2�

0

f �z0 � rei��d�:

Taking the limit of both sides and making use of the continuity of f �z�, we haveI
C

f �z�
zÿ z0

dz � lim
r!0

Z 2�

0

f �z0 � rei��d�

� i

Z 2�

0

lim
r!0

f �z0 � rei��d� � i

Z 2�

0

f �z0�d� � 2�if �z0�;

from which we obtain

f �z0� �
1

2�i

I
C

f �z�
zÿ z0

dz q:e:d:

Cauchy's integral formula is also true for multiply-connected regions, but we shall

leave its proof as an exercise.

It is useful to write Cauchy's integral formula (6.27) in the form

f �z� � 1

2�i

I
C

f �z 0�dz 0
z 0 ÿ z

to emphasize the fact that z can be any point inside the close curve C.

Cauchy's integral formula is very useful in evaluating integrals, as shown in the

following example.
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Example 6.14

Evaluate the integral
H
C ezdz=�z2 � 1�, if C is a circle of unit radius with center at

(a) z � i and (b) z � ÿi.

Solution: (a) We ®rst rewrite the integral in the formI
C

ez

z� i

� �
dz

zÿ i
;

then we see that f �z� � ez=�z� i� and z0 � i. Moreover, the function f �z� is

analytic everywhere within and on the given circle of unit radius around z � i.

By Cauchy's integral formula we haveI
C

ez

z� i

� �
dz

zÿ i
� 2�if �i� � 2�i

ei

2i
� ��cos 1� i sin 1�:

(b) We ®nd z0 � ÿi and f �z� � ez=�zÿ i�. Cauchy's integral formula givesI
C

ez

zÿ i

� �
dz

z� i
� ÿ��cos 1ÿ i sin 1�:

Cauchy's integral formula for higher derivatives

Using Cauchy's integral formula, we can show that an analytic function f �z� has
derivatives of all orders given by the following formula:

f �n��z0� �
n!

2�i

I
C

f �z�dz
�zÿ z0�n�1

; �6:28�

where C is any simple closed curve around z0 and f �z� is analytic on and inside C.

Note that this formula implies that each derivative of f �z� is itself analytic, since it
possesses a derivative.

We now prove the formula (6.28) by induction on n. That is, we ®rst prove the

formula for n � 1:

f 0�z0� �
1

2�i

I
C

f �z�dz
�zÿ z0�2

:

As shown in Fig. 6.12, both z0 and z0 � h lie in R, and

f 0�z0� � lim
h!0

f �z0 � h� ÿ f �z0�
h

:

Using Cauchy's integral formula we obtain
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f 0�z0� � lim
h!0

f �z0 � h� ÿ f �z0�
h

� lim
h!0

1

2�ih

I
C

1

zÿ �z0 � h� ÿ
1

zÿ z0

� �
f �z�dz:

Now

1

h

1

zÿ �z0 � h� ÿ
1

zÿ z0

� �
� 1

�zÿ z0�2
� h

�zÿ z0 ÿ h��zÿ z0�2
:

Thus,

f 0�z0� �
1

2�i

I
C

f �z�
�zÿ z0�2

dz� 1

2�i
lim
h!0

h

I
C

f �z�
�zÿ z0 ÿ h��zÿ z0�2

dz:

The proof follows if the limit on the right hand side approaches zero as h ! 0. To

show this, let us draw a small circle ÿ of radius � centered at z0 (Fig. 6.12), then

1

2�i
lim
h!0

h

I
C

f �z�
�zÿ z0 ÿ h��zÿ z0�2

dz � 1

2�i
lim
h!0

h

I
ÿ

f �z�
�zÿ z0 ÿ h��zÿ z0�2

dz:

Now choose h so small (in absolute value) that z0 � h lies in ÿ and jhj < �=2,

and the equation for ÿ is jzÿ z0j � �. Thus, we have jzÿ z0 ÿ hj �
jzÿ z0j ÿ jhj > � ÿ �=2 � �=2. Next, as f �z� is analytic in R, we can ®nd a positive

number M such that j f �z�j � M. And the length of ÿ is 2��. Thus,

h

2�i

I
ÿ

f �z�dz
�zÿ z0 ÿ h��zÿ z0�2

ÿÿÿÿÿ
ÿÿÿÿÿ � hj j

2�

M�2���
��=2���2� �

2 hj jM
�2

! 0 as h ! 0;

proving the formula for f 0�z0�.
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For n � 2, we begin with

f 0�z0 � h� ÿ f 0�z0�
h

� 1

2�ih

I
C

1

�zÿ z0h�2
ÿ 1

�zÿ z0�2
( )

f �z�dz

� 2!

2�i

I
C

f �z�
�zÿ z0�3

dz� h

2�i

I
C

3�zÿ z0� ÿ 2h

�zÿ z0 ÿ h�2�zÿ z0�3
f �z�dz:

The result follows on taking the limit as h ! 0 if the last term approaches zero.

The proof is similar to that for the case n � 1, for using the fact that the integral

around C equals the integral around ÿ, we have

h

2�i

I
ÿ

3�zÿ z0� ÿ 2h

�zÿ z0 ÿ h�2�zÿ z0�3
f �z�dz � hj j

2�

M�2���
��=2�2�3 �

4 hj jM
�4

;

ÿÿÿÿÿ
ÿÿÿÿÿ

assuming M exists such that j�3�zÿ z0� ÿ 2h� f �z�j < M.

In a similar manner we can establish the results for n � 3; 4; . . .. We leave it to

the reader to complete the proof by establishing the formula for f �n�1��z0�, assum-

ing that f �n��z0� is true.
Sometimes Cauchy's integral formula for higher derivatives can be used to

evaluate integrals, as illustrated by the following example.

Example 6.15

Evaluate I
C

e2z

�z� 1�4 dz;

where C is any simple closed path not passing through ÿ1. Consider two cases:

(a) C does not enclose ÿ1. Then e2z=�z� 1�4 is analytic on and inside C, and the

integral is zero by Cauchy's integral theorem.

(b) C encloses ÿ1. Now Cauchy's integral formula for higher derivatives

applies.

Solution: Let f �z� � e2z, then

f �3��ÿ1� � 3!

2�i

I
C

e2z

�z� 1�4 dz:

Now f �3��ÿ1� � 8eÿ2, henceI
C

e2z

�z� 1�4 dz �
2�i

3!
f �3��ÿ1� � 8�

3
eÿ2i:
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Series representations of analytic functions

We now turn to a very important notion: series representations of analytic func-

tions. As a prelude we must discuss the notion of convergence of complex series.

Most of the de®nitions and theorems relating to in®nite series of real terms can be

applied with little or no change to series whose terms are complex.

Complex sequences

A complex sequence is an ordered list which assigns to each positive integer n a

complex number zn:

z1; z2; . . . ; zn; . . . :

The numbers zn are called the terms of the sequence. For example, both

i; i2; . . . ; in; . . . or 1� i; �1� i�=2; �1� i�=4; �1� i�=8; . . . are complex sequences.

The nth term of the second sequence is (1� i�=2nÿ1. A sequence

z1; z2; . . . ; zn; . . . is said to be convergent with the limit l (or simply to converge

to the number l) if, given " > 0, we can ®nd a positive integer N such that

jzn ÿ lj < " for each n � N (Fig. 6.13). Then we write

lim
n!1 zn � l:

In words, or geometrically, this means that each term zn with n > N (that is,

zN ; zN�1; zN�2; . . .� lies in the open circular region of radius " with center at l.

In general, N depends on the choice of ". Here is an illustrative example.

Example 6.17

Using the de®nition, show that limn!1�1� z=n� � 1 for all z.
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Solution: Given any number " > 0, we must ®nd N such that

1� z

n
ÿ 1

ÿÿÿ ÿÿÿ < "; for all n > N

from which we ®nd

z=nj j < "

or

zj j=n < " if n > zj j=" � N:

Setting zn � xn � iyn, we may consider a complex sequence z1; z2; . . . ; zn in

terms of real sequences, the sequence of the real parts and the sequence of the

imaginary parts: x1; x2; . . . ; xn, and y1; y2; . . . ; yn. If the sequence of the real parts

converges to the number A, and the sequence of the imaginary parts converges to

the number B, then the complex sequence z1; z2; . . . ; zn converges to the limit

A� iB, as illustrated by the following example.

Example 6.18

Consider the complex sequence whose nth term is

zn �
n2 ÿ 2n� 3

3n2 ÿ 4
� i

2nÿ 1

2n� 1
:

Setting zn � xn � iyn, we ®nd

xn �
n2 ÿ 2n� 3

3n2 ÿ 4
� 1ÿ �2=n� � �3=n2�

3ÿ 4=n2
and yn �

2nÿ 1

2n� 1
� 2ÿ 1=n

2� 1=n
:

As n ! 1; xn ! 1=3 and yn ! 1, thus, zn ! 1=3� i.

Complex series

We are interested in complex series whose terms are complex functions

f1�z� � f2�z� � f3�z� � � � � � fn�z� � � � � : �6:29�
The sum of the ®rst n terms is

Sn�z� � f1�z� � f2�z� � f3�z� � � � � � fn�z�;
which is called the nth partial sum of the series (6.29). The sum of the remaining

terms after the nth term is called the remainder of the series.

We can now associate with the series (6.29) the sequence of its partial sums

S1;S2; . . . : If this sequence of partial sums is convergent, then the series converges;

and if the sequence diverges, then the series diverges. We can put this in a formal

way. The series (6.29) is said to converge to the sum S�z� in a region R if for any
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" > 0 there exists an integer N depending in general on " and on the particular

value of z under consideration such that

Sn�z� ÿ S�z�j j < " for all n > N

and we write

lim
n!1Sn�z� � S�z�:

The diÿerence Sn�z� ÿ S�z� is just the remainder after n terms, Rn�z�; thus the

de®nition of convergence requires that jRn�z�j ! 0 as n ! 1.

If the absolute values of the terms in (6.29) form a convergent series

f1�z�j j � f2�z�j j � f3�z�j j � � � � � fn�z�j j � � � �

then series (6.29) is said to be absolutely convergent. If series (6.29) converges but

is not absolutely convergent, it is said to be conditionally convergent. The terms

of an absolutely convergent series can be rearranged in any manner whatsoever

without aÿecting the sum of the series whereas rearranging the terms of a con-

ditionally convergent series may alter the sum of the series or even cause the series

to diverge.

As with complex sequences, questions about complex series can also be reduced

to questions about real series, the series of the real part and the series of the

imaginary part. From the de®nition of convergence it is not di�cult to prove

the following theorem:

A necessary and su�cient condition that the series of complex

terms

f1�z� � f2�z� � f3�z� � � � � � fn�z� � � � �

should convergence is that the series of the real parts and the series

of the imaginary parts of these terms should each converge.

Moreover, if

X1
n�1

Re fn and
X1
n�1

Im fn

converge to the respective functions R(z) and I(z), then the

given series converges to R�z� � I�z�, and the series

f1�z� � f2�z� � f3�z� � � � � � fn�z� � � � � converges to R�z� � iI�z�.
Of all the tests for the convergence of in®nite series, the most useful is probably

the familiar ratio test, which applies to real series as well as complex series.
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Ratio test

Given the series f1�z� � f2�z� � f3�z� � � � � � fn�z� � � � �, the series converges abso-

lutely if

0 < r�z�j j � lim
n!1

fn�1�z�
fn�z�

ÿÿÿÿ
ÿÿÿÿ < 1 �6:30�

and diverges if jr�z�j > 1. When jr�z�j � 1, the ratio test provides no information

about the convergence or divergence of the series.

Example 6.19

Consider the complex series

X
n

Sn �
X1
n�0

2ÿn � ieÿn� � �
X1
n�0

2ÿn � i
X1
n�0

eÿn:

The ratio tests on the real and imaginary parts show that both converge:

lim
n!1

2ÿ�n�1�

2ÿn

ÿÿÿÿÿ
ÿÿÿÿÿ � 1

2
, which is positive and less than 1;

lim
n!1

eÿ�n�1�

eÿn

ÿÿÿÿÿ
ÿÿÿÿÿ � 1

e
, which is also positive and less than 1.

One can prove that the full series converges to

X1
n�1

Sn �
1

1ÿ 1=2
� i

1

1ÿ eÿ1
:

Uniform convergence and the Weierstrass M-test

To establish conditions, under which series can legitimately be integrated or

diÿerentiated term by term, the concept of uniform convergence is required:

A series of functions is said to converge uniformly to the function

S(z) in a region R, either open or closed, if corresponding to an

arbitrary " < 0 there exists an integral N, depending on " but not

on z, such that for every value of z in R

S�z� ÿ Sn�z�j j < " for all n > N:

One of the tests for uniform convergence is the Weierstrass M-test (a su�cient

test).
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If a sequence of positive constants fMng exists such that

j fn�z�j � Mn for all positive integers n and for all values of z in

a given region R, and if the series

M1 �M2 � � � � �Mn � � � �

is convergent, then the series

f1�z� � f2�z� � f3�z� � � � � � fn�z� � � � �

converges uniformly in R.

As an illustrative example, we use it to test for uniform convergence of the

series X1
n�1

un �
X1
n�1

zn

n
�����������
n� 1

p

in the region jzj � 1. Now

junj �
jzjn

n
�����������
n� 1

p � 1

n3=2

if jzj � 1. Calling Mn � 1=n3=2, we see that
P

Mn converges, as it is a p series with

p � 3=2. Hence by Wierstrass M-test the given series converges uniformly (and

absolutely) in the indicated region jzj � 1.

Power series and Taylor series

Power series are one of the most important tools of complex analysis, as power

series with non-zero radii of convergence represent analytic functions. As an

example, the power series

S �
X1
n�0

anz
n �6:31�

clearly de®nes an analytic function as long as the series converge. We will only be

interested in absolute convergence. Thus we have

lim
n!1

an�1z
n�1

anz
n

ÿÿÿÿÿ
ÿÿÿÿÿ < 1 or zj j < R � lim

n!1
anj j
an�1j j ;

where R is the radius of convergence since the series converges for all z lying

strictly inside a circle of radius R centered at the origin. Similarly, the series

S �
X1
n�0

an�zÿ z0�n

converges within a circle of radius R centered at z0.
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Notice that the Eq. (6.31) is just a Taylor series at the origin of a function with

f n�0� � ann!. Every choice we make for the in®nite variables an de®nes a new

function with its own set of derivatives at the origin. Of course we can go beyond

the origin, and expand a function in a Taylor series centered at z � z0. Thus in the

complex analysis there is a Taylor expansion for every analytic function. This is

the question addressed by Taylor's theorem (named after the English mathemati-

cian Brook Taylor, 1685±1731):

If f(z) is analytic throughout a region R bounded by a simple

closed curve C, and if z and a are both interior to C, then f(z)

can be expanded in a Taylor series centered at z � a for

jzÿ aj < R:

f �z� � f �a� � f 0�a��zÿ a� � f 00�a� �zÿ a�2
2!

� � � �

� f n�a� �zÿ a�nÿ1

n!
� Rn; �6:32�

where the remainder Rn is given by

Rn�z� � �zÿ a�n 1

2�i

I
C

f �w�dw
�wÿ a�n�wÿ z�:

Proof: To prove this, we ®rst rewrite Cauchy's integral formula as

f �z� � 1

2�i

I
C

f �w�dw
wÿ z

� 1

2�i

I
C

f �w�
wÿ a

1

1ÿ �zÿ a�=�wÿ a�
� �

dw: �6:33�

For later use we note that since w is on C while z is inside C,

zÿ a

wÿ a

ÿÿÿ ÿÿÿ < 1:

From the geometric progression

1� q� q2 � � � � � qn � 1ÿ qn�1

1ÿ q
� 1

1ÿ q
ÿ qn�1

1ÿ q

we obtain the relation

1

1ÿ q
� 1� q� � � � � qn � qn�1

1ÿ q
:
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By setting q � �zÿ a�=�wÿ a� we ®nd

1

1ÿ ��zÿ a�=�wÿ a�� � 1� zÿ a

wÿ a
� zÿ a

wÿ a

� �2

� � � � � zÿ a

wÿ a

� �n

� ��zÿ a�=�wÿ a��n�1

�wÿ z�=�wÿ a� :

We insert this into Eq. (6.33). Since z and a are constant, we may take the powers

of (zÿ a) out from under the integral sign, and then Eq. (6.33) takes the form

f �z� � 1

2�i

I
C

f �w�dw
wÿ a

� zÿ a

2�i

I
C

f �w�dw
�wÿ a�2 � � � � � �zÿ a�n

2�i

I
C

f �w�dw
�wÿ a�n�1

� Rn�z�:

Using Eq. (6.28), we may write this expansion in the form

f �z� � f �a� � zÿ a

1!
f 0�a� � �zÿ a�2

2!
f 00�a� � � � � � �zÿ a�n

n!
f n�a� � Rn�z�;

where

Rn�z� � �zÿ a�n 1

2�i

I
C

f �w�dw
�wÿ a�n�wÿ z�:

Clearly, the expansion will converge and represent f �z� if and only if

limn!1 Rn�z� � 0. This is easy to prove. Note that w is on C while z is inside

C, so we have jwÿ zj > 0. Now f �z� is analytic inside C and on C, so it follows

that the absolute value of f �w�=�wÿ z� is bounded, say,
f �w�
wÿ z

ÿÿÿÿ
ÿÿÿÿ < M

for all w on C. Let r be the radius of C, then jwÿ aj � r for all w on C, and C has

the length 2�r. Hence we obtain

Rnj j � jzÿ ajn
2�

I
C

f �w�dw
�wÿ a�n�wÿ z�

ÿÿÿÿ
ÿÿÿÿ < zÿ aj jn

2�
M

1

rn
2�r

� Mr
zÿ a

r

ÿÿÿ ÿÿÿn! 0 as n ! 1:

Thus

f �z� � f �a� � zÿ a

1!
f 0�a� � �zÿ a�2

2!
f 00�a� � � � � � �zÿ a�n

n!
f n�a�

is a valid representation of f �z� at all points in the interior of any circle with its

center at a and within which f �z� is analytic. This is called the Taylor series of f �z�
with center at a. And the particular case where a � 0 is called the Maclaurin series

of f �z� [Colin Maclaurin 1698±1746, Scots mathematician].
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The Taylor series of f �z� converges to f �z� only within a circular region around

the point z � a, the circle of convergence; and it diverges everywhere outside this

circle.

Taylor series of elementary functions

Taylor series of analytic functions are quite similar to the familiar Taylor series of

real functions. Replacing the real variable in the latter series by a complex vari-

able we may `continue' real functions analytically to the complex domain. The

following is a list of Taylor series of elementary functions: in the case of multiple-

valued functions, the principal branch is used.

ez �
X1
n�0

zn

n!
� 1� z� z2

2!
� � � �; jzj < 1;

sin z �
X1
n�0

�ÿ1�n z2n�1

�2n� 1�! � zÿ z3

3!
� z5

5!
ÿ� � � �; jzj < 1;

cos z �
X1
n�0

�ÿ1�n z2n

�2n�! � 1ÿ z2

2!
� z4

4!
ÿ� � � �; jzj < 1;

sinh z �
X1
n�0

z2n�1

�2n� 1�! � z� z3

3!
� z5

5!
� � � �; jzj < 1;

cosh z �
X1
n�0

z2n

�2n�! � 1� z2

2!
� z4

4!
� � � �; jzj < 1;

ln�1� z� �
X1
n�0

�ÿ1�n�1zn

n
� zÿ z2

2
� z3

3
ÿ� � � � ; jzj < 1:

Example 6.20

Expand (1ÿ z�ÿ1 about a.

Solution:

1

1ÿ z
� 1

�1ÿ a� ÿ �zÿ a� �
1

1ÿ a

1

1ÿ �zÿ a�=�1ÿ a� �
1

1ÿ a

X1
n�0

zÿ a

1ÿ a

� �n

:

We have established two surprising properties of complex analytic functions:

(1) They have derivatives of all order.

(2) They can always be represented by Taylor series.

This is not true in general for real functions; there are real functions which have

derivatives of all orders but cannot be represented by a power series.
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Example 6.21

Expand ln(a� z) about a.

Solution: Suppose we know the Maclaurin series, then

ln�1� z�� ln�1� a� zÿ a� � ln�1� a� 1� zÿ a

1� a

� �
� ln�1� a� � ln 1� zÿ a

1� a

� �

� ln�1� a� � zÿ a

1� a

� �
ÿ 1

2

zÿ a

1� a

� �2

� 1

3

zÿ a

1� a

� �3

ÿ� � � � :

Example 6.22

Let f �z� � ln�1� z�, and consider that branch which has the value zero when

z � 0.

(a) Expand f �z� in a Taylor series about z � 0, and determine the region of

convergence.

(b) Expand ln[(1� z�=�1ÿ z)] in a Taylor series about z � 0.

Solution: (a)

f �z� � ln�1� z� f �0� � 0

f 0�z� � �1� z�ÿ1 f 0�0� � 1

f 00�z� � ÿ�1� z�ÿ2 f 00�0� � ÿ1

f F�z� � 2�1� z�ÿ3 f F�0� � 2!

..

. ..
.

f �n�1��z� � �ÿ1�nn!�1� n��n�1� f �n�1��0� � �ÿ1�nn!:
Then

f �z� � ln�1� z� � f �0� � f 0�0�z� f 00�0�
2!

z2 � f F�0�
3!

z3 � � � �

� zÿ z2

2
� z3

3
ÿ z4

4
�ÿ � � � :

The nth term is un � �ÿ1�nÿ1zn=n. The ratio test gives

lim
n!1

un�1

un

ÿÿÿÿ
ÿÿÿÿ � lim

n!1
nz

n� 1

ÿÿÿÿ
ÿÿÿÿ � zj j

and the series converges for jzj < 1.
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(b) ln��1� z�=�1ÿ z�� � ln�1� z� ÿ ln�1ÿ z�. Next, replacing z by ÿz in

Taylor's expansion for ln�1� z�, we have

ln�1ÿ z� � ÿzÿ z2

2
ÿ z3

3
ÿ z4

4
ÿ � � � :

Then by subtraction, we obtain

ln
1� z

1ÿ z
� 2 z� z3

3
� z5

5
� � � �

þ !
�

X1
n�0

2z2n�1

2n� 1
:

Laurent series

In many applications it is necessary to expand a function f �z� around points

where or in the neighborhood of which the function is not analytic. The Taylor

series is not applicable in such cases. A new type of series known as the Laurent

series is required. The following is a representation which is valid in an annular

ring bounded by two concentric circles of C1 and C2 such that f �z� is single-valued
and analytic in the annulus and at each point of C1 and C2, see Fig. 6.14. The

function f �z� may have singular points outside C1 and inside C2. Hermann

Laurent (1841±1908, French mathematician) proved that, at any point in the

annular ring bounded by the circles, f �z� can be represented by the series

f �z� �
X1
n�ÿ1

an�zÿ a�n �6:34�

where

an �
1

2�i

I
C

f �w�dw
�wÿ a�n�1

; n � 0;�1;�2; . . . ; �6:35�
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each integral being taken in the counterclockwise sense around curve C lying in

the annular ring and encircling its inner boundary (that is, C is any concentric

circle between C1 and C2).

To prove this, let z be an arbitrary point of the annular ring. Then by Cauchy's

integral formula we have

f �z� � 1

2�i

I
C1

f �w�dw
wÿ z

� 1

2�i

I
C2

f �w�dw
wÿ z

;

where C2 is traversed in the counterclockwise direction and C2 is traversed in the

clockwise direction, in order that the entire integration is in the positive direction.

Reversing the sign of the integral around C2 and also changing the direction of

integration from clockwise to counterclockwise, we obtain

f �z� � 1

2�i

I
C1

f �w�dw
wÿ z

ÿ 1

2�i

I
C2

f �w�dw
wÿ z

:

Now

1=�wÿ z� � �1=�wÿ a��f1=�1ÿ �zÿ a�=�wÿ a��g;

ÿ1=�wÿ z� � 1=�zÿ w� � �1=�zÿ a��f1=�1ÿ �wÿ a�=�zÿ a��g:

Substituting these into f �z� we obtain:

f �z� � 1

2�i

I
C1

f �w�dw
wÿ z

ÿ 1

2�i

I
C2

f �w�dw
wÿ z

� 1

2�i

I
C1

f �w�
wÿ a

1

1ÿ �zÿ a�=�wÿ a�
� �

dw

� 1

2�i

I
C2

f �w�
zÿ a

1

1ÿ �wÿ a�=�zÿ a�
� �

dw:

Now in each of these integrals we apply the identity

1

1ÿ q
� 1� q� q2 � � � � � qnÿ1 � qn

1ÿ q
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to the last factor. Then

f �z� � 1

2�i

I
C1

f �w�
wÿ a

1� zÿ a

wÿ a
� � � � � zÿ a

wÿ a

� �nÿ1� �zÿ a�n=�wÿ a�n
1ÿ �zÿ a�=�wÿ a�

� �
dw

� 1

2�i

I
C2

f �w�
zÿ a

1� wÿ a

zÿ a
� � � � � wÿ a

zÿ a

� �nÿ1� �wÿ a�n=�zÿ a�n
1ÿ �wÿ a�=�zÿ a�

� �
dw

� 1

2�i

I
C1

f �w�dw
wÿ a

� zÿ a

2�i

I
C2

f �w�dw
�wÿ a�2 � � � � � �zÿ a�nÿ1

2�i

I
C2

f �w�dw
�wÿ a�n � Rn1

� 1

2�i�zÿ a�
I
C2

f �w�dw� 1

2�i�zÿ a�2
I
C1

�wÿ a� f �w�dw� � � �

� 1

2�i�zÿ a�n
I
C1

�wÿ a�nÿ1f �w�dw� Rn2;

where

Rn1 �
�zÿ a�n
2�i

I
C1

f �w�dw
�wÿ a�n�wÿ z�;

Rn2 �
1

2�i�zÿ a�n
I
C2

�wÿ a�nf �w�dw
zÿ w

:

The theorem will be established if we can show that limn!1 Rn2 � 0

and limn!1 Rn1 � 0. The proof of limn!1 Rn1 � 0 has already been given in the

derivation of the Taylor series. To prove the second limit, we note that for values

of w on C2

jwÿ aj � r1; jzÿ aj � � say; jzÿ wj � j�zÿ a� ÿ �wÿ a�j � �ÿ r1;

and

j� f �w�j � M;

where M is the maximum of j f �w�j on C2. Thus

Rn2

ÿÿ ÿÿ � 1

2�i�zÿ a�n
I
C2

�wÿ a�nf �w�dw
zÿ w

ÿÿÿÿ
ÿÿÿÿ � 1

2�ij j zÿ aj jn
I
C2

wÿ aj jn f �w�j j dwj j
zÿ wj j

or

Rn2

ÿÿ ÿÿ � rn1M

2��n��ÿ r1�
I
C2

dwj j � M

2�

r1
�

� �n
2�r1
�ÿ r1

:
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Since r1=� < 1, the last expression approaches zero as n ! 1. Hence

limn!1 Rn2 � 0 and we have

f �z� � 1

2�i

I
C1

f �w�dw
wÿ a

� 1

2�i

I
C1

f �w�dw
�wÿ a�2

" #
�zÿ a�

� 1

2�i

I
C1

f �w�dw
�wÿ a�3

" #
�zÿ a�2 � � � �

� 1

2�i

I
C2

f �w�dw
� �

1

zÿ a
� 1

2�i

I
C2

�wÿ a� f �w�dw
� �

1

�zÿ a�2 � � � � :

Since f �z� is analytic throughout the region between C1 and C2, the paths of

integration C1 and C2 can be replaced by any other curve C within this region

and enclosing C2. And the resulting integrals are precisely the coe�cients an given

by Eq. (6.35). This proves the Laurent theorem.

It should be noted that the coe�cients of the positive powers (zÿ a) in the

Laurent expansion, while identical in form with the integrals of Eq. (6.28), cannot

be replaced by the derivative expressions

f n�a�
n!

as they were in the derivation of Taylor series, since f �z� is not analytic through-
out the entire interior of C2 (or C), and hence Cauchy's generalized integral

formula cannot be applied.

In many instances the Laurent expansion of a function is not found through the

use of the formula (6.34), but rather by algebraic manipulations suggested by the

nature of the function. In particular, in dealing with quotients of polynomials it is

often advantageous to express them in terms of partial fractions and then expand

the various denominators in series of the appropriate form through the use of the

binomial expansion, which we assume the reader is familiar with:

�s� t�n � sn � nsnÿ1t
n�nÿ 1�

2!
snÿ2t2 � n�nÿ 1��nÿ 2�

3!
snÿ3t3 � � � � :

This expansion is valid for all values of n if jsj > jtj: If jsj � jtj the expansion is

valid only if n is a non-negative integer.

That such procedures are correct follows from the fact that the Laurent expan-

sion of a function over a given annular ring is unique. That is, if an expansion of the

Laurent type is found by any process, it must be the Laurent expansion.

Example 6.23

Find the Laurent expansion of the function f �z� � �7zÿ 2�=��z� 1�z�zÿ 2�� in
the annulus 1 < jz� 1j < 3.
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Solution: We ®rst apply the method of partial fractions to f �z� and obtain

f �z� � ÿ3

z� 1
� 1

z
� 2

zÿ 2
:

Now the center of the given annulus is z � ÿ1, so the series we are seeking must

be one involving powers of z� 1. This means that we have to modify the second

and third terms in the partial fraction representation of f �z�:

f �z� � ÿ3

z� 1
� 1

�z� 1� ÿ 1
� 2

�z� 1� ÿ 3
;

but the series for ��z� 1� ÿ 3�ÿ1 converges only where jz� 1j > 3, whereas we

require an expansion valid for jz� 1j < 3. Hence we rewrite the third term in

the other order:

f �z� � ÿ3

z� 1
� 1

�z� 1� ÿ 1
� 2

ÿ3� �z� 1�
� ÿ3�z� 1�ÿ1 � ��z� 1� ÿ 1�ÿ1 � 2�ÿ3� �z� 1��ÿ1

� � � � � �z� 1�ÿ2 ÿ 2�z� 1�ÿ1 ÿ 2

3
ÿ 2

9
�z� 1�

ÿ 2

27
�z� 1�2 ÿ � � � ; 1 < jz� 1j < 3:

Example 6.24

Given the following two functions:

�a� e3z�z� 1�ÿ3; �b� �z� 2� sin 1

z� 2
;

®nd Laurent series about the singularity for each of the functions, name the

singularity, and give the region of convergence.

Solution: (a) z � ÿ1 is a triple pole (pole of order 3). Let z� 1 � u, then

z � uÿ 1 and

e3z

�z� 1�3 �
e3�uÿ1�

u3
� eÿ3 e

3u

u3
� eÿ3

u3
1� 3u� �3u�2

2!
� �3u�3

3!
� �3u�4

4!
� � � �

þ !

� eÿ3 1

�z� 1�3 �
3

�z� 1�2 �
9

2�z� 1� �
9

2
� 27�z� 1�

8
� � � �

þ !
:

The series converges for all values of z 6� ÿ1.

(b) z � ÿ2 is an essential singularity. Let z� 2 � u, then z � uÿ 2, and
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�z� 2� sin 1

z� 2
� u sin

1

u
� u

1

u
ÿ 1

3!u3
� 1

5!u5
� � � �

� �

� 1ÿ 1

6�z� 2�2 �
1

120�z� 2�4 ÿ� � � � :

The series converges for all values of z 6� ÿ2.

Integration by the method of residues

We now turn to integration by the method of residues which is useful in evaluat-

ing both real and complex integrals. We ®rst discuss brie¯y the theory of residues,

then apply it to evaluate certain types of real de®nite integrals occurring in physics

and engineering.

Residues

If f �z� is single-valued and analytic in a neighborhood of a point z � a, then, by

Cauchy's integral theorem, I
C

f �z�dz � 0

for any contour in that neighborhood. But if f �z� has a pole or an isolated

essential singularity at z � a and lies in the interior of C, then the above integral

will, in general, be diÿerent from zero. In this case we may represent f �z� by a

Laurent series:

f �z��
X1

n�ÿ1
an�zÿ a�n�a0 � a1�zÿ a� � a2�zÿ a�2 � � � � � aÿ1

zÿ a
� aÿ2

�zÿ a�2 � � � � ;

where

an �
1

2�i

I
C

f �z�
�zÿ a�n�1

dz; n � 0; � 1; � 2; . . . :

The sum of all the terms containing negative powers, namely

aÿ1=�zÿ a� � aÿ2=�zÿ a�2 � � � � ; is called the principal part of f �z� at z � a. In

the special case n � ÿ1, we have

aÿ1 �
1

2�i

I
C

f �z�dz

or I
C

f �z�dz � 2�iaÿ1; �6:36�
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the integration being taken in the counterclockwise sense around a simple closed

curve C that lies in the region 0 < jzÿ aj < D and contains the point z � a, where

D is the distance from a to the nearest singular point of f �z�. The coe�cient aÿ1 is

called the residue of f �z� at z � a, and we shall use the notation

aÿ1 � Res
z�a

f �z�: �6:37�

We have seen that Laurent expansions can be obtained by various methods,

without using the integral formulas for the coe�cients. Hence, we may determine

the residue by one of those methods and then use the formula (6.36) to evaluate

contour integrals. To illustrate this, let us consider the following simple example.

Example 6.25

Integrate the function f �z� � zÿ4 sin z around the unit circle C in the counter-

clockwise sense.

Solution: Using

sin z �
X1
n�0

�ÿ1�n z2n�1

�2n� 1�! � zÿ z3

3!
� z5

5!
ÿ� � � � ;

we obtain the Laurent series

f �z� � sin z

z4
� 1

z3
ÿ 1

3!z
� z

5!
ÿ z3

7!
�ÿ � � � :

We see that f �z� has a pole of third order at z � 0, the corresponding residue is

aÿ1 � ÿ1=3!, and from Eq. (6.36) it follows thatI
sin z

z4
dz � 2�iaÿ1 � ÿi

�

3
:

There is a simple standard method for determining the residue in the case of a

pole. If f �z� has a simple pole at a point z � a, the corresponding Laurent series is

of the form

f �z� �
X1
n�ÿ1

an�zÿ a�n � a0 � a1�zÿ a� � a2�zÿ a�2 � � � � � aÿ1

zÿ a
;

where aÿ1 6� 0. Multiplying both sides by zÿ a, we have

�zÿ a� f �z� � �zÿ a��a0 � a1�zÿ a� � � � �� � aÿ1

and from this we have

Res
z�a

f �z� � aÿ1 � lim
z!a

�zÿ a� f �z�: �6:38�
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Another useful formula is obtained as follows. If f �z� can be put in the form

f �z� � p�z�
q�z� ;

where p�z� and q�z� are analytic at z � a; p�z� 6� 0, and q�z� � 0 at z � a (that is,

q�z� has a simple zero at z � a�. Consequently, q�z� can be expanded in a Taylor

series of the form

q�z� � �zÿ a�q 0�a� � �zÿ a�2
2!

q 00�a� � � � � :

Hence

Res
z�a

f �z� � lim
z!a

�zÿ a� p�z�
q�z� � lim

z!a

�zÿ a�p�z�
�zÿ a��q 0�a� � �zÿ a�q 00�a�=2� � � �� �

p�a�
q 0�a� :

�6:39�

Example 6.26

The function f �z� � �4ÿ 3z�=�z2 ÿ z� is analytic except at z � 0 and z � 1 where

it has simple poles. Find the residues at these poles.

Solution: We have p�z� � 4ÿ 3z; q�z� � z2 ÿ z. Then from Eq. (6.39) we obtain

Res
z�0

f �z� � 4ÿ 3z

2zÿ 1

� �
z�0

� ÿ4; Res
z�1

f �z� � 4ÿ 3z

2zÿ 1

� �
z�1

� 1:

We now consider poles of higher orders. If f �z� has a pole of order m > 1 at a

point z � a, the corresponding Laurent series is of the form

f �z� � a0 � a1�zÿ a� � a2�zÿ a�2 � � � � � aÿ1

zÿ a
� aÿ2

�zÿ a�2 � � � � � aÿm

�zÿ a�m ;

where aÿm 6� 0 and the series converges in some neighborhood of z � a, except at

the point itself. By multiplying both sides by �zÿ a�m we obtain

�zÿ a�mf �z� � aÿm � aÿm�1�zÿ a� � aÿm�2�zÿ a�2 � � � � � aÿm��mÿ1��zÿ a��mÿ1�

� �zÿ a�m�a0 � a1�zÿ a� � � � ��:
This represents the Taylor series about z � a of the analytic function on the left

hand side. Diÿerentiating both sides (mÿ 1) times with respect to z, we have

dmÿ1

dzmÿ1
��zÿ a�mf �z�� � �mÿ 1�!aÿ1 �m�mÿ 1� � � � 2a0�zÿ a� � � � � :
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Thus on letting z ! a

lim
z!a

dmÿ1

dzmÿ1
��zÿ a�mf �z�� � �mÿ 1�!aÿ1;

that is,

Res
z�a

f �z� � 1

�mÿ 1�! limz!a

dmÿ1

dzmÿ1
�zÿ a�mf �z�� �

( )
: �6:40�

Of course, in the case of a rational function f �z� the residues can also be

determined from the representation of f �z� in terms of partial fractions.

The residue theorem

So far we have employed the residue method to evaluate contour integrals whose

integrands have only a single singularity inside the contour of integration. Now

consider a simple closed curve C containing in its interior a number of isolated

singularities of a function f �z�. If around each singular point we draw a circle so

small that it encloses no other singular points (Fig. 6.15), these small circles,

together with the curve C, form the boundary of a multiply-connected region in

which f �z� is everywhere analytic and to which Cauchy's theorem can therefore be

applied. This gives

1

2�i

I
C

f �z�dz�
I
C1

f �z�dz� � � � �
I
Cm

f �z�dz
� �

� 0:

If we reverse the direction of integration around each of the circles and change the

sign of each integral to compensate, this can be written

1

2�i

I
C

f �z�dz � 1

2�i

I
C1

f �z�dz� 1

2�i

I
C2

f �z�dz� � � � � 1

2�i

I
Cm

f �z�dz;
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where all the integrals are now to be taken in the counterclockwise sense. But the

integrals on the right are, by de®nition, just the residues of f �z� at the various

isolated singularities within C. Hence we have established an important theorem,

the residue theorem:

If f �z� is analytic inside a simple closed curve C and on C, except

at a ®nite number of singular points a1, a2; . . . ; am in the interior of

C, thenI
C

f �z�dz � 2�i
Xm
j�1

Res
z�aj

f �z� � 2�i �r1 � r2 � � � � � rm�; �6:41�

where rj is the residue of f �z� at the singular point aj.

Example 6.27

The function f �z� � �4ÿ 3z�=�z2 ÿ z� has simple poles at z � 0 and z � 1; the

residues are ÿ4 and 1, respectively (cf. Example 6.26). ThereforeI
C

4ÿ 3z

z2 ÿ z
dz � 2�i�ÿ4� 1� � ÿ6�i

for every simple closed curve C which encloses the points 0 and 1, andI
C

4ÿ 3z

z2 ÿ z
dz � 2�i�ÿ4� � ÿ8�i

for any simple closed curve C for which z � 0 lies inside C and z � 1 lies outside,

the integrations being taken in the counterclockwise sense.

Evaluation of real de®nite integrals

The residue theorem yields a simple and elegant method for evaluating certain

classes of complicated real de®nite integrals. One serious restriction is that the

contour must be closed. But many integrals of practical interest involve integra-

tion over open curves. Their paths of integration must be closed before the residue

theorem can be applied. So our ability to evaluate such an integral depends

crucially on how the contour is closed, since it requires knowledge of the addi-

tional contributions from the added parts of the closed contour. A number of

techniques are known for closing open contours. The following types are most

common in practice.

Improper integrals of the rational function

Z 1

ÿ1
f �x�dx

The improper integral has the meaningZ 1

ÿ1
f �x�dx � lim

a!1

Z 0

a

f �x�dx� lim
b!1

Z b

0

f �x�dx: �6:42�
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If both limits exist, we may couple the two independent passages to ÿ1 and 1,

and write Z 1

ÿ1
f �x�dx � lim

r!1

Z r

ÿr

f �x�dx: �6:43�

We assume that the function f �x� is a real rational function whose denominator

is diÿerent from zero for all real x and is of degree at least two units higher than

the degree of the numerator. Then the limits in (6.42) exist and we can start from

(6.43). We consider the corresponding contour integralI
C

f �z�dz;

along a contour C consisting of the line along the x-axis from ÿr to r and the

semicircle ÿ above (or below) the x-axis having this line as its diameter (Fig. 6.16).

Then let r ! 1. If f �x� is an even function this can be used to evaluateZ 1

0

f �x�dx:

Let us see why this works. Since f �x� is rational, f �z� has ®nitely many poles in the

upper half-plane, and if we choose r large enough, C encloses all these poles. Then

by the residue theorem we haveI
C

f �z�dz �
Z
ÿ

f �z�dz�
Z r

ÿr

f �x�dx � 2�i
X

Res f �z�:

This gives Z r

ÿr

f �x�dx � 2�i
X

Res f �z� ÿ
Z
ÿ

f �z�dz:

We next prove that
R
ÿ f �z�dz ! 0 if r ! 1. To this end, we set z � rei�, then ÿ

is represented by r � const, and as z ranges along ÿ; � ranges from 0 to �. Since
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the degree of the denominator of f �z� is at least 2 units higher than the degree of

the numerator, we have

f �z�j j < k= zj j2 � zj j � r > r0�
for su�ciently large constants k and r. By applying (6.24) we thus obtainZ

ÿ

f �z�dz
ÿÿÿÿ

ÿÿÿÿ < k

r2
�r � k�

r
:

Hence, as r ! 1, the value of the integral over ÿ approaches zero, and we obtainZ 1

ÿ1
f �x�dx � 2�i

X
Res f �z�: �6:44�

Example 6.28

Using (6.44), show that Z 1

0

dx

1� x4
� �

2
���
2

p :

Solution: f �z� � 1=�1� z4� has four simple poles at the points

z1 � e�i=4; z2 � e3�i=4; z3 � eÿ3�i=4; z4 � eÿ�i=4:

The ®rst two poles, z1 and z2, lie in the upper half-plane (Fig. 6.17) and we ®nd,

using L'Hospital's rule

Res
z�z1

f �z� � 1

�1� z4� 0
� �

z�z1

� 1

4z3

� �
z�z1

� 1

4
eÿ3�i=4 � ÿ 1

4
e�i=4;

Res
z�z2

f �z� � 1

�1� z4� 0
� �

z�z2

� 1

4z3

� �
z�z2

� 1

4
eÿ9�i=4 � 1

4
eÿ�i=4;
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then Z 1

ÿ1

dx

1� x4
� 2�i

4
�ÿe�i=4 � eÿ�i=4� � � sin

�

4
� ����

2
p

and so Z 1

0

dx

1� x4
� 1

2

Z 1

ÿ1

dx

1� x4
� �

2
���
2

p :

Example 6.29

Show that Z 1

ÿ1

x2dx

�x2 � 1�2�x2 � 2x� 2� �
7�

50
:

Solution: The poles of

f �z� � z2

�z2 � 1�2�z2 � 2z� 2�
enclosed by the contour of Fig. 6.17 are z � i of order 2 and z � ÿ1� i of order 1.

The residue at z � i is

lim
z!i

d

dz
�zÿ i�2 z2

�z� i�21�zÿ i�2�z2 � 2z� 2�

" #
� 9i ÿ 12

100
:

The residue at z � ÿ1� i is

lim
z!ÿ1�i

�z� 1ÿ i� z2

�z2 � 1�2�z� 1ÿ i��z� 1� i� �
3ÿ 4i

25
:

Therefore Z 1

ÿ1

x2dx

�x2 � 1�2�x2 � 2x� 2� � 2�i
9i ÿ 12

100
� 3ÿ 4i

25

� �
� 7�

50
:

Integrals of the rational functions of sin � and cos �

Z 2�

0

G�sin �; cos ��d�

G�sin �; cos �� is a real rational function of sin � and cos � ®nite on the interval

0 � � � 2�. Let z � ei�, then

dz � iei�d�; or d� � dz=iz; sin � � �zÿ zÿ1�=2i; cos � � �z� zÿ1�=2
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and the given integrand becomes a rational function of z, say, f �z�. As � ranges

from 0 to 2�, the variable z ranges once around the unit circle jzj � 1 in the

counterclockwise sense. The given integral takes the formI
C

f �z� dz
iz
;

the integration being taken in the counterclockwise sense around the unit circle.

Example 6.30

Evaluate Z 2�

0

d�

3ÿ 2 cos �� sin �
:

Solution: Let z � ei�, then dz � iei�d�, or d� � dz=iz, and

sin � � zÿ zÿ1

2i
; cos � � z� zÿ1

2
;

then Z 2�

0

d�

3ÿ 2 cos �� sin �
�

I
C

2dz

�1ÿ 2i�z2 � 6izÿ 1ÿ 2i
;

where C is the circle of unit radius with its center at the origin (Fig. 6.18).

We need to ®nd the poles of

1

�1ÿ 2i�z2 � 6izÿ 1ÿ 2i
:

z �
ÿ6i �

�����������������������������������������������������
�6i�2 ÿ 4�1ÿ 2i��ÿ1ÿ 2i�

q
2�1ÿ 2i�

� 2ÿ i; �2ÿ i�=5;
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only (2ÿ i�=5 lies inside C, and residue at this pole is

lim
z!�2ÿi�=5

�zÿ �2ÿ i�=5� 2

�1ÿ 2i�z2 � 6izÿ 1ÿ 2i

� �

� lim
z!�2ÿi�=5

2

2�1ÿ 2i�z� 6i
� 1

2i
by L'Hospital's rule:

ThenZ 2�

0

d�

3ÿ 2 cos �� sin �
�

I
C

2dz

�1ÿ 2i�z2 � 6izÿ 1ÿ 2i
� 2�i�1=2i� � �:

Fourier integrals of the form

Z 1

ÿ1
f �x� sinmx

cosmx

� �
dx

If f �x� is a rational function satisfying the assumptions stated in connection with

improper integrals of rational functions, then the above integrals may be evalu-

ated in a similar way. Here we consider the corresponding integralI
C

f �z�eimzdz

over the contour C as that in improper integrals of rational functions (Fig. 6.16),

and obtain the formulaZ 1

ÿ1
f �x�eimxdx � 2�i

X
Res� f �z�eimz� �m > 0�; �6:45�

where the sum consists of the residues of f �z�eimz at its poles in the upper half-

plane. Equating the real and imaginary parts on each side of Eq. (6.45), we obtainZ 1

ÿ1
f �x� cosmxdx � ÿ2�

X
ImRes� f �z�eimz�; �6:46�

Z 1

ÿ1
f �x� sinmxdx � 2�

X
ReRes� f �z�eimz�: �6:47�

To establish Eq. (6.45) we should now prove that the value of the integral over

the semicircle ÿ in Fig. 6.16 approaches zero as r ! 1. This can be done as

follows. Since ÿ lies in the upper half-plane y � 0 and m > 0, it follows that

jeimzj � jeimxj eÿmyj j � eÿmy � 1 �y � 0;m > 0�:
From this we obtain

j f �z�eimzj � f �z�j j � jeimzj f �z�j j �y � 0;m > 0�;
which reduces our present problem to that of an improper integral of a rational

function of this section, since f �x� is a rational function satisfying the assumptions
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stated in connection these improper integrals. Continuing as before, we see that

the value of the integral under consideration approaches zero as r approaches 1,

and Eq. (6.45) is established.

Example 6.31

Show thatZ 1

ÿ1

cosmx

k2 � x2
dx � �

k
eÿkm;

Z 1

ÿ1

sinmx

k2 � x2
dx � 0 �m > 0; k > 0�:

Solution: The function f �z� � eimz=�k2 � z2� has a simple pole at z � ik which

lies in the upper half-plane. The residue of f �z� at z � ik is

Res
z�ik

eimz

k2 � z2
� eimz

2z

� �
z�ik

� eÿmk

2ik
:

Therefore Z 1

ÿ1

eimx

k2 � x2
dx � 2�i

eÿmk

2ik
� �

k
eÿmk

and this yields the above results.

Other types of real improper integrals

These are de®nite integrals Z B

A

f �x�dx

whose integrand becomes in®nite at a point a in the interval of integration,

limx!a f �x�j j � 1. This means thatZ B

A

f �x�dx � lim
"!0

Z aÿ"

A

f �x�dx� lim
�!0

Z
a��

f �x�dx;

where both " and � approach zero independently and through positive values. It

may happen that neither of these limits exists when "; � ! 0 independently, but

lim
"!0

Z aÿ"

A

f �x�dx�
Z B

a�"

f �x�dx
� �

exists; this is called Cauchy's principal value of the integral and is often written

pr: v:

Z B

A

f �x�dx:
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To evaluate improper integrals whose integrands have poles on the real axis, we

can use a path which avoids these singularities by following small semicircles with

centers at the singular points. We now illustrate the procedure with a simple

example.

Example 6.32

Show that Z 1

0

sin x

x
dx � �

2
:

Solution: The function sin�z�=z does not behave suitably at in®nity. So we con-

sider eiz=z, which has a simple pole at z � 0, and integrate around the contour C

or ABDEFGA (Fig. 6.19). Since eiz=z is analytic inside and on C, it follows from

Cauchy's integral theorem that I
C

eiz

z
dz � 0

or Z ÿ"

ÿR

eix

x
dx�

Z
C2

eiz

z
dz�

Z R

"

eix

x
dx�

Z
C1

eiz

z
dz � 0: �6:48�

We now prove that the value of the integral over large semicircle C1 approaches

zero as R approaches in®nity. Setting z � Rei�, we have dz � iRei�d�; dz=z � id�

and therefore Z
C1

eiz

z
dz

ÿÿÿÿ
ÿÿÿÿ �

Z �

0

eizid�

ÿÿÿÿ
ÿÿÿÿ �

Z �

0

eiz
ÿÿ ÿÿd�:

In the integrand on the right,

eiz
ÿÿ ÿÿ � jeiR�cos ��i sin ��j � jeiR cos �jjeÿR sin �j � eÿR sin �:
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By inserting this and using sin(�ÿ �� � sin � we obtainZ �

0

eiz
ÿÿ ÿÿd� � Z �

0

eÿR sin �d� � 2

Z �=2

0

eÿR sin �d�

� 2

Z "

0

eÿR sin �d��
Z �=2

"

eÿR sin �d�

" #
;

where " has any value between 0 and �=2. The absolute values of the integrands in

the ®rst and the last integrals on the right are at most equal to 1 and eÿR sin ",

respectively, because the integrands are monotone decreasing functions of � in the

interval of integration. Consequently, the whole expression on the right is smaller

than

2

�Z "

0

d�� eÿR sin �

Z �=2

"

d�

�
� 2 "� eÿR sin �

�
�

2
ÿ "

�� �
< 2"� �eÿR sin ":

Altogether Z
C1

eiz

z
dz

ÿÿÿÿ
ÿÿÿÿ < 2"� �eÿR sin ":

We ®rst take " arbitrarily small. Then, having ®xed ", the last term can be made as

small as we please by choosing R su�ciently large. Hence the value of the integral

along C1 approaches 0 as R ! 1.

We next prove that the value of the integral over the small semicircle C2

approaches zero as " ! 0. Let z � "i�, thenZ
C2

eiz

z
dz � ÿ lim

"!0

Z 0

�

exp�i"ei��
"ei�

i"ei�d� � ÿ lim
"!0

Z 0

�

i exp�i"ei��d� � �i

and Eq. (6.48) reduces toZ ÿ"

ÿR

eix

x
dx� �i �

Z R

"

eix

x
dx � 0:

Replacing x by ÿx in the ®rst integral and combining with the last integral, we

®nd Z R

"

eix ÿ eÿix

x
dx� �i � 0:

Thus we have

2i

Z R

"

sin x

x
dx � �i:
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Taking the limits R ! 1 and " ! 0Z 1

0

sin x

x
dx � �

2
:

Problems

6.1. Given three complex numbers z1 � a� ib, z2 � c� id, and z3 � g� ih,

show that:

(a) z1 � z2 � z2 � z1 commutative law of addition;

(b) z1 � �z2 � z3� � �z1 � z2� � z3 associative law of addition;

(c) z1z2 � z2z1 commutative law of multiplication;

(d) z1�z2z3� � �z1z2�z3 associative law of multiplication.

6.2. Given

z1 �
3� 4i

3ÿ 4i
; z2 �

1� 2i

1ÿ 3i

� �2
®nd their polar forms, complex conjugates, moduli, product, the quotient

z1=z2:

6.3. The absolute value or modulus of a complex number z � x� iy is de®ned as

zj j �
�������
zz*

p
�

���������������
x2 � y2

q
:

If z1; z2; . . . ; zm are complex numbers, show that the following hold:

(a) jz1z2j � jz1jjz2j or jz1z2 � � � zmj � jz1jjz2j � � � jzmj:
(b) jz1=z2j � jz1j=jz2j if z2 6� 0:

(c) jz1 � z2j � jz1j � jz2j:
(d) jz1 � z2j � jz1j ÿ jz2j or jz1 ÿ z2j � jz1j ÿ jz2j.

6.4 Find all roots of (a)
���������ÿ325

p
, and (b)

����������
1� i3

p
, and locate them in the complex

plane.

6.5 Show, using De Moivre's theorem, that:

(a) cos 5� � 16 cos5 �ÿ 20 cos3 �� 5 cos �;

(b) sin 5� � 5 cos4 � sin �ÿ 10 cos2 � sin3 �� sin5 �.

6.6 Given z � rei�, interpret zei�, where � is real geometrically.

6.7 Solve the quadratic equation az2 � bz� c � 0; a 6� 0.

6.8 A point P moves in a counterclockwise direction around a circle of radius 1

with center at the origin in the z plane. If the mapping function is w � z2,

show that when P makes one complete revolution the image P 0 of P in the w

plane makes three complete revolutions in a counterclockwise direction on a

circle of radius 1 with center at the origin.

6.9 Show that f �z� � ln z has a branch point at z � 0.

6.10 Let w � f �z� � �z2 � 1�1=2, show that:
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(a) f �z� has branch points at z � �I .

(b) a complete circuit around both branch points produces no change in the

branches of f �z�.
6.11 Apply the de®nition of limits to prove that:

lim
z!1

z2 ÿ 1

zÿ 1
� 2:

6.12. Prove that:

(a) f �z� � z2 is continuous at z � z0, and

(b) f �z� � z2; z 6� z0

0; z � z0

(
is discontinuous at z � z0, where z0 6� 0.

6.13 Given f �z� � z*, show that f 0�i� does not exist.
6.14 Using the de®nition, ®nd the derivative of f �z� � z3 ÿ 2z at the point where:

(a) z � z0, and (b) z � ÿ1.

6.15. Show that f is an analytic function of z if it does not depend on

z* : f �z; z*� � f �z�. In other words, f �x; y� � f �x� iy�, that is, x and y

enter f only in the combination x+iy.

6.16. (a) Show that u � y3 ÿ 3x2y is harmonic.

(b) Find v such that f �z� � u� iv is analytic.

6.17 (a) If f �z� � u�x; y� � iv�x; y� is analytic in some region R of the z plane,

show that the one-parameter families of curves u�x; y� � C1 and

v�x; y� � C2 are orthogonal families.

(b) Illustrate (a) by using f �z� � z2.

6.18 For each of the following functions locate and name the singularities in the

®nite z plane:

(a) f �z� � z

�z2 � 4�4 ; (b) f �z� � sin
���
z

p���
z

p ; (c) f �z� � P1
n�0

1

znn!
:

6.19 (a) Locate and name all the singularities of

f �z� � z8 � z4 � 2

�zÿ 1�3�3z� 2�2 :

(b) Determine where f �z� is analytic.
6.20 (a) Given ez � ex�cos y� i sin y�, show that �d=dz�ez � ez.

(b) Show that ez1ez2 � ez1�z2 .

(Hint: set z1 � x1 � iy1 and z2 � x2 � iy2 and apply the addition formulas

for the sine and cosine.)

6.21 Show that: (a) ln ez � z� 2n�i, (b) ln z1=z2 � ln z1 ÿ ln z2 � 2n�i.

6.22 Find the values of: (a) ln i, (b) ln (1ÿ i).

6.23 Evaluate
R
C z*dz from z � 0 to z � 4� 2i along the curve C given by:

(a) z � t2 � it;

(b) the line from z � 0 to z � 2i and then the line from z � 2i to z � 4� 2i.
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6.24 Evaluate
H
C dz=�zÿ a�n; n � 2; 3; 4; . . . where z � a is inside the simple

closed curve C.

6.25 If f �z� is analytic in a simply-connected region R, and a and z are any two

points in R, show that the integralZ z

a

f �z�dz

is independent of the path in R joining a and z.

6.26 Let f �z� be continuous in a simply-connected region R and let a and z be

points in R. Prove that F�z� � R z

a f �z 0�dz 0 is analytic in R, and F 0�z� � f �z�.
6.27 Evaluate

(a)

I
C

sin �z2 � cos�z2

�zÿ 1��zÿ 2� dz

(b)

I
C

e2z

�z� 1�4 dz,

where C is the circle jzj � 1.

6.28 Evaluate I
C

2 sin z2

�zÿ 1�4 dz;

where C is any simple closed path not passing through 1.

6.29 Show that the complex sequence

zn �
1

n
ÿ n2 ÿ 1

n
i

diverges.

6.30 Find the region of convergence of the series
P1

n�1 �z� 2�n�1=�n� 1�34n.
6.31 Find the Maclaurin series of f �z� � 1=�1� z2�.
6.32 Find the Taylor series of f �z� � sin z about z � �=4, and determine its circle

of convergence. (Hint: sin z � sin�a� �zÿ a��:�
6.33 Find the Laurent series about the indicated singularity for each of the

following functions. Name the singularity in each case and give the region

of convergence of each series.

(a) �zÿ 3� sin 1

z� 2
; z � ÿ2;

(b)
z

�z� 1��z� 2� ; z � ÿ2;

(c)
1

z�zÿ 3�2 ; z � 3:

6.34 Expand f �z� � 1=��z� 1��z� 3�� in a Laurent series valid for:

(a) 1 < jzj < 3, (b) jzj > 3, (c) 0 < jz� 1j < 2.
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6.35 Evaluate Z 1

ÿ1

x2dx

�x2 � a2��x2 � b2� ; a > 0; b > 0:

6.36 Evaluate

�a�
Z 2�

0

d�

1ÿ 2p cos �� p2
;

where p is a ®xed number in the interval 0 < p < 1;

�b�
Z 2�

0

d�

�5ÿ 3 sin ��2:

6.37 Evaluate Z 1

ÿ1

x sin �x

x2 � 2x� 5
dx:

6.38 Show that:

�a�
Z 1

0

sin x2dx �
Z 1

0

cos x2dx � 1

2

���
�

2

r
;

�b�
Z 1

0

xpÿ1

1� x
dx � �

sin p�
; 0 < p < 1:
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7

Special functions of
mathematical physics

The functions discussed in this chapter arise as solutions of second-order diÿer-

ential equations which appear in special, rather than in general, physical pro-

blems. So these functions are usually known as the special functions of

mathematical physics. We start with Legendre's equation (Adrien Marie

Legendre, 1752±1833, French mathematician).

Legendre's equation

Legendre's diÿerential equation

�1ÿ x2� d
2y

dx2
ÿ 2x

dy

dx
� ��� � 1�y � 0; �7:1�

where v is a positive constant, is of great importance in classical and quantum

physics. The reader will see this equation in the study of central force motion in

quantum mechanics. In general, Legendre's equation appears in problems in

classical mechanics, electromagnetic theory, heat, and quantum mechanics, with

spherical symmetry.

Dividing Eq. (7.1) by 1ÿ x2, we obtain the standard form

d2y

dx2
ÿ 2x

1ÿ x2
dy

dx
� ��� � 1�

1ÿ x2
y � 0:

We see that the coe�cients of the resulting equation are analytic at x � 0, so the

origin is an ordinary point and we may write the series solution in the form

y �
X1
m�0

amx
m: �7:2�
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Substituting this and its derivatives into Eq. (7.1) and denoting the constant

��� � 1� by k we obtain

�1ÿ x2�
X1
m�2

m�mÿ 1�amxmÿ2 ÿ 2x
X1
m�1

mamx
mÿ1 � k

X1
m�0

amx
m � 0:

By writing the ®rst term as two separate series we have

X1
m�2

m�mÿ 1�amxmÿ2 ÿ
X1
m�2

m�mÿ 1�amxm ÿ 2
X1
m�1

mamx
m � k

X1
m�0

amx
m � 0;

which can be written as:

2� 1a2 � 3� 2a3x� 4� 3a4x
2 � � � � � �s� 2��s� 1�as�2x

s � � � �
ÿ2� 1a2x

2 ÿ � � � ÿ �s�sÿ 1�asxs ÿ � � �
ÿ2� 1a1xÿ 2� 2a2x

2 ÿ � � � ÿ 2sasx
s ÿ � � �

�ka0 � ka1x � ka2x
2 � � � � � kasx

s � � � � � 0:

Since this must be an identity in x if Eq. (7.2) is to be a solution of Eq. (7.1), the

sum of the coe�cients of each power of x must be zero; remembering that

k � ��� � 1� we thus have

2a2 � ��� � 1�a0 � 0; �7:3a�

6a3� �ÿ2� v�v� 1��a1 � 0; �7:3b�

and in general, when s � 2; 3; . . . ;

�s� 2��s� 1�as�2 � �ÿs�sÿ 1� ÿ 2s� ����1��as � 0: �4:4�

The expression in square brackets [. . .] can be written

�� ÿ s��� � s� 1�:

We thus obtain from Eq. (7.4)

as�2 � ÿ�� ÿ s��� � s� 1�
�s� 2��s� 1� as �s � 0; 1; . . .�: �7:5�

This is a recursion formula, giving each coe�cient in terms of the one two places

before it in the series, except for a0 and a1, which are left as arbitrary constants.
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We ®nd successively

a2 � ÿ ��� � 1�
2!

a0; a3 � ÿ�� ÿ 1��� � 2�
3!

a1;

a4 � ÿ�� ÿ 2��� � 3�
4 � 3 a2; a5 � ÿ�� ÿ 3��� � 4�

3!
a3;

� �� ÿ 2���� � 1��� � 3�
4!

a0; � �� ÿ 3��� ÿ 1��� � 2��� � 4�
5!

a1;

etc. By inserting these values for the coe�cients into Eq. (7.2) we obtain

y�x� � a0y1�x� � a1y2�x�; �7:6�

where

y1�x� � 1ÿ ��� � 1�
2!

x2 � �� ÿ 2���� � 1��� � 3�
4!

x4 ÿ� � � � �7:7a�

and

y2�x� � x � �� ÿ 1��� � 2�
3!

x3 � �� ÿ 2��� ÿ 1��� � 2��� � 4�
5!

x5 ÿ� � � � : �7:7b�

These series converge for jxj < 1. Since Eq. (7.7a) contains even powers of x, and

Eq. (7.7b) contains odd powers of x, the ratio y1=y2 is not a constant, and y1 and

y2 are linearly independent solutions. Hence Eq. (7.6) is a general solution of Eq.

(7.1) on the interval ÿ1 < x < 1.

In many applications the parameter � in Legendre's equation is a positive

integer n. Then the right hand side of Eq. (7.5) is zero when s � n and, therefore,

an�2 � 0 and an�4 � 0; . . . : Hence, if n is even, y1�x� reduces to a polynomial of

degree n. If n is odd, the same is true with respect to y2�x�. These polynomials,

multiplied by some constants, are called Legendre polynomials. Since they are of

great practical importance, we will consider them in some detail. For this purpose

we rewrite Eq. (7.5) in the form

as � ÿ �s� 2��s� 1�
�nÿs��n� s� 1� as�2 �7:8�

and then express all the non-vanishing coe�cients in terms of the coe�cient an of

the highest power of x of the polynomial. The coe�cient an is then arbitrary. It is

customary to choose an � 1 when n � 0 and

an �
�2n�!
2n�n!�2 �

1� 3� 5 � � � �2nÿ 1�
n!

; n � 1; 2; . . . ; �7:9�
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the reason being that for this choice of an all those polynomials will have the value

1 when x � 1. We then obtain from Eqs. (7.8) and (7.9)

anÿ2 � ÿ n�nÿ 1�
2�2nÿ 1� an � ÿ n�nÿ 1��2n�!

2�2nÿ 1�2n�n!�2

� ÿ n�nÿ 1�2n�2nÿ 1��2nÿ 2�!!
2�2nÿ 1�2nn�nÿ 1�!n�nÿ 1��nÿ 2�! ;

that is,

anÿ2 � ÿ �2nÿ 2�!
2n�nÿ 1�!�nÿ 2�! :

Similarly,

anÿ4 � ÿ�nÿ 2��nÿ 3�
4�2nÿ 3� anÿ2 �

�2nÿ 4�!
2n2!�nÿ 2�!�nÿ 4�!

etc., and in general

anÿ2m � �ÿ1�m �2nÿ 2m�!
2nm!�nÿm�!�nÿ 2m�! : �7:10�

The resulting solution of Legendre's equation is called the Legendre polynomial

of degree n and is denoted by Pn�x�; from Eq. (7.10) we obtain

Pn�x� �
XM
m�0

�ÿ1�m �2nÿ 2m�!
2nm!�nÿm�!�nÿ 2m�! x

nÿ2m

� �2n�!
2n�n!�2 x

n ÿ �2nÿ 2�!
2n1!�nÿ 1�!�nÿ 2�! x

nÿ2 �ÿ � � � ;
�7:11�

where M � n=2 or �nÿ 1�=2, whichever is an integer. In particular (Fig. 7.1)

P0�x� � 1; P1�x� � x; P2�x� � 1
2
�3x2 ÿ 1�; P3�x� � 1

2
�5x3 ÿ 3x�;

P4�x� � 1
8
�35x4 ÿ 30x2 � 3�; P5�x� � 1

8
�63x5 ÿ 70x3 � 15x�:

Rodrigues' formula for Pn�x�
The Legendre polynomials Pn�x� are given by the formula

Pn�x� �
1

2nn!

dn

dxn
��x2 ÿ 1�n�: �7:12�

We shall establish this result by actually carrying out the indicated diÿerentia-

tions, using the Leibnitz rule for nth derivative of a product, which we state below

without proof:
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If we write Dnu as un and Dnv as vn, then

�uv�n � uvn � nC1u1vnÿ1 � � � � � nCrurvnÿr � � � � � unv;

where D � d=dx and nCr is the binomial coe�cient and is equal to n!=�r!�nÿ r�!�.
We ®rst notice that Eq. (7.12) holds for n � 0, 1. Then, write

z � �x2 ÿ 1�n=2nn!
so that

�x2 ÿ 1�Dz � 2nxz: �7:13�
Diÿerentiating Eq. (7.13) �n� 1� times by the Leibnitz rule, we get

�1ÿ x2�Dn�2zÿ 2xDn�1z� n�n� 1�Dnz � 0:

Writing y � Dnz, we then have:

(i) y is a polynomial.

(ii) The coe�cient of xn in �x2 ÿ 1�n is �ÿ1�n=2 nCn=2 (n even) or 0 (n odd).

Therefore the lowest power of x in y�x� is x0 (n even) or x1 (n odd). It

follows that

yn�0� � 0 �n odd�
and

yn�0� �
1

2nn!
�ÿ1�n=2 nCn=2n! �

�ÿ1�n=2n!
2n��n=2�!�2 �n even�:
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By Eq. (7.11) it follows that

yn�0� � Pn�0� �all n�:
(iii) �1ÿ x2�D2yÿ 2xDy� n�n� 1�y � 0, which is Legendre's equation.

Hence Eq. (7.12) is true for all n.

The generating function for Pn�x�
One can prove that the polynomials Pn�x� are the coe�cients of zn in the expan-

sion of the function ��x; z� � �1ÿ 2xz� z2�ÿ1=2, with jzj < 1; that is,

��x; z� � �1ÿ 2xz� z2�ÿ1=2 �
X1
n�0

Pn�x�zn; zj j < 1: �7:14�

��x; z� is called the generating function for Legendre polynomials Pn�x�. We shall

be concerned only with the case in which

x � cos � �ÿ� < � � ��
and then

z2 ÿ 2xz� 1 � �zÿ ei���zÿ ei��:
The expansion (7.14) is therefore possible when jzj < 1. To prove expansion (7.14)

we have

lhs � 1� 1
2
z�2xÿ 1� � 1� 3

22 � 2!
z2�2xÿ z�2 � � � �

� 1� 3 � � � �2nÿ 1�
2nn!

zn�2xÿ z�n � � � � :

The coe�cient of zn in this power series is

1� 3 � � � �2nÿ 1�
2nn!

�2nxn� � 1� 3 � � � �2nÿ 3�
2nÿ1�nÿ 1�! �ÿ�nÿ 1��2x�nÿ2� � � � � � Pn�x�

by Eq. (7.11). We can use Eq. (7.14) to ®nd successive polynomials explicitly.

Thus, diÿerentiating Eq. (7.14) with respect to z so that

�xÿ z��1ÿ 2xz� z2�ÿ3=2 �
X1
n�1

nznÿ1Pn�x�

and using Eq. (7.14) again gives

�xÿ z� P0�x� �
X1
n�1

Pn�x�zn
" #

� �1ÿ 2xz� z2�
X1
n�1

nznÿ1Pn�x�: �7:15�
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Then expanding coe�cients of zn in Eq. (7.15) leads to the recurrence relation

�2n� 1�xPn�x� � �n� 1�Pn�1�x� � nPnÿ1�x�: �7:16�
This gives P4;P5;P6, etc. very quickly in terms of P0;P1, and P3.

Recurrence relations are very useful in simplifying work, helping in proofs

or derivations. We list four more recurrence relations below without proofs or

derivations:

xP 0
n�x� ÿ P 0

nÿ1�x� � nPn�x�; �7:16a�
P 0
n�x� ÿ xP 0

nÿ1�x� � nPnÿ1�x�; �7:16b�
�1ÿ x2�P 0

n�x� � nPnÿ1�x� ÿ nxPn�x�; �7:16c�
�2n� 1�Pn�x� � P 0

n�1�x� ÿ P 0
nÿ1�x�: �7:16d�

With the help of the recurrence formulas (7.16) and (7.16b), it is straight-

forward to establish the other three. Omitting the full details, which are left for

the reader, these relations can be obtained as follows:

(i) diÿerentiation of Eq. (7.16) with respect to x and the use of Eq. (7.16b) to

eliminate P 0
n�1�x� leads to relation (7.16a);

(ii) the addition of Eqs. (7.16a) and (7.16b) immediately yields relation

(7.16d);

(iii) the elimination of P 0
nÿ1�x� between Eqs. (7.16b) and (7.16a) gives relation

(7.16c).

Example 7.1

The physical signi®cance of expansion (7.14) is apparent in this simple example:

®nd the potential V of a point charge at point P due to a charge �q at Q.

Solution: Suppose the origin is at O (Fig. 7.2). Then

VP � q

R
� q��2 ÿ 2r� cos �� r2�ÿ1=2:
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Thus, if r < �

VP � q

�
�1ÿ 2z cos �� z2�ÿ1=2; z � r=�;

which gives

VP � q

�

X1
n�0

r

�

� �n

Pn�cos �� �r < ��:

Similarly, when r > �, we get

VP � q

�

X1
n�0

�

r

� �n�1

Pn�cos ��:

There are many problems in which it is essential that the Legendre polynomials

be expressed in terms of �, the colatitude angle of the spherical coordinate system.

This can be done by replacing x by cos �. But this will lead to expressions that are

quite inconvenient because of the powers of cos � they contain. Fortunately, using

the generating function provided by Eq. (7.14), we can derive more useful forms in

which cosines of multiples of � take the place of powers of cos �. To do this, let us

substitute

x � cos � � �ei� � eÿi��=2
into the generating function, which gives

�1ÿ z�ei� � eÿi�� � z2�ÿ1=2 � ��1ÿ zei���1ÿ zeÿi���ÿ1=2 �
X1
n�0

Pn�cos ��zn:

Now by the binomial theorem, we have

�1ÿ zei��ÿ1=2 �
X1
n�0

anz
neni�; �1ÿ zeÿi��ÿ1=2 �

X1
n�0

anz
neÿni�;

where

an �
1� 3� 5 � � � �2nÿ 1�
2� 4� 6 � � � �2n� ; n � 1; a0 � 1: �7:17�

To ®nd the coe�cient of zn in the product of these two series, we need to form the

Cauchy product of these two series. What is a Cauchy product of two series? We

state it below for the reader who is in need of a review:

The Cauchy product of two in®nite series,
P1

n�0 un�x�
and

P1
n�0 vn�x�, is de®ned as the sum over n

X1
n�0

sn�x� �
X1
n�0

Xn
k�0

uk�x�vnÿk�x�;
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where sn�x� is given by

sn�x� �
Xn
k�0

uk�x�vnÿk�x� � u0�x�vn�x� � � � � � un�x�v0�x�:

Now the Cauchy product for our two series is given byX1
n�0

Xn
k�0

anÿkz
nÿke�nÿk�i�

� �
akz

keÿki�
� �

�
X1
n�0

�
zn

Xn
k�0

akanÿke
�nÿ2k�i�

�
: �7:18�

In the inner sum, which is the sum of interest to us, it is straightforward to prove

that, for n � 1, the terms corresponding to k � j and k � nÿ j are identical except

that the exponents on e are of opposite sign. Hence these terms can be paired, and

we have for the coe�cient of zn,

Pn�cos �� � a0an�eni� � eÿni�� � a1anÿ1�e�nÿ2�i� � eÿ�nÿ2�i�� � � � �
� 2 a0an cos n�� a1anÿ1 cos�nÿ 2��� � � �� �:

�7:19�

If n is odd, the number of terms is even and each has a place in one of the pairs. In

this case, the last term in the sum is

a�nÿ1�=2a�n�1�=2 cos �:

If n is even, the number of terms is odd and the middle term is unpaired. In this

case, the series (7.19) for Pn�cos �� ends with the constant term

an=2an=2:

Using Eq. (7.17) to compute values of the an, we ®nd from the unit coe�cient of z0

in Eqs. (7.18) and (7.19), whether n is odd or even, the speci®c expressions

P0�cos �� � 1; P1�cos �� � cos �; P2�cos �� � �3 cos 2�� 1�=4
P3�cos �� � �5 cos 3�� 3 cos ��=8
P4�cos �� � �35 cos 4�� 20 cos 2�� 9�=64
P5�cos �� � �63 cos 5�� 35 cos 3�� 30 cos ��=128
P6�cos �� � �231 cos 6�� 126 cos 4�� 105 cos 2�� 50�=512

9>>>>>>>>=
>>>>>>>>;
: �7:20�

Orthogonality of Legendre polynomials

The set of Legendre polynomials fPn�x�g is orthogonal for ÿ1 � x � �1. In

particular we can show thatZ �1

ÿ1

Pn�x�Pm�x�dx � 2=�2n� 1� if m � n

0 if m 6� n
:

�
�7:21�
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(i) m 6� n: Let us rewrite the Legendre equation (7.1) for Pm�x� in the form

d

dx
�1ÿ x2�P 0

m�x�
� ��m�m� 1�Pm�x� � 0 �7:22�

and the one for Pn�x�
d

dx
�1ÿ x2�P 0

n�x�
� �� n�n� 1�Pn�x� � 0: �7:23�

We then multiply Eq. (7.22) by Pn�x� and Eq. (7.23) by Pm�x�, and subtract to get

Pm

d

dx
�1ÿ x2�P 0

n

� �ÿ Pn

d

dx
�1ÿ x2�P 0

m

� �� �n�n� 1� ÿm�m� 1��PmPn � 0:

The ®rst two terms in the last equation can be written as

d

dx
�1ÿ x2��PmP

0
n ÿ PnP

0
m�

� �
:

Combining this with the last equation we have

d

dx
�1ÿ x2��PmP

0
n ÿ PnP

0
m�

� �� �n�n� 1� ÿm�m� 1��PmPn � 0:

Integrating the above equation between ÿ1 and 1 we obtain

�1ÿ x2��PmP
0
n ÿ PnP

0
m�j1ÿ1 � �n�n� 1� ÿm�m� 1��

Z 1

ÿ1

Pm�x�Pn�x�dx � 0:

The integrated term is zero because (1ÿ x2� � 0 at x � �1, and Pm�x� and Pn�x�
are ®nite. The bracket in front of the integral is not zero since m 6� n. Therefore

the integral must be zero and we haveZ 1

ÿ1

Pm�x�Pn�x�dx � 0; m 6� n:

(ii) m � n: We now use the recurrence relation (7.16a), namely

nPn�x� � xP 0
n�x� ÿ P 0

nÿ1�x�:
Multiplying this recurrence relation by Pn�x� and integrating between ÿ1 and 1,

we obtain

n

Z 1

ÿ1

Pn�x�� �2dx �
Z 1

ÿ1

xPn�x�P 0
n�x�dxÿ

Z 1

ÿ1

Pn�x�P 0
nÿ1�x�dx: �7:24�

The second integral on the right hand side is zero. (Why?) To evaluate the ®rst

integral on the right hand side, we integrate by partsZ 1

ÿ1

xPn�x�P 0
n�x�dx � x

2
Pn�x�� �2j1ÿ1 ÿ

1

2

Z 1

ÿ1

Pn�x�� �2dx � 1ÿ 1

2

Z 1

ÿ1

Pn�x�� �2dx:
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Substituting these into Eq. (7.24) we obtain

n

Z 1

ÿ1

Pn�x�� �2dx � 1ÿ 1

2

Z 1

ÿ1

Pn�x�� �2dx;

which can be simpli®ed to Z 1

ÿ1

Pn�x�� �2dx � 2

2n� 1
:

Alternatively, we can use generating function

1��������������������������
1ÿ 2xz� z2

p �
X1
n�0

Pn�x�zn:

We have on squaring both sides of this:

1

1ÿ 2xz� z2
�

X1
m�0

X1
n�0

Pm�x�Pn�x�zm�n:

Then by integrating from ÿ1 to 1 we haveZ 1

ÿ1

dx

1ÿ 2xz� z2
�

X1
m�0

X1
n�0

Z 1

ÿ1

Pm�x�Pn�x�dx
� �

zm�n:

Now Z 1

ÿ1

dx

1ÿ 2xz� z2
� ÿ 1

2z

Z 1

ÿ1

d�1ÿ 2xz� z2�
1ÿ 2xz� z2

� ÿ 1

2z
ln�1ÿ 2xz� z2�j1ÿ1

and Z 1

ÿ1

Pm�x�Pn�x�dx � 0; m 6� n:

Thus, we have

ÿ 1

2z
ln�1ÿ 2xz� z2�j1ÿ1 �

X1
n�0

Z 1

ÿ1

P2
n�x�dx

� �
z2n

or

1

z
ln

1� z

1ÿ z

� �
�

X1
n�0

Z 1

ÿ1

P2
n�x�dx

� �
z2n;

that is,

X1
n�0

2z2n

2n� 1
�

X1
n�0

Z 1

ÿ1

P2
n�x�dx

� �
z2n:

Equating coe�cients of z2n we have as required
R 1

ÿ1 P
2
n�x�dx � 2=�2n� 1�.
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Since the Legendre polynomials form a complete orthogonal set on (ÿ1, 1), we

can expand functions in Legendre series just as we expanded functions in Fourier

series:

f �x� �
X1
i�0

ciPi�x�:

The coe�cients ci can be found by a method parallel to the one we used in ®nding

the formulas for the coe�cients in a Fourier series. We shall not pursue this line

further.

There is a second solution of Legendre's equation. However, this solution is

usually only required in practical applications in which jxj > 1 and we shall only

brie¯y discuss it for such values of x. Now solutions of Legendre's equation

relative to the regular singular point at in®nity can be investigated by writing

x2 � t. With this substitution,

dy

dx
� dy

dt

dt

dx
� 2t1=2

dy

dt
and

d2y

dx2
� d

dx

dy

dx

� �
� 2

dy

dx
� 4t

d2y

dt2
;

and Legendre's equation becomes, after some simpli®cations,

t�1ÿ t� d
2y

dt2
� 1

2
ÿ 3

2
t

� �
dy

dt
� ��� � 1�

4
y � 0:

This is the hypergeometric equation with � � ÿ�=2; þ � �1� ��=2, and ÿ � 1
2:

x�1ÿ x� d
2y

dx2
� �ÿ ÿ ��� þ � 1�x� dy

dx
ÿ �þy � 0;

we shall not seek its solutions. The second solution of Legendre's equation is

commonly denoted by Q��x� and is called the Legendre function of the second

kind of order �. Thus the general solution of Legendre's equation (7.1) can be

written

y � AP��x� � BQ��x�;
A and B being arbitrary constants. P��x� is called the Legendre function of the

®rst kind of order � and it reduces to the Legendre polynomial Pn�x� when � is an

integer n.

The associated Legendre functions

These are the functions of integral order which are solutions of the associated

Legendre equation

�1ÿ x2�y 00 ÿ 2xy 0 � n�n� 1� ÿ m2

1ÿ x2

( )
y � 0 �7:25�

with m2 � n2.
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We could solve Eq. (7.25) by series; but it is more useful to know how the

solutions are related to Legendre polynomials, so we shall proceed in the follow-

ing way. We write

y � �1ÿ x2�m=2u�x�
and substitute into Eq. (7.25) whence we get, after a little simpli®cation,

�1ÿ x2�u 00 ÿ 2�m� 1�xu 0 � �n�n� 1� ÿm�m� 1��u � 0: �7:26�
For m � 0, this is a Legendre equation with solution Pn�x�. Now we diÿerentiate

Eq. (7.26) and get

�1ÿ x2��u 0� 00 ÿ 2��m� 1� � 1�x�u 0� 0 � �n�n� 1� ÿ �m� 1��m� 2��u 0 � 0:

�7:27�
Note that Eq. (7.27) is just Eq. (7.26) with u 0 in place of u, and (m� 1) in place of

m. Thus, if Pn�x� is a solution of Eq. (7.26) with m � 0, P 0
n�x� is a solution of Eq.

(7.26) with m � 1, P 00
n �x� is a solution with m � 2, and in general for integral

m; 0 � m � n; �dm=dxm�Pn�x� is a solution of Eq. (7.26). Then

y � �1ÿ x2�m=2 dm

dxm
Pn�x� �7:28�

is a solution of the associated Legendre equation (7.25). The functions in Eq.

(7.28) are called associated Legendre functions and are denoted by

P
m
n �x� � �1ÿ x2�m=2 dm

dxm
Pn�x�: �7:29�

Some authors include a factor (ÿ1�m in the de®nition of Pm
n �x�:

A negative value of m in Eq. (7.25) does not change m2, so a solution of Eq.

(7.25) for positive m is also a solution for the corresponding negative m. Thus

many references de®ne Pm
n �x� for ÿn � m � n as equal to Pjmj

n �x�.
When we write x � cos �, Eq. (7.25) becomes

1

sin �

d

d�
sin �

dy

d�

� �
� n�n� 1� ÿ m2

sin2 �

( )
y � 0 �7:30�

and Eq. (7.29) becomes

Pm
n �cos �� � sinm �

dm

d�cos ��m Pn�cos ��f g:

In particular

Dÿ1 means

Z x

1

Pn�x�dx:
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Orthogonality of associated Legendre functions

As in the case of Legendre polynomials, the associated Legendre functions Pm
n �x�

are orthogonal for ÿ1 � x � 1 and in particular

Z 1

ÿ1

P
s
m �x�Ps

n �x�dx � �n� s�!
�nÿ s�! �mn: �7:31�

To prove this, let us write for simplicity

M � Pm
s �x�; and N � Ps

n�x�

and from Eq. (7.25), the associated Legendre equation, we have

d

dx
�1ÿ x2� dM

dx

� �
� m�m� 1� ÿ s2

1ÿ x2

( )
M � 0 �7:32�

and

d

dx
�1ÿ x2� dN

dx

� �
� n�n� 1� ÿ s2

1ÿ x2

( )
N � 0: �7:33�

Multiplying Eq. (7.32) by N, Eq. (7.33) by M and subtracting, we get

M
d

dx
�1ÿ x2� dN

dx

� �
ÿN

d

dx
�1ÿ x2� dM

dx

� �
� fm�m� 1� ÿ n�n� 1�gMN:

Integration between ÿ1 and 1 gives

�mÿ n��m� nÿ 1�
Z 1

ÿ1

MNdx �
Z 1

ÿ1

�
M

d

dx
�1ÿ x2� dN

dx

� �

ÿN
d

dx
�1ÿ x2� dM

dx

� ��
dx: �7:34�

Integration by parts gives

Z 1

ÿ1

M
d

dx
f�1ÿ x2�N 0gdx � �MN 0�1ÿ x2��1ÿ1 ÿ

Z 1

ÿ1

�1ÿ x2�M 0N 0dx

� ÿ
Z 1

ÿ1

�1ÿ x2�M 0N 0dx:
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Then integrating by parts once more, we obtainZ 1

ÿ1

M
d

dx
f�1ÿ x2�N 0gdx � ÿ

Z 1

ÿ1

�1ÿ x2�M 0N 0dx

� ÿ�MN�1ÿ x2�� 1

ÿ1
�
Z 1

ÿ1

N
d

dx
�1ÿ x2�M 0� ÿ

dx

�
Z 1

ÿ1

N
d

dx
f�1ÿ x2�M 0gdx:

Substituting this in Eq. (7.34) we get

�mÿ n��m� nÿ 1�
Z 1

ÿ1

MNdx � 0:

If m � n, we haveZ 1

ÿ1

MNdx �
Z 1

ÿ1

Ps
m�x�Ps

m�x�dx � 0 �m 6� n�:

If m � n, let us write

P
s
n �x� � �1ÿ x2�s=2 ds

dxs
Pn�x� �

�1ÿ x2�s=2
2nn!

ds�n

dxs�n f�x2 ÿ 1�ng:

Hence Z 1

ÿ1

Ps
n�x�Ps

n�x�dx � 1

22n�n!�2
Z 1

ÿ1

�1ÿ x2�sDn�sf�x2 ÿ 1�ngDn�s

� f�x2 ÿ 1�ngdx; �Dk � dk=dxk�:
Integration by parts gives

1

22n�n!�2 ��1ÿ x2�sDn�sf�x2 ÿ 1�ngDn�sÿ1f�x2 ÿ 1�ng�1ÿ1

ÿ 1

22n�n!�2
Z 1

ÿ1

D �1ÿ x2�sDn�s �x2 ÿ 1�n� ÿ� �
Dn�sÿ1 �x2 ÿ 1�n� ÿ

dx:

The ®rst term vanishes at both limits and we haveZ 1

ÿ1

fPs
n �x�g2dx � ÿ1

22n�n!�2
Z 1

ÿ1

D��1ÿ x2�sDn�sf�x2 ÿ 1�ng�Dn�sÿ1f�x2 ÿ 1�ngdx:

�7:35�
We can continue to integrate Eq. (7.35) by parts and the ®rst term continues to

vanish since Dp��1ÿ x2�sDn�sf�x2 ÿ 1�ng� contains the factor �1ÿ x2� when p < s
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and Dn�sÿpf�x2 ÿ 1�ng contains it when p � s. After integrating �n� s� times we

®ndZ 1

ÿ1

fPs
n�x�g2dx � �ÿ1�n�s

22n�n!�2
Z 1

ÿ1

Dn�s��1ÿ x2�sDn�sf�x2 ÿ 1�ng��x2 ÿ 1�ndx: �7:36�

But Dn�sf�x2 ÿ 1�ng is a polynomial of degree (nÿ s) so that

(1ÿ x2�sDn�sf�x2 ÿ 1�ng is of degree nÿ 2� 2s � n� s. Hence the ®rst factor

in the integrand is a polynomial of degree zero. We can ®nd this constant by

examining the following:

Dn�s�x2n� � 2n�2nÿ 1��2nÿ 2� � � � �nÿ�1�xnÿs:

Hence the highest power in �1ÿ x2�sDn�sf�x2 ÿ 1�ng is the term

�ÿ1�s2n�2nÿ 1� � � � �nÿ s� 1�xn�s;

so that

Dn�s��1ÿ x2�sDn�sf�x2 ÿ 1�ng� � �ÿ1�s�2n�! �n� s�!
�nÿ s�! :

Now Eq. (7.36) gives, by writing x � cos �,Z 1

ÿ1

Ps
nf�x�g2dx � �ÿ1�n

22n�n!�2
Z 1

ÿ1

�2n�! �n� s�!
�nÿ s�! �x

2 ÿ 1�ndx

� 2

2n� 1

�n� s�!
�nÿ s�! �7:37�

Hermite's equation

Hermite's equation is

y 00 ÿ 2xy 0 � 2�y � 0; �7:38�
where y 0 � dy=dx. The reader will see this equation in quantum mechanics (when

solving the SchroÈ dinger equation for a linear harmonic potential function).

The origin x � 0 is an ordinary point and we may write the solution in the form

y � a0 � a1x� a2x
2 � � � � �

X1
j�0

ajx
j: �7:39�

Diÿerentiating the series term by term, we have

y 0 �
X1
j�0

jajx
jÿ1; y 00 �

X1
j�0

� j � 1��j � 2�aj�2x
j:
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Substituting these into Eq. (7.38) we obtainX1
j�0

� j � 1�� j � 2�aj�2 � 2�� ÿ j�aj
� �

x j � 0:

For a power series to vanish the coe�cient of each power of x must be zero; this

gives

� j � 1�� j � 2�aj�2 � 2�� ÿ j�aj � 0;

from which we obtain the recurrence relations

aj�2 �
2� j ÿ ��

� j � 1�� j � 2� aj: �7:40�

We obtain polynomial solutions of Eq. (7.38) when � � n, a positive integer. Then

Eq. (7.40) gives

an�2 � an�4 � � � � � 0:

For even n, Eq. (7.40) gives

a2 � �ÿ1� 2n
2!

a0; a4 � �ÿ1�2 2
2�nÿ 2�n

4!
a0; a6 � �ÿ1�3 2

3�nÿ 4��nÿ 2�n
6!

a0

and generally

an � �ÿ1�n=2 2n=2n�nÿ 2� � � � 4� 2

n!
a0:

This solution is called a Hermite polynomial of degree n and is written Hn�x�. If
we choose

a0 �
�ÿ1�n=22n=2n!

n�nÿ 2� � � � 4� 2
� �ÿ1�n=2n!

�n=2�!
we can write

Hn�x� � �2x�n ÿ n�nÿ 1�
1!

�2x�nÿ2 � n�nÿ 1��nÿ 2��nÿ 3�
2!

�2x�nÿ4 � � � � : �7:41�

When n is odd the polynomial solution of Eq. (7.38) can still be written as Eq.

(7.41) if we write

a1 �
�ÿ1��nÿ1�=22n!
�n=2ÿ 1=2�! :

In particular,

H0�x� � 1; H1�x� � 2x; H3�x� � 4x2 ÿ 2; H3�x� � 8x2 ÿ 12x;

H4�x� � 16x4 ÿ 48x2 � 12; H5�x� � 32x5 ÿ 160x3 � 120x; . . . :
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Rodrigues' formula for Hermite polynomials Hn�x�
The Hermite polynomials are also given by the formula

Hn�x� � �ÿ1�nex2 dn

dxn
�eÿx2�: �7:42�

To prove this formula, let us write q � eÿx2 . Then

Dq� 2xq � 0; D � d

dx
:

Diÿerentiate this (n� 1) times by the Leibnitz' rule giving

Dn�2q� 2xDn�1q� 2�n� 1�Dnq � 0:

Writing y � �ÿ1�nDnq gives

D2y� 2xDy� 2�n� 1�y � 0 �7:43�
substitute u � ex

2

y then

Du � ex
2f2xy�Dyg

and

D2u � ex
2fD2y� 4xDy� 4x2y� 2yg:

Hence by Eq. (7.43) we get

D2uÿ 2xDu� 2nu � 0;

which indicates that

u � �ÿ1�nex2Dn�eÿx2�
is a polynomial solution of Hermite's equation (7.38).

Recurrence relations for Hermite polynomials

Rodrigues' formula gives on diÿerentiation

H 0
n�x� � �ÿ1�n2xex2Dn�eÿx2� � �ÿ1�nex2Dn�1�eÿx2�:

that is,

H 0
n�x� � 2xHn�x� ÿHn�1�x�: �7:44�

Eq. (7.44) gives on diÿerentiation

H 00
n �x� � 2Hn�x� � 2xH 0

n�x� ÿH 0
n�1�x�:
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Now Hn�x� satis®es Hermite's equation

H 00
n �x� ÿ 2xH 0

n�x� � 2nHn�x� � 0:

Eliminating H 00
n �x� from the last two equations, we obtain

2xH 0
n�x� ÿ 2nHn�x� � 2Hn�x� � 2xH 0

n�x� ÿH 0
n�1�x�

which reduces to

H 0
n�1�x� � 2�n� 1�Hn�x�: �7:45�

Replacing n by n� 1 in Eq. (7.44), we have

H 0
n�1�x� � 2xHn�1�x� ÿHn�2�x�:

Combining this with Eq. (7.45) we obtain

Hn�2�x� � 2xHn�1�x� ÿ 2�n� 1�Hn�x�: �7:46�
This will quickly give the higher polynomials.

Generating function for the Hn�x�
By using Rodrigues' formula we can also ®nd a generating formula for the Hn�x�.
This is

��x; t� � e2txÿt2 � efx
2ÿ�tÿx�2g �

X1
n�0

Hn�x�
n!

tn: �7:47�

Diÿerentiating Eq. (7.47) n times with respect to t we get

ex
2 @n

@tn
eÿ�tÿx�2 � ex

2�ÿ1�n @n

@xn
eÿ�tÿx�2 �

X1
k�0

Hn�k�x�
tk

k!
:

Put t � 0 in the last equation and we obtain Rodrigues' formula

Hn�x� � �ÿ1�nex2 dn

dxn
�eÿx2�:

The orthogonal Hermite functions

These are de®ned by

Fn�x� � eÿx2=2Hn�x�; �7:48�
from which we have

DFn�x� � ÿxFn�x� � eÿx2=2H 0
n�x�;

D2Fn�x� � eÿx2=2H 00
n �x� ÿ 2xeÿx2=2H 0

n�x� � x2eÿx2=2Hn�x� ÿ Fn�x�

� eÿx2=2�H 00
n �x� ÿ 2xH 0

n�x�� � x2Fn�x� ÿ Fn�x�;
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but H 00
n �x� ÿ 2xH 0

n�x� � ÿ2nHn�x�, so we can rewrite the last equation as

D2Fn�x� � eÿx2=2�ÿ2nH 0
n�x�� � x2Fn�x� ÿ Fn�x�

� ÿ2nFn�x� � x2Fn�x� ÿ Fn�x�;

which gives

D2Fn�x� ÿ x2Fn�x� � �2n� 1�Fn�x� � 0: �7:49�
We can now show that the set fFn�x�g is orthogonal in the in®nite range

ÿ1 < x < 1. Multiplying Eq. (7.49) by Fm�x� we have

Fm�x�D2Fn�x� ÿ x2Fn�x�Fm�x� � �2n� 1�Fn�x�Fm�x� � 0:

Interchanging m and n gives

Fn�x�D2Fm�x� ÿ x2Fm�x�Fn�x� � �2m� 1�Fm�x�Fn�x� � 0:

Subtracting the last two equations from the previous one and then integrating

from ÿ1 to �1, we have

In;m �
Z 1

ÿ1
Fn�x�Fm�x�dx � 1

2�nÿm�
Z 1

ÿ1
�F 00

n Fm ÿ F 00
mFn�dx:

The integration by parts gives

2�nÿm�In;m � F 0
nFm ÿ F 0

mFn

� �1
ÿ1 ÿ

Z 1

ÿ1
�F 0

nF
0
m ÿ F 0

mF
0
n�dx:

Since the right hand side vanishes at both limits and if m 6� m, we have

In;m �
Z 1

ÿ1
Fn�x�Fm�x�dx � 0: �7:50�

When n � m we can proceed as follows

In;n �
Z 1

ÿ1
eÿx2Hn�x�Hn�x�dx �

Z 1

ÿ1
ex

2

Dn�eÿx2�Dm�eÿx2�dx:

Integration by parts, that is,
R
udv � uvÿ R

vdu with u � eÿx2Dn�eÿx2�
and v � Dnÿ1�eÿx2�, gives

In;n � ÿ
Z 1

ÿ1
�2xex2Dn�eÿx2� � ex

2

Dn�1�eÿx2��Dnÿ1�eÿx2�dx:

By using Eq. (7.43) which is true for y � �ÿ1�nDnq � �ÿ1�nDn�eÿx2� we obtain

In;n �
Z 1

ÿ1
2nex

2

Dnÿ1�eÿx2�Dnÿ1�eÿx2�dx � 2nInÿ1;nÿ1:
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Since

I0;0 �
Z 1

ÿ1
eÿx2dx � ÿ�1=2� � ���

�
p

;

we ®nd that

In;n �
Z 1

ÿ1
eÿx2Hn�x�Hn�x�dx � 2nn!

���
�

p
: �7:51�

We can also use the generating function for the Hermite polynomials:

e2txÿt2 �
X1
n�0

Hn�x�tn
n!

; e2sxÿs2 �
X1
m�0

Hm�x�sm
m!

:

Multiplying these, we have

e2txÿt2�2sxÿs2 �
X1
m�0

X1
n�0

Hm�x�Hn�x�smtn
m!n!

:

Multiplying by eÿx2 and integrating from ÿ1 to 1 givesZ 1

ÿ1
eÿ��x�s�t�2ÿ2st�dx �

X1
m�0

X1
n�0

smtn

m!n!

Z 1

ÿ1
eÿx2Hm�x�Hn�x�dx:

Now the left hand side is equal to

e2st
Z 1

ÿ1
eÿ�x�s�t�2dx � e2st

Z 1

ÿ1
eÿu2du � e2st

���
�

p � ���
�

p X1
m�0

2msmtm

m!
:

By equating coe�cients the required result follows.

It follows that the functions �1=2nn! ���
n

p �1=2eÿx2Hn�x� form an orthonormal set.

We shall assume it is complete.

Laguerre's equation

Laguerre's equation is

xD2y� �1ÿ x�Dy� �y � 0: �7:52�
This equation and its solutions (Laguerre functions) are of interest in quantum

mechanics (e.g., the hydrogen problem). The origin x � 0 is a regular singular

point and so we write

y�x� �
X1
k�0

akx
k��: �7:53�

By substitution, Eq. (7.52) becomesX1
k�0

��k� ��2akxk��ÿ1 � �� ÿ k� ��akxk� � 0 �7:54�
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from which we ®nd that the indicial equation is �2 � 0. And then (7.54) reduces to

X1
k�0

�k2akxkÿ1 � �� ÿ k�akxk� � 0:

Changing kÿ 1 to k 0 in the ®rst term, then renaming k 0 � k, we obtain

X1
k�0

f�k� 1�2ak�1 � �� ÿ k�akgxk � 0;

whence the recurrence relations are

ak�1 �
kÿ �

�k� 1�2 ak: �7:55�

When � is a positive integer n, the recurrence relations give ak�1 � ak�2 � � � � � 0,

and

a1 �
ÿn

12
a0; a2 �

ÿ�nÿ 1�
22

a1 �
�ÿ1�2�nÿ 1�n

�1� 2�2 a0;

a3 �
ÿ�nÿ 2�

32
a2 �

�ÿ1�3�nÿ 2��nÿ 1�n
�1� 2� 3�2 a0; etc:

In general

ak � �ÿ1�k �nÿ k� 1��nÿ k� 2� � � � �nÿ 1�n
�k!�2 a0: �7:56�

We usually choose a0 � �ÿ1�n!, then the polynomial solution of Eq. (7.52) is given

by

Ln�x� � �ÿ1�n xn ÿ n2

1!
xnÿ1 � n2�nÿ 1�2

2!
xnÿ2 ÿ� � � � � �ÿ1�nn!

( )
: �7:57�

This is called the Laguerre polynomial of degree n. We list the ®rst four Laguerre

polynomials below:

L0�x� � 1; L1�x� � 1ÿ x; L2�x� � 2ÿ 4x� x2; L3�x� � 6ÿ 18x� 9x2 ÿ x3:

The generating function for the Laguerre polynomials Ln�x�
This is given by

��x; z� � eÿxz=�1ÿz�

1ÿ z
�

X1
n�0

Ln�x�
n!

zn: �7:58�
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By writing the series for the exponential and collecting powers of z, you can verify

the ®rst few terms of the series. And it is also straightforward to show that

x
@2�

@x2
� �1ÿ x� @�

@x
� z

@�

@z
� 0:

Substituting the right hand side of Eq. (7.58), that is, ��x; z� � P1
n�0 �Ln�x�=n!�zn,

into the last equation we see that the functions Ln�x� satisfy Laguerre's equation.

Thus we identify ��x; z� as the generating function for the Laguerre polynomials.

Now multiplying Eq. (7.58) by zÿnÿ1 and integrating around the origin, we

obtain

Ln�x� �
n!

2�i

I
eÿxz=�1ÿz�

�1ÿ z�zn�1
dz; �7:59�

which is an integral representation of Ln�x�.
By diÿerentiating the generating function in Eq. (7.58) with respect to x and z,

we obtain the recurrence relations

Ln�1�x� � �2n� 1ÿ x�Ln�x� ÿ n2Lnÿ1�x�;
nLnÿ1�x� � nL 0

nÿ1�x� ÿ L 0
n�x�:

)
�7:60�

Rodrigues' formula for the Laguerre polynomials Ln�x�
The Laguerre polynomials are also given by Rodrigues' formula

Ln�x� � ex
dn

dxn
�xneÿx�: �7:61�

To prove this formula, let us go back to the integral representation of Ln�x�, Eq.
(7.59). With the transformation

xz

1ÿ z
� sÿ x or z � sÿ x

s
;

Eq. (7.59) becomes

Ln�x� �
n!ex

2�i

I
sneÿn

�sÿ x�n�1
ds;

the new contour enclosing the point s � x in the s plane. By Cauchy's integral

formula (for derivatives) this reduces to

Ln�x� � ex
dn

dxn
�xneÿx�;

which is Rodrigues' formula.

Alternatively, we can diÿerentiate Eq. (7.58) n times with respect to z and

afterwards put z=0, and thus obtain

ex lim
z!0

@n

@zn
�1ÿ z�ÿ1 exp

ÿx

1ÿ z

� �h i
� Ln�x�:
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But

lim
z!0

@n

@zn
�1ÿ z�ÿ1 exp

ÿx

1ÿ z

� �h i
� dn

dxn
xneÿx� �;

hence

Ln�x� � ex
dn

dxn
�xneÿx�:

The orthogonal Laguerre functions

The Laguerre polynomials, Ln�x�, do not by themselves form an orthogonal set.

But the functions eÿx=2Ln�x� are orthogonal in the interval (0, 1). For any two

Laguerre polynomials Lm�x� and Ln�x� we have, from Laguerre's equation,

xL 00
m � �1ÿ x�L 0

m �mLm � 0;

xL 00
n � �1ÿ x�L 0

n �mLn � 0:

Multiplying these equations by Ln�x� and Lm�x� respectively and subtracting, we

®nd

x�LnL
00
m ÿ LmL

00
n � � �1ÿ x��LnL

0
m ÿ LmL

0
n� � �nÿm�LmLn

or

d

dx
�LnL

0
m ÿ LmL

0
n� �

1ÿ x

x
�LnL

0
m ÿ LmL

0
n� �

�nÿm�LmLn

x
:

Then multiplying by the integrating factor

exp

Z
��1ÿ x�=x�dx � exp�ln xÿ x� � xeÿx;

we have

d

dx
fxeÿx�LnL

0
m ÿ LmL

0
n�g � �nÿm�eÿxLmLn:

Integrating from 0 to 1 gives

�nÿm�
Z 1

0

eÿxLm�x�Ln�x�dx � xeÿx�LnL
0
m ÿ LmL

0
n�j10 � 0:

Thus if m 6� n Z 1

0

eÿxLm�x�Ln�x�dx � 0 �m 6� n�; �7:62�

which proves the required result.

Alternatively, we can use Rodrigues' formula (7.61). If m is a positive integer,Z 1

0

eÿxxmLm�x�dx �
Z 1

0

xm
dn

dxn
�xneÿx�dx � �ÿ1�mm!

Z 1

0

dnÿm

dxnÿm �xneÿx�dx;
�7:63�
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the last step resulting from integrating by parts m times. The integral on the right

hand side is zero when n > m and, since Ln�x� is a polynomial of degree m in x, it

follows that Z 1

0

eÿxLm�x�Ln�x�dx � 0 �m 6� n�;

which is Eq. (7.62). The reader can also apply Eq. (7.63) to show thatZ 1

0

eÿx Ln�x�f g2dx � �n!�2: �7:64�

Hence the functions feÿx=2Ln�x�=n!g form an orthonormal system.

The associated Laguerre polynomials Lm
n �x�

Diÿerentiating Laguerre's equation (7.52) m times by the Leibnitz theorem we

obtain

xDm�2y� �m� 1ÿ x�Dm�1y� �nÿm�Dmy � 0 �� � n�
and writing z � Dmy we obtain

xD2z� �m� 1ÿ x�Dz� �nÿm�z � 0: �7:65�
This is Laguerre's associated equation and it clearly possesses a polynomial solu-

tion

z � DmLn�x� � Lm
n �x� �m � n�; �7:66�

called the associated Laguerre polynomial of degree (nÿm). Using Rodrigues'

formula for Laguerre polynomial Ln�x�, Eq. (7.61), we obtain

Lm
n �x� �

dm

dxm
Ln�x� �

dm

dxm
ex

dn

dxn
�xneÿx�

� �
: �7:67�

This result is very useful in establishing further properties of the associated

Laguerre polynomials. The ®rst few polynomials are listed below:

L0
0�x� � 1; L0

1�x� � 1ÿ x; L1
1�x� � ÿ1;

L0
2�x� � 2ÿ 4x� x2; L1

2�x� � ÿ4� 2x; L2
2�x� � 2:

Generating function for the associated Laguerre polynomials

The Laguerre polynomial Ln�x� can be generated by the function

1

1ÿ t
exp

ÿxt

1ÿ t

� �
�

X1
n�0

Ln�x�
tn

n!
:
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Diÿerentiating this k times with respect to x, it is seen at once that

�ÿ1�k�1ÿ t�ÿ1 t

1ÿ t

� �k

exp
ÿxt

1ÿ t

� �
�

X1
��k

Lk
��x�
�!

t�: �7:68�

Associated Laguerre function of integral order

A function of great importance in quantum mechanics is the associated Laguerre

function that is de®ned as

Gm
n �x� � eÿx=2x�mÿ1�=2Lm

n �x� �m � n�: �7:69�
It is signi®cant largely because jGm

n �x�j ! 0 as x ! 1. It satis®es the diÿerential

equation

x2D2u� 2xDu� nÿmÿ 1

2

� �
xÿ x2

4
ÿm2 ÿ 1

4

" #
u � 0: �7:70�

If we substitute u � eÿx=2x�mÿ1�=2z in this equation, it reduces to Laguerre's asso-

ciated equation (7.65). Thus u � Gm
n satis®es Eq. (7.70). You will meet this equa-

tion in quantum mechanics in the study of the hydrogen atom.

Certain integrals involving Gm
n are often used in quantum mechanics and they

are of the form

In;m �
Z 1

0

eÿxxkÿ1Lk
n�x�Lk

m�x�xpdx;

where p is also an integer. We will not consider these here and instead refer the

interested reader to the following book: The Mathematics of Physics and

Chemistry, by Henry Margenau and George M. Murphy; D. Van Nostrand Co.

Inc., New York, 1956.

Bessel's equation

The diÿerential equation

x2y 00 � xy 0 � �x2 ÿ �2�y � 0 �7:71�
in which � is a real and positive constant, is known as Bessel's equation and its

solutions are called Bessel functions. These functions were used by Bessel

(Friedrich Wilhelm Bessel, 1784±1864, German mathematician and astronomer)

extensively in a problem of dynamical astronomy. The importance of this

equation and its solutions (Bessel functions) lies in the fact that they occur fre-

quently in the boundary-value problems of mathematical physics and engineering
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involving cylindrical symmetry (so Bessel functions are sometimes called cylind-

rical functions), and many others. There are whole books on Bessel functions.

The origin is a regular singular point, and all other values of x are ordinary

points. At the origin we seek a series solution of the form

y�x� �
X1
m�0

amx
m�� �a0 6� 0�: �7:72�

Substituting this and its derivatives into Bessel's equation (7.71), we have

X1
m�0

�m� ���m� �ÿ 1�amxm�� �
X1
m�0

�m� ��amxm��

�
X1
m�0

amx
m���2 ÿ �2

X1
m�0

amx
m�� � 0:

This will be an identity if and only if the coe�cient of every power of x is zero. By

equating the sum of the coe�cients of xk�� to zero we ®nd

���ÿ 1�a0 � �a0 ÿ �2a0 � 0 �k � 0�; �7:73a�
��ÿ 1��a1 � ��� 1�a1 ÿ �2a1 � 0 �k � 1�; �7:73b�

�k� ���k� � ÿ 1�ak � �k� ��ak � akÿ2 ÿ �2ak � 0 �k � 2; 3; . . .�: �7:73c�

From Eq. (7.73a) we obtain the indicial equation

���ÿ 1� � �ÿ �2 � ��� ����ÿ �� � 0:

The roots are � � ��. We ®rst determine a solution corresponding to the positive

root. For � � ��, Eq. (7.73b) yields a1 � 0, and Eq. (7.73c) takes the form

�k� 2��kak � akÿ2 � 0; or ak �
ÿ1

k�k� 2�� akÿ2; �7:74�

which is a recurrence formula: since a1 � 0 and � � 0, it follows that

a3 � 0; a5 � 0; . . . ; successively. If we set k � 2m in Eq. (7.74), the recurrence

formula becomes

a2m � ÿ 1

22m���m� a2mÿ2; m � 1; 2; . . . �7:75�

and we can determine the coe�cients a2; a4, successively. We can rewrite a2m in

terms of a0:

a2m � �ÿ1�m
22mm!���m� � � � ��� 2���� 1� a0:
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Now a2m is the coe�cient of x��2m in the series (7.72) for y. Hence it would be

convenient if a2m contained the factor 2��2m in its denominator instead of just 22m.

To achieve this, we write

a2m � �ÿ1�m
2��2mm!���m� � � � ��� 2���� 1� �2

�a0�:

Furthermore, the factors

���m� � � � ��� 2���� 1�
suggest a factorial. In fact, if � were an integer, a factorial could be created by

multiplying numerator by �!. However, since � is not necessarily an integer, we

must use not �! but its generalization ÿ��� 1� for this purpose. Then, except for
the values

� � ÿ1;ÿ2;ÿ3; . . .

for which ÿ��� 1� is not de®ned, we can write

a2m � �ÿ1�m
2��2mm!���m� � � � ��� 2���� 1�ÿ��� 1� �2

�ÿ��� 1�a0�:

Since the gamma function satis®es the recurrence relation zÿ�z� � ÿ�z� 1�, the
expression for a2m becomes ®nally

a2m � �ÿ1�m
2��2mm!ÿ���m� 1� �2

�ÿ��� 1�a0�:

Since a0 is arbitrary, and since we are looking only for particular solutions, we

choose

a0 �
1

2�ÿ��� 1� ;

so that

a2m � �ÿ1�m
2��2mm!ÿ���m� 1� ; a2m�1 � 0

and the series for y is, from Eq. (7.72),

y�x� � x�
1

2�ÿ��� 1� ÿ
x2

2��2ÿ��� 2� �
x4

2��42!ÿ��� 3� ÿ � � � �
" #

�
X1
m�0

�ÿ1�m
2��2mm!ÿ���m� 1� x

��2m: �7:76�

The function de®ned by this in®nite series is known as the Bessel function of the

®rst kind of order � and is denoted by the symbol J��x�. Since Bessel's equation
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of order � has no ®nite singular points except the origin, the ratio test will show

that the series for J��x� converges for all values of x if � � 0.

When � � n, an integer, solution (7.76) becomes, for n � 0

Jn�x� � xn
X1
m�0

�ÿ1�mx2m
22m�nm!�n�m�!: �7:76a�

The graphs of J0�x�; J1�x�, and J2�x� are shown in Fig. 7.3. Their resemblance to

the graphs of cos x and sin x is interesting (Problem 7.16 illustrates this for the

®rst few terms). Fig. 7.3 also illustrates the important fact that for every value of �

the equation J��x� � 0 has in®nitely many real roots.

With the second root � � ÿ� of the indicial equation, the recurrence relation

takes the form (from Eq. (7.73c))

ak �
ÿ1

k�kÿ 2�� akÿ2: �7:77�

If � is not an integer, this leads to an independent second solution that can be

written

Jÿ��x� �
X1
m�0

�ÿ1�m
m!ÿ�ÿ��m� 1� �x=2�

ÿ��2m �7:78�

and the complete solution of Bessel's equation is then

y�x� � AJ��x� � BJÿ��x�; �7:79�
where A and B are arbitrary constants.

When � is a positive integer n, it can be shown that the formal expression for

Jÿn�x� is equal to (ÿ1�nJn�x�. So Jn�x� and Jÿn�x� are linearly dependent and Eq.

(7.79) cannot be a general solution. In fact, if � is a positive integer, the recurrence
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relation (7.77) breaks down when 2� � k and a second solution has to be found

by other methods. There is a di�culty also when � � 0, in which case the two

roots of the indicial equation are equal; the second solution must also found by

other methods. These will be discussed in next section.

The results of Problem 7.16 are a special case of an important general theorem

which states that J��x� is expressible in ®nite terms by means of algebraic and

trigonometrical functions of x whenever � is half of an odd integer. Further

examples are

J3=2�x� �
2

�x

� �1=2
sin x

x
ÿ cos x

� �
;

Jÿ5=2�x� �
2

�x

� �1=2
3 sin x

x
� 3

x2
ÿ 1

� �
cos x

� �
:

The functions J�n�1=2��x� and Jÿ�n�1=2��x�, where n is a positive integer or zero, are

called spherical Bessel functions; they have important applications in problems of

wave motion in which spherical polar coordinates are appropriate.

Bessel functions of the second kind Yn�x�
For integer � � n; Jn�x� and Jÿn�x� are linearly dependent and do not form a

fundamental system. We shall now obtain a second independent solution, starting

with the case n � 0. In this case Bessel's equation may be written

xy 00 � y 0 � xy � 0; �7:80�
the indicial equation (7.73a) now, with � � 0, has the double root � � 0. Then we

see from Eq. (7.33) that the desired solution must be of the form

y2�x� � J0�x� ln x�
X1
m�1

Amx
m: �7:81�

Next we substitute y2 and its derivatives

y 0
2 � J 0

0 ln x� J0
x
�
X1
m�1

mAmx
mÿ1;

y 00
2 � J 00

0 ln x� 2J 0
0

x
ÿ J0
x2

�
X1
m�1

m�mÿ 1�Amx
mÿ2

into Eq. (7.80). Then the logarithmic terms disappear because J0 is a solution of

Eq. (7.80), the other two terms containing J0 cancel, and we ®nd

2J 0
0 �

X1
m�1

m�mÿ 1�Amx
mÿ1 �

X1
m�1

mAmx
mÿ1 �

X1
m�1

Amx
m�1 � 0:
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From Eq. (7.76a) we obtain J 0
0 as

J 0
0�x� �

X1
m�1

�ÿ1�m2mx2mÿ1

22m�m!�2 �
X1
m�1

�ÿ1�mx2mÿ1

22mÿ1m!�mÿ 1�!:

By inserting this series we have

X1
m�1

�ÿ1�mx2mÿ1

22mÿ2m!�mÿ 1�!�
X1
m�1

m2Amx
mÿ1 �

X1
m�1

Amx
m�1 � 0:

We ®rst show that Am with odd subscripts are all zero. The coe�cient of the

power x0 is A1 and so A1 � 0. By equating the sum of the coe�cients of the power

x2s to zero we obtain

�2s� 1�2A2s�1 � A2sÿ1 � 0; s � 1; 2; . . . :

Since A1 � 0, we thus obtain A3 � 0;A5 � 0; . . . ; successively. We now equate the

sum of the coe�cients of x2s�1 to zero. For s � 0 this gives

ÿ1� 4A2 � 0 or A2 � 1=4:

For the other values of s we obtain

�ÿ1�s�1

2s�s� 1�!s!� �2s� 2�2A2s�2 � A2s � 0:

For s � 1 this yields

1=8� 16A4 � A2 � 0 or A4 � ÿ3=128

and in general

A2m � �ÿ1�mÿ1

2m�m!�2 1� 1

2
� 1

3
� � � � � 1

m

� �
; m � 1; 2; . . . : �7:82�

Using the short notation

hm � 1� 1

2
� 1

3
� � � � � 1

m

and inserting Eq. (7.82) and A1 � A3 � � � � � 0 into Eq. (7.81) we obtain the result

y2�x� � J0�x� ln x�
X1
m�1

�ÿ1�mÿ1hm

22m�m!�2 x2m

� J0�x� ln x� 1

4
x2 ÿ 3

128
x4 �ÿ � � � : �7:83�

Since J0 and y2 are linearly independent functions, they form a fundamental

system of Eq. (7.80). Of course, another fundamental system is obtained by

replacing y2 by an independent particular solution of the form a�y2 � bJ0�,
where a�6� 0� and b are constants. It is customary to choose a � 2=� and
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b � ÿ ÿ ln 2, where ÿ � 0:577 215 664 90 . . . is the so-called Euler constant, which

is de®ned as the limit of

1� 1

2
� � � � � 1

s
ÿ ln s

as s approaches in®nity. The standard particular solution thus obtained is known

as the Bessel function of the second kind of order zero or Neumann's function of

order zero and is denoted by Y0�x�:

Y0�x� �
2

�

�
J0�x� ln

x

2
� ÿ

� �
�
X1
m�1

�ÿ1�mÿ1hm

22m�m!�2 x2m
�
: �7:84�

If � � 1; 2; . . . ; a second solution can be obtained by similar manipulations,

starting from Eq. (7.35). It turns out that in this case also the solution contains a

logarithmic term. So the second solution is unbounded near the origin and is

useful in applications only for x 6� 0.

Note that the second solution is de®ned diÿerently, depending on whether the

order � is integral or not. To provide uniformity of formalism and numerical

tabulation, it is desirable to adopt a form of the second solution that is valid for

all values of the order. The common choice for the standard second solution

de®ned for all � is given by the formula

Y��x� �
J��x� cos��ÿ Jÿ��x�

sin��
; Yn�x� � lim

�!n
Y��x�: �7:85�

This function is known as the Bessel function of the second kind of order �. It is

also known as Neumann's function of order � and is denoted by N��x� (Carl

Neumann 1832±1925, German mathematician and physicist). In G. N. Watson's

A Treatise on the Theory of Bessel Functions (2nd ed. Cambridge University Press,

Cambridge, 1944), it was called Weber's function and the notation Y��x� was

used. It can be shown that

Yÿn�x� � �ÿ1�nYn�x�:

We plot the ®rst three Yn�x� in Fig. 7.4.

A general solution of Bessel's equation for all values of � can now be written:

y�x� � c1J��x� � c2Y��x�:

In some applications it is convenient to use solutions of Bessel's equation that

are complex for all values of x, so the following solutions were introduced

H�1�
� �x� � J��x� � iY��x�;

H�2�
� �x� � J��x� ÿ iY��x�:

9=
; �7:86�

327

BESSEL'S EQUATION



These linearly independent functions are known as Bessel functions of the third

kind of order � or ®rst and second Hankel functions of order � (Hermann

Hankel, 1839±1873, German mathematician).

To illustrate how Bessel functions enter into the analysis of physical problems,

we consider one example in classical physics: small oscillations of a hanging chain,

which was ®rst considered as early as 1732 by Daniel Bernoulli.

Hanging ¯exible chain

Fig. 7.5 shows a uniform heavy ¯exible chain of length l hanging vertically under

its own weight. The x-axis is the position of stable equilibrium of the chain and its

lowest end is at x � 0. We consider the problem of small oscillations in the vertical

xy plane caused by small displacements from the stable equilibrium position. This

is essentially the problem of the vibrating string which we discussed in Chapter 4,

with two important diÿerences: here, instead of being constant, the tension T at a

given point of the chain is equal to the weight of the chain below that point, and

now one end of the chain is free, whereas before both ends were ®xed. The

analysis of Chapter 4 generally holds. To derive an equation for y, consider an

element dx, then Newton's second law gives

T
@y

@x

� �
2

ÿ T
@y

@x

� �
1

� �dx
@2y

@t2

or

�dx
@2y

@t2
� @

@x
T
@y

@x

� �
dx;
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from which we obtain

�
@2y

@t2
� @

@x
T
@y

@x

� �
:

Now T � �gx. Substituting this into the above equation for y, we obtain

@2y

@t2
� g

@y

@x
� gx

@2y

@x2
;

where y is a function of two variables x and t. The ®rst step in the solution is to

separate the variables. Let us attempt a solution of the form y�x; t� � u�x� f �t�.
Substitution of this into the partial diÿerential equation yields two equations:

f 00�t� � !2f �t� � 0; xu 00�x� � u 0�x� � �!2=g�u�x� � 0;

where !2 is the separation constant. The diÿerential equation for f �t� is ready for

integration and the result is f �t� � cos�!tÿ ��, with � a phase constant. The

diÿerential equation for u�x� is not in a recognizable form yet. To solve it, ®rst

change variables by putting

x � gz2=4; w�z� � u�x�;
then the diÿerential equation for u�x� becomes Bessel's equation of order zero:

zw 00�z� � w 0�z� � !2zw�z� � 0:

Its general solution is

w�z� � AJ0�!z� � BY0�!z�
or

u�x� � AJ0 2!

���
x

g

r� �
� BY0 2!

���
x

g

r� �
:
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Since Y0�2!
��������
x=g

p � ! ÿ1 as x ! 0, we are forced by physics to choose B � 0

and then

y�x; t� � AJ0 2!

���
x

g

r� �
cos�!tÿ ��:

The upper end of the chain at x � l is ®xed, requiring that

J0 2!

���̀
g

sý !
� 0:

The frequencies of the normal vibrations of the chain are given by

2!n

���̀
g

s
� �n;

where �n are the roots of J0. Some values of J0�x� and J1�x� are tabulated at the

end of this chapter.

Generating function for Jn�x�
The function

��x; t� � e�x=2��tÿtÿ1� �
X1
n�ÿ1

Jn�x�tn �7:87�

is called the generating function for Bessel functions of the ®rst kind of integral

order. It is very useful in obtaining properties of Jn�x� for integral values of n

which can then often be proved for all values of n.

To prove Eq. (7.87), let us consider the exponential functions ext=2 and eÿxt=2.

The Laurent expansions for these two exponential functions about t � 0 are

ext=2 �
X1
k�0

�xt=2�k
k!

; eÿxt=2 �
X1
m�0

�ÿxt=2�k
m!

:

Multiplying them together, we get

ex�tÿtÿ1�=2 �
X1
k�0

X1
m�0

�ÿ1�m
k!m!

x

2

� �k�m

tkÿm: �7:88�

It is easy to recognize that the coe�cient of the t0 term which is made up of those

terms with k � m is just J0�x�:X1
k�0

�ÿ1�k
22k�k!�2 x

2k � J0�x�:
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Similarly, the coe�cient of the term tn which is made up of those terms for

which kÿm � n is just Jn�x�:
X1
k�0

�ÿ1�k
�k� n�!k!22k�n

x2k�n � Jn�x�:

This shows clearly that the coe�cients in the Laurent expansion (7.88) of the

generating function are just the Bessel functions of integral order. Thus we

have proved Eq. (7.87).

Bessel's integral representation

With the help of the generating function, we can express Jn�x� in terms of a

de®nite integral with a parameter. To do this, let t � ei� in the generating func-

tion, then

ex�tÿtÿ1�=2 � ex�e
i�ÿeÿi��=2 � eix sin �

� cos�x sin �� � i sin�x cos ��:

Substituting this into Eq. (7.87) we obtain

cos�x sin �� � i sin�x cos �� �
X1
n�ÿ1

Jn�x��cos �� i sin ��n

�
X1
ÿ1

Jn�x� cos n�� i
X1
ÿ1

Jn�x� sin n�:

Since Jÿn�x� � �ÿ1�nJn�x�; cos n� � cos�ÿn��, and sin n� � ÿ sin�ÿn��, we have,
upon equating the real and imaginary parts of the above equation,

cos�x sin �� � J0�x� � 2
X1
n�1

J2n�x� cos 2n�;

sin�x sin �� � 2
X1
n�1

J2nÿ1�x� sin�2nÿ 1��:

It is interesting to note that these are the Fourier cosine and sine series of

cos�x sin �� and sin�x sin ��. Multiplying the ®rst equation by cos k� and integrat-

ing from 0 to �, we obtain

1

�

Z �

0

cos k� cos�x sin ��d� �
Jk�x�; if k � 0; 2; 4; . . .

0; if k � 1; 3; 5; . . .

(
:
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Now multiplying the second equation by sin k� and integrating from 0 to �, we

obtain

1

�

Z �

0

sin k� sin�x sin ��d� �
Jk�x�; if k � 1; 3; 5; . . .

0; if k � 0; 2; 4; . . .

(
:

Adding these two together we obtain Bessel's integral representation

Jn�x� �
1

�

Z �

0

cos�n�ÿ x sin ��d�; n � positive integer: �7:89�

Recurrence formulas for Jn�x�
Bessel functions of the ®rst kind, Jn�x�, are the most useful, because they are

bounded near the origin. And there exist some useful recurrence formulas between

Bessel functions of diÿerent orders and their derivatives.

�1� Jn�1�x� �
2n

x
Jn�x� ÿ Jnÿ1�x�: �7:90�

Proof: Diÿerentiating both sides of the generating function with respect to t, we

obtain

ex�tÿtÿ1�=2 x
2

1� 1

t2

� �
�

X1
n�ÿ1

nJn�x�tnÿ1

or

x

2
1� 1

t2

� � X1
n�ÿ1

Jn�x�tn �
X1
n�ÿ1

nJn�x�tnÿ1:

This can be rewritten as

x

2

X1
n�ÿ1

Jn�x�tn �
x

2

X1
n�ÿ1

Jn�x�tnÿ2 �
X1
n�ÿ1

nJn�x�tnÿ1

or

x

2

X1
n�ÿ1

Jn�x�tn �
x

2

X1
n�ÿ1

Jn�2�x�tn �
X1

n�ÿ1
�n� 1�Jn�1�x�tn:

Equating coe�cients of tn on both sides, we obtain

x

2
Jn�x� �

x

2
Jn�2�x� � �n� 1�Jn�x�:

Replacing n by nÿ 1, we obtain the required result.

�2� xJ 0
n�x� � nJn�x� ÿ xJn�1�x�: �7:91�
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Proof:

Jn�x� �
X1
k�0

�ÿ1�k
k!ÿ�n� k� 1�2n�2k

xn�2k:

Diÿerentiating both sides once, we obtain

J 0
n�x� �

X1
k�0

�n� 2k��ÿ1�k
k!ÿ�n� k� 1�2n�2k

xn�2kÿ1;

from which we have

xJ 0
n�x� � nJn�x� � x

X1
k�1

�ÿ1�k
�kÿ 1�!ÿ�n� k� 1�2n�2kÿ1

xn�2kÿ1:

Letting k � m� 1 in the sum on the right hand side, we obtain

xJ 0
n�x� � nJn�x� ÿ x

X1
m�0

�ÿ1�m
m!ÿ�n�m� 2�2n�2m�1

xn�2m�1

� nJn�x� ÿ xJn�1�x�:

�3� xJ 0
n�x� � ÿnJn�x� � xJnÿ1�x�: �7:92�

Proof: Diÿerentiating both sides of the following equation with respect to x

xnJn�x� �
X1
k�0

�ÿ1�k
k!ÿ�n� k� 1�2n�2k

x2n�2k;

we have

d

dx
fxnJn�x�g � xnJ 0

n�x� � nxnÿ1Jn�x�;

d

dx

X1
k�0

�ÿ1�kx2n�2k

2n�2kk!ÿ�n� k� 1� �
X1
k�0

�ÿ1�kx2n�2kÿ1

2n�2kÿ1k!ÿ�n� k�

� xn
X1
k�0

�ÿ1�kx�nÿ1��2k

2�nÿ1��2kk!ÿ��nÿ 1� � k� 1�
� xnJnÿ1�x�:

Equating these two results, we have

xnJ 0
n�x� � nxnÿ1Jn�x� � xnJnÿ1�x�:
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Canceling out the common factor xnÿ1, we obtained the required result (7.92).

�4� J 0
n�x� � �Jnÿ1�x� ÿ Jn�1�x��=2: �7:93�

Proof: Adding (7.91) and (7.92) and dividing by 2x, we obtain the required

result (7.93).

If we subtract (7.91) from (7.92), J 0
n�x� is eliminated and we obtain

xJn�1�x� � xJnÿ1�x� � 2nJn�x�
which is Eq. (7.90).

These recurrence formulas (or important identities) are very useful. Here are

some illustrative examples.

Example 7.2

Show that J 0
0�x� � Jÿ1�x� � ÿJ1�x�.

Solution: From Eq. (7.93), we have

J 0
0�x� � �Jÿ1�x� ÿ J1�x��=2;

then using the fact that Jÿn�x� � �ÿ1�nJn�x�, we obtain the required results.

Example 7.3

Show that

J3�x� �
8

x2
ÿ 1

� �
J1�x� ÿ

4

x
J0�x�:

Solution: Letting n � 4 in (7.90), we have

J3�x� �
4

x
J2�x� ÿ J1�x�:

Similarly, for J2�x� we have

J2�x� �
2

x
J1�x� ÿ J0�x�:

Substituting this into the expression for J3�x�, we obtain the required result.

Example 7.4

Find
R t

0 xJ0�x�dx.
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Solution: Taking derivative of the quantity xJ1�x� with respect to x, we obtain

d

dx
fxJ1�x�g � J1�x� � xJ 0

1�x�:

Then using Eq. (7.92) with n � 1, xJ 0
1�x� � ÿJ1�x� � xJ0�x�, we ®nd

d

dx
fxJ1�x�g � J1�x� � xJ 0

1�x� � xJ0�x�;

thus, Z t

0

xJ0�x�dx � xJ1�x�jt0 � tJ1�t�:

Approximations to the Bessel functions

For very large or very small values of x we might be able to make some approxi-

mations to the Bessel functions of the ®rst kind Jn�x�. By a rough argument, we

can see that the Bessel functions behave something like a damped cosine function

when the value of x is very large. To see this, let us go back to Bessel's equation

(7.71)

x2y 00 � xy 0 � �x2 ÿ �2�y � 0

and rewrite it as

y 00 � 1

x
y 0 � 1ÿ �2

x2

ý !
y � 0:

If x is very large, let us drop the term �2=x2 and then the diÿerential equation

reduces to

y 00 � 1

x
y 0 � y � 0:

Let u � yx1=2, then u 0 � y 0x1=2 � 1
2 x

ÿ1=2y, and u 00 � y 00x1=2 � xÿ1=2y 0 ÿ 1
4 x

ÿ3=2y.

From u 00 we have

y 00 � 1

x
y 0 � xÿ1=2u 00 � 1

4x2
y:

Adding y on both sides, we obtain

y 00 � 1

x
y 0 � y � 0 � xÿ1=2u 00 � 1

4x2
y� y;

xÿ1=2u 00 � 1

4x2
y� y � 0
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or

u 00 � 1

4x2
� 1

� �
x1=2y � u 00 � 1

4x2
� 1

� �
u � 0;

the solution of which is

u � A cos x� B sin x:

Thus the approximate solution to Bessel's equation for very large values of x is

y � xÿ1=2�A cos x� B sin x� � Cxÿ1=2 cos�x� þ�:
A more rigorous argument leads to the following asymptotic formula

Jn�x� �
2

�x

� �1=2

cos xÿ �

4
ÿ n�

2

� �
: �7:94�

For very small values of x (that is, near 0), by examining the solution itself and

dropping all terms after the ®rst, we ®nd

Jn�x� �
xn

2nÿ�n� 1� : �7:95�

Orthogonality of Bessel functions

Bessel functions enjoy a property which is called orthogonality and is of general

importance in mathematical physics. If � and � are two diÿerent constants, we

can show that under certain conditionsZ 1

0

xJn��x�Jn��x�dx � 0:

Let us see what these conditions are. First, we can show thatZ 1

0

xJn��x�Jn��x�dx � �Jn���J 0
n��� ÿ �Jn���J 0

n���
�2 ÿ �2

: �7:96�

To show this, let us go back to Bessel's equation (7.71) and change the indepen-

dent variable to �x, where � is a constant, then the resulting equation is

x2y 00 � xy 0 � ��2x2 ÿ n2�y � 0

and its general solution is Jn��x�. Now suppose we have two such equations, one

for y1 with constant �, and one for y2 with constant �:

x2y 00
1 � xy 0

1 � ��2x2 ÿ n2�y1 � 0; x2y 00
2 � xy 0

2 � ��2x2 ÿ n2�y2 � 0:

Now multiplying the ®rst equation by y2, the second by y1 and subtracting, we get

x2�y2y 00
1 ÿ y1y

00
2 � � x�y2y 0

1 ÿ y1y
0
2� � ��2 ÿ �2�x2y1y2:
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Dividing by x we obtain

x
d

dx
�y2y 0

1 ÿ y1y
0
2� � �y2y 0

1 ÿ y1y
0
2� � ��2 ÿ �2�xy1y2

or

d

dx
fx�y2y 0

1 ÿ y1y
0
2�g � ��2 ÿ �2�xy1y2

and then integration gives

��2 ÿ �2�
Z

xy1y2dx � x�y2y 0
1 ÿ y1y

0
2�;

where we have omitted the constant of integration. Now y1 � Jn��x�; y2 � Jn�x�,
and if � 6� � we then haveZ

xJn��x�Jn��x�dx � x��Jn��x�J 0
n��x� ÿ �Jn��x�J 0

n��x�
�2 ÿ �2

:

Thus Z 1

0

xJn��x�Jn��x�dx � �Jn���J 0
n��� ÿ �Jn���J 0

n���
�2 ÿ �2

q:e:d:

Now letting � ! � and using L'Hospital's rule, we obtainZ 1

0

xJ2
n ��x�dx � lim

�!�

�J 0
n���J 0

n��� ÿ Jn���J 0
n��� ÿ �Jn���J 00

n ���
2�

� �J 0
n
2��� ÿ Jn���J 0

n��� ÿ �Jn���J 00
n ���

2�
:

But

�2J 00
n ��� � �J 0

n��� � ��2 ÿ n2�Jn��� � 0:

Solving for J 00
n ��� and substituting, we obtainZ 1

0

xJ2
n ��x�dx � 1

2
J 0
n
2��� � 1ÿ n2

�2

ý !
J2
n �x�

" #
: �7:97�

Furthermore, if � and � are any two diÿerent roots of the equation

RJn�x� � SxJ 0
n�x� � 0, where R and S are constant, we then have

RJn��� � S�J 0
n��� � 0; RJn��� � S�J 0

n��� � 0;

from these two equations we ®nd, if R 6� 0;S 6� 0,

�Jn���J 0
n��� ÿ �Jn���J 0

n��� � 0
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and then from Eq. (7.96) we obtainZ 1

0

xJn��x�Jn��x�dx � 0: �7:98�

Thus, the two functions
���
x

p
Jn��x� and

���
x

p
Jn��x� are orthogonal in (0, 1). We can

also say that the two functions Jn��x� and Jn��x� are orthogonal with respect to

the weighted function x.

Eq. (7.98) is also easily proved if R � 0 and S 6� 0, or R 6� 0 but S � 0. In this

case, � and � can be any two diÿerent roots of Jn�x� � 0 or J 0
n�x� � 0.

Spherical Bessel functions

In physics we often meet the following equation

d

dr
r2
dR

dr

� �
� �k2r2 ÿ l�l � 1��R � 0; �l � 0; 1; 2; . . .�: �7:99�

In fact, this is the radial equation of the wave and the Helmholtz partial diÿer-

ential equation in the spherical coordinate system (see Problem 7.22). If we let

x � kr and y�x� � R�r�, then Eq. (7.99) becomes

x2y 00 � 2xy 0 � �x2 ÿ l�l � 1��y � 0 �l � 0; 1; 2; . . .�; �7:100�
where y 0 � dy=dx. This equation almost matches Bessel's equation (7.71). Let us

make the further substitution

y�x� � w�x�= ���
x

p
;

then we obtain

x2w 00 � xw 0 � �x2 ÿ �l � 1
2��w � 0 �l � 0; 1; 2; . . .�: �7:101�

The reader should recognize this equation as Bessel's equation of order l � 1
2. It

follows that the solutions of Eq. (7.100) can be written in the form

y�x� � A
Jl�1=2�x����

x
p � B

Jÿlÿ1=2�x����
x

p :

This leads us to de®ne spherical Bessel functions jl�x� � CJl�E�x�=
���
x

p
. The factor

C is usually chosen to be
��������
�=2

p
for a reason to be explained later:

jl�x� �
�����������
�=2x

p
Jl � E�x�: �7:102�

Similarly, we can de®ne

nl�x� �
�����������
�=2x

p
Nl�E�x�:
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We can express jl�x� in terms of j0�x�. To do this, let us go back to Jn�x� and we

®nd that

d

dx
fxÿnJn�x�g � ÿxÿnJn�1�x�; or Jn�1�x� � ÿxn

d

dx
fxÿnJn�x�g:

The proof is simple and straightforward:

d

dx
fxÿnJn�x�g � d

dx

X1
k�0

�ÿ1�kx2k
2n�2kk!ÿ�n� k� 1�

� xÿn
X1
k�0

�ÿ1�kxn�2kÿ1

2n�2kÿ1�kÿ 1�!ÿ�n� k� 1�

� xÿn
X1
k�0

�ÿ1�k�1xn�2k�1

2n�2k�1k!ÿ��n� k� 2g � ÿxÿnJn�1�x�:

Now if we set n � l � 1
2 and divide by xl�3=2, we obtain

Jl�3=2�x�
xl�3=2

� ÿ 1

x

d

dx

Jl�1=2�x�
xl�1=2

� �
or

jl�1�x�
xl�1

� ÿ 1

x

d

dx

jl�x�
xl

� �
:

Starting with l � 0 and applying this formula l times, we obtain

jl�x� � xl ÿ 1

x

d

dx

� �l

j0�x� �l � 1; 2; 3; . . .�: �7:103�

Once j0�x� has been chosen, all jl�x� are uniquely determined by Eq. (7.103).

Now let us go back to Eq. (7.102) and see why we chose the constant factor C to

be
��������
�=2

p
. If we set l � 0 in Eq. (7.101), the resulting equation is

xy 00 � 2y 0 � xy � 0:

Solving this equation by the power series method, the reader will ®nd that func-

tions sin (x�=x and cos (x�=x are among the solutions. It is customary to de®ne

j0�x� � sin�x�=x:
Now by using Eq. (7.76), we ®nd

J1=2�x� �
X1
k�0

�ÿ1�k�x=2�1=2�2k

k!ÿ�k� 3=2�

� �x=2�1=2
�1=2� ���

�
p 1ÿ x2

3!
� x4

5!
ÿ � � �

ý !
� �x=2�1=2

�1=2� ���
�

p sin x

x
�

������
2

�x

r
sin x:

Comparing this with j0�x� shows that j0�x� �
�����������
�=2x

p
J1=2�x�, and this explains the

factor
��������
�=2

p
chosen earlier.
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Sturm±Liouville systems

A boundary-value problem having the form

d

dx
r�x� dy

dx

� �
� �q�x� � �p�x��y � 0; a � x � b �7:104�

and satisfying boundary conditions of the form

k1y�a� � k2y
0�a� � 0; l1y�b� � l2y

0�b� � 0 �7:104a�
is called a Sturm±Liouville boundary-value problem; Eq. (7.104) is known as the

Sturm±Liouville equation. Legendre's equation, Bessel's equation and many other

important equations can be written in the form of (7.104).

Legendre's equation (7.1) can be written as

��1ÿ x2�y 0� 0 � �y � 0; � � ��� � 1�;
we can then see it is a Sturm±Liouville equation with r � 1ÿ x2; q � 0 and p � 1.

Then, how do Bessel functions ®t into the Sturm±Liouville framework? J�s�
satis®es the Bessel equation (7.71)

s2 �Jn � s _Jn � �s2 ÿ n2�Jn � 0; _Jn � dJn=ds: �7:71a�
We assume n is a positive integer and setting s � �x, with � a non-zero constant,

we have

ds

dx
� �; _Jn �

dJn
dx

dx

ds
� 1

�

dJn
dx

; �Jn �
d

dx

1

�

dJn
dx

� �
dx

ds
� 1

�2

d2Jn
dx2

and Eq. (7.71a) becomes

x2J 00
n ��x� � xJ 0

n��x� � ��2x2 ÿ n2�Jn��x� � 0; J 0
n � dJn=dx

or

xJ 00
n ��x� � J 0

n��x� � ��2xÿ n2=x�Jn��x� � 0;

which can be written as

�xJ 0
n��x�� 0 � ÿ n2

x
� �2x

ý !
Jn��x� � 0:

It is easy to see that for each ®xed n this is a Sturm±Liouville equation (7.104),

with r�x� � x, q�x� � ÿn2=x; p�x� � x, and with the parameter � now written as

�2.

For the Sturm±Liouville system (7.104) and (7.104a), a non-trivial solution

exists in general only for a particular set of values of the parameter �. These

values are called the eigenvalues of the system. If r�x� and q�x� are real, the

eigenvalues are real. The corresponding solutions are called eigenfunctions of
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the system. In general there is one eigenfunction to each eigenvalue. This is the

non-degenerate case. In the degenerate case, more than one eigenfunction may

correspond to the same eigenvalue. The eigenfunctions form an orthogonal set

with respect to the density function p�x� which is generally � 0.Thus by suitable

normalization the set of functions can be made an orthonormal set with respect to

p�x� in a � x � b. We now proceed to prove these two general claims.

Property 1

If r�x� and q�x� are real, the eigenvalues of a Sturm±Liouville

system are real.

We start with the Sturm±Liouville equation (7.104) and the boundary condi-

tions (7.104a):

d

dx
r�x� dy

dx

� �
� �q�x� � �p�x��y � 0; a � x � b;

k1y�a� � k2y
0�a� � 0; l1y�b� � l2y

0�b� � 0;

and assume that r�x�; q�x�; p�x�; k1; k2; l1, and l2 are all real, but � and y may be

complex. Now take the complex conjugates

d

dx
r�x� d�y

dx

� �
� �q�x� � ��p�x���y � 0; �7:105�

k1�y�a� � k2�y
0�a� � 0; l1�y�b� � l2�y

0�b� � 0; �7:105a�
where �y and �� are the complex conjugates of y and �, respectively.

Multiplying (7.104) by �y, (7.105) by y, and subtracting, we obtain after

simplifying

d

dx
r�x��y�y 0 ÿ �yy 0�� � � ��ÿ ���p�x�y�y:

Integrating from a to b, and using the boundary conditions (7.104a) and (7.105a),

we then obtain

��ÿ ���
Z b

a

p�x� y 0þþ þþ2dx � r�x��y�y 0 ÿ �yy 0�jba � 0:

Since p�x� � 0 in a � x � b, the integral on the left is positive and therefore

� � ��, that is, � is real.

Property 2

The eigenfunctions corresponding to two diÿerent eigenvalues

are orthogonal with respect to p�x� in a � x � b.
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If y1 and y2 are eigenfunctions corresponding to the two diÿerent eigenvalues

�1; �2, respectively,

d

dx
r�x� dy1

dx

� �
� �q�x� � �1p�x��y1 � 0; a � x � b; �7:106�

k1y1�a� � k2y
0
1�a� � 0; l1y1�b� � l2y

0
1�b� � 0; �7:106a�

d

dx
r�x� dy2

dx

� �
� �q�x� � �2p�x��y2 � 0; a � x � b; �7:107�

k1y2�a� � k2y
0
2�a� � 0; l1y2�b� � l2y

0
2�b� � 0: �7:107a�

Multiplying (7.106) by y2 and (7.107) by y1, then subtracting, we obtain

d

dx
r�x��y1y 0

2 ÿ y2y
0
1�

� � � ��ÿ ���p�x�y1y2:

Integrating from a to b, and using (7.106a) and (7.107a), we obtain

��1 ÿ �2�
Z b

a

p�x�y1y2dx � r�x��y1y 0
2 ÿ y2y

0
1�jba � 0:

Since �1 6� �2 we have the required result; that is,

Z b

a

p�x�y1y2dx � 0:

We can normalize these eigenfunctions to make them an orthonormal set, and

so we can expand a given function in a series of these orthonormal eigenfunctions.

We have shown that Legendre's equation is a Sturm±Liouville equation with

r�x� � 1ÿ x; q � 0 and p � 1. Since r � 0 when x � �1, no boundary conditions

are needed to form a Sturm±Liouville problem on the interval ÿ1 � x � 1. The

numbers �n � n�n� 1� are eigenvalues with n � 0; 1; 2; 3; . . .. The corresponding

eigenfunctions are yn � Pn�x�. Property 2 tells us thatZ 1

ÿ1

Pn�x�Pm�x�dx � 0 n 6� m:

For Bessel functions we saw that

�xJ 0
n��x�� 0 � ÿ n2

x
� �2x

ý !
Jn��x� � 0

is a Sturm±Liouville equation (7.104), with r�x� � x; q�x� � ÿn2=x; p�x� � x, and

with the parameter � now written as �2. Typically, we want to solve this equation

342

SPECIAL FUNCTIONS OF MATHEMATICAL PHYSICS



on an interval 0 � x � b subject to

Jn��b� � 0:

which limits the selection of �. Property 2 then tells us thatZ b

0

xJn��kx�Jn��lx�dx � 0; k 6� l:

Problems

7.1 Using Eq. (7.11), show that Pn�ÿx� � �ÿ1�nPn�x� and Pn
0�ÿx� �

�ÿ1�n�1P 0
n�x�:

7.2 Find P0�x�;P1�x�;P2�x�;P3�x�, and P4�x� from Rodrigues' formula (7.12).

Compare your results with Eq. (7.11).

7.3 Establish the recurrence formula (7.16b) by manipulating Rodrigues'

formula.

7.4 Prove that P 0
5�x� � 9P4�x� � 5P2�x� � P0�x�.

Hint: Use the recurrence relation (7.16d).

7.5 Let P and Q be two points in space (Fig. 7.6). Using Eq. (7.14), show that

1

r
� 1����������������������������������������

r21 � r22 ÿ 2r1r2 cos �
q

� 1

r2
P0 � P1�cos ��

r1
r2

� P2�cos ��
r1
r2

� �2

� � � �
" #

:

7.6 What is Pn�1�? What is Pn�ÿ1�?
7.7 Obtain the associated Legendre functions: �a� P1

2�x�; �b� P2
3�x�; �c� P3

2�x�:
7.8 Verify that P2

3�x� is a solution of Legendre's associated equation (7.25) for

m � 2, n � 3.

7.9 Verify the orthogonality conditions (7.31) for the functions P1
2�x� and P1

3�x�.
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7.10 Verify Eq. (7.37) for the function P1
2�x�:

7.11 Show that

dnÿm

dxnÿm �x2 ÿ 1�n � �nÿm�!
�n�m�! �x

2 ÿ 1�m dn�m

dxn�m �x2 ÿ 1�m

Hint: Write �x2 ÿ 1�n � �xÿ 1�n�x� 1�n and ®nd the derivatives by

Leibnitz's rule.

7.12 Use the generating function for the Hermite polynomials to ®nd:

(a) H0�x�; (b) H1�x�; (c) H2�x�; (d) H3�x�.
7.13 Verify that the generating function � satis®es the identity

@2�

@x2
ÿ 2x

@�

@x
� 2t

@�

@t
� 0:

Show that the functions Hn�x� in Eq. (7.47) satisfy Eq. (7.38).

7.14 Given the diÿerential equation y 00 � �"ÿ x2�y � 0, ®nd the possible values

of " (eigenvalues) such that the solution y�x� of the given diÿerential equa-

tion tends to zero as x ! �1. For these values of ", ®nd the eigenfunctions

y�x�.
7.15 In Eq. (7.58), write the series for the exponential and collect powers of z to

verify the ®rst few terms of the series. Verify the identity

x
@2�

@x2
� �1ÿ x� @�

@x
� z

@�

@z
� 0:

Substituting the series (7.58) into this identity, show that the functions Ln�x�
in Eq. (7.58) satisfy Laguerre's equation.

7.16 Show that

J0�x� � 1ÿ x2

22�1!�2 �
x4

24�2!�2 ÿ
x6

26�3!�2 �ÿ � � � ;

J1�x� �
x

2
ÿ x3

231!2!
� x5

252!3!
ÿ x7

273!4!
�ÿ � � � :

7.17 Show that

J1=2�x� �
2

�x

� �1=2

sin x; Jÿ1=2�x� �
2

�x

� �1=2

cos x:

7.18 If n is a positive integer, show that the formal expression for Jÿn�x� gives

Jÿn�x� � �ÿ1�nJn�x�.
7.19 Find the general solution to the modi®ed Bessel's equation

x2y 00 � xy 0 � �x2s2 ÿ �2�y � 0

which diÿers from Bessel's equation only in that sx takes the place of x.
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(Hint: Reduce the given equation to Bessel's equation ®rst.)

7.20 The lengthening simple pendulum: Consider a small mass m suspended by a

string of length l. If its length is increased at a steady rate r as it swings back

and forth freely in a vertical plane, ®nd the equation of motion and the

solution for small oscillations.

7.21 Evaluate the integrals:

�a�
Z

xnJnÿ1�x�dx; �b�
Z

xÿnJn�1�x�dx; �c�
Z

xÿ1J1�x�dx:

7.22 In quantum mechanics, the three-dimensional SchroÈ dinger equation is

ip
@ý�r; t�

@t
� ÿ p2

2m
r2ý�r; t� � Vý�r; t�; i �

�������
ÿ1

p
; p � h=2�:

(a) When the potential V is independent of time, we can write ý�r; t� �
u�r�T�t�. Show that in this case the SchroÈ dinger equation reduces to

ÿ p2

2m
r2u�r� � Vu�r� � Eu�r�;

a time-independent equation along with T�t� � eÿiEt=p, where E is a

separation constant.

(b) Show that, in spherical coordinates, the time-independent SchroÈ dinger

equation takes the form

ÿ p2

2m

1

r2
@

@r
r2
@u

@r

� �
� 1

r2 sin �

@

@�
sin �

@u

@�

� �
� 1

r2 sin2 �

@2u

@�

" #
� V�r�u � Eu;

then use separation of variables, u�r; �; �� � R�r�Y��; ��, to split it into

two equations, with � as a new separation constant:

ÿ p2

2m

1

r2
d

dr
r2
dR

dr

� �
� V � �

r2

� �
R � ER;

ÿ p2

2m

1

sin �

@

@�
sin �

@Y

@�

� �
ÿ p2

2m

1

sin2 �

@2Y

@�2
� �Y :

It is straightforward to see that the radial equation is in the form of Eq.

(7.99). Continuing the separation process by puttingY��; �� � ��������,
the angular equation can be separated further into two equations, with

þ as separation constant:

ÿ p2

2m

1

�

d2�

d�2
� þ;

ÿ p2

2m
sin �

d

d�
sin �

d�

d�

� �
ÿ � sin2 ��� þ� � 0:
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The ®rst equation is ready for integration. Do you recognize the

second equation in � as Legendre's equation? (Compare it with Eq.

(7.30).) If you are unsure, try to simplify it by putting ÿ � 2m�=p;
� � �2mþ=p�1=2, and you will obtain

sin �
d

d�
sin �

d�

d�

� �
� �ÿ sin2 �ÿ �2�� � 0

or

1

sin �

d

d�
sin �

d�

d�

� �
�
�
ÿ ÿ �2

sin2 �

�
� � 0;

which more closely resembles Eq. (7.30).

7.23 Consider the diÿerential equation

y 00 � R�x�y 0 � �Q�x� � �P�x��y � 0:

Show that it can be put into the form of the Sturm±Liouville equation

(7.104) with

r�x� � e
R

R�x�dx; q�x� � Q�x�e
R

R�x�dx; and p�x� � P�x�e
R

R�x�dx:

7.24. (a) Show that the system y 00 � �y � 0; y�0� � 0; y�1� � 0 is a Sturm±

Liouville system.

(b) Find the eigenvalues and eigenfunctions of the system.

(c) Prove that the eigenfunctions are orthogonal on the interval 0 � x � 1.

(d) Find the corresponding set of normalized eigenfunctions, and expand

the function f �x� � 1 in a series of these orthonormal functions.
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8

The calculus of variations

The calculus of variations, in its present form, provides a powerful method for the

treatment of variational principles in physics and has become increasingly impor-

tant in the development of modern physics. It is originated as a study of certain

extremum (maximum and minimum) problems not treatable by elementary

calculus. To see this more precisely let us consider the following integral whose

integrand is a function of x, y, and of the ®rst derivative y 0�x� � dy=dx:

I �
Z x2

x1

f y�x�; y 0�x�; x� þ
dx; �8:1�

where the semicolon in f separates the independent variable x from the dependent

variable y�x� and its derivative y 0�x�. For what function y�x� is the value of the

integral I a maximum or a minimum? This is the basic problem of the calculus of

variations.

The quantity f depends on the functional form of the dependent variable y�x�
and is called the functional which is considered as given, the limits of integration

are also given. It is also understood that y � y1 at x � x1, y � y2 at x � x2. In

contrast with the simple extreme-value problem of diÿerential calculus, the func-

tion y�x� is not known here, but is to be varied until an extreme value of the

integral I is found. By this we mean that if y�x� is a curve which gives to I a

minimum value, then any neighboring curve will make I increase.

We can make the de®nition of a neighboring curve clear by giving y�x� a

parametric representation:

y�"; x� � y�0; x� � "��x�; �8:2�

where ��x� is an arbitrary function which has a continuous ®rst derivative and " is

a small arbitrary parameter. In order for the curve (8.2) to pass through �x1; y1�
and �x2; y2�, we require that ��x1� � ��x2� � 0 (see Fig. 8.1). Now the integral I
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also becomes a function of the parameter "

I�"� �
Z x2

x1

f fy�";x�; y 0�";x�; xgdx: �8:3�

We then require that y�x� � y�0; x� makes the integral I an extreme, that is, the

integral I�"� has an extreme value for " � 0:

I�"� �
Z x2

x1

f fy�";x�; y 0�";x�;xgdx � extremum for " � 0:

This gives us a very simple method of determining the extreme value of the

integral I. The necessary condition is

dI

d"

ýýýý
"�0

� 0 �8:4�

for all functions ��x�. The su�cient conditions are quite involved and we shall

not pursue them. The interested reader is referred to mathematical texts on the

calculus of variations.

The problem of the extreme-value of an integral occurs very often in geometry

and physics. The simplest example is provided by the problem of determining the

shortest curve (or distance) between two given points. In a plane, this is the

straight line. But if the two given points lie on a given arbitrary surface, then

the analytic equation of this curve, which is called a geodesic, is found by solution

of the above extreme-value problem.

The Euler±Lagrange equation

In order to ®nd the required curve y�x� we carry out the indicated diÿerentiation

in the extremum condition (8.4):
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@I

@"
� @

@"

Z x2

x1

f fy�"; x�; y 0�"; x�; xgdx

�
Z x2

x1

@f

@y

@y

@"
� @f

@y 0
@y 0

@"

� �
dx; �8:5�

where we have employed the fact that the limits of integration are ®xed, so the

diÿerential operation aÿects only the integrand. From Eq. (8.2) we have

@y

@"
� ��x� and

@y 0

@"
� d�

dx
:

Substituting these into Eq. (8.5) we obtain

@I

@"
�

Z x2

x1

@f

@y
��x� � @f

@y 0
d�

dx

� �
dx: �8:6�

Using integration by parts, the second term on the right hand side becomesZ x2

x1

@f

@y 0
d�

dx
dx � @f

@y 0 ��x�
ýýýýx2
x1

ÿ
Z x2

x1

d

dx

@f

@y 0

� �
��x�dx:

The integrated term on the right hand side vanishes because ��x1� � ��x2� � 0

and Eq. (8.6) becomes

@I

@"
�

Z x2

x1

@f

@y

@y

@"
ÿ d

dx

@f

@y 0

� �
@y

@"

� �
dx

�
Z x2

x1

@f

@y
ÿ d

dx

@f

@y 0

� �� �
��x�dx: �8:7�

Note that @f =@y and @f =@y 0 are still functions of ". However, when

" � 0; y�"; x� � y�x� and the dependence on " disappears.

Then �@I=@"�j"�0 vanishes, and since ��x� is an arbitrary function, the inte-

grand in Eq. (8.7) must vanish for " � 0:

d

dx

@f

@y 0 ÿ
@f

@y
� 0: �8:8�

Eq. (8.8) is known as the Euler±Lagrange equation; it is a necessary but not

su�cient condition that the integral I have an extreme value. Thus, the solution

of the Euler±Lagrange equation may not yield the minimizing curve. Ordinarily

we must verify whether or not this solution yields the curve that actually mini-

mizes the integral, but frequently physical or geometrical considerations enable us

to tell whether the curve so obtained makes the integral a minimum or a max-

imum. The Euler±Lagrange equation can be written in the form (Problem 8.2)

d

dx
f ÿ y 0 @f

@y 0

� �
ÿ @f

@x
� 0: �8:8a�
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This is often called the second form of the Euler±Lagrange equation. If f does not

involve x explicitly, it can be integrated to yield

f ÿ y 0 @f
@y 0 � c; �8:8b�

where c is an integration constant.

The Euler±Lagrange equation can be extended to the case in which f is a

functional of several dependent variables:

f � f y1�x�; y 0
1�x�; y2�x�; y 0

2�x�; . . . ; x
� þ

:

Then, in analogy with Eq. (8.2), we now have

yi�";x� � yi�0; x� � "�i�x�; i � 1; 2; . . . ; n:

The development proceeds in an exactly analogous manner, with the result

@I

@"
�

Z x2

x1

@f

@yi
ÿ d

dx

@f

@yi
0

� �� �
�i�x�dx:

Since the individual variations, that is, the �i�x�, are all independent, the vanish-

ing of the above equation when evaluated at " � 0 requires the separate vanishing

of each expression in the brackets:

d

dx

@f

@y 0
i

ÿ @f

@yi
� 0; i � 1; 2; . . . ; n: �8:9�

Example 8.1

The brachistochrone problem: Historically, the brachistochrone problem was the

®rst to be treated by the method of the calculus of variations (®rst solved by

Johann Bernoulli in 1696). As shown in Fig. 8.2, a particle is constrained to

move in a gravitational ®eld starting at rest from some point P1 to some lower
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point P2. Find the shape of the path such that the particle goes from P1 to P2 in

the least time. (The word brachistochrone was derived from the Greek brachistos

(shortest) and chronos (time).)

Solution: If O and P are not very far apart, the gravitational ®eld is constant, and

if we ignore the possibility of friction, then the total energy of the particle is

conserved:

0�mgy1 �
1

2
m

ds

dt

� �2

� mg�y1 ÿ y�;

where the left hand side is the sum of the kinetic energy and the potential energy

of the particle at point P1, and the right hand side refers to point P�x; y�. Solving
for ds=dt:

ds=dt �
��������
2gy

p
:

Thus the time required for the particle to move from P1 to P2 is

t �
Z P2

P1

dt �
Z P2

P1

ds��������
2gy

p :

The line element ds can be expressed as

ds �
��������������������
dx2 � dy2

q
�

���������������
1� y 02

q
dx; y 0 � dy=dx;

thus, we have

t �
Z P2

P1

dt �
Z P2

P1

ds��������
2gy

p � 1�����
2g

p
Z x2

0

���������������
1� y 02p

���
y

p dx:

We now apply the Euler±Lagrange equation to ®nd the shape of the path for

the particle to go from P1 to P2 in the least time. The constant does not aÿect the

®nal equation and the functional f may be identi®ed as

f �
���������������
1� y 02

q
=

���
y

p
;

which does not involve x explicitly. Using Problem 8.2(b), we ®nd

f ÿ y 0 @f
@y 0 �

���������������
1� y 02p

���
y

p ÿ y 0 y 0���������������
1� y 02p ���

y
p

" #
� c;

which simpli®es to ���������������
1� y 02

q ���
y

p � 1=c:
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Letting 1=c � ���
a

p
and solving for y 0 gives

y 0 � dy

dx
�

�����������
aÿ y

y

r
;

and solving for dx and integrating we obtainZ
dx �

Z �����������
y

aÿ y

r
dy:

We then let

y � a sin2 � � a

2
�1ÿ cos 2��

which leads to

x � 2a

Z
sin2 �d� � a

Z
�1ÿ cos 2��d� � a

2
�2�ÿ sin 2�� � k:

Thus the parametric equation of the path is given by

x � b�1ÿ cos��; y � b��ÿ sin�� � k;

where b � a=2; � � 2�. The path passes through the origin so we have k � 0 and

x � b�1ÿ cos��; y � b��ÿ sin��:

The constant b is determined from the condition that the particle passes through

P2�x2; y2�:
The required path is a cycloid and is the path of a ®xed point P 0 on a circle of

radius b as it rolls along the x-axis (Fig. 8.3).

A line that represents the shortest path between any two points on some surface

is called a geodesic. On a ¯at surface, the geodesic is a straight line. It is easy to

show that, on a sphere, the geodesic is a great circle; we leave this as an exercise

for the reader (Problem 8.3).
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Variational problems with constraints

In certain problems we seek a minimum or maximum value of the integral (8.1)

I �
Z x2

x1

f y�x�; y 0�x�; x� þ
dx �8:1�

subject to the condition that another integral

J �
Z x2

x1

g y�x�; y 0�x�; x� þ
dx �8:10�

has a known constant value. A simple problem of this sort is the problem of

determining the curve of a given perimeter which encloses the largest area, or

®nding the shape of a chain of ®xed length which minimizes the potential energy.

In this case we can use the method of Lagrange multipliers which is based on

the following theorem:

The problem of the stationary value of F(x, y) subject to the con-

dition G�x; y� � const. is equivalent to the problem of stationary

values, without constraint, of F � �G for some constant �, pro-

vided either @G=@x or @G=@y does not vanish at the critical point.

The constant � is called a Lagrange multiplier and the method is known as the

method of Lagrange multipliers. To see the ideas behind this theorem, let us

assume that G�x; y� � 0 de®nes y as a unique function of x, say, y � g�x�, having
a continuous derivative g 0�x�. Then

F�x; y� � F �x; g�x��
and its maximum or minimum can be found by setting the derivative with respect

to x equal to zero:

@F

@x
� @F

@y

dy

dx
� 0 or Fx � Fyg

0�x� � 0: �8:11�

We also have

G�x; g�x�� � 0;

from which we ®nd

@G

@x
� @G

@y

dy

dx
� 0 or Gx � Gyg

0�x� � 0: �8:12�

Eliminating g 0�x� between Eq. (8.11) and Eq. (8.12) we obtain

Fx ÿ Fy=Gy

ÿ �
Gx � 0; �8:13�
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provided Gy � @G=@y 6� 0. De®ning � � ÿFy=Gy or

Fy � �Gy �
@F

@y
� �

@G

@y
� 0; �8:14�

Eq. (8.13) becomes

Fx � �Gx � @F

@x
� �

@G

@x
� 0: �8:15�

If we de®ne

H�x; y� � F�x; y� � �G�x; y�;
then Eqs. (8.14) and (8.15) become

@H�x; y�=@x � 0; H�x; y�=@y � 0;

and this is the basic idea behind the method of Lagrange multipliers.

It is natural to attempt to solve the problem I � minimum subject to the con-

dition J � constant by the method of Lagrange multipliers. We construct the

integral

I � �J �
Z x2

x1

�F�y; y 0; x� � �G�y; y 0; x��dx

and consider its free extremum. This implies that the function y�x� that makes the

value of the integral an extremum must satisfy the equation

d

dx

@�F � �G�
@y 0

@�F � �G�
@y

� 0 �8:16�

or

d

dx

@F

@y 0

� �
ÿ @F

@y

� �
� �

d

dx

@G

@y 0

� �
ÿ @G

@y

� �
� 0: �8:16a�

Example 8.2

Isoperimetric problem: Find that curve C having the given perimeter l that

encloses the largest area.

Solution: The area bounded by C can be expressed as

A � 1
2

Z
C

�xdyÿ ydx� � 1
2

Z
C

�xy 0 ÿ y�dx

and the length of the curve C is

s �
Z
C

���������������
1� y 02

q
dx � l:
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Then the function H is

H �
Z
C

�12 �xy 0 ÿ y� � �
���������������
1� y 02p

�dx

and the Euler±Lagrange equation gives

d

dx

1

2
x� �y 0���������������

1� y 02p
ü !

� 1

2
� 0

or

�y 0���������������
1� y 02p � ÿx� c1:

Solving for y 0, we get

y 0 � dy

dx
� � xÿ c1�����������������������������

�2 ÿ �xÿ c1�2
q ;

which on integrating gives

yÿ c2 � �
�����������������������������
�2 ÿ �xÿ c1�2

q
or

�xÿ c1�2 � �yÿ c2�2 � �2; a circle:

Hamilton's principle and Lagrange's equation of motion

One of the most important applications of the calculus of variations is in classical

mechanics. In this case, the functional f in Eq. (8.1) is taken to be the Lagrangian

L of a dynamical system. For a conservative system, the Lagrangian L is de®ned

as the diÿerence of kinetic and potential energies of the system:

L � T ÿ V ;

where time t is the independent variable and the generalized coordinates qi�t� are
the dependent variables. What do we mean by generalized coordinates? Any

convenient set of parameters or quantities that can be used to specify the con®g-

uration (or state) of the system can be assumed to be generalized coordinates;

therefore they need not be geometrical quantities, such as distances or angles. In

suitable circumstances, for example, they could be electric currents.

Eq. (8.1) now takes the form that is known as the action (or the action integral)

I �
Z t2

t1

L qi�t�; _qi�t�; t� �dt; _q � dq=dt �8:17�
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and Eq. (8.4) becomes

�I � @I

@"

ýýýý
"�0

d" � �

Z t2

t1

L qi�t�; _qi�t�; t� �dt � 0; �8:18�

where qi�t�, and hence _qi�t�, is to be varied subject to �qi�t1� � �qi�t2� � 0.

Equation (8.18) is a mathematical statement of Hamilton's principle of classical

mechanics. In this variational approach to mechanics, the Lagrangian L is given,

and qi�t� taken on the prescribed values at t1 and t2, but may be arbitrarily varied

for values of t between t1 and t2.

In words, Hamilton's principle states that for a conservative dynamical system,

the motion of the system from its position in con®guration space at time t1 to its

position at time t2 follows a path for which the action integral (8.17) has a

stationary value. The resulting Euler±Lagrange equations are known as the

Lagrange equations of motion:

d

dt

@L

@ _qi
ÿ @L

@qi
� 0: �8:19�

These Lagrange equations can be derived from Newton's equations of motion

(that is, the second law written in diÿerential equation form) and Newton's equa-

tions can be derived from Lagrange's equations. Thus they are `equivalent.'

However, Hamilton's principle can be applied to a wide range of physical phe-

nomena, particularly those involving ®elds, with which Newton's equations are

not usually associated. Therefore, Hamilton's principle is considered to be more

fundamental than Newton's equations and is often introduced as a basic postulate

from which various formulations of classical dynamics are derived.

Example 8.3

Electric oscillations: As an illustration of the generality of Lagrangian dynamics,

we consider its application to an LC circuit (inductive±capacitive circuit) as shown

in Fig. 8.4. At some instant of time the charge on the capacitor C is Q�t� and the

current ¯owing through the inductor is I�t� � _Q�t�. The voltage drop around the
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circuit is, according to Kirchhoÿ 's law

L
dI

dt
� 1

C

Z
I�t�dt � 0

or in terms of Q

L �Q� 1

C
Q � 0:

This equation is of exactly the same form as that for a simple mechanical oscil-

lator:

m�x� kx � 0:

If the electric circuit also contains a resistor R, Kirchhoÿ 's law then gives

L �Q� R _Q� 1

C
Q � 0;

which is of exactly the same form as that for a damped oscillator

m�x� b _x� kx � 0;

where b is the damping constant.

By comparing the corresponding terms in these equations, an analogy between

mechanical and electric quantities can be established:

x displacement Q charge (generalized coordinate)

_x velocity _Q � I electric current

m mass L inductance

1=k k � spring constant C capacitance

b damping constant R electric resistance
1
2m _x2 kinetic energy 1

2L
_Q2 energy stored in inductance

1
2mx2 potential energy 1

2Q
2=C energy stored in capacitance

If we recognize in the beginning that the charge Q in the circuit plays the role of a

generalized coordinate, and T � 1
2L

_Q2 and V � 1
2Q

2=C, then the Langrangian L

of the system is

L � T ÿ V � 1
2L

_Q2 ÿ 1
2Q

2=C

and the Lagrange equation gives

L �Q� 1

C
Q � 0;

the same equation as given by Kirchhoÿ 's law.
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Example 8.4

A bead of mass m slides freely on a frictionless wire of radius b that rotates in a

horizontal plane about a point on the circular wire with a constant angular

velocity !. Show that the bead oscillates as a pendulum of length l � g=!2.

Solution: The circular wire rotates in the xy plane about the point O, as shown

in Fig. 8.5. The rotation is in the counterclockwise direction, C is the center of the

circular wire, and the angles � and � are as indicated. The wire rotates with an

angular velocity !, so � � !t. Now the coordinates x and y of the bead are given

by

x � b cos!t� b cos��� !t�;
y � b sin!t� b sin��� !t�;

and the generalized coordinate is �. The potential energy of the bead (in a hor-

izontal plane) can be taken to be zero, while its kinetic energy is

T � 1
2m� _x2 � _y2� � 1

2mb2�!2 � � _�� !�2 � 2!� _�� !� cos ��;
which is also the Lagrangian of the bead. Inserting this into Lagrange's equation

d

d�

@L

@ _�

� �
ÿ @L

@�
� 0

we obtain, after some simpli®cations,

��� !2 sin � � 0:

Comparing this equation with Lagrange's equation for a simple pendulum of

length l

��� �g=l� sin � � 0
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(Fig. 8.6) we see that the bead oscillates about the line OA like a pendulum of

length l � g=!2.

Rayleigh±Ritz method

Hamilton's principle views the motion of a dynamical system as a whole and

involves a search for the path in con®guration space that yields a stationary

value for the action integral (8.17):

�I � �

Z t2

t1

L qi�t�; _qi�t�; t� �dt � 0; �8:18�

with �qi�t1� � �qi�t2� � 0. Ordinarily it is used as a variational method to obtain

Lagrange's and Hamilton's equations of motion, so we do not often think of it as

a computational tool. But in other areas of physics variational formulations

are used in a much more active way. For example, the variational method for

determining the approximate ground-state energies in quantum mechanics is

very well known. We now use the Rayleigh±Ritz method to illustrate that

Hamilton's principle can be used as computational device in classical

mechanics. The Rayleigh±Ritz method is a procedure for obtaining approximate

solutions of problems expressed in variational form directly from the variational

equation.

The Lagrangian is a function of the generalized coordinates qs and their time

derivatives _qs. The basic idea of the approximation method is to guess a solution

for the qs that depends on time and a number of parameters. The parameters are

then adjusted so that Hamilton's principle is satis®ed. The Rayleigh±Ritz method

takes a special form for the trial solution. A complete set of functions f fi�t�g is

chosen and the solution is assumed to be a linear combination of a ®nite number

of these functions. The coe�cients in this linear combination are the parameters

that are chosen to satisfy Hamilton's principle (8.18). Since the variations of the qs
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must vanish at the endpoints of the integral, the variations of the parameter must

be so chosen that this condition is satis®ed.

To summarize, suppose a given system can be described by the action integral

I �
Z t2

t1

L qi�t�; _qi�t�; t� �dt; _q � dq=dt:

The Rayleigh±Ritz method requires the selection of a trial solution, ideally in the

form

q �
Xn
i�1

ai fi�t�; �8:20�

which satis®es the appropriate conditions at both the initial and ®nal times, and

where as are undetermined constant coe�cients and the fs are arbitrarily chosen

functions. This trial solution is substituted into the action integral I and integra-

tion is performed so that we obtain an expression for the integral I in terms of the

coe�cients. The integral I is then made `stationary' with respect to the assumed

solution by requiring that

@I

@ai
� 0 �8:21�

after which the resulting set of n simultaneous equations is solved for the values of

the coe�cients ai. To illustrate this method, we apply it to two simple examples.

Example 8.5

A simple harmonic oscillator consists of a mass M attached to a spring of force

constant k. As a trial function we take the displacement x as a function t in the

form

x�t� �
X1
n�1

An sin n!t:

For the boundary conditions we have x � 0; t � 0, and x � 0; t � 2�=!. Then the

potential energy and the kinetic energy are given by, respectively,

V � 1
2 kx

2 � 1
2 k

P1
n�1

P1
m�1

AnAm sin n!t sinm!t;

T � 1
2M _x2 � 1

2M!2 P1
n�1

P1
m�1

AnAmnm cos n!t cosm!t:

The action I has the form

I �
Z 2�=!

0

Ldt �
Z 2�=!

0

�TÿV�dt � �

2!

X1
n�1

�kA2
n ÿMn2A2

n!
2�:
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In order to satisfy Hamilton's principle we must choose the values of An so as to

make I an extremum:

dI

dAn

� �kÿ n2!2M�An � 0:

The solution that meets the physics of the problem is

A1 � 0; !2 � k=M; or � � 2�=!� �1=2 � 2� M=k� �1=2;

An � 0; for n � 2; 3; etc:

Example 8.6

As a second example, we consider a bead of mass M sliding freely along a wire

shaped in the form of a parabola along the vertical axis and of the form y � ax2.

In this case, we have

L � T ÿ V � 1
2M� _x2 � _y2� ÿMgy � 1

2M�1� 4a2x2� _x2 ÿMgy:

We assume

x � A sin!t

to be an approximate value for the displacement x, and then the action integral

becomes

I �
Z 2�=!

0

Ldt �
Z 2�=!

0

�T ÿ V�dt � A2 !2�1� a2A2�
2

ÿ ga

( )
M�

!
:

The extremum condition, dI=dA � 0, gives an approximate !:

! �
��������
2ga

p
1� a2A2

;

and the approximate period is

� � 2��1� a2A2���������
2ga

p :

The Rayleigh±Ritz method discussed in this section is a special case of the

general Rayleigh±Ritz methods that are designed for ®nding approximate solu-

tions of boundary-value problems by use of varitional principles, for example, the

eigenvalues and eigenfunctions of the Sturm±Liouville systems.

Hamilton's principle and canonical equations of motion

Newton ®rst formulated classical mechanics in the seventeenth century and it is

known as Newtonian mechanics. The essential physics involved in Newtonian
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mechanics is contained in Newton's three laws of motion, with the second law

serving as the equation of motion. Classical mechanics has since been reformu-

lated in a few diÿerent forms: the Lagrange, the Hamilton, and the Hamilton±

Jacobi formalisms, to name just a few.

The essential physics of Lagrangian dynamics is contained in the Lagrange

function L of the dynamical system and Lagrange's equations (the equations of

motion). The Lagrangian L is de®ned in terms of independent generalized coor-

dinates qi and the corresponding generalized velocity _qi. In Hamiltonian

dynamics, we describe the state of a system by Hamilton's function (or the

Hamiltonian) H de®ned in terms of the generalized coordinates qi and the corre-

sponding generalized momenta pi, and the equations of motion are given by

Hamilton's equations or canonical equations

_qi �
@H

@pi
; _pi � ÿ @H

@qi
; i � 1; 2; . . . ; n: �8:22�

Hamilton's equations of motion can be derived from Hamilton's principle.

Before doing so, we have to de®ne the generalized momentum and the

Hamiltonian. The generalized momentum pi corresponding to qi is de®ned as

pi �
@L

@qi
�8:23�

and the Hamiltonian of the system is de®ned by

H �
X
i

pi _qi ÿ L: �8:24�

Even though _qi explicitly appears in the de®ning expression (8.24), H is a function

of the generalized coordinates qi, the generalized momenta pi, and the time t,

because the de®ning expression (8.23) can be solved explicitly for the _qis in

terms of pi; qi, and t. The qs and ps are now treated the same: H � H�qi; pi; t�.
Just as with the con®guration space spanned by the n independent qs, we can

imagine a space of 2n dimensions spanned by the 2n variables

q1; q2; . . . ; qn; p1; p2; . . . ; pn. Such a space is called phase space, and is particularly

useful in both statistical mechanics and the study of non-linear oscillations. The

evolution of a representative point in this space is determined by Hamilton's

equations.

We are ready to deduce Hamilton's equation from Hamilton's principle. The

original Hamilton's principle refers to paths in con®guration space, so in order to

extend the principle to phase space, we must modify it such that the integrand of

the action I is a function of both the generalized coordinates and momenta and

their derivatives. The action I can then be evaluated over the paths of the system
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point in phase space. To do this, ®rst we solve Eq. (8.24) for L

L �
X
i

pi _qi ÿH

and then substitute L into Eq. (8.18) and we obtain

�I � �

Z t2

t1

�X
i

pi _qi ÿH�p; q; t�
�
dt � 0; �8:25�

where qI�t� is still varied subject to �qi�t1� � �qi�t2� � 0, but pi is varied without

such end-point restrictions.

Carrying out the variation, we obtainZ t2

t1

X
i

pi� _qi � _qi�pi ÿ
@H

@qi
�qi ÿ

@H

@pi
�pi

� �
dt � 0; �8:26�

where the � _qs are related to the �qs by the relation

� _qi �
d

dt
�qi: �8:27�

Now we integrate the term pi� _qidt by parts. Using Eq. (8.27) and the endpoint

conditions on �qi, we ®nd thatZ t2

t1

X
i

pi� _qidt �
Z t2

t1

X
i

pi
d

dt
�qidt

�
Z t2

t1

X
i

d

dt
pi�qidtÿ

Z t2

t1

X
i

_pi�qidt

� pi�qi

ýýýýt2
t1

ÿ
Z t2

t1

X
i

_pi�qidt

� ÿ
Z t2

t1

X
i

_pi�qidt:

Substituting this back into Eq. (8.26), we obtainZ t2

t1

X
i

_qi ÿ
@H

@pi

� �
�pi ÿ _pi �

@H

@qi

� �
�qi

� �
dt � 0: �8:28�

Since we view Hamilton's principle as a variational principle in phase space, both

the �qs and the �ps are arbitrary, the coe�cients of �qi and �pi in Eq. (8.28) must

vanish separately, which results in the 2n Hamilton's equations (8.22).

Example 8.7

Obtain Hamilton's equations of motion for a one-dimensional harmonic oscilla-

tor.

363

HAMILTON'S PRINCIPLE



Solution: We have

T � 1
2m _x2; V � 1

2Kx
2;

p � @L

@ _x
� @T

@ _x
� m _x; _x � p

m
:

Hence

H � p _xÿ L � T � V � 1

2m
p2 � 1

2
Kx2:

Hamilton's equations

_x � @H

@p
; _p � ÿ @H

@x

then read

_x � p

m
; _p � ÿKx:

Using the ®rst equation, the second can be written

d

dt
�m _x� � ÿKx or m�x� Kx � 0

which is the familiar equation of the harmonic oscillator.

The modi®ed Hamilton's principle and the Hamilton±Jacobi equation

The Hamilton±Jacobi equation is the cornerstone of a general method of integrat-

ing equations of motion. Before the advent of modern quantum theory, Bohr's

atomic theory was treated in terms of Hamilton±Jacobi theory. It also plays an

important role in optics as well as in canonical perturbation theory. In classical

mechanics books, the Hamilton±Jacobi equation is often obtained via canonical

transformations. We want to show that the Hamilton±Jacobi equation can also be

obtained directly from Hamilton's principle, or, a modi®ed Hamilton's principle.

In formulating Hamilton's principle, we have considered the action

I �
Z t2

t1

L qi�t�; _qi�t�; t� �dt; _q � dq=dt;

taken along a path between two given positions qi�t1� and qi�t2� which the dyna-

mical system occupies at given instants t1 and t2. In varying the action, we com-

pare the values of the action for neighboring paths with ®xed ends, that is, with

�qi�t1� � �qi�t2� � 0. Only one of these paths corresponds to the true dynamical

path for which the action has its extremum value.

We now consider another aspect of the concept of action, by regarding I as a

quantity characterizing the motion along the true path, and comparing the value
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of I for paths having a common beginning at qi�t1�, but passing through diÿerent

points at time t2. In other words we consider the action I for the true path as a

function of the coordinates at the upper limit of integration:

I � I�qi; t�;
where qi are the coordinates of the ®nal position of the system, and t is the instant

when this position is reached.

If qi�t2� are the coordinates of the ®nal position of the system reached at time t2,

the coordinates of a point near the point qi�t2� can be written as qi�t1� � �qi,

where �qi is a small quantity. The action for the trajectory bringing the system

to the point qi�t1� � �qi diÿers from the action for the trajectory bringing the

system to the point qi�t2� by the quantity

�I �
Z t2

t1

@L

@qi
�qi �

@L

@ _qi
� _qi

� �
dt; �8:29�

where �qi is the diÿerence between the values of qi taken for both paths at the same

instant t; similarly, � _qi is the diÿerence between the values of _qi at the instant t.

We now integrate the second term on the right hand side of Eq. (8.25) by parts:Z t2

t1

@L

@ _qi
� _qidt �

@L

@ _qi
�qi ÿ

Z t2

t1

d

dt

@L

@ _qi

� �
�qidt

� pi�qi ÿ
Z t2

t1

d

dt

@L

@ _qi

� �
�qidt; �8:30�

where we have used the fact that the starting points of both paths coincide, hence

�qi�t1� � 0; the quantity �qi�t2� is now written as just �qi. Substituting Eq. (8.30)

into Eq. (8.29), we obtain

�I �
X
i

pi�qi �
Z t2

t1

X
i

@L

@qi
ÿ d

dt

@L

@ _qi

� �� �
�qidt: �8:31�

Since the true path satis®es Lagrange's equations of motion, the integrand and,

consequently, the integral itself vanish. We have thus obtained the following value

for the increment of the action I due to the change in the coordinates of the ®nal

position of the system by �qi (at a constant time of motion):

�I �
X
i

pi�qi; �8:32�

from which it follows that

@I

@qi
� pi; �8:33�

that is, the partial derivatives of the action with respect to the generalized co-

ordinates equal the corresponding generalized momenta.
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The action I may similarly be regarded as an explicit function of time, by

considering paths starting from a given point qi�1� at a given instant t1, ending

at a given point qi�2� at various times t2 � t:

I � I�qi; t�:
Then the total time derivative of I is

dI

dt
� @I

@t
�
X
i

@I

@qi
_qi �

@I

@t
�
X
i

pi _qi: �8:34�

From the de®nition of the action, we have dI=dt � L. Substituting this into Eq.

(8.34), we obtain

@I

@t
� Lÿ

X
i

pi _qi � ÿH

or

@I

@t
�H�qi; pi; t� � 0: �8:35�

Replacing the momenta pi in the Hamiltonian H by @I=@qi as given by Eq. (8.33),

we obtain the Hamilton±Jacobi equation

H�qi; @I=@qi; t� �
@I

@t
� 0: �8:36�

For a conservative system with stationary constraints, the time is not contained

explicitly in Hamiltonian H, and H � E (the total energy of the system).

Consequently, according to Eq. (8.35), the dependence of action I on time t is

expressed by the term ÿEt. Therefore, the action breaks up into two terms, one of

which depends only on qi, and the other only on t:

I�qi; t� � Io�qi� ÿ Et: �8:37�
The function Io�qi� is sometimes called the contracted action, and the Hamilton±

Jacobi equation (8.36) reduces to

H�qi; @Io=@qi� � E: �8:38�

Example 8.8

To illustrate the method of Hamilton±Jacobi, let us consider the motion of an

electron of charge ÿe revolving about an atomic nucleus of charge Ze (Fig. 8.7).

As the mass M of the nucleus is much greater than the mass m of the electron, we

may consider the nucleus to remain stationary without making any very appreci-

able error. This is a central force motion and so its motion lies entirely in one

plane (see Classical Mechanics, by Tai L. Chow, John Wiley, 1995). Employing
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polar coordinates r and � in the plane of motion to specify the position of the

electron relative to the nucleus, the kinetic and potential energies are, respectively,

T � 1

2
m� _r2 � r2 _�2�; V � ÿZe2

r
:

Then

L � T ÿ V � 1

2
m� _r2 � r2 _�2� � Ze2

r

and

pr �
@L

@ _r
� m _rp� p� �

@L

@ _�
� mr2 _�:

The Hamiltonian H is

H � 1

2m
p2r �

p2�
r2

ü !
ÿ Ze2

r
:

Replacing pr and p� in the Hamiltonian by @I=@r and @I=@�, respectively, we

obtain, by Eq. (8.36), the Hamilton±Jacobi equation

1

2m

@I

@r

� �2

� 1

r2
@I

@�

� �2
" #

ÿ Ze2

r
� @I

@t
� 0:

Variational problems with several independent variables

The functional f in Eq. (8.1) contains only one independent variable, but very

often f may contain several independent variables. Let us now extend the theory

to this case of several independent variables:

I �
ZZZ

V

f fu; ux; uy; uz; x; y; z� dxdydz; �8:39�

where V is assumed to be a bounded volume in space with prescribed values of

u�x; y; z� at its boundary S; ux � @u=@x, and so on. Now, the variational problem
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is to ®nd the function u�x; y; z� for which I is stationary with respect to small

changes in the functional form u�x; y; z�.
Generalizing Eq. (8.2), we now let

u�x; y; z; "� � u�x; y; z; 0� � "��x; y; z�; �8:40�
where ��x; y; z� is an arbitrary well-behaved (that is, diÿerentiable) function which

vanishes at the boundary S. Then we have, from Eq. (8.40),

ux�x; y; z; "� � ux�x; y; z; 0� � "�x;

and similar expressions for uy; uz; and

@I

@"

ýýýý
"�0

�
ZZZ

V

@f

@u
� � @f

@ux
�x �

@f

@uy
�y �

@f

@uz
�z

� �
dxdydz � 0:

We next integrate each of the terms �@f =@ui��i using `integration by parts' and the

integrated terms vanish at the boundary as required. After some simpli®cations,

we ®nally obtainZZZ
V

@f

@u
ÿ @

@x

@f

@ux
ÿ @

@y

@f

@uy
ÿ @

@z

@f

@uz

� �
��x; y; z�dxdydz � 0:

Again, since ��x; y; z� is arbitrary, the term in the braces may be set equal to zero,

and we obtain the Euler±Lagrange equation:

@f

@u
ÿ @

@x

@f

@ux
ÿ @

@y

@f

@uy
ÿ @

@z

@f

@uz
� 0: �8:41�

Note that in Eq. (8.41) @=@x is a partial derivative, in that y and z are constant.

But @=@x is also a total derivative in that it acts on implicit x dependence and on

explicit x dependence:

@

@x

@f

@ux
� @2f

@x@ux
� @2f

@u@ux
ux �

@2f

@u2x
� @2f

@uy@ux
uxy �

@2f

@uz@ux
uxz: �8:42�

Example 8.9

The SchroÈ dinger wave equation. The equations of motion of classical mechanics

are the Euler±Lagrange diÿerential equations of Hamilton's principle. Similarly,

the SchroÈ dinger equation, the basic equation of quantum mechanics, is also a

Euler±Lagrange diÿerential equation of a variational principle the form of which

is, in the case of a system of N particles, the following

�

Z
Ld� � 0; �8:43�
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with

L �
XN
i�1

p2

2mi

@ÿ*

@xi

@ÿ

@xi
� @ÿ*

@yi

@ÿ

@yi
� @ÿ*

@zi

@ÿ

@zi

� �
� Vÿ*ÿ �8:44�

and the constraint Z
ÿ*ÿd� � 1; �8:45�

where mi is the mass of particle I, V is the potential energy of the system, and d� is

a volume element of the 3N-dimensional space.

Condition (8.45) can be taken into consideration by introducing a Lagrangian

multiplier ÿE:

�

Z
�Lÿ Eÿ*ÿ�d� � 0: �8:46�

Performing the variation we obtain the SchroÈ dinger equation for a system of N

particles

XN
i�1

p2

2mi

r2
i ÿ� �E ÿ V�ÿ � 0; �8:47�

where r2
i is the Laplace operator relating to particle i. Can you see that E is the

energy parameter of the system? If we use the Hamiltonian operator Ĥ, Eq. (8.47)

can be written as

Ĥÿ � Eÿ: �8:48�
From this we obtain for E

E �

Z
ÿ*Hÿd�Z
ÿ*ÿd�

: �8:49�

Through partial integration we obtainZ
Ld� �

Z
ÿ*Hÿd�

and thus the variational principle can be formulated in another way:

�
R
ÿ*�H ÿ E�ÿd� � 0.

Problems

8.1 As a simple practice of using varied paths and the extremum condition, we

consider the simple function y�x� � x and the neighboring paths
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y�";x� � x� " sin x. Draw these paths in the xy plane between the limits

x � 0 and x � 2� for " � 0 for two diÿerent non-vanishing values of ". If the

integral I�"� is given by

I�"� �
Z 2�

0

�dy=dx�2dx;

show that the value of I�"� is always greater than I�0�, no matter what value

of " (positive or negative) is chosen. This is just condition (8.4).

8.2 (a) Show that the Euler±Lagrange equation can be written in the form

d

dx
f ÿ y 0 @f

@y 0

� �
ÿ @f

@x
� 0:

This is often called the second form of the Euler±Lagrange equation.

(b) If f does not involve x explicitly, show that the Euler±Lagrange equation

can be integrated to yield

f ÿ y 0 @f
@y 0 � c;

where c is an integration constant.

8.3 As shown in Fig. 8.8, a curve C joining points �x1; y1� and �x2; y2� is

revolved about the x-axis. Find the shape of the curve such that the surface

thus generated is a minimum.

8.4 A geodesic is a line that represents the shortest distance between two points.

Find the geodesic on the surface of a sphere.

8.5 Show that the geodesic on the surface of a right circular cylinder is a helix.

8.6 Find the shape of a heavy chain which minimizes the potential energy while

the length of the chain is constant.

8.7 A wedge of mass M and angle � slides freely on a horizontal plane. A

particle of mass m moves freely on the wedge. Determine the motion of

the particle as well as that of the wedge (Fig. 8.9).
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8.8 Use the Rayleigh±Ritz method to analyze the forced oscillations of a har-

monic oscillation:

m�x� kx � F0 sin!t:

8.9 A particle of mass m is attracted to a ®xed point O by an inverse square

force Fr � ÿk=r2 (Fig. 8.10). Find the canonical equations of motion.

8.10 Set up the Hamilton±Jacobi equation for the simple harmonic oscillator.
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9

The Laplace transformation

The Laplace transformation method is generally useful for obtaining solutions of

linear diÿerential equations (both ordinary and partial). It enables us to reduce a

diÿerential equation to an algebraic equation, thus avoiding going to the trouble

of ®nding the general solution and then evaluating the arbitrary constants. This

procedure or technique can be extended to systems of equations and to integral

equations, and it often yields results more readily than other techniques. In this

chapter we shall ®rst de®ne the Laplace transformation, then evaluate the trans-

formation for some elementary functions, and ®nally apply it to solve some simple

physical problems.

De®nition of the Lapace transform

The Laplace transform L� f �x�� of a function f �x� is de®ned by the integral

L� f �x�� �
Z 1

0

eÿpxf �x�dx � F�p�; �9:1�

whenever this integral exists. The integral in Eq. (9.1) is a function of the para-

meter p and we denote it by F�p�. The function F�p� is called the Laplace trans-

form of f �x�. We may also look upon Eq. (9.1) as a de®nition of a Laplace

transform operator L which tranforms f �x� in to F�p�. The operator L is linear,

since from Eq. (9.1) we have

L�c1 f �x� � c2g�x�� �
Z 1

0

eÿpxfc1 f �x� � c2g�x�gdx

� c1

Z 1

0

eÿpxf �x�dx� c2

Z 1

0

eÿpxg�x�dx

� c1L� f �x�� � c2L�g�x��;
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where c1 and c2 are arbitrary constants and g�x� is an arbitrary function de®ned

for x > 0.

The inverse Laplace transform of F�p� is a function f �x� such that

L� f �x�� � F�p�. We denote the operation of taking an inverse Laplace transform

by Lÿ1:

Lÿ1�F�p�� � f �x�: �9:2�
That is, we operate algebraically with the operators L and Lÿ1, bringing them

from one side of an equation to the other side just as we would in writing ax � b

implies x � aÿ1b. To illustrate the calculation of a Laplace transform, let us

consider the following simple example.

Example 9.1

Find L�eax�, where a is a constant.

Solution: The transform is

L�eax� �
Z 1

0

eÿpxeaxdx �
Z 1

0

eÿ�pÿa�xdx:

For p � a, the exponent on e is positive or zero and the integral diverges. For

p > a, the integral converges:

L�eax� �
Z 1

0

eÿpxeaxdx �
Z 1

0

eÿ�pÿa�xdx � eÿ�pÿa�x

ÿ�pÿ a�
ÿÿÿÿ1
0

� 1

pÿ a
:

This example enables us to investigate the existence of Eq. (9.1) for a general

function f �x�.

Existence of Laplace transforms

We can prove that:

(1) if f �x� is piecewise continuous on every ®nite interval 0 � x � X , and

(2) if we can ®nd constants M and a such that j f �x�j � Meax for x � X ,

then L� f �x�� exists for p > a. A function f �x� which satis®es condition (2) is said

to be of exponential order as x ! 1; this is mathematician's jargon!

These are su�cient conditions on f �x� under which we can guarantee the

existence of L� f �x��. Under these conditions the integral converges for p > a:Z X

0

f �x�eÿpxdx

ÿÿÿÿ
ÿÿÿÿ �

Z X

0

f �x�j jeÿpxdx �
Z X

0

Meaxeÿpxdx

� M

Z 1

0

eÿ�pÿa�xdx � M

pÿ a
:
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This establishes not only the convergence but the absolute convergence of the

integral de®ning L� f �x��. Note that M=� pÿ a� tends to zero as p ! 1. This

shows that

lim
p!1F� p� � 0 �9:3�

for all functions F�p� � L� f �x�� such that f �x� satis®es the foregoing conditions

(1) and (2). It follows that if limp!1 F� p� 6� 0, F�p� cannot be the Laplace trans-
form of any function f �x�.

It is obvious that functions of exponential order play a dominant role in the use

of Laplace transforms. One simple way of determining whether or not a speci®ed

function is of exponential order is the following one: if a constant b exists such

that

lim
x!1 eÿbx f �x�j j

h i
�9:4�

exists, the function f �x� is of exponential order (of the order of eÿbx�. To see this,

let the value of the above limit be K 6� 0. Then, when x is large enough, jeÿbxf �x�j
can be made as close to K as possible, so certainly

jeÿbxf �x�j < 2K :

Thus, for su�ciently large x,

j f �x�j < 2Kebx

or

j f �x�j < Mebx; with M � 2K :

On the other hand, if

lim
x!1 �eÿcx f �x�j j� � 1 �9:5�

for every ®xed c, the function f �x� is not of exponential order. To see this, let us

assume that b exists such that

j f �x�j < Mebx for x � X

from which it follows that

jeÿ2bxf �x�j < Meÿbx:

Then the choice of c � 2b would give us jeÿcxf �x�j < Meÿbx, and eÿcxf �x� ! 0 as

x ! 1 which contradicts Eq. (9.5).

Example 9.2

Show that x3 is of exponential order as x ! 1.
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Solution: We have to check whether or not

lim
x!1 eÿbxx3

� �
� lim

x!1
x3

ebx

exists. Now if b > 0, then L'Hospital's rule gives

lim
x!1 eÿbxx3

� �
� lim

x!1
x3

ebx
� lim

x!1
3x2

bebx
� lim

x!1
6x

b2ebx
� lim

x!1
6

b3ebx
� 0:

Therefore x3 is of exponential order as x ! 1.

Laplace transforms of some elementary functions

Using the de®nition (9.1) we now obtain the transforms of polynomials, expo-

nential and trigonometric functions.

(1) f �x� � 1 for x > 0.

By de®nition, we have

L�1� �
Z 1

0

eÿpxdx � 1

p
; p > 0:

(2) f �x� � xn, where n is a positive integer.

By de®nition, we have

L�xn� �
Z 1

0

eÿpxxndx:

Using integration by parts: Z
uv0dx � uvÿ

Z
vu0dx

with

u � xn; dv � v0dx � eÿpxdx � ÿ�1=p�d�eÿpx�; v � ÿ�1=p�eÿpx;

we obtain Z 1

0

eÿpxxndx � ÿxneÿpx

p

� �1
0

� n

p

Z 1

0

eÿpxxnÿ1dx:

For p > 0 and n > 0, the ®rst term on the right hand side of the above equation is

zero, and so we have Z 1

0

eÿpxxndx � n

p

Z 1

0

eÿpxxnÿ1dx
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or

L�xn� � n

p
L�xnÿ1�

from which we may obtain for n > 1

L�xnÿ1� � nÿ 1

p
L�xnÿ2�:

Iteration of this process yields

L�xn� � n�nÿ 1��nÿ 2� � � � 2 � 1
pn

L�x0�:

By (1) above we have

L�x0� � L�1� � 1=p:

Hence we ®nally have

L�xn� � n!

pn�1
; p > 0:

(3) f �x� � eax, where a is a real constant.

L�eax� �
Z 1

0

eÿpxeaxdx � 1

pÿ a
;

where p > a for convegence. (For details, see Example 9.1.)

(4) f �x� � sin ax, where a is a real constant.

L�sin ax� �
Z 1

0

eÿpx sin axdx:

Using Z
uv 0dx � uvÿ

Z
vu 0dx with u � eÿpx; dv � ÿd�cos ax�=a;

and Z
emx sin nxdx � emx�m sin nxÿ n cos nx�

n2 �m2

(you can obtain this simply by using integration by parts twice) we obtain

L�sin ax� �
Z 1

0

eÿpx sin axdx � eÿpx�ÿp sin axÿ a cos ax

p2 � a2

� �1
0
:

Since p is positive, eÿpx ! 0 as x ! 1, but sin ax and cos ax are bounded as

x ! 1, so we obtain

L�sin ax� � 0ÿ 1�0ÿ a�
p2 � a2

� a

p2 � a2
; p > 0:
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(5) f �x� � cos ax, where a is a real constant.

Using the resultZ
emx cos nxdx � emx�m cos nx� n sin mx�

n2 �m2
;

we obtain

L�cos ax� �
Z 1

0

eÿpx cos axdx � p

p2 � a2
; p > 0:

(6) f �x� � sinh ax, where a is a real constant.

Using the linearity property of the Laplace transform operator L, we obtain

L�cosh ax� � L
eax � eÿax

2

� �
� 1

2
L�eax� � 1

2
L�eÿax�

� 1

2

1

pÿ a
� 1

p� a

� �
� p

p2 ÿ a2
:

(7) f �x� � xk, where k > ÿ1.

By de®nition we have

L�xk� �
Z 1

0

eÿpxxkdx:

Let px � u, then dx � pÿ1du; xk � uk=pk, and so

L�xk� �
Z 1

0

eÿpxxkdx � 1

pk�1

Z 1

0

ukeÿudu � ÿ�k� 1�
pk�1

:

Note that the integral de®ning the gamma function converges if and only if

k > ÿ1.

The following example illustrates the calculation of inverse Laplace transforms

which is equally important in solving diÿerential equations.

Example 9.3

Find

�a� Lÿ1 5

p� 2

� �
; �b� Lÿ1 1

ps

� �
; s > 0:

Solution:

�a� Lÿ1 5

p� 2

� �
� 5Lÿ1 1

p� 2

� �
:
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Recall L�eax� � 1=�pÿ a�, hence Lÿ1�1=�pÿ a�� � eax. It follows that

Lÿ1 5

p� 2

� �
� 5Lÿ1 1

p� 2

� �
� 5eÿ2x:

(b) Recall

L�xk� �
Z 1

0

eÿpxxkdx � 1

pk�1

Z 1

0

ukeÿudu � ÿ�k� 1�
pk�1

:

From this we have

L
xk

ÿ�k� 1�

" #
� 1

pk�1
;

hence

Lÿ1 1

pk�1

� �
� xk

ÿ�k� 1� :

If we now let k� 1 � s, then

Lÿ1 1

ps

� �
� xsÿ1

ÿ�s� :

Shifting (or translation) theorems

In practical applications, we often meet functions multiplied by exponential fac-

tors. If we know the Laplace transform of a function, then multiplying it by an

exponential factor does not require a new computation as shown by the following

theorem.

The ®rst shifting theorem

If L�f �x���F�p�; p > b; then L�eatf �x�� � F�pÿ a�; p > a� b.

Note that F�pÿ a� denotes the function F�p� `shifted' a units to the right.

Hence the theorem is called the shifting theorem.

The proof is simple and straightforward. By de®nition (9.1) we have

L� f �x�� �
Z 1

0

eÿpxf �x�dx � F�p�:

Then

L eaxf �x�� � �
Z 1

0

eÿpxfeaxf �x�gdx �
Z 1

0

eÿ�pÿa�xf �x�dx � F�pÿ a�:

The following examples illustrate the use of this theorem.
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Example 9.4

Show that:

�a� L eÿaxxn� � � n!

�p� a�n�1
; p > ÿa;

�b� L eÿax sin bx� � � b

�p� a�2 � b2
; p > ÿa:

Solution: (a) Recall

L�xn� � n!=pn�1; p > 0;

the shifting theorem then gives

L�eÿaxxn� � n!

�p� a�n�1
; p > ÿa:

(b) Since

L�sin ax� � a

p2 � a2
;

it follows from the shifting theorem that

L�eÿax sin bx� � b

�p� a�2 � b2
; p > ÿa:

Because of the relationship between Laplace transforms and inverse Laplace

transforms, any theorem involving Laplace transforms will have a corresponding

theorem involving inverse Lapace transforms. Thus

If Lÿ1 F�p�� � � f �x�; then Lÿ1 F�pÿ a�� � � eaxf �x�:

The second shifting theorem

This second shifting theorem involves the shifting x variable and states that

Given L� f �x�� � F�p�, where f �x� � 0 for x < 0; and if g�x� � f �xÿ a�,
then

L�g�x�� � eÿapL� f �x��:
To prove this theorem, let us start with

F�p� � L f �x�� � �
Z 1

0

eÿpxf �x�dx

from which it follows that

eÿapF�p� � eÿapL f �x�� � �
Z 1

0

eÿp�x�a�f �x�dx:
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Let u � x� a, then

eÿapF�p� �
Z 1

0

eÿp�x�a�f �x�dx �
Z 1

0

eÿpuf �uÿ a�du

�
Z a

0

eÿpu0 du�
Z 1

a

eÿpuf �uÿ a�du

�
Z 1

0

eÿpug�u�du � L g�u�� �:

Example 9.5

Show that given

f �x� � x for x � 0

0 for x < 0
;

�
and if

g�x� � 0; for x < 5

xÿ 5; for x � 5

�
then

L�g�x�� � eÿ5p=p2:

Solution: We ®rst notice that

g�x� � f �xÿ 5�:
Then the second shifting theorem gives

L�g�x�� � eÿ5pL�x� � eÿ5p=p2:

The unit step function

It is often possible to express various discontinuous functions in terms of the unit

step function, which is de®ned as

U�xÿ a� � 0 x < a

1 x � a
:

�
Sometimes it is convenient to state the second shifting theorem in terms of the

unit step function:

If f �x� � 0 for x < 0 and L� f �x�� � F�p�, then

L�U�xÿ a� f �xÿ a�� � eÿapF�p�:
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The proof is straightforward:

L U�xÿ a�f �xÿ a�� � �
Z 1

0

eÿpxU�xÿ a� f �xÿ�dx

�
Z a

0

eÿpx0 dx�
Z 1

a

eÿpxf �xÿ a�dx:

Let xÿ a � u, then

L U�xÿ a� f �xÿ a�� � �
Z 1

a

eÿpxf �xÿ a�dx

�
Z 1

a

eÿp�u�a�f �u�du � eÿap

Z 1

a

eÿpuf �u�du � eÿapF�p�:

The corresponding theorem involving inverse Laplace transforms can be stated as

If f �x� � 0 for x < 0 and Lÿ1�F�p�� � f �x�, then

Lÿ1�eÿapF�p�� � U�xÿ a� f �xÿ a�:

Laplace transform of a periodic function

If f �x� is a periodic function of period P > 0, that is, if f �x� P� � f �x�, then

L� f �x�� � 1

1ÿ eÿpP

Z P

0

eÿpxf �x�dx:

To prove this, we assume that the Laplace transform of f �x� exists:

L� f �x�� �
Z 1

0

eÿpxf �x�dx �
Z P

0

eÿpxf �x�dx�
Z 2P

P

eÿpxf �x�dx

�
Z 3P

2P

eÿpxf �x�dx� � � �:

On the right hand side, let x � u� P in the second integral, x � u� 2P in the

third integral, and so on, we then have

L f �x�� � �
Z P

0

eÿpxf �x�dx�
Z P

0

eÿp�u�P�f �u� P�du

�
Z P

0

eÿp�u�2P�f �u� 2P�du� � � �:
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But f �u� P� � f �u�; f �u� 2P� � f �u�; etc: Also, let us replace the dummy

variable u by x, then the above equation becomes

L f �x�� � �
Z P

0

eÿpxf �x�dx�
Z P

0

eÿp�x�P�f �x�dx�
Z P

0

eÿp�x�2P�f �x�dx� � � �

�
Z P

0

eÿpxf �x�dx� eÿpP

Z P

0

eÿpxf �x�dx� eÿ2pP

Z P

0

eÿpxf �x�dx� � � �

� �1� eÿpP � eÿ2pP � � � ��
Z P

0

eÿpxf �x�dx

� 1

1ÿ eÿpP

Z P

0

eÿpxf �x�dx:

Laplace transforms of derivatives

If f �x� is a continuous for x � 0, and f 0�x� is piecewise continuous in every ®nite

interval 0 � x � k, and if j f �x�j � Mebx (that is, f �x� is of exponential order),

then

L� f 0�x�� � pL f �x�� � ÿ f �0�; p > b:

We may employ integration by parts to prove this result:Z
udv � uvÿ

Z
vdu with u � eÿpx; and dv � f 0�x�dx;

L� f 0�x�� �
Z 1

0

eÿpxf 0�x�dx � �eÿpxf �x��10 ÿ
Z 1

0

�ÿp�eÿpxf �x�dx:

Since j f �x�j � Mebx for su�ciently large x, then j f �x�eÿpxj � Me�bÿp� for su�-

ciently large x. If p > b, then Me�bÿp� ! 0 as x ! 1; and eÿpxf �x� ! 0 as

x ! 1. Next, f �x� is continuous at x � 0, and so eÿpxf �x� ! f �0� as x ! 0.

Thus, the desired result follows:

L� f 0�x�� � pL� f �x�� ÿ f �0�; p > b:

This result can be extended as follows:

If f �x� is such that f �nÿ1��x� is continuous and f �n��x� piecewise continuous in

every interval 0 � x � k and furthermore, if f �x�; f 0�x�; . . . ; f �n��x� are of

exponential order for 0 > k, then

L� f �n��x�� � pnL� f �x�� ÿ pnÿ1f �0� ÿ pnÿ2f 0�0� ÿ � � � ÿ f �nÿ1��0�:

Example 9.6

Solve the initial value problem:

y 00 � y � 0; y�0� � y 0�0� � 0; and f �t� � 0 for t < 0 but f �t� � 1 for t � 0:
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Solution: Note that y 0 � dy=dt. We know how to solve this simple diÿerential

equation, but as an illustration we now solve it using Laplace transforms. Taking

both sides of the equation we obtain

L� y 00� � L� y� � L�1�; �L� f � � L�1��:
Now

L� y 00� � pL� y 0� ÿ y 0�0� � pfpL� y� ÿ y�0�g ÿ y 0�0�
� p2L� y� ÿ py�0� ÿ y 0�0�
� p2L� y�

and

L�1� � 1=p:

The transformed equation then becomes

p2L y� � � L y� � � 1=p

or

L y� � � 1

p� p2 � 1� �
1

p
ÿ p

p2 � 1
;

therefore

y � Lÿ1 1

p

� �
ÿ Lÿ1 p

p2 � 1

� �
:

We ®nd from Eqs. (9.6) and (9.10) that

Lÿ1 1

p

� �
� 1 and Lÿ1 p

p2 � 1

� �
� cos t:

Thus, the solution of the initial problem is

y � 1ÿ cos t for t � 0; y � 0 for t < 0:

Laplace transforms of functions de®ned by integrals

If g�x� � R x

0 f �u�du, and if L f �x�� � � F�p�, then L g�x�� � � F�p�=p.
Similarly, if Lÿ1 F� p�� � � f �x�, then Lÿ1 F� p�=p� � � g�x�:

It is easy to prove this. If g�x� � R x

0 f �u�du, then g�0� � 0; g 0�x� � f �x�. Taking
Laplace transform, we obtain

L�g 0�x�� � L� f �x��
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but

L�g 0�x�� � pL�g�x�� ÿ g�0� � pL�g�x��
and so

pL�g�x�� � L� f �x��; or L�g�x�� � 1

p
L f �x�� � � F�p�

p
:

From this we have

Lÿ1 F�p�=p� � � g�x�:

Example 9.7

If g�x� � R u

0 sin au du, then

L�g�x�� � L

Z u

0

sin au du

� �
� 1

p
L sin au� � � a

p�p2 � a2� :

A note on integral transformations

A Laplace transform is one of the integral transformations. The integral trans-

formation T � f �x�� of a function f �x� is de®ned by the integral equation

T f �x�� � �
Z b

a

f �x�K� p; x�dx � F� p�; �9:6�

where K� p; x�, a known function of p and x, is called the kernel of the transfor-

mation. In the application of integral transformations to the solution of bound-

ary-value problems, we have so far made use of ®ve diÿerent kernels:

Laplace transform: K� p; x� � eÿpx, and a � 0; b � 1:

L� f �x�� �
Z 1

0

eÿpxf �x�dx � �p�:

Fourier sine and cosine transforms: K� p; x� � sin px or cos px, and

a � 0; b � 1:

F � f �x�� �
Z 1

0

f �x�
�

sin�px�
cos�px� dx � F�p�:

Complex Fourier transform: K�p; x� � eipx; and a � ÿ1, b � ÿ1:

F � f �x�� �
Z 1

ÿ1
eipxf �x�dx � F�p�:
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Hankel transform: K�p; x� � xJn�px�; a � 0; b � 1, where Jn�px� is the

Bessel function of the ®rst kind of order n:

H� f �x�� �
Z 1

0

f �x�xJn�x�dx � F�p�:

Mellin transform: K�p; x� � xpÿ1, and a � 0; b � 1:

M� f �x�� �
Z 1

0

f �x�xpÿ1dx � F�p�:

The Laplace transform has been the subject of this chapter, and the Fouier

transform was treated in Chapter 4. It is beyond the scope of this book to include

Hankel and Mellin transformations.

Problems

9.1 Show that:

(a) et
2

is not of exponential order as x ! 1.

(b) sin et
2

is of exponential order as x ! 1.

9.2 Show that:

(a) L�sinh ax� � a

p2 ÿ a2
; p > 0:

(b) L�3x4 ÿ 2x3=2 � 6� � 72

p5
ÿ 3

���
�

p
2p5=2

� 6

p
.

(c) L�sin x cos x� � 1=�p2 � 4�:
(d) If

f �x� � x; 0 < x < 4

5; x > 4
;

�
then

L� f �x� � 1

p2
� eÿ4p

p
ÿ eÿ4p

p2
:

9.4 Show that L�U�xÿ a�� � eÿap=p; p > 0:

9.5 Find the Laplace transform of H�x�, where

H�x� � x;

5;

0 < x < 4

x > 4
:

�
9.5 Let f �x� be the recti®ed sine wave of period P � 2�:

f �x� � sin x; 0 < x < �

0; � � x < 2�
:

�
Find the Laplace transform of f �x�.
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9.6 Find

Lÿ1 15

p2 � 4p� 13

� �
:

9.7 Prove that if f 0�x� is continuous and f 00�x� is piecewise continuous in every

®nite interval 0 � x � k and if f �x� and f 0�x� are of exponential order for

x > k, then

L� f F�x�� � p2L� f �x�� ÿ pf �0� ÿ f 0�0�:
(Hint: Use (9.19) with f 0�x� in place of f �x� and f 00�x� in place of f 0�x�.)

9.8 Solve the initial problem y 00�t� � ÿ2y�t� � A sin!t; y�0� � 1; y 0�0� � 0.

9.9 Solve the initial problem yF�t� ÿ y 0�t� � sin t subject to

y�0� � 2; y�0� � 0; y 00�0� � 1:

9.10 Solve the linear simultaneous diÿerential equation with constant coe�cients

y 00 � 2yÿ x � 0;

x 00 � 2xÿ y � 0;

subject to x�0� � 2; y�0� � 0, and x 0�0� � y 0�0� � 0, where x and y are the

dependent variables and t is the independent variable.

9.11 Find

L

Z 1

0

cos au du

� �
:

9.12. Prove that if L� f �x�� � F�p� then

L� f �ax�� � 1

a
F

p

a

� �
:

Similarly if Lÿ1�F�p�� � f �x� then
Lÿ1 F

p

a

� �h i
� af �ax�:
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10

Partial diÿerential equations

We have met some partial diÿerential equations in previous chapters. In this

chapter we will study some elementary methods of solving partial diÿerential

equations which occur frequently in physics and in engineering. In general, the

solution of partial diÿerential equations presents a much more di�cult problem

than the solution of ordinary diÿerential equations. A complete discussion of the

general theory of partial diÿerential equations is well beyond the scope of this

book. We therefore limit ourselves to a few solvable partial diÿerential equations

that are of physical interest.

Any equation that contains an unknown function of two or more variables and

its partial derivatives with respect to these variables is called a partial diÿerential

equation, the order of the equation being equal to the order of the highest partial

derivatives present. For example, the equations

3y2
@u

@x
� @u

@y
� 2u;

@2u

@x@y
� 2xÿ y

are typical partial diÿerential equations of the ®rst and second orders, respec-

tively, x and y being independent variables and u�x; y� the function to be found.

These two equations are linear, because both u and its derivatives occur only to

the ®rst order and products of u and its derivatives are absent. We shall not

consider non-linear partial diÿerential equations.

We have seen that the general solution of an ordinary diÿerential equation

contains arbitrary constants equal in number to the order of the equation. But

the general solution of a partial diÿerential equation contains arbitrary functions

(equal in number to the order of the equation). After the particular choice of the

arbitrary functions is made, the general solution becomes a particular solution.

The problem of ®nding the solution of a given diÿerential equation subject to

given initial conditions is called a boundary-value problem or an initial-value
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problem. We have seen already that such problems often lead to eigenvalue

problems.

Linear second-order partial diÿerential equations

Many physical processes can be described to some degree of accuracy by linear

second-order partial diÿerential equations. For simplicity, we shall restrict our

discussion to the second-order linear partial diÿerential equation in two indepen-

dent variables, which has the general form

A
@2u

@x2
� B

@2u

@x@y
� C

@2u

@y2
�D

@u

@x
� E

@u

@y
� Fu � G; �10:1�

where A;B;C; . . . ;G may be dependent on variables x and y.

If G is a zero function, then Eq. (10.1) is called homogeneous; otherwise it is

said to be non-homogeneous. If u1; u2; . . . ; un are solutions of a linear homoge-

neous partial diÿerential equation, then c1u1 � c2u2 � � � � � cnun is also a solution,

where c1; c2; . . . are constants. This is known as the superposition principle; it does

not apply to non-linear equations. The general solution of a linear non-homo-

geneous partial diÿerential equation is obtained by adding a particular solution

of the non-homogeneous equation to the general solution of the homogeneous

equation.

The homogeneous form of Eq. (10.1) resembles the equation of a general conic:

ax2 � bxy� cy2 � dx� ey� f � 0:

We thus say that Eq. (10.1) is of

elliptic

hyperbolic

parabolic

9>=
>;type when

B2 ÿ 4AC < 0

B2 ÿ 4AC > 0

B2 ÿ 4AC � 0

8><
>: :

For example, according to this classi®cation the two-dimensional Laplace equation

@2u

@x2
� @2u

@y2
� 0

is of elliptic type (A � C � 1;B � D � E � F � G � 0�, and the equation

@2u

@x2
ÿ �2 @

2u

@y2
� 0 �� is a real constant�

is of hyperbolic type. Similarly, the equation

@2u

@x2
ÿ �

@u

@y
� 0 �� is a real constant�

is of parabolic type.
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We now list some important linear second-order partial diÿerential equations

that are of physical interest and we have seen already:

(1) Laplace's equation:

r2u � 0; �10:2�
where r2 is the Laplacian operator. The function u may be the electrostatic

potential in a charge-free region. It may be the gravitational potential in a region

containing no matter or the velocity potential for an incompressible ¯uid with no

sources or sinks.

(2) Poisson's equation:

r2u � ��x; y; z�; �10:3�
where the function ��x; y; z� is called the source density. For example, if u repre-

sents the electrostatic potential in a region containing charges, then � is propor-

tional to the electrical charge density. Similarly, for the gravitational potential

case, � is proportional to the mass density in the region.

(3) Wave equation:

r2u � 1

v2
@2u

@t2
; �10:4�

transverse vibrations of a string, longitudinal vibrations of a beam, or propaga-

tion of an electromagnetic wave all obey this same type of equation. For a vibrat-

ing string, u represents the displacement from equilibrium of the string; for a

vibrating beam, u is the longitudinal displacement from the equilibrium.

Similarly, for an electromagnetic wave, u may be a component of electric ®eld

E or magnetic ®eld H.

(4) Heat conduction equation:

@u

@t
� �r2u; �10:5�

where u is the temperature in a solid at time t. The constant � is called the

diÿusivity and is related to the thermal conductivity, the speci®c heat capacity,

and the mass density of the object. Eq. (10.5) can also be used as a diÿusion

equation: u is then the concentration of a diÿusing substance.

It is obvious that Eqs. (10.2)±(10.5) all are homogeneous linear equations with

constant coe�cients.

Example 10.1

Laplace's equation: arises in almost all branches of analysis. A simple example

can be found from the motion of an incompressible ¯uid. Its velocity v�x; y; z; t�
and the ¯uid density ��x; y; z; t� must satisfy the equation of continuity:

@�

@t
�r � ��v� � 0:
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If � is constant we then have

r � v � 0:

If, furthermore, the motion is irrotational, the velocity vector can be expressed as

the gradient of a scalar function V :

v � ÿrV ;

and the equation of continuity becomes Laplace's equation:

r � v � r � �ÿrV� � 0; or r2V � 0:

The scalar function V is called the velocity potential.

Example 10.2

Poisson's equation: The electrostatic ®eld provides a good example of Poisson's

equation. The electric force between any two charges q and q 0 in a homogeneous

isotropic medium is given by Coulomb's law

F � C
qq 0

r2
r̂;

where r is the distance between the charges, and r̂ is a unit vector in the direction

of the force. The constant C determines the system of units, which is not of

interest to us; thus we leave C as it is.

An electric ®eld E is said to exist in a region if a stationary charge q 0 in that

region experiences a force F:

E � lim
q 0!0

�F=q 0�:

The limq 0!0 guarantees that the test charge q
0 will not alter the charge distribution

that existed prior to the introduction of the test charge q 0. From this de®nition

and Coulomb's law we ®nd that the electric ®eld at a point r distant from a point

charge is given by

E � C
q

r2
r̂:

Taking the curl on both sides we get

r� E � 0;

which shows that the electrostatic ®eld is a conservative ®eld. Hence a potential

function � exists such that

E � ÿr�:

Taking the divergence of both sides

r � �r�� � ÿr � E
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or

r2� � ÿr � E:
r � E is given by Gauss' law. To see this, consider a volume � containing a total

charge q. Let ds be an element of the surface S which bounds the volume � . ThenZZ
S

E � ds � Cq

ZZ
S

r̂ � ds
r2

:

The quantity r̂ � ds is the projection of the element area ds on a plane perpendi-

cular to r. This projected area divided by r2 is the solid angle subtended by ds,

which is written dÿ. Thus, we haveZZ
S

E � ds � Cq

ZZ
S

r̂ � ds
r2

� Cq

ZZ
S

dÿ � 4�Cq:

If we write q as

q �
ZZZ

�

�dV;

where � is the charge density, thenZZ
S

E � ds � 4�C

ZZZ
�

�dV :

But (by the divergence theorem)ZZ
S

E � ds �
ZZZ

�

r � EdV :

Substituting this into the previous equation, we obtainZZZ
�

r � EdV � 4�C

ZZZ
�

�dV

or ZZZ
�

r � Eÿ 4�C�� �dV � 0:

This equation must be valid for all volumes, that is, for any choice of the volume

� . Thus, we have Gauss' law in diÿerential form:

r � E � 4�C�:

Substituting this into the equation r2� � ÿr � E, we get

r2� � ÿ4�C�;

which is Poisson's equation. In the Gaussian system of units, C � 1; in the SI

system of units, C � 1=4�"0, where the constant "0 is known as the permittivity of

free space. If we use SI units, then

r2� � ÿ�="0:
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In the particular case of zero charge density it reduces to Laplace's equation,

r2� � 0:

In the following sections, we shall consider a number of problems to illustrate

some useful methods of solving linear partial diÿerential equations. There are

many methods by which homogeneous linear equations with constant coe�cients

can be solved. The following are commonly used in the applications.

(1) General solutions: In this method we ®rst ®nd the general solution and then

that particular solution which satis®es the boundary conditions. It is always

satisfying from the point of view of a mathematician to be able to ®nd general

solutions of partial diÿerential equations; however, general solutions are di�cult

to ®nd and such solutions are sometimes of little value when given boundary

conditions are to be imposed on the solution. To overcome this di�culty it is

best to ®nd a less general type of solution which is satis®ed by the type of

boundary conditions to be imposed. This is the method of separation of variables.

(2) Separation of variables: The method of separation of variables makes use of

the principle of superposition in building up a linear combination of individual

solutions to form a solution satisfying the boundary conditions. The basic

approach of this method in attempting to solve a diÿerential equation (in, say,

two dependent variables x and y) is to write the dependent variable u�x; y� as a
product of functions of the separate variables u�x; y� � X�x�Y�y�. In many cases

the partial diÿerential equation reduces to ordinary diÿerential equations for X

and Y.

(3) Laplace transform method: We ®rst obtain the Laplace transform of the

partial diÿerential equation and the associated boundary conditions with respect

to one of the independent variables, and then solve the resulting equation for the

Laplace transform of the required solution which can be found by taking the

inverse Laplace transform.

Solutions of Laplace's equation: separation of variables

(1) Laplace's equation in two dimensions �x; y�: If the potential � is a function of

only two rectangular coordinates, Laplace's equation reads

@2�

@x2
� @2�

@y2
� 0:

It is possible to obtain the general solution to this equation by means of a trans-

formation to a new set of independent variables:

� � x� iy; � � xÿ iy;
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where I is the unit imaginary number. In terms of these we have

@

@x
� @

@�

@�

@x
� @

@�

@�

@x
� @

@�
� @

@�
;

@2

@x2
� @

@x

@

@�
� @

@�

� �

� @

@�

@

@�
� @

@�

� �
@�

@x
� @

@�

@

@�
� @

@�

� �
@�

@x

� @2

@�2
� 2

@

@�

@

@�
� @2

@�2
:

Similarly, we have

@2

@y2
� ÿ @2

@�2
� 2

@

@�

@

@�
ÿ @2

@�2

and Laplace's equation now reads

r2� � 4
@2�

@�@�
� 0:

Clearly, a very general solution to this equation is

� � f1��� � f2��� � f1�x� iy� � f2�xÿ iy�;
where f1 and f2 are arbitrary functions which are twice diÿerentiable. However, it

is a somewhat di�cult matter to choose the functions f1 and f2 such that the

equation is, for example, satis®ed inside a square region de®ned by the lines

x � 0; x � a; y � 0; y � b and such that � takes prescribed values on the boundary

of this region. For many problems the method of separation of variables is more

satisfactory. Let us apply this method to Laplace's equation in three dimensions.

(2) Laplace's equation in three dimensions (x; y; z): Now we have

@2�

@x2
� @2�

@y2
� @2�

@z2
� 0: �10:6�

We make the assumption, justi®able by its success, that ��x; y; z� may be written

as the product

��x; y; z� � X�x�Y�y�Z�z�:
Substitution of this into Eq. (10.6) yields, after division by �;

1

X

d2X

dx2
� 1

Y

d2Y

dy2
� ÿ 1

Z

d2Z

dz2
: �10:7�
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The left hand side of Eq. (10.7) is a function of x and y, while the right hand side is

a function of z alone. If Eq. (10.7) is to have a solution at all, each side of the

equation must be equal to the same constant, say k23. Then Eq. (10.7) leads to

d2Z

dz2
� k23Z � 0; �10:8�

1

X

d2X

dx2
� ÿ 1

Y

d2Y

dy2
� k23: �10:9�

The left hand side of Eq. (10.9) is a function of x only, while the right hand side is

a function of y only. Thus, each side of the equation must be equal to a constant,

say k21. Therefore

d2X

dx2
� k21X � 0; �10:10�

d2Y

dy2
� k22Y � 0; �10:11�

where

k22 � k21 ÿ k23:

The solution of Eq. (10.10) is of the form

X�x� � a�k1�ek1x; k1 6� 0; ÿ1 < k1 < 1
or

X�x� � a�k1�ek1x � a 0�k1�eÿk1x; k1 6� 0; 0 < k1 < 1: �10:12�
Similarly, the solutions of Eqs. (10.11) and (10.8) are of the forms

Y�y� � b�k2�ek2y � b 0�k2�eÿk2y; k2 6� 0; 0 < k2 < 1; �10:13�

Z�z� � c�k3�ek3z � c0�k3�eÿk3z; k3 6� 0; 0 < k3 < 1: �10:14�
Hence

� � �a�k1�ek1x � a 0�k1�eÿk1x��b�k2�ek2y � b 0�k2�eÿk2y��c�k3�ek3z � c 0�k3�eÿk3z�;
and the general solution of Eq. (10.6) is obtained by integrating the above equa-

tion over all the permissible values of the ki �i � 1; 2; 3�.
In the special case when ki � 0 �i � 1; 2; 3�, Eqs. (10.8), (10.10), and (10.11)

have solutions of the form

Xi�xi� � aixi � bi;

where x1 � x, and X1 � X etc.
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Let us now apply the above result to a simple problem in electrostatics: that of

®nding the potential � at a point P a distance h from a uniformly charged in®nite

plane in a dielectric of permittivity ". Let � be the charge per unit area of the

plane, and take the origin of the coordinates in the plane and the x-axis perpen-

dicular to the plane. It is evident that � is a function of x only. There are two types

of solutions, namely:

��x� � a�k1�ek1x � a0�k1�eÿk1x;

��x� � a1x� b1;

the boundary conditions will eliminate the unwanted one. The ®rst boundary

condition is that the plane is an equipotential, that is, ��0� � constant, and the

second condition is that E � ÿ@�=@x � �=2". Clearly, only the second type of

solution satis®es both the boundary conditions. Hence b1 � ��0�; a1 � ÿ�=2",

and the solution is

��x� � ÿ �

2"
x� ��0�:

(3) Laplace's equation in cylindrical coordinates ��; '; z�: The cylindrical co-

ordinates are shown in Fig. 10.1, where

x � � cos'

y � � sin'

z � z

9>=
>; or

�2 � x2 � y2

' � tanÿ1�y=x�
z � z:

8><
>:

Laplace's equation now reads

r2���; '; z� � 1

�

@

@�
�
@�

@�

� �
� 1

�2
@2�

@'2
� @2�

@2z2
� 0: �10:15�
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We assume that

���; '; z� � R�����'�Z�z�: �10:16�
Substitution into Eq. (10.15) yields, after division by �,

1

�R

d

d�
�
dR

d�

� �
� 1

�2�

d2�

d'2
� ÿ 1

Z

d2Z

dz2
: �10:17�

Clearly, both sides of Eq. (10.17) must be equal to a constant, say ÿk2. Then

1

Z

d2Z

dz2
� k2 or

d2Z

dz2
ÿ k2Z � 0 �10:18�

and

1

�R

d

d�
�
dR

d�

� �
� 1

�2�

d2�

d'2
� ÿk2

or

�

R

d

d�
�
dR

d�

� �
� k2�2 � ÿ 1

�

d2�

d'2
:

Both sides of this last equation must be equal to a constant, say �2. Hence

d2�

d'2
� �2� � 0; �10:19�

1

R

d

d�
�
dR

d�

� �
� k2 ÿ �2

�2

þ !
R � 0: �10:20�

Equation (10.18) has for solutions

Z�z� � c�k�ekz � c 0�k�eÿkz; k 6� 0; 0 < k < 1;

c1z� c2; k � 0;

(
�10:21�

where c and c 0 are arbitrary functions of k and c1 and c2 are arbitrary constants.

Equation (10.19) has solutions of the form

��'� � a���ei�'; � 6� 0; ÿ1 < � < 1;

b'� b 0; � � 0:

(

That the potential must be single-valued requires that ��'� � ��'� 2n��, where
n is an integer. It follows from this that � must be an integer or zero and that

b � 0. Then the solution ��'� becomes

��'� � a���ei�'�a 0���eÿi�'; � 6� 0; � � integer;

b 0; � � 0:

(
�10:22�
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In the special case k � 0, Eq. (10.20) has solutions of the form

R��� � d����� � d 0����ÿ�; � 6� 0;

f ln �� g; � � 0:

�
�10:23�

When k 6� 0, a simple change of variable can put Eq. (10.20) in the form of

Bessel's equation. Let x � k�, then dx � kd� and Eq. (10.20) becomes

d2R

dx2
� 1

x

dR

dx
� 1ÿ �2

x2

þ !
R � 0; �10:24�

the well-known Bessel's equation (Eq. (7.71)). As shown in Chapter 7, R�x� can be

written as

R�x� � AJ��x� � BJÿ��x�; �10:25�
where A and B are constants, and J��x� is the Bessel function of the ®rst kind.

When � is not an integer, J� and Jÿ� are independent. But when � is an integer,

Jÿ��x� � �ÿ1�nJ��x�, thus J� and Jÿ� are linearly dependent, and Eq. (10.25)

cannot be a general solution. In this case the general solution is given by

R�x� � A1J��x� � B1Y��x�; �10:26�
where A1 and B2 are constants; Y��x� is the Bessel function of the second kind of

order � or Neumann's function of order �N��x�.
The general solution of Eq. (10.20) when k 6� 0 is therefore

R��� � p���J��k�� � q���Y��k��; �10:27�
where p and q are arbitrary functions of �. Then these functions are also solu-

tions:

H�1�
� �k�� � J��k�� � iY��k��;H�2�

� �k�� � J��k�� ÿ iY��k��:
These are the Hankel functions of the ®rst and second kinds of order �, respec-

tively.

The functions J�;Y� (or N�), and H�1�
� , and H�2�

� which satisfy Eq. (10.20) are

known as cylindrical functions of integral order � and are denoted by Z��k��,
which is not the same as Z�z�. The solution of Laplace's equation (10.15) can now

be written

���; '; z�

� �c1z� b�� f ln �� g�; k � 0; � � 0;

� �c1z� b��d����� � d 0����ÿ���a���ei�' � a0���eÿi�'�;
k � 0; � 6� 0;

� �c�k�ekz � c0�k�eÿkz�Z0�k��; k 6� 0; � � 0;

� �c�k�ekz � c 0�k�eÿkz�Z��k���a���ei�' � a 0���eÿi�'�; k 6� 0; � 6� 0:

8>>>>>><
>>>>>>:
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Let us now apply the solutions of Laplace's equation in cylindrical coordinates

to an in®nitely long cylindrical conductor with radius l and charge per unit length

�. We want to ®nd the potential at a point P a distance � > l from the axis of the

cylindrical. Take the origin of the coordinates on the axis of the cylinder that is

taken to be the z-axis. The surface of the cylinder is an equipotential:

��l� � const: for r � l and all ' and z:

The secondary boundary condition is that

E � ÿ@�=@� � �=2�l" for r � l and all ' and z:

Of the four types of solutions to Laplace's equation in cylindrical coordinates

listed above only the ®rst can satisfy these two boundary conditions. Thus

���� � b� f ln �� g� � ÿ �

2�"
ln
�

l
� ��a�:

(4) Laplace's equation in spherical coordinates �r; �; '�: The spherical coordinates
are shown in Fig. 10.2, where

x � r sin � cos';

y � r sin � sin';

z � r cos':

Laplace's equation now reads

r2��r; �; '� � 1

r

@

@r
r2
@�

@r

� �
� 1

r2 sin �

@

@�
sin �

@�

@�

� �

� 1

r2 sin2 �

@2�

@'2
� 0:

�10:28�
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Again, assume that

��r; �; '� � R�r�������'�: �10:29�
Substituting into Eq. (10.28) and dividing by � we obtain

sin2 �

R

d

dr
r2
dR

dr

� �
� sin �

�

d

d�
sin �

d�

d�

� �
� ÿ 1

�

d2�

d'2
:

For a solution, both sides of this last equation must be equal to a constant, say

m2. Then we have two equations

d2�

d'2
�m2� � 0; �10:30�

sin2 �

R

d

dr
r2
dR

dr

� �
� sin �

�

d

d�
sin �

d�

d�

� �
� m2;

the last equation can be rewritten as

1

� sin �

d

d�
sin �

d�

d�

� �
ÿ m2

sin2 �
� ÿ 1

R

d

dr
r2
dR

dr

� �
:

Again, both sides of the last equation must be equal to a constant, say ÿÿ. This

yields two equations

1

R

d

dr
r2
dR

dr

� �
� ÿ; �10:31�

1

� sin �

d

d�
sin �

d�

d�

� �
ÿ m2

sin2 �
� ÿÿ:

By a simple substitution: x � cos �, we can put the last equation in a more familiar

form:

d

dx
�1ÿ x2� dP

dx

� �
� ÿ ÿ m2

1ÿ x2

þ !
P � 0 �10:32�

or

�1ÿ x2� d
2P

dx2
ÿ 2x

dP

dx
� ÿ ÿ m2

1ÿ x2

" #
P � 0; �10:32a�

where we have set P�x� � ����.
You may have already noticed that Eq. (10.32) is very similar to Eq. (10.25),

the associated Legendre equation. Let us take a close look at this resemblance.

In Eq. (10.32), the points x � �1 are regular singular points of the equation. Let

us ®rst study the behavior of the solution near point x � 1; it is convenient to
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bring this regular singular point to the origin, so we make the substitution

u � 1ÿ x;U�u� � P�x�. Then Eq. (10.32) becomes

d

du
u�2ÿ u� dU

du

� �
� ÿ ÿ m2

u�2ÿ u�

" #
U � 0:

When we solve this equation by a power series: U � P1
n�0 anu

n��, we ®nd that the

indicial equation leads to the values �m=2 for �. For the point x � ÿ1, we make

the substitution v � 1� x, and then solve the resulting diÿerential equation by the

power series method; we ®nd that the indicial equation leads to the same values

�m=2 for �.

Let us ®rst consider the value �m=2;m � 0. The above considerations lead us

to assume

P�x� � �1ÿ x�m=2�1� x�m=2y�x� � �1ÿ x2�m=2y�x�; m � 0

as the solution of Eq. (10.32). Substituting this into Eq. (10.32) we ®nd

�1ÿ x2� d
2y

dx2
ÿ 2�m� 1�x dy

dx
� ÿ ÿm�m� 1�� �y � 0:

Solving this equation by a power series

y�x� �
X1
n�0

cnx
n��;

we ®nd that the indicial equation is ��� ÿ 1� � 0. Thus the solution can be written

y�x� �
X
n even

cnx
n �

X
n odd

cnx
n:

The recursion formula is

cn�2 �
�n�m��n�m� 1� ÿ ÿ

�n� 1��n� 2� cn:

Now consider the convergence of the series. By the ratio test,

Rn �
cnx

n

cnÿ2x
nÿ2

ÿÿÿÿ
ÿÿÿÿ � �n�m��n�m� 1� ÿ ÿ

�n� 1��n� 2�
ÿÿÿÿ

ÿÿÿÿ � xj j2:

The series converges for jxj < 1, whatever the ®nite value of ÿ may be. For

jxj � 1, the ratio test is inconclusive. However, the integral test yieldsZ
M

�t�m��t�m� 1� ÿ ÿ

�t� 1��t� 2� dt �
Z
M

�t�m��t�m� 1�
�t� 1��t� 2� dtÿ

Z
M

ÿ

�t� 1��t� 2� dt

and since Z
M

�t�m��t�m� 1�
�t� 1��t� 2� dt ! 1 as M ! 1;
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the series diverges for jxj � 1. A solution which converges for all x can be

obtained if either the even or odd series is terminated at the term in x j. This

may be done by setting ÿ equal to

ÿ � � j �m�� j �m� 1� � l�l � 1�:
On substituting this into Eq. (10.32a), the resulting equation is

�1ÿ x2� d
2P

dx2
ÿ 2x

dP

dx
� l�l � 1� ÿ m2

1ÿ x2

" #
P � 0;

which is identical to Eq. (7.25). Special solutions were studied there: they were

written in the form Pm
l �x� and are known as the associated Legendre functions of

the ®rst kind of degree l and order m, where l and m, take on the values

l � 0; 1; 2; . . . ; and m � 0; 1; 2; . . . ; l. The general solution of Eq. (10.32) for

m � 0 is therefore

P�x� � ���� � alP
m
l �x�: �10:33�

The second solution of Eq. (10.32) is given by the associated Legendre function of

the second kind of degree l and order m: Qm
l �x�. However, only the associated

Legendre function of the ®rst kind remains ®nite over the range ÿ1 � x � 1 (or

0 � � � 2��.
Equation (10.31) for R�r� becomes

d

dr
r2
dR

dr

� �
ÿ l�l � 1�R � 0: �10:31a�

When l 6� 0, its solution is

R�r� � b�l�rl � b 0�l�rÿlÿ1; �10:34�
and when l � 0, its solution is

R�r� � crÿ1 � d: �10:35�
The solution of Eq. (10.30) is

� � f �m�eim' � f 0�l�eÿim'; m 6� 0; positive integer;

g; m � 0:

(
�10:36�

The solution of Laplace's equation (10.28) is therefore given by

��r; �; '� �
�brl � b 0rÿlÿ1�Pm

l �cos ��� feim' � f 0eÿim'�; l 6� 0; m 6� 0;

�brl � b0rÿlÿ1�Pl�cos ��; l 6� 0; m � 0;

�crÿ1 � d�P0�cos ��; l � 0; m � 0;

8><
>: �10:37�

where Pl � P0
l .
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We now illustrate the usefulness of the above result for an electrostatic problem

having spherical symmetry. Consider a conducting spherical shell of radius a and

charge � per unit area. The problem is to ®nd the potential ��r; �; '� at a point P a

distance r > a from the center of shell. Take the origin of coordinates to be at the

center of the shell. As the surface of the shell is an equipotential, we have the ®rst

boundary condition

��r� � constant � ��a� for r � a and all � and ': �10:38�
The second boundary condition is that

� ! 0 for r ! 1 and all � and ': �10:39�
Of the three types of solutions (10.37) only the last can satisfy the boundary

conditions. Thus

��r; �; '� � �crÿ1 � d�P0�cos ��: �10:40�
Now P0�cos �� � 1, and from Eq. (10.38) we have

��a� � caÿ1 � d:

But the boundary condition (10.39) requires that d � 0. Thus ��a� � caÿ1, or

c � a��a�, and Eq. (10.40) reduces to

��r� � a��a�
r

: �10:41�

Now

��a�=a � E�a� � Q=4�a2";

where " is the permittivity of the dielectric in which the shell is embedded,

Q � 4�a2�. Thus ��a� � a�=", and Eq. (10.41) becomes

��r� � �a2

"r
: �10:42�

Solutions of the wave equation: separation of variables

We now use the method of separation of variables to solve the wave equation

@2u�x; t�
@x2

� vÿ2 @
2u�x; t�
@t2

; �10:43�

subject to the following boundary conditions:

u�0; t� � u�l; t� � 0; t � 0; �10:44�

u�x; 0� � f �t�; 0 � x � l; �10:45�
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and

@u�x; t�
@t

ÿÿÿÿ
t�0

� g�x�; 0 � x � l; �10:46�

where f and g are given functions.

Assuming that the solution of Eq. (10.43) may be written as a product

u�x; t� � X�x�T�t�; �10:47�
then substituting into Eq. (10.43) and dividing by XT we obtain

1

X

d2X

dx2
� 1

v2T

d2T

dt2
:

Both sides of this last equation must be equal to a constant, say ÿb2=v2. Then we

have two equations

1

X

d2X

dx2
� ÿ b2

v2
; �10:48�

1

T

d2T

dt2
� ÿb2: �10:49�

The solutions of these equations are periodic, and it is more convenient to write

them in terms of trigonometric functions

X�x� � A sin
bx

v
� B cos

bx

v
; T�t� � C sin bt�D cos bt; �10:50�

where A;B;C, and D are arbitrary constants, to be ®xed by the boundary condi-

tions. Equation (10.47) then becomes

u�x; t� � A sin
bx

v
� B cos

bx

v

� �
�C sin bt�D cos bt�: �10:51�

The boundary condition u�0; t� � 0�t > 0� gives
0 � B�C sin bt�D cos bt�

for all t, which implies

B � 0: �10:52�
Next, from the boundary condition u�l; t� � 0�t > 0� we have

0 � A sin
bl

v
�C sin bt�D cos bt�:

Note that B � 0 would make u � 0. However, the last equation can be satis®ed

for all t when

sin
bl

v
� 0;
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which implies

b � n�v

l
; n � 1; 2; 3; . . . : �10:53�

Note that n cannot be equal to zero, because it would make b � 0, which in turn

would make u � 0.

Substituting Eq. (10.53) into Eq. (10.51) we have

un�x; t� � sin
n�x

l
Cn sin

n�vt

l
�Dn cos

n�vt

l

� �
; n � 1; 2; 3; . . . : �10:54�

We see that there is an in®nite set of discrete values of b and that to each value of

b there corresponds a particular solution. Any linear combination of these parti-

cular solutions is also a solution:

un�x; t� �
X1
n�1

sin
n�x

l
Cn sin

n�vt

l
�Dn cos

n�vt

l

� �
: �10:55�

The constants Cn and Dn are ®xed by the boundary conditions (10.45) and

(10.46).

Application of boundary condition (10.45) yields

f �x� �
X1
n�1

Dn sin
n�x

l
: �10:56�

Similarly, application of boundary condition (10.46) gives

g�x� � �v

l

X1
n�1

nCn sin
n�x

l
: �10:57�

The coe�cients Cn and Dn may then be determined by the Fourier series method:

Dn �
2

l

Z l

0

f �x� sin n�x
l

dx; Cn �
2

n�v

Z l

0

g�x� sin n�x
l

dx: �10:58�

We can use the method of separation of variable to solve the heat conduction

equation. We shall leave this as a home work problem.

In the following sections, we shall consider two more methods for the solution

of linear partial diÿerential equations: the method of Green's functions, and the

method of the Laplace transformation which was used in Chapter 9 for the

solution of ordinary linear diÿerential equations with constant coe�cients.

Solution of Poisson's equation. Green's functions

The Green's function approach to boundary-value problems is a very powerful

technique. The ®eld at a point caused by a source can be considered to be the total

eÿect due to each ``unit'' (or elementary portion) of the source. If G�x; x 0� is the
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®eld at a point x due to a unit point source at x 0, then the total ®eld at x due to a

distributed source ��x 0� is the integral of G� over the range of x 0 occupied by the

source. The function G�x; x 0� is the well-known Green's function. We now apply

this technique to solve Poisson's equation for electric potential � (Example 10.2)

r2��r� � ÿ 1

"
��r�; �10:59�

where � is the charge density and " the permittivity of the medium, both are given.

By de®nition, Green's function G�r; r 0� is the solution of

r2G�r; r 0� � ��rÿ r 0�; �10:60�

where ��rÿ r 0� is the Dirac delta function.

Now, multiplying Eq. (10.60) by � and Eq. (10.59) by G, and then subtracting,

we ®nd

��r�r2G�r; r 0� ÿ G�r; r 0�r2��r� � ��r���rÿ r 0� � 1

"
G�r; r 0���r�;

and on interchanging r and r 0,

��r 0�r 02G�r 0; r� ÿ G�r 0; r�r02��r 0� � ��r 0���r 0 ÿ r� � 1

"
G�r 0; r���r 0�

or

��r 0���r 0 ÿ r� � ��r 0�r 02G�r 0; r� ÿ G�r 0; r�r02��r 0� ÿ 1

"
G�r 0; r���r 0�; �10:61�

the prime on r indicates that diÿerentiation is with respect to the primed co-

ordinates. Integrating this last equation over all r 0 within and on the surface S 0

which encloses all sources (charges) yields

��r� � ÿ 1

"

Z
G�r; r 0���r 0�dr 0

�
Z

���r 0�r 02G�r; r 0� ÿ G�r; r 0�r 02��r 0��dr 0; �10:62�

where we have used the property of the delta functionZ �1

ÿ1
f �r 0���rÿ r 0�dr 0 � f �r�:

We now use Green's theoremZZZ
fr02þÿ þr02f �d� 0 �

ZZ
� fr0þÿ þr0f � � dS
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to transform the second term on the right hand side of Eq. (10.62) and obtain

��r� � ÿ 1

"

Z
G�r; r 0���r 0�dr 0

�
Z

���r 0�r 0G�r; r 0� ÿ G�r; r 0�r 0��r 0�� � dS 0 �10:63�

or

��r� � ÿ 1

"

Z
G�r; r 0���r 0�dr 0

�
Z �

��r 0� @

@n 0 G�r; r 0� ÿ G�r; r 0� @

@n 0 ��r 0�
�
� dS 0; �10:64�

where n 0 is the outward normal to dS 0. The Green's function G�r; r 0� can be found

from Eq. (10.60) subject to the appropriate boundary conditions.

If the potential � vanishes on the surface S 0 or @�=@n 0 vanishes, Eq. (10.64)
reduces to

��r� � ÿ 1

"

Z
G�r; r 0���r 0�dr 0: �10:65�

On the other hand, if the surface S 0 encloses no charge, then Poisson's equation

reduces to Laplace's equation and Eq. (10.64) reduces to

��r� �
Z �

��r 0� @

@n 0 G�r; r 0� ÿ G�r; r 0� @

@n 0 ��r 0�
�
� dS 0: �10:66�

The potential at a ®eld point r due to a point charge q located at the point r 0 is

��r� � 1

4�"

q

rÿ r 0j j :

Now

r2 1

rÿ r 0j j
� �

� ÿ4���rÿ r 0�

(the proof is left as an exercise for the reader) and it follows that the Green's

function G�r; r 0�in this case is equal

G�r; r 0� � 1

4�"

1

rÿ r 0j j :

If the medium is bounded, the Green's function can be obtained by direct solution

of Eq. (10.60) subject to the appropriate boundary conditions.

To illustrate the procedure of the Green's function technique, let us consider a

simple example that can easily be solved by other methods. Consider two

grounded parallel conducting plates of in®nite extent: if the electric charge density

� between the two plates is given, ®nd the electric potential distribution � between
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the plates. The electric potential distribution � is described by solving Poisson's

equation

r2� � ÿ�="

subject to the boundary conditions

(1) ��0� � 0;

(2) ��1� � 0:

We take the coordinates shown in Fig. 10.3. Poisson's equation reduces to the

simple form

d2�

dx2
� ÿ �

"
: �10:67�

Instead of using the general result (10.64), it is more convenient to proceed

directly. Multiplying Eq. (10.67) by G�x; x 0� and integrating, we obtainZ 1

0

G
d2�

dx2
dx � ÿ

Z 1

0

��x�G
"

dx: �10:68�

Then using integration by parts givesZ 1

0

G
d2�

dx2
dx � G�x; x 0� d��x�

dx

ÿÿÿÿ1
0

ÿ
Z 1

0

dG

dx

d�

dx
dx

and using integration by parts again on the right hand side, we obtain

ÿ
Z 1

0

G
d2�

dx2
dx � ÿG�x; x 0� d��x�

dx

1

0

� dG

dx
�

1

0

ÿ
Z 1

0

�
d2G

dx2
dx

ÿÿÿÿÿ
" #ÿÿÿÿÿ

� G�0; x 0� d��0�
dx

ÿ G�1; x 0� d��1�
dx

ÿ
Z 1

0

�
d2G

dx2
dx:
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Substituting this into Eq. (10.68) we obtain

G�0; x 0� d��0�
dx

ÿ G�1;x 0� d��1�
dx

ÿ
Z 1

0

�
d2G

dx2
dx �

Z 1

0

G�x; x 0���x�
"

dx

or Z 1

0

�
d2G

dx2
dx � G�1; x 0� d��1�

dx
ÿ G�0; x 0� d��0�

dx
ÿ
Z 1

0

G�x; x 0���x�
"

dx: �10:69�

We must now choose a Green's function which satis®es the following equation

and the boundary conditions:

d2G

dx2
� ÿ��xÿ x 0�; G�0; x 0� � G�1;x 0� � 0: �10:70�

Combining these with Eq. (10.69) we ®nd the solution to be

��x 0� �
Z 1

0

1

"
��x�G�x; x 0�dx: �10:71�

It remains to ®nd G�x; x 0�. By integration, we obtain from Eq. (10.70)

dG

dx
� ÿ

Z
��xÿ x 0�dx� a � ÿU�xÿ x 0� � a;

where U is the unit step function and a is an integration constant to be determined

later. Integrating once we get

G�x;x 0� � ÿ
Z

U�xÿ x 0�dx� ax� b � ÿ�xÿ x 0�U�xÿ x 0� � ax� b:

Imposing the boundary conditions on this general solution yields two equations:

G�0; x 0� � x 0U�ÿx 0� � a � 0� b � 0� 0� b � 0;

G�1; x 0� � ÿ�1ÿ x 0�U�1ÿ x 0� � a� b � 0:

From these we ®nd

a � �1ÿ x 0�U�1ÿ x 0�; b � 0

and the Green's function is

G�x; x 0� � ÿ�xÿ x 0�U�xÿ x 0� � �1ÿ x 0�x: �10:72�
This gives the response at x 0 due to a unit source at x. Interchanging x and x 0 in
Eqs. (10.70) and (10.71) we ®nd the solution of Eq. (10.67) to be

��x� �
Z 1

0

1

"
��x 0�G�x 0; x�dx 0 �

Z 1

0

1

"
��x 0��ÿ�x 0 ÿ x�U�x 0 ÿ x� � �1ÿ x�x 0�dx 0:

�10:73�
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Note that the Green's function in the last equation can be written in the form

G�x; x 0� � �1ÿ x�x x < x 0

�1ÿ x�x 0 x > x 0

(
:

Laplace transform solutions of boundary-value problems

Laplace and Fourier transforms are useful in solving a variety of partial diÿer-

ential equations, the choice of the appropriate transforms depends on the type of

boundary conditions imposed on the problem. To illustrate the use of the Lapace

transforms in solving boundary-value problems, we solve the following equation:

@u

@t
� 2

@2u

@x2
; �10:74�

u�0; t� � u�3; t� � 0; u�x; 0� � 10 sin 2�xÿ 6 sin 4�x: �10:75�
Taking the Laplace transform of Eq. (10.74) with respect to t gives

L
@u

@t

� �
� 2L

@2u

@x2

" #
:

Now

L
@u

@t

� �
� pL u� � ÿ u�x; 0�

and

L
@2u

@x2

" #
�

Z 1

0

eÿpt @
2u

@x2
dt � @2

@x2

Z 1

0

eÿptu�x; t�dt � @2

@x2
L�u�:

Here @2=@x2 and
R1
0 � � � dt are interchangeable because x and t are independent.

For convenience, let

U � U�x; p� � L�u�x; t�� �
Z 1

0

eÿptu�x; t�dt:

We then have

pU ÿ u�x; 0� � 2
d2U

dx2
;

from which we obtain, on using the given condition (10.75),

d2U

dx2
ÿ 1

2
pU � 3 sin 4�xÿ 5 sin 2�x: �10:76�
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Now think of this as a diÿerential equation in terms of x, with p as a parameter.

Then taking the Laplace transform of the given conditions u�0; t� � u�3; t� � 0,

we have

L�u�0; t�� � 0; L�u�3; t�� � 0

or

U�0; p� � 0; U�3; p� � 0:

These are the boundary conditions on U�x; p�. Solving Eq. (10.76) subject to these

conditions we ®nd

U�x; p� � 5 sin 2�x

p� 16�2
ÿ 3 sin 4�x

p� 64�2
:

The solution to Eq. (10.74) can now be obtained by taking the inverse Laplace

transform

u�x; t� � Lÿ1�U�x; p�� � 5eÿ16�2t sin 2�xÿ 3eÿ64�2 sin 4�x:

The Fourier transform method was used in Chapter 4 for the solution of

ordinary linear ordinary diÿerential equations with constant coe�cients. It can

be extended to solve a variety of partial diÿerential equations. However, we shall

not discuss this here. Also, there are other methods for the solution of linear

partial diÿerential equations. In general, it is a di�cult task to solve partial

diÿerential equations analytically, and very often a numerical method is the

best way of obtaining a solution that satis®es given boundary conditions.

Problems

10.1 (a) Show that y�x; t� � F�2x� 5t� � G�2xÿ 5t� is a general solution of

4
@2y

@t2
� 25

@2y

@x2
:

(b) Find a particular solution satisfying the conditions

y�0; t� � y��; t� � 0; y�x; 0� � sin 2x; y 0�x; 0� � 0:

10.2. State the nature of each of the following equations (that is, whether elliptic,

parabolic, or hyperbolic)

�a� @2y

@t2
� �

@2y

@x2
� 0; �b� x

@2u

@x2
� y

@2u

@y2
� 3y2

@u

@x
:

10.3 The electromagnetic wave equation: Classical electromagnetic theory was

worked out experimentally in bits and pieces by Coulomb, Oersted, Ampere,

Faraday and many others, but the man who put it all together and built it

into the compact and consistent theory it is today was James Clerk Maxwell.
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His work led to the understanding of electromagnetic radiation, of which

light is a special case.

Given the four Maxwell equations

r � E � �="0; �Gauss' law�;
r� B � �0 j� "0@E=@t� � �Ampere's law�;
r � B � 0 �Gauss' law�;
r� E � ÿ@B=@t �Faraday's law�;

where B is the magnetic induction, j � �v is the current density, and �0 is the

permeability of the medium, show that:

(a) the electric ®eld and the magnetic induction can be expressed as

E � ÿr�ÿ @A=@t; B � r� A;

where A is called the vector potential, and � the scalar potential. It

should be noted that E and B are invariant under the following trans-

formations:

A 0 � A�r�; � 0 � �ÿ @�=@t

in which � is an arbitrary real function. That is, both (A 0; ��, and

(A 0; � 0) yield the same E and B. Any condition which, for computational

convenience, restricts the form of A and � is said to de®ne a gauge. Thus

the above transformation is called a gauge transformation and � is

called a gauge parameter.

(b) If we impose the so-called Lorentz gauge condition on A and �:

r � A� �0"0�@�=@t� � 0;

then both A and � satisfy the following wave equations:

r2Aÿ �0"0
@2A

@t2
� ÿ�0j;

r2�ÿ �0"0
@2�

@t2
� ÿ�="0:

10.4 Given Gauss' law
RR

S E � ds � q=", ®nd the electric ®eld produced by a

charged plane of in®nite extension is given by E � �=", where � is the charge

per unit area of the plane.

10.5 Consider an in®nitely long uncharged conducting cylinder of radius l placed

in an originally uniform electric ®eld E0 directed at right angles to the axis of

the cylinder. Find the potential at a point ��> l� from the axis of the cylin-

der. The boundary conditions are:
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���; '� � ÿE0� cos ' � ÿE0x for � ! 1;

0 for � � l;

�
where the x-axis has been taken in the direction of the uniform ®eld E0.

10.6 Obtain the solution of the heat conduction equation

@2u�x; t�
@x2

� 1

�

@u�x; t�
@t

which satis®es the boundary conditions

(1) u�0; t� � u�l; t� � 0; t � 0; (2) u�x; 0� � f �x�; 0 � x, where f �x� is a

given function and l is a constant.

10.7 If a battery is connected to the plates as shown in Fig. 10.4, and if the charge

density distribution between the two plates is still given by ��x�, ®nd the

potential distribution between the plates.

10.8 Find the Green's function that satis®es the equation

d2G

dx2
� ��xÿ x 0�

and the boundary conditions G � 0 when x � 0 and G remains bounded

when x approaches in®nity. (This Green's function is the potential due to a

surface charge ÿ" per unit area on a plane of in®nite extent located at x � x 0

in a dielectric medium of permittivity " when a grounded conducting plane

of in®nite extent is located at x � 0.)

10.9 Solve by Laplace transforms the boundary-value problem

@2u

@x2
� 1

K

@u

@t
for x > 0; t > 0;

given that u � u0 (a constant) on x � 0 for t > 0, and u � 0 for x > 0; t � 0.
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11

Simple linear integral equations

In previous chapters we have met equations in which the unknown functions

appear under an integral sign. Such equations are called integral equations.

Fourier and Laplace transforms are important integral equations, In Chapter 4,

by introducing the method of Green's function we were led in a natural way to

reformulate the problem in terms of integral equations. Integral equations have

become one of the very useful and sometimes indispensable mathematical tools of

theoretical physics and engineering.

Classi®cation of linear integral equations

In this chapter we shall con®ne our attention to linear integral equations. Linear

integral equations can be divided into two major groups:

(1) If the unknown function occurs only under the integral sign, the integral

equation is said to be of the ®rst kind. Integral equations having the

unknown function both inside and outside the integral sign are of the second

kind.

(2) If the limits of integration are constants, the equation is called a Fredholm

integral equation. If one limit is variable, it is a Volterra equation.

These four kinds of linear integral equations can be written as follows:

f �x� �
Z b

a

K�x; t�u�t�dt Fredholm equation of the first kind; �11:1�

u�x� � f �x� � �

Z b

a

K�x; t�u�t�dt Fredholm equation of the second kind;

�11:2�
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f �x� �
Z x

a

K�x; t�u�t�dt Volterra equation of the first kind; �11:3�

u�x� � f �x� � �

Z x

a

K�x; t�u�t�dt Volterra equation of the second kind:

�11:4�
In each case u�t� is the unknown function, K�x; t� and f �x� are assumed to be

known. K�x; t� is called the kernel or nucleus of the integral equation. � is a

parameter, which often plays the role of an eigenvalue. The equation is said to

be homogeneous if f �x� � 0.

If one or both of the limits of integration are in®nite, or the kernel K�x; t�
becomes in®nite in the range of integration, the equation is said to be singular;

special techniques are required for its solution.

The general linear integral equation may be written as

h�x�u�x� � f �x� � �

Z b

a

K�x; t�u�t�dt: �11:5�

If h�x� � 0, we have a Fredholm equation of the ®rst kind; if h�x� � 1, we have a

Fredholm equation of the second kind. We have a Volterra equation when the

upper limit is x.

It is beyond the scope of this book to present the purely mathematical general

theory of these various types of equations. After a general discussion of a few

methods of solution, we will illustrate them with some simple examples. We will

then show with a few examples from physical problems how to convert diÿerential

equations into integral equations.

Some methods of solution

Separable kernel

When the two variables x and t which appear in the kernel K�x; t� are separable,
the problem of solving a Fredholm equation can be reduced to that of solving a

system of algebraic equations, a much easier task. When the kernel K�x; t� can be

written as

K�x; t� �
Xn
i�1

gi�x�hi�t�; �11:6�

where g�x� is a function of x only and h�t� a function of t only, it is said to be

degenerate. Putting Eq. (11.6) into Eq. (11.2), we obtain

u�x� � f �x� � �
Xn
i�1

Z b

a

gi�x�hi�t�u�t�dt:
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Note that g�x� is a constant as far as the t integration is concerned, hence it may

be taken outside the integral sign and we have

u�x� � f �x� � �
Xn
i�1

gi�x�
Z b

a

hi�t�u�t�dt: �11:7�

Now Z b

a

hi�t�u�t�dt � Ci �� const:�: �11:8�

Substituting this into Eq. (11.7) and solving for u�t�, we obtain

u�t� � f �x� � �C
Xn
i�1

gi�x�: �11:9�

The value of Ci may now be obtained by substituting Eq. (11.9) into Eq. (11.8).

The solution is only valid for certain values of �, and we call these the eigenvalues

of the integral equation. The homogeneous equation has non-trivial solutions

only if � is one of these eigenvalues; these solutions are called eigenfunctions of

the kernel (operator) K.

Example 11.1

As an example of this method, we consider the following equation:

u�x� � x� �

Z 1

0

�xt2 � x2t�u�t�dt: �11:10�

This is a Fredholm equation of the second kind, with f �x� � x and

K�x; t� � xt2 � x2t. If we de®ne

� �
Z 1

0

t2u�t�dt; ÿ �
Z 1

0

tu�t�dt; �11:11�

then Eq. (11.10) becomes

u�x� � x� ���x� ÿx2�: �11:12�
To determine A and B, we put Eq. (11.12) back into Eq. (11.11) and obtain

� � 1
4 � 1

4��� 1
5�ÿ; ÿ � 1

3 � 1
3��� 1

4�ÿ: �11:13�
Solving this for � and ÿ we ®nd

� � 60� �

240ÿ 120�ÿ �2
; ÿ � 80

240ÿ 120�ÿ �2
;

and the ®nal solution is

u�t� � �240ÿ 60��x� 80�x2

240ÿ 120�ÿ �2
:
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The solution blows up when � � 117:96 or � � 2:04. These are the eigenvalues of

the integral equation.

Fredholm found that if: (1) f �x� is continuous, (2) K�x; t� is piecewise contin-

uous, (3) the integrals
RR

K2�x; t�dxdt; R f 2�t�dt exist, and (4) the integralsRR
K2�x; t�dt andR K2�t; x�dt are bounded, then the following theorems apply:

(a) Either the inhomogeneous equation

u�x� � f �x� � �

Z b

a

K�x; t�u�t�dt

has a unique solution for any function f �x��� is not an eigenvalue), or the

homogeneous equation

u�x� � �

Z b

a

K�x; t�u�t�dt

has at least one non-trivial solution corresponding to a particular value of �.

In this case, � is an eigenvalue and the solution is an eigenfunction.

(b) If � is an eigenvalue, then � is also an eigenvalue of the transposed equation

u�x� � �

Z b

a

K�t; x�u�t�dt;

and, if � is not an eigenvalue, then � is also not an eigenvalue of the

transposed equation

u�x� � f �x� � �

Z b

a

K�t; x�u�t�dt:

(c) If � is an eigenvalue, the inhomogeneous equation has a solution if, and only

if,

Z b

a

u�x� f �x�dx � 0

for every function f �x�.
We refer the readers who are interested in the proof of these theorems to the

book by R. Courant and D. Hilbert (Methods of Mathematical Physics, Vol. 1,

Wiley, 1961).

Neumann series solutions

This method is due largely to Neumann, Liouville, and Volterra. In this method

we solve the Fredholm equation (11.2)

u�x� � f �x� � �

Z b

a

K�x; t�u�t�dt
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by iteration or successive approximations, and begin with the approximation

u�x� � u0�x� � f �x�:
This approximation is equivalent to saying that the constant � or the integral is

small. We then put this crude choice into the integral equation (11.2) under the

integral sign to obtain a second approximation:

u1�x� � f �x� � �

Z b

a

K�x; t� f �t�dt

and the process is then repeated and we obtain

u2�x� � f �x� � �

Z b

a

K�x; t� f �t�dt� �2

Z b

a

Z b

a

K�x; t�K�t; t 0� f �t 0�dt 0dt:

We can continue iterating this process, and the resulting series is known as the

Neumann series, or Neumann solution:

u�x� � f �x� � �

Z b

a

K�x; t� f �t�dt� �2

Z b

a

Z b

a

K�x; t�K�t; t 0� f �t 0�dt 0dt� � � � :

This series can be written formally as

un�x� �
Xn
i�1

�i'i�x�; �11:14�

where

'0�x� � u0�x� � f �x�;

'1�x� �
Z b

a

K�x; t1� f �t1�dt1;

'2�x� �
Z b

a

Z b

a

K�x; t1�K�t1; t2� f �t2�dt1dt2;
..
.

'n�x� �
Z b

a

Z b

a

� � �
Z b

a

K�x; t1�K�t1; t2� � � �K�tnÿ1; tn� f �tn�dt1dt2 � � � dtn:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;
�11:15�

The series (11.14) will converge for su�ciently small �, when the kernel K�x; t� is
bounded. This can be checked with the Cauchy ratio test (Problem 11.4).

Example 11.2

Use the Neumann method to solve the integral equation

u�x� � f �x� � 1
2

Z 1

ÿ1

K�x; t�u�t�dt; �11:16�
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where

f �x� � x; K�x; t� � tÿ x:

Solution: We begin with

u0�x� � f �x� � x:

Then

u1�x� � x� 1

2

Z 1

ÿ1

�tÿ x�tdt � x� 1

3
:

Putting u1�x� into Eq. (11.16) under the integral sign, we obtain

u2�x� � x� 1

2

Z 1

ÿ1

�tÿ x� t� 1

3

� �
dt � x� 1

3
ÿ x

3
:

Repeating this process of substituting back into Eq. (11.16) once more, we obtain

u3�x� � x� 1

3
ÿ x

3
ÿ 1

32
:

We can improve the approximation by iterating the process, and the convergence

of the resulting series (solution) can be checked out with the ratio test.

The Neumann method is also applicable to the Volterra equation, as shown by

the following example.

Example 11.3

Use the Neumann method to solve the Volterra equation

u�x� � 1� �

Z x

0

u�t�dt:

Solution: We begin with the zeroth approximation u0�x� � 1. Then

u1�x� � 1� �

Z x

0

u0�t�dt � 1� �

Z x

0

dt � 1� �x:

This gives

u2�x� � 1� �

Z x

0

u1�t�dt � 1� �

Z x

0

�1� �t�dt � 1� �x� 1

2
�2x2;

similarly,

u3�x� � 1� �

Z x

0

1� �t� 1

2
�2t2

� �
dt � 1� �t� 1

2
�2t2 � 1

3!
�3x3:
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By induction

un�x� �
Xn
k�1

1

k!
�kxk:

When n ! 1, un�x� approaches
u�x� � e�x:

Transformation of an integral equation into a diÿerential equation

Sometimes the Volterra integral equation can be transformed into an ordinary

diÿerential equation which may be easier to solve than the original integral equa-

tion, as shown by the following example.

Example 11.4

Consider the Volterra integral equation u�x� � 2x� 4
R x

0 �tÿ x�u�t�dt. Before we
transform it into a diÿerential equation, let us recall the following very useful

formula: if

I��� �
Z b���

a���
f �x; ��dx;

where a and b are continuous and at least once diÿerentiable functions of �, then

dI���
d�

� f �b; �� db
d�

ÿ f �a; �� da
d�

�
Z b

a

@f �x; ��
@�

dx:

With the help of this formula, we obtain

d

dx
u�x� � 2� 4 �tÿ x�u�t�f gt�xÿ

Z x

0

u�t�dt
� �

� 2ÿ 4

Z x

0

u�t�dt:

Diÿerentiating again we obtain

d2u�x�
dx2

� ÿ4u�x�:

This is a diÿerentiation equation equivalent to the original integral equation, but

its solution is much easier to ®nd:

u�x� � A cos 2x� B sin 2x;

where A and B are integration constants. To determine their values, we put the

solution back into the original integral equation under the integral sign, and then
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integration gives A � 0 and B � 1. Thus the solution of the original integral

equation is

u�x� � sin 2x:

Laplace transform solution

The Volterra integral equation can sometime be solved with the help of the

Laplace transformation and the convolution theorem. Before we consider the

Laplace transform solution, let us review the convolution theorem. If f1�x� and

f2�x� are two arbitrary functions, we de®ne their convolution (faltung in German)

to be

g�x� �
Z 1

ÿ1
f1�y� f2�xÿ y�dy:

Its Laplace transform is

L�g�x�� � L� f1�x��L� f2�x��:
We now consider the Volterra equation

u�x� � f �x� � �

Z x

0

K�x; t�u�t�dt

� f �x� � �

Z x

0

g�xÿ t�u�t�dt; �11:17�

where K�xÿ t� � g�xÿ t�, a so-called displacement kernel. Taking the Laplace

transformation and using the convolution theorem, we obtain

L

Z x

0

g�xÿ t�u�t�dt
� �

� L g�xÿ t�� �L u�t�� � � G�p�U�p�;

where U�p� � L�u�t�� � R1
0 eÿptu�t�dt, and similarly for G�p�. Thus, taking the

Laplace transformation of Eq. (11.17), we obtain

U�p� � F�p� � �G�p�U�p�
or

U�p� � F�p�
1ÿ �G�p� :

Inverting this we obtain u�t�:

u�t� � Lÿ1 F�p�
1ÿ �G�p�

� �
:
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Fourier transform solution

If the kernel is a displacement kernel and if the limits are ÿ1 and �1, we can use

Fourier transforms. Consider a Fredholm equation of the second kind

u�x� � f �x� � �

Z 1

ÿ1
K�xÿ t�u�t�dt: �11:18�

Taking Fourier transforms (indicated by overbars)

1������
2�

p
Z 1

ÿ1
dxf �x�eÿipx � �f �p�; etc:;

and using the convolution theoremZ 1

ÿ1
f �t�g�xÿ t�dt �

Z 1

ÿ1
�f �y��g�y�eÿiyxdy;

we obtain the transform of our integral equation (11.18):

�u�p� � �f �p� � � �K�p��u�p�:
Solving for �u�p� we obtain

�u�p� �
�f �p�

1ÿ � �K�p� :

If we can invert this equation, we can solve the original integral equation:

u�x� � 1������
2�

p
Z 1

ÿ1

f �t�eÿixt

1ÿ ������
2�

p
�K�t�: �11:19�

The Schmidt±Hilbert method of solution

In many physical problems, the kernel may be symmetric. In such cases, the

integral equation may be solved by a method quite diÿerent from any of those

in the preceding section. This method, devised by Schmidt and Hilbert, is based

on considering the eigenfunctions and eigenvalues of the homogeneous integral

equation.

A kernel K�x; t� is said to be symmetric if K�x; t� � K�t; x� and Hermitian if

K�x; y� � K*�t; x�. We shall limit our discussion to such kernels.

(a) The homogeneous Fredholm equation

u�x� � �

Z b

a

K�x; t�u�t�dt:

421

THE SCHMIDT±HILBERT METHOD OF SOLUTION



A Hermitian kernel has at least one eigenvalue and it may have an in®nite num-

ber. The proof will be omitted and we refer interested readers to the book by

Courant and Hibert mentioned earlier (Chapter 3).

The eigenvalues of a Hermitian kernel are real, and eigenfunctions belonging to

diÿerent eigenvalues are orthogonal; two functions f �x� and g�x� are said to be

orthogonal if Z
f *�x�g�x�dx � 0:

To prove the reality of the eigenvalue, we multiply the homogeneous Fredholm

equation by u*�x�, then integrating with respect to x, we obtainZ b

a

u*�x�u�x�dx � �

Z b

a

Z b

a

K�x; t�u*�x�u�t�dtdx: �11:20�

Now, multiplying the complex conjugate of the Fredholm equation by u�x� and
then integrating with respect to x, we getZ b

a

u*�x�u�x�dx � �*

Z b

a

Z b

a

K*�x; t�u*�t�u�x�dtdx:

Interchanging x and t on the right hand side of the last equation and remembering

that the kernel is Hermitian K*�t; x� � K�x; t�, we obtainZ b

a

u*�x�u�x�dx � �*

Z b

a

Z b

a

K�x; t�u�t�u*�x�dtdx:

Comparing this equation with Eq. (11.2), we see that � � �*, that is, � is real.

We now prove the orthogonality. Let �i, �j be two diÿerent eigenvalues and

ui�x�; uj�x�, the corresponding eigenfunctions. Then we have

ui�x� � �i

Z b

a

K�x; t�ui�t�dt; uj�x� � �j

Z b

a

K�x; t�uj�t�dt:

Now multiplying the ®rst equation by �uj�x�, the second by �iui�x�, and then

integrating with respect to x, we obtain

�j

Z b

a

ui�x�uj�x�dx � �i�j

Z b

a

Z b

a

K�x; t�ui�t�uj�x�dtdx;

�i

Z b

a

ui�x�uj�x�dx � �i�j

Z b

a

Z b

a

K�x; t�uj�t�ui�x�dtdx:
�11:21�

Now we interchange x and t on the right hand side of the last integral and because

of the symmetry of the kernel, we have

�i

Z b

a

ui�x�uj�x�dx � �i�j

Z b

a

Z b

a

K�x; t�ui�t�uj�x�dtdx: �11:22�

422

SIMPLE LINEAR INTEGRAL EQUATIONS



Subtracting Eq. (11.21) from Eq. (11.22), we obtain

��i ÿ �j�
Z b

a

ui�x�uj�x�dx � 0: �11:23�

Since �i 6� �j, it follows that Z b

a

ui�x�uj�x�dx � 0: �11:24�

Such functions may always be nomalized. We will assume that this has been done

and so the solutions of the homogeneous Fredholm equation form a complete

orthonomal set: Z b

a

ui�x�uj�x�dx � �ij : �11:25�

Arbitrary functions of x, including the kernel for ®xed t, may be expanded in

terms of the eigenfunctions

K�x; t� �
X

Ciui�x�: �11:26�
Now substituting Eq. (11.26) into the original Fredholm equation, we have

uj�t� � �j

Z b

a

K�t; x�uj�x�dx � �j

Z b

a

K�x; t�uj�x�dx

� �j

X
i

Z b

a

Ciui�x�uj�x�dx � �j

X
i

Ci�ij � �jCj

or

Ci � ui�t�=�i

and for our homogeneous Fredholm equation of the second kind the kernel may

be expressed in terms of the eigenfunctions and eigenvalues as

K�x; t� �
X1
n�1

un�x�un�t�
�n

: �11:27�

The Schmidt±Hilbert theory does not solve the homogeneous integral equation;

its main function is to establish the properties of the eigenvalues (reality) and

eigenfunctions (orthogonality and completeness). The solutions of the homoge-

neous integral equation come from the preceding section on methods of solution.

(b) Solution of the inhomogeneous equation

u�x� � f �x� � �

Z b

a

K�x; t�u�t�dt: �11:28�

We assume that we have found the eigenfunctions of the homogeneous equation

by the methods of the preceding section, and we denote them by ui�x�. We may
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now expand both u�x� and f �x� in terms of ui�x�, which forms an orthonormal

complete set.

u�x� �
X1
n�1

�nun�x�; f �x� �
X1
n�1

ÿnun�x�: �11:29�

Substituting Eq. (11.29) into Eq. (11.28), we obtain

Xn
n�1

�nun�x� �
Xn
n�1

ÿnun�x� � �

Z b

a

K�x; t�
Xn
n�1

�nun�t�dt

�
Xn
n�1

ÿnun�x� � �
X1
n�1

�n

um�x�
�m

Z b

a

um�t�un�t�dt;

�
Xn
n�1

ÿnun�x� � �
X1
n�1

�n

um�x�
�m

�nm;

from which it follows that

Xn
n�1

�nun�x� �
Xn
n�1

ÿnun�x� � �
X1
n�1

�nun�x�
�n

: �11:30�

Multiplying by ui�x� and then integrating with respect to x from a to b, we obtain

�n � ÿn � ��n=�n; �11:31�
which can be solved for �n in terms of ÿn:

�n �
�n

�n ÿ �
ÿn; �11:32�

where ÿn is given by

ÿn �
Z b

a

f �t�un�t�dt: �11:33�

Finally, our solution is given by

u�x� � f �x� � �
X1
n�1

�nun�x�
�n

� f �x� � �
X1
n�1

ÿn

�n ÿ �
un�x�; �11:34�

where ÿn is given by Eq. (11.33), and �i 6� �.

When � for the inhomogeneous equation is equal to one of the eigenvalues, �k,

of the kernel, our solution (11.31) blows up. Let us return to Eq. (11.31) and see

what happens to �k:

�k � ÿk � �k�k=�k � ÿk � �k:
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Clearly, ÿk � 0, and �k is no longer determined by ÿk. But we have, according to

Eq. (11.33), Z b

a

f �t�uk�t�dt � ÿk � 0; �11:35�

that is, f �x� is orthogonal to the eigenfunction uk�x�. Thus if � � �k, the inho-

mogeneous equation has a solution only if f �x� is orthogonal to the correspond-

ing eigenfunction uk�x�. The general solution of the equation is then

u�x� � f �x� � �kuk�x� � �k

X1
n�1 0

0
R b

a f �t�un�t�dt
�n ÿ �k

un�x�; �11:36�

where the prime on the summation sign means that the term n � k is to be omitted

from the sum. In Eq. (11.36) the �k remains as an undetermined constant.

Relation between diÿerential and integral equations

We have shown how an integral equation can be transformed into a diÿerential

equation that may be easier to solve than the original integral equation. We now

show how to transform a diÿerential equation into an integral equation. After we

become familiar with the relation between diÿerential and integral equations, we

may state the physical problem in either form at will. Let us consider a linear

second-order diÿerential equation

x 00 � A�t�x 0 � B�t�x � g�t�; �11:37�
with the initial condition

x�a� � x0; x 0�a� � x 0
0:

Integrating Eq. (11.37), we obtain

x 0 � ÿ
Z t

a

Ax 0dtÿ
Z t

a

Bxdt�
Z t

a

gdt� C1:

The initial conditions require that C1 � x 0
0. We next integrate the ®rst integral on

the right hand side by parts and obtain

x 0 � ÿAxÿ
Z t

a

�Bÿ A 0�xdt�
Z t

a

gdt� A�a�x0 � x 0
0:

Integrating again, we get

x � ÿ
Z t

a

Axdtÿ
Z t

a

Z t

a

B�y� ÿ A 0�y�� �
x�y�dydt

�
Z t

a

Z t

a

g�y�dydt� A�a�x0 � x 0
0

� ��tÿ a� � x0:
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Then using the relationZ t

a

Z t

a

f �y�dydt �
Z t

a

�tÿ y� f �y�dy;

we can rewrite the last equation as

x�t� � ÿ
Z t

a

A�y� � �tÿ y� B�y� ÿ A 0�y�� ÿ� �
x�y�dy

�
Z t

a

�tÿ y�g�y�dy� A�a�x0 � x 0
0

� ��tÿ a� � x0; �11:38�

which can be put into the form of a Volterra equation of the second kind

x�t� � f �t� �
Z t

a

K�t; y�x�y�dy; �11:39�

with

K�t; y� � �yÿ t��B�y� ÿ A 0�y�� ÿ A�y�; �11:39a�

f �t� �
Z t

0

�tÿ y�g�y�dy� �A�a�x0 � x 0
0��tÿ a� � x0: �11:39b�

Use of integral equations

We have learned how linear integral equations of the more common types may be

solved. We now show some uses of integral equations in physics; that is, we are

going to state some physical problems in integral equation form. In 1823, Abel

made one of the earliest applications of integral equations to a physical problem.

Let us take a brief look at this old problem in mechanics.

Abel's integral equation

Consider a particle of mass m falling along a smooth curve in a vertical plane, the

yz plane, under the in¯uence of gravity, which acts in the negative z direction.

Conservation of energy gives

1

2
m� _z2 � _y2� �mgz � E;

where _z � dz=dt; and _y � dy=dt: If the shape of the curve is given by y � F�z�, we
can write _y � �dF=dz� _z. Substituting this into the energy conservation equation

and solving for _z, we obtain

_z �
�����������������������
2E=mÿ2gz

p���������������������������
1� �dF=dz�2

q �
������������������
E=mgÿz

p
u�z� ; �11:40�
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where

u�z� �
����������������������������������
1� �dF=dz�2=2g

q
:

If _z � 0 and z � z0 at t � 0, then E=mg � z0 and Eq. (11.40) becomes

_z � ������������
z0 ÿ z

p �
u�z�:

Solving for time t, we obtain

t � ÿ
Z z0

z

u�z�������������
z0 ÿ z

p dz �
Z z

z0

u�z�������������
z0 ÿ z

p dz;

where z is the height the particle reaches at time t.

Classical simple harmonic oscillator

Consider a linear oscillator

�x� !2x � 0; with x�0� � 0; _x�0� � 1:

We can transform this diÿerential equation into an integral equation.

Comparing with Eq. (11.37), we have

A�t� � 0; B�t� � !2; and g�t� � 0:

Substituting these into Eq. (11.38) (or (11.39), (11.39a), and (11.39b)), we obtain

the integral equation

x�t� � t� !2

Z t

0

�yÿ t�x�y�dy;

which is equivalent to the original diÿerential equation plus the initial conditions.

Quantum simple harmonic oscillator

The SchroÈ dinger equation for the energy eigenstates of the one-dimensional

simple harmonic oscillator is

ÿ p2

2m

d2þ

dx2
� 1

2
m!2x2þ � Eþ: �11:41�

Changing to the dimensionless variable y � ������������
m!=p

p
x, Eq. (11.41) reduces to a

simpler form:

d2þ

dy2
� ��2 ÿ y2�þ � 0; �11:42�

where � � ��������������
2E=p!

p
. Taking the Fourier transform of Eq. (11.42), we obtain

d2g�k�
dk2

� ��2 ÿ k2�g�k� � 0; �11:43�
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where

g�k� � 1������
2�

p
Z 1

ÿ1
þ�y�eikydy �11:44�

and we also assume that þ and þ 0 vanish as y ! �1.

Eq. (11.43) is formally identical to Eq. (11.42). Since quantities such as the total

probability and the expectation value of the potential energy must be remain ®nite

for ®nite E, we should expect g�k�; dg�k�=dk ! 0 as k ! �1. Thus g and þ diÿer

at most by a normalization constant

g�k� � cþ�k�:
It follows that þ satis®es the integral equation

cþ�k� � 1������
2�

p
Z 1

ÿ1
þ�y�eikydy: �11:45�

The constant c may be determined by substituting cþ on the right hand side:

c2þ�k� � 1

2�

Z 1

ÿ1

Z 1

ÿ1
þ�z�eizyeikydzdy

�
Z 1

ÿ1
þ�z���z� k�dz

� þ�ÿk�:
Recall that þ may be simultaneously chosen to be a parity eigenstate

þ�ÿx� � �þ�x�. We see that eigenstates of even parity require c2 � 1, or

c � �1; and for eigenstates of odd parity we have c2 � ÿ1, or c � �i.

We shall leave the solution of Eq. (11.45), which can be approached in several

ways, as an exercise for the reader.

Problems

11.1 Solve the following integral equations:

(a) u�x� � 1
2 ÿ x�

Z 1

0

u�t�dt;

(b) u�x� � �

Z 1

0

u�t�dt;

(c) u�x� � x� �

Z 1

0

u�t�dt:

11.2 Solve the Fredholm equation of the second kind

f �x� � u�x� � �

Z b

a

K�x; t�u�t�dt;

where f �x� � cosh x;K�x; t� � xt.
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11.3 The homogeneous Fredholm equation

u�x� � �

Z �=2

0

sin x sin tu�t�dt

only has a solution for a particular value of �. Find the value of � and the

solution corresponding to this value of �.

11.4 Solve homogeneous Fredholm equation u�x� � �
R 1

ÿ1 �t� x�u�t�dt. Find the

values of � and the corresponding solutions.

11.5 Check the convergence of the Neumann series (11.14) by the Cauchy ratio

test.

11.6 Transform the following diÿerential equations into integral equations:

�a� dx

dt
ÿ x � 0 with x � 1 when t � 0;

�b� d2x

dt2
� dx

dt
� x � 1 with x � 0;

dx

dt
� 1 when t � 0:

11.7 By using the Laplace transformation and the convolution theorem solve the

equation

u�x� � x�
Z x

0

sin�xÿ t�u�t�dt:

11.8 Given the Fredholm integral equation

eÿx2 �
Z 1

ÿ1
eÿ�xÿt�2u�t�dt;

apply the Fouurier convolution technique to solve it for u�t�.
11.9 Find the solution of the Fredholm equation

u�x� � x� �

Z 1

0

�x� t�u�t�dt

by the Schmidt±Hilbert method for � not equal to an eigenvalue. Show that

there are no solutions when � is an eigenvalue.
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12

Elements of group theory

Group theory did not ®nd a use in physics until the advent of modern quantum

mechanics in 1925. In recent years group theory has been applied to many

branches of physics and physical chemistry, notably to problems of molecules,

atoms and atomic nuclei. Mostly recently, group theory has been being applied in

the search for a pattern of `family' relationships between elementary particles.

Mathematicians are generally more interested in the abstract theory of groups,

but the representation theory of groups of direct use in a large variety of physical

problems is more useful to physicists. In this chapter, we shall give an elementary

introduction to the theory of groups, which will be needed for understanding the

representation theory.

De®nition of a group (group axioms)

A group is a set of distinct elements for which a law of `combination' is well

de®ned. Hence, before we give `group' a formal de®nition, we must ®rst de®ne

what kind of `elements' do we mean. Any collection of objects, quantities or

operators form a set, and each individual object, quantity or operator is called

an element of the set.

A group is a set of elements A, B, C; . . . ; ®nite or in®nite in number, with a rule

for combining any two of them to form a `product', subject to the following four

conditions:

(1) The product of any two group elements must be a group element; that is, if

A and B are members of the group, then so is the product AB.

(2) The law of composition of the group elements is associative; that is, if A, B,

and C are members of the group, then �AB�C � A�BC�.
(3) There exists a unit group element E, called the identity, such that

EA � AE � A for every member of the group.
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(4) Every element has a unique inverse, Aÿ1, such that AAÿ1 � Aÿ1A � E.

The use of the word `product' in the above de®nition requires comment. The

law of combination is commonly referred as `multiplication', and so the result of a

combination of elements is referred to as a `product'. However, the law of com-

bination may be ordinary addition as in the group consisting of the set of all

integers (positive, negative, and zero). Here AB � A� B, `zero' is the identity, and

Aÿ1 � �ÿA�. The word `product' is meant to symbolize a broad meaning of

`multiplication' in group theory, as will become clearer from the examples below.

A group with a ®nite number of elements is called a ®nite group; and the

number of elements (in a ®nite group) is the order of the group.

A group containing an in®nite number of elements is called an in®nite group.

An in®nite group may be either discrete or continuous. If the number of the

elements in an in®nite group is denumerably in®nite, the group is discrete; if

the number of elements is non-denumerably in®nite, the group is continuous.

A group is called Abelian (or commutative) if for every pair of elements A, B in

the group, AB � BA. In general, groups are not Abelian and so it is necessary to

preserve carefully the order of the factors in a group `product'.

A subgroup is any subset of the elements of a group that by themselves satisfy

the group axioms with the same law of combination.

Now let us consider some examples of groups.

Example 12.1

The real numbers 1 and ÿ1 form a group of order two, under multiplication. The

identity element is 1; and the inverse is 1=x, where x stands for 1 or ÿ1.

Example 12.2

The set of all integers (positive, negative, and zero) forms a discrete in®nite group

under addition. The identity element is zero; the inverse of each element is its

negative. The group axioms are satis®ed:

(1) is satis®ed because the sum of any two integers (including any integer with

itself) is always another integer.

(2) is satis®ed because the associative law of addition A� �B� C� �
�A� B� � C is true for integers.

(3) is satis®ed because the addition of 0 to any integer does not alter it.

(4) is satis®ed because the addition of the inverse of an integer to the integer

itself always gives 0, the identity element of our group: A� �ÿA� � 0.

Obviously, the group is Abelian since A� B � B� A. We denote this group by

S1.
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The same set of all integers does not form a group under multiplication. Why?

Because the inverses of integers are not integers and so they are not members of

the set.

Example 12.3

The set of all rational numbers (p=q, with q 6� 0) forms a continuous in®nite group

under addition. It is an Abelian group, and we denote it by S2. The identity

element is 0; and the inverse of a given element is its negative.

Example 12.4

The set of all complex numbers �z � x� iy� forms an in®nite group under

addition. It is an Abelian group and we denote it by S3. The identity element

is 0; and the inverse of a given element is its negative (that is, ÿz is the inverse

of z).

The set of elements in S1 is a subset of elements in S2, and the set of elements in

S2 is a subset of elements in S3. Furthermore, each of these sets forms a group

under addition, thus S1 is a subgroup of S2, and S2 a subgroup of S3. Obviously

S1 is also a subgroup of S3.

Example 12.5

The three matrices

~A � 1 0

0 1

� �
; ~B � 0 1

ÿ1 ÿ1

� �
; ~C � ÿ1 ÿ1

1 0

� �
form an Abelian group of order three under matrix multiplication. The identity

element is the unit matrix, E � ~A. The inverse of a given matrix is the inverse

matrix of the given matrix:

~Aÿ1 � 1 0

0 1

� �
� ~A; ~Bÿ1 � ÿ1 ÿ1

1 0

� �
� ~C; ~Cÿ1 � 0 1

ÿ1 ÿ1

� �
� ~B:

It is straightforward to check that all the four group axioms are satis®ed. We

leave this to the reader.

Example 12.6

The three permutation operations on three objects a; b; c

�1 2 3�; �2 3 1�; �3 1 2�
form an Abelian group of order three with sequential performance as the law of

combination.

The operation [1 2 3] means we put the object a ®rst, object b second, and object

c third. And two elements are multiplied by performing ®rst the operation on the
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right, then the operation on the left. For example

�2 3 1��3 1 2�abc � �2 3 1�cab � abc:

Thus two operations performed sequentially are equivalent to the operation

[1 2 3]:

�2 3 1��3 1 2� � �1 2 3�:
similarly

�3 1 2��2 3 1�abc � �3 1 2�bca � abc;

that is,

�3 1 2��2 3 1� � �1 2 3�:
This law of combination is commutative. What is the identity element of this

group? And the inverse of a given element? We leave the reader to answer these

questions. The group illustrated by this example is known as a cyclic group of

order 3, C3.

It can be shown that the set of all permutations of three objects

�1 2 3�; �2 3 1�; �3 1 2�; �1 3 2�; �3 2 1�; �2 1 3�
forms a non-Abelian group of order six denoted by S3. It is called the symmetric

group of three objects. Note that C3 is a subgroup of S3.

Cyclic groups

We now revisit the cyclic groups. The elements of a cyclic group can be expressed

as power of a single element A, say, as A;A2;A3; . . . ;Apÿ1;Ap � E; p is the smal-

lest integer for which Ap � E and is the order of the group. The inverse of Ak is

Apÿk, that is, an element of the set. It is straightforward to check that all group

axioms are satis®ed. We leave this to the reader. It is obvious that cyclic groups

are Abelian since AkA � AAk �k < p�.

Example 12.7

The complex numbers 1, i;ÿ1;ÿi form a cyclic group of order 3. In this case,

A � i and p � 3: in, n � 0; 1; 2; 3. These group elements may be interpreted as

successive 908 rotations in the complex plane �0; �=2; �; and 3�=2�. Con-

sequently, they can be represented by four 2� 2 matrices. We shall come back

to this later.

Example 12.8

We now consider a second example of cyclic groups: the group of rotations of an

equilateral triangle in its plane about an axis passing through its center that brings
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it onto itself. This group contains three elements (see Fig. 12.1):

E��08� : the identity; triangle is left alone;

A��1208� : the triangle is rotated through 1208 counterclockwise, which

sends P to Q, Q to R, and R to P;

B��2408� : the triangle is rotated through 2408 counterclockwise, which

sends P to R, R to Q, and Q to P;

C��3608� : the triangle is rotated through 3608 counterclockwise, which

sends P back to P, Q back to Q and R back to R.

Notice that C � E. Thus there are only three elements represented by E, A, and B.

This set forms a group of order three under addition. The reader can check that

all four group axioms are satis®ed. It is also obvious that operation B is equiva-

lent to performing operation A twice (2408 � 1208� 1208�, and the operation C

corresponds to performing A three times. Thus the elements of the group may be

expressed as the power of the single element A as E, A, A2, A3 ��E): that is, it is a

cyclic group of order three, and is generated by the element A.

The cyclic group considered in Example 12.8 is a special case of groups of

transformations (rotations, re¯ection, translations, permutations, etc.), the

groups of particular interest to physicists. A transformation that leaves a physical

system invariant is called a symmetry transformation of the system. The set of all

symmetry transformations of a system is a group, as illustrated by this example.

Group multiplication table

A group of order n has n2 products. Once the products of all ordered pairs of

elements are speci®ed the structure of a group is uniquely determined. It is some-

times convenient to arrange these products in a square array called a group multi-

plication table. Such a table is indicated schematically in Table 12.1. The element

that appears at the intersection of the row labeled A and the column labeled B is

the product AB, (in the table A2 means AA, etc). It should be noted that all the
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elements in each row or column of the group multiplication must be distinct: that

is, each element appears once and only once in each row or column. This can be

proved easily: if the same element appeared twice in a given row, the row labeled

A say, then there would be two distinct elements C and D such that AC � AD. If

we multiply the equation by Aÿ1 on the left, then we would have Aÿ1AC �
Aÿ1AD, or EC � ED. This cannot be true unless C � D, in contradiction to

our hypothesis that C and D are distinct. Similarly, we can prove that all the

elements in any column must be distinct.

As a simple practice, consider the group C3 of Example 12.6 and label the

elements as follows

�1 2 3� ! E; �2 3 1� ! X; �3 1 2� ! Y :

If we label the columns of the table with the elements E, X, Y and the rows with

their respective inverses, E, Xÿ1, Yÿ1, the group multiplication table then takes

the form shown in Table 12.2.

Isomorphic groups

Two groups are isomorphic to each other if the elements of one group can be put in

one-to-one correspondence with the elements of the other so that the corresponding

elements multiply in the same way. Thus if the elements A;B;C; . . . of the group G
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Table 12.1. Group multiplication table

E A B C . . .

E E A B C . . .

A A A2 AB AC . . .

B B BA B2 BC . . .

C C CA CB C2 . . .

..

. ..
. ..

. ..
. ..

.

Table 12.2.

E X Y

E E X Y

Xÿ1 Xÿ1 E Xÿ1Y

Yÿ1 Yÿ1 Yÿ1X E



correspond respectively to the elements A 0;B 0;C 0; . . . of G 0, then the equation

AB � C implies that A 0B 0 � C 0, etc., and vice versa. Two isomorphic groups

have the same multiplication tables except for the labels attached to the group

elements. Obviously, two isomorphic groups must have the same order.

Groups that are isomorphic and so have the same multiplication table are the

same or identical, from an abstract point of view. That is why the concept of

isomorphism is a key concept to physicists. Diverse groups of operators that act

on diverse sets of objects have the same multiplication table; there is only one

abstract group. This is where the value and beauty of the group theoretical

method lie; the same abstract algebraic results may be applied in making predic-

tions about a wide variety physical objects.

The isomorphism of groups is a special instance of homomorphism, which

allows many-to-one correspondence.

Example 12.9

Consider the groups of Problems 12.2 and 12.4. The group G of Problem 12.2

consists of the four elements E � 1;A � i;B � ÿ1;C � ÿi with ordinary multi-

plication as the rule of combination. The group multiplication table has the form

shown in Table 12.3. The group G 0 of Problem 12.4 consists of the following four

elements, with matrix multiplication as the rule of combination

E 0 � 1 0

0 1

� �
; A 0 � 0 1

ÿ1 0

� �
; B 0 � ÿ1 0

0 ÿ1

� �
; C 0 � 0 ÿ1

1 0

� �
:

It is straightforward to check that the group multiplication table of group G 0 has
the form of Table 12.4. Comparing Tables 12.3 and 12.4 we can see that they have

precisely the same structure. The two groups are therefore isomorphic.

Example 12.10

We stated earlier that diverse groups of operators that act on diverse sets of

objects have the same multiplication table; there is only one abstract group. To

illustrate this, we consider, for simplicity, an abstract group of order two, G2: that
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Table 12.3.

1 i ÿ1 i E A B C

1 1 i ÿ1 i E E A B C

i i ÿ1 ÿi 1 or A A B C E

ÿ1 ÿ1 ÿi 1 i B B C E A

ÿi ÿi 1 i ÿ1 C C E A B



is, we make no a priori assumption about the signi®cance of the two elements of

our group. One of them must be the identity E, and we call the other X. Thus we

have

E2 � E; EX � XE � E:

Since each element appears once and only once in each row and column, the

group multiplication table takes the form:

We next consider some groups of operators that are isomorphic to G2. First,

consider the following two transformations of three-dimensional space into itself:

(1) the transformation E 0, which leaves each point in its place, and

(2) the transformation R, which maps the point �x; y; z� into the point

�ÿx;ÿy;ÿz�. Evidently, R2 � RR (the transformation R followed by R)

will bring each point back to its original position. Thus we have

�E 0�2 � E 0, RE 0 � E 0R � RE 0 � R; R2 � E 0; and the group multiplication

table has the same form as G2: that is, the group formed by the set of the two

operations E 0 and R is isomorphic to G2.

We now associate with the two operations E 0 and R two operators ÔE 0 and ÔR,

which act on real- or complex-valued functions of the spatial coordinates �x; y; z�,
ý�x; y; z�, with the following eÿects:

ÔE0ý�x; y; z� � ý�x; y; z�; ÔRý�x; y; z� � ý�ÿx;ÿy;ÿz�:

From these we see that

�ÔE0 �2 � ÔE0 ; ÔE0ÔR � ÔRÔE0 � ÔR; �ÔR�2 � ÔR:
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Table 12.4.

E 0 A 0 B 0 C 0

E 0 E 0 A 0 B 0 C 0

A 0 A 0 B 0 C 0 E 0

B 0 B 0 C 0 E 0 A 0

C 0 C 0 E 0 E 0 B 0

E X

E E X

X X E



Obviously these two operators form a group that is isomorphic to G2. These two

groups (formed by the elements E 0, R, and the elements ÔE0 and ÔR, respectively)

are the two representations of the abstract group G2. These two simple examples

cannot illustrate the value and beauty of the group theoretical method, but they

do serve to illustrate the key concept of isomorphism.

Group of permutations and Cayley's theorem

In Example 12.6 we examined brie¯y the group of permutations of three objects.

We now come back to the general case of n objects (1; 2; . . . ; n) placed in n boxes

(or places) labeled �1, �2; . . . ; �n. This group, denoted by Sn, is called the sym-

metric group on n objects. It is of order n! How do we know? The ®rst object may

be put in any of n boxes, and the second object may then be put in any of nÿ 1

boxes, and so forth: n�nÿ 1��nÿ 2� � � � � � 3� 2� 1 � n!:

We now de®ne, following common practice, a permutation symbol P

P �
1 2 3 � � � n

�1 �2 �3 � � � �n

þ !
; �12:1�

which shifts the object in box 1 to box �1, the object in box 2 to box �2, and so

forth, where �1�2 � � ��n is some arrangement of the numbers 1; 2; 3; . . . ; n. The old

notation in Example 12.6 can now be written as

�2 3 1� � 1 2 3

2 3 1

� �
:

For n objects there are n! permutations or arrangements, each of which may be

written in the form (12.1). Taking a speci®c example of three objects, we have

P1 �
1 2 3

1 2 3

� �
; P2 �

1 2 3

2 3 1

� �
; P3 �

1 2 3

1 3 2

� �
;

P4 �
1 2 3

2 1 3

� �
; P5 �

1 2 3

3 2 1

� �
; P6 �

1 2 3

3 1 2

� �
:

For the product of two permutations PiPj �i; j � 1; 2; . . . ; 6�, we ®rst perform the

one on the right, Pj, and then the one on the left, Pi. Thus

P3P6 �
1 2 3

1 3 2

� �
1 2 3

3 1 2

� �
� 1 2 3

2 1 3

� �
� P4:

To the reader who has di�culty seeing this result, let us explain. Consider the ®rst

column. We ®rst perform P6, so that 1 is replaced by 3, we then perform P3 and 3
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is replaced by 2. So by the combined action 1 is replaced by 2 and we have the ®rst

column

1 � � � � � �
2 � � � � � �

� �
:

We leave the other two columns to be completed by the reader.

Each element of a group has an inverse. Thus, for each permutation Pi there is

Pÿ1
i , the inverse of Pi. We can use the property PiP

ÿ1
i � P1 to ®nd Pÿ1

i . Let us ®nd

Pÿ1
6 :

Pÿ1
6 � 3 1 2

1 2 3

� �
� 1 2 3

2 3 1

� �
� P2:

It is straightforward to check that

P6P
ÿ1
6 � P6P2 �

1 2 3

3 1 2

� �
1 2 3

2 3 1

� �
� 1 2 3

1 2 3

� �
� P1:

The reader can verify that our group S3 is generated by the elements P2 and P3,

while P1 serves as the identity. This means that the other three distinct elements

can be expressed as distinct multiplicative combinations of P2 and P3:

P4 � P2
2P3; P5 � P2P3; P6 � P2

2:

The symmetric group Sn plays an important role in the study of ®nite groups.

Every ®nite group of order n is isomorphic to a subgroup of the permutation

group Sn. This is known as Cayley's theorem. For a proof of this theorem the

interested reader is referred to an advanced text on group theory.

In physics, these permutation groups are of considerable importance in the

quantum mechanics of identical particles, where, if we interchange any two or

more these particles, the resulting con®guration is indistinguishable from the

original one. Various quantities must be invariant under interchange or permuta-

tion of the particles. Details of the consequences of this invariant property may be

found in most ®rst-year graduate textbooks on quantum mechanics that cover the

application of group theory to quantum mechanics.

Subgroups and cosets

A subset of a group G, which is itself a group, is called a subgroup of G. This idea

was introduced earlier. And we also saw that C3, a cyclic group of order 3, is a

subgroup of S3, a symmetric group of order 6. We note that the order of C3 is a

factor of the order of S3. In fact, we will show that, in general,

the order of a subgroup is a factor of the order of the full group

(that is, the group from which the subgroup is derived).
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This can be proved as follows. Let G be a group of order n with elements g1��E�,
g2; . . . ; gn: Let H, of order m, be a subgroup of G with elements h1��E�,
h2; . . . ; hm. Now form the set ghk �0 � k � m�, where g is any element of G not

in H. This collection of elements is called the left-coset of H with respect to g (the

left-coset, because g is at the left of hk).

If such an element g does not exist, thenH � G, and the theorem holds trivially.

If g does exist, than the elements ghk are all diÿerent. Otherwise, we would have

ghk � gh`, or hk � h`, which contradicts our assumption that H is a group.

Moreover, the elements ghk are not elements of H. Otherwise, ghk � hj, and we

have

g � hj=hk:

This implies that g is an element of H, which contradicts our assumption that g

does not belong to H.

This left-coset of H does not form a group because it does not contain the

identity element (g1 � h1 � E�. If it did form a group, it would require for some hj
such that ghj � E or, equivalently, g � hÿ1

j . This requires g to be an element of H.

Again this is contrary to assumption that g does not belong to H.

Now every element g in G but not in H belongs to some coset gH. Thus G is a

union of H and a number of non-overlapping cosets, each having m diÿerent

elements. The order of G is therefore divisible by m. This proves that the order

of a subgroup is a factor of the order of the full group. The ratio n/m is the index

of H in G.

It is straightforward to prove that a group of order p, where p is a prime

number, has no subgroup. It could be a cyclic group generated by an element a

of period p.

Conjugate classes and invariant subgroups

Another way of dividing a group into subsets is to use the concept of classes. Let

a, b, and u be any three elements of a group, and if

b � uÿ1au;

b is said to be the transform of a by the element u; a and b are conjugate (or

equivalent) to each other. It is straightforward to prove that conjugate has the

following three properties:

(1) Every element is conjugate with itself (re¯exivity). Allowing u to be the

identity element E, then we have a � Eÿ1aE:

(2) If a is conjugate to b, then b is conjugate to a (symmetry). If a � uÿ1bu, then

b � uauÿ1 � �uÿ1�ÿ1a�uÿ1�, where uÿ1 is an element of G if u is.
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(3) If a is conjugate with both b and c, then b and c are conjugate with each

other (transitivity). If a � uÿ1bu and b � vÿ1cv, then a � uÿ1vÿ1cvu �
�vu�ÿ1c�vu�, where u and v belong to G so that vu is also an element of G.

We now divide our group up into subsets, such that all elements in any subset

are conjugate to each other. These subsets are called classes of our group.

Example 12.11

The symmetric group S3 has the following six distinct elements:

P1 � E; P2; P3; P4 � P2
2P3; P5 � P2P3; P6 � P2

2;

which can be separated into three conjugate classes:

fP1g; fP2;P6g; fP3;P4;P5g:

We now state some simple facts about classes without proofs:

(a) The identity element always forms a class by itself.

(b) Each element of an Abelian group forms a class by itself.

(c) All elements of a class have the same period.

Starting from a subgroup H of a group G, we can form a set of elements uhÿ1u

for each u belong to G. This set of elements can be seen to be itself a group. It is a

subgroup of G and is isomorphic to H. It is said to be a conjugate subgroup to H

in G. It may happen, for some subgroup H, that for all u belonging to G, the sets

H and uhuÿ1 are identical. H is then an invariant or self-conjugate subgroup of G.

Example 12.12

Let us revisit S3 of Example 12.11, taking it as our group G � S3. Consider the

subgroup H � C3 � fP1;P2;P6g: The following relation holds

P2

P1

P2

P6

0
BB@

1
CCAPÿ1

2 � P1P2

P1

P2

P6

0
BB@

1
CCAPÿ1

2 Pÿ1
1 � �P1P2�

P1

P2

P6

0
BB@

1
CCA�P1P2�ÿ1

� P2
1P2

P1

P2

P6

0
BB@

1
CCA�P2

1P2�ÿ1 �
P1

P6

P2

0
BB@

1
CCA:

Hence H � C3 � fP1;P2;P6g is an invariant subgroup of S3.
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Group representations

In previous sections we have seen some examples of groups which are isomorphic

with matrix groups. Physicists have found that the representation of group

elements by matrices is a very powerful technique. It is beyond the scope of

this text to make a full study of the representation of groups; in this section we

shall make a brief study of this important subject of the matrix representations of

groups.

If to every element of a group G, g1; g2; g3; . . . ; we can associate a non-singular

square matrix D�g1�;D�g2�;D�g3�; . . . ; in such a way that

gigj � gk implies D�gi�D�gj� � D�gk�; �12:2�

then these matrices themselves form a group G 0, which is either isomorphic or

homomorphic to G. The set of such non-singular square matrices is called a

representation of group G. If the matrices are n� n, we have an n-dimensional

representation; that is, the order of the matrix is the dimension (or order) of the

representation Dn. One trivial example of such a representation is the unit matrix

associated with every element of the group. As shown in Example 12.9, the four

matrices of Problem 12.4 form a two-dimensional representation of the group G

of Problem 12.2.

If there is one-to-one correspondence between each element of G and the matrix

representation group G 0, the two groups are isomorphic, and the representation is

said to be faithful (or true). If one matrix D represents more than one group

element of G, the group G is homomorphic to the matrix representation group

G 0 and the representation is said to be unfaithful.

Now suppose a representation of a group G has been found which consists of

matrices D � D�g1�;D�g2�;D�g3�; . . . ;D�gp�, each matrix being of dimension

n. We can form another representation D 0 by a similarity transformation

D 0�g� � Sÿ1D�g�S; �12:3�

S being a non-singular matrix, then

D 0�gi�D 0�gj� � Sÿ1D�gi�SSÿ1D�gj�S
� Sÿ1D�gi�D�gj�S
� Sÿ1D�gigj�S
� D 0�gigj�:

In general, representations related in this way by a similarity transformation are

regarded as being equivalent. However, the forms of the individual matrices in the

two equivalent representations will be quite diÿerent. With this freedom in the
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choice of the forms of the matrices it is important to look for some quantity that is

an invariant for a given transformation. This is found in considering the traces of

the matrices of the representation group because the trace of a matrix is

invariant under a similarity transformation. It is often possible to bring, by a

similarity transformation, each matrix in the representation group into a diagonal

form

Sÿ1DS � D�1� 0

0 D�2�

þ !
; �12:4�

where D�1� is of order m;m < n and D�2� is of order nÿm. Under these conditions,

the original representation is said to be reducible to D�1� and D�2�. We may write

this result as

D � D�1� �D�2� �12:5�

and say that D has been decomposed into the two smaller representation D�1� and
D�2�; D is often called the direct sum of D�1� and D�2�.

A representation D�g� is called irreducible if it is not of the form (12.4)

and cannot be put into this form by a similarity transformation. Irreducible

representations are the simplest representations, all others may be built up from

them, that is, they play the role of `building blocks' for the study of group

representation.

In general, a given group has many representations, and it is always possible to

®nd a unitary representation ± one whose matrices are unitary. Unitary matrices

can be diagonalized, and the eigenvalues can serve for the description or classi-

®cation of quantum states. Hence unitary representations play an especially

important role in quantum mechanics.

The task of ®nding all the irreducible representations of a group is usually very

laborious. Fortunately, for most physical applications, it is su�cient to know only

the traces of the matrices forming the representation, for the trace of a matrix is

invariant under a similarity transformation. Thus, the trace can be used to iden-

tify or characterize our representation, and so it is called the character in group

theory. A further simpli®cation is provided by the fact that the character of every

element in a class is identical, since elements in the same class are related to each

other by a similarity transformation. If we know all the characters of one element

from every class of the group, we have all of the information concerning the group

that is usually needed. Hence characters play an important part in the theory of

group representations. However, this topic and others related to whether a given

representation of a group can be reduced to one of smaller dimensions are beyond

the scope of this book. There are several important theorems of representation

theory, which we now state without proof.
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(1) A matrix that commutes with all matrices of an irreducible representation of

a group is a multiple of the unit matrix (perhaps null). That is, if matrix A

commutes with D�g� which is irreducible,

D�g�A � AD�g�
for all g in our group, then A is a multiple of the unit matrix.

(2) A representation of a group is irreducible if and only if the only matrices to

commute with all matrices are multiple of the unit matrix.

Both theorems (1) and (2) are corollaries of Schur's lemma.

(3) Schur's lemma: Let D�1� and D�2� be two irreducible representations of (a

group G) dimensionality n and n 0, if there exists a matrix A such that

AD�1��g� � D�2��g�A for all g in the group G

then for n 6� n 0, A � 0; for n � n 0, either A � 0 or A is a non-singular matrix

and D�1� and D�2� are equivalent representations under the similarity trans-

formation generated by A.

(4) Orthogonality theorem: If G is a group of order h and D�1� and D�2� are any
two inequivalent irreducible (unitary) representations, of dimensions d1 and

d2, respectively, thenX
g

�D�i�
�þ�g��*D�j�

ÿ� �g� �
h

d1
�ij��ÿ�þ�;

where D�i��g� is a matrix, and D
�i�
�þ�g� is a typical matrix element. The sum

runs over all g in G.

Some special groups

Many physical systems possess symmetry properties that always lead to certain

quantity being invariant. For example, translational symmetry (or spatial homo-

geneity) leads to the conservation of linear momentum for a closed system, and

rotational symmetry (or isotropy of space) leads to the conservation of angular

momentum. Group theory is most appropriate for the study of symmetry. In this

section we consider the geometrical symmetries. This provides more illustrations

of the group concepts and leads to some special groups.

Let us ®rst review some symmetry operations. A plane of symmetry is a plane in

the system such that each point on one side of the plane is the mirror image of a

corresponding point on the other side. If the system takes up an identical position on

rotation through a certain angle about an axis, that axis is called an axis of sym-

metry. A center of inversion is a point such that the system is invariant under the

operation r ! ÿr, where r is the position vector of anypoint in the system referred to

the inversion center. If the system takes up an identical position after a rotation

followed by an inversion, the system possesses a rotation±inversion center.

444

ELEMENTS OF GROUP THEORY



Some symmetry operations are equivalent. As shown in Fig. 12.2, a two-fold

inversion axis is equivalent to a mirror plane perpendicular to the axis.

There are two diÿerent ways of looking at a rotation, as shown in Fig. 12.3.

According to the so-called active view, the system (the body) undergoes a rotation

through an angle �, say, in the clockwise direction about the x3-axis. In the passive

view, this is equivalent to a rotation of the coordinate system through the same

angle but in the counterclockwise sense. The relation between the new and old

coordinates of any point in the body is the same in both cases:

x 0
1 � x1 cos �� x2 sin �;

x 0
2 � ÿx1 sin �� x2 cos �;

x 0
3 � x3;

9>>=
>>; �12:6�

where the prime quantities represent the new coordinates.

A general rotation, re¯ection, or inversion can be represented by a linear

transformation of the form

x 0
1 � �11x1 � �12x2 � �13x3;

x 0
2 � �21x1 � �22x2 � �23x3;

x 0
3 � �31x1 � �32x2 � �33x3:

9>>=
>>; �12:7�
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Figure 12.2.

Figure 12.3. (a) Active view of rotation; (b) passive view of rotation.



Equation (12.7) can be written in matrix form

~x0 � ~�~x �12:8�
with

~� �
�11 �12 �13

�21 �22 �23

�31 �32 �33

0
B@

1
CA; ~x �

x1

x2

x3

0
B@

1
CA; ~x 0 �

x 0
1

x 0
2

x 0
3

0
B@

1
CA:

The matrix ~� is an orthogonal matrix and the value of its determinant is �1. The

`ÿ1' value corresponds to an operation involving an odd number of re¯ections.

For Eq. (12.6) the matrix ~� has the form

~� �
cos � sin � 0

ÿ sin � cos � 0

0 0 1

0
B@

1
CA: �12:6a�

For a rotation, an inversion about an axis, or a re¯ection in a plane through the

origin, the distance of a point from the origin remains unchanged:

r2 � x21 � x22 � x23 � x 0
1
2 � x 0

2
2 � x 0

3
2: �12:9�

The symmetry group D2; D3

Let us now examine two simple examples of symmetry and groups. The ®rst one is

on twofold symmetry axes. Our system consists of six particles: two identical

particles A located at �a on the x-axis, two particles, B at �b on the y-axis,

and two particles C at �c on the z-axis. These particles could be the atoms of a

molecule or part of a crystal. Each axis is a twofold symmetry axis. Clearly, the

identity or unit operator (no rotation) will leave the system unchanged. What

rotations can be carried out that will leave our system invariant? A certain com-

bination of rotations of � radians about the three coordinate axes will do it. The

orthogonal matrices that represent rotations about the three coordinate axes can

be set up in a similar manner as was done for Eq. (12.6a), and they are

~���� �
1 0 0

0 ÿ1 0

0 0 ÿ1

0
B@

1
CA; ~þ��� �

ÿ1 0 0

0 1 0

0 0 ÿ1

0
B@

1
CA; ~ÿ��� �

ÿ1 0 0

0 ÿ1 0

0 0 1

0
B@

1
CA;

where ~� is the rotational matrix about the x-axis, and ~þ and ~ÿ are the rotational

matrices about y- and z-axes, respectively. Of course, the identity operator is a

unit matrix
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~E �
1 0 0

0 1 0

0 0 1

0
B@

1
CA:

These four elements form an Abelian group with the group multiplication table

shown in Table 12.5. It is easy to check this group table by matrix multiplication.

Or you can check it by analyzing the operations themselves, a tedious task. This

demonstrates the power of mathematics: when the system becomes too complex

for a direct physical interpretation, the usefulness of mathematics shows.

This symmetry group is usually labeled D2, a dihedral group with a twofold

symmetry axis. A dihedral group Dn with an n-fold symmetry axis has n axes with

an angular separation of 2�=n radians and is very useful in crystallographic study.

We next consider an example of threefold symmetry axes. To this end, let us re-

visit Example 12.8. Rotations of the triangle of 08, 1208, 2408, and 3608 leave the
triangle invariant. Rotation of the triangle of 08 means no rotation, the triangle is

left unchanged; this is represented by a unit matrix (the identity element). The

other two orthogonal rotational matrices can be set up easily:

~A � Rz�1208� �
ÿ1=2 ÿ ���

3
p

=2���
3

p
=2 ÿ1=2

0
@

1
A;

~B � Rz�2408� �
ÿ1=2

���
3

p
=2

ÿ ���
3

p
=2 ÿ1=2

0
@

1
A;

and

~E � Rz�0� �
1 0

0 1

� �
:

We notice that ~C � Rz�3608� � ~E. The set of the three elements � ~E; ~A; ~B� forms a

cyclic group C3 with the group multiplication table shown in Table 12.6. The z-

447

SOME SPECIAL GROUPS

Table 12.5.

~E ~� ~þ ~ÿ

~E ~E ~� ~þ ~ÿ

~� ~� ~E ~ÿ ~þ
~þ ~þ ~ÿ ~E ~�

~ÿ ~ÿ ~þ ~� ~E



axis is a threefold symmetry axis. There are three additional axes of symmetry in

the xy plane: each corner and the geometric center O de®ning an axis; each of

these is a twofold symmetry axis (Fig. 12.4). Now let us consider re¯ection opera-

tions. The following successive operations will bring the equilateral angle onto

itself (that is, be invariant):

~E the identity; triangle is left unchanged;
~A triangle is rotated through 1208 clockwise;
~B triangle is rotated through 2408 clockwise;
~C triangle is re¯ected about axis OR (or the y-axis);
~D triangle is re¯ected about axis OQ;
~F triangle is re¯ected about axis OP.

Now the re¯ection about axis OR is just a rotation of 1808 about axis OR, thus

~C � ROR�1808� �
ÿ1 0

0 1

� �
:

Next, we notice that re¯ection about axis OQ is equivalent to a rotation of 2408
about the z-axis followed by a re¯ection of the x-axis (Fig. 12.5):

~D � ROQ�1808� � ~C ~B � ÿ1 0

0 1

� � ÿ1=2
���
3

p
=2

ÿ ���
3

p
=2 ÿ1=2

þ !
� 1=2 ÿ ���

3
p

=2

ÿ ���
3

p
=2 ÿ1=2

þ !
:
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Table 12.6.

~E ~A ~B

~E ~E ~A ~B
~A ~A ~B ~E

B ~B ~E ~A

Figure 12.4.



Similarly, re¯ection about axis OP is equivalent to a rotation of 1808 followed by

a re¯ection of the x-axis:

~F � ROP�1808� � ~C ~A � 1=2
���
3

p
=2���

3
p

=2 ÿ1=2

þ !
:

The group multiplication table is shown in Table 12.7. We have constructed a six-

element non-Abelian group and a 2� 2 irreducible matrix representation of it.

Our group is known as D3 in crystallography, the dihedral group with a threefold

axis of symmetry.

One-dimensional unitrary group U�1�
We now consider groups with an in®nite number of elements. The group element

will contain one or more parameters that vary continuously over some range so

they are also known as continuous groups. In Example 12.7, we saw that the

complex numbers (1; i;ÿ1;ÿi� form a cyclic group of order 3. These group ele-

ments may be interpreted as successive 908 rotations in the complex plane

�0; �=2; �; 3�=2�, and so they may be written as ei' with ' � 0, �=2, �, 3�=2. If

' is allowed to vary continuously over the range �0; 2��, then we will have, instead

of a four-member cyclic group, a continuous group with multiplication for the

composition rule. It is straightforward to check that the four group axioms are all
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Table 12.7.

~E ~A ~B ~C ~D ~F

~E ~E ~A ~B ~C ~D ~F
~A ~A ~B ~E ~D ~F ~C
~B ~B ~E ~A ~F ~C ~D
~C ~C ~F ~D ~E ~B ~A
~D ~D ~C ~F ~A ~E ~B
~F ~F ~D ~C ~B ~A ~E

Figure 12.5.



met. In quantum mechanics, ei' is a complex phase factor of a wave function,

which we denote by U�'). Obviously, U�0� is an identity element. Next,

U�'�U�' 0� � ei�'�' 0� � U�'� ' 0�;
and U�'� ' 0� is an element of the group. There is an inverse: Uÿ1�'� � U�ÿ'�,
since

U�'�U�ÿ'� � U�ÿ'�U�'� � U�0� � E

for any '. The associative law is satis®ed:

�U�'1�U�'2��U�'3� � ei�'1�'2�ei'3 � ei�'1�'2�'3� � ei'1ei�'2�'3�

� U�'1��U�'2�U�'3��:
This group is a one-dimensional unitary group; it is called U�1�. Each element is

characterized by a continuous parameter ', 0 � ' � 2�; ' can take on an in®nite

number of values. Moreover, the elements are diÿerentiable:

dU � U�'� d'� ÿU�'� � ei�'�d'� ÿ ei'

� ei'�1� id'� ÿ ei' � iei'd' � iUd'

or

dU=d' � iU:

In®nite groups whose elements are diÿerentiable functions of their parameters

are called Lie groups. The diÿerentiability of group elements allows us to develop

the concept of the generator. Furthermore, instead of studying the whole group,

we can study the group elements in the neighborhood of the identity element.

Thus Lie groups are of particular interest. Let us take a brief look at a few more

Lie groups.

Orthogonal groups SO�2� and SO�3�
The rotations in an n-dimensional Euclidean space form a group, called O�n�. The
group elements can be represented by n� n orthogonal matrices, each with

n�nÿ 1�=2 independent elements (Problem 12.12). If the determinant of O is set

to be �1 (rotation only, no re¯ection), then the group is often labeled SO�n�. The
label O�

n is also often used.

The elements of SO�2� are familiar; they are the rotations in a plane, say the xy

plane:

x 0

y 0

þ !
� ~R

x

y

þ !
� cos � sin �

ÿ sin � cos �

� ��
x

y

�
:
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This group has one parameter: the angle �. As we stated earlier, groups enter

physics because we can carry out transformations on physical systems and the

physical systems often are invariant under the transformations. Here x2 � y2 is

left invariant.

We now introduce the concept of a generator and show that rotations of SO�2�
are generated by a special 2� 2 matrix ~�2, where

~�2 �
0 ÿi

i 0

� �
:

Using the Euler identity, ei� � cos �� i sin �, we can express the 2� 2 rotation

matrices R��� in exponential form:

~R��� � cos � sin �

ÿ sin � cos �

� �
� ~I2 cos �� i~�2 sin � � ei�~�2 ;

where ~I2 is a 2� 2 unit matrix. From the exponential form we see that multi-

plication is equivalent to addition of the arguments. The rotations close to the

identity element have small angles � � 0: We call ~�2 the generator of rotations for

SO�2�.
It has been shown that any element g of a Lie group can be written in the form

g��1; �2; . . . ; �n� � exp
X
i�1

i�iFi

þ !
:

For n parameters there are n of the quantities Fi, and they are called the

generators of the Lie group.

Note that we can get ~�2 from the rotation matrix ~R��� by diÿerentiation at the

identity of SO�2�, that is, � � 0: This suggests that we may ®nd the generators of

other groups in a similar manner.

For n � 3 there are three independent parameters, and the set of 3� 3 ortho-

gonal matrices with determinant �1 also forms a group, the SO�3�, its general

member may be expressed in terms of the Euler angle rotation

R��; þ; ÿ� � Rz0 �0; 0; ��Ry�0; þ; 0�Rz�0; 0; ÿ�;

where Rz is a rotation about the z-axis by an angle ÿ, Ry a rotation about the y-

axis by an angle þ, and Rz 0 a rotation about the z 0-axis (the new z-axis) by an

angle �. This sequence can perform a general rotation. The separate rotations can

be written as

~Ry�þ� �
cosþ 0 ÿ sin þ

0 1 0

sin þ 0 cosþ

0
B@

1
CA; ~Rz�ÿ� �

cos ÿ sin ÿ 0

ÿ sin ÿ cos ÿ 0

0 o 1

0
B@

1
CA;
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~Rx��� �
1 0 0

0 cos � sin �

0 ÿ sin � cos �

0
B@

1
CA:

The SO�3� rotations leave x2 � y2 � z2 invariant.

The rotations Rz�ÿ� form a group, called the group Rz, which is an Abelian sub-

group of SO�3�. To ®nd the generator of this group, let us take the following

diÿerentiation

ÿi d ~Rz�ÿ�=dÿ ÿ�0

ÿÿ �
0 ÿi 0

i 0 0

0 0 0

0
B@

1
CA � ~Sz;

where the insertion of i is to make ~Sz Hermitian. The rotation Rz��ÿ� through an

in®nitesimal angle �ÿ can be written in terms of ~Sz:

Rz��ÿ� � ~I3 �
dRz�ÿ�
dÿ

ÿÿÿÿ
ÿ�0

�ÿ �O���ÿ�2� � ~I3 � i�ÿ ~Sz:

A ®nite rotation R�ÿ� may be constructed from successive in®nitesimal rotations

Rz��ÿ1 � �ÿ2� � �~I3 � i�ÿ1 ~Sz��~I3 � i�ÿ2 ~Sz�:
Now let ��ÿ � ÿ=N for N rotations, with N ! 1, then

Rz�ÿ� � lim
N!1

~I3 � �iÿ=N� ~Sz

� �N� exp�i ~Sz�;

which identi®es ~Sz as the generator of the rotation group Rz. Similarly, we can

®nd the generators of the subgroups of rotations about the x-axis and the y-axis.

The SU�n� groups
The n� n unitary matrices ~U also form a group, the U�n� group. If there is the

additional restriction that the determinant of the matrices be �1, we have the

special unitary or unitary unimodular group, SU�n�. Each n� n unitary matrix

has n2 ÿ 1 independent parameters (Problem 12.14).

For n � 2 we have SU�2� and possible ways to parameterize the matrix U are

~U � a b

ÿb* a*

� �
;

where a, b are arbitrary complex numbers and jaj2 � jbj2 � 1. These parameters

are often called the Cayley±Klein parameters, and were ®rst introduced by Cayley

and Klein in connection with problems of rotation in classical mechanics.

Now let us write our unitary matrix in exponential form:

~U � ei
~H ;
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where ~H is a Hermitian matrix. It is easy to show that ei
~H is unitary:

�ei ~H���ei ~H� � eÿi ~H�
ei

~H � ei�
~Hÿ ~H�� � 1:

This implies that any n� n unitary matrix can be written in exponential form with

a particularly selected set of n2 Hermitian n� n matrices, ~Hj

~U � exp i
Xn2
j�1

�j ~Hj

þ !
;

where the �j are real parameters. The n2 ~Hj are the generators of the group U�n�.
To specialize to SU�n� we need to meet the restriction det ~U � 1. To impose this

restriction we need to use the identity

det e
~A � eTr~A

for any square matrix ~A. The proof is left as homework (Problem 12.15). Thus the

condition det ~U � 1 requires Tr ~H � 0 for every ~H. Accordingly, the generators

of SU�n� are any set of n� n traceless Hermitian matrices.

For n � 2, SU�n� reduces to SU�2�, which describes rotations in two-dimen-

sional complex space. The determinant is �1. There are three continuous para-

meters (22 ÿ 1 � 3). We have expressed these as Cayley±Klein parameters. The

orthogonal group SO�3�, determinant �1, describes rotations in ordinary three-

dimensional space and leaves x2 � y2 � z2 invariant. There are also three inde-

pendent parameters. The rotation interpretations and the equality of numbers of

independent parameters suggest these two groups may be isomorphic or homo-

morphic. The correspondence between these groups has been proved to be two-to-

one. Thus SU�2� and SO�3� are isomorphic. It is beyond the scope of this book to

reproduce the proof here.

The SU�2� group has found various applications in particle physics. For exam-

ple, we can think of the proton (p) and neutron (n) as two states of the same

particle, a nucleon N, and use the electric charge as a label. It is also useful to

imagine a particle space, called the strong isospin space, where the nucleon state

points in some direction, as shown in Fig. 12.6. If (or assuming that) the theory

that describes nucleon interactions is invariant under rotations in strong isospin

space, then we may try to put the proton and the neutron as states of a spin-like

doublet, or SU�2� doublet. Other hadrons (strong-interacting particles) can also

be classi®ed as states in SU�2� multiplets. Physicists do not have a deep under-

standing of why the Standard Model (of Elementary Particles) has an SU�2�
internal symmetry.

For n � 3 there are eight independent parameters �32 ÿ 1 � 8), and we have

SU�3�, which is very useful in describing the color symmetry.
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Homogeneous Lorentz group

Before we describe the homogeneous Lorentz group, we need to know the

Lorentz transformation. This will bring us back to the origin of special theory

of relativity. In classical mechanics, time is absolute and the Galilean trans-

formation (the principle of Newtonian relativity) asserts that all inertial frames

are equivalent for describing the laws of classical mechanics. But physicists in

the nineteenth century found that electromagnetic theory did not seem to obey

the principle of Newtonian relativity. Classical electromagnetic theory is sum-

marized in Maxwell's equations, and one of the consequences of Maxwell's

equations is that the speed of light (electromagnetic waves) is independent of

the motion of the source. However, under the Galilean transformation, in a

frame of reference moving uniformly with respect to the light source the light

wave is no longer spherical and the speed of light is also diÿerent. Hence, for

electromagnetic phenomena, inertial frames are not equivalent and Maxwell's

equations are not invariant under Galilean transformation. A number of

experiments were proposed to resolve this con¯ict. After the Michelson±

Morley experiment failed to detect ether, physicists ®nally accepted that

Maxwell's equations are correct and have the same form in all inertial frames.

There had to be some transformation other than the Galilean transformation

that would make both electromagnetic theory and classical mechanical invar-

iant.

This desired new transformation is the Lorentz transformation, worked out by

H. Lorentz. But it was not until 1905 that Einstein realized its full implications

and took the epoch-making step involved. In his paper, `On the Electrodynamics

of Moving Bodies' (The Principle of Relativity, Dover, New York, 1952), he

developed the Special Theory of Relativity from two fundamental postulates,

which are rephrased as follows:
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(1) The laws of physics are the same in all inertial frame. No preferred inertial

frame exists.

(2) The speed of light in free space is the same in all inertial frames and is inde-

pendent of the motion of the source (the emitting body).

These postulates are often called Einstein's principle of relativity, and they radi-

cally revised our concepts of space and time. Newton's laws of motion abolish the

concept of absolute space, because according to the laws of motion there is no

absolute standard of rest. The non-existence of absolute rest means that we can-

not give an event an absolute position in space. This in turn means that space is

not absolute. This disturbed Newton, who insisted that there must be some abso-

lute standard of rest for motion, remote stars or the ether system. Absolute space

was ®nally abolished in its Maxwellian role as the ether. Then absolute time was

abolished by Einstein's special relativity. We can see this by sending a pulse of

light from one place to another. Since the speed of light is just the distance it has

traveled divided by the time it has taken, in Newtonian theory, diÿerent observers

would measure diÿerent speeds for the light because time is absolute. Now in

relativity, all observers agree on the speed of light, but they do not agree on the

distance the light has traveled. So they cannot agree on the time it has taken. That

is, time is no longer absolute.

We now come to the Lorentz transformation, and suggest that the reader to

consult books on special relativity for its derivation. For two inertial frames with

their corresponding axes parallel and the relative velocity v along the x1��x� axis,
the Lorentz transformation has the form:

x 0
1 � ÿ�x1 � iþx4�;

x 0
2 � x2;

x 0
3 � x3;

x 0
4 � ÿ�x4 ÿ iþx1�;

where x4 � ict; þ � v=c, and ÿ � 1=
�������������
1ÿ þ2

p
. We will drop the two directions

perpendicular to the motion in the following discussion.

For an in®nitesimal relative velocity �v, the Lorentz transformation reduces to

x 0
1 � x1 � i�þx4;

x 0
4 � x4 ÿ i�þx1;

where �þ � �v=c; ÿ � 1=

�������������������
1ÿ ��þ�2

q
� 1: In matrix form we have

x 0
1

x 0
4

þ !
�

1 i�þ

ÿi�þ 1

þ !
x1

x4

þ !
:
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We can express the transformation matrix in exponential form:

1 i�þ

ÿi�þ 1

þ !
� 1 0

0 1

� �
� �þ

0 i

ÿi 0

� �
� ~I � �þ~�;

where

~I � 1 0

0 1

� �
; ~� � 0 i

ÿi 0

� �
:

Note that ~� is the negative of the Pauli spin matrix ~�2. Now we have

x 0
1

x 0
4

þ !
� �~I � �þ~��

x1

x4

þ !
:

We can generate a ®nite transformation by repeating the in®nitesimal transforma-

tion N times with N�þ � �:�
x 0
1

x 0
4

�
�

�
~I � �~�

N

�N� x1

x4

�
:

In the limit as N ! 1,

lim
N!1

~I � �~�

N

� �N

� e�~�:

Now we can expand the exponential in a Maclaurin series:

e�~� � ~I � �~�� ��~��2=2!� ��~��3=3!� � � �
and, noting that ~�2 � 1 and

sinh � � �� �3=3!� �5=5!� �7=7!� � � � ;
cosh � � 1� �2=2!� �4=4!� �6=6!� � � � ;

we ®nally obtain

e�~� � ~I cosh �� ~� sinh �:

Our ®nite Lorentz transformation then takes the form:�
x 0
1

x 0
2

�
� cosh � i sinh �

ÿi sinh � cosh �

� ��
x1

x2

�
;

and ~� is the generator of the representations of our Lorentz transformation. The

transformation

cosh � i sinh �

ÿi sinh � cosh �

� �
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can be interpreted as the rotation matrix in the complex x4x1 plane (Problem

12.16).

It is straightforward to generalize the above discussion to the general case

where the relative velocity is in an arbitrary direction. The transformation matrix

will be a 4� 4 matrix, instead of a 2� 2 matrix one. For this general case, we have

to take x2- and x3-axes into consideration.

Problems

12.1. Show that

(a) the unit element (the identity) in a group is unique, and

(b) the inverse of each group element is unique.

12.2. Show that the set of complex numbers 1; i;ÿ1, and ÿi form a group of

order four under multiplication.

12.3. Show that the set of all rational numbers, the set of all real numbers,

and the set of all complex numbers form in®nite Abelian groups under

addition.

12.4. Show that the four matrices

~A � 1 0

0 1

� �
; ~B � 0 1

ÿ1 0

� �
; ~C � ÿ1 0

0 ÿ1

� �
; ~D � 0 ÿ1

1 0

� �
form an Abelian group of order four under multiplication.

12.5. Show that the set of all permutations of three objects

�1 2 3�; �2 3 1�; �3 1 2�; �1 3 2�; �3 2 1�; �2 1 3�
forms a non-Abelian group of order six, with sequential performance as

the law of combination.

12.6. Given two elements A and B subject to the relations A2 � B2 � E (the

identity), show that:

(a) AB 6� BA, and

(b) the set of six elements E;A;B;A2;AB;BA form a group.

12.7. Show that the set of elements 1;A;A2; . . . ;Anÿ1, An � 1, where A � e2�i=n

forms a cyclic group of order n under multiplication.

12.8. Consider the rotations of a line about the z-axis through the angles

�=2; �; 3�=2; and 2� in the xy plane. This is a ®nite set of four elements,

the four operations of rotating through �=2; �; 3�=2, and 2�. Show that

this set of elements forms a group of order four under addition.

12.9. Construct the group multiplication table for the group of Problem 12.2.

12.10. Consider the possible rearrangement of two objects. The operation Ep

leaves each object in its place, and the operation Ip interchanges the two

objects. Show that the two operations form a group that is isomorphic to

G2.
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Next, we associate with the two operations two operators ÔEp
and ÔIp ,

which act on the real or complex function f �x1; y1; z1; x2; y2; z2� with the

following eÿects:

ÔEp
f � f ; ÔIp f �x1; y1; z1; x2; y2; z2� � f �x2; y2; z2; x1; y1; z1�:

Show that the two operators form a group that is isomorphic to G2.

12.11. Verify that the multiplication table of S3 has the form:

12.12. Show that an n� n orthogonal matrix has n�nÿ 1�=2 independent

elements.

12.13. Show that the 2� 2 matrix �2 can be obtained from the rotation matrix

R��� by diÿerentiation at the identity of SO�2�, that is, � � 0.

12.14. Show that an n� n unitary matrix has n2 ÿ 1 independent parameters.

12.15. Show that det e
~A � eTr

~A where ~A is any square matrix.

12.16. Show that the Lorentz transformation

x 0
1 � ÿ�x1 � iþx4�;

x 0
2 � x2;

x 0
3 � x3;

x 0
4 � ÿ�x4 ÿ iþx1�

corresponds to an imaginary rotation in the x4x1 plane. (A detailed dis-

cussion of this can be found in the book Classical Mechanics, by Tai L.

Chow, John Wiley, 1995.)
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13

Numerical methods

Very few of the mathematical problems which arise in physical sciences and

engineering can be solved analytically. Therefore, a simple, perhaps crude, tech-

nique giving the desired values within speci®ed limits of tolerance is often to be

preferred. We do not give a full coverage of numerical analysis in this chapter; but

some methods for numerically carrying out the processes of interpolation, ®nding

roots of equations, integration, and solving ordinary diÿerential equations will be

presented.

Interpolation

In the eighteenth century Euler was probably the ®rst person to use the interpola-

tion technique to construct planetary elliptical orbits from a set of observed

positions of the planets. We discuss here one of the most common interpolation

techniques: the polynomial interpolation. Suppose we have a set of observed or

measured data �x0; y0�, �x1; y1�; . . . ; �xn; yn�, how do we represent them by a

smooth curve of the form y � f �x�? For analytical convenience, this smooth

curve is usually assumed to be polynomial:

f �x� � a0 � a1x
1 � a2x

2 � � � � � anx
n �13:1�

and we use the given points to evaluate the coe�cients a0; a1; . . . ; an:

f �x0� � a0 � a1x0 � a2x
2
0 � � � � � anx

n
0 � y0;

f �x1� � a0 � a1x1 � a2x
2
1 � � � � � anx

n
1 � y1;

..

.

f �xn� � a0 � a1xn � a2x
2
n � � � � � anx

n
n � yn:

9>>>>>=
>>>>>;

�13:2�

This provides n� 1 equations to solve for the n� 1 coe�cients a0; a1; . . . ; an:

However, straightforward evaluation of coe�cients in the way outlined above
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is rather tedious, as shown in Problem 13.1, hence many shortcuts have been

devised, though we will not discuss these here because of limited space.

Finding roots of equations

A solution of an equation f �x� � 0 is sometimes called a root, where f �x� is a real

continuous function. If f �x� is su�ciently complicated that a direct solution may

not be possible, we can seek approximate solutions. In this section we will sketch

some simple methods for determining the approximate solutions of algebraic and

transcendental equations. A polynomial equation is an algebraic equation. An

equation that is not reducible to an algebraic equation is called transcendental.

Thus, tan xÿ x � 0 and ex � 2 cos x � 0 are transcendental equations.

Graphical methods

The approximate solution of the equation

f �x� � 0 �13:3�
can be found by graphing the function y � f �x� and reading from the graph the

values of x for which y � 0. The graphing procedure can often be simpli®ed by

®rst rewriting Eq. (13.3) in the form

g�x� � h�x� �13:4�
and then graphing y � g�x� and y � h�x�. The x values of the intersection points

of the two curves gives the approximate values of the roots of Eq. (13.4). As an

example, consider the equation

f �x� � x3 ÿ 146:25xÿ 682:5 � 0;

we can graph

y � x3 ÿ 146:25xÿ 682:5

to ®nd its roots. But it is simpler to graph the two curves

y � x3 �a cubic�
and

y � 146:25x� 682:5 �a straight line�:
See Fig. 13.1.

There is one drawback of graphical methods: that is, they require plotting

curves on a large scale to obtain a high degree of accuracy. To avoid this, methods

of successive approximations (or simple iterative methods) have been devised, and

we shall sketch a couple of these in the following sections.
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Method of linear interpolation (method of false position)

Make an initial guess of the root of Eq. (13.3), say x0, located between x1 and x2,

and in the interval (x1; x2) the graph of y � f �x� has the appearance as shown in

Fig. 13.2. The straight line connecting P1 and P2 cuts the x-axis at point x3; which

is usually closer to x0 than either x1 or x2. From similar triangles

x3 ÿ x1
ÿf �x1�

� x2 ÿ x1
f �x2�

;

and solving for x3 we get

x3 �
x1 f �x2� ÿ x2 f �x1�

f �x2� ÿ f �x1�
:

Now the straight line connecting the points P3 and P2 intersects the x-axis at point

x4, which is a closer approximation to x0 than x3. By repeating this process we

obtain a sequence of values x3; x4; . . . ; xn that generally converges to the root of

the equation.

The iterative method described above can be simpli®ed if we rewrite Eq. (13.3)

in the form of Eq. (13.4). If the roots of

g�x� � c �13:5�

can be determined for every real c, then we can start the iterative process as

follows. Let x1 be an approximate value of the root x0 of Eq. (13.3) (and, of
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course, also equation 13.4). Now setting x � x1 on the right hand side of Eq.

(13.4) we obtain the equation

g�x� � h�x1�; �13:6�
which by hypothesis we can solve. If the solution is x2, we set x � x2 on the right

hand side of Eq. (13.4) and obtain

g�x� � h�x2�: �13:7�
By repeating this process, we obtain the nth approximation

g�x� � h�xnÿ1�: �13:8�
From geometric considerations or interpretation of this procedure, we can see

that the sequence x1; x2; . . . ; xn converges to the root x � 0 if, in the interval

2jx1 ÿ x0j centered at x0, the following conditions are met:

�1� jg 0�x�j > jh0�x�j; and

�2� The derivatives are bounded:

)
�13:9�

Example 13.1

Find the approximate values of the real roots of the transcendental equation

ex ÿ 4x � 0:

Solution: Let g�x� � x and h�x� � ex=4; so the original equation can be rewrit-

ten as

x � ex=4:
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According to Eq. (13.8) we have

xn�1 � exn=4; n � 1; 2; 3; . . . : �13:10�
There are two roots (see Fig. 13.3), with one around x � 0:3: If we take it as x1,

then we have, from Eq. (13.10)

x2 � ex1=4 � 0:3374;

x3 � ex2=4 � 0:3503;

x4 � ex3=4 � 0:3540;

x5 � ex4=4 � 0:3565;

x6 � ex5=4 � 0:3571;

x7 � ex6=4 � 0:3573:

The computations can be terminated at this point if only three-decimal-place

accuracy is required.

The second root lies between 2 and 3. As the slope of y � 4x is less than that of

y � ex, the ®rst condition of Eq. (13.9) cannot be met, so we rewrite the original

equation in the form

ex � 4x; or x � log 4x
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and take g�x� � x, h�x� � log 4x. We now have

xn�1 � log 4xn; n � 1; 2; . . . :

If we take x1 � 2:1, then

x2 � log 4x1 � 2:12823;

x3 � log 4x2 � 2:14158;

x4 � log 4x3 � 2:14783;

x5 � log 4x4 � 2:15075;

x6 � log 4x5 � 2:15211;

x7 � log 4x6 � 2:15303;

x8 � log 4x7 � 2:15316;

and we see that the value of the root correct to three decimal places is 2.153.

Newton's method

In Newton's method, the successive terms in the sequence of approximate values

x1; x2; . . . ; xn that converges to the root is obtained by the intersection with the x-

axis of the tangent line to the curve y � f �x�. Fig. 13.4 shows a portion of the

graph of f �x� close to one of its roots, x0. We start with x1, an initial guess of the

value of the root x0. Now the equation of the tangent line to y � f �x� at P1 is

yÿ f �x1� f 0�x1��xÿ x1�: �13:11�
This tangent line intersects the x-axis at x2 that is a better approximation to the

root than x1. To ®nd x2, we set y � 0 in Eq. (13.11) and ®nd

x2 � x1 ÿ f �x1�=f 0�x1�
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provided f 0�x1� 6� 0. The equation of the tangent line at P2 is

yÿ f �x2� � f 0�x2��xÿ x2�
and it intersects the x-axis at x3:

x3 � x2 ÿ f �x2�=f 0�x2�:
This process is continued until we reach the desired level of accuracy. Thus, in

general

xn�1 � xn ÿ
f �xn�
f 0�xn�

; n � 1; 2; . . . : �13:12�

Newton's method may fail if the function has a point of in¯ection, or other bad

behavior, near the root. To illustrate Newton's method, let us consider the follow-

ing trivial example.

Example 13.2

Solve, by Newton's method, x3 ÿ 2 � 0.

Solution: Here we have y � x3 ÿ 2. If we take x1 � 1:5 (note that 1 < 21=3 < 3�,
then Eq. (13.12) gives

x2 � 1:296296296;

x3 � 1:260932225;

x4 � 1:259921861;

x5 � 1:25992105

x6 � 1:25992105

)
repetition:

Thus, to eight-decimal-place accuracy, 21=3 � 1:25992105.

When applying Newton's method, it is often convenient to replace f 0�xn� by
f �xn � �� ÿ f �xn�

�
;

with � small. Usually � � 0:001 will give good accuracy. Eq. (13.12) then reads

xn�1 � xn ÿ
�f �xn�

f �xn � �� ÿ f �xn�
; n � 1; 2; . . . : �13:13�

Example 13.3

Solve the equation x2 ÿ 2 � 0.
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Solution: Here f �x� � x2 ÿ 2. Take x1 � 1 and � � 0:001, then Eq. (13.13) gives

x2 � 1:499750125;

x3 � 1:416680519;

x4 � 1:414216580;

x5 � 1:414213563;

x6 � 1:414113562

x7 � 1:414113562

)
x6 � x7:

Numerical integration

Very often de®nite integrations cannot be done in closed form. When this happens

we need some simple and useful techniques for approximating de®nite integrals.

In this section we discuss three such simple and useful methods.

The rectangular rule

The reader is familiar with the interpretation of the de®nite integral
R b

a f �x�dx as

the area under the curve y � f �x� between the limits x � a and x � b:Z b

a

f �x�dx �
Xn
i�1

f ��i��xi ÿ xiÿ1�;

where xiÿ1 � �i � xi; a � x0 < x1 < x2 < � � � < xn � b: We can obtain a good

approximation to this de®nite integral by simply evaluating such an area under

the curve y � f �x�. We can divide the interval a � x � b into n subintervals of

length h � �bÿ a�=n, and in each subinterval, the function f ��i� is replaced by a
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straight line connecting the values at each head or end of the subinterval (or at the

center point of the interval), as shown in Fig. 13.5. If we choose the head,

�i � xiÿ1, then we have

Z b

a

f �x�dx � h�y0 � y1 � � � � � ynÿ1�; �13:14�

where y0 � f �x0�; y1 � f �x1�; . . . ; ynÿ1 � f �xnÿ1�. This method is called the rec-

tangular rule.

It will be shown later that the error decreases as n2. Thus, as n increases, the

error decreases rapidly.

The trapezoidal rule

The trapezoidal rule evaluates the small area of a subinterval slightly diÿerently.

The area of a trapezoid as shown in Fig. 13.6 is given by

1
2 h�Y1 � Y2�:

Thus, applied to Fig. 13.5, we have the approximation

Z b

a

f �x�dx � �bÿ a�
n

�12 y0 � y1 � y2 � � � � � ynÿ1 � 1
2 yn�: �13:15�

What are the upper and lower limits on the error of this method? Let us ®rst

calculate the error for a single subinterval of length h�� �bÿ a�=n�. Writing

xi � h � z and "i�z� for the error, we have

Z z

xi

f �x�dx � h

2
� yi � yz� � "i�z�;
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where yi � f �xi�; yz � f �z�. Or

"i�z� �
Z z

xi

f �x�dxÿ h

2
� f �xi� ÿ f �z��

�
Z z

xi

f �x�dxÿ zÿ xi
2

� f �xi� ÿ f �z��:

Diÿerentiating with respect to z:

" 0
i �z� � f �z� ÿ � f �xi� � f �z��=2ÿ �zÿ xi� f 0�z�=2:

Diÿerentiating once again,

" 00
i �z� � ÿ�zÿ xi�f 00�z�=2:

If mi and Mi are, respectively, the minimum and the maximum values of f 00�z� in
the subinterval [xi; z], we can write

zÿ xi
2

mi � ÿ" 00
i �z� �

zÿ xi
2

Mi:

Anti-diÿerentiation gives

�zÿ xi�2
4

mi � ÿ" 0
i �z� �

�zÿ xi�2
4

Mi

Anti-diÿerentiation once more gives

�zÿ xi�3
12

mi � ÿ"i�z� �
�zÿ xi�3

12
Mi:

or, since zÿ xi � h,

h3

12
mi � ÿ"i �

h3

12
Mi:

If m and M are, respectively, the minimum and the maximum of f 00�z� in the

interval [a; b] then

h3

12
m � ÿ"i �

h3

12
M for all i:

Adding the errors for all subintervals, we obtain

h3

12
nm � ÿ" � h3

12
nM

or, since h � �bÿ a�=n;
�bÿ a�3
12n2

m � ÿ" � �bÿ a�3
12n2

M: �13:16�
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Thus, the error decreases rapidly as n increases, at least for twice-diÿerentiable

functions.

Simpson's rule

Simpson's rule provides a more accurate and useful formula for approximating a

de®nite integral. The interval a � x � b is subdivided into an even number of

subintervals. A parabola is ®tted to points a, a� h, a� 2h; another to a� 2h,

a� 3h, a� 4h; and so on. The area under a parabola, as shown in Fig. 13.7, is

(Problem 13.8)

h

3
�y1 � 4y2 � y3�:

Thus, applied to Fig. 13.5, we have the approximationZ b

a

f �x�dx � h

3
�y0 � 4y1 � 2y2 � 4y3 � 2y4 � � � � � 2ynÿ2 � 4ynÿ1 � yn�; �13:17�

with n even and h � �bÿ a�=n.
The analysis of errors for Simpson's rule is fairly involved. It has been shown

that the error is proportional to h4 (or inversely proportional to n4).

There are other methods of approximating integrals, but they are not so simple

as the above three. The method called Gaussian quadrature is very fast but more

involved to implement. Many textbooks on numerical analysis cover this method.

Numerical solutions of diÿerential equations

We noted in Chapter 2 that the methods available for the exact solution of diÿer-

ential equations apply only to a few, principally linear, types of diÿerential equa-

tions. Many equations which arise in physical science and in engineering are not

solvable by such methods and we are therefore forced to ®nd ways of obtaining

approximate solutions of these diÿerential equations. The basic idea of approxi-

mate solutions is to specify a small increment h and to obtain approximate values

of a solution y � y�x� at x0, x0 � h, x0 � 2h; . . . :

469

NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS

Figure 13.7.



The ®rst-order ordinary diÿerential equation

dy

dx
� f �x; y�; �13:18�

with the initial condition y � y0 when x � x0, has the solution

yÿ y0 �
Z x

x0

f �t; y�t��dt: �13:19�

This integral equation cannot be evaluated because the value of y under the

integral sign is unknown. We now consider three simple methods of obtaining

approximate solutions: Euler's method, Taylor series method, and the Runge±

Kutta method.

Euler's method

Euler proposed the following crude approach to ®nding the approximate solution.

He began at the initial point �x0; y0� and extended the solution to the right to the

point x1 � x0 � h, where h is a small quantity. In order to use Eq. (13.19) to

obtain the approximation to y�x1�, he had to choose an approximation to f on

the interval �x0;x1�. The simplest of all approximations is to use f �t; y�t�� �
f �x0; y0�. With this choice, Eq. (13.19) gives

y�x1� � y0 �
Z x1

x0

f �x0; y0�dt � y0 � f �x0; y0��x1 ÿ x0�:

Letting y1 � y�x1�, we have

y1 � y0 � f �x0; y0��x1 ÿ x0�: �13:20�
From y1; y

0
1 � f �x1; y1� can be computed. To extend the approximate solution

further to the right to the point x2 � x1 � h, we use the approximation:

f �t; y�t�� � y 0
1 � f �x1; y1�. Then we obtain

y2 � y�x2� � y1 �
Z x2

x1

f �x1; y1�dt � y1 � f �x1; y1��x2 ÿ x1�:

Continuing in this way, we approximate y3, y4, and so on.

There is a simple geometrical interpretation of Euler's method. We ®rst note

that f �x0; y0� � y 0�x0�, and that the equation of the tangent line at the point

�x0; y0� to the actual solution curve (or the integral curve) y � y�x� is

yÿ y0 �
Z x

x0

f �t; y�t��dt � f �x0; y0��xÿ x0�:

Comparing this with Eq. (13.20), we see that �x1; y1� lies on the tangent line to the

actual solution curve at (x0; y0). Thus, to move from point (x0; y0) to point (x1; y1)

we proceed along this tangent line. Similarly, to move to point (x2; y2� we proceed
parallel to the tangent line to the solution curve at (x1; y1�, as shown in Fig. 13.8.
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The merit of Euler's method is its simplicity, but the successive use of the

tangent line at the approximate values y1; y2; . . . can accumulate errors. The accu-

racy of the approximate vale can be quite poor, as shown by the following simple

example.

Example 13.4

Use Euler's method to approximate solution to

y 0 � x2 � y; y�1� � 3 on interval �1; 2�:

Solution: Using h � 0:1, we obtain Table 13.1. Note that the use of a smaller

step-size h will improve the accuracy.

Euler's method can be improved upon by taking the gradient of the integral

curve as the means of obtaining the slopes at x0 and x0 � h, that is, by using the
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Table 13.1.

x y (Euler) y (actual)

1.0 3 3
1.1 3.4 3.43137
1.2 3.861 3.93122
1.3 4.3911 4.50887

1.4 4.99921 5.1745
1.5 5.69513 5.93977
1.6 6.48964 6.81695

1.7 7.39461 7.82002
1.8 8.42307 8.96433
1.9 9.58938 10.2668

2.0 10.9093 11.7463

Figure 13.8.



approximate value obtained for y1, we obtain an improved value, denoted by

�y1�1:
�y1�1 � y0 � 1

2 f f �x0; y0� � f �x0 � h; y1�g: �13:21�
This process can be repeated until there is agreement to a required degree of

accuracy between successive approximations.

The three-term Taylor series method

The rationale for this method lies in the three-term Taylor expansion. Let y be the

solution of the ®rst-order ordinary equation (13.18) for the initial condition

y � y0 when x � x0 and suppose that it can be expanded as a Taylor series in

the neighborhood of x0. If y � y1 when x � x0 � h, then, for su�ciently small

values of h, we have

y1 � y0 � h
dy

dx

� �
0

� h2

2!

d2y

dx2

ÿ !
0

� h3

3!

d3y

dx3

ÿ !
0

� � � � : �13:22�

Now

dy

dx
� f �x; y�;

d2y

dx2
� @f

@x
� dy

dx

@f

@y
� @f

@x
� f

@f

@y
;

and

d3y

dx3
� @

@x
� f

@

@y

� �
@f

@x
� f

@f

@y

� �

� @2f

@x2
� @f

@y

@f

@y
� 2f

@2f

@x@y
� f

@f

@y

� �2

� f 2
@2f

@y2
:

Equation (13.22) can be rewritten as

y1 � y0 � hf �x0; y0� �
h2

2

@f �x0; y0�
@x

� f �x0; y0�
@f �x0; y0�

@y

� �
;

where we have dropped the h3 term. We now use this equation as an iterative

equation:

yn�1 � yn � hf �xn; yn� �
h2

2

@f �xn; yn�
@x

� f �xn; yn�
@f �xn; yn�

@y

� �
: �13:23�

That is, we compute y1 � y�x0 � h� from y0, y2 � y�x1 � h� from y1 by replacing x

by x1, and so on. The error in this method is proportional h3. A good approxima-
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tion can be obtained for yn by summing a number of terms of the Taylor's

expansion. To illustrate this method, let us consider a very simple example.

Example 13.5

Find the approximate values of y1 through y10 for the diÿerential equation

y 0 � x� y, with the initial condition x0 � 1:0 and y � ÿ2:0.

Solution: Now f �x; y� � x� y; @ f =@x � @ f =@y � 1 and Eq. (13.23) reduces to

yn�1 � yn � h�xn � yn� �
h2

2
�1� xn � yn�:

Using this simple formula with h � 0:1 we obtain the results shown in Table 13.2.

The Runge±Kutta method

In practice, the Taylor series converges slowly and the accuracy involved is not

very high. Thus we often resort to other methods of solution such as the Runge±

Kutta method, which replaces the Taylor series, Eq. (13.23), with the following

formula:

yn�1 � yn �
h

6
�k1 � 4k2 � k3�; �13:24�

where

k1 � f �xn; yn�; �13:24a�

k2 � f �xn � h=2; yn � hk1=2�; �13:24b�

k3 � f �xn � h; y0 � 2hk2 ÿ hk1�: �13:24c�
This approximation is equivalent to Simpson's rule for the approximate

integration of f �x; y�, and it has an error proportional to h4. A beauty of the

473

NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS

Table 13.2.

n xn yn yn�1

0 1.0 ÿ2.0 ÿ2.1
1 1.1 ÿ2.1 ÿ2.2
2 1.2 ÿ2.2 ÿ2.3
3 1.3 ÿ2.3 ÿ2.4

4 1.4 ÿ2.4 ÿ2.5
5 1.5 ÿ2.5 ÿ2.6



Runge±Kutta method is that we do not need to compute partial derivatives, but it

becomes rather complicated if pursued for more than two or three steps.

The accuracy of the Runge±Kutta method can be improved with the following

formula:

yn�1 � yn �
h

6
�k1 � 2k2 � 2k3 � k4�; �13:25�

where

k1 � f �xn; yn�; �13:25a�

k2 � f �xn � h=2; yn � hk1=2�; �13:25b�

k3 � f �xn � h; y0 � hk2=2�; �13:25c�

k4 � f �xn � h; yn � hk3�: �13:25d�
With this formula the error in yn�1 is of order h5.

You may wonder how these formulas are established. To this end, let us go

back to Eq. (13.22), the three-term Taylor series, and rewrite it in the form

y1 � y0 � hf0 � �1=2�h2�A0 � f0B0� � �1=6�h3�C0 � 2f0D0 � f 20 E0

� A0B0 � f0B
2
0� �O�h4�; �13:26�

where

A � @f

@x
; B � @f

@y
; C � @2f

@x2
; D � @2f

@x@y
; E � @2f

@y2

and the subscript 0 denotes the values of these quantities at �x0; y0�.
Now let us expand k1; k2, and k3 in the Runge±Kutta formula (13.24) in powers

of h in a similar manner:

k1 � hf �x0; y0�;
k2 � f �x0 � h=2; y0 � k1h=2�;

� f0 �
1

2
h�A0 � f0B0� �

1

8
h2�C0 � 2f0D0 � f 20 E0� �O�h3�:

Thus

2k2 ÿ k1 � f0 � h�A0 � f0B0� � � � �
and

d

dh
�2k2 ÿ k1�

� �
h�0

� f0;
d2

dh2
�2k2 ÿ k1�

ÿ !
h�0

� 2�A0 � f0B0�:
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Then

k3 � f �x0 � h; y0 � 2hk2 ÿ hk1�
� f0 � h�A0 � f0B0� � �1=2�h2fC0 � 2f0D0 � f 20 E0 � 2B0�A0 � f0B0�g
�O�h3�:

and

�1=6��k1 � 4k2 � k3� � hf0 � �1=2�h2�A0 � f0B0�
� �1=6�h3�C0 � 2f0D0 � f 20 E0 � A0B0 � f0B

2
0� �O�h4�:

Comparing this with Eq. (13.26), we see that it agrees with the Taylor series

expansion (up to the term in h3) and the formula is established. Formula (13.25)

can be established in a similar manner by taking one more term of the Taylor

series.

Example 13.6

Using the Runge±Kutta method and h � 0:1, solve

y 0 � xÿ y2=10; x0 � 0; y0 � 1:

Solution: With h � 0:1, h4 � 0:0001 and we may use the Runge±Kutta third-

order approximation.

First step: x0 � 0; y0 � 0; f0 � ÿ0:1;

k1 � ÿ0:1, y0 � hk1=2 � 0:995;

k2 � ÿ0:049; 2k2 ÿ k1 � 0:002; k3 � 0;

y1 � y0 �
h

6
�k1 � 4k2 � k1� � 0:9951:

Second step: x1 � x0 � h � 0:1, y1 � 0:9951, f1 � 0:001,

k1 � 0:001, y1 � hk1=2 � 0:9952;

k2 � 0:051, 2k2 ÿ k1 � 0:101, k3 � 0:099,

y2 � y1 �
h

6
�k1 � 4k2 � k1� � 1:0002:

Third step: x2 � x1 � h � 0:2; y2 � 1:0002, f2 � 0:1,

k1 � 0:1, y2 � hk1=2 � 1:0052,

k2 � 0:149; 2k2 ÿ k1 � 0:198; k3 � 0:196;

y3 � y2 �
h

6
�k1 � 4k2 � k1� � 1:0151:
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Equations of higher order. System of equations

The methods in the previous sections can be extended to obtain numerical solu-

tions of equations of higher order. An nth-order diÿerential equation is equivalent

to n ®rst-order diÿerential equations in n� 1 variables. Thus, for instance, the

second-order equation

y 00 � f �x; y; y 0�; �13:27�
with initial conditions

y�x0� � y0; y 0�x0� � y 0
0; �13:28�

can be written as a system of two equations of ®rst order by setting

y 0 � u; �13:29�
then Eqs. (13.27) and (13.28) become

u 0 � f �x; y; u�; �13:30�

y�x0� � y0; u�x0� � u0: �13:31�
The two ®rst-order equations (13.29) and (13.30) with the initial conditions

(13.31) are completely equivalent to the original second-order equation (13.27)

with the initial conditions (13.28). And the methods in the previous sections for

determining approximate solutions can be extended to solve this system of two

®rst-order equations. For example, the equation

y 00 ÿ y � 2;

with initial conditions

y�0� � ÿ1; y 0�0� � 1;

is equivalent to the system

y 0 � x� u; u 0 � 1� y;

with

y�0� � ÿ1; u�0� � 1:

These two ®rst-order equations can be solved with Taylor's method (Problem

13.12).

The simple methods outlined above all have the disadvantage that the error in

approximating to values of y is to a certain extent cumulative and may become

large unless some form of checking process is included. For this reason, methods

of solution involving ®nite diÿerence are devised, most of them being variations of

the Adams±Bashforth method that contains a self-checking process. This method

476

NUMERICAL METHODS



is quite involved and because of limited space we shall not cover it here, but it is

discussed in any standard textbook on numerical analysis.

Least-squares ®t

We now look at the problem of ®tting of experimental data. In some experimental

situations there may be underlying theory that suggests the kind of function to be

used in ®tting the data. Often there may be no theory on which to rely in selecting

a function to represent the data. In such circumstances a polynomial is often used.

We saw earlier that the m� 1 coe�cients in the polynomial

y � a0 � a1x� � � � � amx
m

can always be determined so that a given set of m� 1 points (xi; yi), where the xs

may be unequal, lies on the curve described by the polynomial. However, when

the number of points is large, the degree m of the polynomial is high, and an

attempt to ®t the data by using a polynomial is very laborious. Furthermore, the

experimental data may contain experimental errors, and so it may be more

sensible to represent the data approximately by some function y � f �x� that

contains a few unknown parameters. These parameters can then be determined

so that the curve y � f �x� ®ts the data. How do we determine these unknown

parameters?

Let us represent a set of experimental data (xi; yi), where i � 1; 2; . . . ; n, by some

function y � f �x� that contains r parameters a1; a2; . . . ; ar. We then take the

deviations (or residuals)

di � f �xi� ÿ yi �13:32�
and form the weighted sum of squares of the deviations

S �
Xn
i�1

wi�di�2 �
Xn
i�1

wi� f �xi� ÿ yi�2; �13:33�

where the weights wi express our con®dence in the accuracy of the experimental

data. If the points are equally weighted, the ws can all be set to 1.

It is clear that the quantity S is a function of as: S � S�a1; a2; . . . ; ar�: We can

now determine these parameters so that S is a minimum:

@S

@a1
� 0;

@S

@a2
� 0; . . . ;

@S

@ar
� 0: �13:34�

The set of r equations (13.34) is called the normal equations and serves to

determine the r unknown as in y � f �x�. This particular method of determining

the unknown as is known as the method of least squares.
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We now illustrate the construction of the normal equations with the simplest

case: y � f �x� is a linear function:
y � a1 � a2x: �13:35�

The deviations di are given by

di � �a1 � a2x� ÿ yi

and so, assuming wi � 1

S �
Xn
i�1

d2
i � �a1 � a2x1 ÿ y1�2 � �a1 � a2x2 ÿ y2�2 � � � � � �a1 � a2xr ÿ yr�2:

We now ®nd the partial derivatives of S with respect to a1 and a2 and set these to

zero:

@S=@a1 � 2�a1 � a2x1 ÿ y1� � 2�a1 � a2x2 ÿ y2� � � � � � 2�a1 � a2xn ÿ yn� � 0;

@S=@a2 � 2x1�a1 � a2x1 ÿ y1� � 2x2�a1 � a2x2 ÿ y2� � � � � � 2xn�a1 � a2xn ÿ yn�
� 0:

Dividing out the factor 2 and collecting the coe�cients of a1 and a2, we obtain

na1 �
Xn
i�1

xi

ÿ !
a2 �

Xn
i�1

y1; �13:36�

Xn
i�1

xi

ÿ !
a1 �

Xn
i�1

x2i

ÿ !
a2 �

Xn
i�1

xiyi: �13:37�

These equations can be solved for a1 and a2.

Problems

13.1. Given six points �ÿ1; 0�, �ÿ0:8; 2�, �ÿ0:6; 1�, �ÿ0:4;ÿ1�, �ÿ0:2; 0�; and
�0;ÿ4�, determine a smooth function y � f �x� such that yi � f �xi�:

13.2. Find an approximate value of the real root of

xÿ tan x � 0

near x � 3�=2:

13.3. Find the angle subtended at the center of a circle by an arc whose length is

double the length of the chord.

13.4. Use Newton's method to solve

ex
2 ÿ x3 � 3xÿ 4 � 0;

with x0 � 0 and h � 0:001:
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13.5. Use Newton's method to ®nd a solution of

sin�x3 � 2� � 1=x;

with x0 � 1 and h � 0:001.

13.6. Approximate the following integrals using the rectangular rule, the

trapezoidal rule, and Simpson's rule, with n � 2; 4; 10; 20; 50:

(a)

Z �=2

0

eÿx2 sin�x2 � 1�dx;

(b)

Z ��
2

p

0

sin�x2� � 3xÿ 2

x� 4
dx;

(c)

Z 1

0

dx��������������������
2ÿ sin2 x

p :

13.7 Show that the area under a parabola, as shown in Fig. 13.7, is given by

A � h

3
�y1 � 4y2 � y3�:

13.8. Using the improved Euler's method, ®nd the value of y when x � 0:2 on

the integral curve of the equation y 0 � x2 ÿ 2y through the point x � 0,

y � 1.

13.9. Using Taylor's method, ®nd correct to four places of decimals values of y

corresponding to x � 0:2 and x � ÿ0:2 for the solution of the diÿerential

equation

dy=dx � xÿ y2=10;

with the initial condition y � 1 when x � 0.

13.10. Using the Runge±Kutta method and h � 0:1, solve

y 0 � x2 ÿ sin�y2�; x0 � 1 and y0 � 4:7:

13.11. Using the Runge±Kutta method and h � 0:1, solve

y 0 � yeÿx2 ; x0 � 1 and y0 � 3:

13.12. Using Taylor's method, obtain the solution of the system

y 0 � x� u; u 0 � 1� y

with
y�0� � ÿ1; u�0� � 1:

.

13.13. Find to four places of decimals the solution between x � 0 and x � 0:5 of

the equations

y 0 � 1
2 �y� u�; u 0 � 1

2 �y2 ÿ u2�;
with y � u � 1 when x � 0.
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13.14. Find to three places of decimals a solution of the equation

y 00 � 2xy 0 ÿ 4y � 0;

with y � y 0 � 1 when x � 0:

13.15. Use Eqs. (13.36) and (13.37) to calculate the coe�cients in y � a1 � a2x to

®t the following data: �x; y� � �1; 1:7�; �2; 1:8�; �3; 2:3�; �4; 3:2�:
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14

Introduction to probability theory

The theory of probability is so useful that it is required in almost every branch of

science. In physics, it is of basic importance in quantum mechanics, kinetic theory,

and thermal and statistical physics to name just a few topics. In this chapter the

reader is introduced to some of the fundamental ideas that make probability

theory so useful. We begin with a review of the de®nitions of probability, a

brief discussion of the fundamental laws of probability, and methods of counting

(some facts about permutations and combinations), probability distributions are

then treated.

A notion that will be used very often in our discussion is `equally likely'. This

cannot be de®ned in terms of anything simpler, but can be explained and illu-

strated with simple examples. For example, heads and tails are equally likely

results in a spin of a fair coin; the ace of spades and the ace of hearts are equally

likely to be drawn from a shu�ed deck of 52 cards. Many more examples can be

given to illustrate the concept of `equally likely'.

A de®nition of probability

Now a question that arises naturally is that of how shall we measure the

probability that a particular case (or outcome) in an experiment (such as the

throw of dice or the draw of cards) out of many equally likely cases that will

occur. Let us ¯ip a coin twice, and ask the question: what is the probability of it

coming down heads at least once. There are four equally likely results in ¯ipping a

coin twice: HH, HT, TH, TT, whereH stands for head and T for tail. Three of the

four results are favorable to at least one head showing, so the probability of

getting one head is 3/4. In the example of drawn cards, what is the probability

of drawing the ace of spades? Obviously there is one chance out of 52, and the

probability, accordingly, is 1/52. On the other hand, the probability of drawing an
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ace is four times as great ÿ4=52, for there are four aces, equally likely. Reasoning

in this way, we are led to give the notion of probability the following de®nition:

If there are N mutually exclusive, collective exhaustive, and

equally likely outcomes of an experiment, and n of these are

favorable to an event A, then the probability p�A� of an event

A is n=N: p � n=N, or

p�A� � number of outcomes favorable to A

total number of results
: �14:1�

We have made no attempt to predict the result, just to measure it. The de®nition

of probability given here is often called a posteriori probability.

The terms exclusive and exhaustive need some attention. Two events are said to

be mutually exclusive if they cannot both occur together in a single trial; and the

term collective exhaustive means that all possible outcomes or results are enum-

erated in the N outcomes.

If an event is certain not to occur its probability is zero, and if an event is

certain to occur, then its probability is 1. Now if p is the probability that an event

will occur, then the probability that it will fail to occur is 1ÿ p, and we denote it

by q:

q � 1ÿ p: �14:2�
If p is the probability that an event will occur in an experiment, and if the

experiment is repeated M times, then the expected number of times the event will

occur is Mp. For su�ciently large M, Mp is expected to be close to the actual

number of times the event will occur. For example, the probability of a head

appearing when tossing a coin is 1/2, the expected number of times heads appear

is 4� 1=2 or 2. Actually, heads will not always appear twice when a coin is tossed

four times. But if it is tossed 50 times, the number of heads that appear will, on the

average, be close to 25 �50� 1=2 � 25). Note that closeness is computed on a

percentage basis: 20 is 20% of 25 away from 25 while 1 is 50% of 2 away from 2.

Sample space

The equally likely cases associated with an experiment represent the possible out-

comes. For example, the 36 equally likely cases associated with the throw of a pair

of dice are the 36 ways the dice may fall, and if 3 coins are tossed, there are 8

equally likely cases corresponding to the 8 possible outcomes. A list or set that

consists of all possible outcomes of an experiment is called a sample space and

each individual outcome is called a sample point (a point of the sample space).

The outcomes composing the sample space are required to be mutually exclusive.

As an example, when tossing a die the outcomes `an even number shows' and
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`number 4 shows' cannot be in the same sample space. Often there will be more

than one sample space that can describe the outcome of an experiment but there is

usually only one that will provide the most information. In a throw of a fair die,

one sample space is the set of all possible outcomes {1, 2, 3, 4, 5, 6}, and another

could be {even} or {odd}.

A ®nite sample space is one that has only a ®nite number of points. The points

of the sample space are weighted according to their probabilities. To see this, let

the points have the probabilities

p1; p2; . . . ; pN

with

p1 � p2 � � � � � pN � 1:

Suppose the ®rst n sample points are favorable to another event A. Then the

probability of A is de®ned to be

p�A� � p1 � p2 � � � � � pn:

Thus the points of the sample space are weighted according to their probabilities.

If each point has the sample probability 1/n, then p�A� becomes

p�A� � 1

N
� 1

N
� � � � � 1

N
� n

N

and this de®nition is consistent with that given by Eq. (14.1).

A sample space with constant probability is called uniform. Non-uniform sam-

ple spaces are more common. As an example, let us toss four coins and count the

number of heads. An appropriate sample space is composed of the outcomes

0 heads; 1 head; 2 heads; 3 heads; 4 heads;

with respective probabilities, or weights

1=16; 4=16; 6=16; 4=16; 1=16:

The four coins can fall in 2� 2� 2� 2 � 24, or 16 ways. They give no heads (all

land tails) in only one outcome, and hence the required probability is 1/16. There

are four ways to obtain 1 head: a head on the ®rst coin or on the second coin, and

so on. This gives 4/16. Similarly we can obtain the probabilities for the other

cases.

We can also use this simple example to illustrate the use of sample space. What

is the probability of getting at least two heads? Note that the last three sample

points are favorable to this event, hence the required probability is given by

6

16
� 4

16
� 1

16
� 11

16
:
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Methods of counting

In many applications the total number of elements in a sample space or in an

event needs to be counted. A fundamental principle of counting is this: if one

thing can be done in n diÿerent ways and another thing can be done in m diÿerent

ways, then both things can be done together or in succession in mn diÿerent ways.

As an example, in the example of throwing a pair of dice cited above, there are 36

equally like outcomes: the ®rst die can fall in six ways, and for each of these the

second die can also fall in six ways. The total number of ways is

6� 6� 6� 6� 6� 6 � 6� 6 � 36

and these are equally likely.

Enumeration of outcomes can become a lengthy process, or it can become a

practical impossibility. For example, the throw of four dice generates a sample

space with 64 � 1296 elements. Some systematic methods for the counting are

desirable. Permutation and combination formulas are often very useful.

Permutations

A permutation is a particular ordered selection. Suppose there are n objects and r

of these objects are arranged into r numbered spaces. Since there are n ways of

choosing the ®rst object, and after this is done there are nÿ 1 ways of choosing

the second object, . . . ; and ®nally nÿ �rÿ 1� ways of choosing the rth object, it

follows by the fundamental principle of counting that the number of diÿerent

arrangements or permutations is given by

nPr � n�nÿ 1��nÿ 2� � � � �nÿ r� 1�: �14:3�
where the product on the right-hand side has r factors. We call nPr the number of

permutations of n objects taken r at a time. When r � n, we have

nPn � n�nÿ 1��nÿ 2� � � � 1 � n!:

We can rewrite nPr in terms of factorials:

nPr � n�nÿ 1��nÿ 2� � � � �nÿ r� 1�

� n�nÿ 1��nÿ 2� � � � �nÿ r� 1� �nÿ r� � � � 2� 1

�nÿ r� � � � 2� 1

� n!

�nÿ r�! :

When r � n, we have nPn � n!=�nÿ n�! � n!=0!. This reduces to n! if we have

0! � 1 and mathematicians actually take this as the de®nition of 0!.

Suppose the n objects are not all diÿerent. Instead, there are n1 objects of one

kind (that is, indistinguishable from each other), n2 that is of a second kind; . . . ; nk
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of a kth kind so that n1 � n2 � � � � � nk � n. A natural question is that of how

many distinguishable arrangements are there of these n objects. Assuming that

there are N diÿerent arrangements, and each distinguishable arrangement appears

n1!, n2!; . . . times, where n1! is the number of ways of arranging the n1 objects,

similarly for n2!; . . . ; nk!: Then multiplying N by n1!n2!; . . . ; nk! we obtain the

number of ways of arranging the n objects if they were all distinguishable, that

is, nPn � n!:

Nn1!n2! � � � nk! � n! or N � n!=�n1!n2! . . . nk!�:
N is often written as nPn1n2:::nk , and then we have

nPn1n2:::nk �
n!

n1!n2! � � � nk!
: �14:4�

For example, given six coins: one penny, two nickels and three dimes, the number

of permutations of these six coins is

6P123 � 6!=1!2!3! � 60:

Combinations

A permutation is a particular ordered selection. Thus 123 is a diÿerent permuta-

tion from 231. In many problems we are interested only in selecting objects with-

out regard to order. Such selections are called combinations. Thus 123 and 231

are now the same combination. The notation for a combination is nCr which

means the number of ways in which r objects can be selected from n objects

without regard to order (also called the combination of n objects taken r at a

time). Among the nPr permutations there are r! that give the same combination.

Thus, the total number of permutations of n diÿerent objects selected r at a time is

r!nCr � nPr �
n!

�nÿ r�! :

Hence, it follows that

nCr �
n!

r!�nÿ r�! : �14:5�

It is straightforward to show that

nCr �
n!

r!�nÿ r�! �
n!

�nÿ �nÿ r��!�nÿ r�! � nCnÿr:

nCr is often written as

nCr �
n

r

� �
:
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The numbers (14.5) are often called binomial coe�cients because they arise in

the binomial expansion

�x� y�n � xn � n

1

� �
xnÿ1y� n

2

� �
xnÿ2y2 � � � � � n

n

� �
yn:

When n is very large a direct evaluation of n! is impractical. In such cases we use

Stirling's approximate formula

n! �
��������
2�n

p
nneÿn:

The ratio of the left hand side to the right hand side approaches 1 as n ! 1. For

this reason the right hand side is often called an asymptotic expansion of the left

hand side.

Fundamental probability theorems

So far we have calculated probabilities by directly making use of the de®nitions; it

is doable but it is not always easy. Some important properties of probabilities will

help us to cut short our computation works. These important properties are often

described in the form of theorems. To present these important theorems, let us

consider an experiment, involving two events A and B, with N equally likely

outcomes and let

n1 � number of outcomes in which A occurs; but not B;

n2 � number of outcomes in which B occurs; but not A;

n3 � number of outcomes in which both A and B occur;

n4 � number of outcomes in which neither A nor B occurs:

This covers all possibilities, hence n1 � n2 � n3 � n4 � N:

The probabilities of A and B occurring are respectively given by

P�A� � n1 � n3
N

; P�B� � n2 � n3
N

; �14:6�

the probability of either A or B (or both) occurring is

P�A� B� � n1 � n2 � n3
N

; �14:7�

and the probability of both A and B occurring successively is

P�AB� � n3
N

: �14:8�

Let us rewrite P�AB� as

P�AB� � n3
N

� n1 � n3
N

n3
n1 � n3

:
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Now �n1 � n3�=N is P�A� by de®nition. After A has occurred, the only possible

cases are the �n1 � n3� cases favorable to A. Of these, there are n3 cases favorable

to B, the quotient n3=�n1 � n3� represents the probability of B when it is known

that A occurred, PA�B�. Thus we have

P�AB� � P�A�PA�B�: �14:9�
This is often known as the theorem of joint (or compound) probability. In words,

the joint probability (or the compound probability) of A and B is the product of

the probability that A will occur times the probability that B will occur if A does.

PA�B� is called the conditional probability of B given A (that is, given that A has

occurred).

To illustrate the theorem of joint probability (14.9), we consider the probability

of drawing two kings in succession from a shu�ed deck of 52 playing cards. The

probability of drawing a king on the ®rst draw is 4/52. After the ®rst king has

been drawn, the probability of drawing another king from the remaining 51 cards

is 3/51, so that the probability of two kings is

4

52
� 3

51
� 1

221
:

If the events A and B are independent, that is, the information that A has

occurred does not in¯uence the probability of B, then PA�B� � P�B� and the

joint probability takes the form

P�AB� � P�A�P�B�; for independent events: �14:10�
As a simple example, let us toss a coin and a die, and let A be the event `head

shows' and B is the event `4 shows.' These events are independent, and hence the

probability that 4 and a head both show is

P�AB� � P�A�P�B� � �1=2��1=6� � 1=12:

Theorem (14.10) can be easily extended to any number of independent events

A;B;C; . . . :

Besides the theorem of joint probability, there is a second fundamental relation-

ship, known as the theorem of total probability. To present this theorem, let us go

back to Eq. (14.4) and rewrite it in a slightly diÿerent form

P�A� B� � n1 � n2 � n3
N

� n1 � n2 � 2n3 ÿ n3
N

� �n1 � n3� � �n2 � n3� ÿ n3
N

� n1 � n3
N

� n2 � n3
N

ÿ n3
N

� P�A� � P�B� ÿ P�AB�;

P�A� B� � P�A� � P�B� ÿ P�AB�: �14:11�
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This theorem can be represented diagrammatically by the intersecting points sets

A and B shown in Fig. 14.1. To illustrate this theorem, consider the simple

example of tossing two dice and ®nd the probability that at least one die gives

2. The probability that both give 2 is 1/36. The probability that the ®rst die gives 2

is 1/6, and similarly for the second die. So the probability that at least one gives 2

is

P�A� B� � 1=6� 1=6ÿ 1=36 � 11=36:

For mutually exclusive events, that is, for events A, B which cannot both occur,

P�AB� � 0 and the theorem of total probability becomes

P�A� B� � P�A� � P�B�; for mutually exclusive events: �4:12�
For example, in the toss of a die, `4 shows' (event A) and `5 shows' (event B) are

mutually exclusive, the probability of getting either 4 or 5 is

P�A� B� � P�A� � P�B� � 1=6� 1=6 � 1=3:

The theorems of total and joint probability for uniform sample spaces estab-

lished above are also valid for arbitrary sample spaces. Let us consider a ®nite

sample space, its events Ei are so numbered that E1;E2; . . . ;Ej are favorable to

A;Ej�1; . . . ;Ek are favorable to both A and B, and Ek�1; . . . ;Em are favorable to B

only. If the associated probabilities are pi, then Eq. (14.11) is equivalent to the

identity

p1 � � � � � pm � �p1 � � � � � pj � pj�1 � � � � � pk�
� �pj�1 � � � � � pk � pk�1 � � � � � pm� ÿ �pj�1 � � � � � pm�:

The sums within the three parentheses on the right hand side represent, respec-

tively, P�A�P�B�; and P�AB� by de®nition. Similarly, we have

P�AB� � pj�1 � � � � � pk

� �p1 � � � � � pk�
pj�1

p1 � � � � � pk
� � � � � pk

p1 � � � � � pk

� �
� P�A�PA�B�;

which is Eq. (14.9).
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Random variables and probability distributions

As demonstrated above, simple probabilities can be computed from elementary

considerations. We need more e�cient ways to deal with probabilities of whole

classes of events. For this purpose we now introduce the concepts of random

variables and a probability distribution.

Random variables

A process such as spinning a coin or tossing a die is called random since it is

impossible to predict the ®nal outcome from the initial state. The outcomes of a

random process are certain numerically valued variables that are often called

random variables. For example, suppose that three dimes are tossed at the

same time and we ask how many heads appear. The answer will be 0, 1, 2, or 3

heads, and the sample space S has 8 elements:

S � fTTT ;HTT ;THT ;TTH;HHT ;HTH;THH;HHHg:
The random variable X in this case is the number of heads obtained and it

assumes the values

0; 1; 1; 1; 2; 2; 2; 3:

For instance, X � 1 corresponds to each of the three outcomes:

HTT ;THT ;TTH. That is, the random variable X can be thought of as a function

of the number of heads appear.

A random variable that takes on a ®nite or countable in®nite number of values

(that is it has as many values as the natural numbers 1; 2; 3; . . .) is called a discrete

random variable while one that takes on a non-countable in®nite number of

values is called a non-discrete or continuous random variable.

Probability distributions

A random variable, as illustrated by the simple example of tossing three dimes at

the same time, is a numerical-valued function de®ned on a sample space. In

symbols,

X�si� � xi i � 1; 2; . . . ; n; �14:13�
where si are the elements of the sample space and xi are the values of the random

variable X. The set of numbers xi can be ®nite or in®nite.

In terms of a random variable we will write P�X � xi� as the probability that

the random variable X takes the value xi, and P�X < xi� as the probability that

the random variable takes values less than xi, and so on. For simplicity, we often

write P�X � xi� as pi. The pairs �xi; pi� for i � 1; 2; 3; . . . de®ne the probability
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distribution or probability function for the random variable X. Evidently any

probability distribution pi for a discrete random variable must satisfy the follow-

ing conditions:

(i) 0 � pi � 1;

(ii) the sum of all the probabilities must be unity (certainty),
P

i pi � 1:

Expectation and variance

The expectation or expected value or mean of a random variable is de®ned in

terms of a weighted average of outcomes, where the weighting is equal to the

probability pi with which xi occurs. That is, if X is a random variable that can take

the values x1; x2; . . . ; with probabilities p1; p2; . . . ; then the expectation or

expected value E�X� is de®ned by

E�X� � p1x1 � p2x2 � � � � �
X
i

pixi: �14:14�

Some authors prefer to use the symbol � for the expectation value E�X�. For the
three dimes tossed at the same time, we have

xi � 0 1 2 3

pi � 1=8 3=8 3=8 1=8

and

E�X� � 1

8
� 0� 3

8
� 1� 3

8
� 2� 1

8
� 3 � 3

2
:

We often want to know how much the individual outcomes are scattered away

from the mean. A quantity measure of the spread is the diÿerence X ÿ E�X� and
this is called the deviation or residual. But the expectation value of the deviations

is always zero:

E�X ÿ E�X�� �
X
i

�xi ÿ E�X��pi �
X
i

xipi ÿ E�X�
X
i

pi

� E�X� ÿ E�X� � 1 � 0:

This should not be particularly surprising; some of the deviations are positive, and

some are negative, and so the mean of the deviations is zero. This means that the

mean of the deviations is not very useful as a measure of spread. We get around

the problem of handling the negative deviations by squaring each deviation,

thereby obtaining a quantity that is always positive. Its expectation value is called

the variance of the set of observations and is denoted by �2

�2 � E��X ÿ E�X��2� � E��X ÿ ��2�: �14:15�
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The square root of the variance, �, is known as the standard deviation, and it is

always positive.

We now state some basic rules for expected values. The proofs can be found in

any standard textbook on probability and statistics. In the following c is a con-

stant, X and Y are random variables, and h�X� is a function of X :

(1) E�cX� � cE�X�;
(2) E�X � Y� � E�X� � E�Y�;
(3) E�XY� � E�X�E�Y� (provided X and Y are independent);

(4) E�h�X�� � P
i h�xi�pi (for a ®nite distribution).

Special probability distributions

We now consider some special probability distributions in which we will use all

the things we have learned so far about probability.

The binomial distribution

Before we discuss the binomial distribution, let us introduce a term, the Bernoulli

trials. Consider an experiment such as spinning a coin or throw a die repeatedly.

Each spin or toss is called a trial. In any single trial there will be a probability p

associated with a particular event (or outcome). If p is constant throughout (that

is, does not change from one trial to the next), such trials are then said to be

independent and are known as Bernoulli trials.

Now suppose that we have n independent events of some kind (such as tossing a

coin or die), each of which has a probability p of success and probability of

q � �1ÿ p� of failure. What is the probability that exactly m of the events will

succeed? If we select m events from n, the probability that these m will succeed and

all the rest �nÿm� will fail is pmqnÿm. We have considered only one particular

group or combination of m events. How many combinations of m events can be

chosen from n? It is the number of combinations of n things taken m at a time:

nCm. Thus the probability that exactly m events will succeed from a group of n is

f �m� � P�X � m� � nCmp
mq�nÿm�

� n!

m!�nÿm�! p
mq�nÿm�: �14:16�

This discrete probability function (14.16) is called the binomial distribution for X,

the random variable of the number of successes in the n trials. It gives the prob-

ability of exactly m successes in n independent trials with constant probability p.

Since many statistical studies involve repeated trials, the binomial distribution has

great practical importance.
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Why is the discrete probability function (14.16) called the binomial distribu-

tion? Since for m � 0; 1; 2; . . . ; n it corresponds to successive terms in the binomial

expansion

�q� p�n � qn � nC1q
nÿ1p� nC2q

nÿ2p2 � � � � � pn �
Xn
m�0

nCmp
mqnÿm:

To illustrate the use of the binomial distribution (14.16), let us ®nd the prob-

ability that a one will appear exactly 4 times if a die is thrown 10 times. Here

n � 10, m � 4, p � 1=6, and q � �1ÿ p� � 5=6. Hence the probability is

f �4� � P�X � 4� � 10!

4!6!

1

6

� �4
5

6

� �6

� 0:0543:

A few examples of binomial distributions, computed from Eq. (14.16), are

shown in Figs. 14.2, and 14.3 by means of histograms.

One of the key requirements for a probability distribution is that

Xn
m�o

f �m� �
Xn
m�o

nCmp
mqnÿm � 1: �14:17�

To show that this is in fact the case, we note that

Xn
m�o

nCmp
mqnÿm
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is exactly equal to the binomial expansion of �q� p�n. But here q� p � 1, so

�q� p�n � 1 and our proof is established.

The mean (or average) number of successes, �m, is given by

�m �
Xn
m�0

mnCmp
m�1ÿ p�nÿm: �14:18�

The sum ranges from m � 0 to n because in every one of the sets of trials the same

number of successes between 0 and n must occur. It is similar to Eq. (14.17); the

diÿerence is that the sum in Eq. (14.18) contains an extra factor n. But we can

convert it into the form of the sum in Eq. (14.17). Diÿerentiating both sides of Eq.

(14.17) with respect to p, which is legitimate as the equation is true for all p

between 0 and 1, givesX
nCm�mpmÿ1�1ÿ p�nÿm ÿ �nÿm�pm�1ÿ p�nÿmÿ1� � 0;

where we have dropped the limits on the sum, remembering that m ranges from 0

to n. The last equation can be rewritten asX
mnCmp

mÿ1�1ÿ p�nÿm �
X

�nÿm�nCmp
m�1ÿ p�nÿmÿ1

� n
X

nCmp
m�1ÿ p�nÿmÿ1 ÿ

X
mnCmp

m�1ÿ p�nÿmÿ1

or X
mnCm�pmÿ1�1ÿ p�nÿm � pm�1ÿ p�nÿmÿ1� � n

X
nCmp

m�1ÿ p�nÿmÿ1:
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Now multiplying both sides by p�1ÿ p� we getX
mnCm��1ÿ p�pm�1ÿ p�nÿm � pm�1�1ÿ p�nÿm� � np

X
nCmp

m�1ÿ p�nÿm:

Combining the two terms on the left hand side, and using Eq. (14.17) in the right

hand side we have X
mnCmp

m�1ÿ p�nÿm �
X

mf �m� � np: �14:19�

Note that the left hand side is just our original expression for �m, Eq. (14.18). Thus

we conclude that

�m � np �14:20�
for the binomial distribution.

The variance �2 is given by

�2 �
X

�mÿ �m�2f �m� �
X

�mÿ np�2f �m�; �14:21�

here we again drop the summation limits for convenience. To evaluate this sum

we ®rst rewrite Eq. (14.21) as

�2 �
X

�m2 ÿ 2mnp� n2p2� f �m�
�

X
m2f �m� ÿ 2np

X
mf �m� � n2p2

X
f �m�:

This reduces to, with the help of Eqs. (14.17) and (14.19),

�2 �
X

m2f �m� ÿ �np�2: �14:22�

To evaluate the ®rst term on the right hand side, we ®rst diÿerentiate Eq. (14.19):X
mnCm�mpmÿ1�1ÿ p�nÿm ÿ �nÿm�pm�1ÿ p�nÿmÿ1� � p;

then multiplying by p�1ÿ p� and rearranging terms as beforeX
m2

nCmp
m�1ÿ p�nÿm ÿ np

X
mnCmp

m�1ÿ p�nÿm � np�1ÿ p�:

By using Eq. (14.19) we can simplify the second term on the left hand side and

obtain X
m2

nCmp
m�1ÿ p�nÿm � �np�2 � np�1ÿ p�

or X
m2f �m� � np�1ÿ p� np�:

Inserting this result back into Eq. (14.22), we obtain

�2 � np�1ÿ p� np� ÿ �np�2 � np�1ÿ p� � npq; �14:23�
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and the standard deviation �;

� � ��������
npq

p
: �14:24�

Two diÿerent limits of the binomial distribution for large n are of practical

importance: (1) n ! 1 and p ! 0 in such a way that the product np � � remains

constant; (2) both n and pn are large. The ®rst case will result a new distribution,

the Poisson distribution, and the second cases gives us the Gaussian (or Laplace)

distribution.

The Poisson distribution

Now np � �; so p � �=n. The binomial distribution (14.16) then becomes

f �m� � P�X � m� � n!

m!�nÿm�!
�

n

� �m

1ÿ �

n

� �nÿm

� n�nÿ 1��nÿ 2� � � � �nÿm� 1�
m!nm

�m 1ÿ �

n

� �nÿm

� 1ÿ 1

n

� �
1ÿ 2

n

� �
� � � 1ÿmÿ 1

n

� �
�m

m!
1ÿ �

n

� �nÿm

: �14:25�

Now as n ! 1,

1ÿ 1

n

� �
1ÿ 2

n

� �
� � � 1ÿmÿ 1

n

� �
! 1;

while

1ÿ �

n

� �nÿm

� 1ÿ �

n

� �n

1ÿ �

n

� �ÿm

! eÿ�
ÿ �

1� � � eÿ�;

where we have made use of the result

lim
n!1 1� �

n

� �n

� e�:

It follows that Eq. (14.25) becomes

f �m� � P�X � m� � �meÿ�

m!
: �14:26�

This is known as the Poisson distribution. Note that
P1

m�0 P�X � m� � 1; as it

should.
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The Poisson distribution has the mean

E�X� �
X1
m�0

m�meÿ�

m!
�

X1
m�1

�meÿ�

�mÿ 1�! � �
X1
m�0

�meÿ�

m!

� �eÿ�
X1
m�0

�m

m!
� �eÿ�e� � �; �14:27�

where we have made use of the result

X1
m�0

�m

m!
� e�:

The variance �2 of the Poisson distribution is

�2 � Var�X� � E��X ÿ E�X��2� � E�X2� ÿ �E�X��2

�
X1
m�0

m2�meÿ�

m!
ÿ �2 � eÿ�

X1
m�1

m�m

�mÿ 1�!ÿ �2

� eÿ��
d

d�
�e�
ÿ �ÿ �2 � �: �14:28�

To illustrate the use of the Poisson distribution, let us consider a simple exam-

ple. Suppose the probability that an individual suÿers a bad reaction from a ¯u

injection is 0.001; what is the probability that out of 2000 individuals (a) exactly 3,

(b) more than 2 individuals will suÿer a bad reaction? Now X denotes the number

of individuals who suÿer a bad reaction and it is binomially distributed. However,

we can use the Poisson approximation, because the bad reactions are assumed to

be rare events. Thus

P�X � m� � �meÿ�

m!
; with � � mp � �2000��0:001� � 2 :

(a) P�X � 3� � 23eÿ2

3!
� 0:18;

�b� P�X > 2� � 1ÿ �P�X � 0� � P�X � 1� � P�X � 2��

� 1ÿ 20eÿ2

0!
� 21eÿ2

1!
� 22eÿ2

2!

" #

� 1ÿ 5eÿ2 � 0:323:

An exact evaluation of the probabilities using the binomial distribution would

require much more labor.
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The Poisson distribution is very important in nuclear physics. Suppose that we

have n radioactive nuclei and the probability for any one of these to decay in a

given interval of time T is p, then the probability that m nuclei will decay in the

interval T is given by the binomial distribution. However, n may be a very large

number (such as 1023), and p may be the order of 10ÿ20, and it is impractical to

evaluate the binomial distribution with numbers of these magnitudes.

Fortunately, the Poisson distribution can come to our rescue.

The Poisson distribution has its own signi®cance beyond its connection with the

binomial distribution and it can be derived mathematically from elementary con-

siderations. In general, the Poisson distribution applies when a very large number

of experiments is carried out, but the probability of success in each is very small,

so that the expected number of successes is a ®nite number.

The Gaussian (or normal) distribution

The second limit of the binomial distribution that is of interest to us results when

both n and pn are large. Clearly, we assume that m, n, and nÿm are large enough

to permit the use of Stirling's formula (n! � ��������
2�n

p
nneÿn). Replacing m!, n!, and

(nÿm)! by their approximations and after simpli®cation, we obtain

P�X � m� � np

m

� �m nq

nÿm

� �nÿm
�������������������������

n

2�m�nÿm�
r

: �14:29�

The binomial distribution has the mean value np (see Eq. (14.20). Now let �

denote the deviation of m from np; that is, � � mÿ np. Then nÿm � nqÿ �;

and Eq. (14.29) becomes

P�X � m� � 1�������������������������������������������������������
2�npq 1� �=np� � 1ÿ �=np� �p 1� �

np

� �ÿ�np���
1ÿ �

nq

� �ÿ�nq���

or

P�X � m�A � 1� �

np

� �ÿ�np���
1ÿ �

nq

� �ÿ�nqÿ��
;

where

A �
�����������������������������������������������������
2�npq 1� �

np

� �
1ÿ �

nq

� �s
:

Then

log P�X � m�A� � � ÿ�np� �� log 1� �=np� � ÿ �nqÿ �� log�1ÿ �=nq�:
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Assuming �j j < npq, so that �=npj j < 1 and �=nqj j < 1, this permits us to write the

two convergent series

log 1� �

np

� �
� �

np
ÿ �2

2n2p2
� �3

3n3p3
ÿ � � � ;

log 1ÿ �

nq

� �
� ÿ �

nq
ÿ �2

2n2q2
ÿ �3

3n3q3
ÿ � � � :

Hence

log P�X � m�A� � � ÿ �2

2npq
ÿ �3�p2 ÿ q2�
2� 3n2p2q2

ÿ �4�p3 � q3�
3� 4n3p3q3

ÿ � � � :

Now, if j�j is so small in comparison with npq that we ignore all but the ®rst term

on the right hand side of this expansion and A can be replaced by �2�npq�1=2, then
we get the approximation formula

P�X � m� � 1�������������
2�npq

p eÿ�2=2npq: �14:30�

When � � ��������
npq

p
; Eq. (14.30) becomes

f �m� � P�X � m� � 1������
2�

p
�
eÿ�2=2�2 : �14:31�

This is called the Guassian, or normal, distribution. It is a very good approxima-

tion even for quite small values of n.

The Gaussian distribution is a symmetrical bell-shaped distribution about its

mean �, and � is a measure of the width of the distribution. Fig. 14.4 gives a

comparison of the binomial distribution and the Gaussian approximation.

The Gaussian distribution also has a signi®cance far beyond its connection with

the binomial distribution. It can be derived mathematically from elementary con-

siderations, and is found to agree empirically with random errors that actually
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occur in experiments. Everyone believes in the Gaussian distribution: mathe-

maticians think that physicists have veri®ed it experimentally and physicists

think that mathematicians have proved it theoretically.

One of the main uses of the Gaussian distribution is to compute the probability

Xm2

m�m1

f �m�

that the number of successes is between the given limits m1 and m2. Eq. (14.31)

shows that the above sum may be approximated by a sum

X 1������
2�

p
�
eÿ�2=2�2 �14:32�

over appropriate values of �. Since � � mÿ np, the diÿerence between successive

values of � is 1, and hence if we let z � �=�, the diÿerence between successive

values of z is �z � 1=�. Thus Eq. (14.32) becomes the sum over z,

X 1������
2�

p eÿz2=2�z: �14:33�

As �z ! 0, the expression (14.33) approaches an integral, which may be evalu-

ated in terms of the function

��z� �
Z z

0

1������
2�

p eÿz2=2dz � 1������
2�

p
Z z

0

eÿz2=2dz: �14:34�

The function ���z� is related to the extensively tabulated error function, erf(z):

erf�z� � 2���
�

p
Z z

0

eÿz2dz; and ��z� � 1

2
erf

z���
2

p
� �

:

These considerations lead to the following important theorem, which we state

without proof: If m is the number of successes in n independent trials with con-

stant probability p, the probability of the inequality

z1 �
mÿ np��������

npq
p � z2 �14:35�

approaches the limit

1������
2�

p
Z z2

z1

eÿz2=2dz � ��z2� ÿ ��z1� �14:36�

as n ! 1. This theorem is known as Laplace±de Moivre limit theorem.

To illustrate the use of the result (14.36), let us consider the simple example of a

die tossed 600 times, and ask what the probability is that the number of ones will
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be between 80 and 110. Now n � 600, p � 1=6, q � 1ÿ p � 5=6, and m varies

from 80 to 110. Hence

z1 �
80ÿ 100�������������������
100�5=6�p � ÿ2:19 and z1 �

110ÿ 100�������������������
100�5=6�p � 1:09:

The tabulated error function gives

��z2� � ��1:09� � 0:362;

and

��z1� � ��ÿ2:19� � ÿ��2:19� � ÿ0:486;

where we have made use of the fact that ��ÿz� � ÿ��z�; you can check this with

Eq. (14.34). So the required probability is approximately given by

0:362ÿ �ÿ0:486� � 0:848:

Continuous distributions

So far we have discussed several discrete probability distributions: since measure-

ments are generally made only to a certain number of signi®cant ®gures, the

variables that arise as the result of an experiment are discrete. However, discrete

variables can be approximated by continuous ones within the experimental error.

Also, in some applications a discrete random variable is inappropriate. We now

give a brief discussion of continuous variables that will be denoted by x. We shall

see that continuous variables are easier to handle analytically.

Suppose we want to choose a point randomly on the interval 0 � x � 1, how

shall we measure the probabilities associated with that event? Let us divide

this interval �0; 1� into a number of subintervals, each of length �x � 0:1 (Fig.

14.5), the point x is then equally likely to be in any of these subintervals. The

probability that 0:3 < x < 0:6, for example, is 0.3, as there are three favorable

cases. The probability that 0:32 < x < 0:64 is found to be 0:64ÿ 0:32 � 0:32

when the interval is divided into 100 parts, and so on. From these we see that

the probability for x to be in a given subinterval of (0, 1) is the length of that

subinterval. Thus

P�a < x < b� � bÿ a; 0 � a � b � 1: �14:37�
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The variable x is said to be uniformly distributed on the interval 0 � x � 1.

Expression (14.37) can be rewritten as

P�a < x < b� �
Z b

a

dx �
Z b

a

1dx:

For a continuous variable it is customary to speak of the probability density,

which in the above case is unity. More generally, a variable may be distributed

with an arbitrary density f �x�. Then the expression

f �z�dz
measures approximately the probability that x is on the interval

z < x < z� dz:

And the probability that x is on a given interval (a; b) is

P�a < x < b� �
Z b

a

f �x�dx �14:38�

as shown in Fig. 14.6.

The function f �x� is called the probability density function and has the proper-

ties:

(1) f �x� � 0; �ÿ1 < x < 1�;
(2)

Z 1

ÿ1
f �x�dx � 1; a real-valued random variable must lie between �1.

The function

F�x� � P�X � x� �
Z x

ÿ1
f �u�du �14:39�

de®nes the probability that the continuous random variable X is in the interval

(ÿ1; x�, and is called the cumulative distributive function. If f �x� is continuous,
then Eq. (14.39) gives

F 0�x� � f �x�
and we may speak of a probability diÿerential dF�x� � f �x�dx:
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By analogy with those for discrete random variables the expected value or mean

and the variance of a continuous random variable X with probability

density function f �x� are de®ned, respectively, to be:

E�X� � � �
Z 1

ÿ1
xf �x�dx; �14:40�

Var�X� � �2 � E��X ÿ ��2� �
Z 1

ÿ1
�xÿ ��2f �x�dx: �14:41�

The Gaussian (or normal) distribution

One of the most important examples of a continuous probability distribution is

the Gaussian (or normal) distribution. The density function for this distribution is

given by

f �x� � 1

�
������
2�

p eÿ�xÿ��2=2�2 ; ÿ1 < x < 1; �14:42�

where � and � are the mean and standard deviation, respectively. The correspond-

ing distribution function is

F�x� � P�X � x� � 1

�
������
2�

p
Z x

ÿ1
eÿ�uÿ��2=2�2du: �14:43�

The standard normal distribution has mean zero �� � 0� and standard devia-

tion (� � 1)

f �z� � 1������
2�

p eÿz2=2: �14:44�

Any normal distribution can be `standardized' by considering the substitution

z � �xÿ ��=� in Eqs. (14.42) and (14.43). A graph of the density function (14.44),

known as the standard normal curve, is shown in Fig. 14.7. We have also indi-

cated the areas within 1, 2 and 3 standard deviations of the mean (that is between

z � ÿ1 and �1, ÿ2 and �2, ÿ3 and �3):

P�ÿ1 � Z � 1� � 1������
2�

p
Z 1

ÿ1

eÿz2=2dz � 0:6827;

P�ÿ2 � Z � 2� � 1������
2�

p
Z 2

ÿ2

eÿz2=2dz � 0:9545;

P�ÿ3 � Z � 3� � 1������
2�

p
Z 3

ÿ3

eÿz2=2dz � 0:9973:
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The above three de®nite integrals can be evaluated by making numerical approx-

imations. A short table of the values of the integral

F�x� � 1������
2�

p
Z x

0

eÿt2dt � 1

2

1������
2�

p
Z x

ÿx

eÿt2dt

� �
is included in Appendix 3. A more complete table can be found in Tables of

Normal Probability Functions, National Bureau of Standards, Washington, DC,

1953.

The Maxwell±Boltzmann distribution

Another continuous distribution that is very important in physics is the Maxwell±

Boltzmann distribution

f �x� � 4a

���
a

�

r
x2eÿax2 ; 0 � x < 1; a > 0; �14:45�

where a � m=2kT , m is the mass, T is the temperature (K), k is the Boltzmann

constant, and x is the speed of a gas molecule.

Problems

14.1 If a pair of dice is rolled what is the probability that a total of 8 shows?

14.2 Four coins are tossed, and we are interested in the number of heads. What

is the probability that there is an odd number of heads? What is the prob-

ability that the third coin will land heads?
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14.3 Two coins are tossed. A reliable witness tells us `at least 1 coin showed

heads.' What eÿect does this have on the uniform sample space?

14.4 The tossing of two coins can be described by the following sample space:

Event no heads one head two head

Probability 1/4 1/2 1/4

What happens to this sample space if we know at least one coin showed

heads but have no other speci®c information?

14.5 Two dice are rolled. What are the elements of the sample space? What is the

probability that a total of 8 shows? What is the probability that at least one

5 shows?

14.6 A vessel contains 30 black balls and 20 white balls. Find the probability of

drawing a white ball and a black ball in succession from the vessel.

14.7 Find the number of diÿerent arrangements or permutations consisting of

three letters each which can be formed from the seven letters A, B, C, D, E,

F, G.

14.8 It is required to sit ®ve boys and four girls in a row so that the girls occupy

the even seats. How many such arrangements are possible?

14.9 A balanced coin is tossed ®ve times. What is the probability of obtaining

three heads and two tails?

14.10 How many diÿerent ®ve-card hands can be dealt from a shu�ed deck of 52

cards? What is the probability that a hand dealt at random consists of ®ve

spades?

14.11 (a) Find the constant term in the expansion of (x2 � 1=x�12:
(b) Evaluate 50!.

14.12 A box contains six apples of which two are spoiled. Apples are selected at

random without replacement until a spoiled one is found. Find the

probability distribution of the number of apples drawn from the box,

and present this distribution graphically.

14.13 A fair coin is tossed six times. What is the probability of getting exactly two

heads?

14.14 Suppose three dice are rolled simultaneously. What is the probability that

two 5s appear with the third face showing a diÿerent number?

14.15 Verify that
P1

m�0 P�X � m� � 1 for the Poisson distribution.

14.16 Certain processors are known to have a failure rate of 1.2%. There are

shipped in batches of 150. What is the probability that a batch has exactly

one defective processor? What is the probability that it has two?

14.17 A Geiger counter is used to count the arrival of radioactive particles. Find:

(a) the probability that in time t no particles will be counted;

(b) the probability of exactly one count in time t.
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14.18 Given the density function f �x�

f �x� � kx2 0 < x < 3

0 otherwise
:

(

(a) ®nd the constant k;

(b) compute P�1 < x < 2�;
(c) ®nd the distribution function and use it to ®nd P�1 < x � �2��:
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Appendix 1

Preliminaries (review of
fundamental concepts)

This appendix is for those readers who need a review; a number of fundamental

concepts or theorem will be reviewed without giving proofs or attempting to

achieve completeness.

We assume that the reader is already familiar with the classes of real

numbers used in analysis. The set of positive integers (also known as natural

numbers) 1, 2, . . . ; n admits the operations of addition without restriction, that

is, they can be added (and therefore multiplied) together to give other positive

integers. The set of integers 0, �1;�2; . . . ;�n admits the operations of addition

and subtraction among themselves. Rational numbers are numbers of the form

p=q, where p and q are integers and q 6� 0. Examples of rational numbers are 2/3,

ÿ10=7. This set admits the further property of division among its members. The

set of irrational numbers includes all numbers which cannot be expressed as the

quotient of two integers. Examples of irrational numbers are
���
2

p
;

�����
113

p
; � and any

number of the form
��������
a=bn

p
, where a and b are integers which are perfect nth

powers.

The set of real numbers contains all the rationals and irrationals. The important

property of the set of real numbers fxg is that it can be put into (1:1) cor-

respondence with the set of points fPg of a line as indicated in Fig. A.1.

The basic rules governing the combinations of real numbers are:

commutative law: a� b � b� a; a � b � b � a;
associative law: a� �b� c� � �a� b� � c; a � �b � c� � �a � b� � c;
distributive law: a � �b� c� � a � b� a � c;
index law aman � am�n; am=an � amÿn �a 6� 0�;

where a; b; c, are algebraic symbols for the real numbers.

Problem A1.1

Prove that
���
2

p
is an irrational number.
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(Hint: Assume the contrary, that is, assume that
���
2

p � p=q, where p and q are

positive integers having no common integer factor.)

Inequalities

If x and y are real numbers, x > ymeans that x is greater than y; and x < ymeans

that x is less than y. Similarly, x � y implies that x is either greater than or equal

to y. The following basic rules governing the operations with inequalities:

(1) Multiplication by a constant: If x > y, then ax > ay if a is a positive num-

ber, and ax < ay if a is a negative number.

(2) Addition of inequalities: If x; y; u; v are real numbers, and if x > y, and

u > v, than x� u > y� v.

(3) Subtraction of inequalities: If x > y, and u > v, we cannot deduce that

�xÿ u� > �yÿ v�. Why? It is evident that �xÿ u� ÿ �yÿ v� �
�xÿ y� ÿ �uÿ v� is not necessarily positive.

(4) Multiplication of inequalities: If x > y, and u > v, and x; y; u; v are all posi-

tive, then xu > yv. When some of the numbers are negative, then the result is

not necessarily true.

(5) Division of inequalities: x > y and u > v do not imply x=u > y=v.

When we wish to consider the numerical value of the variable x without regard

to its sign, we write jxj and read this as `absolute or mod x'. Thus the inequality

jxj � a is equivalent to a � x � � a.

Problem A1.2

Find the values of x which satisfy the following inequalities:

(a) x3 ÿ 7x2 � 21xÿ 27 > 0,

(b) j7ÿ 3xj < 2,

(c)
5

5xÿ 1
>

2

2x� 1
. (Warning: cross multiplying is not permitted.)

Problem A1.3

If a1; a2; . . . ; an and b1; b2; . . . ; bn are any real numbers, prove Schwarz's

inequality:

�a1b1 � a2b2 � � � � � anbn�2 � �a21 � a22 � � � � � ann��b21 � b22 � � � � � bnn�:
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Problem A1.4

Show that

1

2
� 1

4
� 1

8
� � � � � 1

2nÿ1
� 1 for all positive integers n > 1:

If x1; x2; . . . ; xn are n positive numbers, their arithmetic mean is de®ned by

A � 1

n

Xn
k�1

xk �
x1 � x2 � � � � � xn

n

and their geometric mean by

G � n

������������Yn
k�1

xk

s
� ���������������������

x1x2 � � � xnn
p

;

where
P

and
Q

are the summation and product signs. The harmonic mean H is

sometimes useful and it is de®ned by

1

H
� 1

n

Xn
k�1

1

xk
� 1

n

1

x1
� 1

x2
� � � � � 1

xn

� �
:

There is a basic inequality among the three means: A � G � H, the equality sign

occurring when x1 � x2 � � � � � xn.

Problem A1.5

If x1 and x2 are two positive numbers, show that A � G � H.

Functions

We assume that the reader is familiar with the concept of functions and the

process of graphing functions.

A polynomial of degree n is a function of the form

f �x� � pn�x� � a0x
n � a1x

nÿ1 � a2x
nÿ2 � � � � � an �aj � constant; a0 6� 0�:

A polynomial can be diÿerentiated and integrated. Although we have written

aj � constant, they might still be functions of some other variable independent

of x. For example,

tÿ3x3 � sin tx2 � ��
t

p
x� t

is a polynomial function of x (of degree 3) and each of the as is a function of a

certain variable t: a0 � tÿ3; a1 � sin t; a2 � t1=2; a3 � t.

The polynomial equation f �x� � 0 has exactly n roots provided we count repe-

titions. For example, x3 ÿ 3x2 � 3xÿ 1 � 0 can be written �xÿ 1�3 � 0 so that

the three roots are 1, 1, 1. Note that here we have used the binomial theorem

�a� x�n � an � nanÿ1x� n�nÿ 1�
2!

anÿ2x2 � � � � � xn:
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A rational function is of the form f �x� � pn�x�=qn�x�, where pn�x� and qn�x�
are polynomials.

A transcendental function is any function which is not algebraic, for example,

the trigonometric functions sin x, cos x, etc., the exponential functions ex, the

logarithmic functions log x, and the hyperbolic functions sinh x, cosh x, etc.

The exponential functions obey the index law. The logarithmic functions are

inverses of the exponential functions, that is, if ax � y then x � loga y, where a is

called the base of the logarithm. If a � e, which is often called the natural base of

logarithms, we denote loge x by ln x, called the natural logarithm of x. The funda-

mental rules obeyed by logarithms are

ln�mn� � lnm� ln n; ln�m=n� � lnmÿ ln n; and lnmp � p lnm:

The hyperbolic functions are de®ned in terms of exponential functions as

follows

sinh x � ex ÿ eÿx

2
; cosh x � ex � eÿx

2
;

tanh x � sinh x

cosh x
� ex ÿ eÿx

ex � ex
; coth x � 1

tanh x
� ex � eÿx

ex ÿ eÿx ;

sech x � 1

cosh x
� 2

ex � eÿx ; cosech x � 1

sinh x
� 2

ex ÿ eÿx :

Rough graphs of these six functions are given in Fig. A1.2.

Some fundamental relationships among these functions are as follows:

cosh2 xÿ sinh2 x � 1; sech2 x� tanh2 x � 1; coth2 xÿ cosech2 x � 1;

sinh�x� y� � sinh x cosh y� cosh x sinh y;

cosh�x� y� � cosh x cosh y� sinh x sinh y;

tanh�x� y� � tanh x� tanh y

1� tanh x tanh y
:
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Problem A1.6

Using the rules of exponents, prove that ln �mn� � lnm� ln n:

Problem A1.7

Prove that: �a� sin2 x � 1
2 �1ÿ cos 2x�; cos2 x � 1

2 �1� cos 2x�, and (b) A cos x�
B sin x �

�����������������
A2 � B2

p
sin�x� ��, where tan � � A=B

Problem A1.8

Prove that: �a� cosh2 xÿ sinh2 x � 1, and (b) 2x� tanh2 x � 1.

Limits

We are sometimes required to ®nd the limit of a function f �x� as x approaches

some particular value �:

lim
x!�

f �x� � l:

This means that if jxÿ �j is small enough, j f �x� ÿ lj can be made as small as we

please. A more precise analytic description of limx!� f �x� � l is the following:

For any " > 0 (however small) we can always ®nd a number �

(which, in general, depends upon ") such that f �x� ÿ lj j < "

whenever xÿ �j j < �.

As an example, consider the limit of the simple function f �x� � 2ÿ 1=�xÿ 1� as
x ! 2. Then

lim
x!2

f �x� � 1

for if we are given a number, say " � 10ÿ3, we can always ®nd a number � which is

such that

2ÿ 1

xÿ 1

� �
ÿ 1 < 10ÿ3 �A1:1�

provided jxÿ 2j < �. In this case (A1.1) will be true if 1=�xÿ 1� > 1ÿ 10ÿ3 �
0:999. This requires xÿ 1 < �0:999�ÿ1, or xÿ 2 < �0:999�ÿ1 ÿ 1. Thus we need

only take � � �0:999�ÿ1 ÿ 1.

The function f �x� is said to be continuous at � if limx!� f �x� � l. If f �x� is con-
tinuousat eachpointofan interval suchasa � x � bora < x � b, etc., it is said tobe

continuous in the interval (for example, a polynomial is continuous at all x).

The de®nition implies that limx!�ÿ0 f �x� � limx!��0 f �x� � f ��� at all points
� of the interval (a; b), but this is clearly inapplicable at the endpoints a and b. At

these points we de®ne continuity by

lim
x!a�0

f �x� � f �a� and lim
x!bÿ0

f �x� � f �b�:

510

APPENDIX 1 PRELIMINARIES



A ®nite discontinuity may occur at x � �. This will arise when

limx!�ÿ0 f �x� � l1, limx!�ÿ0 f �x� � l2, and l1 6� l2.

It is obvious that a continuous function will be bounded in any ®nite interval.

This means that we can ®nd numbers m and M independent of x and such that

m � f �x�M for a � x � b. Furthermore, we expect to ®nd x0; x1 such that

f �x0� � m and f �x1� � M.

The order of magnitude of a function is indicated in terms of its variable. Thus,

if x is very small, and if f �x� � a1x� a2x
2 � a3x

3 � � � � (ak constant), its magni-

tude is governed by the term in x and we write f �x� � O�x�. When a1 � 0, we

write f �x� � O�x2�, etc. When f �x� � O�xn�, then limx!0f f �x�=xng is ®nite and/

or limx!0 f f �x�=xnÿ1g � 0.

A function f �x� is said to be diÿerentiable or to possess a derivative at the point

x if limh!0 � f �x� h� ÿ f �x��=h exists. We write this limit in various forms

df =dx; f 0 or Df , where D � d� �=dx. Most of the functions in physics can be

successively diÿerentiated a number of times. These successive derivatives are

written as f 0�x�; f 00�x�; . . . ; f n�x�; . . . ; or Df ;D2f ; . . . ;Dnf ; . . . :

Problem A1.9

If f �x� � x2, prove that: (a) limx!2 f �x� � 4, and �b� f �x� is continuous at x � 2.

In®nite series

In®nite series involve the notion of sequence in a simple way. For example,
���
2

p
is

irrational and can only be expressed as a non-recurring decimal 1:414 . . . : We can

approximate to its value by a sequence of rationals, 1, 1.4, 1.41, 1.414, . . . say fang
which is a countable set limit of an whose values approach inde®nitely close to

���
2

p
.

Because of this we say the limit of an as n tends to in®nity exists and equals
���
2

p
,

and write limn!1 an �
���
2

p
.

In general, a sequence u1; u2; . . . ; fung is a function de®ned on the set of natural

numbers. The sequence is said to have the limit l or to converge to l, if given any

" > 0 there exists a number N > 0 such that jun ÿ lj < " for all n > N, and in such

case we write limn!1 un � l.

Consider now the sums of the sequence fung

sn �
Xn
r�1

ur � u1 � u2 � u3 � � � � ; �A:2�

where ur > 0 for all r. If n ! 1, then (A.2) is an in®nite series of positive terms.

We see that the behavior of this series is determined by the behavior of the

sequence fung as it converges or diverges. If limn!1 sn � s (®nite) we say that

(A.2) is convergent and has the sum s. When sn ! 1 as n ! 1, we say that (A.2)

is divergent.
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Example A1.1.

Show that the series X1
n�1

1

2n
� 1

2
� 1

22
� 1

23
� � � �

is convergent and has sum s � 1.

Solution: Let

sn �
1

2
� 1

22
� 1

23
� � � � � 1

2n
;

then

1

2
sn �

1

22
� 1

23
� � � � � 1

2n�1
:

Subtraction gives

1ÿ 1

2

� �
sn �

1

2
ÿ 1

2n�1
� 1

2
1ÿ 1

2n

� �
; or sn � 1ÿ 1

2n
:

Then since limn!1 sn � limn!1�1ÿ 1=2n� � 1, the series is convergent and has

the sum s � 1.

Example A1.2.

Show that the series
P1

n�1 �ÿ1�nÿ1 � 1ÿ 1� 1ÿ 1� � � � is divergent.

Solution: Here sn � 0 or 1 according as n is even or odd. Hence limn!1 sn does

not exist and so the series is divergent.

Example A1.3.

Show that the geometric series
P1

n�1 ar
nÿ1 � a� ar� ar2 � � � � ; where a and r are

constants, (a) converges to s � a=�1ÿ r� if jrj < 1; and (b) diverges if jrj > 1.

Solution: Let

sn � a� ar� ar2 � � � � � arnÿ1:

Then

rsn � ar� ar2 � � � � � arnÿ1 � arn:

Subtraction gives

�1ÿ r�sn � aÿ arn or sn �
a�1ÿ rn�
1ÿ r

:
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(a) If jrj < 1;

lim
n!1 sn � lim

n!1
a�1ÿ rn�
1ÿ r

� a

1ÿ r
:

(b) If jrj > 1,

lim
n!1 sn � lim

n!1
a�1ÿ rn�
1ÿ r

does not exist.

Example A1.4.

Show that the p series
P1

n�1 1=n
p converges if p > 1 and diverges if p � 1.

Solution: Using f �n� � 1=np we have f �x� � 1=xp so that if p 6� 1,Z 1

1

dx

xp
� lim

M!1

Z M

1

xÿpdx � lim
M!1

x1ÿp

1ÿ p

þþþþM
1

� lim
M!1

M1ÿp

1ÿ p
ÿ 1

1ÿ p

" #
:

Now if p > 1 this limit exists and the corresponding series converges. But if p < 1

the limit does not exist and the series diverges.

If p � 1 thenZ 1

1

dx

x
� lim

M!1

Z M

1

dx

x
� lim

M!1
ln x

þþþþM
1

� lim
M!1

lnM;

which does not exist and so the corresponding series for p � 1 diverges.

This shows that 1� 1
2 � 1

3 � � � � diverges even though the nth term approaches

zero.

Tests for convergence

There are several important tests for convergence of series of positive terms.

Before using these simple tests, we can often weed out some very badly divergent

series with the following preliminary test:

If the terms of an in®nite series do not tend to zero (that is, if

limn!1 an 6� 0�, the series diverges. If limn!1 an � 0, we must

test further:

Four of the common tests are given below:

Comparison test

If un � vn (all n), then
P1

n�1 un converges when
P1

n�1 vn converges. If un � vn (all

n), then
P1

n�1 un diverges when
P1

n�1 vn diverges.
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Since the behavior of
P1

n�1 un is unaÿected by removing a ®nite number of

terms from the series, this test is true if un � vn or un � vn for all n > N. Note that

n > N means from some term onward. Often, N � 1.

Example A1.5

(a) Since 1=�2n � 1� � 1=2n and
P

1=2n converges,
P

1=�2n � 1� also converges.

(b) Since 1=ln n > 1=n and
P1

n�2 1=n diverges,
P1

n�2 1=ln n also diverges.

Quotient test

If un�1=un � vn�1=vn (all n), then
P1

n�1 un converges when
P1

n�1 vn converges. And

if un�1=un � vn�1=vn (all n), then
P1

n�1 un diverges when
P1

n�1 vn diverges.

We can write

un �
un
unÿ1

unÿ1

unÿ2

� � � u2
u1

u1
vn
vnÿ1

vnÿ1

vnÿ2

� � � v2
v1

� v1

so that un � vnu1 which proves the quotient test by using the comparison test.

A similar argument shows that if un�1=un � vn�1=vn (all n), then
P1

n�1 un
diverges when

P1
n�1 vn diverges.

Example A1.6

Consider the series X1
n�1

4n2 ÿ n� 3

n3 � 2n
:

For large n, �4n2 ÿ n� 3�=�n3 � 2n� is approximately 4=n. Taking

un � �4n2 ÿ n� 3�=�n3 � 2n� and vn � 1=n, we have limn!1 un=vn � 1. Now

since
P

vn �
P

1=n diverges,
P

un also diverges.

D'Alembert's ratio test:P1
n�1 un converges when un�1=un < 1 (all n � N) and diverges when un�1=un > 1.

Write vn � xnÿ1 in the quotient test so that
P1

n�1 vn is the geometric series with

common ratio vn�1=vn � x. Then the quotient test proves that
P1

n�1 un converges

when x < 1 and diverges when x > 1:

Sometimes the ratio test is stated in the following form: if limn!1 un�1=un � �,

then
P1

n�1 un converges when � < 1 and diverges when � > 1.

Example A1.7

Consider the series

1� 1

2!
� 1

3!
� � � � � 1

n!
� � � � :
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Using the ratio test, we have

un�1

un
� 1

�n� 1�!�
1

n!
� n!

�n� 1�! �
1

n� 1
< 1;

so the series converges.

Integral test.

If f �x� is positive, continuous and monotonic decreasing and is such that

f �n� � un for n > N, then
P

un converges or diverges according asZ 1

N

f �x�dx � lim
M!1

Z M

N

f �x�dx

converges or diverges. We often have N � 1 in practice.

To prove this test, we will use the following property of de®nite integrals:

If in a � x � b; f �x� � g�x�, then
Z b

a

f �x�dx �
Z b

a

g�x�dx.

Now from the monotonicity of f �x�, we have

un�1 � f �n� 1� � f �x� f �n� � un; n � 1; 2; 3; . . . :

Integrating from x � n to x � n� 1 and using the above quoted property of

de®nite integrals we obtain

un�1 �
Z n�1

n

f �x�dx � un; n � 1; 2; 3; . . . :

Summing from n � 1 to M ÿ 1,

u1 � u2 � � � � � uM �
Z M

1

f �x�dx � u1 � u2 � � � � � uMÿ1: �A1:3�

If f �x� is strictly decreasing, the equality sign in (A1.3) can be omitted.

If limM!1
RM

1 f �x�dx exists and is equal to s, we see from the left hand inequal-

ity in (A1.3) that u1 � u2 � � � � � uM is monotonically increasing and bounded

above by s, so that
P

un converges. If limM!1
RM

1 f �x�dx is unbounded, we see

from the right hand inequality in (A1.3) that
P

un diverges.

Geometrically, u1 � u2 � � � � � uM is the total area of the rectangles shown

shaded in Fig. A1.3, while u1 � u2 � � � � � uMÿ1 is the total area of the rectangles

which are shaded and non-shaded. The area under the curve y � f �x� from x � 1

to x � M is intermediate in value between the two areas given above, thus illus-

trating the result (A1.3).
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Example A1.8P1
n�1 1=n

2 converges since limM!1
RM

1 dx=x2 � limM!1�1ÿ 1=M� exists.

Problem A1.10

Find the limit of the sequence 0.3, 0.33, 0:333; . . . ; and justify your conclusion.

Alternating series test

An alternating series is one whose successive terms are alternately positive and

negative u1 ÿ u2 � u3 ÿ u4 � � � � : It converges if the following two conditions are

satis®ed:

(a) jun�1junj for n � 1; (b) lim
n!1 un � 0

�
or lim

n!1 unj j � 0

�
:

The sum of the series to 2M is

S2M � �u1 ÿ u2� � �u3 ÿ u4� � � � � � �u2Mÿ1 ÿ u2M�
� u1 ÿ �u2 ÿ u3� ÿ �u4 ÿ u5� ÿ � � � ÿ �u2Mÿ2 ÿ u2Mÿ1� ÿ u2M :

Since the quantities in parentheses are non-negative, we have

S2M � 0; S2 � S4 � S6 � � � � � S2M � u1:

Therefore fS2Mg is a bounded monotonic increasing sequence and thus has the

limit S.

Also S2M�1 � S2M � u2M�1. Since limM!1 S2M � S and limM!1 u2M�1 � 0

(for, by hypothesis, limn!1 un � 0), it follows that limM!1 S2M�1 �
limM!1 S2M � limM!1 u2M�1 � S � 0 � S. Thus the partial sums of the series

approach the limit S and the series converges.
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Problem A1.11

Show that the error made in stopping after 2M terms is less than or equal to

u2M�1.

Example A1.9

For the series

1ÿ 1

2
� 1

3
ÿ 1

4
� � � � �

X1
n�1

�ÿ1�nÿ1

n
;

we have un � �ÿ1�n�1=n; unj j � 1=n; un�1j j � 1=�n� 1�. Then for n � 1;

un�1j j � unj j. Also we have limn!1 unj j � 0. Hence the series converges.

Absolute and conditional convergence

The series
P

un is called absolutely convergent if
P

unj j converges. If P un con-

verges but
P

unj j diverges, then P
un is said to be conditionally convergent.

It is easy to show that if
P

unj j converges, then P
un converges (in words, an

absolutely convergent series is convergent). To this purpose, let

SM � u1 � u2 � � � � � uM TM � u1j j � u2j j � � � � � uMj j;
then

SM � TM � �u1 � u1j j� � �u2 � u2j j� � � � � � �uM � uMj j�
� 2 u1j j � 2 u2j j � � � � � 2 uMj j:

Since
P

unj j converges and since un � unj j � 0, for n � 1; 2; 3; . . . ; it follows that

SM � TM is a bounded monotonic increasing sequence, and so

limM!1 �SM � TM� exists. Also limM!1 TM exists (since the series is absolutely

convergent by hypothesis),

lim
M!1

SM � lim
M!1

�SM � TM ÿ TM� � lim
M!1

�SM � TM� ÿ lim
M!1

TM

must also exist and so the series
P

un converges.

The terms of an absolutely convergent series can be rearranged in any order,

and all such rearranged series will converge to the same sum. We refer the reader

to text-books on advanced calculus for proof.

Problem A1.12

Prove that the series

1ÿ 1

22
� 1

32
ÿ 1

42
� 1

52
ÿ � � �

converges.
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How do we test for absolute convergence? The simplest test is the ratio test,

which we now review, along with three others ± Raabe's test, the nth root test, and

Gauss' test.

Ratio test

Let limn!1 jun�1=unj � L. Then the series
P

un:

(a) converges (absolutely) if L < 1;

(b) diverges if L > 1;

(c) the test fails if L � 1.

Let us consider ®rst the positive-term
P

un, that is, each term is positive. We

must now prove that if limn!1 un�1=un � L < 1, then necessarily
P

un converges.

By hypothesis, we can choose an integer N so large that for all

n � N; �un�1=un� < r, where L < r < 1. Then

uN�1 < ruN ; uN�2 < ruN�1 < r2uN ; uN�3 < ruN�2 < r3uN ; etc:

By addition

uN�1 � uN�2 � � � � < uN�r� r2 � r3 � � � ��
and so the given series converges by the comparison test, since 0 < r < 1.

When the series has terms with mixed signs, we consider u1j j � u2j j � u3j j � � � �,
then by the above proof and because an absolutely convergent series is

convergent, it follows that if limn!1 un�1=unj j � L < 1, then
P

un converges

absolutely.

Similarly we can prove that if limn!1 un�1=unj j � L > 1, the series
P

un
diverges.

Example A1.10

Consider the series
P1

n�1�ÿ1�nÿ12n=n2. Here un � �ÿ1�nÿ12n=n2. Then

limn!1 un�1=unj j � limn!1 2n2=�n� 1�2 � 2. Since L � 2 > 1, the series diverges.

When the ratio test fails, the following three tests are often very helpful.

Raabe's test

Let limn!1 n�1ÿ un�1=unj j� � `, then the series
P

un:

(a) converges absolutely if ` < 1;

(b) diverges if ` > 1.

The test fails if ` � 1.

The nth root test

Let limn!1
�������
unj jn

p � R, then the series
P

un:
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(a) converges absolutely if R < 1;

(b) diverges if R > 1.

The test fails if R � 1.

Gauss' test

If

un�1

un

þþþþ
þþþþ � 1ÿ G

n
� cn
n2

;

where jcnj < P for all n > N, then the series
P

un:

(a) converges (absolutely) if G > 1;

(b) diverges or converges conditionally if G � 1.

Example A1.11

Consider the series 1� 2r� r2 � 2r3 � r4 � 2r5 � � � �. The ratio test gives

un�1

un

þþþþ
þþþþ � 2 rj j; n odd

rj j=2; n even
;

�
which indicates that the ratio test is not applicable. We now try the nth root test:

�������
unj jn

p
�

���������
2 rnj jn

p � ���
2n

p
rj j; n odd�������

rnj jn
p � rj j; n even

(

and so limn!1
�������
unj jn

p � rj j. Thus if jrj < 1 the series converges, and if jrj > 1 the

series diverges.

Example A1.12

Consider the series

1

3

� �2

� 1� 4

3� 6

� �2

� 1� 4� 7

3� 6� 9

� �2

� � � � � 1� 4� 7 � � � �3nÿ 2�
3� 6� 9 � � � �3n�

� �
� � � � :

The ratio test is not applicable, since

lim
n!1

un�1

un

þþþþ
þþþþ � lim

n!1
�3n� 1�
�3n� 3�
þþþþ

þþþþ2� 1:

But Raabe's test gives

lim
n!1 n 1ÿ un�1

un

þþþþ
þþþþ

� �
� lim

n!1 n 1ÿ 3n� 1

3n� 3

� �2
( )

� 4

3
> 1;

and so the series converges.
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Problem A1.13

Test for convergence the series

1

2

� �2

� 1� 3

2� 4

� �2

� 1� 3� 5

2� 4� 6

� �2

� � � � � 1� 3� 5 � � � �2nÿ 1�
1� 3� 5 � � � �2n�

� �
� � � � :

Hint: Neither the ratio test nor Raabe's test is applicable (show this). Try Gauss'

test.

Series of functions and uniform convergence

The series considered so far had the feature that un depended just on n. Thus the

series, if convergent, is represented by just a number. We now consider series

whose terms are functions of x; un � un�x�. There are many such series of func-

tions. The reader should be familiar with the power series in which the nth term is

a constant times xn:

S�x� �
X1
n�0

anx
n: �A1:4�

We can think of all previous cases as power series restricted to x � 1. In later

sections we shall see Fourier series whose terms involve sines and cosines, and

other series in which the terms may be polynomials or other functions. In this

section we consider power series in x.

The convergence or divergence of a series of functions depends, in general, on

the values of x. With x in place, the partial sum Eq. (A1.2) now becomes a

function of the variable x:

sn�x� � u1 � u2�x� � � � � � un�x�: �A1:5�
as does the series sum. If we de®ne S�x� as the limit of the partial sum

S�x� � lim
n!1 sn�x� �

X1
n�0

un�x�; �A1:6�

then the series is said to be convergent in the interval [a, b] (that is, a � x � b), if

for each " > 0 and each x in [a, b] we can ®nd N > 0 such that

S�x� ÿ sn�x�j j < "; for all n � N: �A1:7�
If N depends only on " and not on x, the series is called uniformly convergent in

the interval [a, b]. This says that for our series to be uniformly convergent, it must

be possible to ®nd a ®nite N so that the remainder of the series after N terms,P1
i�N�1 ui�x�, will be less than an arbitrarily small " for all x in the given interval.

The domain of convergence (absolute or uniform) of a series is the set of values

of x for which the series of functions converges (absolutely or uniformly).
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We deal with power series in x exactly as before. For example, we can use the

ratio test, which now depends on x, to investigate convergence or divergence of a

series:

r�x� � lim
n!1

un�1

un

þþþþ
þþþþ � lim

n!1

þþþþan�1x
n�1

anx
n

þþþþ � xj j lim
n!1

an�1

an

þþþþ
þþþþ � xj jr; r � lim

n!1
an�1

an

þþþþ
þþþþ;

thus the series converges (absolutely) if jxjr < 1 or

jxj < R � 1

r
� lim

n!1
an
an�1

þþþþ
þþþþ

and the domain of convergence is given by R : ÿR < x < R. Of course, we need to

modify the above discussion somewhat if the power series does not contain every

power of x.

Example A1.13

For what value of x does the series
P1

n�1 x
nÿ1=n� 3n converge?

Solution: Now un � xnÿ1=n � 3n, and x 6� 0 (if x � 0 the series converges). We

have

lim
n!1

un�1

un

þþþþ
þþþþ � lim

n!1
n

3�n� 1� xj j � 1

3
xj j:

Then the series converges if jxj < 3, and diverges if jxj > 3. If jxj � 3, that is,

x � �3, the test fails.

If x � 3, the series becomes
P1

n�1 1=3n which diverges. If x � ÿ3, the series

becomes
P1

n�1�ÿ1�nÿ1=3n which converges. Then the interval of convergence is

ÿ3 � x < 3. The series diverges outside this interval. Furthermore, the series

converges absolutely for ÿ3 < x < 3 and converges conditionally at x � ÿ3.

As for uniform convergence, the most commonly encountered test is the

Weierstrass M test:

Weierstrass M test

If a sequence of positive constants M1;M2;M3; . . . ; can be found such that: (a)

Mn � jun�x�j for all x in some interval [a, b], and (b)
P

Mn converges, thenP
un�x� is uniformly and absolutely convergent in [a, b].

The proof of this common test is direct and simple. Since
P

Mn converges,

some number N exists such that for n � N,X1
i�N�1

Mi < ":
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This follows from the de®nition of convergence. Then, with Mn � jun�x�j for all x
in [a, b], X1

i�N�1

ui�x�j j < ":

Hence

S�x� ÿ sn�x�j j �
þþþþ X1
i�N�1

ui�x�
þþþþ < "; for all n � N

and by de®nition
P

un�x� is uniformly convergent in [a, b]. Furthermore, since we

have speci®ed absolute values in the statement of the WeierstrassM test, the seriesP
un�x� is also seen to be absolutely convergent.

It should be noted that the Weierstrass M test only provides a su�cient con-

dition for uniform convergence. A series may be uniformly convergent even when

the M test is not applicable. The Weierstrass M test might mislead the reader to

believe that a uniformly convergent series must be also absolutely convergent, and

conversely. In fact, the uniform convergence and absolute convergence are inde-

pendent properties. Neither implies the other.

A somewhat more delicate test for uniform convergence that is especially useful

in analyzing power series is Abel's test. We now state it without proof.

Abel's test

If �a� un�x� � an fn�x�, and
P

an � A, convergent, and (b) the functions fn�x� are
monotonic � fn�1�x� � fn�x�� and bounded, 0 � fn�x� � M for all x in [a, b], thenP

un�x� converges uniformly in [a, b].

Example A1.14

Use the Weierstrass M test to investigate the uniform convergence of

�a�
X1
n�1

cos nx

n4
; �b�

X1
n�1

xn

n3=2
; �c�

X1
n�1

sin nx

n
:

Solution:

(a) cos�nx�=n4þþ þþ � 1=n4 � Mn. Then since
P

Mn converges (p series with

p � 4 > 1), the series is uniformly and absolutely convergent for all x by

the M test.

(b) By the ratio test, the series converges in the interval ÿ1 � x � 1 (or jxj � 1).

For all x in jxj � 1; xn=n3=2
þþþ þþþ � xj jn=n3=2 � 1=n3=2. Choosing Mn � 1=n3=2,

we see that
P

Mn converges. So the given series converges uniformly for

jxj � 1 by the M test.
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(c) sin�nx�=n=nj j � 1=n � Mn. However,
P

Mn does not converge. The M test

cannot be used in this case and we cannot conclude anything about the

uniform convergence by this test.

A uniformly convergent in®nite series of functions has many of the properties

possessed by the sum of ®nite series of functions. The following three are parti-

cularly useful. We state them without proofs.

(1) If the individual terms un�x� are continuous in [a, b] and if
P

un�x� con-

verges uniformly to the sum S�x� in [a, b], then S�x� is continuous in [a, b].

Brie¯y, this states that a uniformly convergent series of continuous func-

tions is a continuous function.

(2) If the individual terms un�x� are continuous in [a, b] and if
P

un�x� con-

verges uniformly to the sum S�x� in [a, b], thenZ b

a

S�x�dx �
X1
n�1

Z b

a

un�x�dx

or Z b

a

X1
n�1

un�x�dx �
X1
n�1

Z b

a

un�x�dx:

Brie¯y, a uniform convergent series of continuous functions can be inte-

grated term by term.

(3) If the individual terms un�x� are continuous and have continuous derivatives

in [a, b] and if
P

un�x� converges uniformly to the sum S�x� whileP
dun�x�=dx is uniformly convergent in [a, b], then the derivative of the

series sum S�x� equals the sum of the individual term derivatives,

d

dx
S�x� �

X1
n�1

d

dx
un�x� or

d

dx

X1
n�1

un�x�
( )

�
X1
n�1

d

dx
un�x�:

Term-by-term integration of a uniformly convergent series requires only con-

tinuity of the individual terms. This condition is almost always met in physical

applications. Term-by-term integration may also be valid in the absence of uni-

form convergence. On the other hand term-by-term diÿerentiation of a series is

often not valid because more restrictive conditions must be satis®ed.

Problem A1.14

Show that the series

sin x

13
� sin 2x

23
� � � � � sin nx

n3
� � � �

is uniformly convergent for ÿ� � x � �.
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Theorems on power series

When we are working with power series and the functions they represent, it is very

useful to know the following theorems which we will state without proof. We will

see that, within their interval of convergence, power series can be handled much

like polynomials.

(1) A power series converges uniformly and absolutely in any interval which lies

entirely within its interval of convergence.

(2) A power series can be diÿerentiated or integrated term by term over any

interval lying entirely within the interval of convergence. Also, the sum of a

convergent power series is continuous in any interval lying entirely within its

interval of convergence.

(3) Two power series can be added or subtracted term by term for each value of

x common to their intervals of convergence.

(4) Two power series, for example,
P1

n�0 anx
n and

P1
n�0 bnx

n, can be multiplied

to obtain
P1

n�0 cnx
n; where cn � a0bn � a1bnÿ1 � a2bnÿ2 � � � � � anb0, the

result being, valid for each x within the common interval of convergence.

(5) If the power series
P1

n�0 anx
n is divided by the power series

P1
n�0 bnx

n,

where b0 6� 0, the quotient can be written as a power series which converges

for su�ciently small values of x.

Taylor's expansion

It is very useful in most applied work to ®nd power series that represent the given

functions. We now review one method of obtaining such series, the Taylor expan-

sion. We assume that our function f �x� has a continuous nth derivative in the

interval [a, b] and that there is a Taylor series for f �x� of the form

f �x� � a0 � a1�xÿ �� � a2�xÿ ��2 � a3�xÿ ��3 � � � � � an�xÿ ��n � � � � ;
�A1:8�

where � lies in the interval [a, b]. Diÿerentiating, we have

f 0�x� � a1 � 2a2�xÿ �� � 3a3�xÿ ��2 � � � � � nan�xÿ ��nÿ1 � � � � ;
f 00�x� � 2a2 � 3 � 2a3�xÿ �� � 4 � 3a4�xÿ a�2 � � � � � n�nÿ 1�an�xÿ ��nÿ2 �� � � ;

..

.

f �n��x� � n�nÿ 1��nÿ 2� � � � 1 � an � terms containing powers of �xÿ ��:

We now put x � � in each of the above derivatives and obtain

f ��� � a0; f 0��� � a1; f 00��� � 2a2; f F��� � 3!a3; � � � ; f �n���� � n!an;
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where f 0��� means that f �x� has been diÿerentiated and then we have put x � �;

and by f 00��� we mean that we have found f 00�x� and then put x � �, and so on.

Substituting these into (A1.8) we obtain

f �x� � f ��� � f 0����xÿ �� � 1

2!
f 00����xÿ ��2 � � � � � 1

n!
f �n�����xÿ ��n � � � � :

�A1:9�
This is the Taylor series for f �x� about x � �. The Maclaurin series for f �x� is the
Taylor series about the origin. Putting � � 0 in (A1.9), we obtain the Maclaurin

series for f �x�:
f �x� � f �0� � f 0�0�x� 1

2!
f 00�0�x2 � 1

3!
f F�0�x3 � � � � � 1

n!
f �n��0�xn � � � � :

�A1:10�

Example A1.15

Find the Maclaurin series expansion of the exponential function ex.

Solution: Here f �x� � ex. Diÿerentiating, we have f �n��0� � 1 for all

n; n � 1; 2; 3 . . .. Then, by Eq. (A1.10), we have

ex � 1� x� 1

2!
x2 � 1

3!
x3 � � � � �

X1
n�0

xn

n!
; ÿ1 < x < 1:

The following series are frequently employed in practice:

�1� sin x � xÿ x3

3!
� x5

5!
ÿ x7

7!
� � � � �ÿ1�nÿ1 x2nÿ1

�2nÿ 1�!� � � � ; ÿ1 < x < 1:

�2� cos x � 1ÿ x2

2!
� x4

4!
ÿ x6

6!
� � � � �ÿ1�nÿ1 x2nÿ2

�2nÿ 2�!� � � � ; ÿ1 < x < 1:

�3� ex � 1� x� x2

2!
� x3

3!
� � � � � xnÿ1

�nÿ 1�!� � � � ; ÿ1 < x < 1:

�4� lnj�1� xj � xÿ x2

2
� x3

3
ÿ x4

4
� � � � �ÿ1�nÿ1 x

n

n
� � � � ; ÿ1 < x � 1:

�5� 1
2
ln

1� x

1ÿ x

þþþþ
þþþþ � x� x3

3
� x5

5
� x7

7
� � � � � x2nÿ1

2nÿ 1
� � � � ; ÿ1 < x < 1:

�6� tanÿ1 x � xÿ x3

3
� x5

5
ÿ x7

7
� � � � �ÿ1�nÿ1 x2nÿ1

2nÿ 1
� � � � ; ÿ1 � x � 1:

�7� �1� x�p � 1� px� p�pÿ 1�
2!

x2 � � � � � p�pÿ 1� � � � �pÿ n� 1�
n!

xn � � � � :
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This is the binomial series: (a) If p is a positive integer or zero, the series termi-

nates. (b) If p > 0 but is not an integer, the series converges absolutely for

ÿ1 � x � 1. (c) If ÿ1 < p < 0, the series converges for ÿ1 < x � 1. (d) If

p � ÿ1, the series converges for ÿ1 < x < 1.

Problem A1.16

Obtain the Maclaurin series for sin x (the Taylor series for sin x about x � 0).

Problem A1.17

Use series methods to obtain the approximate value of
R 1

0 �1ÿ eÿx�=xdx.
We can ®nd the power series of functions other than the most common ones

listed above by the successive diÿerentiation process given by Eq. (A1.9). There

are simpler ways to obtain series expansions. We give several useful methods here.

(a) For example to ®nd the series for �x� 1� sin x, we can multiply the series for

sin x by �x� 1� and collect terms:

�x� 1� sin x � �x� 1� xÿ x3

3!
� x5

5!
ÿ � � �

ý !
� x� x2 ÿ x3

3!
ÿ x4

3!
� � � � :

To ®nd the expansion for ex cos x, we can multiply the series for ex by the series

for cos x:

ex cos x � 1� x� x2

2!
� x3

3!
� � � �

ý !
1ÿ x2

2!
� x4

4!
� � � �

ý !

� 1� x� x2

2!
� x3

3!
� x4

4!
� � �

ÿ x2

2!
ÿ x3

3!
ÿ x4

2!2!
� � �

� x4

4!
� � �

� 1� xÿ x3

3
ÿ x4

6
� � � :

Note that in the ®rst example we obtained the desired series by multiplication of

a known series by a polynomial; and in the second example we obtained the

desired series by multiplication of two series.

(b) In some cases, we can ®nd the series by division of two series. For

example, to ®nd the series for tan x, we can divide the series for sinx by the series

for cos x:
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tan x � sin x

cos x
�

�
1ÿ x2

2
� x4

4!
� � �

���
xÿ x3

3!
� x5

5!
� � �

�
� x� 1

3
x3 � 2

15
x5 � � � :

The last step is by long division

x� 1

3
x3 � 2

15
x5 � � �

1ÿ x2

2!
� x4

4!
� � �

������������������������������
xÿ x3

3!
� x5

5!
� � �

s

xÿ x3

2!
� x5

4!
� � �

x3

3
ÿ x5

30
� � �

x3

3
ÿ x5

6
� � �

2x5

15
� � � ; etc:

Problem A1.18

Find the series expansion for 1=�1� x� by long division. Note that the series can

be found by using the binomial series: 1=�1� x� � �1� x�ÿ1.

(c) In some cases, we can obtain a series expansion by substitution of a poly-

nomial or a series for the variable in another series. As an example, let us ®nd the

series for eÿx2 . We can replace x in the series for ex by ÿx2 and obtain

eÿx2 � 1ÿ x2 � �ÿx2�2
2!

� �ÿx�3
3!

� � � � 1ÿ x2 � x4

2!
ÿ x6

3!
� � � :

Similarly, to ®nd the series for sin
���
x

p
=

���
x

p
we replace x in the series for sin x by���

x
p

and obtain

sin
���
x

p���
x

p � 1ÿ x

3!
� x2

5!
� � � ; x > 0:

Problem A1.19

Find the series expansion for etan x.

Problem A1.20

Assuming the power series for ex holds for complex numbers, show that

eix � cos x� i sin x:
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(d) Find the series for tanÿ1x (arc tan x). We can ®nd the series by the succes-

sive diÿerentiation process. But it is very tedious to ®nd successive derivatives of

tanÿ1 x. We can take advantage of the following integrationZ x

0

dt

1� t2
� tanÿ1 t

þþþþx
0

� tanÿ1 x:

We now ®rst write out �1� t2�ÿ1 as a binomial series and then integrate term by

term: Z x

0

dt

1� t2
�

Z x

0

1ÿ t2 � t4 ÿ t6 � � � �ÿ �
dt � tÿ t3

3
� t5

5
ÿ t7

7
� � � �

þþþþx
0

:

Thus, we have

tanÿ1 x � xÿ x3

3
� x5

5
ÿ x7

7
� � � � :

(e) Find the series for ln x about x � 1. We want a series of powers (xÿ 1)

rather than powers of x. We ®rst write

ln x � ln�1� �xÿ 1��
and then use the series ln �1� x� with x replaced by (xÿ 1):

ln x � ln �1� �xÿ1�� � �xÿ 1�ÿ 1

2
�xÿ 1�2 � 1

3
�xÿ 1�3 ÿ 1

4
�xÿ 1�4 � � � :

Problem A1.21

Expand cos x about x � 3�=2.

Higher derivatives and Leibnitz's formula for nth derivative of a product

Higher derivatives of a function y � f �x� with respect to x are written as

d2y

dx2
� d

dx

dy

dx

� �
;

d3y

dx3
� d

dx

d2y

dx2

ý !
; . . . ;

dny

dxn
� d

dy

dnÿ1y

dxnÿ1

ý !
:

These are sometimes abbreviated to either

f 00�x�; f F�x�; . . . ; f �n��x� or D2y; D3y; . . . ; Dny

where D � d=dx.

When higher derivatives of a product of two functions f �x� and g�x� are

required, we can proceed as follows:

D� fg� � fDg� gDf
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and

D2� fg� � D� fDg� gDf � � fD2g� 2Df �Dg�D2g:

Similarly we obtain

D3� fg� � fD3g� 3Df �D2g� 3D2f �Dg� gD3f ;

D4� fg� � fD4g� 4Df �D3g� 6D2f �D2g� 4D3 �Dg� gD4g;

and so on. By inspection of these results the following formula (due to Leibnitz)

may be written down for nth derivative of the product fg:

Dn� fg� � f �Dng� � n�Df ��Dnÿ1g� � n�nÿ 1�
2!

�D2f ��Dnÿ2g� � � � �

� n!

k!�nÿ k�! �D
kf ��Dnÿkg� � � � � � �Dnf �g:

Example A1.16

If f � 1ÿ x2; g � D2y, where y is a function of x, say u�x�, then
Dnf�1ÿ x2�D2yg � �1ÿ x2�Dn�2yÿ 2nxDn�1yÿ n�nÿ 1�Dny:

Leibnitz's formula may also be applied to a diÿerential equation. For example,

y satis®es the diÿerential equation

D2y� x2y � sin x:

Then diÿerentiating each term n times we obtain

Dn�2y� �x2Dny� 2nxDnÿ1y� n�nÿ 1�Dnÿ2y� � sin
n�

2
� x

� �
;

where we have used Leibnitz's formula for the product term x2y.

Problem A1.22

Using Leibnitz's formula, show that

Dn�x2 sin x� � fx2 ÿ n�nÿ 1�g sin�x� n�=2� ÿ 2nx cos�x� n�=2�:

Some important properties of de®nite integrals

Integration is an operation inverse to that of diÿerentiation; and it is a device for

calculating the `area under a curve'. The latter method regards the integral as the

limit of a sum and is due to Riemann. We now list some useful properties of

de®nite integrals.

(1) If in a � x � b;m � f �x� � M, where m and M are constants, then

m�bÿ a� �
Z b

a

f �x�d � M�bÿ a�:
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Divide the interval [a, b] into n subintervals by means of the points

x1; x2; . . . ; xnÿ1 chosen arbitrarily. Let �k be any point in the subinterval

xkÿ1 � �k � xk, then we have

m�xk � f ��k��xk � M�xk; k � 1; 2; . . . ; n;

where �xk � xk ÿ xkÿ1. Summing from k � 1 to n and using the fact thatXn
k�1

�xk � �x1 ÿ a� � �x2 ÿ x1� � � � � � �bÿ xnÿ1� � bÿ a;

it follows that

m�bÿ a� �
Xn
rk�1

f ��k��xk � M�bÿ a�:

Taking the limit as n ! 1 and each �xk ! 0 we have the required result.

(2) If in a � x � b; f �x� � g�x�, thenZ b

a

f �x�dx �
Z b

a

g�x�dx:

(3)

Z b

a

f �x�dx
þþþþ

þþþþ �
Z b

a

f �x�j jdx if a < b:

From the inequality

a� b� c� � � �j j � aj j � bj j � cj j � � � � ;
where jaj is the absolute value of a real number a, we haveXn

k�1

f ��k��xk

þþþþþ
þþþþþ � Xn

k�1

f ��k��xkj j �
Xn
k�1

f ��k�j j�xk:

Taking the limit as n ! 1 and each �xk ! 0 we have the required result.

(4) The mean value theorem: If f �x� is continuous in [a, b], we can ®nd a point �

in (a, b) such that Z b

a

f �x�dx � �bÿ a�f ���:

Since f �x� is continuous in [a, b], we can ®nd constants m and M such that

m � f �x� � M. Then by (1) we have

m � 1

bÿ a

Z b

a

f �x�dx � M:

Since f �x� is continuous it takes on all values between m and M; in parti-

cular there must be a value � such that

f ��� �
Z b

a

f �x�dx=�bÿ a�; a < � < b:

The required result follows on multiplying by bÿ a.
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Some useful methods of integration

(1) Changing variables: We use a simple example to illustrate this common

procedure. Consider the integral

I �
Z 1

0

eÿax2dx;

which is equal to ��=a�1=2=2: To show this let us write

I �
Z 1

0

eÿax2dx �
Z 1

0

eÿay2dy:

Then

I2 �
Z 1

0

eÿax2dx

Z 1

0

eÿay2dy �
Z 1

0

Z 1

0

eÿa�x2�y2�dxdy:

We now rewrite the integral in plane polar coordinates �r; �� :
x2 � y2 � r2; dxdy � rdrd� . Then

I2 �
Z 1

0

Z �=2

0

eÿar2rd�dr � �

2

Z 1

0

eÿar2rdr � �

2

�
ÿ eÿar2

2a

�þþþþ1
0

� �

4a

and

I �
Z 1

0

eÿax2dx � ��=a�1=2=2:

(2) Integration by parts: Since

d

dx
uv� � � u

dv

dx
� v

du

dx
;

where u � f �x� and v � g�x�, it follows thatZ
u

dv

dx

� �
dx � uvÿ

Z
v

du

dx

� �
dx:

This can be a useful formula in evaluating integrals.

Example A1.17

Evaluate I � R
tanÿ1 xdx

Solution: Since tanÿ1x can be easily diÿerentiated, we write

I � R
tanÿ1 xdx � R

1 � tanÿ1 xdx and let u � tanÿ1 x; dv=dx � 1. Then

I � x tanÿ1 xÿ
Z

xdx

1� x2
� x tanÿ1 xÿ 1

2
log�1� x2� � c:
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Example A1.18

Show that Z 1

ÿ1
x2eÿax2dx � �1=2

2a3=2
:

Solution: Let us ®rst consider the integral

I �
Z 1

0

eÿax2dx

`Integration-by-parts' gives

I �
Z c

b

eÿax2dx �eÿax2x

þþþþc
b

� 2

Z c

b

ax2eÿax2dx;

from which we obtainZ c

b

x2eÿax2dx � 1

2a

Z c

b

eÿax2dxÿ eÿax2x

þþþþc
b

�
:

�
We let limits b and c become ÿ1 and �1, and thus obtain the desired result.

Problem A1.23

Evaluate I �
Z

xe�xdx (� constant).

(3) Partial fractions: Any rational function P�x�=Q�x�, where P�x� and Q�x�
are polynomials, with the degree of P�x� less than that of Q�x�, can be written as

the sum of rational functions having the form A=�ax� b�k,
�Ax� B�=�ax2 � bx� c�k, where k � 1; 2; 3; . . . which can be integrated in

terms of elementary functions.

Example A1.19

3xÿ 2

�4xÿ 3��2x� 5�3 �
A

4xÿ 3
� B

�2x� 5�3 �
C

�2x� 5�2 �
D

2x� 5
;

5x2 ÿ x� 2

�x2 � 2x� 4�2�xÿ 1� �
Ax� B

�x2 � 2x� 4�2 �
Cx�D

x2 � 2x� 4
� E

xÿ 1
:

Solution: The coe�cients A, B, C etc., can be determined by clearing the frac-

tions and equating coe�cients of like powers of x on both sides of the equation.

Problem A1.24

Evaluate

I �
Z

6ÿ x

�xÿ 3��2x� 5� dx:
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(4) Rational functions of sin x and cos x can always be integrated in terms of

elementary functions by substitution tan �x=2� � u, as shown in the following

example.

Example A1.20

Evaluate

I �
Z

dx

5� 3 cos x
:

Solution: Let tan �x=2� � u, then

sin �x=2� � u=
�������������
1� u2

p
; cos �x=2� � 1=

�������������
1� u2

p
and

cos x � cos2�x=2� ÿ sin2�x=2� � 1ÿ u2

1� u2
;

also

du � 1
2
sec2�x=2�dx or dx � 2 cos2�x=2� � 2du=�1� u2�:

Thus

I �
Z

du

u2 � 4
� 1

2
tanÿ1�u=2� � c � 1

2
tanÿ1�1

2
tan x=2�� � c:

Reduction formulas

Consider an integral of the form
R
xneÿxdx. Since this depends upon n let us call it

In. Then using integration by parts we have

In � ÿxneÿx � n

Z
xnÿ1eÿxdx � xneÿx � nInÿ1:

The above equation gives In in terms of Inÿ1�Inÿ2; Inÿ3, etc.) and is therefore called

a reduction formula.

Problem A1.25

Evaluate In �
Z �=2

0

sinn xdx �
Z �=2

0

sin x sinnÿ1 xdx:
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Diÿerentiation of integrals

(1) Inde®nite integrals: We ®rst consider diÿerentiation of inde®nite integrals. If

f �x; �� is an integrable function of x and � is a variable parameter, and ifZ
f �x; ��dx � G�x; ��; �A1:11�

then we have

@G�x; ��=@x � f �x; ��: �A1:12�
Furthermore, if f �x; �� is such that

@2G�x; ��
@x@�

� @2G�x; ��
@�@x

;

then we obtain

@

@x

@G�x; ��
@�

� �
� @

@�

@G�x; ��
@x

� �
� @f �x; ��

@�

and integrating gives Z
@f �x; ��

@�
dx � @G�x; ��

@�
; �A1:13�

which is valid provided @f �x; ��=@� is continuous in x as well as �.

(2) De®nite integrals: We now extend the above procedure to de®nite integrals:

I��� �
Z b

a

f �x; ��dx; �A1:14�

where f �x; �� is an integrable function of x in the interval a � x � b, and a and b

are in general continuous and diÿerentiable (at least once) functions of �. We now

have a relation similar to Eq. (A1.11):

I��� �
Z b

a

f �x; ��dx � G�b; �� ÿ G�a; �� �A1:15�

and, from Eq. (A1.13),Z b

a

@f �x; ��
@�

dx � @G�b; ��
@�

ÿ @G�a; ��
@�

: �A1:16�

Diÿerentiating (A1.15) totally

dI���
d�

� @G�b; ��
@b

db

d�
� @G�b; ��

@�
ÿ @G�a; ��

@a

da

d�
ÿ @G�a; ��

@�
:
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which becomes, with the help of Eqs. (A1.12) and (A1.16),

dI���
d�

�
Z b

a

@f �x; ��
@�

dx� f �b; �� db
d�

ÿ f �a; �� da
d�

; �A1:17�

which is known as Leibnitz's rule for diÿerentiating a de®nite integral. If a and b,

the limits of integration, do not depend on �, then Eq. (A1.17) reduces to

dI���
d�

� d

d�

Z b

a

f �x; ��dx �
Z b

a

@f �x; ��
@�

dx:

Problem A1.26

If I��� �
Z �2

0

sin��x�=xdx, ®nd dI=d�.

Homogeneous functions

A homogeneous function f �x1; x2; . . . ; xn� of the kth degree is de®ned by the

relation

f ��x1; �x2; . . . ; �xn� � �kf �x1; x2; . . . ; xn�:
For example, x3 � 3x2yÿ y3 is homogeneous of the third degree in the variables x

and y.

If f �x1; x2; . . . ; xn) is homogeneous of degree k then it is straightforward to

show that

Xn
j�1

xj
@f

@xj
� kf :

This is known as Euler's theorem on homogeneous functions.

Problem A1.27

Show that Euler's theorem on homogeneous functions is true.

Taylor series for functions of two independent variables

The ideas involved in Taylor series for functions of one variable can be general-

ized. For example, consider a function of two variables (x; y). If all the nth partial

derivatives of f �x; y� are continuous in a closed region and if the �n� 1)st partial
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derivatives exist in the open region, then we can expand the function f �x; y� about
x � x0; y � y0 in the form

f �x0 � h; y0 � k� � f �x0; y0� � h
@

@x
� k

@

@y

� �
f �x0; y0�

� 1

2!
h
@

@x
� k

@

@y

� �2

f �x0; y0�

� � � � � 1

n!
h
@

@x
� k

@

@y

� �n

f �x0; y0� � Rn;

where h � �x � xÿ x0; k � �y � yÿ y0;Rn, the remainder after n terms, is given

by

Rn �
1

�n� 1�! h
@

@x
� k

@

@y

� �n�1

f �x0 � �h; y0 � �k�; 0 < � < 1;

and where we use the operator notation

h
@

@x
� k

@

@y

� �
f �x0; y0� � hfx�x0; y0� � kfy�x0; y0�;

h
@

@x
� k

@

@y

� �2

f �x0; y0� � h2
@2

@x2
� 2hk

@2

@x@y
� k2

@2

@y2

ý !
f �x0; y0�;

etc., when we expand

h
@

@x
� k

@

@y

� �n

formally by the binomial theorem.

When limn!1 Rn � 0 for all �x; y) in a region, the in®nite series expansion is

called a Taylor series in two variables. Extensions can be made to three or more

variables.

Lagrange multiplier

For functions of one variable such as f �x� to have a stationary value (maximum

or minimum) at x � a, we have f 0�a� � 0. If f n�a� < 0 it is a relative maximum

while if f �a� > 0 it is a relative minimum.

Similarly f �x; y� has a relative maximum or minimum at x � a; y � b if

fx�a; b� � 0, fy�a; b� � 0. Thus possible points at which f �x; y� has a relative max-

imum or minimum are obtained by solving simultaneously the equations

@f =@x � 0; @f =@y � 0:
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Sometimes we wish to ®nd the relative maxima or minima of f �x; y� � 0 subject to

some constraint condition ��x; y� � 0. To do this we ®rst form the function

g�x; y� � f �x; y� � f �x; y� and then set

@g=@x � 0; @g=@y � 0:

The constant � is called a Lagrange multiplier and the method is known as the

method of undetermined multipliers.
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Appendix 2

Determinants

The determinant is a tool used in many branches of mathematics, science, and

engineering. The reader is assumed to be familiar with this subject. However, for

those who are in need of review, we prepared this appendix, in which the deter-

minant is de®ned and its properties developed. In Chapters 1 and 3, the reader will

see the determinant's use in proving certain properties of vector and matrix

operations.

The concept of a determinant is already familiar to us from elementary algebra,

where, in solving systems of simultaneous linear equation, we ®nd it convenient to

use determinants. For example, consider the system of two simultaneous linear

equations

a11x1 � a12x2 � b1;

a21x1 � a22x2 � b2;

)
�A2:1�

in two unknowns x1; x2 where aij �i; j � 1; 2� are constants. These two equations

represent two lines in the x1x2 plane. To solve the system (A2.1), multiplying the

®rst equation by a22, the second by ÿa12 and then adding, we ®nd

x1 �
b1a22 ÿ b2a12
a11a22 ÿ a21a12

: �A2:2a�

Next, by multiplying the ®rst equation by ÿa21, the second by a11 and adding, we

®nd

x2 �
b2a11 ÿ b1a21
a11a22 ÿ a21a12

: �A2:2b�

We may write the solutions (A2.2) of the system (A2.1) in the determinant form

x1 �
D1

D
; x2 �

D2

D
; �A2:3�
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where

D1 �
b1 a12

b2 a22

ÿÿÿÿÿ
ÿÿÿÿÿ; D2 �

a11 b1

a21 b2

ÿÿÿÿÿ
ÿÿÿÿÿ; D �

a11 a12

a21 a22

ÿÿÿÿÿ
ÿÿÿÿÿ �A2:4�

are called determinants of second order or order 2. The numbers enclosed between

vertical bars are called the elements of the determinant. The elements in a

horizontal line form a row and the elements in a vertical line form a column

of the determinant. It is obvious that in Eq. (A2.3) D 6� 0.

Note that the elements of determinant D are arranged in the same order as they

occur as coe�cients in Eqs. (A1.1). The numerator D1 for x1 is constructed from

D by replacing its ®rst column with the coe�cients b1 and b2 on the right-hand

side of (A2.1). Similarly, the numerator for x2 is formed by replacing the second

column of D by b1; b2. This procedure is often called Cramer's rule.

Comparing Eqs. (A2.3) and (A2.4) with Eq. (A2.2), we see that the determinant

is computed by summing the products on the rightward arrows and subtracting

the products on the leftward arrows:

a11 a12

a21 a22

ÿÿÿÿÿ
ÿÿÿÿÿ � a11a22 ÿ a12a21; etc:

�ÿ� ���

This idea is easily extended. For example, consider the system of three linear

equations

a11x1 � a12x2 � a13x3 � b1;

a21x1 � a22x2 � a23x3 � b2;

a31x1 � a32x2 � a33x3 � b3;

9>>=
>>; �A2:5�

in three unknowns x1; x2; x3. To solve for x1, we multiply the equations by

a22a33 ÿ a32a23; ÿ �a12a33 ÿ a32a13�; a12a23 ÿ a22a13;

respectively, and then add, ®nding

x1 �
b1a22a33 ÿ b1a23a32 � b2a13a32 ÿ b2a12a33 � b3a12a23 ÿ b3a13a22

a11a22a33 ÿ a11a32a23 � a21a32a13 ÿ a21a12a33 � a31a12a23 ÿ a31a22a13
;

which can be written in determinant form

x1 � D1=D; �A2:6�
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where

D �
a11 a12 a13

a21 a22 a23

a31 a32 a33

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ; D1 �

b1 a12 a13

b2 a22 a23

b3 a32 a33

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ: �A2:7�

Again, the elements of D are arranged in the same order as they appear as

coe�cients in Eqs. (A2.5), and D1 is obtained by Cramer's rule. In the same

manner we can ®nd solutions for x2; x3. Moreover, the expansion of a determi-

nant of third order can be obtained by diagonal multiplication by repeating on the

right the ®rst two columns of the determinant and adding the signed products of

the elements on the various diagonals in the resulting array:

This method of writing out determinants is correct only for second- and third-

order determinants.

Problem A2.1

Solve the following system of three linear equations using Cramer's rule:

2x1 ÿ x2 � 2x3 � 2;

x1 � 10x2 ÿ 3x3 � 5;

ÿx1 � x2 � x3 � ÿ3:

Problem A2.2

Evaluate the following determinants

�a� 1 2

4 3

ÿÿÿÿ
ÿÿÿÿ; �b�

5 1 8

15 3 6

10 4 2

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ; �c� cos � ÿ sin �

sin � cos �

ÿÿÿÿ
ÿÿÿÿ:

Determinants, minors, and cofactors

We are now in a position to de®ne an nth-order determinant. A determinant of

order n is a square array of n2 quantities enclosed between vertical bars,
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a11 a12 a13

a21 a22 a23

a31 a32 a33

ÿÿÿÿÿÿÿÿ

ÿÿÿÿÿÿÿÿ
a11

a21

a31

a12

a22

a32

�ÿ� �ÿ� �ÿ� ��� ��� ���



D �

a11 a12 � � � a1n

a21 a22 � � � a2n
..
. ..

. ..
.

an1 an2 � � � ann

ÿÿÿÿÿÿÿÿÿ

ÿÿÿÿÿÿÿÿÿ
: �A2:8�

By deleting the ith row and the kth column from the determinant D we obtain

an (nÿ 1)st order determinant (a square array of nÿ 1 rows and nÿ 1 columns

between vertical bars), which is called the minor of the element aik (which belongs

to the deleted row and column) and is denoted by Mik. The minor Mik multiplied

by �ÿ�i�k is called the cofactor of aik and is denoted by Cik:

Cik � �ÿ1�i�kMik: �A2:9�

For example, in the determinant

a11 a12 a13

a21 a22 a23

a31 a32 a33

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ;

we have

C11 � �ÿ1�1�1M11 �
a22 a23

a32 a33

ÿÿÿÿÿ
ÿÿÿÿÿ; C32 � �ÿ1�3�2M32 � ÿ

a11 a13

a21 a23

ÿÿÿÿÿ
ÿÿÿÿÿ; etc:

It is very convenient to get the proper sign (plus or minus) for the cofactor

�ÿ1�i�k by thinking of a checkerboard of plus and minus signs like this

� ÿ � ÿ
ÿ � ÿ �
� ÿ � ÿ etc:

ÿ � ÿ �
etc: . .

.

� ÿ
ÿ �

ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ

ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
thus, for the element a23 we can see that the checkerboard sign is minus.

Expansion of determinants

Now we can see how to ®nd the value of a determinant: multiply each of one row

(or one column) by its cofactor and then add the results, that is,
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D � ai1Ci1 � ai2Ci2 � � � � � ainCin

�
Xn
k�1

aikCik �i � 1; 2; . . . ; or n� �A2:10a�

�cofactor expansion along the ith row�
or

D � a1kC1k � a2kC2k � � � � � ankCnk

�
Xn
i�1

aikCik �k � 1; 2; . . . ; or n�: �A2:10b�

�cofactor expansion along the kth column�
We see that D is de®ned in terms of n determinants of order nÿ 1, each of

which, in turn, is de®ned in terms of nÿ 1 determinants of order nÿ 2, and so on;

we ®nally arrive at second-order determinants, in which the cofactors of the

elements are single elements of D. The method of evaluating a determinant just

described is one form of Laplace's development of a determinant.

Problem A2.3

For a second-order determinant

D �
a11 a12

a21 a22

ÿÿÿÿÿ
ÿÿÿÿÿ

show that the Laplace's development yields the same value of D no matter which

row or column we choose.

Problem A2.4

Let

D �
1 3 0

2 6 4

ÿ1 0 2

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ:

Evaluate D, ®rst by the ®rst-row expansion, then by the ®rst-column expansion.

Do you get the same value of D?

Properties of determinants

In this section we develop some of the fundamental properties of the determinant

function. In most cases, the proofs are brief.
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(1) If all elements of a row (or a column) of a determinant are zero, the value of

the determinant is zero.

Proof: Let the elements of the kth row of the determinant D be zero. If we

expand D in terms of the ith row, then

D � ai1Ci1 � ai2Ci2 � � � � � ainCin:

Since the elements ai1; ai2; . . . ; ain are zero, D � 0. Similarly, if all the elements in

one column are zero, expanding in terms of that column shows that the determi-

nant is zero.

(2) If all the elements of one row (or one column) of a determinant are multi-

plied by the same factor k, the value of the new determinant is k times the value of

the original determinant. That is, if a determinant B is obtained from determinant

D by multiplying the elements of a row (or a column) of D by the same factor k,

then B � kD.

Proof: Suppose B is obtained from D by multiplying its ith row by k. Hence the

ith row of B is kaij , where j � 1; 2; . . . ; n, and all other elements of B are the same

as the corresponding elements of A. Now expand B in terms of the ith row:

B � kai1Ci1 � kai2Ci2 � � � � � kainCin

� k�ai1Ci1 � ai2Ci2 � � � � � ainCin�
� kD:

The proof for columns is similar.

Note that property (1) can be considered as a special case of property (2) with

k � 0.

Example A2.1

If

D �
1 2 3

0 1 1

4 ÿ1 0

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ and B �

1 6 3

0 3 1

4 ÿ3 0

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ;

then we see that the second column of B is three times the second column of D.

Evaluating the determinants, we ®nd that the value of D is ÿ3, and the value of B

is ÿ9 which is three times the value of D, illustrating property (2).

Property (2) can be used for simplifying a given determinant, as shown in the

following example.
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Example A2.2

1 3 0

2 6 4

ÿ1 0 2

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ � 2

1 3 0

1 3 2

ÿ1 0 2

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ � 2� 3

1 1 0

1 1 2

ÿ1 0 2

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ � 2� 3� 2

1 1 0

1 1 1

ÿ1 0 1

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ � ÿ12:

(3) The value of a determinant is not altered if its rows are written as columns,

in the same order.

Proof: Since the same value is obtained whether we expand a determinant by

any row or any column, thus we have property (3). The following example will

illustrate this property.

Example A2.3

D �
1 0 2

ÿ1 1 0

2 ÿ1 3

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ � 1� 1 0

ÿ1 3

ÿÿÿÿ
ÿÿÿÿÿ 0� ÿ1 0

2 3

ÿÿÿÿ
ÿÿÿÿ� 2� ÿ1 1

2 ÿ1

ÿÿÿÿ
ÿÿÿÿ � 1:

Now interchanging the rows and the columns, then evaluating the value of the

resulting determinant, we ®nd

1 ÿ1 2

0 1 ÿ1

2 0 3

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ � 1� 1 ÿ1

0 3

ÿÿÿÿ
ÿÿÿÿÿ �ÿ1� � 0 ÿ1

2 3

ÿÿÿÿ
ÿÿÿÿ� 2� 0 1

2 0

ÿÿÿÿ
ÿÿÿÿ � 1;

illustrating property (3).

(4) If any two rows (or two columns) of a determinant are interchanged, the

resulting determinant is the negative of the original determinant.

Proof: The proof is by induction. It is easy to see that it holds for 2� 2 deter-

minants. Assuming the result holds for n� n determinants, we shall show that it

also holds for �n� 1� � �n� 1� determinants, thereby proving by induction that it

holds in general.

Let B be an �n� 1� � �n� 1� determinant obtained from D by interchanging

two rows. Expanding B in terms of a row that is not one of those interchanged,

such as the kth row, we have

B �
Xn
j�1

�ÿ1� j�kbkjM
0
kj ;

where M 0
kj is the minor of bkj . Each bkj is identical to the corresponding akj (the

elements of D). Each M 0
kj is obtained from the corresponding Mkj (of akj) by
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interchanging two rows. Thus bkj � akj, and M 0
kj � ÿMkj . Hence

B � ÿ
Xn
j�1

�ÿ1� j�kbkjMkj � ÿD:

The proof for columns is similar.

Example A2.4

Consider

D �
1 0 2

ÿ1 1 0

2 ÿ1 3

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ � 1:

Now interchanging the ®rst two rows, we have

B �
ÿ1 1 0

1 0 2

2 ÿ1 3

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ � ÿ1

illustrating property (4).

(5) If corresponding elements of two rows (or two columns) of a determinant

are proportional, the value of the determinant is zero.

Proof: Let the elements of the ith and jth rows of D be proportional, say,

aik � cajk; k � 1; 2; . . . ; n. If c � 0, then D � 0. For c 6� 0, then by property (2),

D � cB, where the ith and jth rows of B are identical. Interchanging these two

rows, B goes over to ÿB (by property (4)). But the rows are identical, the new

determinant is still B. Thus B � ÿB;B � 0, and D � 0.

Example A2.5

B �
1 1 2

ÿ1 ÿ1 0

2 2 8

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ � 0; D �

3 6 ÿ4

1 ÿ 1 3

ÿ6 ÿ12 8

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ � 0:

In B the ®rst and second columns are identical, and in D the ®rst and the third

rows are proportional.

(6) If each element of a row of a determinant is a binomial, then the determi-

nant can be written as the sum of two determinants, for example,

4x� 2 3 2

x 4 3

3xÿ 1 2 1

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ �

4x 3 2

x 4 3

3x 2 1

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ�

2 3 2

0 4 3

ÿ1 2 1

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ:
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Proof: Expanding the determinant by the row whose terms are binomials, we

will see property (6) immediately.

(7) If we add to the elements of a row (or column) any constant multiple of the

corresponding elements in any other row (or column), the value of the determi-

nant is unaltered.

Proof: Applying property (6) to the determinant that results from the given

addition, we obtain a sum of two determinants: one is the original determinant

and the other contains two proportional rows. Then by property (4), the second

determinant is zero, and the proof is complete.

It is advisable to simplify a determinant before evaluating it. This may be done

with the help of properties (7) and (2), as shown in the following example.

Example A2.6

Evaluate

D �

1 24 21 93

2 ÿ37 ÿ1 194

ÿ2 35 0 ÿ171

ÿ3 177 63 234

ÿÿÿÿÿÿÿÿÿ

ÿÿÿÿÿÿÿÿÿ
:

To simplify this, we want the ®rst elements of the second, third and last rows all to

be zero. To achieve this, add the second row to the third, and add three times the

®rst to the last, subtract twice the ®rst row from the second; then develop the

resulting determinant by the ®rst column:

D �

1 24 21 93

0 ÿ85 ÿ43 8

0 ÿ 2 ÿ1 23

0 249 126 513

ÿÿÿÿÿÿÿÿÿ

ÿÿÿÿÿÿÿÿÿ
�

ÿ 85 ÿ43 8

ÿ 2 ÿ1 23

249 126 513

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ:

We can simplify the resulting determinant further. Add three times the ®rst row to

the last row:

D �
ÿ85 ÿ43 8

ÿ 2 ÿ1 23

ÿ 6 ÿ3 537

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ:

Subtract twice the second column from the ®rst, and then develop the resulting

determinant by the ®rst column:

D �
1 ÿ43 8

0 ÿ 1 23

0 ÿ3 537

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ �

ÿ1 23

ÿ3 537

ÿÿÿÿ
ÿÿÿÿ � ÿ537ÿ 23� �ÿ3� � ÿ468:
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By applying the product rule of diÿerentiation we obtain the following

theorem.

Derivative of a determinant

If the elements of a determinant are diÿerentiable functions of a variable, then the

derivative of the determinant may be written as a sum of individual determinants,

for example,

d

dx

a b c

e f g

h m n

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ �

a 0 b 0 c 0

e f g

h m n

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ�

a b c

e 0 f 0 g 0

h m n

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ�

a b c

e f g

h 0 m 0 n 0

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ;

where a; b; . . . ;m; n are diÿerentiable functions of x, and the primes denote deri-

vatives with respect to x.

Problem A2.5

Show, without computation, that the following determinants are equal to zero:

0 a ÿb

ÿa 0 c

b ÿc 0

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ;

0 2 ÿ3

ÿ2 0 4

3 ÿ4 0

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ:

Problem A2.6

Find the equation of a plane which passes through the three points (0, 0, 0),

(1, 2, 5), and (2, ÿ1, 0).
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Appendix 3

Table of * F�x� � 1������
2�

p
Z x

0

eÿt2=2dt:
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x 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 0.4472 0.4778 0.4783 0.4788 0.04793 0.4798 0.4803 0.4808 0.4812 0.4817

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4986 0.4986 0.4986
3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990

x 0.0 0.2 0.4 0.6 0.8

1.0 0.3413447 0.3849303 0.4192433 0.4452007 0.4640697
2.0 0.4772499 0.4860966 0.4918025 0.4953388 0.4974449
3.0 0.4986501 0.4993129 0.4998409 0.4999277 0.4999277
4.0 0.4999683 0.4999867 0.4999946 0.4999979 0.4999992

* This table is reproduced, by permission, from the Biometrica Tables for Statisticians, vol. 1, 1954,

edited by E. S. Pearson and H. O. Hartley and published by the Cambridge University Press for the

Biometrica Trustees.
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Index

Abel's integral equation, 426
Abelian group, 431
adjoint operator, 212
analytic functions, 243

Cauchy integral formula and, 244
Cauchy integral theorem and, 257

angular momentum operator, 18
Argand diagram, 234
associated Laguerre equation, polynomials see

Laguerre equation; Laguerre functions
associated Legendre equation, functions see

Legendre equation; Legendre functions
associated tensors, 53
auxiliary (characteristic) equation, 75
axial vector, 8

Bernoulli equation, 72
Bessel equation, 321

series solution, 322
Bessel functions, 323

approximations, 335
®rst kind Jn�x�, 324
generating function, 330
hanging ¯exible chain, 328
Hankel functions, 328
integral representation, 331
orthogonality, 336
recurrence formulas, 332
second kind Yn�x� see Neumann functions

spherical, 338
beta function, 95
branch line (branch cut), 241
branch points, 241

calculus of variations, 347±371
brachistochrone problem, 350
canonical equations of motion, 361
constraints, 353
Euler±Lagrange equation, 348
Hamilton's principle, 361

calculus of variations (contd)
Hamilton±Jacobi equation, 364
Lagrangian equations of motion, 355
Lagrangian multipliers, 353
modi®ed Hamilton's principle, 364
Rayleigh±Ritz method, 359

cartesian coordinates, 3
Cauchy principal value, 289
Cauchy±Riemann conditions, 244
Cauchy's integral formula, 260
Cauchy's integral theorem, 257
Cayley±Hamilton theorem, 134
change of

basis, 224
coordinate system, 11
interval, 152

characteristic equation, 125
Christoÿel symbol, 54
commutator, 107
complex numbers, 233

basic operations, 234
polar form, 234
roots, 237

connected, simply or multiply, 257
contour integrals, 255
contraction of tensors, 50
contravariant tensor, 49
convolution theorem Fourier transforms, 188
coordinate system, see speci®c coordinate system
coset, 439
covariant diÿerentiation, 55
covariant tensor, 49
cross product of vectors see vector product of

vectors
crossing conditions, 441
curl

cartesian, 24
curvilinear, 32
cylindrical, 34
spherical polar, 35
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curvilinear coordinates, 27
damped oscillations, 80
De Moivre's formula, 237
del, 22

formulas involving del, 27
delta function, Dirac, 183

Fourier integral, 183
Green's function and, 192
point source, 193

determinants, 538±547
diÿerential equations, 62

®rst order, 63
exact 67
integrating factors, 69
separable variables 63

homogeneous, 63
numerical solutions, 469
second order, constant coe�cients, 72
complementary functions, 74
Frobenius and Fuchs theorem, 86
particular integrals, 77
singular points, 86
solution in power series, 85

direct product
matrices, 139
tensors, 50

direction angles and direction cosines, 3
divergence

cartesian, 22
curvilinear, 30
cylindrical, 33
spherical polar, 35

dot product of vectors, 5
dual vectors and dual spaces, 211

eigenvalues and eigenfunctions of Sturm±
Liouville equations, 340

hermitian matrices, 124
orthogonality, 129
real, 128

an operator, 217
entire functions, 247
Euler's linear equation, 83

Fourier series, 144
convergence and Dirichlet conditions, 150
diÿerentiation, 157
Euler±Fourier formulas, 145
exponential form of Fourier series, 156
Gibbs phenomenon, 150
half-range Fourier series, 151
integration, 157
interval, change of, 152
orthogonality, 162
Parseval's identity, 153
vibrtating strings, 157
Fourier transform, 164
convolution theorem, 188
delta function derivation, 183
Fourier integral, 164

Fourier series (contd)
Fourier sine and cosine transforms, 172

Green's function method, 192
head conduction, 179
Heisenberg's uncertainty principle, 173
Parseval's identity, 186
solution of integral equation, 421
transform of derivatives, 190
wave packets and group velocity, 174

Fredholm integral equation, 413 see also integral
equations

Frobenius' method see series solution of
diÿerential equations

Frobenius±Fuch's theorem, 86
function

analytic,
entire,
harmonic, 247

function spaces, 226

gamma function, 94
gauge transformation, 411
Gauss' law, 391
Gauss' theorem, 37
generating function, for

associated Laguerre polynomials, 320
Bessel functions, 330
Hermite polynomials, 314
Laguerre polynomials, 317
Legendre polynomials, 301

Gibbs phenomenon, 150
gradient

cartesian, 20
curvilinear, 29
cylindrical, 33
spherical polar, 35

Gram±Schmidt orthogonalization, 209
Green's functions, 192,

construction of
one dimension, 192
three dimensions, 405

delta function, 193
Green's theorem, 43

in the plane, 44
group theory, 430

conjugate clsses, 440
cosets, 439
cyclic group, 433
rotation matrix, 234, 252
special unitary group, SU(2), 232

de®nitions, 430
dihedral groups, 446
generator, 451
homomorphism, 436
irreducible representations, 442
isomorphism, 435
multiplication table, 434
Lorentz group, 454
permutation group, 438
orthogonal group SO(3)
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group theory (contd)
symmetry group, 446
unitary group, 452
unitary unimodular group SU�n�

Hamilton±Jacobi equation, 364
Hamilton's principle and Lagrange equations of

motion, 355
Hankel functions, 328
Hankel transforms, 385
harmonic functions, 247
Helmholtz theorem, 44
Hermite equation, 311
Hermite polynomials, 312

generating function, 314
orthogonality, 314
recurrence relations, 313

hermitian matrices, 114
orthogonal eigenvectors, 129
real eigenvalues, 128

hermitian operator, 220
completeness of eigenfunctions, 221
eigenfunctions, orthogonal, 220
eigenvalues, real, 220

Hilbert space, 230
Hilbert-Schmidt method of solution, 421
homogeneous see linear equations
homomorphism, 436

indicial equation, 87
inertia, moment of, 135
in®nity see singularity, pole essential singularity
integral equations, 413

Abel's equation, 426
classical harmonic oscillator, 427
diÿerential equation±integral equation

transformation, 419
Fourier transform solution, 421
Fredholm equation, 413
Laplace transform solution, 420
Neumann series, 416
quantum harmonic oscillator, 427
Schmidt±Hilbert method, 421
separable kernel, 414
Volterra equation, 414

integral transforms, 384 see also Fourier
transform, Hankel transform, Laplace
transform, Mellin transform

Fourier, 164
Hankel, 385
Laplace, 372
Mellin, 385

integration, vector, 35
line integrals, 36
surface integrals, 36

interpolation, 1461
inverse operator, uniqueness of, 218
irreducible group representations, 442

Jacobian, 29

kernels of integral equations, 414
separable, 414

Kronecker delta, 6
mixed second-rank tensor, 53

Lagrangian, 355
Lagrangian multipliers, 354
Laguerre equation, 316

associated Laguerre equation, 320
Laguerre functions, 317

associated Laguerre polynomials, 320
generating function, 317
orthogonality, 319
Rodrigues' representation, 318

Laplace equation, 389
solutions of, 392

Laplace transform, 372
existence of, 373
integration of tranforms, 383
inverse transformation, 373
solution of integral equation, 420
the ®rst shifting theorem, 378
the second shifting theorem, 379
transform of derivatives, 382

Laplacian
cartesian, 24
cylindrical, 34
scalar, 24
spherical polar, 35

Laurent expansion, 274
Legendre equation, 296

associated Legendre equation, 307
series solution of Legendre equation, 296

Legendre functions, 299
associated Legendre functions, 308
generating function, 301
orthogonality, 304
recurrence relations, 302
Rodrigues' formula, 299

linear combination, 204
linear independence, 204
linear operator, 212
Lorentz gauge condition, 411
Lorentz group, 454
Lorentz transformation, 455

mapping, 239
matrices, 100

anti-hermitian, 114
commutator
de®nition, 100
diagonalization, 129
direct product, 139
eigenvalues and eigenvectors, 124
Hermitian, 114
nverse, 111
matrix multiplication, 103
moment of inertia, 135
orthogonal, 115
and unitary transformations, 121
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matrices (contd)
Pauli spin, 142
representation, 226
rotational, 117
similarity transformation, 122
symmetric and skew-symmetric, 109
trace, 121
transpose, 108
unitary, 116

Maxwell equations, 411
derivation of wave equation, 411

Mellin transforms, 385
metric tensor, 51
mixed tensor, 49
Morera's theorem, 259
multipoles, 248

Neumann functions, 327
Newton's root ®nding formula, 465
normal modes of vibrations 136
numerical methods, 459

roots of equations, 460
false position (linear interpolation), 461
graphic methods, 460
Newton's method, 464

integration, 466
rectangular rule, 455
Simpson's rule, 469
trapezoidal rule, 467

interpolation, 459
least-square ®t, 477
solutions of diÿerential equations, 469
Euler's rule, 470
Runge±Kutta method, 473
Taylor series method, 472

system of equations, 476

operators
adjoint, 212
angular momentum operator, 18
commuting, 225
del, 22
diÿerential operator D (�d=dx), 78
linear, 212

orthonormal, 161, 207
oscillator,

damped, 80
integral equations for, 427
simple harmonic, 427

Parseval's identity, 153, 186
partial diÿerential equations, 387

linear second order, 388
elliptic, hyperbolic, parabolic, 388
Green functions, 404
Laplace transformation
separation of variables
Laplace's equation, 392, 395, 398
wave equation, 402

Pauli spin matrices, 142

phase of a complex number, 235
Poisson equation. 389
polar form of complex numbers, 234
poles, 248
probability theory , 481

combinations, 485
continuous distributions, 500
Gaussian, 502
Maxwell±Boltzmann, 503

de®nition of probability, 481
expectation and variance, 490
fundamental theorems, 486
probability distributions, 491
binomial, 491
Gaussian, 497
Poisson, 495

sample space, 482
power series, 269

solution of diÿerential equations, 85
projection operators, 222
pseudovectors, 8

quotient rule, 50

rank (order), of tensor, 49
of group, 430

Rayleigh±Ritz (variational) method, 359
recurrence relations

Bessel functions, 332
Hermite functions, 313
Laguerre functions, 318
Legendre functions, 302
residue theorem, 282

residues 279
calculus of residues, 280

Riccati equation, 98
Riemann surface, 241
Rodrigues' formula

Hermite polynomials, 313
Laguerre polynomials, 318
associated Laguerre polynomials, 320

Legendre polynomials, 299
associated Legendre polynomials, 308

root diagram, 238
rotation

groups SO�2�;SO�3�, 450
of coordinates, 11, 117
of vectors, 11±13

Runge±Kutta solution, 473

scalar, de®nition of, 1
scalar potential, 20, 390, 411
scalar product of vectors, 5
Schmidt orthogonalization see Gram±Schmidt

orthogonalization
SchroÈ dinger wave equation, 427

variational approach, 368
Schwarz±Cauchy inequality, 210
secular (characteristic) equation, 125
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series solution of diÿerential equations,
Bessel's equation, 322
Hermite's equation, 311
Laguerre's equation, 316
Legendre's equation, 296
associated Legendre's equation, 307

similarity transformation, 122
singularity, 86, 248

branch point, 240
diÿerential equation, 86
Laurent series, 274
on contour of integration, 290

special unitary group, SU�n�, 452
spherical polar coordinates, 34
step function, 380
Stirling's asymptotic formula for n!, 99
Stokes' theorem, 40
Sturm±Liouville equation, 340
subgroup, 439
summation convention (Einstein's), 48
symbolic software, 492

Taylor series of elementary functions, 272
tensor analysis, 47

associated tensor, 53
basic operations with tensors, 49
contravariant vector, 48
covariant diÿerentiation, 55
covariant vector, 48

tensor analysis (contd)
de®nition of second rank tensor, 49
geodesic in Riemannian space, 53
metric tensor, 51
quotient law, 50
symmetry±antisymmetry, 50

trace (matrix), 121
triple scalar product of vectors, 10
triple vector product of vectors, 11

uncertainty principle in quantum theory, 173
unit group element, 430
unit vectors

cartesian, 3
cylindrical, 32
spherical polar, 34

variational principles, see calculus of variations
vector and tensor analysis, 1±56
vector potential, 411
vector product of vectors, 7
vector space, 13, 199
Volterra integral equation. see integral equations

wave equation, 389
derivation from Maxwell's equations, 411
solution of, separation of variables, 402

wave packets, 174
group velocity, 174
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