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2. Multivariate Time Series Analysis 

To apply standard estimation or testing procedures in a dynamic time series model, it is 

typically required that the various variables are stationary, since the majority of economic 

theory is built upon the assumption of stationarity. For example, regressing a non-stationary 

variable ty upon a non-stationary variable tx  
may lead to the so-called spurious regression, in 

which estimators and test statistics are misleading. An important exception arises when two or 

more ( )1I variables are cointegrated, that is, if there exists a particular linear combination of 

these non-stationary variables that is stationary. In such cases a long-run relationship between 

these variables exists. Often economic theory suggests the existence of such long-run or 

equilibrium relationships. The existence of a long-run relationship also has its implications for 

the short-run behavior of the ( )1I variables, because there also has to be some mechanism that 

derives the variables to their long-run equilibrium relationship. This mechanism is modelled 

by an error correction mechanism, in which the ‘equilibrium error’ also derives the short-run 

dynamics of the series. 

Another starting point of multivariate time series analysis is the multivariate generalization of 

the ARMA process where particular emphasis is placed on vector autoregressive models. The 

existence of cointegrating relationship between variables in the VAR has important 

implications on the way it can be estimated and represented. This will be followed by 

discussion on how hypothesis regarding the number of cointegrating relationships can be 

tested and how an error correction model representing the data can be estimated. 

2.1 Dynamic Models with Stationary Variables 

Considering an economic time series in isolation and applying the techniques of univariate 

time series may provide good forecasts in many cases. However, it does not allow us to 

determine what the effects are of, for example, a change in policy variable. To do so, it is 

possible to include additional variables in the model. Consider two stationary variables ty and

tx , and assume it holds that 

1 0 1 1t t t t tα θ θ− −= + + + +y y x x εφ
          

[2.1.1] 

If we assume that tε  
is a white noise process, independent of 1, ,t t − ⋯x x and 1 2, ,t t− − ⋯y y the 

above model is sometimes referred to as an autoregressive distributed lag model. To 

estimate it consistently, we can simply use ordinary least squares. What is interesting in [2.1.1] 
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is that it describes the dynamic effects of a change in tx upon current and future values of ty . 

Taking partial derivatives, we can derive that the immediate response is given by 

0t t θ∂ ∂ =y x               [2.1.2] 

Sometimes this is referred to as the impact multiplier. The effect after one period is  

1 1 0 1,t t t t θ θ θ+∂ ∂ = ∂ ∂ + = +y x y xφ φ           [2.1.3] 

and after two periods 

( )2 1 0 1t t t t θ θ+ +∂ ∂ = ∂ ∂ = +y x y xφ φ φ           [2.1.4] 

and so on. This shows that after the first period, the effect is decreasing if 1<φ . Imposing 

this so-called stability condition allows us to determine the long-run effect of a unit change in

tx . Thus, the long-run multiplier (or equilibrium multiplier) is given by 

( ) ( ) ( )( )2 0 1
0 0 1 0 1 0 0 11 .

1

θ θ
θ θ θ θ θ θ θ θ

+
+ + + + + = + + + + =

−
⋯ ⋯φ φ φ φ+φ φ

φ
      [2.1.5] 

If the increase in tx  
is permanent, the long-run multiplier also has the interpretation of the 

expected long-run permanent increase in ty . From [2.1.1] the long-run equilibrium relation 

between ty and tx is given by (imposing ( ) ( )-1t=tE y E y and ( ) ( )-1t=tE x E x ): 

( ) ( ) ( ) ( )0 1t t t tα E θ θ= + + +E y y E x E xφ
         

[2.1.6] 

Or 

 ( ) ( )0 1 ,
1 1

t t

θ θα + 
= +  − φ − φ

E y E x
          

[2.1.7] 

which represents an alternative derivation of the long-run multiplier. There is an alternative 

way to formulate the autoregressive distributed lag model in [2.1.1]. Subtracting -1ty from both 

sides of [2.1.1] and some rewriting gives 

( ) ( )

( )

1 0 0 1 1

0 1
0 1 1

1

1
1 1

t t t t t

t t t t t

α θ θ θ

θ θα
θ

− −

− −

∆ = + − + ∆ + + +

 +  
∆ = ∆ − − − − +  − φ −  

φ

φ
φ

y y x x

y x y x

ε

ε

       
[2.1.8] 

This formulation is an example of an error-correction model. It says that the change in ty is 

due to the current change in tx plus an error correction term. If -1ty is above the equilibrium 

value that corresponds to 1t−x , i.e., if the ‘equilibrium error’ in square brackets is positive, an 
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additional negative adjustment in ty is generated. The speed of adjustment is determined by

1−φ , which is the adjustment parameter. Assuming stability ensures that 1− >0.φ  It is also 

possible to consistently estimate the error-correction model by ordinary least squares as the 

residual sum of squares that is minimized in [2.1.8] is the same as that of [2.1.1], the resulting 

estimates are numerically identical. 

Both the autoregressive distributed lag model in [2.1.1] and the error-correction model in 

[2.1.8] assume that the value of tx can be treated as given, i.e., as being uncorrelated with the 

equation’s error terms. This is to say that [2.1.1] is appropriately describing the expected value 

of
 ty  given its own history and conditional on current and lagged values of tx . If tx is 

simultaneously determined with ty and ( ) 0t t ≠E x ε , OLS in either [2.1.1] or [2.1.8] is 

inconsistent. The solution in this case is to consider a bivariate model for both ty and tx . 

Special case of the model in [2.1.1] can be derived from alternative models that have some 

economic interpretation. For example, if *
ty denotes the optimal or desired level of ty and 

assume that 

*
0 1t t tβ β η= + +y x              [2.1.9] 

where tη is an error term independent of 1, ,t t − ⋯x x . The actual value ty differs from 
*
ty  

because adjustment to its optimal level corresponding to tx is not immediate. Suppose the 

adjustment is partial in the sense that 

( )( )*
1 11t t t− −− = − −ty y y yφ           [2.1.10] 

where 0 1< <φ . Substituting [2.1.9] we obtain 

( ) ( ) ( ) ( )1 0 1 1

1 0

1 1 1 1t t t t t

t t t

β β η

α θ

− −

−

= + − + − − − + −

= + + +

y y x y

y x ε

φ φ φ φ

φ
      [2.1.11] 

where ( ) 01α β= −φ , ( )0 11θ β= −φ and ( )1t tη= −ε φ . This is a special case of [2.1.1] as it 

does not include 1t−x . The model given by [2.1.9] and [2.1.10] is referred to as a partial 

adjustment model. 

The autoregressive distributed lag model in [2.1.1] can easily be generalized. Restricting 

attention to two variables only, we can write the general form as 

( ) ( )
t t tL α θ L= + +φ y x ε           [2.1.12] 
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where  

( )

( )

2
1 2

2
0 1 2

1 p
p

q
p

L L L L

θ L θ θ L θ L θ L

= − − − −

= + + + +

⋯

⋯

φ φ φ φ
 

are two lag polynomials. Note that the constant term in ( )θ L is not restricted to be one. 

Assuming ( )Lφ is invertible, we can write 

( ) ( ) ( ) ( )1 1 11t t tα L θ L L
− − −= + +φ φ φy x ε         [2.1.13] 

The coefficients in the lag polynomial ( ) ( )1 L θ L−φ describe the dynamic effects of tx on 

current and future values of ty . The long-run effect of tx is obtained as 

( ) ( ) 0 1 21

1 2

1 1
1

p

p

θ θ θ θ
θ−

+ + + +
=

− − − −

⋯

⋯
φ

φ φ φ
         [2.1.14] 

which generalizes the results stated above. Recall that invertibility of ( )Lφ requires that

1 21 1p+ + + + <⋯φ φ φ , which guarantees that the denominator in [2.1.14] is nonzero. A 

special case arise if ( ) 1L =φ , so that the model in [2.1.13] does not contain any lags of ty . This 

is referred to as a distributed lag model. 

As long as it can be assumed that the error term tε  is a white noise process, or more generally 

stationary and independent of 1, ,t t − ⋯x x and 1 2, ,t t− − ⋯y y , the distributed lag modes can be 

estimated consistently by ordinary least squares. Problems may arise, however, if along with ty

and tx  
the implied tε is also non-stationary.  

2.2 Models with Nonstationary Variables 

2.2.1   Spurious Regressions 

The assumption that ty and tx are stationary is crucial for the properties of standard estimation 

and testing procedures. To show consistency of OLS estimators, for example, we typically use 

the result that sample (co)variances converge to population (co)variances as the sample size 

becomes sufficiently large. Unfortunately, when the series are Nonstationary the (co)variances 

are ill-defined as the series does not fluctuate around a constant mean. 

As an illustration, consider two variables, ty and tx , generated by two independent random 

walks, 
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 ( )2
1 1 1 1, 0,t t t t IID σ−= + ∼y y ε ε            [2.2.1] 

( )2
1 2 2 2, 0,t t t t IID σ−= + ∼x x ε ε            [2.2.2] 

Where 1tε and 2tε are mutually independent. There is nothing in this data generating mechanism 

that leads to a relationship between ty and tx . A researcher unfamiliar with these process may 

want to estimate a regression model explaining ty by tx and a constant, 

,t t tα β= + +y x ε              [2.2.3] 

The results from this regression are likely to be characterized by a fairly high 
2

R statistic, 

highly autocorrelated residuals and a significant value for β. This phenomenon is the well-

known problem of nonsense or spurious regressions. Granger and Newbold argued that 

spurious regressions are characterized by a high 2
R and a low Durbin-Watson (DW) statistic, 

the usual t- and F-tests on the regression parameters may be very misleading. The reason being 

the distributions of the conventional test statistics are very different from those derived under 

the assumption of stationarity. Granger and Newbold stated that 2R DW> can used as the 

simplest rule of thumb to identify a spurious regression. 

To illustrate the spurious regression result, two series of size 200 are generated according to 

[2.2.1] and [2.2.2] with normal error terms, starting with 0 0 0= =y x and setting 2 2
1 2 1σ σ= = . 

The results of standard OLS regression of ty on tx and a constant are as presented in the 

following table. 

Table 2.1 Spurious Regression: OLS involving two independent random Walks 
     

  Dependent Variable: y     

Variable Coefficient Std. Error t-Statistic Prob.   

     
C -1.980115 0.190269 -10.40695 0.0000 

x 0.284043 0.027604 10.28995 0.0000 
     
     2 23.093597 0.348434 0.345143 105.8831   0.155138S R R F DW= = = = =  

While the parameter estimators in this table would be completely different from one 

simulation to another, the t-ratios, 
2

R and DW statistic show a very typical pattern: using the 

usual significance levels, both the constant term and tx are highly significant, the 2
R of 35% 

seems reasonable though the DW statistic is very low. Estimation results like this should not 

be taken seriously. Because both ty and tx contain stochastic trend, the OLS estimator tends to 

find a significant correlation between the two series, even if they are unrelated. The problem is 

that tε  is nonstationary. 
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2.2.2   Cointegration 

An important exception to the results in the previous subsection arises when the two 

nonstationary series have the same stochastic trend in common. Consider two series, integrated 

of order one, ty and tx , and suppose that a linear relationship exists between them. If there exist 

some value of β such that t tβ−y x  is ( )0I , although ty and tx are both ( )1I , in such a case it is 

said that ty and tx are cointegrated, and that they share a common trend. The relevant 

asymptotic theory is nonstandard, however, it can be shown that one can consistently estimate 

β from an OLS regression of ty on tx  as in [2.2.3]. In this case, the OLS estimator β̂ is said to 

be super consistent for β, because it converges to β at the rate faster than the conventional 

asymptotics. In the standard case, ( )ˆT β β− is asymptotically normal and we say that β̂ is 

T consistent for β. In the cointegration case, ( )ˆT β β− is degenerate and the appropriate 

asymptotic distribution is that of ( )ˆT β β− . Consequently, conventional inference procedures 

do not apply. 

If ty and tx are both ( )1I and there exists a β such that t t tβ= −Z y x is ( )0I , ty and tx are 

cointegrated, with β being called the cointegrating parameter, or, more generally, ( )1 β ′−

being called the cointegrating vector. When this occurs, a special constraint operates on the 

long-run components of ty and tx . Since both ty and tx  are ( )1I , they will be dominated by 

‘long-wave’ components, but tZ , being ( )0I , will not be: ty and tβx must therefore have long-

run components that virtually cancel out to produce tZ . This idea is related to the concept of a 

long-run equilibrium. Suppose that such an equilibrium is defined by the relationship 

t tα β= +y x               [2.2.4] 

Then t t α= −z Z is the ‘equilibrium error’, which measures the extent to which the value of ty  

deviates from its ‘equilibrium value’ tα β+ x . If tz is ( )0I , the equilibrium error is stationary 

and fluctuating around zero. Consequently, the system will, on average, be in equilibrium. 

However, if ty and tx are not cointegrated and, consequently tz is ( )1I , the equilibrium error 

wander widely and zero crossing would be very rare. Under this circumstance, it does not 

make sense to refer to t tα β= +y x as a long-run equilibrium. Consequently, the presence of a 

cointegrating vector can be interpreted as the presence of long-run equilibrium relationship. 
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From the discussion above, it is obvious that it is important to distinguish cases where there is 

a cointegrating relationship between ty and tx  
and spurious regression cases. Suppose we know 

that ty and tx are integrated of order one, and suppose we estimate the ‘cointegrating regression’ 

t t tα β= + +y x ε              [2.2.5] 

 If ty and tx are cointegrated, the error term in [2.2.5] is ( )0I . If not, tε  
will be ( )1I . Hence one 

can test for the presence of a cointegrating relationship by testing for a unit root in the OLS 

residuals te form [2.2.5]. To do so, one can run the regression 

0 1 1t t te e u−∆ = + +γ γ              [2.2.6] 

and test whether 1 0=γ (a unit root). There is, however, an additional complication in testing 

for unit roots in OLS residuals rather than in observed time series. Because the OLS estimator 

chooses the residuals in the cointegrating regression [2.2.5] to have as small a sample variance 

as possible, even if the variables are not cointegrated, the OLS estimator will make the 

residuals look as stationary as possible. Thus, using standard DF or ADF critical values, we 

may reject the null hypothesis of nonstationary too often. As a result, the appropriate critical 

values are more negative than those for the standard Dickey-Fuller tests. For appropriate 

Critical values see Davidson, R. and Mackinnon, J.G., (1993), Estimation and Inference in 

Econometrics, Oxford University Press, Oxford.  If te is not appropriately described by first 

order autoregressive process, one should add lagged values of te∆ in [2.2.6], leading to the 

augmented Dickey-Fuller (ADF) test, with the same asymptotic critical values. This test can be 

extended to test for cointegration between three or more variables. If more than one tx variable 

is included in the cointegrating regression, the critical values shift further to the left. 

An alternative test for cointegration is based on the usual Durbin-Watson statistic from [2.2.5]. 

Note that the presence of a unit root in tε asymptotically corresponds to a zero value of the DW 

statistic. Under the null hypothesis of a unit root, the appropriate test is whether DW is 

significantly larger than zero. Unfortunately the critical values for this test, commonly referred 

to as the cointegrating regression Durbin-Watson test or CRDW test, depend on the process 

that generated the data. Nevertheless, the value of the DW statistic often suggests the presence 

or absence of a cointegrating relationship. Note that, when T goes to infinity, and ty and tx are 

not cointegrated, the DW statistic converges to zero in probability.  
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Although the existence of a long-run relationship between two variables is of interest, it may 

be even more relevant to analyze the short-run properties of the two series. This can be done 

using the result that the presence of a cointegrating relationship implies that there exists an 

error-correction model that describes the short-run dynamics consistently with the long-run 

relationship. 

2.2.3   Cointegration and Error-correction Mechanisms 

The Granger representation theorem states that, if a set of variables are cointegrated, then there 

exists a valid error-correction representation of the data. Thus, if ty and tx are both ( )1I and 

have a cointegrating vector ( )1 β ′− , there exists an error-correction representation, with

t t tβ= −Z y x , of the form 

( ) ( ) ( )
1 1t t t tδ θ α L− −∆ ∆ +L y = + L x - Z εφ γ

          
[2.2.7] 

where tε is white noise
1
 and where ( )Lφ , ( )θ L and ( )α L are polynomials in the lag operator L 

(with 0 1≡φ ). Let us consider a special case of [2.2.7], 

( )1 1 1 1t t t t tδ θ β− − −∆ + ∆ − +y = x - y x εγ
          

[2.2.8] 

If ty and tx are both ( )1I but have a long-run relationship, there must be some force that pulls 

the equilibrium error back towards zero. The error-correction model does exactly this: it 

describes how ty and tx  behave in the short-run consistent with the long-run cointegrating 

relationship. If the cointegrating parameter β is known, all terms in [2.2.8] are ( )0I and no 

inferential problems arise: we can estimate it by OLS in the usual way.  

When 1 0,t t−∆ ∆ =y = x we obtain the ‘no change’ steady state equilibrium 

1 1t t

δ
β− −− =y x

γ              
[2.2.9] 

which corresponds to [2.2.4] if α δ= γ . In this case the error-correction model can be written 

as  

( )1 1 1 1t t t t tθ α β− − −∆ ∆ − − +y = x - y x εγ
        

[2.2.10] 

If, however, the error-correction model [2.2.8] contains a constant that equals δ α λ= +γ , with 

0,λ ≠ this implies deterministic trends in both ty and tx and the long-run equilibrium 

corresponds to a steady state growth path with ( )1 11t t λ θ−∆ ∆ = −y = x .   

                                                   
1
 The white noise term tε is assumed to be independent of both 1 2, ,t t− − ⋯y y and 1 2, , .t t− − ⋯x x  
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In some cases it makes sense to assume that the cointegrating vector is known a priori. If β is 

unknown, the cointegrating vector can be estimated (super) consistently from the cointegrating 

regression [2.2.5].  Consequently, with standard T asymptotics, one can ignore the fact that β 

is estimated and apply conventional theory to the estimation of parameters in [2.2.7]. Note that 

the precise lag structure in [2.2.7] is not specified by the theorem, so we need to do some 

specification search. Moreover, the theory is symmetric in its treatment of ty and tx , so that 

there should also exist an error-correction representation with t∆x as the left-hand side 

variable. Because at least one of the variables has to adjust to deviations from the long-run 

equilibrium, at least one of the adjustment parameters γ  in the two error-correction equations 

has to be nonzero. If tx  
does not adjust to the equilibrium error (has zero adjustment 

parameter), it is weakly exogenous for β. This means that we can include t∆x in the right-hand 

side of [2.2.8] without affecting the error-correction term ( )1 1t tβ− −−- y xγ . That is, we can 

condition upon tx in the error-correction model for ty . 

The representation theorem also holds conversely, i.e., if ty and tx are both ( )1I and have an 

error-correction representation, then they are necessarily cointegrated. It is important to realize 

the concept of cointegration can be applied to (nonstationary) integrated time series only. If ty

and tx are both ( )0I , the generating process can always be written in an error-correction form.  

2.3 Vector Autoregressions (VARs) 

The autoregressive moving average models can readily be extended to the multivariate case, in 

which the stochastic process that generates the vector of time series variables is modelled. The 

most common approach is to consider a vector autoregressive (VAR) model. A VAR 

describes the dynamic evolution of a number of variables from their common history. A 

multivariate time series ty is a vector process   1m × . Let { }1 1 2, ,t t t− − −= y y …F be all lagged 

information at time t. The typical goal is to find the conditional expectation ( )1t t−y FE . Note 

that since ty  is a vector, this conditional expectation is also a vector. A VAR model specifies 

that the conditional mean is a function of only a finite number of lags: 

( ) ( )1 1, ,t t t t t k− − −= ⋯y y y yFE E .  
 

A linear VAR specifies that this conditional mean is linear in the arguments: 
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( )1 0 1 1 2 2, ,t t t k t t k t k− − − − −= + + + +⋯ ⋯y y y y y ya A A AE
        

[2.3.1] 

Observe that a0 is   1m × , and each of A1 through Ak are   m m×  matrices. 

Defining the   1m ×  regression error 

( )1 ,t t t=te −−y y FE��              [2.3.2] 

we have the VAR model 

 
( )

0 1 1 2 2

1 0

t t t k t k t

t t

a e

e

− − −

−

= + + + + +

=

⋯y y y y

F

A A A

�
          

[2.3.3] 

As in the univariate case, we can use the lag operator to define a matrix lag polynomial and 

write the VAR model in [2.3.3] as  

( )
0 ,t t= +A y a eL

              

[2.3.4] 

where ( ) 2
1 2

k
m kL I L L L= − − − −⋯A A A A and mI is an m-dimensional identity matrix. 

Extensions to vectorial ARMA (VARMA) model is obtained by premultiplying te with a 

(matrix) lag polynomial. The advantage of considering the components simultaneously include 

that the model may be more parsimonious and includes fewer lags, and that more accurate 

forecasting is possible, because the information set is extended also to include the history of 

the other variables. From a different perspective, Sims(1980) has advocated the use of VAR 

models instead of structural simultaneous models because the distinction between endogenous 

and exogenous variables does not have to be made a priori, and ‘arbitrary’ constraints to 

ensure identification are not required. Like a reduced form, a VAR is always identified. 

The unconditional expected value of ty can be determined if we impose stationarity and the 

elements of the vector error term are a white noise process as follows: 

( ) ( ) ( ) ( )0 1 2 k= + + + +⋯t t t ty y y yE E E Ea A A A  

or ( ) ( )
-1

1 2 0m kI= − − − −⋯tyE aA A A . 

This shows that stationarity will require that the   m m× matrix ( )1A is invertible. 

Alternatively the VAR model in [2.3.3] can be written as, defining the ( ) + 1 1mk × vec tor 

t -1

t -2

t-k

1

=t

 
 
 
 
 
 
 
 

⋮

y

yx

y
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and the ( )  1m mk× + matrix 

( )0 1 2= k⋯A a A A A , 

 then 

t t t= +y x eA  

The VAR model is a system of m equations. One way to write this is to let ja′ be the j
th
 row of 

A. Then the VAR system can be written as the equations 

jt j t jtY ′= +xa e . 

Unrestricted VARs were introduced to econometrics by Sims (1980). If ( )LA in [2.3.4] is 

invertible, it means that we can write the vector autoregressive model as a vector moving 

average (VMA) model by premultiplying by ( )-1 LA .  

( ) ( ) ( )-1 -1 -1
01t t t= + = +a e µ ey A A AL L

 

This describes each element in
 ty as a weighted sum of current and past shocks in the system. 

Writing ( )-1 2
1 2 ,mL I L L= + + +⋯A B B we have 

1 1 2 2t t t t− −= + + + +⋯µ e B e B ey
 

If the vector error term te increases by a vector δ, the effect upon ( ) 0t s s+ >y is given by sB δ . 

Thus the matrix 

t s
sB +∂

=
′∂ t

y

e
 

has the interpretation that its ( ),i j element measures the effect of a one-unit increase in jte

upon ,i t s+y . If only the first element 1te of te changes, the effects are given by the first column 

of sB . The dynamic effects upon the jth variable of such a one-unit increase are given by the 

elements in the first column and jth row of 1 2, , , .mI ⋯B B
 
A plot of these elements as a function 

of s is called the impulse-response function. It measures the response of an increase in ,i t s+y  

to an impulse in 1ty , keeping constant all other variables dated t and before. 

2.3.1 Estimation 

 Consider the moment conditions  

( )jt =x t e 0E , 

 1, ,j m= ⋯ . These are implied by the VAR model, either as a regression, or, as a linear 

projection. 
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The GMM estimator corresponding to these moment conditions is equation by equation OLS 

estimator given by 

( ) 1
ˆ

j ja X X X
−

′ ′= y  

where  

( )( )                   x 1  matrix

1

2

T

= T mkX

′ 
 ′  +
 
  ′ 

⋮

x

x

x

 

and an alternative to compute this is as follows. Note that 

( ) 1
ˆ

j ja X X X
−

′ ′ ′=y . 

and if we stack these to create the estimator �A , we find 

� ( ) ( )

1

1 12

m

= X X X Y X X X
− −

′ 
 ′
  ′ ′ ′=
 
  ′ 

A
⋮

y

y

y

, 

where ( )1 2 mY = ⋯y y y is the   T m× matrix of the stacked t
′y . 

This (system) estimator is known as the SUR (Seemingly Unrelated Regressions) estimator, 

and was originally derived by Zellner (1962). 

2.3.2   Restricted VARs 

The unrestricted VAR is a system of m equations, each with the same set of regressors. A 

restricted VAR imposes restrictions on the system. For example, some regressors may be 

excluded from some the equations. Restrictions may be imposed on individual equations, or 

across equations. The GMM framework gives a convenient method to impose such restrictions 

on estimation. 

2.3.3  Single equation from a VAR  

Often, we are only interested in a single equation out of a VAR system. This takes the form 

jt j t jte′= +xay  

and tx  consists of lagged values of jty  and the other lts′y . In this case, it is convenient to re-

define the variables as follows. Let ,t jt=y y and tz be
 
the other variables. Let t jte = e , and 

j=β a . Then the single equation takes the form 
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,t t te′= +x βy
              

[2.3.5] 

and ( )1 11t t t k t t k− − − −
 ′′ ′=  ⋯ ⋯x z zy y . 

This is just a conventional regression with time series data. 

2.3.4 Testing for Omitted Serial Correlation 

Consider the problem of testing for omitted serial correlation in equation [2.3.5]. Suppose that 

te is an AR(1). Then 

 

( )
1

1 0

t t t

t t t

t t

e

e θe u

u

β

−

−

′= +

= +

=F

xy

E
             

[2.3.6] 

Then the null and the alternative hypothesis are 

0 1: 0       and       : 0θ θ= ≠H H  

Take the equation t t te′= +y x β , and subtract off the equation once lagged multiplied by θ, to 

get 

( ) ( )1 1 1

1 1  

t t t t t t

t t t t

θ e θ e

θ e θe

− − −

− −

′ ′− = + − +

′ ′= − + −

y y x x

x x

β β

β β
 

or 

1 1t t t t tθ uβ− −′ ′= + + +x xy y �γγγγ
            

[2.3.7] 

which is a valid regression model. 

So testing 0H versus 1H  is equivalent to testing for the significance of adding ( )1, 1t t− −y x to the 

regression. This can be done by a Wald test. We see that an appropriate, general, and simple 

way to test for omitted serial correlation is to test for the significance of extra lagged values of 

the dependent variable and regressors.  

You may recall of the Durbin Watson’s test for omitted serial correlation, which once was very 

popular, and still routinely reported by conventional regression packages. The DW test is 

appropriate only when regression t t te′= +y x β is not dynamic (has no lagged values on the 

RHS), and te is ( )2. . . 0,i i d N σ . Otherwise it is invalid. 

Another interesting fact is that [2.3.6] is a special case of [2.3.7], under the restriction θβ= −�γγγγ . 

This restriction, which is called a common factor restriction, may be tested if desired. If valid, 

the model [2.3.6] may be estimated by iterated GLS. (A simple version of this estimator is 

called Cochrane-Orcutt.) Since the common factor restriction appears arbitrary, and is 
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typically rejected empirically, direct estimation of [2.3.6] is uncommon in recent applications. 

2.3.5  Selection of Lag Length in a VAR 

If you want a data-dependent rule to pick the lag length k in a VAR, you may either use a 

testing based approach (using, for example, the Wald statistic), or an information criterion 

approach. The formula for AIC and BIC are  

( ) � ( )( )

( ) � ( )( ) ( )

� ( ) ( ) ( )

( )
1

logdet 2

log
logdet 2

1
ˆ ˆ

1

T

t t

t

p
AIC k k

T

p T
BIC k k

T

k k k
T

p m mk

e e
=

= +

= +

′=

= +

∑

ΩΩΩΩ

ΩΩΩΩ

ΩΩΩΩ

 

where p is the number of parameters in the model, and ( )ˆ
t te is the OLS residual vector from 

the model with k lags. The log determinant is the criterion from the multivariate normal 

likelihood. 

2.3.6 Granger Causality 

Partition the data vector into ( ),t ty z . Define the two information sets 

 
( )

( )
1 1 2

2 1 1 -2 2

, , ,

, , ,

t t t t

t t t t t t t

− −

− − −

=

=

F

F

⋯

⋯

y y y

y z y z y z, ,
 

The information set 1tF is generated only by the history of ty , and the information set 2tF is 

generated by both ty and tz . The latter has more information. 

We say that tz  does not Granger-cause ty , if 

( ) ( )1 1 2 1t t t t− −=y yE EF F  

That is, conditional on information in lagged ty , lagged tz does not help to forecast ty . If this 

condition does not hold, then we say that tz  Granger-cause ty . 

The reason why we call this “Granger-Causality” rather than “Causality” is because this is not 

physical or structure definition of causality. If tz is some sort of forecast of the future, such as 

future prices, then tz  
may help to forecast ty  

even though it does not “cause” ty . This 

definition of causality is developed by Granger (1969) and Sims (1972). 
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In a linear VAR, the equation for ty is 

 1 1 1 1t t k t k t t k κ tα ρ ρ e− − − −′ ′= + + + + + + +⋯ ⋯y y y z zγ γγ γγ γγ γ  

In this equation tz does not Granger-cause ty  if and only if 

0 1 2: k= = = =⋯ 0H γ γ γγ γ γγ γ γγ γ γ . 

This may be tested using an exclusion (Wald) test. 

This idea can be applied to blocks of variables. That is, ty and/or tz can be vectors. The 

hypothesis can be tested using the appropriate multivariate Wald test.  

If it is found that tz does not Granger-cause ty , then we deduce that our time-series model of 

( )1 1t t−yE F does not require the use of tz . Note, however, that tz may still be useful to explain 

other feature of ty , such as the conditional variance. 

2.3.7   Cointegration: the Multivariate case 

The idea of cointegration is due to Granger (1981), and was articulated in detail by Engle and 

Granger (1987). 

Definition 2.3.1 The   1m × series ty is cointegrated if ty is ( )1I yet there exists β,   rm × , of 

rank r, such that t t
′z = yβ  is ( )0I . The r vectors in β are called the cointegrating vectors. 

If the series ty is not cointegrated, then 0r = . If r m= , then ty is ( )0I . For 0 r m< < , ty  
is 

( )1I and cointegrated. 

In some cases, it may be believed that β is known a priori. Often ( )1 1 ′= −β . For example, if 

ty is a pair of interest rates, then ( )1 1 ′= −β specifies that the spread (the difference in 

returns) is stationary. If ( ) ( )( )log logconsumption income ′=y , then ( )1 1 ′= −β specifies 

that ( )log consumption income is stationary. In other cases, β may not be known. 

If ty  is cointegrated with a single cointegrating vector ( )1r = , then it turns out that β can be 

consistently estimated by an OLS regression of one component of ty  on the others. Thus 

( )1 2t t t
′= y yy and ( )1 2β β ′=β and normalize 1 1β = . Then ( )

1

2 2 2 2 1 2
ˆ p
β β

−
′ ′= →y y y y . 

Furthermore, this estimation is super-consistent: ( )2 2
ˆ d

T β β Limit− → , as first shown by 
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Stock(1987). This is not, in general, a good method to estimate β, but it is useful in the 

construction of alternative estimators and tests.   

We are often interested in testing the null hypothesis of no cointegration: 

0

1

: 0

: 0

r

r

=

>

H

H
 

Suppose that β is known, so that t t
′z = yβ is known. Then under 0H tz is ( )1I , yet under 1H

tz is ( )0I . Thus 0H can be tested using a univariate ADF test on tz .  

When β is unknown, Engle and Granger (1987) suggested using ADF test on the estimated 

residuals ˆˆt t
′z = yβ , from OLS of 1ty on 2ty . Their justification was Stock’s result that β̂ is 

super-consistent under 1H . Under 0H , however, β̂ is not consistent, so the ADF critical values 

are not appropriate. The asymptotic distribution was worked out by Phillips and Ouliaries 

(1990). 

When the data have time trends, it may be necessary to include a time trend in the estimated 

cointegrating regression. Whether or not the time trend is included, the asymptotic distribution 

of the test is affected by the presence of the time trend. The asymptotic distribution was 

worked out in B. Hansen (1992). 

2.3.8 Cointegrated VARs 

We can write a VAR as 

( )

( )
1 2

L

    L L L L

t t

2 k
k

e

I

=

= − − − −⋯

yA

A A A A
 

Or alternatively as 

( )
1 1Lt t t t− −∆ = + ∆ +y y y eDΠΠΠΠ  

where 

( )

1 2

1

    = k

= −

− + + + +⋯

A

I A A A

ΠΠΠΠ
 

Theorem 2.3.1 Granger Representation Theorem ty is cointegrated with    m r β× if and 

only if ( )rank r=ΠΠΠΠ and αβ′=ΠΠΠΠ where α is   m r× , ( )rank α r= . 

Thus cointegration imposes a restriction upon the parameters of a VAR. The restricted model 

can be written as  
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( )

( )
1 1

1 1

L

L

t t t t

t t t t

− −

− −

′∆ = + ∆ +

∆ = + ∆ +

y y y

y z y

αβ e

α e

D

D
           

[2.3.8] 

If β is known, this can be estimated by OLS of t∆y on 1t−z  and the lags of t∆y . If β is 

unknown, then estimation is done by “reduced rank regression”, which is least-squares subject 

to the stated restriction. Equivalently, this is the MLE of the restricted parameters under the 

assumption that te is ( )iid ,N ΩΩΩΩ0 . The linear combinations 1t−′yβ represent the r cointegrating 

relationships. The coefficients in αmeasure how the elements in t∆y are adjusted to the r 

‘equilibrium errors’ 1 1t t− −′=z yβ . Thus, [2.3.8] is a generalization of [2.2.8] and is referred to 

as a vector error-correction model (VECM). 

One difficulty is that β is not identified without normalization. When 1r = , we typically just 

normalize one element to equal to unity. When 1r > , this does not work, and different authors 

have adopted different identification schemes. 

In the context of a cointegrated VAR estimated by reduced rank regression, it is simple to test 

for cointegration by testing the rank of ΠΠΠΠ . These tests are constructed as likelihood ratio (LR) 

tests. As they were discovered by Johansen (1988, 1991, 1995), they are typically called the 

“Johansen Max and Trace” tests. Their asymptotic distributions are non-standard, are similar 

to the Dickey-Fuller distributions. 

2.3.9 Cointegration in a Bivariate VAR 

Consider the case where 2m = . In this case the number of cointegrating vectors may be zero 

or one ( )0,1r = . Let us consider a first-order (nonstationary) VAR for ( ) .t t t
′=y y x That is, 

1 111 12

1 221 22

,
t t t

t t t

a a

a a

−

−

      
= +      
      

ε

ε

y y

x x
 

where, for simplicity, we dropped the intercept terms. The matrix Π is given by 

( ) 11 12

21 22

1
1 ,

1

a a

a a

− 
= − =  

− 
AΠΠΠΠ  

This matrix is a zero matrix if 11 22 1a a= = and 12 21 0.a a= =  This corresponds to the case 

where ty and tx are two random walks. The matrix Π has reduced rank if  

 ( )( )11 22 12 211 1 0a a a a− − − =             [2.3.9] 

If the is the case, 

( )11 121a a′ = −β  
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is a cointegrating vector (where we have chosen an arbitrary normalization) and we write 

( )
( )11 12

21 11

1
1 .

1
a a

a a
αβ

 
′= = − 

− 
ΠΠΠΠ  

Using this, we can write the model in an error-correction form. First, write 

1 1 111 12

1 1 221 22

1

1

t t t t

t t t t

a a

a a

− −

− −

−        
= + +        

−        

ε

ε

y y y

x x x
 

Next, we write this as 

( )
( ) 1

11 1 12 1
21 11 2

1
1

1

t t

t t
t t

a a
a a

− −

∆     
= − + +      −∆    

ε

ε

y
y x

x
      [2.3.10] 

The error-correction form is thus quite simple, as it excludes any dynamics. Note that both ty

and tx adjust to the equilibrium error, because 21 0a = is excluded. Also note that 21 0a = would 

imply 11 22 1a a= = and no cointegration. 

The fact that the linear combination ( )11 121t t ta a= − +z y x is ( )0I also follows from this result. 

Note that we can write 

 ( )
( )

( ) 1

11 12 1 11 12
21 11 2

1
1 1

1

t

t t
t

a a a a
a a

−

   
∆ = − + −   −   

ε

ε

z z  

or using [2.3.9] 

( ) ( )1 11 22 1 11 22 11 1 1 ,t t t t t ta a v a a v− − −= + − + − + = + − +z z z z  

where ( )11 1 12 21t t tv a a= − +ε ε is a white noise error term. Consequently, tz is described by a 

stationary AR(1) process unless 11 1a =  and 22 1a = , which is excluded. 

2.3.10 Testing for Cointegration 

If it is known that there exists at most one cointegrating vector, a simple approach to testing 

for the existence of cointegration is the Engle-Granger two-step approach described in section 

2.2.2. This requires running a regression of 1ty (being the first element of ty ) on the other m-1 

variables 2 3, , ,t t mt⋯y y y and testing for a unit root in the residuals. This can be done using the 

ADF tests on the OLS residuals, applying appropriate critical values. If the unit root 

hypothesis is rejected, the hypothesis of no cointegration is also rejected. In this case the static 

regression gives consistent estimates of the cointegrating vector, while in a second stage the 

error-correction model can be estimated using the estimated cointegrating vector from the first 

stage. 

There are some problems with this Engle-Granger approach. First, the results of the tests are 
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sensitive to the left-hand side variable of the regression, i.e., to the normalization applied to the 

cointegrating vector. Second, if the cointegrating vector happens not to involve 1ty , but only

2 3, , ,t t mt⋯y y y , the test is not appropriate and the cointegrating vector will not be consistently 

estimated by the regression of 1ty on 2 3, , ,t t mt⋯y y y . Third, the residual based test tends to lack 

power because it does not exploit all the available information about the dynamic interactions 

of the variables. Fourth, it is possible that more than one cointegrating relationship exists 

between the variables 1 2, , ,t t mt⋯y y y . If, for example, two distinct cointegrating relationships 

exist, OLS typically estimates a linear combination of them. Fortunately, as the null hypothesis 

for the cointegration tests is that there is no cointegration, the tests are still appropriate for this 

purpose. 

An alternative approach that does not suffer from these drawbacks was proposed by Johansen 

(1988), who developed the maximum likelihood estimation procedure that also allows one to 

test for the number of cointegrating relationships.  

Johansen’s Maximum Likelihood Approach: (Journal of Economic Dynamics and Control, 

1988, Econometrica, 1991) 

Based upon VARS: kth order VAR in a vector ( )  1m × ty  

1

; 1,2, , .

t

t

mt

t T

 
 = = 
  

⋮ ⋯y

y

y

 

0 1 1 2 2t t t k t k t− − −= + + + + +⋯y y y ya A A A ε
        

[2.3.11] 

where ( ),t IN∼ 0ε ΣΣΣΣ . 

Normality assumption is critical for Johansen’s approach and let each ( )1 .it I∼y ( )1t I  ∼y . If 

we formulate equation [2.3.11] as a VAR in first differences ( ) ( ){ }0  if 1t t tI I∆ ∆   ∼ ∼y y y  

0 1 1 2 2 1 1 1t t t k t k t t− − − − + −∆ = + ∆ + ∆ + + ∆ + +⋯y y y y ya Γ Γ Γ ΠΓ Γ Γ ΠΓ Γ Γ ΠΓ Γ Γ Π ε
         

[2.3.12] 

where 1 ; 1, , 1j j k j k+= − + + = −  ⋯ ⋯A AΓΓΓΓ and [ ]κ1 2− − −⋯Π = − Ι − Α Α ΑΠ = − Ι − Α Α ΑΠ = − Ι − Α Α ΑΠ = − Ι − Α Α Α . 

We need 1t −yΠΠΠΠ to be ( )0I for this formulation to be sensible, i.e., defines linear combination 

of ( )1I process to give ( )0I process. 

Error-Correction representation suggests 

0 1 1 2 2 1 1 1t t t k t k t t− − − − + −∆ = + ∆ + ∆ + + ∆ + +⋯y y y y ya εΓ Γ Γ ΠΓ Γ Γ ΠΓ Γ Γ ΠΓ Γ Γ Π
     

[2.3.13] 
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where ( )1t I∼y and ( ),t IN∼ 0ε ΣΣΣΣ . 

For this to be sensible [ ]κ1 2− − −⋯Π = − Ι − Α Α ΑΠ = − Ι − Α Α ΑΠ = − Ι − Α Α ΑΠ = − Ι − Α Α Α is of rank say r m<  as 1t −yΠΠΠΠ is taking 

linear combinations of the vector 1t −y to make ( )
1 0t I− ∼yΠΠΠΠ . These linear combinations of 

( )1I variables are identified with cointegrating relationships among the ( )1I variables. 

Johansen represents the hypothesis that ( )rank r m= <ΠΠΠΠ  as 

0 : αβ′=ΠΠΠΠH  

where both α and β are ( )m r× matrices ( )r m< , then 1 1t tαβ− −′=ΠΠΠΠy y . 

Interpretations of α and β: r rows of ′β are the r cointegrating vectors such that they define r 

linear combinations of the m components of the vector 1t −y that give ( )0I . The elements of the

( )m r× matrix α represent the weights (loading) of the r cointegrating vectors in each of the m 

equations. 

Example: Consider the case where 3 and 2.m r= =  

11 12 1 1
11 12 13

1 1 21 22 3 1
21 22

31 32 3 1

23

t

t t t

t

α α
β β β

α α
β β β

α α

αβ

−

− − −

−

   
    ′= =     
       

ΠΠΠΠy y

y

y

y
 

The 1
st
 row of 1tβ −′y is ( ) ( )

1

11 1 1 12 2 1 13 3 1 0t t t

ECM

β β β I− − −+ + ∼
������������	
y y y is a cointegrating vector. 

The 2
st
 row of 1tβ −′y is ( ) ( )

2

21 1 1 22 2 1 23 3 1 0t t t

ECM

β β β I− − −+ + ∼
������������	
y y y is also a cointegrating vector. 

( )

11 12
1

1 1 21 22
2

31 32
0

t t

I

α α
ECM

α α
ECM

α α

αβ− −

 
  ′= =   
   ����	

ΠΠΠΠy y         
[2.3.14] 

Thus, using [2.3.14] the 1
st
 equation of error correction model can now be written as, 

11 1 1 2 1 1t t tα α− 12 −+ + + +⋯ εecm ecm . The Johansen’s approach enables to  

• determine the number of cointegrating vectors, r. 

• estimate the cointegrating vectors. 

Estimation of Π proceeds by ML 

Suppose we have the k
th
 order VAR represented as in an error correction of the form 

1 1 2 2 1 1 1t t t k t k t tα − − − − + −∆ = + ∆ + ∆ + + ∆ + +⋯ εΓ Γ Γ ΠΓ Γ Γ ΠΓ Γ Γ ΠΓ Γ Γ Πy y y y y
     

[2.3.15] 

Given ( ),t IN∼ 0ε ΣΣΣΣ , we can write the likelihood function corresponding to equation [2.3.15] 

by concentrating with respect to 1 1, , .k −⋯Γ ΓΓ ΓΓ ΓΓ Γ This can be done by regressions of t∆y and 1t −y



Econ 654: Multivariate Time Series Analysis, 2010/11 Academic Year 

 

21 

 

each in turn on 1 1, ,t t k− − +∆ ∆⋯y y gives ( )1m × vector of residuals labelled by 0 1,  t tr r , 

respectively. Define residual product moment matrices as 

1

1
; , 0,1.

T

ij it jt

t

i j
T =

′= =∑S r r  

This gives 00 11 01 10,  ,  ,  S S S S . The concentrated likelihood function corresponds to the 

regression 

0 1t t t
′= − +αβr r ε  

For a fixed matrix β, we can solve for α by regressing 0tr on 1t
′−β r and obtain 

( ) ( )
1

01 11
ˆ

−
′= −α β S β β S β and ɵ ( ) ( )

1

00 01 11 10β S S β β S β β S
−

′ ′= −ΣΣΣΣ and Johansen demonstrated 

that maximizing the likelihood function is obtained by minimizing ɵ ( )βΣΣΣΣ with respect to β, 

this in turn apparently related to solving the eigen values, i.e., solve 

1
11 01 00 10 0λ −− =S S S S  

That is, find λ (m eigenvalues) or (Characteristic roots), ordered so that ɵ ɵ ɵ
1 2 0mλ λ λ> > > >⋯ .  

With these eigenvalues, there are m corresponding eigenvectors � ɵ ɵ ɵ
1 2 m =  ⋯V v v v

normalized so that � �′
=11V S V I . 

Johansen’s estimation presumes knowledge of r (the number of cointegrating relations) but has 

two advantages relative to Engle-Granger: 

• allows 1r ≥ : non-uniqueness of the cointegrating vectors 

• provides a framework (ML-based) for testing the number r of cointegrating vectors. 

Recall that ML estimation involved getting m eigenvalues ɵ ɵ ɵ
1 2 0mλ λ λ> > > >⋯ . These are 

used directly in testing the dimension r. Johansen suggested two tests: 

i). based on testing the ( )m r− smallest eigenvalues are jointly zero. This test statistic 

often called the trace statistic is given by 

( ) ɵ( )
0

0

1

ln 1
m

itrace

i r

λ r T λ
= +

= − −∑  

This statistic can be used to test: 

0 0: r r≤
�

H  (at most 0r  
cointegrating vectors) versus the alternative hypothesis 

0: r r m< ≤
�

Ha (more than 0r  
cointegrating vectors). 

ii). The second is the “maximal eigenvalue” statistic based on the estimated ( )0 1
th

r +

largest eigenvalue given by 
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( ) ɵ( )
0 1max 0 ln 1 rλ r T λ += − −  

This statistic can be used to test: 

0 0: r r≤
�

H  (at most 0r cointegrating vectors) versus the alternative 

0: 1r r= +
�

Ha (exactly 0 1r + cointegrating vectors). 

For both test statistics, asymptotic critical values have been tabulated for various different 

cases (i.e., constant/trend). All these critical values are obtained by simulation: e.g. in 

Johansen (Journal of Economic Dynamics and Control, 1988). More comprehensive set are 

provided by Johansen and Juselius (Oxford Bulletin of Economics and Statistics, 1990). The 

two tests described here are actually likelihood ratio tests, but do not have the usual Chi-

squared distributions. Instead, the appropriate distributions are multivariate extensions of the 

Dickey-Fuller distributions. As with the unit root tests, the percentiles of the distributions of 

these test statistics depend on whether a constant and a time trend are included. 

Illustration using Long-run Purchasing Power Parity 

Consider the existence of one or more cointegrating relationships between three variables 

*
,  and t t tS P P where tS

 
is the spot exchange rate (home currency price of a unit of foreign 

exchange), tP is the aggregate price in domestic currency and 
*

tP is the price of the foreign 

country) using the Johansen’s technique discussed above. The first step in this procedure is the 

determination of k, the maximum order of the lags in the autoregressive representation given in 

[2.3.11]. It appears that, in general too few lags in the model leads to rejection of the null 

hypothesis too easily, while too many lags in the model decrease the power of the tests. This 

indicates that there is some optimal lag length.  In addition to k, we have to decide upon 

whether to include a time trend in [2.3.11] or not. In the absence of a time trend, an intercept is 

automatically included in the cointegrating relationship(s). The optimal lag length in the 

autoregressive representation given in [2.3.11] for the dataset used in Verbeek is 2k = , which 

can be determined using the BIC. Let us consider the case with 2k = excluding a time trend. 

The first step in Johansen’s procedure yields the trace statistics in table 2.2 and maximum 

eigenvalue statistics in table 2.3 below. These results present the estimated eigenvalues 

1 2 3
ˆ ˆ ˆ,  and λ λ λ in decreasing order. Each nonzero eigenvalue corresponds to a cointegrating 

vector. A range of test statistics base on these estimated eigenvalues is given as well.  
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Table 2.2 Unrestricted Cointegration Rank Test (Trace) 

Null Hypothesis Alternative Eigenvalue Statistic
trace
λ −  5% Critical Value Prob.** 

*
0 : 0H r =  a : 0 3H r< ≤  0.385964 115.6063 35.19275 0.0000 

*
0 : 1H r ≤  a :1 3H r< ≤   0.102029  25.86934  20.26184  0.0076 

0 : 2H r ≤  a : 2 3H r< ≤   0.032439  6.067643  9.164546  0.1856 

Trace test indicates 2 cointegrating equations at 5% level of significance. 
*
Denotes rejection of the null hypothesis at 5% level of significance. 

**MacKinnon-Haug-Michelis (1999) p-values, lag length k=2, T=184, intercept included. 

Table 2.2 above reports the results of the trace test statistic and as can be seen from the table: 

1). The null hypothesis of no cointegration ( )0r = has to be rejected at 5% level when 

tested against the alternative hypothesis of more than zero cointegrating vectors

( )0 3r< ≤ , because 115.61 exceeds the critical value of 35.19. 

2). The null hypothesis of zero or one cointegrating vector ( )1r ≤ also has to be rejected 

in favour of the alternative hypothesis of more than one cointegrating vectors ( )2r = . 

3). The null hypothesis of two or fewer cointegrating vectors cannot be rejected against 

the alternative of hypothesis of more than two cointegrating vectors ( )2 3r< ≤ . 

 

Table 2.3 Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

Null Hypothesis Alternative Eigenvalue 
max

Statisticλ −  5% Critical Value 
Prob.** 

0 : 0H r = * : 1aH r =  0.385964 89.73699 22.29962  0.0000 

0 : 1H r ≤ * : 2aH r =  0.102029 19.80170 15.89210  0.0115 

0 : 2H r ≤  : 3aH r =  0.032439 6.067643 9.164546  0.1856 

Maximum-eigenvalue test indicates 2 cointegrating equations at 5% level of significance. 
*
Denotes rejection of the null hypothesis at 5% level of significance. 

**MacKinnon-Haug-Michelis (1999) p-values, lag length k=2, T=184, intercept included. 

Table 2.3 above reports the results of the maximum eigenvalue test statistic and as can be seen 

from this table: 

1). The null hypothesis of no cointegration ( )0r = has to be rejected at 5% level when 

tested against the alternative hypothesis of one cointegrating vectors ( )1r = , because 

89.74 exceeds the critical value of 22.30. 

2). The null hypothesis of zero or one cointegrating vector ( )1r ≤ also has to be rejected 

in favour of the alternative hypothesis of two cointegrating vectors ( )2r = . 

3). The null hypothesis of two or fewer cointegrating vectors cannot be rejected against 

the alternative of hypothesis of three cointegrating vectors ( )3r = . Recall that 3r =

corresponds to stationarity of each of the three series. 
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The following table reports cointegrating and the adjustment coefficients. 

Table 2.4 Unrestricted Cointegrating Coefficients (normalized by � �
11 =

′
V S V I ):  

ts  tp  *
tp  C  

-3.155508  28.48416 -55.76099  144.4973  

 9.448938 -46.05347  73.97055 -178.8928  

-13.30384  35.41067 -48.51006  133.4533  

where ( )ln ,t ts S= ( )ln  andt tp P= ( )* *lnt tp P=
 

         Unrestricted Adjustment Coefficients (α):   

ts∆  -0.000107 -0.000741 0.003567  

tp∆  0.001182 0.000710 8.44E-05  

*
tp∆  0.001309 -0.000292 2.21E-05  

1 Cointegrating Equation:  Log likelihood =2180.411 
     
     
Normalized cointegrating coefficients (standard error in parentheses) 

ts  tp  *
tp  C  

    1.000000   -9.026808   17.67100 -45.79210  

   (1.18380)   (2.12351)  (4.46623)  

     

Adjustment coefficients (standard error in parentheses)  

ts∆  0.000336    

 (0.00469)    

tp∆  -0.003728   
 

 (0.00064)    
*
tp∆  -0.004132    

 (0.00045)    

     

2 Cointegrating Equations:  Log likelihood = 2190.312 

     
     
Normalized cointegrating coefficients (standard error in parentheses) 

ts  tp  *
tp  C  

1.000000 0.000000 -3.723041 12.59047  

  (0.62307) (2.93895)  

0.000000 1.000000 -2.370057 6.467687  

  (0.09208) (0.43436)  
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Adjustment coefficients (standard error in parentheses) 

ts∆  -0.006664 0.031082  

 (0.01479) (0.08042)  

tp∆  0.002977 0.000972  

 (0.00195) (0.01058)  

*
tp∆  -0.006893 0.050756  

 (0.00139) (0.00754)  

 

The Johansen’s tests indicate the presence of two cointegrating vectors. Tables 2.5 and 2.6 

below show what happens if we repeat the above procedure with a lag length of 12k = , 

motivated by the fact that we have monthly data. 

Table 2.5 Unrestricted Cointegration Rank Test (Trace) 

Null Hypothesis Alternative Eigenvalue Statistic
trace
λ −  

5% Critical 

Value 
Prob.** 

0 : 0H r = * a : 0 3H r< ≤  0.106125 42.13841 35.19275 0.0076 

0 : 1H r ≤ * a :1 3H r< ≤  0.090143 22.61742 20.26184 0.0233 

0 : 2H r ≤  a : 2 3H r< ≤  0.034894 6.179980 9.164546 0.1773 

Trace test indicates 2 cointegrating equations at 5% level of significance. 
*
Denotes rejection of the null hypothesis at 5% level of significance. 

**MacKinnon-Haug-Michelis (1999) p-values, lag length k=12, T=174, intercept included. 

The first test that considers the null hypothesis of no cointegration ( )0r =  versus the 

alternative hypothesis of more than zero cointegrating relationship(s) ( )0 3r< ≤ leads to the 

rejection of the null using the trace-statistic. The second test that considers the null hypothesis 

of zero or one cointegrating relationship ( )1r ≤  versus the alternative hypothesis of more than 

one cointegrating relationship(s) ( )1 3r< ≤ also leads to the rejection of the null. Thus, the 

trace test statistic indicates the presence of two cointegrating relationships at 5% level of 

significance.  

Table 2.6  Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

Null Hypothesis Alternative Eigenvalue 
max

Statisticλ −  5% Critical Value Prob.** 

0 : 0H r =  : 1aH r =   0.106125  19.52099  22.29962  0.1168 

0 : 1H r ≤ * : 2aH r =   0.090143  16.43744  15.89210  0.0411 

0 : 2H r ≤  : 3aH r =   0.034894  6.179980  9.164546  0.1773 

Maximum-eigenvalue test indicates no cointegration at 5% level of significance. 
*
Denotes rejection of the null hypothesis at 5% level of significance. 

**
MacKinnon-Haug-Michelis (1999) p-values, lag length k=12, T=174, intercept included. 

The first test that considers the null hypothesis of no cointegration ( )0r =  versus the 

alternative hypothesis of one cointegrating relationship ( )1r = does not lead to the rejection of 
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the null using the maximum eigenvalue test statistic. The second test implies a marginal 

rejection of the hypothesis of the existence of zero or one cointegrating vector. Suppose we 

decide that the number of cointegrating vector is equal to one ( )1r = , the estimated 

cointegrating vector β, in this case, is given in table 2.7 below. 

Table 2.7 Unrestricted and Normalized Cointegrating Vectors 

 
ts  tp  *

tp  C  

Unrestricted CV        1.210735 
 

    -7.684815 
 

     17.86432 
 

    -51.26381 
 

 

Normalized CV  1.000000 -6.347233  14.75495 -42.34108  

The normalized cointegrating vector corresponds to the cointegrating equation given by 

*6.437 14.755t t ts p p= −  

which does not seem to correspond to an economically interpretable long-run relationship. The 

conclusion that there exists one cointegrating relationship between the three variables is most 

probably incorrect. To test for long-run purchasing power parity via Johansen’s procedure, we 

will probably need longer time series. Alternatively, we may use several set of countries and 

apply panel data cointegration techniques. Another problem may lie in measuring the two price 

indices in an accurate way, comparable across the two countries.  

 

 


