Rigid Body Motion: |

9.1 INTRODUCTION

In previous chapters we have dealt with the motion of a particle or a system of particles under
the influence of external forces. In actual, everyday motions, we have to deal with rigid objects
of different shapes and sizes which may or may not reduce to equivalent point masses. We will
show now that to describe the motion of rigid bodies and apply conservation laws, we must un-
derstand the full meanings of center of mass, moment of inertia, and radius of gyration.

Discussion of angular motion is complex in such cases, so simple cases of rotation about
a fixed axis will be discussed here, while rotation about an axis passing through a fixed point
will be discussed in Chapter 13. Furthermore, in this chapter we will assume that the bodies are
rigid and do not deform, which is true in ideal cases only. We will briefly discuss deformable
continua in order to understand the elastic properties of objects, which, in turn, is necessary to
an understanding of the equilibrium of flexible cables, strings, and solid beams.

9.2 DESCRIPTION OF A RIGID BODY

A rigid body is defined as a system consisting of a large number of point masses, called parti-
cles, such that the distances between the pairs of point masses remain constant even when the
body is in motion or under the action of external forces. This is an idealized definition of a rigid
body because (1) there is no such thing as true point masses or particles, and (2) no body of any
physical size is strictly rigid; it becomes deformed under the action of applied forces. However,
the concept of an idealized rigid body is useful in describing motion, and the resulting devia-
tions are not that significant.

Forces that maintain constant distances between different pairs of point masses are inter-
nal forces and are called forces of constraint. Such forces come in pairs and obey Newton’s third
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law in the strong form; that is, they are equal and opposite and act along the same line of action.
Hence we can apply the laws of conservation of linear momentum and angular momentum to
the description of the motion of rigid bodies. Furthermore, in any displacement, the relative dis-
tances and the orientations of different particles remain the same with respect to each other;
hence no net work is done by the internal forces or the forces of constraint. This implies that for
a perfectly rigid body the law of conservation of mechanical energy holds as well.

Our next step is to establish the number of independent coordinates needed to describe the
position in space or configuration of a rigid body. Suppose a rigid body consists of N particles.
Since the position of each particle is specified by three coordinates, we may be led to conclude
that we need 3N coordinates to describe the position of the rigid body. This would be true only
if the positions and the motions of all particles were independent. But this is not so. The dis-
tance ry between any pair of particles is constant, and there are many such pairs. We are going
to show that only six independent coordinates are needed to describe the position of a rigid body.
Let us consider the rigid body shown in Fig. 9.1. To describe the position of the point mass k we
need not specify its distances from all other point masses in the body; we need its distances from
three other noncollinear points, such as P, P,, and P;, as shown in Fig. 9.1. Thus, if the posi-
tions of these three points are known, the positions of the remaining points in the body are fixed
by the constraints. But P, P,, and P; need at the most nine coordinates to describe their posi-
tions in space. Even these nine coordinates are not all independent. The distances ry,, r,;, and
r.; are all constants; that is,

rp, =d, ri; = dy, ry = dy 9.1)

where d,, d,, and d; are constants. These three relations, called the equations of constraints, re-
duce the number of independent coordinates needed to describe the position of the rigid body
10 SiX.

Figure 9.1 The position of any point

mass at k in space may be determined

by knowing the positions of three non-
X collinear points P, P,, and P;.




340 Rigid Body Motion: | Chap. 9

There is an alternative way of explaining that only six coordinates are needed to establish
the positions of the three reference points. The reference point P, needs only three coordinates
(1, ¥1, 21) to specify its position. Once P, is fixed, P, can be specified by only two coordinates.
since it will be constrained to move on the surface of a sphere whose center is at P,. These two
coordinates are (6,, ¢,). With these two points fixed, point P; lies on a circle of radius a whose
center lies on an axis joining points P, and P,. Thus only six coordinates are needed to locate
three noncollinear points P,, P,, and P; of a rigid body. Once these are fixed, the locations of all
other points of the rigid body are fixed; that is, the configuration of a rigid body in space is fixed.
If there are other constraints on the body, the number of coordinates needed to specify the po-
sition of a rigid body may be less than six.

There are several ways of choosing these six coordinates. One such way is shown in
Fig. 9.2. The primed coordinates X 'Y'Z’, the body set of axes, drawn in the rigid body can com-
pletely specify the rigid body relative to the external coordinates XYZ, the space set of axes.
Thus three coordinates are needed to specify the origin of the body set of axes, while the re-
maining three must specify the orientation of the body set of axes (primed axes) relative to the
coordinate axes parallel to the space axes (unprimed axes), as shown in Fig. 9.2. Thus we must
know the coordinates of O with respect to O and the orientation of X'Y'Z' axes relative to the
XYZ axes.

Let us consider the motion of a rigid body constrained to rotate about a fixed point. Since
there is no translational motion, we are concerned only with the torques that produce rotational
motion. But before doing this, we must choose three coordinates that describe the orientation of
the body axes relative to the space axes. The choice is not so simple. No simple symmetric set
of coordinates can be found that will describe the orientation of the rigid body. We shall post-
pone the discussion of the rotation of a body about a fixed point until Chapter 13. In this chap-
ter, we limit ourselves to the discussion of simple problems involving rotation about a fixed axis
(and not a fixed point).

Figure 9.2 The configuration of a
rigid body is specified by six indepen-
dent coordinates: the coordinates of O’
with respect to O and the orientation of
the X'Y'Z’" axes relative to the XYZ

X axes.
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3.3 CENTER OF MASS OF A RIGID BODY

Even a small-sized solid body contains a very large number of atoms and molecules. It is con-
venient to represent the structure of this body by its average density, p, defined as mass per unit
volume, that is, p = M/V, where M is the mass and V is the volume, while the local density or
simply density may be defined as

aM
p= —

v 9.2)

where dM is the mass of a volume element dV. Since the body is assumed to be continuous over
-he whole volume, the total mass being given by finite summation over mass particles m, must
10w be replaced by an integral over a volume space of infinitesimal masses dM; that is,

Emk—>M:”JdM=”fpdv (9.3)

For a system containing a discrete number of particles of masses m, at distances r,, the
-enter of mass R was defined in Chapter 8 as

R = 2 (9.4)
Zm,

For an extended rigid body, the summation can be replaced by an integration over the whole vol-
ume of the body; that is, the center of mass R(X, Y, Z) is

C [[fam M

/
where dM = p dV, and M is the total mass of the body. In component form, the ce/m/cr of mass
may be written as S/

1 I Lirgl
X= v, Y=- av, z=-—|[Vwav 6
wll[oavv=gg[[[year 2= [[fwar 08

If arigid body is in the form of a thin shell, the equation for the cent(;/f/of mass takes the form

R = AI/I j j ro dA 9.7)

where o is the surface density defined as the mass per unit area, dA is a small element of area,
and the total mass M is given by

M= “ o dA (9.8)
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Similarly, if the body is in the form of a thin wire, the center of mass is

1
R= —[rAdL 9.9
L o
where A is the linear density defined as mass per unit length, dL is a small element of length.

and the total mass M is given by
M= f AdL (9.10)

If p, o, and A are constants, they can be taken out of the integration signs, thereby making the
problem somewhat simpler.
Suppose a system consists of two or more discrete parts such that the center of mass of M,

is at r;, that of M, is 1, . . ., then the center of mass of the system is
My, + My, + -
R = bl el S (9.11)
Ml + M2 + A
In component form,
x = Mot Mo+ ©.12)
M +M,+ -
with similar expressions for Y and Z. Note that (x;, y;, z;), (x5, ¥5, 2,), . . . , are the coordinates
of the center of masses of M|, M,, . . ., respectively.

In calculating the center of mass, we should be able to take advantage of symmetry con-
siderations. Suppose a body has a plane of symmetry; that is, every mass m; has a mirror image
of itself m, relative to the same plane. Let us assume that the XY plane is the plane of symme-
try. In this case,

2(mz, + mz,
7z = =t mz) (.13)
2(m, + my)
But, due to symmetry, m, = m, and z, = —z; that is, Z = 0, which implies that the center of

mass lies in the XY plane, the plane of symmetry. Similarly, if a rigid body has a line of sym-
metry, the center of mass lies on this line. Let us discuss some examples to explain the applica-
tion of the preceding equations.

Center of Mass of a Solid Hemisphere, Hemispherical
Shell, and Semicircle

Figure 9.3 shows a solid hemisphere of radius a and uniform density p so that its mass M =
(27/3)a’p. From symmetry considerations, we know that its center of mass lies on the radius
that is normal to the plane face. That is, as shown, it lies on the Z-axis. To calculate Z, the cen-
ter of mass, we consider the volume element shown shaded, so that

dV = ma* — 25 dz 9.149)
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Z4

dv=m(a? — 2)dz < Vg2 — 72

| a

6 T~
0 X >  Figure 9.3 Center of mass for a solid
X .
¥/ hemlsphere.
Therefore, the center-of-mass coordinate Z, according to Eq. (9.5), is

ozpdV | zpm(d® — 2% dz 3
zzfoap - foa pmd = z)dz _ 3 (9.15)
fopdV fopﬂ'(a —z)dz 8
For a hemispherical shell, the situation is as shown in Fig. 9.4. Again from symmetry con-
siderations, the center of mass is on the Z-axis. A small surface of length 27(a?> — 2%)'? and width

a d#), as shown, has an area

dA = 2ma® — z2%)'""a do (9.16)
According to Fig. 9.4,
Z = asin 6, dz = acos 0d6
dz dz

do =

acos 6 N (@ — H'"”
while the center of mass is R(X, ¥, Z). The translational motion of the body is described by
F = MR 9.17)

where F is the total external force acting on a body of mass M. The rotational motion of the body
is described by the equation

dL
= — 9.18
T o O-18)
Z 4
da = [2m(a® — 2)Y(a dB)
- \/g2 — A2

adf

; Figure 9.4 Center of mass fora
hemispherical shell.
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where L is the angular momentum and 7 is the total external torque acting about an axis pass-
ing through the center of mass. Thus Egs. (9.17) and (9.18) represent six coupled equations to
be solved simultaneously, a hard task to accomplish. But under certain constraints the number

of equations can be reduced considerably, as we shall discuss later.

Exomple 9.1

Find the center of mass for (a) a solid cone and (b) a frustum of a cone. The two situations
are shown in Fig. Ex. 9.1

Y )

(a) )

Figure Ex. 9.1

Solution

(a) Consider the cone, shown in Fig. Ex. 9.1(a), of radius a, height h, and density p. First
consider a cone of radius r and thickness dy. Using the relation r/a = y/h, we can

write the values of r and the mass dm of the cone. Eliminate r by substituting its value as
shown.

2
=2 dm=p-7c-r2-dy dm=p-r- (ﬂ) -dy
h h
h 2
Using Eq. (9.3), calculate the M= [(%) -p-ﬂ:} dy M=l-a2-h-p-1:
3

mass M of the cone by integration.
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Using either of the relations in y[ (a'Y>2_ o n] dy
Eq. (9.5), calculate the center

0 3
_~h
of mass Ycm of the cone as shown.  Yem= Yem=

[

(b) The frustum is a cone that has had the lower portion [shaded portion in Figure Ex. 9.1(b)]
removed. Treat this as two cones, the whole cone and the lower shaded cone. Find the mass
and the center of mass of the frustum by subtracting the values for the lower cone from those
tor the whole cone as shown.

M1 and M2 are the masses of Al_al 22y Ml=l-a12~h1-p-1t
the two cones, and Ylcem and Y2cm h2 a2 al 3 ~
are their center of masses. Using the Mozt a b2 oo Ma=L. a23.h1'p.n
geometry of the figure, replace the values 3 P 3 al
of h2 by (a2/al)hl. 3 3w
Y2cm=-h2 Y2em=2-22.h1

4 4 al
Substituting the values of M1, M2, YemeML-Ylem - M2-¥2cm
Y lcm, and Y2cm, and simplifying, we ML= M2
find the center of mass Ycm of the
. 3 ( 2 2) hl
frustum of a cone. Yem=—(a2+al)-\a2" +al /- 5 .

4 [al- a2 +ala2+al >]

9.4 ROTATION ABOUT AN AXIS

After pure translation motion, the next simplest motion of a rigid body is its rotational motion
about a fixed axis. When a body is free to rotate about a fixed axis, it needs only the coordinate
10 specify its orientation. Let us consider a rigid body that rotates about a fixed Z-axis, as shown
in Fig. 9.5(a). The position of the body may be specified by an angle 6, which is between the
line OA drawn on the body and the X-axis. Let us consider a particle of mass m, to be a repre-
sentative particle located at a distance R (X,, Y}, Z;) from the origin, moving with a velocity v,
and angular velocity w. The path of such a particle is a circle of radius r, = (x} + y}) 2 with its
center on the Z-axis. Let ¢ be the angle between the direction of the line OA in the body and the
radius r, from the Z-axis to the mass m,. Since for a rigid body ¢ is constant, as shown in the
figure, ¢ = 6 = i and hence

b =0=e (9.19)
while v, = no 9.20)

or in vector notation

V,=wXr, 9.21)
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er

(a) Side view (b) Top view

Figure 9.5 Rotation of arigid body about a fixed axis: (a) side view, and (b) top view.

From Eq. (9.21) or from Fig. 9.5(b),

X, = —ysin¢ = —wy, (9.22a)
Ve = U008 b = ax, (9.22b)
5 =0 (9.9%¢)
Zy Y \Fekir y
and v = Ro = (x} + yH'”? (9.23)

For further calculations, we can either use the rectangular coordinates (x, y, z) or cylin-
drical coordinates (r, 6, z). The kinetic energy K of the rotating body about the Z-axis is

K= Simt = 1| S mei]or
k k
or K=11w=116" (9.24)
where L= my =2 m(g+y) (9.25)
k k

The quantity I, 1s constant for a given rigid body rotating about a given axis (Z-axis in this case)
and is called the moment of inertia about that axis. Since the body is continuous, we may re-
place the summation by the integration, and express /, as

12=”f r2dm=“J rpdV (9.26)

Let us now calculate the angular momentum of the body about the Z-axis. By definition,
the angular momentum of the body about the Z-axis is

L= 2 r{mu,) = (2 mkr%)w 9.27)

k

k
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or L=1Io=10 (9.28)

The rate of change of angular momentum for any system is equal to the total external torque (or
total moment of force) 7 (also written as N). Thus, for a rigid body rotating about the Z-axis,
since I is constant,

dL do .
T, & { it 10 9.29)
This is an equation of motion for rotation of a rigid body about a fixed axis and is analogous to
the equation for the translational motion of a particle along a straight line, that is, Newton’s sec-
ond law.

Similarly, the moment of inertia / is analogous to mass m; that is, / is a measure of the ro-
rational inertia of a body relative to some fixed axis of rotation, just as m is a measure of the
transiational inertia of a body. Remember, the difference is that the moment of inertia depends
on the axis of rotation, while the mass does not depend on its position. Such analogy may be
shown between translational and rotational quantities, as well (see Table 9.1).

Furthermore, as an analogy with the translational motion, we may define the rotational po-
tential energy as

2]
V(o) = — f 7(6) d6 9.30)

B,

s

Table 9.1. Analogy between Rectilinear Motion and
Rotational Motion about an Axis

Rectilinear Rotational
Position: x Angular position: 6
Velocity: v = dx/dt Angular velocity: w = d@/dt
Acceleration: Angular acceleration:
a = dvldt = d’x/dt* a = doldt = d*6lds
v=vyt at w=wy= ot
x =yt +;at’ 0=yt + 1 o’
Mass: M Moment of inertia: | = Zm,r;

Linear momentum: p = mv
Force: F

F=ma

F = dpldt

Translational kinetic energy:

K= %mv2
Potential energy:

Vix) = — j " (o) de

dVix)
Gaviay

Flx)y = —

dx

Angular momentum: L = lw
Torque: 7= rF sin 0

1= la
T =dL/dt
Rotational kinetic energy:
K =310’

Potential energy:
[
V(o) = — J 7(6) db
6,

A )
avivy

O ="
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dv
and == 9.31)

Thus the rotational potential energy is the work done against the forces that produce the torque
7, when the body is rotated from a standard angular position 6, to a new position 6.

Example 9.2

A stick of mass M and length L is initially at rest in a vertical position on a frictionless table, as shown in
Fig. Ex. 9.2. If the stick starts falling, find the speed of the center of mass as a function of the angle that
the stick makes with the vertical.

Solution

The situation is as shown in the figure. We can find the speed of the center of mass by using the conser-
vation of energy method. The only force acting on the stick is the gravitational force Mg in the vertical
downward direction. Since there is no horizontal force acting on the rod, the center of mass falls vertically
downward as shown. Let y = vy be the speed of the center of mass.

Figure Ex. 9.2

K,l = O . Ei=K+ VEEf Ei=VieMgl  vaMg (5 - y)

Ei = initial total energy 2 2

Ef = final total energy Ei=Kt+ Kr+V

Vi = initial potential energy . 2 10w’

V = potential energy at different y pimp=M W 10 g (L - y) wp=—2W
2 2 2 L-sin(8)

E = total energy, which is the sum of

the translational kinetic energy (Kt),
rotational kinetic energy (Kr), and

potential energy V. The energy equation Mg
for any position y is

2 2
L_M-vwy o8 L
= + M = —
2 2 2 TNE 2 Y
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7. is the linear mass density equal %
0 M{L. Io is the moment of o= 2hde To=Lloia . o=L12M
inertia of the rod about the center L 12 =L 12
of mass. Solve for Io and then (7)
<ubstitute for A.

I nprmtmoy?s Lo [ 29 I
Substitute the value of loand @8 in 3 M ELT MW ro-lo (L,Sin(9)> Mg <§‘L_ y)

the energy equation and solve the

equation for the value of velocity vy. 1 , 1 vy 1
T Mel= My s M. +M-g-(—2-~L— y)

6 in(@)
The two resulting ! , ﬁ.M. 13-sin(8)° + “/;ﬂg, ﬁ
solutions for vy are 61ty L _M sin(9)
2 6 sin(G)2

Using one of the roots and

-1 Ly . 2 3
simplifying, we obtain the final ) I M ﬁ'M' 3-sin(8)” + 1«[5\5?{9)
solution for vy. The value of vy 6‘(7'M "6 sinc 6)2”

i

may be further simplified as

shown.
-1 ~«/§vM-«/3~sin(9)2+ 1,\/;,\/;_“/.;_

vy-{@(i.M_l_ M ” sin(9)

2 6 Gn(0)”

vy=-i -sin(e)-——JE——-«/;-q/;q/;
Al-4 4+ 3-005(6)2

(a) What factors determine the velocity of the center of mass?

{b) Explain the changes in the magnitude of V, Kr, and Kt as the stick is falling and just before
it hits the floor.

9.5 CALCULATION OF MOMENT OF INERTIA

For a system consisting of masses m,; located at distances 7, from an axis of rotation, the mo-
ment of inertia is given by

N
1= mn (9.32)
k=1

It is important to remember that r, is the perpendicular distance of m, from the rotation axis. For
an extended, continuous rigid body, the moment of inertia about an axis of rotation is given by

/= j 2 dm (9.33)
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where r is the perpendicular distance of the mass element dm from the rotation axis. For a one-
dimensional body with a linear mass density A (mass per unit length), for a two-dimensional
body with an area mass density o (mass per unit area), and for a three-dimensional body with
volume mass density p (mass per unit volume), the moment of inertia in each case may be writ-
ten as

[= f reA dt (9.34)

I = ff r’a dA (9.35)

= f f f r2p dV (9.36)

where dl is the length element, dA is the area element, and dV is the volume element.

The definition of moment of inertia may be extended to the case of a composite body.
Thus, if 1,, 1,, . . ., are the moments of inertia of the various parts of the body about a particu-
lar axis, then the moment of inertia of the whole body about the same axis is

[=1+5L+ (9.37)
We now calculate the moment of inertia of rigid bodies of different shapes.

Thin Rod

Let us consider a thin rod of length L and mass M, so that the linear mass density will be
A = M/L. Suppose we want to find the moment of inertia about an axis perpendicular to the rod
at one end [Fig. 9.6(a)]. According to Eq. (9.34),

L
i= f KAde = 1000 = ar’ 9.38)
0

where we have substituted A = M/L. If the axis of rotation were at the center of the rod, as shown
in Fig. 9.6(b), the moment of inertia would be

+12

I= f hdx = LA = LML 9.39)
—L2

Before proceeding further, it is important at this point to introduce and prove two most im-
portant theorems: The parallel axis theorem and the perpendicular axis theorem.

Parallel Axis Theorem

Consider a body rotating about an axis passing through 0. There is no loss in generality by assum-
ing this to be a Z-axis. By definition, the moment of inertia about an axis passing through O is

Iy =2 mix + yp) = fff (x* + yhpdV (9.40)
k




Sec. 9.5 Calculation of Moment of Inertia 351

B fr~

Figure 9.6 The moment of inertia for
a thin rod (a) about an axis perpendicu-
lar to the rod at one end, and (b) about
an axis perpendicular to the rod at the
(b) center.

where mass my is at a distance ry from the origin and (x} + y?)" from the Z-axis. According to
Fig. 9.7,

r,=r . +tr, (9.41)

where r, is the distance of the center of mass from the origin O, and r; is the relative coordinate
of m; with respect to the CM. Using Eq. (9.41) (and dropping k),

x2 + y2 — (xc + xl)2 + (yc 4 yr)Z — xf + yg 4 xi2 + y12 4 2XL)CI + 2ycyl (9'42)

Substituting this in Eq. (9.40), we obtain
I, = ffj (x'? + y’z)pdV + (x% + yﬁ)fjf pdV

+ 2x, f f f xX'pdV + 2y, f f f ypdv (9.43)

where the first term on the right is the moment of inertia about an axis parallel to the Z-axis and
passing through the center of mass; that is,

I = f f f &2+ ypdV (9.44)
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Z A
| —>]

/——\
2 -~

r KCM

ny

Figure 9.7 Parallel axis theorem.

The second term on the right side of Eq. (9.43) is equal to the mass M of the body multiplied by
the square of the distance / between the center of mass and the Z-axis; that is,

& + ) f J f pdV = (2 + Y)M = M (9.45)

The last two terms in Eq. (9.43) are zero by definition of the center of mass; that is, they simply
locate the center of mass relative to itself.

”Jx'pdv= ”fy'pdV= 0 (9.46)

Thus, combining Egs. (9.44), (9.45), and (9.46) with Eq. (9.43), we obtain
I, = I + MI* (9.47)
which is the parallel axis theorem and may be stated as follows:

Parallel Axis Theorem. The moment of inertia of a body about any axis is equal to the sum
of the moment of inertia about a parallel axis through the center of mass and the moment
of inertia about the given axis for the total mass of the body located at the center of mass.

Thus, if we know the center of mass of a body and the moment of inertia about the center
of mass, then the moment of inertia about any parallel axis can be calculated by using this the-
orem. This theorem can be applied to composite bodies as well.

Perpendicular Axis Theorem

A body whose mass is concentrated in a single plane is called a plane lamina. The perpendicu-
lar axis theorem is applicable to a plane lamina of any shape. Let us consider a rigid body in the
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“arm of a lamina in the XY-plane, as shown in Fig. 9.8. For rotation about the Z-axis, the mo-
~ent of inertia about the Z-axis is given by

=S med+d = ||| @ +yIpav (9.48)

If the body were rotating about the X-axis, its moment of inertia about the X-axis would be (for
= thin lamina, z = 0; hence no 22 term)

I = f j J y2pdV (9.49)

and, similarly, the moment of inertia about the Y-axis would be

I, = J f f ¥pdV (9.50)
Combining Egs. (9.49) and (9.50) with Eq. (9.48),
L=1I+1, (9.51)

which is the perpendicular axis theorem and may be stated as follows:

Perpendicular Axis Theorem. The sum of the moments of inertia of a plane lamina about
any two perpendicular axes in the plane of the lamina is equal to the moment of inertia
about an axis that passes through the point of intersection and perpendicular to the plane
of the lamina.

Let us apply these theorems to different situations.

Z |

~ Y

Figure 9.8 Perpendicular axis theo-
rem as applied to a lamina in the XY
X plane.
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Hoop or Cylindrical Shell

Consider a hoop or ring of mass M and radius a, as shown in Fig. 9.9. All the mass M is con-
centrated at a distance a from the axis. Hence the moment of inertia about the Z-axis is

1, = Ma* (9.52)

Now suppose that we want to calculate the moment of inertia about an axis AA’ that is parallel
to the Z-axis and perpendicular to the plane of the ring, passing through the edge of the ring as
shown. The situation is no longer symmetrical, and the direct calculation of the moment of in-
ertia about the axis AA’ is no longer trivial. But the application of the parallel axis theorem
[Eq. (9.47)] makes such calculations simple; that is,

I, =1 + MI*
When applied to the situation in Fig. 9.9, it gives
I, = I, + Ma®? = Ma* + Ma®
= 2Ma* (9.53)

Next we proceed to calculate the moment of inertia of the ring about an axis in the plane
of the ring, such as about an X- or Y-axis. From the symmetry of the situation,

I, =1 9.59)
and applying the perpendicular axis theorem, Eq. (9.51), I, = I, + I, gives
Ma* =1, + 1, =1,+ I,
or I, = I, = Ma? (9.55)

0
=
~ ¥

Figure 9.9 Moment of inertia for &
B’ N hoop or ring about three different axes:
X Z-axis, AA'-axis, and BB’ -axis.
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We can now apply the parallel axis theorem to find the moment of inertia about the BB’ axis,
which is in the plane of the ring and tangent to the edge, as shown in Fig. 9.9. Thus

Iy = Iy + Ma* = %Maz + Ma*
=3 Ma® (9.56)

A cylindrical shell is simply a large number of rings piled one upon another. Thus the mo-
ment of inertia of a cylindrical shell or hollow cylinder of mass M, radius a, and length / may
be calculated in a manner similar to the preceding ring.

Radius of Gyration

[t is convenient to express the moment of inertia of a rigid body in terms of a distance £, called
the radius of gyration, defined as
I

1 = Mk?, k=17~ (9.57)
M

That is, the radius of gyration is that distance from the axis of rotation where we may assume
all of the mass of the body to be concentrated. Thus, for example, the radius gyration k of a thin
rod with the axis of rotation passing through the center is

I (1/12)Ma* a
k = \[ =A== 9.58

Once we know £ for a rigid body rotating about a given axis, the moment of inertia is simply
calculated from I = Mk?.

Circular Disk, Solid Cylinder

Let us consider a solid disk of mass M and radius a, rotating about an axis through its center and
perpendicular to the plane of the disk, as shown in Fig. 9.10. Let us divide the disk into several
concentric rings, such as the one shown shaded in the figure. Thus the moment of inertia of this
ring about the given axis is

dl = r*dm
where r is the radius of the ring. The density per unit area is o = M/ma?; hence the mass dm of

the ring is

M
dm = gdA = —5 2mrdr = — rdr
ma a

Thus the moment of inertia of the disk may be written as

a a “@ U 2M 2M (¢ 1,
I=f d1=J r“dmZJ rz*y rdr=— r3dr=5Ma‘ (9.59)
0 0 0

a a Jy
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VA

Figure 9.10 Moment of inertia for a
disk about an axis perpendicular to the
X plane of the disk.

The same result can be obtained by using polar coordinates involving double integration.
In the expression for the moment of inertia,

1=” o dA

dA = rdfdr is the area shown in Fig. 9.11 and the mass per unit area is o = M/ma”. Substitut-
ing this in the preceding expression for 1, we get

M a 2173 M a3
Izzfj rdrd0=‘227rfrdr
aa Jy Jy 0

wa
That is, I= % Ma’

the result obtained in Eqg. (9.59). To obtain the moment of inertia about different axes we can
make use of the parallel and perpendicular axis theorems.

Figure 9.11 Moment of inertia for a
disk using plane polar coordinates.
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Sphere and Spherical Shell

Let us calculate the moment of inertia of a uniform solid sphere of radius a and mass M about
in axis, say the Z-axis, passing through the center, as shown in Fig. 9.12. We can regard the
sphere as made of disks, as shown in the figure. Let df be the moment of inertia of this disk about
-he Z-axis so that the moment of inertia of the whole sphere will be I = [ dI. We calculate dI
arst. The disk shown has a radius » = a sin 8 while the density, mass per unit volume, of the
material of the disk is

M
P~ 4md'3
ind the volume of the disk, with z = a cos 6, is
dV = wr’ dz = m(a sin 6)* d(a cos 6) (9.60)
Thus the moment of inertia of the disk, using Eq. (9.59), is

1 1 1
dl = §r2 dm = Erzp dv = 5(0 sin 6)?

M 3
4nd’ )3 m(a sin 6)* d(a cos ) = gMoz2 sin® 0 d6

Hence the moment of inertia of the sphere about the Z-axis is given by

I= f dr = — gMaZf sin® 96 = 2Ma? (9.61)

0

We can obtain the same result by using the rectangular coordinates.

dz = d(a cos 8)
= qsin 6 df

Figure 9.12 Moment of inertia for a
solid sphere about the Z-axis passing
through its center using spherical coor-
dinates.
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Finally, we can calculate the moment of inertia of a thin spherical shell. This can be done
either by direct integration, as we have been doing, or alternatively by the application of Eq.
(9.56). The final result is

1= 3iMa® (9.62)

9.6 SIMPLE PENDULUM

This is the first of many examples of the treatment of rotational motion. A simple pendulum con-
sists of a mass m suspended from a fixed point O by a massless taut string (or a massless rod)
of length /, as shown in Fig. 9.13. The system is treated as a rigid one. When the mass m is dis-
placed from the vertical equilibrium position, it moves back and forth in an arc of a circle as
shown. Thus the motion of a pendulum is equivalent to a rotational motion in a vertical plane
and about the Z-axis through O, the axis being perpendicular to the plane. Let us apply Eq. (9.29)
to this situation:

T, =16 (9.29)

where I,= mi? (9.63)
and the torque about the Z-axis produced by the force mg is

1, = —(mg sin )] (9.64)

The negative sign is taken because the torque acts in such a way as to decrease the angle 6. Sub-
stituting Egs. (9.63) and (9.64) in Eq. (9.31), we obtain

6 + §sin 9=0 (9.65)

LU

Figure 9.13 Simple pendulum.
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This equation is not so easy to solve. But if we assume the angular displacement 6 to be
very small, that is, 6 <€ 7/2, then sin 6 = 6 and Eq. (9.65) takes the form

6 + %ezo (9.66)

which is the equation for simple harmonic motion and has the solution

0 = 6, cos(wt + ¢) (9.67)
27 g
where w=27f = T = 7 (9.68)

f, and ¢ being two arbitrary constants that determine the amplitude and the phase of the oscil-
lations from the initial conditions. Notice that the frequency f and time period T are indepen-
dent of the amplitude of the oscillations, provided the amplitude is small enough for Eq. (9.66)
to hold good. That T is independent of the amplitude for small displacements makes the pen-
dulum well suited for use in clocks to regulate the rate. The exact solution of the pendulum mo-
tion, as we shall show, indicates that the time period of the pendulum increases with a slight in-
crease in amplitude.

We now discuss the motion of the pendulum without the restriction that the amplitude be
small. Since the motion of the pendulum is under a conservative force, we can solve the pen-
dulum motion problem by the energy integral. The rotational potential energy associated with
the torque given by Eq. (9.64) is

[
7(0)d = — J (—mgl sin 6) d6 = —mgl cos 6 (9.69)

2

]

V(0)=—J

6.(

where we have taken the standard reference angle 6, to be /2. The kinetic energy of mass m is
K = llw? =1 ml*p? (9.70)
Thus the energy integral describing the motion is

K + V = E = constant
L mI*9? — mglcos 6 = E (9.71)

Before solving this equation, we discuss the general features of the motion by drawing an en-
ergy diagram. Figure 9.14 shows the graph of V(#), K(8), and E(8) versus 6. The graph of V(6)
versus 6 has the maximum value mg/ and the minimum value —mg/. For a mass m with energy
slightly greater than —mgl, the motion will be simple harmonic. For E between —mg! and +mgl,
the motion is oscillatory and not harmonic. For E > mgl, the motion becomes nonoscillatory
and the pendulum has enough energy to swing around in a complete circle. But the motton is
still periodic, the period being equal to the time it takes to make one revolution, that is, for 0 to
increase or decrease by 2.
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Figure 9.14

Below is the graph of potential energy V versus 0 for a pendulum.

The length L, mass m, amplitude 60 N =100 10Ny ::'16 gi=9.8

and the frequency o of the simple

pendulum are as given here. The initial L:=1.5 m:=.5 80:=1 @:= \/% 8, =t
phase ¢ is assumed to be zero.

Using Eqgs.(9.67) through (9.70), we Vi ::_m'g'L'cos«m'ti)) Vi ::_m'OO'L'Sin@'ti)

can obtain the expressions for the
potential energy V, velocity v, kinetic K =L (vi)2
energy K, and the limits of the potential 2
energy mgL and —mgL as shown.

max(V) =7.35  min(V) =-7.35

max(K) =3.675 min(K) =0

m-gL =735 -m-gL. =-7.35

E =max(V) - min(K) E =735

Looking at the graphs explain the
variation in the values of K, V, and E
at different angles.

N ik
v

£
ut
[¢)
-
Q
-
b=Y]
—
[¢)]

E = —mglcos 6, 9.72)

Substituting this in Eq. (9.71) and rearranging, we obtain

0 do 2 ('

f - \[g f dr 9.73)
g Vcos 6 — cos 6, Lo

By assuming € to be small and using cos 6 = 1 — % 6°, after integrating, we obtain the same

result as obtained for small amplitudes. But we can proceed to solve Eq. (9.73) without a re-
striction on the amplitude. To obtain an accurate solution, we must transform Eq. (9.73) into a
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asroper form of an elliptic integral. Using the identity cos # = 1 — 2 sin? 6/2 to write

6 6
0 — 0=2'2°—'2)
COS COS Uy (sm 2 sin 2

Eq. (9.73) becomes

7] de \/g t
=2y | d 9.74
Ln Vsin2(0y/2) — sin%(6/2) ljo t O74

where 6 changes between * 6,. Now let us change the variables by substituting

_ s.in(6/2) _ sin(6/2) (9.75)
sin(6,/2) K

0,
where K = sin 30 (9.76)

As the pendulum swings through a cycle, 6 varies between — 6, and + 6,; hence ¢ changes be-
tween — 7 and +r. That is, ¢ runs from O to 27 for each cycle. Using Eqgs. (9.75) and (9.76),

Eq. (9.74) takes the form
|
= dt (9.77)
V1 = Ksin ¢ d)

Let us integrate this equation over one cycle; that 1s, as ¢ changes from 0 to 277,  changes from
0 to T. Thus

27 d(;b \/é
e —————————— - T 9'78
J;) V1 — K2sin? ¢p ! O-78)

This is an elliptic integral of the first kind, and its value can be obtained from standard tables.
However, it is more demonstrative to expand the integrand and then integrate; that is,

K? 1pzrf~+-~\d¢= ﬁfzqw 2y (9.79)

"+

1
T= 2#\@ (1 + " sin? %—’ + ) (9.80)

which clearly states that, as the amplitude 6, of the oscillations becomes large, the period be-
comes slightly larger than for small oscillations. Even for oscillations of small amplitude, the
expression I' = 27V (l/g), can be improved by assuming

2

0
g, <1, sin%(6,/2) = ZO
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Hence for small oscillations, Eq. (9.80) takes the form
T=27r\ﬁ(1 + 3 6+ ) (9.81)
8

which is a more accurate expression because of the presence of the second term on the right.
Expression (9.81) can be experimentally verified by measuring the time periods of two pendu-
lums of the same lengths but with different amplitudes of oscillation.

9.7 PHYSICAL PENDULUM

A rigid body suspended and free to swing under its own weight about a fixed horizontal axis of
rotation is known as a physical pendulum or compound pendulum. The rigid body can be of any
shape as long as the horizontal axis does not pass through the center of mass. As shown in
Fig. 9.15, the pendulum swings in an arc of a circle about an axis of rotation passing through O,
the point O being the point of suspension. The point C is the center of mass of the physical pen-
dutum. The distance between O and C is [. The position of the pendulum is specified by an
angle 6 between the line OC and the vertical line OA.

The torque 7, about the axis of rotation through O produced by the force Mg acting at Cis

T, = —Mglsin 68 (9.82)

If I is the moment of inertia of the body about the axis of rotation through O, the equation of
motion

TO=Ié

Figure 9.15 Physical pendulum.
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1akes the form
— Mgl sin 6 = I8

. Ml
o 6 Tg sin 6 = 0 (9.83)

nce again, as in the case of a simple pendulum, for small oscillations we may assume that sin 0
= #. and hence

. Mol
6 + 7&9: 0 (9.84)

This is the equation of a simple harmonic oscillator and has the solution
6 = 0, cos(wt + ) (9.85)

where the amplitude 6, and the phase angle ¢ are the two arbitrary constants to be determined
from the initial conditions. The angular frequency w is

Mgl
w= o (9.86)
I
while the time period 7 and frequency f are
27 1 I
T= —=—=2m\| 9.87
w f T Mgl ( )

If k is the radius of gyration for the moment of inertia about the axis of rotation through O, then
[ = Mk* (9.88)

Substituting Eq. (9.88) in Eq. (9.87) gives

\/?
T =27 — (9.89)
gl

which states that a simple pendulum of length k*/l will have the same time period as that of a
physical pendulum given by Eq. (9.87).

Let us say that the moment of inertia of the rigid body about an axis passing through the
center of mass C and parallel to the axis through O is I, and that the corresponding radius of
gyration k, is given by

I = Mk (9.90a)

Using the parallel axis theorem, we get the following relation between / and /.
I[=1I.+ M
Mk* = Mk* + MI*

or k* =k =1 (9.90b)

C
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Thus the time period T given by Eq. (9.89) may be written as

K2+ I
T 27,\/? 9.91)

Let us now change the axis of rotation of this physical pendulum to a different position O’
at a distance /' from the center of mass C, as shown in Fig. 9.15. The time period T’ of oscilla-
tions about this new axis of rotation is

K+ 12
T = 2ary|—< o7 9.92)

Furthermore, suppose we assume that O’ and /" are adjusted so that the two time periods 7 and
T' are equal; that is,

T=T
+P Rt
kgl Fok r (9.93)
which simplifies to
k=1 (9.94)

The point O’ related to O by this relation is called the center of oscillation for the point O. Sim-

ilarly, O is also the center of oscillation for O'.
Substituting Eq. (9.94) into Eq. (9.91) or (9.92) yields

I+

T=2w (9.95)
g
I+
or g =47’ = (9.96)

Thus, if we know the distance between O and O’'—that is, if we know [ + [’ and measure the
time period 7—the value of g can be measured very precisely, without knowing the position of
the center of mass. Henry Kater used this method for an accurate determination of g. Kater’s
pendulum, shown in Fig. 9.16, has two knife edges. The pendulum can be suspended from ei-
ther edge. The position of the edges can be adjusted so that the two time periods are equal. Once
this is done, [ + /' is measured accurately and, knowing 7, the value of g can be calculated from
Eq. (9.96).

9.8 CENTER OF PERCUSSION

We shall now discuss some everyday applications of physical pendulum types of problems. Con-
sider the body shown in Fig. 9.17, which is free to rotate about an axis passing through O. Sup-
pose we strike a blow at point O’, which is at a distance D from the axis of rotation through O.
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T . Knife edge
i

e Q

Ol
i = B Adjustable
knife edge

Figure 9.16 Kater’s pendulum.

The blow applied is perpendicular to the line OCO’, where C is the center of mass of the body.
The forces acting on the body during the impact are force F' at the point of impact and another
force F that is applied so as to keep the body fixed during the impact. If the body starts rotating
with angular frequency w, a radial force F,, at O along the line O’ CO provides the necessary
centripetal force, We want to find the condition under which F will be either zero or minimum,
This can be done by the application of the laws of conservation of linear momentum and angu-
lar momentum.

By application of the laws of conservation of linear momentum and angular momentum
it can be shown that if . is the radius of gyration for the momentum of inertia about C and / and
I' are, respectively, distances of @ and O’ from C, then the following relation must be satisfied:

=1 9.97)

c

Thus, if this relation is satisfied, when a blow is struck at O, no impulse will be felt at 0. Such
a point O’ is called the center of percussion relative to point O. That is, the point of application
of an impulse (or blow) for which there is no reaction at the axis of rotation is known as the cen-
ter of percussion. The relation of Eq. (9.97) is exactly the same as for the physical pendulum

Figure 9.17 Relative positions of the
center of oscillation O, the center of
percussion O, and the center of mass C
for a rigid body.
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F, / ~—— Doorstop
Hinge ] —— e le—— l’.._.> "
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Figure 9.18 Relative position of O, O’, and C in the case of (a) a batter hitting
a ball, and (b) a door hitting a door stop.

given by Eq. (9.94). Thus the center of oscillation O and the center of percussion O" are identi-
cal. That is, the points O and O’ are interchangeable.

Let us mention two important everyday applications. For instance, a batter hits a ball with
a bat. The batter should try to hit at the center of the percussion at O’ relative to his hand on the
bat at O. This will minimize the blow to the hand; that is, it will avoid a reaction on the batter’s
hand, as shown in Fig. 9.18(a). As a second instance, consider a door stop used to prevent tear-
ing door hinges loose. The door stop must be installed in such a way that, as shown in
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Fig. 9.18(b), it is at a point of percussion at O' at a distance D from the hinges which are on the
axis of rotation of the door.

9.9 DEFORMABLE CONTINUA

In most solids, atoms and molecules are arranged in some order. How rigidly these atoms and
molecules are held about their equilibrium positions depends on the relative strength of the
short-range electrical forces between them. Even though systems such as a vibrating string con-
sist of a large number of discrete particles, it is advantageous to replace a system of discrete par-
ticles with a continuous distribution of matter. So far we have treated such continuous matter as
rigid systems. In actual practice, matter is deformable. When under the action of internal and
external forces, a change in the size and shape of the body may result. Thus, in this section, we
shall be dealing with matter that we assume to be continuous and also deformable, that is, a de-
formable continuum. When external forces are applied to such a system, a distortion results be-
cause of the displacement of the atoms from their equilibrium positions and the body is said to
be in a state of stress. After the external force is removed the body returns to its equilibrium po-
sition, providing the applied force was not too great. The ability of a body to retun to its origi-
nal shape is called elasticity. To reach a quantitative definition of elasticity we must understand
the definitions of stress and strain.

Suppose a body with surface area A is acted on by external forces having a resultant F,
where F is neither normal nor tangent to the surface. The average stress S acting on an area A
is defined as the force per unit area

= F
S =— 9.98
4 (9.98)

(
Let us now consider a small area AA, as shown in Fig. 9.19(a), that is acted on by a force AF.
Thus the stress at point P is defined as

AF _ dF
S = IAIAITBB E dA (9.99)

The magnitude of S depends on the orientation of plane P in which area AA is located. We may
resolve stress S into normal and tangential components by resolving AF into two components—
the normal component force AF, and the tangential component force AF,—which are normal
and tangent to plane P. The normal stress o is defined as

= [i tLF—dF" 9,100
o=lmit "= (9.100)
while the shear stress 71is defined as
AF dF
7= limit —f= —' (9.101)

AA—0 AA dA
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(b) )

Figure 9.i9 (a) Force AF acting on an area AA. {(b) Force F produces a tension
and a shear stress. (¢) Force F produces a compression and a shear stress.

If the normal stress is a pull, it is called tension, and if the normal stress is a push, it is called
compression, while the tangential stress is called shearing stress. Thus, in Fig. 9.19(a) and (b),
the normal force results in tension, while in Fig. 9.19(c) it results in compression, as shown; the
tangential components in all three cases result in shear stress. The magnitude of tension and
compression in parts (b) and (c) is F,/A, while the shear stress is F;/A. (Note: Stresses can re-
sult from internal forces as well, but according to Newton’s third law, they cancel each other.)

The effect of stress is to cause distortion or a change in size and shape. A quantity called
strain refers to the relative change in size or shape of the body when under the applied stress.
We shall limit our discussion to three types of strain: (1) change in length, (2) change in shape,
and (3) change in volume.

Consider a wire or rod of length L, and cross-sectional area A subject to a normal a ten-
sile force F. The applied force increases the length. If the final length is L, then the change is
AL = L — L, We define the normal or tensile stress to be

o= —" (9.102)
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while the fractional change in length €, which is called the longitudinal or tensile strain, is
given by
L—-TL AL
€= ? = — (9.103)
Ly Ly
It is found experimentally that the ratio of stress to strain is a constant for a given mate-
rial. This is called the elastic modulus. The ratio of the longitudinal stress to the longitudinal
strain is called Young’s (or stretch) modulus, Y; that is,
o F,/A

Y —_— - = ———
€ AL/L,

(9.104)

Since strain is a dimensionless quantity, the units of Young’s modulus are the same as those of
stress, that is, N/m?, Ib/in?, and so on. [The transverse strain (change in length perpendicular to
the force) is small and will be considered shortly.]

If the material of the wire obeys Hooke’s law, the change in length is proportional to the
applied force,

F, = kAL (9.105)
where £ is the stiffness or spring constant. We may write Eq. (9.104) as
YA
F, = —AL (9.106)
L,
Comparing these two equations, we get
YA
k= — (9.107)
LO

Since, for a given material ¥, A and L, are constant, so is k.

Thus elongation increases with incrasing force. When the force is removed, the wire
returns to its original length. The plot of tensile stress o versus tensile strain € is shown in
Fig. 9.20. The proportionality relation between o and € holds only if stress is less than a certain
maximum value. As shown in Fig. 9.20, this is reached at point A, the proportional limit or yield
point. If the value of the applied stress is between A and B, there is no proportionality; but when
the stress is removed, the body does return to its original value. If the applied stress is beyond
point C, permanent deformation occurs in the body and eventually, if the applied stress is high,
it will break (fracture point).

The plot in Fig. 9.20 assumes that, in the expression for stress, the area A remains constant
and is equal to the original area before applying any force. But in practical situations there will
be lateral contraction. Thus the stress is indicative of the force and the ratio of the force and true
area. Hence we may define the true strain as follows. Let dL be the infinitesimal amount of
elongation when the instantaneous length is L. If L; is the initial length and L, the final length,
then the frue strain is defined as

(9.108)

€
true
L, L

L dr L
= = Ipnt
LO
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S §
Tensile
stress D
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Fracture point
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Permanent deformation
B point
Elastic limit

A 4 Proportional limit

> Figure 9.20 Elastic properties of a
Tensile strain e typical solid under normal stress.

For small elongations, if we expand In (/L) and neglect higher-order terms, we get € as given
by Eq. (9.103); that is, € = AL/L,,.

Let us now consider the rigidity modulus resulting from the application of shear stress.
When a pair of equal and opposite forces not acting along the same line of action is applied
[Fig. 9.21(a)], the resulting shear stress produces a change in the shape of the body (but no
change in length). The resulting strain is called a shear strain. It appears that the material con-
sists of layers, and when stress is applied, the layers try to slide over one another. As shown in
Fig. 9.21(a), the layer ABCD, under the action of a shear stress, has moved to A’B'C’D’, while
the layer PORS is not displaced. The shear stress 7 as defined in Eq. (9.101) is

=" (9.109)

(a) ®

Figure 9.21 (a) A body is under the action of a pair of tangential forces, which
results in a shearing stress. (b) Side view of part (a).
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The shearing strain vy is defined as the ratio of the displacement Ax and length /, as shown in
Z1g. 9.21. For small values of Ax, this ratio is equal to the tangent of the angle 6. That is, shear-
.1g strain is

vy = f‘le = tan 6 9.110)

Thus the shear modulus, or modulus of rigidity, or torsion modulus, 1, is defined as

E/A
p= 4= 2 (9.111)

vy tan 6
In the case of fluids, forces must be applied normal to the surface. Suppose that a fluid of
volume V is acted on by a force F), acting normal to an area A, resulting in a change in volume
AV. The normal force applied to a fluid ts called pressure P. Thus the stress and strain are

ziven by

F
Volume stress = o = X" = AP (9.112)
AV
and Volume strain = 7 (9.113)

Thus the volume elasticity or bulk modulus, B, defined as the ratio of the volume stress to vol-
Jme strain, is given by
AP AP
= = e V
—AV/V AV
The negative sign indicates that as pressure increases, volume decreases. The reciprocal of the
bulk modulus is called compressibility B (3 = 1/B).
Noting that AP = ¢ = normal stress, we may write Eq. (9.114) as
AV
= —-B— 9.115
cr v (9.115)
When a stress is applied in one direction, it results in a longitudinal strain as well as a
rransverse (lateral) strain. In the case of simple tension, the ratio of the lateral strain ¢, to the lon-
zitudinal strain ¢ is called Poisson’s ratio v:

B (9.114)

p= 2 (9.116)
€
vis small for glass (== 0.25), while for rubber it is 0.5. There is a simple relationship among B,
Y. and v which we state here without proof:
Y

B = m (9.117)

Note that this relation assumes that the material is uniform, that is, homogeneous and isotropic.
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9.10 EQUILIBRIUM OF RIGID BODIES

To start, we shall discuss conditions of equilibrium. We shall apply these conditions to the in-
vestigation of equilibrium of flexible strings and cables and then to the equilibrium of solid
beams.

Let us consider a body of mass M whose center of mass is at a distance R from a given
point O, which is acted on by forces F;, and has angular momentum L,, about an axis passing
through O. The equations of motion describing a rigid body are

> F, = MR (9.118)
dL "
and S, = _dTO =10 (9.119)

where T;, are the torques about an axis passing through O, I is the moment of intertia, and 0 is
the angular acceleration. Once the torques about any one point O are known, the torques about
any other point O’ may be calculated from the following relation:

2o = 2T+ (T~ 1) X 2F, (9.120)

where r,, and r,, - are the vector distances of points O and O’ from the origin. Equation (9.120)
states that the total torque about O’ is equal to the sum of two terms: the total torque about O
and the total torque taken about O', assuming the total force is acting at O. The proof is straight-
forward. Let F, be the force acting at a point i, which is at a distance r; from the origin. Then,
according to the definition, the torque about O’ is

2710' = z(ri —1,) X F,

zz(rf*roﬁ—rO—rO.)xFi
Zz(l'i—l‘o)XFﬁE(ro‘l'o')XFi

=27i0+(r0—r0,)x2Fi

which is the result stated previously.

For a rigid body to be in translational equilibrium—that is, at rest or moving with uniform
velocity—the sum of the forces must be zero. For a body to be in rotational equilibrium—at rest
or rotating with uniform velocity, the sum of the external torques must be zero. Thus, from
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Egs. (9.118) and (9.119), with R=0and 9 = 0, we get

2F=0 (9.121)
and 2 To=0 (9.122)

Note that if the sum of the torques about any point is zero, then [from Eq. (9.120)] it will be zero
about any other point.

Since we notice that the motion of a rigid body is determined by the total forces and total
torques, we can make the following statement, which we shall find useful in discussing the equi-
librium of rigid bodies. Two systems of forces acting on a rigid body are equivalent if they pro-
duce the same resultant force and the same total torque about any point.

Here we state the definition of a couple. A couple is a system of forces whose sum is zero;

that is,

SFE=0 (9.123)

1)

The total torque resulting from a couple is the same about every point and is given by

%o = 2T =2t X F, (9.124)

Thus a couple may be characterized by a vector that is the total torque. This leads to a further
statement: All couples are said to be equivalent if they have the same total torque.

From this discussion, we can deduce the following very useful result, referred to as the
rigid body theorem:

Every system of forces acting on a rigid body can be reduced to a single force through an
arbitrary point and a couple.

Depending on the type of equilibrium, the resulting force and/or couple, may be zero.

9.11 EQUILIBRIUM OF FLEXIBLE CABLES AND STRINGS

An ideal flexible cable or string is one that will not support any compression or shearing stress,
but there can be tension directed along the tangent to the string at any point. Cables, chains, and
light strings used in different structures can be treated as ideal flexible strings. Furthermore, we
shall assume that the weight of the cable is negligible compared to the external load acting on
it, or that there is no external load and the weight of the cable is the only load. We can divide
our discussion into two parts: (1) cables of negligible weight, and (2) cables with loads (or
forces) distributed continuously along the length of the cable.
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Cable with Concentrated Load

Consider an ideal flexible cable of negligible weight that is suspended between points P, and P,
and is under the action of an external force F acting at point P,, as shown in Fig. 9.22. The force
F keeps the cable taut, as shown. Let /; be the length of the segment of the string between P, P;.
l, the length between P,P, while /;, is the distance between the points P, and P,. Let T, and T,
be the tensions in the two segments of the strings, as shown. By using the law of cosines, the
angles « and S are given in terms of [, /,, and /; by the following relations:

h+h -k

E+ B, - P
COS & = — R b §

and cos B =-

9.125
211, 2L, ©:129)

It is assumed that the string does not stretch so that the position of point P; is independent of
the force F. Since point P; is in equilibrium, we may write

F+T +T,=0 (9.126)

as shown by the triangular relation in Fig. 9.22(b). Using the law of sines, from Fig. 9.22(b) we

obtain expressions for T, and T, in terms of F; that is,

sin(B + sin(y — «
Bty 4 T, - (y— a

! sin(a + B) sin(a + B) (9.127)

This means that we can find the angles in terms of distances from Eq. (9.125) and then use
them in Eq. (9.127) to evaluate T, and T,. But this is not the true answer because we have as-
sumed that the string does not stretch Actually, tension determines the lengths of the segments
of the strings, and we must take this into account to evaluate T, and T,. These can be evaluated
sufficiently by the method of iterative approximations or the relaxation method, explained next.

/
/
/
/
P
/
)ﬁ+7
T2
a+/3 F
N
P/ V

FY
(2) (b)

Figure 9.22 (a) Ideal flexible cable under the action of an external force F.
(b) F, T,, and T, form a closed triangle.
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According to Hooke’s law, the unstretched lengths [, and /,; under tensions 7, and 7;, be-
come /; and /,, given by

[, =11 +kT) and I, = Lyl + kT,) (9.128)

where & is a proportionality constant. We now use successive approximation to evaluate differ-
ent quantities: «, 8, T}, and 7,. For a first approximation, assume that the string does not stretch,
sothat/, = [pand [, = I, Using these values in Eqs. (9.125) and (9.127), we evaluate «, 3, T},
and T;. Now use these values for T, and 7, in Eq. (9.128) to obtain new values for /; and /,. Use
these values for [, and /, in Eq. (9.125) to get new values for a and 8, and use these in Eq. (9.127)
to get better values for 7 and 7,. These values for 7| and 7, can be used in Eq. (9.128) to get
still better values for /; and /,, and then Egs. (9.125) and (9.127) are used to get betier values for
a, B, T}, and T,. This procedure can be repeated over and over until the values for [}, 1, a, 3,
T, and T, converge to the correct values. In most situations the amount of stretching is small,
and the first few iterations lead to correct values. As stated earlier, this is the method of succes-
sive approximation.

Cables under Distributed Loads

Parabolic cables. Consider a cable AB that is supporting a load that is uniformly dis-
ributed horizontally, as shown in Fig. 9.23. The load is denoted by vertical arrows pointing
downward. Let this load be w per unit length, the length taken to be horizontal. O is the lowest
point while P(x, y) is any other point on the cable.

Let us consider the equilibrium of the portion OP of the cable that is horizontally loaded
as shown in Fig. 9.24(a). Let T, be the tension at the lowest point O that is horizontal, while the
tension at P is T, which makes an angle 6 with the horizontal. The origin of the coordinate axes
is taken to be at O, and XY is the vertical plane. W is the load acting on a portion of cable OP
and is equal to wx. Thus, for static equilibrium [from Fig. 9.24(b)],

T+T,+W=0 (9.129)

P(x, y)

Figure 9.23 Cable AB supports a uniformly distributed load along a horizontal
distance.
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Y A

b — e —— ——

7, ¥
x X

(a) (b

>
<!
©

Figure 9.24 (a) Small segment OP of a uniformly loaded string. (b) For static
equilibrium, T, T, and W form a closed triangle.

or Tcos =T, (9.130)
Tsinf®=W=ux (9.131)

Solving for T and 68, we get
T=VT+ v (9.132)
and tan § = Tﬂx (9.133)

0

Because the load is uniform, W is located at a distance x/2, as shown in Fig. 9.24(a). Taking the
torque about P, we get

W2 =T,y or ux> =T,y (9.134)
2 2
W,

— 913
o, x° (9.135)

That is, y =

which is an equation of a parabola; that 1s, a cable under a uniform horizontal load has a para-
bolic shape. A cable in a suspension bridge is a typical example.

In Fig. 9.23, if A and B are at the same height, the horizontal distance L between A and B
is called a span, while the vertical distance 4 of the lowest point O from A or B is called a sag.
Substituting y = h and x = L/2 in Eq. (9.135), the tension 7, at the lowest point is

wt?
8h

T, = (9.136)
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Suppose point A is (x4, v4) and point P is (xp, y5). Using these values in Eq. (9.136), we can cal-
culate the span L = xz — x, (see Problem 9.46).

Catenary cables. Let us now consider a cable supporting a load that is distributed uni-
tormly along its length (not along the horizontal distance as in parabolic cables). A typical ex-
ample is that of a cable supporting its own weight, as shown in Fig. 9.25. Let point P be at a
distance s from a point s = (), where the tension 7y, is the supporting force at the end of s = 0
and is constant, while the tension at P is T(s). Let w(s) be the force per unit length at point s
[note that w(s) # w(x)]. w ds represents the force on a small segment of length ds. Thus, for the
portion of the cable AP that is in equilibrium, we must have

T, + T(s) + J w(s) ds = 0 9.137)
0
We can obtain T(s) by differentiating Eq. (9.137) with respect to s; that is,
— = —w(s) (9.138)
ds

From Fig. 9.25, 8 is the angle that T makes with the X-axis. The vertical and horizontal com-
ponents of Eq. (9.138) are

d
s (T'sin ) = w (9.139)

a
and s (Tcos® =0 (9.140)

Y A

0 X

Figure 9.25 Cable supporting a load distributed uniformly along its length (and
not its horizontal distance).
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Keeping in mind that
ds = (dx* + dy? ' (9.141)

the above equations, on solving, yield

C
y=— cosh(-uix + A) + B (9.142)
w C

This is the equation of a curve called a catenary. A, B, and C are the constants chosen so that
y has proper values at the end points. Also, if we choose a coordinate system such that y = 0 at
x = 0, then the constant A = 0.

9.12 EQUILIBRIUM OF SOLID BEAMS
General Treatment: Bending Moments

Let us consider a horizontal beam that is subject to vertical forces only—that is, the problem of
a cantilever. Such a beam is under no compression or tension and there is no torsion about the
axis of the beam. In these conditions, the beam bends only in a vertical plane. This is an exam-
ple of a simple structure under shear forces and bending moments. We can calculate these quan-
tities and the resulting bending as shown text.

Let the vertical forces F|, F,, . . . , F, be the forces acting on a horizontal beam at distance
Xy, X3, . . ., X,, as shown in Fig. 9.26. The forces acting vertically upward are taken positive,
and those acting downward are taken negative. Draw a plane AA" perpendicular to the beam and
at a distance x from the left end of the beam. All the forces acting on the plane AA’ due to the
portion of the beam to the right of the plane can be reduced to an equivalent single force F,
through any point in the plane and a couple of torque . Since in the present case there are no
compression or tension forces, F, must be vertical; hence it is a shearing force acting from right
to left across the plane AA’, as shown. We assumed that there was no torsion in the beam. Since
all the forces are vertical, the bending moment T (or torque T) must be exerted from right to left

<—x4————'> F
<-x1->+F1 \ 4 A + l A F,
*_xz_AFz 1 A’

[«——x, ——>|F

-

(a) (b)

Figure 9.26 (a) Horizontal beam under the action of vertical forces. (b) The
forces acting on the beam to the right of AA” are equivalent to a shear force F, and
torque 7.
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along a horizontal axis perpendicular to the beam and in the plane AA’. The counterclockwise
rotations of the plane about this horizontal axis are taken as positive. (From Newton’s third law,
force and torque equal and opposite to F, and 7 are acting on the plane AA’ from the beam on
the left.)

We consider the equilibrium of the beam on the left of the plane AA’. Let w be the weight
per unit length of the beam. Thus, from the two conditions of equilibrium, from Fig. 9.26, we get

F,+ SF - J wdx =0 9.143)
x<x 0
and =S (x - )F, + j (x — x)wdx' — 7, =0 9.144)
x<x 0

where F, is the shearing force and 7 is the bending moment acting at a distance x from the left
end. The second term on the left of Eq. (9.143) is the sum of the external forces acting on the
beam from the left end up to the plane AA’, and the third term is the weight of the same portion
of the beam and is acting downward. 7, is the bending moment exerted by the left end of the
beam on its support, providing the beam is fastened or clamped or supported at that end. If all
the forces are known, F, and T acting at x on the beam can be calculated from Egs. (9.143) and
(9.144). If the right end of the beam is free, then F, = 0 and v = 0, and the equations can be
used to calculate two other forces. Depending on whether the ends are free or supported, we can
use these conditions to help solve the preceding equations.

The shearing force F, and the bending torque T depend on the value of x and may be cal-
culated as a function of x by differentiating Eqs. (9.143) and (9.144):

5;% —w (9.145)
nd TS F —fx dr' = —F (9.146)
a o~ 2 w ] .
PROBLEMS

9.1. Find the center of the mass of the following:
(a) A thin uniform wire of linear mass density A bent into an L-shape with both horizontal and
vertical lengths equal.
(b) A thin uniform wire of linear mass density A bent into a quadrant of a circle of radius R.

9.2, Find the center of magss of the following:
(a) A thin uniform sheet of metal of surface density o cut into a semicircle of radius R.
(b) A thin uniform sheet of metal of surface mass density o cut into a triangular piece with sides
a, a, and b.
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() A thin uniform sheet of metal of surface density & cut into an octant of a thin spherical shell
of radius R.

9.3. Find the center of mass of an octant of a solid sphere of radius R and uniform density p.

9.4. Find the center of mass of a sphere of radius R that is made up of layers of thin spherical shells
centered about the center. The variation in density of these shells is (a) p = p(2) = py(l + 2z/R) and
(b) p = p(r) = py(1 + r/R).

9.5. Find the center of mass of a thin shect in the XY-plane in the form of a parabola y = ax? and bounded
between y = 0 and a straight line y = &. Calculate for the case when b = 20 cm and the surface
density is 10 kg/m?

9.6. Find the center of mass of a paraboloid z = a(x? + y?) between z = 0 and 2 = b, as shown in
Fig. P9.6. Calculate for the case when b = 20 cm, and the density is p = 8000(1 — 0.52) kg/m>.

“

.
~ Y

X Figure P9.6

9.7. Consider a circular sheet of radius 2R having a uniform surface density o A circular hole of radius
R is made at a distance R from the center of the first circle, as shown in Fig, P9.7. Find the center
of mass of the remaining piece.

Figure P9.7
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9.8, Find the center of the circle plate shown in Fig. P9.8 made up of two semicircular pieces of sur-
face densities densities o and o.

A Figure P9.8

9.9, Find the center of mass of a solid hemisphere of radius R whose density varies linearly with dis-
tance from the center; that is, p = pyr/R.

9.10. Consider a solid sphere of uniform density p and radius R and a spherical cavity of radius R/2 cen-
tered at a distance of R/2 from the center. Find the center of mass.

9.11. Find the moment of inertia for a square lamina of mass M and side L, as shown in Fig P9.11, ro-
tating about the following axes:
(a) Axis AA’ passing through the center of mass and perpendicular to the lamina.
(b) Axis BB’ parallel to AA" and at a distance L/2.
(¢) Axis CC’ parallel to one side of the lamina.

Figure P9.11

9.12. Consider a cube of mass M and side L, as shown in Fig. P9.12. Find the moment of inertia: (a) about
an axis AA’ perpendicular to a face and passing through the center of mass; (b) about an axis BB’
parallel to the axis in part (a) and parallel to one edge; (c) about an axis CC'.
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B’ Figure P9.12

9.13. Find the moment of inertia for the following:
(a) A cylinder of mass M, radius R, and height H rotating about an axis of symmetry.
(b) Same as part (a), except rotating about an axis parallel to the symmetry axis and tangent to
the surface.
9.14. Find the moment of inertia of a solid cone about its symmetry axis.

9.15. Find the moment of inertia for a frustum of a cone of mass M and radii R, and R, rotating about
the symmetry axis.

9.16. Find the moment of inertia about an axis passing through the center O and perpendicular to the
plane of a circular disk, as shown in Fig, P9.16. Also calculate Iy and Iy, (The solid disk was re-
moved from the hollow portion.)

Solid disk

al4 Figure P9.16

9.17. Consider a thin uniform square of side L with its diagonal along the X-axis, as shown in Fig. P9.17.
The upper half of the square has a density o, and the lower half o,. Find the moment of inertia
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about an axis passing through the center and perpendicular to the plane of the square. Also calcu-
late Iy and I;.

Figure P9.17

9.18. Find the moment of inertia for a sphere of radius R rotating about its axis of symmetry and having

a density:

(@) po(r) = po(kr/R):]

(b) po(r) = pee ¥%

(¢) po(r) = po(1 — kr/R)

Discuss the case in which £ <€ 1.
9.19. Consider a thin disk of radius R and mass M. A small piece of maximum width R/2 has been cut

off, as shown in Fig. P9.19. Calculate the center of mass and the moment of inertia for rotation

about an axis perpendicular to the disk and passing through the center.

l

Z A

Figure P9.19

9.20. Consider a sphere of radius R that has a portion cut off, simialr to the disk in Fig. P9.19. Calculate
the center of mass and the moment of inertia about the symmetry axis of the sphere.

9.21. Find the moment of inertia and the radius of gyration for a uniform rod of mass M and length L that
is rotating about an axis through one end, making an angle 6 with the rod, as shown in Fig. P9.21.
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9.22,

9.23.
9.24,

9.25.

9.26.

9.27.

9.28,

9.29.

9.30.

9.31.

9.32.
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Figure P9.21

Show that the moment of inertia for a uniform octant of a sphere of mass # and radius a about an
axis along one of the straight edges is (3/2)ma’.

Calculate the moment of inertia for a parallelepiped about a symmetry axis.

Show that the moment of inertia for an ellipsoid of principal axes 2a, 2b, and 2¢ about the major
axis is (M/5)(b? + c?).

A system consisting of a wheel attached to a fixed shaft is free to rotate without friction. A tape of
negligible mass wrapped around the shaft is pulled with a steady constant force F. After a tape of
length L has been pulled, the wheel acquires an angular velocity of «. From these data, calculate
the moment of inertia for the wheel.

If the total force acting on a system of particles is zero, show that the torque on the system is the
same about ali origins of different coordinate systems.

If the total linear momentum of a system of particles is zero, show that the angular momentum of
the system is the same about all origins of different coordinate systems.

If 7, is a funciton of § alone, then, starting from the equation dL/dt = Izé = 7, show that the sum
of the kinetic and potential energies is constant.

As in the case of translational motion, suppose the frictional torque is proportional to the angular
velocity, that is, 7, = — k0, while the driving torque 1s 7 = 73(1 + a cos wt). Find the steady-state
motion.

Consider a motor with an armature of 2-kg mass and radius of gyration of 8 cm. Its no-load full
speed is when it draws a current of 2 A at 110V at 1600 rpm. If the frictional torque is proportional
to the angular velocity and the electrical efficiency is 75%, calculate the time required to reach a
speed of 1200 rpm with no load.

A homogeneous circular disk of mass M and radius'R has a light string wrapped around its cir-
cumference. One end of the string is attached to a fixed point. The disk is allowed to fall under
gravity with the string unwinding. Find the acceleration of the center of mass.

A uniform rod of mass M and length L is placed like a ladder against a frictionless wall and fric-
tionless horizontal floor. It is released from rest, making an angle 6 with the vertical. Show that the
initial reaction of the wall and the floor are (use only one variable to describe motion)

Ry = i mg cos «a sin «, R, = mg(l - 3 sin® )

and that the angle at which the rod will leave the wall is cos '¢% cos a).
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9.33.

9.34.

9.35.

9.36.

9.37.

9.38.

9.39.

9.40.

9.41.

9.42.

9.43.

9.44.

In Problem 9.32, if the coefficient of friction between the rod and the floor is w, calculate (a) the
horizontal and vertical components of the reaction as a function of angle 6, (b) the angle at which
the rod begins to slip, and (c) the angular velocity when it hits the ground.

A uniform rod of length L and mass M is held horizontally with two hands at A and B. If A is sud-
denly released, at that instant what are (a) the torque about B, (b) the angular acceleration about
B, (¢) the vertical acceleration of the center of mass, and (d) the vertical force at B?

In the case of a simple pendulum, suppose we carry out correction to the fourth order instead of
only the second order (as done in the text). Show that

and that if @ is small, say 6, then

1 1 1
T=2 \ﬂ(l+\ 2+—i0“+-~-)
Ve 169 " 3072 %

Consider a simple pendulum of 1-m length (T, = 2s) that has an amplitude of 5 cm. Show that

dr
= —6,d0,
TO

If 6, changes by 10%, that is, d6 = 6,/10, calculate d7/T, and the resulting error per day.

In the case of a compound pendulum, we showed that when 7 = T’ the expression for g is given
by Eq. (9.96). Suppose T’ = T{1 + §), where & < [; find a new expression for g.

Consider a rod of mass M and length L. A mass m is attached at one end the rod is suspended from
the other. If it behaves like a compound pendulum, calculate the time period of oscillations.
Consider a thin sheet of mass M in the shape of an equilateral triangle with each side of length L.
Find the mement of inertia about an axis passing through the vertex and perpendicular to the sheet.
If this behaves as a physical pendulum, find the period for small oscillations.

Consider a homogeneous hemisphere of mass M and radius R. With its flat face up, it rests on a
perfectly rough horizontal surface. Find the expression for the length of an equivalent simple pen-
dulum for small oscillations about the equilibrium position. Let the radius of gyration about the
horizontal axis passing through the center of mass be k,.

Consider a digk of mass m and radius r attached to a rod of length L and mass M. The system is
suspended from the other end of the rod and allowed to oscillate. Find the time period of the os-
cillations. If the disk is mounted in such a way as to be free to spin {(mounted on a frictionless bear-
ing), what will be the period of oscillations?

Suppose a batter lets go of the bat after the ball hits the bat and that the bat starts rotating. For
a quarter of a rotation of the bat, describe and sketch the motion of (a) the center of mass, and
(b) the center of percussion; that is, plot x(f) and ¥(¢) for both. Neglect the effect of gravity.
Consider a square plate of mass M and side L. The plate swings as a compound pendulum with an
axis passing through one corner and perpendicular to the plane of the plate. Find the center of per-
cussion and the period of oscillations.

A physical pendulum is made from a uniform disk of mass M and radius R suspended from a rod
of negligible mass. The distance from the center of the disk and the point of oscillations is L. Find
the time period of the oscillations. For what value of Z will the time period be minimum? Locate
the center of percussion.
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9.45. Show that for a cube of side ¢ when under a volume stress AP the volume strain is given by
AVIV = 3Aa/a.

9.46. If two end points of a cable are at (x4, y4) and (xz, yz), show that the span L is given by L = xz —
y4 = 8dT,/w, where d is a function of y, — ;.

9.47. Consider a wire of 1.5-m length and 2-mm diameter. It is clamped at the upper end and a 5-kg mass
hangs at the lower end. Young’s modulus is 9 X 10'° N/m?, and its Poisson’s ratio is 0.25. Calcu-
late (@) the extension of the wire, (b) the decrease in the cross-sectional area due to the lateral strain,
(c) the work done by the stretching force, and (d) the potential energy of the stretched wire.

9.48. Calculate the work done per unit volume in the following cases: (a) a shearing stress shearing the
body through an angle 6, and (b) a uniform stress P producing a volume strain V.

9.49. A weightless rod of length L is clamped at two ends in a horizontal position. A weight W is placed
at its center. Show that the equation for the shape of the rod is

w (x3 sz)

TYKkA\12 16

¥

Calculate the deflection of the center.
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