r
Unite Two
PrOPERTIES OF TRANSFORMATIONS A
1,3
2.t. Deforest eggs of Transformations.

Dept: A one -to one mapping of a set onto itself, ie., a_{1}^{1-1} knapping of a set A onto precisely the set A, is Gilled a Tranfoimation of A ie. For any given trusfotimation α \& for a given Pt P; $\exists!$ point $Q \rightarrow \alpha(P)=Q$.

* In this course we mainly focus on various transformations of the plane, suj we restate the defuse as:
\rightarrow A troursformation on the plane is a 1-1 correspondence from the set of pts in the plane onto itself.

EggS.

1. A mapping that Sends (x, y) to (x, y) is a transformation. Suck transformation is called Identity transformation \& is denoted is i. i.e., Identity transf. i is defined by $i(p)=p \quad \forall p$.

2 . Let α be a mapping given by
$x((x, y))=\left(x^{3}, y^{3}\right)$. Show that α is as transformation. .

Sol 1
To show that α is a Remaformation we need to show it is $1-1-\&$ onto.
i 1-1 ness
Let $P_{1}\left(x_{1}, y_{1}\right)$ \& $P_{2}^{x}\left(x_{2}, y_{2}\right)$ be pts in 1^{2} f

$$
\begin{aligned}
& \text { Let } \begin{array}{l}
p_{1}=\left(x_{1}, y_{1}\right. \\
\qquad \alpha\left(p_{1}\right)=\alpha\left(p_{2}\right) \\
\Rightarrow \quad \alpha\left(\left(x_{1}, y_{1}\right)\right)=\alpha\left(\left(x_{2}, y_{2}\right)\right) \\
\Rightarrow \quad\left(x_{1}^{3}, y_{1}^{3}\right)=\left(x_{2}^{3}, y_{2}^{3}\right) \\
\Rightarrow \quad x_{1}^{3}=x_{2}^{3} \quad \& y_{1}^{3}=y_{2}^{3} \\
\Rightarrow \quad x_{1}=x_{2} \quad \& y_{1}=y \\
\Rightarrow\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \text { or } p_{1}=p_{2} \\
\Rightarrow \alpha \text { \& } 1-1 .
\end{array}
\end{aligned}
$$

a. $p((x, y))=\left(x, y^{2}\right)$
$\beta=\operatorname{not} \frac{S o 1=}{\text { a tran, formations. Bile }}$
See that $\beta((1,-2))=\beta((1,2))$ but: $(1,-2) \neq(1,2)$

$$
\Rightarrow \beta \text { is not } 1-1 \text {. }
$$

2 also
there is no pt (x, y) f $p((x, y))=(1,-2)$

$$
\Rightarrow \beta \text { is not onto. }
$$

b. $\quad \theta((x, y))=\left(x^{3}, y\right) \quad$ is a trance.
c. $\tau((x, y))=(x+2, y-3) \quad$ is meme
d. $\quad r((x, y))=\left(x^{3}-x, y\right)$ in not. Bic $r((1,1))=r((-1,1))$ buts $(1,1) \neq(-1,1) \quad \Rightarrow \quad r$ is nut $1-1$. This, r is not a timparimet.

Theorem: The composite $\beta: \alpha$ of transfimations $\alpha \times \beta$ defined ty $(\beta \circ \alpha)(p)=\beta(\alpha(p))$ is itself a transofimation.

Prov
It is Sufficient to show that $\beta=x$ is bit $1-1$ \& onto.
i. $1-1$ ness. Let $P_{1} \& P_{2}$ be p ts in $\mathbb{R}^{2} 7$

$$
\begin{aligned}
& (\beta \circ \alpha)\left(p_{1}\right)=(\beta<\alpha)\left(p_{2}\right) \\
& \Rightarrow \beta^{\prime}\left(\alpha\left(p_{1}\right)\right)=\beta\left(\alpha\left(p_{2}\right)\right) \quad \text { in def }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow p+A\left(p_{1}\right)=A\left(p_{2}\right) \quad \text { Since } \beta \text { is } 1-1 \text {. } \\
& \Rightarrow P_{1}=P_{2} \quad A i=\quad \alpha \text { in } 1-1 \\
& \therefore \quad \text { Pox } \quad 1-1
\end{aligned}
$$

ii Qutomes.
Let Q be amy pi en \mathbb{R}^{2}.
Since β conto $\exists p t C \in \mathbb{R}^{2} \nrightarrow \quad \beta(c)=Q$.
Since x in onto, the ere is a p A in \mathbb{R}^{2} 子

$$
\alpha(A)=c .
$$

A. intonate.

Than, $(\beta \circ \alpha)(A)=\beta(\alpha(A))=\beta(C)=Q$

$$
\Rightarrow \quad 1 \times p t \quad A \text { in } R^{2}>\beta=\infty 0 \text { of } \mathbb{R}^{2} \text {. }
$$

$$
\Rightarrow \text { pod is onto. }
$$

$\therefore \quad$ ax is a tran formation.
Note: From the def=, we observe that if γ is a transformation the inverse of γ, γ^{-1} is a transformation where γ^{-1} is the mapping defined by $\gamma^{-1}(B)=A$ ifs $B=\gamma(A)$

Theorem: The set of all trawformations form a group. prof:
Let G we a set of all transformations.
i. For every $\alpha, \beta \in G, \quad \alpha \beta \in G$ (composition 7 tho pransfor.)
ii. For $v \alpha, \beta, \gamma \in G$,

$$
\begin{aligned}
& V \alpha, \beta, \gamma \in G, \\
& {\left[\gamma_{0}(\beta \circ(\alpha)](p)\right.}=\gamma(\beta \circ \alpha)(p))=\gamma(\beta(a(p)))=(\gamma \sim \beta)(\alpha(p)) \\
&=[(\gamma \circ \beta) 0 \alpha](p)
\end{aligned}
$$

\therefore Gifave associative property.
iii. The identity transformation i is an idly cit, for the operation.
iv. Fir every alt $\alpha \in G$, there exist $\alpha^{-1} \in G+$

$$
x^{-1} c x=i=x 0 x^{-1}
$$

$\therefore G$ is a gre.

Note:
i. If every eft of transf. gre G_{2} is an eft of transit. gre G_{1}, then G_{2} is a subgrp of G_{1}
ii. Transf.s α \& β may or may not satisfy the commutative law:

$$
\alpha \circ \beta=\beta 0 \alpha .
$$

Involutions we abreviate "Boa" as " $\beta \alpha$ " \& rad us

* If there in no ambiguity, ${ }^{\circ}$ an the left "or "The product of β multiplied $b y$ a on the right" or simply "The product bette - alpha"
Thus, $(r \circ(\delta \circ \gamma)) \circ(\beta \circ \alpha)=\varepsilon \delta \gamma \beta \times$ since the
composition of hans. is associative. Hence, in $\gamma=\alpha_{n} \alpha_{n-1} \ldots \alpha_{2} \alpha_{1}$, with n a tie integer a transformation γ is expressed as a product of transpor matins.
- It $\alpha_{i}=\alpha \quad \gamma=\alpha^{n}$ $\left(\beta^{-1}\right)^{n}=\beta^{-n}$, for ally trans β o any integer n.
(22) 012 -11-

Theorem: $\quad M_{1}+\left(f \begin{array}{ll}\text { Mi, }\end{array}\right.$)
i. If $x, \& \& \gamma$ are tits of a group, then

$$
\text { a. } \beta x=\gamma_{a} \Rightarrow \beta=0 \quad \text { (right Cancellation lam) }
$$

b. $\quad \beta=\beta \gamma \quad \Rightarrow \quad a=r$
cleft $>$
c. $\beta x=\alpha \Rightarrow \beta=i$
d. $\beta \alpha=\beta \Rightarrow \alpha=i$
e. $\beta a=i \Rightarrow \beta=\alpha^{-1} k \quad \alpha=\beta^{-i}$
ii. In a 97 ", the inverse if a product is the product of the inverses in reverse oder. ie.,
$(\omega \cdots \gamma \beta \alpha)^{-1}=\alpha^{-1} \beta^{-1} \gamma^{-1} \cdots \omega^{-1}$.

prof, $\in x$.

Note: If there is a smallest toe integer $n \ngtr x^{n}=i$, then trans. α is said to have cider n; otherwise it is infinite order of.

1. Let ρ be a rotation of $\frac{360^{\circ}}{n}$ about the origin with n a tue integer. Then ρ hen order n, the set $\left\{\rho, \rho^{2}, \rho^{3}, \cdots \rho^{n}\right\}$ forms a $9 p$ of order n.

$$
\begin{aligned}
& \rho^{\prime}=\rho \rho g 3 \cdots 3=\rho(\rho(\beta c \cdots(p(p))))=? \\
& \Rightarrow s^{n}=i
\end{aligned}
$$

2. Let $\tau(x, y))=(x+1, y)$. Element τ las infinite order \& the Set f are tromsfomations τ^{k} with k an integer forms an infinite arp
Defy: : If every eitif a gop containing α is a power of α, then we song that the arp is cyclic with generation $a \&$ denote the nip as $\langle x\rangle$.
 rider 6
3. If ρ_{1}, ω a rotation 930°, then $\angle \rho_{i}>$ is a cycle gro of order 10

* Observe that: $\left\langle\rho_{1}\right\rangle=\left\langle\rho_{1}^{3}\right\rangle$. Thus, a cyclic isp may pave mire than one penelatit.

Defy: A transformation with order 2 is called Involution. i.e., transformation δ is an involution ifs $\gamma^{2}=i$ but $r \neq i$

* In other words, a non identity transf. γ is an involution $i f 6 \gamma=\gamma^{-1}$. $\gamma \gamma=i \Leftrightarrow \gamma \gamma^{-1} \gamma \gamma=\gamma^{-1} i \Leftrightarrow \gamma \gamma^{-1}$

2. Give a rotation which in an diction if $x((x, y))=\left(a y, \frac{x}{b}\right)$
3. Find $a \notin b$
4. $\begin{aligned}\tilde{x}(x, y)) & =\alpha x((x, y))=x(x(x, y))=\alpha\left(\left(a y, \frac{x}{b}\right)\right)=\left(\frac{a}{b} x, \frac{a}{b} y\right)\end{aligned}$ Thus $x^{2}((x, y))=(x, y) \Rightarrow\left(\frac{a}{b} x, \frac{a}{b} y\right)=(x, y) \Rightarrow \frac{a}{b}-1 \Rightarrow$ a \Rightarrow called a Collineatia Deft: A transf that sen whenever l is a line, i.e., A transf x is a collineution
E.f.A trans. x defined by $x((x, y))=(x, 2 y)$ is \hat{x} proof:
5. If ρ is a rotenticn of 60°, then $2, S>$ as cyciiciof if adder 6
6. If S_{1} a a rotation of 36°, then $<S_{i}>i$, a cyclic gorp of order 10 .

* Observe that: $\left\langle\rho_{1}\right\rangle=\left\langle\rho_{i}^{3}\right\rangle$. Thus, a cyclic gorp may lave more than che qeneratit.

Def 三: A transformation with order 2 is called Involution. ice., transformation δ is an involution ifs $\gamma^{2}=i$ but $r \neq i$

* In other words, a non identity transf. γ is on involution $\begin{aligned} & i f t \quad \gamma=\gamma^{-1} . \\ & \gamma^{2}=i \Leftrightarrow \gamma=i \Leftrightarrow \gamma^{-1} \gamma \gamma=\gamma^{-1} i \Leftrightarrow \gamma\end{aligned}$

Eg $1 \rightarrow$ at the back
9. Give a rotation which is an involution. \rightarrow A rotation 7 184
3. Find a i b i x is an involution if $\alpha((x, y))=\left(a y, \frac{x}{b}\right)$
A. At ${ }^{\text {Hes Luck }}$
3. α id involution $\Leftrightarrow x^{2}=i \quad \alpha \neq i$.

$$
\begin{aligned}
& \alpha \text { id involution } \\
& \tilde{\alpha}((x, y))=\alpha \alpha((x, y))=x(\alpha(x, y))=\alpha\left(\left(a y, \frac{x}{b}\right)\right)=\left(\frac{a}{b} x, \frac{a}{b} y\right) \\
& \text { Thus } \alpha^{2}((x, y))=(x, y) \Rightarrow\left(\frac{a}{b} x, \frac{a}{b} y\right)=(x, y) \Rightarrow \frac{a}{b}=1 \Rightarrow \text { a }
\end{aligned}
$$

Def: A trans. that sends a live to a line is called e Callineation
ie, A transf. α is a collinertion off ulicnever i is a line, $x(e)$ is aide a li ne.
Eq.1.A transf. x defined by $x((x, y))=(x, 2 y)$ is in collineation.
not:

Let l be a inge with in $a x+\operatorname{lin}+c=0$ ie

$$
\begin{aligned}
& \forall(\lambda, \cdots) \in l \quad \Rightarrow \quad a x+b y+c=0 \\
& \text { Let } x((x, y))=(u, u) \\
& \Rightarrow(u, v) \text { is on the image of } l \\
& x((x, y))=(x, 2 y) \\
& \Rightarrow(x, \lambda y)=(u, v) \\
& \Rightarrow \quad x=u \quad \& \quad 2 y=v \\
& \Rightarrow \quad u=x \quad \& \quad y=\frac{v}{2} \\
& a x+b_{j}+c=0 \quad \Rightarrow a c i+b\left(\frac{v}{2}\right)+c=0
\end{aligned}
$$

$\Rightarrow(u, v) a$ sol of $2 a x+b y+i c=0$ i.e., (u, v) on the line

$$
2 a x+b y+2 c=0
$$

\therefore trons. x is collineation.
2. Determine whether the ff transf. is collineation. For each collineation find the image of the line with eq $a x+b i y+c=0$.
a. $\beta((x, y))=\left(x, y^{3}\right)$
Sols

If (x, y) is on a line l with equ $a x+b y+c=0$, then

$$
a x+b y+c=0
$$

Let $\beta((x, y))=(u, v)$

$$
\begin{aligned}
& \beta((x, v))=(u, v) \\
& \Rightarrow \quad\left(x, y^{3}\right)=(u, v) \\
& \Rightarrow x=u x y=v^{\frac{1}{3}}
\end{aligned}
$$

putting this in $a u+b v^{\frac{1}{3}}+c=0$
$\Rightarrow(u, v)$ is a pt on $a x+b y^{\frac{1}{3}}+c=0$ wis is not a pt. line $\therefore \beta$ is not a collineation.

Gi. O.

$\left.\left.(\alpha)^{x}\right)(x,-1)=\alpha(\alpha(x,-1))=\alpha(c,-1)\right)=(x, y)$
$\Rightarrow x \cdot x=1$ i.e. $x^{2}=1$
$(\alpha \sim \beta)(x, n)=\alpha(\beta(x, y)=\alpha(x,-y)=(-x, y)=x(x, n)$

- From the taple. $G=\{i, x, \beta, r\}$ is a ịp q thansformantion...
wh is a finite gip of rder 4. i.e., $O(G)=4$
- G inet a caclic grp bic is theo no generatio.
x, \& \& x are acl invictation.

E4. Cowsthuct the pre of rotatione genceratid by a rotation of the plane about the cripion kng 90°

b. $x((x, y))=(-x+y / 2, x+2)$

So 15
Set $u=-x+y, 2$ \& $v=x+2 \quad(2 x, v 1) \dot{t}+4(x, y)$ we have cingue sotus $\quad x=v-2$ \& $y=2 u+2 v-4$ f $x((x, n))=(u, v)$ for ang ne $u \& v$ Hence a is is tramef

Let l ine a line with equ $a x+b y+c=0$ If (x, y) ibale is on l, then $a x+i y+c=0$

$$
a(v-2)+b(2 u+2 v-4)+c=0
$$

$$
2 b u+(a+2 b) v+(c-4 b-2 a)=0
$$

$\Rightarrow(u, v)$ is on the lince with equ
$(2 b) x+(a+2 b) y+(c-4 b-2 a)=0$
$\Rightarrow \alpha(c x, y))$ is on the line with equ

$$
(2 b) x+(a+2 b) y+(c-4 b-2 a)=0
$$

So, the line with eqn $a x+b y+c=0$ gots to the line with egn $C^{\prime} x+b^{\prime} y+c^{\prime}=c \quad$ Mher

$$
a^{i}=2 i, \quad i!=a+21, \quad c^{i}=i-4 i-2 a
$$

Hょwa \times, \quad collimation

λ if xi(1x, i) i,

Pr Feng the pracimage of tive kince with equy $y=3 x+2$ under

So $1:$
$2<\quad x((1 x, y))=(x x, y)$
If (x, y) lie on Q, then $y=3 x+2$

Let $u=2 x$ i $V=y$

$$
\begin{aligned}
& u=2 x \& v=v=v \\
& \Rightarrow \quad \&=\frac{u}{2} \quad
\end{aligned}
$$

Thus, $\alpha(x, n))=(2 x, y)=(v, v)$ lie in tire kine

$$
\begin{aligned}
& V=3\left(\frac{u}{2}\right)+2 \\
& \Rightarrow V=\frac{3}{2} u+2
\end{aligned}
$$

Hence $(2 x, y)$ lie in the ere $y=\frac{3}{2} x+2$
Thus, the image of the line $y=3 x+2$ is

$$
y=3 / 2 x+2
$$

Check: Two pt form 7 eat 9 a eve.
3. Let a line l is the preimage of the line with equ $y=3 x+2$. Let (x, y) be a pt on the image of l, then

$$
y=3 x+2
$$

Let (a, b) be thepremage of (x, y) under x, then (a, b) is apt on $\ell \hat{k}$

$$
\begin{aligned}
& x((a, b))=(x, y) \\
\Rightarrow & (3 b, a-b)=(x, y) \\
& y=3 x+2
\end{aligned}
$$

$$
\Rightarrow \quad 3 b=x \quad \& \quad a-y=y
$$

$$
\begin{aligned}
& \Rightarrow 3 b=x \quad x \quad x \sim y+b \\
& \Rightarrow y \in f \quad \Rightarrow x=r a n t
\end{aligned}
$$

$$
=x \times 2 a+b
$$

$$
\begin{array}{ll}
y=3 x+2 & a-b=3 \\
\Rightarrow & \left.b=3+\frac{a}{3}+b\right)+2
\end{array} \quad a-b=3 b+2
$$

$$
\begin{array}{rl}
=a+3 b+2 & a-b \\
& \Rightarrow a-2=10 b \\
b & b=\frac{1}{10} a
\end{array}
$$

$$
\Rightarrow a-2=\frac{1}{10} a-\frac{1}{5}
$$

Thus, (a, b) is a ot on the line $\mathcal{G}=\frac{1}{i} \times-\frac{1}{5}$
\Rightarrow The er v of kine l is $y=\frac{1}{10} x-\frac{1}{5}$
Check!
Find the chape Eire t eqion by $y=\frac{1}{10} x-\frac{1}{5}$ under a Collimation $\quad x(c x, y))=(3 y, x-y)$. Let $(u, v)=x(u x, y)$

$$
\begin{aligned}
& u=3 y, \& \quad v=x-y \\
& y=\frac{u}{3} \& x=v+y=v+\frac{u}{3} \\
& \frac{u}{3}=\frac{v+\frac{u^{2}}{3}}{; 0}-\frac{1}{5} \Rightarrow v=3 u+2 \\
& u-3 x+2
\end{aligned}
$$

$$
\therefore(u, v) \text { is a pt in } y=3 x+2
$$

Hence the pre-image of a line with eq $y=3 x+2$ under x is $y=\frac{1}{10} \times-\frac{1}{5}$

Theorem: The set of all collineations form a op.
Proof:
Let S be the set of all collineations.
i. Closure Property:
Let $\alpha \& \beta$ \&
Spree l is a lime
Thin $x(l)$ is a live $B=n c e x$ is x ecllimetion. \& $\quad \beta(\alpha(\ell))$.. "

Hence $(\beta \subset i)(l)$ is o line, k pax

$$
\begin{aligned}
& \quad(\beta \cdot i)(e) \\
& \therefore \beta+a \text { is a collinestio. }
\end{aligned}
$$

ii. Gemposi If $\alpha, \beta, \gamma \in S$
$\alpha(\beta \gamma)=(\alpha \beta) \gamma$ since collimation are tronafimetion \Rightarrow Compsition of ticollineation satisfies apoc
iii. The idly trans in an att et y d.
iv. Existence of inverse

Let l bi i kine $\& \quad \alpha \subset \$$.
There is a lime $m \quad x \quad x(m)=l$ since a is a collimation (or a transit is into).

So, $x^{-1}(l)=\alpha^{-1}(x(m))=x^{-1} \circ \alpha(m)=\imath(m)=m$

Hence, x^{-1} is a collineation

$$
\text { ire. } \quad x^{-1} \in \$, \quad \theta x \in \$ \text {. }
$$

$\therefore S$ forms a gre.
Depose: A collineation α is a dilatation if $m \& \alpha(m)$ are parallel for every line m.
φ. A collineation x defined by

$$
\begin{aligned}
& \text { A collineation } x \text { defined } x y \\
& x((x, y))=(x+2, y+3) \text { is a dilatation. }
\end{aligned}
$$

Let l be arb. line with eq $y=a x+b$.
Let (x, y) be any $p t$ on R, then

$$
y=a x+y \text { be dry pt on } k((x, y))=(x+2, y+3)
$$

$$
\text { sot } u=x+2 \quad \& \quad v=y+3
$$

$$
\begin{aligned}
& \text { Sot } u=x+2 \quad y \quad y=v-3 \\
& \Rightarrow \quad x=u-2 \quad
\end{aligned}
$$

$\Rightarrow(u, v)$ is on the line on with eq:

$$
y=a x+(-2 a+b+3)
$$

$\Rightarrow l \& m$ are $/ 1$.

Mote: The dilatatious form a arp called the dilatation opp pf
Let D be the set of all diliatations.
i. Closure property
Let $\alpha, \beta \in \Phi$ \& f be any line $)$

$$
\begin{aligned}
& \alpha(l)=e^{\prime} \text { \& } \beta\left(l^{\prime}\right)=l^{\prime \prime} \\
& \Rightarrow e\left\|e^{\prime} \quad \& \quad e^{\prime}\right\| e^{\prime \prime} \text { since } x_{1} \beta \in D
\end{aligned}
$$

So, by tramitivity of parallelness $2 / 1 e^{\prime \prime}$.
Thus, $\beta \alpha(l)=\beta(\alpha(l))=\beta\left(e^{\prime}\right)=l^{\prime \prime}$
\Rightarrow The composite of fro dillatatious is a dilatation.
ii. Existence of inverse.

Holds by the symmetry of liners for lines i.e., $l\left\|l^{\prime} \Rightarrow e^{\prime}\right\| l$. for $\forall \alpha \in D$
if $\alpha(l)=l^{\prime}$ ens
$f \alpha^{-1} \quad 7 \quad \alpha^{-1}\left(l^{\prime}\right)=\ell$, where $l^{\prime} / l l$ by sefomet.
Hence the inverse of a dilatation is a dilatation.
(*) The remaining are trivia. (show?)

Hence, the dilatation form a gre.

Det?: The mapping x of a peone il Oace itsolf is saict to be (orthapshat mapping) ar any two pt $M \& d \subset \quad \pi$, the distance bin $M \& N$ is equal to the distanez pin a(M) i $k(N)$.

- Remark: An (scmetry is the name given for any thansformation that preserves distance. It cones from the Greak isos (equel) \& metion (mearure).
G. Wie if the ff: mapping is on isometiy.
Q. $x((x, y))=(x, y)$ b) $\alpha((x, y))=(2 x,-2 y)$
b. $\gamma((x, y))=(-x+1,-y)$
c. $\beta((x, y))=(y, x)$
d. $\theta((x, y))=(x+4, y-3)$ mid pts, seqmenti,
alaty.
Q. Tic show btr betweennean, widpto A^{A} seqmanto

$$
\begin{aligned}
& \text { an isomery and any three } C^{2} \times \alpha(B)=\beta^{\prime} \quad \alpha, \alpha(C)=C^{\prime} . \\
& \alpha(A)=A^{\prime},
\end{aligned}
$$

i. sines x preservas dítance $A C=A^{i} C^{\prime}$

$$
\begin{aligned}
& \infty \text { preservas distance } \\
& A B=A^{i} B^{\prime}, \quad B C=B^{i} C^{i} B=A^{i} C^{\prime} \\
&=A C \text {, thin } A^{\prime} B^{\prime}+B^{i} C^{\prime}=A^{i} C^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& A^{B}=A^{i} B^{\prime}, B^{C}, \text { if } A B^{\prime}+B C=A C \text {, thin } A^{\prime} B^{\prime}+B \\
& \text { Thas, } A \& C B^{i} B \text { bln } A^{\prime} y C^{\prime}
\end{aligned}
$$ Hence; B ín blu $A \times C \Rightarrow B$

Holnner.
$\therefore \alpha$ proserves bolnner.
12. It $A B=B C$ then $A^{\prime} B^{\prime}-P^{\prime} C^{\prime}$

$$
\text { so } \times\left(A^{\prime} \bar{B}\right)=\overline{A^{\prime} B^{\prime}}
$$

$$
\text { so } x\left(A^{\prime} \bar{\beta}\right)=A \text { presenves line seqments }
$$

b. Praservicg rays, lines, angles \& 1 rity.

$$
(c x)
$$

i. Presenify rays

Let α be an iscmating lie on a ray $\overrightarrow{A B}$ \&

$$
\begin{aligned}
& \text { et } p \nmid A, B, C, D: C \\
& x(A)=A^{\prime}, \chi(B)=B^{\prime}, x(C)=C^{\prime}, \propto(D)=D^{\prime}
\end{aligned}
$$

By part (2)

$$
\begin{aligned}
& \text { Prat (a) } \\
& A B+B C+C D+D E+\cdots=A^{\prime} B^{\prime}+B^{\prime} C^{\prime}+C^{\prime} D^{\prime}+\cdots
\end{aligned}
$$

Thus, a presecves rays.
[OR $\overrightarrow{A B}$ in the knion of $\overrightarrow{A B} x$ all $p t s \quad C \Rightarrow A-B-C$, then
 $\alpha(\overrightarrow{A B})=\overrightarrow{A^{\prime} B^{\prime}}$ one sing a preserves rays.]
ii praserviry lines
By (b2) $\overrightarrow{A B}=\overrightarrow{A^{\prime} B^{\prime}} \quad \& \quad \overrightarrow{B A}=\overrightarrow{B^{\prime} A^{\prime}}$
 $\alpha(\overrightarrow{A B})=\alpha(\overrightarrow{A B}) \cup \times\left(\overrightarrow{B^{\prime}}\right)=\overrightarrow{A^{\prime} B^{\prime}} \boldsymbol{H} \overrightarrow{B^{\prime} A^{\prime}}=\stackrel{A^{\prime} B^{\prime}}{ }$
\Rightarrow preaerver eins,
Hence α is a collineation.

$$
\begin{aligned}
& \Rightarrow \text { a presecses metpt. }
\end{aligned}
$$

in if $A B=B C$ then $A^{\prime} B^{\prime}-F^{\prime} C^{\prime}$ Thes, f B B, i the n. 1 pt \quad o A is C, then

$$
B^{i} \backsim
$$

\Rightarrow a presecvis matpt.
iii Since $\overline{A B}$ is the uncion of A, B ix onil ρ to ioln $A X B$, $\times(\overline{A B})$ is the uaion of $A^{\prime}, B^{\prime} \&$ all p obla $A^{\prime} A B^{\prime}$.

Se $\alpha\left(A^{-\beta}\right)=\overline{A^{1} \beta^{i}}$
Hencer x prescives live seimento
b. Preserviig rays, lines, angles $\&$ drity.
($C x$.)
i. Presenver rays

Let α be an iscometing
Let p わ $A, B, C, D, E \cdots$ lie on a ray $\overrightarrow{A B}$ \& $x(A)=A^{\prime}, \quad X(B)=B^{\prime}, \quad \alpha(c)=c^{\prime}, \quad \alpha(D)=D^{\prime} \ldots$

By part (a)
$A B+B C+C D+D E+\cdots=A^{\prime} B^{\prime}+B^{\prime} C^{\prime}+C^{\prime} D^{\prime}+\cdots \cdot$

Thus, x prescerves roms.
[ER $\overrightarrow{A B}$ is thi limion of $\overrightarrow{A B}$ i all $p+s \quad C \quad \rightarrow \quad A-B-C$, then
 $\alpha(\overrightarrow{A B})=\overrightarrow{A^{\prime} B^{\prime}}$ \& in sing a preserves rays.]
ii presenviry lines.
By (bi) $\overrightarrow{A B}=\overrightarrow{A^{\prime} B^{\prime}} \quad \& \quad \overrightarrow{B A} \quad \overrightarrow{B^{\prime} A^{\prime}}$
\Rightarrow proserven eins,
Hence x is a collinestion.
iii. Preserving $<s$

Let $\angle A C B$ in formed by the two rays $\overrightarrow{O A}$ \& $\overrightarrow{O B}$.
Since x prosenves my $\overrightarrow{O A} \& \overrightarrow{O B}$ are caniedth

$$
\begin{aligned}
& \text { rays } \overrightarrow{O A^{\prime}} \times \overrightarrow{O^{\prime} B^{\prime}} \\
& \text { Hence } \angle A O B \text { is carried into } \angle A^{\prime} O^{\prime} B^{\prime} \text {. }
\end{aligned}
$$

Wee need also to snow the nt

$$
\angle A O B \equiv \angle A^{\prime} O^{\prime} B^{\prime}
$$

By the proof in part $\Theta \quad \overline{O A}=0^{\prime} A^{\prime}, \quad \overline{O B}=D^{\prime} B^{\prime}$ \& $A B=A^{\prime} B^{\prime}$ $\Rightarrow \triangle A C B \cong \triangle A^{\prime} C^{\prime} B^{\prime}$ by sis.

$$
\Rightarrow \angle A O B \cong \angle A^{\prime} O^{\prime} B^{\circ}
$$

$$
\therefore x \text { preserves agile mensiare }
$$

Hence, preserving \perp iarity follows.
iv. Preserving Δ; is immediate from the above arguments.

Ex. prove that the set of all isometries firm a gre.
proof:
Let G be the set of ad iscmuthes.
i. ciosurity

Let $\alpha \& \beta \in G$ be any two p on o plume π t
$\alpha(M)=M^{\prime} \& \alpha(N)=N^{\prime}$
$\beta\left(M^{\prime}\right)=M^{\prime \prime} \& \beta\left(M^{\prime}\right)=N^{\prime \prime}$
$\beta\left(M^{\prime}\right)=M^{\prime \prime} \& \beta\left(M^{\prime}\right)=M^{\prime \prime}$
Thus, Acne a is iso, MN= $M^{\prime} N^{\prime}$ since $\beta \omega$ iso, $M^{\prime} N^{\prime}=M^{\prime \prime} N^{\prime \prime}$
$\Rightarrow \quad M N=M " N "$
\Rightarrow The -distant bin distance bin $M \notin N$ is equal to the distance
$b \ln \operatorname{\beta oc}(M)$ \& $\beta o \alpha(N)$
\Rightarrow Bia preserver instance

it Asceretivity : eibveous
iii Idty maping is an idty eit 7 G. 6 in iscusery it is thimsta a
iv. Let $x \in G$ since x is in
iv Let $x \in G$ seqment $A^{\prime} B^{\prime}$, there Exist B^{\prime} pment $A B f$ for any $2 i$ me seqmint $A B$, thare
$\left(\overline{A^{B}}\right)=A^{\prime} \dot{B}^{\prime}$
$\Rightarrow \alpha^{-1} \alpha(\overline{A B})=x^{-1}\left(\overline{A^{\prime} B^{\prime}}\right) \quad \Rightarrow \quad \overline{A B}=\alpha^{-1}\left(\overline{A^{\prime} \beta^{\prime}}\right)$
$\Rightarrow x^{-1}$ proserves instance.
$\Rightarrow x^{-1} \in G$.
$\therefore G$ in ari.

* Translation, rotation \& Veflection are isometric type mition whice proservia shape i sizz.
3.1. Transeations.

Defr: A tronslation is a thansformation r defined by

$$
\begin{aligned}
& \text { A translation is a thansjo where } a, b \in \mathbb{R} \text {. } \\
& \tau((x, y))=(x+a, y+b) \quad \text { iation is an iscmethy. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Show that } \\
& \text { Lex the translation of be defined by } \\
& \tau((x, y))=(x+a, y+b) \text {, a, b } \in \mathbb{R} \text {. }
\end{aligned}
$$

$$
\tau((x, y))=(x+a, y+b) \text {, a, }
$$

Let $p(x, y)$ io $Q(\alpha, t)$ be
$\begin{aligned} & \text { The dintance in' } P d x \theta \text {, } \\ & P Q=\sqrt{(x-\phi)^{2}+(y-t)^{2}}\end{aligned}$

$$
f(p)=(x+a, y+b)
$$

$$
\begin{aligned}
p Q & =(x+a, y+b) \\
\tau(p) & =(s+a, t+b) \\
\tau(Q) & =\tau(Q) \quad i \quad
\end{aligned}
$$

$$
\begin{aligned}
& \text { * Fire limy two dintinet } p \text { to } p(a, b) \neq Q(c, d) \text { thete is a }
\end{aligned}
$$

$$
\begin{aligned}
& C((x, y))=(x+(c-a), y+(d-b))
\end{aligned}
$$

cx. Witte the winizu trampiation that takes $(2,3)$ to $(5,1)$

Note: F ar any $P b P, Q, R \& S$:
i if $\tau_{p, Q}(R)=S$, then $\tau_{P, Q}=\tau_{R, s}$
i. The idty is a spacial case of oz tramelition as

$$
i=\tau_{p, p}
$$

iii. If $T_{P, Q}(R) R=R$, then $P=Q$ as

$$
\tau_{P, Q}=\tau_{R, R}=2
$$

Thecrem: Spie A, B \& C are moncoilineer pis then $\mathcal{Z}_{A, B}=\mathcal{Z}_{C, D}$ iff $\square C A B D$ is a llzm.
$12+A, B C$ we non collineit ρ か.
(\Rightarrow) ipse $\quad t_{A, B}=\tau_{C, D}$
Let the traws lative τ is jivien by

$$
\mathscr{O}((x, y))=(x+\mu, y+k)
$$

$\dot{r e}+A=\left(a_{1}, a_{2}\right) \quad t \quad c=\left(c_{1}, c_{2}\right)$
$\left.B=c(A)=c a_{1}+h_{1} a_{2}+k\right)$

$$
\begin{aligned}
& B=C(A)=c a_{1}+h_{1} a_{2}, C(c)=\left(c_{1}+h_{B^{\prime}\left(c_{1}+h_{1} G_{2}+k\right)}+k\right) \\
& i D=
\end{aligned}
$$

$$
A C=B D \text { since } \tau \text { is an iseitutity. }
$$

$$
A B=C D=\sqrt{e_{1}^{2}+k^{2}}
$$

Helle, $D=A B D$ is a ligm.
(.) $\in x$

Spse IACABD is a llgm
wis: $\tau_{A, B}=\tau_{C, D}$.

$$
\begin{aligned}
& \text { Let } \tau_{A, R}((x, y))=(x+h, y+k) \\
& \tau_{c, ?}((x, y))=(x+s, y+t)
\end{aligned}
$$

Now we nead to show $h_{h}=s$ \& $k=t$
If $A=\left(a_{1}, a_{2}\right)$, then $B=\left(a_{1}+k, a_{2}+k\right)$. , $C=\left(c_{1}, c_{2}\right)$, then $D=\left(c_{1}+\xi, c_{2}+t\right)$.

By propertios of a llgm we have:

$$
\begin{aligned}
& \Rightarrow \quad h k\left(\frac{h}{k}+\frac{k}{h}\right)=s t\left(\frac{h}{k}+\frac{k}{h}\right) \quad \frac{t}{3}=\frac{k}{h}+s / t=h_{1} \\
& \Rightarrow \quad\left[h_{k} k=s t\right] \text {. (3) }
\end{aligned}
$$

Ad1.jg (2) (3) we jet

$$
\begin{aligned}
& h k+k s= s t+t_{1} t \\
&=t<s+t
\end{aligned}
$$

$$
\Rightarrow \quad k(s+k s)=t(s+h)
$$

$$
\Rightarrow \quad k=t
$$

$$
\Rightarrow \quad h=S
$$

$$
\therefore \quad \tau_{A, B}=\tau_{C, D}
$$

$$
\begin{aligned}
& i \text { AB } A B C D \quad h^{2}+k^{2}=s^{2}+t^{2} \\
& i i . A B \| C D \Rightarrow \frac{k}{h}=\frac{t}{s} \\
& \Rightarrow \text { KSS }=h^{E} \text { (2) } \\
& \begin{array}{l}
\left.A B \| C D \Rightarrow \frac{k}{h}=\frac{t}{s}\right] \text { (gh) } \\
\Rightarrow L K S=h t)(2) \\
\text { Frem (1) we have } h k\left(\frac{h}{k}+\frac{k}{h}\right)=\operatorname{st}\left(\frac{s}{t}+\frac{t}{s}\right)
\end{array}
\end{aligned}
$$

Note: Fir a non atty travilition ${ }^{\circ} \tau_{A, B}$, the distance is given by $A B$ \& the direction by $\overrightarrow{A B}$.

* We say a transformation α fixes $p t \quad P$ iff $\alpha(p)=P$ Transformation α fixes a line l if $\alpha(l)=l$ \& in general, α fixes a set δ of pts if $\alpha(s)=s$

Theorem:

Q. A translation is a dilatation.
b. If $P \neq Q$, then $\tau_{P ; Q}$ fixes no pis \& fixes exactly those lives that are $\|$ to $\overleftrightarrow{P Q}$.

Proof:

Let $\tau((x, y))=(x+h, y+k)$ be a translation.
a. Let l be a line with equ.

$$
a x+b y+c=0
$$

Let (x, y) bee a $p t$ on l.
Then $\tau((x, y))=(x+a, y+k) \& a x+b y+c=0$
sett $(x+h, y+k)=\left(x^{\prime}, y^{\prime}\right)$
Then $x=x^{\prime}-h \quad y \quad y=y^{\prime}-k$
\& $\quad a x+b y+c=0$
$\Rightarrow a\left(x^{\prime}-h\right)+b\left(y^{\prime}-k\right)+c=0$
$\Rightarrow a x^{\prime}+b y^{\prime}+(c-a h+b k)=0$
$\Rightarrow\left(x^{\prime}, y^{\prime}\right)$ is on the lime with err $\therefore 2+b y+(c-a \hbar-b k)=0$

Since $m / l e$.

$$
\tau \text { is a dilatation }
$$

b. Spue $\quad p \neq a$

$$
\text { Then either } h \neq 0 \text { or } k \neq 0 \text {. }
$$

$$
\text { Then for any pt }(x, y), \tau^{\prime}((x, y)) \neq(x, y)
$$

\Rightarrow Treasury $\tau_{P, Q}$ fixes no pit if $P \neq Q$.

* Te show $T_{P, Q}$ fixes those kines Il to $\stackrel{\leftrightarrow}{P Q}$. Let τ be e translation that sends p to \& is given by $\tau((x, y))=(x+h, y+k)$ Then the scope of $\stackrel{P Q}{ }$ is $\frac{k}{e_{2}}$
The eq re of any hive l to $\stackrel{\rightharpoonup}{P Q}$ is given by

$$
\begin{gathered}
y=\frac{k}{h} x+c \\
\text { Haim: } \quad e(l)=l \\
\text { Since } e((x, y))=(x+h, y+k), \quad l e+
\end{gathered}
$$

$u=x+h \& v=y+k$

$$
\Rightarrow \quad x=u-h \quad \& \quad y=v-k
$$

Then $y=\frac{k}{e_{2}} x+c \Rightarrow(v-k)=\frac{k}{h}(u-h)+c$

$$
\Rightarrow \quad V=\frac{k}{h} u+c
$$

$$
\Rightarrow(u, v) \text { is also on } y=\frac{k}{e_{2}} x+c
$$

$$
\Rightarrow \tau(x)=l .
$$

$\therefore \quad \vec{i}$ fixes those lines wick are $\| 1$ to $\overleftrightarrow{P Q}$.

Theorem: The translations form an abetwing gre J.

$$
\text { Proof: } c(x)
$$

Let τ be : transition of fined by

$$
\tau(x, y))=(x+k, y+k)
$$

Let $J=(a, b), \quad T=(c, d)$ \& $R=(e, f)$
since these is a unique translation from che pt to anctios,
the unique translation from $p t s$ to T is:
$\tau((x, y))=(x+(c-a), y+(d-b)) \&$
the unique translation from T to $i 2$ is:
$\tau((x, y))=(x+(e-c), y+(f-d))$
Thus,
i. closurity

$$
\begin{aligned}
\frac{\text { closurity }}{\tau_{S, T} \tau_{T, R}}((x, y)) & =\tau_{J, T}((x+(e-c), y+(f-d)) \\
& =(x+(e-a), y+(f-b))
\end{aligned}
$$

owe int frocaraif,
OR, Let $S=(a, b), T=(c, d)$ \& $R=(a+c, b+d)$
Then, $\left.\quad \tau_{0, T} \tau_{c, s}((x, y))=\tau_{c, T}(i x+a, y+b)\right)=(x+a+c, y+b+d)$ $=\tau_{0, R}((x, y))$.
\Rightarrow a product of two translations is a translation. By taking $R=0$, we see that the inverse of the translation $\tau_{0, S}$ with $S=(a, b)$ is $\tau_{0, T}$ with $\vec{T}=(-a,-b)$. Hence, the set of ale translations form a arp. Further, since $a+c=c+a \quad b+d=d+b$ it follows $\tau_{0, \gamma} \tau_{c S}=\tau_{0, s} \mathbb{Z}_{0, T} \Rightarrow$ Translations Cormacite. - the translations form an abelian gop.

3.2. Rotations

Dote: A rotation shout pt C through directed angle \mathcal{U}° is the trampatmation $\rho_{C, U}$ the fixes $p t \quad C$ incing ix otherwise sends a pt P to p^{i} with $c P=c p^{i}$ \& θ is the directed angle measure if the directed angle from $\overrightarrow{C P}$ to $\overrightarrow{C P}$

Remark:
i. We wire that $\rho_{c, 0}$ is the idty $?$. $1 i$. Rotation $\rho_{c, e}$ is said to have center c \& dirceted angle θ. G Find $\rho_{c, 0}(p)$ is $\quad \begin{gathered}c \\ c\end{gathered}=(0,0) \quad \& \quad \theta=\pi / 2, \quad p=(0,4)$

Sol 1
$\rho_{c, \theta}(p)=1,1$
Theorem: Rotation is an isometry.
prove:

Spae $\$ \int_{C_{1} \theta} \operatorname{send} p t_{s} P \& Q$ to $p t P^{\prime} \& Q^{\prime}$ resp. * If C, P, Q are collineir, Q C $C P=C P^{\prime} \& C Q=C Q^{\prime} \quad L_{y}$ def =. $C P=C P^{\prime} \quad \& \quad C Q=P^{\prime} Q^{\prime}$.

* If $C, P Q$ are non coliinure, then

$$
\triangle, P Q \text { 的 } S A S \text {. }
$$

$$
\begin{aligned}
& \triangle P C Q \cong \triangle P^{\prime} C Q^{\prime} \\
& \Rightarrow P Q=P^{\prime} Q^{\prime}
\end{aligned}
$$

Si, $\int_{=, 0}$ is a trangferncotion that presirna distance. * hence it a an iscwetiy

Note: A rotation of 90° " a collimation but not

$$
\text { a dilatation. } \quad \text { " } f-90^{\circ}(x, y) \rightarrow(y,-x) \text {. }
$$

$$
\rho_{i, 90}=\tau((x, y))=(-y, x)
$$

What can you say about e rotation $\Rightarrow 182^{\circ}$?

Dep:-: A rotation of 180° about some fixed $P t P$ is called a half turn \& is denoted by \vec{J}_{p}.

We obscene that if $P t A(x, y)$ is rotated 180° about $p t$ $P(a, b)$ to $p t A^{\prime}\left(x^{\prime}, y^{\prime}\right)$, then p is the mid pt of $A \& A^{\prime}$. So, using mid pt formula,

$$
\begin{array}{ll}
\text { using mid pi } & \frac{y+y^{\prime}}{2}=b \\
\frac{x+x^{\prime}}{2}=a, ~ \& ~ y^{\prime}=-y+2 b
\end{array}
$$

$\Rightarrow \quad x^{\prime}=-x+2 \cdot a$
Thus $\sigma_{p} \therefore$ a mapping given by

$$
\sigma_{p}((x, y))=\underline{(-x+2 a,-y+2 b)}
$$

Remark: an involutory trenosponmation
$i i$. Fixes exactly the one pt P.
4. Show that:

1. $\sigma_{p} \sigma_{p}=2$ (From this we have $\sigma_{p}=\sigma_{p}^{-i} \rightarrow$ invocation)
2. σ_{p} is x dilatation

3 . σ_{p} fixes eve if P is in l.

Prove:

Let $P(a, b)$ be apt.

1. $\sigma_{p} \sigma_{p}((x, y))=\sigma_{p}((-x+2 a,-y+2 b))=(-(-x+2 a)+2 a,-(-y+2 b)+2 b)$ $=(x-2 a+2 a, y-2 b+2 b)=(x, y)$
$\Rightarrow \sigma_{p} \sigma_{p}=i$
2. Spae line l haw erin $a x+b y+c=0$ Let $P=(h, k)$
Then $\sigma_{i}((x, y))=(-x+2 h,-y+2 k)$
Let $u=-x+2 h \quad \& \quad v=-y+2 k \Rightarrow x=-u+2 h \quad \& \quad y=-v+2 k$
Then $a x+b y+c=0$ if
$a(-u+2 h)+b(-v+2 k)+c=0$
$-a u-b v+2 a k+2 b k+c=0$
$\Leftrightarrow \quad a u+b v-2 a h+2 b k \cdot c=0$
$\Leftrightarrow \quad a u+b v+(c-c)-2 a h-2 b k-c=0$
$\Leftrightarrow \quad a u+b v+c-2$ with sq:
Thus, (v, v) les on a line w he $-2(a h+b k+c)=0$ $a x+b y+c-c$
Hence, $\gamma_{p} i$ is a dilatation. since elm, σ_{p} is a dilatation

k thin helds ifi (i, k) is on it

Thectem: If Q is the mid pt if pes P ixR, then

$$
\sigma_{Q} \sigma_{p}=\tau_{p_{1} R}=\sigma_{\hat{R}} \sigma_{\hat{Q}}
$$

Pronf:
Let $p_{1}=(a, b) \& \&=(c, d)$
Then $\left.\sigma_{Q} \sigma_{i}((x, y))=\sigma_{Q}((-x+2 a,-y+2 b))=(-i-x+2 a)+2 c,-(-y+2 b)+2 a\right)$

$$
=(x+2(c-a), y+2(d-b))
$$

$\Rightarrow \sigma_{Q} \sigma_{p}$ is a thanslation.
spse R is a $p t$ f Q is the mid $p t$ of $P \& R$.
Ther $\sigma_{Q} J_{p}(p)=\sigma_{Q}(p)=R \&$

$$
\sigma_{R} \sigma_{Q}(P)=\sigma_{R}(R)=R
$$

Since $T_{Q} S_{P}$ is a tiamslation $\&$ there is a unique translation taking p to $R,{ }_{\mu},\left(\right.$ as $\left.\sigma_{Q} \sigma_{Q p}(p)=R\right)$,

$$
\underline{\sigma_{Q} \sigma_{P}=\tau_{P, R}=\sigma_{R} \sigma_{Q}}
$$

* From the above thearem. wi see that a prodict of tro lielf turms is a troustation $\&$, couvaseng, a thameation is a prodect of two kalf turns.

Note: $\sigma_{Q} \sigma_{P}$ moves each pt twice the directed distance from P to Q
prow

Let $e^{(x, y, y)}$ be any pt
i 鳃kTR, $P A Q$ be coplimar (in any cade $R-P-Q, p-k-\&$ or $P d-R$). Let's consider $R-P-Q$

$$
\begin{aligned}
& \text { s consider } R-P-Q \\
& \text { spae } R P>P Q \quad \text { (of course we may true } R P=P Q \text { or } R P<P Q \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& R R^{\prime}=2 R P=2 R R^{\prime} \text { by ty y } \\
& R^{\prime \prime} R^{\prime}=2 Q R^{\prime} \\
& R R^{\prime \prime}=R R^{\prime}-R^{\prime} R^{\prime \prime} \\
&=2 R P-2 Q R^{\prime} \\
&=2\left[P R^{\prime}-Q R^{\prime}\right] \\
& R \sigma_{P}^{\prime \prime}= 2 P Q
\end{aligned}
$$

show the restpussible cases.
ii. Let $R, P \& \&$ be non collinear.

Le $R(x, y), P(a, b), Q(c, d)$.

Theorem: A product of three half turns is a halfturn.
Ploufi

$$
\text { Let } P=(a, b), Q=(c, d), R=(e, f) \text {. }
$$

Then $\left.\sigma_{R} \sigma_{Q} \sigma_{P}((x, y))=\sigma_{R} \sigma_{Q}(1-x+2 a,-y+2 b)\right)=\sigma_{k}((x+2(i-a), y+2(d-h)))$

$$
\begin{array}{r}
=(-[x+2(c-a)]+2 e,-[y+2(d-b)]+2 f)=\left(-x+2(u-c+e), y+1\left(b_{x}\right)\right. \\
=(x+2(a-c+e),-y+2(b-1+f))
\end{array}
$$

$-J_{s}((x, y))$, whin $\Rightarrow(a \cdot 1 \varepsilon, b-j+f)$

Not: $/$ Coverall

- In the above the of $P, \& \& E$ are non collinesi, then is $P Q R S$ is a $\|_{j o m}$.

pref:
It is the
* If Q is the mid $p t$ 'f $P \& R$, then $\sigma_{Q} \sigma_{P}=\tau_{P_{i} R}$

$$
\begin{aligned}
& P_{R}=T T^{\prime r} \\
& \stackrel{\rightharpoonup}{P R} \| \overleftrightarrow{T T^{\prime}}
\end{aligned}
$$

Thus, $\sigma_{Q} \sigma_{P}=\tau_{p, R}$
so $\sigma_{Q} \sigma_{P}=\sigma_{P} \sigma_{Q} \Leftrightarrow \tau_{P, R}=\tau_{P, Q}^{-1}$ (i.e. cf $P=\theta$)
Hence, half turns conch commute in general.
Theorem: $\sigma_{R} \sigma_{Q} \sigma_{p}=\sigma_{p} \sigma_{Q} \sigma_{R}$ for any p or P, Q, R.
privy!
For any P 力 P, Q, R then is a $p-1 \geqslant f$

$$
\begin{aligned}
& \text { mo } P, Q, R \text { there is } 2 P-1 \\
& \sigma_{i} \sigma_{Q} \sigma_{P}=\sigma_{s}=\sigma_{S}^{-1}=\left(\sigma_{R} \sigma_{Q} \sigma_{i}\right)^{-i}=\sigma_{P}^{-1} \sigma_{Q}^{-1} \sigma_{R}^{-1}=\sigma_{P} \sigma_{Q} \sigma_{R}
\end{aligned}
$$

ciuations] Recitation
A. First tate the center of rotation to be the tigion, 0 d

Let P be a rotation about of turoteth the dercetof angle of.
let \mid ix, gi be and pt of the plane otter than 0 .
Let (r, β) be the polar cobrdimite a M

If $\rho(M)=M^{\prime}$, then clearly the polar cocrdinatio of M^{\prime} is $(r, e+p)$. If the rectarpuler coordinate of M^{\prime} is $\left(x^{\prime}, y^{\prime}\right)$, then

$$
\begin{aligned}
& \text { If the rectarpular } \\
& x^{\prime}=r \cos (\theta+\beta)=r(\cos \theta \cos \beta-\sin \theta \sin \beta)
\end{aligned}
$$

$$
\begin{aligned}
& =r(\cos \theta \cos \beta \\
& =r \cos \beta \cos \theta-r \sin \beta \sin \theta \\
& i \sin \theta, \quad \sin \theta x=r \cos \beta \cdot \theta=r \sin \beta .
\end{aligned}
$$

$$
=x \cos \theta-y \sin \theta
$$

$y^{\prime}=r \sin (0+\beta)=r(\sin \theta \cos \beta+\sin \beta \cos \theta)$

$$
\begin{aligned}
& =x \sin \theta+y b x \\
& =x \operatorname{sen} t
\end{aligned}
$$

$$
\begin{aligned}
& \because r \cos \beta \sin \theta+1 \sin \beta \cos
\end{aligned}
$$

$$
\begin{aligned}
& x^{\prime}=\cos \theta-y \operatorname{sen} \theta \\
& y^{\prime}-x \operatorname{sen} t+y \operatorname{tot} \theta
\end{aligned}
$$

B. We, the center if rotation be pay pt P (a, a)

Let MoN) ide any $p t$ if the plane then then P Let x be 0.0 apple blu the tie $x-a x i b y$ ane $\overrightarrow{P M}$

Then $M=(a+r \cos x, b+r \sin \alpha)=(x, y)$
If $M^{\prime}\left(x^{\prime}, y^{\prime}\right)=\int_{p}(M) ;$ then $\left.\sin \sin (\theta+x)\right)$

$$
\begin{aligned}
& M^{\prime}\left(x^{\prime}, y^{\prime}\right)=\int_{p}(m), r \cos (\theta+a), b+a+r \cos (\theta+\cos \theta-r \sin \sin \theta \\
& M^{\prime}=i a+r \sin \alpha \theta
\end{aligned}
$$

Then, $x^{\prime}=a+r \cos (\alpha+\theta)=a+r \cos \alpha \cos \theta+r \cos a \sin \theta$

$$
\begin{aligned}
& x=b+r \operatorname{son}+\infty, \theta)=b+\cos \alpha=y-b \\
& y^{\prime}=b+a
\end{aligned}
$$

i. A now dty nototion fixes eqacting one pt, it center in if C is apt $x \theta$ bix are ayper, then

$$
S_{i, t} Y_{c, x}=\int_{c, \theta+\alpha}
$$

iv. $\int_{c_{1} \theta}^{-1}=\int_{C_{1}-\theta} \quad c$ forin en abeliang grp.
V. The rotations with center (iii) (idey) iii invertatilety: $\forall S_{i} \rho_{i}$ - \quad Commutative. V_{i}. The invilutalay rotations ane bueftions. vii. $\rho_{c, v a}=\sigma_{c}$, jot ang pt C .
2.3 Refientions

Dete: Refiection Jin in bene in is the maping defined boy

Remarks

ii. $J_{m} \neq i$ but $J_{w}^{2}=i$ as the 1 bisection of $\bar{P} \bar{d} i r$ twa
 in i J_{m} is int as $\sigma_{m}(p)$ is the pe mapped ont the given pt P since, $\sigma_{i n}\left(\sigma_{m}(p)\right)=p \quad \forall p$.
iv. σ_{m} in 1-1 as:

$$
\begin{aligned}
\sigma_{m}(A)= & \sigma_{m}(B) \Rightarrow \sigma_{m}\left(\sigma_{m}(A)\right)=\sigma_{m}\left(\sigma_{m}(B)\right) \\
& \Rightarrow A=B .
\end{aligned}
$$

Let us derive a genenel formula jor 5 (p); when e m-
had $e y=g_{x}+\operatorname{bog}+c=c$
Let $p=(x, n) ; \sigma_{m}(p)=(x, y)=\phi$
For the wume:r, spore p is aft.
Non the bice throtion prop\& is 1 to lecce m.
 $\Rightarrow \frac{y-y}{x-y}=\frac{b}{2} \Rightarrow a(y-y)=b(x-x) \quad$...(.).
 $\Rightarrow a\left(x^{x}+x^{\prime}\right)+b\left(\frac{y+y}{2}\right)+c=0 \quad$....

$$
y^{\prime}=y+2 b+a_{1}+x^{2} x+c 1
$$

$$
x^{\prime}=x-\frac{20(a x+6+5)}{x^{2}+6}
$$

$$
y=y-2 x(x x+b y+c)
$$

$$
x^{2}+c^{2}
$$

Ef. Let m tre a Rine witur of $y=5 x+3$. Find $\left.T_{N}(3,2]\right)$

$$
\begin{array}{ll}
\text { Let } J_{m}((3, y))=\left(x^{\prime}, y\right), & 5 x-y+3=0 \\
2(5) l
\end{array}
$$

$$
\begin{aligned}
& \text { Let } J_{m}((3, y))=(x, y), \frac{2(a x+b y+c)}{x^{2}+b^{2}}=3-\frac{2(5)[5(3)-1(2)+3]}{\left.5^{2}+6\right)^{2}} \\
& \Rightarrow x^{\prime}=x-\frac{4 x-1}{}
\end{aligned}
$$

$$
u_{r}
$$

$$
\begin{aligned}
& \text { Thícrem. Reflection } T_{m} \text { as on ispuictig. } \\
& y^{\prime}=y-\frac{2 n(a x+\operatorname{man}+1}{a^{2}+1}=2 \cdot 2(-x)[5(3)-1(2)+3] \\
& =2+\frac{2(16)}{26}=\frac{52+32}{26}-\frac{84}{26}=\frac{42}{13}
\end{aligned}
$$

Deps:
i. Line m in Ealled a bine if bymmety for the set $\$$ of pt if $T_{m}(\xi)=\$; i \dot{s}, T_{m}$ fixes a $\$$
ii. $P_{i} p$ is a pt if jijmmetily for the set s it $\sigma_{p}(s)=S$. iii. Iscomety x is a. Aymmetiy for sat $\$$ of p is if $a(s)=\$$.

4

1. Consides the requeir hexagon shown beion \& assime theit m is 1 bisector of $\overline{A B} \& P$ is the mid pt $f \overline{G H}$.

Then, m is the line of symmetry if the kexa.gon.
c P is pt.c. symmeting
(*) It is wo cixir thest a rotation of 60° sebent P is als: a Syymmety fit the requecie bexayou.

 will ingmantio. fir the rectangle.

Note:
i in a summering for sing seat of $p t s$.
ii the set $\left\{\sigma_{t}, \sigma_{v}, \sigma_{i}, i\right\}$ form a arp.
Theorem: The set of the Bymmethios of a set if p ts forms a gp.:

prove:

Let is be in win empty let of pts.
Let G be the sat of ail dymmethis or $\$$ Then $G \neq \phi$ since $i \in G$.

* Closure property Sse $\alpha \beta \in G$ (are symen. Not α)
Then $\beta \times(s)=\beta(\alpha(s))=\beta(s)=S$ $\Rightarrow \beta \propto \in G$
-A ssocintrivity A Existence of idly are obvious

$$
\begin{aligned}
& \text { If } x \in G \text {, then } x \dot{x} x^{-1} \text { are transformations \& } \\
& n_{-1}^{-1}(s)=i(s)=s
\end{aligned}
$$

$$
\begin{aligned}
& s f x \in G, \\
& x^{-1}(s)=x^{-1}(x(s))=x^{-1} x(s)=i(s)=s
\end{aligned}
$$

$$
\Rightarrow \dot{x}^{\prime} \in G .
$$

$$
\therefore \quad G \text { in a in }
$$

Cu-illigy: The set of all isometries forms a grep.
 or the full gop of fyrmmethies fo S.
than the esomiting toes in e wo..
prof:
Let x be an isomity with $A \& b$ fixed by X.
Let C be $2 p t$ on $\overrightarrow{A B}$ other than $A \hat{x} B$:
Let $x(c)=c^{\prime}$.
since x is an isonitily,
(1)
(2)

$$
A C^{C}+B C^{\prime}=A B \longrightarrow
$$

(4) Ci^{\prime}

$$
\begin{aligned}
& \text { (H) } C^{\prime} C^{\prime}=A B+A C^{\prime} \\
& B C=A B+C A
\end{aligned}
$$

$$
\Rightarrow C^{\prime}=A B C+A C^{\prime} \rightarrow+
$$

$\sin 7$ tho site sf ir Δ.
(3).

$$
\begin{aligned}
& A^{C}=A C^{i} \\
& A^{C}=A B^{C}+B^{C}=A^{i} \\
& \Rightarrow A B+B^{\prime}=A^{i}
\end{aligned} \rightarrow K
$$

ES. Let x be on isometry with $x(0,100)=(0,10 . c) \&$ $a(0,-3)=(0,-3)$. Then, find $x(0,33), c$ ans. $x(10,3))(0,3)$

Theorem: If an semite fixes three win cellianat pp, then then the scinity incult lee the idty prof;
 Thin it toxis every ft on ench line $\underset{A B}{ }, B$ A'' by the ubvie theorem.

Hence, it fixes $\triangle A B C$.
consider aub pt Q in the plares, necestadly it lies on the hine that intersecto $\triangle A B C$ in troi dentinct pts.
गuw, Q is in a line containing two fixed pto of the given isomity \& therefine Q_{1} must cho be fix-ed.... by the above thm).
Hence, fhe isometry is an idty.
Ef. Let x be an iscinety with $\operatorname{xf}(2,1))=(2,1), x(0,-3))=(0)$.

$$
\text { et } \alpha \text { be } \alpha((0,0))=(0, i) \text {. Then } x((3,4))=(3,4)
$$

Theroten: If $x \& \beta$ care isemetive $\rightarrow \alpha(p)=\beta(p)$, $\alpha(Q)=\beta(Q) \& \alpha(R)=\beta(R)$ for three noncollimere $p t s$ $P, \& \& R$, ther $\alpha=\beta$.
proct:
Spse $x \& \beta$ are isometeres $\rightarrow \alpha(\beta)=\beta(P), \alpha(Q)=\beta(Q)$ $\lambda \alpha(R)=\beta(R)$ for noncoilimeal $p \nmid P, \& \& C$.
Apply β^{-1} to bith sites if the above tharer eitss
Thes, $\beta^{-1} x$ fixes eaikr if the timee vion coulincead p t

$$
P \& \& R
$$

$$
\therefore \beta^{-1} \alpha=i \quad \Rightarrow \quad \alpha=\beta
$$

Therence: An ischexting that fice, twi $p P$ is es reflection \mathbf{t} or the intly
piovf:

Spse iscmatly a fixes istinct p p $P \& Q$ on kime m. spse $\quad \lambda \neq i$.
claim: $\alpha=\sigma_{m}$
If $x \neq i$ there is a pt $R \quad \rightarrow \quad \propto(R) \neq R \quad$ (nat fixadkg i So R is cff in other-wise $x(R)=R$. (by thm $\otimes p p-41$) \& P, Q, R are three non-collinai P or
$\omega_{2}+\propto(R)=R^{\prime}$
so $P R=P R^{\prime}$ \& $Q R=Q R^{\prime}$ as a is an inomicty.
Thas, ua in \& sinsator rof $\overline{k^{R^{\prime}}}$

$\triangle P Q R \cong \triangle P Q R^{\prime}$ SSS.
$\angle P Q K \cong \angle P Q R^{\prime}$
$\triangle Q R S \cong \triangle Q R^{\prime} S A S A$
($) \Rightarrow \angle Q S R \cong Q S R^{\prime} \rightarrow 90^{\circ}$
(*) $\& \quad R \bar{s} \cong R^{\prime} s$
Thus, m is 1 bisector of $\overline{R R^{i}}$.
Hence, $\quad \alpha(R)=R^{\prime}=\sigma_{m}(R)$

$$
\begin{aligned}
& \alpha(P)=p=\sigma_{i n}(P) \\
& \alpha(Q)=Q=\sigma_{m}(Q)
\end{aligned}
$$

$\Rightarrow \alpha=\sigma_{i n}$, by the asive than.
Ef Let x be an iscmethy with $x((0,0))=(0,0) \&$ \& $\alpha((3,3))=(3,3)$. What casn your sing about:
a. $a((-1,-1)) \quad \&$
b. $Q((3,2))$?

$$
S_{0: 13}
$$

0. α fixes distinct pts $(0,0) *(3,3)$ on line w with rein $y=x$
since $(-1,-1)$ lie on m

$$
\alpha\left((-i,-1)=\underline{(-1,-1)} \quad \begin{array}{c}
\text { (my the the in iscmeting that fix is } \\
\text { distinct pts on a line fixes the live } \\
\text { pt-wise. }) .
\end{array}\right.
$$

b. Since a fixes $(0,0) \&(3,3) \&$ $(0,0),(3,3) \&(3,2)$ are non collinear then by the above the either
i. x is an intr i.e.,

$$
\alpha((3,2))=(3,2) \quad Q
$$

ii. a is a reflection; thess,

$$
\alpha((3,2))=\sigma_{m}\left((3,21)=\left(x^{\prime}, \zeta\right)\right.
$$

$x^{\prime}=x-\frac{2 a(a, x+b y+c)}{a^{2}+b^{2}}$
$y^{\prime}=y-\frac{2 b(a x+b y+c)}{a^{2}+b^{2}}$

$\Rightarrow x^{\prime}=3-\frac{2(1)[(1)(3)+(-1)(2)+0]}{2}=3-\frac{2[1]}{2}=3-1=2$
$y^{\prime}=2-\frac{2(-1)[1]}{2}=2+1=3$
$\Rightarrow \quad\left(x^{\prime}, y^{\prime}\right)=(2,3)$
$\therefore \quad x((3,2))=(2,3) \quad$ QL $x((3,2))=(3,2)$

Thesien: An iscometry that fixes exactiy duept is a product ift turo iefleetious

Prof:
spse iscmetry ai fixis exexctly ind pt C Let P be a pl dilt from C.
Let $a(p)=p^{i} \&$ let m be the 1 biseito of $\overline{P p^{\prime}}$ since,$P=c p^{i}$ (Since x is iscmity), then
c is on m.

$S=\quad \sigma_{m}(c)=c \quad \& \quad \sigma_{\mu}\left(p^{\prime}\right)=p$
Then $\sigma_{m} \times(c)=\sigma_{m}(c)=c$

$$
\sigma_{m} x(p)=\sigma_{m}(\dot{p})=p
$$

Boy thi previcus thme, $\sigma_{i n} a=i$

$$
\sigma_{m} \alpha=\sigma_{l} \text {, where } \ell=\stackrel{\leftrightarrow}{l}
$$

(大) However, $J_{m} \alpha \neq i$ as athikuric $x=\sigma_{i n} \&$ fixes more pos tham C.
Thus, $\sigma_{m} x=\sigma_{l}$ for some line l (acp).
multiplyip bith sideo of thin eil? by Fin in the lept, we jet 2

$$
a=\sigma_{m} \sigma_{l}
$$

ip. Let x be an iscmuxtry that fixer, $\quad(1,-1)$ i $x(i 3,-1))=\left(1, \frac{1}{1}\right.$ Find the eq n of a.

$$
50 \%
$$

From the prong of the shove than,

$\begin{aligned} \alpha & =\sigma_{m} \sigma_{0}, \text { withe } m \text { is the } i \text { bisector of } \overline{P P \prime}, \\ \text { with } P & =(3,-1), P^{\prime}=(1, i(p) \& C=(1,1) \&\end{aligned}$
\Rightarrow a: 2actith.

$$
\begin{aligned}
& m: y=3 x \\
& x: y=\frac{1}{2} x+2
\end{aligned}
$$

The slope of $\stackrel{\rightharpoonup}{p p}=-1 \quad$ (i) $(x-1)-1=x-2$.

$$
\rightarrow>m=+1
$$

$$
\therefore \quad m: \quad y=+x-2
$$

Thus, $\alpha=\sigma_{\mu} \sigma_{l}$, where $m: y=x-2 k$ l: $y=-1$
Corollary: An isolnctry that fixes a $p t$ is a predict 7 at most taro reflections.

PRof: (Ex.)
i. If the isometry fixes exactly one pt:
by the above the it is a product if two reflections. $\&$ hence the result.
ii. If it fixes two pis: or an idly.

So, since om $i d+y i$ is arodecet if thur reflection (ice. $i=\sigma_{m} \sigma_{m}$ fir song line m);
the result is clear.
iii. If the isometry tixce at least there e pb:
a. if the pto are notucillikear, it is the idty. Hence the remit.
b If the pt are Coliivurt it educes to case (ii).

Theorem: Every isobinitery is a product of at most three reflections
prof"
The intr is a product of two reflection.
spae or vor-idty is onvetry a Sends p to aditpt Q.
Claim: α is a product of at most there e reflections.
Let m be the 1 bis actor of $\overline{P Q}$.

Then, $\quad \sigma_{j i n} x(p)=p$
Thus, by the above the,
$\sigma_{i n} \times$ inst be a product β of at most two reflection, (since it fixes a pt p.) Hence, $\sigma_{m} x=\beta$, $\beta=$ product in ce $\sigma_{i r}$ is inviutom.

$$
\Rightarrow \quad \alpha=\sigma_{i n} \beta
$$

$\therefore \alpha$ is a product if at most flare reflections.

Thiserem: If $\triangle P A R \cong \triangle A B C$, the there is a liwique isometry $x ; x(P)=A ; x(Q)=B \quad \& \quad \alpha(R)=C$.
proof:

Spse $\triangle P Q R \cong \triangle A B C$. Sc, $A B=P Q, Q B=B i \& A R=A C$. If $P \neq A$, then let $\alpha_{1}=\sigma_{l}$ where l is \perp bisectir if $\overline{P A}$. If $P=A$, then lit $\alpha_{1}=i$.
In either case, then $\alpha_{1}(p)=A$.

$$
\begin{aligned}
& \text { Ether case; there } \alpha_{1}(P)=A \text {. } \\
& \text { Let } \alpha_{1}(Q)=Q^{\prime} \& \alpha_{1}(R)=R^{\prime} .
\end{aligned}
$$

If $Q_{1} \neq B$, then let $\alpha_{2}=\sigma_{m}$ where m is \perp bisection of $\overline{Q_{1} B}$.
Sn this Case, A is in m as $A B=P Q=A Q^{\prime}$.
If $Q_{1}=B_{1}$; then let $\alpha_{2}=i$.
Sin either care, we have $\alpha_{2}(A)=A, \& \alpha_{2}\left(Q_{1}\right)=B$.
Let $\alpha_{2}\left(R^{\prime}\right)=R^{\prime \prime}$.
If $R_{2} \neq c$, then let $\alpha_{3}=\sigma_{n}$ where n is \perp in sector of $R_{2} \bar{c}$.
In tum ion, $n=\overrightarrow{A B}$ no $A C=P R=A R^{\prime}=A R^{\prime \prime}$ 。\& $B C=Q R=Q^{\prime} R^{\prime}=B R^{\prime \prime \prime}$.
If $R_{2}=c$, then lent $\alpha_{3}=i$.
Sn bang carse, we have

$$
\alpha_{3}(A)=A, \quad \alpha_{3}(B)=B \quad \& \alpha_{3}\left(R^{i \prime}\right)=C
$$

Let $\alpha=\alpha_{3} \alpha_{2} x_{1}$. Then

$$
\begin{aligned}
& \alpha=\alpha_{3} \alpha_{2} x_{1} . \text { Then } \\
& x(P)=\alpha_{3} \alpha_{2} x_{1}(P)=\alpha_{3} \alpha_{2}(A)=\alpha_{3}(A)=A(B)=B
\end{aligned}
$$

$$
\begin{aligned}
& x(P)=\alpha_{3} \alpha_{2} x_{1}(P)=\alpha_{3} \alpha_{2}(A)=\alpha_{3}(B)=B \\
& \alpha(Q)=\alpha_{3} \alpha_{2} \alpha_{1}(Q)=\alpha_{3} \alpha_{2}(Q)=\alpha_{3}(B)
\end{aligned}
$$

$$
x(R)=\quad "(R)=\quad\left(R^{\prime}\right)=\alpha_{3}\left(R^{\prime \prime}\right)=c \quad \text { al deaired. }
$$

-49-
Note: If curtain pto cicinche, we may nit next all there rethetions.
G. Given $\triangle A B C=A D E F$ Where $A=(c, c), B=(5,0), C=(0,10)$, $D=(4,2), \epsilon=(1,-2)$ \& $F(12,-4)$

Find e its of lines t the product of reflections in these kites takes $\triangle A B C$ to $\triangle D C F$.

Sols
Let α seeds $\triangle A B C$ to $\triangle D C F$.
Now we rect to find the equs of kines $l, m \& x$ it

$$
\alpha=\sigma_{A} \sigma_{m} \sigma_{i}
$$

Let l be the 1 bisector of $A D$.
The slope of $\overrightarrow{A D}=\frac{1}{2}$
Thus, slope of line $l=-2 \&$ the mid pt of $\overline{A D}=(2,1)$
lies on l.
Hence the equy of line l becomes:

$$
y=-2(x-2)+1
$$

$$
\begin{aligned}
& y=-2(x-2) \uparrow 2 x+y-5=0 \\
& \Rightarrow y=-2 x+5 \quad \Leftrightarrow \quad(0,10) \quad y^{\prime}\left(x^{\prime \prime}, y^{\prime \prime}\right)
\end{aligned}
$$

$$
\text { Let } \begin{gathered}
(0,5) \\
\sigma_{l}(B)=B^{\prime}\left(x^{\prime}, 4\right)
\end{gathered} \& \sigma_{l}^{(0,10)}(c)=c^{\prime}\left(x^{\prime \prime}, y^{\prime \prime}\right)
$$

$$
\text { Thus, }=5-\frac{2(2)[2(0)+1(0)-5]}{5}=\frac{1}{5}=
$$

$$
\begin{aligned}
& x^{\prime}=5-\frac{5}{5} \frac{[2(5)+1(0)-5]}{5}=-2 \\
& y^{\prime}=0-2(1)
\end{aligned}
$$

$$
x^{\prime \prime}=0-\frac{2(2)[2(0)+1(10)-5]}{5}=-4
$$

$$
\begin{aligned}
& x^{\prime \prime}=0-\frac{2(2)[2(0)+1(10)-5]}{5}=8 \\
& y^{\prime \prime}=10-2(1) \frac{8}{5}
\end{aligned}
$$

$$
\text { Thus } B^{i}=(1 ;-2) \quad \& \quad C^{\prime}=(-4,8)
$$

* Line m in the 1 bisectit of $B^{\prime} \epsilon^{\prime}$

$$
\begin{aligned}
& \text { Since } \beta^{\prime}=c \text {, set } \sigma_{i m}=1 \\
\Rightarrow & \sigma_{m}\left(c^{\prime}\right)=c^{\prime \prime}=c^{\prime}
\end{aligned}
$$

 $\overrightarrow{C^{\prime \prime} F}$ Le. $\overline{C^{\prime} F}$.

$$
\& \quad n=\overrightarrow{D E}
$$

Thus, the eq= of x becomes

$$
\begin{aligned}
& y=\frac{4}{3}(x-4)+2 \\
& \Leftrightarrow-4 x+3 y+10=0
\end{aligned}
$$

Hence, $\alpha=\sigma_{n} \sigma_{m} \sigma_{l}=\sigma_{n} \sigma_{l} \quad$ where

$$
\begin{aligned}
& n:-4 x+3 y+10=0 \\
& l: 2 x+y-5=0
\end{aligned}
$$

2.2.1. Product of Two Reflections
*」に
 a tramation through twins the directed distance from l to m

Prof:
Let $\ell k \mathrm{~m}_{\mathrm{k}}$ be distinct $/ 1$ lives.
Spae ΔM is commonly. 1 to ℓk with L on $\ell \& M$ in ne.
The ikrected distance from l to m is the directed distance from L to M.

Let K be a pt in l distinct from L.

$$
\text { Let } L^{i}=\sigma_{i n}(L) \quad \& \quad k^{\prime}=\mathscr{r}_{L, L^{\prime}}(K)
$$

Then, $\tau_{K_{1} K^{\prime}}=\tau_{i, L^{\prime}} * \&$
$\square L K K^{\prime} L^{\prime}$ is \& rectangle with $m \perp$ bisector of both $\overline{k K^{\prime}} \overline{L C^{\prime}}$.
So, $\sigma_{m}(k)=k^{\prime}$.
Now, let $J=\sigma_{i}(M)$
Then, sine L is the mid pt of $\overline{J M}$ ix

$$
M \quad . \quad \text {.. } \quad \text {. } \quad \text {. } L L^{\prime}, \quad \text { we en ere }
$$

$\tau_{J, M}={ }^{\tau} \mathcal{L}_{L, L}$, where $\tau_{L, L}$ is the translation through

Sconce wa isometry is Lutermindi by any three non collinins pi.

$$
\sigma_{i m} \sigma_{l}=\tau_{L, L}=\tau_{L, M}^{2}
$$

Corollary: If line b is 1 to lime l at $L \dot{x}$ to bine m at M, then

$$
\sigma_{m} \sigma_{i}=\tau_{i, M}^{2}=\sigma_{M} \sigma_{L}
$$

Prof:
From the above the, we have

$$
\sigma_{i m} \sigma_{l}=\tau_{L_{1} L}={ }^{\circ} \tau_{L, M}^{2} \quad \text {, At is mid pt of } \overline{L L^{\prime}}
$$

But $\sigma_{L, L^{\prime}}=\sigma_{M} \sigma_{L}$ where M is the undid pt of $\overline{L L^{\prime}}$.

- (": we have a thin: If if is mid pt of Pd R_{i} the $\sigma_{Q} \sigma_{P}=\tau_{P, L}=\sigma_{2} \sigma_{Q}$ Then, $\quad \sigma_{m} \sigma_{e}=\tau_{L, M}^{2}=\sigma_{M} \sigma_{i}$

Carcilary: Every translation is a product of two reflections in II lines \& Conversely, a product of two reflections in 11 lines is a translation.

Proved: ($\in x .{ }^{\text {it }} \stackrel{\text { is }}{\rightarrow}$ restatement of the them.)
G Let t be e translation given by:

$$
\sigma((x, y))=(x-2, y-4)
$$

Find the aquas of n \& $m \rightarrow$

$$
\tau=\sigma_{m} \sigma_{n}
$$

$S \underline{s}$

$$
\tau((x, y))=(x-2, y-4)
$$

(F) $Z=C_{0, A}$, wherein $A=(-2,-4)$ \& O is the drain

Let M be the iud pt of OिA.
Then $M=(-1,-2)$

Then slope of line $b=-\frac{4-0}{-2-0}=2$
Thus, the slope of $n \& m \quad \bar{n}=-\frac{1}{2}$
Hance, the equs of n \& m are:

$$
\begin{aligned}
& n: \quad y=\frac{-1}{2} x \\
& m: y=\frac{-1}{2}(x-(-1))-2=-\frac{1}{2} x-5 / 2
\end{aligned}
$$

$\therefore \tau=\tau_{0, A}=\sigma_{M} \sigma_{0}=\sigma_{m} \sigma_{n} \quad t$

$$
\begin{aligned}
& m: \quad y=-\frac{1}{2} x-\frac{5}{2} k \\
& n=4=-\frac{1}{2} x \\
& \Leftrightarrow x+2 y=0
\end{aligned}
$$

* General hint: If tromsiation A takes A to B, ie,

$$
\begin{aligned}
& \tau(A)=B . \\
& \text { Find mid pt } M \text { of } \overline{A B} \text {. } \\
& \text { Then find } n \perp \text { to } \overleftrightarrow{A B} \text { at } A \text { \& } \\
& m \perp \cdots \stackrel{A}{A B} a+M \text {. } \\
& \text { Twas, } \tau=\sigma_{i n} \sigma_{n} \\
& \text { Quiz: } 45.2,5,2,5, \\
& \text { Fin. io }+
\end{aligned}
$$

Prove:
Let bo we 1 to 11 lems 2, ne in at pt L,M\&Nreap set $P \lambda d$ be the unique $p t$ in $b y$

Let line P be 1 to b at P, x let line y be 1 to b at Q.

Then, $\sigma_{m} \sigma_{l}=\sigma_{M} \sigma_{L}=\sigma_{N} \sigma_{p}=\sigma_{n} \sigma_{p}$

$$
\sigma_{m} \sigma_{l}=\sigma_{m} \sigma_{L}=\sigma_{Q} \sigma_{N}=\sigma_{q} \sigma_{n}
$$

Thus,

$$
\sigma_{m} \sigma_{2}=\sigma_{n} \sigma_{p}=\sigma_{8} \sigma_{n}
$$

Corollary: if lines $l, n \& x$ are 1 to kine b, then $\sigma_{n} \sigma_{m} \sigma_{l}$ 幺 a reflection in a kine 1 to b.

Prov.
By the sesove the:
F tome bine $P i b$

$$
\begin{aligned}
& \sigma_{m} \sigma_{l}=\sigma_{n} \sigma_{1} \\
\Rightarrow \quad & \sigma_{n} \sigma_{m} \sigma_{l}=\sigma_{p}
\end{aligned}
$$

$$
>\text { G2: Let } l: y=2 x-3, m: y=2 x-7 \text { k } n: y=2 x \text {. }
$$

Find line $p+\sigma_{m} \sigma_{l}=\sigma_{n} \sigma_{p}=\sigma_{i} \sigma_{n}$.
(4. Let $\quad l: y=x-2, \quad w=y=x \quad \& \quad n: y=x+1$.

Find line p t

$$
\sigma_{m} \sigma_{e}=\sigma_{n} \sigma_{p}=\sigma_{i z} \sigma_{m}
$$

Sol
Let's first jet line $b \perp$ to ale e, m kg since thazare 11 .
$\Rightarrow b$ then slope -1
\Rightarrow any line whose pipe is -1 is 1 is all.

So. take $b: y=-x$
Then, $\ell \perp b$ at $L=(1,-1)$
$m \perp b$ at $M=(0,0)$

$$
m \perp b=\left(-\frac{1}{2}, \frac{1}{2}\right)
$$

since $\sigma_{m} \sigma_{l}$ is a translation through trice the directed distance from l to m.
$\sigma_{m} \sigma_{l}$ translates acing $\rho t(x, y)$ by a dístance of $Z(L M)$ in the direction of $L \vec{M}$.

So, find pit P on b ?
(1). $\overrightarrow{P N}$ is in the direction of $\overrightarrow{L M}$ \&
(2) $P N=L M$.

$$
\left.\Rightarrow \quad P=i \frac{1}{2},-\frac{1}{2}\right)
$$

\therefore The required line P w the line 1 to b at P. Thus, $p: y=1\left(x-\frac{1}{2}\right)-\frac{1}{2}=x-\frac{1}{2}-\frac{1}{2}$

- $\Rightarrow p: y=x-1$

$$
\therefore \sigma_{m} \sigma_{l}=\sigma_{n} \sigma_{p}
$$

Check $(1,2) \rightarrow(-1,4)$
in boito cases

 $\frac{\varepsilon}{2}$, thin.

$$
\sigma_{m} \sigma_{c}=\rho_{c_{1} \theta}
$$

prof:

Spae $\theta / 2$ is the directed angle measure of one 9 the two directed angles from l to m. spice $-90^{\circ}<\frac{\theta}{2}<90^{\circ} \quad\left[-\pi / 2<\frac{\theta}{2}<\frac{\pi}{2}\right]$ Let Le be a pt on l alt from C Lat $P_{t} M$ be the intersection of line m with a circle C_{L} with Center C \& radian $\overline{C L}$.

Let $L^{\prime}=\int_{L_{1} \theta}(L)$.
Thin L^{\prime} is on the circle $C_{L} \quad$ (as $C L=C L^{\prime}$ deftagrotatio). m is \perp biscetor of $\overline{L L^{\prime}}$, as $\triangle C L^{\prime} K \geq \triangle C L K$.
So, $L^{\prime}=\sigma_{m}(L)$
Let $J=\sigma_{a}(M)$
Ruin, l is the 1 bisector of $\overline{\operatorname{Jin}}$.
so, J in an the circe C_{L}, t the directed angle made from $\overline{C J}$ to $\overline{C M}$ is θ.

$$
\begin{aligned}
& \text { fence, } M \quad j_{C, C}(J) \\
& \therefore \quad J_{m} J_{i}(c) \quad J_{m}(c)=c \quad \int_{c, t}(c) \\
& J_{\ldots} J_{i}(J)=J_{, H}\left(N_{1}\right)=M=\int_{C, E}(J) \\
& J_{m} J_{i}(L)=J_{m}(L)=L^{i}=\int_{i, \theta}(L)
\end{aligned}
$$

Since, the nom collinear pot L,J \& C detinman a unique Womlity, we tonne

$$
J_{m} J_{t}=f_{c, \theta}
$$

So, $J_{m} J_{l}$ is the ritakicn about C firrouh twice a directed angle from e to m.

Theater
Notice Then from the above thu we conclude that, every rotation is a product of two reflections in interjecting line i corveliery a product of two reflections in intersecting lines is a rotation.
ire, spae $S_{i, e}$ is giver.
Let l be any line through \& let un be a line through C \rightarrow the directed n ingle from l to in that directed apple measure $\theta / 2$. Tier

$$
\rho_{L, \theta}=\sigma_{i n}^{\prime} \sigma_{l}
$$

G. Let n be a line with eq $y=2 x-5$. Find tie eq= of the cine m sunn that $S_{(1,-3), 150}=J_{i n} J_{i l}$

Son
since $t=152^{\circ}$, the directed ingle from n to one is is i° So kine m is. 1 to $n+(1,-3)$
\therefore the ep of lin em in $y=\frac{-1}{2}(x-1)-3=-\frac{1}{2} \times-5 / 2$

Af. Let ${ }^{2} y=0$ \& $m=y=x$
II) $\sigma_{m} \sigma_{l}=\rho_{L, E}$, where $\{C\}=2 n m$, the

$$
\xi_{c_{1}}((1, c))=? \quad \text { Ans. }
$$

Theorem: If ines $e, m \& n$ are concurrent at $p t \quad C$, then there tare unique lines P \& of f

$$
\sigma_{m} \sigma_{l}=\sigma_{n} \sigma_{p}=\sigma_{\mathbb{R}} \sigma_{n}
$$

Furthermore, the lines $p \times q$ are concurrent set c.

Prof:
Given rays $\overrightarrow{C L}, \overrightarrow{C M} \& \overrightarrow{C N}$
WDLG: Assume $m(<M C N)>m(<L C M)$.
Then there are unique rems $\overrightarrow{C P}$ \& $\overrightarrow{C Q} \rightarrow$ the directed angles from $\overrightarrow{C L}$ to $\overrightarrow{C M}$, the directed angle from $\overrightarrow{C P}$ to $\overrightarrow{C N}$ \&
$\overrightarrow{C-N}$ to $\overrightarrow{C Q}$ hive the same angle measure E.

$$
\text { Lit } \overrightarrow{C N}=n, \overrightarrow{C P}=p, \overrightarrow{C L}=0, q=\overrightarrow{C Q}, \overrightarrow{C M}=u
$$

Then by the above them

$$
J_{m} J_{l}=\rho_{c, 2 \theta}, \quad J_{n} J_{p}=j_{c, 20}, \quad \rho_{i, L} J_{i}=\rho_{i, 2 \theta}
$$

Man 。

$$
\sigma_{\ldots} \sigma_{0}=\sigma_{0} \sigma_{0}=\sigma_{0} \sigma_{n} .
$$

Covillay 7 . If lines $l, m \& x$ are concurrent $a+p t c$, then $J_{n} T_{m} J_{e}$ ii a reftectich in a line through c rant: (Ex)
corollang 2. Haltum J_{p} is tie proeket (i neither ides)
corcilarys. A product of two reflections is a translation or a rotation; coning the idly is both a translation \& a nutation
prof: (Ex.)

Defy: An iscmetry that is a product of an even no of reflections is said to be even; an isometry that is a product of an odd no of reflections is said to be odd.

* Note: Since an isometry is a product of reflections, then an isometry is even or odd.
Theorein: A product of four reflections is a product of twi reflections prof i $\left(E_{x}.\right)$

Theorem: An even is cometary is a product of two reflections. An odd isometry is a reflection or a product if three reflections: No iscmuting is beth even and cad. * The even isometry is a translation or a riation

[^0]
[^0]: $26-9$
 $b=$?
 e:?
 $\pi(1,3,9) 1=12(9$

