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Important Note: Dear Students, these lecture notes are ‘Supplementary’, which means, they are not meant to replace your text book,
but only provide supporting material to the classroom lectures, in a summarized manner. You should gain enough Knowledge from other
sources to be in a position to elaborate the topics and material presented fere *

2.1 Categories of Non-Linear Equations

Do you know this equation:
f(x) = ax’+bx+c=0 2.1

Ofcourse, you know it! You remember it from your school days. It is the famous Quadratic Equation. A
Quadratic Equation has two solutions:

—b £ vb2 — 4ac
X = 2 (2.2)
a

These two solutions are known as HRoots of the Equati:);z] 2.1, or HZeros of th;;EiquationH.

Quadratic Equation 2.1 falls into the broad category of [Polym;mial Equations]. More precisely, it should
be called a Second Order Polynomial Equation. Similarly, another famous form of Polynomial Equation
is Cubic Equation (which is a Third Order Polynomial Equation):

f(x)= ax® +bx>+cx+d=0 (2.3)

\ = | I = =
So, an }n”‘-Order Polynomial Equation“ (a.k.a [n”’-Degree Polynomial Equationj) can be generalized
as: o -

f(x) = c1x™ +cax™ ' +eax™ 24+ cpX F Cuy1 =0 (2.4)
Hence, as per this definition, a First Order Polynomial Equation should take the form:
f(x)= ax+b=0 (2.5)
It is commonly known as Linear Equation, and written in the form:
y= mx+c (2.6)

Other than the Polynomial Equations there are many other forms of equations. These include equations
involving trigonometric functions, logarithmic functions, exponential functions, and many other less common
functions. Examples of such equations are:

flx)= e *—x (2.7)
f(x) = sin®x + cos? x (2.8)
f(x) = In|x®|+e * (2.9)
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2.2: Methods to find Roots of Non-Polynomial Equations Chapter 2: Roots of Non-Linear Equations

In Chapter 1 we derived the equation for terminal velocity of parachutist as:

v = ? [1 — e_%t] (2.10)

Equations 2.7, 2.8, 2.9, 2.10, and similar, fall into the category of [Non-Polyr;;mial Equations] (a.k.a.

[Transcen;[ental Equations]).

As can be observed easily, solution to Linear Equation 2.5, is very obvious (i.e. x = —c/b) and does not
require any considerable effort. But, any other Polynomial Equation (of degree 2, 3, ..., n) and all Non-
Polynomial Equations demand at least some minimum effort to calculate the roots. We should call these two

. I : e
categories as [Non-LGear EquatwnsJ.

Hence, in the rest of this chapter we will consider the solution to all Polynomial Equations of degree
2 or higher, and all Non-Polynomial Equations. In other words, in the rest of this chapter, we will solve

Non-Linear Equations.

2.2 Methods to find Roots of Non-Polynomial Equations

Several different approaches exist to solve Non-Polynomial Equations. Among those, most commonly used
methods can be categorized, broadly, into two: (i) Bracketing Methods, and (ii) Open Methods.

[Bracketing Methods] employ two initial guesses to reach the solution of the equation. These two guesses

must bound the root of the equation. In other words, the two guesses must lie on opposite sides of the root
of the equation. Once the guesses are correctly suggested, as per this requirement, Bracketing Methods will

SURELY converge to the root of the equation.

The other category, [617);1;71&;&707({31 do not carry any such requirement, with regards to initial guesses.

Hence, with regards to initial guess, Open Methods are more flexible than Bracketing Methods. But, this
flexibility also results in a drawback of Open Methods: there is NO SURETY that the method will converge to
the solution. On the contrary, this is not a serious drawback, because it can easily be overcome by restarting
the method with another guess. Furthermore, the probability of non-convergence of Open Methods to the root
is, in general, very low for most of the equations.

Open Methods are also superior to Brackting Methods in another aspect; several Open Methods need a
single guess, as opposed to two guesses in Bracketing Methods.

Finally, it is worth mention that, although there exist special faster and/or easier methods to find the
roots of Polynomial Equations (like Muller’s Method, which we will study in the end of this chapter), but both
Bracketing Methods as well as Open Methods are equally well-suited to find the roots of Polynomial Equations
too. Hence, we will apply these methods to all Non-Linear Equations.

It is equally worth mention that, both, Bracketing Methods as well as Open Methods, would (normally)
find a single root of an equation. To find multiple roots, initial guesses must be changed, so that the method
converges to a different root.

(Note: Open Methods can be modified and adopted to find multiple roots, to solve Systems of Linear
Equations as well as to solve Systems of Non-Linear Equations, but, because it is outside our syllabus, we
will not study those extended methods in our course.)

2.3 Bracketing Methods

The theory behind Bracketing Methods can be summarized in the form of an algorithm as follows. To find
a root of equation f(x) = 0:

1. Initial Guess: Two initial guess roots, lower-bound a and upper-bound b (a < b) are suggested, such that
f(a)f(b) < 0, to ensure that initial guess roots bound the actual solution

2. Transformation: Apply some transformation (it will be choice) on a and b to calculate a new value c
which lies in-between a and b (i.e. a < ¢ < b)

3. Pick new bounds: Compare f(a)f(c) and f(b)f(c) to check which product gives a negative value

@ If f(a)f(c) < O then the actual solution lies between a and c; hence, discard b and treat c as new
upper-bound (i.e. treat c as b for next calculation)

@ If f(b)f(c) < 0 then the actual solution lies between b and c; hence, discard a and treat c as new
lower-bound (i.e. treat c as a for next calculation)

-~

Calculate Error: Calculate the errore = b — a
5. If € < tol (where tol is the maximum acceptable tolerance)

@ then treat latest value of ¢ as the approximate solution and stop the method
@ clse repeat the whole process, except the first step Initial Guess
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Chapter 2: Roots of Non-Linear Equations 2.3: Bracketing Methods

All the Bracketing Methods follow the same algorithm, except the Transformation step, where the method
decides how to calculate c from a and b

2.3.1 Bisection Method

Bisection method is the simplest bracketing method to find a root of f(x) = 0. It is assumed that f(x)
is continuous on an interval [a,b] and has a root there, so that f(a) and f(b) have opposite signs, hence
f(a)f(b) < 0.

The procedure goes as follows: Locate the midpoint ( )
of range [a,b], that is, c=c;=Z(a+Db) (this is 0
the Transformation’ step in algorithm for Bracketing
Method), (see Figure 2.1 on page 15). If f(a) and f(c)
have opposite signs, the interval [a, c1] contains the root
and will be retained for further analysis. If f(b) and f(c)
have opposite signs, we continue with [c1,b]. In Figure
2.1, it so happens that the interval [cq,b] brackets 0
the root and is retained. Since the right endpoint is
unchanged, we update the interval [a, b] by resetting
the left endpoint a = c. With the reduced new range
[a, b] the next mid-point, ¢ = ¢z = % (a + b) is calculated. | \bo b

T First estimate

B

The process is repeated by calculating the mid-points . o =Laip
C2,C3, Cyq, - - - until the length of the most recent interval Adjust ingerval 2
[a, b] satisfies the desired accuracy. a=c
'Example 2.1 : |Solve x cos(x) + 1 = 0 using Bisection g )
M\gt‘,bqu I .—C!/ I Second estimate
. . - a o=L@+p =L +p
Find the root of equation xcos(x) = —1, within a Adiust irkerval 2 2
tolerance = 10~ 2, using Bisection method. b:JCE
Solution: To find the root, precisely, up to second
decimal place, a good initial guess is required. This can
be done, easily, by first plotting the graph of the equation po b Third estimate
(as shown in Figure 2.2 on page 15). Graph shows that a q\ S IS
. . . c 3739 =alatre
function has a root in the interval [-2,4]. I
Hence, set a = —2 and b = 4. Calculate the mid-point Figure (2.1) — Concept of Bisection Method

= ath = (=2)+®) = 1. Calculate the ordinates for a, b, and ¢: f(a) = (—2)cos(—2) + 1 = 1.8323:

2 2
f(b) = (4)cos(4) + 1 = —1.6146, and f(c) = (1) cos(1) + 1 = 1.5403. To determine whether the root lies in the
range [a, c] or [b, ¢| calculate the products f(a)f(c) and f(b)f(c): f(a)f(c) = 2.8223 > 0, f(b)f(c) = —2.4869 < 0.
f(b)f(c) < 0indicates that root lies in the range [b, ¢| and not in the range [a, ¢|]. Hence, discard the range [a, c|

Sy . b—
by considering the new range as ¢« = ¢ =1 and b = 4 i.e. [a,b] = [1,4]. Calculate the error as: ¢ = 5 g -
4— (-2
# = 3. Because the error (¢) is more than tolerance = 1072, repeat the whole process.
. . b
( : ‘ | ] : ) Calculate the mid-point ¢ = % =
J bemenene- fomemeeee e e benmmneo 1)+ (4
' ; : : ! W+@ = 2.5. Calculate the ordinates
PINTTTT T 5 i s S 1| for a, b, and ¢ f(a) = (1)cos(1) +
o . Y- R~ -, R, S S—— A 1 = 1.5403, f(b) = (4)cos(d) + 1 =
- i ; —1.6146, and f(c) = (2.5)cos(2.5) +
o 7 i Tl . Root | 7T ] 1 = —1.0029. To determine whether
L possesnees P ROEEEEEES pesmesean R-------- e the root lies in the range [a,c| or [b, |

calculate the products f(a)f(c) and
, FDF(): fl)f(e) = —15447 < 0,
G 1) SRR —— FPRRPRRRTRR SRS RS S W S ——— Ff) f(e) = 1.6192 > 0. f(a)f(c) < O
i i indicates that root lies in the range

xcos(x)+1
S
(4, ]

= . P A T S Sl [a, c] and not in the range [b, ¢]. Hence,
s P E—— Lo L s i i TR T discard the range [b,¢] by considering
E . . . ; the new range asa =1andb=c=2.5
R i s il T y i 1| i.e. [a,b] = [1,2.5]. Calculate the error

-2 -1 0 1 2 3 + b— 4— (=2
x as: ¢ = ¢ _ (=2) = 3. Because
Figure (2.2) — Graph of x cos(x) + 1 the error (¢) is more than tolerance
= 1072, once again repeat the whole

process.
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2.3: Bracketing Methods Chapter 2: Roots of Non-Linear Equations

Instead of doing individual calcualtions it is much more intuitive to prepare Table 2.1 (as shown on

page 16). In each iteration, calculate the approximate error ¢ = Ta, and compare it with the given

tolerance = 1072, As soon as ¢ < tolerance, the procedure stops.
As can be seen from Table 2.1 (on page [
16), the procedure attains the value of

Table (2.1) — Bisection Method: Solve x cos(x) = —1

c = 2.0723 after 10 iterations, which has [Tteration| a | b [ e [ f@ [ 1) | f© [faf©|tb)io] = |
the error ¢ = 0.0059, which is within our || __1 __|-2.0000]4.0000|1.0000 | 1.8323 -1.6146| 1.5403 | 2.8223 |-2.4869 | 3.0000
tolerance level of 10~2. | __2___|1.0000 | 4.0000 ) 2.5000 | 1.5403 |-1.6146 |-1.0029 -1.5447] 1.6192 | 1.5000 |
It can also be observed from Table 2.1 || __3___|1.0000|2.5000) 1.7500 | 1.5403 |-1.0029 | 0.6881 | 1.0598 |-0.6900 | 0.7500 |
(on page 16) that the error gets exactly || -4 __][17500]25000]2.1250 0.6881-1.0029)-0.1183]-0.0814  0.1187 | 0.3750
halved in each iteration. Because of this || -_2___1.75002.1250 | 1.9375 | 0.6881 |-0.1183 | 0.3053 | 0.2101 |-0.0361 0.1875 |
p . b1 . head 6 1.9375 | 2.1250 | 2.0313 | 0.3053 [-0.1183 | 0.0973 | 0.0297 | -0.0115 0.0938
act, 1t is possible to estimate, ahead |-~ ==r 00 To o 0ot T 0073 10,1183 |0.0096 0,008 0.0011 | 0.0469 ]
f procedure, th ber of iterations |[-—————trons 2120, 30181 0.073).0.1165):0.0066,.0.000 DOGL L0.0400,
ioed o e e e g it | [ 8 |20313]2.0781]2.0647 | 0.0973 00096 [ 0.0441 | 0.0043 | 0.0004]0.024]
required to achieve a desired precision | ™"y ™"y o547 20781 2.0664 | 0.0441 | -0.0096| 0.0173 | 0.0008 |-0.0002] 0.0117)
(i.e. root with in tolerance). That is, in 10 2.0664 | 2.0781 | 2.0723 | 0.0173 | -0.0096 | 0.0038 | 0.0001 | 0.0000 | 0.0059
b
. . . —a L b,
iteration 1, the error is ¢ = . In
2

. . . —a . . . —a L. .
iteration 2, the error is ¢ = . In iteration 3, the error is ¢ = . Hence, to generalize, in iteration

22 2
. b— -, . .
N, the erroris e = TNG' To stop the procedure, the condition to be satisfied is:

b—a
2N

e<tol = tol>e = tol>
Solving the inequality for N yields:
In(b — a) — In(tol)
In(2)

Hence, if the procedure starts with initial estimates a and b, and the desired tolerance is tol, then the
number of iterations, IV, after which the desired precision can be achieved by Bisection Method, is given by:

N Fna) - fn)(Z_) ln(tol)" \ {Ing (btgla)"

In(b — a) — In(tol) In(4 — (=2)) — In(1072)
rom B s e N

N >

In the example, N = [

2.3.2 False-Position Method

The False Position method is another [
bracketing method to find a root of
f(x) = 0. Once again, it is assumed that
f(x) is continuous on an interval [a,b),
and has a root there, so that f(a) and
f(b) have opposite signs, or, equally valid
to say, f(a)f(b) < 0.

The procedure is geometrical in
nature, and described as follows. Let

fx)

A:(ay, f(ay)

Adjust right end
cy=by

/ Adjust right end
\\‘ C] =b2
L

[a1,b1] = Ja,b] be the initial range x
that brackets the root. Connect points 0| a

A (al,f(al)) and B : (bl,f(bl)) by a ay

straight line, as shown in Figure 2.3 (on ag

page 16). Let c; be this line’s x-intercept. Left end

Then, if f(a1)f(c1) < 0, then range
[a1, c1] brackets the root. Otherwise, the
root is in the range [c1,b;]. In Figure

2.3 (on page 16), it just so happens | _______ ... Bf Eb}’ﬂb})z 777777
that [a1,c1] brackets the root. Hence, Figure (2.3) — Concept of False Position Method
treat the range [a1,c¢1] = [a,b] for next
iteration and repeat the process by calculating new x-intercept cs.
Continuing this process generates a sequence cy, co, c3, - - - that eventually converges to the root.

Analytically, the procedure can be illustrated as follows. The equation of the line connecting points A and

B is:
y— f(b1) _ fla1) — f(b1)

(E—bl al—bl
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Chapter 2: Roots of Non-Linear Equations 2.4: Open Methods

To find the x-intercept, set y = 0 and solve for z = ¢;:

0—f(b)  fla1) — f(ba) N _aif(by) = by f(ar)

c1— by ap — by ! f(b1) — fla1)

Generalizing this result, the sequence of points that converges to the root is generated via

_apf(by) — baf(an)

— =1.2.3.... 2.11

[Example 2.2 : | Solve x cos(x) + 1 = 0 using False Position Method

Find the root of equation x cos(x) = —1, within a tolerance = 10~2, using False-Position Method.
( Y\ Solution : The procedure is exactly same
Table (2.2) — False Position Method: Solve x cos(x) = —1 . . .
(22) (x) as that we used in Bisection Method,
[lteration| a | b | ¢ | f@ [ 0 | @ [f@f|fbf@]| < || except that calculation of ¢ is different;
| __ 1 __|-2.000040000| 18323 -16146| 1.1895| 14426 |26434|23293 - || here, Equation 2.11 is used to calculate c,
| __2 | 1.1895)4.0000 | 14426 |-1.6146 2.5157 |-1.0389 -14987| 16773 | 1.3262 || and ¢ is calculated as the difference of two
| 3 _ _|11895]2.5157 | 1.4426 |-1.0389| 1.9605 | 0.2552 | 0.3681 |-0.2651|-0.6552| | consecutive values of c.
| __4 __|19605]25157)0.2552 -1.0389| 2.0700 | 0.0091 | 0.0023 |-0.0094 | 0.1095 As can be seen from Table 2.2 (on page
5 20700 | 2.5157 | 0.0091 |-1.0889 | 2.0738 | 0.0002 | 0.0000 |-0.0002| 0.0039 | | 17) the procedure attains a value of ¢ —

9.0723 after b iterations, which has an error of ¢ = 0.0039, and it is within the prescribed tolerance level of
10-2.

2.4 Open Methods

Unlike Bracketing Methods, Open Methods cannot be summarized in the form of a general algorithm. But,
there are certain common aspects which can be observed in all the Open Methods.

As opposed to Bracketing Methods, the Open Methods do not assure for convergence on root. But, still, each
of the Open Methods demand some pre-conditions for convergence on root. If these conditions are fulfilled then
they do converge on root.

Most of the Open Methods require only one |
initial guess (as opposed to two initial guesses
required in Bracketing Methods), but this initial o
guess should be close enough to the root, so that N fix) = e
the procedure converges on root. As such, here,
the flexibility to choose initial guess is more than
Bracketing Methods. (Secant Method is an Open
Method which requires two initial guess, but, unlike
the requirement of Bracketing Methods that the two x
guesses should always fall on opposite sides of the
root, Secant Method also, like all the other Open
Methods, does not impose any such condition.) |

Lastly, the Rate of Convergence of Open Methods
is usually higher when compared to any of the |

|
|

Root

v

Bracketing Methods. In other words, the total
number of iterations required to converge on a root,
using Open Methods, is much less than required

using Bracketing Methods. 0

Fixed point
2.4.1 Fixed-Point Iteration Method

The Fixed-Point Iteration Method is an Open
Method to find a root of f(z) = 0. The
idea is to rewrite f(z) = 0 as z = g(z),

glx) = e

Root

|
\ = P -
or MAuxiliary FunctionH.Consequently, a point of

intersection of y = g¢(z) and y = x, known as a

As an example, consider e~ 3 — z = 0 and its root, Figure (2.4) — Concept of Fixed-Point Iteration Method
as shown in Figure 2.4 (on page 17). The equation is
rewritten as z = e~ 2 so that g(x) = e~ 2 is the Iteration Function.

d .
B.Sc. 2"¢ Yr. (COE) astraxlﬁl@gmall.com Page 17 of 38
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2.4: Open Methods

Chapter 2: Roots of Non-Linear Equations

It is observed that g(z) has only one fixed point, which is the only root of the original equation. It should be
noted that for a given equation f(z) = 0 there usually exist more than one Iteration Function. For instance,

e~ 2 —x = 0 can also be rewritten as x = —21In(x) so that g(z) = —2In(z).

(@) (b)

o

X3 Xy =gxy)
Fixed point

Figure (2.5) — Fixed Point Iteration Method: Types of Convergence (a) Monotone
(b) Oscillatory

The Fixed-Point of g(x)
is found numerically via the

[F:'ixed-Point I teration]:

Xn+1= &(Xn), (2.12)

wheren =1,2,3,---
and z is initial guess

The procedure begins with
an initial guess x; near the
Fixed-Point. The next point
zo is found by evaluating
g(z1). Similarly, z3 is found
by evaluating g(z2), then
4, x5, and so on. This
continues until convergence

is observed, that is, until two successive points are within a prescribed distance of each other:

|Xnt1 — Xn|< tol

Two types of convergence can be exhibited [

by the Fixed-Point Iteration: Monotone and
Oscillatory, as illustrated in Figure 2.5 (on page
18). In a Monotone Convergence, the elements of
the generated sequence converge to the Fixed-
Point from one side, while in an Oscillatory
Convergence, the elements bounce from one side
of the Fixed-Point to the other as they approach
it.

[Convergence of Fixed-Point Iteration: ]It
can be shown that if [¢/(z)] < 1 near a Fixed-
Point of g(x), then convergence is guaranteed.
Note that this is a sufficient, and not necessary,
condition for convergence.

[Example 2.3 : |Solve x — 2°* = 0 using Fixed
Point Iteration Method

Find a root of equation x — 2~ = 0, within

Figure (2.6) — Graph of x — 27

a tolerance = 10~4, using Fixed-Point Iteration
Method.

s N

Table (2.3) — Fixed-Point lIteration
Method: Solve x —27* =0

Solution : Rewrite the equation as © = 2% so that g(z) = 27*. The
Fixed-Point can be roughly located as in Figure 2.6 (on page 18). To
proceed, we can start with an initial guess of x = 0, and prepare, as

[ Tteration | x| g [ =la(x) — x| before, a table of iteration as shown in Table 2.3 (on page 18).
|1 __]0.0000|1.0000 | _ 1.0000 _| The final answer (within the tolerance = 10~%) is found as 0.6412,
| 2 |1.0000]10.5000]  0.5000 || gafter 13 iterations.
| __3_ __|05000/07071] _ 0.2071 __ |
| __4 __|07071/06125|  0.0946 _ |
5 |ocioe| nesan| oo 2.4.2 Newton-Raphson Method
[y ] W The most commonly used open method to solve f(z) = 0, where
7 0.6355 | 0.6437 0.0082 , X . .
"8 loes7loes0rl  ooozr 1| Jf'(x)=01is continuous, is Newton-Raphson Method.
o Toeso1losa7| ooots ] Co.n.sider Ithe graph of f(z) in Figure 2.7 (on page 19). Start with
10 lo6417|06a10] 00007 || an initial point z; and locate the point (z1, f(x1)) on the curve. Draw
11 |06410]06413| 00003 | the tangent line to the curve at that point, and let its x-intercept be z-.
12 |o06413]06411] 00001 || Locate (z2, f(w2)), draw the tangent line to the curve there, and let z3
13 0.6411 | 0.6412 0.0000 be its x-intercept. Repeat this until convergence is observed. In general,

two consecutive elements z,, and z,, .1 are related via

Xpt+1 = Xp — , n=1,23, - and x; is initial guess (2.14)
£/ (xn)
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Chapter 2: Roots of Non-Linear Equations

2.4: Open Methods

~

Slope i: fllx)
Root I

) The iterations stop when two consecutive
elements are sufficiently close to one
another, that is,

|Xnt1 — Xn| <e€ (2.15)

where ¢ is the prescribed tolerance.

[Example 2.4: | Solve xcos(x)+1=0

using Newton Raphson Method
Find the first positive root of x cos(z) =

0 N 3 «* | —1 using Newton-Raphson Method with a
~

Figure (2.7) — Concept of Newton Raphson Method

tolerance of 1074,

Solution : This equation was previously
tackled. According to Figure 2.2 (on
page 15), the first positive root is located

around r = 2, thus we start our

calculations with an initial guess as z; = 1. Also, we know f/(z) = cos(z) — xsin(z). Hence, we proceed
by preparing the Table 2.4 (as shown on page 19). The root of the equation is found to be 2.0739.

'Example 2.5 : | Solve x? —3x — 7 =0_using Newton

Raphson Method

Find the roots of ©?> — 3z — 7 = 0 using Newton-Raphson
method with a tolerance of 10~
Solution : Start by plotting the graph for f(z) = 22 -3z -7
to find approximate locations of its roots (see Figure 2.8 on

page

19). Inspired by Figure 2.8, we prepare two tables (see

Table 2.5 and Table 2.6 on page 19), one for each root. Initial
guess, for first root, is ©; = —2 and, for second root, is 21 = 4.
Accordingly, the two roots found are -1.5414 and 4.5414. (In
the tables we employed f'(z) = 2z — 3.)

Table (2.4) — Newton-Raphson Method: Solve
xcos(x)+1=0

|Iteration| Xn | f(xn) | £/ (xXn | Xn+1 |a = |Xnt1 — x,.||

o7 |HL00000 5408710301216 1144 7 7 5. 11447 - 7 |

| __2 __[6.1144|7.0275 | 2.0128 1 2.6230| __3.4914 __|

|80 [2.6230)-1.2782|-2.1686/2.0336 | 0.5894 |

| __4 __[2.0336] 0.0920 |-2.26622.0742| __0.0406___|

["Z b1 |[2:0742]/-0.0007-2:2993)12.0739)I7 © 710:00037 7 |
6 2.0739 | 0.0000 | -2.2991 | 2.0739 0.0000

50

40

30

20

10

First root Second root

Some points with regards to

Newton-Raphson Method
Following points are note-worthy

as regards Newton-Raphson Method.:

@ When Newton-Raphson Method

works, it generates a sequence
------ i that converges rapidly to the
intended root.

@ Several factors may cause
Newton-Raphson Method to
----- fail.

1. The initial point x; is

not sufficiently close to
the intended root.

2. At some point in the
iterations, f’(x) may be

6 close to or equal to zero.

[T T T T T T 3. Theiteration halts (usually
Figure (2.8) — Newton-Raphson Method: Graph of f(x) =x* - 3x -7 =10

4. The sequence diverges

@ Iff(x), f'(x), and f”(x) are continuous, f'(root) # 0, and the initial point x; is close to the root, then the
sequence generated by Newton-Raphson Method converges to the root.

Table (2.5) — Newton-Raphson Method: Solve Table (2.6) — Newton-Raphson Method: Solve
x2 — 8x — 7 = 0: First Root x2 — 83x — 7 = 0: Second Root

|Iteration| Xn | f(xn) | £/ (xn | Xn+1 |a = |Xn+1 — xn|| |Iteration| Xn | f(xn) | £/ (xn | Xn+1 |5 = |Xn41 — xn||

1 2.0000 | 3.0000 |-7.0000 | -1.5714 0.4286 | 1 |4.0000-3.00005.0000 | 4.6000 |  0.6000 |
2 [.15714]0.1837]-6.1429|-15415| 00209 ||| [ __ 2 |4.6000]0.3600 |6.2000 |4.5419 |  0.0581 |
| 3 [.15415]00000]-6.0831]-15414] 00001 ||| 3  |4.5419]0.0034 |6.0839 |4.5414|  0.0006 |
"4 |15414]0.0000|-6.0828| -1.5414]  0.0000 | 4 4.5414 | 0.0000 | 6.0828 | 4.5414 0.0000

& J < J

B.Sc. 2" Yr. (COE)

astrax11f@gmail.com Page 19 of 38

because of point of discontinuity).


Asre
Typewriter

Asre
Typewriter

Asre
Typewriter
astrax111@gmail.com

Asre
Typewriter


2.5: Roots of Polynomial Equations Chapter 2: Roots of Non-Linear Equations

@ A downside of Newton-Raphson Method is that it requires the expression for f'(x), which can, at times,
be difficult.

2.4.3 Secant Method

As mentioned earlier (in Section 2.4.2), at times, finding expression for f'(x) becomes difficult. In such
cases, an alternative to Newton-Raphson Method is the Secant Method.

The secant method is another open method to solve f(z) = 0. Consider the graph of f(z) in Figure 2.9 (on
page 20). Start with two initial points x; and x2, locate the points (x4, f(z1)) and (z2, f(z2)) on the curve, and
draw the secant line connecting them. The x-intercept of this secant line is 3. Next, use z, and x5 to define a
secant line and let the x-intercept of this line be x,. Continue the process until the sequence converges to the
root. In general, two consecutive elements z,, and z, 1 generated by the secant method are related via

f(xnt1) —f(xn) _ f(xn) — f(Xn-1)

X — X Xn — Xpn—
n+1 n n Xn 1X (216)
n - An-1

T e X T e e %n1)

f(xn), n=2,3,4,--- and x;,x2 are two initial guess

[Example 2.6 : | Solve xcos(x)+1=0
using Secant Method

Find the first positive root of x cos(x) =
—1 using Secant method with a tolerance

fix)

of 1074
Solution : This equation was
previously tackled. Using similar

procedure followed earlier, we proceed by
preparing Table 2.7 (as shown on page
20). Because we know that there is a
root near x = 2 we can safely start with

initial guess of 1 = 1 and 25 = 1.5. Root K
of the equation is found to be 2.0739. =
2.5 Roots of Polynomial |--------------c--ooooo
. Figure (2.9) — Concept of Secant Method
Equations . /
( ) The Bracketing Methods and Open Methods described

L () = SIE Al Sl eseeses) o il S 0 in former sections were equally suitable to solve

[Mter[*n-1 | xn  [f(xa-1)[f(xn) [*n+1 [e=|xns1 —xul| Polynomial Equations as well as Transcendental

| 1 |1.00000|1.50000| 1.54030 | 1.10611 |2.77374|  1.27374 || Equations. But consideration of some aspects of
| 2 |1.50000(2.77374| 1.10611 |-1.58818|2.02292|  0.75082 || Polynomial Equations force us to develop other
| 8_[2.77374|2.02292|-1.58818 | 0.11624 |2.07412| _ 0.05120 __ || methods which are more suitable to solve such
| 4 |2.02292|2.07412) 0.11624 |-0.00044/2.07393| _ 0.00019 __ || equations.

5 [2.07412(2.07393-0.00044 | 0.00000 |2.07393 0.00000 The roots of polynomials follow these rules:

@ For an n'*-order equation, there exist n roots, out of which some or all may be repeated (i.e., multiple
roots with same solution value).

@ Qut of n roots, m(0 < m < n) roots may be real and remaining n — m roots may be complex.

@ Ifn is odd then there is at least one real root.

@ For an equation, if complex roots exist then they always exist as conjugate pairs (i.e., A & ui where

i=+v-1).

Bracketing Methods as well as Open Methods are very viable methods if only real roots exist. However,
when complex roots exist Bracketing Methods cannot be used because of the obvious problem that the criterion
for defining a bracket (that is, sign change) does not translate to complex guesses. Also, the problem of finding
good initial guesses complicates both the bracketing and the open methods. Furthermore, the open methods
could be susceptible to divergence.

In this section, we will discuss methods which specially excel in finding the roots of Polynomial Equations.

2.5.1 Muller’s Method

Muller’s Method is an inspiration from Secant Method. Instead of drawing a Secant which passes through
two suggested points, Muller’s Method suggests three points on the function curve, zg, z1, and x5, and passes

. d
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Chapter 2: Roots of Non-Linear Equations 2.5: Roots of Polynomial Equations

a parabola through these three points (see Figure 2.10 on page 21). Definitely, the equation of this parabola is
a quadratic equation.

The Muller’s Method consists of deriving the coefficients of the parabola that goes through the three guess
points, xg, x1, and z5. These coefficients can then be substituted into the quadratic formula of the parabola
to obtain the point where the parabola intercepts the x-axis — that is, the estimated root, or next guess, (call it
z3). The equation for parabola passing through a point (z2, y2) should take the form:

y2 =a(x —x2)? +b(x — x2) +c¢, a,b, care coefficients of the equation (2.17)

The three points, zq, x1, and z, must satisfy Equation 2.17. Hence,

Yo = a(xo — x2)%> + b(xg — X2) + ¢ (2.18)
y1 =a(x; —x2)2 +b(x1 —Xa2)+c (2.19)
y2 =a(Xs —x2)%> + b(xz —x2) + ¢ (2.20)
Equation 2.20 results in:
c =y2 (2.21)

Substituting Equation 2.21 in Equations 2.18 and 2.19 yields:

Yo —y2 = a(xo — Xx2)? + b(xo — X2) (2.22)
y1—y2 =a(x1 —x2)? + b(x1 — x2) (2.23)

Equations 2.22 and 2.23 can be solved to give the values of coefficients a and b as:

_ (xo — X2)(y1 — y2) — (X1 — x2)(yo — y2)
° T (xo — x1)(x1 — X2)(X2 — Xo) @24)
b~ (X0 —=x2)*(y1 —y2) — (x1 — x2)*(yo — y2) (2.95)

(xo0 — x1)(X1 — X2)(X2 — Xo)

The parabola also passes through the point (z3,y3) = (23,0). Substituting this point in the Equation of
Parabola 2.17:
0 =a(x3 —x2)%> +b(xs —x2) + ¢ (2.26)

As Equation 2.26 is a quadratic equation, it can be solved for x5 — x5 as:

—2c
Xa — Xo — _ 2.27)
3 2 b + v/b?2 — 4ac

or
—2c
3 2 b + v/b?2 — 4ac

Both Equations, 2.27 and 2.28, are useful because they allow to calculate the error:

X3 — X2

(2.29)

X3

The above procedure completes a single iteration. To proceed
to next iteration, substitute zg = x1, 1 = z2, and x5 = x3, and
calculate the new values of z3 and . Repeat the process till
€ > tol (or, in other words, stop the process as soon as ¢ < tol)

A very important point (which may have been overlooked
and ignored) with regards to calculation of values of yq, y1, and
12, 1s that their values are calculated by substituting values of
xo, 1, and xq, in the given function f(x), respectively. This
is possible because the points (zg,v0), (z1,41), and (z2,y2), lies
simultaneously on the parabola as well as the curve of given
function f(x), and hence satisfy equations of both curves (i.e.,
parabola and given function).

Use of parabola, when compared to secant, results in very
rapid convergence, using Muller’s Method.

Parabola

X) Ap X

Root Root estimate .x3

[Example 2.7: | Solve x®-13x-12=0 using Mullers |
Method Figure (2.10) — Concept of Muller's Method

J

d .
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s N

Table (2.8) — Muller’s Method: Solve x® — 13x — 12 =10

|Iteration| X0 | X1 | X2 | Yo | Y1 | y2 | a | b | c | d; | d2 X3 — le X3 | € |

1 4.50000 | 5.50000 | 5.00000 | 20.62500 | 82.87500 | 48.00000 | 15.00000 | 62.25000 | 48.00000 | 93.79461 | 30.70539 | -1.02351 | 3.97649 | 0.25739

4 3.97649|4.00105 | 4.00000 | -0.81633 | 0.03678 | 0.00002 |11.97754 | 35.00004 | 0.00002 |70.00007 | 0.00002 | 0.00000 |4.00000 | 0.00000

Use Muller’s Method with initial guesses of xo = 4.5, x1 = 5.5, and x5 = 5, to determine a root of the equation

3 —132-12=0

Solution : To solve the equation, prepare Table 2.8 (as shown on page 22), and repeat the process till ¢ falls
sufficiently below a reasonable accuracy (for example, below 10~4). In the table, columns d; and d, pertain to
the denominators of 3 — za:

d; = b+ /b2 —4ac and d> =b — v/b2 — 4ac (2.30)

While calculating the values of z3 — x5 and z3 we always pick up either d; or do whichever has the largest
absolute value.

& Beginning of Chapter 1 Table of Contents

. d
Page 22 of 38 aStraXlll@gmall.Com B.Sc. 2"% Yr. (COE)


Asre
Typewriter

Asre
Typewriter
astrax111@gmail.com

Asre
Typewriter


CHAPTER
THREE

MATRICES AND SYSTEMS OF EQUATIONS

Contents
3.1 Vectors and Matrices . . . . . . . . . . . e e e e e e e e 23
3.2 Elementary Properties of Matrices . . . . . . . . . . . . . e e 24
3.3 Orthogonality and Orthonormality of Vectors and Matrices . . . . .. ... ... ... ...... 27
3.4 Norm of Vectors and Matrices . . . . . . . . . . . . i i i i e e e e e e 28
3.5 Linear Equations . . . . . . . . . . . . e e e e e e e 30
3.6 Systems of Linear Equations . . . . . . .. .. . . . ... . ... e 30
3.7 Numerical Methods to solve Systems of Linear Equations . . . . .. ... ... .......... 32
3.8 Numerical Methods to solve Systems of Non-Linear Equations . . . . ... ... ......... 35

Important Note: Dear Students, these lecture notes are ‘Supplementary’, which means, they are not meant to replace your text book,
but only provide supporting material to the classroom lectures, in a summarized manner. You should gain enough Knowledge from other
sources to be in a position to elaborate the topics and material presented fere *

3.1 Vectors and Matrices

[ N .
A |vector v is an ordered set of n scalars, vy, vz, ..., v,, written as
U1
V2
VvV =
Un
More precisely, this is a column-vector (a.k.a column-matrix). Instead, if the scalars v;, vg, ..., v,, are

written in a row

vV = (1)1 Vo ... ’Un)

then it would become a row-vector (a.k.a row-matrix). The count of scalars in the vector is known as the

I PR ——— . . . ..
[ order of vectorJ or Hszze of vectorJ. Hence, in the example above, size of vector v is n. Individual scalars of

the vector are known as elements or members or terms of the vector. Hence, v, is first element of vector v,

and v,, is nth element.

a1 a2 N A1n,
a21 as2 e a2n . 2 3 3
A= . . . . eg. a8 xdmatrixx: P=|-1 2 4
oo e 5 0 -3
Am1  Am2  -.. Gmn

This is a Regular Matrix, where, size of each row of matrix, m, matches with size of any other row, and
similarly, sizes of all columns of matrix are same, n. In a matrix, if the size of at least one row (or column)
is different than size of another row (or column) of the matrix then such a matrix falls in to the category of
Sparse Matrices. Sparse matrices have special applications and they are not of interest to us in this course.
Hence, we will concentrate on regular matrices, and, as such, in this text the term “matrices” would refer to
“regular matrices” only (unless otherwise mentioned explicitly).

23



3.2: Elementary Properties of Matrices Chapter 3: Matrices and Systems of Equations

element at i*” row and j* column is denoted by a;j. (For example, in the above matrix P, element p3; = 0.)
Also, m is the first-dimension of maitrix A (i.e., the count of rows in the matrix) and n is the
second-dimension (i.e., the count of columns), and as such, A is a fwo-dimensional (or 2D) matrix. Higher
dimensional matrices, such as 3D matrices, are possible, but, in this course, we will limit ourselves to 2D

matrices.

i e Iy —
same as “matrix of order n x n”. A “non-square matrix” is known as a [Rectangular MatnxJ. The elements

G171, G292, ..., Gy, IN a square matrix of size n form the [Princi};(;l Diagonal] of matrix. In the display below,

principal diagonal of matrix A is shown in bold-characters:

ail a2 A1n

a21 aA22 a2n
A=| . )

am1 am?2 Amn

The sum of elements of principal diagonal of a matrix is known as of matrix.

|

it’s principal diagonal) as ones, is called [Identity Matrix of order n\\ denoted by I,,. A (a.k.a

———|

aiz 0 0 0 1 00 0 0 00 0 111 ... 1
0 a2 O 0 01 0 0 0 0 0 0 1 1 1 1
0 0 ass 0 I, = 0 0 1 0 0 0 0 0 1 1 1 1
0 0 0 Ann 00 0 ... 1 0 0 0 0 11 1 ... 1

Diagonal Matrix Identity Matrix (of order n) Null Matrix Unit Matrix

If O is the m x n zero matrix and A is any m x n matrix, then A + O = A. Thus, Null Matrix O is the

observe that the matrix — A, which can be obtained as (—1) x A, is the [Additive Inverse] of A, in the sense
that A+ (—A4)=(-A)+ A=0.

A square matrix of order n which has all the elements above it’s principal diagonal as zeros is known as

[Lower Triangular M;};z}] (shown as matrix L below). Similarly, a square matrix of order n which has

all the elements below it’s principal diagonal as zeros is known as [Upper Triar;g:ular Matrix] (shown as

matrix U below).

a1 O 0 0 a1l a2 a3 ain
a1 azx O 0 0 a2 ao3 a2n
L=|as as ass 0 u=|0 0 as asn
an1 An2 an3 Ann 0 0 0 Ann

. . o . . \ oyl
The operation of exchanging rows of matrix with it’s columns (and vice-versa) is known as H Transposition |

) . . [ —— 1 - . . .
of matrix, and the new matrix produced is called of original matrix. Transpose of matrix A is

denoted by AT or A’. Hence =~

aii a12 A1n a11  a21 am1

a1 22 a2n , a2 a2 Am?2
A = . —t A = .

Am1 Am2 Amn A1n  A2n Amn

3.2 Elementary Properties of Matrices

entry of A by a.
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Chapter 3: Matrices and Systems of Equations 3.2: Elementary Properties of Matrices

aix a2 -+ Qin aall Qa2 Qa1n
a1 Q22 -+ Q2pn Qa1 Qagg - - Qa2n
ald =« . . . =
Aml Am2 - Qmn Qlm1 Qmp2 o QAmn
If uy, ug, - - -, uy, are vectors and if aq, as, - - -, a,,, are scalars, then the vector

ajuy + aguz + -+ + GpUm

is called a Linear Combination of uy, us, - -, un.

[I;;(;duct of matrix and;;;;Jrﬂ: If Ais an m x n matrix and x is a (n x 1) column vector then the product

oy ) e e SO e ]
Ax is defined as

ailr G2 - Glp T1 1171 + a12T2 + - - - + A1 Ty

ag1 Q22 -+ G2 T2 a21T1 + Q22T + « -+ + G2, Ty
Ax =] . ) ) .=

Am1 Am2 o Omn Tn Am1T1 + Am2T2 +--- 4+ AmnTn

Note that, this product is not commutative, and as such Ax # xA. But, this product is distributive, i.e.
A(x+y) = Ax + Ay, and, similarly, (x + y)A = xA + y A, where x and y are column vectors.

[Row Echelon Form] : A matrix is said to be in Row Echelon Form if the first non-zero entry in every row

is to the right of the first non-zero entry in all the rows above.
Following matrices are in Row Echelon Form:

-9 0 0 0
0 70 4
(2)_75_322 6 0 -3 4 0 8 0 0 3 8
o 0o -1 0l 00 0 -2 3 -7], 0 00 2
00 0 9 00 0 0 0 0 0 000
0 000
0 000

The first non-zero entry of each row is known as the [Pjgg{ Y(}lliej or [Cfgr;nﬁer}fglfufe].

- A matrix in Row Echel%)n Form vﬁvhiﬁchﬁfh&sﬁfaﬁllﬁit’s Pivot Values as 1 is said to be in
\LReduced Row Echelon FormJ\, or simply @‘i@f‘i{d, f‘gfrfnj. Hence, all the Identity Matrices are in Reduced
Row Echelon Form.

HElementar:y Row Operations (ERO)H : The three EORs that can be performed on any matrix are as
follows: o

1. ERO,: Row Swaps: interchange two rows

2. EROy4: Row Dilations: multiply a row by a non-zero real scalar

3. EROy: Row Transvections: add a multiple of another row to a row

It is interesting to note that Any matrix can be transformed into an equivalent reduced form by a
(not unique) sequence of elementary row operations. We will denote the reduced form of an m x n matrix
A as Ared; -

The of an m x n matrix A is the number of non-zero rows in A,.q4.

\Example 3.1: \Reducin a matrix using Elementary Row Operations

Following example demonstrates transformation of a matrix into it’s equivalent reduced form (R, denotes
Row x):

2 8 7 1 4 I 1 4 z
15 6 (ERO4) LR, 15 % (ERO¢:)R2—4R1,R3—3R, 0 —11 —28 (EROg4:)— 11 Ro
3 29 32 9 0o -9 -3
1 4 7/2 1 4 7/2 v 1 4 7/2
+1)R: Og:) =5
0 1 g/11 | \BRODRHOR [ g gy | EROOTR gy gy
0 -9 —3/2 0 0 111/22 00 1

Elementary Matrices and Row Operations

It is interesting to note know that Elementary Row Operations can be written in the form of matrices.

These matrices are known as [Elementary Matrices].
To understand Elementary Matrices let us write an m x n matrix A, more elaborately, as follows:

d .
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3.2: Elementary Properties of Matrices

Chapter 3: Matrices and Systems of Equations

aix a2 a4 aij Q1n

a1  A22 a2 azj a2n

a1 Q52 Qi Q5 Ain
A= .

ajr a2 Qji ajj Qjn

LAm1 Am2 Ami ot Gy o Gmn
To perform ERO, (Row Swap) on rows ¢ and j, we can multiply matrix A with the following matrix:

1 0 0 . 0 . 0]

0 1 0 0 0

0 0 Qg5 = 0 A5 = 1 0
Es = 1. .

0 0 Qg5 = 1 ajj = 0 0

0 0 --- 0 . 0 o1

The Elementary Matrix E; to perform ERO; on rows i and j is obtained by modifying I,,, (the m x m Identity
Matrix) such that now a;; = 0, a;; = 0, a;; = 1, and a;; = 1. If matrix A is a square matrix of size n x n then
Elementary Matrix E, to perform FRO, on rows ¢ and j is obtained by modifying the Identity Matrix I,, such
that now Qi = 0, ajj; = 0, Q5 = 1, and Aj; = 1.

Hence, if we perform the matrix multiplication E,A we obtain a new matrix A; as:

app a2 -0 Gy o A1 0 Qlp
a1 Q22 - Q2 - Q25 - G2p
a1 aj2 Aji Qs Ajn
A = i
(4251 ;2 Qg Aij Qi
_aml am2 “ee ami ce . amj amn_

which is a transformation on original matrix A, such that, rows i and j of original matrix A are swapped (or
interchanged) to produce the new transformed matrix A;.

To perform FRO,; (Row Dilation) on row 7, with a factor of d, we can multiply matrix A with the matrix E,
as given below:

M o --- 0 )
0 1 --- 0 e 0
Ba=14y o a; =d 0
0 0 - 0 o1

The Elementary Matrix E4 to perform E RO, on row i, with a multiplication factor of d, is obtained by modifying
I, (the m x m Identity Matrix) such that now a;; = d. If matrix A is a square matrix of size n x n then
Elementary Matrix E; to perform ERO4 on row i, with a factor of d, is obtained by modifying the Identity
Matrix I,, such that now a;; = d.

Hence, if we perform the matrix multiplication E;A we obtain a new matrix A, as:

a1 a2 -0 Q1 vt Qlp
a21 Q22 Q2 v G2p
Ay — : : : :
da;1 dagp - dag - dag,
Am1 Am?2 tee Amyg et Amn

which is a transformation on original matrix A, such that, row i of original matrix A is dilated with a factor of
d to produce the new transformed matrix As.

To perform ERO, (Row Transvection) on row i using row j, with a factor of ¢, we can multiply matrix A
with the matrix F;, as given below:
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Chapter 3: Matrices and Systems of Equations 3.3: Orthogonality and Orthonormality of Vectors and Matrices

Mn o --- 0 0 oo 0]

0 0 aii—l Clij:t 0
Ee=|. . . )

0 0 aji:O (ljjzl 0

_0 o ... 0 0 o001

The Elementary Matrix E; to perform FERO; on row i, using row j, with a multiplication factor of ¢, is obtained
by modifying I,,, (the m x m Identity Matrix) such that now a;; = t. If matrix A is a square matrix of size n x n
then Elementary Matrix E; to perform E RO, on row i, using row j, with a factor of ¢, is obtained by modifying
the Identity Matrix I,, such that now a;; = t.

Hence, if we perform the matrix multiplication E;A we obtain a new matrix Az as:

a11 a12 Q14 T aij G1n
as1 a2 a2; az; a2y
a1 a;2 aji ajj Ajn
Az =
a;1 +tajr  ao +taje ay + tag; a;; + taj; Qin +taj,
Qm1 Am2 Ami Qmj Qmn

which is a transformation on original matrix A, such that, row ¢ of original matrix A is transvected with a
factor of ¢, using row j, to produce the new transformed matrix As.

[Example 3.2 : | Reducing a matrix using Elementary Matrices
Following example demonstrates transformation of a matrix into it’s equivalent reduced form (R, denotes
Row x):

2 8 7
4 5 6
329
Edoanwithd:% % 00 2 8 7 1 4 %
- 0 1 0 4 5 6)=14 5 6
00 1/\3 2 9 3 9 9
BionRyusing Rywitht=—4 /1 0 0\ (1 0 0\ /1 4 ¥ 1 4 I
Bron Ryusing fawitht==3 [ o 4 ) |_4 1 0|4 5 6]=]0 —11 =8
-3 0 1 0 0 1/\3 2 9 0 -9 -3
Eg4 on Ry with d=—1¢ 1 9 0 1 4 % 1 4 7/2
0 =4 o]f{o —11 S8)=[0 1 s8/11
0o 0 1 0 -9 —% 0 -9 —3/2
E; on Rj3 using R with t=9 100 1 4 7/2 1 4 7/2
: 01 0flo 1 sa1)={01 811
0.9 1) \0 -9 =3/2 0 0 111/22
Eq4 on Ry with d=22 Lo o0 1 4 72 1 4 7/2
01 0 0 1 8&/11 |=[0 1 8/11
00 2/\0o 0 111/22 00 1

It is not hard to understand that the above six elementary matrices can be combined as a product into a

single Elementary Reduction Matrix as follows:

£ 00\ /1 00\/1 00/t 0 0)/100/10 0 z
01 0)J[{0o 1 of{-4 1o0]|l0o =25 o]fo 1 o0o]Jf0o1 0]|=(-4
0 0 1 -3 0 1 0 0 1 0 0 1 0 9 1 00 2 -3
So, the complete reduction can be performed in a single product as:

5 0 0 2 8 7 1 4 7/2

-4 -+ 0 4 5 6|=(0 1 8/11

-3 9 2/\3 29 00 1

111

3.3

0 0

1
—= 0
gy
111

Orthogonality and Orthonormality of Vectors and Matrices

[Orthogonal Vectors : ] Two vectors x and y are said to be orthogonal if -y = 0. For example, two vectors

(—3)1) and (é) are orthogonal, because their dot product (1)(2) + (—1)(2) + (0)(4) = 0. Vector O is orthogonal

B.Sc. 2! Yr. (COE) astrax111@gmail.com

Page 27 of 38


Asre
Typewriter

Asre
Typewriter
astrax111@gmail.com


3.4: Norm of Vectors and Matrices Chapter 3: Matrices and Systems of Equations

to every vector.

A set of non-zero vectors {vi,va,- -, vk} is said to be [Ml;;l;ally Orthogonal] if vi-vy =0forall: = j.

For example, the standard basis vectors eq, e2, e3 are mutually orthogonal.

1. So, v is a unit vector <= v - v = 1. For example, all the standard basis vectors ey, e5, e3 are unit vectors.

[Normaii;ation of Vector :] The process of replacing a vector by a unit vector in it’s direction is called

Normalization of Vector. An arbitrary non-zero vector w can be normalized by calculating:

R 1
w =
[[wl[2
. x ~ 1 1
For example, if v = (y) then v = V= .
4 TV = Varrgitar

[6;tjz;);zormal Matrices :] A matrix Q is Orthonormal if QT(Q = I. Few examples of Orthonormal

Matrices are given below:

10 1/3 —2/3
0 1], 2/3 —1/3
00 2/3  2/3

HOrthogonailiMatrices S H A square orthonormal matrix is known as Orthogonal Matrix. Hence, if () is an

Orthogonal Matrix then QT Q = I. But, we known that Q—'Q = I. As such, it implies that, for an Orthogonal
Matrix Q, Q' = QT. It also implies that if Q is orthogonal then QT as well as Q' are also orthogonal.
Following are some examples of Orthogonal Matrices:

00 1 /2 1/2  1/2  1/2
10 0 <c089 —sin@) /2 -1/2 1/2 -1/2
01 0 ’ sinf cosf )’ /2 1/2 -1/2 -1/2

12 —1/2 —1/2 1/2

The matrix (] !;) is not an Orthogonal Matrix. But we can adjust it to make it an Orthogonal Matrix:
% (1 ). (Such matrices are known as Matrices with Equi-norm columns. Observe that each column-vector
in this matrix has same /5-norm.)

3.4 Norm of Vectors and Matrices

W]\if;;r;;t;f ‘7¢;c};;] x, denoted as ||x||, is any real number which satisfies the following properties:

1. ||x]| > 0, if x # 0, (i.e. at least one element of x is non-zero)
2. ||kx]|| = |k|||x]||, for any real scalar k
3. [x+yl < |x||+|lyl, for any two vectors x and y
As you can see, based on this definition, Norm of Vector is just a real number associated with a given vector.
As such, there are many possibilities to calculate Norm of Vector. But, out of those many, we usually use one
of the following three norms: (a) [;-Norm (b) />-Norm (c¢) /..-Norm. For a vector x of size n, these values are
defined as follows, respectively:
® ||x|y = >, |2i], where |z;] denotes the absolute value of z;
® |x|l2 = +VaT -z =+4/>_, 22, where 2T denotes the transpose of vector x

O oo = 1@?2;‘@‘
V=

[Example 3.3 : | Norm of vector

As an example, the three norms for the vector v = (1, —2,3, —4) are:
@« =1+ |2+ 3] +]—4/=10
@ =+ ()24 (=2)2+ (3)2 + (—4)2 = 5.477
- loo = mam(|1|a | — 2|v |3|a | — 4|) =4
HNorm of Square Matrix H A, denoted as ||Al|, is any real number which satisfies the following properties:
L Al=0
2. ||A]| =0, ifand only if A =0, (i.e. A is a zero matrix)
3. ||kA| = |k|||A]|, for any real scalar k
4. |A+ B| < ||A]| + ||B||, for any two matrices A and B
5. ||AB] < ||A||||B]|, for any two matrices A and B
Just as in case of vectors, based on this definition, Norm of Matrix is just a real number associated with a
given matrix. As such, there are many possibilities to calculate Norm of Matrix. But, out of those many, we
usually use one of the following three norms: (a) /;-Norm (b) />-Norm (c) /,.-Norm.
For a square matrix A of size n x n, these values are defined as follows, respectively:
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Chapter 3: Matrices and Systems of Equations 3.4: Norm of Vectors and Matrices

@ ||All; = maz (Y, |ai;|), where |a;;| denotes absolute value of a;;, element in i*" row j!* column of A

1<j<n
€ Al =4/ 2 af

- _ n g
1Alloo = maz (35—, lais|)

Hence, /;-Norm is “maximum absolute column sum”, which means, we sum the absolute values along each
column and then take the largest answer. And, /,-Norm is “maximum absolute row sum”, which means, we
sum the absolute values along each row and then take the largest answer.

A as || Al g).

[Example 3.4 : | Norm of square matrix

1 -2 3
As an example, the three norms for the matrix A = {774 5 —6] are:

@ 1y — maa(|1]+ | = 4] +17],| = 2|+ |5] + | = 8], 3 +| — 6] + [9]) = 18
@ 1y =+ /()7 (27 F () F (AP + (52 + (0P + (12 + (-5)% + (9)° = 16.852
@ Lo = maa(1]+ | = 20+ 3], [ = 4]+ [5] + | = 6], 7] +| - 8] + [9]) = 24

Matrix Inversion

A square matrix whose rank is less than the count of rows in the matrix is known as a [Singul(;; jllatrix].

For any non-singular matrix M of size n there exist another non-singular matrix M~! of size n such that

of Elementary Row Operations on M. The procedure can be best illustrated with an example.

[Example 3.5 : | Matrix Inversion

Let us find the inverse of matrix A, as given below:

-1 1 1
A = 3 2 4
1 -1 0
To start, we write:

AT

Now, we perform a series of Elementary Row Operations on both the matrices, simultaneously, on either side
of the middle bar, as follows:

-1 1 0 0
3 2 0 1 0
1 -1 0 0 0 1
1 -1 -1 -1 0 O
Eg4 on Ry with d=—1 3 9 4 0 1 0
1 -1 0 0 0 1
E; on Ry using Ry with t=—3 I -1 -1 -1 0 0
E: on R3 using Ry with t=—1 0 5 7 3 1 0
0 0 1 1 0 1
1 -1 -1 -1 0 0
E4 on Ry with d=1 7 3 1
———= [0 1 5 5 0
0 0 1 1 0 1
2 2 1
E R ing Ro with t=1 Lo 2 3 !
+ on using with t= 7 3 1
. ’ 01 3 5 5 0
0 0 1 1 0 1
E, on R, using Rz with t=—2 1 00 —% % —%
E; on Ry using R3 with t=—1 4 1 7
’ : 010 5 5 5
0 0 1 1 0 1

As can be observed, the aim was to reduce the left matrix (i.e. A) to Identity Matrix, I. While reducing the left
matrix A to I, the EROs transformed the original I on right side of bar to A~!.

4 1 2
. . -1 1 1Y . 5 5 ¢
Hence, the inverse of matrix A = ( 3 2 61) is A7l = ( 1 1 >
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3.5: Linear Equations Chapter 3: Matrices and Systems of Equations

3.5 Linear Equations

The subject of algebra arose from studying equations. Simplest general form of HLinear EquationH is
ax = b. The letter z is the variable, and a and b are arbitrary constants (i.e. fixed numbers).

For example, consider 42 = 3. The solution is = 3/4. In general, if a # 0, then © = b/a, and this solution
is unique. But, if « = 0 and b # 0, then, there is no solution, since the equation says 0 = b, which, of course, is
absurd. And, lastly, for the case where a and b are both 0, every real number z is a solution.

This points out a general property of linear equations. For any given linear equation, with regards to it’s
solution, there are only three possibilities, and they are mutually exclusive: (i) Either there is a unique solution
(i.e. exactly one), or (ii) There is no solution, or (iii) There are infinitely many solutions.

Equations such as z = z2 + 2¢° and 22 = z + y* represent [Non-linear Equations], which, compared to
linear equations, are difficult to solve; their theory involves highly sophisticated mathematics.

ax = b is monomial form of linear equation. When more than one variable is involved, i.e. a;x; + asz2 +

<-4+ apx, = b, we call it a Polynomial Linear Equation.

3.6 Systems of Linear Equations

We discussed in above paragraph, a single linear equation. When there are more than one linear equation,

all referring to the same set of variables, we call them as a [gystem of Linear Equ;z;ionsH.

A general linear system consisting of m equations in n» unknowns will look like:

1121 + @122 + - + 1%, = by

a21%1 + ageT2 + -+ + a2Tp = bo
+ 0 4 b=

Am1T1 + Am2%2 + -+ AGppTn = by

The case where all the constants b, are zero is called [Homoé;neous System of Linear Equations].

Otherwise, the system is said to be [J\?on-homogeneous System of Linear Equattft;r;sﬂ.

Hence, a system of linear equations can be represented as Ax = b, where A is the Coefficient Matrix, x is
the Variables Vector, and b is the Constants Vector, and they are defined as follows:

a;n a2 - G1p z1 by

a1 Q22 - Q2p €2 ba
A= . . R I x=|.|,and b=| .

Am1 Am2 o Omn Tn bm

The [Augmented é’z)elﬁcient Matrix] is written and defined as:

a1 ai2 - Q1n by

a21 G2 -+ Q2pn bo
(Alb) =

am1 Am?2 o Gmn bm

3.6.1 Existence and Uniqueness of Solutions to System of Linear Equations

Suppose we have m equations in n variables, then we can write such a system of linear equations in matrix
form as Ax = b, where A is the coefficient matrix, x is the variables vector, and b is the constants vector.
Clearly, the sizes of A, x and b are m x n, m x 1 and m x 1, respectively. For this system, to have a solution
exist, ranks of A (the coefficient matrix) and (A|b) (the augmented matrix) must be same. (It should be noted
that rank cannot exceed the minimum of m and n.)

For example, consider the following system of linear equations:

1 2 3 T 1
4 5 6 To = -2
7 8 9 x3 5
The reduced form of these equations is:
1 0 -1 X1 -3
0 1 2 T | = 2
00 O x3 10

Here, the rank of coefficient matrix is 2 (recall that rank is number of pivot values in reduced form), but
the rank of augmented matrix is 3. Hence, this system does not have a solution (which is also evident
from the third equation, which is says 0 = 10, which is, of course, absurd.) Such systems are known as

[Inconsistent Systems].
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Chapter 3: Matrices and Systems of Equations 3.6: Systems of Linear Equations

On the contrary, Consistent Systems (where ranks of coefficient matrix and augmented matrix are equal)
have one or more solutions. For example, consider the following system of linear equations:

1 2 3 T 1
4 5 6 ) = 2
7 8 9 T3 3
The reduced form of these equations is:
10 -1\ /[ ~1/3
01 2| |a]| =] 23
0 0 O T3 0

Here, the rank of coefficient matrix as well as augmented matrix is 2. Hence, this is a consistent system and has
more than one solutions (actually, infinitely many.) To find the solution, we must express any two variables
of the system in terms of third variable. Suppose we decided to express x5 and z3 in terms of xq, then, the
solution is z2 = —2z1 and x5 = 21 + 3, Vay.

Practically, we are much more interested in systems of linear equations where coefficient matrix is of size
n x n. When coefficient matrix is a square matrix then it’s rank can reach a maximum value of n (and,
similarly, the rank of augmented matrix also can reach a maximum value of n). Hence, for a given system of
linear equations, if the rank of coefficient matrix is n then, 0bv1ously, the rank of augmented matrix is also

n. Such a matrix falls into the category of \‘Non-Slngular Matnx‘\ (Also, determinant of Singular Matrix is

zero). If the coefficient matrix is non-singular, then, not onl solutwn exists but it will be unique.

For example, consider the following system of linear equations:
1 8 7 1 5
2 9 6 To 3
3 4 5 T3 1
The reduced form of these equations is:
1 8 7 I )
01 87| |a] |1
0 0 48/7) \x3) \6
Here, the rank of coefficient matrix as well as augmented matrix is 3, which is also the size of matrix. Hence,
this is a consistent system and has unique solution. To find the solution, we solve the reduced form of equations,
to get, 1 = II}Q—Oandl’g—%
\\Ill-
existence of solution. But, equally dangerous are Ill conditioned Matrices (which consequently imply IlI-
conditioned Systems of Linear Equations) whose determinant is close to zero. Such systems are very sensitive
to small changes in values of individual variables of equations, which means, even a small change in value
of a single variable will change the determinant of the coefficient matrix drastically, and as such, it becomes
very important to check whether a given solution produced by some numerical method is acceptable or not.

_9
8’

To measure this sensitivity we define \‘Condltwn Number, n‘\ for a given system of of linear equations (in
terms of it’s coefficient matrix A) as follows:

k(A) = [A[lA7]

Condition number is always greater than 1 (- x(4) = |A[||A7]] = |AA~Y| = |I|| = 1). Values of

the condition number close to 1 indicate a \well-condifigned matrixH whereas large values indicate an

[tll-condttwned matrsz\
To 111ustr4ate the concept4of Ill-conditioning, let us take the following example of system of linear equations:
1 10 10
(3 ()= (7)
To make the situation practical, let us assume that our computer has precision for first three significant
digits only (and it neglects the fourth digit and above as round-off error.)
Now, the reduced form of these equations is:
1 10% (z1\ _ [10*
(o 1) () = (i)
This happened because our computer approximated the calculation 2 + 10* ~ 10* to the third significant digit
(instead of the correct value 2 + 10* = 10002 in which precision is involved at fourth significant digit.) Solving

the reduced set of equations yield x; = 0 and 25 = 1. For sure, this is a poor approximation of true solution.
So, let us see what is the condition number for this set of equations:

w(A) = [ALIIAT
1 2 —10*
2+ 104 1
)

)

2+ 10%) x 2+104 (1+ 10"
= 10001
The large value of condition number is clearly indicating that the system is ill-conditioned.
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3.7: Numerical Methods to solve Systems of Linear Equations Chapter 3: Matrices and Systems of Equations

3.7 Numerical Methods to solve Systems of Linear Equations

As shown in Figure 3.1 (on page 32), Numerical Methods to solve Systems of Linear Equations are divided
into two categories: Direct Methods and Indirect Methods.

I N

Numerical Methods to solve Ax=b

Direct Methods Indirect Methods
Cramer’s Gauss Jordan lacobi Gauss-Seidel
Method Method Method Methad
Gauss Elimination LU Decomposition Newton’s Fixed-Point
Method Methods Method  Iteration
Method

Doolittle’s  Cholesky's
Method Method

Figure (3.1) — Categorization of Numerical Methods to solve Systems of Equations

J

A direct method computes the solution by performing a predetermined number of operations. These
methods transform the original system into an equivalent system in which the coefficient matrix becomes
an upper-triangular matrix, a lower-triangular matrix, or diagonal matrix, thereby making the new system
much easier to solve.

Indirect methods use iterations to approximate the solution. The iteration process begins with an initial
vector and generates successive approximations that eventually converge to the actual solution. Unlike direct
methods, the number of iterations, and thus the number of operations, required for convergence of solution, is
not known in advance.

Among Direct Methods we will study Cramer’s Method, Gauss Elimination Method and
Gauss-Jordan Method. And, from Indirect Methods we will cover Newton’s Method and Fixed-Point
Tteration Method.

3.7.1 Cramer’s Method

Cramer’s Method is systematic approach to solving system of linear equations. It can solve only non-
singular system of equations.

To use Cramer’s Method write the given system of equations as ajz; + aszs + -+ + anz, = b, where
zp(Vk, 1 < k < n) are the variables of the equations, and ax(Vk, 1 < k < n) are the column-vectors for
coefficients of corresponding variable z;(Vk, 1 < k < n), and b is the column-vector for constants (RHS of
equations). Call matrix Aas[a; az --- a,|,matrix A;as[b as --- a,|,matrixAsasfa; b --- a,l,
and so on. To generalize, call matrix Ay as[a; az -+ ax-1 b axi1 ay], which is the modified matrix
A in which the column corresponding to ay,the coefficient column-vector of z;, is replaced by constant column-
vector b.

The solution to the system of linear equations is given by:
_ A4 |As| Ak | _ |Ax|

:1'/-1_7’ x2_ s “ e xk:_ R oo [L'n_
4] 4] 1Al A
where | Ax| denotes the determinant of matrix Ay.

[Example 3.6 : | Cramer’s Method for Two Equations

Solve the following system of equations using Cramer’s Method:
2x 1+ 3582 = 5
3x 1 — 4.’E2 = —12

Solution : Write down the matrices and vectors:

a=(3 3) e () e (d ) e (58

Solve the variables:

5 3
N =t —4’_(5)(—4)—(3)(—12)_—20+36__16
YTlAl ’2 3‘ @) (=) -(3)3)  —8-9 17
3 —4

. d
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Chapter 3: Matrices and Systems of Equations 3.7: Numerical Methods to solve Systems of Linear Equations

2 5
oAl 3 S22 @(12)-(5)(3) _ —24-15 39
T4 ‘2 3‘ T @2)(-4)-3)(3) —8-9 17
3 —4

'Example 3.7 : | Cramer’s Method for Three Equations

Solve the following system of equations using Cramer’s Method:

2 — 3y + 4z =1
T + y - z = 2
—T + z = 1
Solution : Writg dovgn the matrices amli vectors:
A= 1 1 -1 b= 2
-1 0 1 1
Solve the variables:
1 -3 4
2 1 -1
et 0 1T @A)+ (=3)(=HA) + (4)(2)(0) - H)(D)(A) — (=3)2)(1) - M)(=1)(0) _,
2 =3 4] @O0+ 3D+ @M0) — @D - (=3)(1)(1) - @)(=1)(0)
1 1 -1
—1 0 1
2 1 4
l 1 2 -1
ot ] @e0+OEDE) @00 - DD - DO - @EDD
2 -3 4 2)(1)(1) + (=3)(=1)(=1) + (4)(1)(0) = () (1)(=1) — (=3)(1)(1) — (2)(=1)(0)
1 1 -1
-1 0 1
2 =3 1
| 1 1 2
L 0 1] @M+ @D+ MM0) - (WD - (3 - @@,
| 2 -3 4 )W) + (=3)(=1)(=1) + (4)(1)(0) = (H)(1)(=1) = (=3)(1)(1) = (2)(=1)(0)
1 1 1
-1 0 1

3.7.2 Gauss Elimination Method

of System of Linear Equations into it’s equivalent Reduced Row Echelon form. This process is known as
Forward Elimination Process.

Once in it’s Reduced Form we can start solving for the equation with single variable, then substitute the
variable’s value in the equation with two variables and solve for the second variable. By substituting these
two variables in the next equation (with three variables) the third variable can be solved. Continuing this
process results in resolution of all the variables. This step is known as Backward Substitution.

Hence, solution using Gauss Elimination Process involves the two steps : Forward Elimination process and
Backward Substitution process.

[Gauss Elimination Method] uses systematic approach to transform the Augmented Coefficient Matrix

\Example 3.8: \ Gauss Elimination Method for three equations

Solve the following system of equations using Gauss Elimination Method:

2 — 3y + 4z =1
x + y - z = 2
—x + z =1
Solution : Write down the Augmented Coefficient Matrix and start Forward Elimination Process:
2 -3 411
1 1 —-112
-1 0 1]1
E4 on Ry with d=1 1 =3/2 2|12
_ 1 1 -1 2
-1 0 1 1
E, on Ry using Ry with t=—1 1 _3/2 2 1/2
E; on R3 using Ry with t=1 0 5/2 _3 3/2
0 -3/2 3]3/2

d .
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3.7: Numerical Methods to solve Systems of Linear Equations Chapter 3: Matrices and Systems of Equations

Eg4 on Ry with d=2 1 =3/2 211/2
BoonfawihdZ5, g 1 —6/5 | 3/5
0 —3/2 3 3/2
E; on R3 using Ry with t=3% é _3/§ _9/? ;;;
0 0 6/5]12/5
. 5 1 —3/2 2 1/2
E Rg with d=2
0 0 1 2

Now start the Backward Substitution Process:

z=2
y-2:=2 5 =l He=s
p-dyre=l s e= (D) =1

\Example 3.9: \ Gauss Elimination Method for five equations

Solve the following system of equations using Gauss Elimination Method:

20 — 5 + 4c¢ — 9d = -7
a + b + ¢ + d - e = 14
a + 206 + 3¢ + 4d — 10e = 36

8 — 5Bb — 3¢ + e = 10
a — 3 + 3¢ — T7d - e = —4

Solution : Write down the Augmented Coefficient Matrix and start Forward Elimination Process:
2 =5 4 -9 0| -7
1 1 1 -1 14
2 3 4 -10| 36
-5 =3 0 1] 10
-3 3 =7 -—-1|-4

—5/2 2 —9/2  0]-7/2
o 11 1 1| 14

E4 on R; with d=3
ey 2 3 4 —10 36
-5 -3 0 1 10
-3 3 -7 -1 —4

~5/2 2 —9/2 0] -7/2
7/2 -1 11/2 -1 35/2
9/2 1 17/2 —10| 79/2
15 —-19 36 1| 38

~-1/2 1 -5/2 —1|-1/2

E: on Rs using Ry with t=—1
E; on Rz using Ry with t=—1

E¢ on R4 using Ry with t=—8
E: on Rj using Ry with t=—1

52 2 —9/2 0] -7/
o 1 —2/7 117 -2/7| 5
LaonFa with 477, 9/2 /1 17?2 ,{0 79/2
15 -19 36 1| 38
S22 1 52 1| -1/

_5/2 2 —9/2 0] -7/2

1 o7yt -] s

E4 on R3 using Ry with t=—$

0 16/7 10/T —61/7| 17
0 —103/7 87T 37/7| —37
0 6/7 —12/7 —8)7 2

E: on R4 using Ry with t=—15
E; on Rs using Ry with t=1

—5/2 2 -9/2 o -7/2
. 1 =2/7 17 —=2/7 5
h d=-L
Fa on Rs with d=1 0 1 5/8 —61/16 | 119/16
0 —103/7 87/T  37/T| 37
0 6/7 —12/7  —8/7 2
—5/2 2 —9/2 o -7/2
. . 1 -2/7 1)1 —=2/7 5
: ht=102
Peon T ome f WIRITT 0 1 5/8 —61/16| 119/16
Fe on Ry veing Ry with 1=-7 0 0 173/8 —813/16 | 1159/16

OO OO R OO0 OHR OO OO0, RFWRFFRFF OO

0 0 -9/4 17/8 | —35/8
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3.8: Numerical Methods to solve Systems of Non-Linear Equations

1 —5/2 2 -
Eq on Ry with d= 155 8 (1) _2/I 1
0 0 0
0 0 0 —
1 —5/2 2 -
Ey on Rs using Ry with t=5 8 (1) _2/’; 1
0 0 0
0 0 0
1 —5/2 2 -
By on Ry with d=172 8 (1) *Q/I 1
0 0 0
0 0 0
Now start the Backward Substitution Process:
e=—1
J_ 818, 1150
346 346
ey Bg B 19 19
8 16 16 ~ 16

2 11 2

b) 9 7 7

3.8

9/2 0
1/7 —2/7
5/8  —61/16
1 —813/346
9/4 17/8
9/2 0
1/7 —2/7
5/8  —61/16
1 —813/346
0 —547/173
9/2 0
1/7 —2/7
5/8  —61/16
1 —813/346
0 1

1159 813
d‘3«3_<_&m>@4)_2

o~ ()
Y- (3

(-3) @@+ (

Numerical Methods to solve Systems of Non-Linear Equations

—7/2

5

119/16
1159/346
—35/8
—7/2

5

119/16
1159/346
547/173
~7/2

5

119/16
1159/346
~1

(-] =3

2
7

Jore(2) 5]

Systems of Non-linear Equations can be solved numerically by using either Newton’s Method (for small
systems) or the Fixed-Point Iteration Method (for large systems)

3.8.1 Newton’s Method to solve System of Non-Linear Equations

Newton’s Method to find roots of equation was discussed in Section 2.4.2 (on page 18). An extension of that
technique can be used for solving a system of nonlinear equations. Let us solve first system of two nonlinear
equations, followed by a general system of n nonlinear equations.

Solution to System of Two Equations

A system of two (nonlinear) equations in two unknowns can generally be expressed as

=0
=0

fl(xay)
f2(.’13,y)

Suppose (zq,y,) denotes the actual solution so that fi(z,,y,) = 0 and fa(z4,y,) = 0. We begin with an
initial estimate of solution as (z., y.). If z. is sufficiently close to z,, and y. is sufficiently close to y,, then, by
Taylor’s series expansion (ignoring second and higher order terms):

fl(l'aaya) :fl(xeaye) +

f2($a7ya) :f2(x67ye) +

where Az =z, — z, and Ay = y, — ye.

% Az +

a“:(x&ya

a—fz Az +
T (@e,ye)

o
Jy

(ze,Ye)

2 Ay

W (2, )

Ay

3.1)

After substituting fi (x4, ya) =0, f2(z4,y.) = 0, and rearranging the terms, the above two equations can be

ot =1
Ay 2] e

written in matrix form as:

oh of
ox 0O

o ol
dr Oy

(ze,ye)
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3.8: Numerical Methods to solve Systems of Non-Linear Equations Chapter 3: Matrices and Systems of Equations

Now, system of nonlinear equations is transformed into equivalent system of linear equations! Hence,
Cramer’s Method or Gauss Elimination Method can be employed to find the values of Az and Ay.

This means that we should be able to find the correct solution (z,,y,) from the approximate guess
(Te,ye) by substituting (z.,y,) = (e + Az,y. + Ay). But, because we did not consider higher order
terms while expanding fi(z,,y,) using Taylor’s series, we will get only a better approximate guess as
(TasYa) = (ve + Az, ye + Ay).

But, also, surely (xz. + Az, y. + Ay) is nearer to correct solution (x,,y,) as compared to our initial guess
(ze,ye). This suggests that we can repeat the process iteratively to find even better guesses, and reach a final
guess which is close enough to the correct value within an allowed tolerance.

Hence, re-initialize the next guess as (z.,y.) = (24, y,) and calculate new (z,,y,) using Equation 3.1 (on
page 35). In every iteration calculate € = ||(Ax, Ay)|| = +1/Ax? + Ay? and repeat till € > tolerance.

\Example 3.10: \ Newton’s Method to solve system of non-linear equations
Example : Solve the following set of nonlinear equations using Newton’s Method with a tolerance of 1073.

3.203 +1.8y2 +24.43 =0
—22% +3y3 =592

Solution : Let us name our equations as follows:

p =3.203 + 1.8y + 24.43 q =22%—3y%45.92
Also, let us name the derivatives as follows:
p p dq 9
== =9.62> b =— =36 =— =4 d == =-9y°
“ or o Jy Y ¢ ox o oy 4

So, our aim is to solve the matrix equation :

PR e I
¢ d (e ye) Ay T (2.ye)

For easier reference let us define following three matrices:

_|a b _|-p b _|la —p

o=t} -7 1 o=l 7
It is critical for convergence of solution to start with an initial guess as close to the actual solution as
possible. A good approach for initial guess is to plot the graphs of the functions and guess the initial value
approximate to their point of intersection (Any software application, such as MATLAB or Microsoft Excel or

FreeMat, will do the job of plotting). In this case, the graphs show that the solution is somewhere near to
(_27 2) .

p =3.203 + 1.8y + 24.43 q =22%—3y%+5.92
Table (3.1) — Example: Newton's Method to solve system of nonlinear equations
1# 2 (vl a bl cl dl » | a [ 1€ ] 1Cl [ICI] ac | Ay [ 20 || € |
)
o S o S S S
S eSS &l & & &1 & & & & &
LI I S PSS R, N B PN $ S & W o | N e TG G
p v 03 A o © ~N o Ry e ¢ N Q
SN (R IR SR I e e B e B e B
N o A o ) NG ® %) Ay oy & o N N o &
N SNFN SN ENF T SIS FSe S
N | e | ® g ® ™ S S w0 N N o ~ .
1ol ol o o o @l o] o S o] ol o] o1 o o o
SIS & | & & Y iy v 5 & $ S & | S S
30N | A , N o S &> N % S A S
v N NG © @ o S N S S N S ) o N Ny
T T R o S| o o | T ¢ N
N © S S 5 S S S )
Sl Sl S S & T & & & & S| & ¢ | & &
9 S 0y W o N ) ) ; 0y N ) AV NS ©
o | o7 | & & |4 P > ¥ Gy NS & £ &N o
= : S N S o S N 2 &

As shown in Table 3.1 (on page 36), we were able to converge to the actual solution as (-2.0999,1.7000)
in 4 iterations with a tolerance of 0.001.

Solution to System of n Equations

A system of n (nonlinear) equations in n unknowns can, in general, be expressed as:

fl(xlax%"' 7wn) =0
f2($1,£62,-~- 7xn> :O
fn(mlax%'"' 7xn) =0

. d
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Chapter 3: Matrices and Systems of Equations 3.8: Numerical Methods to solve Systems of Non-Linear Equations

Following the same approach as used in the case of two variables, and choosing (z¢1, ez, - , Ten) as the initial
estimate, we arrive at:
0f Oh 0N
ox ox ox, _
o oh . ofs o -
O0x1 Oxg ox, ] 2 — ) 2
% 67'}.” 8"fn Ax” _fn (zel7za2,'“ ,men)
| 0x1  Oxo o, | (Ter,Tezye sTon)

We can solve this equation to obtain the vector [Az;],1 < k < n, which can be used to find the next estimate
as:

Tal Tel A1‘1

Lal Tel Axy
= +

Tan Ten Az,

The process can be iterated till € = |[(Azy, Azg, -+, Ax,)|| = +1/A2? + Az? + - + Az2 > tolerance, every
time substituting (ze1, Ze2, + , Ten) = (Ta1, Ta2y 5 Tan)-

Convergence of Newton’s Method

The determinant:

Oh oh . Oh
31‘1 81‘2 axn
0 0 Of
J(f1s fare s fn) = Ox1  Oxa 0xy,
Ofn,  Ofn ofn
Oy dry O
is known as Jacobian of (f1, f2, -+, fn)-
Convergence of Newton’s Method is not guaranteed, but it is expected if these conditions hold:
@ £, fa2,-, fn and their partial derivatives are continuous and bounded near the actual solution.

@ J(f1, f2, -, fn) # 0, near the solution.
@ The initial solution estimate is sufficiently close to the actual solution.

3.8.2 Fixed-Point Iteration Method to solve System of Non-Linear Equations

The Fixed-Point Iteration Method to solve a single equation can be extended to handle System of
Non-Linear Equations, by rewriting the system as a set of Auxiliary Functions as follows:

v = gi(®1, 22,0, Tn)
) = 92(m1a$27"' 71:71)
T = gn(x17x27"' 7xn)
Choose (zp1,%p2, - ,Tpn) as the initial estimate and substitute into the right sides of the Set of Auxiliary
Equations. The updated estimates are calculated as:
Tg1 = 91($p1,$p2,"' >xpn)
Lg2 = 91($p1,$p27 Tt 7xpn)
Tgn = gl(xplaxp%"' axpn)

For the next iteration, these new values are then re-used in the right sides of Set of Auxiliary Equations
to generate the new updates, and so on. The process continues until convergence is observed (i.e. ¢ =
[[(Azy, Azg, -+, Axy)|| < tolerance, where Axy = xg, — xpi,V 1 < k < n).

\Example 3.11: \ Fixed-Point Iteration Method to solve System of Non-Linear Equations

Using the Fixed-Point Iteration Method, with a tolerance of 0.001, solve the following nonlinear system of
equations:

3.203 +1.8y% +24.43 = 0
—22% +3y3 = 5.92
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3.8: Numerical Methods to solve Systems of Non-Linear Equations Chapter 3: Matrices and Systems of Equations

Use (—2,2) as your initial estimate.

Solution : First, rewrite the equations as equivalent auxiliary functions as follows (this is only one
possibility; other auxiliary functions may be possible):

1.8y% + 2443\
r = —|——
3.2
(22245920
vo= 3
or, to be precise:
1
1.8y2 +24.43 \”
Tg = gl(xp’yp) = - T

1
222 +5.92\°
Yg = 92(5Upa yp) = (1)3>
Using these auxiliary functions we iterate to generate Table 3.2 (shown on page 38):

Table (3.2) — Example: Fixed-Point Iteration Method to solve
nonlinear equations

I#I Zp I Yp I zg = g1(Tp, Yp) I Yg = 92(Tp, Yp) | € I
1]-2.0000 | 2.0000 | __-21461 | ___1.6679 _ __|0.3628

| 2| -2.1461 | 1.6679 |  -20953 | __1.7150 | 0.0692

| 3] -2.0953 | 1.7150 | ~ -21021 | ___1.6985 _ | 00178
41-21021 | 16985 |  -2.0997 | ___1.7007 | 0.0032
5 | -2.0997 | 1.7007 -2.1000 1.7000 0.0008

As seen in Table 3.2, we were able to converge to the actual solution as (-2.1000,1.7000), in 5 iterations,
with a tolerance of 0.001.
Convergence of Fixed-Point Iteration Method

As was the case of convergence of Newton’s Method, similarly, convergence of Fixed-Point Iteration Method
is not guaranteed, but it is expected if these conditions hold:

@ Auxiliary functions ¢i,¢2,---,g, and their partial derivatives with respect to zi,zs,---,z, are
continuous near the actual solution.
-
o 991 g1
ZJ1 ZJ1 2 < 1
(9931 + 81172 + + 6l’n
Jg2 992 Jg2
g9z 292 20 <
oy + 0o + + ox,,
oo+t + + <1
O9n Ogn Ogn
ZIn Zon ZInl <
o0x1 + 0xo + + o0xy,
@ The initial estimate (2,1, T2, -+ , Tpn) is sufficiently close to the actual solution (z41, x40, -, Zgn).
& Beginning of Chapter { Table of Contents
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