Hydropower Engineering :Heng 7011

Chapter 1: Energy sources and Hydropower



Hydropower Engineering

Instructor: Mekete Dessie (PhD)

Faculty of Civil & Water Resource Engineering



# **Total Energy production by region (2016)**



OECD-The Organisation for Economic Co-operation and Development

**Mtoe**. Millions of tonnes of oil equivalent (**Mtoe**) is a unit of **energy** used to describe the **energy** content of all fuels, typically on a very large scale. It is equal to 4.1868x10<sup>16</sup> Joules, or 41.868 petajoules which is a tremendous amount of **energy**.

Hydropower Engineering

Instructor: Mekete Dessie (PhD)

Faculty of Civil & Water Resource Engineering



## Total final consumption by sector



Hydropower Engineering

Instructor: Mekete Dessie (PhD)

Faculty of Civil & Water Resource Engineering



## **Sources of Energy**



#### Hydropower Engineering

Instructor: Mekete Dessie (PhD)

Faculty of Civil & Water Resource Engineering



## **Chemical Energy Content of some Fuels (in MJ/kg)**



Source: adapted from C. Ronneau (2004), Energie, pollution de l'air et développement durable, Louvain-la-Neuve: Presses Universitaires de Louvain.

Hydropower Engineering

Instructor: Mekete Dessie (PhD)

Faculty of Civil & Water Resource Engineering





Primary energy (PE) is an energy form found in nature that has not been subjected to any human engineered conversion process. It is energy contained in raw fuels, and other forms of energy received as input to a system. Primary energy can be non-renewable or renewable.

\* In this graph peat and oil shale are aggregated with coal.

| Hydronowor Engineering  | Instructor: Makata Dassia (PhD) | Faculty of Civil & Water Resource | BURR ANT INVESTIG |
|-------------------------|---------------------------------|-----------------------------------|-------------------|
| riydropower Engineering | Instructor. Merete Dessie (PID) | Engineering                       |                   |

#### Largest producers by fuel in 2016



\* In this graph peat and oil shale are aggregated with coal.

| y of | f Civil | & W | ater | Resc | ource |  |
|------|---------|-----|------|------|-------|--|
| eeri | ng      |     |      |      |       |  |



## **Evolution of Energy Sources**



Source: Jean-Paul Rodrigue (2017)-The Geography of Transport Systems

## Electricity generation mix (2017)



# ChallengesEnergy Supply

- Providing supply to sustain growth and requirements.
- A modern society depends on a stable and continuous flow of energy.

# Energy Demand

- Generate more efficient devices:
  - Transportation.
  - Industrial processes.
  - Appliances.

# Environment

- Provide environmentally safe sources of energy.
- Going through the energy transition (from solid to gazes).



## **Conventional Energy Resources**

What sources of energy have filled our requirements so far?

- 1. Coal
- 2. Petroleum
- 3. Natural Gas
- **4. Hydropower**
- **5.** Nuclear Power

Hydropower Engineering



# Hydropower

## Nature

- Generation of electricity using the flow of water as the energy source.
- Gravity as source.
- Requires a large reservoir of water.
- Considered cleaner, less polluting than fossil fuels.
- Tidal power

Hydropower Engineering

Take advantage of the variations between high and low tides.



- Hydropower engineering refers to the technology involved in converting the pressure energy and kinetic energy of water into more easily used electrical energy.
- The prime mover in the case of hydropower is a water wheel or hydraulic turbine which transforms the energy of the water into mechanical energy.
- It is necessary to create a head at a point of the stream and to convey the water through the head to the turbines.



Hydropower Engineering

Instructor: Mekete Dessie (PhD)

Faculty of Civil & Water Resource Engineering



## Comparison with other methods of power generation Positive sides

- Eliminates the flue gas emissions from fossil fuel combustion
- Avoids the hazards of coal mining and the indirect health effects of coal emissions
- Compared to nuclear power, hydroelectricity generates no nuclear waste, has none of the dangers associated with uranium mining, nor nuclear leaks
- Unlike uranium, hydroelectricity is also a renewable energy source
- Compared to wind farms, hydroelectricity power plants have a more predictable load factor\*
- If the project has a storage reservoir, it can generate power when needed,
  Hydroelectric plants can be easily regulated to follow variations in power demand

\*Demand Load Factor = KWh/KW/hours in the period

Hydropower Engineering

Instructor: Mekete Dessie (PhD)



### Challenges

- Construction of a hydroelectric plant requires a long lead-time for site studies, hydrological studies, and environmental impact assessment
- Hydrological data up to 50 years or more is usually required to determine the best sites and operating regimes for a large hydroelectric plant
- The number of sites that can be economically developed for hydroelectric production is limited; in many areas the most cost-effective sites have already been exploited
- New hydro sites likely to be far from population centers (extensive transmission lines)
- Hydroelectric generation depends on rainfall in the watershed, and may be significantly reduced in years of low rainfall or snowmelt
- Long-term energy yield may be affected by climate change
- Utilities that primarily use hydroelectric power may spend additional capital to build extra capacity to ensure sufficient power is available in low water years



# History of Hydropower

|     | B.C.          | Hydropov<br>grinding v                         | wer used by the Greeks to turn water whe<br>wheat into flour, more than 2,000 years a                                                       | eels for<br>ago.               |                    |
|-----|---------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------|
|     | Mid-<br>1770s | French h<br>Bélidor w<br>describin             | ydraulic and military engineer Bernard Fo<br>rote <i>Architecture Hydraulique</i> , a four-vol<br>g vertical- and horizontal-axis machines. | orest de<br>lume work          |                    |
|     | 1775          |                                                |                                                                                                                                             |                                |                    |
|     | 1880          | Michigan<br>Company<br>water turi<br>brush-arc |                                                                                                                                             |                                |                    |
|     | 1881          |                                                |                                                                                                                                             |                                |                    |
|     | 1882          | World's fi<br>the Fox F                        | irst hydroelectric power plant began oper<br>River in Appleton, Wisconsin.                                                                  | ration on                      |                    |
|     | 1886          | About 45<br>Canada.                            | water-powered electric plants in the U.S                                                                                                    | S. and                         |                    |
| Hyd | ropower Engir | neering                                        | Instructor: Mekete Dessie (PhD)                                                                                                             | Faculty of Civi<br>Engineering | I & Water Resource |



|    | 1887           | San Be<br>west.                                                                                                         | emardino, Ca., opens first hydroelectric                                                                                                                                                  | c plant in the                                  |  |  |  |  |
|----|----------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--|--|--|--|
|    | 1889           | Two hu<br>some o                                                                                                        | indred electric plants in the U.S. use w<br>or all generation.                                                                                                                            | aterpower for                                   |  |  |  |  |
|    | 1901           | First Fe                                                                                                                | First Federal Water Power Act.                                                                                                                                                            |                                                 |  |  |  |  |
|    | 1907           | Hydrop                                                                                                                  | ower provided 15% of U.S. electrical g                                                                                                                                                    | generation.                                     |  |  |  |  |
|    | 1920           | Hydrop<br>Federa<br>authori<br>lands.                                                                                   | Hydropower provided 25% of U.S. electrical generation.<br>Federal Power Act establishes Federal Power Commission<br>authority to issue licenses for hydro development on public<br>lands. |                                                 |  |  |  |  |
|    | 1937           | Bonneville Dam, first Federal dam, begins operation on the Columbia River. Bonneville Power Administration established. |                                                                                                                                                                                           |                                                 |  |  |  |  |
|    | 1940           | Hydropower provided 40% of electrical generation.<br>Conventional capacity tripled in United States since 1920.         |                                                                                                                                                                                           |                                                 |  |  |  |  |
|    | 1980           | Con∨er                                                                                                                  | ntional Capacity nearly tripled in USA                                                                                                                                                    | since 1940                                      |  |  |  |  |
| /d | ropower Engine | ering                                                                                                                   | Instructor: Mekete Dessie (PhD)                                                                                                                                                           | Faculty of Civil & Water Resourd<br>Engineering |  |  |  |  |

H



## World's Largest Dams

| Name                   | Country                  | Year    | Max<br>Generation                     | Annual<br>Production |
|------------------------|--------------------------|---------|---------------------------------------|----------------------|
| Three Gorges           | China                    | 2009    | 18,200 MW                             |                      |
| Itaipú                 | Brazil/Paraguay          | 1983    | 12,600 MW                             | 93.4 TW-hrs          |
| Guri                   | Venezuela                | 1986    | 10,200 MW                             | 46 TW-hrs            |
| Grand Coulee           | United States            | 1942/80 | 6,809 MW                              | 22.6 TW-hrs          |
| Sayano Shushenska      | iya Russia               | 1983    | 6,400 MW                              |                      |
| Robert-Bourassa        | Canada                   | 1981    | 5,616 MW                              |                      |
| Churchill Falls        | Canada                   | 1971    | 5,429 MW                              | 35 TW-hrs            |
| Iron Gates             | Romania/Serbia           | 1970    | 2,280 MW                              | 11.3 TW-hrs          |
|                        |                          |         |                                       |                      |
| Hydropower Engineering | Instructor: Mekete Dessi | e (PhD) | Faculty of Civil & Wat<br>Engineering | er Resource          |

## Ethiopian Energy Resources

| Resources              | Unit                           | Ex<br>Re | cploitabl<br>eserve | е                | Exp<br>Per        | loited<br>cent           |                     |          |                   |   |
|------------------------|--------------------------------|----------|---------------------|------------------|-------------------|--------------------------|---------------------|----------|-------------------|---|
| Hydropower             | MW                             | 45       | 5, 000              |                  | < 5               |                          |                     |          |                   |   |
| Solar Energy           | KWh/m <sup>2</sup>             | A        | 1                   | Developm<br>200! | ENT OF<br>5 - 201 | ENERGY GEN<br>0 (IN GWH) | NERATION OF         | EEPCO IO | S AND SCS<br>2010 |   |
| Wind Power             | GWm/s                          | 1,       | 4500 —              |                  |                   |                          |                     |          |                   | - |
| Geothermal             | MW                             | 7(       | 4000 —              |                  |                   |                          | _                   |          |                   |   |
| Wood                   | Million tons                   | 1:       | 3500 -<br>3000 -    |                  |                   |                          |                     |          | 11%               | 6 |
| Agricultural waste     | Million tons                   | 1!       | 4 2500 -            |                  |                   |                          |                     |          |                   |   |
| Natural Gas            | 10 <sup>9</sup> m <sup>3</sup> | 1:       | 1500 -              | _                |                   |                          |                     | _        |                   |   |
| Coal                   | Million tons                   | 3(       | 1000 - 500 -        |                  |                   |                          |                     |          |                   | 1 |
| Oil Shale              | Million tons                   | 2!       | 0 -                 | 2005 2           | 2006              | 2007 2008                | 3 2009              | 2010     |                   |   |
|                        |                                |          |                     | Hydro            | 0                 | Diesel                   | Geothern            | nal      |                   |   |
| Hydropower Engineering | Instructor: N                  | /leket   | e Dessie (I         | ۶hD)             |                   | Faculty<br>Engine        | of Civil &<br>ering | Water    | Resource          |   |

## **Threshold : Access to Electricity**

## **Access to Electricity 2010**



Ethiopia has immense amount of hydropower potential

- Only a fraction of this potential has been harnessed so far
- In Ethiopia hydropower generation started in the beginning of 1930's, when Abasamuel hydropower scheme is commissioned in 1932. This station was capable of generating 6MW and operational up to 1970
- Middle class economy targets per capita energy level from 150 to 1500 KWh at least (6500 Europe to 13,500 USA)
- Access from 51% to 75% then 100% in GTP I and GTP II targets.

#### List of hydropower plants in Ethiopia

| Name                                | Installed capacity (MW)                                                                                          | Commissioning             | Basin                                  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------|
| Koka                                | 42                                                                                                               | 1960                      | Awash River                            |
| Awash II                            | 36                                                                                                               | 1966                      | Awash River                            |
| Awash III                           | 36                                                                                                               | 1971                      | Awash River                            |
| Fincha                              | 134                                                                                                              | 1973                      | Fincha (Blue Nile)                     |
| Gilgel Gibe I                       | 180                                                                                                              | 2004                      | Gilgel Gibe River                      |
| Tekeze                              | 300                                                                                                              | 2009                      | Tekeze (Atbara)                        |
| Beles                               | 460                                                                                                              | 2010                      | Lake Tana (Blue Nile)                  |
| Gilmal Giba II                      | 420                                                                                                              | Omo River (no dam, fed by |                                        |
| Oliger Olive II                     | 420                                                                                                              | 2010                      | construction                           |
| Gilgel Gibe III                     | 1,870                                                                                                            | 2015                      | Omo River                              |
| Fincha Amerti Neshe                 | 97                                                                                                               | 2012                      | Fincha (Blue Nile), Under construction |
| Halele Worabese                     | 440                                                                                                              | 2014                      | Omo River                              |
| Gilgel Gibe IV                      | 2,000                                                                                                            | 2015                      | Omo River                              |
| Chemoga Yeda                        | 278                                                                                                              | 2013                      | Tributary of the Blue Nile             |
| Tendaho Irrigation Dam              | none                                                                                                             | 2014                      | Awash River                            |
| Tis Abbay I                         | 11.5                                                                                                             | 1953                      | Blue Nile                              |
| Tis Abbay II                        | 73                                                                                                               | 2000                      | Blue Nile                              |
| Sor (self contained)                | 5                                                                                                                | 1990                      | Baro-Akobo                             |
| Dembi <mark>(self contained)</mark> | 0.71                                                                                                             | 1991                      | Baro-Akobo                             |
| Yadot (self contained)              | 0.35                                                                                                             | 1990                      | Genale-Dawa                            |
| Melka Wakena                        | 153                                                                                                              | 1988                      | Wabi-Shebele                           |
| Abasamuel <mark>(not</mark>         | 6                                                                                                                |                           | Awash River                            |
| operational)                        | 0                                                                                                                |                           |                                        |
|                                     | and the second |                           | Faculty of C                           |

Hydropower Engineering

Instructor: Mekete Dessie (PhD)

#### Faculty of Civil & Water Resource Engineering



## Water Resources of Ethiopia

• 12 River Basins

Hydropower Engineering

- Total Surface water Potential of 122 BCM
- Renewable ground water Potential of 2.6 BCM
- About 97% of the surface water drains to neighbouring countries
- Water Tower of east Africa
- Contribution to Nile Water ca. 86 %



## Summary of Hydropower status in Ethiopia

- Currently there are two different power supply systems (The Interconnected System (ICS), which is mainly supplied from hydropower plants) and the Self-Contained System (SCS), which consists of mini hydropower plants and a number of isolated diesel generating units that are widely spread over the country.
- Ethiopia is ranked at number 64 when all hydropower capacity is calculated.
- When completed the Grand Renaissance Dam (6.0GW) and be the largest hydropower plant in Africa.
- 2013 capacity data

o Pure Hydro: 1.89 GW

o Pumped Hydro: 0.00 GW

o Total Capacity: 1.89 GW



## Projects included in the 25-year Master Plan

- •Tekeze II 450 MW,
- •Geba (Geba River in Tigray), 336MW,
- •Halele Werabesa (River Gibe in Turkana basin), 422 MW,
- •Genale Dawa III, 258MW,
- •Genale Dawa IV, 256 MW,
- •Border 800 -1200 MW, located on the Blue Nile,
- •Mendia 2400 2800 MW, located on the Blue Nile,
- •Beko Abo 2100 MW, located on the Blue Nile,
- •Kara Dodi 1600 MW.





Classification based hydraulic characteristics (facility types)

- Run-of-river schemes
- Storage schemes
- Pumped-Storage schemes
- Tidal power development schemes

![](_page_26_Picture_8.jpeg)

# Run-of-river schemes

- These are hydropower plants that utilize the stream flow as it comes, without any storage being provided
- Generally, these plants would be feasible only on such streams which have a minimum dry weather flow of such magnitude which makes it possible to generate electricity throughout the year.

![](_page_27_Picture_3.jpeg)

- Run-of-river plants may also be provided with some storage
- During off-peak hours of electricity demand, as in the night, some of the units may be closed and the water conserved in the storage space, which is again released during peak hours for power generation.

Hydropower Engineering

Instructor: Mekete Dessie (PhD)

Faculty of Civil & Water Resource Engineering

![](_page_27_Picture_9.jpeg)

# Storage schemes

- Water is supplied from large storage reservoir that have been developed by constructing dams across rivers.
- Generally, the excess flow of the river during rainy seasons would be stored in the reservoir to be released gradually during periods of lean flow.

![](_page_28_Picture_3.jpeg)

 Naturally, the assured flow for hydropower generation is more certain for the storage schemes than the run-of-river schemes.

Hydropower Engineering

Instructor: Mekete Dessie (PhD)

Faculty of Civil & Water Resource Engineering

![](_page_28_Picture_8.jpeg)

#### **Pumped-Storage schemes**

• During times of peak load, water is drawn from the head-water pond to run the reversible turbinepump units in the turbine mode and the water released gets collected in the tailwater pond.

![](_page_29_Figure_2.jpeg)

During off-peak hours, the reversible units are supplied with the excess electricity available in the power grid which then pumps part of the water of the tail-water pond back into the head-water reservoir.

| Hydr | ropower | Engineering | 2 |
|------|---------|-------------|---|
|------|---------|-------------|---|

Instructor: Mekete Dessie (PhD)

![](_page_29_Picture_7.jpeg)

## Tidal power development schemes

These are hydropower plants which utilize the rise in water level of the sea due to a tide

•During high tide, the water from the seaside starts rising, and the turbines start generating power as the water flows into the bay.

•As the sea water starts falling during low tide the water from the basin flows back to the sea which can also be used to generate power provided another set of turbines in the opposite direction are installed.

•Globally, so far around 265 MW has been developed, although around 120,000MW are in the planning stage.

![](_page_30_Figure_5.jpeg)

![](_page_30_Picture_6.jpeg)

#### Hydropower Engineering

Instructor: Mekete Dessie (PhD)

## **Classification according to Hydrological relation**

SINGLE STAGE- When the run off from a single hydropower plant is diverted back into river or for any other purpose other than power generation, the setup is known as Single Stage.

CASCADE SYSTEM- When two or more hydropower plants are used in series such that the runoff discharge of one hydro power plant is used as an intake discharge of the second hydro power plant such a system is known as CASCADE hydropower plant.

![](_page_31_Picture_3.jpeg)

![](_page_31_Picture_4.jpeg)

#### Hydropower Engineering

Instructor: Mekete Dessie (PhD)

Faculty of Civil & Water Resource Engineering

![](_page_31_Picture_8.jpeg)

## **Classification based on plant capacity**

#### According to Mossonyi

- •Midget plant up to 10 KW
- •Low capacity < 1000KW
- •Medium capacity < 10,000KW
- •High capacity > 10,000KW

#### Present day classification

- •Micro hydropower < 5 MW
- •Medium plant 5 to 100 MW
- •High capacity 100 to 1,000 MW
- Super plant above 1,000 MW

## **Classification based on head**

#### Based on head on turbine:

- •Low head plants < 15m
- •Medium head plants 15-50m
- High head plants 50-250m
- Very high head plants > 250m

The figure may vary depending on the country standard

![](_page_32_Picture_21.jpeg)