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Chapter 1

Group of Transformation

Introduction

In This chapter we study the basic definition of Transformation and colin-
eations and properties of transformation (Group transformation and involu-
tion).

By moving all the points a geometric figure according to certain rules,
you can create an image of the original figure, each point on the original
figure corresponds to a point on its image. The image of point A after a
transformation of any type is point A′. We read A′ as ”A prime”. This
process is called transformation.

We consider objects as they moves as a result of a plane. objects refer to
triangles, lines, points, circles etc. The concept ”Transformation” is matched
with the definition and properties of function.

Main Objectives of this Chapter: At the end of this Chapter students
will be able to:

• Define transformation and collineation

• Verify group transformation

• Discuss on Involution

1.1 Definition of transformations and colin-

eations

Question: What is one to one correspondence function?

1



2 1. Group of Transformation

Possible answer: One to one correspondence function is both one to
one and on to function.

Definition 1.1.1. A transformation on the plane is a one to one correspon-

dence from the set of points in the plane on to itself.

A transformation of the plane is a rule that assigns to each point in the
plane a different point or the point itself. Note that each point in the plane is
assigned to exactly one point. Transformations are used to scale, translate,
rotate, reflect and shear shapes and objects. It is possible to affect this by
changing their coordinate values.

For a given transformation α of the plane

1) α is one to one

For every point R of the plane, there is a unique point Q such that
α(R) = Q.

2) α is on to

For every point Q of the plane, there is a unique point S on the plane
such that α(S) = Q.

Example 1.1.2. Let α : R2 → R2 be defined by α(x, y) = (x2, y), then show

that α is a trans formation.

Solution: To show that α is a transformation, we shall check one to

oneness and on toness of α.

Let (x1, y1), (x2, y2) ∈ R2.

Suppose α((x1, y1)) = α((x2, y2)), then we want to show that (x1, y1) =

(x2, y2)

α((x1, y1)) = α((x2, y2)) implies (x21, y1) = (x22, y2)

⇒ y1 = y2 and x21 = x22 ⇒ x1 6= x2. Thus (x1, y1) 6= (x2, y2)

Hence α is not one to one. So that α is not a transformation.

Example 1.1.3. a) Let α : R2 → R2 be a mapping defined by α((x, y)) =

(−x, y),∀(x, y) ∈ R2. Show that α is a transformation.

b) Let α : R2 → R2 be a mapping defined by α((x, y)) = (x, y3),∀(x, y) ∈
R2. Show that α is a transformation.

Solution:
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a) To show that α is a transformation we will check one to oneness and

ontoness of α

Let (x1, y1), (x2, y2) ∈ R2

Suppose α(x1, y1) = α(x2, y2), we need to show that (x1, y1) = (x2, y2)

⇒ (−x1, y1) = (−x2, y2)

⇒ −x1 = −x2 and y1 = y2

⇒ x1 = x2 and y1 = y2

Therefore (x1, y1) = (x2, y2) and hence α is one to one

Next to check one to oneness of α

For every (u, v) ∈ R2 (in image of α), there exist (x, y) ∈ R2 (in domain

of α) such that α(x, y) = (u, v)

⇒ (−x, y) = (u, v)

⇒ −x = u and y = v

⇒ x = −u and y = v

⇒ (x, y) = (−u, v)

⇒ Fir every (u, v) ∈ R2, there exist (−u, v) ∈ R2 such that α(−u, v) =

(u, v)

Therefore α is on to and hence a transformation.

b) Let (x1, y1), (x2, y2) ∈ R2 Suppose α(x1, y1) = α(x2, y2), we need to

show that (x1, y1) = (x2, y2)

⇒ (−x1, y31) = (−x2, y32)

⇒ −x1 = −x2 and y31 = y32

⇒ x1 = x2 and y1 = y2

Therefore (x1, y1) = (x2, y2) and hence α is one to one.

To check on toness of α
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For every (u, v) ∈ R2 (in image of α), there exist (x, y) ∈ R2 (in domain

of α) such that α(x, y) = (u, v)

⇒ α(x, y) = (u, v)

⇒ (x, y3) = (u, v)

⇒ x = u and y3 = v

⇒ x = u and y = v
1
3

⇒ Fir every (u, v) ∈ R2, there exist (u, v
1
3 ) ∈ R2 such that α((u, v

1
3 ) =

(u, v).

Therefore α is on to and hence a transformation.

Definition 1.1.4. A transformation f having the property that if L is a

line then f(L) is also a line. A transformation f with this property is called

a collineation.

Example 1.1.5. 1) Let α : R2 → R2, defined by α((x, y)) = (x− 1,
1

2
y),

then show that α is a collineation.

2) Show that the mapping γ that sends each points (x, y) to(−x+
y

2
, x+2)

is a collineation.

Solution: 1) First show that α is a transformation. Let (x1, y1), (x2, y2) ∈
R2

1.2 Group of Transformation

Brainstorming

• Do you remember the word group from your abstract algebra course?
Please define group of transformation by using your previous concept?

• What are the criteria of group of transformation?
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Sample problem

Show that the following transformations form a group transformation.

1 Let αb : R→ R be defined by αb = x+ b. Let G = {αb : b ∈ R}.

2 Let βa : R2 → R2 be defined by βa(x, y) = (ax, y), ∀ a ∈ R, a 6= 0 such
that G = {βa : ∀ a ∈ R, a 6= 0}.

Solution:

1)

Theorem 1.2.1. i) The set of all transformations form a group.

ii) The set of all collineations forms a group.

1.3 Composition Of Transformation

Definition 1.3.1. The composition β ◦α of transformation α and β is the

mapping defined by β ◦ α(p) = β(α(p)) for every point p. Note that α is

applied first and then β is applied.

Theorem 1.3.2. The composition β ◦α of transformations α and β is itself

a transformation.

Example 1.3.3. Suppose β : R→ R given by β(x) = 2x+1 and α : R→ R
given by α(x) = x2 + 1. Then find

a) β ◦ α

b) α ◦ β

Solution:

a) β ◦ α(x) = β(α(x)) = β(x2 + 1) = 2x2 + 3.

b) α ◦ β(x) = α(β(x)) = α(2x+ 1) = (2x+ 1)2 + 1 = 4x2 + 4x+ 2.

Question:

1 Is the composition of a transformation commutative?

2 Is the composition of a transformation associative?
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1.4 Identity and inverse Transformation

Definition 1.4.1. The identity transformation I is defined by I(p) = p for

every point p. If I is in set G of transformations, then G is said to have the

identity property.

Definition 1.4.2. Let γ−1 is the mapping defined by γ−1(A) = B if and only

A = γ(B). The transformation γ−1 is called the inverse of transformation γ.

Explain the steps to find the inverse of trans-

formation

Example 1.4.3. 1 Let α : R → R given by αx = x + 1, then find the

inverse of a transformation α.

2 Let β : R2 → R2 given by β(x, y) = (3x + 1, 2y − 1), then find the

inverse of a transformation β.

Possible answer:

1 α−1(x) = x− 1.

2 β−1(x, y) = (x−1
3
, y−1

2
)

Theorem 1.4.4. The inverse of a transformation is unique.

1.5 Involution

Did you hear the word involution? Discus this concept with your
friends.

Theorem 1.5.1. Suppose α and β are elements of group of transformation.

Then

i) βα = γα⇒ β = γ (Right cancellation law).
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ii) βα = βγ ⇒ α = γ (Left cancellation law).

iii) βα = α⇒ β = I, where I is identity.

iv) βα = β ⇒ α = I.

v) βα = I ⇒ β = α−1 and α = β−1.

Theorem 1.5.2. In a group, the inverse of a product is the product of the

inverses in reverse order.

Review Exercise

1) Suppose α is a transformation on the plane. Write ”True” or ”False”
for the following sentences.

a) If α(P ) = α(Q), then P = Q.

b) For any point P there is a point Q such that α(P ) = Q.

c) For any point P there is a unique point Q such that α(Q) = P.

d) For any point P there is a point Q such that α(Q) = P.

e) A transformation is necessarily a collineation.

f) A collineation is necessarily a transformation.

2) Which of the mappings defined on the Cartesian plane by the equations
below are transformation?

a) α(x, y) = (x3, y3)

b) β(x, y) = (cos x, sin y)

c) λ(x, y) = (x3 − x, y)

d) α(x, y) = (4x, 6y)

e) α(x, y) = (−x, x+ 6)

f) π(x, y) = (3y, x+ 4)

g) σ(x, y) =
(
x

1
3 , ey

)
h) π(x, y) = (−x,−y)

3 Which of the transformation in Exercise 2 are collineations? For each
collination, find the image of the line with equation 2x+ 3y + 6 = 0.
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4 Let A = (a, b) in the xy−plane. Find the equations for x′ and y′, where

α((x, y)) = (x′, y′) and α is a mapping such that for any point P the
mid-point of P and α(P ) is always A.

5 If A(1, 3) and B(−2,−1) are given points, write an equation for the
line such that αl(A) = B.

6 Give three examples of transformations on the Cartesian plane that are
not collineations.

7 Show that a collineation determines a one to one correspondence from
the set of all lines onto itself.

8 Find the pre-image of the line y = 3x + 2 under the collineation α,
where

α((x, y)) = (3y, x− y).

9 Show that the lines with equations ax+ by+ c = 0 and dx+ ey+ f = 0

a) are parallel if and only if ae− bd = 0 and

b) are perpendicular if and only if ad+ be = 0.

10 Prove or disprove that a mapping on the Cartesian plane that preserves
betweeness among the points is necessarily a collineation.

11 Verify that the set of all transformations has associative property.

12 Write ”True” or ”False” for the following statements

a) If α and β are transformations, then α = β if and only if α(P ) =
β(P ) for every point P.

b Transformation G is in every transformations

c (αβ)−1 = β−1α−1 for transformation α and β.



Chapter 2

Affine Geometry

In This chapter we study the basic definitions of affine space, affine geometry,
lines and planes in affine geometry, concurrency and classical theorems.

Main Objectives of this Chapter: At the end of this Chapter students
will be able to:

• Define an affine space

• Relate affine geometry and vectors

• Discuss the lines and planes in affine space.

• Explain the concurrency of lines in affine space

• State and prove the classical theorem.

Method of teaching: It will be delivered through brain storming, interac-
tive lecture.

Assessment Techniques: The students achievement will be assessed
through questioning and answering, class activity and home work.

2.1 Affine Space

Brainstorming:

1 What is vector space:

2 What is difference and similarity of affine space and vector space?

9



10 2. Affine Geometry

3 What is the difference between affine geometry and Euclidean geome-
try?

Definition 2.1.1. A non-empty set W is said to be an an affine space associ-

ated with vector space V if and only if the following conditions are satisfied.

i) For any two points A, B in W, there exist a unique vector u =
−→
AB =

B − A in V and u is the zero vector if and only if A = B.

ii) For any point A in W and vector u in V , there exist a unique point B

such that u = ~AB.

iii For any points A, B C in W , we have ~AB + ~BC = ~AC.

Question: Verify affine space by giving some example.
Which conditions must be satisfied to say two vectors are perpendicular

and parallel?
Sample problem:

1 Let ~a = (2, 3, k) and ~b = (1,−2, 2) are perpendicular vectors, then find
the value of k. An: k = 2

2 Let ~a = (3, x, 2) and ~b = (x, 4, 7) are perpendicular vectors, then find
the value of x. An: x = −2

3 Show that ~a = (1, 2, 3) and ~b = (2, 4, 6) are parallel.

Theorem 2.1.2. 1 Parallelism relation denoted by ‖ on a vectors is an

equivalence relation.

2 If ~a and ~b are not parallel, then ∀ r, t ∈ R, then the equation r~a = t~b

has a unique solution r = t = 0.

2.2 Geometry in Affine Space

Brainstorming:

1 What are the element of affine space?

2 How can analyze geometric theorems in affine space?
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3 Describe the co-linearity of the point in affine space?

Theorem 2.2.1. Suppose A,B,C,D are distinct points such that any three

of them are co-linear. Then ~AB = ~CD if and only if ~AB ‖ ~CD and ~AC ‖
~BD.

Theorem 2.2.2. i) The line segment joining the midpoints of two sides

of a triangle is parallel to the third sides and its length is half of that

side.

ii) The diagonal of a rhombus are perpendicular.

Students activities

1 Prove the above theorems.

2 Using vectors prove the Pythagorean theorem.

3 State and prove cosine and sine laws by using vectors.

2.3 Lines and planes in affine space

Brainstorming:

1 What are the lines and planes in Euclidean geometry?

2 Could you define lines and planes in affine geometry?

2.3.1 Lines in Affine Space

Definition 2.3.1. Let W be an affine space. Then any lines in W passes

through two different points A and B is defined as the set < A,B >={
X ∈ W : ~AX = r ~AB, r ∈ R

}
or
{
L : X = A+ rL : X = A+ r

−→
AB, r ∈ R

}
.

Here the vector ~AB is called directed vector of the line and the scalar r is

called parameter.
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Now letting X = (x, y, z), A = (x0, y0, y0) and ~d = ~AB = (a, b, c) we get

L : X = (x0, y0, y0) + r~d (This is called vector equation of the line).
Equating the corresponding components from the vector equation

L : (x, y, z) = (x0, y0, y0)+r~d, we have


x = x0 + ar
y = y0 + br (This is parametric equation of the line)
z = z0 + cr

Sample Exercise:
Write the vector and parametric equation of the line passing through the

following points.

a) A = (1, 2, 3) and B = (−2, 4, 5)

b) A = (−1, 3, 4) and B = (2, 7, 8)

c) A = (−4, 5, 6) and B = (−9, 3, 4)

Theorem 2.3.2. i There is a unique line through any two points in

affine space.

ii Any two different directed vectors of a line are parallel.

Activities

1 Prove the above theorems

2 Define parallel and perpendicular lines.

Theorem 2.3.3. Two lines L1 : X = A+ r~u and L2 : X = A+ r~v passing

through the same point A are identical or equal if and only if ~u and ~v are

parallel.

Theorem 2.3.4. Given a line L a point Q not on L. Then there is exactly

one line m parallel to l.

Activities

1 State and prove the length of ratio Theorem.

2 If A = (5, 0, 7) and B = (2,−3, 6), then find the point P on the line

< A,B > which satisfies
AP

PB
= 3. Is P is between A and B? Or out

side?
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2.3.2 Planes in Affine Space

Definition 2.3.5. Let W be an affine space. Then the plane π passing

through three non-collinear points A,B,C is the set given by < A,B,C >=

{X ∈ π : X = A+r ~AB+t ~AC}. From this equation, if we let A = (x0, y0, z0)

and ~AB = (a, b, c), ~Ac = (d, e, f), then any arbitrary point X = (x, y, z) on

this plane is given by

< A,B,C >=


x = x0 + ra+ td

y = y0 + rb+ te

z = z0 + rc+ tf

Here r and t are parameters.

Activities

1 Find the vector and parametric equation of the plane passing through
the points A = (3, 4, 5), B = (−3, 5, 6) and C = (0, 3, 6).

2 How can we determine the distance from a point to a line in affine
space?

3 Let L be a line through the points A = (3, 4, 5), B = (−3, 5, 6). Find
point P on this line which is closest to the origin and calculate the
shortest distance from the line to the origin.

4 State and prove intercept Theorem in an affine space.

2.4 Concurrency

Brainstorming

1 Did you hear the word concurrency?

2 What is point of concurrency?

2.5 The Classical Theorems

State and prove the following classical theorem

1 Menelaus Theorem
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2 Ceva’s Theorem

3 Desargue’s Theorem

4 papu’s Theorem



Chapter 3

Orthogonal Transformations

In this Chapter we study the basic properties of orthogonal transformation
Fundamental types of orthogonal transformation, representation of orthogo-
nal transformation as the product of reflection and Equations of orthogonal
transformation in coordinates.

3.1 Definition of Orthogonal Transformation

Main Objectives of this Chapter: At the end of this Chapter Students
will be able to:-

• Define an orthogonal transformation

• Describe fundamental types of orthogonal transformation

• Discus the representation of orthogonal transformation as the product
of reflection

• Derive the equations of orthogonal transformation in coordinates.

Method of teaching: It will be delivered through brainstorming, interac-
tive lecture.
Assessment Techniques: The student’s achievement will be assessed through
questioning and answering, class activity and home work.

Definition 3.1.1. A geometric transformation is said to an orthogonal(Isometry)

when it preserves the distance between any pair of points in the plane. In

other words α is an orthogonal transformation in Euclidean plane , when the

15



16 3. Orthogonal Transformations

quality d(α(P ), α(Q)) = d(p, q) holds for every pair of points P and Q in the

plane.

Example 3.1.2. Show that the following maps are orthogonal transforma-

tion

a) αb : R→ R given by αb(x) = x+ b for any constant b

b) α : R2 → R2 given by α(x, y) = (x+ 1, y + 1)

c) γ : R2 → R2 given by γ(x, y) = (x,−y)

d) α : R2 → R2 given by α(x, y) = (x− 5, y + 3)

Solution: a) Since the distance between two points x and y in R is

d(x, y) = |x− y| and

d(αb(x), αb(y)) = |x+ b− (y − b)|

= |x− y|

= d(x, y).

Therefore αb is an orthogonal transformation.

b) Let P = (x, y) and Q = (z, w) are two points in R2(in plane). Now

distance between P and Q is give by

d(P,Q) = |P −Q|

= |(x, y)− (z, w)|

= |(x− z), (y − w)| and

d(α(P ), α(Q)) = |α(P )− α(Q)|

= |α(x, y)− α(z, w)|

= |(x+ 1, y + 2)− (z + 1, w + 2)|

= |x+ 1− (z + 1), y + 2− (w + 2)|

= |x− z, y − w|

= d(P,Q).



3.1. Definition of Orthogonal Transformation 17

Therefore α is an orthogonal transformation.

Question: Is β : R2 → R2 given by β(x(x, y)) = (ax+ 1, bx+ 2), for any
constant a and b orthogonal transformation.

3.1.1 Properties of an orthogonal Transformation

Theorem 3.1.3. The inverse of an orthogonal transformation is an orthog-

onal

transformation.

Proof. Let β be an orthogonal transformation. Now let P and Q are any

points, we need to show that d(β−1(P ), β−1(Q)) = d(P,Q).

d(β−1(P ), β−1(Q)) =
∣∣β−1(P )− β−1(Q)

∣∣
=
∣∣β−1β(P )− β−1β(Q)

∣∣ , since β is an orthoganal transformation.

= |I(P )− I(Q)|

= |P −Q|

= d(P,Q).

Hence for any orthogonal transformation β, β−1 is also an orthogonal trans-

formation.

Example 3.1.4. If β : R→ R defined by β(x) = x+1, then find the inverse

of β and show that β−1 is also an orthogonal transformation.

Solution: Let y = x+ 1⇒ x = y + 1⇒ y = x− 1.

Therefore β−1(x) = x− 1.

For any two points (x, y) then the distance between the two points is



18 3. Orthogonal Transformations

given by

d(x, y) = |x− y|, and

d
(
β−1(x), β−1(y)

)
=
∣∣β−1(x)− β−1(y)

∣∣
= |x− 1− (y − 1)|

= |x− y|

= d(x, y)

Theorem 3.1.5. The composition of any two orthogonal transformation is

again an orthogonal transformation.

Proof. Let α and β be any two orthogonal transformations.

we need to show that their compositions α◦β is an orthogonal transfor-

mations.

Let P and Q be any two points, since α an orthogonal transformation

|α(P )− α(Q)| = |P −Q| and β is also an orthogonal transformation,

then we have

|β(P )− β(Q)| = |P −Q|

d(β ◦ α(P ), β ◦ α(Q)) = |β ◦ α(P )− β ◦ α(Q)|

= |β(α(P ))− β(α(Q))|

= |α(P )− α(Q| , since β is an orthogonal transformation

= |P −Q| , since α is an orthogonal transformation.

Hence the composition β ◦ α is an orthogonal transformation.

Example 3.1.6. Let β : R → R given by β(x) = x + 2 and α : R → R
given by α(x) = x+ 1, show that β ◦ α is an orthogonal transformation.

Solution: First find the composition function β ◦ α.

β ◦ α(x) = β(α(x)) = β(x+ 1) = x+ 1 + 2 = x+ 3.
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The distance between two point x and y is given by

d(x, y) = |x− y| and

d(β ◦ α(x), β ◦ α(y)) = |β ◦ α(x)− β ◦ α(y)|

= |β(α(x))− β(α(y))|

= |x+ 3− (y + 3)|

= |x+ 3− y − 3|

= |x− y|

= d(x, y).

Hence the composition β ◦ α(x) = x+ 3 is an orthogonal transformation.

Theorem 3.1.7. An orthogonal transformation maps distinct points in to

distinct points.

Proof. Let β be an orthogonal transformation. We need to show that

A 6= B ⇒ β(A) 6= β(B).

Now A 6= B ⇒ A − B 6= 0 ⇒ d(A,B) 6= 0 and also β is an orthogonal

transformation. Then we have

d(A,B) = d (β(A), β(B)) , so d(A,B) 6= 0 ⇒ d (β(A), β(B)) 6= 0 ⇒
β(A) 6= β(B)

Theorem 3.1.8. An orthogonal transformation maps

i) any three non-collinear points in to non-collinear points

ii) any collinear points in to collinear points.

Proof. i) Let A,B and C be non-collinear points, Then by triangle in-

equality the non-collinearity means

d(A,B) +d(B,C) > d(A,C). Now let A′, B′ and C ′ be respectively the

image of A,B and C. Since the orthogonal transformation preserves

the distance
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d(A′, B′) + d(B′, C ′) > d(A′, C ′). This show that A′, B′ and C ′ can not

be collinear.

ii) Suppose A,B and C are any three points and β is an orthogonal trans-

formation. Let A′ = β(A), B′ = β(B) and C ′ = βC.

Since β preserves distance, if AB + BC = AC, then by collinearity of

these points we have

A′B′ +B′C ′ = A′C ′, as AB = A′B′, B′C ′ = BC and AC = A′C ′.

Hence A− B − C ⇒ A′ − B′ − C ′ in other words B is between A and

C, then B′ is between A′ and C ′.

Theorem 3.1.9. An orthogonal transformation maps lines in to lines and

parallel, lines in to parallel lines.

Proof. Let L is a line determined by two distinct points A and B and α is an

orthogonal transformation such that A′ = α(A) and B′ = α(B), but A 6= B.

α(A) 6= α(B) ⇒ A′ 6= B′. Hence A and B are two distinct points and

determine a unique line L′. Besides α is an orthogonal transformation which

preserves collinearity for any point P on L, α(P ) = P ′ is on L′. Moreover if

L ‖M, then α(L) ‖ α(M).

Theorem 3.1.10. (Three point Theorem): Two orthogonal transformation

with the same image at three non-collinear points are equal.

Proof. Exercise

3.2 Orientation preserving and Orientation

reversing Orthogonal Transformation

Definition 3.2.1. Let A,B and C be vertices of 4ABC. Then the orienta-

tion of 4ABC is determined by using vectors ~AB and ~AC as follows:
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a) If det
(
~AB, ~Ac

)
> 0, then the pair

(
~AB, ~Ac

)
has positive orientation

and so 4ABC.

b) If det
(
~AB, ~Ac

)
< 0, then the pair

(
~AB, ~Ac

)
has negative orientation

and so 4ABC.

Example 3.2.2. Determine the orientation of 4ABC with vertices A =

(1, 1), B = (4, 5) and C = (6, 7).

Solution:

~AB = B−A = (4, 5)− (1, 1) = (3, 4) and ~AC = C−A = (6, 7)− (1, 1) =

(5, 6). Then

det
(
~AB, ~Ac

)
= det

(
3 5

4 6

)
= 18− 20 = −2 < 0

Therefore the pair
(
~AB, ~Ac

)
has negative orientation and so 4ABC.

Definition 3.2.3. 1) An orthogonal transformation said to be orientation

preserving if for each ordered triples of non-collinear points (A,B,C)

the orientation of the image triple (A′, B′, C ′) is the same as that of

the given triple.
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The two triangles 4ABC and 4A′B′C ′ have the same orientation.

2) An orthogonal transformation is said to orientation reserving if for each

ordered triple of non-collinear points, the orientation of the image triple

is opposite that of the given triples.

The two triangles 4ABC and 4A′B′C ′ have opposite orientation.

Example 3.2.4. Suppose β an orthogonal transformation that maps4ABC
to4A′B′C ′, where the vertices of the triangles areA = (4, 2), B = (1,−2), C =

(12,−4) and A′ = (−1, 3), B′ = (3, 0), C ′ = (5, 11) Determine whether β is

orientation preserving or orientation reserving.

Solution: ~AB = B − A = (1,−2)− (4, 2) = (−3,−4) and

~AC = C − A = (12,−4)− (4, 2) = (8,−6), then

det
(
~AB, ~AC

)
= det

(
−3 8

−4 −6

)
= 18 + 32 = 50 > 0

Similarly ~A′B′ = B′ − A′ = (3, 0)− (−1, 3) = (4,−3) and

~A′C ′ = C ′ − A′ = (5, 11)− (−1, 3) = (6, 8), then

det
(

~A′B′, ~A′C ′
)

= det

(
4 6

−3 8

)
= 32 + 18 = 50 > 0

Therefore 4ABC and 4A′B′C ′ both have positive orientation and hence

β is orientation preserving orthogonal transformation.

Definition 3.2.5. Let α be an orthogonal transformation given by α(X) =

AX +~b, where A is standard matrix. Then
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a) α preserves orientation if and only if det(A) > 0

b) α reserve orientation if and only if det(A) < 0.

Example 3.2.6. α : R2 → R2 be an orthogonal transformation given by

α((x, y)) = (x + 1, y + 2). Then show that α is orientation preserving

orthogonal transformation.

Solution: α(X) = AX +~b, where X = (x, y), then

α(X) = α((x, y)) = (x + 1, y + 2) =

(
x+ 1

y + 2

)
=

(
1 0

0 1

)(
x

y

)
+(

1

2

)
.

Here A =

(
1 0

0 1

)
⇒ det

(
1 0

0 1

)
= 1− 0 = 1 > 0.

Hence α is orientation preserving orthogonal transformation.

3.3 Fundamental Orthogonal Transformation

and Half turns

Definition 3.3.1. A mapping τ : R2 → R2 is called a translation if it has

the equation of the form τ(x, y) = (x′, y′) = (x+ a, y+ b), where a and b are

unique.

A translation from P to Q is denoted by τP,Q defined by
τP,Q : P → Q⇒ τP,Q(x, y) = (x′, y′) = (x+ a, y + b).

Note: ~PQ = Q−P = (x+a, y+b)−(x, y) = (x+a−x, y+b−y) = (a, b),

then ~PQ = (a, b) is a translation vector. Thus we can write a translations as

τP,Q(P ) = P + ~PQ.

Example 3.3.2. 1) Let τA,B(−1, 5) → B(7, 2), then find the translation

vector.

2) Construct the equation of the translation taking points P (−3, 1) to

Q(1, 5) and compute the image of R(3, 2).
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3) Show that a translation is a transformation.

Solution:

1) τA,B(−1, 5) = (7, 8), A = (−1, 5), B = (7, 2) and

τA,B(A) = A+ ~AB

⇒ (7, 2) = (−1, 5) + (−1 + a, 5 + b)− (−1, 5)

= (−1, 5) + (a, b)

= (a− 1, b+ 5)

⇒ = a− 1 = 7 and b+ 5 = 2

⇒ a = 8 and b = −3

Therefore the translation vector is (a, b) = (8,−3). Or simply the trans-

lation vector is given by (a, b) = ~AB = B − A = (7, 2) − (−1, 5) =

(8,−3).

2) The translation vector ~PQ = Q−P = (1, 5)− (−3, 1) = (4, 4) = (a, b).

Then

τ(x, y) = (x′, y′) = (x+ a, y + b) = (x+ 4, y + 4).

Therefore the equation of translation τ(x, y) = (x+ 4, y+ 4) and hence

the image of R = (3, 7) = τP,Q(R) = R + ~PQ

⇒ τP,Q(3, 7) = (3 + 4, 7 + 4) = (3, 11).

3) Let τ(x, y) = (x′, y′) = (x+ a, y + b).

Let (x1, y1), (x2, y2) ∈ R2(in the domain) and suppose τ(x1, y1) =

τ(x2, y2) we need to show that (x1, y1) = (x2, y2).

⇒ τ(x1, y1) = τ(x2, y2)

⇒ (x1 + a, y1 + b) = (x2 + a, y2 + b)

⇒ x1 + a = x2 + a and y1 + b = y2 + b

⇒ x1 = x2 and y1 = y2



3.3. Fundamental Orthogonal Transformation and Half turns 25

⇒ (x1, y1) = (x2, y2).

Therefore τP,Q is one to one.

For any (u, v) ∈ R2, there is (x, y) ∈ R2 such that

τ(x, y) = (u, v)⇒ (x+ a.y + b) = ()u, v

⇒ x+ a = u and y + b = v

⇒ x = u− a and y = v − b.

For every (u, v) ∈ R2, there exist (u− a, v − b) ∈ R2 such that

τP,Q(u− a, v − b) = (u, v).

Therefore τP,Q is on to and hence a translation is a transformation.

Theorem 3.3.3. Given point Q, there is a unique translation taking P and

Q, namely τP,Q.

Proof. Let P = (c, d) and Q = (e, f)

i) Existence: Taking ~PQ = Q− P = (e, f)− (c, d) = (e− c, f − d). By

definition we have

τP,Q(x, y) = (x, y)+ ~PQ = (x, y)+(e−c, f−d) = (x+(e−c), y+(f−d).

There fore τP,Q is exist (a translation)

ii) Uniqueness: Suppose there exist τR,S which takes

τR,S(P ) = Q⇒ P + ~RS = Q⇒ P −Q = ~RS ⇒ ~PQ = ~RS.

Therefore τP,Q = τR,S and hence τP,Q is unique.

From this we have τP,Q(R) = S and τP,Q = τR,S for points P,Q,R and S.

Note that identity is a special case of a translation as I = τP,Q for each point

P and also if τP,Q(R) = R for point R, then τP,Q = R ⇒ R + ~PQ = R ⇒
~PQ = 0

⇒ P −Q = 0⇒ P = Q as τP,Q = τR,R = I.
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Theorem 3.3.4. Suppose A,B and C are non-collinear points then τA,B =

τC,D if and only if �ABCD is a parallelogram.

Proof. (⇒)Suppose τA,B = τC,D, then we need to show that �ABCD is a

parallelogram.

Let A = (x1, y1) and C = (x2, y2)

Since τA,B(A) = B ⇒ A+ ~AB = B ⇒ A+B − A = B ⇒ τA,B = B and

τC,D(C) = C + ~CD ⇒ C +D − C = D and

τA,B(A) = B ⇒ B = τA,B(x1, y1) = (x1, y1) + (a, b) = (x1 + a, y1 + b)

⇒ B = (x1 + a, y1 + b)

⇒ ~AB = (a, b) and ~CD = (a′, b′)⇒ ~AB = ~CD

Since τA,B = τC,D ⇒ (a, b) = (a′, b′), by using distance formula we have

AB =
√

(x1 + a− x1)2 + (y1 + b− y1)2 =
√
a2 + b2 and

CD =
√

(x2 + a′ − x2)2 + (y2 + b′ − y2)2 =
√
a′2 + b′2 =

√
a2 + b2,

since (a, b) = (a′, b′), then we have AB = CD ⇒ AB ‖ ~CD and similarly

we have

AC =
√

(x2 − x1)2 + (y2 − y1)2 and

BD =
√

((x2 + a′)− (x1 + a′))2 + ((y2 + b′)− (y1 + b′))2 =
√

(x2 − x1)2 + (y2 − y1)2 =

AC

AC = BD ⇒ AC ‖ BD
Therefore by definition of two pairs of opposite sides are congruent and
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parallel the quadrilateral is a parallelogram and hence �ABCD is a paral-

lelogram.

(⇐) Suppose �ABCD is a parallelogram, we need to show that τA,B =

τC,D

AB = CD ⇒ ~AB = ~CD ⇒ τA,B = τC,D

Theorem 3.3.5. A translation is a collineation.

Proof. BY Example 3.3.2 τP,Q is a transformation.

Let L is a line with equation ax + by + c = 0 and τP,Q(x, y) = (x′, y′) =

(x+ h, y + k)

⇒ x′ = x+ h and y′ = y + k

⇒ x = x′ − h and y = y′ − k
⇒ Now substitute x = x′ − h and y = y′ − k from ax+ by + c = 0

⇒ a(x′ − h) + b(y′ − k) + c = 0

⇒ ax′ − ah+ by′ − bk + c = 0

⇒ ax′ + by′ + c− ah− bk = 0

Hence τP,Q(L) is a line.

Therefore a translation is a collineation.

Definition 3.3.6. A collineation α is said to a dilatation if L is parallel to

α(L) (L ‖ α(L)) for every line L.

Note: While any collineation sends a pair of parallel lines to a pair of
parallel lines, a dilatation sends each given line to a line parallel to the given
line. For example, we shall see that a rotation of 90o is a collineation but not
a dilatation.

Let α be a transformation and S a set of points.

Definition 3.3.7. A translation α α fixes line L if and only if α(L) = L and

a transformation α that fixes a point α(P ) = P in general α fixes a set S if

and only if α(S) = S.

Remark 3.3.8. Show that L and α(L) are the same if and only if ah+bk = 0.
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Proof. Let L is a line with ax+by+c = 0 and τP,Q(L) is a line with equation

ax′ + by′ + c− ah− bk = 0.

The slope of L is
−a
b

and slope ~PQ =
k

h
because the point

~PQ = (h, k) =
k − 0

h− 0
=
k

h
Slope of L is

−a
b

then L ‖ ~PQ

⇒ −a
b

=
k

h
⇒ −ah = bk

Therefore ah+ bk = 0.

Theorem 3.3.9. i) A translation is a dilatation.

ii) If P 6= Q, then τP,Q fixes no point.

iii) If P 6= Q, then τP,Q fixes exactly the lines that are parallel to ~PQ.

Proof.

i) Let τP,Q(x, y) = (x′, y′) = (x+ a, y + b)⇒ (a, b) = ~PQ

⇒ L : ax+ by + c = 0 and τP,Q(L) : ax′ + by′ + c− ah− bk = 0

⇒ Slope of L is
−a
b

and slope of τP,Q(L) is
−a
b

Therefore L ‖ τP,Q(L) and hence a translation is a dilatation.

ii) Suppose τP,Q(P ) = P ⇒ P + ~PQ = P ⇒ ~PQ = 0 ⇒ P −Q = 0 ⇒
P = Q. Which contradict the hypothesis P 6= Q.

iii) Suppose L ‖ ~PQ we need to show that τP,Q(L) = L.

Since τP,Q is a dilatation, then the slope of L and τP,Q(L) are the same.

⇒ L : ax + by + c = c and τP,Q(L) : ax′ + by′ + c − ah − bk = 0, we

need to show that ah+ bk = 0.

⇒ L ‖ ~PQ, then slope of L =
−a
b

and and slope of τP,Q(L) =
h

k

⇒ −a
b

=
h

k
⇒ −ah = bk ⇒ ah+ bk = 0

Therefore τP,Q(L) and L have the same slope and hence τP,Q(L) =

L.
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Theorem 3.3.10. i) A set of translation forms an abelian group, called

the translation group.

ii) A set of dilatation form a group, called the dilatation group.

Proof.

i) Let τO be a set of transformations and translations are collineations.

Let S = (a, b), T = (c, d) and R = (a+ c, b+ d). Then

⇒ τO,S(x, y) = (x′, y′) = (x + a, y + b) and τO,T (x, y) = (x′, y′) =

(x+ c, y + d)

⇒ τO,S ◦ τO,T ((x, y)) = τO,S(x + c, y + d) = (x + c + a, y + d + b)

τO,S ◦ τO,T = τO,K , where τO,K = (x+ c+ a, y + d+ b), the τ is closed.

Let S = (a, b) and T = (−a,−b)

⇒ τO,S ◦τO,T ((x, y)) = τO,S(x−a, y−b) = (x−a+a, y−b+b) = (x, y).

This the inverse is exist.

Moreover: For S = (a, b) and T = (c, d)

τO,S ◦ τO,T ((x, y)) = τO,S(x+ c, y + d)

= (x+ c+ a, y + d+ b)

= (x+ (c+ a), y + (d+ b))

= (x+ (a+ c), y + (b+ d))

= τO,T ◦ τO,S.

Hence a set of translation τ forms an abelian (commutative) group.

ii) Dilatations are collineations. By the symmetry of parallelness for

lines (i.e., L ‖ L′ ⇒ L′ ‖ L), the inverse of a dilatation is a dilata-

tion. By the transitivity of parallelness for lines (i.e., L ‖ L′ and

L′ ‖ L” ⇒ L ‖ L”), the product of two dilatations is a dilatation.

So the dilatations form a group (of transformations).
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3.4 Half-turns

A half turn-turns out to be an involutory rotation; that is, a rotation of 180o.
So, a half-turn is just a special case of a rotation. Although we have not
formally introduced rotations yet, we look at this special case now because
half-turns are nicely related to translations and have such easy equations.
Informally, we observe that if point A is rotated 180o about point P to point
A′, then P is the midpoint of A and A′. Hence, we need only the midpoint
formulas to obtain the desired equations. From equations

x+ x′

2
= a

y + y′

2
= b

a =
x+ x′

2
and b =

y + y′

2
⇒ x′ = −x = 2a and y′ = −y + 2b,

⇒ σP ((x, y)) = (x′, y′) = (−x = 2a,−y+ 2b). we can make our definition
as follows.

Definition 3.4.1. If P = (a, b), then the half-turn σP about point P is the

mapping σP : R2 → R2 defined by σP (x, y) = (x′, y′) = (−x+ 2a,−y + 2b).

Example 3.4.2. Find the image of points (5,−1) under half-turn centered

at (3, 2).

Solution: σP (x, y) = (x′, y′) = (−x+ 2a,−y + 2b)

⇒ σ(3,2)(5,−1) = (x′, y′) = (−5 + 2(3),−(−1) + 2(2)) = (1, 5).

Hence the image of (5,−1) under half-turn at (3, 2) is (1, 5).

Note: For the half-turn about the origin we have σO((x, y)) = (−x,−y)

Lemma 3.4.3. Half-turn is a collineation.
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Proof. Let L : ax+ by + c = 0 and P = (h, k) be a point on the line

σP ((x, y)) = (x′, y′) = (−x+ 2h,−y + 2k)

⇒ x′ = −x+ 2h and y′ = −y + 2k

⇒ x = −x′ + 2h and y = −y′ + 2k. Now substitute ⇒ x = −x′ + 2h and

y = −y′ + 2k. from ax+ by + c = 0 we get

⇒ a(−x′ + 2h) + b(−y′ + 2k) + c = 0

⇒ −ax′ + 2ah− by′ + 2bk + c = 0

⇒ ax′ + by′ − 2ah− 2bk − c = 0

⇒ ax′ + by′ − (2ah+ 2bk + c) = 0, which is equation of line

Hence ax′+ by′+ c′ = 0, where c′ = −2ah− 2bk− c is equation of line L′.

Therefore Half-turn is a collineation.

Generally L and L′ (σ(L)) have the same slope m =
a

b
which implies that

L ‖ L′.
Therefore Half-turn is dilatation.

Theorem 3.4.4. i) A half-turn is an involutory dilatation.

ii) The midpoint of points A and σP (A) is P.

iii) Half-turn σP fixes point A if and only if A = P.

iv) Half-turn σP fixes line L if and only if P is on L.

Proof.

i) If σP (A) = A′, then σP (A′) = A

⇒ σ2
P (A) = σP (σP (A)) = σP (A′) = A⇒ σ2

P (A) = i(A) with order 2

Therefore Half-turn is involutory dilatation.

ii) σP (A) = A′ = (−x + 2a,−y + 2b), P = (a, b) and A = (x, y), then

the midpoint of A and A′ is

(
x− x+ 2a

2
,
y − y + 2b

2

)
= (a, b) = P.

Hence the midpoint of A and σP (A) is P .



32 3. Orthogonal Transformations

iii) (⇒) σP fixes A. then we need to show that A = P

Suppose σP (A) = σP (x, y) = (x′, y′) = (x, y)

⇒ (x′, y′) = (x, y)

⇒ (−x+ 2a,−y + 2b) = (x, y)

⇒ −x+ 2a = x and −y + 2b = y

⇒ 2a = 2x and 2b = 2y

⇒ x = a and y = b

⇒ (x, y) = (a, b)⇒ A = P

(⇐) Suppose A = P we need to show that σP (A) = A

⇒ σP (A) = (−x+ 2a.− y + 2b) but A = P

⇒ (−x+ 2a.− y + 2b) = (x, y) = A

⇒ −x+ 2a = x and −y + 2b = y

⇒ (x, y) = (a, b)⇒ σP (A) = A

Theorem 3.4.5. i) The product of two half-turns is a translation

ii) If Q is the midpoint of P and R then σQσP = τP,R = σRσQ.

iii) A product of three half-turns is a half-turn.

iv) σRσQσP = σPσQσR for any points P,Q and R.

Proof. i) Let σP and σQ are half-turns about P (a, b) and Q(c, d). We

need to show that σPσQ = τPQ

σPσQ(x, y) = σP (−x+ 2c,−y + 2d)

= (−(−x+ 2c) + 2a,−(−y + 2d) + 2b)

= (x− 2c+ 2a, y − 2d+ 2b)

= (x+ 2(a− c), y + 2(b− d))

= (x+ a′, y + b′),where a′ = 2(a− c) and b′ = 2(b− d)

= τP,Q
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Hence the product of two half-turns is a translation.

ii) Let Q is the midpoint of R and P

Let P = (a, b) and R = (c, d) and Q =

(
a+ c

2
,
b+ d

2

)

σP (x, y) = (x′, y′) = (−x+ 2a,−y + 2b) and

σR(x, y) = (x′, y′) = (−x+ 2c,−y + 2d)

σQ(x, y) = (x′, y′) = (−x+ a+ c,−y + b+ d)

σQσR(x, y) = σQ(−x+ 2c,−y + 2d)

=

(
−(−x+ 2c) + 2(

a+ c

2
),−(−y + 2d) + 2(

b+ d

2
)

)
= (x− 2c+ a+ c, y − 2d+ b+ d)

= (x+ a− c, y + b− d)

= τP,R

iii) Let P = (a, b), Q = (c, d) and R = (e, f)

⇒ σP (x, y) = (x′, y′) = (−x+ 2a,−y + 2b)

⇒ σQ(x, y) = (x′, y′) = (−x+ 2c,−y + 2d)
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⇒ σR(x, y) = (x′, y′) = (−x+ 2e,−y + 2f)

σPσQσR(x, y) = σP (σQσR(x, y))

= σP (σQ(σR(x, y)))

= σP (σQ(−x+ 2e,−y + 2f))

= σP (−(−x+ 2e) + 2c,−(−y + 2f) + 2d)

= σP (x− 2e+ 2c, y − 2f + 2d)

= (−(x− 2e+ 2c) + 2a,−(y − 2f + 2d) + 2b)

= (−x+ 2e− 2c+ 2a,−y + 2f − 2d+ 2b)

= (−x+ 2(a− c+ e),−y + 2(b− d+ f))

= (−x+ 2a′,−y + 2b′), where a′ = a− c+ e and b′ = b− d+ f .

∴ The product of three half-turns is also half-turn.

3.5 Reflections

A reflection will be defined as a transformation leaving invariant every point
of a fixed line m and no other points. (An optical reflection along m in a
mirror having both sides silvered, would yield the same result.) We make
the following definition.

Definition 3.5.1. A reflection σm in a line m is a mapping defined by

σm(P ) =


P, if point P is onm

Q, if point P is off L and L is the perpendicular bisector of ~PQ.

The line m is usually referred to as the mirror of the reflection.

Note: We do not use the word reflection to denote the image of a point
or of a set of points. A reflection is a transformation and never a set of
points. Point σm(P ) is the image of point P under the reflection σm.

Proposition 3.5.2. Properties of reflection which follows immediately from

the definition:
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i) σm 6= i, (non-identity)

ii) σ2
m = i, (involution)

iii) If σm(P ) = Q, then m ⊥ ~PQ and is bisector

iv) σm(P ) = P if and only if P ∈ m

v) σm is a transformation.

Proof.

ii) Let P such that σm(P ) = Q

⇒ m ⊥ ~PQ and bisector

⇒ σm(Q) = P

⇒ σ2
m(P ) = σm(σm(P )) = σm(Q) = P.

⇒ σ2
m(P ) = i(P )

⇒ σ2
m(P ) = i

v) First show that one one

Let σm(P ) = σm(Q), we need to show that P = Q

⇒ σm(σm(P )) = σm(σm(Q))

⇒ i(P ) = i(Q)

⇒ P = Q, since σm is involution

Hence σm is one to one.

Next to show that σm is on to

For every point Q there is a point P such that σm(P ) = Q, for every

P there is Q such that σm(Q) = P

⇒ σm(σm(P )) = σ2
m(P ) = P

For every P ∈ Q such that σm(Q) = P
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Hence σm is on to

∴ The reflection is a translation.

Theorem 3.5.3. i) Reflection σm fixes line L point wise if and only if

L = m

ii) Reflection σm fixes point P if and only if P is on m

iii) Reflection σm fixes line L if and only if L = m.

Proof.

i) (⇒) Suppose σm fixes line L point wise, we need to show that L = m

Let P ∈ L, σm(P ) = P ⇒ P ∈ m (by definition)

we have that L and m have more than one common points L = m

(⇐) Suppose L = m, we need to show that P ∈ L and P ∈ m

⇒ σm(P ) = P clearly elements of P is fixed.

∴ P ∈ L and P ∈ m.

3.5.1 Equations of reflections

Theorem 3.5.4. If line m has equation ax+ by + c = 0, then reflection σm

has equations: 
x′ = x− 2a(ax+ by + c)

a2 + b2

y′ = y − 2b(ax+ by + c)

a2 + b2
.

Proof. Let P = (x, y) and σm(P ) = (x′, y′) = Q. For the moment, suppose

that P is off m. Now, the line through points P and Q is perpendicular to

line m. This geometric fact is expressed algebraically by the equation

b(x′ − x) = a(y′ − y).
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Also

(
x+ x′

2
,
y + y′

2

)
is the midpoint of ~PQ and is on m. This geometric

fact is expressed algebraically by the equation

a

(
x+ x′

2

)
+ b

(
y + y′

2

)
+ c = 0.

Rewriting these two equations as{
bx′ − ay′ = bx− ay
ax′ + by′ = −2c− ax− by

we see we have two linear equations in two unknowns x′ and y′. Solving these

equations for x′ and y′ (by using Cramers rule, for instance), we get

it is easy to check that the equations also hold when P is on m. This

proves the result.

Note: Suppose we had defined a reflection as a transformation having
equations given by Theorem 3.5.4. Not only would this have seemed artificial,
since these equations are not something you would think of examining in the
first place, but just imagine trying to prove Theorem 3.5.3 from these equa-
tions. Although this is conceptually easy, the actual computation involves a
considerable amount of algebra.

Example 3.5.5. 1) Find the image of the point (4, 5) by reflection on the

line L : 2x+ 3y + 3 = 0

2) Given σm(a, b) = (3, 4), where L : x+ y − 1 = 0. Then find the values

of the point (a, b).

Solution:
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1) Given L : 2x+ 3y + 3 = 0, a = 2, b = 3, c = 3 and (x, y) = (4, 5), then

x′ = x− 2a(ax+ by + c)

a2 + b2

= 4− 2(2)(2(4)− 3(5) + 3)

42 + 32

= 4− 4(−4)

13

=
52 + 16

13

=
68

13

y′ = y − 2b(ax+ by + c)

a2 + b2

= 5− 2(3)(2(4) + 3(5) + 3)

22 + 32

= 5− 6(8 + 15 + 3)

13

=
65− 156

13

=
−91

13
.

Therefore the image (x′, y′) =

(
68

13
,
−91

13

)

3.5.2 Properties of a Reflection

We have already mentioned those properties of a reflection that follow imme-
diately from the definition. Another important property is that a reflection
preserves distance, which means the distance from σm(P ) to σm(Q) is equal
to the distance from P to Q, for all points P and Q. The following definition
is fundamental.

Definition 3.5.6. A transformation is an isometry (or congruent trans-

formation) if P ′Q′ = PQ for all points P and Q, where P ′ = α(P ) and

Q′ = α(Q).

In other words, an isometry is a distance-preserving transformation.

Note:
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1) In fact, any distance-preserving mapping is an isometry. Such a map-
ping is one-to-one because points at nonzero distance cannot have
images at zero distance but it is not clear that such a mapping is onto.

2) The name isometry comes from the Greek isos (equal) and metron
(measure). An isometry is also called a rigid motion.

The set of all isometries form a group. This group is denoted by Isom.

Proposition 3.5.7. Reflection σm is an isometry.

Proof. We shall consider several cases. Suppose P and Q are two points,

P ′ = σm(P ) and Q′ = σm(Q). We must show P ′Q′ = PQ.

a) If
←→
PQ = m or if

←→
PQ ⊥ m, then the desired result follows immediately

from the definition of σm.

b) Also, if
←→
PQ is parallel to L but distinct from m, the result follows

easily as �PQP ′Q′ is a rectangle and so opposite sides PQ and P ′Q′

are congruent.

c) Further, if one of P or Q, say P, is on m and Q is off m, then P ′Q′ = PQ

follows from the fact that P ′ = P and that m is the locus of all points

equidistant from Q and Q′.

d) Finally, suppose P and Q are both off m and that
←→
PQ intersects m at

point R, but is not perpendicular to m. So RP = RP ′ and RQ = RQ′.

The desired result, P ′Q′ = PQ, then follows provided R,P ′, Q′ are

shown to be collinear.

Theorem 3.5.8. An isometry is a collineation that preserves betweenness,

midpoints, segments, rays, triangles, angles, angle measure, and

perpendicularity.

Proof. Since these properties are shared by all isometries, we shall consider

a general isometry α.
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a) SupposeA,B,C are any three points and letA′ = α(A), B′ = α(B), C ′ =

α(C). Since preserves distance, if AB+BC = AC then A′B′+B′C ′ =

A′C ′ as A′B′ = AB,B′C ′ = BC, and A′C ′ = AC. Hence, A − B − C
implies A′ − B′ − C ′; in other words, if B is between A and C, then

B′ is between A′ and C ′. We describe this by saying that α preserves

betweenness.

b) The special case AB = BC in the argument above implies A′B′ = B′C ′.

In other words, if B is the midpoint of A and C, then B′ is the midpoint

of A′ and C ′. Thus we say preserves midpoints.

c) More generally, since AB is the union of A,B, and all points between

A and B, then α(AB) = A′B′ is the union of A′, B′, and all points

between A′ and B′. So α(AB) = A′B′ and we say preserves segments.

d) Likewise, since α is onto by definition and
−→
AB is the union of AB and

all points C such that A−B−C, then α(
−→
AB) is the union of A′B′ and

all points C ′ such that A′ − B′ − C ′. So α(
−→
AB) =

−−→
A′B′ and we say α

preserves rays.

e) Since
←→
AB is the union

−→
AB and

−→
BA, then α(

←→
AB) is the union of

−−→
A′B′

and
−→
BA, which is

←−→
A′B′. So α is a transformation that preserves lines ;

in other words, α is a collineation.

f) If A,B,C, are not collinear, then AB+BC > AC and so A′B′+B′C ′ >

A′C ′ and A′, B′, C ′ are not collinear. Then, since 4ABC is a union of

the three segments AB, BC, CA then we conclude that α(4ABC) is

just 4A′B′C ′. So an isometry preserves triangles.

g) It follows that preserves angles as α(∠ABC) = ∠A′B′C ′.

h) Not only does preserve angles, but also preserves angle measure. That

is,m(∠ABC) = m(∠A′B′C ′), since 4ABC ∼= 4A′B′C ′ by SSS.
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Finally, if
−→
BA ⊥

−→
AB then

−−→
B′A′ ⊥

−−→
A′B′ since m(∠ABC) = 90 implies

m(∠A′B′C ′) = 90 So α preserves perpendicularity.

3.6 Rotations

Definition 3.6.1. A rotation about point C through directed angle of θ is

the transformation ρC,θ that fixes C and otherwise sends a point P to the

point P ′, where CP ′ = CP and θ is the directed angle measure of the directed

angle from
−→
CP to

−−→
CP ′.

Remark 3.6.2. i) We agree that ρC,0 is the identity i.

ii) Rotation ρC,θ is said to have centre C and directed angle θ.

Theorem 3.6.3. A rotation is an isometry (preserve distance).

Proof. Suppose ρC,θ sends points P and Q to P ′ and Q′, respectively. If

C,P,Q are collinear, then PQ = P ′Q′ by the definition 3.6.1. If C,P,Q are

not collinear, then 4PCQ ∼= 4P ′C ′Q′ by SAS and PQ = P ′Q′. So ρC,θ is a

transformation that preserves distance.
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